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Preface

Neoclassical Physics evolved from my growing sense of frustration that
introductory physics texts seem designed to drive students away from
the subject. While physicists take pride in describing hosts of phenom-
ena from a few guiding principles, introductory textbooks introduce too
many subjects and require too much memorization of disconnected facts.
Worse, because introductory physics courses are treated as tool-building
exercises for subsequent studies in physics, topics like special relativity
that hold great student interest are not covered. Instead, a disproportion-
ate amount of the material presented, like bricks sliding on the floor, is
simply uninspiring. I have, in fact, had students remark “You seem to be
a really smart guy, how can you do this stuff?”

So, I have written this book with the determination that I will spend more
time covering the wonderful and that I will make better use of modern
technology. It has been a constant source of frustration to me that stu-
dents lose sight of the physical principles as they struggle with the math-
ematics. Tools now exist to assist students with algebraic manipulations;
I think that it is time to incorporate them in introductory classes. I recog-
nize that using a tool like Wolfram Mathematica� software brings with it
another set of problems but, in my experience, the advantages outweigh
the disadvantages. I note also that translators exist to convert between
Mathematica notebook files and Maple� software formats. For those who
have made the intellectual (and/or financial) investment in an alterna-
tive software package, it should be possible to find equivalents for the
Mathematica functions identified in the text.

A particular benefit of using sophisticated software is that we can now
routinely incorporate visualization into the course. Rather than stopping
at the derivation of some result, we can ask students to examine the shape
of the resulting function and ask how does that shape change if we alter
any of the parameters? As I mention later in the text, one of my former
colleagues was fond of stating that humans evolved to recognize tigers—
those who couldn’t were removed from the gene pool. Providing stu-
dents with an opportunity to visualize the results of their labors will add
to their understanding of the material and provide another, geometrical
perspective.

In selecting the title for this text, I thought that neoclassical was a word
that sounded pithy and captured my intent. While wandering through

vii



viii Preface

a museum, it struck me that, because the word was already in use in ar-
chitectural and artistic settings, my appropriation of the word might be
in conflict with accepted usage. After a bit of research, I concluded that
the neoclassical movement was founded in reaction to the Baroque and
Rococo schools in an attempt to return to the “purity” found in classical
Greek and Roman arts and architecture. I am relieved to find that my
original choice of title does, indeed, reflect my purpose and intent: I am
departing from the Baroque treatment of physics found in present books
and focussing on how the process of physics allows us to construct models
of physical systems.

It is my expectation that Chaps. 1–5 will constitute a semester’s worth of
material. Each chapter will require two to three weeks to cover; this cer-
tainly marks a significant departure from the current chapter per week
methodology employed in most courses. The text has been written to
support a deliberate pace and will work well with a guided-discovery
approach to instruction. Additionally, initial progress will be slowed by
a necessary introduction to the Mathematica program. I have made no
attempt to provide any Mathematica tutorials as part of this text, as a
number of exceptionally detailed tutorials exist on the Wolfram company
website. As a practical matter, the Mathematica documentation can be
cut and pasted into an active notebook, so if you can find an example of
something that is interesting or relevant, you can experiment on a work-
ing script immediately. Scripts in the Wolfram Mathematica Language�

are identified in the text with a typewriter-like font.

The fastest means for learning a programming language, in my experi-
ence, is to follow precisely the path described above: obtain a working
piece of software and then begin to modify the code to see what ensues.
Some changes will illuminate what the bits and pieces of the code do;
most changes will break it. With the language reference manual in one’s
lap, one can utilize this technique to evolve a working example into a new
(working) example that performs a different function. This strategy allows
beginners, for example, to perform complex tasks like running anima-
tions with key parameters assigned to sliders, something that a beginner
might never even get to run to completion, much less actually perform the
desired function. The student can even replace the functions being plot-
ted without understanding how the plots get generated or why the sliders
work. Those details can be mastered at some future time, or never, if there
is no interest.

This strategy, in large measure, reflects my approach to the material in
the text, which leads students through the development of several of the
most important discoveries in physics. Few of the exercises ask students
to perform a derivation, except in parallel with one that was conducted
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in the text. The purpose of these derivations is to force students to utilize
different notation than that in the text, to see firsthand that there can be
different mathematical representations of the same underlying physical
ideas. For the most part, the exercises are designed to provide students
with a means for visually examining some aspect of the physical system
being investigated. Deriving the equations of motion is not the objective;
understanding how the various parameters that define those equations
affect the trajectory is the goal.

The remaining Chaps. 6–11may represent more material than can be cov-
ered in a second semester. These chapters are largely independent of one
another, providing instructors with the option to follow different path-
ways in the second semester. It is my hope, though, that students’ in-
creasing sophistication and competence with the Mathematica software
will ultimately accelerate their progress and permit them to wade through
the text in its entirety.

I recognize that, by limiting the course to such a small number of chap-
ters, some will be critical of important topics that have been left by the
wayside. That perspective is understandable but I have made considered
choices. My intent is to pique the interest of students who would not have
considered a career in physics; perhaps, I will win a few converts. For the
remainder of the student population, who are enrolled solely because it is
a required course for their major, they will learn some useful mathemati-
cal skills and something of the tradecraft of physicists. They will emerge
from this course with skills comparable to those obtained in other texts
but with an in-depth knowledge of a smaller list of topics, instead of a
passing familiarity with a broader list. I believe this to be a worthy goal.

Whether I am successful or not in this enterprise, please understand that
all errors in this text are my own. Others have certainly supported me in
this effort; foremost of those is my wife Liz, without whose support this
text would have never seen the light of day. I am eternally grateful that
she has provided unwavering support for my efforts.

Katy, USA Mark A. Cunningham
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I

Introduction

It is surprisingly difficult to provide a concise definition of physics. Most
authors (physicists) claim that physics is the most fundamental of the sci-
ences; most students will attest that it is the most arcane. In perusing the
literature, we can find the word physics applied in many seemingly unre-
lated circumstances. For example, there are books and journals in which
authors speak of the physics of subatomic particles, the physics of musi-
cal instruments and the physics of baseball. Actually, all of these cases are
perfectly reasonable uses of the word physics, even though it may not be
immediately obvious what baseball has to do with pianos or electrons.

As we shall see during the course of this text, physics is not so much a sep-
arate scientific discipline, like biology or chemistry, but is instead a pro-
cess by which we systematically conduct experiments and methodically
construct mathematical representations of the behavior of physical sys-
tems. In this regard, physics is rightfully considered a difficult subject;
practitioners must possess a fluency in mathematics that is not generally
found in the population at large. In studying physics, most students will
find that they utilize every shred of mathematical knowledge they possess
and must work diligently to expand their mathematical skills. Moreover,
students must learn to think abstractly, which is a skill that is not often
emphasized elsewhere.

A further difficulty that we shall encounter stems from the fact that we
use English words (for the most part) to define our physics concepts;
those words often have other, conflicting definitions. One could argue
that physicists should invent their own words to describe their concepts
and physicists have made some effort in that direction. The word “quan-
tum,” for example, was initially used by the Romans to mean “howmuch”
of a quantity you possess. As few people now converse in Latin, physicists
appropriated the word quantum to identify the small, discrete difference
between two atomic states. As such, quantum represents an infinitesimal
(but distinguishable from zero) quantity.
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We find now that the word has passed back into common usage, e.g.,
“This new product represents a quantum leap in dish-washing detergent
technology.” This common use of the word means a significant or ma-
jor change—exactly the opposite of the physicists’ usage. So, even when
physicists invent their own words (or steal them from Latin or ancient
Greek to demonstrate their classical educations), we cannot control usage
outside our own domain. We shall attempt to be precise in our usage of
terminology in this text; students will simply have to learn to recognize
key words and their contexts.

1.1. What Is Physics?

As a first step in trying to understand the process of physics, imagine an
experiment in which a number of students are provided stopwatches and
then are positioned at equal distances along some path. Each student’s
objective is to record the time that it takes a runner to reach his or her
position along the path. To begin the experiment, a starter waves a flag;
the runner starts running; the students start their stopwatches and each
student stops his or her watch when the runner passes. The students then
reassemble and their measured times are recorded in the order in which
the students were aligned on the path. We’ve plotted the results of this
experiment in the figure below.

Figure 1.1. A timing experiment.
Students spaced an equal distance
along some path measure the time
it takes a runner to reach their po-
sition. These values are shown as
dots. A linear fit to the data is also
shown as the solid line

What we observe is that there is a general trend to the data; we have in-
cluded a linear fit to the data to emphasize that observation. The fit is
not perfect but we suspect that not all of the students were equally profi-
cient at timing the runner. Probably replacing the students with a series
of electronic measuring devices would reduce the scatter but an essential
element of measurement is understanding that all experiments have finite
precision and all experiments are afflicted with noise. It is never possible
to know something exactly.

Our first example demonstrates a few pertinent facts about the process
of physics. First, our objective is always to understand the behavior of
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some physical system and, as we shall see, the definition of a physical
system can be quite broad. Second, physics is an experimental science; our
development of mathematical models is always motivated by experiment.
This point may not be always obvious in an introductory course, where
there has been significant time to refine our notation and the presentation
of our results. Yet, we should not lose sight of the fact that experimental
observation drives science. Third, physics is not curve fitting. While we
may make use of such tools as a means for illuminating the behavior of a
system, we will never be content with just the values of fit parameters.

To begin our analysis of the experiment represented by figure 1.1, we
know that the equation of a line is y = mx + b. If we use the variable t to
represent time and the variable s to represent the student, we can recast
the general equation of the line into the form s =mt+b that represents our
specific experiment. We now have an abstract, mathematical representa-
tion of our experiment. This equation describes the motion of the runner
over a particular time interval.

Notice, though, that for this equation to make mathematical sense, each
of the terms in the equation must have the same dimension.1 If s repre-
sents a distance, then the product mt must also have the dimension of a
distance, as must the factor b. Because the product mt has the dimension
of a distance, the coefficient m must have the dimension of a distance di-
vided by time. This process of dimensional analysis is an important one
that we will revisit periodically throughout the text.

Exercise 1.1. In the study of object motion, the most common di-
mensions are mass M , length L and time T . The dimensional equa-
tion that corresponds to the equation s =mt+b would be (L) = (L/T) ·
(T) + (L). Suppose now that we have an equation s = a0 + a1t + a2t

2.
If s has the dimension of length L, and t represents time, what must
be the dimensions of the coefficients ai? What is the corresponding
dimensional equation?

Our real objective in physics is to use equations like s = mt + b to predict
the position of the runner beyond the domain t1 ≤ t ≤ t2 or to predict the
positions of other runners. We would like to understand why the param-
eters m and b take on particular values. It is essential, though, that we
understand what physical concepts the equations represent and what are
the limitations of our models. In the experiment depicted in figure 1.1,
we wouldn’t be surprised if the runner’s position continued as a straight

1Unit systems like le Système International d‘unités provide precise definitions for dimen-
sions. At this moment, we are not concerned about the units associated with the dimension
of length. We shall defer this point until later.
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line for a few more seconds but we also wouldn’t expect the curve to re-
main linear indefinitely. Not many runners can maintain a constant pace
for long periods of time. We also know, in this particular experiment, that
the equation does not allow us to predict the position of the runner prior
to the starting time. Presumably, the runner was wandering about in the
vicinity of the starting point for a time and then stood motionless at the
beginning of the path for a while before the starter waved the flag. That
behavior of the runner is not captured by the equation s = mt + b. So, an
essential part of physics will be to understand the range of validity of the
mathematical models that we construct.

Exercise 1.2. Many economic models assume compounded growth.
That is, if you have a quantity x of something initially, after a year
has passed you will have a% more. The quantity at the end of the
first year is thus x · (1 + a), where here we represent a as a fraction.
After n years, you would therefore have x · (1+a)n. Suppose that you
invest $1000 at 10% interest.

(a) How much money would you have after 10 years?
(b) How much money would you have after 50 years?
(c) (Rhetorical) How likely are things to remain constant for 50 years?

1.2. Space and Time

The value of using mathematics to describe our systems rests upon the
ability to make quantitative predictions about the time evolution of what-
ever system we are studying. Moreover, mathematical descriptions pro-
vide us with the means for understanding what parameters control that
evolution. For example, the equation s =mt + b permits us to estimate the
position of the runner between where we have placed students and, po-
tentially, beyond the timed interval. The parameters m and b characterize
the runner’s progress in some fashion. If we consider time to be a con-
tinuous variable, then we have an equation that represents the runner’s
position as a continuous function of time: s = s(t). We call such a function
a trajectory. This is an important, abstract concept that is crucial to our
ultimate understanding of the motion of objects.

What should we demand of such a function? First, it seems reasonable
to assume that the runner is somewhere at each instant in time. Second,
we should also impose the condition that the runner is at only one point in
space at any one time; as appealing an idea as that might be, no one can be
in two places at once. Finally, we will make another assumption that from
each time increment to the next the runner is somehow close to the pre-
vious position. Here, we are specifically thinking of reducing the spacing
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(and improving the precision) of our timers and taking a mathematical
limit. What we are requiring by this last demand on the trajectory is that
the runner cannot disappear from one point in space and rematerialize in
the next instant at a point elsewhere along the path. These assumptions
lead us to the conclusion that the trajectory of an object is a single-valued,
continuous function of time. This is a relatively important mathematical
point; we’ll explore the consequences further as we continue.

At this point, some students may be troubled by our assumptions on the
conditions necessary for a function to be a trajectory. The darting, zigzag-
ging flights of bats might seem to provide a counterexample to our re-
quirements that trajectories be smooth, continuous functions. Indeed,
human eyes cannot track the apparently frantic motion of bats in flight
but with better technology like high-speed cameras, bats’ flight patterns
can be seen to be smoothly varying. At a sufficiently high time resolution,
beyond human capacity, there is nothing to be found in bats’ trajectories
to indicate that the bats disappear at one point and magically reappear
elsewhere. They simply move very rapidly. We will find that all macro-
scopic objects have trajectories that possess the attributes that we have
listed.

Figure 1.2. Trajectory of an object.
The dark line represents the posi-
tion r in space of an object over the
time interval t1 ≤ t ≤ t2. The illus-
trated coordinate system provides
a means for quantifying the trajec-
tory

In order to gain some insights into this concept of a trajectory, consider
the curve illustrated in figure 1.2. At some time t = t1, an object is at the
position r1 and at some later time t = t2, the object has moved to position
r2 by taking the path indicated by the dark line. Unfortunately, most real
objects do not leave visible tracks like that illustrated in the figure; the
trajectory is an abstraction of where the object was located at any particu-
lar time. A trajectory is not a physical entity like a piano or a video game
controller that can be examined visually and manipulated by hand.

To assign mathematical values to points along the trajectory, or to quan-
tify the trajectory, we now define a coordinate system, as indicated by the
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three axes labelled x, y and z. In general, the position of the object at
the time t requires the specification of three numbers: the values of the
coordinates x(t), y(t) and z(t). We can write these values compactly using
vector notation. The vector r(t) is defined as the ordered set of numbers:

r(t) = (x(t), y(t), z(t)) .

The values of x(t), y(t) and z(t) are called the components of the vector
r(t). At the initial time t1, the position of the object is given by the vec-
tor r1 = (x(t1), y(t1), z(t1)). Similarly, at the final time t2, we have r2 =
(x(t2), y(t2), z(t2)).

Use of this vector notation will provide us with a compact means of writ-
ing the three separate sets of equations that describe the motion of the
object along each of the three coordinate axes.

Exercise 1.3. Algebraically, we can define the scalar product of a
vector as ar = (ax,ay,az). The magnitude of the vector r1 is defined
as follows:

|r1| = r1 = (x21 + y21 + z21)
1/2.

Vectors add by components: r1+r2 = (x1+x2, y1+y2, z1+z2). The dot
product of two vectors is obtained by multiplying their components
and summing. The result is a scalar: r1 · r2 = x1x2 + y1y2 + z1z2. We
can also define the cross product of two vectors, which results in a
vector perpendicular to the initial two vectors:

r1 × r2 = ((y1z2 − y2z1), (z1x2 − z2x1), (x1y2 − x2y1)).

(a) Show that the square magnitude of the vector r1 can be obtained by
taking the dot product of the vector with itself.
The unit vectors in a Cartesian coordinate system can be defined as
follows: x̂ = (1,0,0) ŷ = (0,1,0) ẑ = (0,0,1).

(b) What are the results of the following operations: x̂ · x̂ x̂ · ŷ x̂ · ẑ?
(c) What are the results of the following operations: x̂× x̂ x̂× ŷ x̂× ẑ?

Exercise 1.4. Consider a vector r1 = (x1, y1, z1). Using the definitions
of the unit vectors defined in the previous exercise, compute the re-
sults of the following operations:

x̂ · r1 ŷ · r1 ẑ · r1

Exercise 1.5. Define the vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2).
Prove that the following relation is true:

r1 × r2 = −r2 × r1.

We will often seek to find notation that is concise. There is nothing
intrinsically wrong about using a variable name like position along the
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x-axis. That notation is much more explicit about what the variable repre-
sents but is much more time-consuming to write than x. There is nothing
wrong with talking about the change in position along the x-axis per time
but dx/dt is much more concise and ẋ is even more concise. We will have
to judge from the situation how compact we can make our notation and
still understand what it means. So, in choosing to use different notations,
we are attempting to simplify how we represent complex ideas. We are
also attempting to strike a balance between verbose and succinct and that
balance will change with increasing sophistication. An astute choice of
notation may also simplify the algebraic manipulations required to solve
the problem at hand and reveal more about the mathematical structure of
our equations. Learning how to become astute is a lengthy process, one
which we shall repeatedly assess during this text.

Exercise 1.6. One of the most astute choices that we can make is
to align our coordinate axes with the motion of an object. Suppose
that an object moves from r1 = (x1, y1, z1) to r2 = (x2, y2, z2) along a
straight line. This is really a one-dimensional problem. Define a new
coordinate axis x̂′ by (r2 − r1)/ |r2 − r1|.

(a) What is x̂′ in terms of the components of r1 and r2?
Points P along the line connecting r1 and r2 are defined by the fol-
lowing expression: P = r1 + x′ x̂′ .

(b) If x′ = |r2 − r1|, show that this corresponds to the point r2.
(c) What is the midpoint of the line connecting r1 and r2? What value of

x′ corresponds to the midpoint?

Now there are a limited number of characters in any alphabet and we
shall restrict ourselves to the Latin and Greek alphabets for the most part.
Additionally, we will try to use symbols for our concepts that provide
some other sort of consistency. For example, a key attribute of an object is
its velocity. We will most often utilize the symbol v to stand for velocity
because v is the first character in the word velocity. We will most often
use r to indicate the position of an object. This is due to historical usage
because, obviously, r is not the first character of the word position. To
distinguish two different objects or two different times, we will decorate
base variables like r and v with subscripts and superscripts. Thus, if you
find something in the text like r1, it is likely that this symbol represents
the position of something but use caution when trying to interpret the
symbol: you will have to understand the context of its use.

In subsequent chapters, we may use rsun and rearth to denote the posi-
tions of the sun and the earth. Alternatively, we could use rS and rE; these
representations are more concise than rsun and rearth and are easily distin-
guished from one another. The notational choice will depend on a number
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of factors: ease of use, distinctness, etc. In preparing this text, the sym-
bol rearth can be defined as a macro, so it doesn’t cost the author much to
replicate it from line to line; a student having to perform a series of alge-
braic manipulations may well prefer the shorter rE. For historical reasons,
astronomers will sometimes use r� and r⊕ to denote the positions of the
sun and earth but we will typically avoid straying from Latin and Greek
in this text to avoid confusion.2 Many modern appliances and computer
programs have buttons that are decorated with icons rather than English
words, making the devices intrinsically marketable around the globe but
making life difficult for the user who has not yet learned how to decode
the icons. In this text, we shall strive for clarity and consistency of our no-
tation but students should recognize that other authors may adopt some-
what different styles.

The student will need to continually assess what is intended by the math-
ematical notation, not simply memorize formulas. Notation provides us
with the capability to represent complex ideas succinctly but our usage
will be context dependent. In the course of this text, we may, for exam-
ple, define x1 = x(t1) because x1 is quicker to write than x(t1) and, when
we have more complex equations, it may be easier to see the mathemat-
ical structure if we simplify our notation. It will therefore be important
to understand what the notation represents in the current circumstances.
Does x1 represent the position of an object we’ve labelled “1” at all times?
If so then it is a shorthand for x1(t), where we have suppressed the time
dependence in the representation x1 but assume that the student will re-
member that x1 is a function of time. We may, at times, choose x1 to rep-
resent the position of an object as a specific time t = t1, where we mean
x1 = x(t1). It is important to remember that this is simply notation—a
concise representation of a concept. There is nothing unique in our rep-
resentations, the variable ξ could also be used to indicate the position of
some object and we may choose to use such an unusual symbol if there
are a number of other positional variables under consideration like r1, r′2,
etc., and this choice provides some sort of clarity to our notation.

Returning now to the analysis of our trajectory, we should note that the
trajectory depicted in figure 1.2 does not depend either on the notation
that we use to describe it or the specific coordinate axes that we defined.
This latter point can be illustrated by the following example. Consider
the trajectory of the basketball launched by the player in figure 1.3. The
basketball will follow a trajectory like that shown in figure 1.2. Now sup-
pose that you are sitting in the home section of the bleachers. From your

2Astronomers use a number of symbols derived from antiquity. Wandering stars (planets)
were given the names of the gods, who were represented by symbols like those for Venus
and Mars .
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Figure 1.3. Coordinate in-
variance. Everyone in the
gym will agree on the out-
come of the shot: either it
goes through the goal or it
does not

position, the ball is travelling left to right. If you were asked to quantify
that, you might set up a coordinate system with its origin at half court,
with the xH -axis aligned along the length of the floor, the yH -axis aligned
across the court and the zH -axis extending up from the floor. If, instead,
you were sitting in the visitor section on the opposite side of the court, you
would describe the ball as travelling right to left. You could well choose a
coordinate system that has its origin in some corner of the court, with your
xV - and yV -axes aligned along the paint lines that define the boundaries
of the court.3

Exercise 1.7. Sketch the basketball court. Now draw the two sets
of coordinate systems described in the text. Label one set with a
superscript H (for home) and the second with a superscript V (for
visitor), as suggested in the text.

Regardless of your seat location, the ball will either go through the goal
or it will not. To express this situation mathematically, let us define the
position of the ball in the home system to be the vector rHball(t) and the
position of the goal to be the vector rHgoal. The condition that the ball go
through the goal is provided by the following expression4:

rHball(t)− r
H
goal = 0.

3Notice that we’ve decorated the variables xV and yV with superscript Vs to distinguish
them from the other set of coordinates used by the home system.
4The rules of basketball also require that the ball enter the goal from above, which imposes
an additional constraint but does not affect our current discussion. Finite-sized basketballs
and goals relax the equality constraint to an inequality: the difference in positions must be
less than some value but this point also does not materially affect the essential point of our
argument.
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That is, at some point in time, the ball is at the same location of the goal.
In the visitor coordinate system, we have a similar requirement:

rVball(t)− r
V
goal = 0.

These two equations are mathematically identical. Moreover, the form
of the equations is identical, independent of which coordinate system we
choose to represent the flight of the ball.

Consequently, we can see that the outcome of the experiment does not
depend on how you choose to describe it mathematically. This might
just seem like common sense but the fact that the equations that we use
to describe the trajectory are invariant under coordinate transformations
has important consequences. The German mathematician Emmy Noether
proved in 1915 that, for a large class of physics problems, invariance of
the equations of motion under various transformations results in the ex-
istence of conserved quantities that correspond to the particular trans-
formations.5 By conserved, we mean that the property is a constant and
does not depend upon time. By invariant, we mean that the mathemati-
cal form of the equation does not change: there are no additional terms
that appear in one coordinate system and not the other. In this case of
a classical particle (basketball), the fact that the equations describing the
motion of the object are independent of coordinate position (translation)
and orientation (rotation) means that the quantities of linear and angular
momentum (which we shall define shortly) must be conserved. The fact
that the trajectory is independent of what we choose to define as the initial
time means that the energy of the system must be conserved.

It is difficult for beginning students to appreciate how far-reaching the
consequences of these conservation laws are. Indeed, we shall devote a
significant portion of this text to understanding the implications. This is,
of course, not how the principles of energy and momentum conservation
were discovered. Physicists had observed that these quantities seemed to
be constant (independent of time) through careful experimentation and
formulated the conservation principles as a consequence of their experi-
mental observations. Noether’s discovery of a deeper mathematical prin-
ciple came much later but it is extraordinarily important and has driven
much of the development of modern quantum theoretical physics. Now,
quantum field theory is a subject that is beyond our current scope of work

5Noether was working in Göttingen under the direction of the famous mathematicians
David Hilbert and Felix Klein, who found themselves in a power struggle with other faculty
over the hiring of a woman. Despite the turmoil associated with her appointment, Noether
quickly proved what has come to be known to physicists as Noether’s theorem, thereby solv-
ing a key problem that had stopped Albert Einstein’s progress in his pursuit of a general
relativistic theory of gravitation.
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and further investigations into that aspect of modern physics will have to
be deferred until subsequent courses.

Figure 1.4. Milky Way galaxy. This negative image, in which stars
are represented by black dots, represents the best current reconstruc-
tion of the structure of our own galaxy. There are two major spiral
arms leading from the central bar. Our solar system is located within
the white circle below the galactic center (Image courtesy of NASA)

For the moment though, consider the consequences if momentum were
not conserved. In that case, Noether’s theorem would dictate that the
equations of motion for some object would depend upon the coordinate
system chosen. Different observers would disagree on the mathematical
description of experiments. This would be an intractable state of affairs.
Presumably, there must exist a preferred coordinate system: somewhere
in the universe there is a specific coordinate origin. How are we to dis-
cover the location and orientation of this coordinate system? As can be
seen in figure 1.4, our solar system exists in the far reaches of a modest
galaxy amidst the billions of galaxies that exist in the universe. It seems
unlikely that we could ever identify this preferred coordinate system.

What if energy were not conserved? As energy conservation is tied to
the invariance of our equations to translations in time, then there must
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exist some special time from which all others must be defined. How can
we find that time? Of the thirteen billion or so years that have elapsed
since the beginning of the universe, how can we find the special time?
Philosophically, the implications of such a dilemma are devastating. It
calls into question our basic premise that we can develop theories about
the nature of the universe that all observers can test independently.

As this text does not end here, the intrepid student can surmise that physi-
cists have not deemed the problem to be hopeless. We shall make the fun-
damental assumption that the laws of nature apply equally throughout
the universe and that all observers would formulate identical mathemati-
cal descriptions of the observed phenomena. If you somehow managed to
find yourself standing on the surface of a planet in a galaxy far, far away,
we fully expect that whatever physics experiments you choose to conduct
will yield results that are consistent with the theories that we have devel-
oped here on earth. At present, though, we have no means of transporting
ourselves to distant galaxies to prove or disprove that assumption. In lieu
of contrary evidence then, we shall embrace the concepts of momentum
and energy conservation and exploit them to learn more about our local
portion of the universe.

Exercise 1.8. Let us set the origin of a new coordinate system to be
the point O = (xo,yo,zo). The vector r1 to a point P1 = (x1, y1, z1) from
the new coordinate origin is then r1 = (x1 − xo,y1 − yo,z1 − zo).

(a) Consider a second point P2 = (x2, y2, z2). What is the vector r2?
(b) Show that the vector r2 − r1 does not depend on xo, yo or zo.

1.3. Vocabulary

Returning now to the trajectory pictured in figure 1.2, what we would like
to be able to do as physicists is describe that trajectorymathematically and
understand what controls the specific trajectory that we observe. We do so
knowing that (i) our knowledge of the actual trajectory is limited by our
experimental precision and (ii) our mathematical description will only be
approximate. What we are seeking is a definition of the state of the object
at any point t in time between some initial t1 and final t2 times. Formally,
we could obtain such a description from the Taylor series of the vector
function r(t) = (x(t), y(t), z(t)) in the vicinity of the time t1:

(1.1) r(t) = r(t1) +
∞∑

n=1

dnr(t)
dtn

∣∣∣∣∣
t=t1

(t − t1)n
n!

,
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provided, of course, that all of the derivatives of the function r(t) are de-
fined.6 Not all functions have a convergent Taylor series but, mercifully,
we shall find that physics is largely the domain of functions that are suit-
ably well-behaved in a mathematical sense. We’ve already discussed our
assumption that the trajectory is a continuous, single-valued function of
time. These requirements provide precisely the sort of mathematical con-
ditions necessary for the derivatives in Equation 1.1 to be defined.

Now because we are seeking an approximate solution to the trajectory r(t),
it should come as no surprise that we intend to truncate the Taylor series
shown in Equation 1.1 after a few terms. In fact, we intend to keep only
two terms:

(1.2) r(t) = r(t1) +
dr(t)
dt

∣∣∣∣∣
t=t1

(t − t1) +
1
2
d2r(t)
dt2

∣∣∣∣∣
t=t1

(t − t1)2 .

It might seem hugely restrictive to consider only the first two terms from
Equation 1.1 but we shall find that many systems are quite adequately de-
scribed using this simplification. Moreover, given the advent of modern
computers, we can extend our range of applicability by making use of the
ability of computers to faithfully conduct repetitive calculations. Instead
of considering the complete trajectory as one large step from t1 to t2, as
shown in figure 1.2, we could break it into a sum of smaller steps, from t1
to t1000, say. We could then assume that on each short segment from ti to
ti+1, we can use the approximation defined by Equation 1.2. We then sum
the results over all the steps to recover the complete trajectory. As a prac-
tical matter, computers are quite proficient at repetitious calculations and
quite complex systems can be studied using the simple approximation
used in Equation 1.2.

Because we will use Equation 1.2 so frequently, we will make a few ad-
ditional definitions to improve our notation.7 The first time derivative of
the position vector is defined to be the velocity of the object:

(1.3) v(t) =
dr(t)
dt

=
(
dx(t)
dt

,
dy(t)
dt

,
dz(t)
dt

)
.

6Here we use the notation that the derivative of the vector is obtained by differentiating each
of its components: dr/dt = (dx/dt,dy/dt,dz/dt).
7Names have also been given to some of the higher order derivatives. The jerk is the third
derivative of position with respect to time. These higher-order terms are not used with much
frequency owing to the fact that few real trajectories can be defined by simple functions. If
one must resort to numerical evaluation of the system, higher order terms may be included
but may play more of a rôle in providing numerical stability than in providing a better
approximation of the trajectory.
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The second time derivative of the position vector is defined to be the
acceleration of the object:

(1.4) a(t) =
d2r(t)
dt2

=
(
d2x(t)
dt2

,
d2y(t)
dt2

,
d2z(t)
dt2

)
.

A simple consequence of these definitions is that the acceleration is the
first time derivative of the velocity:

(1.5) a(t) =
dv(t)
dt

.

Figure 1.5. Position, velocity
and acceleration. The velocity
is the slope of the position ver-
sus time curve. The accelera-
tion is the slope of the velocity
versus time curve

Graphically, the relationships between these quantities are shown (in one
dimension) in figure 1.5. Note that all of these quantities: position, veloc-
ity and acceleration can be negative. A negative position indicates that an
object is on the opposite side of the origin from what is defined to be the
positive direction. A negative velocity indicates that the object is moving
in the direction opposite to what is defined to be the positive direction. A
negative acceleration indicates that the velocity is changing in the direc-
tion opposite to that defined as positive.

We can now recast Equation 1.2 into a more familiar form:

(1.6) r(t) = r(t1) + v(t1) (t − t1) +
1
2
a(t1) (t − t1)2 ,



§1.3 Vocabulary 15

which is known as a kinematic equation.8 This equation enables us to
predict the position r of an object at some time t beyond an initial time t1
if we know the values of (i) the position r, (ii) the velocity v and (iii) the
acceleration a at the initial time t1. We note again that Equation 1.6 could
also be used to estimate the position of an object before the time t1. There
is nothing mathematically that would preclude the argument t − t1 from
being negative but one must understand whether or not that extension is
meaningful.

Finally, we should also point out that Equation 1.6 reflects some of the
notational difficulties that we face. By the symbol v(t1), we mean that
velocity v is a function of time and that we want the velocity at the spe-
cific time t1. This is to be multiplied by the time that has elapsed since we
started the clocks: (t−t1). The parentheses here are used as grouping oper-
ators. Mathematica syntax has specific meanings for the symbols (), [] and
{} that we do not follow in the text, as they are not standard mathematical
representations. Here we utilize all of these symbols as grouping opera-
tors, in an effort to clarify our displayed equations. Students must beware
literally translating formulas from the text into Mathematica scripts.

Exercise 1.9. Notation is a means for representing complex ideas
with a relatively few symbols. The more compact the notation, the
more meaning is imbued in each symbol. As a result, compact nota-
tion can potentially clarify the mathematical structure at the risk of
obscuring the precise meaning of the symbol. Caveat emptor!

(a) Write out Equation 1.2 in its component form, expressing the explicit
time dependence of the variables and identifying the derivatives.

(b) Rewrite the results of part (a) using the definitions for velocity and
acceleration. Use vx(t) to represent the x-component of the velocity,
for example.

(c) Rewrite the results of part (b) suppressing the explicit time depen-
dence. Use a subscript zero to denote the initial time values, e.g.,
x(t1) = x0.

Exercise 1.10. Define a function in the Mathematica program as
follows:

F[x_,a_,b_,c_]:= a + b x + c x^2.

Define the functions DF[x_,b_,c_]:= b + 2c x and D2F[c_]:= 2c.
Use the Plot[] function to plot F and its derivatives over the range

8The word kinematic is derived from the Greek word κινημα meaning motion. The Greek
root also provides us with the English word cinema (moving pictures), Note once again the
display of a classical education.
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{x,0,1}. Use the Manipulate[] function to vary the parameters
{a,-1,1}, {b,-2,2} and {c,-1,1}. What happens as you vary the
parameters?

The simplest motions of objects, of course, occur when the velocity v and
acceleration a are independent of time. In particular, if the acceleration
is zero, Equation 1.6 reduces to r(t) = r(t1) + v(t1)(t − t1). If we align our
coordinate axes9 such that the direction of v(t1) is in the x-direction, then
the only non-zero component of v(t1) is the x-component: v(t1) = (v1,0,0).
If we define the position of the object at time t1 to be r(t1) = (x1, y1, z1),
we note that only the x-component of r changes: x(t) = x1 + v1(t − t1). We
recognize this expression as the equation of a line. This is just the equa-
tion, with a minor change of notation, that we encountered in our initial
experiment depicted in figure 1.1. Apparently, our runner was providing
an example of an object with a constant velocity and no acceleration.

Exercise 1.11. Use dimensional analysis to identify the like terms
in the two expressions: s = mt + b and x(t) = x1 + v1(t − t1). (Hint:
Write the dimensional equations.) What is meant by the symbol v1?

The kinematic equation enables us to describe how an object moves in
space. Were we to measure motion with more sophisticated tools than
students with stopwatches lined up along the sidewalk, a high-speed mo-
tion camera perhaps, we could imagine developing a reasonably precise
mathematical description of any motion. We might need to break the tra-
jectory into pieces for our approximations to be good enough and we do
have a means for accomplishing this using modern computers. In physics,
however, we are generally not satisfied with knowing how; we also want
to know why. We are not going to be content simply with an a posteriori
description of motion. We want to be able to predict the motion. It is not
enough to know that a lunar eclipse occurred yesterday; we’d like to know
when that will happen again.

The seminal advance in our understanding of motion is due to Isaac New-
ton, whose works we will take up in more detail in the next chapter.10

Newton’s dynamics are based on the notion that an object changes its mo-
tion as a result of an external force. The force is observed by means of an
acceleration of the object, in fact, the force is directly proportional to the

9Notice we are making an astute choice and minimizing our algebraic effort.
10Isaac Newton’s Philosphiæ Naturalis Principia Mathematica, published in 1687 and often
referred to as the Principia, is one of the most remarkable works in the history of science. In
it, Newton not only solves the problem of planetary motion but sets forth the principles that
define the modern scientific method.
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acceleration. The constant of proportionality we today call mass. Mathe-
matically, we can state this relationship as follows:

(1.7) F =ma.

This simple equation lies at the heart of all that we will cover in this text.
Essentially everything can be derived from this rule that is known today
as Newton’s second law of motion. This equation provides a definition
of mass, a fundamental property of matter. We’ll find other fundamental
properties of matter as we proceed.

Another important quantity that arises in our development of theories
of why things move is called the momentum and usually is assigned the
symbol p11:

(1.8) p =mv.

We can, from the above definition, immediately note that the force is re-
lated to the change of momentum with respect to time:

(1.9) F(t) =
dp(t)
dt

,

where Equation 1.9 reduces to Equation 1.7, provided that the mass m
does not vary with time. This is often the case but we will eventually
investigate the behavior of rockets, for which that assumption is not valid.
There are, of course, a number of additional vocabulary words we will
need but we have enough to get started and will find it most useful to see
these concepts applied. It is quite important to understand the meanings
of what these words and symbols represent.

Exercise 1.12. Humans are quite proficient at pattern recognition.
As a former colleague of mine used to say, humans evolved to recog-
nize tigers. Humans who were not successful in recognizing tigers
were, of course, removed from the gene pool. It is important to look
at pictures:

(a) Plot the equation x = 3t + 4 for the range of 0 ≤ t ≤ 10.
(b) Plot the equation x = 0.01t2 + 3t + 4 for the same range as above.
(c) Do the plots differ?
(d) Use the Mathematica function Manipulate and change the 0.01 to a

parameter a that can take on values in the range of 0 ≤ a ≤ 1.
(e) How does changing the value of a affect the trajectory?

11This notation perhaps has its origins in the Latin petere, meaning to rush forward. New-
ton’s phrasing in the Principia was quantity of motion. It might seem that m would be a
better symbol for momentum but there is an obvious notational conflict with the use ofm to
mean mass.
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Exercise 1.13. We can expand the use of Equation 1.6 to more com-
plex behaviors by considering trajectory functions that are piecewise
continuous. That is, in each of several different subintervals we will
consider the trajectory to be a continuous function. This will enable
us to approximate the behavior of a car travelling at a constant ve-
locity for a time and then the brakes being applied. Braking does
not happen instantaneously nor is the acceleration constant but, for
purposes of constructing a simple model, we shall assume that both
are true. Such approximations are quite useful in understanding the
gross behavior of objects. If a more detailed description of an ob-
ject’s motion is required, then a more detailed model will have to be
constructed.

Analyze the behavior of the object indicated in figure 1.6. Initially,
the object is moving in a positive direction with a constant velocity.
Sketch the velocity and acceleration in each of the subintervals.

Figure 1.6. Position, veloc-
ity and acceleration of an
object. In each subinter-
val, indicated by the ver-
tical dashed lines, the be-
havior can be explained by
Equation 1.6



II

On the Motion of Planets

Most of us have heard some version of the story that results in Isaac
Newton being plunked on the head by an apple and discovering gravity.1

This rather stylized and not particularly accurate rendition of the histori-
cal record omits Newton’s major physical insights into the problem of plan-
etary motion. In some broad sense, we’ll follow the reasoning that Isaac
Newton utilized in the late 1600s to discover what is now referred to as the
law of universal gravitation. In the subsequent 300 years, though, some
significant improvements to mathematical notation have been developed;
we’ll make use of those ideas as well.

Figure 2.1. The direction
down depends upon your
position on the surface of
the earth

If we consider an apple falling from a tree, we would observe that it falls
down. This is, perhaps, not an earth-shattering observation but Newton
realized that the direction down depends upon one’s location on the sur-
face of the earth. People in Europe or Asia or the Americas would all

1In October 1665, the Great Plague that beset London spread to the surrounding country-
side and forced the closure of Cambridge University. As a result, Newton was required to
abandon his formal studies and returned to his family’s home in Woolsthorpe Manor, Lin-
colnshire. During his two years in relative exile, while still in his early twenties, Newton
contemplated the problem of planetary motion and constructed a new form of mathematics
that we today call calculus.
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Figure 2.2. Two masses M1 and
M2 are located at positions r1
and r2, respectively

describe the same behavior of an apple falling down to the ground. Yet, as
depicted in figure 2.1 the direction down is not the same on opposite sides
of the earth. To explain the different trajectories, Newton recognized that
each apple must fall along a line that extends radially from the center of
the earth. Today, we would say that gravity exerts a central force on the
apple.

In addition to realizing this basic aspect of the gravitational force, Newton
looked up at the moon from his home in the English countryside and
asked himself just how far does this gravity extend? Could the force act-
ing on the apple extend as far as the moon? Could it extend as far as the
sun? If so, then the motions of the planets would be governed by the same
force that causes the apple to fall to the ground. This is a remarkable
intellectual leap: extending the behavior of local objects to the universe
at large.

In trying to understand the nature of the force, Newton also reasoned
that the magnitude of the force exerted by the earth on the apple should
be the same as the magnitude of the force exerted by the apple on the
earth; however, the directions of the forces would be opposite. This prin-
ciple is deemed Newton’s third law of motion. Today, this concept that
every action produces an equal and opposite reaction is embedded in our
culture and is used to explain everything from political decision making
to the outcomes of athletic contests but, in Newton’s time, the idea was
remarkable and revolutionary and controversial.

2.1. Form of the Force Law

We nowwant to put these postulates into a mathematical form, to develop
an equation that describes our ideas. To begin, let us first define the vector
r1 to be the position of the center of a massM1, in some coordinate system,
and r2 to be the position of the center of another mass M2. For the mo-
ment, even though the objects depicted in figure 2.2 have finite sizes, we
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shall regard them as just points.2 In this generic notation, we can specify
the meanings of the symbols M1 and M2 as we see fit. For example, M1
could represent the sun andM2 the earth orM1 could represent the earth
and M2 an apple, or vice versa.3

The vectors r1 and r2 will generally be functions of time: r1 = r1(t) and
r2 = r2(t) but we’ll suppress the explicit time dependence of the position
vectors for now. The force will depend upon these quantities and the
time, so we can write that the force on the apple (M2) due to the earth
(M1) will be a function F = F(t,M1,M2,r1,r2). Newton’s postulate that
the gravitational force on the earth due to the apple be opposite can be
expressed mathematically as follows:

F(t,M2,M1,r2,r1) = −F(t,M1,M2,r1,r2).
That is, the function Fmust change sign when we exchange the meanings
of the indices 1 and 2.

Newton’s first postulate, that the gravitational force is a central force,
means that the force must depend only on the vector r2 − r1 or its magni-
tude |r2 − r1|. By definition, r2 − r1 defines the line connecting the centers
of the two masses. Other combinations of r1 or r2 can be excluded from
consideration. This has two immediate consequences.

First, we note that the direction of the force is determined by the direction
of the vector r2 − r1 and this quantity changes sign if we interchange the
definitions of masses 1 and 2. Mathematically, we have the simple relation
r2 − r1 = −(r1 − r2). The concept that the apple is pulled down by the earth
and the earth is pulled up by the apple, is exactly represented mathemat-
ically by the fact that interchanging the roles of the masses (flipping the
indices) causes the term r2 − r1 to change sign.

Second, the vector r2 − r1 does not depend on the coordinate system used
to define the vectors r1 and r2. (See Exercise 1.8.) Imagine grabbing the
coordinate origin illustrated in figure 2.2 and moving it around on the
page. The vectors r1 and r2 will certainly change as the origin moves
but their difference will not. The same will also be true if you spin the
coordinates around some axis. The definitions of the components of r2−r1
will change but the vector itself will not. We shall make further use of this
fact shortly.

2We now know that the planet Venus has a size and mass that is roughly comparable to
the size of the earth. When observed from earth, Venus is often called the evening star; it
appears quite point-like in the sky. This is not true for the sun and moon but we shall justify
the point assumption eventually.
3In some cases we may use more explicit notation like rapple and rearth for the specific case
of an apple and the earth but indices 1 and 2 are faster to type and have more general
applicability.



22 On the Motion of Planets

Exercise 2.1. Consider the points P1 = (3.2,1.7) and P2 = (4.6,3.3),
that are defined in a particular coordinate system where the origin
is at the point O = (0,0). In the Mathematica program, define a new
coordinate origin O′ = (xo,yo).

(a) Plot the points P1, P2 and O′ , using the Manipulate function to vary
the ranges −3 ≤ xo ≤ 3 and −3 ≤ yo ≤ 3.

(b) Compute the vectors r1 from O′ to P1 and r2 from O′ to P2.
(c) Compute the vector r2 − r1.
(d) What happens to r2 − r1 as the quantities xo and yo change?

We can place some additional constraints on the functional form of the
force by recognizing that masses and positions have different dimensions.
As a result, it would make no sense to have a term like M1 + r1; one
cannot add terms that do not have the same dimensions. Thus the mag-
nitude of the force will have to separate into two parts, two functions
M and R that depend on the masses and positions independently: |F| =
M(M1,M2)R(t,r1,r2), where we have assumed that the masses do not de-
pend on time.

So, the direction of the force is provided by the vector r2−r1, which we can
normalize to have unit magnitude by dividing the vector by its magnitude.
The gravitational force then takes the following form:

(2.1) F(t,M1,M2,r1,r2) =
r2 − r1
|r2 − r1|

M(M1,M2)R (t, |r2 − r1|) .

The direction of the force is provided by the first term, the mass depen-
dence by the functionM and the positional dependenceRwe see depends
only on the magnitude |r2 − r1|.
Let’s turn now to the issue of mass dependence. The functionM must be
a symmetric function of the masses.4 Consequently, the mass dependence
of the force must be either the sum M(M1,M2) = M1 +M2 or product
M(M1,M2) = M1M2 of the masses.5 To resolve which is the correct form,
let’s recall that a force F2 acting on an object of mass M2 produces an
acceleration a2 such that F2 = M2 a2. Consider now Galileo’s experiment
in which two separate massesM2 andM3 were dropped from a tall tower.
Galileo observed that both fell to the ground in equal times. From this

4The direction component of the force changes sign if we exchange the indices. The position
component R cannot change sign because it depends only on the magnitude |r2 − r1|. Thus,
the mass componentM cannot change sign.
5As we shall see, the law of universal gravitation can be considered to provide a definition of
mass. Other mass dependencies like Mα , could simply be redefined to a new effective mass
without the power-law dependence: Meff ≡Mα .
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result, we can infer that both masses must have the same gravitational
acceleration.6

Exercise 2.2. Use Equation 1.6 for motion in a single direction to
prove the assertion that equal times of travel implies equal accelera-
tion. Assume that two objects have initial velocities of zero and each
travels a total distance d in a time t.

Suppose that the gravitational force depends on the sum of the masses.
We would have then the following relations:

a2 =
F2
M2

=
M1 +M2

M2
R(t, |r2 − r1|),

a3 =
F3
M3

=
M1 +M3

M3
R(t, |r3 − r1|).

Because the earth’s mass is so much larger than the mass of any objects
that Galileo could have manipulated, it is reasonable to estimate that
M1 +M2 ≈ M1. Additionally, because Galileo dropped the masses from
the same height above ground, the magnitudes |r2 − r1| and |r3 − r1| are
essentially equal. Consequently, the position-dependent part of the forces
must be equal. Thus, we find that a2/a3 = M3/M2. The accelerations for
different masses should be different, in conflict with Galileo’s observa-
tions.

If we instead assume that the gravitational force depends on the product
of the masses, then we would find the following relations:

a2 =
F2
M2

=
M1M2
M2

R(t, |r2 − r1|),

a3 =
F3
M3

=
M1M3
M3

R(t, |r3 − r1|).

Taking the ratio of accelerations here, we do indeed find that a2 = a3. So
we can conclude thatM(M1,M2) =M1M2.

We have now established that the gravitational force can be written as
follows:

(2.2) F =
r2 − r1
|r2 − r1|

M1M2R(t, |r2 − r1|).

To define the positional dependence R, Newton ultimately relied on an
additional observation: the planets occupy elliptical orbits around the

6In the case of uniform acceleration a where the mass begins with no velocity, the mass
travels a distance d in a time t given by d = at2/2. Thus, the acceleration would be a = 2d/t2.
Consequently, equal times of travel imply equal accelerations.
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sun, with the sun at one focus of the ellipse.7 After extensive calculations,
Newton determined that the force must scale like the inverse square of
the magnitude |r2 − r1|:

(2.3) R (t, |r2 − r1|) = −
G

|r2(t)− r1(t)|2
,

where G is a constant of proportionality, known as the universal gravi-
tational constant.8 This equation and Equation 2.2 together describe the
behavior of planets orbiting the sun and apples falling to the ground.

2.2. Inverse Square Law

Let’s first prove that this choice for the gravitational force does, indeed,
give rise to elliptical orbits for planets. We will use a notation that is
explicit but not concise. There are associated exercises that repeat the
calculations using a more concise notation. Actually doing the exercises
should help to illuminate the mathematical structure; the practice is
henceforth encouraged.

The force on the massM2 due to the massM1 gives rise to an acceleration
a2 = d2r2/dt2 that we can write as follows:

(2.4)
d2r2(t)
dt2

= −G M1
|r2(t)− r1(t)|3

[r2(t)− r1(t)] .

where we have reorganized the results of Equations 2.2 and 2.3 and di-
vided by the mass M2. Similarly, the acceleration of the mass M1 due to
the mass M2 can be written as follows:

(2.5)
d2r1(t)
dt2

= −G M2
|r1(t)− r2(t)|3

[r1(t)− r2(t)] .

Subtracting the second equation from the first, we can write

d2 [r2(t)− r1(t)]
dt2

= −G M1 +M2
|r2(t)− r1(t)|3

[r2(t)− r1(t)] ,

which represents a second-order differential equation for the time evolu-
tion of the vector r2(t) − r1(t). We have, at this point, satisfied one of our

7Kepler’s Astronomia nova was published in 1609. Kepler managed to determine, through
painstaking analysis of decades of detailed observations conducted by Tycho Brahe, that the
orbit of Mars was an ellipse, with the sun at one focus.
8Note that the sign has been chosen to represent the fact that the gravitational interaction is
an attractive one.
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initial goals: we have developed a mathematical description of the behav-
ior of this system, what physicists would call the equations of motion.9

We have not, however, completed our task because we also want to
understand what sort of solutions exist for those equations of motion
and how various types of solutions depend on the parameters that define
the system. Now, solving differential equations is somewhat beyond the
mathematical capabilities of most students at this juncture but we will
now proceed to construct solutions by following a pathway that has been
pioneered by our mathematical predecessors. We begin by recasting the
three separate equations for the components of r2(t) − r1(t) into a set of
coupled first-order equations as follows:

d [r2(t)− r1(t)]
dt

= v2(t)− v1(t)

d [v2(t)− v1(t)]
dt

= −G M1 +M2
|r2(t)− r1(t)|3

[r2(t)− r1(t)] .(2.6)

Here, we are using our standard notation: the velocities v1(t) and v2(t) are
the time derivatives of the positions r1(t) and r2(t), respectively.

Exercise 2.3. Let us consider how our results appear using a more
concise notation: let r21 = r2(t)−r1(t) and r21 = |r2(t)−r1(t)|. Similarly,
we define v21 = v2(t) − v1(t) and v21 = |v2(t) − v1(t)|. Note that this
notation suppresses the explicit time dependence of the positions
and velocities. Rewrite Equations 2.6 using this concise notation.

For reasons that will become apparent shortly, let us define the vector
cross product of the position and velocity vectors:

J(t) = [r2(t)− r1(t)]× [v2(t)− v1(t)] .

The time derivative of the vector J(t) is given below:

d

dt
J(t) =

d

dt

{
[r2(t)− r1(t)]× [v2(t)− v1(t)]

}

= [v2(t)− v1(t)]× [v2(t)− v1(t)]

−G (M1 +M2)
|r2(t)− r1(t)|3

[r2(t)− r1(t)]× [r2(t)− r1(t)]

= 0.

Here, we have used the results of Equations 2.6 and (twice) the result
that the cross product of any vector with itself is zero: x × x = 0. Hence,
the vector J must be constant and independent of time; we say that it is

9In this instance, the equations of motion actually do relate to motion of objects. The phrase
“equations of motion” will often be utilized to describe the time evolution of a system, even
when there are no physical objects that move.
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conserved. This result has an important consequence. The vector J is per-
pendicular (by construction) to the vector r2(t)−r1(t). Therefore, provided
that the magnitude J of J is not zero, we must have that all motion takes
place in a plane perpendicular to J, as is depicted in figure 2.3.

Figure 2.3. The (relative)
motion of any two masses
interacting via the gravita-
tional force is constrained
to the plane perpendicular
to the vector J

In the case where J = 0, the motion will prove to be even simpler. Consider
taking the time derivative of the unit vector [r2(t) − r1(t)]/ |r2(t) − r1(t)|.
We can use the quotient rule to obtain the following result:

d

dt

r2(t)− r1(t)
|r2(t)− r1(t)|

=
{
d[r2(t)− r1(t)]

dt
|r2(t)− r1(t)|

− [r2(t)− r1(t)]
d |r2(t)− r1(t)|

dt

}
× |r2(t)− r1(t)|−2.

The time derivative of the vector r2(t) − r1(t) is just the velocity vector
v2(t)− v1(t) and we can show that the following is true:

(2.7)
d |r2(t)− r1(t)|

dt
=
[r2(t)− r1(t)] · [v2(t)− v1(t)]

|r2(t)− r1(t)|
.

Putting all of the terms over a common denominator and using the vector
identity x · x = x2, we can obtain the following result:

d

dt

r2(t)− r1(t)
|r2(t)− r1(t)|

=
[r2(t)− r1(t)] · [r2(t)− r1(t)]

|r2(t)− r1(t)|3
[v2(t)− v1(t)]

− [v2(t)− v1(t)] · [r2(t)− r1(t)]
|r2(t)− r1(t)|3

[r2(t)− r1(t)].(2.8)

We can simplify this last equation by employing another vector identity:
(a×b)×c = (a ·c)b− (b ·c)a. The time derivative of the unit vector can thus
be written as follows:

d

dt

r2(t)− r1(t)
|r2(t)− r1(t)|

=

{
[r2(t)− r1(t)]× [v2(t)− v1(t)]

}
× [r2(t)− r1(t)]

|r2(t)− r1(t)|3

=
J× [r2(t)− r1(t)]
|r2(t)− r1(t)|3

.(2.9)



§2.2 Inverse Square Law 27

Thus, if J = 0, the right hand side of Equation 2.9 vanishes and conse-
quently the unit vector must be a constant vector, independent of time. In
this case, motion takes place along a line.

Exercise 2.4. Use the fact that

|r2(t)− r1(t)| =
{
[x2(t)− x1(t)]2 + [y2(t)− y1(t)]2 + [z2(t)− z1(t)]2

}1/2

and compute the time derivative explicitly. Show that you obtain the
result described in Equation 2.7.

Exercise 2.5. Define the vectors a = (ax,ay,az), b = (bx,by,bz) and
c = (cx, cy, cz). Show that the following relationship holds:

(a×b)× c = (a · c)b− (b · c)a.

It is important here to note that in the case where motion is along a line
that there will be limits to our ability to predict the motion. At some
point in time, the masses will collide. This will occur when the vector
r2(t) − r1(t) vanishes. At that time, our expression for the force diverges
and beyond that time, we have not yet constructed a theory of behav-
ior. Realistically, we recognize that the outcome of such a collision will
depend upon a lot of other factors like the relative sizes of the masses and
the collision velocity. A golf ball dropped onto a hard surface like a drive-
way bounces. If dropped into wet grass, the golf ball does not bounce; an
asteroid travelling at high velocity (≈17km/s) also does not bounce but
wreaks significantly more havoc than the golf ball.

Exercise 2.6. Repeat the derivation of Equation 2.9 using the con-
cise notation.

Exercise 2.7. Show that if J = 0 and the initial velocity v2(0) −
v1(0) = 0 that the masses will collide in finite time. Hint: Multiply
both sides of the (scalar) Equation 2.5 by dr21/dt and integrate.

To understand the nature of the motion in the plane, where J � 0, multiply
both sides of Equation 2.9 by G(M1 +M2):

G(M1 +M2)
d

dt

r2(t)− r1(t)
|r2(t)− r1(t)|

= J×
[
G(M1 +M2)

r2(t)− r1(t)
|r2(t)− r1(t)|3

]

= −J× d[v2(t)− v1(t)]
dt

=
d

dt

{
[v2(t)− v1(t)]× J

}
,(2.10)
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where we have used Equations 2.6 and the fact that J is a constant of the
motion to obtain this last result. Both sides of this equation are perfect dif-
ferentials and we can integrate over time directly to obtain the following
result10:

(2.11) G(M1 +M2)
[
e+

r2(t)− r1(t)
|r2(t)− r1(t)|

]
= [v2(t)− v1(t)]× J,

where e is a (vector) constant of integration.

Figure 2.4. The vector e
lies within the plane of mo-
tion. In general, there will
be some angle ψ between
e and the position vector
r2(t)−r1(t). The perpendic-
ular to the line extending e
is known as the directrix d

Exercise 2.8. Repeat the derivation of Equation 2.11 using the con-
cise notation.

To understand the physical meaning of e, let’s take the dot product of J
with Equation 2.11:

J ·G(M1 +M2)
[
e+

r2(t)− r1(t)
|r2(t)− r1(t)|

]
= J ·

{
[v2(t)− v1(t)]× J

}

G(M1 +M2)
[
J · e+ J · r2(t)− r1(t)|r2(t)− r1(t)|

]
= 0.

The right hand side vanishes because J is by construction perpendicular
to the cross product. We know also that J is perpendicular to r2(t)− r1(t),
whereby we have J · [r2(t) − r1(t)] = 0. Therefore, we must have J · e = 0
and, consequently, e is perpendicular to J and lies in the plane of motion.
We show a possible value of e in figure 2.4.

Exercise 2.9. Define vectors r1 = (x1, y1, z1) and r2 = (x2, y2, z2).
Show explicitly that r1 · (r1 × r2) = 0.

10The fundamental theorem of calculus provides that f (x) − f (a) =
∫ x
a dτ df (τ)/dτ, when f

is defined on the interval [a,b] and a ≤ τ ≤ b. The indefinite integrals in Equation 2.10 give
rise to constants of integration that can be lumped into the single vector constant e.
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If we take the dot product of r2(t)− r1(t) with Equation 2.11, we find

[r2(t)− r1(t)] ·
[
e+

r2(t)− r1(t)
|r2(t)− r1(t)]

]
=
[r2(t)− r1(t)] · [v2(t)− v1(t)]× J

G(M1 +M2)

[r2(t)− r1(t)] · e+ |r2(t)− r1(t)| =
J · [r2(t)− r1(t)]× [v2(t)− v1(t)]

G(M1 +M2)

where we have employed the vector identity a · (b × c) = c · (a × b) in this
last step. We now can write the following expression that summarizes our
results thus far:

(2.12) [r2(t)− r1(t)] · e+ |r2(t)− r1(t)| =
J2

G(M1 +M2)
.

Exercise 2.10. Define vectors a = (ax,ay,az), b = (bx,by,bz) and c =
(cx, cy , cz). Show explicitly that a · (b× c) = c · (a×b).

Suppose now that the integration constant vanishes, that is e = 0. In this
case, Equation 2.12 tells us that |r2(t)− r1(t)| is a constant, with a value of
J2/G(M1+M2); this is the mathematical description of a circular trajectory.
If e � 0, then in general there will be some angle ψ between the vectors e
and r2(t) − r1(t), as shown in figure 2.4. In this case, the dot product can
be written as the magnitudes of the two vectors multiplied by the cosine
of the angle between them:

[r2(t)− r1(t)] · e = e|r2(t)− r1(t)|cosψ.
Suppose we extend the vector e a distance J2/eG(M1 +M2) and construct
a line d perpendicular to e, as shown in figure 2.4. If we rearrange Equa-
tion 2.12, we can write

(2.13) |r2(t)− r1(t)| = e

[
J2

eG(M1 +M2)
− |r2(t)− r1(t)|cosψ

]
.

From figure 2.4, we recognize that the term in square brackets on the right
hand side of Equation 2.13 is just the distance from r2 to the line we’ve
constructed.

From analytic geometry, we can recall that the definition of a conic section
is the locus of points P in the plane of a fixed point F (called a focus) and
a fixed line d (called the directrix), F not on d, such that the ratio of the
distance from P to F to the distance from P to d is a constant e (called the
eccentricity).11 Equation 2.13 is therefore the equation of a conic section
with one focus at the point r1(t) and eccentricity e. Furthermore if the

11This point may be an obscure one but Isaac Newton was a master of geometry. It was not
at all obscure to him. Equation 2.13 also justifies our use of the somewhat curious choice
of the variable e to represent the constant of integration in Equation 2.11. The variable e is
used historically to represent the eccentricity of conic sections.
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value of the eccentricity is less than one (0 < e < 1) the trajectory describes
an ellipse. If e = 1, then the trajectory is a parabola and if e > 1 the trajec-
tory is an hyperbola. Trajectories for various values of e are illustrated in
figure 2.5.

This result, then, is the proof that the inverse square law proposed by
Newton gives rise to elliptical orbits. Kepler’s first law, that the planets
move on ellipses with the sun at one focus, is a consequence of the inverse
square force depicted in Equations 2.2 and 2.3.

Exercise 2.11. Repeat the derivation of Equation 2.13 using the
concise notation.

Figure 2.5. The parame-
ter e controls the type of
conic section. For e less
than one, one obtains el-
lipses. For e equal to one,
one obtains a parabola.
For e larger than one, one
obtains hyperbolas. The
directrix is shown as the
gray line. The focus is
located at the origin and
the angle ψ increases in a
counterclockwise manner

Exercise 2.12. If we rearrange Equation 2.13 to solve for r21 =
|r2(t)− r1(t)|, we find the following expression:

r21 =
J2

G(M1 +M2)(1+ ecosψ)

The quantity J2/G(M1 +M2) represents an overall scaling factor. To
understand the dependence of r21 on ψ, plot the function F = 1/(1+
ecosψ) using the Mathematica function PolarPlot over the domain
0 ≤ ψ ≤ 2π. Use the Manipulate function to vary the eccentricity e
over the range 0 ≤ e ≤ 4.

Exercise 2.13. We have demonstrated that an inverse square force
law gives rise to elliptical orbits but we have not excluded other pos-
sibilities. An inverse cube force law gives rise to spirals

r21 =
a

ψ
or r21 = eaψ,
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depending upon the initial conditions. Use the Manipulate function
to vary the parameter a over the domain 0.1 ≤ a ≤ 4 and plot the
distance r21 over the domain 0 ≤ ψ ≤ 10π.

2.3. Another Conserved Quantity

We have observed that there are two conserved (time-independent) quan-
tities J and e associated with Newton’s universal law of gravitation. It
turns out that there is another property of the gravitational force repre-
sented by Equations 2.6 that does not depend on time. To identify this
quantity, we begin by taking the dot product of the second of the two
equations with the vector v2(t)− v1(t):

(2.14) [v2(t)− v1(t)] ·
d[v2(t)− v1(t)]

dt

= − G(M1 +M2)
|r2(t)− r1(t)|3

[v2(t)− v1(t)] · [r2(t)− r1(t)].

The left-hand side of this result can be rewritten as follows:

[v2(t)− v1(t)] ·
d[v2(t)− v1(t)]

dt
=
1
2
d

dt
[v2(t)− v1(t)] · [v2(t)− v1(t)]

=
1
2
d

dt
|v2(t)− v1(t)|2.

This term is a perfect differential and can be integrated over time di-
rectly12:

(2.15)
1
2

∫
dt

d

dt
|v2(t)− v1(t)|2 =

1
2
|v2(t)− v1(t)|2 + E1,

where E1 is a constant of integration.
On the right-hand side of Equation 2.14, the dot product can be rewritten
as follows:

[v2(t)− v1(t)] · [r2(t)− r1(t)] = |r2(t)− r1(t)|
d

dt
|r2(t)− r1(t)|,

where we’ve used the result of Equation 2.7. This result can also be inte-
grated using a somewhat more advanced property of calculus. Consider a
function f of a variable x, f = f (x). We can perform a change of variables
where f is now considered to be a function of a new variable u, The chain
rule provides that the following relation holds:

df (x)
dx

=
df (u)
du

du

dx
.

12Here we use the notation
∫
dx f (x) to mean the same thing as

∫
f (x)dx. This emphasizes

the rôle of integration
∫
dx as the inverse operator to the differential operator d/dx.
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The fundamental theorem of calculus can be rewritten using the chain
rule:

f (b)− f (a) =
∫ b

a
dx

df (x)
dx

=
∫ b

a
dx

df (u)
du

du

dx

=
∫ u(b)

u(a)
du

df (u)
du

.

Integrating the right-hand side of Equation 2.14, we find the following
result13:

−G(M1 +M2)
∫

dt
1

|r2(t)− r1(t)|2
d |r2(t)− r1(t)|

dt

= −G(M1 +M2)
∫

d |r2(t)− r1(t)|
1

|r2(t)− r1(t)|2

=
G(M1 +M2)
|r2(t)− r1(t)|

+ E2,

where E2 is another constant of integration. Combining this result with
that of Equation 2.15 and multiplying by M1M2/(M1 +M2) we find the
following expression14:

(2.16)
M1M2

2(M1 +M2)
|v2(t)− v1(t)|2 −G

M1M2
|r2(t)− r1(t)|

= E,

where we have lumped the two (scaled) constants of integration into just
a single constant E.
The right-hand side of Equation 2.16 is a constant, so the time deriva-
tive must vanish; the quantity E is therefore independent of time. We
can add this to the list of conserved quantities J and e that we have al-
ready discovered. This quantity will arise again often in our discussions;
it defines the (mechanical) energy of the system.15 We recognize that the
energy defined in Equation 2.16 has both a velocity-dependent term and
a position-dependent term. These are called the kinetic and potential en-
ergies, respectively.

Exercise 2.14. Compute the derivative dE/dt explicitly and demon-
strate that it indeed vanishes.

13At this point in the semester, students may be unfamiliar with integration techniques.
The principle point to be made here is that the right-hand side now is no longer an explicit
function of t but of the scalar |r2 − r1|. The result of the integration can be verified by differ-
entiation, which should be familiar.
14The need for the multiplicative factor M1M2/(M1 +M2) arises from a dimensional con-
vention that will be discussed in later sections.
15The somewhat curious choice of E for the integration constants is justified by the fact that
it is the first letter of the word energy. We use a capital letter to distinguish it from the
eccentricity and also to emphasize its importance in our subsequent discussions.
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2.4. A Special Frame of Reference

While we have the ability to choose any set of coordinates that we like, it
turns out to be profitable to not make random choices, Some choices are
better than others: reducing the algebra necessary to perform calculations
or providing clarity. One such good choice places the origin of the coor-
dinate system at the center of mass of the system. We define the center of
mass rcm(t) as follows:

(2.17) rcm(t) =

N∑

i=1

Miri(t)

N∑

i=1

Mi

,

where, in general, there could be N masses. For the case of two masses,
this simplifies to rcm(t) = (M1r1(t) +M2r2(t)) /(M1 +M2), as indicated in
figure 2.6.

Exercise 2.15. If M1 = M2, show that rcm(t) is on the line con-
necting r1(t) and r2(t). Plot the vectors using a coordinate system in
which both lie in the x-y plane and r1(t) is aligned with the x-axis.
(This will be an astute choice of coordinates.) Use geometry to show
that the vector r2(t) + r1(t) is intersected at its midpoint by the line
connecting points r2(t) and r1(t).

Exercise 2.16. A more formal proof of collinearity of three points
x1, x2 and x3 is that the cross product vanishes: (x2−x1)×(x3−x1) = 0.
Prove that the center of mass rcm(t) is collinear with r1(t) and r2(t).

Now let’s use the results of Equations 2.4 and 2.5 to prove an important
fact about the center of mass. If we multiply Equation 2.4 by M2 and add
Equation 2.5multiplied by M1, we find that

M1
d2r1(t)
dt2

+M2
d2r2(t)
dt2

= 0.

Figure 2.6. The center of mass is
located on the line that connects
the two masses
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From this, we can infer the following:

(2.18)
d2

dt2
[
M1r1(t) +M2r2(t)

]
=
d2rcm(t)

dt2
= 0.

That is, assuming that the masses are independent of time, the second-
order time derivative of the center of mass position vanishes. Conse-
quently, the first-order time derivative of the center of mass position must
be some constant, independent of time. We can call this constant some-
thing nondescript like c but we prefer to use something more descriptive:
vcm. Mathematically, we can write this as follows:

∫
dt

d

dt

[
drcm(t)

dt

]
=
drcm(t)

dt
+ vcm.

We perform one more integral over time (from t1 to t2) and can now write
the following expression for the time evolution of the center of mass:

∫ t2

t1

dt

[
drcm(t)

dt
+ vcm

]
= rcm(t2)− rcm(t1) + vcm(t2 − t1).

Rearranging terms, and substituting the more generic t for t2 we can now
write the following:

(2.19) rcm(t) = xcm + vcm(t − t1),
where t1 is the initial time and xcm = rcm(t1) is the position of the center
of mass at time t1. Thus, the position of the center of mass is a linear
function of time.16 Recall that the definition of linear momentum is the
product of mass and velocity: p = Mv. We can reorganize Equation 2.18
as follows:

d2

dt2
[
M1r1(t) +M2r2(t)

]
=

d

dt

[
M1

dr1(t)
dt

+M2
dr2(t)
dt

]

=
d

dt

[
p1(t) +p2(t)

]
= 0.(2.20)

Because this term vanishes, Equation 2.20 is a statement that the total
linear momentum of the system does not depend on time. We say that the
total linear momentum is conserved. Note that this does not imply that the
individual momenta pi are constants. On the contrary, the pi are generally
not constant over time but change in such a way that their sum remains
constant.

Let us now transform our calculations to the coordinate frame in which
the center of mass is at the origin. In this coordinate system, the first

16There is an unfortunate notational ambiguity in Equation 2.19. The term vcm is a constant,
not a function of the argument t − t1. This will not be the last time we shall have to be
conscious of what the notation means.
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mass is at a position given by r1(t) − rcm(t) and the second mass is at the
position r2(t)− rcm(t). From the definition of the center of mass, we know
that (M1 +M2)rcm(t) =M1r1(t) +M2r2(t), which we can rearrange to yield
M1[r1(t)− rcm(t)] = −M2[r2(t)− rcm(t)].

Because the second time derivative of the center of mass position rcm(t)
vanishes, we can rewrite Equation 2.5 as follows:

M1
d2[r1(t)− rcm(t)]

dt2
= −G M1M2

|r2(t)− r1(t)|3
[r2(t)− r1(t)]

= −G M1M2
|r2(t)− r1(t)|3

{
[r1(t)− rcm(t)]− [r2(t)− rcm(t)]

}

= −G M1M2
|r2(t)− r1(t)|3

×
{
[r1(t)− rcm(t)] +

M1
M2

[r1(t)− rcm(t)]
}

= −GM1(M1 +M2)
|r2(t)− r1(t)|3

[r1(t)− rcm(t)].(2.21)

We can remove the final dependence on r2(t) by noting that the following
relation holds:

|r2(t)− r1(t)| = |r2(t)− rcm(t)|+ |r1(t)− rcm(t)|.

We have then that the motion of mass M1 in the center of mass frame can
be written as follows:

(2.22) M1
d2[r1(t)− rcm(t)]

dt2
= −G M1M

3
2

(M1 +M2)2
r1(t)− rcm(t)
|r1(t)− rcm(t)|3

.

The equation of motion of mass M1 in the center of mass frame has
precisely the same form as our original Equations 2.6. This indicates
that the motion of mass M1 in the center of mass frame behaves as if
there were a (suitably scaled) force acting on M1 from the center of mass.
By analogy to our previous derivations, the trajectory of mass M1 will
therefore describe a conic section with one focus at the center of mass
location.

Exercise 2.17. Prove the following relation:

|r2(t)− r1(t)| = |r2(t)− rcm(t)|+ |r1(t)− rcm(t)|.

Hint: The three points are collinear. Use this result to prove Equa-
tion 2.22.

Exercise 2.18. Derive the equivalent to Equation 2.22: the equation
of motion for mass M2 in the center of mass frame.
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Exercise 2.19. The mass of the earth is approximately 6 × 1024 kg
and the mass of the sun is approximately 2 × 1030 kg. The nominal
earth-sun distance is approximately 1.5×1011m. Where is the center
of mass of the earth-sun system located? How does that compare to
the approximate solar radius of Rsun = 7× 108m?

The masses of the NASA GOES satellites are about 3250kg and
their geosynchronous orbits are approximately 3.6 × 107m above
the earth’s surface. The earth’s radius is approximately 6.4 × 106m.
Where is the center of mass of the earth-GOES system? How does
that compare to the earth’s radius?

We can define the angular momentum L of a particle by L = mr × v. For
our two-mass system, the total angular momentum is just given by the
following:

(2.23) L =M1r1(t)× v1(t) +M2r2(t)× v2(t).
In the center of mass frame, the total angular momentum consists of the
following two terms:

L =M1[r1(t)− rcm(t)]× [v1(t)− vcm] +M2[r2(t)− rcm(t)]× [v2(t)− vcm].
Regrouping terms and recalling the definition of rcm(t), we can write:

L =
[
M1r1(t)−M1

M1r1(t) +M2r2(t)
M1 +M2

]
× [v1(t)− vcm]

+
[
M2r2(t)−M2

M1r1(t) +M2r2(t)
M1 +M2

]
× [v2(t)− vcm]

=
M1M2
M1 +M2

{
[r1(t)− r2(t)]× v1(t) + [r2(t)− r1(t)]× v2(t)

}

=
M1M2
M1 +M2

J.(2.24)

From this result, we can conclude that the total angular momentum L
of the system is proportional to the conserved vector J and hence must
also be conserved. Alternatively, the statement that J is a constant of the
motion and independent of time is equivalent to the statement that angu-
lar momentum is conserved.

Exercise 2.20. The derivation of Equation 2.24 was not as detailed
as others in the text thus far. Go back and repeat the derivation from
Equation 2.23 without skipping as many steps. Note, in particular,
how did we come by the intermediate results for angular momenta
in the center of mass frame:

Li =Mi (ri(t)− rcm(t))× (vi(t)− vcm)?
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Also, what happened to the terms involving vcm that appear in the
intermediate result?

Turning now to the other conserved quantity we have discovered, we
define the kinetic energy T of a particle to be the velocity-dependent
part of the mechanical energy E. For an isolated particle, this is the quan-
tity T = 1/2Mv2. In the center of mass frame, we can write that the total
kinetic energy T of our gravitational system is the sum of the individual
energies:

(2.25) T = 1/2M1|v1(t)− vcm|2 + 1/2M2|v2(t)− vcm|2.
Using the fact that vcm = (M1v1(t)+M2v2(t))/(M1+M2), we can show that
the following result holds:

(2.26) T =
M1M2

2(M1 +M2)
|v2(t)− v1(t)|2.

This is just the kinetic energy that we defined in Equation 2.16.

This result is, at first glance, somewhat surprising. The center of mass
coordinate system is moving with a velocity vcm with respect to the origi-
nal coordinate system used to define the vectors r1(t) and r2(t). We might
have anticipated that a moving coordinate system could change the values
of the energy. Instead, we find that the kinetic energy is the same in each
coordinate system. To see how this arises, recall that the vector r2(t)−r1(t)
is independent of the coordinate system. The gravitational potential en-
ergy U from Equation 2.16 is given by the following:

(2.27) U = −G M1M2
|r2(t)− r1(t)|

.

It depends solely on the magnitude |r2(t) − r1(t)| that we have already
shown is independent of the coordinate system. We know that the total
energy E is conserved, so we should indeed find that the kinetic energy T
does not depend on the coordinate system.

We have now managed to demonstrate that Newton’s inverse square law
makes the following predictions about trajectories:

◦ Trajectories are conic sections,
◦ Linear momentum is conserved,
◦ Angular momentum is conserved,
◦ The total mechanical energy E = T +U is conserved
◦ The eccentricity vector e is conserved.

This is remarkable progress.
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2.5. Trajectories in More Detail

We have now identified that Newton’s inverse square law gives rise to
conic section trajectories, this includes specifically the elliptical trajec-
tories observed for planetary motion. What we would like to do now is
understand what governs the type of trajectory, elliptical or hyperbolic,
etc. that an object would occupy. To illuminate this issue, we can go back
to Equation 2.11 and square both sides. We obtain the following result:

(2.28) G2(M1 +M2)
2
[
e2 + 1+ 2e · r2(t)− r1(t)|r2(t)− r1(t)|

]
= |v2(t)− v1(t)|2J2,

where again e is the magnitude of e and J is the magnitude of J.

Exercise 2.21. To obtain the above result, we used another vector
identity:

(a×b) · (c×d) = (a · c)(b ·d)− (a ·d)(b · c).
Define the components of vectors a = (ax,ay,az), etc., and demon-
strate explicitly that the identity holds. Next, if a = c = r2(t) − r1(t)
and b = d = J, show that we indeed obtain the right hand side of the
result illustrated in Equation 2.28.

Now the quantity e · [r2(t) − r1(t)] was defined in Equation 2.12 and the
quantity |v2(t) − v1(t)|2 was defined in Equation 2.16. Substituting these
results back into Equation 2.28, we obtain the following expression:

(e2 − 1) = 2EJ2
G2M1M2(M1 +M2)

,

or, solving for the eccentricity,

(2.29) e =

√
1+

2EJ2
G2M1M2(M1 +M2)

.

The eccentricity e is related to the mechanical energy E, the angular
momentum J and the masses. We can see immediately from Equation 2.29
that the type of conic section is governed by the mechanical energy E.17
To obtain elliptical orbits, where 0 < e < 1, we must require that the sec-
ond term under the square root be negative or that E < 0. When E = 0, we
obtain parabolic trajectories and when E > 0, we obtain hyperbolic trajec-
tories. So, the type of trajectory depends upon the relative magnitudes of
the kinetic (positive) and potential (negative) energies.

Let’s focus for now on elliptical trajectories; those are the orbits occupied
by planets. We choose a coordinate system in which the e vector is aligned

17The masses are positive quantities, as must be the quantities G2 and J2.
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Figure 2.7. An ellipse can
also be defined by its semi-
major axis a and semi-
minor axis b. These values
are related to the directrix
α and eccentricity e

with the x-axis and define the quantity α = J2/G(M1+M2), then for values
of e < 1 we obtain ellipses defined by the following equation:

(2.30) er21 cosψ + r21 = α,

where we use our compact notation. Points r21 on the ellipse will have
coordinates r21 = (x,y) = α(cosψ,sinψ)/(1 + ecosψ). Consider the point
where ψ = 0. Let’s call that point r0 and we find er0+r0 = α or r0 = α/(1+e).
Now consider the point rπ/2 where ψ = π/2. Here cosψ = 0 and, thus,
rπ/2 = α. This is reassuring because we know that the distance from the
focus to the directrix is α/e.

Further, we can define the point rπ as the point where ψ = π and note that
the points r0 and rπ define the extent of the ellipse in the x-direction. The
geometric center of the ellipse O can be defined as O = (rπ + r0)/2 and the
length of the semimajor axis a of the ellipse is defined as a = |rπ − r0|/2.

Exercise 2.22. What are the values of a and O in terms of α and e?

Exercise 2.23. For elliptical orbits, where E < 0, show that the value
of α can be written as follows:

α =
|1− e2|GM1M2

2|E| .

The point b in figure 2.7 marks the maximum extent of the ellipse in the
y-direction and determines the minor axis of the ellipse in a coordinate
system with O at the center.

Exercise 2.24. What is the value of b in terms of α and e? Hint: the
point b has the same x-coordinate as O.

You might recall that the area of an ellipse is given by the product of
the semimajor and semiminor axes: A = πab. We can compute the area
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Figure 2.8. In polar coordinates, the
differential along the radial direction
is dζ. For a differential angle dψ, the
length of the differential at a radius
ζ is ζ dψ

using calculus by computing a two-dimensional integral. In rectangular
coordinates, we would write

A =
∫

dx

∫
dy

and adjust the limits of the integrals to match the desired area. For a
rectangle that extends from x = 0 to x = L and from y = 0 to y = w, we
would have the following expression18:

A =
∫ L

0
dx

∫ w

0
dy = Lw,

where we recover the well-known result that the area of a rectangle is the
product of its length times its width.

Exercise 2.25. Consider a right triangle that extends from x = 0 to
x = b and from y = 0 to y = h. The x-integral will extend from 0
to b but the y-integral can only extend as far as the line connecting
the points (b,0) and (0,h). Show that the equation connecting the
points is given by y = h − hx/b. The upper limit to the y-integral is
then h − hx/b. Use this fact to show that the area of the triangle is
A = bh/2.

For our elliptical trajectories, it will be more convenient to work in polar
coordinates, where the path length ds along an arc of length dψ at a radius
ζ is given by ds = ζ dψ, as illustrated in figure 2.8. The area in polar
coordinates is then determined from the following equation:

A =
∫

dζ ζ

∫
dψ =

∫
dψ

∫ r21

0
dζ ζ

18We have routinely used the integral notation
∫
dx f (x) to mean the same thing as

∫
f (x)dx.

This practice is especially useful when we encounter multiple integrals because the integra-
tion variable is positioned adjacent to the symbol that defines the limits of integration.
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where, in the last step, we have used the fact that the radial coordinate
that defines the ellipse is a function of ψ and reversed the order of inte-
gration. We can perform the radial integration readily:

∫
dζ ζ = ζ2/2. So,

the differential area element as a function of ψ is then dA = r221/2dψ. This
means that the differential change in area for each differential change in
time (the time derivative of the area) can be written as follows:

(2.31)
dA

dt
=
r221
2

dψ

dt
.

In our present choice of coordinate system, we note that the vector r2 − r1
has the following form:

(2.32) r2(t)− r1(t) = (r21 cosψ,r21 sinψ,0).

Taking the time derivative, we find that the velocity is given by the
following:
(2.33)

v2(t)− v1(t) =
(
dr21
dt

cosψ − r21 sinψ
dψ

dt
,
dr21
dt

sinψ + r21 cosψ
dψ

dt
,0
)
.

The cross product of these two vectors was defined to be the vector J.
Evaluating the cross product, we find the following relation:

(2.34) J = r221
dψ

dt
.

Somewhat surprisingly, the terms involving the time derivative of the
radial distance cancel. Thus, the magnitude of the angular momentum
does not depend on dr21/dt.

Exercise 2.26. Compute the vector product J = (r2 − r1) × (v2 − v1)
explicitly. Show that the magnitude J is given by r221dψ/dt.

Notice that from our results in Equations 2.31 and 2.34 that we must nec-
essarily have

dA

dt
= J/2.

Now J is a constant of the motion, which means that the change in area
with respect to time must also be a constant. Integrating, both sides of
this last result, we find the following:

∫ t2

t1

dt
dA

dt
=

J

2

∫ t2

t1

dt

A(t2)−A(t1) = J(t2 − t1)/2.(2.35)

That is, the change in area from some initial time t1 to a later time t2 is
linearly proportional to the time difference t2 − t1.
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The fact that the area is a linear function of time has two important con-
sequences. First, Kepler’s second law says that a planet sweeps out equal
areas in equal times as it moves along its trajectory. We see that Kepler’s
second law is equivalent to the statement that angular momentum (J) is
constant. Alternatively, Kepler’s second law is a manifestation of angular
momentum conservation. As we see in figure 2.9, if we measure the time
t12 that it takes for the planet to move between points r1 and r2, the planet
will sweep out the shaded area. If we then start our clock ticking when
the planet is at position r3 and stop it after the same time t12, the planet
will have moved to the point r4. The two shaded areas are equal.

Figure 2.9. As the planet
moves along its trajectory
from r1 to r2 or from r3 to
r4, it sweeps out an area de-
noted by the shaded areas.
Kepler’s second law states
that the areas are equal if
the times between points
are equal

Second, a planet on an elliptical trajectory will eventually return to the
same point on its trajectory, no matter where we define that point. The
change in area as a result of that motion is just the total area of the ellipse:
A = (π)ab. Using Equation 2.35, the total elapsed time will be T = t2− t1 =
2πab/J . We define T to be the orbital period; it takes precisely the time T
for the planet to complete one orbit and return to its starting point. We see
that conservation of angular momentum leads to periodic orbits.

Exercise 2.27. Kepler deduced a third law of planetary motion that
says that the square of the period T is proportional to the cube of
the semimajor axis a. From the relation T = 2πab/J and the previ-
ous result for b, show that the period must be related to a by the
following relation:

(2.36) T2 =
4π2

G(M1 +M2)
a3.

Exercise 2.28. Kepler’s third law suggests that the ratio of T2/a3

should be a constant for all objects orbiting a common center. Ta-
ble 2.1 below contains a list of the semimajor axes a, orbital periods
T and eccentricities e of the planets in our solar system. The unit
used for a is the astronomical unit (AU) that is defined to be the
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semimajor axis of the earth-sun system. The unit used for orbital
period is the earth year (yr). How well does the prediction made by
Kepler’s third law agree with the experimental observations?

Table 2.1. Solar system orbital data

a (AU) T (yr) e

Mercury 0.387 0.241 0.206
Venus 0.723 0.615 0.007
Earth 1.0 1.0 0.017
Mars 1.524 1.881 0.093
Jupiter 5.203 11.86 0.048
Saturn 9.537 29.42 0.054
Uranus 19.19 83.75 0.047
Neptune 30.07 163.7 0.009

2.6. Position as a Function of Time

We have now proven that all three of Kepler’s laws are the result of
Newton’s universal law of gravitation. We know that the planets follow
elliptical trajectories and that the motion is periodic but we have not,
as yet, specified the location of the planets as a function of time. This
will be our next task. Defining position on the orbit as a function of
time presents a somewhat challenging problem but one that can yield to
modern technology.

We have seen that the two vector Equations 2.6 for the trajectory of a
planet can be reduced to a single scalar equation for the angle ψ. We
know that, using our compact notation, that r221dψ/dt = J and that r21 =
J2/[G(M1 +M2)(1 + ecosψ)]. Hence, we can write the following equation
for the time variation of the angle:

(1+ ecosψ)−2
dψ

dt
=
G2(M1 +M2)2

J3
.

If we now integrate both sides over time, we find the following result:∫
dt (1+ ecosψ)−2

dψ

dt
=
G2(M1 +M2)2

J3

∫
dt

τe(ψ) ≡
∫

dψ (1+ ecosψ)−2 =
G2(M1 +M2)2

J3
(t − t1),(2.37)

where we have defined the function τe(ψ) to be the result of the ψ inte-
gration and incorporated the integration constant arising from the right-
hand-side integral into an initial time t1. This can be chosen to be zero
without any real consequence to our further discussions.
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We find ourselves in a situation that is not quite what we desired but one
that will arise with uncomfortable frequency in physics. What we wanted
to find was a function ψ = ψ(t) that would complete our description of
planetary motion. What we have found instead is a function τe = τe(ψ)
that is a function of the angle ψ. Worse, the function τe is defined by
a relatively complex integral, one that is undoubtedly more complicated
than can be solved by students at this point in their academic careers.

So, we find ourselves in something of a mathematical bind: we have a
mathematical description of the system under study but not the means to
solve the equations. In order to make further progress, we will have to add
more mathematical tools to our repertoire.19 Part of the effort to become
proficient in physics will be a continual quest to learn more mathemat-
ics. In this modern age of computers, this will include learning numerical
methods that might be used to construct solutions. In the present circum-
stances, it will actually prove possible to find a solution to the integral
in terms of simple functions. It will, however, not be possible invert the
function τe(ψ) to find the desired function ψ(t), at least not in terms of
simple functions.

The τe(ψ) integral can be evaluated in terms of simple functions. We can
make use of the Mathematica Integrate function to provide the requisite
assistance. We will leave the details to subsequent exercises and just state
the result here:

(2.38) τe(ψ) =
2

(1− e2)3/2
tan−1

[(1− e
1+ e

)1/2
tan(ψ/2)

]
− e sinψ
(1− e2)(1+ ecosψ)

.

This expression turns out to be only valid over the interval 0 ≤ ψ < π, due
to the fact that tan(ψ/2) diverges as ψ→ π. The function τe(ψ) does have
a finite limit:

lim
ψ→π

τe(ψ) =
π

(1− e2)3/2
.

Exercise 2.29. Plot the functions tanψ and tan−1(x). How do these
functions behave?

Exercise 2.30. Before attempting an integration of an unknown
function, it is a good idea to have some understanding of the func-
tion being integrated. Plot the function (1 + 0.5cosψ)−2 over the

19Albert Einstein’s pursuit of a general theory of relativity was hindered by his inability to
master the intricacies of non-Euclidean geometry. As he wrote to his friend Arnold Sommer-
feld in 1912: “I am now working exclusively on the gravitation problem and believe that I
can overcome all difficulties with the help of a mathematician friend of mine here [Marcel
Grossmann]. But one thing is certain: never before in my life have I toiled any where near
as much, and I have gained enormous respect for mathematics, whose more subtle parts I
considered until now, in my ignorance, as pure luxury. Compared with this problem, the
original theory of relativity is child’s play.”
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range 0 < ψ < 2π. Convince yourself that the function is symmetric
about ψ = π. Does changing the factor 0.5 to 0.7 alter the symmetry?

Exercise 2.31. The Mathematica function Integrate utilizes
sophisticated mathematics that is very likely unfamiliar to the
typical student, in particular using complex analysis to evaluate
integrals.20 As a result, all undefined coefficients presented to
the Integrate function will be interpreted as complex numbers.
We can provide information that will aid in the evaluation through
the Assumptions option of the Integrate function. For our present
circumstances, the parameter e is a real number and, for elliptical
trajectories, lies in the range 0 ≤ e < 1.

Compute the integral of the function F = 1/(1 + ecosψ)2 by using
the Mathematica Integrate function, providing the appropriate as-
sumptions. Show that the Mathematica result can be put into the
form shown in Equation 2.38. This will require the identity i tanx =
tanh ix, where i is the square root of negative one.

To extend the range of the function τ to the interval π < ψ ≤ 2π, we can
make use of the fact that the integrand is symmetric about ψ = π:

(1+ ecos(ψ +π))−2 = (1+ ecos(π −ψ))−2.
To obtain angles in the range π < ψ ≤ 2π, we can demonstrate that the
following relation holds:

(2.39) τe(ψ +π) = 2τe(π)− τe(π −ψ).
We illustrate the function τe in figure 2.10.

Figure 2.10. As the eccentricity e
increases from 0 to 0.5, the varia-
tion of the time along the pathway
τe changes significantly

For circular trajectories (e = 0), we see that the value of the function τe
changes linearly as a function of ψ. As a result, the angle ψ will also
change linearly as a function of time. Therefore, for circular trajectories,

20In a very real sense, the mathematics simplifies when we utilize complex numbers, even
though the name includes the word complex. Nevertheless, we shall skirt such discussions.
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the radius remains constant and so does the magnitude of the velocity.
We could anticipate this result from the knowledge that E = T + U . The
position-dependent potential energy does not change during a circular
orbit, so the velocity-dependent kinetic energy must also be a constant.
Consequently, the magnitude of velocity must remain constant.

Exercise 2.32. If we try to reproduce Equations 2.38 and 2.39 in
a Mathematica script, we run into a couple of numerical issues.
First, for the point ψ = π, we will find that the function τe evaluates
to indeterminate when the argument is π. This is due to the fact
that tanπ/2 = ∞ and tan−1∞ = (n + 1/2)π , where n is any integer.
Mathematica has no particular way to determine which of the pos-
sible roots you want and so reports the indeterminate result. There
are several ways to avoid this problem but one simple way uses the
Mathematica function If. Construct a user defined function that
computes the value of Equation 2.38 for values where 0 ≤ ψ < π and
τe = π/(1− e2)3/2 when ψ = π.

The second issue is that we want to extend the range of ψ to π ≤ ψ ≤
2π. Construct another function that uses Equation 2.39 to expand
the range to 0 ≤ ψ ≤ 2π. Hint: the Mathematica Piecewise function
might prove useful. Plot your results and compare to figure 2.10.

For elliptical trajectories, time does not vary in a simple way along the tra-
jectory and there is no simplemeans of inverting Equation 2.38 to produce
the angle ψ as a function of τe. As an alternative, we will approximate our
desired function ψ(t) by fitting a curve to the function τe(ψ) shown in
figure 2.10 and will perform just that activity in the next exercise. This
is something of a brute force approach that was not available to early
researchers and lacks any particular mathematical elegance. Nonethe-
less, we should use technology when it is beneficial and, with access to
fast computers, we’ll find brute force methods to be practical for some
problems.

Exercise 2.33. A reasonably simple means for interpolation is to
simply compute a large number of points and linearly interpolate
between the points. The Mathematica function Interpolation uses
a more sophisticated technique that employs cubic splines. This
method potentially reduces the total number of points required to
represent the function and provides continuous derivatives as well,
although we won’t use that feature at the moment.

Create a list of points (τe,ψ) using the Mathematica function Table

and then fit a spline curve to the points using the Interpolation

function. Plot your results and verify that they look like figure 2.10
with the axes reversed.
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In figure 2.11, we have plotted a series of points for the ellipse with eccen-
tricity e = 0.7 that are equally spaced in time (τe). We see that the points
near the focus (the origin in this plot) are widely spaced. This means
that the planet travels a large distance between each point and therefore
has a relatively large velocity. On the opposite end of the trajectory (near
ψ = π) the points are closely spaced. The planet’s velocity is correspond-
ingly much smaller at those points.

Figure 2.11. Points on the ellipse
for e = 0.7 are plotted for equal
elapsed times. In this case, the
period T has been broken into 35
equal intervals

Exercise 2.34. It is possible to visualize the orbital motion by using
the Mathematica function Animate. Animate the function F = 1/(1+
ecosψ) for various values of the eccentricity. Use the results of the
previous exercises to find ψ at constant time intervals. How does the
trajectory change as a function of e?

While it is very helpful to visualize the trajectories through animation, we
also need to develop static displays of our results for occasions when we
do not have access to computers. Figure 2.11 is one such representation
in which the position in space is marked by points plotted at equal time
intervals. Figure 2.10 is another such representation that portrays another
aspect of the solution to the time on orbit problem. We’ll find that produc-
ing multiple representations of some phenomenon will often bring clarity
to our understanding of the mathematics.

To generate further representations of the motion, suppose that we choose
a coordinate system like that in figure 2.7, in which motion takes place in
the x-y plane. We have then that the position as a function of time is given
by Equation 2.32 and the velocity is given by Equation 2.33.

Exercise 2.35. Compute and plot the positions x(t) and y(t) for one
period of the orbit. Plot the velocities dx/dt and dy/dt and accelera-
tions d2x/dt2 and d2y/dt2. How do these change as the eccentricity
changes?

Exercise 2.36. Compute and plot the magnitude r21 = α/(1+ecosψ)
(scaled by a factor of 1/α) as a function of time for one period of the
orbit. Show that the time derivatives of r21 have the following form:
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dr21
dt

= −eJ sinψ
α

and
d2r21
dt2

= −eJ
2 cosψ(1+ ecosψ)2

α3
.

Plot the (scaled) results as a function of time. How do these change
as the eccentricity changes?

2.7. Finite Sizes

We have now completed the initial description of the motion of planets on
their orbits around the sun. We have demonstrated that Newton’s univer-
sal law of gravitation gives rise to elliptical trajectories and have managed
to determine that the orbits are periodic and that the position of the planet
as a function of time can be determined. All of our work to this point has
assumed that the finite sizes of the gravitationally-attracting bodies can
be neglected. Unlike other stars that we observe in the night sky, our sun
is not a point. Similarly, the size of the moon is not insignificant. So, let
us return to the question of does this matter?

As a better approximation to finite-sized objects, let us consider the inter-
action of homogeneous, rigid spheres. The sun and planets are not partic-
ularly homogeneous, deviate in shape from spheres and are not rigid but
this approximation illustrates the stepwise approach commonly used in
physics to develop models. Rather than trying to solve a hugely complex
problem such as the motion of all of the objects in the solar system from
the beginning of time, we instead try to break it into a series of simpler,
more tractable problems. Our first approximation neglected planet sizes.
Now let’s see the results of dealing with a somewhat more complex model.

For a rigid, finite-sized object, we can think of chopping it up into small
(infinitesimal) pieces. We know how to calculate the force on two parti-
cles; that is defined by Equations 2.6. The total gravitational force exerted
by one extended object on another would be the sum (integral) over all of
the constituent pieces. By constraining the objects to be rigid, we can ne-
glect self-interactions; we need only consider the interactions of one body
on another.

Let us approach the problem in a systematic fashion that will prove quite
useful in subsequent discussions but may seem somewhat contrived at
this point. We shall define the gravitational field G1(r) of a particle of
mass M1 located at the point r1 to be the following:

(2.40) G1(r) = −GM1
r− r1
|r− r1|3

.

The force F21 on a mass M2 located at the position r2 is then given by the
relation F21 = M2G1(r2). It is a simple exercise to show that this is really
just a modest reorganization of our original problem.
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Figure 2.12. The gravita-
tional field of a sphere can
be constructed from the
summation (integral) over a
series of thin, circular plates.
An infinitesimal point on the
plate is illustrated

To generalize the definition of Equation 2.40 to a mass distribution, we
can formally replace the summation over a series of individual particles
with an integral over a distribution:

G(r) = −G
∑

i

Mi
r− ri
|r− ri |3

→−G
∫

dM
r− r1
|r− r1|3

,

where the integral (which generally will be multidimensional) extends
over the mass distribution.

Let us now consider the gravitational field of a uniform sphere. To make
the problem somewhat more tractable, let us consider forming the sphere
from a stack of very thin disks. We shall be astute in our choice of coordi-
nate systems and place the center of the sphere at the origin, and align the
point r2 with the z-axis, as depicted in figure 2.12. Hence, r2 = (0,0, z2).

An arbitrary point r1 on a plate located a distance z1 above the x-y plane
will have coordinates r1 = (x1, y1, z1). Using polar coordinates on the plate,
we have that x1 = ζ cosϕ and y1 = ζ sinϕ. As a result, we find r2 − r1 =
(−ζ cosϕ,−ζ sinϕ,z2 − z1) and |r2 − r1| = [ζ2 + (z2 − z1)2]1/2. For an homo-
geneous sphere, each infinitesimal point will have the same mass δm, so
the differential mass element dM is given by dM = δmdζ ζ dϕ. The grav-
itational field due to a plate of radius a is determined by the following
expression:

Gplate(r2) = −Gδm

∫ a

0
dζ ζ

∫ 2π

0
dϕ

(−ζ cosϕ,−ζ sinϕ,z2 − z1)
[ζ2 + (z2 − z1)2]3/2

.
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The integrals over ϕ can all be computed easily: the x- and y-component
terms vanish and the z-component integral yields 2π. We find then that
the gravitational field of the plate has only a z-component:

Gplate(r2) = −2πGδm(z2 − z1) ẑ
∫ a

0
dζ

ζ

[ζ2 + (z2 − z1)2]3/2
.

Exercise 2.37. Show that
∫ 2π
0 dϕ sinϕ =

∫ 2π
0 dϕ cosϕ = 0. Plot the

functions sinϕ and cosϕ over the range 0 ≤ ϕ ≤ 2π. Can you justify
the outcomes of the integrations by looking at the plots?

The radial integral can be performed also by noting that the following
expression holds when c is a constant:

d

dx
(x2 + c2)−1/2 = − x

(x2 + c2)3/2
.

The integrand is thus a perfect differential, so the gravitational field of the
plate is then given by the following:

Gplate(r2) = 2πGδm ẑ
z2 − z1√

ζ2 + (z2 − z1)2

∣∣∣∣∣
a

ζ=0

= 2πGδm ẑ

⎡
⎢⎢⎢⎢⎣

z2 − z1√
a2 + (z2 − z1)2

− 1
⎤
⎥⎥⎥⎥⎦ .(2.41)

Exercise 2.38. The Mathematica function Integrate that we intro-
duced earlier can be used to perform complex integrations. Integrate
the function F = x/(x2+c2)3/2 over the interval [0, a]. Can you use the
result to verify Equation 2.41?

The gravitational field of a sphere of radius R is then obtained by integrat-
ing over a series of plates:

Gsphere(r2) = −Gδm

R∫

−R

dz1

√
R2−z21∫

0

dζ ζ

2π∫

0

dϕ
(−ζ cosϕ,−ζ sinϕ,z2 − z1)

[r2 + (z2 − z1)2]3/2

= 2πGδm ẑ
∫ R

−R
dz1

⎡⎢⎢⎢⎢⎣
z2 − z1√

R2 − z21 + (z2 − z1)2
− 1

⎤⎥⎥⎥⎥⎦ ,(2.42)

where in this last step we utilized the result from Equation 2.41. As we can
see from figure 2.13, the variable a that defines the plate radius depends
upon z1. We have that R2 = a2+z21. We can perform the z1 integration if we
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look at each of the terms individually. First, let us define a new variable
u =

√
R2 + z22 − 2z2z1. Then, we find that the following is true:

du

dz1
= − z2√

R2 + z22 − 2z2z1
.

Figure 2.13. The gravita-
tional field of a sphere of
radius R is obtained from
integrating over a series of
plates. The radius a of a plate
at a height z1 is defined by
the Pythagorean theorem:
R2 = a2 + z21

Hence, the first term in the integrand of Equation 2.42 is a perfect differ-
ential:

∫ R

−R
dz1

z2√
R2 + z22 − 2z2z1

= −
∫

du

= −
√
R2 + z22 − 2z2z1

∣∣∣∣∣
R

z1=−R
= (z2 +R)− (z2 −R) = 2R.

From the definition of u, the second term in the integrand of Equa-
tion 2.42 can be written as follows:

∫ R

−R
dz1

z1√
R2 + z22 − 2z2z1

=
∫

du
u2 −R2 − z22

z22
=
1
z22

[
u3

3
− (R2 + z22)u

]

=
1
z22

[
[R2 + z22 − 2z2z1]3/2

3

+ (R2 + z22)
√
R2 + z22 − 2z2z1

]R

z1=−R

=
2R3

3z22
.
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The last term in the integral of Equation 2.42 is simple to evaluate and
contributes −2R to the total. Summing all of the contributions, we find
that the gravitational field of a rigid sphere is given by the following:

(2.43) Gsphere(r) = −Gδm ẑ
4πR3

3z22
.

We note first that the quantity 4πR3/3 is the volume V of the sphere and
that the mass M1 of the sphere must be M1 = δmV . We also note that,
for the coordinates chosen, ẑ = (r2 − r1)/ |r2 − r1| and that z2 = |r2 − r1|.
Consequently, we can rewrite Equation 2.43 as follows:

Gsphere(r) = −GM1
r2 − r1
|r2 − r1|3

.

Surprisingly, this is identical to the gravitational field of a point mass!
This result can actually be extended to any spherically-symmetric distri-
bution not just uniform distributions. Thus, we would have to consider,
at the least, non-symmetrical mass distributions for the finite size of the
masses to affect the resulting trajectory. The theory that we developed
using point particles is quite successful despite its simplicity.

Exercise 2.39. Repeat the analysis leading to Equation 2.43 and
compute the force on a rigid spherical mass M2 due to a point mass
located at the origin. Show that the force is identical to that of two
point masses. Assume that the center of the sphere is located a dis-
tance b from the origin, where b is larger than the sphere radius R.

2.8. Unfinished Business

Newton’s development of the mathematical tools to describe planetary
motion (the calculus) represents a major advance in our ability to pro-
vide descriptive, predictive models of the behavior of a complex system.
In principle, extension of the results we’ve obtained thus far to study of
the complete solar system should be straightforward. Each pair of bodies
interacts via the law of universal gravitation as we have described, so pre-
diction of the trajectories of the bodies amounts to calculating the sum of
the forces on each of the planets due to the sun and the other planets:

(2.44) Mi
d2ri
dt2

= −GMi

∑

j�i

Mj

|rj − ri |3
(rj − ri ).

While the statement of the problem may be straightforward, solution of
the system of equations represented by Equation 2.44 is extraordinarily
challenging. Much to the dismay of Newton and subsequent scientists,
there are no closed-form solutions to the general n-body problem except
when the number of bodies is two. For three or more masses, the problem
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must be treated numerically. We shall return to this topic in somewhat
more detail in a later chapter.

Figure 2.14. The Saturnian moon Daphnis (white dot in the cen-
ter of the inset) orbits within and is responsible for the Keeler Gap
in Saturn’s A ring. In this image, taken by the Cassini spacecraft
narrow-angle camera from 48◦ above the ring plane, Daphnis
casts a shadow (dark vertical line) on adjacent ring material. Rip-
ples caused by the recent passage of Daphnis also cast shadows,
revealing the three-dimensional structure of the features (Image
courtesy of NASA)

To illustrate the potential complexities, let us first note that the rings of
Saturn are a remarkable astronomical phenomenon. The rings were ini-
tially observed by the Italian astronomer Galileo Galilei in 1610, who at
first thought the rings were large moons of Saturn due to the low res-
olution of his telescope. Galileo was perplexed when, observing Saturn
several years later, the moons seemed to have disappeared. Subsequent
observations by the Dutch astronomer Christiaan Huygens about fifty
years later led him to propose that the observations of Saturn could be
explained if Saturn were encircled by a large, flat disk that was inclined
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to the plane of the ecliptic.21 Subsequent observations with increasingly
high resolution instruments have found increasing amounts of structure
in the ring system, including the 2009 observation of the rings made by
the NASA Cassini probe shown in figure 2.14.

The picture demonstrates vividly the increasing levels of sophistication
we must achieve if we are to explain everything visible in the picture. The
image contains just a small portion of the ring system that spans a ra-
dial distance of about 282,000km yet has a thickness that is generally less
than 1km (some sections like the one displayed in the figure are roughly
30m in thickness). There are spiral density variations in the ring thickness
visible in the Cassini image, like tracks in a phonograph record, We have a
clue to the source of these fluctuations from the three-dimensional struc-
tures observed near the edge of the ring where the moon Daphnis orbits.
Clearly, the passage of the moon through the rings affects the ring mate-
rial. Yet, the rings are in some sense stable: they have been observed since
the 1600s. We know that Newton’s laws of motion explain the trajectory
of Saturn as it glides through space around the sun and must somehow
also explain the behavior of the ring system. For now, we will content
ourselves with proving one small aspect of the problem. The remainder
will have to await subsequent courses and, in truth, some aspects remain
active areas of research.

Exercise 2.40. Use Kepler’s third law (Equation 2.36) to prove that
the rings cannot be solid disks.

21Huygens published his Systema Saturnium in 1659, in which he explained that the curious
observed behavior of the objects first seen by Galileo was consistent with a flat disk not
separate moons.



III

On the Nature of Matter

In the previous chapter, we investigated the nature of the gravitational
force that confines the planets to their orbits around the sun. We found
that the elliptical trajectories of the planets first identified by Kepler could
be explained with the universal law of gravitation developed by New-
ton. Specific trajectories are defined by the angular momentum J and the
masses of the gravitating bodies, along with a constant of proportional-
ity G that we take to be universal. Mass was identified as a fundamental
property of matter: any two objects that have mass will interact through
the gravitational force.

Another fundamental property of matter is the electric charge. Charged
matter interacts through the electromagnetic force, which has been the
subject of intensive investigation for many years. While the motions of
stars in the night sky are indeed fascinating, lightning strikes have cap-
tivated humans since the dawn of time. These unpredictable, explosive
rearrangements of electric charge between the clouds and ground can
have disastrous consequences for anyone in the vicinity, much more so
than any distant realignment of bright dots in the sky. As a matter of
self-preservation, if not innate scientific curiosity, developing some sort
of understanding of the vast forces at work in our atmosphere has been a
longstanding task.

A significant, pivotal advance in our understanding of the nature of the
electromagnetic force was provided by the French natural philosopher
Charles Augustin de Coulomb. Coulomb was trained as a mathematician
and spent much of his career as an officer in the Corps de Genie work-
ing as an engineer designing and building fortifications. In this rôle,
he was not content to simply replicate the designs of his predecessors
but based his plans on scientific theories of soil mechanics and frictional
forces that he developed. Upon Coulomb’s return to France in 1781 from
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his foreign posting, he became interested in somewhat less practical and
more esoteric pursuits about the natural world, especially those relating
to electric and magnetic phenomena.1

The key to his success in these studies was Coulomb’s invention of a tor-
sion balance that was capable of making precise measurements of small
forces. He used this balance to demonstrate that the force between two
electrically charged objects could be written in the following form:

(3.1) F = κQ1Q2
r2 − r1
|r2 − r1|3

,

where κ is a constant of proportionality and Q1 and Q2 represent the
charges of the two objects. Except for a modest shift in notation, we can
recognize that Coulomb’s law relating the force acting on two charged ob-
jects has exactly the same form as that of Newton’s law of gravitation! The
electromagnetic force between two charges is a central force that depends
on the inverse square of the distance between the charges.

This is quite a fortunate development, as it means that all of the work
from the previous chapter can be applied to the problem of the motion
of two charges, albeit with one caveat. Unlike the gravitational problem
where all masses have a positive sign and the overall force is attractive,
electric charges can be either positive or negative. This means that the
electromagnetic force can be either attractive or repulsive. This behavior
is represented mathematically by defining the force in Equation 3.1 to
have an overall positive sign. Two charges with opposite signs will result
in a negative (attractive) force and two charges with the same sign will
result in a positive (repulsive) force.

3.1. Hyperbolic Trajectories

If we return to Equations 2.6, the starting point for our analysis of grav-
itational motion, we see that we can write the following set of equations
for charged particles:

d[r2(t)− r1(t)]
dt

= v2(t)− v1(t)

d[v2(t)− v1(t)]
dt

= κ
Q1Q2(M1 +M2)

M1M2

r2(t)− r1(t)
|r2(t)− r1(t)|3

.(3.2)

1Coulomb submitted his Premier Mémoire sur l’Electricité et le Magnétisme to the French
Academy of Sciences in 1785, followed by six more memoirs over the next three years that
established a number of basic facts about the nature of the electromagnetic force.
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We see explicitly that the overall sign of the second termwill depend upon
the relative signs of the charges Q1 and Q2. Now it may occur to the alert
student that, because particles have mass, we should include the gravita-
tional interaction in our description of the motion. As a practical matter,
the coefficient of proportionality κ for the electromagnetic force is many
orders of magnitude larger than the universal gravitational constant G.
Consequently, we can neglect the gravitational interaction for most appli-
cations involving charged particles.

Exercise 3.1. Show that Equation 3.1 leads to Equations 3.2.

Following the pathway we outlined in the previous chapter, we can
show from Equations 3.2 that the angular momentum vector J is con-
served. Consequently, motion is again restricted to the plane perpen-
dicular to J. Additionally, when the magnitude J vanishes, the mo-
tion of the charged particles lies along a straight line: Equation 2.9 is
equally valid for charged particles. So, if we multiply Equation 2.9 by
κQ1Q2(M1 +M2)/M1M2, we obtain the following result:

κ
Q1Q2(M1 +M2)

M1M2

d

dt

r2(t)− r1(t)
|r2(t)− r1(t)|

= J×
[
κ
Q1Q2(M1 +M2)

M1M2

r2(t)− r1(t)
|r2(t)− r1(t)|3

]

= J× d[v2(t)− v1(t)]
dt

=
d

dt

{
J× [v2(t)− v1(t)]

}
.(3.3)

Note that there is an overall sign change from Equation 2.10 that is now
captured in the relative signs of the charges. Again, we can integrate both
sides and recover the result analogous to Equation 2.11:

(3.4) κ
Q1Q2(M1 +M2)

M1M2

[
e+

r2(t)− r1(t)
|r2(t)− r1(t)|

]
= J× [v2(t)− v1(t)].

Exercise 3.2. Show that, as before, the dot product of J with Equa-
tion 3.4 vanishes and that the vector e must again lie in the plane of
motion.

If we now take the dot product of Equation 3.4with the vector r2(t)−r1(t),
we obtain the following result:

(3.5) [r2(t)− r1(t)] · e+ |r2(t)− r1(t)| = −
J2M1M2

κQ1Q2(M1 +M2)
.

Except for the additional sign on the right-hand side, this result has the
same form as we obtained in Equation 2.12. Consequently, for charges
of opposite sign, we have precisely the same results as we obtained for
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gravitational motion. Depending upon the value of e, the trajectories are
ellipses, parabolas or hyperbolas. So, other than a different overall scale
factor, there is nothing different about the behavior of charged particles
with opposite signs.

Let us take some time to examine the hyperbolic trajectories that we omit-
ted from our previous discussion on the motion of planets. There are rel-
atively few astronomical objects of interest with hyperbolic trajectories in
the solar system but we will soon find applications in the realm of charged
particles. Using our compact notation and working in polar coordinates,
we can rewrite Equation 3.5 as follows:

(3.6) r21(1+ ecosψ) = − J2M1M2
κQ1Q2(M1 +M2)

.

As before, the term r21 represents the distance between the two charges
and, as such, is a positive number. For oppositely charged particles, the
right-hand side of Equation 3.6 is also a positive number. In figure 3.1,
we plot the value of the function 1 + ecosφ for two values of e. We can
see that for elliptical trajectories, where e < 1 the value of the function is
always positive.

Figure 3.1. The function 1+ ecosψ
takes on negative values when e is
larger than one

For hyperbolic trajectories, where e > 1, the function is negative in the
region around ψ = π and vanishes at two points where 1 + ecosψ = 0.
This means that, upon dividing both sides of Equation 3.6 by 1 + ecosψ,
the distance r21 would have to be negative in the vicinity of ψ = π. This
is clearly impossible: r21 is the polar distance from the origin and has a
range 0 ≤ r21 ≤ ∞. Consequently, the region where 1 + ecosψ is negative
cannot represent a real solution to the equation describing the motion of
two charges of opposite sign. We term this an unphysical solution to the
problem. Students who actually solved Exercise 2.12 undoubtedly found
that the Mathematica program produced two branches of the hyperbola,
as illustrated in figure 3.2, which might have been somewhat confusing at
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the time. We only plotted the physical branch in figure 2.5 and omitted
the unphysical one.2

We will encounter unphysical solutions from time to time during the
semester. They arise for various reasons having to do with the mathemat-
ical representations that we utilize. In the previous chapter, we noted that
an object uniformly accelerated from rest will travel a distance d in a time
t given by d = at2/2, whereupon t = ±(2d/a)1/2. We generally discount
the negative time solution as being unphysical: the object cannot have
travelled any distance prior to being released. Deciding which solutions
are real and which are unphysical requires physical insight. Again, one
cannot simply perform algebra (or calculus) and be oblivious to what the
mathematics is intended to represent.

If we now consider the case of two charges of the same sign, we observe
that the sign of the right-hand side of Equation 3.6 is negative. The dis-
tance r21 must be a positive number, so this has two main consequences:
First, elliptical and parabolic solutions are not possible: the value of 1 +
ecosψ is always positive for elliptical trajectories and vanishes only at ψ =
π for parabolic trajectories but is never negative. Second, the only possi-
ble solutions are for hyperbolic trajectories in the region where 1+ ecosψ
is negative. Thus, solutions of the equation for a repulsive force occupy
what was the forbidden region of ψ for an attractive force.

Figure 3.2. The branches of hyperbolic
trajectories (e = 2.5) represent the phys-
ical solutions for attractive (left branch)
and repulsive (right branch) forces. The
dashed lines are the asymptotes for the
hyperbolas. The angle ψ∗ is defined by
1 + ecosψ∗ = 0. The point r0 represents
the distance of closest approach (ψ = 0)
for an attractive force. The point rπ rep-
resents the distance of closest approach
(ψ = π) for a repulsive force

2This does not constitute a lie, at least in this author’s view. We have ultimately reconciled
the matter and apologize for any unnecessary anxiety caused by deferring the discussion of
a subtlety to a more appropriate time.
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We can develop a deeper understanding of the behavior of the system if
we compute the energy of the system. We can follow the logic that led
to Equation 2.16 for the gravitational force. We start by taking the dot
product of the velocity vector v2(t)−v1(t) with the second of Equations 3.2:

[v2(t)− v1(t)] ·
d[v2(t)− v1(t)]

dt
=

[v2(t)− v1(t)] ·κ
Q1Q2(M1 +M2)

M1M2

r2(t)− r1(t)
|r2(t)− r1(t)|3

.

If we multiply both sides by M1M2/(M1 +M2) and perform some addi-
tional algebraic steps, we eventually obtain the following result:

(3.7) E = M1M2
2(M1 +M2)

|v2(t)− v1(t)|2 +κ
Q1Q2

|r2(t)− r1(t)|
.

Again, the energy has two components: a kinetic component that depends
solely on the velocity and a potential component that depends solely on
the distance. We can see that the total energy E (which determines the
eccentricity e) can only be positive when both charges have the same sign.
Hence, the only possible solutions for a repulsive force are straight line
motion when J = 0 and hyperbolic motion when J � 0. When the charges
have opposite signs, the potential energy becomes negative, as it was for
the gravitational force. In that case, motion can include elliptical and
parabolic motion in addition to hyperbolic and straight-line motion.

Exercise 3.3. Fill in the missing steps in the derivation of Equa-
tion 3.7.

Exercise 3.4. Show that we can also write Equation 3.6 as follows:

(3.8) r21 =
κQ1Q2(1− e2)
2E(1+ ecosψ)

.

Hint: Begin by squaring Equation 3.4 to find the value for e2 − 1.
Show now that r0 = κQ1Q2(e − 1)/2E and rπ = κQ1Q2(e + 1)/2E. Use
this to show that the semimajor axis of the ellipse is eκQ1Q2/2E.

3.2. Asymptotic Behavior

Hyperbolic motion is quite different from elliptical motion. It is not peri-
odic: the particle is never at the same position twice. In fact, for the vast
majority of time, the motion is approximately the same as straight-line
motion. To see how this vastly different behavior arises, let us first note
that when the function 1 + ecosψ vanishes, the distance r21 defined by
Equation 3.5 becomes infinite. We have already mentioned before that we
need to be cautious when interpreting equations that are divergent. For
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example, when the distance between two particles vanishes, the particles
will have impacted, the potential energy becomes infinite and we really
cannot say anything about what happens to the system after that time.
For macroscopic objects like planets, impacts are going to be complicated
events, with complicated consequences like massive firestorms, disrup-
tion of global weather patterns and extinction of species. Singular points
in the equations mark limits to our ability to predict subsequent (or prior)
behavior.

Exercise 3.5. Plot the function F = 1/(1+ ecosψ), where e > 1, over
the range −ψ∗ ≤ ψ ≤ +ψ∗, where ψ∗ = cos−1(−1/e). Show that the
point ψ = 0 corresponds to the distance of closest approach, that is,
r21(ψ = 0) is a minimum. Is the function symmetric around the point
ψ = 0? Can we infer from this plot that the particles were at the same
points in space on opposite sides of ψ = 0?

The singularity in Equation 3.5 does not give rise to the sort of apocalyp-
tic events characterized by impacts. Particles somewhere on the physical
branch of an hyperbolic trajectory will never actually reach infinity in
finite time. To verify that this is the case and to examine the so-called
asymptotic behavior of the particles, let us return to the problem of posi-
tion on the trajectory as a function of time. When the eccentricity e is
larger than one, we can define a function τh analogous to the function τe
we defined in Equation 2.38:

(3.9) τh(ψ) ≡
∫

dψ (1+ ecosψ)−2 =
κ2Q21Q

2
2(M1 +M2)2

J3M21M
2
2

(t − t1),

If we go back to Equation 2.37, the function τh looks identical to the func-
tion τe we defined previously. What we will find, though, is a different
value for the integral, stemming from the fact that the eccentricity e is
larger than one. Even though the integrand looks the same in the two
equations, because here e > 1 the integrand (1+ ecosψ)−2 now diverges at
the point ψ∗ = cos−1(−1/e).

In evaluating the function τh we will again need to be cautious. For an
attractive force, where we are interested in the behavior of the trajectory
that includes the portion where ψ = 0, this function is only valid in the
range −ψ∗ < ψ < ψ∗. In this case, we find that the function τh can be
written as follows:
(3.10)

τh(ψ) =
2

(e2 − 1)3/2
tanh−1

[( e − 1
e + 1

)1/2
tan(ψ/2)

]
+

e sinψ
(e2 − 1)(1+ ecosψ)

.
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As was the case for elliptical functions, we have obtained a function τh
that is a complicated function of the angle ψ. As was also the case pre-
viously, we will not be able to invert the function τh in terms of simple
functions to recover the angle ψ as a function of time that we desire. Nev-
ertheless, we can resort to our previous strategy and use interpolation to
approximate the desired function ψ(t).

Exercise 3.6. Use the Mathematica function Integrate to perform
the integral defined in Equation 3.9. You will have to provide the
assumptions that the eccentricity e is larger than one and real. See if
you can obtain the result specified in Equation 3.10

Exercise 3.7. Plot the function τh(ψ) over the range −ψ∗ ≤ ψ ≤ +ψ∗,
where ψ∗ = cos−1(−1/e). The point ψ = 0 corresponds to the distance
of closest approach. What is the value of τh at that point?

Analysis of hyperbolic trajectories for a repulsive force is somewhat more
challenging. These trajectories contain the point ψ = π that is the point
of closest approach and are restricted to the range ψ∗ ≤ ψ ≤ −ψ∗, in a
counterclockwise sense. Here we run into two problems. First, the tangent
function is divergent at the point ψ = π. We have already encountered
this problem and recognize that a solution for points where ψ > π can be
constructed using the symmetry of the function: τh(ψ − π) = τh(π − ψ).
Second, the argument of the inverse hyperbolic tangent in Equation 3.10
moves outside the range of validity: tanh−1(x) is only defined in the range
−1 ≤ x ≤ 1. For repulsive forces, we need to use the following expression:

(3.11)

τh(ψ) =
2

(e2 − 1)3/2

{
−π + tan−1

[( e − 1
e + 1

)1/2
tan(ψ/2)

]}
+

e sinψ
(e2 − 1)(1+ ecosψ)

.

Here we see that inverse hyperbolic tangent has been replaced by the in-
verse tangent.3 We also (in the first term in the curly brackets) subtracted
the value of the limit of the function at ψ = π. This ensures that the value
of τh(ψ) vanishes at ψ = π, which also represents the distance of closest
approach for repulsive forces. This choice is somewhat arbitrary but is
convenient. Alternative definitions of when to start the clock ticking can
always be made by adjusting the value t1 from Equation 3.9.

We can now proceed to plotting the values of the distance r21 and its
derivatives as a function of time. As before, we can calculate the value

3This discussion would be somewhat less opaque if we plunged into the domain of complex
numbers. If we permit the angle ψ to be complex, then τh can be shown to be a continu-
ous function of the complex ψ. We shall, nonetheless, defer that discussion to subsequent
courses.
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of τh(ψ) for a number of values of ψ and then use those values to interpo-
late to find the desired function ψ(t), which is now a function of time. In
figure 3.3, we plot the values of r21 and its derivatives for an hyperbolic
trajectory in which e = 2, for both attractive and repulsive forces. We have
focussed on the late-time behavior of the system, so the behavior near the
origin is somewhat obscured.

What we observe is that the velocities for both attractive and repulsive
trajectories limit to the same constant value. This is evident also from
the fact that distance versus time plots have the same slopes at late times.
We observe also that the accelerations become vanishingly small after rel-
atively short times. This occurs when the particles have moved a radial
distance that is a few times the distance of closest approach.

Figure 3.3. The asymptotic
behavior of both attractive
(black) and repulsive (gray)
hyperbolic trajectories are
very similar. The origin of
the time axis is defined as
the time of closest approach

As a result, we can approximate the hyperbolic trajectories at late times
by simple straight-line motion in which particle 2 moves off at an angle
±ψ∗ with a constant velocity. This is not strictly true mathematically but
real measurements always have finite precision. At some point the dif-
ference between the actual and theoretical positions of the particles will
drop below the resolution of our instruments. Beyond that point, the mo-
tion is effectively linear. As a consequence, the particles can never reach
infinite separation in finite time. The distance is simply proportional to
time: r21 = vt, where v is the asymptotic (late time) velocity. To reach
infinite separation will require infinite time.
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Exercise 3.8. Use the Mathematica function Table to construct a
list of (τh,ψ) values for the attractive force defined in Equation 3.10.
You will want to compute the function over the range −ψ∗ < ψ < ψ∗,
specifically excluding the points ψ = ±ψ∗. Break the range into at
least 200 steps in ψ. (τh is very non-linear. We need very small
increments Δψ to obtain reasonable interpolations as ψ → ψ∗.) Use
the Interpolation function to obtain the approximation of ψ(t).

Plot r21 and its derivatives as functions of time. Can you reproduce
the results of figure 3.3? What happens at negative times, i.e., are
the curves symmetric around t = 0?

The value of dr21/dt is zero at t = 0. Does this mean that the velocity
is zero?

Exercise 3.9. Repeat the previous exercise for the repulsive force
defined in Equation 3.11.

Exercise 3.10. What is the value of the asymptotic velocity? Calcu-
late the limit of dr21/dt as ψ→ ψ∗.

3.3. Rutherford’s Experiments

At this point in their academic careers, most students have probably not
heard of the New Zealand physicist Ernest Rutherford but his rôle in
establishing our modern view of the nature of matter is as significant
as Newton’s in establishing the universal law of gravitation. In 1895,
Rutherford left New Zealand to study physics with J. J. Thomson at Trin-
ity College, Cambridge. Initially, he studied the properties of iron ex-
posed to high-frequency electromagnetic radiation but later focussed his
research on the newly-discovered radioactive properties of uranium. By
1898, Rutherford was able to demonstrate that two types of radiation that
he called α- and β-rays emanated from uranium salts.4 In 1898, Ruther-
ford moved to McGill University in Montreal, where he was able, over
the next several years, to demonstrate that α particles were essentially he-
lium atoms and that the uranium atoms were transformed into different
elements, in a process called transmutation.5 Rutherford was awarded

4The first two letters in the Greek alphabet are α and β. Uncharged radiation that was subse-
quently discovered emanating from these radioactive elements was called, not surprisingly,
γ-rays.
5Rutherford’s journey to the scientific backwaters of the colonies was prompted by his de-
sire to marry the fiancé he had left behind in New Zealand. Trinity College denied him a
promotion to Fellow and the position at McGill provided a significant boost in salary. Unfor-
tunately, McGill University rules prohibited Rutherford from taking a leave of absence until
he had completed a year’s service. Rutherford married Mary Newton in 1900.
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the Nobel Prize in Chemistry in 1908 “for his investigations into the dis-
integration of the elements, and the chemistry of radioactive substances.”
Rutherford was appreciative but nonplussed by the award, as he did not
consider himself to be a chemist. (Gabriel Lippmann won the Nobel Prize
in Physics in 1908 “for his method of reproducing colours photographi-
cally based on the phenomenon of interference.”)

In 1907, Rutherford was appointed to a professorship in Manchester
University, permitting him to return to a major research institution in
what he considered to be the epicenter of scientific thought: Britain. At
Manchester, Rutherford and his students conducted a series of experi-
ments that form the backbone of our present discussion. In some sense,
these Manchester investigations are more scientifically important than
the McGill work Rutherford performed earlier but Rutherford never re-
ceived a Nobel Prize in Physics for these efforts. Rutherford’s objective in
this enterprise was to examine the nature of the atom.

His mentor at Trinity College, J. J. Thomson, had earlier shown that β
particles were, in fact, electrons and that electrons could be extracted from
atomic matter by the application of suitably large electric fields. Thomson
was able to measure the mass of the electron and showed that it was a very
small fraction of the total mass of the atom. Thomson thereby postulated
that the atom could be thought of as a blob of positively charged stuff that
was responsible for the lion’s share of the mass of the atom in which the
much lighter, negatively charged electrons were embedded. This model
has come to be called the plum pudding model.

Figure 3.4. In the plum pud-
ding model of the atom suggested
by Thomson, negatively charged
electrons (dark spheres) are dis-
tributed throughout a heavy, pos-
itively charged mass (gray sphere).
The atom wouldn’t necessarily be
spherical but is depicted as such

In figure 3.4, we have represented the atom as a sphere and the embed-
ded electrons as smaller spheres randomly distributed throughout the
volume. This may not be a particularly accurate representation but it is



66 On the Nature of Matter

simple to draw. Rutherford’s objective in his Manchester experiments was
to see if α particle scattering could shed any light on the distribution of
electrons within the atom.

Rutherford and his students constructed a thin beam of α particles by
placing a tube containing a few milligrams of radium (that decayed into
radon gas) into a lead cask, as illustrated in figure 3.5. A small hole drilled
into the side of the cask served to collimate the α particles: any α parti-
cles that struck the walls of the cask were absorbed; only those that passed
through the hole were able to strike the target. Thin metal foils were used
as targets. The α particles were detected by allowing them to impact a
thin film of zinc sulfide that emitted a flash of light when struck. Ruther-
ford’s students sat in a darkened room and observed the flashes through a
microscope that was able to rotate in the horizontal plane, allowing scat-
tering to be measured as a function of the angle θ. The truly remarkable
result of Rutherford’s experiments was the observation of α particles that
bounced from the target foils and were detected on the same side of the
foil as the source! Rutherford had, perhaps, anticipated this result because
the experiment was designed to permit the microscope to reach angles of
θ > 90◦. In a lecture describing the experiment, however, he professed
astonishment: “It was almost as incredible as if you fired a 15-inch naval
shell at a piece of tissue paper and it came right back and hit you”.

Figure 3.5. The source (S) of
radon gas was contained in
a small glass tube embedded
in a block of lead. A small
hole drilled in the block (C)
allowed a thin beam of α par-
ticles to strike a metal foil (F).
A microscope (M) was used to
observe the fluorescence of an
α particle striking a thin film
of zinc sulfide (Z). The micro-
scope could be rotated in an
horizontal plane, allowing the
measurement of scattering as
a function of angle θ

3.4. Gauss’s Law

To understand why Rutherford was so astonished at the experimental re-
sults, it will first be useful to define the electric field of a charged particle.
We define the electric field of a chargeQ1 located at the point r1 as follows:



§3.4 Gauss’s Law 67

(3.12) E1(r) = κQ1
r− r1
|r− r1|3

.

The force F21 on a charged particle located at a position r2 is then given
by the following:

(3.13) F21 =Q2E1(r2).

These definitions parallel those that we provided previously for the grav-
itational field of a point mass. Although we haven’t, as yet, provided a
strong motivation for their introduction, the study of fields will prove to
be quite important as we explore phenomena associated with the elec-
tromagnetic force. Fields are also quite useful in the description of fluid
flows. A common example of a field in this context is the wind, which
is a vector velocity field. At each point in space, the velocity of the air
is characterized by a direction and a magnitude, which can be quantified
abstractly by the mathematical notion of a field.

The German mathematician Carl Friedrich Gauss was interested in the
general mathematical properties of fields. Gauss was an extraordinary in-
dividual and it can be stated that modern mathematics began with Gauss,
whose passion for rigor and precision transformed the field.6 It is difficult
to assess Gauss’s motivation: his writing style was polished but terse and
unmotivated; Gauss argued that architects do not leave their scaffolding
in place once a building is completed, so he felt no compunction to leave
traces of his thought processes in his published works.

In the case of the mathematical behavior of fields, Gauss had determined
that understanding singular points in the fields was key to understanding
their behavior. Away from such singular points, the fields would be gen-
erally well-behaved. Mathematically, this amounts to the statement that
derivatives of the fields could be constructed and that those derivatives
were continuous. For a point charge, we have defined the electric field in
Equation 3.12 and we can see that the field is infinite at the source point
r = r1. This point is a mathematical singularity in the field. The field and
its derivatives are not well-behaved at the source point and, consequently,
must be treated specially in any mathematical analysis.

Gauss defined the flux of a field through a surface as the integral of the
field over an oriented surface as follows:

(3.14) Φ =
∫

dA ·E,

6Gauss (Gauß in German) was truly prolific in his work but published only a fraction of his
results, in keeping with his personal motto pauca sed matura (few but ripe). After his death
in 1855, Gauss’s unpublished notes were made public and demonstrated, in many cases, that
he had proven contemporary mathematical results decades earlier.
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where we take the orientation of the surface as the unit vector that is per-
pendicular to the surface at each point. This is call the normal to the sur-
face. Examples of normal vectors are indicated in figure 3.6.

Figure 3.6. A larger surface can be
broken into smaller pieces as indi-
cated by the grid lines. Within each
smaller segment, the normal is de-
fined to be the direction perpendic-
ular to the surface, as indicated by
the arrows

The integral in Equation 3.14 can be interpreted as the limit of the dot
product of the field Ewith the unit normals n of the surface, multiplied by
the differential surface elements dA = ndxdy and then summed over all of
the surface elements that make up the complete surface. The dot product
selects the component of the electric field that is parallel to the normal
vector in each small segment. The field might also have a component that
is perpendicular to the normal but that component would be tangential to
the surface and cannot be thought of as flowing through the surface. Only
the normal component penetrates the surface.

To see how to operationally deal with Equation 3.14, let us begin by com-
puting the flux of a point charge located at the origin through a rectangu-
lar surface. For simplicity, let us choose a surface in the x-y plane located
at some distance z2 from the origin. A point r2 on the surface can be de-
fined as r2 = (x2, y2, z2). We can allow x2 to span the range −a ≤ x2 ≤ a and
y2 to span the range −b ≤ y2 ≤ b. Now if z2 is a positive number, we will
take the normal n to be the unit normal in the z-direction: n = ẑ.

With the source located at the origin r1 = (0,0,0), we have that |r2 − r1| =
(x22 + y22 + z22)

1/2.The electric field of a point charge Q1 at the point r2 is
thereby given by the following expression:

E(r2) = κQ1
(x2, y2, z2)

(x22 + y22 + z22)3/2
,

where we have used the definition of the field from Equation 3.12. Insert-
ing this result into the definition of the flux, we can write the following:

Φ = κQ1

∫ a

−a
dx2

∫ b

−b
dy2

(x2, y2, z2) · ẑ
(x22 + y22 + z22)3/2

,

= κQ1z2

∫ a

−a
dx2

∫ b

−b
dy2

1
(x22 + y22 + z22)3/2

,(3.15)
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where the result of the dot product is simply the z-component of the
vector (x2, y2, z2) and, as z2 does not depend upon x2 or y2, it can be fac-
tored out of the integral.

So, we once again find ourselves with a reasonably complicated integral to
perform. As before, we can utilize the Mathematica program to perform
the heavy lifting. We find the following result for the indefinite integral:

(3.16)
∫

dx2

∫
dy2

1
(x22 + y22 + z22)3/2

=
1
z2

tan−1
⎡⎢⎢⎢⎢⎣

x2y2

z2
√
x22 + y22 + z22

⎤⎥⎥⎥⎥⎦ .

The flux through the surface shown in figure 3.7 can be obtained by insert-
ing the appropriate endpoints for the integrals. For a two-dimensional in-
tegral, where the result of the integration is given by some function f (x,y)
and the variables have domains −a ≤ x ≤ a and −b ≤ y ≤ b, the value of

Figure 3.7. A rectangular surface
at the height z is indicated in gray.
A point r2 on that surface is defined
by the vector r2 − r1. The unit nor-
mal n is the same for all points on
the surface

the definite integral is given by f (a,b)− f (−a,b)− f (a,−b)+ f (−a,−b). If we
note that tan−1(−x) = − tan−1(x), then the flux through our surface is given
by the following expression:

(3.17) Φ = 4κQ1 tan
−1
[

ab

z
√
a2 + b2 + z2

]
.

Exercise 3.11. Verify the result obtained for the double integral in
Equation 3.16 by using the Mathematica function Integrate, which
can perform multiple integrals. Let a = 1 and b = 1 and plot the
resulting function from 0 ≤ z ≤ 5.

Exercise 3.12. Plot the inverse tangent function tan−1(x) over the
domain −1 ≤ x ≤ 1. What is the relationship between tan−1(x) and
tan−1(−x)?

Now consider what happens if we allow the surface to be at negative z
values. The z-component of the vector r2 − r1 = (x2, y2,−z2) changes sign.
If we define the normal n to be the outwardly directed unit vector perpen-
dicular to the surface, then for negative z values, we have n = −ẑ and the
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picture is essentially identical to that shown in figure 3.7 (with the axis
pointing in the −ẑ direction). Consequently, the signs in Equation 3.15
cancel and the flux through a surface at −z is identical to the flux through
the surface at z.

So, we are now in a position to rediscover Gauss’s significant result. For
simplicity, consider a cube of side length 2a centered on the origin, where
a point charge Q1 is located. The flux through the top z side can be ob-
tained by using b = a in Equation 3.17 and the fact that tan−1(1/

√
3) = π/6.

We find that the flux through this surface is just Φ = 2πκQ1/3. Because
all of the surfaces of a cube are equivalent, the flux through any of the
surfaces will be the same. Consequently, the total flux through the whole
cube is six times larger and is given by the following:

(3.18) Φtotal = 4πκQ1.

Figure 3.8. A cube of side 2a is
shifted upwards by an amount z1
from the origin. The two surfaces of
constant z of the cube are labelled

Note that this result does not depend upon the size of the cube a. Conse-
quently, the flux through any cube will be that found in Equation 3.18.

Exercise 3.13. It is not necessary to restrict our results to cubical
surfaces. Suppose that you have a rectangular prism of sides a, b
and c. Use the following identity:

π

2
= tan−1

[
ab

c(a2 + b2 + c2)

]
+ tan−1

[
bc

a(b2 + c2 + a2)

]

+ tan−1
[

ca

b(c2 + a2 + b2)

]

to prove that the flux through the prism is also Φtotal = 4πκQ1.

Exercise 3.14. Show that the flux through a surface in the y-z plane
is given by the following:

Φ = κQ1 tan
−1
⎡⎢⎢⎢⎢⎣

y2z2

x2
√
x22 + y22 + z22

⎤⎥⎥⎥⎥⎦ ,
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and that the flux through a surface in the z-x plane is given by the
following:

Φ = κQ1 tan
−1
⎡⎢⎢⎢⎢⎣

z2x2

y2
√
x22 + y22 + z22

⎤⎥⎥⎥⎥⎦ .

Use these results to demonstrate that the flux through any side of a
cube is the same.

Now suppose that we shift the cube upward a distance z1, as is depicted
in figure 3.8. For the top surface, the flux can be determined to be given
by the following:

Φtop = 4κQ1 tan
−1
⎡
⎢⎢⎢⎢⎣

a2

(a+ z1)
√
2a2 + (a+ z1)2

⎤
⎥⎥⎥⎥⎦

= 4κQ1 tan
−1
⎡
⎢⎢⎢⎢⎣

1

(1+u)
√
2+ (1+u)2

⎤
⎥⎥⎥⎥⎦ .

where in the second step we have defined the dimensionless quantity u =
z1/a. The parameter u has the value 0 when the box is centered on the
charge Q1 and the value 1 when the box has been shifted by a distance a.
For the bottom surface, the flux can be shown to have the following form:

Φbot = 4κQ1 tan
−1
⎡
⎢⎢⎢⎢⎣

1

(1−u)
√
2+ (1−u)2

⎤
⎥⎥⎥⎥⎦ .

The four side surfaces are all equivalent. The flux through any one of
them can be shown to have the following form:

Φside = 2κQ1

⎧⎪⎪⎨⎪⎪⎩tan
−1
⎡
⎢⎢⎢⎢⎣

1+u√
2+ (1+u)2

⎤
⎥⎥⎥⎥⎦+ tan−1

⎡
⎢⎢⎢⎢⎣

1−u√
2+ (1−u)2

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭ .

Figure 3.9. Gauss’s law. The
total flux through all six sur-
faces of the cube is a con-
stant Φtot = 4πκQ1 as long as
the charge is inside the cube.
Otherwise, the flux is zero

We have plotted the flux through each of the surfaces in figure 3.9, along
with the total flux Φtot. Note that the flux through the bottom surface is
undefined when u = 1, which is the point where the charge is embedded
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in the surface. We can assign the value 0 to the flux at that point; this is
a somewhat arbitrary decision but the symmetry of the situation makes it
a reasonable choice. Surprisingly, the total flux is a constant value Φtot =
4πκQ1 as long as the charge is inside the box (u < 1). When the charge is
outside the box (u > 1), the total flux vanishes! Gauss’s law can therefore
be stated as follows:

(3.19)
∮

E · dA = 4πκQenclosed,

where we use the
∮
symbol to reflect that the integral extends over a closed

surface. This integral vanishes if there is no charge enclosed in the vol-
ume enclosed by the surface. The definition of the surface used in Equa-
tion 3.19 is quite broad: any closed surface will work, not just the cubes
and prisms that we have discussed thus far. Spheres or ellipsoids or any
random potato-shaped surface would also work. Proof of this assertion is
beyond our present mathematical means, so we shall not attempt a proof
at this time.

Exercise 3.15. Use the points defined in figure 3.8 to derive the
values of the fluxes through each of the surfaces: Φtop,Φbot andΦside.
Show that one obtains the values stated in the discussion above. Plot
the fluxes from 0 < u < 2.

One powerful, but limited, application of Gauss’s law is to recover the
field of a charge or charge distribution when symmetry is present. For
example, consider the field of a uniform, charged sphere of radius R and
total charge Q1. Now let us compute the flux through a spherical surface
of radius r > R. In this case, it behooves us to use spherical coordinates
where the differential surface elements are somewhat more complicated
than those for Cartesian coordinates. In spherical coordinates, we can
write:

(3.20) dA = r̂r2 sinθdθdϕ + θ̂ r sinθdr dϕ + ϕ̂r dr dθ.

On the surface of a sphere, the outwardly directed normal vector is the
radial vector: n = r̂, as indicated in figure 3.10.

Consider a charge distribution that is only a function of the radius r. By
symmetry, the electric field must be constant on the surface at radius r
and radially directed: E(r) = E(r) r̂.7 The electric field is not a function of
the integration variables θ and ϕ, so it can be extracted from the integral:

7This is an example of physical insight. All points on the spherical surface are equivalent.
Hence, we conclude that the field cannot be a function of the angular variables.
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∫

E · dA = E(r)
∫ π

0
dθ

∫ 2π

0
dϕ r2 sinθ

= 4πr2E(r).(3.21)

Now, from Gauss’s law (Equation 3.19), we also know that the flux is Φ =
4πκQ1. Consequently, we must have that

4πr2E(r) = 4πκQ1

E(r) = κ
Q1
r2

.

Figure 3.10. A charged sphere of
radius R is located at the origin. At
the radius |r2 − r1| = r, where r > R,
the electric field must be the same
at any point due to the rotational
symmetry

The field is exactly that of a point charge, just as we found in the previous
chapter.

We can also use Gauss’s law to determine the field inside the charge distri-
bution. Suppose now that the radius r of the Gaussian surface is less than
the radius R of the charge Q1. We know that the volume of a sphere of ra-
dius r is just V = 4/3πr3, so the fraction of (uniformly distributed) charge
inside the Gaussian surface must be given by

Qenclosed =Q1
r3

R3
.

The field inside the sphere must be given by the following expression:

(3.22) E(r) = κ
Qenclosed

r2
= κ

Q1
R3

r.

That is, the electric field depends linearly on the distance from the cen-
ter of the charge distribution until the distance reaches the radius of the
charge distribution. Thereafter, the electric field falls off as the inverse
square of the distance from the center of the charge distribution
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Exercise 3.16. Plot the (scaled) electric field (E(r) = r when r < 1
and E(r) = 1/r2 when r > 1.) from r = 0 to r = 5. Does the field have
a continuous derivative at r = 1?

Exercise 3.17. Suppose that the charge density ρ inside the radius
R is not constant but instead varies like ρ = α cos2(πr/2R). If the
total amount of charge is Q1, then integrating over the volume of
the sphere should also yield the total charge:

Q1 =
∫

dV ρ =
∫ R

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sinθα cos2(πr/2R),

where ρ is the charge density and α is a constant of proportionality.
The θ and φ integrations can be performed easily and produce a
factor of 4π. Perform the r integration and solve for α.

Use Gauss’s law to compute the electric field inside the sphere. (Out-
side, it is the same as a point charge.) You will need to find the total
charge inside the radius r. This can be obtained by integrating the
charge density from 0 to r. Plot the electric field (assume R = 1 and
plot from 0 ≤ r ≤ 5). How does this compare to a uniform charge
distribution? Does the field have a continuous derivative at r = R?

3.5. Nuclear Model of the Atom

Rutherford’s experiments with α particles cast grave doubt on Thom-
son’s plum pudding model of the atom. If we assume that the negatively
charged electrons are uniformly distributed throughout the volume of the
atom and that the atom is uniformly filled with positively charged matter,
then by Gauss’s law, the electric field of the atom will be zero outside the
atom and zero inside the atom. Without an electric field, there won’t be
any scattering of α particles at all! Consequently, the electrons cannot be
uniformly distributed throughout the atom if we are to see scattering.

Suppose that we construct an atom that has a total positive charge ofQ1 =
10 and radius R = 1 and distribute ten negative charges within the volume
at the locations indicated in Table 3.1. (This is the distribution illustrated
in figure 3.4.) Let’s compute the electric field along lines through the z = 0
plane for several values of y through the distribution. The results are
shown in figure 3.11.

We can observe that the field inside the atom is relatively complex but, if
we assume that electrons also have a finite size, the electric field strength
is never very large. In the calculations shown in figure 3.11, we assumed
that the electron radius was 0.1. The divergent behavior of the inverse
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Table 3.1. Electron positions

x1 y1 z1 x1 y1 z1

1 −0.21 −0.53 0.64 6 −0.07 −0.05 −0.11
2 0.43 0.14 −0.59 7 0.53 0.29 0.52
3 −0.09 −0.47 −0.72 8 −0.11 0.61 0.10

4 0.28 −0.03 0.26 9 −0.32 0.10 −0.58
5 0.06 0.19 −0.09 10 −0.39 −0.75 −0.44

Figure 3.11. The relative electric
field as a function of x is computed
for the distribution shown in fig-
ure 3.4. The field of the positively
charged background is depicted as
the gray line and the field of an
isolated negative charge is shown
as the dotted gray line. The fields
for different y-values are separated
vertically for clarity

square dependence of the electric field on distance is softened dramati-
cally by the linear dependence of the field in the interior of a finite distri-
bution.

How should we now proceed? The field inside the atom is not simple and
we have made many assumptions to produce figure 3.11 but let us make a
simplifying approximation: let us assume that the field is simply constant
throughout the volume. This is clearly not an accurate description of the
field inside the atomic volume but we can calculate the result of an α
particle traversing a region with a constant field quite simply and this will
provide us with a mathematical bound on the size of deflection possible.
In any more-realistic calculations, the deflection will prove to be smaller.
This is a classic strategy in physics. First, solve a simple problem that will
tell you something about the more complex one. The last thing we want
to do is to become embroiled in some complex mathematical analysis that
turns out to be not particularly useful.8

8This observation is not intended to be sardonic. It is likely that many students find them-
selves already embroiled in complex mathematical analysis but the process of physics seeks
to utilize increasing sophisticated models to represent increasingly accurate descriptions of
natural phenomena. We shall try to avoid plunging immediately into the deep end.
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An α particle traversing a region of constant electric field E would feel
a force Mαa = QαE. Let us assume that the thickness of the region is
given by R and that the α particle has an initial energy E = 1/2Mαv

2
α . The

constant electric field produces a constant acceleration on the particle: a =
QαE/Mα . This equation can be integrated over time directly because both
sides are independent of the time. Recall that the acceleration a is the time
derivative of velocity v. Hence, the change in velocity arising from the
interaction with the constant field is just Δv =QαEΔt/Mα , where Δt is the
amount of time that the particle spends in the field. If the direction of the
electric field is transverse to the motion, then Δt = R/vα . This generates a
component of the velocity transverse to the original velocity and an angle
of deflection θ defined by the following expression:

(3.23) tanθ = Δv/vα =
QαER

Mαv
2
α
.

Exercise 3.18. Consider a particle moving in the z-direction, with
velocity v = vzẑ. Now at some time t = 0, the particle enters a region
with a constant acceleration a = axx̂.

(a) What is the velocity v at some time t1 later?
(b) What is the change in position of the particle between the initial time

t = 0 and t1?
Suppose now that the acceleration has a z-component as well: a =
axx̂+ azẑ.

(c) What is the velocity at a time t2 after the particle acceleration begins?
(d) What is the change in position of the particle between the initial time

t = 0 and t2?
(e) What is the time t2 required then to traverse a distance d in the z-

direction?

To compute a value for the angle of deflection, we will need to provide
some estimates for the values of the mass, velocity and charge of the α
particles, the thickness of the metal foils and the electric field. This was
a thorny problem for Rutherford but there is no particular reason that we
should not make use of our modern knowledge of these values. At this
point, where we are intent on computing a number, it is important for us
to choose a consistent system of units for these values. In this text, we
shall often utilize the standard system promulgated as Le Système Inter-
national d’Unités (SI), in which the standard length is the meter (m) and
the standard time is the second (s). Nevertheless, we will often have to
deal with the fact that different practitioners will often use units that are
somehow convenient. For example, were we to ask what is the velocity of
a typical garden slug, it is likely that an answer in terms of meters/second
will be a very small number, as a garden slug might well take the better
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part of an hour to travel a single meter. As humans tend to be comfortable
with numbers like 1 or 10 or even 100, and less comfortable with fractions
or decimals, then we would be likely to choose a system of units in which
the slug velocity is a number from 1 to 100.

Nuclear physicists use a system of units in which the energy is expressed
in terms of the product of the fundamental charge e and the Volt: the
electron-volt (eV).9 This is convenient because elementary particles all
have charges that are multiples of the fundamental charge e and it was
common practice to accelerate these particles through known electric po-
tentials V . In these units, the decay of radon to polonium produces α
particles with a kinetic energy of E = 5.590MeV. The charge of an α par-
ticle is twice that of an electron, Qα = +2e. So, we are left with trying to
estimate the thickness of the metal foils R and the electric field in the atom
E. Fortunately, our results scale linearly with both R and E. This means
that propagating the uncertainty in our estimates into the uncertainty in
θ will be straightforward. We shall discuss this in more detail presently.

Gold leaf can be hammered into extraordinarily thin sheets: one ounce of
gold can produce a sheet of gold leaf with an area of three hundred square
feet. In SI units, this corresponds to a thickness of order R = 100nm.
Gold atoms can be thought of as having a size of 0.288nm and gold has a
nuclear charge of Z = 79e. Let us approximate the field in the atom then
as a constant with the value obtained from a point charge at the radius
of 0.144nm with a total charge of Q = −79e. For this we shall need the
value of the constant κ. In our current set of units, this has the value
κ = 1.44× 10−9 V·m/e, The electric field E then has the value

(3.24) E = κ
Q

r2
= (1.44×10−9 V ·m/e)

(−79e)
(1.44× 10−10 m)2

= −5.5×104 V/m.

Substituting all of these values back into Equation 3.23, and solving for θ,
we find the following result:

θ = tan−1
[
QαER

Mαv
2
a

]
= tan−1

[
(2e)(5.5× 104 V/m)(1× 10−7 m)

2(5.6× 106 eV)

]
≈ 0.3◦.

That is, we should expect a scattering angle of only a small fraction of a
degree!

Exercise 3.19. In their experiments with α particles, Rutherford’s
students Geiger and Marsden utilized thin gold foils. They were
able to determine, using precision balances, that some of their foils

9Here we encounter a notational difficulty. The symbol e is used for both the fundamental
charge of the electron and the eccentricity of conic sections. The reader will have to be
diligent in order to understand which quantity is meant in each usage of the symbol.
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contained 0.26mg of gold per square centimeter. The density of gold
is 19.3 g/cm3. What was the thickness of these films? Is our estimate
of R = 100nm utilized above reasonable?

Observations of α particle scattering in excess of 90◦ cannot be explained
by the simple model that we have just described. Yet, the calculations
are simple enough that we haven’t somehow gone astray performing the
algebra. We could try fiddling with some of our estimates: increasing the
electric field strength, for example; however, we should recognize that our
simplified model of a constant electric field oriented in a single direction
orthogonal to the α particle motion undoubtedly overestimates the actual
deflection. So, how can we explain the experimental observation of large-
angle scattering.

Exercise 3.20. What value of the field is required to obtain a scatter-
ing angle of 30◦? The charges of the gold nucleus and the α particle
are fixed. What value of r would be required in Equation 3.24 to
obtain such a field?

Figure 3.12. Rutherford’s model of
the electric field of an atom. The
positive charge is concentrated at
the origin and the negative charge
is distributed uniformly through-
out the atom. Slices through the
atom at various y-values are drawn
in black and labelled as in fig-
ure 3.11. For reference, the field of
a point (negative) charge is shown
in gray

Rutherford recognized that the large-angle scattering of α particles could
be explained if the α particles were following hyperbolic trajectories. This
was the signature of central force motion and could be achieved if all of
the positive charge in the atom were located at a single point at the center
of the atom, and the negative charge distributed out to some larger ra-
dius (the atomic radius). The electric field seen by incoming α particles
would be nearly the same as that of a point (positive) charge, as indicated
in figure 3.12. From figure 3.3, we see that the acceleration occurs pre-
dominantly when the particle is in close proximity to the charge; this is
where the electric field is largest.

As a first approximation, Rutherford postulated that one could simply ig-
nore the negative charge due to the electrons. Scattering of α particles
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at large angles should be explainable by considering the α particle and
positively-charged matter that makes up the vast majority of the mass
of the atom (what we today call the atomic nucleus) to be point posi-
tive charges. Including the effects of the electron cloud around the atom
should give rise to relatively small corrections. This is a vastly different
model of the atom than the plum pudding model proposed by Thomson.
What experimental evidence makes us believe it to be correct?

To explore Rutherford’s analysis of α particle scattering, let us rotate
figure 3.2 so that the α particle initial direction is aligned with the z
axis. All of the α particles in our beam will be moving in the z-direction.

Figure 3.13. The parameter ζ is defined
as the perpendicular distance between
the focus and the incident asymptote.
The angle θ that defines the deviation of
a particle from a straight line trajectory
can be seen to be given by θ = 2ψ∗ − π,
where ψ∗ is defined by the equation 1 +
ecosψ∗ = 0

The asymptote is defined to be a distance ζ from the origin. This α parti-
cle will deflect through an angle θ that is given by θ = 2ψ∗ −π. Recall that
the distance from the focus to the directrix is given by κQ1Q2e/2E, where
here e is the eccentricity. The distance ζ from the focus to the asymptote
can be seen from triangle in figure 3.13 to be defined as follows:

2Eζ
κQ1Q2e

= sin(π −ψ∗) = cos(θ/2).

The eccentricity e is related to ψ∗: e = −1/ cosψ∗ = −1/ cos(π/2 + θ/2) =
1/ sin(θ/2). So, finally we can write

(3.25) ζ =
κQ1Q2
2E cot(θ/2).

Exercise 3.21. Redraw figure 3.2 and convince yourself that indeed
θ = 2ψ∗ − π. What is the angle of rotation required to align one of
the asymptotes with the vertical axis?
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Derive the distance from the focus to the directrix and the perpen-
dicular distance from the focus to the asymptotes.

From the trigonometric addition formulas sin(a ± b) = sinacosb ±
sinbcosa and cos(a± b) = cosacosb∓ sinasinb, convince yourself of
the validity of Equation 3.25.

Figure 3.14. ζ is the radial
coordinate in the plane nor-
mal to the beam direction ẑ.
The angle measured to the
trajectory from the x-axis is
denoted by ϕ. The proba-
bility of an α particle strik-
ing the foil within the range
from ζ (black trajectory) to
ζ+dζ (gray trajectory) is pro-
portional to the area of the
ring: 2πζ dζ. Scattered par-
ticles will emerge in the an-
gular band from θ to θ + dθ

As we see in Equation 3.25, the angle of deflection is uniquely tied to the
parameter ζ, which is known as the impact parameter. What we would
like to be able to predict is the fraction of the total number of particles
that have been scattered at each angle θ from the original beam direction.
Physicists term this quantity the cross section, it is usually designated by
the symbol σ .

As can be seen from figure 3.14, all particles that approach the nucleus
in the thin ring of area dA = 2πζ dζ will scatter into the angular range
θ to θ + dθ. At some large distance R∞ from the scattering source, the
scattered particles that emerge in the range θ to θ+dθ will occupy an area
(recalling Equation 3.20) dAscatt = R2∞ sinθdθdϕ ≡ R2∞ dΩ, where dΩ is
called the solid angle. In this case, where scattering does not depend on
the azimuthal angle ϕ, we have that dΩ = 2π sinθdθ. It is customary to
omit the factor R2∞ and define the differential cross section as follows:

(3.26)
dσ

dΩ
=
2πζ
2π sinθ

dζ

dθ
.

From our previous definition of ζ in Equation 3.25, we see that we can
write

dζ

dθ
=
κQ1Q2
2E

d cot(θ/2)
dθ

= −κQ1Q2
4E csc2(θ/2).
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Note that the results involving ζ have trigonometric functions that have
θ/2 as arguments, whereas the solid angle is defined in terms of θ. We
can use a trigonometric identity to show that sinθ = 2sin(θ/2)cos(θ/2).
Substituting back into Equation 3.26, we can write:

dσ

dΩ
= −1
2

[κQ1Q2
2E

]2 cot(θ/2)csc2(θ/2)
2sin(θ/2)cos(θ/2)

= −
[κQ1Q2
4E

]2
csc4(θ/2) = −

[κQ1Q2
4E

]2 1
sin4(θ/2)

.(3.27)

This is Rutherford’s primary result: the angular dependence of the scat-
tering of α particles should scale like the inverse of sine to the fourth
power.

Figure 3.15. Scattering of α
particles by gold foil. The num-
ber of scintillations produced
by α particles striking the lead
sulfide is plotted as a func-
tion of microscope angle (black
dots). The scintillation count
was corrected for source decay
and geometrical effects. The
solid (gray) curve is a plot of the
function f (θ) = 33/ sin4(θ/2)

The results shown in figure 3.15 represent the results published in 1913
by Rutherford’s students Geiger and Marsden on the scattering of α par-
ticles from a gold foil. The trend in the data is clearly well-represented by
the 1/ sin4(θ/2) prediction that is illustrated by the solid line. (An overall
normalization is used.) These data clearly support Rutherford’s sugges-
tion that the positively-charged matter that constitutes the vast majority
of the atomic mass is confined to a small volume in the center of the atom.

Note that we have been somewhat sloppy with our mathematical treat-
ment of Rutherford scattering. We have simply ignored the contributions
of the electron cloud to the final scattering angle. We justify this approach
based on our observation that scattering from a uniform field does not
produce a significant deflection of the α particles unless we choose un-
realistic values for the parameters that define the scattering. We recog-
nize that our results do not constitute a mathematical proof of the nuclear
structure of the atom but more sophisticated analyses and further experi-
mental observations have provided more evidence that Rutherford’s sug-
gestion was, indeed, correct.
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Exercise 3.22. Geiger andMarsden also reported the results of their
experiments with a silver foil target in their 1913 paper; these are
listed in Table 3.2. The number of scintillations observed (corrected
for source decay and finite detector size) are listed as a function of
angle. Plot the data and a function f (θ) = a/ sin4(θ/2). Determine
the constant a that best fits the data.

Table 3.2. α scattering from silver

θ (deg) Scintillations θ (deg) Scintillations

15 105400 75 136
22.5 20300 105 47.3
30 5260 120 33.0
37.5 1760 135 27.4
45 989 150 22.2
60 320

While it is impressive to have Rutherford’s prediction borne out by the
experimental results, we should take some time to understand how the
experiment was conducted and just how it relates to the theoretical anal-
ysis that we’ve conducted. The experiment that we should like to perform
would consist of sending α particles toward the target foil and controlling
the impact parameter ζ. Because we have determined the relationship be-
tween ζ and the scattering angle θ in Equation 3.25, we could then deter-
mine if the experimental results agree with our model. Such fine control
of the beam position is not possible. Indeed, the α particle beam utilized
by Geiger and Marsden had a width that spanned thousands of nuclear
centers. One might fear that this will somehow vastly complicate matters
but all is not lost.

Exercise 3.23. The apparatus used by Rutherford and his students
(depicted in figure 3.5) had a collimator that permitted only a nar-
row beam of α particles to exit the source and impact the target
foil. If we assume that the beam has a circular cross section with
a width of 1mm and that gold atoms form a rectangular lattice with
a 0.288nm spacing, how many gold atoms fall within the beam foot-
print in each atomic layer of the target foil?

Suppose that an α particle is (randomly) located within the beam. It is
travelling in the z-direction and has some coordinates (xα,yα) in the plane
transverse to the propagation direction. If for simplicity we assume that
the nuclear centers form a rectangular lattice, then the nuclear centers
will be found at locations (ia, j b) where i and j are integers and a and b are
the distances separating nuclei in the x- and y-directions. The distance
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of closest approach of the α particle will always be less than ζmax = [(a2 +
b2)/2]1/2. Consider what happens if we send many α particles through the
foil. Each α particle will pass by some nucleus with an impact parameter
of ζ. With enough α particles, the complete range of ζ will be covered.
Hence, even though we cannot directly control the impact parameter ζ,
with enough samples, we can achieve the same result.

Exercise 3.24. To see how this works, consider a simple model in
which atoms occupy sites on a square lattice. Let us also, for sim-
plicity, assume that a beam of α particles has a constant intensity
and a radius of 100 times the lattice spacing. We can further assume
that one α particle in the beam can be located by a point (x,y) that
is randomly located within the beam area. We can achieve this by
using the Mathematica function RandomReal. To obtain a point in
the circular beam area, we can obtain the distance of the point from
the origin as ζ = RandomReal[100] and the angle from the x-axis as
ϕ = RandomReal[2Pi]. This point will have Cartesian coordinates
(x = ζ cosϕ,y = ζ sinϕ).

Produce a list of 1000 points and plot the distribution with the List-
Plot function. Are they uniformly distributed?

Now use the Round function to find the lattice point closest to where
the α particle is located and calculate the distance

d = [(x − Round[x])2 + (y − Round[y])2]1/2

from the α particle to the lattice site. To see how these α particles
are distributed around the lattice sites, we can use the BinCounts

function to bin the data into 50 bins over the accessible range of
d = 0 to d =

√
2/2.

Plot the distribution of the 1000 α particles.

Repeat the exercise for 10000 and 100000 α particles. In the limit
of large numbers of α particles, do you observe that the particles are
uniformly distributed over the range?

This result, while not intuitive, is an example of the large number limit for
probabilities. We shall encounter further examples subsequently. For our
present purposes, we can state that the physical distribution of a random
process becomes the probability distribution when the number of trials
is large. As a result, the uniform distribution of α particles within the
beam translates into a uniform sampling in ζ. This is a key element in
the success of casinos. While the result of any individual coin toss or dice
throw is random and, therefore, not knowable, the distribution of millions
of dice throws is completely known. Consequently, casinos always make
money and gamblers, in total, always lose.
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Exercise 3.25. Use the RandomInteger[{1,6},N] function to sim-
ulate rolling a die N times. How many times in N = 100 trials do
you obtain the number 3? How does that compare to the probability
of N/6? How many times in N = 10000 trials and N = 100000 trials
do you obtain the number 3?

3.6. Finite Nuclear Size

With the advent of modern particle accelerators, physicists could conduct
systematic investigations unavailable to Rutherford and his students. In
particular, it was possible to continuously vary the α particle energy, as is
depicted in figure 3.16. Rutherford’s prediction here, from Equation 3.27,
is that the differential cross section should be proportional to the inverse
square of the α particle energy, as is seen by the gray curve in the figure.
At about 30MeV, there is a systematic departure from the Rutherford for-
mula. Today, we interpret this as due to nuclear interactions between the
α particle and the lead nucleus.

Figure 3.16. The differential
cross section for α particles
scattered from a lead target
was measured at a nominal
60◦ as a function of α parti-
cle energy (black dots). The
Rutherford formula suggests
that the cross section should
scale like E−2 (gray curve).
There is a widening discrep-
ancy after 30MeV

We know from our previous results that the distance of closest approach
rπ for the α particle is given by rπ = κQ1Q2(e + 1)/2E. We also know that
e = 1/ sin(θ/2), so for a scattering angle of θ = 60◦ we can write:

rπ = κQ1Q2
1+ sin(θ/2)
2E sin(θ/2) .

= (1.44× 10−9 V·m/e)(2e)(82e)
(1+ 1/2)

2(30× 106 eV)(1/2)
= 1.2× 10−14 m= 12 fm.
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So, when the distance between the centers of the α particle and the lead
nucleus is about 12 fm, we see deviations from the Rutherford predictions.
We can interpret this as an approximation to the size of the lead nucleus.10

If this is the case, then the nuclear size is vastly smaller than the typical
inter-nuclear distance. For gold, we suggested earlier that the nominal
atomic size was about 0.288nm. (We shall revisit this assumption in a
later chapter.) Using the value of 12 fm for the size of a gold nucleus, this
means that the nucleus is 24,000 times smaller than the atom. This makes
physical representations of the atom quite difficult to produce without
exaggeration. If we were to draw a nucleus on the blackboard as a 1 cm
blob, the nearest neighboring gold nucleus would have to be 240mdistant
to faithfully represent the relative distances. This is significantly larger
than most classrooms and few faculty are willing to run 240m down the
hallway to prove a point. As a result, when the 1 cm blob is drawn within
a 1m circle, the relative scales have been distorted by a factor of over a
hundred.

3.7. Unfinished Business

Rutherford’s astonishing discovery of the nuclear structure of the atom
gives rise to a significant problem for physicists, one that we will sidestep
in this text. That is, how can the nucleus be so small? Atoms are electri-
cally neutral, so the same amount of charge is stored in the nucleus within
a volume that is approximately 1014 times smaller than the volume of the
atom. Our current notions that the nucleus is composed of positively-
charged protons and neutral neutrons means that there must be a very
strong force holding the charged nuclear constituents together. They cer-
tainly feel a strong repulsion due to the Coulomb force. Rutherford’s ex-
periments with α particles produces the inevitable conclusion that there
must be another force in nature beyond gravity and the electromagnetic
force. (This is an obvious application of Newton’s fundamental idea that
things move for a reason or, in this case, don’t fly apart.)

Exercise 3.26. If we make the somewhat dubious assumption that a
gold nucleus can be thought of as a proton (Q1 = e) rolling around a
platinum nucleus (Q1 = 78e) at a distance of about 8 fm, what is the
electromagnetic potential energy of this system. Assume that there
is no kinetic energy. How large is this energy compared to the few
MeV observed for α particles that result from nuclear decay?

10A more careful analysis using electron-nuclear scattering suggests that the nucleus is
somewhat smaller than we have calculated here. The generally-accepted value is R ≈ r0A

1/3,
where r0 is a constant in the range of 1.2–1.5 fm and A is the atomic number. For lead, this
leads to a charge radius of about 8 fm.



86 On the Nature of Matter

The atom then is apparently constructed from a small, positively-charged
nucleus and is surrounded by negatively-charged electrons. If you have
made the observation that the attractive Coulomb force is identical to
Newton’s gravitational force and concluded that atoms must somehow
look like little solar systems with the electrons occupying elliptical or-
bits around the nucleus, you are to be congratulated. You are now think-
ing like a physicist. Rutherford’s discovery of the nuclear structure of
the atom encouraged physicists to embark on precisely this course. All
such attempts to construct a classical representation of the atom failed
to explain experimental observations. The simplest atom, hydrogen, con-
sists of a single proton and a single electron. Studies of the electromag-
netic spectrum of hydrogen identified a series of different, discrete energy
states. Apparently, the value of the energy E can only have specific values
but there is nothing in the Coulomb force law that prevents the energy
from taking on any value. The resolution of this dilemma required the
development of a new theory of microscopic matter known as quantum
mechanics. This subject lies well beyond the scope of our present investi-
gations.

Exercise 3.27. If we make the assumption that a hydrogen atom
consists of a proton (Q1 = e) and an electron(Q2 = −e) with masses
mp = 938MeV/c2 and me = 0.5MeV/c2, respectively, and that the
electron orbits at a radius of 0.1 nm, what is the potential energy of
the system? How does this energy compare to nuclear energies?

Exercise 3.28. A fundamental problem with the planetary model
is that accelerating electrons radiate. The Irish physicist Joseph Lar-
mor showed that the power P radiated by an electron in a circular
orbit is given by P = μ0e

2a2/6πc, where a is the magnitude of the
acceleration and c is the velocity of light. This radiation subtracts
energy from the kinetic and potential energy of the electron, leading
to the electron spiralling into the nucleus in a time given approxi-
mately by the following:

Δt = c3r
3
0

[
me

2κe

]2
,

where me is the mass of the electron and r0 is the initial orbital ra-
dius. How long would a hydrogen atom last, if this equation were
true and r0 = 0.1 nm?



IV

On the Nature of Spacetime

One of the most vexing problems for early explorers was their inability to
determine longitude. Latitude was readily measurable by astronomical
observations of reasonable accuracy but longitude required the measure-
ment of the time difference between the prime meridian in Greenwich
or Paris and one’s current location.1 Early clocks were cumbersome
mechanical devices that were notably unreliable when placed aboard
ships at sea or wagons bouncing across rutted roads. Accurate time-
keeping was simply not achievable under the rugged conditions that also
vexed early explorers.

In 1610, the Italian mathematician and astronomer Galileo Galilei fash-
ioned a telescope and discovered four moons circling the planet Jupiter.
About the same time, the German mathematician and astronomer Simon
Marius also began observing the moons of Jupiter and named them Io,
Europa, Ganymede and Callisto after companions of the Greek god Zeus,
whom the Romans called Jupiter.2 Today, we refer to these bodies as the
Galilean moons of Jupiter due in large part to the fact that Marius waited
several years before publishing his observations. For his part, Galileo
consideredMarius to be a usurper, claiming credit for Galileo’s work with-
out, in Galileo’s estimation, having ever observed anything.3 The issue of
scientific priority has always been contentious.

1The earth’s circumference at the equator is about 40,000km. As there are 24 hours in one
day, an hour corresponds to a distance at the equator of about 1666km and a minute to
28km.
2“Io, Europa, the boy Ganymede, and Callisto greatly pleased lustful Jupiter,” noted Marius
in his 1614 publicationMundus Iovialis. There is small doubt that the sex appeal of Marius’s
names led to their adoption. Galileo suggested naming the moons Cosimo’s stars in his 1610
publication Sidereus Nuncius, after Cosimo II de’ Medichi, the Grand Duke of Tuscany, who
supported Galileo’s work.
3Galileo’s concerns were not unwarranted. Marius’s student Baldessar Capra published
Galileo’s manuscript on operation of the sector (a Galileo invention) under his own name
in 1607. When his plagiarism was discovered, Capra was expelled from the University of
Padua. Marius, in the meantime, had returned (fled?) to Germany.
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Galileo immediately noted two fundamental consequences of his observa-
tions. First, the earth cannot be the center of the Universe if objects are
orbiting a distant object.4 Second, the moons of Jupiter appear to provide
a natural system of timekeeping. The moons repeatedly retraced their
paths around the planet. So, Galileo reasoned, it should be reasonably
straightforward to use observation of the Galilean moons in the service of
terrestrial navigation. It turned out, of course, not to be at all straight-
forward to use timings of the Jovian moons in navigation, despite the
diligence and persistence of many observers. Researchers continued to
observe the moons of Jupiter throughout the seventeenth century to build
and improve ephemeris5 tables that detailed the daily positions of astro-
nomical objects for navigators.

In 1672, the young Danish astronomer Ole Rømer moved to Paris to
study with the noted French/Italian astronomer Giovanni Domenico
Cassini. Cassini’s observations of the Jovian moons during the years
1666–1668 demonstrated a number of discrepancies in the measurements
that Cassini did not understand but initially postulated might be due
to a finite propagation velocity for light. Over the next several years,
Cassini backed away from this explanation while Rømer embraced it and
provided definitive proof in a presentation to the French Academy of
Sciences in 1676.6

Figure 4.1. Rømer measured the
times at which the Jovian moon Io
either disappeared into the shadow
of the planet (C) or emerged from
the shadow (D). The earth orbits on
the inner trajectory (gray circle)

4The long-held geocentric model of Ptolemy was thereby refuted by direct observation of
contradictory behavior. Nevertheless, Galileo was ultimately forced to recant his observa-
tions in 1633 by the Inquisition and spent his final years under house arrest. Galileo was
pardoned in 1992 by Pope John Paul II.
5From the Greek words έφήμερoζ for “daily” or έφήμεριζ for “diary.”
6Rømer’s presentation was recorded by an anonymous observer.
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Rømer’s conclusions were based on his observations of eclipses of Jupiter’s
moon Io. One problem, of course, in making observations of objects in the
solar system is that there is no absolute coordinate system in place that
enables observers to provide (x,y,z) values. A schematic of how Rømer
solved this observational problem is illustrated in figure 4.1. Jupiter (B)

Table 4.1. Rømer’s observations of eclipses of Io from Paris. The
Loc. Column refers to the locations C and D identified in figure 4.1

Date Time Loc. Date Time Loc. Date Time Loc.

1672 1673 1674
Jan 4 00:42:36 C Feb 5 05:31:10 C May 23 20:47:48 D
Jan 11 02:32:14 C Feb 7 00:00:00 C May 30 22:41:12 D
Jan 12 20:59:22 C Feb 14 01:53:20 C Jun 22 22:49:45 D

Feb 11 22:57:06 C Feb 28 05:40:10 C Jul 31 21:19:02 D
Feb 20 19:20:26 C Mar 2 00:09:01 C 1675
Mar 7 19:58:25 D Mar 16 04:00:48 C Jul 20 20:22:42 D
Mar 14 21:52:30 D Mar 17 22:28:16 C Jul 27 22:17:31 D
Mar 23 18:18:14 D Mar 25 00:24:30 C Oct 29 18:03:22 D
Mar 29 01:45:30 D Apr 18 21:22:00 D 1676
Mar 30 20:14:46 D Apr 25 23:28:05 D May 13 02:49:42 C
Apr 6 22:11:22 D May 11 21:17:39 D Jun 13 22:56:11 C
Apr 14 00:08:08 D May 18 23:32:44 D Aug 7 21:49:50 D

Apr 22 20:34:28 D Aug 4 20:30:41 D Aug 14 23:45:55 D
Apr 29 22:30:06 D Dec 17 18:39:14 C Aug 23 20:11:13 D
Nov 29 17:37:05 C Nov 9 17:45:35 D

orbits the sun (A) on the trajectory indicated. Io enters the shadow cast
by Jupiter at C and emerges at D. These two points provided Rømer
with well-defined points in space. Depending upon the observational
geometry, Rømer either timed the emergences of Io from the shadow
(when earth was located on its orbit between the points L and K) or the
disappearances of Io into the shadow (when earth was located between
the points F and G). Observations of Io’s eclipses near the extreme point E
(referred to by astronomers as opposition) on earth’s orbit were not possi-
ble because Jupiter was obscured from view by the sun. Observations near
the point H (referred to by astronomers as conjunction) were hidden from
view by Jupiter itself. Unfortunately, much of Rømer’s original notes and
manuscripts was destroyed in the Copenhagen fire of 1728 but one small
note remains intact to this day. In it, Rømer catalogs his observations of
the eclipses of Io; some of those data are depicted in Table 4.1.
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4.1. Statistical Analysis

Before we continue our discussion of Rømer’s observations, let us take
some time to review how scientists analyze measurements. First, it is im-
portant to recognize that all measurement apparatus have finite precision.
For example, a ruler has gradations indicating millimeters; a stopwatch
records time to the hundredth of a second. These represent the limits of
precision imposed by the devices themselves. In addition to the inher-
ent limitation of the measurement devices, other random measurement
errors can occur. As we discussed in the first chapter, a timing experi-
ment involving flag waving and students with stopwatches will have some
intrinsic limitations beyond just the stopwatches themselves. Human be-
ings are not precise to the hundredth of a second, so this introduces an
uncertainty in the measurement beyond just the precision of the device.

What we want to do is somehow quantify the uncertainty in our results. In
doing so, we must be aware of two similar but distinct concepts: accuracy
and precision. In common usage, these two words are treated as synonyms
but we shall make the following distinction. Accuracy is defined as the
difference between the measured value and the “correct” value. Deter-
mining the correct value with which to compare can be problematic in
practice because the purpose of most experiments is to establish the value
of some unknown quantity. There may well be no obvious definition of
“correct” and, as a result, no simple means of determining the accuracy
of our measurement. Precision, on the other hand, can be defined in a
systematic fashion as the number of significant figures in the measured
value. This will incorporate both the intrinsic limitations of the measure-
ment apparatus and measurement errors.

Figure 4.2. Two sequences of mea-
surements. In a, the data appear to
scatter about a common value. The
horizontal line indicates the Şcor-
rectŤ value. In b, the data display
a trend, indicated by the sloping
line.

To quantify our discussion, consider the series of measurements indicated
in figure 4.2. In the upper sequence a, we observe that the data are scat-
tered about a horizontal line. We can provide a systematic description of
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the data by computing a series of statistical moments of the data. The first
moment is the mean y:

(4.1) y =
1
N

N∑

i=1

yi ,

where N is the number of individual measurements yi . The second
moment is defined as the variance var(y):

(4.2) var(y) =
1

N − 1

N∑

i=1

(yi − y)2.

The standard deviation σ(y) is defined as the square root of the variance:

(4.3) σ(y) = var(y)1/2.

Note that the standard deviation of some quantity has the same dimen-
sionality as the quantity itself. Higher order moments can also be defined.
The skew measures the departure of the variance from symmetry:

(4.4) skew(y) =
1
N

N∑

i=1

[
yi − y
σ(y)

]3
.

The higher-order moments are not used with much frequency in physics
applications; however, most statistical arguments assume that the errors
are symmetrically distributed about the mean value. Computing the skew
can test that assumption.

Exercise 4.1. Consider the measurements listed in Table 4.2.
Compute the means and standard deviations. Plot the data and
horizontal lines at the mean value and at the mean plus and minus
the standard deviation.

How do your results compare to the “correct” values of y = 6.4 and
z = 0.031?

This series of statistical moments can be interpreted as an estimate of the
“correct” value y and its uncertainty σ(y). It happens that, if the errors
in our measurements are random and uncorrelated, they can be described
by a normal distribution. The probability of making a measurement yi is
given by the following expression:

(4.5) P (yi ,y,σ(y)) =
1

[2πσ2(y)]1/2
e−(yi−ȳ)

2/2σ2(y).

This function is described as the normal distribution because it is what
arises in nearly all measurement systems. If we think back to our original
flag-waving and timing experiment, it is a good approximation that each
student will act independently (uncorrelated errors.) As a result, each
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Table 4.2. Experimental data

Sample y z Sample y z

1 5.755 0.030967 9 6.104 0.029246
2 6.813 0.032913 10 6.177 0.029562
3 6.183 0.031964 11 6.294 0.032583
4 6.905 0.030649 12 6.679 0.031836
5 6.121 0.032378 13 6.535 0.032742
6 5.890 0.032211 14 5.808 0.033091
7 6.802 0.028817 15 7.001 0.032071
8 5.983 0.032551

student’s determination of when to start timing—at the initial movement
of the flag or as the flag crosses the horizontal plane or at the bottom of
the flag’s sweep—and when to stop timing will generate random errors.
In fact, the central limit theorem from statistics proves that, under reason-
able circumstances, all distributions limit to the normal distribution when
the number of measurements is large. As a result, the Gaussian function
used in Equation 4.5 and illustrated in figure 4.3 is used to represent the
distribution of errors in the vast majority of cases.

Figure 4.3. The normal proba-
bility distribution peaks at the
mean ȳ and is symmetric about
the mean. The standard devia-
tion σ(y) defines the width of the
distribution

The normalization of the probability distribution in Equation 4.5 is cho-
sen so that the total probability is unity. That is, the integral over all
possible results is one:

∫ ∞

−∞
dyP (y,y,σ(y)) = 1.

The probability then that we can obtain a measurement within a distance
y1 from the mean y is given by the following integral:

∫ y+y1

y−y1
dyP (y,y,σ(y)) = erf

(√
2y1
2σ(y)

)
,
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where the error function erf(x) is essentially defined by the above integral.
Mathematica contains a function Erf that will compute its value.

Exercise 4.2. Plot the error function as a function of x. What is the
probability of obtaining measurements within two, three and four
standard deviations from the mean? What are the numerical values?

We can now turn the problem around and ask the following question: if
we measure some mean value y and its standard deviation σ(y), how sig-
nificant is that result? Because we are working with statistical inference,
there are no absolute answers. We cannot say that subsequent mea-
surements by other experimenters that are several standard deviations
removed from our measurement of y are totally inconsistent with our
results, only that they are not likely to be consistent. If we assume that
our measurement errors are normally distributed, then the results of
Exercise 4.2 can be interpreted to indicate that only three times out of a
thousand measurements will an experimental measurement fall beyond
three standard deviations from the mean. Thus, such a measurement is
unlikely but not prohibited. As a general rule of thumb, physicists will
use three standard deviations as the definition of “significant.”

Figure 4.4. In 1951, the first
“precision” measurement of
the neutron lifetime yielded
a value of τ = 1108 ± 216 s.
Subsequent experiments have
improved the precision of the
measurements

An example of measurement uncertainty can be found in the definition
of the neutron lifetime.7 Initial measurements of the neutron lifetime,
conducted in the late 1940s and early 1950s, suggested a value of around
twenty minutes (≈1100 s). Subsequent experiments have lowered the

7This is the lifetime of free neutrons. Neutrons in the atomic nucleus appear to be stable in
the vast majority of cases. A few radioactive isotopes decay via β particle (electron) emission,
in which a neutron in the nucleus does decay.
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Table 4.3. Neutron lifetimes τ from the Particle Data Group

Date τ (s) σ(τ) (s) Date τ (s) σ(τ) (s)

1951 1108 216 1989 887.6 3.0
1972 918 14 1990 893.6 3.8
1978 881 8 1990 888.4 2.9
1980 875 95 1992 888.4 3.1

1980 937 18 2000 885.4 0.9
1986 903 13 1992 888.4 3.1
1988 891 9 2000 885.4 0.9
1988 876 10 2003 886.8 1.2

1993 882.6 2.7 2010 880.7 1.3
1996 889.2 3.0 2012 882.5 1.4
2005 878.5 0.7 2012 881.6 0.6
2005 886.3 1.2

value to a consensus (in 2012) of τ(n) = 880.0 ± 0.9 s. This value is ob-
tained by using the black points illustrated in figure 4.4 (bottom seven
entries in Table 4.3). The data, tabulated in Table 4.3, are not all consis-
tent using 3σ as the metric. This gives rise to concerns about potential
systematic errors in the recent measurements that affect the accuracy. The
error bars in figure 4.4 represent one standard deviation and are compa-
rable to the size of the points for the latest data. As we do not know the
exact value for the neutron lifetime, it is not possible to determine which
of the recent measurements are in error. All that we can really say is that
the most recent measurements are statistically inconsistent.

Exercise 4.3. To determine if two uncertain numbers a ± σa and
b ± σb are comparable, we can define the combined uncertainty as
follows:

σtot =
√
σ2a +σ2b .

The numbers are significantly different if the quantity (a − b)/σtot
is larger than three. Are the two experimental results from 2005
comparable? What about the two results from 2012?

We can hope that further refinements in measurement technology will
eventually resolve the discrepancies, or, at least, provide a consistent
value for the neutron lifetime. Illustrations like those in figure 4.4 are
not terribly uncommon in physics. The Particle Data Group collates
experimental information about subnuclear physics and produces regu-
lar updates on the currently best available values for various quantities.
The group also produces a series of historical graphs depicting the time
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evolution of the “best available” values. Students may have a mental
image that most plots will feature a series of experiments with ever-
decreasing standard deviations, with absolutely constant mean values.
Such plots do exist but there are many examples where the means are
scarcely consistent from one measurement to the next and the mean value
varies by a large amount over time. The real world is not simple.

If we now consider the sequence b from figure 4.2, we observe that
there seems to be a trend in the data. This could, of course, just be an
unfortunate coincidence; there may be no real trend, just a larger standard
deviation than was observed in sequence a. Subsequent measurements
could erase the observed trend. In physics though, we are often concerned
with measurements where we do indeed expect trends. So, in those cases,
how can one assess whether or not the observed trend is statistically sig-
nificant? Typically, we will try to fit some sort of function to the data.
It may be a straight line or some more complicated function that arises
from a model that we have constructed. We have proposed that planets
travel on elliptical orbits, for example. We could make a number of obser-
vations of some planet and then try to determine the parameters e, J , etc.,
that determine the particular orbit.

In general, we can expect the data to represent some function of the in-
dependent variables that we group into a vector x and some parameters
that we group into the vector a: y = y(x,a).8 What we want to do is fit
the model function to the measured data. A reasonably straightforward
approach is to minimize some cost function: typically, the square of the
difference between the measured and predicted values. This leads to a
general approach called least squares. We define a function χ2(x,a) as
follows:

(4.6) χ2(x,a) =
N∑

i=1

wi [y(x,a)− yi ]2 ,

where the sum extends over N measured values yi and the coefficients wi
can be chosen to weight the data in some fashion. Finding the best set
of coefficients a means finding the set of a that minimize Equation 4.6
Without going into the details of that procedure at this time, we can sum-
marize by stating that the result of such a minimization process is a set of
estimates of the parameters a along with their uncertainties σ(a).

To make this idea concrete, let us assume that we have fit the sequence b
from figure 4.2 with a line: y = mx + b. As a result, we would have the
values for the slope m and its uncertainty σ(m) and the y-intercept b and

8Note that x and a are not a vectors in our usual sense: the components that make up the
vectors need not have the same dimensionality.
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its uncertainty σ(b). We can infer that the data describe a straight line if
the value of the slopem is more than three standard deviations from zero.
In that case, the slope is statistically non-zero. If, instead, the value of
the slope was found to be less than three standard deviations from zero,
then there would be no statistical support for the assumption that the data
depend linearly on x. Notice that our analysis does not prove that the data
do (or do not) depend linearly upon x. Subsequent measurements might
reverse our inference.

In one relatively recent example of just such a reversal of fortunes, the
E288 collaboration at Fermilab published results in 1976 of the purported
discovery of a new particle that they designated theΥ. The experimenters
were colliding protons accelerated to 400GeV with a fixed beryllium tar-
get and looking for the production of electron-positron pairs.9 Analysis of
the data suggested that a cluster of events found near 6GeV should be in-
terpreted as evidence for a new state of nuclear matter roughly six times
the mass of the proton. The experimenters found that the cluster was
more than two standard deviations above the experimental background.
Unfortunately, subsequent experiments conducted the next year showed
no such cluster of events in the vicinity of 6GeV but did ultimately find
a five standard deviation effect at 9.5GeV.10 The mass of the Υ is now
understood to be 9.4603(3) GeV/c2.

4.2. Finite Velocity of Light

We can now return to Rømer’s observations of eclipses of Io (Table 4.1).
First, we note that Rømer measured the times of the eclipses to the nearest
second, suggesting that he believed that he had a precision of seconds
in his measurements. There are measurements of Io disappearing into
Jupiter’s shadow on January 11th and 12th in 1672. These are separated
in time by 42 hours, 27 minutes and 8 seconds. This is remarkably close
to the modern value of Io’s orbital period of 42 hours, 27 minutes and
33.503 seconds. In 1673, Rømer again measured consecutive eclipses in
February and March and found elapsed times of 42 hours, 28 minutes
and 50 seconds; 42 hours, 28 minutes and 51 seconds; and 42 hours, 27
minutes and 28 seconds, respectively. The average of these four values
is 42 hours, 28 minutes and 31 seconds with a standard deviation of 57
seconds.

9In these units, the rest mass of a proton is 0.938GeV/c2
10Five standard deviations is now the generally accepted standard of significance in the high
energy physics field. Leon Lederman, leader of the E288 collaboration, was undoubtedly
chagrined to have the 6.0GeV/c2 non-particle deemed the “Oops-Leon” by uncharitable
physicists. His subsequent receipt of the 1988 Nobel Prize in Physics (with Melvin Schwartz
and Jack Steinberger) “for the neutrino beam method and discovery of the muon neutrino”
undoubtedly softened the blow.
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This is a somewhat disappointing result. Cassini led one of the premier
astronomical observatories of his day, Rømer was a talented observer and
they had access to clocks that measured time to the nearest second. We can
infer from the standard deviation of 57 seconds, however, that the mea-
surement errors are not dominated by the precision of the clocks. Never-
theless, even with their one minute precision, Cassini and Rømer would
be able to greatly improve the ability of navigators to establish their lon-
gitude over what was available at the time.

Of course, the astute student might also reason that the problem with the
measurement inaccuracies is simply due to the fact that Io’s orbit is not
periodic for some reason. It could be that the timing precision is now
good enough to reveal that unforeseen aspect of orbital motion. This is a
good observation. The fact is that one must understand how the measure-
ments were made and, thereby, decide how they should be interpreted.
As it happens in this case, we have a model that predicts periodic mo-
tion and are therefore biased towards interpreting the disparate results
as “measurement errors.” There are many examples in physics, though,
where new measurements made with more precise instrumentation has
led to the discovery of systematic deviations from established theories
and, hence, new physics. In the Io data, it is most likely that the dis-
crepancies are indeed due to uncertainties arising from establishing the
precise moment at which Jupiter’s shadow hit the Ionian surface or Io
first emerged from the Jovian shadow or the long-term accuracy of the
clocks. Nonetheless, it is a good practice to ask the question “Is there an
alternative explanation for the observed experimental results?”

Closer inspection of Rømer’s Io data reveals systematic discrepancies. The
Earth and Jupiter were at their closest on March 2, 1672, at the position
astronomers call the conjunction (point H in figure 4.1). Rømer was able
to observe Io emerging from Io’s shadow on March 7 and again on March
14. In that time, Io completed four orbits of Jupiter. If we utilize the
42 hour, 28 minute and 31 second average value for Io’s orbital period,
we can use this to predict the occurrence of the other Io eclipses. Note
that we utilize the difference between predicted and observed in order to
observe small differences. If one simply plots the eclipse times, the small
differences that we are investigating will be obscured.

Exercise 4.4. Use the observational times from 1672, as listed in
Table 4.1. Compute the time differences between the emerging ob-
servations (point D) and the observation on March 7. You can use
the Mathematica function DateDifference. The orbital period will
be one quarter of the elapsed time between the March 7 and March
14 observations. Divide the time differences by the orbital period
to obtain the number of orbits for each observation. The predicted
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Figure 4.5. The differ-
ences in time (Δt) between
Rømer’s observed Ionian
eclipses and the prediction
based on an Ionian orbital
period of 42:28:31 are plot-
ted as a series of points.
The error bars on the points
represent the standard
deviation of one minute

eclipse times can be computed by multiplying the integer number of
orbits (obtained with the Round function) by the orbital period and
using the DatePlus function. Finally, compute the difference Δt be-
tween the observed and predicted eclipse times. You should be able
to recover the results in figure 4.5

As indicated in figure 4.5, Rømer’s observations indicate that the differ-
ences between predicted and observed eclipse times vary systematically
and significantly. From his data, we can estimate that the standard devi-
ation of Rømer’s measurements was one minute but the later measure-
ments have differences that are larger than ten minutes, or more than
ten standard deviations. This is statistically highly unlikely. Of course,
a possible explanation is that we have somehow managed to compute the
wrong orbital period. If we used a longer orbital period, we would cer-
tainly reduce the later differences.

Consider, though, the first measurement from 1673 that occurs after
conjunction. Using our value for the orbital period, the April 18, 1673
observation occurs after Io has completed an additional 230 orbits of
Jupiter after the March 7, 1672 eclipse. If we have underestimated the
orbital period, then we should see a large difference between the ob-
served and predicted times for this eclipse. Using the orbital period of
42 hours, 28 minutes and 31 seconds that we obtained earlier, we predict
the emergence of Io to occur at 21:18:13, which is a difference of only
3 minutes and 45 seconds from the 21:22:00 time that Rømer observed.
This is very surprising. In the 66 orbits depicted in figure 4.5, there is a
fifteen-minute discrepancy for the April 29, 1672 observation. In another
200 or so orbits, we should have expected that an underestimate of the
orbital period would yield a discrepancy of an hour or more. Yet, Rømer’s
observation falls within three minutes of the predicted value. It appears
that we can exclude an underestimate of the orbital period as the source
of the observed variation.
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Exercise 4.5. Use the time difference between the March 7, 1672
and April 18, 1673 (divided by 230 orbits) to define the orbital
period. Replot the results from figure 4.5. Is there still a significant
variation?

Exercise 4.6. Use the original 42 hour, 28 minute and 31 second
orbital period and all of the observations from 1672 and 1673 to
compute Δt. Compute Δt as before for the emergence data. For the
immersion data (location C in Table 4.1), use the February 20, 1672
observation as the comparison time.

Rømer recognized that the variation is a minimum near the conjunction
(point H in figure 4.1) and increased as the earth moved along its orbit.
He predicted that this variation would reach its maximum at opposition,
although Jupiter is not visible from Earth at that time. This suggestion
is borne out by the results shown in figure 4.6. As the Earth and Jupiter
move away from conjunction (March 7 and onward), the observed eclipse
timesmove later and later beyond the predicted times. Given our estimate
of the precision of Rømer’s observations, these are significant deviations.
In the subsequent year, however, the times of emergence are again close
to zero initially and then increase as the Earth moves away from conjunc-
tion. As the Earth and Jupiter moved toward conjunction (February 20,
1672 and before), the observed eclipse times (moving backwards in time
away from the conjunction) were found to be earlier and earlier before the
predicted times.

In figure 4.6, we have also plotted the Earth-Jupiter distance dEJ for the
years 1672 and 1673, along with the Δt data. The error bars for the
eclipses are approximately the size of the data points in this figure and
so have been suppressed. The distance data have been scaled and shifted
so that the minimum value plots along the x-axis; this does not represent a
fit to the data. Nevertheless, the observed time differences Δt match well
to the nearly sinusoidal variation of the distance. Now, these distance
data were not available to Rømer and Cassini and the observations do not
fall perfectly along a sinusoid but Rømer was convinced that these data
were compelling: light takes a finite amount of time to reach Earth from
Jupiter. Cassini remained unconvinced and the scientific debate contin-
ued for some time.11

Exercise 4.7. Use the Mathematica function AstronomicalData to
obtain the Earth-Jupiter distance for the years that Rømer observed
Io. (This will require Internet access.) Plot the (scaled) distance

11Rømer never published his findings in the journal of the Royal Society, in part due to
Cassini’s continuing objections to attributing the variations to a finite velocity of light.
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Figure 4.6. The time
differences between
predicted and observed
eclipses of Io from 1672
and 1673 are plotted as
circles for emerging D
and as triangles for im-
mersing C observations.
The Earth-Jupiter dis-
tance during this time
is illustrated as the gray
curve. The minimum
distance was approx-
imately 6.63×1011m

and Δt and examine the correlation. What happens if you include
Rømer’s data from the years 1674–1676?

Exercise 4.8. Consider the measurements listed in Table 4.4. Use
the Mathematica function LinearModelFit to fit linear (f (x) = a +
bx) and quadratic (f (x) = a + bx + cx2) functions. Plot the results.
Examine the uncertainties in the fitted parameters. Is the c coef-
ficient significant? Can you justify the proposals that the data are
described by either a quadratic function or a linear function?

Table 4.4. More experimental data

x y x y x y x y

1 −0.645 6 −6.158 11 −28.422 16 −41.135
2 −10.564 7 −10.979 12 −24.535 17 −31.868
3 1.263 8 −17.010 13 −26.984 18 −46.242
4 −6.536 9 −20.059 14 −29.790 19 −38.129
5 −17.143 10 −23.655 15 −25.605 20 −34.853

In 1704, Isaac Newton published his book Opticks, in which he argued for
a corpuscular theory of light. That is, Newton imagined that light was
composed of small particles and, using this theory, he was able to predict
some of the observed behavior of light, such as the refraction (bending) of
light beams at interfaces. Given the success of Newton’s other scientific
theories such as gravitation and his profound scientific reputation, it is
not surprising to find that the corpuscular theory of light held sway for a
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long time. Others believed that a wave theory provided a better descrip-
tion of light, and was capable of explaining phenomena that Newton’s
corpuscular theory could not, such as diffraction.12 The exact nature of
light was not established until much later.

In 1849, the French physicist Hyppolite Fizeau made the first direct
measurement of the velocity of light on earth. A year later, his former
colleague Léon Foucault made a more precise measurement of the ve-
locity of light and was able to further demonstrate that the velocity of
light was slower in water than in air. This was a key finding in support
of a wave theory of light, as the corpuscular theory demanded that light
travel more rapidly in water than in air. A complete theory of light as
a component of the phenomenon we call electromagnetism was provided
by James Clerk Maxwell in 1864. We shall investigate more aspects of
electromagnetic theory subsequently. For the moment, we shall focus
on a key result of Maxwell’s theory: the components of the time-varying
electric and magnetic fields are solutions of the wave equation.

4.3. Wave Equation

Waves are a manifestation of energy propagating through a system and
are key elements in our understanding of many phenomena. The equation
that describes waves arises in many areas of physics and was well-studied
before Maxwell’s application to electromagnetic phenomena. In its sim-
plest form, let us assume that there is some function f that describes a
physical property such as density, or pressure, or displacement, of some
system. For the moment, let us further assume that f is only a function of
one space dimension. The wave equation in one dimension can be written
as follows:

(4.7)
∂2f (x, t)

∂x2
− 1
v2c

∂2f (x, t)
∂t2

= 0,

where the symbol ∂ indicates a partial derivative and vc is a characteristic
velocity. The partial derivative of a function of multiple variables is ob-
tained by holding the other variables constant and taking the derivative
of just the one variable:

∂f (x, t)
∂x

= lim
h→0

f (x + h, t)− f (x, t)
h

and
∂f (x, t)

∂t
= lim

δ→0

f (x, t + δ)− f (x, t)
δ

.

In this simplest description of wave phenomena, waves propagate with a
characteristic velocity vc that depends only upon the physical properties
of the material in which the wave is moving and is a constant everywhere
in space. A more complex situation arises if we allow the characteristic

12We shall define these terms in more detail subsequently.
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velocity itself to be a function of space and time. For the present, we shall
ignore such complications.

Another assumption underlying Equation 4.7 is that the function f rep-
resents a relatively small disturbance on some background. Sound waves,
for example, travel through air and water (with different characteristic ve-
locities) but the presence of the wave does not drastically or permanently
alter the material properties. On the other hand, high-powered lasers will
ionize the air through which they are propagating, drastically modifying
the material properties of the medium and, thereby, significantly affecting
the ability of the beam to continue propagating.13 In this first exposure
to wave phenomena, we shall follow the simpler course and assume that
the wave does not significantly modify the medium in which it is propa-
gating. We shall not stretch guitar strings to their breaking point and not
investigate situations in which the energy density in the wave is sufficient
to ionize the material or break chemical bonds.

Now, as a general rule, partial differential equations are much more diffi-
cult to solve than ordinary differential equations. For the wave equation,
we can make use of a trick first proposed by the French mathematician
Jean-Baptiste le Rond d’Alembert: make a change of variables from x and
t to a new set of variables ζ = x+vct and ξ = x−vct. In this new coordinate
system, the wave equation becomes:

(4.8)
∂2f (ζ,ξ)
∂ζ∂ξ

= 0.

We can now write down solutions immediately! Any function of ζ or ξ
separately is a solution to the wave equation. The most general solution
to the wave equation is written as follows:

(4.9) f (x, t) = f1(x + vct) + f2(x − vct),
where f1 and f2 are any functions.

Exercise 4.9. Changing variables requires repeated application of
the chain rule defined as follows for ordinary derivatives:

df

dx
=
df

dy

dy

dx
.

For partial derivatives, where the original variable x can be thought
of as a function of both new variables ζ and ξ , we find the chain rule
can be written as follows:

13The US Strategic Defense Initiative, commonly known as Star Wars, investigated using
lasers to shoot down incoming nuclear warheads or destroy missiles in their launch phase.
In these studies, the simplifying assumption that the propagating wave does not modify or
interact with the medium of propagation has to be abandoned.
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∂f

∂x
=
∂f

∂ζ

∂ζ

∂x
+
∂f

∂ξ

∂ξ

∂x
.

From d’Alembert’s definition of ζ and ξ , we know that ∂ζ/∂x =
∂ξ/∂x = 1 and that ∂ζ/∂t = vc and ∂ξ/∂t = −vc. Use these results
to recover d’Alembert’s equation 4.8.

Exercise 4.10. Show explicitly (by differentiating) that the follow-
ing functions are solutions to the wave equation:

(a) sin(x + vct) (b) cos(x − vct) (c) e(x−vct).

Exercise 4.11. Plot the function sin(x + vct) over the domain 0 ≤
x ≤ 5 and use the Mathematica Manipulate function to vary a single
parameter vct from 0 ≤ vct ≤ 2. How does the function change as
time (vct) increases?

Repeat for the function sin(x − vct).

Which of the two functions would be described as the forward prop-
agating solution, if we define “forward” as the positive x-direction?
Replace the Manipulate function with the Animate function. Does
this help with the definition of forward propagation?

Exercise 4.12. Define the function f (x, t) = sin[a(x − vct)]e−b(x−vct)
2
.

Plot the function from −10 ≤ x ≤ 10 and use the Mathematica func-
tion Manipulate to vary the parameters 1 ≤ a ≤ 20 and 0 ≤ b ≤ 10.
Define a single parameter vct that provides the time dependence
and use the Animate function to vary this over the domain −10 ≤
vct ≤ 10. The Gaussian portion of f (x, t) forces the function to have a
finite width; such short pulses are found in many wave applications.

How does the behavior of the function change as a and b are varied?

There are many features of the wave equation that we will explore subse-
quently that will enable us to describe many physical phenomena. For the
moment, we shall focus on some of the mathematical properties of Equa-
tion 4.7. We have alluded to conservation laws throughout our discussion
to this point and have noted that in Newton’s law of universal gravitation
that there are several quantities that do not change over time. In light
of the importance of Noether’s theorem to our deeper understanding of
physical phenomena, we now want to examine the wave equation for con-
served quantities.

Consider transforming to a new coordinate system (x′ , t′), where the
function f that defines our wave is now thought of as a function of
these new coordinates: f = f (x′ , t′). Converting to the new coordinate
system means making use of the chain rule for partial derivatives that
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we described above. For the derivative with respect to x, we have the
following expression:

(4.10)
∂f (x, t)

∂x
=
∂f (x′ , t′)

∂x′
∂x′

∂x
+
∂f (x′ , t′)

∂t′
∂t′

∂x
.

If we assume that the transformation between the (x, t) coordinate system
and the (x′ , t′) coordinate system is linear, then the second derivative with
respect to x can be rewritten as follows:

(4.11)
∂2f (x, t)

∂x2
=
∂2f (x′ , t′)

∂x′2

(
∂x′

∂x

)2

+ 2
∂2f (x′ , t′)
∂x′ ∂t′

∂x′

∂x

∂t′

∂x
+
∂2f (x′ , t′)

∂t′2

(
∂t′

∂x

)2
.

Exercise 4.13. Use the chain rule to differentiate Equation 4.10
by x. By linear, we mean that ∂2x′/∂x2 = 0. Show that you obtain
Equation 4.11.

Exercise 4.14. Derive the analogous expression to Equation 4.11
for the second derivative with respect to time: ∂2f (x, t)/∂t2.

If we consider the wave equation from Equation 4.7, we find that the
transformation to the primed coordinate system yields the following re-
sult:

∂2f (x, t)
∂x2

− 1
v2c

∂2f (x, t)
∂t2

=
∂2f (x′ , t′)

∂x′2

[(
∂x′

∂x

)2
− 1
v2c

(
∂x′

∂t

)2]

+ 2
∂2f (x′ , t′)
∂x′ ∂t′

[
∂x′

∂x

∂t′

∂x
− 1
v2c

∂x′

∂t

∂t′

∂t

]

− 1
v2c

∂2f (x′ , t′)
∂t′2

[(
∂t′

∂t

)2
− v2c

(
∂t′

∂x

)2]
.(4.12)

So, for arbitrary choices of coordinate systems, we will not recover the
same form of the wave equation. Note that on the right hand side of Equa-
tion 4.12, the second term involves a cross term that is not present on the
left hand side.

Exercise 4.15. Use the results from Equation 4.11 and Exercise 4.14
and show that you obtain Equation 4.12. The derivation requires a
fair amount of algebra. Check your results by dimensional analysis.
Suppose that f has dimension X. Then ∂f /∂t has dimension X/T .
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Let us choose a general form for the linear transformation that relates the
two coordinate systems. Suppose that we choose the following relations14:

(4.13) x′ = a1x + a2t + a3 and t′ = a4x + a5t + a6.

Then, substituting back into Equation 4.12, we obtain the following:

∂2f (x, t)
∂x2

− 1
v2c

∂2f (x, t)
∂t2

=
∂2f (x′ , t′)

∂x′2

[
a21 −

a22
v2c

]

+ 2
∂2f (x′ , t′)
∂x′ ∂t′

[
a1a4 −

a2a5
v2c

]
+
∂2f (x′ , t′)

∂t′2
[
a25 − v2c a24

]
.(4.14)

If we want to ensure that the form of the wave equation is preserved in
the new (primed) coordinate system, then the terms in square brackets on
the right hand side of Equation 4.14must take on particular values:

(4.15) a21 −
a22
v2c

= 1 and a1a4 −
a2a5
v2c

= 0 and a25 − v2c a24 = 1.

Note that the constants a3 and a6 are not constrained and can take on
any values. We shall exclude them from further consideration at the mo-
ment.15 We can find solutions to these equations if we first recall that the
hyperbolic trigonometric functions satisfy the equation cosh2 ζ−sinh2 ζ =
1.16 This suggests that we can set a1 = coshζ, a2/vc = sinhζ, a5 = coshχ
and a4vc = sinhχ. These choices will automatically satisfy the first and
third of Equations 4.15. We are left with the following result for the cross
term, the second of Equations 4.15:

coshζ sinhχ − sinhζ coshχ = 0.

We can use the addition formula for the hyperbolic functions to conclude
that this leads to sinh(ζ − χ) = 0. For real values of ζ and χ, this is true
only if ζ = χ. We can thus write the general transformation that preserves
the form of the wave equation as follows:

(4.16) vct
′ = vct coshζ + x sinhζ and x′ = vct sinhζ + x coshζ.

A number of physicists and mathematicians have separately derived this
result but it is known almost universally as the Lorentz transformation.17

14Note that for these equations to make sense, the coefficients must have dimensions.
15Setting a3 = a6 = 0 amounts to making the choice that origins of the coordinate systems
coincide at time t = t′ = 0.
16The parameter ζ here is not related to the radial coordinate in a cylindrical coordinate
system.
17The Dutch physicist Hendrik Antoon Lorentz contributed significantly to our understand-
ing of the mathematical properties of the wave equation. He was awarded the Nobel Prize
in Physics (with Pieter Zeeman) in 1902 “in recognition of the extraordinary service they
rendered by their researches into the influence of magnetism upon radiation phenomena.”
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Exercise 4.16. The hyperbolic trigonometric functions coshx and
sinhx can be defined in terms of the exponential function:

coshx = 1/2(ex + e−x) and sinhx = 1/2(ex − e−x).
Use the exponential form to show that cosh2 x − sinh2 x = 1.

Use the exponential forms of the functions to prove the addition
formula:

sinhx,coshy − coshx sinhy = sinh(x − y).

Exercise 4.17. Use the Mathematica function ParametricPlot to
examine the effects of the Lorentz transform (Equation 4.16) on the
(x′ , t′) plane. Use the Manipulate function to vary the ζ parameter
over the domain 0 ≤ ζ ≤ 1. Changing the characteristic velocity vc
will rescale the time coordinate but not alter any essential behavior,
so just use vc = 1.

How do the x′ and t′ coordinates change as the parameter ζ changes?

4.4. Lorentz Transform

The Lorentz transform is something of a curiosity: it mixes space and time
dimensions but it does so in a particular fashion. In order for the transfor-
mation to make dimensional sense, we note that it is actually the quantity
ct and not time alone that forms the first component of the vector. Let
us consider the concept of an event. This is actually just a point in space
and time: P1 = (ct1,x1), where henceforth we will make use of the com-
mon notation in which the magnitude of the velocity of light is denoted
by the symbol c. We are often concerned with the relationships between
two events, P1 and P2. What we can demonstrate is that the Lorentz trans-
formation preserves the quantity s2 = (ct)2 − x2.18 We shall discuss the
importance of this requirement soon.

Exercise 4.18. Use Equation 4.16 and demonstrate explicitly that
the following relation holds:

(ct′)2 − (x′)2 = (ct)2 − x2.

Consider two events P1 and P2 that occur at the same point in space x1 but
at two different times t1 and t2, where we can assume t1 < t2. The vector
that connects these two spacetime points is given by P2−P1 = (c(t2− t1),0),
which is a point on the positive ct-axis. We would call such a vector a
time-like vector, as it represents two events separated in time. The effect

18There is a sign choice to be made here. The Lorentz transform also preserves the quantity
−s2. We shall justify our usage soon.
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Figure 4.7. The Lorentz transform
preserves time and space. A
time-like quantity (black curve) will
remain time-like under transfor-
mation. Likewise, a space-like
quantity (gray curve) will remain
space-like. Light-like ((ct)2−x2 = 0)
vectors lie on the diagonal dashed
lines.

of different Lorentz transformations on the vector P2 −P1 (different values
of ζ in Equation 4.16) will move the vector along a hyperbola in spacetime.
This is illustrated by the black curve in figure 4.7. Note that this hyper-
bola is not the same as the hyperbolic trajectories that we have discussed
previously. The Lorentz transform does not define a trajectory. We note
that all points along the black curve have the same value of s2 = c2(t2−t1)2.

Now consider two events P3 and P4 that occur at the same time t3 but at
two different points in space x3 and x4, where we can assume x3 < x4.
The vector connecting these two points in spacetime is given by P4 −P3 =
(0,x4 − x3), which is a point on the positive x-axis A Lorentz transform
applied to this space-like vector will produce a point somewhere along the
gray curve illustrated in figure 4.7; all points on the gray curve have the
same value of s2 = −(x4 − x3)2.

We note that the time-like vectors have the property that s2 > 0 and that
the space-like vectors have the property that s2 < 0 and that the Lorentz
transform does not alter that property. The case where s2 = 0 corresponds
to the diagonal lines in figure 4.7. Points along these diagonals are called
light-like vectors.

Exercise 4.19. Use the Mathematica ParametricPlot function to
plot the Lorentz transforms of the vectors (ct = 1,x = 0) and (ct =
0,x = 1), as a function of the transform parameter ζ. Show that you
obtain the curves illustrated in figure 4.7.

Before proceeding further, we should acknowledge that Maxwell’s theory
of electromagnetism results in electromagnetic fields that are solutions
to the three-dimensional wave equation, not the one-dimensional equa-
tion that we have studied thus far. So, it is reasonable to ask what hap-
pens in two and three dimensions? We again would like to ascertain the
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types of transformations that leave the equation unchanged. Let’s con-
tinue our investigations and examine the two-dimensional version of the
wave equation.

The wave equation in two spatial dimensions can be written as follows:

(4.17)
∂2f (x,y, t)

∂x2
+
∂2f (x,y, t)

∂y2
− 1
c2

∂2f (x,y, t)
∂t2

= 0,

where here we are using c to denote the magnitude of the velocity of light.
If we again restrict ourselves to linear transformations and exclude con-
stant terms, the general coordinate transformation can be written as the
following:

ct′ = a1ct + a2x + a3y x′ = a4ct + a5x + a6y y′ = a7ct + a8x + a9y

We shall forge ahead now and derive the equivalent expression to that we
obtained in Equation 4.14. This will provide us with a set of equations
for the unknown coefficients a1, . . . , a9 but let us try to be somewhat more
sophisticated in our analysis.

First of all, let us introduce matrix notation, which will help us see the
mathematical structure of the operations more clearly. Let us define vec-
tors r = (ct,x,y) and r′ = (ct′ ,x′ , y′), and a matrix A. The transformation
equations above can be written concisely as r′ = Ar or, more explicitly as
follows:

(4.18)

⎡
⎢⎢⎢⎢⎢⎢⎣
ct′

x′

y′

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
a1 a2 a3
a4 a5 a6
a7 a8 a9

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
ct
x
y

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The matrix A has elements Aij , where the index i runs over the rows and
the index j runs over the columns. For example, the element that corre-
sponds to the first row and third column would be A13 = a3. The rule for
multiplying a matrix by a vector involves multiplying the matrix row ele-
ments by the vector column elements and adding. That is, the ith element
of the resultant vector is given by the following expression:

r′i =
3∑

j=1

Aij rj .

So, for the first row, we would find the following:

r′1 = ct′ = A11r1 +A12r2 +A13r3 = a1ct + a2x + a3y,

which is simply the first of the three transformation equations. The
matrix notation provides an alternative, more compact representation of
the defining equations of the Lorentz transform.
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Now to obtain the requirements for transformations that leave the two-
dimensional wave equation unchanged, we can recognize that the trans-
formation that we have already derived for the one-dimensional wave
equation also leaves the two-dimensional wave equation unchanged. It
amounts to the special case where a3 = a6 = a7 = a8 = 0 and a9 = 1 and
mixes the ct and x dimensions, leaving the y-dimension unchanged. In
matrix form, we can write this as follows:

(4.19)

⎡⎢⎢⎢⎢⎢⎢⎣
ct′

x′

y′

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
coshζ1 sinhζ1 0
sinhζ1 coshζ1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ct
x
y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ζ1 is the parameter defining the Lorentz transform.

We can immediately see that we can construct a transformation in which
the ct and y dimensions are mixed, leaving the x dimension unchanged.
We can write this as follows:

(4.20)

⎡
⎢⎢⎢⎢⎢⎢⎣
ct′

x′

y′

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
coshζ2 0 sinhζ2
0 1 0

sinhζ2 0 coshζ2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
ct
x
y

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where ζ2 is a parameter that defines the Lorentz transform. Both of these
transformations leave the wave equation unchanged and each mixes one
of the spatial dimensions with the time dimension.

What remains now is to determine the sort of transformation in which the
time dimension is left unchanged while the spatial dimensions are mixed.
This amounts to looking for a transformation in which a2 = a3 = a4 = a7 =
0 and a1 = 1. In matrix form, we are looking for a transformation of the
following form:

(4.21)

⎡⎢⎢⎢⎢⎢⎢⎣
ct′

x′

y′

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 a5 a6
0 a8 a9

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ct
x
y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

If we ignore the time derivative component of the wave equation for the
moment, which will not be affected by the transformation depicted in
Equation 4.21, the spatial derivatives must have the following transfor-
mation properties:

∂2f (x,y, t)
∂x2

+
∂2f (x,y, t)

∂y2
=
∂2f (x′ , y′ , t′)

∂x′2
[
a25 + a28

]

+ 2
∂2f (x′ , y′ , t′)

∂x′∂y′
[
a5a6 + a8a9

]

+
∂2f (x′ , y′ , t′)

∂y′2
[
a26 + a29

]
.(4.22)
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The wave equation will be left unchanged if the following relations hold:

(4.23) a25 + a28 = 1 and a5a6 + a8a9 = 0 and a26 + a29 = 1.

If we choose a5 = cosθ, a8 = sinθ, a9 = cosφ and a6 = sinφ, then the
first and third of Equations 4.23 are satisfied immediately. The addition
formula for trigonometric functions allows us to rewrite the second of
Equations 4.23 as follows:

cosθ sinφ + sinθ cosφ = sin(θ +φ) = 0,

which is satisfied if θ = −φ. The transformation that leaves the wave
equation unchanged and mixes the spatial dimensions can be written as
follows:

(4.24)

⎡
⎢⎢⎢⎢⎢⎢⎣
ct′

x′

y′

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣
ct
x
y

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

This transformation is a rotation of the coordinates!

Exercise 4.20. Fill in the missing steps in the derivation of Equa-
tion 4.22. Hint: focus on the spatial derivatives of the two-dimen-
sional wave equation.

Exercise 4.21. Use the Mathematica function ParametricPlot to
examine the effects of the Lorentz transformations (Equation 4.24)
on the (x′ , y′) plane. Use the Manipulate function to vary the θ pa-
rameter over the domain 0 ≤ θ ≤ π.

How do the x′ and y′ coordinates change as the parameter θ changes?

What we shall simply assert without proof is that any Lorentz transfor-
mation in two space dimensions can be decomposed in terms of the three
basic transformations associated with the parameters ζ1, ζ2 and θ. The
mathematical proof of this assertion is beyond the scope of our present
discussion, so we shall proceed apace. The transformations associated
with the parameters ζ1 and ζ2 are called boosts for historical reasons that
will become somewhat more apparent subsequently. The transforma-
tion associated with the parameter θ is a rotation in the x-y plane.19 In
two space dimensions, the Lorentz transform leaves the quantity s2 =
(ct)2 − x2 − y2 unchanged.

Exercise 4.22. Vectors in Mathematica are stored as lists and ma-
trices as lists of lists. We can define, for example:

r = {ct,x,y}

19It is tempting to think of this as a rotation “around” the time ct axis and to think of the
boosts as rotations of a sort around the spatial axes.
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and

B1[a_] := {{Cosh[a],Sinh[a],0}, {Sinh[a],Cosh[a],0}, {0,0,1}}.
You can use the Mathematica function MatrixForm to view the
matrix in a more usual format. Matrix-vector multiplication can be
performed with the “dot” operator: rp = B1.r, where the result of
the operation is another vector rp.

Define matrices for the two boosts B1 and B2 and the rotation R.
Define the vector r as shown above and compute the following
transforms:
(a) B1[a].r (b) B1[a].B2[b].r (c) B1[a].B2[b].R[c].r

Show in each case that the quantity (ct′)2 − x′2 − y′2 is unchanged.
We haven’t explained how to compute the matrix products but you
can think of the operations above as a series of matrix-vector prod-
ucts beginning at the right, e.g., first, compute the vector that results
from B2[b].r and then compute the vector that results from apply-
ing B1[a] to that vector. This works because matrix multiplication
is associative: (AB)C =A(BC).

So, what we observe for the two-dimensional wave equation is that the
Lorentz transform preserves the time-like or space-like nature of vectors.
This is illustrated in figure 4.8, where we have depicted the hyperbolic
surfaces that are defined by the Lorentz transform. If we consider a time-
like vector, say the point where the dark surface intersects the ct-axis, then
the result of any Lorentz transform on that vector will be to displace the
vector somewhere on the dark surface. All points on the dark surface have
the same (positive) value of (ct)2 − x2 − y2. Similarly, a space-like vector,
say a point where the light surface intersects the positive x-axis, would be
transformed somewhere along the light surface. All points on the light
surface have the same (negative) value of (ct)2 − x2 − y2. As can be seen
from the figure, the two surfaces never intersect.

Exercise 4.23. Use the ParametricPlot3D function to examine the
effect of Lorentz transformations, Equations 4.19, 4.20 and 4.24, on
a time-like vector (ct = 1,x = 0, y = 0) and a space-like vector (ct =
0,x = 1, y = 0). Use the boost parameter ζ for the x-direction and a
separate parameter θ for rotations in the x-y plane.

The step now to three space dimensions is straightforward; we have all
of the mathematical tools we require. The wave equation in three space
dimensions can be written as follows:

(4.25)
∂2f (x,y,z, t)

∂x2
+
∂2f (x,y,z, t)

∂y2
+
∂2f (x,y,z, t)

∂z2
− 1
c2

∂2f (x,y,z, t)
∂t2

= 0.
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Figure 4.8. The Lorentz
transformation in two space
dimensions maps out hy-
perbolic surfaces. Time-like
vectors are mapped into other
time-like vectors (dark sur-
face). Space-like vectors are
mapped into other space-like
vectors (light surface). The
results displayed in figure 4.7
represent a cut along the
y = 0 plane

We are again interested in transformations that leave the equation
unchanged and these can be constructed now from the basic boost and
rotation operations. As we have three space dimensions, we are con-
cerned with transformations of a four-dimensional vector r = (ct,x,y,z).
There will be three boosts B, corresponding to transformations that mix
the time and space dimensions and three rotations R that mix the spa-
tial dimensions. By analogy to our previous efforts, we can write these
immediately:

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshζ1 sinhζ1 0 0
sinhζ1 coshζ1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cosθ1 −sinθ1 0
0 sinθ1 cosθ1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshζ2 0 sinhζ2 0
0 1 0 0

sinhζ2 0 coshζ2 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cosθ2 0 sinθ2
0 0 1 0
0 −sinθ2 0 cosθ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

coshζ3 0 0 sinhζ3
0 1 0 0
0 0 1 0

sinhζ3 0 0 coshζ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 cosθ3 −sinθ3
0 0 sinθ3 cosθ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(4.26)

The choice of signs of the sine terms in R2 is predicated on making a
rotation in the positive sense around the y-axis.20

20By positive sense, we use a right-hand rule: if your right thumb points along the axis of
rotation, your fingers curl in the positive angular direction.
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Otherwise, it is reasonably clear that we have simply distributed the boost
and rotation operations across an additional spatial dimension. Again
we will find that the Lorentz transformations will preserve the quantity
s2 = (ct)2 − x2 − y2 − z2.

Exercise 4.24. Define the vector r= {ct,x,y,z} and the boosts
and rotations that are defined by Equations 4.26. Compute the fol-
lowing transformations and show that s2 is unchanged:
(a) R1[a].R3[b].r (b) B1[a].R2[b].r (c) R1[a].B3[b].R2[c].r

Exercise 4.25. In Mathematica define the following points:

x1 = {1,0,0}, x2 = {0,1,0} and x3 = {0,0,1}.
Define the 3× 3 rotation matrices (bottom right-hand corners of the
R matrices defined in Equation 4.26).

Use the Mathematica Animate and ListPointPlot3D functions to
convince yourself that the rotation matrices rotate the points in a
positive (right-hand) sense around the coordinate axes.

4.5. Relativity and Causality

We have made something of an issue of the invariant interval s2 in the
discussion thus far and it is time now to explain why. One of the bedrock
principles uponwhichmodern physics is grounded is causality. Causality
has its roots in the Newtonian notion that, crudely, things change for a
reason; there is cause and effect. That is, a particle’s trajectory will only
deviate from a straight line if there is some force applied to it. Conversely,
observed deviations from straight line motion imply the existence of some
applied force.

Suppose that, in your laboratory, some event A occurs at a time ta: a par-
ticle changes its trajectory, for example. Then, then at some subsequent
time tb another event B occurs and subsequently, at a later time tc yet
another event C occurs:

A −→ B −→ C.

In some general sense, we may infer from our observations that A causes B
which, in turn, causes C; the order in which the events occur is of critical
importance. What we would like to know is this: would other observers
all see the events in the same order and thereby infer that A causes B, et
cetera?

As we can see from figure 4.9, the Lorentz transform preserves the order-
ing of time-like sequences. If ta occurs before tb in your laboratory, then it
will occur before tb in all laboratories. All observers will attest to the same
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sequence order. If your inference is that A causes B, then all observers will
make the same inference.21 Even though, as we shall see, time is not an
invariant quantity, the notion of time-ordering of a sequence of events is.

Exercise 4.26. Plot the one-dimensional Lorentz transform of two
time-like vectors: ta = (1.0,0.0) and tb = (1.1,0.0). What happens at
large values of the transform parameter ζ? (Do the hyperbolas ever
cross?)

Figure 4.9. The Lorentz transform
of a sequence of time-like vectors
preserves the sequence order

The second bedrock principle of modern physics is relativity. As enun-
ciated by Albert Einstein in 1905, the principle of relativity is one of
egalitarianism: any (astute) observer will derive the same equations of mo-
tion to describe the same phenomenon. That is, Einstein suggested that
this mathematical enterprise in which we have been engaged: studying
the transformation properties of equations, has to be taken seriously. The
different transformations are a mathematical representation of different
observers. Invariance under the transformations means, quite simply, that
different observers will utilize the same form of the equations to represent
the same phenomena. The importance of the Lorentz transformations, in
particular, is that they are the only linear coordinate transformations that
preserve both the wave equation and causality.

The principle of causality is linked to the finite propagation velocity for
light. If we consider the spacetime plot shown in figure 4.8, points that
are described by space-like vectors cannot be causally related. Suppose
that an event P1 occurs at the point in spacetime r1 = (ct1,x1, y1, z1). We
ask when does an observer located at r2 = (ct,x2, y2, z2) notice that the
event occurred? We note that light will take a time given by the following
relation:

21This is not to say that there will never be scientific debate. Cassini, for example, ultimately
did not believe in the finite velocity of light, despite his own and Rømer’s data.
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Δt21 = [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]1/2/c
to travel between the points. So, for times t − t1 < Δt21, light has not yet
managed to traverse the distance between the points. In this case, the
number c(t − t1) will be less than the spatial distance between the points
and, consequently, the quantity (c(t− t1))2− (x2−x1)2− (y2−y1)2− (z2−z1)2
will be negative. The vector r2 − r1 here will be space-like and thus the
spacetime point r2 cannot be influenced by the event P1. For times t >
t1 +Δt21, the converse is true and the vector r2 − r1 will be time-like. For
those points, the event P1 may have, indeed, provoked some other event
to occur.

This is, in mathematical terms, precisely the problem that Rømer faced
when observing the eclipses of Io. The fact is that Io orbits Jupiter and is
subject to the gravitational force that we investigated earlier. Io travels on
an elliptical, and thereby periodic, trajectory around Jupiter. Indeed, as
Galileo surmised in 1610, Io represents a celestial clock.22 The earth, how-
ever, is located distantly from Io. This means that a significant amount of
time Δt21 must elapse before events that occurred at Io can be known to
observers on earth. Because the earth-Io distance is not a constant, the
time Δt21 varies. Fortunately, better solutions to the problem of estab-
lishing longitude were discovered that eliminated the need for ephemeris
tables.

In our modern-day world, we can observe a related phenomenon when
airplanes fly overhead. Light takes very little time to propagate from an
airplane to the ground and airplanes move very slowly when compared
to the velocity of light, so we see the airplane at almost its exact physical
position. Sound, which can also be described by a wave equation, travels
with a characteristic velocity that is much smaller, vc ≈ 340m/s. As a
result, the sound of the airplane appears to lag the apparent position of
the airplane.

Exercise 4.27. Consider an airplane travelling at 500km/hr at an
altitude of 2km. If the velocity of sound waves in air is 340m/s,
how long does it take sound to propagate from the airplane to the
ground? How long does it take light to propagate from the airplane
to the ground?

How far will the airplane travel horizontally in the time that it takes
sound to propagate to the ground? Can you explain why the sounds
of passing aircraft do not seem to emanate from the airplanes but
from somewhere behind the airplanes?

22There are, of course, small perturbations arising from Io’s interactions with the other Jo-
vian moons that affect the period. These are smaller than the precision of Rømer’s experi-
ments.
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Einstein’s physical insight into the importance of what is now called the
Special Theory of Relativity has driven much of modern physics.23 Let us
examine what the Lorentz transforms mean physically. If we go back to
Equations 4.13 and ignore the constant terms, then dimensionally, we rec-
ognize that x′ = a1x + a2t must have the following dimensional equation:

(L) = a1(L) + a2(T).

For this to make sense, a1 must be dimensionless and a2 must have di-
mension of L/T , i.e., a2 must have the dimension of a velocity. The second
equation t′ = a4x + a5t has the following dimensional equation:

(T) = a4(L) + a5(T),

which requires a4 to have dimension of (T/L) or inverse velocity and a5 to
be dimensionless. Ultimately, we found that the choice of a1 = coshζ and
a2 = c sinhζ gave rise to a transformation that preserved the form of the
wave equation. If we take the ratio of a2/a1 = c tanhζ, we find that a2/a1
has the dimension of a velocity; let us call it u. The boost transformations
are generated if our two observers have a relative velocity u.

Recall now that cosh2 ζ − sinh2 ζ = 1 and that tanhζ = sinhζ/ coshζ = u/c.
Putting these two facts together, we can obtain the following:

cosh2 ζ
[
1− tanh2 ζ] = cosh2 ζ [1− (u/c)2] = 1,

whereby we have the two following relations:

(4.27) coshζ =
[
1−

(
u

c

)2]−1/2
and sinhζ =

u

c

[
1−

(
u

c

)2]−1/2
.

These quantities u/c and [1− (u/c)2]−1/2 occur frequently in discussions of
relativity and have customary symbols of β and γ , respectively. So, one
will frequently see the Lorentz transforms written in terms of γ = coshζ
and βγ = sinhζ. The two forms are equivalent but many authors prefer
the physical interpretation afforded by the relative velocity u, as opposed
to the more geometrical interpretation we have provided with the use of
the hyperbolic functions.

The function γ only has real values for the domain −c ≤ u ≤ c. A conse-
quence of the Lorentz transformation is that observers cannot move faster
than light. This is, of course, a stunning blow for science fiction writers ev-
erywhere. The Milky Way galaxy, depicted in figure 1.4, has a diameter of
about 105 light-years. Without the capacity for traveling at vastly greater
velocities than that of light, it is unlikely that space explorers will ever

23This theory of relativity is special due to the assumption that the transformmust be linear.
A more general theory of relativity relaxes that restraint.
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Figure 4.10. Waves (in two dimen-
sions) spread in circles, reflect-
ing the rotational symmetry of the
wave equation. The distance ri
measures the distance to the wave
front from the origin for the ith ex-
citation

visit any sizable portion of the galaxy, much less colonize distant worlds
and establish interstellar trade routes.24

Exercise 4.28. Plot the function γ as a function of β = u/c over the
domain −1 ≤ β ≤ 1. For what values of β does γ differ appreciably
from 1? If the magnitude of c is about 3 × 108m/s, what must u be
for γ to be 1.01 or 1.1? Hint: It might be more revealing to plot γ on
a log-log plot.

Another major consequence of causality and relativity is that all observers
measure the same velocity for light. Einstein, in fact, used the constancy
of the velocity of light as a basis for his derivation of the theory of rel-
ativity. So, the two propositions can be considered equivalent: causality
is preserved is the same as the velocity of light is invariant. That all ob-
servers measure the same velocity for light is a consequence of preserving
the wave equation. The characteristic velocity vc (or c in the case of light
waves) does not change under Lorentz transformation.

At first this result might seem nonintuitive but let us consider what hap-
pens when we launch a wave. If we drop a stone into a pond, disturbances
that we call ripples spread across the surface in a series of circles of ever
increasing radius. The radius, in fact, is just the characteristic velocity
multiplied by the time elapsed since the stone hit the water: r = vct. If we
now consider dropping stones repeatedly, with a constant time interval T
between stones, we might see a pattern like that depicted in figure 4.10.

The distance travelled by the wave generated by the ith stone at the time t1
will be ri = vct1 but this is related to the distance travelled by the previous

24An obvious way to circumvent this limitation is to alter the human life span. If humans
could live to be a thousands of years old, then a two-hundred year journey to a distant star
might be an appropriate use of one’s time. Such discussions, of course, are more appropriate
to classes in molecular biology.
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(i − 1) stone: ri−1 = vc(t1 + T). Because more time has elapsed since the
previous stone was dropped, ri−1 will be larger than ri . Now, the distance
between the two wavefronts is given by ri−1 − ri = vcT . This distance is
independent of the time and is given a special name: the wavelength.
It is usually denoted by the Greek letter λ. For periodic excitations, the
wavelength and period are related by the following simple formula:

(4.28) λ = vcT.

Figure 4.11. For a moving source,
each wavefront spreads in a circle
centered on the point where it was
generated. Subsequent wavefronts
are shifted along the direction of
motion of the source, along the x-
axis in this picture

At this point, the astute student might question why we are talking about
dropping rocks into a pond when the real subject under discussion is the
propagation of light. The answer is that the propagation of both ripples on
the surface of a pond and light through the universe are described by the
wave equation. The physical quantities, the functions f in Equation 4.25,
are different but the equations defining their behavior are the same! Be-
cause most students have some familiarity with flinging stones into bodies
of water, we can use this previous experience to our advantage.

Exercise 4.29. Use the Mathematica function ParametricPlot to
plot a series of circles of radii with a constant difference (ri−1 = ri +
1). Now use the Animate function to vary the base radius r upon
which the other radii were defined. You have now constructed a
representation of wave propagation for a periodic source.

Now consider what happens if the source is moving. In figure 4.11, we
illustrate the result of a source moving along the x-direction. Each wave-
front propagates in a circle as before, but subsequent wavefronts are gen-
erated from different points along the x-axis. The result is that the dis-
tance between wavefronts along the x-axis is altered from the base wave-
length λ. This is a phenomenon known as the Doppler shift, after the Aus-
trian physicist Christian Doppler who proposed in 1842 that the motion
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of distant stars might shift their colors, and is familiar to anyone who has
heard the change in pitch of a moving vehicle as it passes by one’s (sta-
tionary) position.

Figure 4.12. The function γ has a
value of one until the velocity u
becomes an appreciable fraction of
the velocity of light

To an observer positioned somewhere along the x-axis ahead of the source
point, the wavelength appears to be shorter, commensurate with a shorter
time interval between excitations. If we define the frequency ν to be
ν = 1/T , this corresponds to a higher frequency.25 Conversely, to an ob-
server positioned somewhere along the x-axis behind the source point, the
wavelength appears to be longer, commensurate with a longer time inter-
val between excitations or a lower frequency.

Our prediction, therefore, is that light will propagate at its charac-
teristic velocity, independent of the relative motion of any observers,
although different observers would characterize the light as having differ-
ent frequencies. This prediction has been tested numerous times and all
experiments to date conclude that light indeed propagates with a constant
velocity c. In 1964, for example, experimenters at the Proton Synchrotron
accelerator at the Conseil Européen pour la Recherche Nucléaire (CERN),
slammed protons with an energy of 19.2GeV into a beryllium target.
Amongst the particles created in this process are neutral mesons known
as pions (π0).26 The π0 has a mass of 135MeV/c2 and a lifetime of about
8×10−17 s. It decays predominantly into two photons, which are known as

25The inverse period 1/T occurs frequently in physics. As a result, it has its own customary
name: frequency.
26As physicists found more and more excitations of matter, they grouped them by mass.
Light particles like electrons were called leptons from the Greek word λεπτóς meaning
light or thin or delicate. Heavy particles like the proton and neutron were called baryons
from the Greek word βαρύς meaning heavy. Mesons were particles of intermediate mass,
hence the use of the Greek word μέσoν meaning middle.
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γ rays for historical reasons. Note that the notation π0→ 2γ has nothing
to do with the γ function defined by the Lorentz transform.27

The experimenters were able to select π0s with an energy greater than
6GeV, which corresponds to a γ > 45 (See figure 4.12) or a velocity of
u = 0.99975c with respect to the laboratory frame of reference. The de-
cay of a π0 into two γ rays is precisely the sort of moving source that we
wish to study. At some brief interval after being created, the pion travel-
ling at a velocity u emits a photon (actually decays into two photons but
that doesn’t alter the argument) that travels at the velocity c. The exper-
imenters measured the time required for the emitted photons to traverse
a distance of 31.45m, using a methodology not unlike our original flag-
waving, timing experiment, albeit with more sophisticated components.

Analysis of the experimental results indicates that the photons produced
by relativistic pion decay have a velocity cexp = (2.9977±0.0004)×108m/s.
The established velocity of light is c = 2.99792458× 108m/s. The experi-
mental results produce an estimate for the velocity of light that is within
one standard deviation of the established value. Considered from a some-
what different perspective, if the velocity of light from the decaying pions
were to be of the form c+ku, where u is the velocity of the pion and k rep-
resents some deviation from the predictions of special relativity, then this
experiment sets a limit of k = (−3±13)×10−5. Light travels at the velocity
of light, even if the source is moving at nearly the velocity of light, as is
predicted by the special theory of relativity.

4.6. Eigenzeit

Another major consequence of relativity is that time is no longer an in-
variant quantity. The Lorentz boosts mix the time and space dimensions
in a fashion that Newton did not anticipate. Indeed, as Newton wrote in
his Principia28:

Absolute, true andmathematical time, of itself, and from its own na-
ture flows equably without regard to anything external, and by an-
other name is called duration: relative, apparent and common time,
is some sensible and external (whether accurate or unequable) mea-
sure of duration by the means of motion, which is commonly used
instead of true time . . .

27The symbol γ is often used to describe the quantum of the electromagnetic field: the
photon. Again, one must be cognizant of the meaning of notation and not attempt to simply
memorize equations.
28This English translation is due to Andrew Motte circa 1729.
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From this we obtain the notion that time flows like a river. Yet, as we
observe in the Lorentz boosts, time and space are interrelated; we must
really speak of spacetime (one word) not separately time and space (two
words).

For each observer, denoted by the primed variables in the Lorentz trans-
formations, time is not absolute but depends upon the frame of refer-
ence (the parameters ζi ). Einstein used the German word Eigenzeit that is
formed from the words meaning “own” and “time” to convey this concept
that each observer has his own time. The French translation of Eigenzeit
would be temps propre and in English this concept has come to be known
as the proper time, which is presumably an unfortunate transliteration of
the French. It is probably too late to change what has become common
usage but the words “proper time” do not innately convey the concept as
well as the German Eigenzeit. Students will have to learn to recognize the
meaning of the phrase.

Experimental evidence for this phenomenon can again be found from the
realm of particle physics. One member of the lepton family of particles,
the muon (μ) has a lifetime of about τ = 2.195 μs.29 By this, we mean that
if one had a bag of N0 muons, the number of muons in the bag would de-
cay according to the rule N (t) = N0e

−t/τ . This lifetime can be determined
from cosmic ray experiments but an improved set of measurements were
conducted at the CERN Muon Storage Ring in 1977. When muons were
accelerated to high velocities (γ = 29.33), the muon lifetimes were ob-
served to be τ = 64.368± 0.029 μs for negatively-charged muons (μ−) and
τ = 64.419 ± 0.058 μs for positively-charged muons (μ+). In the primed
coordinate system, the Lorentz transformation predicts that τ′ = γτ. The
muon lifetime experiments reflect that muons travelling at high velocities
do indeedmeasure time differently thanmuons (or physicists) that are not
travelling at high velocities.

In a remarkable series of experiments conducted in 2010, physicists work-
ing with precision atomic clocks have managed to measure the effects of
special relativity at velocities as low as 10m/s.30 The atomic transitions of
a single aluminum atom held in an electromagnetic trap were investigated
as a function of the velocity of the atom. By comparing to a second alu-
minum atom, held in a separate trap, the measurements achieved a preci-
sion of approximately one part in 1015 in the transition frequencies. This

29The SI prefix μ and unit s means 10−6 seconds and is pronounced microseconds. It is a
different entity than the muon, which is also represented by the Greek μ.
30The Nobel Prize in Physics in 2012 was awarded to the Moroccan physicist Serge Haroche
and the American physicist David J. Wineland “for ground-breaking experimental meth-
ods that enable measuring and manipulation of individual quantum systems.” Wineland’s
methods were used by the NIST researchers to study relativistic effects at human scale.
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Figure 4.13. The relativistic
Doppler shift was measured
for an aluminum atom con-
fined within an electromag-
netic trap. Experimental un-
certainties in the relative fre-
quency δf are comparable to
the size of the points. Uncer-
tainties in the velocity reflect
experimental averaging over
a velocity window. The gray
curve is the relativistic pre-
diction

was adequate to resolve the predicted frequency shift δf /f = −v2/2c2. As
can be seen in figure 4.13, the experimental results are in good agree-
ment with the predicted frequency shift. So, as truly nonintuitive as this
concept of Eigenzeit may be, there is substantial experimental evidence
that the theory of special relativity provides an accurate description of
the nature of spacetime.

Exercise 4.30. Instructors are beset with a host of usually lame
excuses as to why assignments were submitted after the deadlines.
It might seem that this concept of Eigenzeit could prove to be a tech-
nically plausible excuse for tardiness. Consider that, in the refer-
ence frame of the instructor (considered to be at rest), ten days have
elapsed. What would be the requisite γ for a student to have ob-
served an elapsed time of only seven days? What would be the ve-
locity u of the student during that interval?

The NASA New Horizons mission to Pluto left the earth with a ve-
locity of 58,500km/hr, by some measures the fastest spacecraft ever
launched. How does this compare to the necessary velocity u to ex-
plain a three-day delay in submitting homework?

Einstein went further than just suggesting that we need to take the
Lorentz transformations seriously when discussing the wave equation.
Indeed, he proposed that all physical theories needed to be formulated in
such a way that they do not depend on the observer; mathematically they
must be invariant under Lorentz transformation. This was to be a require-
ment for successful theories and caused physicists to revisit all work done
up until that point. This is an important and crucial insight. Einstein
recognized that the mathematics has a physical interpretation. We are not
just conducting messy algebraic manipulations and proving theorems.
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The equations we study represent the physical behavior of some system,
so we are continually trying to ask the (nontrivial) question: what does it
all mean?31 We must continually rely on experiment to provide guidance
in trying to answer that question.

As a consequence of Einstein’s interpretation of relativity, one must be
quite circumspect in formulating physical theories. In previous chapters,
we have examined the kinematic equations that describe the motion of
objects. A key element in that formulation was the velocity v = dr/dt. In a
frame of reference that is boosted along the x-direction, another observer
would find the following result for the time derivative of the x-component
of position:

v′x/c =
dx′

cdt′
=
cdt sinhζ + dx coshζ
cdt coshζ + dx sinhζ

=
tanhζ + dx/cdt

1+ dx/cdt tanhζ
=

tanhζ + vx/c

1+ tanhζ vx/c
(4.29)

Note that here we used the Eigenzeit of the observer to compute the de-
rivative. That is the “proper” time for the observer, in that clocks in the
observer’s frame of reference record t′ and not t. The other spatial com-
ponents transform in similar fashion:

(4.30) v′y/c =
sechζ vy/c

1+ tanhζ vx/c
and v′z/c =

sechζ vz/c
1+ tanhζ vx/c

.

Exercise 4.31. Fill in the missing details in the derivation of Equa-
tions 4.30.

Exercise 4.32. Plot the functions tanh(x) and sech(x) over the do-
main −10 ≤ x ≤ 10. What happens to the functions for large values
of |x|? (What is their asymptotic behavior?)

Plot the function v′x(vx/c,ζ) (in 3D) over the domains −1 ≤ vx/c ≤
1 and −10 ≤ ζ ≤ 10. Now plot the (scaled) function v′y(vx/c,ζ) =
sechζ/(1 + tanhζ vx/c) over the same domains for vx/c and ζ. De-
scribe the asymptotic behavior of the functions. In particular, in the
limit of ζ →∞, what is the value of v′y/c? What does this say about
something travelling at the velocity of light?

31It is to be expected that non-expert students will often ask the (trivial) question: what
is the point? Einstein’s emphasis on the physical interpretation of our mathematics distin-
guishes the trivial from the more subtle and insightful.
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Exercise 4.33. Consider the limiting case where ζ → ∞. What is
the value of the vector v′/c = (v′x/c,v

′
y/c,v

′
z/c)?

Can you use this result to show explicitly that the velocity of light is
independent of the frame of reference?

If we recall that the Lorentz factor tanhζ = u/c, where u is interpreted as
the relative velocity of the observer, then the observer sees a velocity that
is not simply the sum of the two velocities. The observed velocity v′ is
modified by the factor (1+uvx/c

2)−1.

Exercise 4.34. Rewrite Equations 4.29 and 4.30 in terms of the
relativistic parameters β and γ .

The velocity transformation Equations 4.29 and 4.30 are rathermessy and,
consequently, troubling. The Lorentz transformations that leave the wave
equation unchanged do not have the same effect on our kinematic equa-
tions. We are led to the unsettling conclusion that the velocity is not a
Lorentz invariant quantity. This suggests that the kinematics we have
studied in the earlier chapters is not a valid physical theory, given our
assertion that relativity must be taken seriously. We are staring at some-
thing of an abyss: Newtonian dynamics (in which velocity plays a signifi-
cant rôle) predicted the behavior of planetary motion and led Rutherford
to his nuclearmodel of the atom. These theories are incompatible with rel-
ativity but each separately describes experimental results quite precisely.

Einstein provided an elegant solution to the dilemma. The problem dis-
appears when we consider four-dimensional spacetime and not separately
time and three space dimensions. The velocity that we defined in Chap-
ter 1 is a concept valid in three-dimensional space and time. The kine-
matic theory that we developed in Chapter 2 was successful in describing
the time evolution of gravitating masses. What we need to do instead
is to think about things four dimensionally. Consider an object at some
point in spacetime: r1 = (ct1,x1, y1, z1). What Einstein proposed is that
rather than considering the evolution of the object in time, we must con-
sider its evolution in spacetime. We cannot consider quantities like dr1/dt
because those will not be invariant to Lorentz transformation: each ob-
server has his own proper time. Instead, we need to consider the quantity
dr1/ds, where ds is the Lorentz invariant interval defined by the following
relation:

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2

= (cdt)2[1− (dx/cdt)2 − (dy/cdt)2 − (dz/cdt)2]
= (cdt)2[1− v2/c2],(4.31)
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where v = (dx/dt,dy/dt,dz/dt) is the velocity of the object as defined in
Chapter 1 and v2 = v · v is the magnitude of the velocity squared. The
quantity dr1/ds, which we can call the four-velocity, is now defined as
follows:

(4.32)
dr1
ds

=
1

c[1− v2/c2]1/2
dr1
dt

=
γ

c

dr1
dt

,

where γ is the relativistic function associated with a boost with velocity
v/c.

We know that ds is invariant under Lorentz transformation, so the quan-
tity dr1/ds will transform under a boost Bi like r1 itself:

(4.33)
dr′1
ds

=
d

ds
Bir1 = Bi

dr1
ds

,

where Bi is one of the boosts defined in Equations 4.26. Note here that
r1 is a four-dimensional vector in spacetime, where the first component is
the time ct1 and the last three components are the spatial variables.

We can also justify now our choice for the sign of s2. By choosing the
sign as we have, the differential ds defined by Equation 4.31 increases
in a positive sense as the time increases in a positive sense. In the limit
where v/c� 1, the factor γ in Equation 4.32 reduces to one andwe recover
the Newtonian definition of velocity. Additionally, we can note that for
v/c � 1 the invariant interval reduces to the time interval, so that we
fully recover Newton’s equations of motion when the velocities are small
compared to the velocity of light. In this sense, Newtonian mechanics can
be thought of as the low-velocity limit of the “correct” relativistic theory.

For students that are concerned we need to revisit the previous chapters
to rederive all of the formulas in a relativistic fashion, let us put aside that
worry (for now). As we mentioned in the beginning of the text, all physi-
cal theories are approximate. Newtonian mechanics provides an adequate
description of planetary motion. We now recognize that a relativistic the-
ory will be required to satisfy our principles of causality and relativity but
we also recognize that the planetary velocities are small compared to the
velocity of light. As a result, we can use Newton’s theory of gravitation
to study planetary motion and achieve acceptable results. If the velocity
of light were much lower, then Newton’s approach to computing orbital
trajectories would have failed.

Exercise 4.35. Use the Mathematica function Series to expand the
γ function in a power series in β = v/c. Plot the γ function and the
first two terms of the power series. At what value of β does the power
series diverge from the actual value by more than 1%?
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Exercise 4.36. Use the data from Table 2.1 and the fact that 1AU
≈ 1.496×108 km to compute the planetary velocities. The perimeter
length L of an ellipse is given by the following:

L = 4aE(e),

where a is the semi-major axis and e is the eccentricity. The func-
tion E is the complete elliptic integral of the second kind. When the
eccentricity is zero, E(0) = π/2 and we obtain the usual result for
the circumference of a circle. What is the average β for each of the
planets? What is the average value of γ − 1 for each of the planets?

Now Einstein made one further suggestion based on the observation that,
in Newtonianmechanics, momentum is a conserved quantity. Rather than
considering the time evolution of the velocity, we should consider the
spacetime evolution of the momentum. For Newtonian mechanics, one
converts between velocity and momentum simply by multiplying velocity
by mass; this is, in some sense trivial rescaling of the velocity. In Einstein’s
relativistic picture, however, we find a somewhat magical outcome.

We first note that Equation 4.32 is dimensionless, because the dimension
of the invariant interval ds is (L). To obtain a momentum, which has di-
mension (ML/T), we need to multiply by mass and something with di-
mension of a velocity (L/T). The obvious choice for a constant with a
dimension of velocity is, of course, the velocity of light c. Multiplying
Equation 4.32 by mc, we can define a suitable four-dimensional momen-
tum:

(4.34) p =mc
dr1
ds

=mγ
dr1
dt

=mγ(c,vx,vy,vz).

By analogy with the invariant interval s2, we suggest that the following
quantity

(4.35) γ2[(mc)2 − (mvx)
2 − (mvy)

2 − (mvz)
2]

is invariant under Lorentz transformation.

Exercise 4.37. Use the definitions of the boost and rotation matri-
ces in Equations 4.26. Define the following vector

p1 = m{c,vx,vy,vz}/Sqrt[1− (vx2 + vy
2 + vz

2)/c2]

Compute the following transformations and show that the quantity
defined in Equation 4.35 does not change. What is the value of the
invariant quantity?
(a) R1[a].p1 (b) B1[a].p1 (c) R1[a].B1[b].p1

The relativistic four-momentum vector p has dimension (ML/T), i.e., it
scales like a momentum. Einstein recognized that the first component, the
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time component, of p doesn’t contain explicitly the velocity terms like the
other components and suggested that we interpret it to be the relativistic
energy E divided by the velocity of light (to make the dimensionality cor-
rect). That is, p = (E/c,px,py,pz) is the relativistic, four-momentum. This
has the nice effect of identifying the (scaled) energy as the time component
of the vector and harkens back to our earlier assertion that energy conser-
vation is related to time invariance of our equations of motion. We’ll re-
visit this idea in the next section but, for now, let us see the consequences
of Einstein’s suggestion.

Using the results of the previous exercise, the invariant associated with
the four-momentum vector is the following:

m2c2 = (E/c)2 − p2x − p2y − p2z ,
or, upon solving for the energy,

(4.36) E2 = p2c2 +m2c4,

where we have defined the term p2 = p2x + p2y + p2z to be the squared mag-
nitude of the spatial components of the four-momentum vector p. In the
case of an object at rest, we obtain the renowned E = mc2 as the zero-
momentum limit of Equation 4.36.

We now have a Lorentz-invariant form of kinematics that makes signifi-
cantly different predictions about the behavior of systems at high veloci-
ties. Recall that we earlier defined the kinetic energy of an isolated mass
to be T = 1/2mv2. From this we can infer that

vNewton = (T /2m)1/2.

From Equation 4.36, the energy is E =mc2 when the particle is at rest. As
a result, we should define the relativistic kinetic energy to be T = E −mc2.
If we use the definition of the momentum provided in Equation 4.35, to
determine the velocity, we obtain the following:

(4.37) vEinstein = c

[
1−

(
mc2

mc2 + T

)2]1/2
.

In figure 4.14, we plot the results of an experiment conducted by the
American physicist William Bertozzi in 1964 in which electrons were ac-
celerated to different energies T and the time was recorded for the elec-
trons to travel a fixed distance. The experimental velocity was obtained
by simply dividing the distance by the elapsed time, which estimates the
average velocity over the interval.

From the figure, we see that the prediction of Newtonian mechanics, that
the velocity continues to increase as the energy is increased does not fit
the data. Instead, the data are described well by Einstein’s prediction that
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the velocity limits to the velocity of light. So, Einstein’s theory, which
was motivated by the need to develop a kinematic theory that transforms
properly under Lorentz transforms, appears to be the correct theory at
high energies.

Figure 4.14. This experiment mea-
sured the time required for elec-
trons to travel a fixed distance. The
experimental v/c is obtained from
the distance divided by elapsed
time. The standard deviation of the
measurements is comparable to the
size of the points. The prediction
of Newtonian mechanics is drawn
as the black line and the prediction
of Einsteinian mechanics is drawn
as the gray line

Exercise 4.38. Use the definition of the relativistic kinetic energy
T = E −mc2 and Equation 4.34 to derive the relativistic velocity v/c
in terms of T , as depicted in Equation 4.37.

4.7. Unfinished Business

Wehave been treading through the shallows of some relatively deepmath-
ematical waters in this chapter. We have encountered partial differential
equations, which provides us with the means for discussing functions of
more than one variable. The rules for partial differentiation are similar
enough to those for ordinary differentiation that our usage should not
have proven to be too problematic. We have introduced matrix notation,
mostly as a visual aid, but there is a significant body of mathematics un-
derlying linear algebra. Learning more about matrix and tensor algebras
will help us to be more proficient in our calculations. We introduced the
Lorentz transformations, boosts and rotations, that lead into the mathe-
matical province of group theory. We left unproven our assertion that all
Lorentz transformations can be obtained from combinations of the ones
we introduced. The proof of this assertion can be established quite readily
with some more math under our belts. We began the chapter with a dis-
cussion of statistics and probability. In truth, one can usually find several
undergraduate (and graduate) courses devoted to each of these subjects
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and we cannot, of course, delve into much detail here. Suffice to say that
there is more math on the agenda for students wishing to pursue physics
more earnestly.

After developing the special theory of relativity, Einstein asked, what
seemed to him, to be the next obvious question. The Lorentz transforms
are linear, by which we mean that second derivatives among the trans-
form variables vanish: ∂2x′/∂x2 = 0, for example. This corresponds to
observers in frames of reference that are rotated and boosted, i.e., moving
with constant velocities. What would happen if we relax that require-
ment? What happens to accelerated observers, i.e., would they also write
down the same equations of motion?

Einstein consulted with his friend Marcel Grossmann about what math-
ematics would be required to study such a problem and was told to go
study something else, the math was too difficult. Einstein was persistent
and, over the course of the next decade and with continual support from
Grossmann and others, managed to develop what is now called his Gen-
eral Theory of Relativity. This ultimately proved to be more than just
a theory of accelerating observers: the theory Einstein developed pro-
vides a natural definition of the gravitational force as an intrinsic property
of spacetime. The General Theory of Relativity incorporates Newtonian
gravitational theory as the low energy limit of a much more complex de-
scription of the universe. It took Einstein the better part of a decade of
work to formulate the theory and the differential geometry required to
express the theory is usually taught only to very advanced undergradu-
ates or graduate students. We shall not attempt to follow that pathway
here.

There are some important lessons here, though, and the first is to remem-
ber that all physical theories are approximate. Newton’s theory of gravi-
tation was enormously successful in explaining the behavior of the solar
system. Evenwith greatly enhancedmeasurement capabilities over the in-
struments employed by Galileo, Rømer and Cassini, there are few places
in our own solar system where Newton’s theory does not agree with ex-
periment. In truth, Einstein had no compelling experimental evidence to
launch him on a quest to develop a better theory of gravitation and that
was not his original intent. He was just curious about where the thread of
accelerating observers might lead and he followed that idea to a new the-
ory. A second lesson is to maintain your scientific curiosity; you cannot
predict where it might lead.

Einstein’s general theory of relativity extends Newton’s gravitational the-
ory into regions where the masses of stars are much larger than that of
our own sun and where some observations are in conflict with Newton’s
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theory. For the most part, those deviations are all explained by Einstein’s
more complex theory, which contains all sorts of concepts like black holes
and wormholes in space This does not mean that we should discard New-
ton’s ideas. Instead, we need to recognize the limits of the theory and use
it in places where it applicable and not use it in circumstances where it is
not going to yield reasonable results.

So, if students are troubled by the fact that somehow all of the work done
in the first few chapters is for naught, that it has all been supplanted by a
relativistic theory, they need not worry. For most terrestrial applications,
relevant velocities are so small compared to the velocity of light that the
relativistic corrections can be neglected.

Exercise 4.39. In Einstein’s interpretation, the first component of
the four-dimensional momentum vector is energy, actually E/c =
γmc. For a particle moving by itself, we earlier defined the kinetic
energy to be T = 1/2mv2, where v is the velocity and m the mass.

Use the Mathematica function Series to expand the γ function in a
power series in v/c. Show that you recover the Newtonian definition
of kinetic energy if you keep only the first term in the power series.

Plot the γ function and the first and second approximations. For
what values of v/c is the Newtonian value within 10% of the Ein-
steinian value of the energy?

Exercise 4.40. In the previous chapter, we discussed α particle scat-
tering and used the results of those experiments to make a sweeping
discovery about the nature of matter. Geiger andMarsden’s early ex-
periments used α particles coming from radioactive decay that had
kinetic energies on the order of 5MeV.

If the rest mass of the α particle is 3727MeV/c2, what is γ for 5MeV
α particles? What is the corresponding velocity v/c?

Should we worry about relativistic effects in these experiments?



V

More on the Nature of Matter

We introduced the wave equation in the previous chapter and focussed
much of our discussion on the properties of the equation itself and the
consequences of the principles of causality and relativity. Here, we
will move on to a discussion of the properties of solutions of the wave
equation. As we mentioned previously, waves are a manifestation of en-
ergy propagating through a system. By their very nature, waves involve
motion, something that is difficult to convey in print.

In figure 5.1, we illustrate the result of rain drops falling on a small body
of water. Students can undoubtedly utilize their own experiences and
imagination to set the ripples into motion. Over time, the circles expand
and eventually fade. As can be seen from the figure, when ripples from
two separate drops overlap, a complex pattern arises but each ripple con-
tinues to expand independently. This is a situation that is quite different
from the one we expect for material objects. If two billiard balls collide,
they recoil in directions different from their initial pathways. At least to a
first approximation, waves appear to simply pass through one another.

We’ll examine the implications of this observation in more detail but for
the moment, we shall assert that the ripples satisfy a wave equation in two
dimensions like that in Equation 4.17. The ripples are displacements of

Figure 5.1. Rain drops splashing
into a pond generate ripples. Part
of the kinetic energy of the drops
is converted into the waves that
propagate across the water surface
(Image courtesy of Alan Watson-
Featherstone (Executive Director of
Trees for Life))
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the fluid surface above and below the nominal water level in the puddle
and so, in this case, the function f (x,y, t) is a representation of the fluid
level, or the deviation of the fluid level from its equilibrium position.

The story begins, in large measure, with d’Alembert’s publication in
1747 on the vibration of strings.1 In this work, d’Alembert derives
the one-dimensional wave equation and finds solutions in the form of
forward- f (x − t) and backward-propagating f (x + t) functions. As a
mathematician, d’Alembert was interested in the properties of the po-
tential solutions of the partial differential equation. Subsequently, the
problem was also investigated by the Swiss physicist Leonhard Euler who
approached the problem in a manner close to the way we would do so
today. At the time, the correspondence between mathematics and physics
had not yet been established and Euler’s physics-driven approach was
rebuked by d’Alembert. Today, while we treat the wave equation as an
established fact, its origins were quite contentious. This is not an unusual
occurrence in the development of scientific theory.

Figure 5.2. A plucked guitar string
of length L would have an initial
shape like that indicated, although
the y-axis has been exaggerated

Euler derived the one-dimensional wave equation from physical princi-
ples and envisioned that one could find solutions if the initial displace-
ment and velocity of the string were known; in mathematical terms, so-
lutions would be specified by the conditions on the string’s position and
velocity at some initial time. Euler envisioned that a plucked guitar string
might look like the curve depicted in figure 5.2 initially and constructed
solutions from that assumption. In a response to Euler’s publication,
d’Alembert pointed out that, at the point x = p, the derivative is discon-
tinuous and, hence, undefined. That is,

∂f (x, t)
∂x

∣∣∣∣∣
x=p−
�
∂f (x, t)

∂x

∣∣∣∣∣
x=p+

.

1D’Alembert published his “Recherches sur la courbe que forme une corde tendue mise
en vibration,” in Histoire de l’académie royale des sciences et belles lettres de Berlin in 1747,
followed by an addendum “Suite des recherches sur la courbe. . . ” in 1750.
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From this, d’Alembert concluded that the second derivative must also be
undefined at x = p and, therefore, Euler’s solutions were invalid.

The debate between d’Alembert and Euler reflects the fundamental differ-
ences between mathematicians and physicists. D’Alembert was, perhaps,
the preeminent mathematician of his generation and was not particularly
interested in the physical applications of the wave equation. Instead, he
was interested in the mathematical analysis of such systems. Euler, for
his part, was not terribly concerned that his strategy failed only at a sin-
gle point in the interval 0 ≤ x ≤ L. He reasoned that, for infinitesimal
displacements, that the discontinuity in the derivative would also be in-
finitesimal and, thereby, close enough to continuous. Such lack of rigor is
known to set mathematicians’ teeth on edge.

5.1. Vibrations

Euler’s arguments, which sound like many of the plausibility arguments
put forward in this text, do not rise to the level of mathematical proof, as
d’Alembert was prompt to recognize. In retrospect, Euler was an accom-
plished mathematician in his own right, so it is somewhat surprising that
he did not mount a more successful mathematical defense. We can argue
that Euler was more concerned with exposing the workings of vibrating
strings than he was in categorizing the solutions of second order partial
differential equations. As a result, he was not overly concerned withmath-
ematical rigor. Seen in this light, Euler sits solidly in the physicists’ camp
in this debate. Euler was convinced that his mathematical treatment of
vibrations on a string captured the physics of the system and produced
results that agreed with experiment. Euler presumed that any mathemat-
ical discrepancies were minor and the theory could be made rigorous if
one wanted to expend the effort.

Euler’s and d’Alembert’s attitudes broadly reflect those of modern-day
practicing physicists and mathematicians. Physicists are often accused
of being rather glib about mathematical rigor and mathematicians, in
turn, are accused of being overly obsessive about rigorous proof. These
differences arise, in large measure, because physicists are intent on in-
terpreting the mathematical results in terms of the behavior of some
physical system. Knowing beforehand that such an endeavor will only
approximate physical reality perhaps contributes to the physicists’ glib-
ness. Mathematicians, on the other hand, live in a world of axiom and
corollary where, as Gauss remonstrated, two half proofs do not consti-
tute a whole proof. We have attempted to strike a sensible balance in
this text without being overly glib: pointing out potential mathematical
issues and pitfalls but not dwelling on all of the mathematical nuances.
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Mercifully, the mathematics underlying most physics can be made rigor-
ous and physicists have, from time to time, provided impetus for further
mathematical insights. The two fields are, generally, mutually beneficial.

The Swiss physicist Daniel Bernoulli also contributed to our understand-
ing of the vibrating string problem, noting in 1755 that the spatial varia-
tion in the solution could be provided by the fundamental displacement
identified by the English mathematician Brook Taylor: f (x) = sin(πx/L).
Time variation could be constructed by multiplying by an appropriate
sinusoidal function:

f (x, t) = Asin(πx/L) cos(πvct/L)

and the general solution could be constructed from a series of this funda-
mental and its harmonics:

(5.1) f (x, t) = A1 sin(πx/L) cos(πvct/L) +A2 sin(2πx/L) cos(2πvct/L) + · · · .
D’Alembert was equally critical of Bernoulli’s series solution, expressing
concerns that Bernoulli had not demonstrated that such a series would
converge.

Exercise 5.1. Plot the first three spatial functions suggested by
Bernoulli: sin(nπx), where n is an integer and we choose L = 1.
Could these represent the deflections of a guitar string?

Plot the first spatial function multiplied by the cosine function sug-
gested by Bernoulli. Use the Manipulate function to investigate the
behavior over the domain 0 ≤ vct ≤ 10

Exercise 5.2. Use the trigonometric product to sum rule to show
that Bernoulli’s proposed solution is of the form f (x+vct)+f (x−vct),
i.e., that it is of the form suggested by d’Alembert.

The Italian/French mathematician Joseph-Louis Lagrange published a
paper on the nature of sound in 1759 that included a section on the
vibrating string.2 In his approach, Lagrange avoided the wave equation
altogether. Instead, Lagrange considered the problem of a series of small
masses coupled together by springs. Each mass feels the forces exerted
by the springs on either side and the motion of each mass can be com-
puted from the resulting acceleration, using Newton’s F = ma. Lagrange
then took the limit of an infinite number of masses and infinitesimal
spring lengths. In this limit, the summations become integrals. Today, we
can recognize that Lagrange’s approach provides another mathematical

2Lagrange published his “Reserches sur la nature et la propagation du son” in the Miscel-
lanea Taurinensia, the proceedings of the Turin Academy of Sciences that he formed with his
students.
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representation of the vibrating string. His results are mathematically
equivalent to those found through use of the wave equation directly.

The problem of the vibrating was not ultimately resolved until the 1800s
when the French mathematician Jean Baptiste Joseph Fourier proved
that the series solution proposed by Bernoulli did, indeed, converge
and could be shown to provide a unique solution to the wave equation.
The integrals that Lagrange derived actually provide the coefficients A1,
A2, etc. Interestingly, Fourier was not studying the wave equation; he was
investigating the diffusion of thermal energy through materials, which
was a process also governed by a partial differential equation but in
which there was only a first derivative with respect to time. Neverthe-
less, Fourier’s results were applicable to the general problem of partial
differential equations and demonstrated that Euler’s and Bernoulli’s ap-
proaches could be made mathematically sound. It is also somewhat
remarkable that Lagrange did not discover the Fourier series of his own
accord but he was not interested in developing a series solution to the
vibrating string problem. Instead, he was seeking an integral solution to
a physical problem and was not looking for mathematical theorems.

5.2. Point Sources

Deriving general solutions to the wave equation will require somewhat
more mathematical sophistication than we can expect for an introductory
course. It happens though, that for some simple cases, solutions can be
readily obtained. Consider, for example, the case of a symmetric, point
source. Here, we expect the solution to be solely a function of the distance
from the source to the point at which the wave is to be measured. In n
dimensions, the vector from the source point to the measurement point
would have n components: r = (x1,x2, . . . ,xn). The wave equation in n
dimensions can be written as follows:

(5.2)
n∑

i=1

∂2f (r, t)
∂x2i

− 1
v2

∂2f (r, t)
∂t2

= 0.

We want to obtain solutions for f = f (r, t), where r = |r|. This means that
we need to think of f not as a function of the individual components xi
but as a function of r = (x21 + x22 + · · · + x2n)

1/2. To do this, we will need to
change variables by applying the chain rule:

∂f

∂xi
=
∂f

∂r

∂r

∂xi
.
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The second derivative can be obtained by repeated application of the
chain rule:

∂2f

∂x2i
=
∂2f

∂r2

(
∂r

∂xi

)2
+

∂f

∂xi

∂2r

∂x2i
.

Exercise 5.3. The partial derivative with respect to the variable xi
(denoted ∂/∂xi ) is computed by holding all variables constant ex-
cept xi . Use the definition r = (x21 + x22 + · · · + x2n)

1/2 to show that the
following relations are true:

∂r

∂xi
=
xi
r

and
∂2r

∂x2i
=
r2 − x2i
r3

,

The n-dimensional wave equation, in terms of the variable r, can be writ-
ten as follows:

(5.3)
∂2f

∂r2
+
n− 1
r

∂f

∂r
− 1
v2

∂2f

∂t2
= 0.

Notice that there is now a first-order spatial derivative term. This term
will generally complicate the process of obtaining a solution when the
dimension n is larger than one. We can utilize a mathematical trick of
sorts to simplify the problem.

Exercise 5.4. Use the results of the previous exercise and the wave
Equation 5.2 to obtain Equation 5.3.

Consider the trial function g(r, t) = rpf (r, t). We will see what happens
when we apply the wave equation to the function g. The partial deriva-
tives of g(r, t) with respect to r can be obtained in a straightforward
manner:

∂g

∂r
= rp

∂f

∂r
+ prp−1f

and
∂2g

∂r2
= rp

∂2f

∂r2
+ 2prp−1

∂f

∂r
+ p(p − 1)rp−2f .

If we substitute these results into the wave Equation 5.3 and collect terms,
we obtain the following result:

(5.4) rp
[
∂2f

∂r2
− 1
v2

∂2f

∂t2

]
+ (2p +n− 1)rp−1∂f

∂r
+ p(p +n− 2)rp−2f = 0.

If we now choose p = (1− n)/2, the term multiplying the first order deriv-
ative of f will vanish. Using this value of p, the final term in Equation 5.4
becomes

p(p +n− 2)rp−2f = − (n− 1)(n− 3)
4

rp−2f .
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Consequently, when n = 1 or n = 3, this last term vanishes and we are left
with just a one-dimensional wave equation for the function f .

As we have seen previously in one dimension, any function f (r − vt) or
f (r + vt) would be a solution of the wave equation in one dimension. Re-
markably, in three space dimensions, any function f (r−vt)/r or f (r+vt)/r
will also be a solution of the wave equation.

Exercise 5.5. Fill in the missing algebraic steps in the derivation of
Equation 5.4. Show that for n = 3 the function f (r − vt)/r will be a
solution of the wave equation.

Exercise 5.6. Demonstrate that the function f (r, t) = sin(kr −ωt)/r
is a solution of the three-dimensional wave equation, provided that
k2 = ω2/v2. Here the wave vector k is related to the wavelength λ by
k = 2π/λ.

Unfortunately, there are no simple mathematical tricks to provide sim-
ple solutions of the wave equation in two dimensions. A simple solution
in two dimensions would have been extremely valuable because we can
readily visualize ripples on a pond and could then make use of our ex-
periences with ripples to support our understanding of the mathematical
representation of those ripples. This is, however, not possible. So, we
shall continue our investigations with three-dimensional systems and use
the fact that point sources in three dimensions can have relatively simple
representations. We will also continue to rely on our experience with two-
dimensional ripples to provide us with physical insights but we shall have
to add solution of the two-dimensional wave equation to the (growing) list
of as-yet unresolved issues.

5.3. Beats

As we have mentioned, one of the characteristics of waves is that they ap-
pear not to interact directly; they pass through one another. We certainly
observe such behavior in ripples on a water surface, as in figure 5.1. This
property has been termed interference. Mathematically, we can represent
this phenomenon by noting that the result of two waves f1(x, t) and f2(x, t)
propagating through some region of space is characterized by the sum of
the two: f1(x, t) + f2(x, t).

Consider the simple case of a continuous wave of a single frequency ω
propagating in one dimension that we can take to be the x-direction. (Al-
ternatively, we could think of a wave propagating through three dimen-
sions but over a short enough distance that we do not need to worry
about a factor of 1/r.) We can represent this wave as a sine function:
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f (x, t) = sin(kx−ωt), where the wave vector k and the frequency are related
by k = ω/vc. Here vc is the characteristic wave velocity.

Exercise 5.7. Plot the function sin(x−2t) for the range −10 ≤ x ≤ 10
and use the Animate function to examine the behavior for the range
0 ≤ t ≤ 60. What is the direction of propagation? How does the
signal change if you modify the 2 to another value like 2.2 or 2.5?
What is the wavelength λ?

Suppose now that there is a second continuous wave propagating in the
same region. The sum of the amplitudes of the two waves as a function
of time at the position x = 0 is illustrated in figure 5.3.3 If the two waves
have different frequencies of oscillation, we observe a curious phenome-
non known as beats. In the early part of the plot, the two waves are oscil-
lating nearly in phase and so the amplitude of the sum is almost double
the amplitude of the individual waves. After a time, the two waves are
oscillating out of phase and the amplitudes cancel. Overall, we observe a
modulation of the total amplitude that appears at a frequency that is the
difference between the frequencies of the two original waves. This phe-
nomenon can be observed readily with two sound sources that oscillate at
close frequencies.

Figure 5.3. Two waves of
slightly different frequen-
cies are draw in light gray
and dotted gray. The sum of
the two waves is drawn in
black

3Changing position to some other value of x will shift the trace to the left or right but does
not affect the argument. We describe this as a phase shift.
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Exercise 5.8. Consider the function

f (x, t) = sin(x − 2t) + asin(x − (2+ b)t).

For a fixed position in space, say x = 0, plot the function for the
range 0 ≤ t ≤ 50. Use the Manipulate function to vary the values of
the parameters 0 ≤ a ≤ 1 and 0 ≤ b ≤ 0.5. (Note: Use the PlotRange

option of the Plot function to prevent the plot from rescaling when
you use the sliders to vary the parameters).

What is the maximum value of f when a = 0 and b = 0? What is
the maximum value when a = 1 and b = 0? What happens when b is
non-zero?

Two identical tuning forks generate sound at the same frequency, say
440Hz.4 Adding a small mass to one of the arms of one tuning fork
will cause it to vibrate at a slightly different frequency. Striking the tun-
ing forks simultaneously will give rise to two waves propagating through
space but a distant observer hears essentially one tone that is alternately
louder and softer. Hence, detuning the tuning forks gives rise to this am-
plitude modulation of the wave field that we call beats.

Similarly, tuning one string of one guitar to a slightly different pitch than
that of a second guitar (or tuning fork) will also lead to a wavering ampli-
tude if both strings are plucked simultaneously. Readjusting the tuning of
the string so that no wavering is heard is an indication that the two strings
are vibrating at precisely the same frequency. This modulated amplitude
is precisely represented by the behavior illustrated in figure 5.3.

The phenomenon of beats is predicted by the properties of solutions to the
wave equation. That we can also confirm that acoustic waves possess this
property adds to the evidence that the physical behavior of sound waves
is indeed represented by the wave equation. Electromagnetic waves also
display the phenomenon of beats; this a general property of any physical
process that is described by the wave equation. It is also a phenomenon
that can be used for practical purposes. Obviously, tuning a guitar or
piano can be expedited by exploiting the phenomenon but one can also
construct a precision method for measuring the frequency of electromag-
netic waves. One can beat two lasers with similar frequencies against one
another to produce a difference signal at a much lower frequency. That
difference signal can, in turn, be beaten against a microwave signal to
produce a lower frequency difference. This chaining can be conducted
down to low enough frequencies that one can simply measure the fre-
quency directly. This bootstrap strategy has enabled the development of
extraordinarily precise measurements of time.

4This is the frequency of concert A.
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5.4. Interference

Consider now what would happen if we had two point sources in close
proximity. As the wave propagate from the sources, the wave field will
be generally quite complex. So, let us look at a simple system in which the
waves are represented by the function f (r, t) = sin(r − vt)/r. We put one
source at the origin and the second at some distance d along the x-axis. In
figure 5.4, we plot the amplitude of the waves in the z = 0 plane at the time
t = 0. This snapshot of the two sources depicts a rather complex pattern.
The source locations are clearly indicated by the spikes near the center of
the figure. Noticeable at large distances are lines where the amplitudes
cancel. These lines of zero amplitude are known as nodal lines.

Figure 5.4. Two sources are
separated by a small distance.
The amplitude of the summed
waves on the same plane
that contains the sources is
drawn as the light gray sur-
face. At large distances from
the sources, there exist nodal
lines where the summed am-
plitude vanishes

Remarkably, the nodal lines are fixed in space. That is, they do not
change positions as the waves propagate. What this implies is that for
two sources, there will be fixed points in space where the waves cancel
exactly. The origin of the nodal lines can be understood from the follow-
ing analysis. At some distant point P from the two sources, as depicted
in figure 5.5, the waves will have travelled a distance � or � + δ. When δ
is half of the wavelength λ, the wave amplitudes are opposite in sign and
cancel.5 At very large distances, the interior angles α approach π/2. In
that case, the lower triangle becomes a right triangle and the values of δ
and d are related by the trigonometric relation:

δ

d
= cos(π/2−θ) = sinθ.

Exercise 5.9. Plot the functions sin(x), sin(x+a) and sin(x)+sin(x+a)
for 0 ≤ x ≤ 15. Use the Manipulate function to vary the value of the
phase over the range 0 ≤ a ≤ 10. For what values of a does the sum
vanish?

5The waves will cancel also when δ is any multiple of a wavelength plus another half wave-
length. That is, for δ = (2n+ 1)λ/2, where n is any integer.
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Figure 5.5. Two sources are sepa-
rated by a small distance d. The
path length to some distant point
P from the nearer source is � and
from the other source is � + δ. At
very large distances �, the interior
angles α approach π/2

Exercise 5.10. Let us examine the assertion made in the text that
the interior angles α of an isosceles triangle approach π/2 when the
sides � are large. We know that the base of the triangle is less than
the distance d, so let us just consider a triangle with base d and sides
�. Show that tanα = [4�2/d2 − 1]1/2, which approaches tanα = 2�/d
for �� d.

Plot tan−1 x and the constants 0.99π/2 and π/2. For what value of
x = 2�/d is the inverse tangent within one percent of π/2? Is the
assertion a reasonable one?

Exercise 5.11. Let us visualize solutions to the three dimensional
wave equation. Define the function f (x,y,z, t) = sin(r − 3t)/r, where
r = (x2 +y2 + z2)1/2. Use the Plot3D function to plot f over the range
−50 ≤ x ≤ 50 and −50 ≤ y ≤ 50. It is somewhat challenging to manip-
ulate three dimensional plots in the Mathematica program because
the plots are computationally intensive. Choose z = 0 and t = 0 ini-
tially. What happens if you now change the time to some other pos-
itive value? Now plot the function f (x,y,z, t) + f (x − 8, y,z, t). What
is the result? How does the plot change if the second source point is
moved to x − 12?

Exercise 5.12. Repeat the previous exercise using the DensityPlot
function. This will produce a different representation of the field
amplitudes. At what angle θ should we expect the first nodal line
when the second source is at the position x + 8? Is this what you
observe?

We can now address the question of what would one observe given the
wave fields as described above. For an observer standing at some point
P in the far field of the sources, the waves continuously propagate past.
Observers do not measure the wave amplitudes directly, though. Without
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going into any particular detail on the nature of the observation process
(photographic film, CCD arrays, microphones, etc.) we can assume that,
generally, measurements of wave phenomena are proportional to the wave
intensity I(r), where the intensity is defined as the square of the wave
amplitude.

To understand why the intensity is important, let us consider the function
f (x,y,z, t) = sin(r − vt)/r. If we integrate over one period of oscillation
(T = 2π/v) the integral vanishes. If instead we integrate the square of f ,
we find the following:

(5.5) I(r) =
∫ T

0
dt f 2(x,y,z, t) =

π

vr
,

where the period is defined as T = 2π/v.

Exercise 5.13. Plot the (scaled) wave intensity from Equation 5.5 in
the z = 0 plane, i.e., for points r = (x,20,0), where −20 ≤ x ≤ 20. How
does the intensity change off axis? What happens if you change y to
be 40?

What happens now if we have two sources? We measure the coherent in-
tensity. That is, we measure the square of the summed amplitudes:

I(r) =
∫ T

0
dt [f1(x,y,z, t) + f2(x,y,z, t)]

2 .

For the case where we have offset one source by a distance d along the x
axis (as depicted in figure 5.5) and restrict ourselves to the z = 0 plane, we
can show that the intensity is given by the following expression:

(5.6) I(x,y) =
π [d2 − 2dx + 2r21 + 2r1r2 cos(r1 − r2)]

vr21 r
2
2

,

where r1 = (x2 + y2)1/2 and r2 = ((x − d)2 + y2)1/2. In figure 5.6, we plot the
intensity for two closely spaced sources at a large distance y = L.

Figure 5.6. The intensity I(r)
is shown as a function of x for
a large value of y. The vertical
distance z has been set to zero
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It is possible to conduct an interference experiment in the laboratory,
where a light source is allowed to strike an opaque barrier that has two
thin slits cut into its surface. Measuring the perpendicular distance L from
the barrier to a distant screen and the distance Δx between the first two
dark spots, it is not difficult to show that Δx/2L = tanθ, where θ is defined
as in figure 5.5. Recall that we have also determined that λ/2d = sinθ,
where d is the source spacing and λ is the wavelength. Equating the two
expressions, we can show that the wavelength of the wave is given by the
following relation:

(5.7) λ =
dΔx

[(Δx/2)2 +L2]1/2
.

Thus, if we know the distance between the two slits d and can measure Δx
and L, then we can determine the wavelength of the wave. Alternatively,
if we know the wavelength, we could determine the slit spacing.

Exercise 5.14. Define the function f (x,y, t) = sin(r − vt)/r, where
r = (x2 + y2)1/2. Use the Integrate function to demonstrate that the
integral of f over one period T = 2π/v vanishes. What value do you
obtain for the integral of f 2?

Exercise 5.15. Plot the function I(r) defined in Equation 5.6. Use a
large value for y (≈ 1000) and a large range for x (0 ≤ x ≤ 5000). Use
the Manipulate function to vary the source distance over the range
0 ≤ d ≤ 30. How does the intensity change as d changes?

It is possible to extend this discussion to the situation in which there are
N sources. We can note that for N sources of the form f (xi ,y, t) = sin(ri −
vt)/ri that the intensity will have terms of the form sin2(ri−vt)/r2i and cross
terms of the form sin(ri − vt) sin(rj − vt)/rirj . We find that the following
relations hold:∫ T

0
dt sin2(ri − vt) = π and

∫ T

0
dt sin(ri − vt) sin(rj − vt) = π cos(ri − rj ).

Using these results, it is possible to show that the N -source intensity can
be written as follows:

(5.8) IN (r) =
N∑

i=1

π

r2i
+ 2

N∑

i=1

π

ri

N∑

j=i+1

cos(ri − rj )
rj

.

This leads to relatively complicated intensities for small values of N but
for large N , there is a remarkable outcome.

If we refer to figure 5.5, we obtain cancellation of the wave amplitudes
when δ is half of the wavelength λ. The wave amplitude is a maximum
when δ is a full wavelength. If we consider adding more sources, say one
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at x = −d, it is clear that the path length to the point P will be � + 2δ.
If δ = λ, this source will also add constructively to the amplitude at P .
With a large number of sources, we find sharp peaks in the intensity at
the angles where λ = d sinθ, as indicated in figure 5.7. A realization of
the N source model is known as a diffraction grating.6 The diffraction
effect of a large number of slits was originally discovered by the Scottish
mathematician James Gregory, who observed in 1673 that a narrow beam
of sunlight passing through a bird’s feather split into a series of colored
ovals.

Figure 5.7. The N slit in-
tensity for N = 10 shows
a single sharp peak to the
right of the central maximum.
The sources were assumed to
be separated by the constant
value d

Exercise 5.16. Plot the function defined by Equation 5.8 for y =
1000 and a source spacing of d = 12. Examine the range 0 ≤ x ≤
5000. Convince yourself that you obtain the two-slit result when
N = 2 before proceeding. Study the behavior as you set N = 3,5 and
10. (Note: The double sum can be quite numerically intensive. Use
caution if you decide to investigate large values of N .)

Exercise 5.17. Redraw figure 5.5 and place a source at x = −d. Con-
vince yourself that, if α = π/2, the path from the source at x = −d to
the observation point P is � + 2δ.

5.5. Diffraction

Diffraction refers to the observed phenomenon that waves bend around
obstacles (or that a slit in an opaque mask can act like a point source). An
example of water waves diffracting through an opening in the breakwa-
ter is illustrated in figure 5.8. The wave fronts inside the breakwater are
circular and centered on the opening. This behavior is in stark contrast

6The term diffraction was coined by the Italian Francesco Maria Grimaldi in his 1665 publi-
cation Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo.
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to the sharp shadowing that we would expect of material objects. Imag-
ine spray painting a picket fence and holding a plywood sheet behind
the fence to catch the overspray. Paint droplets that did not strike the
fence would land on the plywood. If we examine the plywood, we would
expect a sharp boundary between the painted and unpainted regions re-
flecting the fact that paint droplets that strike the fence do not reach the
plywood. Waves do not behave like paint droplets. As Grimaldi noted in
1665, waves can bend around obstacles.

Figure 5.8. Ocean waves incident
on the breakwater in the port of
Alexandria, Egypt diffract through
the opening (Image ©Google Earth
2012)

An empirical explanation for the observed behavior of waves was pro-
vided by Christiaan Huygens in 1678.7 Huygens suggested that one can
envision the process of wave propagation by what has come to be known
as wavelet construction. If we envision a point source (point A in fig-
ure 5.9), the wave fronts will propagate in a spherically-symmetric man-
ner with velocity vc. After some time t1, the wave front will have pro-
gressed from point A to a spherical shell of radius r = vct1 and depicted
by the arc HI. If we consider now each point along the arc HI to itself be
a point source (four representative points b are identified), then the wave
front at time t = 2t1 will have progressed to the radius r = 2vct1 depicted
by the arc KL. Each point b along HI will have generated a spherically-
symmetric wavelet (colored gray) that will have propagated a distance
r = vct1. The wavelets constructively interfere at the wave front and de-
structively interfere away from the wavefront. The sum (integral) over all
of the points along the arc HI will lead to the new wave front KL.

Similarly, at a subsequent time t = 3t1, the wave front will have progressed
to a radius r = 3vct1, depicted by the arc DF. Again, the wave front can
be constructed from wavelets originating at all of the points d along the
arc KL.

Huygens’ construction has a geometric simplicity that is quite attractive
and provides a geometrical explanation for diffraction. Each point in

7Huygens’ Traité de la lumière was published in 1690 and was based on his earlier presenta-
tion in 1678 to the French Royal Academy.
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Figure 5.9. Huygens wavelet con-
struction of wave propagation. A
wave from the source A gives rise to
a spherically-symmetric distribu-
tion that can be constructed from
an infinite series of wavelets

space acts as a point source, generating the next wave front. For waves
in free space, the wave propagates along rays (ABC or AGE in figure 5.9),
where the rays represent the direction of motion and are locally perpen-
dicular to the wave fronts. This ray-like nature of light is what led New-
ton to propose his corpuscular theory of light. When a wave encounters a
barrier with a hole in it, however, the points in the hole act like individ-
ual point sources and the wave diffracts into the space beyond the hole.
Hence, a slit in an opaque barrier acts like a point source, like we see in
figure 5.8.

Exercise 5.18. Let us examine Huygens’ assumption that the wave-
lets will constructively interfere at the wave fronts and destructively
interfere elsewhere. Define the function f (x,y, t) = sin(r − 3t), where
r = (x2 + y2)1/2, that vanishes if |r − 3t| > π. This represents a single
oscillation of a sinusoidal wave. Use the Plot3D function to plot
f (x,y,2π) over the range −40 ≤ x ≤ 40 and −40 ≤ y ≤ 40. What
happens when t changes?

Let us consider a line of sources along the x-axis. Use the Sum func-
tion to plot the function fN (x,y, t) where we define

fN (x,y, t) =
1

2N + 1

N∑

j=−N
f (x + j ,y, t).

Plot fN for t = 2π and N = 15 for the same x and y range as before.
What is the behavior of the summed function? Does the wave front
look like (part of) a plane wave? What happens if you set N = 30?

Exercise 5.19. Assume that you have a geometry where waves
propagate through a narrow channel and then enter into a semi-
infinite space. Sketch the wave fronts for plane waves in the channel
as they emerge into the open space.

Huygens’ approach to the problem of wave propagation is, of course,
empirical and does not provide quantitative results. Nevertheless, his
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idea encompasses a number of essential features of wave propagation, to
the extent that geometrical constructions with compass and straightedge
can represent dynamical phenomena like wave propagation. To obtain
quantitative answers, we are faced with the problem of solving a second-
order partial differential equation subject to boundary conditions. This
is beyond the mathematical skills of most students at this point in their
careers, so we shall defer calculation of quantitative solutions to subse-
quent courses and restrict our discussions to the more empirical approach
Huygens suggested.

There are some inconsistencies with Huygens’ construction, though, that
we should discuss. First, solutions of the wave equation for point sources
only take the form of functions r(1−n)/2 f (r ± vt) in one and three dimen-
sions. In two dimensions, the solutions are more complex. This generally
isn’t a restriction, as we are most often thinking about solutions in three
space dimensions (even if forced to plot two-dimensional slices). Sec-
ond, in figure 5.9, we only plotted the forward propagating section of the
wavelets. If we are to really think of the points b and d as point sources,
they should radiate in all directions, not just the forward direction. In
two dimensions, such backward propagating terms are present but that is
not the case in one and three dimensions. So, we can add a prescription
for application of Huygens’ wavelets that one should only use the forward
propagating portion of the wavelet when constructing the wave fronts in
free space.

It happens though, that backward propagating wavelets do arise when
waves encounter physical obstacles. For wave scattering from small ob-
jects, construction of solutions to the wave equation does involve a math-
ematical process of adding the initial source waves to wave propagating
away from the object in all directions and enforcing suitable boundary
conditions at the surface of the object. For small (effectively spherical) ob-
ject, a reasonable approximation is that the total wave field will be given
by the sum of the incident wave plus a point source centered on the object.

Remarkably, the German physicist Max von Laue and his experimental
collaborators Walter Friedrich and Paul Knipping demonstrated in 1912
that x-rays diffracted from a crystal of copper sulphate. This was remark-
able in one sense because x-rays were widely believed to be corpuscular
in nature. Diffraction is a property of waves, so the demonstration that
x-rays diffract confirms that they are electromagnetic waves, like light
and radio waves. The result was also remarkable because it now meant
that x-rays could be used to probe atomic structure, at least for crys-
talline solids. In their apparatus, Friedrich and Knipping sent a narrow
beam of x-rays through a crystal and thence onto a photographic plate.
They observed a series of bright spots around the central beam spot that
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they interpreted as due to the diffraction of the x-rays. Laue provided
an explanation of why the experiment produced the spots that were ob-
served. His ideas were generalized and extended to more crystal forms by
the physicist William Lawrence Bragg. In the summer of 1913, Bragg and
his father William Henry Bragg, who had developed an apparatus that
detected x-rays by the ionization they produce in a gas cell, measured
the diffraction patterns for a number of crystals, including KCl, NaCl and
diamond and were able to reconstruct the lattice spacings of each of the
crystals. They provided the foundation for the science that we today call
crystallography.8

To see how Laue and the Braggs resolved the problem of diffraction, con-
sider that atoms in a crystal form some sort of three-dimensional, regular
lattice. Then, starting from some atom in the lattice, we can find the near-
est neighboring atom some distance a away. Let’s define the vector a by
the difference between the position vectors of the two atoms: a = ri+1 − ri ,
where ri is the position of some atom in the lattice and ri+1 is the position
of the nearest neighbor. For a regular lattice, we would also find atoms at
all integer multiples of a from the initial atom.

Figure 5.10. Atoms occupy
positions in a regular lattice
defined by the vectors a, b
and c. We can generally align
a with the x-axis of some co-
ordinate system but it is not
always the case that the crys-
tal directions b and c are per-
pendicular to a. They will not
then align with the y and z di-
rections

Now, let’s find the next nearest atom to the initial atom that is not on the
line defined by a. We can define this direction to be b, as illustrated in
figure 5.10. The vectors a and b define a plane in three dimensions. If we
now find the nearest neighbor atom that is not on the a-b plane, we can
define the direction c. Together, the vectors a, b and c form a basis in three
dimensions, although not necessarily an orthogonal basis. The vectors a,

8Laue won the Nobel Prize in 1914 “for his discovery of the diffraction of x-rays by crystals”
and the Braggs shared the Nobel Prize in 1915 “for their services in the analysis of crystal
structure by means of x-rays.” Laue’s work was based on transmitted x-rays and Bragg’s
apparatus utilized reflected x-rays, causing some to note that the sequential Nobel Prizes
were awarded for two sides of the same coin.
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b and c provide what we might call the natural basis for a crystal, as all
atoms in the crystal can be indexed by integer displacements in a, b, c
from one another.

Mathematically, by basis, we mean that any vector r can be uniquely
decomposed into components:

(5.9) r = raa+ rbb+ rcc,

where the components are real numbers. In our usual Cartesian basis, the
unit direction vectors x̂, ŷ and ẑ are orthonormal. That is, they are orthog-
onal and normalized such that x̂ · x̂ = 1, etc. The problem of decomposing
a vector into components along some non-orthogonal, non-normalized
basis vectors has been solved by the mathematicians by introducing the
dual basis.9

Consider the vectors α, β and γ defined as follows:

(5.10) α =
b× c

a · (b× c) , β =
c× a

a · (b× c) and γ =
a×b

a · (b× c) .

These are the dual vectors to the original vectors a, b and c and they also
form a basis in three dimensions.

Exercise 5.20. Define the basis vectors a = (a1, a2, a3), b = (b1, b2, b3)
and c = (c1, c2, c3). Show that the following vector identities are true:

a · (b× c) = b · (c× a) = c · (a×b).
Use this result to prove that the following relations hold:

a ·α = 1 a ·β = 0 a ·γ = 0
b ·α = 0 b ·β = 1 b ·γ = 0
c ·α = 0 c ·β = 0 c ·γ = 1.

Exercise 5.21. Consider a rectangular solid, with basis vectors a =
(a,0,0), b = (0, b,0) and c = (0,0, c). Construct the dual vectors for
this system. Can you explain why the crystallographers would use
the terminology reciprocal vectors?

The components of some arbitrary vector r can now be decomposed into
components along a, b and c as follows:

(5.11) r = (r ·α)a+ (r ·β)b+ (r ·γ)c.
Conversely, the vector r can be decomposed into components along the
dual vectors as follows:

(5.12) r = (r · a)α+ (r ·b)β + (r · c)γ.

9In crystallography, the dual basis is usually referred to as the reciprocal basis.
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Exercise 5.22. Consider the basis vectors a = (1,0,0), b = (1,2,0)
and c = (0,2,3). What are the reciprocal vectors?

Consider now the vectors r1 = (5,9,12) and r2 = (−3,14,6). What are
the components of r1 and r2 in the a, b and c basis?

The problem of diffraction from a crystal lattice is much like the problem
that we solved for N slits. If a crystal is illuminated by electromagnetic
waves (x-rays), each atom in the beam will scatter some of the incident
energy. Each atom will act like a point source and, in an initial approx-
imation, have the same amplitude. In practice, this assumption of equal
amplitudes is not a particularly good choice but it will suffice for now. We
will obtain constructive interference only for particular directions where
the path lengths from the different sources are multiples of a wavelength
λ. The difference here is that the sources are not just equidistant along
some x-direction but occupy the lattice positions in three dimensions. If
we use the natural coordinates for the lattice sites, then the sum over the
source positions as in Equation 5.8, Laue recognized, becomes three sums
over the lattice indices.10

Consider now an incident wave propagating in the direction k0. This wave
will have a wavelength λ = 2π/ |k0|. The diffracted wave will have the
same wavelength as the incident wave, hence the wave vector k of the
diffracted wave will have the same magnitude as the incident wave. For
two atoms at locations r1 and r2, constructive interference will be found
when (k − k0) · (r2 − r1) = 2πN , for N an integer. We know that r2 − r1 =
ha + kb + lc, where (h,k,l) are integers, so the condition for constructive
interference reduces to the following equation:

(5.13) (k−k0) · (ha+ kb+ lc) = 2πN,

for some integer N . The solution is immediate, if we write k and k0 in
terms of the dual vectors:

(k−k0) = kαα+ kββ + kγγ.

Then, computing the dot product we find:

h kα + k kβ + l kγ = 2πN.

This will be satisfied if each of the components of k is an integer multiple
of 2π. Recall the wave vector is |k| = 2π/λ, so the result is true if the
difference in wave vector is an integral multiple of the dual vectors:

(5.14) k−k0 = hα+ kβ + lγ.

10Traditionally, the integers h, k and l are used for the indices in crystallography, in honor
of the British mineralogist William Hallowes Miller, whose A Treatise on Crystallography was
published in 1839. We shall continue the practice but note the potential confusion of the
index k with the wave vector k.
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The consequence of this result is that information about the lattice posi-
tions of atoms in a crystal is directly encoded in the positions of coherent
interference. We can use Huygens’ principle to discover the structure of
materials at an atomic level.

Figure 5.11. A beam with wave
vector k0 is directed towards a crys-
tal lattice. Diffracted rays k from
the top layer of atoms (gray dots)
will coherently interfere at partic-
ular angles θ. Diffracted rays from
the next layer of atoms will only in-
terfere coherently with those from
the top layer when the difference in
path lengths 2δ is a multiple of the
wavelength λ

Solving Equation 5.14 will provide us with a direct means of interpreting
the diffraction patterns observed by Laue, Friedrich and Knipping. We’ll
investigate this in more detail presently but a more intuitive approach
was pursued by W. L. Bragg, whose idea is indicated in essence by fig-
ure 5.11. Bragg’s father had devised an instrument that measured x-ray
intensity by the ionization current produced in a gas cell, which he con-
sidered superior to dealing with photographic plates. He then fashioned
a spectrometer, not unlike the apparatus used by Geiger and Marsden to
measure α particles (See figure 3.5), where the detector was no longer a
microscope but Bragg’s gas cell and the α particle source was replaced by
an x-ray tube and various crystals replaced the thinmetal foils. This appa-
ratus enabled the Braggs, during the summer of 1912, to rapidly measure
the currents as a function of scattering angle.

What the younger Bragg recognized, was that if we consider scattering
from planes of atoms, there will be special angles for which the diffracted
rays originating from the top plane of atoms interfere coherently, as we
saw in figure 5.7. If subsequent atomic planes are displaced by a distance
d, then the diffracted rays from the lower planes will not generally inter-
fere coherently with those from other planes. The criterion for coherent
interference is that the path length 2δ between rays arising from the dif-
ferent planes be a multiple of the wavelength λ. From the geometry of
figure 5.11, it is apparent that δ = d sinθ, from whence W. L. Bragg de-
duced that

(5.15) nλ = 2d sinθ
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would result in coherent interference from the diffracted rays. Bragg’s in-
tuitive result paved the way for direct interpretation of the diffraction pat-
terns obtained by Laue and the results he and his father were obtaining
with their x-ray diffractometer. There was initial doubt as to the actual
wavelengths of the x-rays, so the Braggs reported their initial results in
terms of the variable d/λ. We’ll return to the issue of determining λ
shortly.

Exercise 5.23. W. L. Bragg observed an interference fringe at 10.3◦

when examining the simple cubic lattice of KCl. What is the ratio
d/λ that corresponds to this angle? (For Bragg’s geometry, construc-
tive interference occurs when nλ = 2d sinθ.) If λ = 0.11nm, what is
the lattice spacing in KCl? What do we mean by the size of a potas-
sium atom?

It is a bit tricky to see how to obtain solutions to Equation 5.14. We’ll uti-
lize a graphical illustration of the problem devised by the German physi-
cist Paul Peter Ewald. Suppose, for example, that we have managed some-
how to align the beam with the a direction. Where will we observe con-
structive interference? If we plot the k0 vector and a sphere of the same
radius, coherent diffraction will occur when the point k = k0+hα+kβ+lγ
lies on the surface of the sphere. This is illustrated in figure 5.12, where
the reciprocal lattice is displayed as a series of gray dots. Lattice points
that are on (or close to) the spherical surface are colored black. This pat-
tern will extend off to infinity from the origin and, hence, a photographic
plate would record spots that correspond to the spots on the surface of the
Ewald sphere. Calculating the angles between the spots permits us to use
the previous result that nλ = d sinθ, where here d can be mapped to one
of the crystal dimensions a, b or c.

If the beam is rotated around the crystal, or the crystal within the beam,
the pattern of dots changes. In figure 5.13, the beam is directed diagonally
across the unit cell of a cubic lattice. Notice the three-fold symmetry in
the diffraction pattern. This mirrors the three-fold symmetry that you
would observe if you look diagonally across a cube. The Braggs exploited
the natural crystal symmetries in their experiments, directing the x-ray
beams normal to the crystal planes, where alternately, h, k and l would be
constant. Determining structures of more complex crystals was aided by
W. L. Bragg’s observation that atoms need not be ordered in a simple cubi-
cal lattice but could also be arranged where adjacent planes were shifted
laterally in face-centered cubic or body-centered cubic forms. Potassium
and chlorine are close in size—giving rise to KCl crystals that are cubic—
and a quick resolution of the structure of KCl. Sodium, on the other hand,
is significantly smaller than chlorine. As a result, the NaCl crystals are or-
dered in a face-centered cubic form that modifies the diffraction pattern.
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Figure 5.12. A beam with
wave vector k is directed
along the positive x axis,
as indicated by the arrow.
Diffracted rays from the cu-
bic crystal could lie anywhere
on the sphere of radius |k|.
Coherent diffraction only oc-
curs when the reciprocal lat-
tice points (gray dots) lie on
the spherical surface (black
dots)

Figure 5.13. A beam with
wave vector k is directed
as indicated by the arrow.
Diffracted rays from the cu-
bic crystal could lie anywhere
on the sphere of radius |k|.
Coherent diffraction only oc-
curs when the reciprocal lat-
tice points (gray dots) lie on
the spherical surface (black
dots)

One of the first observations that we can make from figures 5.12 and 5.13
is that the wave vector |k| needs to be reasonably large compared to the
size of the dual lattice. Otherwise, there will generally be no points that
satisfy the conditions of Equation 5.13. As a practical matter, it means
that the wavelength λ should be comparable in size or smaller than the
lattice spacing. This is why we see no diffraction patterns from crystals
using visible light. The lattice spacings for most simple compounds is in
the range 0.1–0.4nm, where the visible spectrum of light spans the range
from 400 to 700nm. It was not until the advent of x-ray tubes that diffrac-
tion experiments could yield information about the nature of matter.
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Exercise 5.24. Use the Table function (along with Partition and
Flatten) to construct a rectangular lattice with a = 1, b = 1 and
c = 1 and with 5 points along each direction. Plot the lattice with the
ListPointPlot3D function. What symmetry of the lattice do you
observe when looking along the a axis? What symmetry do you ob-
serve when viewing across the diagonal of the lattice? What happens
if you change b and/or c to values larger than 1?

Exercise 5.25. It is possible to visualize the Ewald sphere using the
Graphics3D function.

Graphics3D[{Sphere[#,0.2]&/@Tuples[Range[−2,2],3],
Sphere[{−6,0,0},6]}]

will generate a lattice of small spheres (representing the recipro-
cal lattice) and a larger sphere (representing |k|). Diffraction spots
will occur when the Ewald sphere intersects the lattice points. You
can focus on the reciprocal lattice portion of the plot by adding the
PlotRange->{{-3,3},{-3,3},{-3,3}} directive to the Graphics3D
function. What happens if you change the Ewald sphere radius to 2
or 4? What happens if you move the center of an Ewald sphere of
radius R to the point (−R/√3,−R/√3,−R/√3)?

5.6. Spectra

Aswementioned previously, diffraction of light by a collection of thin slits
was originally discovered by the Scottish mathematician James Gregory,
who observed that a narrow beam of sunlight passing through a bird’s
feather split into a series of colored ovals. This observation coincided with
Isaac Newton’s 1666 observations of white light passing through prisms.
Newton concluded that white light was composed of a number of differ-
ent components that we would today describe as having different wave-
lengths. The amount of light at each wavelength is known as the spec-
trum, a terminology coined by Newton. We can assign a function I(λ)
that characterizes the intensity as a function of wavelength.

The diffraction effect observed by Gregory provides a means for determin-
ing the spectral intensity in a quantitative manner. Newton’s prismatic
method depended upon another property of waves known as refraction.
Waves passing from one medium to the next bend at the interface accord-
ing to the rule n1 sinθ1 = n2 sinθ2, where n1 and n2 are known as the
refractive indices of the materials and the angles θ1 and θ2 are measured
from the normal to the interface. The index of refraction n depends upon
the type of glass used to form the prism, so it was quite difficult to com-
pare the results of different researchers.
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A major advance in the new field of spectroscopy was provided by the
English scientist Henry Grayson, who developed a series of devices that
could inscribe lines in glass microscope slides. Grayson’s original inter-
est was in providing a means of measuring the sizes of biological objects
viewed through a microscope but he quickly realized that his ruling engine
could also prepare high quality diffraction gratings. By 1911, Grayson had
succeeded in constructing gratings with 4700 lines in each millimeter, or
a line spacing of d = 2.13 × 10−7m. Such a level of precision provided
tremendous opportunities to quantify our knowledge of light. It was now
possible to measure the wavelengths of visible light to great precision.

Exercise 5.26. Suppose that we utilize a diffraction grating with
500 lines/mm. At what angles would we observe diffracted light of
wavelength λ = 600nm? We havemλ = d sinθ, wherem is an integer.
What orders m are visible?

If we assume that we have an angular resolution of 1◦, what would
be our resolution in wavelength in the vicinity of λ = 600nm for the
first order (m = 1)? (What wavelength corresponds to a 1◦ change in
θ?) What would be the wavelength resolution for an angular resolu-
tion of one arc-minute?

Figure 5.14. The spectra of
hydrogen (black) and helium
(gray) are plotted as a func-
tion of wavelength. The
spectral intensity is arbitrar-
ily normalized

The German physicist Gustav Kirchhoff established in 1859 that the alkali
and earth-alkali metals sodium, potassium, strontium, lithium, calcium
and barium each has a characteristic spectrum that is different from that
of all the others. This was the first evidence that the spectrum provides
a unique atomic signature. Kirchhoff’s measurements depended upon his
ability to produce exceptionally pure samples of the materials. His ex-
periments used a flame to generate the spectral lines from the samples
and he used a prism to determine the spectra. Use of diffraction grat-
ings subsequently enabled the quantitative measure of the spectral in-
tensity I(λ). The visible spectra of hydrogen and helium are illustrated
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in figure 5.14. There are four prominent lines for hydrogen in the (visi-
ble) wavelength range from 400 to 700nm and more lines for helium in
the same range. With the advent of sensors that were sensitive to wave-
lengths beyond the visible range, into the shorter (ultraviolet) and longer
(infrared) wavelengths, it was found that there are many additional lines
for each element.

We note that the hydrogen and helium spectra illustrated in figure 5.14
are composed of a series of discrete lines, with different relative intensi-
ties for the different lines. Explaining the elemental spectra became the
signature problem for physicists that was only resolved with the develop-
ment of quantum theory. This subject lies beyond our current purview but
we can state that the lines composing the spectra are now understood to
be generated by transitions between two atomic energy states. The energy
associated with the line at a wavelength λ is given by E = hc/λ, where h is
a constant first introduced by the German physicist Max Planck. A spec-
tral line therefore represents the energy difference between two states and
its intensity is a measure of the probability that such a transition will take
place.

Exercise 5.27. What is the energy associated with a transition
where the wavelength is 397nm? Use energy units of eV. What
is the energy associated with a transition where the wavelength is
656nm? How do these energies compare to the several MeV energies
that Rutherford observed for α particles?

This brings us to the resolution of one problem of x-ray diffraction that
we avoided previously. As the Braggs discovered, diffraction occurs when
the condition nλ = 2d sinθ is satisfied. So, the question arose as to why
their diffraction experiments (and Laue’s photographic plates) produced
narrow dots. If the x-ray tubes were producing a wide spectrum of x-rays,
then the x-ray interference patterns should be smeared by the existence of
more than one wavelength in the x-ray spectrum. Yet, distinct diffraction
spots were observed.

At the time, the spectral output of the x-ray tubes had not been deter-
mined. X-rays were generated in the tubes when an energetic beam of
electrons struck a metal target.11 Today, we understand that the spectral
content of the x-ray tubes is dominated by individual transitions like those
depicted in figure 5.14 but at much shorter wavelengths. The transitions
that give rise to x-rays involve electrons occupying the lowest energy lev-
els in the metal targets (known for historical reasons as K-shell electrons).

11The German physicist Wilhelm Conrad Röntgen discovered penetrating radiation that
emanated from high voltage cathode ray tubes in 1895. He was awarded the first Nobel
Prize in physics in 1901 for his discovery of what he termed x-rays.
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As a result, the x-ray spectrum produced by the x-ray tubes is dominated
by a single (or a few) individual wavelengths. Hence, the early experi-
mental x-ray studies produced well-defined diffraction patterns. Modern
x-ray diffractometers employ specialized optics (monochromators) to en-
sure that only a single wavelength from the source strikes the target.

5.7. Unfinished Business

Our studies thus far have provided significant insights into the nature of
matter and the structure of spacetime. We now know that atoms have a
nuclear center that comprises the vast majority of the mass of the atom
and that atoms, at least in crystals, occupy regular lattice sites. The nu-
clear dimension is of the order of a few femtometers (10−15 m) and the
interatomic spacing in a crystal lattice is of the order of a few tenths of a
nanometer (10−10 m).12 As a result, there is a factor of 105 between the
nominal size of the nucleus and what we might call the size of the atom.

This large difference makes generating any sort of reasonable representa-
tions of atoms impossible. Consider representing the nucleus by a circle
of radius 1 cm, about the size of a visible dot on the blackboard at the
front of the classroom. If scaled correspondingly, neighboring atomic lat-
tice sites would be about 1 km away. No sensible instructor is going to run
a kilometer across the campus to mark the neighboring spot in the atomic
lattice. Reasonable instructors will perhaps mark the lattice dimensions
as a few centimeters or perhaps a meter in size but we know that this scal-
ing is wholly incorrect. Everyone has seen the representation of atoms as
a nucleus (depicted by a small cluster of grapes) surrounded by orbiting
electrons. We shall not reproduce such a representation here because it
is completely misleading. Not only is the scale of such representations
incorrect but we now know that it makes no sense whatsoever to think of
the atomic constituents as particles in the classical sense.

In 1927, Clinton Davisson conducted a series of experiments at Bell Lab-
oratories in the United States (with Lester Germer) that examined the
results of scattering electrons from nickel crystals. In Scotland, mean-
while, George Paget Thomson (son of J. J. Thomson) examined the results
of sending beams of electrons through thin metal foils. The results of
these experiments turned out to be identical to the results of the Braggs
and Laue in scattering x-rays! The electrons diffracted from the atomic

12To avoid decimals, atomic dimensions are often provided in units of angstroms (Å), named
after the Swedish physicist Anders Jonas Ångström, whose 1868 chart of the solar electro-
magnetic spectrum was graded in units of 10−7mm. This unit became known as the Å in his
honor.
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lattice in precisely the same way that x-rays did.13 The interpretation of
this result is inexorably that electrons are waves.

The Davisson/Thomson result strikes home the fact that the microscopic
world is wholly different than the macroscopic world that we observe with
our eyes. We have used the word particle to mean a small bit of mat-
ter and have undoubtedly visualized particles in our mind’s eye as small
spheres of some sort. Yet, the experimental evidence dictates that elec-
trons are waves. Fundamentally, the picture of electrons circling about a
small cluster of grapes cannot really represent an atom, despite the wide-
spread popular usage of such images.

Envision that somehow we could build a super microscope that would
enable us to resolve the world at ever smaller scales: from grains of sand to
microorganisms like bacteria. If we were to increase the resolution of our
microscope even further, to the level of molecules and atoms, the images
would never come into focus. Atoms are not spheres of a particular size
and atomic nuclei are not clusters of proton and neutron grapes. The
electron clouds that surround the nuclei do not have sharp edges. In some
sense, electron cloud is probably a good choice of nomenclature. Clouds
in the sky have discernible shapes from afar but, up close, clouds do not
have definable edges.

At yet smaller scales, the components of the nuclei are also waves: neu-
trons also diffract from crystals, as was demonstrated by Ernest Wolland
in 1945.14 So, the nucleus inside of the atom also does not possess a sharp
edge. The ideas that the word “particle” may conjure in one’s mind are not
relevant in discussing the microscopic structure of the universe. Nothing
in our perceptible, macroscopic universe, it seems, is truly applicable at
the microscopic scale.

Exercise 5.28. The French physicist Louis Victor Pierre Raymond
duc de Broglie postulated in 1924 that the electron wavelength λ
was related to its relativistic momentum p by the formula λ = h/p,
where h is Planck’s constant.15 Given that atomic crystals have a lat-
tice spacing in the range of 0.3–0.4nm, what would be the necessary
momenta for electrons to display diffraction effects?

13Davisson and Thomson were awarded the Nobel Prize in 1937 “for their experimental
discovery of the diffraction of electrons by crystals.”
14Wolland was joined in his experiments by Clifford Shull in 1946. Shull received the Nobel
Prize in 1994 “for the development of the neutron diffraction technique” (with Bertram N.
Brockhouse “for the development of neutron spectroscopy”) but Wolland had died in 1984
and was therefore ineligible.
15De Broglie was awarded the 1929 Nobel Prize in Physics “for his discovery of the wave
nature of electrons.”



VI
Terrestrial Mechanics

Newtonian mechanics epitomizes the triumph of the process of physics.
One can, with two guiding principles and a handful of mathematical
equations, describe the behavior of planets orbiting the sun and α parti-
cles scattering from nuclei. As a result of these successes, it is only natural
to ask can we not use the same ideas to describe phenomena on our own
planet? As the astute student can probably recognize, given that the text
does not end at this point, the answer is a resounding yes. Unfortunately,
motion in our terrestrial environment is significantly more complicated
than the cases that we have studied to this point.

As it happens, essentially the only force acting between the earth and the
sun is the gravitational force. The sun radiates a constant stream of high
energy particles, mostly protons and electrons, into space along with the
electromagnetic waves that we call sunlight but the force exerted on the
earth by this radiation is miniscule compared to the gravitational force.
The sun also has a large magnetic field but it does not extend to any sig-
nificant degree to the earth’s orbital distance. So, to a very good approxi-
mation, gravity is the only force acting on the earth due to the sun.

This is not the case for motion of physical objects in our personal experi-
ence. Consider, for example, the flight of a golf ball. In order for the ball
to move forward, it must displace the air in front of it. This resistance
to forward motion can be expressed as a force acting on the ball but this
resistive force is not a fundamental force like gravity.1 Instead, we shall
have to empirically determine the nature of the force.

In addition, it is possible to impart spin to a golf ball. Professional golfers
do so in a strategic fashion to “shape” their shots to avoid obstacles or
tailor their approaches to the greens. Novice golfers often impart spin
inadvertently, resulting in hooks or slices where the trajectory of the ball

1Physicists have thus far identified four fundamental forces: gravity, the electromagnetic
force, the strong nuclear force and the weak nuclear force. Other forces with which the
student might be familiar, such as capillary forces or frictional forces, are macroscopic man-
ifestations of the electromagnetic force.
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diverges dramatically from the intended direction. Apparently, the fact
that the golf ball is spinning about its center of mass also gives rise to a
force that we shall have to empirically determine.

So, to discuss motion of objects in terrestrial environments, we shall have
to modify Newton’s Equation 1.7 slightly to account for the fact that ob-
jects may be subject to multiple forces. We can write the following suc-
cinct relation:

(6.1)
∑

i

Fi =ma,

where the large Greek sigma indicates that one must sum over all of the
forces Fi acting on the object.

Equation 6.1 provides us with a means for quantifying the behavior of
terrestrial objects. Consider, for example, a golf ball that is sitting on
the ground. The ball is, of course, subject to the gravitational force that is
directed toward the center of the earth. Yet, as it is not moving, it is clearly
not accelerating. From Equation 6.1, we can infer that the (vector) sum of
the forces acting on the ball must be zero, as a = 0. As a result, there must
be some other force acting on the ball, in opposition to the gravitational
force. This force is provided by the matter that makes up the earth itself,
which resists any subsequent motion of the golf ball towards the earth’s
center.

Figure 6.1. A free-body diagram
represents the forces (arrows) act-
ing on an object (gray circle). A co-
ordinate system is necessary, as the
forces are vectors

Physicists have developed an abstract, pictorial means of representing
Equation 6.1 known as a free-body diagram. In a free-body diagram,
an object is represented by a circle or rectangle. The object may be an
airplane or a baseball or a battleship but it is not important to draw a
faithful representation of the object itself. Forces acting on the (center
of mass of the) object are depicted as arrows, as indicated in figure 6.1.
While we have been discussing a golf ball sitting on the ground, the free
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body diagram illustrated in figure 6.1 would also represent situations in
which a helicopter was hovering motionless above the ground and a tug-
boat was floating in a harbor. In both those situations, the gravitational
attraction of the earth provides a downward force on the objects and, in
each case, there is some other force opposing the gravitational force. For
the helicopter, we call that force “lift” and, for the tugboat, we call it the
“buoyant force.”

For the case of the golf ball sitting on the ground, the resulting equation
for the acceleration is F1+F2 = 0, where if we assume from figure 6.1 that z
is directed upward from the earth’s surface, the gravitational force acting
on the golf ball would be F2. The force opposing the gravitational force
must be equal and opposite, in order for the acceleration to vanish: F1 =
−F2. We shall make further use of the free-body diagram as we continue
to examine the motion of terrestrial objects.

6.1. Motion Near the Earth’s Surface

In the vicinity of the earth’s surface, gravitational acceleration of objects
can be considered to be constant, at least to a first approximation. For
golf balls, baseballs or other objects that do not travel far in the vertical
direction compared to the earth’s radius of 6400km, we can construct a
local Cartesian coordinate system in which the gravitational force acts in
the vertical (z) direction, as depicted in figure 6.2. In this regard, mo-
tion in the vertical direction will always be subject to a constant accel-
eration, whereas motion in the horizontal directions may or may not be
accelerated.

Figure 6.2. At the surface of the
earth, one can define local coor-
dinate systems. The gravitational
force on objects near the earth’s sur-
face acts along the vertical (−z) di-
rection

Let us begin by considering relatively slow-moving objects, where we can
neglect resistive forces that arise due to motion through the atmosphere.
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The gravitational field G, as we defined in Equation 2.40, depends on the
distance of an object from the center of the earth. For motion in the vicin-
ity of the earth’s surface, a difference of even a kilometer in the vertical di-
rection is a small fraction of the earth’s radius of 6400km. As a result, the
acceleration due to gravity can be considered constant and vertically di-
rected. This is, of course, only approximately true and the approximation
fails if we consider rockets or other projectiles that traverse a significant
distance across the earth’s surface, but is a generally good approximation
for golf balls and the like.

So, neglecting air resistance, motion in the vicinity of the earth’s surface
is subject to an acceleration a = (0,0,−g) = −gẑ, where we assume the z
axis to be upwardly directed. The acceleration is the time derivative of
velocity, so because a is a constant, this can be integrated immediately:

∫ t2

t1

dt
dv
dt

= a
∫ t2

t1

dt.

Thus, we find the following relation2:

v(t2)− v(t1) = a(t2 − t1).
Recall that velocity is the time derivative of position. If we choose t1 to be
some fixed, initial time, then after rearranging and integrating the equa-
tion again, we obtain the following:

∫ t2

t1

dt
dr
dt

=
∫ t2

t1

dt [v(t1) + a(t − t1)] .

Finally, we have

(6.2) r(t2)− r(t1) = v(t1)(t2 − t1) +
1
2
a (t2 − t1)2.

This is the same kinematic equation that we obtained originally (Equa-
tion 1.6) as an approximation to motion. In the case of constant accelera-
tion, the kinematic equation is exact.

Exercise 6.1. Let define the initial time to be t1 = 0 and set the co-
ordinate origin to be x(t1) = (0,0,0). Suppose that an object has an
initial velocity v(t1) = (v1 cosθ,0, v1 sinθ) and is subject to the gravi-
tational acceleration a = (0,0,−g). What is the free-body diagram for
the object? What is the position of the object at a time t2? How long
does it take the object to return to the height z = 0? How far has the
object travelled horizontally in that time?

2Again, there is a potential notational ambiguity here. On the left hand side of the equation,
the velocity v is a function of time and is measured at two specific times. On the right hand
side, the time difference multiplies the constant acceleration.
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Exercise 6.2. In the Mathematica program, define the functions
x(t,x1, v1) = x1 + v1t and z(t, z1, v2) = z1 + v2t − 10t2. These functions
represent the motion of an object in the x-z plane as a function of
time, initial position and initial velocity. Use the ParametricPlot

function to plot the position of the object as a function of time over
the range 0 ≤ t ≤ 2. Choose x1 = z1 = 0 and v1 = v2 = 5.

Use the Plot function to plot the functions x and z as a function of
time. Calculate and plot the derivatives of x and z. Use the Manipu-
late function to vary the initial velocities over the range 0 ≤ v1 ≤ 5
and 0 ≤ v2 ≤ 5. How do the plots change as a function of initial
velocity?

Constant acceleration in the vertical direction gives rise to parabolic mo-
tion; the position depends quadratically on the time and thus a plot of
the vertical component of position versus time sweeps out a parabola.
Moreover, without acceleration in the horizontal direction, the trajectory
of an object sweeps out a parabola in space also. (The horizontal position
changes at a constant rate, proportional to the velocity in the horizontal
direction. A plot of vertical position versus horizontal position instead of
time results in a simple rescaling of the horizontal axis.)

For many physical objects, neglecting the resistive force that arises from
displacing air (or fluid) in the path of travel is a poor approximation.
Watching the trajectories of baseballs or golf balls, it is evident that the
path is not parabolic. The trajectory is not symmetric; the final portion of
the trajectory is much steeper than the initial portion.

Unfortunately, there is no universal law for the resistive force that af-
fects flying objects. Indeed, the motion of objects through fluids or flu-
ids around objects is generally quite complex and depends strongly on
the properties of the fluid like density, viscosity and compressibility and
the relative velocity of the object. For example, a chunk of rock enter-
ing the earth’s atmosphere at a relative velocity of 17km/s leaves a fiery
trail across the sky: we call such objects meteors or, more romantically,
shooting stars.3 The passage of the rock through the atmosphere trans-
fers so much energy to the air as it travels that the air glows and the rock
partially melts, leaving a bright trail across the sky. We observe no such
dramatic behavior of rocks hurled into a pond. They generate splashes
of water upon striking the pond surface (and ripples) but leave no bright
trails through the atmosphere.

3In 2013, a 17–20m diameter meteor plunged through the sky over Chelyabinsk, Russia. Its
trajectory was recorded by now-ubiquitous cameras and, for a time, was brighter than the
sun. The shock wave generated by the meteor’s passage through the atmosphere damaged
over 7200 buildings and injured thousands, mostly due to flying glass from broken windows.
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So, in truth, the study of the flight of golf balls involves rather complex
fluid mechanics that we shall not pursue here. Rather, we shall investi-
gate simpler models that can capture some of the behavior of more com-
plex phenomena. As we have stated previously, this is a common tactic
in physics: study a problem for which you can generate analytic solutions
before venturing into deeper mathematical waters. Such a strategy allows
us to study (simplified) systems and gain some understanding of how the
various parameters affect the behavior of the system.

Figure 6.3. The free-body diagram
for an object (gray sphere) moving
with a velocity v includes the gravi-
tational force F1 and other, aerody-
namic forces F2 and F3

If we consider the flight of a physical golf ball that is initially travelling in
the x-z plane, the ball may ultimately hook or slice into the transverse y
direction. This implies that there must be some force acting on the ball in
that direction: without a component of acceleration in the y-direction, the
y-component of velocity will remain zero and, hence, the y-component
of position will not change. In figure 6.3, we have illustrated the free-
body diagram for a golf ball. Using our conventional choice for coordinate
systems, there is a constant gravitational force F1 acting on the ball in the
vertical z direction. We anticipate that there will be a force F2 oppositely
directed to the velocity v that opposes the forward motion of the ball and
there may also be some component of force perpendicular to the direction
of motion F3 that accounts for hooks and/or slices.

Let us ignore, for the time being, other forces and focus on the force that
opposes the motion. We propose to investigate a resistive force F2 that is
proportional to the velocity: F2 = −αv, where α is a constant of propor-
tionality and the sign is chosen to produce a force in opposition to the di-
rection of motion. We note that α must have dimension. The dimensional
equation is (M · L/T2) = α(L/T), from which we can infer that α has units
of (M/T). One question that arises is can we infer any physical properties
of the parameter α? The physical characteristics of the system include the
size of the object (L) or its cross-sectional area (L2), the density of the air
(M/L3) and the viscosity of the air (M/LT). In 1851, the British physicist
George Stokes analyzed the problem of a small sphere drifting through a
fluid and proposed that the constant α can be interpreted on dimensional
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grounds as the product of the size of the sphere and the fluid viscosity.4

The result Stokes obtained turns out to have limited applicability but we
shall see where the idea leads.

The kinematic equation describing this simplified system can be obtained
from Equation 6.1 (dividing by the mass of the object m) and can be writ-
ten as follows:

(6.3) g− α

m
v = a =

dv
dt

,

where m is the mass of the object and g = −gẑ is the gravitational acceler-
ation. If we assume that motion takes place in the x-z plane, Equation 6.3
separates into two component equations:

−α
m

vx =
dvx
dt

and − g − α

m
vz =

dvz
dt

.

These can be solved quite readily with a change of variables. Let u =
−g−(α/m)vz, then du = −(α/m)dvz and the equation for vz can be rewritten
as follows: ∫

du

u
= − α

m

∫
dt.

Integrating both sides, we find lnu = −(α/m)t + c, for some constant of
integration c. Exponentiating both sides of this result yields the following
result:

u = −g − (α/m)vz = c′ e−(α/m)t ,

where the original constant of integration c has become a multiplicative
factor c′ . If we define an initial condition that vz(t = 0) = v2, then this will
fix the multiplicative factor. We find the following result for the velocity
in the z-direction:

(6.4) vz = v2 e
−(α/m)t − mg

α

[
1− e−(α/m)t

]
.

If we assume that vx has some initial value v1, then we can also show that
the following relation holds for vx:

(6.5) vx = v1 e
−(α/m)t .

We have plotted the velocities for different values of α in figure 6.4. With
no resistive force (α = 0), we can see from figure 6.4 that the velocity in the
x-direction is unchanged over time and that the velocity in the z-direction
changes linearly under the influence of the constant gravitational accel-
eration. When a resistive force is present (gray curves in figure 6.4) the
velocity in the x-direction decreases. Initially, the rate of change of veloc-
ity in the z-direction is larger than that of the gravitational acceleration.
At later times, the velocity in the z-direction changes less.

4Stokes derived the result α = 6πηR, where η is the viscosity and R the sphere radius.
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Figure 6.4. The time evolution of
the velocity depends on the value
α/m. The black curves represent the
case α/m = 0 and the gray curves
represent a case where α/m � 0

Exercise 6.3. Complete the missing steps in the derivation of Equa-
tion 6.4. Use these results to derive Equation 6.5.

Exercise 6.4. Use the Plot and Manipulate functions to plot the ve-
locity of an object as a function of time, using Equations 6.4 and 6.5.
Assume that v1 = v2 = 5m/s, g = 10m/s2, and consider the inter-
val 0 ≤ t ≤ 2. What happens as α/m changes from 0.1 to 0.5? What
happens at very long times (t→∞)?

One problem you may find in plotting the solutions to vz is the fact that
the representation in Equation 6.4 depends inversely on α. Actually, the
vertical velocity has a finite limit when α vanishes. Note that the expo-
nential function has a series expansion:

e−x = 1− x + x2

2!
− x3

3!
+ · · ·

whereby

1− e−x = x − x2

2!
+
x3

3!
− · · ·

Hence, as α limits toward zero, the vertical velocity becomes vz = v2 − gt,
which is the result we obtained previously for constant acceleration.

For very long times, the exponentials in Equations 6.4 and 6.5 tend to
zero. Consequently, at long times, there will be no horizontal velocity. The
vertical velocity tends to a constant value vz = −mg/α, that is often called
the terminal velocity. This occurs when the velocity-dependent resistive
force is equal to the gravitational force. At that point, there is no further
acceleration of the object.

Now to examine the trajectories of objects subject to the resistive force,
we need to integrate Equations 6.4 and 6.5 to obtain the positions. In the
horizontal direction, we have∫

dt
dx

dt
= v1

∫
dt e−(α/m)t .
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If the time integrals extend from t = 0, then we find the following:

(6.6) x − x0 =
mv1
α

[
1− e−(α/m)t

]
,

where x0 is a constant of integration that defines the initial position in the
x-direction. The vertical direction is a bit more tedious, as there are more
terms, so we shall state the result:

(6.7) z− z0 =
m

α

{
−gt +

(
v2 +

mg

α

) [
1− e−(α/m)t

]}
,

where we have again assumed an initial time of t = 0 and an initial vertical
position z0.

Exercise 6.5. Use the function D to demonstrate that Equations 6.6
and 6.7 yield the velocities found in Equations 6.5 and 6.4.

Exercise 6.6. Integrate Equation 6.4 to obtain Equation 6.7.

Exercise 6.7. Take the limit of Equations 6.6 and 6.7 as α tends to
zero. Are your results reasonable?

If we now plot the results of Equations 6.6 and 6.7, we can observe directly
the influence of the resistive force. When the resistive force vanishes, as
we can see in figure 6.5, we obtain a parabolic trajectory. For increasing
values of α, the object travels shorter and shorter horizontal distances.
Additionally, the maximum vertical distance obtained is also reduced as
α increases.

Figure 6.5. The parameter α de-
fines the resistive force. For α = 0
(black curve), one obtains a para-
bolic trajectory. For increasing val-
ues of α (gray and light-gray curves)
the trajectory deviates from para-
bolic. The curves were generated
for the same total time interval

Exercise 6.8. Use the ParametricPlot function to plot the position
as a function of time, as defined by Equations 6.6 and 6.7. Use g =
10m/s2 and initial velocity v = (5.,0.,5.)m/s. What happens as α/m
varies from 0.1 to 0.7? At what times does the object return to the
z = 0 plane? What happens at very long times?
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6.2. Energy Conservation

We can define mechanical workW as follows:

(6.8) W =
∫

ds ·F,

where the integral extends over some (three-dimensional) path. For grav-
itating systems, we found that the force was directed along the vector
r2 − r1. From Equation 2.6, if we consider the work done on an object by
moving it in a gravitational field, only the component of the path along
the direction defined by r2 − r1 will contribute to the integral. In a spher-
ical coordinate system centered at r1, this direction corresponds to the
radial direction.

Figure 6.6. If we set the coordinate
origin at r1, the motion of an object
(r2) from a to b can follow a tortu-
ous path. The potential energy is
constant on surfaces of constant ra-
dius and thus depends solely on the
magnitudes |a| and |b|

We have depicted a particular path in figure 6.6, where the vector r2 − r1
evolves from point a to b over some time. Recalling the original defini-
tion of the gravitational force from Equation 2.4, we can state that the
work involved in moving a mass M2 from a to b is given by the following
expression:

W = −GM1M2

∫ b

a
ds · r2 − r1
|r2 − r1|3

.

The dot product selects only the component of ds that is parallel to r2−r1,
i.e., the radial direction. So, if the point b is located somewhere on the
sphere of radius |a|, the integral will vanish due to the fact that the dot
product vanishes. If b is not on the spherical surface, the integral can
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be solved most readily if we utilize spherical coordinates. An arbitrary
infinitesimal step in spherical coordinates can be written as follows:

ds = dr r̂+ r dθ θ̂ + r sinθ dϕ ϕ̂,

where the polar angle θ is measured from the z-axis and the azimuthal
angle ϕ is measured from the x-axis. The unit vectors r̂, θ̂ and ϕ̂ are
orthogonal.

Exercise 6.9. The unit vectors in spherical coordinates can be re-
solved in Cartesian coordinates as follows:

r̂ = (sinθ cosϕ,sinθ sinϕ,cosθ)

θ̂ = (−cosθ cosϕ,−cosθ sinϕ,sinθ)

ϕ̂ = (sinϕ,−cosϕ,0).

Show that the following results are true:

r̂ · r̂ = 1 θ̂ · r̂ = 0 ϕ̂ · r̂ = 0
r̂× r̂ = 0 θ̂ · θ̂ = 1 ϕ̂ · θ̂ = 0
r̂× θ̂ = ϕ̂ θ̂ × ϕ̂ = r̂ ϕ̂× r̂ = θ̂

Using our compact notation, where r2 − r1 = r12 r̂, the only non-vanishing
component of the integral over the path ds is the radial component over
the scalar dr12:

W = −GM1M2

∫ |b|

|a|

dr12
r212

= GM1M2

[ 1
|b| −

1
|a|

]
.

If we now refer to the definition of the potential energy, given in Equa-
tion 2.16, we find that the difference in potential energies between posi-
tions a and b is given by the following:

Ub −Ua = −GM1M2

[ 1
|b| −

1
|a|

]
,

which is identical to the work done to move from a to b (up to a sign).
Notice that the work performed to move the object from a to b does not
depend upon the path, only on the endpoints. We describe such a force as
a conservative force.

We interpret this result to mean that if we perform work on an object to
change its position in a gravitational field, then this work is manifested
by a change in the potential energy of the system. Work is, consequently,
a form of energy.
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In Chapter 2, we defined (in Equation 2.16) the mechanical energy E of
the gravitational system to be the sum of kinetic T and potential U terms.
In our present discussions about motion near the surface of the earth, we
can adopt a simplified form of the equation. First, if we take M1 to be
the mass of the earth and M2 to be the mass of our object, then the sum
M1 +M2 is effectively the same as the mass of the earth itself. Hence, we
can approximate the kinetic energy of our object as follows:

(6.9) T =
M1M2

2(M1 +M2)
v2 ≈ 1/2M2v2.

where v is the object’s velocity. Similarly, near the earth’s surface, the
potential energy can be simplified. Using our local Cartesian coordinate
system, the vector r2 − r1 is given by r2 − r1 = (Rearth + z)ẑ, where here z
measures the distance from the earth’s surface. In this case, the potential
energy can be written as follows:

(6.10) U = −GM1M2
1

Rearth + z
≈ −GM1M2

Rearth
(1− z/Rearth),

where in the last step, we have made use of the approximation (1+ x)−1 ≈
1 − x when x is a small number. If we consider changes in the potential
energy at two different heights z1 and z2, we can write the following result:

(6.11) ΔU ≡ U (z2)−U (z1) =M2g(z2 − z1),

where we have defined the gravitational acceleration g = GMearth/R
2
earth.

Equations 6.9 and 6.11 define the energy state for objects near the earth’s
surface. The kinetic energy is quadratically dependent upon the velocity
and the potential energy is linearly dependent upon the height above the
earth’s surface.

Exercise 6.10. Plot the functions f (x) = 1/(1 + x) and f1(x) = 1 − x.
For what values of x do the two differ by more than 1%?. If the
earth’s radius is 6400km and the highest point in a golf ball trajec-
tory is approximately 100m, is the approximation we make with f1
a reasonable one?

Exercise 6.11. If an object is held at rest at an altitude h above the
earth’s surface and then released, what would be the velocity just
before impact? Hint: use the fact that energy is conserved.

If we now want to focus on the motion of objects in the vicinity of the
earth’s surface, we have a relatively simple prescription for defining the
potential energy: we can equate it to the negative of the work required
to move the object from a to b. The gravitational force, in our usual co-
ordinate system, has the form F1 = −mg ẑ. As a result, the work integral



§6.2 Energy Conservation 171

projects out only the z-components of any trajectory. We have then

Ub −Ua = −W =mg

∫ b

a
dz =mg(bz − az),

where az and bz are the z-components of a and b, respectively.

Consider now what happens when we include the resistive force. We have
plotted the mechanical energies for the trajectories for different values of
the parameter α (shown in figure 6.5) in figure 6.7. For the case where
α = 0, we observe that the total mechanical energy E is constant. The
kinetic T and potential U energies vary in such a way that the sum is
preserved, as we have come to expect.

Figure 6.7. A resistive force causes
the loss of energy from the moving
object. When α = 0 (black curve),
the total mechanical energy E re-
mains constant, where the kinetic
T and potential energies U do not.
For increasing values of α (gray and
light-gray curves) the total energy
decreases. All curves were gener-
ated for the same total time interval

Such is not the case for values of α greater than zero. The total energy
decreases over time. In some sense, this loss of energy would be a crisis:
we have previously linked energy conservation to time invariance through
Noether’s theorem. Energy conservation is a basic principle of physics and
a violation of this basic principle would be devastating.5

From a physical perspective, however, there is no real mystery. Some of
the kinetic energy of the object is simply transferred to molecules in the
air, albeit in a fashion that makes quantitative analysis difficult. One can

5Experimental verification of a violation of energy conservation would, most likely, lead to
award of a Nobel Prize in physics. So, it would not be completely devastating to everyone.
Experimentalists are always quietly looking for such results but, thus far, no exceptions have
been found.
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imagine that, as the object plows through the atmosphere, a wake of dis-
turbed air is generated, much like the wake trails that boats generate as
they traverse the surface of the water. Unfortunately, the air is not visible
to our eyes, so we cannot directly visualize this behavior.

If we consider now the work performed by the resistive force F2, we find
the following:

W = −α
∫ b

a
ds · v = −α

∫ b

a
[dxvx + dzvz] .

We know x and z as functions of the time t and, so, we can rewrite the
integral in terms of an integral over time:

W = −α
∫ t2

0
dt [v2x + v2z ] ,

where we have utilized the fundamental theorem of calculus and the fact
that dx/dt = vx. and dz/dt = vz. As before, we have also set the initial time
to be t1 = 0.

Substituting in our results for Equations 6.4 and 6.5, we can obtain the
following result for the work performed:

W = −m
2

[
v21 +

(
v2 +

mg

α

)2] [
1− e−2(α/m)t

]

+ 2
m2g

α

(
v2 +

mg

α

) [
1− e−(α/m)t

]
− m2g2

α
t(6.12)

If we compute the sum T +U−W , we find that it is a constant,m(v21+v
2
2 )/2,

as illustrated in figure 6.8.

Figure 6.8. The resistive force
causes the loss of energy from a
moving object. The kinetic T (dark
gray curve) and potential energies
U (light gray curve) do not sum to
a constant. If we include the work
W (gray curve) performed on the
external world, we can account for
all of the energy

We can interpret this result as the total energy of the object plus air sys-
tem is conserved. The total energy includes the mechanical energy of the
object, as we defined previously, plus the work done by the object on the
external world. The resistive force is an example of a non-conservative
force; the work depends upon the path, not just the end points of the
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path. Such a force is also described frequently as a dissipative force, as
energy is dissipated from the mass M2 as time passes.

Exercise 6.12. Show that integrating Equations 6.4 and 6.5 results
in Equation 6.12.

Exercise 6.13. Define functions for T , U andW in theMathematica
program. Show that T +U −V =m(v21 + v22 )/2. Use the Plot function
to demonstrate this graphically for the case where α/m = 0.4, g =
10m/s2 and v = (5,0,5)m/s. Examine the range 0 ≤ t ≤ 1.

Exercise 6.14. Clouds, we know, are made of small droplets of
water. Drops of water spraying from a lawn sprinkler fall to the
ground in less than a second. Rain drops fall from the sky, so why
don’t clouds? Use Stokes’s formula for α = 6πηR and compute the
terminal velocity of a water droplet with R = 10µm. Assume that
η = 1.75× 10−5 kg/m·s.

Now at this point, the alert student may ask what would happen if we
introduce the aerodynamic force F3 that accounts for deflection of the ob-
ject from the plane of motion. We have associated this force with spinning
objects. As it happens, though, a force that acts perpendicular to the di-
rection of motion does no work; the dot product between the force and
the path vanishes. Consequently, incorporating such a force does not af-
fect our discussions of energy conservation in our model system.

6.3. Physics of Baseballs

The simple velocity-dependent force that we have investigated thus far
possesses some of the properties that we need to describe the motion of
objects like golf balls and baseballs. Unfortunately, actual trajectories of
these objects are not well described by a linear dependence on velocity
but appear, instead, to depend upon the square of the velocity. In his
1851 paper, Stokes introduced a dimensionless ratio that we now call the
Reynolds number, that measures the relative magnitude of the inertial
forces, that we have discussed previously, and the viscous forces at work
in the fluid. For motion of an object through a fluid, the Reynolds number
can be written as follows:

(6.13) Re =
ρvL

η
,

where ρ is the fluid density, η is the fluid viscosity, v is the relative ve-
locity of the object in the fluid and L is a characteristic size of the object.
Technically, the motion of objects the size of baseballs through air is as-
sociated with a high Reynolds number and Stokes’s model that depends
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linearly on velocity is not valid. The difference in trajectories is illustrated
in figure 6.9.

Figure 6.9. The resistive force
valid for the flight of baseballs
scales like the square of velocity.
The black curve is the trajectory
obtained with no resistive force
and the gray curve is that obtained
with a force that scales linearly
with velocity. The light gray curve
is the more realistic result obtained
when the resistive force scales like
v2

Exercise 6.15. What is the Reynolds number for a 10µm cloud
droplet? What is the Reynolds number for a 7.5 cm-diameter base-
ball? Assume η = 1.75× 10−5 kg/m·s and ρ = 1.3kg/m3.

In 1916, Lord Rayleigh developed an equation for the motion of a sphere
through compressible fluids, subject to a resistive force that scaled like
the square of the velocity.6 If we again assume that motion is restricted to
the x-z plane, then the equations of motion for the sphere can be written
as follows:

m
d2x

dt2
= −α dx

dt

[(
dx

dt

)2
+
(
dz

dz

)2]1/2

m
d2z

dt2
= −mg −α dz

dt

[(
dx

dt

)2
+
(
dz

dz

)2]1/2
.(6.14)

The coefficient α in this case also has dimension. The dimensional equa-
tion associated with Equations 6.14 isML/T2 = αL2/T2. This implies that
α has dimension of M/L. If we again consider the physical characteristics
of the fluid: density (M/L3) and viscosity (M/LT) and the size of the object
(L), then the proportionality factor α cannot depend upon the viscosity as
there is no time dependence in α.

Rayleigh suggested that the appropriate form for α is α = 12CDρL
2, where

CD is some dimensionless number, ρ is the fluid density and L2 can be
interpreted as the cross-sectional area of the object along the direction

6John William Strutt became the third Baron of Rayleigh of Terling Place, Witham upon the
death of his father in 1873. Rayleigh’s interest in science was an unusual preoccupation for
the landed gentry but his scientific career was quite remarkable. Rayleigh was awarded the
Nobel Prize in physics in 1904 for his discovery of the element argon.
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of travel. For a sphere, this is just πR2, independent of the direction of
travel. The drag coefficient CD will depend on other physical characteris-
tics of the object itself. We can envision that a smooth metal ball will slip
through the air more readily than a rough, nearly spherical, rock.

Unfortunately, while we have the equations of motion, it is not possible
to solve the equations analytically. The dependence on the magnitude of
the velocity |v| couples the x- and z-components of the equations in a non-
trivial manner. If we exclude, for the moment, motion in the horizontal
direction, then the one-dimensional problem of a sphere falling vertically
can be solved. In this case, the velocity in the z-direction satisfies the
following equation:

dvz
dt

= −g + α

m
v2z .

If we rearrange terms and integrate, we obtain the following result:
∫

dvz
g −αv2z /m

= −
∫

dt

(
m

αg

)1/2
tanh−1

⎡
⎢⎢⎢⎢⎣
(
α

mg

)1/2
vz

⎤
⎥⎥⎥⎥⎦ = −t + c

where c is a constant of integration. Solving now for vz, we find that, using
the fact that tan(−x) = − tan(x):

(6.15) vz = −
(mg

α

)1/2
tanh

[(αg
m

)1/2
t

]
+ c′ ,

where now c′ is some constant that will be determined by the initial con-
ditions. Comparing this result with our previous result (Equation 6.4) for
a linear resistive force, we see that the terminal velocity scales like the
square root of mg/α instead of linearly.

Exercise 6.16. Consider the case of an object dropped from rest
(vz = 0), subject to either linear or quadratic resistive forces. For
the same value of αg/m, how does the time evolution of the velocity
differ? Plot vz for each of the two models using the Plot function.
Assume g = 10m/s2 and α/m = 0.4.

If we really want to pursue the study of physical objects, we are now faced
with something of a dilemma. We possess the equations of motion but
cannot obtain an analytic solution for the two-dimensional problem. To
proceed, we can simplify the system further or just solve the problem nu-
merically. Physicists often follow either or both pathways. In the limit of
very shallow trajectories, or nearly horizontal motion, an approximation
can be developed that leads to an analytic expression for the trajectory.
If the problem that you want to study involves nearly horizontal motion,
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then that approach would be satisfactory. If instead, you want to consider
the problem more generally, then a numerical approach will provide the
answers necessary but with the loss of an explicit, functional dependence
on the parameters. One has to run a number of numerical cases to extract
information on how each of the parameters affects the result.

At this point, we shall make use of the new computational tools at our dis-
posal to study the problem numerically. This will free us from any restric-
tions on the applicability of our results. We shall utilize the Mathematica
function NDSolve to construct solutions to the system of equations with a
quadratic resistive force. The syntax associated with using this function
is not intuitive, so we shall provide an example in the following Exercise.

Exercise 6.17. In the Mathematica program, type the following:

Manipulate[ Module[

{soln=NDSolve[{x’[t]==vx[t],z’[t]==vz[t],

vx’[t]==-a*vx[t]Sqrt[vx[t]^2+vz[t]^2],

vz’[t]==-10-a*vz[t]Sqrt[vx[t]^2+vz[t]^2],

x[0]==0,z[0]==0,vx[0]==10,vz[0]==10},

{x,z,vx,vz},{t,0,2}]};

ParametricPlot[Evaluate[{x[t],z[t]}/.soln],{t,0,2},

PlotRange->{{0,20},{-4,6}}]],{a,0,0.5}]

This will result in a plot of the trajectory of an object as a function
of the manipulatable parameter a = α/m.

Technically, the NDSolve function returns a structure. To visualize
the results of a computation, we must utilize the Evaluate function.
To be able to use the Manipulate function on the plotted values, we
have to recompute the solutions to the differential equations that
also depend upon the parameter a. This is achieved by enclosing the
calls to NDSolve and ParametricPlot inside of the Module directive.
The ’ notation is a shorthand for the D function.

First, how does the trajectory change as a increases? Now, plot the
velocities as a function of time. How do the velocities change as a
increases?

Now compute the energies T /m = (v2x + v2z )/2 and U /m = gz. Plot
T /m, U /m and their sum. Is this constant if a is greater than zero?
Where did the energy go?

We can now utilize the ability to solve the equations numerically to study
the behavior of some systems in detail. The approach is general but we
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shall focus on the flight of baseballs as an example. Actually, baseballs
are very complex objects, so we shall again recognize that our results are
approximate. Equations 6.14 and Rayleigh’s suggestion for the form of
α provide us with a framework for studying the motion of baseballs but
measurements on real baseballs indicate that the drag coefficient CD is a
function of velocity and can depend upon the orientation of the ball. So,
the true description of baseballs in flight is more complex that we shall
admit here.

Consider then, the flight of a batted ball subject to the quadratic resistive
force proposed by Rayleigh. A well-struck ball has an initial magnitude
of velocity of approximately v0 = 45m/s (100mph).7 Let us first address
the question of what is the maximum horizontal distance the ball can
travel? If we define the angle θ to be the angle the initial velocity vector
makes with the horizontal direction, then v1 = v0 cosθ and v2 = v0 sinθ,
where we again use vx(t = 0) = v1 and vz(t = 0) = v2. From Rayleigh’s
formula, the parameter α is defined by the cross-sectional area of a base-
ball (L2 = 0.00441m2), the density of air (ρ = 1.22kg/m3) and the drag
coefficient CD . At a velocity of 45m/s, the drag coefficient has a value of
about CD = 0.3. As we are now utilizing somewhat more precise values of
constants, we should use a better value for the gravitational acceleration
g = 9.8m/s2. The mass of baseball can be assumed to be 0.145kg.

Exercise 6.18. Baseballs in a vertical wind tunnel will hold their
position when the air velocity is 42.5m/s. At this velocity, the grav-
itational and aerodynamic forces are equal. This implies that the
terminal velocity of a baseball is 42.5m/s. What value of CD does
this represent?

Exercise 6.19. Using the information above, compute the trajectory
of the baseballs as a function of initial angle θ and find the angle for
which the maximum distance is greatest. The distance will be maxi-
mum when z = 0. If you have a numerical solution to NDSolve saved
as the variable soln, then the time at which z vanishes can be found
with FindRoot[Evaluate[z[t]/.soln],{t,1}], where the final 1
is a guess as to the position of the root. (If you choose to guess 0,
then the FindRoot function will return the first root it finds. As the
vertical position is zero initially, you need to guess a later time.) The
horizontal distance is simply the value of x at that time. It is well
known that, with no resistive force, the maximum distance is ob-
tained when θ = π/4 (45◦). What happens to your result if CD is

7Traditionally, baseball utilizes British units, with velocities measured in miles/hour and
distances measured in feet. One can certainly compute solutions in those units but we shall
utilize SI units for consistency.
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changed from CD = 0.3 to CD = 0.25? What happens to your result
if the initial velocity is 49m/s?

Exercise 6.20. The other parameter affecting the trajectory is the
air density ρ, which depends upon a number of factors, including
the temperature, humidity and altitude of the stadium. Air density
decreases with increasing temperature and also decreases with in-
creasing humidity. (The molecular weight of water is 18Da, where
the molecular weight of air, which is composed of diatomic nitrogen
(28Da) and diatomic oxygen (32Da), is greater.) On a hot, humid
afternoon the air density may be as low as 1.145kg/m3, whereas
on a cold evening in October, the air density may be as high as
1.295kg/m3. Suppose that a ball is batted with an initial angle of
35◦ with the horizontal and an initial velocity of 45m/s. How does
the air density affect the distance travelled?

Exercise 6.21. The resistive force depends upon the parameter
α/m. What is the range of α/m values that we obtain for baseball
trajectories, if the baseball diameter can range from 73 to 76mm,
the air density can range from 1.145 to 1.295kg/m3, CD can take on
values from 0.2 to 0.3 and the baseball mass can range from 0.142 to
0.149kg?

At this point, we should make an attempt to deal with the fact that base-
balls not only translate through space but also generally rotate about their
center of mass. A complete treatment of the phenomena associated with
baseball trajectories still eludes scientists but a reasonable approximation
to their behavior was originally postulated by Newton in 1762, who was
considering the flight of tennis balls.8 Today, the approximation is usually
associated with the German physicist Heinrich Magnus and is known as
the Magnus force.

If the baseball is rotating about some axis, it possesses an angular momen-
tum L (that will be conserved) and an angular velocity ω, as depicted in
figure 6.10. As the center of mass of the ball translates with a velocity v,
portions of the ball below the rotational axis have a relative velocity with
respect to the fluid that is increased by as much as ωR, where R is the
radius of the ball. On the opposite side of the ball, the relative velocity is
decreased by the same amount. As the force on the ball depends on the
relative velocity through the fluid, the rotation gives rise to a differential
force perpendicular to the direction of motion. As illustrated in the figure,

8Mythically, baseball was not invented until 1839 by Abner Doubleday. Nevertheless, the
similar English game of rounders was certainly being played in the 1700s. From an abstract
perspective, the equations are just as applicable to tennis or any other sport involving spher-
ical balls.
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the force on the bottom portion of the ball will be greater than the force
on the top of the ball, giving rise to a force that points generally upward.

In studying the nature of this differential force, the velocity dependence
has been experimentally determined to be proportional to the velocity
squared. As a result, the Magnus force is generally written in the fol-
lowing form:

(6.16) F3 =
1
2
CLρL

2v(ω̂ × v),

where CL is a dimensionless coefficient, ρ is the fluid density, L2 is in-
terpreted as the cross-sectional area of the object and ω̂ is a unit vector
that points in the direction of the angular velocity. Note that this repre-
sentation of the force is essentially identical to the one proposed by Lord
Rayleigh for resistive motion. This is not entirely coincidental. Note also
that we have not provided any sort of derivation for Equation 6.16; none
exists. It is, instead, a relatively simple, phenomenological representation
of the motion of objects derived from experimental data. A detailed un-
derstanding of the complex fluid dynamics problem underlying the flight
of baseballs has not yet been developed but, mercifully, Equation 6.16 ap-
pears to capture the lion’s share of the physics of spinning balls.

Equation 6.16 bears some scrutiny. We note first that the force does not
seem to depend upon the magnitude of the angular velocity ω. It seems
intuitively obvious that, if the ball is spinning more rapidly, the aerody-
namic force would be greater. This is, indeed, the case. Experimental re-
sults in wind tunnels and with pitching machines that can independently
control the spin on the ball and the linear velocity indicate that the an-
gular velocity does affect the force; however, the angular velocity turns
out not to be independent of the linear velocity v. For thrown or batted
baseballs, the mechanical aspects of propelling the ball couple the angu-
lar and linear momenta. Aerodynamics studies of thrown and batted balls
utilize what is termed the spin ratio S = ωR/v, which the ratio of the tan-
gential velocity ωR of the surface of the ball to its linear center-of-mass
velocity v. For a ball that is rolling, without slipping, along a horizontal

Figure 6.10. The angular velocity
ω of the ball gives rise to a resistive
force F3 that is proportional to the
cross product ω × v
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surface we find S = 1. In principle, the rotational motion of the baseball
flying through the air is not strictly coupled to the linear motion, so S
could have any value and need not be restricted to the range 0 ≤ S ≤ 1.
Yet, thrown baseballs invariably have a spin ratio in the range S = 0.1–0.3,
suggesting that the spin and velocity are coupled. As it happens, over this
range of S, the drag coefficient CL is nearly constant. So, even though we
have not explicitly included the spin rate into the equation for the Magnus
force, spin is implicitly included through its correlation with velocity.

Second, Equation 6.16 assumes that the angular velocity of the ball is
a constant. If you drop a spinning object into a tub of water, the rota-
tional motion rapidly dissipates. The viscosity of air is significantly less
than that of water but we should anticipate that there will be dissipa-
tive torques acting on the ball even in air. The experimental evidence at
this point is not definitive but suggests that the relaxation time for such
torques is of the order of twenty to twenty-five seconds. That is, if we con-
sider the time dependence of the angular velocity to be approximated by
the relation ω = ω0e

−t/τ , the relaxation time τ is quite long compared to
the times that balls are actually in flight. Pitched balls reach the catcher
(or the bat) within half of a second of their release. Fly balls are in the
air for just a few seconds, certainly not twenty seconds. As a result, the
fact that the representation of the Magnus force in Equation 6.16 ignores
dissipative torques likely has little effect on its predictive value. This is
not likely to be true for other sorts of projectiles but it seems to be a rea-
sonable approximation for baseballs.

We shall proceed to make use of Equation 6.16 to study the aerodynamic
effects of the Magnus force. We note that the Magnus force does no work
on the ball: F3 · ds = 0. What this means is that the magnitude of the
velocity of the ball is unaffected by the Magnus force. The direction of the
velocity will change but not the magnitude.

6.4. Spin on Baseballs

Addition of another force on the baseball of course complicates matters.
We can no longer restrict ourselves to motion in a plane. Even if the mo-
tion starts in one plane, theMagnus force will generally deflect the motion
into the third dimension, as is illustrated in figure 6.11. As a result, we
shall have to consider the problem as an intrinsically three dimensional
one.

We can begin by defining the equations of motion of a ball with spin.
Utilizing the coordinate system that we have employed thus far, we can
write the following relations:
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Figure 6.11. The Magnus force in
addition to the resistive force of
Rayleigh gives rise to three dimen-
sional trajectories. Motion initially
started in the x-z plane but bends
significantly into the y-direction
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v(t)(6.17)

where

(6.18) v(t) =
[(
dx

dt

)2
+
(
dy

dt

)2
+
(
dz

dz

)2]1/2

and we have used the notation α = CDρL
2/2 and β = CLρL

2/2. The spin
direction is represented as ω̂ = (ωx,ωy,ωz). The vector ω̂ has unit magni-
tude, so its components can also be presented in terms of the polar angle θ
and azimuthal angle ϕ that we have used previously in the spherical coor-
dinate system. In this case we would find ωx = cosφ sinθ, ωy = sinφ sinθ
and ωz = cosθ. One sometimes finds Equations 6.17 presented using the
angular form.

The obvious result of incorporating the Magnus force into our discussion
is that each of the components of velocity is coupled into all three of the
equations. Where wemight have been disappointed that there were no an-
alytic solutions of Equations 6.14, a brief examination of Equations 6.17
and 6.18 will lead us to conclude that a numerical approach is going to
be necessary. Even with the rather drastic simplifications in the physics
associated with theMagnus force, we have not generated a system of equa-
tions that is separable, certainly not for arbitrary values of the parameters
α and β. Let’s begin with the following exercise.
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Exercise 6.22. First, let us define the general system of equations
in the Mathematica program. Type the following:

v[t]=Sqrt[vx[t]^2+vy[t]^2+vz[t]^2]

eqns={x’[t]==vx[t],y’[t]=vy[t],z’[t]==vz[t],

vx’[t]==(-a vx[t] + b(wy vz[t]-wz vy[t]))v[t],

vy’[t]==(-a vy[t] + b(wz vx[t]-wx vz[t]))v[t],

vz’[t]==-g+(-a vz[t] + b(wx vy[t]-wy vx[t]))v[t],

x[0]==0,y[0]==0,z[0]==0,

vx[0]==v1,vy[0]==v2,vz[0]==v3}

soln1=NDSolve[eqns/.{a->0.4,b->0.2,

v1->10,v2->0,v3->10,wx->0,wy->0,wz->1,g->10},

{x,y,z,vx,vy,vz},{t,0,2}]

ParametricPlot3D[{x[t],y[t],z[t]}/.soln1,{t,0,2}]

This will generate a parametric plot of the trajectory for a specific set
of values of the parameters. Note here we have used the parameters
a = α/m and b = β/m but this is a choice not a necessity. We have
made use of the function ReplaceAll (via its shortcut /.) to provide
values of the parameters before passing the system of equations to
NDSolve. In this example, the resulting trajectory is plotted in three
dimensions. The initial velocity was chosen to be in the x-z plane.
Does the trajectory remain in that plane?

Let us now consider the flight of a batted ball with an initial velocity of
45m/s. Suppose that the ball initially departs at an angle of 35◦ with re-
spect to the horizontal. Depending upon how the bat and ball collide, the
ball may initially have topspin or backspin. That is, if we choose the usual
coordinates, the angular velocity vector will either point along the +ŷ or
−ŷ directions.9 The force arising from topspin or backspin is directed in
the x-z plane, meaning that motion that originally started in the plane
will remain in the plane.

Exercise 6.23. Assume that CL = 0.23. Using the parameters
for baseballs from the previous exercises, how does the trajectory
change when ωy = −1,0,1 and ωx = ωz = 0? In particular, what is the
change in the maximum horizontal distance (measured when z = 0)?

Exercise 6.24. Batters that are late on a pitch impart significant side
spin on the ball. For right-handed batters, this implies ωz = −1 and

9We utilize the right-hand convention. If you curl the fingers of your right hand along the
direction of rotation of the ball, the thumb points in the direction of the angular velocity.
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the x-direction lies along the first base line. For left-handed batters,
ωz = 1 and the x-direction would lie along the third base line. Use
an initial velocity of 45m/s and an initial angle of θ = 35◦. What
happens to the balls that initially start out along the base lines for
right- and left-handed batters?

Pitchers utilize spin to affect the trajectory of thrown balls. Here, we con-
sider that the pitch is thrownwith an initial velocity that is predominantly
x-directed. A normal, fastball delivery imparts backspin to the ball but
very few pitchers release the pitch such that the angular velocity is purely
in the ±y-direction. Generally, the angular velocity vector is in the y-z
plane. The ω × v spin-dependence on the force indicates that when the
angular velocity is parallel to the linear velocity, there is no Magnus force.
There is, therefore, no competitive advantage to produce a pitch with a
spin component in the x-direction. In fact, spin along the direction of mo-
tion adds gyroscopic stabilization to the ball. Pitchers call such pitches
“mistakes” and batters call them home runs.10

Major league pitchers typically throw fastballs with an initial velocity in
the range of 40–45m/s. Such pitches typically have the angular velocity
vector predominantly in the y-direction but “cutting” fastballs have the
angular velocity vector tilted more into the z-direction. Breaking pitches
are released to provide topspin but the mechanics required to do so re-
duces the initial velocity to the range of 30–37m/s. Changeups and split-
fingered fastballs are released with velocities in a similarly low range of
velocities but have little or no spin, as do knuckeballs.

The nominal distance from the pitching rubber to home plate is 18.44m
but major league pitchers release the ball from a point that is nearly two
meters in front of the rubber. Depending on individual pitchers, the ball is
released from a height of approximately 1.5m above the ground towards
a target varies in height but can be considered to be, on average, about one
meter above the ground.

Exercise 6.25. At what angle ϕ from the horizontal must a pitcher
release a 42m/s fastball with backspin to hit the target described
above if the travel distance is 16.5m? Consider that the angular
velocity makes an angle θ = 65◦ with respect to the z-axis (nearly
horizontal). What is the result of varying the angle ϕ by ±1◦? How
does the velocity of the ball change over the course of the trajectory?

Exercise 6.26. At what angle ϕ from the horizontal must a pitcher
release a 35m/s curve ball with topspin to hit the target described

10Such mistakes are readily recognized by batters. The spinning laces produce a noticeable
circle on the leading face of the ball.
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above if the travel distance is 16.5m? Consider that the angular ve-
locity makes an angle θ = 35◦ with respect to the z-axis (nearly ver-
tical). What is the result of varying the angle ϕ by ±1◦? How does
the velocity of the ball change over the course of the trajectory?

Exercise 6.27. Compare the trajectories of the fastball and curve-
ball from the two previous exercises. How do the trajectories differ?
What happens if the curve ball is delivered along the same initial
direction as was required for the fastball to hit the target? What can
you say about the comment that pitchers have “late movement” on
their pitches?

Exercise 6.28. Denver is a notoriously bad location for pitchers.
The lower air density, as we have seen, adds significantly to the travel
distance for batted balls. How does the change in ρ affect curve balls?
Consider the change in trajectory that occurs when a curve ball is
thrown with ρ = 1.225kg/m3 (sea level) and ρ = 1.145kg/m3. Can
you explain why pitchers have less success in Denver?

The models that we have constructed enable us to investigate a number
of aspects of the flight of baseballs They are based on reasonable physi-
cal insights but significant approximations from the much more complex
fluid dynamics problems that underlie the models. An alternative ap-
proach used by professional baseball utilizes a nine-parameter model of
the trajectory. The parameters are the initial position x0 and velocity v0
and three components of a constant acceleration vector a = (ax,ay,−g+az).

Exercise 6.29. Construct a model in which the accelerations are
constant in each direction. Compare the trajectory obtained from
this model to the trajectory obtained from numerical models. In par-
ticular, examine the results from the fastball and curveball exercises
above. Can you obtain a trajectory for the nine-parameter model
that is close to that obtained from the more sophisticated model? (To
quantify your results, consider the difference between the two mod-
els over the course of the trajectory. How much does the maximum
difference deviate from zero?)

6.5. Wind

The final aspect of baseball physics that we shall discuss here is the effect
of wind on the baseball trajectory. This has a pronounced effect on batted
balls and a lesser effect on pitched balls. (Pitched balls are in flight for less
time.) Incorporating the wind velocity into the equations of motion for the
baseball is actually a relatively simple accomplishment if the wind can be
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considered to have a constant velocity vw. For real baseball stadiums,
this may be a rather dubious approximation. There are numerous videos
of hapless, albeit professional, athletes trying to field balls caught in the
swirling winds in the old Candlestick park that was the home field for
many years of the San Francisco Giants. Nevertheless, if the wind velocity
is constant, it simply adds to the velocity v of the baseball.

Essentially, the aerodynamic force is proportional to the relative velocity
of ball through the air: vrel = v− vw. Once the ball is in flight, it is subject
to aerodynamic forces that depend on vrel, so incorporating the effects of
wind involves replacing v with vrel in our previous equations of motion.

Exercise 6.30. Write the equations of motion for a spinning ball in
the presence of wind.

Exercise 6.31. Consider the trajectory of a 45m/s batted ball in the
presence of a crosswind with velocity vw = ŷ7m/s. How does the
crosswind affect the trajectory?

6.6. Friction

One difficulty students find with the typical statement of Newton’s laws
of motion are that they are simply contrary to human experience. For
example, the statement that objects in motion tend to stay in motion is
wholly opposite to the observation that, if you have the misfortune to run
out of gas in your automobile, you will coast to a stop an uncomfortably
long distance away from any gas stations. Similarly, a book pushed across
a tabletop slides to a stop in a short distance. Neither object remains in
motion. As a result, it would seem that the best statement of terrestrial
motion is that objects in motion tend to stop and then stay stopped.

We now recognize, of course, that the complete statement of Newton’s
first law is that objects in motion tend to stay in motion unless acted upon
by an external force. It is the last phrase that is often overlooked but ex-
plains the observation that terrestrial objects tend to be stationary. We
ascribe the observed behavior to be due to a dissipative force called fric-
tion, that acts like the resistive forces we have been discussing that oppose
the motion of objects in air. For objects resting or moving along a surface,
like the book on the tabletop, the frictional force is an empirical construct
that seems to explain the gross behavior of terrestrial objects.

At a microscopic level, neither the table surface nor the cover of the book
are smooth. Indeed, at an atomic scale, the surfaces in contact resemble
mountain ranges more that they do flat planes, as sketched in figure 6.12.
As a result, when the surfaces are moving, the mountain ranges scrape
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Figure 6.12. The surfaces of the
the table and book can be consid-
ered to be smooth at a macroscopic
level. At a microscopic (atomic)
scale, the surfaces are not smooth

past one another, with some material being transferred across the inter-
face in a complex process. Even for objects that are rolling, there are at-
tractive interactions where the mountain ranges contact one another that
must be disrupted for the object to move. Thus, we observe dissipative,
frictional forces for rolling objects as well. At a macroscopic level, it often
suffices to use a very simple model for friction of objects resting on a hori-
zontal surface: that the frictional force Ff is a constant force proportional
to the gravitational force acting on the object, i.e., the weight of the object:

(6.19) |Ff | = μmg,

where the proportionality factor μ is called the coefficient of friction. The
direction of the force is opposite to the direction of motion.

Assuming that the frictional force is constant is obviously a tremendous
simplification of the complex interactions that are involved in the physical
processes at work when two objects slide past one another. Nevertheless,
for modest-sized objects that are not moving too rapidly initially, this ap-
proximation appears to describe the behavior of sliding objects reasonably
well.

Exercise 6.32. Consider a rectangular block of mass m1 sliding
along a horizontal surface, where the coefficient of friction is μ1.
Draw the free-body diagram for this system.

If the block initially has a velocity v = v1x̂, how far will the block
travel before stopping? How much time will it take the block to
stop?

What was the initial mechanical energy of the system? How much
work was done by the frictional force?

The question now arises as to what happens when the surface is no longer
horizontal? Consider the situation illustrated in figure 6.13. If the block
initially has a velocity v1 and then comes to rest after travelling a distance
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Figure 6.13. A block slides a dis-
tance d down a surface that is in-
clined an angle θ from the horizon-
tal before stopping

d, what can we conclude about the frictional force? Well, we can state
that the block initially possessed mechanical energy E1 = 1/2mv21 +mgz1,
where z1 is the block’s initial vertical position (center of mass). At the
final position, the mechanical energy is just E2 = mgz2, where z2 is the
final vertical position of the block. We recognize that z1 − z2 = d sinθ, so
the difference in mechanical energies must be due to the work done by
friction:

(6.20) E1 −E2 =
1
2
mv21 +mgd sinθ = |Ff |d.

Here, we have assumed that the frictional force is a constant, so the work
done is simply proportional to the path length d.

Determining the nature of the frictional force in Equation 6.20 is an ex-
perimental task. We can envision sliding blocks down a plane, measuring
their initial velocities and stopping distances. Our independent variables
are the angle θ and initial velocity v1 and, of course, the materials from
which the blocks and planes are constructed. We have suggested that the
frictional force does not depend upon velocity, at least for objects like
blocks sliding on planes. Furthermore, we have stated that there is a coef-
ficient of friction that depends upon the surfaces in contact. We would not
expect that coefficient to depend on the angle. Given our previous state-
ment of the frictional force for horizontal surfaces (Equation 6.19), we
should expect the frictional force obtained through our series of experi-
ments to also depend upon the object mass and gravitational acceleration
and some form of trigonometrical dependence on the angle θ.

Exercise 6.33. Draw the free-body diagrams for the block sliding
down the inclined plane:

(a) When the block has a velocity v1.
(b) When the block is at rest.

We can make a hand-waving argument about the nature of the frictional
force as follows. When the surface on which the block rests is inclined
from the horizontal, the gravitational force that is vertically directed can
be resolved into two components: one component that is directed per-
pendicular to the surface and a second that is directed tangential to the
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surface: F = −mgẑ = Ftang + Fperp. It is the tangential component of the
gravitational force that causes a ball to roll down an inclined plane; the
perpendicular component is directed into the surface of the plane. The
tangential component is proportional to the gravitational acceleration and
the sine of the angle θ: |Ftang| =mg sinθ. The perpendicular component is
proportional to the cosine: |Fperp| =mg cosθ.

So, we can predict that the frictional force on an inclined surface to be
proportional to the component of the gravitational force that is perpen-
dicular to the surface of the plane11:

(6.21) |Ff | = μmg cosθ.

There are thus two factors entering into dissipative motion on an inclined
surface. First, changing the elevation changes the gravitational poten-
tial energy, resulting in a lengthening of the distance d an object would
slide. Second, the frictional force is also reduced, further lengthening the
distance d an object would slide. A staple of undergraduate physics lab-
oratories is the conduct of just such a series of experiments as we have
described to elucidate the nature of the frictional force.

Exercise 6.34. Given our prediction for the form of the frictional
force (Equation 6.21), use Equation 6.20 to predict the outcomes of
experiments. Suppose the mass is m = 0.2kg and the initial velocity
is in the range v1 = 0.2–0.5m/s. Consider a coefficient of friction
of μ = 0.3 and that the angle θ is in the range 0 ≤ θ ≤ 25◦. How
does the stopping distance vary? What precision would you need to
determine whether the cosinusoidal dependence on θ is a reasonable
representation of the frictional force?

Exercise 6.35. Suppose that we conduct experiments where the
block initially is sliding up the plane before coming to rest. How
does the analysis change? Using the parameter values from the pre-
vious exercise, how does the stopping distance vary?

11The perpendicular vector to a surface is often called the normal vector. As a result, the
force opposing the perpendicular component of the gravitational force is often referred to as
the “normal” force. There are no “abnormal” or “paranormal” forces.



VII
Celestial Mechanics

Isaac Newton’s notable success in providing a theoretical explanation for
the motion of planets around the sun was followed quickly by his realiza-
tion that the gravitational problem involving three bodies was immensely
more difficult than the two-body problem. Where the two-body problem,
as we have seen in Chapter 2, can be solved exactly, Newton’s attempts
to provide a concise mathematical description of the earth-sun-moon sys-
tem were not successful.1 This, of course, is not due to Newton’s lack
of mathematical skills. No one has ever found a general solution to the
three-body problem. Indeed, a series of notable mathematicians all ap-
plied their skills to the problem but without success, although it depends
somewhat on how one defines success. It is true that no general solutions
of the three-body problem have been constructed but the assault on the
problem led to powerful new mathematical methods for understanding
dynamical systems.2

We can begin to see the difficulties that vexed Newton and others when
examining the three-body problem. In principle, if we have N gravitating
bodies, there are 6N functions of position and velocity that are required to
define the system. We found, though, that the principle of conservation of
momentum led to the observation that the center of mass motion is con-
stant. That is, the position of the center of mass at a time t can be written
as rcm(t) = xcm + vcm(t − t1), where xcm and vcm are constants. Hence, the
equations of motion have only 6N −6 independent variables. In addition,
the conservation of angular momentum means that L is another constant
of the motion and conservation of mechanical energy E implies that there
are, in all, only 6N − 10 independent variables. In studying the two-body
problem, we were faced ultimately with finding a solution in two vari-
ables. That is, the initial twelve degrees of freedom could be reduced to

1Newton’s colleague Edmond Halley remarked that Newton claimed the problem “made his
head ache, and kept him awake so often, that he would think of it no more.”
2The methods due to the Italian/French mathematician Joseph-Louis Lagrange (originally
Giuseppe Luigi Lagrangia) and the Irish physicist William Rowan Hamilton form the basis
of the next class in mechanics.
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studying motion in a plane: if we place M1 at the origin,then we need
only find the coordinates of M2 as a function of time and we explicitly
constructed such solutions in polar coordinates (r12,ψ).

For the three-body problem, we have eight independent degrees of free-
dom. Where the two-body problem was restricted to a plane, it is obvious
that the three-body problem is not. A number of approximate theories
were developed based on simplifications of the general problem. We shall
investigate one such problem here in which the mass of the third object is
vastly smaller than that of the other two. This is known as the restricted
three-body problem. It is not of great utility for most astronomical prob-
lems. For example, the moon’s mass is not negligible compared to the
mass of the earth and sun. Yet, it is a perfectly reasonable approximation
if we talk about artificial satellites.

7.1. Restricted Three-Body Problem

In the case where the third mass M3 is much smaller than the other two
masses,we can approximate the behavior of the system by assuming that
the two larger bodies occupy the orbits that we discussed in Chapter 2.
Themost interesting of these are, of course, the elliptical or circular orbits.
Indeed, the restricted three-body problem presumes that the two heavy
masses occupy circular orbits. For the two-body problem that we investi-
gated previously, consider the potential energy surface defined by Equa-
tion 2.27. We have depicted the potential energy surface in figure 7.1.

Figure 7.1. A body moving on an
elliptical trajectory (light gray el-
lipse) sweeps out a path (dark line)
on the potential energy surface.
The potential energy surface is
symmetric; circular orbits would
have constant potential energy

One is tempted to think about trajectories in terms of the massM2moving
along the potential energy surface. For the two-body problem, the poten-
tial energy surface is symmetric. So, contours of constant potential energy
are circles, corresponding to the circular orbits that we discussed previ-
ously. Elliptical orbits trace out complex curves on the potential energy
surface due to the fact that it is the total mechanical energy E that is con-
served, not just the potential energy U . As the mass M2 moves along
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the ellipse, the decrease in potential energy near the distance of clos-
est approach is compensated by an increase in kinetic energy: a greater
velocity.

With two centers, the potential energy surface is no longer symmetric,
as is depicted in figure 7.2. The dark lines on the surface represent con-
tours of constant potential energy and one might be tempted to think that
these contours represent potential trajectories. The problem with that
assumption is that mass M2 is moving, so the potential energy surface is
not static. Consequently, mass M3 sees a complex, time-varying potential
energy surface and any hopes that we might try to interpret the contours
in the figure as trajectories are naïve.

Figure 7.2. The potential energy
surface is more complex with two
centers. Lines of constant potential
energy are no longer described by
circles

Exercise 7.1. In the Mathematica program, define the function

U (x,y,M ) = −M/(x2 + y2).

Use the Plot3D function to plot U (x−0.3, y,1)+U (x+0.5, y,M2) over
the range −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. How does the surface change as
M2 changes over the range 0 ≤M2 ≤ 1?

So, in trying to gain some understanding of the three-body problem, we
shall make the same assumption that the initial investigators made: the
mass M3 is sufficiently small that is does not perturb the trajectories
of the other two masses. In this case, the problem separates into two
parts: the motion of the masses M1 and M2 and the motion of the mass
M3 in the presence of those two. The equations of motion for the third
mass can be written as follows:

dr3(t)
dt

= v3(t)

dv3(t)
dt

= −GM1
r3(t)− r1(t)
|r3(t)− r1(t)|3

−GM2
r3(t)− r2(t)
|r3(t)− r2(t)|3

(7.1)

Here, the positions r1(t) and r2(t) are those that we have previously
determined.
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Exercise 7.2. Write down the complete set of equations for three
masses, using the non-compact notation, as in Equation 7.1. Rewrite
them using the concise notation.

In examining Equation 7.1, we shall diverge from the path taken by the
early researchers and rely on the technology at our disposal. Let us begin
by first making some further simplifying assumptions beyond that M3 is
greatly smaller than either M1 or M2. Let us also assume, for now, that
the massM3 has initial position and velocity in the same plane asM1 and
M2. If we think about the solar system, the planets occupy orbits that are
nearly coplanar and the eccentricities are small, so our assumptions will
limit the space of solutions but should permit us to make some sensible
inferences. (In addition, plotting the results will be simpler.)

Figure 7.3. One mass is located at
the origin of the plot and the sec-
ond occupies a circular orbit (gray
line). The third mass occupies a
crudely elliptical orbit that pre-
cesses around the first mass

For example, in figure 7.3, we illustrate a bounded trajectory of M3. The
heaviest mass M1 is located at the origin of the plot and the second mass
(M2 = 0.4M1) has a circular orbit. We observe that the trajectory of M3
is nearly ellipsoidal but does not actually repeat. Instead, the ellipse pre-
cesses around the mass M1. The mass M3 initially begins with an orbital
radius of 0.45 r21 and, at the initial time, was collinear with masses M1
and M2 (all along the positive x-axis). We have plotted only one orbit of
M2 in figure 7.3, so one could well question if the trajectory of M3 will
remain stable for very long times.

The trajectory ofM3 in this example reflects what we could term a bounded
trajectory. The orbit of M3 around M1 is not periodic but it does occupy a
finite space, at least for the elapsed time illustrated. Such a bounded solu-
tion is actually not common. Far more prevalent are unbounded solutions.
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Exercise 7.3. In the Mathematica program, type the following:

x2[t_]:=Cos[t]

y2[t_]:=Sin[t]

r31=Sqrt[x3[t]^2+y3[t]^2]

r32=Sqrt[(x3[t]-x2[t])^2+(y3[t]-y2[t])^2]

eqs={x3’[t]==vx3[t],y3’[t]==vy3[t],

vx3’[t]==-GM1 x3[t]/r31^3-GM2(x3[t]-x2[t])/r32^3,

vy3’[t]==-GM1 y3[t]/r31^3-GM2(y3[t]-y2[t])/r32^3}

ics={x3[0]==x0,y3[0]==y0,vx3[0]==vx0,vy3[0]==vy0}

soln=NDSolve[Join[eqs,ics]/.{GM1->1,GM2->0.4,x0->0.45,

y0->0.0,vx0->0.0,vy0->0.9},

{x3,y3,vx3,vy3},{t,0,2Pi}]

ParametricPlot[{{x2[t],y2[t]},

Evaluate[{x3[t],y3[t]}/.soln]},{t,0,2Pi},

PlotRange->{{-3,3},{-3,3}}]

This will create a plot of a circular orbit of M2 around M1, scaled
such that the radius is one and the orbital period of M2 is 2π. The
third mass is placed initially on the x-axis, with a velocity in the
positive y-direction. How do the solutions change as M2 changes
from 0.4 to 0.1? How do the solutions change as the initial velocity
of M3 changes?

Figure 7.4. One mass is located at
the origin of the plot and the sec-
ond occupies a circular orbit (gray
line). The third mass is eventually
kicked out of the system but orbits
both M1 and M2 at different times

Indeed, compare the trajectory observed in figure 7.4 with that in fig-
ure 7.3. In this case, the mass M3 started at the same initial position but
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with a different velocity. The initial portion of the trajectory is crudely el-
liptical but quite rapidly becomes distorted. In this system,M3 is initially
orbiting M1 but moves for a time to a crudely elliptical trajectory around
M2 and then back into an orbit around M1. Eventually, the mass scat-
ters from M2 and is ejected from the system. In these results, for which
M2 = 0.4M1, we observe that finding stable orbits for the third mass can
be challenging. In the solar system, we observe that there are relatively
few planets orbiting the sun and they are widely separated. In the subse-
quent exercises, we’ll investigate the inference that gravitational interac-
tions will tend to deplete the interior regions of the solar system of lighter
constituents.

Exercise 7.4. Using the parameters from the previous exercise, set
the initial velocity of M3 to be 1.27. Add a plot of the vector r3 − r2.
This effectively sets the coordinate origin to the position ofM2. What
does the trajectory look like in this coordinate system?

Exercise 7.5. Consider the same equations as defined in the pre-
vious exercises but set the initial point for M3 to be at x0 = 5. Can
you find an initial velocity that leads to a circular orbit? If so, what
is the orbital period? (Note: you will have to extend the calculations
to times longer than that specified in the previous exercise.)

As noted earlier, analysis of the sun-earth-moon system drove Newton to
distraction; it is actually quite complex to analyze and does not fall within
the assumptions that we have made in defining the restricted three-body
problem. We can illustrate one aspect of the complexity by simply cal-
culating the gravitational force on the moon due to the earth and the
sun. If we utilize the data in the table below, we can compute the rela-
tive forces acting on the moon due to the earth and the sun, respectively.
Somewhat surprisingly, the gravitational force of the sun on the moon is
significantly larger than the gravitational force of the earth on the moon.
We would deem this result surprising because, at least naïvely, one might
expect that, if the force on the moon due to the sun is larger than that
due to the earth, the moon would move in the direction of the sun. As
we have discovered previously, however, the gravitational force is a cen-
tripetal force that conserves angular momentum. As a result, the moon
does not fly off to orbit the sun independently, although as we have seen
from the previous exercises, complex orbits are possible.

Exercise 7.6. Using the values in Table 7.1, what is the ratio of
the gravitational forces acting between the sun-moon and the earth-
moon systems? Compare that to the ratio of forces for the Interna-
tional Space Station (ISS), which is in a low-earth orbit. Note that,
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Table 7.1. Orbital parameters

a (AU) T (yr) M (Mearth)

Sun — — 333060
Earth 1 1 1
Moon 0.00257 0.0748 0.0123
ISS 4.5×10−5 1.75×10−4 7.5× 10−20

while the ISS is a sizable structure, its mass is quite small in compar-
ison to that of the earth.

Students are encouraged to investigate the variety of different solutions
of the restricted three-body problem that can be produced with the equa-
tions of Exercise 7.3. What you will find is that very few initial conditions
lead to stable orbits, where by stable we mean that the third mass does not
fly off to infinity. Most often, the trajectories can hardly be termed orbits,
at least in the sense of resembling ellipses.

Exercise 7.7. Study the case of an object orbiting a small mass,
which is in turn orbiting a larger mass. Use the example from Exer-
cise 7.3 as a starting point. For numerical reasons, it will prove best
to make M1 the small mass, so let M1 = 0.001. Initially, set M2 = 0
and choose the initial x position to be x0 = 0.0025. This is close to
the earth-moon distance (in AU) but the ratio of masses for the earth
and sun is 3×10−6, not 10−3, so the model is not a particularly good
representation of the sun-earth-moon system.

What initial velocity is required to achieve a circular orbit around
M1? Note that you will need to use the PlotRange option of the
ParametricPlot function in order to see this small orbit.

Using the initial velocity that generates a circular orbit with no other
mass present, what happens now if M2 is set to be 0.1 or 1.0?

7.2. Lagrange Points

One of the first problems tackled by early researchers was to identify or-
bits in which the third mass rotated synchronously with the other two.
This was termed stationary orbits, in the sense that, in a coordinate sys-
tem centered on M1 that rotated with M2, the mass M3 would occupy
a single point. The Swiss physicist Leonhard Euler first identified three
points that were collinear with the two large masses and, subsequently,
Lagrange identified two additional points that were equidistant from the
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two large masses. The five points in all are usually termed the Lagrange
points of the orbit.3 A depiction of their relative positions is illustrated
in figure 7.5.

Figure 7.5. The mass M1 is at the
origin and the mass M2 is at the
point (1,0). The five Lagrangian
points for the caseM2 = 0.01M1 are
plotted as dots

Exercise 7.8. As we saw previously, the rotation matrix defined as
follows: [

x′

y′

]
=
[
cosθ sinθ
−sinθ cosθ

][
x
y

]
,

will rotate the coordinate axes by an angle θ. (See Equation 4.24.)
Suppose that we now choose θ to be a linear function of time θ = ωt.
Show that the point r2 = (acos(ωt), asin(ωt)) is mapped to the point
r′2 = (a,0).

Exercise 7.9. Derive the equations of motion for the third mass in
the rotating coordinate system. Start with Equations 7.1 and use the
rotation matrix defined in the previous exercise to define r′3 in terms
of r3.

The points L1 and L2 are approximately equidistant fromM2, at a distance
that is given by d = (M2/3M1)1/3. The point L3 is located on the opposite
side of mass M1, at approximately the same radius as M2. The points L4
and L5 have the same orbital radius asM2 but are at an angle of π/3 ahead
and behindM2, respectively. Hence, the L4 and L5 points form equilateral
triangles with the masses M1 and M2.

Dynamically, it turns out that the collinear points L1, L2 and L3 are not sta-
ble but the L4 and L5 points can be if M2 is significantly smaller than M1.
This is certainly the case in the solar system, if we assume M1 to be the

3As we have seen previously, the historical record cannot be deduced from the current at-
tribution. While it is important to understand the historical circumstances of discoveries,
science is never conducted in isolation. There are generally several individuals who deserve
some credit for each discovery.
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sun. Indeed, there is a cluster of asteroids in the orbit of Jupiter, known as
Trojan asteroids, that are found close to both the L4 and L5 points. Recent
observations have also found a small asteroid (2010 TK7) in the earth’s or-
bit, close to the L4 point. The L4 and L5 points have, of course, also been
the source of significant interest in the science fiction literature, with nu-
merous suggestions of constructing various structures and observatories
at these points.

Exercise 7.10. For M2 = 0.01M1, compute the orbits of objects
starting at the L1, L2 and L3 points. Note that, using the units of
Exercise 7.3, that the initial velocity will have the same magnitude
as the initial position. (The orbital period for all will be T = 2π.) Do
you find stable orbits? What happens if M2 = 0.001M1?

Exercise 7.11. For M2 = 0.01M1, compute the orbits of objects
starting at the L4 and L5 points. What must be the initial veloci-
ties? (The magnitude of the velocity is one.) What happens if M2 =
0.001M1?

7.3. Rocket Equation

Up until this point, we have generally assumed that the masses involved
in our equations were invariants. That is, M is not a function of time. For
the problems that we have studied until now, that was a good assumption
but we would now like to discuss the possibility of traveling between two
different gravitating bodies and this will inevitably involve rocket propul-
sion. In the earth’s atmosphere, airplanes can generate lift through aero-
dynamic forces. In addition, the oxygen required to burn the fuel can be
obtained from the atmosphere itself. As a result, air transport vehicles
can be designed in a wholly different fashion than space vehicles. In the
vacuum of space, there will be no aerodynamic lift and no oxygen to burn
fuel: spacecraft fall under different design rules.

To understand how rockets function, consider that you are suspended in
space far from anything else. Momentum conservation requires that what-
ever momentum you possess will be constant over time. So, if you are at
rest, you will remain at rest forever. Consider the consequence of throw-
ing some object in your possession: a shoe, for example. The equation that
describes this situation is defined as follows:

(Myou +Mshoe)v0 =Myouvyou +Mshoevshoe.

If we assume, for the moment, that v0 = 0, then we obtain the following
result:

Myouvyou = −Mshoevshoe.



198 Celestial Mechanics

What has happened here is that you have obtained a nonzero velocity such
that your momentum is opposite to that of your shoe. Rocket propulsion
utilizes this basic strategy to propel objects through space.

What complicates matters in rockets is that the total mass decreases as
exhaust gases are expelled. If we think of firing out some infinitesimal
mass dM , then we can write a differential equation governing the motion
of rockets as follows. In the center of mass frame, the rocket initially has
no momentum. If an infinitesimal mass dM is expelled with an exhaust
velocity ve, then we must have

(M − dM )dv = −vedM,

where dv is the infinitesimal change in velocity of the remaining mass
(M − dM ). If we divide both sides of the equation by M and make the
approximation that (M − dM )/M = 1, we can integrate both sides to find
the following:

(7.2) Δv = −ve ln(Mf /M0),

where Δv is the (macroscopic) change in velocity obtained when the mass
changes from M0 to Mf ; that is, when an amount of mass Mf −M0 has
been exhausted. Equation 7.2 is known as the rocket equation.

Exercise 7.12. Fill in the details of the derivation of Equation 7.2.
How does the equation differ if we do not set v0 = 0?

One of the first questions that arises when dealing with rockets is what
is the largest Δv that is achievable for a given fuel load. While science
fiction spacecraft fly all across the universe with generally modest-sized
vehicles, it cannot have escaped the attention of diligent students that
NASA rockets are enormous vehicles that return only very small capsules.
This is, of course, not due to oversight on the part of NASA engineers but
is a direct consequence of dealing with reality.

First, rocket exhaust velocities are rather modest. Liquid hydrogen/liquid
oxygen propulsion systems generate exhaust velocities in the neighbor-
hood of 4.5km/s, where solid rockets have exhaust velocities around
3km/s.4 Second, the rocket initially can be thought of as a payload (MPL),
fuel (Mf ) and structural elements such as tanks, pumps and motors, etc.
The mass of the structural elements crudely scales with the mass of fuel,
so we can approximate the total mass of the rocket asM =MPL+(1+α)Mf ,
where α is the scaling factor that accounts for the structural elements. (In

4It is common practice to define the specific impulse Isp = ve/g, where g is the gravitational
acceleration at the earth surface. Then the rocket equation is written in terms of Isp in
place of ve . This practice led to the loss of the Mars Climate Orbiter in 1999 due to a units
conversion issue: NASA presumed Isp to be defined in SI units but the vendor utilized British
units.
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NASA parlance, this is the tankage factor.) In this case, the maximum
velocity change will be Δvmax = −ve ln((M −Mf )/M ). If we exponentiate
both sides, we find the following:

M −Mf

M
= e−Δvmax/ve .

If we use the scaling factor α to define the mass of the structural elements,
then we can show the following:

(7.3)
MPL

M
= (1+α)e−Δvmax/ve −α.

Figure 7.6. The ratio of payload
mass over total mass at launch is
an exponential function of Δv. A
liquid fueled rocket (black curve)
is characterized by a larger ve but
a scaling factor of α = 0.15. A
solid fueled rocket (gray curve) has
a smaller ve but a scaling factor of
α = 0.1

The scaling factor for liquid-fueled rockets is approximately α = 0.15,
for typical NASA rockets. For solid-fueled rockets, which don’t require
pumps for fuel transfer, the scaling factor is typically α = 0.1. Notice that
the curves in figure 7.6 both fall below zero at some value of Δv, reflecting
the finite values of α. What you can immediately notice from the figure
is that the relative fraction of payload is a steeply decreasing function of
maximum Δv. For example, the CommandModule of the Apollo missions
to the moon had a mass of about 6000kg (the Service Module had a mass
of 25000kg) while the Saturn V rocket had a mass of 2.8 × 106 kg, for a
ratio of MPL/M = 0.01 if you include the Service Module as part of the
payload orMPL/M = 0.002 if you don’t. To escape the earth’s gravitational
pull, the Apollo vehicles had to obtain a velocity of over 11km/s. The
small mass ratios for the Apollo missions were exacerbated by the need
to land on the moon and then return but the exponential behavior of the
rocket equation means that the old science fiction vision of rockets leav-
ing the earth and returning intact is simply not achievable with chemical
rockets. Not even liquid-fueled rockets with their larger exhaust velocities
are capable of single-stage to orbit, much less interplanetary travel.

Exercise 7.13. Show that you can obtain Equation 7.3 and then
plot the values of MPL/M . Use values for ve typical for solid- and
liquid-fueled rockets.
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Exercise 7.14. One often sees multistage rockets employed. Con-
sider that the payload of the first rocket is another rocket with the
final payload. The total Δv will be the sum of the two stages. What
is the ratio MPL/M? Plot your results and compare to figure 7.6. For
a desired Δv, what is the difference inMPL/M for one- and two-stage
rockets? Assume that both stages are characterized by the same ve
and α and that each stage provides half the total Δv.

To see the constraints on rocket travel more explicitly, let us include the
gravitational field of the earth in our calculations.5 Let us take the center
of the earth to be the point r1, and the rocket will be at some position
r3. The equations governing the motion of the rocket are given by the
following:

dr3(t)
dt

= v3(t)

(M3 − dM3)
dv3(t)
dt

= −ve
dM3
dt
−G

M1M3
|r3 − r1|3

(r3 − r1),(7.4)

where M1 is the mass of the earth and M3 is the mass of the rocket. This
looks just like the gravitational force law that we’ve investigated previ-
ously but with the addition of a force term due to the rocket thrust.

The direction of the rocket thrust is defined by the vector ve. This direc-
tion is not necessarily constant in time. The magnitude of the thrust is the
product of the exhaust velocity and the mass flow rate. In general, this is
a complex problem, so let us make some simplifying assumptions. First,
let us assume that the rocket is initially in a circular orbit, which we can
take to have a unit radius and a period of T = 2π. Next, let us assume
that the mass flow rate is a constant and that the rocket is fired only for a
relatively short period of time (short compared to T). We can assume then
that the function ve(t) is some constant value (magnitude and direction)
during the interval 0 ≤ t ≤ tburn.

Exercise 7.15. In the Mathematica program, define the x- and y-
components of the thrust vector to be ve cosθ and ve sinθ, respec-
tively. Use the If function to set the exhaust velocity to be zero out-
side the burn interval of 0 ≤ tburn ≤ 0.25. If you choose GM1 = 1,
r3 = 1 and v3 = 1, as in the previous exercises, numerically integrate
the equations of motion with ve = 0 and show that you obtain a cir-
cular orbit. Now set ve = 1. What happens to the orbit when θ takes
on values 0, π/2, −π/2 and π?

5Actually, we will utilize a model system in which we take GM1 = 1 and do not deal with
the earth’s mass explicitly. This will provide us with a test system that embodies many
of the issues we wish to study but without the complexity associated with more realistic
calculations.
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Exercise 7.16. Consider now the case of elliptical orbits. What
orbit results if v3 = 0.8 initially (and ve = 0)? Now set ve = 1 and
θ = −π/2. What happens to the orbit for tburn = 0.1 and tburn = 0.2?

Exercise 7.17. What orbit results if v3 = 1.2 initially (with ve = 0)?
Consider now firing the rocket (ve = 1) at the largest orbital radius.
(This is the point rπ from figure 2.7.) This will require that you
change the initial burn time to π instead of 0. What value of tburn is
required to circularize the orbit?

The previous exercises demonstrate that when the rocket is fired for a rel-
atively short period of time, an originally circular orbit becomes elliptical
(or potentially hyperbolic). The change in velocity alters the orbit but
does not do so in a simple, linear fashion owing to the dominant gravita-
tional force exerted by the earth. The exercises also provide a clue as to
how one might go about visiting other planets. The idea is due originally
to the German physicist Walter Hohmann.6 If we begin with a circular
orbit, changing the velocity generates an elliptical orbit, as illustrated in
figure 7.7. A second velocity change at the furthermost distance of the
elliptical orbit will generate a circular orbit at the larger radius.

Figure 7.7. Changing the orbital
radius from r1 to r2 can be accom-
plished via a Hohmann transfer or-
bit (black). An increase in velocity
at the point r1 will modify the cir-
cular orbit into the ellipse. A sec-
ond change in velocity (decrease) at
the point r2 will convert the ellipti-
cal orbit into a circular orbit

Modifying an orbit can be accomplished with a series of velocity changes.
We can envision the alteration of a low earth orbit to a higher, potentially
geosynchronous, orbit using this strategy. It also provides a strategy for
visiting other planets, as Hohmann originally proposed. If we think of the
inner circle as the earth’s orbit around the sun and the outer circle as the
orbit of Mars around the sun, then a journey to Mars would require that
the spacecraft be launched from earth at such a time that the journey from

6Hohmann’s Die Erreichbarkeit der Himmelskörper was published in 1925.
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point r1 to r2 along the elliptical trajectory is the same time that it takes
Mars to travel along its orbit and arrive at r2 when the spacecraft arrives.

As a practical matter, the problem is a bit more complicated than just
described. The presence of Mars, or some other gravitating body, alters
the trajectory from that illustrated in figure 7.7. Nevertheless, Hohmann’s
strategy forms the basis of the interplanetary travel conducted thus far.
It provides an exceptionally fuel-efficient strategy for travel.

Exercise 7.18. Consider the case of an hyperbolic trajectory, which
we can arrange using the previous examples if the initial spacecraft
velocity is v3 = 2. If you again use ve = 1, what length of engine
firing (tburn) is required to capture the spacecraft into an elliptical
orbit? What must be the direction of ve?

As an example of a trajectory-changing operation, consider that there is a
gravitating body M2 in orbit around M1. Let M2 have an orbital radius of
r2 = 10. If we consider M3 to be initially in an orbit of radius r3 = 1 with
an orbital period of T3 = 2π, then M2 must have an orbital period of T2 =
2π
√
1000. A sketch of one potential pathway is illustrated in figure 7.8,

in which a second rocket engine firing was performed as the mass M3
crossed the orbital path of M2. The following exercise will reconstruct
that trajectory.

Figure 7.8. Two rocket firings,
timed appropriately, can move the
mass M3 from an orbit around
M1 (coordinate origin) to an orbit
around M2 (gray circle). The black
line is the trajectory of M3

Exercise 7.19. Again assume that the mass M3 is in orbit with an
initial position r3 = (1,0) and velocity v3 = (0,1). Values of M1 = 1
and M2 = 0.01 correspond approximately to the earth/moon mass
ratio. Use the Piecewise function to define two engine firings. That
is ve is nonzero in the intervals 0 ≤ t ≤ tb1 and ttoi ≤ t ≤ ttoi + tb2,
where ttoi is the start time of the second (trans-orbit insertion) rocket
firing. For simplicity, the direction of ve can be taken to be the same
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for both firings. Use ve = 1 and an initial tb1 = 0.36. The second mass
M2 has a relative phase shift on its orbit of φ = 0.67π.

At what time does the mass M3 cross the orbit of M2? Use that time
as an initial guess for ttoi. What values of tb2 lead to capture of the
mass M3 into orbit around M2?

Plot r3 − r2 and convince yourself that the curious path observed in
figure 7.8 actually corresponds to an elliptical orbit around M2.

7.4. Launching from the Earth’s Surface

We can now expand our investigations to include the problems that arise
from launching a rocket from a planet surface. As we have mentioned,
there is one fundamental problem associated with the exponential re-
lationship between the mass ratio and velocity change embodied in the
rocket Equation 7.2. In addition to the need to achieve orbital velocity,
launching from the surface of the planet requires pushing through an at-
mosphere that will create drag. The aerodynamic forces affecting a rocket
during atmospheric flight are quite considerable. One need only view
some of the early films of attempts to launch rockets to appreciate just
how difficult the process actually is.

We have certainly paid short shrift to the design and reliability of the
pumps that power the rocket engines. We have not addressed the issue of
the transition to supersonic flight or even aerodynamic forces at all. Cop-
ing with all of these problems will be challenging, so let us make some
simplifying assumptions that will provide us with at least some realistic
features of rocket flights. In the mathematician’s sense, let us reduce the
problem to a previously solved result. Suppose that we investigate the
problem of achieving a circular orbit of radius r3 = 1 and orbital veloc-
ity v3 = 1. This represents the orbit that we have utilized in the previous
section, so that we can construct a mission to Mars, for example, by first
launching into a low earth orbit and then initiating the Hohmann trans-
fer. For the moment, we shall also ignore atmospheric effects. This is a
tremendous simplification, of course, but we shall continue our strategy
of attempting simpler problems and analyzing the results before tackling
the most realistic problems. In this particular case, this strategy will also
enable us to illustrate some other issues associated with space travel.

We shall also not explicitly cope with rocket stages. This verges onmaking
the problem completely unrealistic but, in true hand-waving fashion, let
us argue that we can probably fix up those details subsequently. In deter-
mining the initial conditions for our simulation, let us first consider that
low earth orbits are typically a few hundred kilometers above the earth’s
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surface and the earth’s radius is about 6400km. So, the ratio of orbital
radius to earth’s radius is about 1.05. Such orbits have an orbital period
of about 90minutes, so a day lasts about 16 orbital periods. We also need
to define the initial rocket velocity, which is not zero due to the fact that
the earth is rotating. So, we shall investigate launching from a rotating
surface where the initial radius is 0.95 and the velocity is v0 = 1/16 and
we intend to achieve our canonical orbit, where r3 = 1 and v3 = 1.

If we consider the flight of NASA rockets, we notice that the rockets ini-
tially fly upward but then tilt over in the direction of the eventual orbital
trajectory. This is, of course, due to the requirement that the velocity v3
be perpendicular to the position vector r3 in orbit. We first note that the
vertical velocity achieved by the rocket is completely useless: this is ac-
tually a radial component of the velocity that is not part of our canonical
trajectory. In practice, the vertical segment of the rocket flight primarily
serves to reach altitudes where the atmospheric density and, hence, the
aerodynamic drag is significantly smaller. Without an atmosphere in our
model or worrying about nearby trees and buildings, we could hypothet-
ically just launch the rocket tangential to the earth’s surface but, in the
interests of retaining a semblance of reality, let us retain the vertical seg-
ment. So, to make a modestly realistic approximation of the flight path
of a real rocket, let us assume that the rocket exhaust ve is directed ver-
tically for a time t1 and transitions to horizontal during the time interval
t1 ≤ t ≤ t2 and then continues to burn for a time t3.

Exercise 7.20. Use the Piecewise function to define the x- and
y-components of ve such that

ve · x̂ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ve t ≤ t1
−ve cos(π(t − t1)/2(t2 − t1)) t1 < t ≤ t2
0 t > t2

and

ve · ŷ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t ≤ t1
−ve sin(π(t − t1)/2(t2 − t1)) t1 < t ≤ t2
−ve t2 < t ≤ t3
0 t > t3

Plot the velocity profiles that you define to ensure that you have im-
plemented the Piecewise function properly. Define the initial posi-
tion to be r3 = (0.95,0) and the initial velocity to be v3 = (0,1/16) and
choose ve = 1.2. Try initial values of t1 = 0.25, t2 = 1.25 and t3 = 1.5.
Plot the trajectory, the orbital distance and the magnitude of the ve-
locity. Adjust the parameters to obtain an orbital height of r3 = 1 and
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velocity v3 = 1. How does the trajectory change if the engine firing
times are changed?

At what time does the trajectory intersect the planet surface (crash)?
How far has the planet rotated during that interval?

Not surprisingly, the orbit produced by the example is an ellipse.
Unfortunately, the trajectory results in a collision with the planet sur-
face, as depicted in figure 7.9, at approximately the opposite side of the
planet from the launch site. Fortunately, we know how to circularize an
elliptical orbit. An additional engine firing is required: in the opposite
direction of travel.

Figure 7.9. Launching from the
surface of a planet (gray circle) with
R1 = 0.95 and GM1 = 1. An initial
thrust direction in the x-direction
lifts the rocket from the planet sur-
face. Subsequently the thrust di-
rection is changed smoothly to the
y-direction. The result is an ellip-
tical orbit but, unfortunately, one
that intersects the planet surface

Exercise 7.21. Add an additional engine firing to the x-component
of ve from the previous example. Define ve = ve/2 x̂ for the interval
t4 ≤ t ≤ t5. At what time does the trajectory from the previous exam-
ple reach the point (0,1)? Define that time to be t4. What value of t5
results in a (nearly) circular orbit?

Plot the trajectory, the orbital radius and velocity. Do you find values
close to the desired orbital values?

In retrospect, we should have expected this sort of behavior. When
launching a craft from the planet surface, the trajectory is still dominated
by the gravitational force exerted by the planet on the spacecraft. As we
have seen previously, trajectories are ellipses with different eccentricities
and changing the velocity alters the eccentricity. Changing the vehicle
position from one radius to another requires that the velocity will contain
a radial component. As a result, the orbit will necessarily be elliptical
(or potentially hyperbolic), as we have seen in the studies of Hohmann
transfer orbits. To achieve a circular orbit, one must apply a second en-
gine firing opposite to the direction of travel. Then, one can achieve the
(nearly) circular orbit illustrated in figure 7.10. As a result, we can begin
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Figure 7.10. A second engine fir-
ing at the appropriate time will cir-
cularize the orbit. The direction of
the engine firing must be in the di-
rection of travel, slowing the rocket

to understand why the NASA launch vehicles are so large. The rocket
equation greatly restricts the amount of payload that one can place into
an orbital trajectory and, moreover, launching from the surface of the
planet results in an elliptical orbit. In order to modify that initial orbit
into one that does not intersect the planetary surface, requires additional
expenditures of fuel to actually slow the spacecraft into a (more) circular
orbit. Achieving a stable orbit requires a good deal more sophistication
than one might first suspect.

Our analysis has, thus far, ignored the problems of staging and atmo-
spheric drag, so our model represents a very simplistic version of space-
craft launch. We could construct more realistic models by incorporating
each of these effects sequentially. At present, our model of atmospheric
drag could be represented by a velocity-dependent force, as we have used
previously. As we can recall, the drag coefficient depended upon the air
density, which we took to be a constant for the problem of baseball flight.
For rocket launches, the air density depends exponentially upon the alti-
tude: ρ = ρ0 exp(−αr), where ρ0 is the density at sea level and α is a pro-
portionality factor that describes the rate at which the density decreases
as a function of height r. For transonic and supersonic flight, our sim-
ple model does not really describe the atmospheric drag particularly well.
So, while we can incorporate additional corrections to our simple model,
our improvements would not be adequate to address realistic launch is-
sues. We shall consider, instead, another aspect of travel around the solar
system.

Exercise 7.22. Design a model of engine firings that can achieve
a geosynchronous orbit for the model system studied in the previ-
ous exercises. A geosynchronous orbit is one that has the same or-
bital period as the rotational period of the planet. Consider also the
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requirement that the final orbit be aligned radially with the initial
launch point.

Exercise 7.23. Consider that your spacecraft is in the canonical
orbit with r3 = 1 and v3 = 1 and that youwant to reach a space station
that is in a circular orbit with r4 = 1.1. Suppose that the space station
has an initial phase on its orbit of 0, i.e., that it is initially collinear.
What happens if you try to fly straight toward the station? Would be
the direction of the vector ve? Can you identify a possible trajectory
to rendezvous with the space station?

7.5. Gravity Assists

The realities of motion under the influence of the gravitational force bear
little resemblance to the portrayal of interplanetary travel in film and
print. Chemical rockets simply cannot provide sufficiently large momen-
tum changes to enable a rocket ship to leave the earth’s surface, travel
to distant planets and return intact. Indeed, as we have seen, less than
ten percent of the total mass on the launch pad can be delivered to low
earth orbit, even with staged rockets. As a result, exploration of the solar
system has proceeded at a pace that lags far behind the imagination of
science fiction writers who have already established colonies on distant
worlds. In fact, the pace of solar system exploration has been significantly
hastened by the advent of digital computers and the insights of Michael
Minovitch.7

One problem that we encountered in our study of designing a transfer
orbit from earth to the moon (Exercise 7.19) was that the elliptical orbit
we generated by the rocket firing was significantly altered by the presence
of the target planet. In fact, early interplanetary missions incorporated
engine firings to compensate for the deviation from the ideal Hohmann
transfer orbit, in order to keep the spacecraft on the unperturbed path.
While such trajectories were acceptable for lunar missions and voyages
to Venus and Mars, the limitations of rocket technology left exploration
of the outer solar system out of reach, requiring voyages of unreasonable
duration. A Hohmann orbit to Jupiter requires almost three years and
a similar transfer to Saturn requires six years. Similar transfer orbits to
Uranus and Neptune would require sixteen and thirty years, respectively.

Exercise 7.24. Revisit Exercise 7.19 and examine the behavior of
the trajectory when GM2 = 0 and 0.01.

7Minovitch was a graduate student at the University of California Los Angeles who spent a
summer internship working at the Jet Propulsion Laboratory. His work on exploiting gravi-
tational interactions to change spacecraft velocities were detailed in a series of JPL technical
reports in 1961.
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While we have access to sophisticated computational resources, early mis-
sion planners did not. The approach taken at the beginning of the space
era was to construct approximations to a proposed trajectory by piecing
together conic sections. As we have seen in our previous investigations, a
hyperbolic trajectory is approximately two straight paths connected by a
short section in which the trajectory bends around the scattering center.
We can think of the influence of the gravitating body as having a rather
short duration (or short length) despite the fact that the influence extends
to infinity. An encounter with a gravitating body can even be crudely
approximated by an instantaneous change in direction by some angle θ.

One could then try to plan a mission to the moon by considering the
effect of the moon’s gravitational force separately from that of the earth.
The spacecraft would follow an elliptical trajectory around the earth, like
those that we have discussed previously, until it came into close prox-
imity to the moon. For a brief interval, the spacecraft’s trajectory would
be subject to the moon’s gravitational influence, resulting in an hyper-
bolic trajectory. The modified trajectory would then revert to an elliptical
trajectory, modified from the initial ellipse, around the earth. Clearly,
gravity does not turn on and off like we are suggesting but this does pro-
vide a means for constructing an approximation to the actual path that
a spacecraft might take. The approximation is relatively easy to calcu-
late and, presumably, the actual trajectory would be close to that of the
estimated path.

Minovitch was tasked with an investigation into improving some of the
initial estimates of the trajectory but found a significant insight when he
investigated the problem in vector form.8 The geometry of an hyperbolic
trajectory is depicted in figure 3.2. What we found in Chapter 3, where
we discussed the two-body problem with massesM1 andM2, was that the
asymptotic velocity |v2 − v1| was a constant and the encounter served to
change the direction of the velocity.

Consider now what happens when we investigate the encounter of a small
massM3 with the target massM2 in a three-body problem. From this per-
spective, the center of coordinates illustrated in figure 3.2 is now placed
on the target massM2 and the branch of the hyperbola that passes through
the point r0 represents the coordinates r3 − r2. The velocity ofM3 with re-
spect to M2 is v3 − v2. Here, we should expect that the asymptotic values
of |v3 − v2| will be constant, with only the direction of the velocity chang-
ing. This is, as we have demonstrated previously, the result of energy
conservation.

8We have consistently used this representation throughout the text. Astronomers histori-
cally utilize a different set of coordinates for their measurements that we shall not describe
here.
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As we have defined earlier, the kinetic energy of the spacecraft is propor-
tional to the square of velocity: T ∝ v · v. Relative to M2, we find that

(7.5) (v3 − v2) · (v3 − v2) = |v3|2 − 2v3 · v2 + |v2|2

We should note, however, that this reflects the velocity with respect to
the target mass M2, not the velocity with respect to the other mass M1. If
we consider the velocity ofM3 with respect toM1, something unexpected
occurs. Let us calculate the change in kinetic energy of the spacecraft
before and after the encounter with M2, we find

ΔT3 ∝ |v3(t0 +Δt)|2 − |v3(t0 −Δt)|2

= 2[v3(t0 +Δt)− v3(t0 −Δt)] · v2,(7.6)

where we have assumed that |v3| is large enough that v2 is constant over
the interval t0 −Δt ≤ t ≤ t0 +Δt.

Exercise 7.25. Fill in the missing steps of the derivation of Equa-
tion 7.6.

Because the velocity vector v3 changes direction before and after the
encounter, the apparent change in kinetic energy ΔT3, from Equation 7.6,
will not be zero. What Minovitch discovered is that the kinetic energy
of the spacecraft relative to M1 can be increased (or decreased) by its en-
counter with the target M2! This struck most researchers of the day as an
apparent violation of energy conservation, so Minovitch’s suggestion was
generally dismissed. Nevertheless, there is no contradiction here. Energy
is conserved but there is a distinct velocity change in M3 that seemed
unphysical to early investigators. Our derivation of Equation 7.6 relies,
in fact, solely on the assumption that the spacecraft is travelling rapidly
on its trajectory compared to the motion of the target planet M2. We
can remove that approximation by, once again, considering the problem
numerically.

Figure 7.11. Two masses M2 and
M3 orbit the central mass M1. M3
is initially on an elliptical trajectory
before encountering M2

To illustrate the effect, let us consider an elliptical orbit that crosses the
x axis at the radius x3 = 1.01, just outside our canonical orbit of r2 = 1.
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Here, as usual, the mass M1 is located at the origin. Such an orbit is de-
picted in figure 7.11, where we have adjusted the phase of M2 so that the
encounter of M2 and M3 occurs after M3 has completed one orbit. After
the encounter, M3 is diverted to a much larger elliptical orbit. If we now
plot the velocity (relative to M1) of M3 as a function of time on orbit, we
observe that prior to the planetary encounter, the velocity peaks near the
point of closest approach to M1 and then would fall back to the value it
had initially. At the time t0, the spacecraft encounters M2 on its orbit and
the velocity of M3 rises sharply, as depicted in figure 7.12.

Figure 7.12. The spacecraft is ini-
tially on an elliptical trajectory (t <
t0). After the encounter with the
planet, the velocity of the space-
craft is greatly increased

The nagging thought that somehow energy is not being conserved in this
process kept Minovitch’s insights from being immediately accepted. Yet,
we can presume that momentum is conserved in what is an elastic colli-
sion between the two bodiesM2 andM3. This would require thatM2Δv2+
M3Δv3 = 0, where Δv2 and Δv3 are the changes in velocities of the two
masses before and after the encounter. Hence, Δv2 = −(M3/M2)Δv3. As
we saw in Exercise 7.6, the ratio of the mass of the International Space
Station to that of the earth is 7.5×10−20. As a result, the velocity change of
a planet due to the encounter with even a large spacecraft is going to be
inconsequential.

Exercise 7.26. Modify the equations from Exercise 7.3 to include a
relative phase forM2: x2(t) = cos(t+φ) and y2(t) = sin(t+φ). StartM3
at the point r3(t = 0) = (1.01,0) with velocity v3(t = 0) = (0,0.5). For
GM1 = 1 and GM2 = 0, plot the trajectory ofM3. Plot the magnitude
of velocity |v3|.
Set the phase angle φ so that M2 and M3 approach the point r2 =
(1,0) simultaneously. (This will be at the end of the first orbit ofM3.)
With GM2 = 0.01, plot the new trajectory of M3 and the magnitude
of velocity |v3|.
How is the trajectory ofM3 altered as you change the phase angle φ?
That is, if the mass M3 reaches the point (1,0) before or after M2?

Despite the early skepticism, the strategy of utilizing gravity assists to im-
prove the flight times to distant planets was rapidly adopted. TheMariner
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10 mission was launched in November of 1973 and utilized a close en-
counter with Venus in February of 1974 to fly by Mercury in March of
that year. Subsequently, essentially all missions to the outer planets have
utilized gravitational assists. Notably, the Voyager missions utilized a for-
tuitous alignment of the outer planets to make a grand tour of Jupiter, Sat-
urn, Uranus and Neptune with only twelve years elapsing between launch
and passing Neptune’s orbit. This is significantly faster than would have
been achieved with a Hohmann transfer orbit.

More recently, the Messenger mission to Mercury utilized a series of en-
counters with Earth, Venus (twice) and then Mercury itself four times be-
fore the onboard engines were fired to enter orbit around Mercury. This
feat is even more impressive when one realizes that all of the planets have
elliptical orbits, not the circular orbits that we have been studying and
that the orbital planes of the Earth, Venus and Mercury are inclined with
respect to one another. This means that calculating the real trajectory is a
problem in three dimensions.

Exercise 7.27. Suppose that we add another planet at a radius r4 =
5, with GM4 = 0.1. Use the results from the previous exercise as the
starting point to design an encounter with the outer planet. This
will involve adding another term to the force law to represent the
gravitational force on M3 due to M4. We assume that the orbit of
M4, like M2, is fixed and that the orbital period of this planet is
related by Kepler’s law. Turn off the mass initially and determine
the phase of the orbit required so that the spacecraft M3 crosses the
orbit of M4 at approximately the same time as M4.

Can you define an engine firing sequence that results in capture into
an elliptical orbit around M4?

The principle limitation to using gravity-assisted trajectories is time. For
example, in order for a spacecraft to receive a gravitational assist from
Mars to expedite a trajectory to Jupiter, it is necessary that the earth, Mars
and Jupiter be in the appropriate alignment. That is, opportunities for
gravitational assists depend on the orbital positions of the planets and
these positions change over the time scale of years. Thus, if one has a par-
ticular launch date in mind, Mars may not be in the appropriate position
to provide an assist to a Jupiter mission. Alternatively, if a gravitational
assist is necessary to provide sufficient kinetic energy to reach a distant
target, then the possible launch dates will be constrained by the planetary
positions.
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7.6. Orbital Resonance

The solar system is considerablymore complex than just the sun and plan-
ets. There are a host of minor planets that also fall under the influence of
the gravitational force of the sun. Where ancient philosophers tried to
seek meaning from the ratios of orbital periods of the planets, we now un-
derstand that the orbital period is, as Kepler found, related to the orbital
geometry. As we have also found, the orbital geometry depends upon
the orbital energy. Changing the kinetic energy changes the orbit. The
present orbital parameters that characterize the solar system constituents
reflect the evolution of the solar system according to Newton’s Universal
Law of Gravitation from its initial configuration (and collisions amongst
the early constituents) and do not reflect hidden meanings.

As it happens, though, that the orbital periods of some solar system bodies
are related. The Jovian moons Io, Europa and Ganymede have orbital
periods of 1.769, 3.551 and 7.154 days, respectively. This is a ratio of 1:2:4
and is not coincidental. The synchronous orbits reflect the phenomenon
of resonance.9 Resonances arise as a result of periodic forces. In the case
of the Galilean moons of Jupiter, the three innermost moons align on the
same side of the planet at integral multiples of the Io orbital period. This
produces forces that couple the orbital periods through tidal interactions
amongst the moons that we have not considered in this text. Resonant
phenomena occur throughout physics and we shall see further examples
as we proceed.

Another example within the solar system are the Kirkwood gaps in the
asteroid belt. In 1866, the American astronomer Daniel Kirkwood noted
that, of the 87 asteroids then known, there were significant gaps in the
distance between some of the asteroids that occurred at positions that
corresponded to the orbital radii associated with specific ratios of the
Jupiter orbital period (3/1, 5/2, 7/2).10 As of this writing, there are nearly
one hundred million cataloged minor planets and comets and the gaps
originally observed by Kirkwood are even more evident.

As a simple model of the problem, we can return to our standard model
of a body in orbit at a circular radius of r2 = 1 and period T2 = 2π, with
masses GM1 = 1 and GM2 = 0.001, which is close to the mass ratio for
the sun and Jupiter. From Kepler’s third law, we know that the orbital
radius and period are related. Given our unit system, where GM1 = 1, if a
body has an orbital radius of r3 = a2/3, then we can show that the orbital
velocity will be v3 = a−1/3.

9The word derives from the Latin resonantia meaning echo.
10Kirkwood’s “On the theory of meteors” was published in the Proceedings of the American
Association for the Advancement of Science in 1866.
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Figure 7.13. A mass M3 that starts
at an orbital radius of approxi-
mately r3 = 0.62996 has an orbital
period that is half that of the mass
M2 (T3/T2 = 0.5). The resulting
trajectory (light gray curve) displays
large oscillations about the nomi-
nal value. By comparison, a mass
that starts at a radius r3 = 0.687
(T3/T2 = 0.57) does not display such
large oscillations

The results illustrated in figure 7.13 demonstrate resonant behavior in the
vicinity of the (T3/T2 = 1/2) resonance. When the orbital period of M3 is
half that of the larger mass M2, there is a point on the orbit (on the pos-
itive x axis) where the two masses are close. Here, the force on M3 due
to M2 is greatest. This occurs periodically and leads to large oscillations
in the radius r3. When the orbital periods are not synchronous, the per-
turbations occur at various points along the orbits and do not add in a
constructive fashion. As a result, the variations in the orbital radius off
resonance are much smaller.

Exercise 7.28. Use the model defined in Exercise 7.3 as a starting
point. Set the initial position to be (x3, y3) = (a2/3,0) and the initial
velocity to be (v3x,v3y) = (0, a−1/3), where a = 0.5. Initially, set GM2 =
0. You may need to set MaxSteps->20000 in the call to NDSolve. Do
you obtain a circular orbit?

If so, now set GM2 = 0.001 and compute the solution for 100 orbits
tmax = 200π. What happens to the orbit? Plot the radius r3 = (x23 +
y23 )
1/2 as a function of time. How does the orbital radius change?

What is the average radius?

Now change a to 0.43 and 0.57. What happens to the orbital radius
when the orbits are no longer synchronized?

If we now try to extrapolate our results to the asteroid belt, we can con-
clude that any object with an orbit at one of the special orbital periods
actually occupies an orbit that oscillates with large amplitude around the
average orbital radius. An added complexity in the real asteroid belt is
that the asteroids can interact amongst themselves. These interactions
will tend to depopulate the orbits near resonance, reinforcing the effect.
A full explanation of the Kirkwood gaps is more complicated than we
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have presented here but the driving force is the periodic interactions with
Jupiter.

Exercise 7.29. Consider resonant orbits for T3/T2 = 1/3 and 2/3. Do
you find results like those in the previous exercise?

The model we have constructed seems to give a plausible explanation for
the existence of the Kirkwood gaps in the asteroid belt. Periodic inter-
actions reinforce to produce large oscillations in the orbital radius. The
model does not apply to the resonant behavior of the Jovian moons. This
reflects a greater complexity in that system. Where asteroids have very
small masses compared to the sun and Jupiter, the masses of the first
three Jovian moons are comparable. Hence, the restricted problem that
we have faced is not applicable. In addition, the real moons are subject to
gravitationally induced tidal forces that provide a mechanism for energy
loss. This energy loss helps to damp out the oscillatory behavior that we
observed in our model system but adds a level of complexity that we shall
avoid at this time.

7.7. Chaos

We have but scratched the surface of the celestial mechanics problem, lim-
iting ourselves to the restricted problem. This approach enables us to gain
insights into the behavior of the systems without becoming overwhelmed
with the complexity of real systems. This is the standard approach in
dealing with physical systems. Start simple and then add complexity as
necessary.

One simple thing that we can do is to allow the mass M3 to move beyond
the orbital plane defined by M1 and M2. By simple, we mean that we
can add terms to the equations defined in Exercise 7.3 that provide for
nonzero values of z3 and v3z. This will provide the opportunity to exam-
ine the behavior of systems in which the orbital planes do not coincide.
One can easily revisit the previous exercises and add three-dimensional
behavior to the models. The resulting behavior is, of course, generally not
simple and forms the basis of significant research efforts to characterize
the behavior of systems.

Exercise 7.30. Take the model from Exercise 7.3 and add equations
for z3’[t] and vz3’[t]. Choose an initial value of v3z that is not
zero. You will have to use the ParametricPlot3D function to visu-
alize the dynamics. What happens as you increase the initial value
of v3z?
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Exercise 7.31. Consider the problem of resonant orbits where the
orbit of M3 is inclined slightly to the M1-M2 orbital plane. Do you
still observe large oscillations for resonant orbits?

A more complex thing that we could attempt would be to try to com-
pute the non-restricted problem, in which r2 and v2 are not assumed to
be given but are computed. This adds significantly to the computational
complexity of the problem. Indeed, others have followed precisely this
path, with the most adventurous devising means for solving the problem
for the complete solar system. We shall not attempt such a project here,
as one needs to worry about numerical efficiency in order to make any
significant progress.

One surprising result that arose from simulations of the solar system
for hundreds of million years into the future was that the orbits of the
planets are chaotic.11 By chaotic, we really mean that if we conduct
two simulations with starting conditions that are very close then after
a long time, the two solutions will not be close. Imagine starting our
model simulations withM2 at a position r2 = (cos(φ),sin(φ)) with velocity
v2 = (−sin(φ),cos(φ)), where φ is a small angle. We would expect that the
solutions we obtain would not be hugely different than those conducted
with φ = 0. That is, if φ = 0.01 we expect that the position of mass M3
would be very close to the position it has when φ = 0, and that it would
stay that way forever. An example, is illustrated in figure 7.14, where
the distance between two solutions for r3 is shown as a function of time.
Initially, the two solutions are close but move away from one another
as time progresses. This example is somewhat contrived, as the starting
difference φ = 0.1 was relatively large, but it illustrates the point.

Figure 7.14. The distance d = |r3 −
r′3| is illustrated for two simulations
r3 and r′3 that differed in the initial
position of M2. As the simulations
evolve, the two solutions diverge

Exercise 7.32. Use the basic model equations to add a phase
shift φ to the definition of x2 and y2. Use the Animate function

11Gerald Sussmann and Jack Wisdom demonstrated that Pluto’s orbit was chaotic in 1988.
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to draw the positions of solutions for φ = 0 and φ = 0.01. (Use
the Graphics[Point[]] function to draw the positions.) Plot the
distance between the two solutions as a function of time. Do the so-
lutions remain close? What happens if φ = 0.1?

In simulations of the solar system, where the bodies gravitationally
interact, the positions of the planets from two close starting points do
not wind up close to one another. This remarkable result means that we
cannot, with any certainty, predict where earth will be in a hundred mil-
lion years. It is not knowable. Conversely, one cannot integrate backwards
in time to determine how the solar system came to be in the position that
it occupies now. This is, perhaps, deflating for those who want to achieve
total predictive success. There are no practical reasons why one would
need to predict the state of the solar system millions of years into the
future. Certainly, such times are well beyond the scale of human lives
and we have ruled out time travel in previous chapters. Hence, no one
will be building machines to revisit the age of the dinosaurs and, thus,
somehow have to fly back seventy or eighty million years. There simply
are limitations to our predictive capabilities.



VIII
Constituents of the Atom

Following Rutherford’s pathbreaking discovery that the atom had a
nuclear center, physicists found themselves with a host of new prob-
lems to solve. As we have mentioned, a large number of physicists set to
work on the problem of how atoms work. At a coarse level of scrutiny, it
seems that the Coulombic force between the positively charged nucleus
and negatively charged electron(s) is responsible for the attractive force
that holds the electrons to the nucleus. Yet, when energy is pumped into
a cell containing hydrogen gas, spectroscopists discovered that there were
a specific set of wavelengths of light emitted from the cell. Apparently,
the electrons cannot orbit randomly; they are required to occupy specific
orbits. Actually, the use of the word orbit here is entirely incorrect in light
of modern, quantum theories of the atom but does reflect the classical
view of the universe held by physicists in the early 1900s.

In addition to the physicists working on building mathematical models of
the atom, a number also tried develop a more detailed understanding of
the properties of the constituents of the atom. What exactly is an elec-
tron? What is the nature of the nuclear matter? As one can well surmise,
experimentation posed a number of practical difficulties. The “size” of
the atom is of the order of 10−10m and the nucleus is even smaller: of the
order of 10−14m. The visible light spectrum roughly spans the range from
400–700nm, or 4–7×10−7m. This is several hundred times the atomic size
and several million times the nuclear size. It is simply not possible to see
atoms or nuclei with visible light. Instead, physicists rely on other means
of discerning the nature of matter. As it happens, static magnetic fields
play a significant rôle in our understanding of matter.

Lodestones were known to the ancient Greeks as possessing the remark-
able capability of attracting one another and objects made from iron.1

1In Plato’s dialog Iων, Socrates tells Ion: “. . . it is a divine influence which moves you, like
that which resides in the stone called Magnet by Euripides, and Heraclea by the people. For
not only does this stone possess the power of attracting iron rings but it can communicate
to them the power of attracting other rings; so that you may see sometimes a long chain of
rings and other iron substances attached and suspended one to the other by this influence.”

© Mark A. Cunningham 2015
M.A. Cunningham, Neoclassical Physics, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-10647-2__8
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In addition, if suspended by a thin string, a lodestone would seek a
specific direction that we have come to call North. This property was
eventually refined into devices that we now call compasses. Until the
recent invention of the Global Positioning System and satellite navi-
gation, compasses were essential equipment for navigators. From our
previous discussions, we can infer that there must be some force acting on
the compass needles that cause them to align in a specific direction and
that some force acts upon the iron rings to hold them to the lodestone.
Historically, this force has been termed the magnetic force but, in one of
the great advances of physics, the Scottish physicist James Clerk Maxwell
demonstrated that the separate electric and magnetic forces known to the
ancients were actually just two different aspects of a common force that
we today call electromagnetism.2

Maxwell’s efforts unified the various known descriptions of the behavior
of electric and magnetic phenomena into a single coherent framework.
His theory represented the culmination of significant progress in the
early 1800s in the scientific understanding of electric and magnetic
phenomena. This progress was due, in large part, to the discovery of
the electrochemical cell (battery) by Alessandro Volta in 1799 that pro-
vided a means for conducting systematic studies of electrical phenom-
ena. There followed a series of insightful discoveries that captivated not
only the scientific community but the populace as a whole. Volta was
invited to Paris in 1801 by Napoleon and gave three public lectures on
his research to the French National Academy, all of which were attended
by Napoleon himself. Napoleon was so impressed by the Italian’s charm
and intelligence that he awarded Volta a gold medal for his achievements,
established an annual prize for research into electrical phenomena and, in
1810, named Volta a count.3 Legend has it that, upon leaving the library
of the National Institute where Volta delivered his lectures, Napoleon
came across a bronze plaque with the inscription “Au grand Voltaire” and
personally erased the final three letters.

8.1. Lorentz Force

One of the consequences of Maxwell’s system of equations is that the force
on a charged particle must be expanded to include the influence of mag-
netic fields as well as the electric field, as we have previously discussed.

2Maxwell’s four part paper “On physical lines of force” was published in the Philosophical
Magazine in 1861 and 1862. His subsequent “A dynamical theory of the electromagnetic
field,” published in 1864 established that light was an electromagnetic wave.
3Volta communicated his results in a letter to the Royal Society of London on March 20,
1800. Le Prix du Galvanisme was awarded annually in the years 1802–1815.
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A series of physicists contributed to the problem but, today, we associate
the result to the Dutch physicist Hendrik Lorentz:

(8.1) F = q(E+ v×B).
Here, the force on the charge q due to the magnetic field B is seen to
depend also on the velocity v of the charge. Indeed, the vector cross prod-
uct in Equation 8.1 results in the force being directed perpendicular to the
motion of the charge. Hence, the magnetic force is on a moving charged
particle is a centripetal force and does no work.

If we want to consider the motion of a charged particle in a magnetic
field, with no electric field present, we note that it is astute to use the
direction of the magnetic field as one of the coordinate axes. We can then
decompose the velocity vector v in terms of a component that is parallel
to the magnetic field and two components that are perpendicular:

v‖ =
v ·B
|B|2 B and v⊥ = v− v‖.

We see immediately that v‖ × B = 0. As a consequence, motion along
the direction of the magnetic field is unaccelerated. Only the motion
perpendicular to the magnetic field is subject to a force.

Exercise 8.1. Consider the vector v = (vx,vy,vz). The vector B/ |B|
is a unit vector in the direction of the magnetic field. Suppose that
B = By ŷ. Compute the parallel and perpendicular components of v.
Suppose now that B = (0,By,Bz). What are the parallel and perpen-
dicular components of v?

Recall that the angular momentum is conserved for a centripetal force.
Hence, we can write the following relation:

(8.2)
d

dt
Mr× v =Mr× dv

dt
= 0,

where r is the position of the charge in some coordinate system. Note
that for a particle of mass M , we have M dv/dt = F. So, if we substitute
the magnetic component of the Lorentz force into Equation 8.2 we find
the following result:

(8.3) q r× [v⊥ ×B] = 0.
Now for Equation 8.3 to hold, we must have that r is parallel (or antipar-
allel) to the vector v⊥ ×B.

Exercise 8.2. Use the vector identity a× (b× c) = (a · c)b− (a ·b)c to
prove that r is perpendicular to both v⊥ and B.
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Exercise 8.3. If no work is done on the charged particle, then the ki-
netic energy T = 1/2Mv ·v is also conserved. Show that the magnetic
component of the Lorentz force does not alter the kinetic energy.

Let us simplify the calculations and align the magnetic field with the z
axis. Then B = B ẑ and v⊥ = (vx,vy,0)., We can now observe that v⊥ ×B =
(vyB,−vxB,0) and, from this result, that the following relation holds:

r× (v⊥ ×B) = (zvxB,−zvyB,−xvxB− yvyB) = 0.

For the first two terms to vanish, we require that z = 0. This means
that motion will take place in the plane perpendicular to B. For the last
component of the vector to vanish, it is necessary that

0 = xvx + yvy = x
dx

dt
+ y

dy

dt

=
d

dt
(x2 + y2).(8.4)

Note that the term x2 + y2 is the (squared) distance to the origin and it is
constant in time. Hence, Equation 8.4 represents circular motion in the
plane perpendicular to B. We must have that x = r cosϕ and y = r sinϕ,
where r is the radius of revolution and ϕ is the angle from the x-axis, as
indicated in figure 8.1.

Figure 8.1. The vector r, v⊥ and B
are mutually perpendicular

We note further that the particle possesses a constant angular velocity. We
can see this from the fact that the magnitude of velocity is also constant;
we have

(8.5) v⊥ =
dr
dt

=
(
−r sinϕ dϕ

dt
,r cosϕ

dϕ

dt
,0
)
.

From this result, we can show that v⊥ = r dϕ/dt = rω, where ω is the
angular velocity. Thus, if v⊥ is constant, then so is ω.
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The derivative of velocity is, of course, acceleration. From Equation 8.5,
we can write that

(8.6)
dv⊥
dt

=
[
−r cosϕ

(
dϕ

dt

)2
,−r sinϕ

(
dϕ

dt

)2
,0
]
= −rω2.

The magnitude of the acceleration is then given by the following:

(8.7) |a| = v2⊥
r
.

This result arises from the centripetal nature of the force.

From the definition of the Lorentz force, we also have that the magnitude
of the acceleration is given by |a| = qv⊥B/M . We can combine this fact
with results in Equation 8.7 to solve for the radius r:

(8.8) r =
Mv⊥
qB

.

Thus, the radius of gyration is proportional to the component of mom-
entum perpendicular to the magnetic field. If the particle also has a
component of the velocity parallel to the magnetic field, as illustrated in
figure 8.2, then the vertical distance d the particle travels during one rev-
olution is given by d = v‖T , where T is the period of revolution. In this
instance, the period is given by T = 2πr/v⊥ = 2πM/qB.

Figure 8.2. If the magnetic field is
oriented in the z direction, then a
charged particle will follow a heli-
cal trajectory. The axis of the helix
is also parallel to the z axis

Exercise 8.4. Define the vector r = (acos(t), asin(t), bt). Use the
Manipulate function to examine the resulting trajectory over the
range 1 ≤ a ≤ 10 and 0 ≤ b ≤ 1. Use the ParametricPlot3D func-
tion to display the trajectory. How does the trajectory change as a
and b change?

Suppose now that a charged particle were to enter into a finite region
where the magnetic field is nonzero. Such a situation is illustrated in
figure 8.3, where the magnetic field is confined to the area inside the
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dashed circle. The particle is deflected through an angle θ, where sinθ =
L/r and L represents the horizontal distance covered by the particle while
it is still in the magnetic field.

Exercise 8.5. Suppose the magnetic field is nonzero in a rectangu-
lar region of area A = LW and that the radius of curvature r is large
compared to L. Draw an arc of radius r that extends for a horizontal
distance L, as in figure 8.3. Use geometry to prove the assertion that
sinθ = L/r.

Figure 8.3. A charged particle en-
tering a region (box) where the
magnetic field is nonzero will
be deflected through an angle θ.
The radius of curvature r is defined
in Equation 8.8

8.2. Cathode Rays

One of the most intriguing devices constructed in the latter part of the
1800s was the cathode ray tube. The device itself is quite simple: two
electrodes were fitted inside of a glass bulb in which rarefied gases were
present. When a source of high voltage was connected across the elec-
trodes, the bulb glowed. This phenomenon is, of course, not particularly
spectacular to modern students, for whom neon lights are commonplace.
For people in the late 1800s, who derived their light from gas lamps or
candles, the observation of light emanating from a glass bulb in which no
combustion was occurring was quite spectacular indeed.

Physicists, of course, were interested in the nature of these cathode rays
and the definitive experiments were conducted by the British physicist
J. J. Thomson. In Thomson’s initial experiment, using the apparatus
sketched in figure 8.4, application of voltages Va and Vc to the anode and
cathode, respectively, gave rise to a cathode ray beam, provided that the
cathode voltage was relatively negative to the anode voltage and provided
that the voltage difference Va −Vc was sufficiently large. A narrow beam
was obtained by drilling a small hole through the center of the anode.
The cathode ray beam could be visualized through its interactions with
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Figure 8.4. Thomson’s first exper-
iment showed that a beam of
cathode rays would travel in a
straight line unless deflected by an
external magnetic field. In that
case, the rays would pass through
the grounded shield (earth) and
strike the detector. Accumulated
charge was measured by an elec-
trometer

gas molecules in the glass container, generating a glowing trail along the
trajectory of the beam. When a transverse magnetic field was applied,
the beam was deflected downward where it entered the slot cut in the
grounded shield. The beam then struck the detector, which was simply
another slotted cylinder attached to a wire that passed outside the glass
cell. Attaching the wire to an external electrometer enabled Thomson to
prove that the cathode rays were negatively charged corpuscles. This was
consistent with the predictions of the Lorentz force law for the interaction
of negatively charged particles with a magnetic field.

Other researchers had failed to deflect the cathode ray beam with applied
electric fields, giving rise to a puzzle. Apparently, cathode rays were
affected by magnetic fields but not by electric fields. These early exper-
iments indicated that cathode rays do not obey the Lorentz force law and,
possibly, represented some new form of matter. Thomson recognized that
the passage of cathode rays through a gas-filled tube could potentially
generate ionic currents that would mask the effect of an applied electric
field. So, he constructed a tube that contained electrodes but was evacu-
ated of the residual gas. This approach would eliminate the ionic currents
but also eliminated the ability to directly visualize the beam. To solve this
problem, Thomson painted the end of the tube opposite the cathode with
phosphorescent material that emitted light when struck by the cathode
rays. The results were quite striking.4 Attaching a battery across the elec-
trodes produced a measurable deflection of the electron beam. Reversing
the battery connections led to an equivalent deflection in the opposite
direction. Clearly, cathode rays were charged particles and behaved in the
manner predicted by the Lorentz force law.

4Thomson published his quantitative results in the Philosophical Magazine in 1897. Thomson
was awarded the Nobel Prize in Physics in 1906 “in recognition of the great merits of his
theoretical and experimental investigations on the conduction of electricity by gases.”
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Thomsonmade a series of systematic studies of the cathode rays, replacing
the anode and cathodes with different metals and filling the tubes with

Figure 8.5. In Thomson’s second
experiment, a pair of electrodes
were placed inside a tube that
was evacuated of (nearly) all gas.
Thomson painted the inside of the
large sphere at the end of the
tube with a phosphorescent mate-
rial that emitted light when struck
by the cathode ray beam

different gases before evacuating them (to study residual gas effects). All
cathode rays appeared to be the same, independent of materials used.

To quantify Thomson’s results, let us begin by approximating the electric
field in the region between the plates to be given by E = (Vd −Ve)/d, where
d is the distance between the two electrode plates. The electric field is
assumed to be zero outside of the plates. This result is exact for infinitely
large plates but is not a bad approximation if the distance d is relatively
small compared to the length L of the plates.

The electron enters the region between the plates with a kinetic energy
that is given by T1 = e(Va − Vc), where e is the magnitude of the charge
on the electron. Hence, the electron will have a velocity given by T1 =
1/2mev

2
1 , that is directed along the long axis of the tube shown in figure 8.5

andwhereme is themass of the electron. The electronwill therefore spend
a time t = L/v1 traversing the plates while subject to an acceleration given
by a = eE/me. This results in a component of velocity perpendicular to
the original velocity, where the direction depends on the sign of the bias
voltage Vd −Ve. Putting all of these results, together, we can determine
that the electron will be deflected by an angle θ, where

(8.9) tanθ =
at

v1
=
[e(Vd −Ve)/d][L/v1]

v1
=

L(Vd −Ve)
2d(Va −Vc)

.

Exercise 8.6. Fill in the details of the derivation of Equation 8.9.

Recall now that we can also produce a deflection with an appliedmagnetic
field. Thomson found that, with perpendicular electric and magnetic
fields, he could arrange for the deflections to cancel. If the electric and
magnetic fields extended over the same region L, then the Lorentz force
vanishes if vB = −E. We have already found a value for v in terms of the
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anode and cathode potentials and the ratio of the electron charge to its
mass can be determined to be given by the following:

(8.10)
e

me
=

(Vd −Ve)2

2(Va −Vc)B2d2
.

After extensive studies, Thomson found that the ratio of the electron’s
charge to mass was more than a thousand times larger than the compa-
rable ratio for the hydrogen ion. This could be due either to the electron
possessing a charge vastly greater than the charge of a hydrogen ion or
to the electron possessing a mass that was vastly smaller. Over the next
several years, the charge of the electron was measured independently and
shown to be the same as that of the hydrogen ion (although with the op-
posite sign). This means that the electron mass is over a thousand times
smaller than the mass of the hydrogen nucleus (the proton). (The cur-
rently accepted value (2010) is me/mp = 5.446 170 2178(22) × 10−4 or
mp/me = 1836.15267245(75), where the numbers in parentheses represent
the uncertainty in the last two digits.)

As there seemed to be an inexhaustible supply of cathode rays from any
set of electrodes, Thomson proposed that the atoms must be somehow
studded with these bits of negative charge. As we have discussed pre-
viously, Thomson’s model came to be known as the plum pudding model
and was shown to be incorrect by Rutherford’s experiments a decade later.
Nevertheless, Thomson’s proposal fit the data available at that time.

Exercise 8.7. Define a coordinate system in which particles travel
initially in the z-direction. If we utilize an electric field with only an
x-component E = E x̂, what would the direction of a magnetic field
need to be to produce a Lorentz force in the opposite direction of the
force due to the electric field?

Fill in the details of the derivation of Equation 8.10.

Exercise 8.8. We have treated the kinematics in this section using
the non-relativistic equations developed by Newton. Suppose that
the accelerating potential (Va −Vc) was 500 V. Should we have used
Einstein’s relativistic kinematics? Would your answer change if the
accelerating potential was 5kV?

8.3. Canal Rays

In 1886, the German scientist Eugen Goldstein noted that, if he filled a
tube with a dilute gas and inserted a perforated cathode, not only did he
observe a glowing discharge between the anode and cathode but a series
of faint lines emanated from the cathode in the opposite direction, as
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sketched in figure 8.6. Goldstein named these emanations Kanalstrahlen
(“channel rays” or “canal rays”) because they only occurred when the
cathode had holes in it.

Figure 8.6. When a large voltage
difference (Va − Vc) was applied
across the anode and cathode, a
luminous discharge on the right
side of the tube (between the anode
and cathode) could be observed. If
the cathode had holes in it, rays
extending in the opposite direction
could also be observed

Following his work on electrons, Thomson conducted a series of detailed
experiments on these canal rays.5 A sketch of his apparatus is illustrated
in figure 8.7. A beam of canal rays was produced by placing a cathodewith
a narrow orifice in the neck between two glass chambers. The beam then
entered a region where an electric field was created by a pair of electrodes
and a parallel magnetic field was generated by a large electromagnet. The
end of the flared bottle was painted with a phosphorescent material that
glowed when struck by the canal rays. Photographic plates were then
affixed to the end of the flared tube and exposed for several hours.

Figure 8.7. A glass bottle contain-
ing rarefied gases was connected
by a narrow neck to a second bot-
tle. Voltages applied to the anode
(Va) and cathode (Vc) resulted in
canal rays that were deflected by an
electric field created by the plates
(Ve − Vd ) and a parallel magnetic
field generated between the poles
(P1 and P2) of a large electromagnet

Exercise 8.9. Define the following equations in the Mathematica
program:

5Thomson’s experiments were detailed in his report “Rays of positive electricity,” made on
May 22, 1913 to the Royal Society of London.
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eqs={x’[t]==vx[t],y’[t]==vy[t],z’[t]==vz[t].

vx’[t]==QM(Ex+vz[t] By-vy[t] Bz),

vy’[t]==QM(Ey+vx[t] Bz-vz[t] Bx),

vz’[t]==QM(Ez+vy[t] Bx-vx[t] By)}

ics={x[0]==x0,y[0]==y0,z[0]==0,

vx[0]==vx0,vy[0]==vy0,vz[0]==vz0}

soln=NDSolve[Join[eqs,ics]/.{QM->1,Ex->0,Ey->0,Ez->0,

Bx->1,By->0,Bz->0,x0->0,y0->0.0,z0->0,

vx0->0,vy0->0,vz0->1},{x,y,z,vx,vy,vz},{t,0,5}]

ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.soln],

{t,0,5}]

Describe the resulting trajectory. What happens if there are non-zero
components of the electric field? What happens if the sign of Q/M
is negative?

Exercise 8.10. Use the equations from Exercise 8.9 but define Ex
and Bx to be Piecewise[{{1,0<z[t]<=1},{0,True}}]. This defines
the fields to be non-zero only in the interval 0 < z ≤ 1. Plot the
trajectory over the range −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 and 0 ≤ z ≤ 6.
Describe the resulting trajectory. What value of the initial veloc-
ity in the z-direction is required in order for the trajectory to hit the
screen at z = 6?

Exercise 8.11. The fields are not exactly constant over the interval
0 ≤ z ≤ 1. The function f (z) = 1 − 16(z − 1/2)4 is one that is ap-
proximately constant in the center and drops to zero on either end.
Plot f (x). Now, using the equations from Exercise 8.9, define Ex and
Bx to be Piecewise[{{1-16(z[t]-1/2)^4,0<z[t]<=1},{0,True}}.
Does this significantly alter the behavior of the beam? Can you alter
the length of the piecewise constant region and obtain comparable
results?

In this experiment, Thomson utilized aligned electric and magnetic fields
that were perpendicular to the motion of the canal rays. If we define a
coordinate system in which the velocity of the rays is in the z-direction
and the fields are in the x-direction, then the action of the electric field
is to produce an acceleration in the x-direction. This will generate a
component of the velocity in the x-direction but, as this is parallel to the
magnetic field, there is no additional magnetic acceleration. Themagnetic
field will initially produce an acceleration in the ẑ × x̂ = ŷ direction but,
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as we have seen, this will lead to a circular path in the y-z plane. If the
initial velocity vz is too small, the beam will not make it to the screen at
the end of the flared bottle.

For relatively large velocities, then, the motions in the x- and y-directions
nearly decouple (vz is approximately constant.) If we assume that the
electric field is constant for some length L and zero elsewhere, then the
x-component of the velocity at the end of the acceleration interval will
be given by the following:

(8.11) vx =
q

M
Ext1 =

q

Mvz
ExL,

where t1 is the length of time the beam takes to traverse the distance L
and we have assumed that the velocity in the z-direction is constant. In
this case, the beam has moved a distance x1 along the x-direction, where
we have:

(8.12) x1 =
q

2M
Ext
2
1 =

q

Mv2z

ExL
2

2
.

At the end of the acceleration interval, we have that the component of the
velocity in the y-direction will be approximately given by the following:

(8.13) vy =
q

M
vzBxt1 =

q

M
BxL

The beam will have moved a distance y1 along the y-direction, where we
have:

(8.14) y1 =
q

2M
vzBxt

2
1 =

q

Mvz

BxL
2

2

The canal ray beam then traveled a further distance d along the z-direction
before striking the screen. This will take a time t2 = d/vz. This motion is
not accelerated, so the beam will strike the screen at a position (x2, y2)
given by the following:

(x2, y2) = (x1 + vxt2, y1 + vyt2)

=
(

q

Mv2z
Ex(L

2/2+Ld),
q

Mvz
Bx(L

2/2+Ld)
)
.(8.15)

We see that the position on the screen depends on the charge to mass ratio
q/M and on the initial velocity vz. The remaining dependencies on the
fields and the geometry of the apparatus can be lumped into additional
constant terms.

Exercise 8.12. Use the ParametricPlot function to plot (1/v2,1/v)
over the range 2 ≤ v ≤ 20. Describe the results. Now add plots for
(1/3v2,1/3v) and (1/5v2,1/5v). Describe the results.
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What Thomson discovered in his experiments was a series of parabolic
traces on his photographic films like those depicted in figure 8.8. A bright
spot was produced by uncharged components of the canal ray beam that
were not deflected by the electric and magnetic fields. The photographs
also contained a series of parabolic arcs. Thomson deduced that the arcs
were generated because the constituents of the beam did not all have the
same velocity. Presumably, the positively-charged constituents were gen-
erated throughout the volume of the bottle and so were not accelerated to
the maximum potential Vc −Va. The maximum kinetic energies would be
expected to be Tmax = q(Vc −Va) and hence the maximum velocities would
be given by vmax = [q(Vc−Va)/2M ]1/2. As a result, the arcs generally began
at the same value of x.

Exercise 8.13. Use the ParametricPlot function to plot the func-
tion f = (1/Mv2,1/Mv). The maximum velocity will be mass de-
pendent. For mass M = 1, assume that the velocity is in the range
3 ≤ v ≤ 10. Scale the ranges appropriately for masses M = 2, 16, 20
and 28. What is the minimum value of x?

Figure 8.8. Thomson’s apparatus
produced images similar to the one
sketched at right. A bright spot
marked the point struck by un-
charged components of the canal
rays that were not deflected by the
fields. A series of parabolic lines
could be used to identify the ele-
ments contained in the gas

Exercise 8.14. Thomson observed that hydrogen was present in
nearly every gas sample he tested. How can the measured y-values
of the parabolas (at the minimum x-distance) of different lines like
those in figure 8.8 be used to determine the masses? (Hint: Use
Equation 8.15 and consider the ratio with respect to hydrogen.)

Exercise 8.15. It is not necessary to utilize the approximations that
led to Equation 8.15. Use the equations from Exercise 8.9 but define
Ex and Bx again to be piecewise constant over the range 0 ≤ z ≤ 1.
Compute the trajectories for a range of velocities. Now evaluate the
values of x and y at the distance z = 6. Plot the resulting values and
show that the points fall along a parabola.
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Thomson also observed a number of different effects in his photographs
that deviated from the nominal behavior displayed in figure 8.8. In some
cases, he observed that the traces extended to smaller values of x than
would be achievable with the known accelerating potential. Thomson att-
ributed these results to the production of ions with charge +2q. In those
films, Thomson would generally observe traces that corresponded to both
q/M and 2q/M . The extension of the q/M trace to smaller x values could
be explained if the ions were initially doubly charged while being accel-
erated by the potential Vc −Va but then lost a charge before entering the
deflection region of the apparatus.

Figure 8.9. The trace A is pro-
duced by the charge to mass ratio
q/M . The trace B is produced by
the charge to mass ratio 2q/M . The
extension C of trace A is generated
by ions that were doubly charged
when accelerated but then lost a
charge when being sorted

In one of his photographs that contained neon gas, Thomson observed
parabolas that corresponded to masses of M = 20 and 22. He also found
parabolas that could be attributed to masses M = 10 and 11. These val-
ues are precisely half of the values of the heavier masses. Because the
traces for the heavier masses were extended to low values of x like trace
A from figure 8.9, Thomson concluded that the traces corresponding to
M = 10 and 11 were due to multiple ionization. Nevertheless, neon gas
was composed of two fractions of different masses. The mass of neon was
then known to be about 20.2 from other measurements, so Thomson con-
cluded that about ten percent of neon has mass 22 and the remainder a
mass of 20. Today, we refer to the two different fractions as the isotopes
of neon.

Thomson’s assistant in many of these experiments was Francis Aston, who
recognized that several improvements to Thomson’s apparatus could lead
to improved resolution. Aston’s developments led to precision mass spec-
trometry.6 His work was interrupted by the first world war but when

6Aston was awarded the 1922 Nobel Prize in Chemistry “for his discovery, by means of his
mass spectrograph, of isotopes, in a large number of non-radioactive elements, and for his
enunciation of the whole-number rule.”
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he returned to the problem in 1919, Aston’s improved devices rapidly
produced evidence for over two hundred isotopes of non-radioactive ele-
ments. This solved a long-standing problem with the masses of the chem-
ical elements. It was known that the masses are approximately integral
multiples of the mass of the hydrogen atom but there were significant
discrepancies. For example, magnesium (A=12) has an atomic mass of
24.31, which is not particularly close to 24. Intriguingly, cobalt (A=27)
has an atomic mass of 58.93, which is close to 59, but nickel (A=28) has
an atomic mass of 58.69, which is surprisingly lighter than cobalt. The
non-integral values could now be explained by simply adding different
fractions of the isotopes. This, of course, leads to the subsequent problem
of why we see the particular isotopic ratios and whether or not those are
universal ratios.

Exercise 8.16. Chlorine has an atomic mass of 35.45. Aston deter-
mined that chlorine has two isotopes 35Cl and 37Cl. What fraction
of isotopes leads to the observed atomic mass?

Aston’s major improvement to Thomson’s apparatus was involved sepa-
rating the electric and magnetic field regions and rotating the magnetic
field perpendicular to the electric field. This had the consequence that
the charged particles in the beam were deflected in a plane along the
beam axis, rather than being deflected into three dimensions. Moreover,
with judicious choices for field intensities, all of the particles with a com-
mon charge to mass ratio (q/M ) could be focussed to a single point, inde-
pendent of the particle velocity. This allowed Aston to simplify his data
collection. All beam constituents with the same q/M struck the same
point on the phosphorescent material, reducing the required exposure
time and increasing the signal to noise ratio. By 1922, Aston had iden-
tified 212 isotopes.

Exercise 8.17. Use the equations of motion from Exercise 8.9 but
define Ex to be Piecewise[{{1,0<z[t]<=1/2},{0,True}}] and
By to be Piecewise[{{Bval,2<z[t]<=3.5},{0,True}}]. Use the
ParametricPlot function to plot x(t) versus z(t). Group the NDSolve
and plot functions inside a Module so that you can use Manipulate to
vary the value of Bval from zero to four. Choose an initial charge to
mass ratio of q/M = 1/20. Compute separate solutions for velocities
ranging from v = 3/

√
20 to v = 7/

√
20 in steps of δv = 0.5/

√
20.

What happens as the appliedmagnetic field is increased? How could
you improve the focus? What happens when you decrease the charge
to mass ratio to q/M = 1/25 and q/M = 1/30?

A depiction of the electromagnetic focussing achieved by Aston is illus-
trated in figure 8.10, where the trajectories of particles with the same
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Figure 8.10. Charged particles are
first deflected by an electric field
and then a magnetic field in the
indicated zones. Those with large
velocities (black) are deflected rela-
tively less than those with smaller
velocities (gray). The trajectories
converge after passing through the
magnetic field

charge to mass ratio but with different velocities are shown. As can be
seen from the figure, the trajectories diverge after passing through the
electric field but they again converge after passing through the magnetic
field. Aston’s spectrometer was constructed to place the phosphorescent
screen at the focus of the beam. Thus, all particles with a mass ratio of
q/M would strike at the same point, independent of velocity. Particles
with different charge to mass ratios would strike the screen at different
points.

Figure 8.11. Aston’s mass spectrometer produced results like those
depicted above. Spots occurred for integral values of the charge to
mass ratio. The broad peak at a relative mass of 28 is due to carbon
monoxide (CO)

Aston observed that it was difficult to operate his apparatus with pure
gases, so most of the spectra that he produced included contributions
from several molecular species. This turned out to be useful in interpret-
ing the results of his experiments. For example, in figure 8.11, we depict
a representation of Aston’s investigations utilizing chlorine. The broad
peak at the mass of 28 can be interpreted as due to the carbon monoxide
(CO) gas that was frequently present. The peaks at masses 13–16 were
the “carbon ladder” and are interpreted as due to the molecules CH, CH2,
CH3 and CH4, where carbon is assumed to have mass 12.

Exercise 8.18. From these data, Aston identified two isotopes of
chlorine: 35Cl and 37Cl. To which molecules do the unidentified
peaks in the spectrum correspond?
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8.4. Neutrons

After conducting numerous experiments, Aston was able to quantify his
whole number rule. If the mass of oxygen is taken as 16 exactly, then all
atoms and molecules have integral masses.7 In his spectrographs, Aston
sometimes encountered lines at half-integral values of mass but these cor-
responded to doubly charged ions. For example, chlorine would provide
faint peaks at apparent mass values of 17.5 and 18.5. Occasionally, weak
lines at third-integral values of mass, corresponding to triply charged
ions, could be observed. As Aston refined his instruments and the results
became more precise, the whole number rule was repeatedly validated.
Of course, why some elements had different isotopes was not understood.

The resolution to the isotope problem was produced in 1932 by the
English physicist James Chadwick, who was investigating the curious
phenomenon of a new penetrating radiation observed when α parti-
cles emitted from a polonium source struck a beryllium target. Before
we reveal Chadwick’s solution, we should first revisit the principle of
momentum conservation.

As discussed in previous chapters, linear momentum is conserved. This
means that the total momentum of a system is independent of time.
We can express this mathematically as follows:

(8.16)
d

dt

∑
pi = 0,

where the summation extends over all the constituents in the system.
So, at any time—before and after a scattering event, for example—the
total momentum is constant. In three dimensions and if there are N con-
stituents in the system, then Equation 8.16 provides three equations re-
lating the 3N momentum components. This does not provide enough in-
formation to specify the final state of the system uniquely. As a result, we
must obtain further information about the state of the constituents before
we can provide a complete analysis.

At relatively low impact velocities, the kinetic energy may also be con-
served; such collisions are called elastic collisions. This is, of course,
not a common result in the collisions of macroscopic objects. The famil-
iar click of two billiard balls striking one another is a sound wave that
represents energy being radiated away from the collision. Infrared imag-
ing technology employed in cricket matches clearly identifies the “hot
spot” where the ball struck the bat. This hot spot is, indeed, hotter than
the surrounding portions of the bat and represents the conversion of a

7The atomic mass unit utilized Aston’s definition: M (16O) = 16. In the SI system of units,
the Dalton (Da) is defined as 1/12 of the mass of 12C in its ground state.
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portion of the kinetic energy in the ball/bat system to thermal energy.
For anyone who has played baseball or softball, the stinging sensation
produced by striking the ball away from the “sweet spot” of the bat is
produced by the vibrational modes of the bat excited during the collision.
Additionally, the collision of two automobiles results in remodelling of
their aerodynamic forms, representing the work done in reshaping fend-
ers and breaking glass, in addition to the sound of the impact that an-
nounces the calamity to those in close proximity. In microscopic sys-
tems, however, it is possible for collisions to approximate the elastic ideal,
where no kinetic energy present initially is converted into some other
form of energy as a result of the collision.

Exercise 8.19. Consider the case of a one-dimensional collision.
Initially, mass M1 has a velocity v0 and mass M2 is at rest. After
the collision, mass M1 has velocity v1 and mass M2 has velocity v2.
If the kinetic energy is also conserved, solve for v1 and v2 in terms
of v0 and the masses.

What final velocities v1 are possible when M1 < M2? What final
velocities v1 are possible when M1 >M2?

If we consider the elastic scattering of one object from a second, then it
suffices to consider motion in a plane to describe the final state. (This is
the result of angular momentum conservation.) In this case, the first par-
ticle can be considered to have an initial momentum p0 = p0ẑ. After the
scattering event, the first particle has a momentum p1 and the trajectory
asymptotically makes an angle θ1 from the initial direction, as is illus-
trated in figure 8.12. The second particle, initially at rest, travels along a
direction that is at an angle θ2 with respect to the initial direction of the
projectile.

Exercise 8.20. In figure 8.12, we defined the x-z plane to be the
plane that contains the trajectory of the first particle. Use momen-
tum conservation to prove that the second particle cannot have a
nonzero y-component of its momentum.

Chadwick’s problem was that the penetrating radiation emitted from
the beryllium target was electrically neutral. This meant that it was not
deflected by electric or magnetic fields and, consequently, was exception-
ally difficult to analyze. His ingenious solution to the problem was to use
collisions between the penetrating radiation and a proton source to con-
vert the hard-to-analyze penetrating radiation into a beam of protons that
would be easier to analyze. There was a suggestion at the time that the
penetrating radiation could be γ rays. At first blush, it would seem that
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Figure 8.12. One particle travels
initially along the z-direction be-
fore scattering, making an angle θ1
from its initial direction after the
collision. The second particle is
scattered at an angle θ2

Equations 8.16 are not applicable to γ radiation, as light has no mass and,
thus, the product mv would vanish. Recall, though, that the relativistic
energy of a particle was defined by the following relation:

E2 = p2c2 +m2c4.

Recall also that the energy of a photon was related to its wavelength by
Planck’s constant: E = hc/λ. Combining these two results provides us
with the momentum of the photon: p = E/c = h/λ. So, we can apply the
principles of momentum and energy conservation but, when photons are
involved, we shall have to use the relativistic formulas.8

We can systematize the mathematics of relativistic kinematics if we use
a matrix representation. Consider that the four-momentum is defined as
the following column vector:

(8.17) p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E/c
px
py
pz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡
[
E/c px py pz

]T
,

where by the superscript T in the last part of the equation we mean the
transpose (row vector). The dual vector to the vector p is obtained by
taking the transpose and flipping the signs of the spatial components:

(8.18) p̃ =
[
E/c −px −py −pz

]
.

In this matrix representation, the dual vector is a row vector. Similar to
the situation we encountered when dealing with the lattice vectors and

8Equation 8.16 is equally valid if we consider the vectors pi to be the four-dimensional
momentum vectors.



236 Constituents of the Atom

the reciprocal lattice vectors, the magnitude of the four-momentum is
obtained by taking the dot product of the dual vector with the vector:

p̃ ·p ≡
[
E/c −px −py −pz

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E/c
px
py
pz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (E/c)2 − p2x − p2y − p2z ,
which is just the invariant quantity m2c2 defined in Chapter 4.

From figure 8.12, the initial photon has the following four-momentum:

p0γ =
[
h/λ0 0 0 h/λ0

]T
.

Note that p̃0γ ·p0γ = 0, reflecting that the mass of the photon is zero.

From figure 8.12, the scattered photon has the following four-momentum:

p1γ =
[
h/λ1 h/λ1 sinθ1 0 h/λ1 cosθ1

]T
.

The second particle has mass Mp and is initially considered to be at rest,
so its initial four-momentum is just

p0p =
[
Mpc 0 0 0

]T

and, in the final state, the four-momentum is given by the following
relation:

p1p =
[√

p2p +M2p c2 −pp sinθ2 0 pp cosθ2
]T

,

where the magnitude of the three-momentum is pp . The momenta are
conserved, so we must have additional relations amongst them 9:

(8.19) p0γ +p0p = p1γ +p1p.

The first component of the four-momentum conservation equation
(Equation 8.19) provides us with the following relation:

h

λ0
+Mpc =

h

λ1
+
√
p2p +M2p c2.

We can solve this for the momentum pp of the second particle:

(8.20) p2p =
[
h

λ0
− h

λ1
+Mpc

]2
−M2p c2.

9This analysis was applied by the American physicist Arthur Holly Compton to describe the
scattering of electrons by γ rays. Chadwick argued that the same basic equations should also
apply to other charged masses like protons. Compton was awarded the 1927 Nobel Prize in
Physics “for his discovery of the effect named after him.” Compton shared the prize with the
Scottish physicist Charles Thomson Rees Wilson, who earned the award “for his method of
making the paths of electrically charged particles visible by condensation of vapour.”
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The spatial components of Equation 8.19 provide us with the following
relations:

(8.21) 0 =
h

λ1
sinθ1 − pp sinθ2 and

h

λ0
=

h

λ1
cosθ1 + pp cosθ2.

If we square both equations and add the result, we can demonstrate that
the momentum of the scattered particle can also be written as follows:

(8.22) p2p =
h2

λ20
+
h2

λ21
− 2 h2

λ0λ1
cosθ1.

We can equate the results of Equations 8.20 and 8.22 to eliminate the
unknown particle momentum. We find then that the wavelength of the
scattered photon can be written as follows:

(8.23) λ1 = λ0 +
h

Mpc
(1− cosθ1).

This value is largest (and the energy of the scattered photon smallest)
when θ1 = π, i.e., when the photon is scattered back along its initial
direction. The factor h/Mpc is known as the Compton wavelength of the
particle. The maximum kinetic energy attained by the recoiling particle
is then given by the following formula:

Tmax =
hc

λ0
− hc

λ0 + 2h/Mpc

=
2(hc/λ0)2

Mpc2 + 2hc/λ0
.(8.24)

Exercise 8.21. Write the four-momentum vectors pi
γ and pi

p explicitly.
Use these to fill in the missing details in the derivation of Equa-
tion 8.24. Plot the function f (x) = 1 − cosx and show that it is
maximal at x = π.

Exercise 8.22. The mass of the proton is about 938MeV/c2. Plot
the maximum kinetic energy of the scattered proton as a function of
photon energy over the domain 0 ≤ hc/λ0 ≤ 100MeV.

In Chadwick’s apparatus, a polonium source was placed in a vacuum
chamber near a beryllium disk, as illustrated in figure 8.13. The pene-
trating radiation generated in the beryllium passed into an ionization de-
tector: a gas-filled cell in which ions produced in the gas by the passage of
an ionizing particle generated a measurable current. Chadwick observed
that placing a thin sheet of paraffin between the beryllium and detector
greatly increased the event rate. He reasoned that this was due to colli-
sions between the penetrating radiation and protons in the paraffin that
resulted in the protons being projected forward.
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Figure 8.13. Radioactive polonium
was precipitated onto a thin disk
(Po) that was mounted in close
proximity to a beryllium disk (Be)
and the pair enclosed in a vacuum
cell. Energetic particles were de-
tected in the gas cell (D)

By placing a series of aluminum sheets between the paraffin and the
detector and observing the subsequent reduction in event rates, Chad-
wick was able to determine the range of the protons and, thereby, their
energy. Chadwick deduced that the most energetic protons had kinetic
energies of about 5.7MeV. From Equation 8.24, an initial photon energy
of nearly 55MeV was required to produce protons with that energy. Such
an energy is completely inconsistent with the known energies of nu-
clear γ rays, where typical energies ranged from about 100keV to a few
MeV. If the protons were being accelerated by photons, it would require
photons ten times as energetic as had been observed previously. As a
result, Chadwick concluded that the penetrating radiation was not γ rays.

Exercise 8.23. Use Equation 8.24 to solve for the initial photon
energy hc/λ0 in terms of the recoil energy p22c

2. Compute the pho-
ton energy required to accelerate a proton (Mp = 938MeV/c2) to an
energy of 5.7MeV.

Chadwick recognized that if the penetrating radiation had mass, then the
requisite initial energy would be lower. Utilizing Aston’s whole number
rule as a constraint, Chadwick then suggested that the penetrating radia-
tion was an electrically neutral body with the same mass (approximately)
as the proton.10 Today we refer to these particles as neutrons. If we look
back to the results of Exercise 8.19, we find that if the two colliding bod-
ies have the same mass, then the kinetic energy of the initial particle can
be entirely transferred to the second particle. This solves the problem of
the observed proton energies in Chadwick’s experiments. The radiation
from the beryllium disk consisted of neutrons, which have approximately
the same mass as the proton. It is also possible that these neutrons could
possess kinetic energies of 5–6MeV, typical of the observed energies in
nuclear systems. When such neutrons encounter protons in the paraffin,
some will exchange (nearly) all of their energy with the protons.

10Chadwick was awarded the Nobel Prize in Physics in 1935 “for the discovery of the neu-
tron.”
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As a result, we have arrived at the modern model of the nucleus. It is
composed of some number of positively-charged protons that determine
the element and an additional number of neutrons. It is possible to have
different numbers of neutrons associated with each number of protons:
these are the observed isotopes. We shall refrain here from producing a
drawing of a cluster of two-differently colored grapes to represent the nu-
cleus. Such drawings are ubiquitous but are hugely misleading. As we
have mentioned previously, neutrons are waves. An imaginary super mi-
croscope capable of resolving the nucleus would not observe a defined
surface any more than zooming in on the edges of a cloud in the sky will
delineate the cloud surface.

At the time of Chadwick’s experiments, the scientific consensus was
that the nucleus was composed of some number of protons equal to
the atomic mass and a number of additional protons bound somehow
to electrons that produced the particular isotope. In his initial papers,
Chadwick’s displays his conception that the neutron was, indeed, was
some sort of bound state of a proton and an electron. He reasoned
that the mass of the neutron therefore should be roughly the sum of
the proton and electron masses. In fact, we know today (2010 CO-
DATA tables) that the neutron mass is Mn = 939.565379(21)MeV/c2, the
proton mass is Mp = 938.272046(21)MeV/c2 and the electron mass is
Me = 0.510998928(11)MeV/c2. So, the neutron has a mass that is the
same as the proton’s to within about a part per thousand and it is some-
what larger than the sum of the proton and electron masses.

In his original experiments with radioactive decay, Rutherford identified
two different components of the radiation emanating from uranium salts
that he called α and β. We have seen that the α particles are just the nuclei
of 4He atoms and β particles are, in fact, electrons. Chadwick’s vision of
the neutron as a bound proton and electron provides us with a simple
explanation for β radiation: it is the result of the neutron decaying into
its constituents. This decay is the hallmark of what physicists term the
fourth fundamental force: the weak nuclear force.

Exercise 8.24. If a neutron at rest decays into an electron and pro-
ton, what is the kinetic energy of the electron in the final state? What
is the kinetic energy of the proton in the final state? Hint: momen-
tum must be conserved.

8.5. The World is not so Simple

In some sense, we have now reached the end of the trail that began
with our first studies of gravitating masses. We have encountered, at
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least, some aspects of the electromagnetic force that binds the nuclei and
electrons into atoms. We have recounted Rutherford’s discovery that the
nucleus was an amazingly smaller object than anyone anticipated and
interpreted this result as evidence for the existence of a strong nuclear
force that binds the positively-charged protons into such a small volume.
The discovery of the weak nuclear force (that accounts for neutron decay)
completes the modern picture of the fundamental forces of nature. There
are just four.

Chadwick’s discovery of the neutron and the subsequent discoveries that
neutrons can, indeed, decay into protons and electrons seems, at first
glance, to provide further evidence of the rather tidy picture we have
just described. In truth, experimenters investigating β decay were almost
immediately confronted with a conundrum. When measuring the ener-
gies of the emitted β particles, they observed a continuous distribution of
electron energies like that observed in figure 8.14. If we are to think of
the neutron as some sort of bound proton and electron, then the neutron
decay process in the nucleus should be approximately described by the
formulas derived in Exercise 8.19. In fact, a first approximation would
consider the neutron to be initially at rest. In this case, the momentum of
the electron would be opposite to that of the recoiling proton (or nucleus)
and the kinetic energy of the electron would be vastly greater than that of
the proton. Effectively, all of the kinetic energy would be carried away by
the electron.

One might suppose then, that the electron spectrum would be a large
peak at the mass difference between the parent and daughter nucleus.
One might further suppose that structure in the spectrum would provide
some sort of insights into how neutrons were actually bound in the nu-
cleus. No one expected the results of figure 8.14 because it represents a
clear case of momentum non-conservation!

Figure 8.14. The electron energy
spectrum from the β-decay of 210Bi
is continuous. The number of elec-
trons counted in a specific interval
(in arbitrary units) is plotted versus
the energy of the emitted electrons
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Exercise 8.25. Use the results derived in Exercise 8.19 and use the
masses Mn = 939.565MeV, Mp = 938.272MeV and Me = 0.511MeV.
What are the expected kinetic energies Tp and Te?

A potential solution to the dilemma was proposed by the Austrian physi-
cistWolfgang Pauli in 1930. Pauli suggested that there existed a very light,
neutral particle that was also emitted during the β decay process. This
new particle, which Pauli originally called the neutron, would also carry
away some of the kinetic energy released during the decay. The parti-
cle was eventually renamed the neutrino by the Italian physicist Enrico
Fermi after Chadwick’s discovery of the neutral particle that Chadwick
also called the neutron. Because Pauli’s particle was very light (possibly
massless), Fermi decided that the Italian diminutive ino should be added
to the root neutron to distinguish the very different entities.

In some sense, Pauli’s solution is quite elegant. In converting the two-
body decay of the neutron into a three-body decay, he could explain the
continuous spectrum of β decay electrons. On the other hand, Pauli had
just proposed a massless, chargeless, colorless, flavorless particle whose
sole reason for existence was to preserve the principle of momentum con-
servation. In this light, one might also characterize Pauli’s neutrino as a
desperate, nonsensical attempt to bolster a principle of physics that was
in direct conflict with experiment. In fact, Pauli’s original suggestion in
1930 came in the form of an open letter to the “Dear radioactive ladies and
gentlemen” of the Physical Institute at the ETH in Zürich. Pauli himself
was concerned that his suggestion would not survive the review process
that was required to publish his idea in a scientific journal.

Indeed, other physicists were not terribly enthusiastic about Pauli’s
neutrino initially. Given the implausibility of such an entity, notable
physicists of the day entertained the idea that momentum conservation
might not hold at microscopic scales. Further experimentation, though,
revealed that the nature of nuclear matter was significantly more complex
than anyone had envisioned in 1930. A key instrument used in enabling
physicists to visualize the complexity was the bubble chamber, invented
by the American physicist Donald Glaser in 1952.11 This apparatus pro-
vided physicists with the ability to visualize particle trajectories directly
and provides another example of the use of the magnetic force to study
the spectrum of particle masses.

The bubble chamber consists of a large volume of fluid, usually liquid
hydrogen, under high pressure. Just before a beam of charged parti-
cles enters the chamber, a large piston is cycled and the pressure in the

11Glaser was awarded the Nobel Prize in Physics in 1960 “for his invention of the bubble
chamber.”



242 Constituents of the Atom

chamber reduced dramatically. This leaves the fluid in a supercritical
state. When charged particles then enter the chamber, they scatter elec-
trons in the fluid, depositing energy into the fluid and causing the liq-
uid to boil. The trajectory of a charged particle is thereby marked by a
trail of bubbles. Photographs of the bubble trails taken at different angles
permit researchers to perform three-dimensional reconstructions of the
trajectories. Recycling the piston and repressurizing the chamber erases
the bubbles and readies the system for the next batch of beam particles.
Glaser’s original prototype was a few centimeters in diameter; later ver-
sions expanded to several meters in diameter.

Figure 8.15. In this negative im-
age, γ rays enter the bubble cham-
ber from the left. Upon striking
a lead sheet (about 1/4 of the way
from the left edge of the image),
three of the γ rays produce V-
shaped tracks that indicate the pro-
duction of positron-electron (e+e−)
pairs (Image provided courtesy of
Lawrence Berkeley Laboratory)

An example of a bubble chamber photograph is shown in figure 8.15,
where γ rays enter from the left side of the image.12 The γ rays are un-
charged and do not leave tracks in the chamber. Upon striking a thin lead
sheet, three of the γ rays are converted into charged particle pairs that
leave V-shaped tracks.13 The magnetic field in this case is directed into
the page, so the deflections up and down represent two different charges
for the created particles. The radii of curvature are similar in each case,
so each particle carries the same momentum. Knowing the energies of the
initial γ rays, it is possible to infer that the negative particles are elec-
trons (e−). That means that there also exist positively charged particles
that possess the same mass as the electron. These are called positrons (e+)
and represent a new state of matter that has been given the name anti-
matter. Apparently, all particles possess antiparticle analogs and one of

12This reproduction is actually a negative image that has better contrast when printed. The
original images have bright trails of reflected light from the bubbles against a black back-
ground.
13Note that we use here the commonword particle to describe the various states of matter. As
we have indicated previously, these particles are inherently waves, so one should not attempt
to produce a mental image of these fundamental states of matter as small spheres or beads,
despite the very tempting inclination to interpret the bubble trails as having substance.
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the most significant open questions in physics is why the universe is filled
with matter and not antimatter.

Figure 8.16. The list of known particles includes the electron and
other leptons such as the neutrinos and the muon. Particles that in-
teract through the strong nuclear force are called hadrons. These are
subdivided into two main categories: the baryons and the mesons

In addition to the protons and neutrons that are the constituents of atomic
nuclei, there are a host of other particles that also interact via the strong
nuclear force. None of these particles is stable; all decay quite rapidly.
So, particle is perhaps not a particularly good word to describe these
excitations of nuclear matter. Nevertheless, it is the word most commonly
utilized. A sketch of the particle mass spectrum is provided in figure 8.16.
Recall that in our previous discussions (like those in figures 5.14 and 8.11)
we used the word spectrum to mean a plot of intensity versus frequency
or, equivalently, wavelength. Here, the vertical axis represents the masses
of the different particles and, in Einstein’s relativistic approach to dynam-
ics, mass is energy. We have seen that the frequency and wavelength are
also related to the energy through Planck’s constant, so our terminology
of “mass spectrum” is reasonable.

In figure 8.16, particles with similar properties have been grouped along
the horizontal axis. The first column (labelled e) contains the leptons,
those are particles that do not interact via the strong nuclear force. This
column includes the electron and Pauli’s neutrino, along with heavier par-
ticles known as the muon and tau lepton. (On this scale, where the mass
of the proton is approximately 1 GeV/c2, the 0.511MeV/c2 electron is
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indistinguishable from the (nearly) massless neutrino(s).) The remaining
columns of particles are those that interact via the strong nuclear force
and are known collectively as hadrons.14 These have been classified into
lighter particles like the pions and kaons, known as mesons, and heav-
ier particles, known as baryons, that include protons and neutrons and a
host of others. The mesons and baryons have been further grouped into
categories that are described by what is now called the Standard Model of
elementary particle physics. Without going into further detail at this time,
suffice to say that physicists quickly ran out of Greek letters to describe
all of the different excitations of nuclear matter.

Bubble chambers provided a number of key images that helped refine our
ideas about nuclear matter. For example, the image depicted in figure 8.17
illustrates the production of the Ξ− hyperon (MΞ = 1321.71(07)MeV/c2)
by a collision between an incident kaon K− and a proton. In examining
bubble chamber photographs, the first order of business is to establish
the direction of the magnetic field. This is easily accomplished by find-
ing the spiral tracks of (relatively) low-energy electrons. These tracks are
inevitably created by interactions between beam particles and electrons
in the bubble chamber. One such track in the image is found near the
center, between the registration marks 1 and 2. As the electron traverses
the bubble chamber, the Lorentz force bends the path into a circle, as we
have described previously. A significant portion of the electron’s energy is
lost to bubble formation, so the electron loses energy as it travels and the
radius of curvature decreases. Hence, the electrons leave characteristic
spiral tracks. Knowing that the electron has a negative charge, it is pos-
sible to determine that the magnetic field in figure 8.17 must be directed
out of the page.

Exercise 8.26. Electrons traversing the fluid in the bubble chamber
experience a resistive force that scales like the square of the velocity.
Construct a numerical solution of the electron trajectory by modify-
ing the equations from Exercise 8.9 to include a velocity-dependent,
resistive force. Demonstrate that the helical trajectories that arise
without loss become spiral trajectories when loss is included.

Having now established the direction of the magnetic field, we can fur-
ther identify the charges of the various particles by the curvature of their
trajectories. Particles with negative charges will bend in the same direc-
tion as the electrons and particles with positive charges will bend in the

14Originally, the classifications utilized the Greek roots λεπτóζ (thin or slender), μέσoζ
(middle), βαρύζ (heavy) and ὰδρóζ (thick) to indicate the masses of the particles. As physi-
cists continued their experiments, mesons were discovered that were heavier than the pro-
ton, so the term meson no longer refers to the mass of the particle.
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Figure 8.17. In this image, a kaon
K− entered the bubble chamber
from the bottom. Upon striking a
proton in the chamber, the K− was
converted into a positive kaon K+

and the proton into a negative hy-
peron Ξ−. The hyperon then decays
into a neutral Λ◦ and a π−. The Λ◦

does not leave a track but decays
into a proton p and a π−. In the bot-
tom of the image, the scattered K+

decays into three pions: π+π+π−.
One of the π+ mesons then decays
into a muon (μ+) that subsequently
decays into a positron (e+) (Image
courtesy of Lawrence Berkeley Lab-
oratory)

opposite direction. While the assignment of particular particles to the
various tracks in the figure has not yet been explained, it is obvious how
the charge assignments were made.

Exercise 8.27. There is an unidentified track just to the right of
the K− that traverses the entire image without interacting. From the
curvature, what is the charge of this particle?

Figure 8.17 represents one of the earliest records of the existence of the Ξ−

particle (historically called the cascade hyperon). It is created in the reac-
tion K− p → K+ Ξ− that occurs near the bottom of the image. The track
identified as the Ξ− trajectory terminates with a kink that represents the
decay of the hyperon into daughter particles Ξ− → Λ◦ π−. The Λ◦ baryon
is a neutral particle and does not leave a track in the chamber. Its exis-
tence can be inferred from the tracks left by its decay products: the proton
and pion. At higher resolution, these daughter particle tracks can be seen
to cross, like the tracks depicted in figure 8.18.
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Figure 8.18. A neutral parti-
cle (dashed line) decays into two
charged particles at point A. The
oppositely-charged particles fol-
low curved trajectories (1 and 2)
that cross at point B. The line
connecting points A and B is a con-
tinuation of the original trajectory
of the neutral particle

Suppose that the neutral particle has three-momentum p0. Because it has
no charge, it is not deflected in a magnetic field. When the particle decays,
the two daughter particles have three-momenta p1 and p2, respectively,
and where p0 = p1+p2. Momentum conservation means that the momen-
tum component along the original direction of motion (the unobserved
trajectory of the neutral particle) must be unchanged after the decay:

(8.25) |p0| = p1 ·
p0
|p0|

+p2 ·
p0
|p0|

= |p1|cosθ1 + |p2|cosθ2.

Additionally, the components of momentum transverse to the original
direction of motion must vanish:

(8.26) 0 =
[
p1 −

p1 ·p0
|p0|2

p0

]
+
[
p2 −

p2 ·p0
|p0|2

p0

]
= |p1|sinθ1 + |p2|sinθ2.

Consider the track made by particle 2 in figure 8.18. If we ignore losses
and assume a constant radius of curvature r2, then the initial momentum
vector of daughter particle 2 lies along the line connecting the points A
and C. (This line is the tangent to the trajectory at point A.) If the distance
between A and B is L, then sinθ2 = L/2r2. The radius of curvature is
defined by the following:

(8.27) r2 =
|p2|
q|B| ,

where q is the particle charge and |B| is the magnitude of the magnetic
field. We then find that

(8.28) |p2 sinθ2| = |p2|
qL|B|
2|p2|

= qL|B|/2.

Exercise 8.28. The line segment AC in figure 8.18 is tangent to the
trajectory at point A. Show that the angle BAC is equal to the angle
AOC ≡ θ2. Show that the angle θ2 is half of the angle AOB.
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Exercise 8.29. Show that, if particle 1 has an initial angle θ1 and
radius of curvature r1, that |p1 sinθ1| = qL|B|/2. Show that this im-
plies that the line A–B lies along the vector p0/ |p0|.

The bubble chamber image represents a projection of the three-dimen-
sional trajectories onto a plane. The above argument is still valid in this
case. If we take the original momentum direction to be the z-direction, for
example, then the transverse momentum would lie in the x-y plane. The
requirement that the sum of the transverse momenta vanish in the final
state must hold for all components: it must be true in both the x- and y-
directions separately. As a result, in the particular view of the trajectory
in the image (call it the x-z plane) the line connecting the points A and
B, will indeed provide a continuation of the (invisible) trajectory of the
neutral particle, as projected onto the x-z plane.

Exercise 8.30. Use the numerical model created in Exercise 8.26
to study what happens when the losses are not negligible. Create
two trajectories of oppositely charged particles, subject to the same
resistive force. Is it still the case that the particle crossing points can
be used to infer the direction of the initial momentum?

The problem of assigning particles to the individual trajectories is not
trivial. In a keynote speech at the Rochester Conference (a scientific meet-
ing devoted to particle physics), the theoretical physicist VictorWeisskopf
once famously displayed a completely blank cloud chamber15 photograph
that he claimed provided evidence for a previously undiscovered neutral
particle that decayed into two neutral particles, thus explaining the lack of
any tracks whatsoever. Reportedly, Weisskopf’s joke elicited hearty laugh-
ter from the audience. We can assume that this was due, in part, to Weiss-
kopf’s backhanded admission that analysis of bubble chamber images is a
challenging enterprise.

To make assignments, researchers would try several different scenarios
and then select the most likely explanation. In a sizable fraction of cases,
the assignments cannot be performed unambiguously, particularly in sit-
uations where the final state included a number of neutral (and thereby
invisible) particles. Consider, for example, analysis of the initial decay
event in figure 8.17. The original beam of K− mesons was produced by
collisions of a high-energy proton beam that impacted a copper target.
The K− particles were selected by bending them through a magnetic field
before sending them through the bubble chamber.16 As a result, we know

15The cloud chamber was the forerunner of the bubble chamber. It was filled with gas not
fluid and produced far fewer events than the bubble chambers.
16There is a recurrent theme here.
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the initial state consisted of a K− with a particular kinetic energy and a
proton that we can assume to be essentially at rest.

Suppose now that we want to consider that the reaction actually produced
a final state in which there were three particles A, B and C, and C was
a neutral particle that did not leave a track. Conservation of the four-
momentum of the system requires the following relation:

pK−pp = pA +pB +pC,

where the pi are the four-momenta of the particles. The momentum of
the track that is labelled Ξ− in figure 8.17, can be determined by measur-
ing the radius of curvature. Similarly, we can also obtain the momentum
of the track labelled K+. For this particular example, the measured mo-
menta of the Ξ− and K+ tracks in figure 8.17 are equal (to within the
experimental precision) to the momentum of the initial K−, thereby ex-
cluding a possible neutral third particle.

The experimenters then tried various different combinations of choices for
A and B, before settling on Ξ− and K+. Other possible choices could be ex-
cluded on the basis of kinematic grounds. For example, some of the much
heavier particles identified in figure 8.16 could not have been produced,
given the initial K− energy. Further constraints on the identification of
the tracks can be inferred from the subsequent behavior of the particles.
For example, the K+ track ends in a three-particle spray that is identified
as three pions. One decay mode of the charged kaons that occurs about
six percent of the time is three pions. Few other particles decay into three
charged daughter particles so this is something of a characteristic feature
that helps to identify the track as that of a charged kaon.

Exercise 8.31. The mass of the charged kaon is now (2010) known
to be MK± = 493.677(16)MeV/c2 and the masses of the charged pi-
ons are Mπ± = 139.57018(35)MeV/c2. If we consider a decay from a
frame in which the K+ is initially at rest, is it possible for the kaon to
decay into three pions? If so, what kinetic energy is available to the
pions in the final state?

Exercise 8.32. In the decay shown in figure 8.17, if the initial mo-
mentum of the K− is pK− = 1.2 GeV/c, is it possible to produce
an Ω− particle and a K+ in the final state? The mass of the Ω− is
MΩ− = 1672.45(29)MeV/c2.

Bubble chambers have been eclipsed by newer detection methods that
are more amenable to automatic computer analysis. Analysis of the pho-
tographs, measuring tracks and merging the results from multiple cam-
era images, was a very labor-intensive task. Experimental groups often
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employed hundreds of part-time, undergraduate students to assist in the
monumental task of sorting through the millions of images that were
generated in a single experiment. Professional physicists were not used
much in this part of the data analysis because they tended to find “in-
teresting” things to study in every image. Consequently, physicists were
much less efficient than non-physics-major students, who were given spe-
cific instructions to look for characteristic features like Vs or the tridents
of three-pion decays. After these initial screens, interesting events were
measured and then analyzed to try to make the track assignments.

Figure 8.19. In this image, a neu-
trino entered the bubble chamber
from the right. Upon striking a
proton in the chamber, the neu-
trino was converted into a spray of
charged particles, revealing its ex-
istence (Image provided courtesy of
Argonne National Laboratory)

Despite their limitations, bubble chambers did play an important rôle in
helping physicists construct the current picture of the nature of nuclear
matter and, in fact, confirmed Pauli’s speculation about the existence of
a new, neutral particle. Figure 8.19 represents the first observation of a
neutrino event in a bubble chamber, which was obtained in November
of 1970 in the 12-foot bubble chamber at Argonne National Laboratory.
The reaction here is ν p → μ− pπ+. The spiralling electron trajectories
throughout the volume provide the direction of the magnetic field. The
neutrino entered from the right hand side of the image but, of course, did
not leave a track. We can infer its presence from the recoil proton and
the production of the μ− and π+. The chamber was shielded externally, so
that other neutral particles, such as γ rays can be excluded as the source
of the event.

Exercise 8.33. What is the direction of the magnetic field in fig-
ure 8.19? Can you explain the charge assignments in the final state?

Table 8.1. Particle lifetimes

Leptons τ (s) Mesons τ (s) Baryons τ (s)

μ± 2.2× 10−6 π± 2.6× 10−8 Ξ 1.6× 10−10
τ± 2.9× 10−13 K± 1.2× 10−8 Λ0 2.6× 10−10

π0 8.5× 10−17 Ω− 8.2× 10−11
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Exercise 8.34. It is not a bad approximation to assume that most of
the particles in bubble chamber interactions are traveling near the
velocity of light. From the lifetime data in Table 8.1, how far would
each travel in a lifetime? (What is cτ?) Very short-lived particles
would not leave visible tracks in a bubble chamber; this is another
reason why bubble chambers fell out of favor.



IX

The Classical Electron

In 1820, the Danish physicist Hans Christian Ørsted was performing a
demonstration of the temperature rise in a wire connected to a voltaic cell.
It was his intent to also subsequently demonstrate magnetic phenomena
and, so, had a compass in close proximity to the wire. In the midst of his
demonstration, Ørsted observed that connection of the wire to the voltaic
cell caused the compass to deflect from its normal position. After several
months of further experimentation, Ørsted was able to confirm that elec-
trical currents generated magnetic fields and published his results.1 In
September of 1820, the French physicist Dominique François Jean Arago
presented Ørsted’s paper to the French Academy. Among those in atten-
dance were the French physicists André-Marie Ampère and Jean-Baptiste
Biot. Within weeks of Arago’s presentation, Ampère had constructed a
mathematical relation between the magnetic field and currents and Biot,
with his assistant Félix Savart, had derived an approach to compute the
magnetic field from a current distribution.

This episode from the history of physics should serve to reinforce our pre-
vious assertions that physics is an experimental science. Ørsted and others
had sought connections between electrical and magnetic phenomena for
some time before Ørsted conducted his fateful demonstration that finally
solidified the connection. What Ørsted observed was that the magnetic
field created by the current in the wire was not directed along the wire or
even away from the wire. Instead, the field was directed perpendicular to
both of those directions!

9.1. Currents

In developing their theories of electromagnetism, researchers of the day
drew on their previous experiences, such as from heat conduction and

1Ørsted wrote a short note in Latin “Experimenta circa Efficaciam Conflictus Electrici in
acum Magneticam” that he sent to the leading academic societies in Europe.

© Mark A. Cunningham 2015
M.A. Cunningham, Neoclassical Physics, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-10647-2__9

251



252 The Classical Electron

Figure 9.1. For a current I aligned
with the z-axis, an array of com-
passes arranged in the x-y plane
will align in a circular pattern. At
each compass, the magnetic field of
the wire points in the direction per-
pendicular to the current and the
direction vector from the wire to
the compass

fluid dynamics. As a result, many of the concepts applied to electro-
magnetic phenomena have analogous formulations in other fields. For
example, the British physicist Michael Faraday is generally credited with
popularizing the idea of utilizing field lines as a means of visualizing the
abstract electric and magnetic fields. An electric field line represents the
path that an infinitesimal charge would follow if released from rest in a
region of space where an electric field is present.2 The use of field lines
should, of course, be familiar to anyone who has studied fluid mechanics,
where stream lines are utilized to visualize fluid flow. These are, again, the
paths that small particles would follow if immersed in the fluid.

Similarly, magnetic field lines represent the paths followed by infinites-
imal magnetic charges (if such things actually existed). Note that the
magnetic field lines do not represent the path followed by an electric
charge subject to the Lorentz force. As we have observed, electrically-
charged particles will spiral around the direction of the magnetic field;
using the Lorentz force to define magnetic field lines leads to complex
visual representations when the fields have a simple spatial structure.
Hence, Faraday simplified matters by defining the magnetic field lines in
terms of fictitious magnetic charges. From figure 9.1, we can observe that
the magnetic field line at the radius at which the compasses are located
would form a closed circle, tangent to the compass directions. In this
instance, the magnitude of the magnetic field is constant along the field
line but this is not true in general.

Another concept adapted from fluid dynamics is the electrical current.
The name alone conjures the image of charged particles coursing through

2Strictly speaking, the field lines are constructed from the tangent vectors to the fields at
each point in space. The two constructs are essentially the same for a particle with infinites-
imal mass and charge.
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a wire just as water flows through pipes and river channels. One might be
led to fear that rapid disconnection of an electrical circuit could give rise
to a stream of electrons spilling out onto the floor, as one might expect if a
water hose is disconnected before the shut-off valve is completely closed.
Such an expectation is completely out of place, as is the visual picture
of a current as a stream of electrons flowing through a wire like water
through a pipe. Nevertheless, current is the word used to describe the
phenomenon, so we shall have to discover what we mean by the word.

As we have mentioned previously, Alessandro Volta invented what we
today call the battery (voltaic pile). His stable electrical source provided
the means for systematic studies of the behavior of electrical phenomena.
The German physicist Georg Simon Ohm conducted just such a series of
experiments on electrical circuits and formulated a theory of their behav-
ior.3 Ohm concluded from his studies that the battery exerted a force on
charged particles that would cause them to circulate but that materials
resisted the flow. In modern terminology, Ohm’s law can be stated math-
ematically as follows4:

(9.1) J = σE,

where J is the current density and E is the electric field. The quantity σ is
a material-dependent proportionality factor that is called the conductivity.

If we consider a volume of space V , containing a distribution of charges
ρ(r, t), then the total charge in the volume is given by the following:

(9.2) q(t) =
∫

V
d3rρ(r, t).

We should pause to consider the meaning of this expression. First, we
recognize that matter is composed of atoms, which are, in turn, composed
of nuclei and electrons. So, by the charge distribution ρ, we really mean
the sum of all of the charged entities—nuclei and electrons—within the
volume, as sketched in figure 9.2. As such, the distribution is not a contin-
uous function in the strict mathematical sense. Formally, the mathemati-
cal limiting process by which we define derivatives and integrals does not
exist when charge is discrete. Yet, we use the integral sign in the equation
instead of a summation because macroscopic quantities of matter possess
something like Avogadro’s number of atoms. In this case, the addition
or subtraction of a few nuclei or electrons amounts to an infinitesimal

3In 1827, Ohm published his pamphlet Die galvanische Kette mathematisch bearbeit while on
a leave of absence from his high school teaching duties in Berlin. While it can be considered
a landmark in physics history, the publication did not lead to any immediate job offers from
German Universities. Ohm’s dream of a professorship did not materialize until 1849.
4Note that we are reusing the symbol J but its meaning is something completely different
from the original definition of angular momentum in Chapter 2.
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change in the total charge. Thus, as a practical matter, treating the charge
distribution as a continuous function is a reasonable approximation.

Figure 9.2. The distribution of
charges ρ(r, t) within a volume V
can be approximated by a continu-
ous function

If we consider the volume V to be constant in time, then the total charge
will be constant as well, unless charge leaves the volume. We can state
this mathematically as follows:

(9.3)
dq(t)
dt

=
∫

V
d3r

∂ρ(r, t)
∂t

+
∫

∂V
da · J(r, t) = 0,

where the current density J represents the charge flux through the bound-
ary of the volume ∂V . Equation 9.3 serves as the defining equation for
the current density J. It also serves as a statement of the conservation of
charge. As we shall see shortly, this relation is a consequence of Noether’s
theorem applied to electromagnetic phenomena. The Maxwell equations
that define the nature of the fields possess a symmetry beyond that of
just translational and rotational invariance; the result of this so-called
gauge invariance is charge conservation. This connection between con-
served quantities and symmetries of the equations of motion lies at the
heart of modern physical theories.

As a practical matter, there are some instances in which the electrical cur-
rent is precisely a number of charged particles moving with a nominal
velocity in a particular direction. This happens, for example, in particle
accelerators, where protons and/or electrons are formed into beams and
accelerated to high energies as a prelude to conducting experiments on
the nature of matter. It happens also in outer space, where charged par-
ticles stream in all directions, accelerated by the fields that arise in the
vicinity of stars and heavier objects. These currents undoubtedly align
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more closely to the other uses of the word current and with one’s initial
prejudices.

In a wire, though, the physical picture is much more complicated. Firstly,
the atoms that make up the wire are generally electrically neutral.
The number of electrons balances the charges of the nuclei. Electrons
feel a strong electrical force due to nuclear charge and also from the
charges of neighboring electrons. An applied electrical field Eapp, it
would seem, must be somehow comparable to that of the fields to which
the electrons are already subjected in the atoms, in order for there to be
any net transport of charge. Indeed, we can make the further observation
that not all materials will support current flows (at least with the sort of
voltages obtained by batteries). We usually designate the materials that
do not conduct currents as insulators and the materials that will support
current flows as conductors.

Figure 9.3. The path of a charged
particle subject to an electric field
in the x-direction will not follow
streamlines due to interactions
with scattering sites within the ma-
terial. Instead, the path will be a
rather tortuous one

In 1900, the German physicist Paul Karl Ludwig Drude published a the-
ory of electrons in metals that provides an explanation for Ohm’s earlier
results. If we think of applying an electric field in, say, the x-direction,
then an electron would nominally experience an acceleration in that di-
rection. On its path, however, the electron will frequently encounter the
nuclear centers that make up the material (and other electrons) and scat-
ter from those sites, as depicted in figure 9.3. As a result, the net motion
along the x-direction is reduced from that we would expect with simple
accelerated motion in a vacuum. Drude recognized that the equations of
motion of such a particle could be represented as follows:

(9.4) m
dv
dt

= qEapp −αv,
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where α is a parameter that represents a resistive force acting on the
electron. As we have already seen, such a force leads to an exponential
evolution of the velocity to a constant final value vf at which point the
force due to the applied electric field is balanced by the resistive force.

Exercise 9.1. Solve the one-dimensional version of Equation 9.4 for
the case where the initial velocity is v(0) = 0. Plot the solution as a
function of time. What is the asymptotic velocity in terms of m, q,
α and the magnitude of the field |Eapp|? What are the dimensional
units of α?

Further, what Drude recognized is that the motion of a number of
electrons through the metal constituted a current. If there are n elec-
trons per unit volume of material, then the current density is given by the
following expression:

J = nqvf .

Using the result from the previous Exercise, we can rewrite this as follows:

(9.5) J =
nq2

α
Eapp.

This is just Ohm’s Law, with the identification that the conductivity σ is
related to the physical properties: the density of charge carriers n, the
electron charge q and the parameter α.

Exercise 9.2. The parameter α in Equation 9.4 must have units
of M/T in order for the equation to be dimensionally correct. A
sensible choice for the mass would, of course, be the mass of the
electron. A reasonable interpretation of the time associated with
α would be the average time τavg between scattering events in the
electron trajectory. So let us assume α = me/τavg. A mole of copper
has a mass of 63.546 g, a density of 8.96 g/cm3 and a conductivity of
4×107 S/m at room temperature. Use this information to compute
the number of charge carriers per unit volume n. Assume that there
is one conduction electron per atom. What is the characteristic time
τavg? If a typical current density in copper is of the order of J =
106 C/s·m2, what is the magnitude of the characteristic velocity |vf |?

As one can see from the previous exercise, the current density does lead
to the net transport of charge but, in conducting materials like metals, the
picture is not that of electrons travelling through the wire at high veloc-
ities. Instead, the transport velocity vf , often called the drift velocity, of
any individual electron is quite small. Appreciable currents arise because
large numbers of electrons move in response to the applied field.
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9.2. Magnetic Fields

Shortly after Ørsted’s experimental results became public knowledge,
Biot and Savart produced the magnetic equivalent of Coulomb’s Law.
They recognized that the form of the equation had to be modified to
include the observation that the magnetic fields were perpendicular to
both the source current and the direction from the source. This they
achieved by utilizing the properties of the vector cross product. In our
modern terminology, we express the Biot-Savart equation as follows:

(9.6) B(r2) =
μ0
4π

∫
d3r1

J(r1)× (r2 − r1)
|r2 − r1|3

,

where μ0 is a proportionality factor called the magnetic permeability and
the integral extends over the support of the current density J, i.e., where
the current is non-vanishing.

Figure 9.4. A current density J, de-
picted as the gray tube, will gener-
ate a magnetic field. The contribu-
tion of a small segment (dark gray
ring) of the current density pro-
duces a magnetic field that is per-
pendicular to both J and the vector
r2 − r1

An illustration of the magnetic field produced by a small current element
is provided in figure 9.4. At the point r2, the total magnetic field would be
obtained by integrating over all of the current elements. In general, such
integrations are quite involved but for a few simple cases we can produce
analytical results.

As Georg Ohm noticed, electrical currents are largely restricted to con-
ducting bodies. In the circuits he studied, Ohm utilized wires of various
lengths and diameters and considered the entire current to be restricted
to the volume of the wire. Strictly speaking, this is not quite correct as
air also possesses a conductivity, albeit one that is twenty orders of mag-
nitude less than that of most metals.5 As a consequence, Ohm was quite
justified in neglecting currents in the air in his experiments.

5The conductivity of air varies, depending upon humidity, temperature and pressure but
is generally in the range of σ =3–8×10−15 S/m. Of course, with very high voltages, the air
molecules ionize and the conductivity increases dramatically. Witness lightning.
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Restricting the current density to a one-dimensional path simplifies
matters considerably. Instead of integrating over a volume, as is indi-
cated in Equation 9.6, we need only integrate along a (directed) path. Let
us first examine the simplest path: a straight line segment that extends
along the z-axis, as depicted in figure 9.1. This is, of course, not a practical
current source. Charge conservation requires that the current entering or
exiting the wire at the endpoints be continuous. Mathematically, however,
there is no reason why we cannot compute the field of a physical circuit
as a sum over different current segments: the fields of different segments
simply add. Let us now also make a further simplifying assumption that
the wire is very thin and we are only interested in computing the field at
some reasonable distance away from the wire. We shall relax this latter
requirement later but will proceed with a very simple model first.

In order to utilize Equation 9.6, we need to define the current density J.
If we make the assumption that the wire has no physical extent, we can
represent this with the Dirac delta function6:

(9.7) J(r1) = ẑ I δ(x1)δ(y1),

where I is a constant current, with dimensions of charge per unit time
(Q/T). The delta function has the following property:

∫ b

a
dxF(x)δ(x − x0) =

⎧⎪⎪⎨⎪⎪⎩
F(x0) a ≤ x0 ≤ b

0 otherwise.

As long as the point x0 lies within the bounds of the integral, the result
of the integration is simply the integrand evaluated at x0. Note that the
delta functions have dimensions of the inverse of their arguments. This
is reflected in the scaling rule: δ(ax) = δ(x)/ |a|. In our particular case,
the current density J has dimension (Q · T−1 · L−2), so for Equation 9.7 to
make sense dimensionally, the delta functions must each have dimension
of (L−1).

For a line segment that extends from say za to zb, the support of the in-
tegral in Equation 9.6 will be only for points r1 = (0,0, z1), where z1 is
restricted to the interval za ≤ z1 ≤ zb, because the delta functions col-
lapse the integrals in the x- and y-directions. Hence, for an arbitrary
location r2 = (x2, y2, z2), we then have that r2 − r1 = (x2, y2, z2 − z1) and
|r2 − r1| = [x22 + y22 + (z2 − z1)2]1/2. The magnetic field is therefore obtained

6Strictly speaking, the delta function is a functional not a function in the usual mathematical
sense. Dirac’s simple idea required a significant amount of mathematical work to justify the
existence of such an object and led to development of the mathematical theory of distribu-
tions.
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from the following integral:

B(r2) =
μ0I

4π

∫ zb

za

dz1
ẑ× (x2, y2, z2 − z1)

[x22 + y22 + (z2 − z1)2]3/2
,

which will be defined as long as x2 and y2 are not both simultaneously
zero. In that case, the denominator would vanish when z2 = z1 and the
integrand would become singular.

We can evaluate the numerator readily:

ẑ× (x2, y2, z2 − z1) = (−y2,x2,0).
It is also possible to perform the resulting integral, with the following
result:

(9.8) B(r2) =
μ0I

4π
(−y2,x2,0)
x22 + y22

[
z1 − z2

[x22 + y22 + (z2 − z1)2]1/2

]zb

z1=za

,

where we have grouped the terms in a particular order for a reason. First,
we note that the term x22+y

2
2 is the squared distance ζ22 from the z-axis (in a

cylindrical coordinate system). Second, we can recall that cosϕ = x/ζ and
sinϕ = y/ζ and that the unit vector in the azimuthal direction is defined
as ϕ̂ = (−y/ζ,x/ζ,0). So, we can rewrite Equation 9.8 as follows:

(9.9) B(r2) = ϕ̂
μ0I

4πζ2

[
zb − z2

[ζ22 + (z2 − zb)2]1/2
− za − z2
[ζ22 + (z2 − za)2]1/2

]
.

This defines a magnetic field that is directed azimuthally around the wire
segment, as is seen in figure 9.1.

Exercise 9.3. Fill in the missing steps in the derivation of Equa-
tion 9.9. Use the Plot3D function to plot the magnitude of the mag-
netic field for 0 ≤ ζ2 ≤ 4 and for −2 ≤ z2 ≤ 2. Start with za = −20 and
zb = 0 and then vary the endpoints.

Exercise 9.4. Use the StreamPlot function to plot magnetic field
lines in the x-y plane at z = 0. Consider the cases where za = −20 and
zb = 0 and 20.

We can utilize Equation 9.9 to examine the limiting case of an infinite
wire. If we take the limit where za → −∞ and zb → ∞, then the term in
brackets becomes 2. Hence, the magnetic field of an infinite wire would
be given by the following:

(9.10) B(r) = ϕ̂
μ0I

2πζ2
.

In practice, there are no infinite wires. The expression given in Equa-
tion 9.10 will serve as a reasonable approximation for suitably long wires.
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Exercise 9.5. Take the limit of Equation 9.9 for za→ −∞ and zb →
∞. Show that you obtain the result in Equation 9.10. (Hint: Factor
out zb from the numerator and denominator of the first term and za
from the second term.)

Figure 9.5. A thin loop carrying a
constant current I will generate a
magnetic field with components in
the radial and vertical directions

In the case of a thin wire loop, as depicted in figure 9.5, we can repeat
the above analysis but the symmetry of a circular loop suggests that we
utilize cylindrical coordinates to perform the integration, where the z-axis
is aligned with the axis of the loop. Heretofore, we have utilized Carte-
sian coordinates for representing vectors. At this juncture, we shall retain
that strategy, wherein we will compute the x-, y- and z-components of
the magnetic field but will utilize cylindrical coordinate systems to form
the integral representations. This is something of a mixed metaphor, as it
were, but defers the headlong plunge into non-Cartesian systems for the
time being. In a cylindrical coordinate system, then, we can approximate
the current density as follows:

(9.11) J(r1) = ϕ̂ I δ(ζ1 − a)δ(z1 − za),

where the loop has a radius a and is located at the position z1 = za. The
differential volume element is given by d3r1 = ζ1 dζ1 dϕ1 dz1, whereupon
the Biot-Savart equation provides that the magnetic field is determined by
the following expression:

(9.12) B(r2) =
μ0Ia

4π

∫ 2π

0
dϕ1

ϕ̂× (r2 − r1)
|r2 − r1|3

,

where the ζ1 and z1 integrals have been collapsed by the delta functions.

The first thing that we should note from Equation 9.12 is that the mag-
netic field will, by virtue of the cross product, be perpendicular to the



§9.2 Magnetic Fields 261

azimuthal direction ϕ̂.7 This means that the magnetic field of a loop will
only have radial (ζ̂) and vertical (ẑ) components. We can use this observa-
tion to help us simplify the computation of the field.

In principle, we would like to evaluate the field at some arbitrary point
r2 = (x2, y2, z2) but the field will only be a function of ζ2 = (x22 + y22 )

1/2

and not x2 and y2 independently. (The field does not depend upon the
azimuthal coordinate ϕ. In cylindrical coordinates, it must be only a
function of the radial ζ and vertical z coordinates.) So, without loss of
generality, we can consider just the point r2 = (ζ2,0, z2).8 Using the result
that, due to the delta functions, r1 = (acosϕ1, asinϕ1, za). we have

r2 − r1 = (ζ2 − acosϕ1,−asinϕ1, z2 − za)
and

|r2 − r1| = [ζ22 + a2 − 2aζ2 cosϕ1 + (z2 − za)2]1/2.
Note that the unit vector ϕ̂ is not a constant vector. In Cartesian coordi-
nates, we have ϕ̂ = (−sinϕ1,cosϕ1,0), and, consequently,

ϕ̂× (r2 − r1) =
(
(z2 − za)cosϕ1, (z2 − za) sinϕ1, a− ζ2 cosϕ1

)
.

We also note that the unit vector ζ̂ in Cartesian coordinates is given by
ζ̂ = (cosϕ1,sinϕ1,0), so that we can write the following;

ϕ̂× (r2 − r1) = ζ̂ (z2 − za) + ẑ (a− ζ2 cosϕ1).
As we expected, the magnetic field will only have components in the ζ̂
and ẑ directions.

Substituting back into Equation 9.12, we obtain the following result:

B(r2) =
μ0Ia

4π

[∫ 2π

0
dϕ1

ζ̂ (z2 − za)
[ζ22 + a2 − 2aζ2 cosϕ1 + (z2 − za)2]3/2

+ẑ
∫ 2π

0
dϕ1

a− ζ2 cosϕ1
[ζ22 + a2 − 2aζ2 cosϕ1 + (z2 − za)2]3/2

]
.(9.13)

Note that we cannot slide the unit vector ζ̂ outside the ϕ1 integral because
ζ̂ is a function of ϕ1, whereas ẑ = (0,0,1) is a constant vector.

Exercise 9.6. Repeat the derivation of Equation 9.13, filling in the
stepsmissing from the text. Show that when ζ2 = 0 that themagnetic
field only has a z-component.

7This will not be true in general but follows from the fact that we have chosen a constant
current I .
8We can recover the field at some point in the x-y plane by rotating about the z-axis by some
angle ϕ2: r2→ (ζ2 cosϕ2,ζ2 sinϕ2, z2).
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Exercise 9.7. The dimensional scale of the integral representation
is set by the loop radius a. Rewrite Equation 9.13 in a dimension-
less form by dividing numerator and denominator by the appropri-
ate powers of a, producing terms like (ζ2/a) and (z2/a), etc. How
does |B| scale as a function of a? Use the Plot3D function to plot
the integrands. Set ζ2/a = 1.1 and plot the integrands over the range
0 ≤ ϕ1 ≤ 2π and −2 ≤ z2/a ≤ 2 (assuming za = 0). Set z2/a = 0.1
and plot the integrands over the range 0 ≤ ϕ1 ≤ 2π and 0 ≤ ζ2/a ≤ 3
(again assuming za = 0).

Somewhat to the consternation of nineteenth Century mathematicians
(and, of course, modern-day students), while it is a straightforward ex-
ercise to derive the integral representation of the magnetic field (Equa-
tion 9.13), it is not at all straightforward to compute the integrals. As
long as we do not try to evaluate the integral at the location of the current
source, where the denominators vanish and the integrals become singu-
lar, we saw in the previous exercise that the integrands are smooth, well-
behaved functions. Nevertheless, the solutions of Equation 9.13 are not
expressible in terms of simple functions.

As it happens, though, the solutions are related to the mathematical
problem of determining the path length along an ellipse. We saw in the
early chapters that planets move along elliptical trajectories. It is well
known that the arc length ds along a circle of radius r is just ds = r dψ
for some small angular interval dψ. This is also true for elliptical paths
but, as we have seen, the radius r is not a constant along an elliptical
path. The problem was initially investigated by the Italian mathemati-
cian Guilio Fagnano and the Swiss Leonhard Euler but the form presented
below is due to the French mathematician Adrien-Marie Legendre, who
demonstrated that all elliptic integrals can be reduced to one of three
fundamental forms.9 The elliptic integrals of the first, second and third
kinds are defined as follows:

F(ϕ|m) =
∫ ϕ

0
dψ

1
[1−msin2ψ]1/2

,(9.14)

E(ϕ|m) =
∫ ϕ

0
dψ [1−msin2ψ]1/2 and(9.15)

Π(n;ϕ|m) =
∫ ϕ

0
dψ

1
1−nsin2ψ

1
[1−msin2ψ]1/2

,(9.16)

9Different authors use somewhat different notation for the elliptic integrals. We shall utilize
the notation provided by the Mathematica software, for reasons of ease of use. Be wary,
though, if using other sources.
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respectively. We shall need to make use of the complete elliptic integrals
of the first, second and third kind, which are defined as K(m) = F(π/2|m),
E(m) = E(π/2|m) and Π(n|m) =Π(n;π/2|m), respectively.

Exercise 9.8. Plot the complete elliptic functions of the first and
second kind, using the Mathematica functions EllipticK and
EllipticE over the range −1 ≤ m ≤ 1. Plot the complete elliptic
function of the third kind over the range −1 ≤ m ≤ 1 and use the
Manipulate function to study the behavior as n varies over the range
0 ≤ n ≤ 1.

If we now return to the problem of the magnetic field defined in Equa-
tion 9.13, we note that it is not usually a productive strategy to simply call
the Mathematica Integrate function for complicated arguments. One
runs the risk of locking up whatever computer you have for extended pe-
riods. A better strategy is to first understand the properties of the inte-
grand: is it finite and well-behaved or is it singular? One can provide
guidance about the known properties of the integrand through the use of
the Assumptions options and it is often possible to simplify the formulas
provided to the Integrate function.10 In particular, while we are utiliz-
ing the variables a, r2 and z2 to be the real numbers that specify the radius
of the loop and a point in space, the Integrate function makes no partic-
ular assumptions about the values of unspecified parameters and will, in
general, assume that unspecified parameters are complex numbers.

Suppose that we define the new variable ξ as follows:

ξ =
2aζ2

ζ22 + a2 + (z2 − za)2
.

Then we can rewrite Equation 9.13 as follows:

B(r) =
μ0Ia

4π[ζ22 + a2 + (z2 − za)2]3/2

[∫ 2π

0
dϕ1

ζ̂ (z2 − za)
[1− ξ cosϕ1]3/2

+ẑ
∫ 2π

0
dϕ1

a− ζ2 cosϕ1
[1− ξ cosϕ1]3/2

]
.

We observe now that providing a solution to Equation 9.13will require us
to perform three basic integrals, with integrands of 1, cosϕ1 and sinϕ1,
each divided by [1− ξ cosϕ1]3/2.

10We can state that the Mathematica package is an exceptionally useful tool but it is not
capable of doing one’s homework autonomously. Thinking remains the province of the stu-
dent.
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Exercise 9.9. Define three functions that represent the three
integrands. Plot the integrands over the range 0 ≤ ϕ1 ≤ 2π. What
symmetries exist?

From the previous exercise, we note that the integral involving sinϕ1
will vanish because the integrand is an odd function on the domain
0 ≤ θ1 ≤ 2π. The remaining two integrands are even functions, so we can
use that symmetry to reduce the domain to the interval 0 ≤ ϕ1 ≤ π and
double that result. If we now utilize the MathematicaIntegrate function,
we can obtain the following results:

∫ π

0
dϕ1

1
[1− ξ cosϕ1]3/2

=
2E
(
2ξ
1+ξ

)

(1− ξ)[1+ ξ]1/2

∫ π

0
dϕ1

cosϕ1
[1− ξ cosϕ1]3/2

= 2
E
(
2ξ
1+ξ

)
− (1− ξ)K

(
2ξ
1+ξ

)

(1− ξ)ξ[1+ ξ]1/2
,(9.17)

provided that the variable ξ is within the range −1 ≤ ξ ≤ 1.

Exercise 9.10. If we rewrite the variable ξ in dimensionless terms,
we have ξ = 2(ζ2/a)/[1+(ζ2/a)2 +(z2/a)2], where we set za = 0 for the
moment. Plot the function ξ for 0 ≤ (ζ2/a) ≤ 4 and −2 ≤ (z2/a) ≤ 2.
Is the magnitude of ξ less than one?

We can now utilize the results of Equations 9.17 to solve for the magnetic
field. After some extensive algebra, we find the following:

(9.18) B(r) =
μ0I

2π[(ζ2 + a)2 + (z2 − za)2]1/2{
ζ̂
(z2 − za)

ζ2

[
ζ22 + a2 + (z2 − za)2
(ζ2 − a)2 + (z2 − za)2

E(η)−K(η)
]

+ ẑ
[
K(η)− ζ22 − a2 + (z2 − za)2

(ζ2 − a)2 + (z2 − za)2
E(η)

]}
,

where η = 2ξ/(1+ ξ) = 4aζ2/[(ζ2 + a)2 + (z2 − za)2].
After a lengthy derivation like that we encountered in producing Equa-
tion 9.18, it is useful to perform a dimensional analysis to ensure that we
haven’t gone astray.11 While we haven’t as yet discussed the units of mag-
netic fields, what we observed in computing the field of a straight wire
is that the field was proportional to the term μ0I divided by a length. In
Equation 9.18, we observe that the prefactor has precisely that dimension
and the terms within the curly brackets are all dimensionless, including

11In fact, it is always a good idea to perform dimensional analysis during derivations as a
check on the algebraic manipulations.
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the argument η of the complete elliptic integrals. As a result, we can have
some confidence that the results are correct.

Exercise 9.11. Repeat the derivation of Equation 9.18, filling in the
missing steps.

Figure 9.6. The magnitude of the
magnetic field is singular at the po-
sition of the wire and falls rapidly
away from the wire

Of course, the best way to see whether or not Equation 9.18 is correct is
to plot the results, whereupon we encounter the non-trivial problem of
visualizing three-dimensional vector fields. Plotting the results is always
a good idea; we are, after all, visual creatures. We expect that the fields
will be smoothly varying, at least away from the source location. If the
plotted results include kinks or random spikes, there is a good chance
that we have erred somewhere in deriving the defining equations.

Plotting a vector field in three dimensions is not a trivial exercise. As
a first step, consider plotting just the magnitude of the field. This is a
scalar function of space and, for the current loop, is only a function of the
radial and vertical components. In figure 9.6, we illustrate the magnitude
of the magnetic field of a loop. At the position of the current, the field
is singular, which should not be particularly surprising. Away from the
source location, the field falls relatively rapidly but is smoothly-varying
everywhere.

Another possible representation of the field can be achieved by drawing a
vector aligned with the local direction of the field and with the length of
the vector scaled by the local magnitude of the field. As it happens, the
Mathematica package has a VectorPlot function that will perform pre-
cisely that action. In practice, this approach does not lead to particularly
satisfactory results, due to the fact that the field decays rapidly away from
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the current source. Often, this leads to a single large vector with array of
dots around it; the sense of local direction is lost due to the poor scaling
of the fields.

An alternative approach uses themagnetic field lines defined originally by
Faraday. The magnetic field lines of a current loop are illustrated in figure
9.7. As we have mentioned, the field lines depict the trajectories that in-
finitesimal magnetic charges would follow in the magnetic field. As such,
we should remember that the magnetic field is not a constant along the
magnetic field lines: these do not represent constant contours of the field.
Nevertheless, plotting the magnetic field lines is one of the most common
approaches used in visualizing the magnetic field. The field lines, even
in three dimensions, can be readily traced and drawn in perspective. One
can also, of course, plot the magnitudes of the individual components of
the field but it is often quite difficult to interpret those results; it is chal-
lenging to infer the three-dimensional structure of the field from plots
of the components. This last option is usually reserved for debugging
activities.

Exercise 9.12. Define two functions that represent the ζ- and
z-components of the magnetic field (scaled by the factor μ0I/2π),
using the functions EllipticE and EllipticK. Use the VectorPlot
function to visualize the field and then use the StreamPlot function
to plot magnetic field lines for the case where a = 1 and z = 0. Plot
over the range −3 ≤ ζ ≤ 3 and −3 ≤ z ≤ 3.

Figure 9.7. Magnetic field lines of
a current loop. The current direc-
tion is in the azimuthal direction
(With the thumb of your right hand
oriented along the z-axis, your fin-
gers will curl in the direction of the
current)

Exercise 9.13. Use the functions defined in the previous exercise
to examine the results of adding the fields of several loops. (Use
the Sum function.) Plot the magnetic field lines and field intensity
(with the StreamDensityPlot function) for an Helmholtz coil. The
Helmholtz coil is composed of two loops of radius 1, separated by a
distance z = 1.
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Plot the magnetic field lines and field intensity for a solenoid, which
we can approximate as the sum of several loops spaced closely to-
gether. Try summing over the range 0 ≤ z1 ≤ 2 in steps of δz1 = 0.1.
Describe the magnetic field in the interior of the solenoid. How does
this compare to the field of the Helmholtz coil?

As one might surmise, more complex current paths and time-varying cur-
rents will lead to significant complications in determining the fields. The
Biot-Savart equation provides a general framework for computing mag-
netic fields due to current sources but, in practice, one must generally
resort to numerical methods to obtain field distributions. As we have
seen, even the field of a simple, circular loop is not expressible in terms of
simple functions. Nevertheless, except for the problem of the field being
singular at the source, the Biot-Savart equation does provide a means for
systematically determining an integral representation of the field.

As we mentioned earlier, the French physicist Ampère was also present
when Ørsted’s experiments were first announced in Paris. Shortly there-
after, Ampère derived a connection between the magnetic field and cur-
rents that held in the limit of constant currents. Ampère’s law, as it
has become known, was subsequently modified by the Scottish physicist
James Clerk Maxwell.12 In our modern notation, we write the Ampère-
Maxwell equation as follows:

(9.19)
∮

∂S
ds ·B = μ0

∫

S
dA · J+μ0ε0

∂

∂t

∫

S
dA ·E,

where B is the magnetic field, E is the electric field and J is the current
density. The area integrals on the right-hand side of Equation 9.19 extend
over some (finite) surface S and the path integral on the left-hand side
extends over the closed boundary ∂S of S. The factor ε0 is known as the
dielectric permittivity and is related to the electric field proportionality
factor by κ = 1/4πε0.

Consider now the fact that physical wires have finite dimensions. We can
use Ampère’s law to determine the magnetic field inside the wire. For
a constant current, we can ignore the last term in Equation 9.19 as the
time derivative of the electric field will vanish. If the current density,
for simplicity, is constant, then for a total current I in a wire of radius
R, we would have J = ẑ I/(πR2). Consider the surface S1 illustrated in
figure 9.8. The current flux through the surface with differential element
dA = ẑζ dζ dϕ1 is given by the following:

∫

S1

dA · J =
∫ ζ1

0
dζ

∫ 2π

0
dϕ ẑ ·

[
ẑ

I

πR2

]
= I

ζ21
R2

.

12Maxwell’s contribution to Equation 9.19 is the last term on the right-hand side. It is an
essential element in defining the wave nature of the electromagnetic field.
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By symmetry, the magnetic field at the radius ζ1 will only have an
azimuthal component, B = ϕ̂Bϕ , and will be a constant along the path
along the boundary of S1. The path integral is written as follows:

Figure 9.8. A current density J
flows in the wire of radius R in the
positive z-direction. Two Ampèrian
loops are illustrated. One has a
radius ζ1 < R and the second has a
radius ζ2 > R

∮ 2π

0
dϕζ1ϕ̂ ·B = 2πζ1Bϕ.

Equating these two results, we obtain the following:

(9.20) Bϕ =
μ0Iζ1
2πR2

.

Consider now the second surface, in which the current is entirely enclosed
within the loop. Here, the radial integral would nominally extend to ζ2
but the current density vanishes beyond the radius R. As a result, the
radial integral only extends to ζ1 = R. We can show that the field at the
radius ζ2 is given by the following:

(9.21) Bϕ =
μ0I

2πζ2
,

which is precisely the result we obtained previously for the field outside
a long wire.

For a constant current the magnetic field in the interior of the wire
increases linearly with the radius ζ and then decreases inversely with ζ
for radii larger than the wire radius R. For more complex current dis-
tributions, this simple result will not hold but the principle result of
Ampère’s law is that the magnetic field will remain finite, even inside
conductors carrying current, as long as the current density remains finite.
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The singular behavior that we found previously was simply the result of
using a singular current density.

As a practical matter, we will often use singular source currents because
such a choice leads to simplified mathematical results. Integrations with
delta functions are trivial to perform. As long as we do not try to evaluate
the field on top of such a source, wewill not encounter any difficulties, and
as a practical matter, it is difficult to imagine how one could get amagnetic
field probe inside a wire in the first place. Physicists may seem noncha-
lant in their treatment of singularities but it is important to understand
the nature of how the singularities arise and whether or not singularities
have physical significance. Mathematically, our choices of different repre-
sentations of the fields can be generally justified by careful study. In the
current state of mathematical sophistication of typical students, we shall
not always be able to justify every choice.

Exercise 9.14. Fill in the missing details in the derivations of Equa-
tions 9.20 and 9.21. Plot the magnetic field as a function of ζ.

Exercise 9.15. Consider a current density that is a function of ζ:

J =

⎧⎪⎪⎨⎪⎪⎩
ẑ J0(1− e−αζ) ζ ≤ R

0 ζ > R.

What is the total current I through the circular surface of radius R?
What is the magnetic field at a radius ζ1 < R? What is the magnetic
field at a radius ζ2 > R? Write this in terms of the total current I .
How does your result compare to Equation 9.21?

9.3. Magnetic Materials

Of course, the study of magnetic fields did not begin with current
sources, as we have just been investigating. It was well known that
certain materials possess static magnetic fields. Iron, in particular, can
be magnetized and this was certainly known to the ancient Greeks. So,
how is this possible if we are to believe that magnetic fields arise from
currents? No doubt each of us has held a bar magnet at one time or
another or affixed some important document to the face of a refrigerator
with a “refrigerator magnet.” There are no batteries embedded within
these magnets; there is no current flowing. Yet there is a magnetic field.

In fact, it is the same kind of magnetic field as that generated by currents.
There are not two different kinds of magnetic fields. We can perform an
experiment to verify this assertion. Consider constructing a C-shaped per-
manent magnet, as is depicted in figure 9.9. Between the poles of the mag-
net, the field is quite uniform. If we now send an electron beam through
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Figure 9.9. A permanent magnet
(dark C-shaped object) will have
a magnetic field that is approxi-
mately constant and vertical in the
region between the poles and zero
elsewhere. An electron beam pass-
ing through the magnet will be de-
flected (I = 0 curve). If a current
Ic is passed through the Helmholtz
coils (light gray rings), the result-
ing magnetic field will cancel that
of the permanent magnets and the
electron beam will emerge unde-
flected

the region between the poles, we will find it is deflected according to the
Lorentz force law. Now consider building a Helmholtz coil. As we have
observed in the previous section, the field of the Helmholtz coil is quite
uniform near the center. If we again send a beam of electrons through
the field of the Helmholtz coil, we will again observe that the beam is de-
flected in accordance with the Lorentz force law. Indeed, if we align the
permanent magnet and Helmholtz coil, we can arrange for the magnetic
field to cancel in the central region. The electron beam will emerge from
the space undeflected! Insofar as we know, the magnetic fields of perma-
nent magnets have precisely the same electromagnetic properties as those
created by currents.

Prior to Rutherford’s discovery of the nuclear structure of the atom, early
physicists postulated that the static magnetic fields of permanent mag-
nets must somehow be due to microscopic currents embedded within the
material, although they could not find a plausible explanation as to why
those currents did not dissipate. As Ohm discovered, any current in a
circuit experiences a drop in voltage proportional to the product of the
current and the resistance: V = IR. There is a loss of energy per unit time
(power) due to this resistive force that is proportional to I2R. As all known
materials have resistance, it was unclear as to how currents in permanent
magnets could be maintained indefinitely.

With the discovery that atoms are composed of electrons and nuclei,
an alternative explanation for the static magnetic fields of permanent
magnets became available. Suppose that the electrons possess a static
magnetic field. That is, let us suppose that electrons are little blobs
(spherical is the obvious choice for shape) of matter that possess mass,
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electric charge and are little magnets. We can explain the static magnetic
fields of permanent magnets as arising due to the (fortuitous) alignment
of the magnetic fields of many electrons.13 This explains the experimen-
tal observation that iron magnets lose their magnetic fields when heated.
Presumably, the energetic electrons produced when a material is heated
will begin bouncing around, scattering from one another and, thereby,
destroying their alignment.

Figure 9.10. A rotating, charged
sphere will generate an external
magnetic field due to the cre-
ation of infinitesimal current loops
within the sphere

In fact, we don’t even need to require our electron to be made of some
magnetic material. Suppose that the electron is made of a material that
has charge. For simplicity, let us further suppose that the charge is evenly
distributed throughout the volume. In this case, we will have a charge
density ρ = q/(4/3πR3), where q is the total charge in the sphere and R is
the radius. Now let us spin the electron around the z-axis, as is depicted in
figure 9.10. The rotation gives rise to a current density that can be written
as J = ϕ̂ζ1ρω. As we have seen, current densities generate magnetic fields.

Exercise 9.16. Use dimensional analysis to show that J(r1) =
ϕ̂ζ1ρω has the correct dimensionality of a current density. Show
that, if we consider an infinitesimal area dA = dζ1 dz1, that the
amount of charge dq flowing through the area in a time dt will be
given by the following:

dq = ζ1ρωdζ1 dz1 dt.

(Hint: recall that the angular velocity is defined asω = dϕ/dt and the
volume element in cylindrical coordinates is dV = ζ1 dζ1 dϕ1 dz1.)

13The astute student might also be asking why we don’t think that the nucleus might also
be a magnet. As it happens, nuclei do possess magnetic moments but these are dramatically
smaller than the magnetic moment of the electron.
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Exercise 9.17. For a fixed charge distribution ρ, the current density
is J = ρv, where v is the velocity of the distribution. For a rotating,
fixed charge distribution, show that the tangential velocity at the
radius r is given by v = ω × r, where ω is the angular velocity vector.
(Hint: work in cylindrical coordinates and align ω with the z-axis.)

We now want to obtain the magnetic field due to a rotating, spherical
charge density. We note that the differential current dI flowing through
an infinitesimal area dA = ϕ̂dζ1 dz1 is just dI = J(r1) · dA = ζ1ρωdζ1 dz1.
Hence, the total magnetic field produced by the rotating sphere can be
obtained by integration over all of the infinitesimal loops dI . One might,
at this point, be tempted to plug the previous results (Equation 9.18) into
the Integrate function and see what happens.14 This approach will re-
quire us to compute integrals of elliptic integrals, which sounds dreadful.
Instead, we shall try to avoid that difficulty and begin by writing the in-
tegral representation for the field with the source current provided by a
rotating sphere of uniform, constant charge density ρ and constant angu-
lar velocity ω:
(9.22)

B(r2) =
μ0ρω

4π

R∫

−R

dz1

√
R2 − z21∫

0

dζ1

2π∫

0

dϕ1
ζ1 [ζ̂ (z2 − z1) + ẑ (ζ1 − ζ2 cosϕ1)]

[ζ22 + ζ21 − 2ζ1ζ2 cosϕ1 + (z2 − z1)2]3/2
.

Note that, if the charge density ρ is not a constant, then we cannot remove
it from the integration.

Exercise 9.18. Return to the Biot-Savart law (Equation 9.6). Use the
definition of J = ϕ̂ζ1ρω and fill in the missing details of the deriva-
tion of Equation 9.22. Note that the order of integration matters.

In deriving Equation 9.22, we selected a particular order of integration,
which amounts to building up the spherical volume by stacking thin (dz1)
circular plates. One might also reverse the order of integration to con-
struct the volume by the stacking of thin (dζ1) cylinders but doing so will
require a revision to the limits of integration. Now we have previously
computed the ϕ1 integrals: this approach led to elliptic integrals. As we
know little enough about elliptic integrals, much less integrals of elliptic
integrals, let us consider reversing the order of the ϕ1 and ζ1 integrals.
This turns out to be a reasonable thing to try but, unfortunately, does not
lead to useful results. As it turns out, no reordering of integrations leads
to a simple result. So, as practical people, we might be tempted to just

14Unfortunately, computers do not think, they merely perform calculations. To reiterate:
thinking remains the province of the student.
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integrate the formula numerically and plot the results; we have certainly
taken this path previously. As it happens, though, a change of coordinates
will prove fruitful.

Consider recasting the problem into spherical coordinates, where points
in the plane are determined by r = (r,θ,ϕ), where r is the radius vector,
θ is the polar angle and ϕ is the azimuthal angle, as was discussed pre-
viously in Chapter 6. In spherical coordinates, the current density be-
comes J(r1) = ϕ̂r1 sinθ1ρω, where r1 here is the radial distance to the
origin, not the z-axis. With the restriction that we wish to compute the
field at a point in the x-z plane, then r2 = (x2,0, z2) = (r2 sinθ2,0, r2 cosθ2),
where r2 = (x22 + z22)

1/2. An arbitrary point r1 in the sphere is given by
r1 = (r1 sinθ1 cosϕ1, r1 sinθ1 sinϕ1, r1 cosθ1). The magnetic field due to a
rotating charged sphere can thus be shown to be given by the following
expression:

(9.23) B(r2) =
μ0ρω

4π

∫ R

0
dr1

∫ π

0
dθ1

∫ 2π

0
dϕ1 r

3
1 sin2θ1

{
x̂ cosϕ1(r2 cosθ − r1 cosθ1) + ŷ sinϕ1(r2 cosθ2 − r1 cosθ1)+

ẑ (r1 sinθ1 − r2 sinθ2 cosϕ1)
}

[r21 + r22 − 2r1r2(cosθ1 cosθ2 + sinθ1 sinθ2 cosϕ1)]
−3/2.

This is another integral representation of the magnetic field. It represents
the same magnetic field as the one defined in Equation 9.22.

Exercise 9.19. Fill in the details of the derivation of Equation 9.23.

Unfortunately, performing the integrals in Equation 9.23 turns out to be
just as challenging as those in Equation 9.22. Mathematically, the problem
arises from the occurrence of the factor cosϕ1 in the denominator. The ϕ1
integration results in elliptic integrals and we are back at square one. As
it happens, though, there is a trick that we can invoke that will render the
problem tractable.

Let us consider rotating the sphere in figure 9.10 around the y-axis such
that the field will be evaluated on the z-axis: r′2 = (0,0, r2). This will re-
quire a rotation of −θ2 as described by the rotation matrix R2 in Equa-
tion 4.26. In the rotated (primed) frame, we have that the following rela-
tion holds15:

r′2 − r1 = (−r1 sinθ1 cosϕ1,−r1 sinθ1 sinϕ1, r2 − r1 cosθ1).

15Note that here we have not rotated the r1 vector. We justify this by recognizing that we
intend to integrate over all of the vectors r1 within the sphere and, thus, do not need to also
rotate a particular point r1.
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From this result, we can compute |r′2 − r1| = [r21 + r22 −2r1r2 cosθ1]1/2. Mag-
ically, there is no ϕ1 dependence in |r′2 − r1|!

Exercise 9.20. Define the vector r2 = (r2 sinθ2,0, r2 cosθ2). Define
the matrix R2 as follows:

R2(θ2) =

⎡
⎢⎢⎢⎢⎢⎢⎣
cosθ2 0 sinθ2
0 1 0

−sinθ2 0 cosθ2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(This definition of R2 is the spatial part of the matrix R2 defined in
Equation 4.26.) Show that R2(−θ2)r2 = (0,0, r2).

Of course, we now have to adjust the current to conform to the new coor-
dinate system. We note that the current can be written as J(r1) = ρω × r1,
where initially ω = ẑω. Rotating around the y-axis by the angle −θ2,
changes the angular velocity vector to ω′ = (−ω sinθ2,0,ω cosθ2). As a
result, the current in the rotated frame becomes:

(9.24) J′(r1) = r1ρω
{
−x̂ sinϕ1 sinθ1 cosθ2

+ ŷ[cosϕ1 sinθ1 cosθ2 + cosθ1 sinθ2]− ẑ sinϕ1 sinθ1 sinθ2
}
.

Whereupon we can now show that J′(r1)×(r′2−r1) is given by the following:

(9.25) J′(r1)× (r′2 − r1) = r1ρω
{
x̂
[
cosϕ1(r2 − r1 cosθ1) sinθ1 cosθ2

+ (r2 cosθ1 − r1 cos2θ1 − r1 sin2ϕ1 sin2θ1) sinθ2
]

+ ŷ sinϕ1 sinθ1
[
(r2 − r1 cosθ1)cosθ2 + r1 cosϕ1 sinθ1 sinθ2

]

+ ẑr1 sinθ1
[
sinθ1 cosθ2 + cosϕ1 cosθ1 sinθ2

]}
.

While this form of the integral representation of B will have a much more
complicated numerator, the only ϕ1 dependence is in the numerator, as
expressed by Equation 9.25.

Exercise 9.21. Define the vectors ω, r1 and r2 and the rotation
matrix R2 (as lists within the Mathematica program). Check the
validity of Equation 9.25. Integrate the results over the interval
0 ≤ ϕ1 ≤ 2π.

The ϕ1 integrals can be performed readily: in the cases where there is no
ϕ1 dependence, we obtain a factor of 2π and for the cases that depend
upon sin2ϕ1 or cos2ϕ1, we obtain a factor of π. The remaining integrals
involving sinϕ1 and cosϕ1 vanish, eliminating all of the ŷ terms and sev-
eral of the x̂ and ẑ terms.
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Somewhat surprisingly, given the difficulties that we’ve encountered to
this point, it is also possible to perform all of the θ1 integrals. We owe
this bit of mathematical good fortune to the factor of sinθ1 that comes
from the volume element in spherical coordinates. Presumably, students
have, by this time in their academic careers, been exposed to the strategy
of changing variables to make integration simpler. No doubt this current
example is one of the most convoluted to date but it illustrates that one
can utilize physical insights to assist in the mathematical process. Rota-
tion around axes will not affect the physical interpretation of our results
but will affect the mathematical representation.

We do have one further wrinkle to consider: the denominator |r2 − r1| will
vanish when r1 = r2. We shall have to treat the cases where (i) r1 > r2 and
(ii) r1 < r2 separately. Using the Assumptions option of the Integrate

function to provide this information, we find that, after performing the
θ1 integrations, the magnetic field now has the following representation:

(9.26) B′(r′2) =
μ0ρω

3

∫ R

0
dr1 r

2
1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
−2sinθ2

r1
,0,
2cosθ2

r1

)
r1 > r2

(
r21 sinθ2

r
3
2

,0,
2r21 cosθ2

r
3
2

)
r1 < r2.

Exercise 9.22. Fill in the missing steps of the derivation of Equa-
tion 9.26.
Exercise 9.23. Plot the radial dependence of the integrands from
Equation 9.26 over the range 0 ≤ r1 ≤ 1 and 0 ≤ r2 ≤ 3. What is the
radial dependence of the integrands of the x- and z-components of
the field? In particular, what happens at the point r1 = r2?

We now perform the integrations over r1, taking care when r2 < R, to find
that the magnetic field in the rotated frame can be written as follows:

(9.27) B′(r′2) =
μ0ρω

15

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
[6r22 − 5R2] sinθ2,0, [5R2 − 3r22 ]cosθ2

)
r2 < R(

R5 sinθ2
r
3
2

,0,
2R5 cosθ2

r
3
2

)
r2 > R.

Exercise 9.24. Plot the radial part of the field components from
Equation 9.27 over the range 0 ≤ r2 ≤ 3, with R = 1. What is the
radial dependence of the x- and z-components of the field? In par-
ticular, what happens at the point r2 = R?

We, of course, now need to rotate back into the original orientation. The
rotation can be accomplished by multiplying the result in Equation 9.27
by the rotation matrix R2(θ2). The result is written below:
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B(r2) =
μ0ρω

15

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
3r22 sinθ2 cosθ2,0,5R

2 − r22
9− 3[cos2θ2 − sin2θ2]

2

)
r2 < R

(
3R5 sinθ2 cosθ2

r
3
2

,0,R5
1+ 3[cos2θ2 − sin2θ2]

r
3
2

)
r2 > R.

This is the representation of the magnetic field using spherical coordi-
nates, albeit resolved into Cartesian coordinates. To facilitate plotting the
field, let us recognize that r2 = (x22 + z22)

1/2 and that cosθ2 = z2/r2 and
sinθ2 = x2/r2. Using these results, we can write that the field is given by
the following:

(9.28) B(r2) =
μ0ρω

15

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
3x2z2,0,5R

2 − 6x22 − 3z22
)

x22 + z22 < R2(
3R5x2z2

[x22 + z22]5/2
,0,

R5(2z22 − x22)
[x22 + z22]5/2

)
x22 + z22 > R2.

The field of a spinning sphere is depicted in figure 9.11.

Figure 9.11. The magnetic field
lines of a rotating, charged sphere
resemble those of a simple current
loop. The field is finite everywhere

Exercise 9.25. Fill in the details of the derivation of Equation 9.28.

Exercise 9.26. Use the StreamPlot and StreamDensityPlot func-
tions to visualize the magnetic field of a spinning, charged sphere,
using Equation 9.28.

From our derivation, Equation 9.28 also serves as the representation of
the magnetic field in cylindrical coordinates, if we make the identifica-
tions that x̂ → ζ̂ and x2 → ζ2. It will be useful to also provide a repre-
sentation of the field in spherical coordinates. We can utilize the fact that
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ζ̂ = r̂ sinθ2 + θ̂ cosθ2 and ẑ = r̂ cosθ2 − θ̂ sinθ2 to show that the magnetic
field of a rotating sphere is written as follows:

(9.29) B(r2) =
μ0qω

20πR3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

r̂ cosθ2[5R2 − 3r22 ] + θ̂ sinθ2[6r22 − 5R2] r2 < R
R5

r
3
2

(
r̂2cosθ2 + θ̂ sinθ2

)
r2 > R,

where we have utilized a constant charge density ρ = q/(4πR3/3). We can
recognize that this result is the same as that of Equation 9.26, with the
identification that ẑ→ r̂ and x̂→ θ̂.

Remarkably, the fields of a current loop and a spinning sphere are quite
similar, at least at distances that are relatively large compared to the size
of the loop or sphere. As can be seen from Equation 9.29, the magnetic
field decays like r−3 at large distances from the center of the sphere. This
behavior is characteristic of a dipole field. Recall that the electric field
of a spherical charge decayed like r−2, which we term a monopole field.
There is, in fact, a systematic process by which one can expand the fields
in powers of r−n.16 This process is useful at large distances because there
the field will be dominated by terms that involve the smallest power of n.

Exercise 9.27. Plot the functions r−n for the range 1 ≤ r ≤ 10 and
n = 2, 3, 4, and 5.

9.4. Magnetic Field of the Electron

So, if we cling to this mental picture of an electron as a small, charged
sphere then, if the sphere is spinning about some axis, the electron
will also possess a magnetic field. This has an important consequence.
Electromagnetic fields can possess momentum and angular momentum.
This may seem odd, owing to our initial definition of momentum as the
product of mass and velocity p = mv. Nevertheless, the total momentum
in the fields can be defined as follows:

(9.30) pem = ε0

∫
d3r2 [E(r2)×B(r2)]

and the total angular momentum in the fields is then:

(9.31) Lem = ε0

∫
d3r2

{
r2 × [E(r2)×B(r2)]

}
.

16For historical reasons, terms in this series have somewhat arcane names: monopole,
dipole, quadrupole, octupole, hexadecapole, etc., owing to the fact that one can generate
such fields with one, two, four, eight and sixteen point sources in suitable locations, respec-
tively. Predictably, the prefixes are the Latin roots for one, two, four, etc.
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We solved for the field of a charged sphere in Chapter 3. Recall that it can
be written as follows:

E(r2) =
q

4πε0
r̂

⎧⎪⎪⎪⎨⎪⎪⎪⎩

r2
R3

r2 < R
1
r22

r2 > R.

With our previous result for the magnetic field, we see that the momen-
tum density will only have a ϕ-component:

(9.32) ε0E×B = ϕ̂
μ0q

2ω

80π2R3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r2 sinθ2[6r22 − 5R2]
R3

r2 < R

R5 sinθ2
r
5
2

r2 > R.

When we integrate this result over all space, the integrals all vanish.
Recall ϕ̂ = (−sinϕ,cosϕ,0). As a result, the spinning spherical charge has
no linear momentum.

In spherical coordinates, we have r2 = r̂r2, and r̂ × ϕ̂ = −θ̂. Using these
results, the angular momentum of the spinning sphere is given by the
following:

Lem = − μ0q
2ω

80π2R3

∫
d3r2 θ̂

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r22 sinθ2[6r22 − 5R2]
R3

r2 < R

R5 sinθ2
r42

r2 > R.

We note that θ̂ = (cosθ cosϕ,cosθ sinϕ,−sinθ), so the ϕ integrations will
leave only a ẑ component. The θ integrals produce a factor of 4/3. We are
left then with the following:

Lem = ẑ
3μ0q2ω
10πR3

[∫ R

0
dr2

r42 [6r22 − 5R2]
R3

+
∫ ∞

R
dr

R5

r22

]

= ẑ
μ0q

2ωR

35π
.(9.33)

Hence, a spinning, charged sphere has angular momentum due to the
fields.

Exercise 9.28. Fill in the missing details of the derivation of Equa-
tion 9.33.

Exercise 9.29. One possible interpretation of the angular momen-
tum of the fields is that mass arises solely from the fields and is not a
separate entity. A spinning sphere with massM also has mechanical
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angular momentum given by Lmech = ẑ 2/5MR2ω. Suppose that this
is equal to the angular momentum due to the fields in Equation 9.33.
Given the measured mass and charge of the electron, what would be
its radius R?

The question now is to ascertain whether or not electrons have such intrin-
sic magnetic fields. If we think about conducting an experiment to study
this phenomenon, we can draw on our previous experiences and suggest
that if we utilize a beam of electrons, then the presence of an electron’s
magnetic field should somehow lead to the deflection of the beam. Map-
ping trajectories, after all, has been our stock in trade throughout most of
the text.

The Lorentz force on a charge distribution ρ is given by the following:

(9.34) F =
∫

d3r1 [ρE(r1) + J(r1)×B(r1)],

where J is the current density. For a rigid charge distribution, like the
spherical model of the electron that we are considering, the current den-
sity will consist of two parts. First, there is translation of the center of
mass of the distribution: J1 = ρv. This is the component that we have
studied previously and that causes charge particles to deflect when pass-
ing through a magnetic field. If the charge density is also rotating about
its center of mass, then there will be a second component of the current:
J2 = ρω×r. We have not yet studied the effect of rotation on the motion of
the charge.

So, consider the force arising from an infinitesimal element of charge in
our spinning sphere in an external magnetic field B. In spherical coordi-
nates, we have that dq = ρr21 sinθ1 dr1 dθ1 dϕ1, so the total force acting on
the sphere is the integral over the volume of the sphere:

(9.35) F = ρ

∫ R

0
dr1

∫ π

0
dθ1

∫ 2π

0
dϕ1 r

2
1 sinθ1(ω × r1)×B(r1).

Let us use the orientation of the sphere indicated in figure 9.10, where
ω = ẑω. We can then show the following relation is true:

(ω × r1)×B(r1) = ωr1 sinθ1(Bz cosϕ1,Bz sinϕ1,−Bx cosϕ1 −By sinϕ1).

If the magnetic field B is a constant field, then the ϕ1 integrals in Equa-
tion 9.35 all vanish. Hence, there will be no net force on a spinning sphere
in a uniform magnetic field. This is a an interesting conclusion. It means
that the trajectory of a spinning, charged sphere is identical to that of a
non-spinning, charged sphere, at least in uniform magnetic fields. So,
we can exclude using a uniform magnetic field experiment to determine
whether or not the electron has an intrinsic magnetic field.
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Exercise 9.30. Fill in the details of the derivation of Equation 9.35.
Demonstrate that all of the ϕ1 integrals indeed vanish.

While there is no net force on a spinning sphere, there will be a torque
acting on the sphere. Recall that the torque on an object is defined as
τ = r×F. So, the torque acting on the spinning sphere will be given by the
following:

τ = ρ

∫ R

0
dr1

∫ π

0
dθ1

∫ 2π

0
dϕ1 r

2
1 sinθ1r1 ×

[
(ω × r1)×B(r1)

]
.

=
qR2ω

5
(−By,Bx,0) =

qR2

5
ω ×B,(9.36)

where we have assumed that B is a constant vector with components B =
(Bx,By,Bz) and that the charge density was also constant ρ = q/(4πR3/3).
We have also used the condition that, initially, ω = ẑω in the last step.

Exercise 9.31. Equation 9.36 defines the time evolution of the
vector ω because τ = I dω/dt, where I is the moment of intertia.
Define the following equations:

eqs={wx’[t]==B wy[t],wy’[t]==-B wx[t],wz’[t]==0}

ics={wx[0]==0.3,wy[0]==0,wz[0]==0.7}

soln=NDSolve[Join[eqs,ics]/.{B->1.0},{wx,wy,wz},

{t,0,10}]

ParametricPlot3D[Evaluate[{wx[t],wy[t],wz[t]}/.soln],

{t,0,10}]

The plot will trace the time evolution of the angular velocity vector.
What happens if you change the initial value of B to other values?

Figure 9.12. The angular veloc-
ity vector precesses as the spin-
ning sphere moves along the z-axis
through a constant magnetic field
B = x̂B

In a constant magnetic field, the torque on the sphere causes the angu-
lar velocity vector to precess around the magnetic field direction. This
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precession is depicted in figure 9.12, where the spinning sphere (and the
vector ω) are moving in the z-direction in a region where the magnetic
field has only an x-component. Here the x-component of ω will remain
constant, the remaining components will vary in a sinusoidal fashion.

In 1922, the German physicists Otto Stern and Walther Gerlach reported
the results of their exceptionally clever experiment to determine the in-
trinsic magnetic moment of the electron.17 First, the two recognized that
sending a beam of electrons through a magnetic field was impractical:
the Lorentz force on the electrons would cause a large deflection that
could mask the smaller force due to the field gradient. Instead, Stern
and Gerlach used a beam of electrically neutral silver atoms. Silver has an
atomic number of 47 and, rather fortuitously, 46 of those electrons form
a relatively stable core, leaving the electronic properties of silver to be
established by just one of the electrons. As a result, the magnetic moment
of silver is essentially that of a single electron. Of course, silver had long
been used in photographic emulsions, so Stern and Gerlach proposed to
analyze their results by the standard methods of film development avail-
able to photographers.18

Figure 9.13. The magnetic field
used by Stern and Gerlach was
fashioned from two pole pieces
with very different shapes. This
produces a large gradient in the
magnetic field in the vertical direc-
tion. The silver beam (Ag) passes
through the region where the gra-
dient is large

A simplified version of the apparatus utilized by Stern and Gerlach is
depicted in figure 9.13. The upper pole piece (light gray) has a radius

17Their papers “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld,”
and “Das magnetische Moment des Silberatoms,” were published in the German journal
Zeitschrift für Physik in the spring of 1922.
18In Stern’s recollection of the experiment, Gerlach handed him the plate onto which silver
had been deposited but there was no evidence of silver until Stern’s cigar smoke wafted
onto the plate. Sulfur in the cigar smoke combined with the silver to make jet black silver
sulfide, which was immediately apparent. Stern received the 1943 Nobel Prize in Physics
“for his contribution to the development of the molecular ray method and his discovery of
the magnetic moment of the proton.”
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of curvature a and the lower pole piece (dark gray) has a radius of curva-
ture b. From the symmetry of the magnet design, we should find, in the
region between the two pole pieces, that the magnetic field is radially di-
rected (B = ζ̂Bζ). Consider now a Gaussian surface constructed from two
arc segments of radius ζ1 and ζ2 that extend for some distance L along the
magnet, two arc segments of radius ζ1 and ζ2 that extend from some an-
gle ±ϕ1 in the azimuthal direction and two plane segments that close the
surface. (Light gray surfaces in the figure.) From Gauss’s law for magnetic
fields, we know that the following is true:∮

dA ·B = 0.

(There are no magnetic charges.) Because the field is radially directed,
the integrals over the arc segments on the ends (dA = ±ẑζ dζ dϕ) and the
plane segments along the sides (dA = ±ϕ̂dζ dz) will vanish. The only
non-zero contributions to the integral will therefore come from the arc
segments that run parallel to the z-axis (dA = ±ζ̂ ζ dϕdz). If we further
assume that the symmetry of the system leads to the magnetic field be-
ing approximately constant on the remaining surfaces, then we find the
following: ∫

dA ·B = −2ζ1ϕ1LBζ(ζ1) + 2ζ2ϕ1LBζ(ζ2) = 0.

We can rearrange this result to show that the magnetic field has the
following behavior:

Bζ(ζ2)
Bζ(ζ1)

=
ζ1
ζ2

.

This implies that the magnetic field inside the Gaussian box has the form
B = ζ̂B0/ζ, where B0 is some proportionality constant with dimension of
the magnetic field times a length.

Let us now think about what the results of the experiment should be.
Let us choose a coordinate system in which x is the vertical direction, z
extends along the beam axis and y is in the horizontal direction perpen-
dicular to x and z. We are representing the silver atom as effectively a
point charge of +e and an electron of radius R and charge −e centered on
the point charge. (This is a dubious model to be sure but it will suffice
for now. In truth, it is probably not a bad model for hydrogen, which
was studied in 1927 by the American physicists Thomas Phipps and John
Taylor. The hydrogen results confirmed that the electron has a magnetic
moment.) By virtue of the point charge at the center of the electron, our
silver atom will possess the intrinsic magnetic field associated with rota-
tion of the negative charge but will not possess a total charge. As a result,
silver atoms passing through the apparatus illustrated in figure 9.13 will
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not be deflected by the Lorentz force but should feel a force due to the
inhomogeneous field.

The angular velocity vectors of our electrons will be randomly oriented
ω = (ωx,ωy,ωz). The magnetic field is vertically oriented at the location of
the beam but we want to use a coordinate system centered on the electron,
which is displaced initially some distance x0 from the center of curvature
of the upper pole piece of the magnet. The magnetic field of the magnet
then has the following form:

(9.37) B = B0
(r1 cosϕ1 − x0, r1 sinϕ1,0)

r21 + x20 − 2r1x0 cosϕ1
.

The force on the sphere can be computed from Equation 9.35, with the
following result:

(9.38) F =
3πqR2B0
40x20

(−ωx,ωy,0).

The sphere feels a force in both the x- and y-directions, proportional to the
field and the components of ω perpendicular to the direction of motion.

Exercise 9.32. To derive Equation 9.38, we assumed that the angu-
lar velocity vector had a random orientation ω = (ωx,ωy,ωz). Fill in
the missing details in the derivation of Equation 9.38.

Exercise 9.33. Plot the magnetic field lines of the field defined in
Equation 9.37. The StreamPlot function utilizes a rectangular grid,
so recall that cosϕ1 = x1/r1 and sinϕ1 = y1/r1. Consider the case
where x0 = 3 and plot the fields over the domains −1 ≤ x1 ≤ 1 and
−1 ≤ y1 ≤ 1. Is the field radially directed? Use the StreamDensity-

Plot to assess the change in magnitude of the field as a function of
x1.

The sphere also feels a torque, that we can compute from Equation 9.36.
We find the following result:

(9.39) τ =
qR2B0
5x0

(0,−ωz,ωy).

This torque will cause the sphere to precess around the local field direc-
tion. At the beam location, the magnetic field is oriented primarily in
the x-direction. As a result, the ωy component of the spin will change as
the sphere passes through the magnetic field, as depicted in figure 9.12.
The force acting in the y-direction will be alternately positive and nega-
tive, modulated in a sinusoidal fashion depending on the orientation of
the angular momentum vector. Consequently, the force will tend to can-
cel over time and there will be no net displacement of the sphere in the
y-direction as it traverses the apparatus.
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Exercise 9.34. Fill in the missing steps in the derivation of Equa-
tion 9.39.

The precession of the vector ω during the transit does not affect the x-
component and there will be a net motion in the x-direction, depending
upon the magnitude (and sign) of ωx. There will be a net acceleration a
of the sphere in the x-direction which is just ax = Fx/M , where M here is
the mass of the silver atom not the electron. Motion of the silver atoms
in the x-direction is complicated by the fact that the acceleration is not a
constant. Nevertheless, there will be a displacement that is proportional
to the unknown quantity ωxR

2.

Exercise 9.35. Define the following equations:

dx(t)
dt

= vx(t)
dvx(t)
dt

=
α

x2(t)
x(0) = x0 vx(0) = 0.

Use NDSolve to solve the equations for α = 10 and x0 = 3 over the
range 0 ≤ t ≤ 10. Plot the solutions. How do these change as α
changes?

As ω is expected to be randomly oriented for silver atoms entering the
beam, we should expect that silver will be deposited in a band that ex-
tends from some maximum value x(ωmax) to a minimum value x(−ωmax)
that depends upon the maximal rotation ωmax. Measuring the width of
the band will provide us with an estimate of the angular velocity ω and,
hence, the size of the intrinsic magnetic field of the electron. Instead of
observing a continuous band of silver, Stern and Gerlach found that the
silver atoms that passed through their apparatus separated into just two
components, as illustrated below.

Figure 9.14. The first image ob-
tained by Stern and Gerlach uti-
lized a relatively wide beam. At
the edges of the beam, there was no
deflection of the silver atoms. In
the center of the beam, the atoms
split into two components (Image
provided with kind permission of
Springer Science+Business Media)

This image has enormous implications for our classical model of the elec-
tron. First, it appears that the angular velocity ω of every electron is the
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same. Second, the orientation of the angular velocity is restricted to be
either aligned with the magnetic field or anti-aligned with the magnetic
field: there are no spinning spheres where ωx is anything but ±ω. These
results are quite difficult to reconcile with our macroscopic experiences
with spinning spheres. As billiard balls bang around the surface of a felt-
covered tabletop, we can certainly observe them to spin about some axis
or another but they do not spin at the same rates. Additionally, as they en-
counter other balls, whatever spin they had originally is inevitably altered
by the collision process.

9.5. Electron Charge

Instead, the results of Stern and Gerlach echo the previous observations of
quantization in microscopic systems. By the time Stern and Gerlach con-
ducted their experiments, Thompson had already determined the charge
to mass ratio of the electron. Subsequently in 1913, the American physi-
cist Robert Millikan published the results of a series of his experiments on
oil droplets in which he determined that the charges on the droplets were
all integral multiples of some fundamental charge.19

Millikan used an atomizer to produce a fine mist of oil droplets between
two metal plates. When a large (∼10kV) potential was applied to the
plates, most of the droplets were rapidly swept away but a few drifted
slowly through the apparatus. Millikan and Fletcher were able to track
some of the droplets for tens of minutes, alternately turning off the elec-
tric field and allowing the droplets to fall under the influence of gravity
and then turning on the electric field and watching the droplets rise un-
der the influence of the electromagnetic force. In each mode, falling or
rising, the drops achieved a terminal velocity that Millikan could obtain
by measuring the time it took each droplet to travel a specific distance.

In Table 9.1, we display Millikan’s data for what he called drop #6. The
columns labelled tg represent the amount of time that the drop took to
fall a measured distance under the influence of gravity. The potential
was then applied to the metal plates, inducing an electric field in the re-
gion where the drop was falling. The Coulomb force on the charged drop
was sufficient to cause it to rise back through the measured distance. The
columns labelled tF are the (corrected) times for the drop to travel the

19Millikan and his student Harvey Fletcher began the experiments in 1908. Unfortunately,
University of Chicago rules prohibited Fletcher from using a co-authored paper in support
of his Ph.D., so Fletcher was the sole author on a report of their observations of Brownian
motion of the oil drops. Millikan claimed sole authorship of the paper on charge quantiza-
tion and was awarded the Nobel Prize in physics in 1923 “for his work on the elementary
charge of electricity and on the photoelectric effect.”
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measured distance. We note that the fall times are quite similar. Millikan
used this observation to infer that the aerodynamic force on the droplet
was consistent throughout the measurement interval.

Table 9.1. Millikan’s data on drop #6

tg (s) tF (s) tg (s) tF (s) tg (s) tF (s)

11.848 80.708 11.816 34.762 11.912 22.268
11.890 22.366 11.776 34.846 11.910 500.100
11.908 22.390 11.840 29.286 11.918 19.704
11.904 22.368 11.904 29.236 11.870 19.668
11.882 140.565 11.870 137.308 11.888 77.630
11.906 79.600 11.952 34.638 11.894 77.806
11.838 34.748 11.846 22.104 11.878 42.302

The presumption in the experimental design is that the droplets will reach
a terminal velocity due to the resistive force (Stokes’s law) opposing their
motion. As we recall from Chapter 6, according to Stokes’s formula, the
terminal velocity of the drop would be vg = mg/α, where α = 6πηR.
That is, the terminal velocity of the falling drop, which is proportional
to 1/tg , does not depend upon the charge. For the rising drop, the force
on the drop is F = qE −mg, so the terminal velocity vF = (qE −mg)/α will
now depend linearly on the charge.

Exercise 9.36. Compute the mean and standard deviation of the tg
values from Table 9.1. Plot the data and horizontal lines at the values
of the mean and the mean plus and minus the standard deviation. Is
there a significant trend over time?

We note from Table 9.1, that the value of tF changes over the course of
the measurements. This reflects the fact that the ionization state of the
droplet changes over time due to collisions with molecules in the sam-
ple chamber. Millikan employed a somewhat intricate methodology to
demonstrate that the charge changes were always an integral multiple of
some fundamental charge. First, he computed the values of 1/tF for each
of the values found in the table, using averages when there are several
runs in a row. (For example 1/tF = 0.02875 s−1 for the three runs where
tF ≈ 34.75 s−1.) Next, he calculated the differences between each of those
values, which he called 1/tF − 1/t′F . When he divided all of the 1/tF − 1/t′F
values by the smallest of the 1/tF − 1′F values, what he discovered were
that all of the results were nearly integers. The result of this process Mil-
likan called n′ , the number of electrons that were transferred between the
two runs.
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Exercise 9.37. For the data in Table 9.1, compute the n′ values as
described. If we assume an uncertainty of 0.5% in the value of n′ ,
how close are the computed values to the nearest integers?

Figure 9.15. The changes in elec-
tric charge for three different oil
drops are always integral multiples
of a smallest charge

The n′ values for three droplets cited in Millikan’s paper are illustrated in
figure 9.14. We see that all of the charge changes are by integral amounts.
This was precisely the result that Millikan was seeking and enabled him
to provide the first precision measurement of the electric charge. Current
values of the elementary charge have a precision of two parts in 108 and
the measurements do not rely on the rather error-prone strategy that Mil-
likan employed. Nevertheless, Millikan’s experiments provided signifi-
cant support for the nascent atomic theory of matter.

Millikan’s work was not without controversy in his own time. The
Austrian physicist Felix Ehrenhaft was also measuring the value the
electron charge, using colloidal metals. Ehrenhaft, though, found values
of the charge that were significantly smaller than that obtained by Mil-
likan, which he termed subelectrons. Millikan and Ehrenhaft engaged in
a scientific debate that ran for over two decades and was not even silenced
by Millikan’s award of the Nobel Prize in Physics in 1923. Each continued
to refine his measurements and, in each subsequent publication, pro-
vided not only an account of their own recent results but also a critique
of the other’s experiments. Reportedly, their strident debate persuaded
the Nobel Prize committee to step back from awarding the 1920 Prize to
Millikan.

Exercise 9.38. Derive the expressions for the terminal velocities for
falling and rising droplets. Show that the total number of electrons
on the drop is proportional to the quantity 1/tg + 1/tF . This result
establishes that the change in number n′ will be proportional to the
quantity 1/tF − 1/t′F .

Exercise 9.39. Millikan’s experiments relied on obtaining the ter-
minal velocity by means of measuring the time the droplet required
to travel a prescribed distance (the distance between two marks on



288 The Classical Electron

the microscope reticule). A potential source of error is an ioniz-
ing event that occurs during the timing interval. Suppose that the
droplet loses one electron a third of the distance along the path.
If the droplet begins with five, eight or ten electrons initially, how
does that affect the measured tF? (Assume that the droplet reaches
its new terminal velocity instantaneously.) If the subsequent run has
a droplet with six electrons, what would be the n′ values for these
cases?

The debate over quantization of the electron charge has long been set-
tled, with Millikan on the prevailing side, but his work remains con-
troversial. The ethics of omitting Fletcher’s name from the 1913 paper,
even in the acknowledgments, has been widely discussed. Additionally, in
1978, the American physicist and historian of science Gerald Holton pub-
lished an analysis of Millikan’s laboratory notebooks, which he found in
the archives at the California Institute of Technology. In Millikan’s note-
books, it is clear that he measured many more droplets than he included
in his publications. The criteria by which Millikan selected his data have
been criticized, with some proposing that Millikan’s methodology rises to
the level of scientific fraud. Millikan certainly found droplets where the
analysis demonstrated a fractional charge and excluded those from his
publications. In his defense, we can see from Millikan’s notebooks that he
invariably had some sort of objections to the experimental conditions that
caused him to question the reliability of those measurements. Millikan
was, of course, painfully aware of how difficult it was to acquire valid
data and used his own personal experiences to apply a personal quality-
control filter on the data.

9.6. Unfinished Business

More recent experiments with improved measurement technologies have
demonstrated that the electron does have a quantized charge, a quantized
mass and a quantized intrinsic magnetic field; these values are among
the most precisely known quantities in all of science. This result is not
necessarily to be interpreted as vindication of Millikan’s methodology or
ethics but, even in science, it is frequently better to be lucky than good.

So at this point in the chapter, we have arrived at a rather dubious out-
come. We have constructed a classical representation of the electron that
is in direct conflict with experiment: the electron displays quantization
effects that cannot be derived from a classical model. In a real sense, it
is very discomforting to slog through a string of formidable calculations
only to get the wrong answer. That is not to say that we made any alge-
braic errors on the path to Equations 9.38 and 9.39. Indeed, those results
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stand as written but, alas, do not describe the results of the experiment
illustrated in figure 9.15. It was just this sort of difficulty that confronted
physicists in the 1920s: classical models of microscopic entities did not
conform to experimental results. A new physical model of microscopic
phenomena was required.

Indeed, a number of other, alarming results were obtained when trying to
formulate classical models of the electron. As we mentioned previously,
the electromagnetic fields carry momentum. If we are interested in the
kinematics of charged particles, we must somehow incorporate the mo-
mentum of the fields. Students will encounter this topic in an advanced
course on electrodynamics but there are curious results that arise when
one attempts to deal with this issue. For example, when a charged mass is
subjected to a force for a specific, finite time interval, the theory predicts
that the mass will either fly away to infinity or begin accelerating before
the force is applied! This behavior certainly does not seem feasible from a
physical standpoint.

The subsequent course in electrodynamics will introduce the electro-
magnetic potentials V and A from which we can obtain the fields by
differentiating:

E = −∇V − ∂A
∂t

and B = ∇×A,

where the symbol ∇ is a shorthand for taking spatial derivatives:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

For a charge distribution ρ and a current density J, the potentials have the
following integral representations:

V (r2, t2) =
∫

d3r1
ρ(r1, t1)

|r2(t2)− r1(t1)|

A(r2, t2) =
∫

d3r1
J(r1, t1)

|r2(t2)− r1(t1)|
.(9.40)

We shall not try to solve these equations but need to point out a particular
subtlety that the equations embody. The potentials (and by inference the
fields) at some point in space r2 at some time t2 reflect the charge distri-
bution ρ and current density J at some remote point r1 at the specific time
t1 where:

(9.41) t1 = t2 −
|r2 − r1|

c
,
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where c is the velocity of light. This is known as the retarded time.20 It is
precisely the amount of time that a signal will take to travel the distance
|r2 − r1| when propagating at the velocity of light.

For an extended charge or current distribution (R > 0), points within the
distribution are spatially separated, meaning that they are described by
space-like vectors and do not share a common time. Now for an electron,
which we presume to be very small, we could guess that this won’t mat-
ter very much but, in fact, it does. A number of physicists have written
on the subject. Notably, the English physicist Paul Dirac tried to demon-
strate in 1938 that classical electrodynamics of extended objects was a
self-consistent theory, albeit one that did not agree with experiment. As
most physicists at that time, and subsequently, were more intent on un-
derstanding quantum mechanics, further development of the unresolved
theoretical issues was abandoned. As appealing as the classical model of
the electron might be, it does not describe the nature of the electron.

As a final note, we should point out that the French physicist Pierre-Simon
marquis de Laplace tried applying the idea of retarded time to Newton’s
gravitational theory. In our derivations in the early chapters we didn’t
bother to address an important point: “How does mass M1 know where
M2 is?” If we define vg to be the velocity of gravity, then we should modify
all of the earlier equations for the gravitational field to include a factor of
t1 = t2−|r2−r1|/vg that represents the finite propagation velocity of gravity.
In 1805, Laplace developed a model in which the earth was attracted to
the point where the sun was at the retarded time and discovered that he
no longer recovered elliptical trajectories.

This was, of course, an horrific result. Elliptical orbits for planets were
well-established experimentally. What we can infer from Laplace’s cal-
culations, of course, is that the velocity of gravity vg must be very large
compared to the orbital velocities of the planets. As a result, we can ne-
glect it and utilize Newton’s equations of motion. In developing his own
gravitational theory, Einstein made the presumption that vg = c, which
is, of course, very large compared to the orbital velocities of the planets.
As no one has, as yet, detected gravity waves and measured their prop-
agation velocity directly, it is commonly assumed that vg = c. Proving
otherwise will be left as an exercise for the reader.

20Advanced time solutions are also possible but are excluded for violating causality.
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Modern Technology

The fall of Rome and rapid depopulation of the city of Rome itself was
due, in large measure to the severing of the large aqueducts that sup-
plied the city with water. Civilization, at least insofar as measured by the
ability of peoples to live in high densities, can be measured then by its
plumbing. Indeed, after any natural disaster in which essential services
are disrupted, restoration of the water distribution and sewage treatment
facilities are specific points of emphasis.

Figure 10.1. The image
depicts the eastern
Mediterranean and the
Nile River valley at
night. It is printed here
as a negative (Image
provided courtesy of
NASA Earth Obser-
vatory/NOAA GFDC)

With the title Modern Technology, though, we are thinking of the trans-
formative technologies that arose in the early 1900s that converted the
theoretical ideas of Maxwell, Biot and Ampère, et cetera, into practical
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devices. Indeed, the exploitation of electromagnetic phenomena signifi-
cantly overlaps the theoretical development of the subject. While physi-
cists were concerned with questions like “What is the nature of matter?”
others were trying to harness electrical power to industrial applications.
The success of the enterprise is illustrated in figure 10.1 that depicts the
eastern Mediterranean at night. With the exception of a few historical
districts that retain gaslights, most cities and towns now utilize electrical
energy to illuminate their streets at night.

From the figure, one can easily discern the islands of Crete and Cyprus
and the Mediterranean coastline. Clearly, humans prefer to dwell near
water, as is particularly evidenced by the continuous development along
the Nile. Cairo is the dark spot below the Nile delta and Luxor is located
at the bottom of the U-shaped bend in the river near the bottom of the
figure.

The fact that one can now illuminate great spaces with the flick of a switch
is now accepted without question yet cathode ray tubes were instruments
of great public interest just a relatively few years earlier. What captured
the imagination of many of those early researchers, as well as the public,
was that light emanated from those tubes without any form of combus-
tion. The advantages over gas and oil lamps were immediately obvious
and creative individuals quickly undertook the mission of making electri-
cal lighting commonplace.

10.1. Induction

On August 29, 1831, the English scientist Michael Faraday noted in his
laboratory notebook the results of an experiment he was conducting re-
garding the behavior of electrical circuits. In November, Faraday read the
first of a series of papers to the Royal Society in which he provided de-
tails of his experiments.1 This was another of an extraordinary series of
investigations produced by Faraday, who is widely considered the best ex-
perimentalist in history. While Faraday is claimed by physicists as one of
their own, Faraday also produced significant results in chemistry, even-
tually being appointed as the first Fullerian Professor of Chemistry at
the Royal Institute. His election to Fellow of the Royal Society in 1824
was a singular achievement for a blacksmith’s son in the class-conscious

1Faraday’s “Experimental Researches in Electricity” were published in the Philosophical
Transactions of the Royal Society of London in 1831, establishing his precedence over the
American Joseph Henry who conducted similar experiments in New York at approximately
the same time.
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England of the 1800s.2 Faraday was even subsequently offered appoint-
ment as President of the Royal Society, a post held previously by Isaac
Newton, among others, but declined to focus his remaining years on his
experimental investigations.

Figure 10.2. Faraday wrapped two
lengths of copper wire around an
iron ring (dark gray). A battery con-
nected across A and B produced a
momentary voltage across C and D

In the summer of 1831, Faraday had fabricated an iron ring, around which
he wrapped two coils of insulated copper wire, as indicated in figure 10.2.
We recognize that the copper coil AB wrapped around the iron ring will
generate a magnetic field in its interior when attached to a battery, i.e.,
when it is carrying a current. From our previous experiences with wire
loops and solenoids, we can assume that the field within the coil will be
relatively uniform and directed along the axis of the coil. We can also as-
sume that computing it exactly will be a relatively formidable task, so we
shall be content with a crude description for now. What we haven’t dis-
cussed previously is that the magnetic permeability of iron is very large
compared to that of free space, or air. As a result, the magnetic field lines
emanating from the solenoid do not disperse like those in figure 9.5. In-
stead, the magnetic field lines remain almost entirely confined within the
iron. The iron ring serves as a conduit for the magnetic field generated in
the coil AB.

What Faraday observed on that fateful day in August was that, when
coil AB was connected to the battery, a galvanometer attached to coil
CD deflected momentarily. When Faraday disconnected the battery, the
galvanometer deflected in the opposite direction. Reversing the direction
of the connections to the coil AB resulted in a reversal of the effects on
the galvanometer. That is, a current arose only when the magnetic field
passing through the coil changed and the direction of the induced current
depended upon the direction of the initial magnetic field.

Faraday had no formal mathematical education but possessed an extra-
ordinary physical insight. While he might not have been able to express

2Faraday was apprenticed to a book binder at age thirteen but read voraciously and attended
public lectures to better himself. He had the audacity to ask Humphrey Davy, a leading
member of the Royal Society, for a position. Davy politely declined initially but shortly
thereafter sacked one of his assistants for fighting. Faraday’s interview had impressed Davy
sufficiently that he offered Faraday the vacant position.
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his ideas with sophisticatedmathematical treatments, he possessed an un-
canny ability to conduct experiments that exposed the detailed workings
of complex systems. Additionally, Faraday possessed the ability to de-
scribe his ideas in a clear and insightful manner that made his writings
accessible to a broad audience. For example, the concept of magnetic lines
of force, or magnetic field lines, was introduced by Faraday.

Faraday’s observations that August demonstrated that a changingmagnetic
field induces an electromagnetic potential. We can summarize Faraday’s
experimental results with the following mathematical representation:

(10.1)
∮

∂S
ds ·E = − d

dt

∫

S
dA ·B.

If the magnetic field through some surface S changes over time, then an
electromotive force is induced along the boundary of S. Hence, the path
integral on the left hand side is taken over the boundary ∂S of the surface
S used in the surface integral on the right hand side. Faraday’s law, as
Equation 10.1 is known, was not written in this form by Faraday himself,
who might have considered it ironic that a sophisticated mathematical
expression now bears his name.

Nevertheless, in large measure, Faraday’s law provides the underpinnings
for our modern electrical world. Consider that electrical fields (and con-
sequently currents J = σE in conductors) can be generated by a changing
magnetic flux. This can be achieved, as Faraday showed initially in Au-
gust of 1831, by changing the current that produces themagnetic field. He
soon recognized that a current can be generated by changing the area dA,
or more efficiently, by changing the orientation of the surface with respect
to the magnetic field. This principle is illustrated in figure 10.3, where a
rectangular loop is positioned in a magnetic field B that is nominally ver-
tically oriented. The magnetic flux through the surface will depend upon
the angle θ between the vectors A and B. If the loop is rotated about the
y-axis with an angular velocity dθ/dt = ω, then the product A ·B will vary
in time sinusoidally, like sinωt.3 This, in turn, will generate a current that
varies like cosωt.

Exercise 10.1. For a constant field B, the integral over the loop
surface is just A ·B. When the orientation of A changes sinusoidally
with an angular velocity ω, show that the voltage in the loop will
vary sinusoidally.

As a result, all one has to do to generate currents is to rotate a loop in a
magnetic field. This provides an extraordinarily simple means for con-
verting mechanical energy into electrical energy that can be transmitted

3There is an arbitrary phase that we have suppressed. Generally, the time variation would
be sin(ωt +φ), where the phase φ depends upon the orientation of the loop at time t = 0.
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Figure 10.3. A loop rotating in a
magnetic field B will generate a
current that varies sinusoidally

over wires and used for whatever purposes one wants. Instead of an
industrial revolution that demands local steam engines to power equip-
ment, one can simply convert the energy of a steam engine into electrical
currents. Thus the end users do not require noisy, dirty engines on their
premises. The ability to cleanly deliver energy not only to industrial fa-
cilities but also to residential areas dramatically reshaped civilization.

Notice that figure 10.3 also depicts a design of a motor. A wire carrying
a current in a magnetic field feels a torque. So, if on the one hand we
forcibly spin a loop of wire in a magnetic field, then a current will be gen-
erated in the wire. If, on the other hand, we run a current through the wire
in a magnetic field, then the magnetic torque will cause it to rotate. This
is somewhat miraculous: the mechanical energy of a rotating turbine in a
distant power plant is converted into currents that travel many kilometers
over wires and then are converted back into mechanical rotation of vac-
uum cleaner motors and refrigerator compressors. This is a hugely more
user-friendly use of technology than powering one’s refrigerator with a
gasoline engine like one finds in a lawn mower.

In addition, Faraday’s initial experiment in 1831 showed the way for elec-
trical distribution systems. The electrical power in a system is determined
by the product of current and voltage: P = IV . Ohm’s law indicates
that there will be a drop in voltage due to electrical resistance, so there
is a transmission power loss proportional to the square of the current:
Ploss = I2R. Obviously, to minimize transmission losses, one wants to op-
erate the electrical distribution system at high voltages and low currents
but one does not want the end users to deal with high voltages. Faraday’s
ring is an example of what is termed a transformer. The voltage in the coil
CD will be proportional to the ratio of the number of turns in the two
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coils and the original voltage in the coil AB. Just by changing the num-
ber of turns of wire, one can change one voltage into another. Thus one
can readily transmit power from the generating station at very high volt-
ages and then step it down to more modest voltages for consumers with
apparatus that is no more complicated than coils of wire.4

Figure 10.4. A simple electrical cir-
cuit can be represented by symbols
that reflect the original embodiment
of the elements

10.2. Circuits

Georg Ohm demonstrated the fundamental principle that the current I
in a circuit is proportional to an electromotive force that we now term
the potential. This is displayed schematically in figure 10.4. The poten-
tial source (ΔV ) is depicted as a series of short and long lines that reflect
the original voltaic piles that were constructed from alternating disks of
zinc and copper. The resistance of the circuit (R) is reflected in the zigzag
line that idealizes the tortuous path that electrons follow (see the Drude
model). Figure 10.4 is, of course, an idealization of a real circuit. As Ohm
demonstrated, the wires themselves have resistance, whereas the figure
implies that all of the resistance is embedded in some discrete element.
As a practical matter, the resistive element illustrated in the figure gener-
ally represents some electrical load that consumes vastly more electrical
energy to do work than is lost to the resistance of the connecting wires.
As a result, we can often neglect the resistance of the connecting wires;
including it will make only a minor correction.

Ohm’s initial investigations were extended to the problem of multiply-
connected circuits by the German physicist Gustav Kirchhoff. Kirchhoff

4The American inventor Thomas Edison envisioned utilizing constant current dynamos for
power distribution. He installed several of his bulky devices in American cities, with com-
mercial operation of the Pearl Street Station in New York City beginning on September 4,
1882. Edison was rapidly supplanted in the marketplace by the superior alternating current
technology of Russian emigré Nikolai Tesla and his industrial partner George Westinghouse.
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recognized that coupled circuits gave rise to coupled mathematical equa-
tions and demonstrated that a set of linearly-independent equations could
be developed for any number of circuits.5 Kirchhoff’s first principle we
now recognize as simply another statement of the conservation of charge:

I. At any node in the circuit, the sum of the currents entering the node
must equal the sum of the currents exiting the node.

Kirchhoff’s second principle can be stated as follows:

II. The sum of the voltages around any closed loop in the circuit is zero.

In figure 10.4, there is an increase in voltage across the battery of ΔV and
a subsequent drop in voltage across the resistor such that the following
relation holds:

ΔV − IR = 0.
For a single loop, this is just Ohm’s law, albeit written in terms more fa-
miliar to engineers and circuit designers. As a practical matter, it is easier
to measure the total current I flowing through a wire than the current
density J within the wire. It is also easier to measure potential differences
ΔV than electric fields E. Note also that in figure 10.4 we associate the
potential to a discrete element like a battery. Kirchhoff’s second principle
also holds for induced potentials like those discovered by Faraday.

Figure 10.5. A more complex
circuit, with multiple compo-
nents

Consider the somewhat more complex situation illustrated in figure 10.5.
Here there are two coupled circuits and we must utilized Kirchhoff’s prin-
ciples to obtain the equations that govern the behavior of the system. A
typical problem involves solving for unknown currents Ii given values for

5Kirchhoff was a student of the eminent mathematician Franz Ernst Neumann when his
“Über den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine
kreisförmige,” stating his two circuit principles was published in the Annalen der Physik in
1845. His demonstration that a unique solution existed was provided in “Über die Auflösung
der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanis-
cher Ströme geführt wird,” also published in the Annalen in 1847.
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the potentials ΔVi and resistances Ri . In this situation, an initial choice
for the direction of each current must be made but once those directions
are chosen, the resulting system of equations is then self-consistent and
can be solved uniquely. The final currents may be negative, reflecting that
the actual current direction is opposite to that initially chosen.

For each element in the circuit, one considers the potential difference
across the element. For a battery, this is just ΔV and for a resistor the po-
tential difference is IR, where I is the current. The signs are obtained by
following a directed path around the loop. The potential increases when
traversing a battery from negative to positive and decreases when travers-
ing a resistor in the direction of the current flow. The signs are reversed if
the direction of the path is reversed.

Exercise 10.2. Consider the circuit drawn in figure 10.5, which has
two connected loops. For the current directions specified in the fig-
ure, write the equations that result from Kirchhoff’s first principle
for all of the nodes in the system A–F. (Most of these will be degen-
erate.)

Write the three loop equations utilizing Kirchhoff’s second principle
for the loops ACDF, ABEF and BCDE. What is the loop equation
for the loop AFDC (direction is important)?

Exercise 10.3. Use the Solve function to solve the system of equa-
tions generated in the previous Exercise for the currents I1, I2 and
I3. Show that using only the loop equations does not lead to a sol-
uble system and that one of the current equations must be utilized.
Under what conditions will I2 be negative?

Exercise 10.4. Consider the
arrangement of resistors at
right. What are the currents in
each of the resistors? What is
the total current?

Exercise 10.5. Consider the arrange-
ment of resistors at right. What are
the currents in each of the resistors?
What is the total current?

Of course, in Ohm’s initial investigations the resistive elements were just
wires of varying lengths and thicknesses. It is a an approximation, as we
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have done in the past few examples, to consider the wires to be resistance-
less and to attribute all of the resistance to a single element. In practice,
this approach proves to be a reasonable one, at least at low frequencies.
We can imagine the electrical appliances of a house, for example, as a
collection of resistive elements and depict refrigerators, lamps and ovens
equally as the zigzag line forms that we have used to this point. Opera-
tionally, of course, these appliances have rather distinct uses but, electri-
cally, they can be represented as resistors.

The tidy picture of electrical circuits that we have developed is compli-
cated when the voltage source is time-varying. As we have mentioned,
electrical distribution by alternating currents was preferred technically,
so we must incorporate Faraday’s law of induction into our discussions.
Referring to figure 10.4, if the constant voltage source is replaced with a
sinusoidally-varying source, then the current will be sinusoidally-varying
as well. The current generates a time-varying magnetic field and the
changing magnetic flux induces an additional potential in the loop, as
per Equation 10.1.

In this instance, the area of the loop is unchanging, so Equation 10.1, can
be rewritten as follows:∮

ds ·E = −
∫

dA · dB
dt

= −LdI
dt

.

Here, we have defined the inductance L of the system to be the (compli-
cated) result that remains after we factor out the time derivative of the
current.6 Again, at low frequencies, it is appropriate to treat the induc-
tance as a lumped element, like resistance.

We can retain Kirchhoff’s second principle in its original form if we also
include any inductance terms. This, of course, complicates matters be-
cause the potential due to inductive effects is proportional to the time
derivative of the current, not the current itself. We are now faced with
solving differential equations.

Consider the simple circuit illustrated in figure 10.6, where we have fol-
lowed the practice of lumping all of the resistance into a single resistor
and all of the inductance into a single inductor, which is identified by the
coil symbol. We do this even though the inductance arises from the loop

6Note that here the symbol L does not represent the magnitude of the angular momentum
vector. It would stand to reason that we use the symbol I for inductance but we are already
using that symbol to denote current. To avoid confusion, it has become standard practice to
use L to denote inductance in honor of the Russian physicist Heinrich Friedrich Emil Lenz,
who also contributed to the understanding of electrical circuits.
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Figure 10.6. A time-varying voltage
source is indicated by the circle with
an embedded sine curve. The electrical
potential arising from the inductance L,
identified by the coil, depends upon the
time derivative of the current I

as a whole. Again, our lumped element approximation is generally a good
one at low frequencies. The circuit equation that arises from this example
is given by the following:

ΔV − IR−L dI

dt
= 0.

If we assume that the driving voltage is sinusoidal, ΔV = V1 sinωt, where
ω is the angular frequency, we can obtain a solution if we assume that the
current is of the form I(t) = Asinωt +Bcosωt.7 Substituting into the loop
equation, we find the following:

(10.2) V1 sinωt −R(Asinωt +Bcosωt)−L(Aω cosωt −Bω sinωt) = 0.

The functions sinωt and cosωt are linearly independent, so we collect
terms containing each function:

sinωt[V1 −RA+LωB] + cosωt[−RB−LAω] = 0.

The functions sinωt and cosωt do not vanish for arbitrary values of ωt, so
the terms in the brackets must vanish if the equation is to hold. We now
have two separate equations for the two unknowns A and B.

We can write the solution as follows:

(10.3) I(t) =
V1
R

sinωt − (ωL/R) cosωt

1+ (ωL/R)2
.

From dimensional considerations, it is apparent that the quantity R/L has
the dimension of a frequency (T−1). We can thus surmise that the quan-
tity V1/R has the dimension (Q/T). Further, from Equation 10.3, we can
see that the current does not oscillate in phase with the driving voltage.
At high frequencies (ω � R/L), the current is dominated by the cosine
term, as can be seen in figure 10.7. Engineers will frequently describe this
phenomena by a phase angle φ: I(t) = I1 sin(ωt +φ). At high frequencies,
when the current is essentially a cosine function, the phase angle becomes
φ = −π/2.

7It is somewhat cleaner mathematically to use complex numbers in our derivations but we
shall defer that discussion to subsequent courses.
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Figure 10.7. The current has a
component that varies like sinωt
(black) and a component that
varies like cosωt (gray). Beyond
the characteristic frequency R/L,
the current is dominated by the
cosine term

Exercise 10.6. Use the Solve function to solve the circuit equation
that arises from Equation 10.2. Show that they can be put into the
form displayed in Equation 10.3.

Exercise 10.7. Plot the voltage (sinωt) and current (Equation 10.3)
over the range 0 ≤ t ≤ 20. (Let ω = 1.) Use the Manipulate function
to vary the inductance over the range 0 ≤ L/R ≤ 5. What is the phase
φ when ω = R/L? Can you verify the claim that at higher frequencies
(when ω > L/R) the voltage leads the current?

Exercise 10.8. Repeat the previous analysis for a source ΔV =
V2 cosωt. Solve for the current and plot the results. Show that this
model provides expected results at zero frequency (DC).

In addition to the inductive effects that arise in circuits with time-varying
sources, there is an additional phenomena termed capacitance that was
discovered by early researchers. Prior to Volta’s development of the voltaic
pile, a number of devices that were capable of generating sizable electro-
static charges were invented. In 1745, a means for storing charge inde-
pendent of the generating machine was independently developed by the
German bishop Ewald Georg von Kleist and the Dutch scientist Pieter
van Musschenbroek and his student Andreas Cuneaus. The apparatus has
subsequently become known as a Leyden jar after the town in which van
Musschenbroek and Cuneaus conducted their experiments.8

The Leyden jar, as sketched in figure 10.8, is simply a bottle with a con-
ductive inner liner and, in a refinement suggested by van Musschenbroek
after his initial experiment, a conductive outer sheath. (Van Musschen-
broek’s hand served as the conductor when the bottle was originally

8Van Musschenbroek’s experimental results were reported to the Paris Academy of Science
in 1746 by his correspondent René Antoine Ferchault de Réaumur. Van Musschenbroek’s re-
port of a (literally) breathtaking shock delivered by the device spurred widespread interest.
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Figure 10.8. The Leyden jar consists of a
glass bottle where the lower part of the
interior surface is covered with a con-
ducting material like gold leaf. Similarly,
the outer surface is coatedwith a conduc-
tive material. The electrical connection
to the inner conductor is usually made
via a metal rod and a metal chain. Early
investigators often filled the bottle with
water

charged, resulting in a painful shock.) When a source of electric charge
contacts the central conductor, charge is conveyed to the inner liner. To-
day we understand this process to involve the transport of electrons onto
the inner liner. This establishes an electric field in the vicinity of the inner
liner. The field acts on electrons in the outer liner, pushing them away,
leaving a (relatively) positive charge on the surface of the outer sheath.
At equilibrium, the charge redistributes such that the field is essentially
contained in the space between the two conductors.

Somewhat surprisingly, at least to the early researchers, when the source
of charge is removed, the Leyden jar retains its charge. The electrostatic
potential V produced by the charge Q turns out to be proportional:

(10.4) Q = CV,

where the constant of proportionality C is called the capacitance of the
Leyden jar. The capacitance reflects the capacity of the device to store
charge.

These early experiments gave credence to the idea that charge was a ma-
terial substance that could be manipulated. The simplicity of the Leyden
jar provoked experiments by a host of individuals not usually associated
with science. The American statesman Benjamin Franklin, for example,
conducted a number of studies and discerned that the bottle and its con-
tents were not essential to the process of storing charge. What was essen-
tial was two conductors separated by an insulator. As a result, Franklin
noted that one could electrify pictures of people by coating the back of
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the picture with a conductor, such as gold leaf, placing the picture under
glass and adding a metal crown to the front. After charging, any attempt
to remove the crown would result in an electric shock to the unwary.9

Figure 10.9. A capacitor C is denoted
by the two parallel lines perpendicular
to the direction of current flow. This is
a stylistic representation of the parallel
plates of early capacitor designs

If we consider an electric circuit containing a capacitor, such as depicted
in figure 10.9, the Kirchhoff equation describing the system can be written
as follows:

ΔV − IR− Q

C
= ΔV −RdQ

dt
− Q

C
= 0,

where we have used the fact that the current I is the time derivative of
the charge Q. If we again assume that the voltage is varying sinusoidally,
ΔV = V1 sinωt, we can look for solutions for the charge that are functions
of sin and cos:

Q(t) = Asinωt +Bcosωt.

Substituting into the loop equation, we find the following:

(10.5) V1 sinωt −Rω[Acosωt −Bsinωt]− 1
C
[Asinωt +Bcosωt] = 0.

If we again collect terms multiplying sin and cos separately, we obtain two
equations for the two unknown coefficients A and B:

(10.6) sinωt[V1 +BRω −A/C] + cosωt[−ARω −B/C] = 0.
Each of the terms in brackets in Equation 10.6 must vanish separately if
the equation is to hold.

We find then that the charge has the following solution:

(10.7) Q(t) =
V1
R

(1/RC) sinωt −ω cosωt

(1/RC)2 +ω2
.

9Franklin communicated his ideas in a letter to his colleague Peter Collinson in April of
1749. Franklin suggested using a portrait of the King of England and soliciting unwary
subjects by declaring that the device was designed to test loyalty to the Crown.
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The quantity 1/RC has the dimension of a frequency (T−1), whereupon
the product RC has the dimension of time (T). The current is just the
time derivative of charge:

(10.8) I(t) =
V1
R

ω2R2C2 sinωt + (ωRC)cosωt

1+ω2R2C2
.

Figure 10.10. The current in a cir-
cuit with a resistor and capacitor
has a component that oscillates in
phase with the drive voltage (black
curve) and a component that oscil-
lates with a phase angle of π/2 (gray
curve). At high frequencies, the in-
phase component dominates

A plot of the two components of the current is illustrated in figure 10.10.
At high frequencies, the current is in phase with the driving voltage. This
differs from our previous results with inductors.

Exercise 10.9. Use the Solve function to solve the circuit equation
and demonstrate that Equation 10.8 is the correct description of the
current as a function of frequency. Plot the amplitudes of the terms
involving sin and cos over the range 0 ≤ ωRC ≤ 5.

Exercise 10.10. Repeat the analysis leading up to Equation 10.8
but with a source term ΔV = V2 cosωt.

Exercise 10.11. Use the Manipulate function to vary the capaci-
tance over the range 0 ≤ RC ≤ 5. Plot the drive voltage and current
for Equation 10.8 for ω = 1 over the domain 0 ≤ t ≤ 20. What hap-
pens to the phase angle φ over the range?

Exercise 10.12. Van Musschenbroek and his followers did not have
access to time-varying voltage sources. Instead, in their circuits, the
source in figure 10.9 is replaced with a switch. Assume that the
capacitor holds a charge Q1 and that at time t = 0, the switch is
closed. Solve for the charge and current and plot the results. (Hint:
the resulting circuit equation can be integrated directly to solve for
the charge. Any constants of integration can be defined by asserting
the initial condition that Q(0) =Q1.)
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10.3. Resonance

If one combines all of the components that we have discovered to this
point into a single circuit, as depicted in figure 10.11, we find an unex-
pected behavior. The circuit equation can be written as follows:

(10.9) ΔV − IR−LdI
dt
− Q

C
= ΔV −RdQ

dt
−Ld

2Q

dt2
− Q

C
= 0,

where we now are confronted with a second-order differential equation
for the charge Q.

Figure 10.11. A circuit containing
resistive R, inductive L and capac-
itive C elements displays resonant
behavior

If we again assume that the driving voltage is sinusoidal, ΔV = V1 sinωt,
we can try to find solutions as before. We guess that Q(t) = Asinωt +
Bcosωt and derive the following auxiliary equation:

V1 sinωt −Rω[Acosωt −Bsinωt] +Lω2[Asinωt +Bcosωt]

− 1
C
[Asinωt +Bcosωt] = 0.(10.10)

If we now separate the terms involving sin and cos, we find the following:

(10.11) sinωt[V1+BRω+ALω2 −A/C]+cosωt[−ARω+BLω2 −B/C] = 0.
We again demand that the terms in brackets in Equation 10.11 vanish
separately. This provides us with the following solution for the charge:

(10.12) Q(t) =
V1
L

(1/LC −ω2) sinωt − (Rω/L)cosωt

(1/LC −ω2)2 + (Rω/L)2
.

We note that the term (1/LC) has the dimension of frequency squared
(T−2) so the product LC must have dimension of time squared (T2).

The current in the circuit is simply the time derivative of the charge:

(10.13) I(t) =
V1
L

(Rω2/L) sinωt +ω(1/LC −ω2)cosωt

(1/LC −ω2)2 + (Rω/L)2
.

There are now two characteristic frequencies that govern the system. The
first is the resonant frequency ω0 = 1/

√
LC. The current will be maximal

at the resonant frequency, as the term (1/LC − ω2) in the denominator
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vanishes. The width of the resonance is controlled by the dissipative term
ωd = R/L. In the absence of resistance, the current diverges at the resonant
frequency.

Figure 10.12. The LRC circuit dis-
plays resonant behavior. The cur-
rent is maximal at the frequency
ω0 = 1/

√
LC. At that point the

current is in phase with the drive
voltage. The in-phase component
(black curve) vanishes away from
the resonant frequency and the out-
of-phase component (gray curve)
changes sign at the resonant fre-
quency

Exercise 10.13. Use the Solve function to verify Equation 10.13.
Plot the current components over the range 0 ≤ ω ≤ 5. Use the values
L = 1, C = 1 and R = 0.2. What happens if you make the resistance R
larger or smaller?

Exercise 10.14. Plot the driving voltage and current over the do-
main 0 ≤ t ≤ 20 for a frequency of ω = 1. Use the Manipulate func-
tion to study the phase angle of the current and driving voltage as
a function of inductance L and resistance R for a constant capaci-
tance C = 1. Vary the inductance over the range 0 ≤ L ≤ 5 and the
resistance over the range 0 ≤ R ≤ 2.

Exercise 10.15. What is the limit of Equation 10.13 for L→ 0? Do
your results seem reasonable? (Hint: what were the results for RC
circuits?) What is the current at the resonant frequency ω2 = 1/LC?

Resonant phenomena are encountered in many areas of physics. Students
are most likely familiar with resonances in mechanical systems. Guitar
strings and piano wires, for example, support oscillations at particular
frequencies determined by the wire length, wire diameter and tension in
the wire. Such oscillations are often called standing waves due to the fact
that the lateral displacement along the wire is sinusoidally varying in time
and space. The end points of the wires are fixed in guitars and pianos,
so the waves are fixed in place, with locations of zero amplitude (nodes)
occurring at the ends.

Skyscraper designers have to contend with the fact that their buildings
also display resonant behavior. Unlike guitar strings that are pinned at
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both ends, buildings have one free end. This modifies the resonant fre-
quency (lowering it by a factor of two) but it means that buildings would
experience large lateral displacements at the free end (roof) if systems to
dampen those oscillations were not in place. Real skyscrapers have much
more complex construction than simple wires but have low frequency
bending modes that resemble the simple modes of guitar strings. Here,
we will approximate the complex behavior of a building with a simple
model but structural engineers develop much more complex models be-
fore committing to spend hundreds of millions of dollars on construction.

The Taipei 101 tower (height 509m) uses a passive system to provide
motion dampening. In essence, a large mass suspended from the top of
the tower acts like a pendulum. Illustrated in figure 10.13, the spherical
mass (660mg) was too large to be lifted in one piece. Instead, the sphere
was constructed on site by welding together forty-one steel plates, each of
which has a thickness of 12.5 cm. The sphere hangs from cables attached
to the building frame. If the building sways in the wind or is subjected
to surface motion due to seismic events, the sphere does not feel those
forces directly. This results in relative motion between the building frame
and the sphere. Large hydraulic shock absorbers dissipate that relative
motion. As a result, the tower’s lateral motion during earthquakes and ty-
phoons will be vastly reduced from what would occur without the damp-
ening system in place, thereby increasing the likelihood that the tower
will not suffer major structural damage during such potentially hazardous
events.

Exercise 10.16. Consider a small massM hanging from a thin wire
of length L. If the mass is displaced by an angle θ from the vertical,
show that the magnitude of the torque acting on the mass is given
by the following expression:

τ =MLg sinθ,

where g is the gravitational acceleration. Without damping, the
equation of motion for this simple pendulum is given by the fol-
lowing equation:

ML2
d2θ

dt2
+MLg sinθ = 0.

For small angles, sinθ ≈ θ. Using the small angle constraint, we
obtain a second-order differential equation for θ, like that for the
charge in Equation 10.9. Consider an angular-velocity dependent
dissipative term: αdθ/dt. Write the equation of motion for θ, in-
cluding the dissipative term and a sinusoidal driving term: C1 sinωt.
Compare to Equation 10.9. What is the resonant frequency of the
system? What is the dissipation frequency?
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Figure 10.13. The mass damper in
Taipei 101 is constructed of 41 circu-
lar steel plates, forming an approx-
imately 5m diameter sphere. The
(660mg) mass is suspended by four
cables that attach to the building
frame at the 91st floor. Hydraulic
shock absorbers (bottom of the fig-
ure) attached to the building frame at
the 87th floor serve to dampen any
relative motion between the building
framework and the sphere

As observed in the previous exercise, the equations of motion of mechan-
ical systems can often be found to be described by a second-order differ-
ential equation like Equation 10.9. Such systems will display the same
sort of resonant behavior illustrated in figure 10.12. The physical param-
eter under consideration: angular displacement, for example, will achieve
maximal amplitudes when the system is excited at the resonant frequency.

10.4. Optical Molasses

We have mentioned earlier that atoms emit light at particular frequencies;
each set of frequencies for a given element is known as the atomic spec-
trum. The atoms can both absorb and emit light at these characteristic
frequencies. A mechanism for producing very cold atoms involves using
a laser beam that is tuned to a frequency that is just below one of the res-
onant frequencies of a particular element. If cold atoms are illuminated
by the beam, the atoms will “see” a laser field that is Doppler-shifted due
to the motion of the atoms. Those atoms that are moving in the same
direction as the laser is propagating will see the laser shifted to lower fre-
quencies (red-shifted). Those atoms moving in the opposite direction will
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see the laser shifted to higher frequencies (blue-shifted). Once the laser is
blue-shifted, the photons can be resonantly captured by the atoms (pro-
voking a transition to an internal state of higher energy). After a time, the
atom will re-emit the photon.

Exercise 10.17. To see the effect of the Doppler shift, consider
transforming to a coordinate system in which the atom is at rest.
The four-momentum of a photon travelling in the x-direction in the
laboratory frame is given by the following:

pγ =
[
hν/c hν/c 0 0

]T
.

Apply a boost in the x-direction to obtain the four-momentum in
the laboratory frame p′γ . Recall that coshζ = [1 − (u/c)2]−1/2 and
sinhζ = (u/c)[1− (u/c)]−1/2, where u is the velocity of the atom in the
laboratory frame. Show that the frequency of the photon in the rest
frame of the atom is given by the following relation:

(10.14) ν ′ = ν

[
1+u/c

1−u/c

]1/2
.

Plot ν ′/ν over the domain −1 ≤ u/c ≤ 1.
Cooling the atoms relies the fact that absorption and emission of the pho-
tons changes the momentum of the atom by the momentum of the photon.
At first glance, this would seem to have no net effect but actually produces
a resistive force on atoms of the form F = −αv, as we have encountered be-
fore. To see how this resistive force arises, we first note that all of the
photons in the original beam have the same momentum, say along the x-
direction, whereas the emitted photons have random directions. As the
processes of absorption and emission are repeated many times, the av-
erage momentum of the absorbed photons is just the momentum of any
beam photon, but the average momentum of the emitted photons is zero.
Consequently, there is a net momentum change along the x-direction.

If we direct laser beams in both directions along the x-direction (counter-
propagating beams), the momenta and, hence, velocities of the atoms in
the x-direction can be reduced. With lasers aligned in all three spatial
directions, the atoms can be resonantly cooled to extraordinarily low tem-
peratures. Of course, putting this relatively simple idea into practice was
a non-trivial exercise and won a Nobel Prize in Physics for Stephen Chu,
Claude Cohen-Tannoudji and William D. Phillips.10 It is now possible
to obtain diffuse gases with temperatures in the microKelvin range using

10Chu, Cohen-Tannoudji and Phillips were awarded the 1997 Prize “for development of
methods to cool and trap atoms with laser light.”
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these techniques. The availability of ultracold atoms has enabled develop-
ment of a number of other applications, notably precision atomic clocks.

Exercise 10.18. The x-component of the momentum of the laser
beam is just p = hν/c = h/λ, where h is Planck’s constant, ν is the
frequency and c is the velocity of light. Alternatively, λ is the wave-
length. The absorbed beam photon will always have the momentum
px̂whereas the emitted (recoil) photon is randomly oriented in three
dimensions. As a result, the x-component of the recoil photon can
have any value in the range −p to p. Use the RandomReal function
to generate a large number of real numbers in the range −1 to 1 and
then find their average. What is the average of 100 trials? How about
1000 trials and 10,000 trials?

10.5. Telecommunications

The discovery of resonance in electrical circuits was instrumental in de-
veloping the first radio receivers capable of detecting voices or music. The
desired broadcast signal was obtained by modulating the amplitude of a
high-frequency carrier signal. Human voices have a frequency content
that generally lies below a few thousand Hertz (Hz).11 The standard (U.S.)
frequency band for AM broadcasting is 540–1610kHz; each broadcast
channel is separated by 10kHz. Use of AM broadcasting permitted sig-
nals to be transmitted by multiple, independent stations that could then
be separated into individual components at the receiver.

A radio receiver can be constructed to be resonant at different carrier fre-
quencies by employing either variable capacitors or variable inductors, or
both. In early receivers, often the antenna itself provided significant ca-
pacitance, so tuning was accomplished by sliding a contact along a long
coil (inductor). (The inductance of a coil is proportional to its length.)
When the receiver was resonant with the carrier frequency, the voltage
across the inductor was a maximum, as seen in figure 10.12. A depiction
of this strategy is provided in figure 10.14.

The receiver was tuned to the carrier frequency of the broadcast signal by
adjusting the variable inductor L1. Headphones were required to listen
to the broadcast. The headphones were constructed from a small piece of
iron attached to a paper disk and a coil of wire, as sketched in figure 10.15.
A fluctuating current in the coil of wire creates a time-varying magnetic
field that vibrates the iron. The paper disk was generally fixed at the outer

11The original Bell Telephone system had a frequency cutoff of 3kHz. People in those days
had a different “telephone voice.” AM radio broadcasts have a bandwidth limit of 10kHz and
the effects of eliminating the high frequency content of the signal is much less noticeable.
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Figure 10.14. Early radio re-
ceivers used an LRC circuit
(left) for tuning. Conversion
of the broadcast signal ΔV
into sound was accomplished
by rectifying the current with
the deviceD1 and filtering out
the carrier signal with the
capacitorC2. The headphones
behave like an inductor L2 in
series with a resistor R2

Figure 10.15. Early transducers
consisted of an iron cylinder (dark
gray) attached to a flexible (paper)
disk that was fixed at the outer
edge. A time-varying current in
the coil moves the iron, causing the
larger disk to vibrate and produce
sound waves

edge. Motion of the iron driver creates sound waves and the larger area
of the disk increases the intensity of the sound. As a result of the design,
the headphones behave electrically as an inductor but also possess a non-
trivial resistance because the coil is formed from many turns of fine wire.

Figure 10.16. A signal (top, gray) can be
combinedwith a carrier (center, lightgray)
frequency to produce an amplitude-
modulated broadcast signal (bottom,
black)

A key element in the radio receiver circuit is a new, nonlinear circuit el-
ement known as a diode, represented by the barred triangle D1. The
diode is a semiconductor material that passes current in only one direc-
tion. Hence, a sinusoidal current is rectified such that only the positive
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lobes of the sine function are passed; the negative lobes (oppositely di-
rected currents) are suppressed. Early receivers used the mineral galena
(lead sulfide) and a spring-loaded point contact known as a cat’s whisker
to form the diode.

To understand the function of the diode, let us assume that the driving
signal can be written as ΔV = V1(1 + α sinω1t) sinω2t, where ω2 is the
carrier frequency and ω1 is a low-frequency amplitude modulation. The
factor α is generally small compared to unity, as depicted in figure 10.16.
The product of two sine functions can be written in terms of a sum of
cosines: sinx siny = (cos(x−y)−cos(x+y))/2, so the driving voltage will be
a sum of sine and cosine terms:

ΔV = V1
{
sinω2t +

α

2

[
cos(ω2 −ω1)t − cos(ω1 +ω2)t

]}
.

As a result, the broadcast signal actually consists of the carrier frequency
ω2 and two sidebands that are found at the sum and difference frequencies
ω2 −ω1 and ω2 +ω1. There is no frequency component at the modulation
frequency ω1.

Rectifying the signal produces harmonics of the signals, with the net
result that a component with frequency ω1 is restored. Harmonic gener-
ation can be quantified by use of ideas introduced by the French mathe-
matician Jean Baptiste Joseph Fourier, who described a means for decom-
posing uniquely any waveform into a series of sine or cosine functions of
different frequencies.12 We shall not endeavor to pursue Fourier analysis
in detail here.

Exercise 10.19. Plot the rectified sine function.

Exercise 10.20. Consider the function F1(t) defined by the sum

F1(t) =
N∑

j=1

sin jπt
j

on the domain 0 ≤ t ≤ 1. Plot F1(t) for N = 5,50 and 500.

Suppose that we define F2(t) analogously to F1(t) but where only odd
values of j are included in the sum. Plot F2(t). How do the functions
compare?

12Fourier’s Théorie analytique de la chaleur was published in 1822. The work provided the
foundations for what is now called Fourier analysis and also introduced the concept of di-
mensional analysis that we have used throughout the text.



§10.5 Telecommunications 313

Exercise 10.21. Consider the function G1(t) defined by the sum

G1(t) =
1
π
+ 1/2sin t −

2
π

N∑

j=1

cos2j t
4j 2 − 1 .

on the domain 0 ≤ t ≤ 4π. Plot G1(t) for N = 5,10 and 50.

So, we can approximate that the result of incorporating the diode in the
receiver circuit is this: the current leaving the diode in figure 10.14 (I3+I4)
contains a component at a frequency of ω1 and several other terms at fre-
quencies of ω2 or higher. Let us then consider a simplified circuit of just
C2 and the headphones with a driving current I = asinω1t + sinω2t. We
can utilize Kirchhoff’s rules to write a series of linear equations defining
the system: We find the following:

Q3
C2
−L2

dI4
dt
−R2I4 = 0,

asinω1t + sinω2t − I3 − I4 = 0.(10.15)

Exercise 10.22. Show that the Equations 10.15 with a single source
term I0 sinωt lead to the following system of linear equations for the
charges:

I0 +ωB3 +ωB4 = 0 A3/C2 +A4L2ω
2 +B4R2ω = 0

A3 +A4 = 0 B3/C2 +B4L2ω
2 −A4R2ω = 0

Use the Solve function to solve for the unknown coefficients.

Exercise 10.23. Use the coefficients from the previous Exercise to
define functions for the currents I3 and I4. Choose ω1 = 3140 s−1

(500Hz signal frequency) and that ω2 = 3.14× 106 s−1 (500kHz car-
rier frequency). Use the values L2 = 2.4mH, R2 = 2 Ω and C2 =
10nF. Let the input signal be I = 0.1sinω1t + sinω2t.

Plot the currents I3 and I4. Note that the period of oscillation of
the carrier is T2 = 2μs and the period of oscillation of the signal is
T1 = 2ms. What is the signal across the headphones (I4)?

The capacitor C2 is known as a bypass capacitor because at high frequen-
cies, the current will preferentially flow through C2 and not the head-
phones. To see how this works, we can define the impedance Z of a circuit
element in analogy to Ohm’s original equation V = IR. Formally, we state
that for any element, the impedance is defined as follows:

(10.16) V = IZ.
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So, obviously, resistors have an impedance that is just their resistance:
Z = R. For inductors and capacitors, we have the difficulty that the poten-
tials associated with those elements depend on the derivative or integral
of the current and are, consequently, frequency dependent. Additionally,
there is a phase that arises when we take derivatives of sine functions.
Dealing with these phases is, again, most neatly solved by employing com-
plex numbers but we shall avoid introducing that subject here.

Instead, note that if the current is I = Asinωt + Bcosωt then taking the
derivative with respect to time produces a factor of ω:

dI/dt = ω(Acosωt −Bsinωt).

Integrating the current, produces a factor of ω−1:∫
dt I = (−Acosωt +Bsinωt)/ω.

Ignoring the phases for the time being, it appears that the magnitude of
the impedance due to an inductor will be |ZL| = ωL. Similarly, the magni-
tude of the impedance of a capacitor will be |ZC | = −1/ωC.

The idea behind the bypass capacitor is that, at high frequencies, the
impedance across C2 becomes smaller and smaller. As a result, the high-
frequency carrier signal will predominantly flow through the capacitor
C2. With an appropriate choice of value for the bypass capacitance, the
current associated with the lower-frequency modulation of the carrier will
flow predominantly through the headphones.

10.6. Vacuum Tubes

Widespread public acceptance of radio was limited by technical issues
afflicting the original crystal radios. The essential cat’s whisker diode ele-
ment was notoriously tricky. Operators would have to find sweet spots on
the crystal surface and apply just the right pressure to the contact for the
semiconductor properties to be manifest. Additionally, only a single per-
son could listen to the broadcast at any one time. The headphones were
powered by the broadcast signal itself.

These problems were overcome by a series of inventions that relied on the
properties of free electrons in an electric field; in these devices, the current
is quite literally moving charges. In 1873, the British physicist Frederick
Guthrie observed that a red-hot iron sphere held close to a positively-
charged electroscope would discharge the electroscope. If the electro-
scope were negatively charged, the sphere had no effect. What Guthrie
discovered in 1873 was thermal electron emission from the surface of the
iron. A voltage-regulating device utilizing this effect was patented by the
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American inventor Thomas Edison in 1884.13 for use as a voltage regu-
lating device. In 1904, the English physicist John Ambrose Fleming made
use of the “Edison effect” to produce what he called a thermionic valve;
one is sketched in figure 10.17.

Figure 10.17. Fleming’s thermionic valve
used two electrodes, called the anode and
cathode. A heater coil (dark gray) served to
create thermionic electron emissions from the
cathode (inner cylinder). (Early versions of
the device used the heater coil as the cathode.)
Currents were controlled with the voltage dif-
ference Va −Vc. The assembly was enclosed in
an evacuated glass bulb to improve the sensi-
tivity

The principle behind Fleming’s thermionic valve is that electrons emitted
from the cathode will only migrate to the anode if the potential difference
Va−Vc is positive. If the potential difference is reversed, the electrons will
be repelled from the anode. Consider now placing an oscillatory signal,
likeV1 sinωt, on the cathode. If we setVa = 0, then current will flow across
the gap when V1 sinωt is less than zero. The thermionic valve rectifies the
input signal! Fleming recognized that this would solve the problem of
the unreliability of the cat’s whiskers.14 His invention required a power
source to heat the cathode but greatly improved the stability of radio re-
ceivers.

Exercise 10.24. Use Gauss’s law and Ampère’s law to solve for
the electric field between the anode and cathode. Assume that the
charge per unit length on the cathode is constant: Q/L = CVc/L,
where C is the capacitance. What is the direction of the force on
an electron if Va −Vc is positive?

A key development in the history of electronics came shortly after Flem-
ing’s invention of the vacuum tube diode. The American inventor Lee de
Forest devised a vacuum tube with three electrodes that he called the Au-
dion.15 The Audion was intended for use as a radio receiver detector but it

13Edison’s U.S. Patent 307030 “Electrical meter” was the first issued in the United States for
an electrical device.
14Fleming’s device consists of two electrodes. Hence, it has subsequently been denoted as a
diode, from the Greek δiζ, meaning twice.
15De Forest’s U.S. Patent 879532 “Space telegraphy” was issued in 1908. His earlier patents
on a two-electrode version of the Audion provoked a patent suit by Fleming. In his testimony
for the suit, de Forest admitted he did not understand how the Audion worked.
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was quickly recognized that the additional electrode provided the ability
to amplify signals. The triodes, like the one sketched in figure 10.18, that
evolved from the original Audion were pivotal elements in the commer-
cial success of electronic devices. Radios and, later, televisions16 relied
heavily on vacuum tubes to detect and amplify small broadcast signals.

Figure 10.18. A triode contains another
electrode, known as the grid electrode,
between the cathode and anode. The grid
electrode was formed by spirals of wire, or
in this case, a wire mesh

To understand the operation of the triode, let us consider a simplified
model in which the electrodes are infinite cylinders. The electric field
in the region between the cathode and grid electrodes will be radially
directed: E = ζ̂E, where we utilize a cylindrical coordinate system. By
symmetry, the field will be constant on the cylinder of radius ζ, where
ζc ≤ ζ ≤ ζg . The electric flux through a cylinder of length z = L, is just
ΦE = 2πζLE.

From Gauss’s law, we know that ΦE is a constant and, from the definition
of potential, we can deduce the following relation:

(10.17)
∫ ζg

ζc

dζ
ΦE

2πζL
= Vg −Vc.

We can solve this readily to show that the electric field in the region be-
tween the cathode and grid is given by the following:

(10.18) E = ζ̂
Vg −Vc

ln(ζg/ζc)
1
ζ
.

Hence, the force on an electron (charge −e) in this region F = −eE will be
positively directed only when Vg −Vc is negative.

16The Austrian physicist Robert von Lieben procured a patent for a three-electrode cathode
ray tube in 1906 that included magnetic deflection of the cathode rays. Credit for invention
of what we call triodes (from the Greek τρiα meaning three) is usually given to de Forest.
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Exercise 10.25. Fill in the details of the derivation of Equa-
tion 10.18. Plot the (normalized) field over the domain 0.1 ≤ ζ ≤ 1.

The work done on an electron as it moves from cathode to grid is obtained
by integrating the force along the path. This is justW = −e(Vg−Vc). Hence,
if we assume the thermionic electrons have small kinetic energies at the
cathode, electrons at the grid have a kinetic energy T = −e(Vg −Vc). Recall
that the current density can be written as J = ρv, where ρ is the charge
density. Hence, the current through a cylindrical surface of length L at ζg
will be given by the following:

(10.19) Ig = JA = ρg

[−2e(Vg −Vc)

me

]1/2
2πζgL.

Exercise 10.26. Fill in the details of the derivation of Equa-
tion 10.19.

The electric field in the region between the grid and cathode can be writ-
ten analogously. We find the following:

(10.20) E = ζ̂
Va −Vg

ln(ζa/ζg )
1
ζ
.

Similarly, the current at the anode can be written as follows:

(10.21) Ia = JA = ρa

[−2e(Va −Vg )

me

]1/2
2πζaL.

If we now take the ratio of the currents, we have:

Ia
Ig

=
ρaζa
ρgζg

[
Va −Vg

Vg −Vc

]1/2
.

We know that charge is conserved and, thus, that the charge densities
must be related.

Consider a thin, cylindrical shell. It has a volume V = 2πζLdζ. An
amount of charge Q distributed throughout the volume has a charge den-
sity of ρ = Q/2πζLdζ. Hence, we must have that ρa/ρg = ζg/ζa and that
the current ratio from grid to anode is just given by the following expres-
sion:

(10.22)
Ia
Ig

=
[
Va −Vg

Vg −Vc

]1/2
.

If one makes the anode voltage much larger than the grid voltage, the
current at the anode is also much larger than that at the grid. This is the
definition of amplification.
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In our simple model, we have not accounted for the fact that the presence
of the wire mesh will block some of the electron flow from the cathode
and that the field of a wire mesh is not exactly constant at the radius ζg .
Constructing refined models of triode behavior became something of an
industry in the electrical engineering world, eventually becoming quite
sophisticated. Additionally a number of refinements of triode technology
improved their technical capabilities. Four- and five-electrode devices en-
sued.17 For our purposes, though, we have demonstrated that triodes can
amplify signals.

The electronic age blossomed as a result. While early practitioners often
did not understand the workings of their devices theoretically, they de-
veloped empirical models that enabled radio, and later television, become
commercial successes. At the foundation of it all were the trajectories of
electrons in electric and magnetic fields, governed by the Lorentz force
law.

Vacuum tubes have now been supplanted from most commercial devices
by solid state components. Unlike the unreliable cat’s whisker diodes,
modern semiconductor manufacturing techniques have developed to the
point where solid state equivalents of the tubes are cheaper, more reliable
and use less power to operate. One might imagine that, inside the semi-
conductors, there are electrons being pushed about by the Lorentz force
law. If so, much of what we have already discussed will apply. That issue,
however, will be the subject for future courses.

17Not surprisingly, these are called tetrodes and pentodes from the Greek roots τέτταρεζ
(four) and πέντε (five).
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Emergent Phenomena

We have concentrated thus far on producing simple representations of
complicated phenomena. This is precisely what is meant by the physicist’s
reductionist methodology. This approach has proven remarkably success-
ful in describing a number of physical phenomena but would appear to
have little value in treating truly complex systems.

In this final chapter, we shall introduce the process by which we can begin
to understand truly difficult systems. This was the focus of the research
by the first American PhD in Physics: J. W. Gibbs, who was interested in
the problem of translating our knowledge of the microscopic behavior of
systems into a description of their macroscopic behavior.

In a gas, for example, we fully expect that each collision between gas
molecules will follow the rules of behavior that we have already estab-
lished. Momentum and energy will be conserved. As a practical matter,
we could not hope to deduce the properties of a volume of gas by studying
the individual collisions of the vast number of molecules in the volume.
As we have seen previously, the number of atoms in a macroscopic vol-
ume is quite large: the interatomic spacing in crystals is of the order of
10−10m. As a result, we would expect roughly 1030 atoms in a cubic me-
ter of material. It is unthinkable to compute 1030 trajectories of individual
atoms.

What Gibbs demonstrated is quite remarkable. We can abandon our strat-
egy of determining the trajectories of individual constituents but still re-
tain our ability to make precise predictions about the behavior of systems.
This is accomplished through statistical analysis and has led to the field
of study that physicists call statistical mechanics. Predictability hinges
on the key fact that, in the limit of a large number of trials, the probability
distribution becomes the physical distribution. Let us try now to clarify
what this statement means.
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11.1. Probability

We have used elements of probability previously; statistical inference al-
lowed us to interpret experimental data in terms of various models. As
wementioned at the time, laboratory experiments cannot be used to prove
some hypothesis. They can certainly disprove hypotheses by contradiction
but experimental results that agree with an hypothesis do not constitute
proof in the mathematical sense. We have suggested that momentum is
conserved and all experiments to date are consistent with this assertion.
Yet it is possible that someone might conduct an experiment in which mo-
mentum is not conserved. It is, of course, unlikely but the ultimate laws
of nature may not forbid such behavior.

To quantify this idea of likeliness, let us begin with the simple model of
coin tossing. A coin toss has two possible outcomes: heads H or tails T.1

If the coin is well-balanced, the probability of either outcome is one half.
If the coin is biased, then if the probability of heads is p, the probability
of tails is 1 − p. That is, all tosses result in an outcome. Separate coin
tosses are considered completely separate events; the probability of an
individual toss is not affected by history.

We use the coin toss model because it is simple to understand and we
can enumerate the outcomes. For example, tossing the coin three times
produces one of the eight following possible outcomes:

HHH HHT HTH THH HTT THT TTH TTT

There is only one way to obtain all three tosses as heads and one way to
obtain three tails but there are three ways to arrive at either two heads
and a tail or two tails and a head.

Exercise 11.1. What are the possible outcomes of tossing a coin
four times?

The general problem of tossing a coin N times can be formulated mathe-
matically. Indeed, the Swiss mathematician Jacob Bernoulli discussed the
problem in his landmark treatise Ars Conjectandi.2 In the work, which is

1The author oncemanaged to drop a penny that landed on its edge but this was quite literally
a once in a lifetime event. Here we are considering ideal coins that do not admit a third state.
2Bernoulli began working on the Ars Conjectandi in 1684 but failed to complete the work
before his death in 1705. Jacob’s younger brother Johann, also an accomplished mathemati-
cian, could have finished the text but their intense sibling rivalry led to a severing of all
ties in 1697. It fell to Jacob’s nephew Niklaus Bernoulli to arrange for publication of Ars
Conjectandi, printed finally in 1713.
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taken as the foundation of modern statistical analysis, Bernoulli demon-
strates that N coin tosses leads to the following distribution of outcomes:

(11.1) P (N,p,k) =
N !

k!(N − k)! p
k(1− p)N−k.

Here P (N,p,k) is known as the binomial distribution and k is the number
of times in N tosses that one obtains heads.3

Exercise 11.2. Plot the binomial distributions for N = 20 and p =
0.5,0.6 and 0.7 as a function of k. How does the distribution change
when the probability p of an individual toss changes?

The distribution function is normalized:
N∑

k=0

P (N,p,k) = 1.

That is a mathematical expression of the fact that N tosses of the coin will
lead to one of the possible outcomes, independent of the probability p.
Indeed, all that we can say about a random process is that the outcomewill
be selected from the list of possible outcomes; we cannot predict which of
those will occur.

In the Ars Conjectandi, Bernoulli stated his Law of Large Numbers. This
asserts that, when many experimental trials are performed, the average
of the experimental results will tend toward the probability distribution.
For example, we have stated that the probability of obtaining heads in a
coin toss is one half. If we toss the coin once, it will be either heads or
tails, with a resulting experimental probability of either one or zero. If we
toss the coin 10 times, we might observe six occurrences of heads, from
which we deduce a probability of six-tenths. The Law of Large Numbers
states that, if we were to toss the coin millions of times, we should see a
probability close to the expected one.

This is an important result. We can (and will) utilize a large number of
experimental trials to establish the probability distribution for systems.
Comparing the results of such experiments to models allows us to impute
some level of validity to our models. There is a subtlety here that is also
important to understand. In our coin tossing experiment, there is no law
of nature preventing the coin from coming up heads ten thousand times
in a row. Each trial is independent of all the others. The binomial dis-
tribution suggests that the probability of such an occurrence is given by
P (10,000, 1/2,10,000) = 2−10,000 ≈ 5×10−3011. This is highly unlikely. As a

3We are using the somewhat nonstandard notation P to represent the probability distribu-
tion in order to forestall upcoming difficulties in distinguishing amongst the variable names
for pressure, probability, probability distribution and momentum.
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result, were we to observe a coin toss that resulted in heads ten thousand
times in a row, we could rightly infer that the probability of heads was
very close to unity p ≈ 1. This does not constitute a proof that p = 1 but
we can infer that p = 1/2 is very unlikely.

If we have some parameter x that is governed by a probability distribu-
tion like the binomial distribution, then the expected value (weighted
average) of the parameter x will be obtained as follows:

(11.2) x =
N∑

k=0

xP (N,p,k).

As an example, we can compute the expected value of k itself:

(11.3) k =
Nexp∑

k=0

kP (Nexp,p,k) =Nexp p.

Suppose that we flip a coin a large number Nexp of times and observe
that heads occurs NH times. We would naïvely expect that the probability
of obtaining heads is given by pexp = NH/Nexp. Our personal expecta-
tions would be that in a thousand or so coin flips, we ought to see about
five hundred heads. From Equation 11.3, our quantitative estimate of the
value of k is precisely the expected value of the number of heads we should
expect in N trials.

Exercise 11.3. Show that the result depicted in Equation 11.3 is
correct. Hint: Note that the k = 0 term in the summation vanishes.
Rewrite the sum in terms of a new variable j = k − 1.

The second moment of the binomial distribution also has a simple form:

(11.4) var(k) =
N∑

k=0

(k − k)2P(N,p,k) =Np(1− p).

We utilize the standard deviation σ(k) ≡
√
var(k) frequently in physics ap-

plications. This is due to the fact that the standard deviation has the same
dimensionality as the expected value. The standard deviation defines our
precision.

Exercise 11.4. Demonstrate that the result in Equation 11.4 is cor-
rect. Derive a formula for the variance in terms of the quantities k
and k2.
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11.2. Brownian Motion

Consider now coupling our coin tossing with movement. If we obtain
heads, take a step in some direction, call it east. If we obtain tails, take
a step in the opposite direction. The question is, after twenty coin tosses,
where will you be? The answer, of course, is “I don’t know.”

Figure 11.1. Random walks based
on coin tossing are distributed ac-
cording to the binomial distribu-
tion. For large numbers (N =
10000, black dots), the physical dis-
tribution is quite close to the prob-
ability distribution (gray curve). For
small numbers, like one (star) or
twenty (triangles) this is not true

You could be anywhere in the range from twenty paces east to twenty
paces west, albeit only on even-numbered spaces because we tossed the
coin an even number of times. Consider the results illustrated in fig-
ure 11.1. In this instance, you wind up several paces to the west of your
starting point. If we also consider sending off the twenty members of your
class, wemight find them distributed like the triangles in the figure. (Note
that we have scaled the distribution by the number of walkers to produce
an estimate of the probability distribution P .) Six of them wind up where
they started and the remainder are scattered. There is no obvious pattern
to their distribution.

If we instead consider sending off all ten thousand students in your Uni-
versity, then we find them distributed in a manner very close to that pre-
dicted by the binomial distribution. In this instance, we do not observe
any students either 20 paces east or west of the starting point. The prob-
ability of such an occurrence is given by P (20,0,20) or P (20,20,20) =
2−20 ≈ 10−6. It would be unlikely for one of ten thousand students to
achieve a one in a million result. We would need to conduct vastly more
trials to observe such a rare event.

Exercise 11.5. Use the RandomReal function to generate random
numbers in the range (0,1). If the number is less than one half, take a
step in the positive direction. Otherwise, take a step in the negative
direction. Take 20 steps. Where do you land? Repeat 20 times.
Where do those 20 land? Repeat 10000 times. How are those 10000
distributed?
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In real physical systems, outcomes of events are often best described by
continuous distributions not by the simple binomial distribution. It is
possible to generalize the notion of distributions to continuous functions.
The most common distribution is the Gaussian distribution, which we
have encountered previously:

(11.5) P (x,x0,σ) =
1√
2πσ2

e−(x−x0)
2/2σ2 .

The Gaussian distribution is completely specified by its first moment x0
and standard deviation σ ; highermoments are zero. The prefactor ensures
that the distribution is normalized:∫ ∞

−∞
dxP (x,x0,σ) = 1.

In physical systems in more than a single dimension, we can generally
assume that the behavior in each dimension is independent. As a result,
the probability for a three-dimensional system can be obtained from the
product of probabilities: P (x,y,z) = P (x)P (y)P (z). The proposed electron
trajectory in the Drude model (See figure 9.3) exhibits just such behavior.

Exercise 11.6. Use the RandomReal function on the domain (−1,1)
to generate random walks in two dimensions. Plot the trajectories
followed by five different walkers, where each walker takes twenty
steps.

Indeed, this is just the behavior observed by the Scottish botanist Robert
Brown in the summer of 1827 when observing pollen grains in water un-
der a microscope.4 Brown noted that the pollen emitted small particles,
whose motion was “vivid.” Similar observations had been reported by the
Dutch scientist Jan Ingenhousz in 1785, who noted that the motion of coal
dust particles on the surface of alcohol was quite erratic. Nevertheless,
the random motion of small particles has come to be known as Brownian
motion.

An explanation of Brownian motion was finally provided by Einstein in
1905 and, independently, by the Polish physicist Marian Smoluchowski
in 1906. A series of detailed experiments conducted by the French physi-
cist Jean Baptiste Perrin provided substantial support for the Einstein-
Smoluchowski theory.5 In particular, Brownian motion was determined

4Brown’s “A brief account of microscopical observations on the particles contained in the
pollen of plants; and on the general existence of active molecules” was communicated in the
Philosophical Magazine in 1828.
5Perrin published Les Atomes in 1913. He was awarded the Nobel Prize in Physics in 1926
“for his work on the discontinuous structure of matter, and especially for his discovery of
sedimentation equilibrium.”
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Figure 11.2. Perrin ob-
served the motion of
small particles under a
microscope and recorded
their positions every thirty
seconds. The positions of
three separate particles at
each time step are depicted
by the dots. Sequential dots
are connected by lines

to be a macroscopic phenomenon that results from the atomic nature of
matter. Perrin’s experiments provided indirect proof of the discrete na-
ture of matter at the microscopic level. Recall that in the early 1900s,
Rutherford had not yet conducted his experiments demonstrating the nu-
clear structure of the atom and the question of the microscopic nature of
matter was still widely debated.

A few of Perrin’s observations are depicted in figure 11.2, taken from
his book Les Atomes. Here Perrin observed the motion of 0.53µm-radius
spheres under a microscope and then recorded the positions of individual
spheres every thirty seconds. Sequential points are connected by lines.
In his text, Perrin remarks that, if one were able to shorten the time
step, the apparently random behavior would continue. This property of
scale invariance has subsequently been recognized to be a key character-
istic of random processes. The subject of fractal geometry championed by
the Polish mathematician Benoît Mandelbrot has its roots in self-similar
curves and other geometrical objects that display scale invariance.6

Perrin was undoubtedly troubled by the fact that the curves displayed in
figure 11.2 do not possess the attributes that we have previously ascribed
to trajectories. In particular, Perrin expresses doubt that one could de-
fine a tangent to the curve in any meaningful way. We can understand
his discomfort, given that the Newtonian concept of trajectories is well
established. What we can now argue, given our understanding of atomic
structure, is that the apparent random motion is an artifact of the time
sampling. To the human eye, bats fly in erratic paths but this can be
resolved with high-speed photography. Similarly, Brown’s particles fol-
lowed random pathways but, at an appropriate time scale, we would see
that they possess Newtonian trajectories. As we shall see, the time scale

6Here we use the term invariance to mean that rescaling the x- and y-axes will not affect the
results. Previously, we have used invariant to mean that a mathematical structure does not
change under some transformation.
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is exceptionally short (on the order of 10−21 s). Nevertheless, we do not
need to invoke any new physics; there is no new force that causes Brown-
ian motion.

Exercise 11.7. Use the RandomReal function to generate two-
dimensional random walks of fifty steps. Assuming that all walks
started from the same point, plot the endpoints of one thousand
walks. Consider now the distribution of the walkers. Use the Bin-

Counts function to create histograms of the distribution along the x-
and y-axes. (It may be useful to first compute the standard deviation
of the points and to use bins that have widths of a fraction of the
standard deviation.) Repeat for ten thousand walks.

What Einstein and Smoluchowski recognized was that, while the position
of a single walker was not predictable using the tools of Newtonian kine-
matics, the distribution of walkers was eminently predictable. A single
particle immersed in water undergoes numerous collisions with the sur-
rounding water molecules. On average, there is no net momentum trans-
fer to the particle but the collisions do not occur simultaneously, so each
collision will impart momentum in some particular direction. The par-
ticle may accumulate significant momentum in that direction by chance,
just as it is possible to toss a coin and obtain heads ten times in a row. This
generates apparent randomness to the trajectory of an individual particle
but let us consider what happens to many particles.

Exercise 11.8. Use the RandomInteger function to generate ten
thousand coin tosses. In this sample, what is the largest number of
times that heads occurs consecutively? What is the largest number
of times that tails occurs consecutively?

As Perrin confirmed experimentally by tracking the trajectories of hun-
dreds of individual particles independently, the distribution of the ran-
dom walkers is described by a Gaussian. Moreover, the width of the
Gaussian increases with the square root of time. We can see this immedi-
ately from our simple coin-toss model of the random walk. The time will
be proportional to the number N of coin tosses. The variance of the bino-
mial distribution is just Np(1−p) and the standard deviation is the square
root of that. As a result, we should expect the width of the distribution to
increase as the square root of time.

Exercise 11.9. Use the RandomReal function to generate one-
dimensional random walks of two hundred steps. Generate ten
thousand trajectories and use the BinCounts function to generate
an histogram of the distribution. What happens if you increase the
number of steps to five hundred?
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Einstein produced a differential equation for the density of walkers ρ(x, t)
that we can write as follows:

(11.6)
∂ρ(r, t)

∂t
=D

∂2ρ(r, t)
∂x2

,

where D is a constant known as the diffusion coefficient. We have in-
troduced the notation of partial differential equations previously, when
discussing the wave equation. Equation 11.6 is known as the one-dimen-
sional diffusion equation. Unlike the wave equation, where there is a sec-
ond derivative of time, the diffusion equation has only a first derivative of
time. This drastically changes the nature of the solutions.

In particular, Einstein demonstrated that, if the walker density is normal-
ized ∫ ∞

−∞
dxρ(x, t) =N,

then a solution to the diffusion equation can be written as follows:

(11.7) ρ(x, t) =
N√
4πDt

e−x
2/4Dt.

That is, the solution is a Gaussian distribution, with a width σ2 = 2Dt.
Consequently, the width of the distribution evolves as the square root of
time.

Exercise 11.10. Plot the function ρ(x, t) as a function of x over the
domain −10 ≤ x ≤ 10. Choose N = 1 and D = 1. Use the Manipulate
function to vary the time over the domain 1 ≤ t ≤ 20. How does the
width of the distribution change over time?

Figure 11.3. Perrin tracked
five hundred particles over
thirty-second intervals. Dis-
placements are indicated by
the dots. The dark gray cir-
cle represents the magnitude
of the standard deviation σ .
Other circles are fractional di-
visions of σ

Perrin tracked the displacement of five hundred 0.367µm-radius particles
at thirty-second intervals. The results are depicted in figure 11.3. From
the data, Perrin computed a standard deviation of σ = 7.84µm.7 The dark

7Perrin’s definition of the deviation differs by a factor of
√
2 from the one we utilize. This is

noted in the table.
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Table 11.1. Perrin’s displacement data for 0.367µm-radius particles

Radius (
√
2σ/4)

Inner Outer Number
0 1 34
1 2 78
2 3 106

3 4 103
4 5 75
5 6 49

6 7 30
7 8 17
8 9 9

circle in the figure has a radius of σ . Perrin drew a series of concentric cir-
cles of radius nσ/4, where n = 1,2, . . . ,8 and then counted the dots within
each annular region. His results are listed in Table 11.1.

To compare Perrin’s results with what Einstein’s model predicts, we must
perform an integration of the probability distribution over finite intervals.
For Cartesian coordinates, the result is not expressible in terms of simple
functions but occurs so often that it has been given the name of error
function. Formally, we can write define the error function as follows:

(11.8) erf(x) =
2√
π

∫ x

0
dξ e−ξ

2
.

With this definition, integration of the Gaussian probability distribution
over the interval [a,b] produces the resulting expression:

(11.9)
1√
2πσ2

∫ b

a
dx e−x

2/2σ2 =
1
2

[
erf

(
b√
2σ

)
− erf

(
a√
2σ

)]
.

Because the error function occurs so frequently in statistical analysis, it
was widely tabulated and is, of course, available in the Mathematica soft-
ware.

Exercise 11.11. Plot the error function erf(x) over the domain 0 ≤
x ≤ 5.

Exercise 11.12. Use Equation 11.9 to analyze the results of Exer-
cise 11.9. Plot the random (experimental) data from the exercise
and theoretical predictions. Do they agree?

In two dimensions, Perrin utilized polar coordinates where one can actu-
ally perform the integration in terms of known functions. Note that the
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probability is assumed to be the product of independent probabilities in
the x- and y-directions:

P (x,y) = P (x)P (y) = 1
2πσ2

∫
dxe−x

2/2σ2
∫

dy e−y
2/2σ2

and that the standard deviations in each direction are the same. If we
convert to polar coordinates, then we have that the probability of finding
a particle in the range ζa < ζ < ζb is given by the following:

P (ζa,ζb) =
1
2πσ2

∫ ζb

ζa

dζ

∫ 2π

0
dϕζe−ζ

2/2σ2

= e−ζ
2
a /2σ2 − e−ζ2b /2σ2 ,(11.10)

where we have used the fact that the distribution is independent of the
azimuthal direction ϕ.

Exercise 11.13. Use Equation 11.10 to compute the predictions of
the Einsteinmodel for Perrin’s data (Table 11.1). Recall thatN = 500.
Plot the results. Are they in agreement?

Figure 11.4. The standard devi-
ations of the displacements of
0.212µm-radius particles demon-
strate a

√
t dependence (gray curve)

and not a linear dependence (black
curve). Two separate time series
with slightly different experimen-
tal conditions (triangles and open
circles) behave similarly

Perrin and his students measured the displacements of fifty 0.212µm-
radius particles at thirty-second intervals for two minutes. The results
of two series of their experimental results are indicated in figure 11.4.
Also plotted in the figure are two theoretical curves: a1

√
t (gray) and b1t

(black). From the data, it would appear that the linear (black) fit would
be improved if we added an offset term (b1t + b0) but Perrin measured
the difference in position of the particles at each time interval. Thus, all
the particles start from the origin and this constraint requires that b0 = 0.
It is apparent from the figure that the data are better represented by the
square-root of time curve, in agreement with Einstein’s model for Brown-
ian motion.

The importance of Einstein’s model for diffusion is that it relates micro-
scopic behavior to macroscopic observations. Brownian motion can be
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interpreted as the result of the apparently random behavior of macro-
scopic particles interacting with (unobserved) microscopic particles; it is
an emergent phenomenon. Moreover, we can obtain such behavior with-
out resort to new forces of nature. Collisions of two molecules are gov-
erned primarily by the electromagnetic force. We have already studied the
relatively simple case of α particle scattering through the Coulomb force;
there are complications, to be sure, when considering the interactions of
extended (non-point) molecules but there is no experimental evidence for
new forces.

Some fifty years earlier than Einstein’s publication, the German physiolo-
gist Adolf Fick had determined that the diffusion of salt in water could be
described by two mathematical formulas that have come to be known as
Fick’s laws of diffusion:

J = −D∂φ

∂x
∂φ

∂t
=D

∂2φ

∂x2
,(11.11)

where J is the mass flux and φ is the (salt) concentration. We can recognize
the second law as Einstein’s model for Brownian motion with a minor
change of notation.

Chemistry students have long been taught that chemical species diffuse
along the concentration gradient, which is a statement of Fick’s first law.
Without further explanation, one might then infer that high concentra-
tions of chemicals generate some form of motive force that drives the dif-
fusion process. Students might also ponder the question of how does a
single molecule in the system “know” the direction of the concentration
gradient. Einstein’s model provides answers to both questions. The be-
havior of the macroscopic particles observed by Brown and Perrin can be
seen as indicative of the behavior of microscopic (unseen) particles. Dif-
fusion is simply the result of individual molecules conducting random
walks and the width of the ensemble spreading as the square root of time.
There is no additional motive force that arises from the accumulation of
chemical species and individual molecules do not need to somehow sense
the direction of the concentration gradient in order for diffusion to occur.

11.3. Statistical Thermodynamics

The industrial revolution and the development of the steam engine pro-
vided a number of technical problems that were addressed by scientists
and engineers of the day. Onemight wonder, for example, how to improve
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upon the efficiency of or power produced by steam engines. How does op-
erating temperature or size of the boiler affect these quantities? A series
of principles, today known as the Laws of Thermodynamics, were devel-
oped that explained the experimental observations and provided a guide
for engineering improvements in machinery.

The first or fundamental law of thermodynamics is simply the statement
that energy is conserved, with the additional caveat that work and energy
are equivalent entities. This latter principle was discovered by Benjamin
Thompson (later Count Rumford) in 1798 who demonstrated that boring
cannon barrels could boil water indefinitely, as long as the horses driving
the boring apparatus could continue their efforts. His experiments stood
in direct conflict with the caloric theory of matter that suggested that mat-
ter was imbued with a caloric fluid and that the heat8 released during
machining operations originated within the matter itself. Thompson’s ex-
periments demonstrated that there was no mass difference between the
original cannon barrel and the machined barrel and the metal shavings.
Caloric fluid could not have mass and could not therefore be a material
property.

In this regard, the fundamental law of thermodynamics is not a new prin-
ciple. We have already shown that energy is conserved in mechanical sys-
tems. In modern terminology, we can state the first law as follows:

(11.12) ΔQ = ΔE +ΔW.

If a small (infinitesimal) amount of energy ΔQ is added to a system, it
will be partitioned into a corresponding change in the internal energy
ΔE of the system and, potentially, work ΔW performed by the system on
the external universe. The study of thermodynamics is, in some measure,
detailed accounting of the flow of energy through systems. That promises
to be a reasonably straightforward exercise, on its face.

Other aspects of the behavior of thermodynamical systems do not appear
to be so simple. For example, it was recognized that temperature is some-
how a measure of the internal energy of a system. If you heat9 a system,
by placing a flask over a fire for example, there is generally an increase in
temperature.

Consider the experimental results sketched in figure 11.5. If we place a
pan of water over an open flame and measure the temperature at regu-
lar intervals, we produce results like those indicated by the black dots.

8Here we use the word heat to mean thermal energy. Historically, the definition of heat is
muddled. We should use the more precise terminology thermal energy. Unfortunately, heat
is succinct and is used ubiquitously as a noun to mean thermal energy.
9We use the word heat here as a verb. This is the modern preferred usage.
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The water temperature increases linearly for a time and then approaches
a constant temperature asymptotically. We call this the boiling point of
water. If the flame is maintained appropriately, we can assume that the
energy being added to the pan is approximately constant in time. So, how
can we account for the fact that the temperature increase diverges from
linear?

Similarly, if we cooled a pan of water, or heated a block of ice, we would
produce a set of results like those indicated by the gray dots in the figure.
There are regions where the temperature appears to change in a linear
fashion but, at what is termed the freezing point of water, the temperature
does not change as the energy of the water changes.

Figure 11.5. The temperature of
liquid water will rise linearly with
time when heated (black points) un-
til it reaches the boiling point. Sim-
ilarly, it would decrease linearly
when cooled (gray points) until it
reaches the freezing point

To accommodate the observations that energy and temperature have a
more complex relationship than simple linear behavior, the concept of
entropy was introduced. While having a precise mathematical rôle in the
equations that define the thermodynamic behavior of systems, entropy
was usually likened to the disorder of the system. The explanation of the
experiments depicted in figure 11.5 is this: while the temperature of the
system stabilizes around the boiling and freezing points, the entropy of
the system continues to increase. Hence, energy is conserved, the energy
input into the system has just been converted into entropy and does not
therefore manifest itself by a rise in temperature.

The second law of thermodynamics is then formulated in terms of the
observed property of this new quantity of entropy: as systems evolve, en-
tropy increases. Formally, we can write the following relation:

(11.13) ΔQ = TΔS,

where ΔS is the change in entropy. While this formulation of thermody-
namical principles is effective in explaining the behavior of systems and
serving as a guide for engineering improved forms of machinery, the con-
cept of entropy is rather nebulous, at least in this author’s experience.
What exactly is disorder? Why should entropy increase? There are nu-
merous questions that arise for which there are no physical insights that
would clarify the mathematical expressions.
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This situation changed significantly with a series of insightful discoveries
made by the American physicist Josiah Willard Gibbs, who developed a
rigorous mathematical framework for determining the macroscopic con-
sequences of microscopic behavior10 and the Austrian physicist Ludwig
Eduard Boltzmann, whose work on the kinetic theory of gases was con-
ducted independently of Gibbs.11 This new, atomistic methodology be-
gins with the definition of the microscopic state of the system. For con-
creteness, let us define our system to be a cubical box of volume V that
contains N atoms. At some point in time, each atom has a location xi
and a momentum pi . The state of the system is defined by the collection
of variables: Ψ = {x1, . . . ,xN ,p1, . . . ,pN }. The energy of the system E we
have seen can be divided into two parts, kinetic T and potential U . We
have inevitably found that the kinetic energy depends quadratically on
the momenta:

T =
N∑

i=1

p2i
2M

,

where we have made the simplification that all of the atoms possess mass
M . The potential energy can be a complicated function of all of the posi-
tions: U = U (x1, . . . ,xN ).

The probability of finding the system in this state is proportional to the
so-called Boltzmann factor:

P ∝ e−E/kBT ,

where kB is now known as the Boltzmann constant and T is the absolute
temperature of the system.12

To obtain the normalized probability, we integrate over all of the possible
configurations of position and momentum:

(11.14) Z =
∫

d3x1 · · ·
∫

d3xN

∫
d3p1 · · ·

∫
d3pN e−E/kBT .

The use of the letter Z for the function defined in Equation 11.14 arises
from the German Zustandssumme or “sum over states.” As the momenta
and positions are continuous variables, it is appropriate to integrate over

10Gibbs shared the same name with his father, who went by Josiah. The younger Gibbs
was known as Willard to his family. His monograph On the Equilibrium of Heterogeneous
Substances was published in two parts in 1875 and 1878 by the Connecticut Academy of
Sciences.
11Boltzmann wrote several papers on the kinetic theory of gases that were published in the
Wiener Berichte in 1871 and 1872. He revisited the subject in two further papers in 1877.
12The absolute temperature scale inevitably utilizes the SI Kelvin scale, where a 1K temper-
ature difference is equivalent to a 1 C temperature difference. The two scales differ in their
origins, where the Celsius scale defines the freezing point of water to be 0 C.
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these variables instead of summing. The function Z is known as the parti-
tion function. More than just a simple normalization factor, we shall see
that essentially all thermodynamic properties of a system can be obtained,
at least formally, from a knowledge of the partition function.

We note that the Boltzmann probability of finding a system in the state
with energy E is then given by the normalized quantity:

(11.15) P (E) = e−E/kBT

Z
.

From this, we can deduce that the expected value of the energy will be
defined by the following relation:

E =
∫
d3x1 · · ·

∫
d3xN

∫
d3p1 · · ·

∫
d3pN E e−E/kBT

Z
.

The integrals define the phase space of the system. The phase space is
composed of the dynamically accessible regions in position and momen-
tum spaces. In our example of particles in a box, the position integrals
only extend over the interior of the box.

Rather than trying to attempt the integrations, let us first note that if we
take the derivative of the exponential with respect to temperature, that
we obtain the following:

∂

∂T
e−E/kBT =

E
kBT2

e−E/kBT .

Using this result, we can recast the expression for the expected value of
energy as follows:

(11.16) E = kBT
2∂ lnZ

∂T
.

We are, of course, assuming that the orders of differentiation and integra-
tion can be interchanged and that other mathematical issues can be clari-
fied. Nevertheless, Equation 11.16 provides a statement that the expected
energy of a system can be obtained from the temperature dependence of
the partition function.

Exercise 11.14. Fill in the details of the derivation of Equa-
tion 11.16.

The entropy can also be defined in terms of the partition function:

(11.17) S =
∂

∂T
(kBT lnZ) = kB lnZ +

E
T
.

The partition function represents the sum of all of the (weighted) prob-
abilities of configurations of the dynamical system. The entropy is pro-
portional (through the factor kB) to the natural logarithm of the number
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of these configurations. In this sense, entropy is not the (vague) disorder
of the system; it represents the (generally large but definable) number of
different configurations that are accessible to the system.

Time evolution of dynamical systems can be seen as the evolution of the
system toward the most probable configurations. Consequently, entropy
will generally increase but there are no external forces at work that co-
erce such behavior. At the microscopic level, molecules are effectively
conducting random walks and diffusing with a square root of time be-
havior. If one adds a drop of food coloring to a glass of water, over time
and without stirring, the water will become uniformly colored. One never
observes the dye molecules to coalesce back into a small space within the
glass. That is because the number of configurations in which all of the dye
molecules are located within a small fraction of the volume is vastly less
than the number of configurations in which they are randomly scattered
about the volume.

Consider requiring only that the molecules be on the left side of the glass.
There is a probability of 1/2 of that occurring for any one of the N mole-
cules, so the cumulative probability is P = (1/2)N .A drop of dye molecules
probably contains 1019 or so molecules, so the probability of finding them
all on the left side of the glass is P ≈ 10−7×1018, which is a fantastically
small number. As a result, we never observe the dye molecules to even
congregate in half of the glass.

Exercise 11.15. Consider excluding just a small volume of the
glass, say 1% of the volume. The probability of finding one atom
in this volume is P = 0.99. What is the probability of finding all
N = 1019 dye molecules in this region? What can you infer about the
distribution of dye molecules?

Figure 11.6. A simple dynamical
system consists of N (weakly inter-
acting) particles confined inside a
box of volume V
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In practice, evaluating the partition function can be quite challenging
and, consequently, the simple expression in Equation 11.16 for the ex-
pected energy may also be difficult to evaluate. Nevertheless, the frame-
work is quite rigorous and does not depend on the nature of the inter-
actions U . In simple cases, the evaluation can be performed. Consider,
for example, the case of N weakly interacting atoms in a box of volume
V , as illustrated in figure 11.6. We take U = 0 or at least negligible com-
pared to the kinetic energies. The partition function then separates into
the product of N terms:

Z =
N∏

i=1

∫
d3xi

∫
d3pi e

−p2i /2MkBT =
(∫

d3x
∫

d3pe−p
2/2MkBT

)N
,

where in the last step we utilize the fact that, if the atoms are the same,
each of the product terms will be equivalent.

Here there is no dependence upon position, so the integrals over position
yield just the volume of the box V . The momentum integrals are integrals
over Gaussian functions, so we obtain the following result:

(11.18) Z =
[
(2πMkBT)

3/2V
]N

.

Using this result, we can compute the expected energy to be given by the
following:

(11.19) E = 3NkBT

2
.

Equation 11.19 is a statement of the equipartition theorem, which holds
that every degree of freedom contributes kBT/2 to the average energy. In
our example, we had N atoms and three dimensions. Hence, the expected
energy is kBT/2 multiplied by 3N . This result also confirms that the en-
ergy is linearly dependent upon the temperature.

Exercise 11.16. Fill in the details of the derivation of Equa-
tion 11.19.

Let us consider the momentum portion of the single atom partition func-
tion. If we utilize spherical coordinates in momentum space, then we can
show the following relation holds:

(11.20)
∫

d3pe−p
2/2MkBT = 4π

∫ ∞

0
dpp2e−p

2/2MkBT .

That is, the distribution of the magnitude of momentum amongst the
atoms in our box scales like the square of momentum times the Boltz-
mann exponential factor. As the momentum is just the product of mass
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and velocity, we can infer that the magnitude of velocity distribution in-
side the box has the following form:

(11.21) P(v) = P0v
2e−Mv2/2kBT ,

where P0 is a normalization factor. This particular form of the velocity dis-
tribution was derived initially by Maxwell and is often called the Maxwell
velocity distribution. It is also known as the Maxwell-Boltzmann distri-
bution, in an effort to acknowledge the later contributions of Boltzmann.

It is possible to sample this distribution experimentally. If we have an
oven that is heated to some temperature T , then the atoms within should
have a distribution like that defined in Equation 11.21. If we drill a small
hole in the side of the oven, then atoms that would normally strike the
wall and rebound back into the volume will, instead, emerge as a narrow
beam. If the hole is small enough, the escape of a relatively few atoms
does not affect the internal state of the atoms within the box appreciably.
This process is known as effusion.
The beam is allowed to strike a rotating velocity selector, which can be
simplified to consist of two circular plates with holes drilled in their faces.
If the holes are separated by an azimuthal angle φ1, then only atoms with
a velocity v = Lω/φ1 will emerge through the second plate and strike a
detector. Such an apparatus is illustrated in figure 11.7.

Figure 11.7. An atomic beam
effuses from a small hole in
an oven O. The beam passes
through a rotating velocity se-
lector and impinges on the de-
tector D

Exercise 11.17. Show that the rotating plates ideally select atoms
with velocities v = Lω/φ1. As a practical matter, slower atoms may
also be admitted. What would be the velocity of atoms that emerge
from the apparatus after it has rotated by the angle φ1 + 2π?

The German-American physicist Polykarp Kusch and his student R. C.
Miller constructed a more sophisticated apparatus than that depicted in
the figure but utilized the same principle of operation.13 Their velocity

13Miller and Kusch published their results in 1955, the same year in which Kusch won
the Nobel Prize in Physics “for his precision determination of the magnetic moment of the
electron.” Kusch shared the Prize with the American physicist Willis Lamb, who won “for
his discoveries concerning the fine structure of the hydrogen spectrum.”
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Table 11.2. Velocity distribution of 944K thallium atoms

v (m/s) P (v) v (m/s) P (v) v (m/s) P (v)
59.9 3.90 206.1 17.32 408.4 13.25
91.3 6.29 224.8 18.45 429.2 12.01
103.1 7.10 246.0 19.53 455.4 9.80

116.7 8.30 267.4 19.98 471.8 8.96
132.7 10.11 283.7 19.98 494.4 7.20
141.0 11.46 309.5 19.43 520.5 5.45

156.2 12.81 330.2 18.77 530.8 4.90
177.4 14.58 356.2 17.33 554.2 3.93
191.7 15.97 379.7 15.61 588.7 2.65

selector utilized a rotating cylinder; helical slots had been machined into
the surface to improve the ability to reject velocities outside of a small
window and noise was further suppressed by cryogenically cooling the
apparatus. Some of their results utilizing thallium metal vapor are de-
picted in figure 11.8. From Equation 11.21, we expect that the velocity
distribution will be maximal at the velocity vmax = (2kBT/M )1/2. For the
oven temperature at which these data were acquired (870K), the distribu-
tion should be maximal at v = 266m/s. This is precisely where Kusch and
Miller observe the peak in the experimental velocity distribution.

Figure 11.8. The experimen-
tal velocity distribution for
thallium metal atoms at a
temperature of 870K (black
dots) agrees well with the pre-
dicted Maxwell-Boltzmann
distribution (gray curve).
An arbitrary normalization
constant was used to match
the distributions at the peak
(v = 266m/s)

Exercise 11.18. The maximum of the Maxwell-Boltzmann veloc-
ity distribution will occur when the derivative vanishes. Find the
velocity at which this occurs. Plot the distribution.
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Exercise 11.19. The data in Table 11.2 were measured for thallium
atoms at a temperature of 944K. What is the velocity at the max-
imum of the distribution for this temperature? Plot the Maxwell-
Boltzmann distribution and the (suitably scaled) experimental re-
sults. Are they in agreement?

The experimental evidence provides significant support to the statistical
framework developed by Boltzmann and Gibbs. This has somewhat as-
tonishing implications for the nature of the microscopic world around us.
For example, the atmosphere is composed principally of nitrogen and oxy-
gen molecules. According to the Maxwell-Boltzmann distribution, these
molecules will have velocity distributions that peak at roughly 400m/s.
(This is higher than the velocity of sound in air and comparable to the
muzzle velocities of .22 caliber rifle rounds.) As the inter-molecular spac-
ing in air is a few nanometers, this suggests that the characteristic time for
collisions between gas molecules is of the order of 10−10–10−11 s. What
emerges is a microscopic picture of utter chaos: individual gas molecules
fly through space at macroscopically large velocities and endure 1010 or
more collisions per second. This is certainly not what we perceive at the
macroscopic level.

Exercise 11.20. In weakly interacting systems, the partition func-
tion of N particles is just Z = (Z1)N , where Z1 is the partition func-
tion of a single particle. Hence, it suffices to consider just a single
particle: lnZ = N lnZ1. Consider a system of magnetic particles
that can have energies E = ±μB depending upon whether the mag-
netic moment μ of the particle is aligned (−) or anti-aligned (+) with
the magnetic field B. Here the partition function is just a sum over
the possible states.

Write the partition function explicitly. Show that the expected value
of the magnetization is given by μ = μ tanh(μB/kBT). Plot the func-
tion tanh(1/x) over the domain 0 ≤ x ≤ 20. What happens to the
magnetization at low temperatures? What happens to the magneti-
zation at high temperatures?

11.4. Applications

On April 27, 1661, the English natural philosopher Richard Townley and
his colleague Henry Power conducted an experiment in which they mea-
sured the air pressure with a barometer at several different altitudes on
Pendle Hill in Lancashire. When examining the results, the two noted
that there was a correlation between the air density and pressure. Townley
discussed his results with the English natural philosopher Robert Boyle,
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who conducted further experiments and published an analysis in which
he stated that the product of pressure and volume is a constant: pV = c.14

This relationship is now known as Boyle’s Law.

In 1802, the French natural philosopher Joseph Louis Gay-Lussac pub-
lished the results of his investigations into gases and concluded that if one
holds the pressure constant, then the volume of a gas is linearly related to
the temperature: V = cT .15 Finally, in 1834 the French physicist Benoît
Paul Émile Clapeyron combined the two results into what is now called
the ideal gas law. In modern notation, we can write this as follows:16

(11.22) pV =NkBT.

This fundamental, experimentally-determined relationship, along with
Gay-Lussac’s recognition that gases form in ratios such that the volumes of
reactants and products can be expressed in simple whole numbers, form
part of the founding pillars of modern chemistry.

This fundamental relation can also be derived from the microscopic the-
ory of Gibbs and Boltzmann. The expected value of the pressure is given
by the following relation:

(11.23) p = kBT
∂ lnZ
∂V

.

Using the partition function for N particles in a box, we recover Equa-
tion 11.22. This is a remarkable result. The observed relationship between
the macroscopic parameters that define the thermodynamic state of gases
emerges from the microscopic consideration of particles in a box.

Exercise 11.21. Use Equations 11.18 and 11.23 to derive the ideal
gas law.

One of the macroscopic thermodynamic properties that characterizes ma-
terials is the somewhat unfortunately named heat capacity.17 Formally,
if we add a small amount of energy ΔQ to a system, then we could well
expect a proportional change in the temperature:

ΔQ = CΔT,

14Boyle referred to the proposal as “Townley’s hypothesis” in a 1662 appendix to his 1660
monograph New Experiments Physio-Mechanicall, Touching the Spring of Air and its Effects.
15In his “Recherches sur la dilatation des gaz et des vapeurs” published inAnnales de Chimie,
Gay-Lussac cited previously unpublished work by the French scientist Jacques Charles. The
relation p/T = c is now known as Charles’ Law.
16In chemistry texts, this is usually written as pV = nRT where n is the number of moles of
gas and R is known as the gas constant. Note also that here we are using the symbol p to
mean pressure and not probability or momentum.
17The language reflects the then-prevailing attitude that heat was an intrinsic property of
matter, a caloric fluid. One could envision that a given amount of matter could only hold so
much heat before it overflowed, in some sense.
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where the constant of proportionality C is termed the heat capacity. We
see such behavior sketched in figure 11.5. It was recognized by early in-
vestigators that the heat capacity is actually a complex function of the
other thermodynamic variables. For example, if one measured the tem-
perature rise of a quantity of material where the volume was constrained
to be constant then those results would be different from measurements
where the pressure was held constant. In gases, this is not particularly sur-
prising, given that the thermodynamic variables are related through the
ideal gas equation. The heat capacity will also, of course, depend upon
the amount of material present, so one can define a specific heat capacity
for a particular amount of material. With the advent of the atomic model
of matter, the molar mass has become the most common standard. The
lower case c is, at times, utilized to reference the specific heat capacity per
mole of material.

Formally, we propose that the heat capacity is related to the derivative:

ΔQ =
∂Q

∂T
ΔT,

whereby C = ∂Q/∂T . There are different definitions of the specific heat
that depend upon the nature of the thermodynamic experiment being
conducted. For example, suppose that we conduct an experiment in which
we hold the volume of the box constant. The specific heat at constant vol-
ume is then defined as follows:

(11.24) CV ≡
(
∂Q

∂T

)

V

=
(
∂E
∂T

)

V

,

where the subscript V indicates that we are holding the volume constant.
Because the incremental work done on the external universe is ΔW =
pΔV , then the energy added to the system will only increase the internal
energy of the system E. On the other hand, if we conduct an experiment
in which the pressure is held constant, then the relevant specific heat will
be defined as follows:

(11.25) Cp ≡
(
∂Q

∂T

)

p

=
(
∂[E + pΔV ]

∂T

)

p

.

From Equation 11.19, we see that our model of weakly-interacting atoms
in a box will be characterized by a specific heat at constant volume of
CV = 3NkB/2, whereas the specific heat at constant pressure will be Cp =
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5NkB/2. In SI units, we find CV = 12.47 J/mol-K and Cp = 20.78 J/mol-
K, which are precisely the measured values for specific heats of the noble
gases helium, neon, argon, krypton and xenon.18

Exercise 11.22. Use the ideal gas law and Equations 11.24 and 11.25
to demonstrate that CV = 3NkB/2 and Cp = 5NkB/2.

Table 11.3. Molar specific heats of diatomic molecules

Molecule Cp (J/mol-K) Molecule Cp (J/mol-K)

H2 28.836 CO 29.142
N2 29.124 NO 29.845
O2 29.376 Br2 36.048

Exercise 11.23. The specific heats at constant pressure for several
diatomic gases measured at 25 ◦C (298.15K) are listed in Table 11.3.
Use the equipartition theorem to count the number of degrees of
freedom. If you think of the molecules as classical particles, what
might be the extra internal degrees of freedom?

Consider now a simple model of solids. The electrons in a solid interact
in a complex fashion with the lattice formed by the nuclear centers and
other electrons. Suppose instead that we replace the complex interactions
with simple harmonic potentials. That is, each atom in the lattice sees an
effective quadratic potential:

(11.26) U (x1, . . .xN ) = 1/2
N∑

i=1

κi(xi − ri )2,

where κi is the effective spring constant, the ri represent the lattice sites
and the xi represent the nuclear (atomic) positions. In this case, the posi-
tion integrals in the partition function are integrals over Gaussians. One
can evoke the Equipartition Theorem to immediately conclude that the
expected energy of the system (with six degrees of freedom for each of N
atoms) will be given by the following:

Ē = 6N (kBT/2) = 3NkBT.

Exercise 11.24. Using the definition of U in Equation 11.26, com-
pute the partition function Z. Compute the expected energy E from
Equation 11.16.

18Thermodynamic values can be found in databases managed by the U.S. National Institute
of Standards and Technology (www.nist.gov). See, for example, the NIST-JANAF thermo-
chemical tables.

www.nist.gov
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In 1819, the French physicists Alexis-Thérèse Petit and Pierre-Louis Du-
long noted the specific heat capacities of elemental materials was nearly
a constant.19 In Table 11.4, we list some of the molar specific heats of
metals measured at 298K, where 3NkB = 24.9 J/mol-K.

Table 11.4. Molar specific heats of metals. Units are J/mol-K

Solid Cp Solid Cp

Aluminum 24.3 Lead 26.4
Bismuth 25.7 Silver 24.9
Copper 24.5 Tungsten 24.8
Gold 25.6 Zinc 25.2

The heat capacities for metals are remarkably close to the simple theo-
retical prediction. We have not included any sort of quantum mechan-
ics or details of the interactions between atoms yet have still managed to
produce a result that is in general agreement with the experimental ob-
servations. What we might infer from this situation is that macroscopic
observables are not particularly sensitive to the details of the underlying
microscopic interactions. At least in the case of metals, it appears that the
assumption that atoms form a regular lattice in the solid form is enough
to explain the observed heat capacity.

This is not the case for diamond, where the specific heat at 298K is ap-
proximately 6 J/mol-K. As diamond is a hard, crystalline material, it is
somewhat surprising that the model appears to fail so badly. The discrep-
ancy caught the attention of Einstein, who utilized an idea from the (then)
new theory of quantum mechanics. In 1901, the German physicist Max
Planck provided a theoretical explanation for the observed spectral inten-
sity of black-body radiation.20 Planck’s seminal idea was that the energy
of electromagnetic radiation is quantized. That is, energy is not a contin-
uous function but there is a smallest amount of energy.21 Note that this
idea echoes our earlier discussion on treating electric charge as a contin-
uous function even though we know that charge comes in integral mul-
tiples of the fundamental charge. Planck’s suggestion can be expressed
mathematically by the following equation:

(11.27) E = hν =
hc

λ
,

19Petit and Dulong published their “Recherches sur quelques point importants de la Théorie
de la Chaleur” in the Annales de Chimie et de Physique.
20Planck’s “Über das Gesetz der Energieverteilung im Normalspectrum” was published in
the Annalen der Physik.
21Planck was awarded the 1918 Nobel Prize in Physics “in recognition of the services he
rendered to the advancement of Physics by his discovery of energy quanta.”
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where ν is the frequency of oscillation and λ is the wavelength of the radi-
ation. The proportionality constant h is now known as Planck’s constant.

Einstein decided to apply Planck’s approach to the problem of the specific
heat of diamond. The consequence of using a discrete energy step is that
the integrals that define the partition function become sums, as shown in
the following expression:

(11.28) Z =
∞∑

n=0
e−nhν/kBT =

[
1− e−hν/kBT

]−1
.

This is a geometric series that has a finite sum.

Exercise 11.25. Define the finite sum SN as follows:

SN =
N∑

n=0
xn.

Compute the value of (1 − x)SN explicitly. Show that if |x| < 1, then
the infinite sum has the finite result indicated in Equation 11.28.

The expected value of the energy in Einstein’s model can be obtained from
the following:

(11.29) E = 3NkBT
2∂ lnZ

∂T
= 3N

hν e−hν/kBT

1− e−hν/kBT
.

It is customary to define the Einstein temperatureΘE = hν/kB, whereupon
we can rewrite Equation 11.29 in the following fashion:

(11.30) E = 3NkB
ΘE/T e−ΘE/T

1− e−ΘE/T
.

From this last result, we can now compute the specific heat:

(11.31) CV = 3NkB
(ΘE/T)2 e−ΘE/T

[1− e−ΘE/T ]2
.

Einstein’s model makes a new prediction for the specific heat that depends
on a new parameter, the Einstein temperature.

Exercise 11.26. Fill in the details of the derivation of Equa-
tion 11.31. Plot the function (1/x)2e(−1/x)/(1 − e(−1/x))2 for x in the
range 0 ≤ x ≤ 5.

As one can see from figure 11.9, Einstein’s modification to the formula for
specific heats greatly improves the correspondence between theory and
experiment. The failure of the Dulong-Petit rule for diamond can now
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Figure 11.9. The specific heat
of diamond was measured
over a wide temperature
range (black dots). The
prediction of the Einstein
model with a temperature
ΘE = 1296K is shown as the
gray curve. The asymptotic
value 3NkB is indicated by
the light gray line

be attributed to the fact that the Einstein temperature for diamond is ap-
proximately 1300K. Thus, room temperature is effectively low tempera-
ture for diamond and the Dulong-Petit rule does not work at low temper-
atures. Gratifyingly, at higher temperatures, the specific heat for diamond
approaches the value 3NkB.

Figure 11.10. The measured
specific heat of aluminum
(black dots) is compared to the
Einstein model with a tem-
perature of ΘE = 278K (gray
curve)

It turns out that metals also possess temperature-dependent specific
heats. In figure 11.10, we show the fit of the Einstein model to data for
aluminum. At room temperature, aluminum has a heat capacity of 3NkB
but this is due to the fact that the Einstein temperature is approximately
ΘE = 278K. For metals, it would appear that the success of the Dulong-
Petit rule can be attributed to the fact that their Einstein temperatures
are comparable to room temperature. As a result, the specific heats are
close to the asymptotic value of 3NkB. For diamond, this is clearly not
the case; the Einstein temperature is 1000K higher. This difference in
behaviors between diamond and metals undoubtedly reflects the differ-
ence in the microscopic interactions in the different systems. At present,
we have not yet addressed quantum mechanical effects in any real sense
but we have devised a one-parameter model based on quantum insights.
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Any further progress, like predicting the value of ΘE based on some sort
of first-principles calculations, will have to be deferred to subsequent
courses.

Table 11.5. Specific heat for copper in units of J/mol·K

T (K) Cp T (K) Cp T (K) Cp

14.82 0.17 101.24 16.29 201.39 22.73
17.63 0.30 106.72 16.98 207.07 22.94
19.75 0.45 112.25 17.61 213.03 23.15

23.35 0.78 117.86 18.10 218.9 23.17
28.21 1.42 123.4 18.65 224.23 23.33
33.52 2.38 128.99 19.05 229.66 23.43

38.86 3.51 134.54 19.47 235.25 23.58
44.21 4.76 140.2 19.88 240.71 23.73
48.17 5.78 146.02 20.26 245.98 23.86

53.34 7.10 151.01 20.60 251.58 23.96
59.08 8.46 156.91 20.92 256.6 23.99
65.12 9.81 162.77 21.19 261.34 24.08

70.12 10.90 168.28 21.57 266.61 24.18
75.36 12.03 174.05 21.70 272.18 24.22
80.60 13.04 179.36 21.92 277.69 24.35

85.62 13.91 184.72 22.18 283.59 24.39
90.73 14.70 190.18 22.35 289.51 24.38
95.78 15.49 195.81 22.57 300.15 24.43

Exercise 11.27. Use the specific heats for copper listed in Table 11.5
to estimate the Einstein temperature. Use the FindFit function and
plot the results. How does the value of ΘE compare with that of
aluminum?

If one looks closely at figure 11.10, Einstein’s model of the specific heat
still does not quite describe the data, particularly at low temperatures.
A further refinement was produced by the Dutch physicist Peter Debye,
who reasoned that excitations of the lattice had a high-frequency cutoff. If
we think about the modes of oscillation of a guitar string, then the funda-
mental mode is represented by a displacement of sin(πx/L). Higher order
modes are represented by displacements of the form sin(nπx/L). At some
point, the distance L/n becomes comparable to the lattice spacing and that
mode has each atom oscillating in the direction opposite to its neighbor.
Higher frequencies are not supported.
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When Debye included this constraint in his model, he derived the follow-
ing formula for the specific heat:

(11.32) CV = 9NkB

(
T

ΘD

)3∫ ΘD/T

0
dx

x4ex

(ex − 1)2 ,

where we have introduced the Debye temperature ΘD = hνD/kB for some
maximum oscillation frequency νD .

Exercise 11.28. The integral in Equation 11.32 cannot be per-
formed analytically. The Debye function Dn(x) is defined as follows:

Dn(x) =
∫ x

0
dt

tn

et − 1 .

Plot D3(x) over the domain 0 ≤ x ≤ 5 in steps of dx = 0.5.

Exercise 11.29. Plot CV as defined in Equation 11.32 for 0 ≤ T ≤
300 in steps of T = 10 Use the Einstein temperature found in the
previous exercise for the copper data and plot the Einstein model
results as well. How do the two models compare?

Exercise 11.30. Find the value of the Debye temperature that best
fits the copper data listed in Table 11.5. (The FindFit function will
likely be too time consuming. Adjust the value ofΘD by hand.) Does
the Debye model fit the data better than the Einstein model? What
is the difference in the models in the low temperature region?

11.5. Equilibrium

The statistical approach to thermodynamics has had profound influence
on other fields, notably chemistry. A simple model of a chemical reaction
begins with reactants on one side of the equation and products on the
other:

2H2 +O2� 2H2O,

where the arrows indicate that the reaction might proceed in either direc-
tion. This particular reaction is one often studied in high-school chem-
istry labs, where the hydrolysis of water yields hydrogen and oxygen gas.
The reverse reaction, combustion of the hydrogen gas with atmospheric
oxygen, is not often sanctioned but is nevertheless often conducted by cu-
rious students. The resulting explosion is a clear demonstration that the
product state is energetically favored.

One might well then wonder why hydrogen and oxygen gases exist at
all? If water molecules are energetically favored, then how can molecules
of oxygen and hydrogen exist? The answer is that there is generally
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Figure 11.11. The energy surface
(gray curve) for a chemical reaction
includes reactant (Er), product (Ep)
and transition (Et) states

an energy barrier to the chemical pathway from reactant to product.
Microscopically, as one atom approaches another, the electron clouds
surrounding the nucleus repel one another. It isn’t until the nuclear cen-
ters are much closer that an energetically-favorable molecular bonding
arises. In a vastly simplified sense, a chemical process can be thought of
as proceeding along some reaction coordinate from reactant to product,
as depicted in figure 11.11. (Actually, a complex reaction like water hy-
drolysis will have several alternative pathways and a multidimensional
coordinate but that does not alter the main point.) The peak of the barrier
is known as the transition state although there is not a single transition
state in a quantum mechanical sense. Instead, there is an ensemble of
transition states, all characterized by an energy Et.

Suppose that the system is initially in the reactant state. Then the prob-
ability that the system can surmount the energy barrier and reach the
transition state is proportional to the Boltzmann factor:

(11.33) P ∝ e−(Et−Er)/kBT .

Similarly, the probability of the system beginning in the product state and
reaching the transition state is given by the following:

(11.34) P ∝ e−(Et−Ep)/kBT .

Equations 11.33 and 11.34 explain a number of observations about chem-
ical reactions. First, the existence of the barrier explains why hydrogen
and oxygen do not spontaneously combust and form water. The rate of
reaction (governed by the probabilities) is not proportional to the differ-
ence in energies of product and reactant states but is proportional to the
difference in energies between the transition state and reaction end points.
Additionally, the exponential dependence on the energies means that the
rate will be a strong function of temperature. This explains why chemists
rely so heavily on heating their reaction vessels. Bunsen burners were
once standard fixtures in chemistry labs; safety concerns have greatly re-
stricted their use.
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Exercise 11.31. In SI units, the value of kBT at 300K is approxi-
mately 2.5 kJ/mol. Compute the probability of occupying each of
two states given an energy difference of ΔE = 0, 5, 10, 15, 20, 25, 30
and 50 kJ/mol between the two. Suppose that you raise the temper-
ature to 400K. How does that change the probability table?

The transition state model of chemical reactions implies that reactants
reach the transition state with the probability shown in Equation 11.33.
At that point, the systemmay evolve into the product state or revert to the
initial, reactant state. Similarly, products can also return to the transition
state with the probability defined in Equation 11.34. Over time, we expect
to see a distribution arise that depends on the energy difference between
reactants and products. If, as depicted in figure 11.11, the product state
is energetically lower, we expect the distribution to be dominated by the
product state.

Gibbs recognized that if we want to be quantitative about these ideas, we
need to consider the case where the number of particles is not constant. In
our water example, if there areNH2 molecules of hydrogen,NO2 molecules
of oxygen and NH2O, then the values of those will change as the reaction
proceeds in either direction. Gibbs suggested that there must be a thermo-
dynamic variable that corresponds to this change of number and called it
the potential. It is now generally called the chemical potential and iden-
tified by the symbol μ. The second law of thermodynamics is expanded to
include the situations where the particle number is not constant:

(11.35) dE = T dS − pdV +
n∑

i=1

μi dNi ,

where the sum extends over n different species. Formally, we can define
the chemical potential as follows:

(11.36) μi =
∂E
∂Ni

.

The astute student may recognize that Ni is an integer and, thus, might
wonder how the partial derivative can be defined. (There can be no limit
of Ni + δ as δ → 0 when Ni can only have integral values.) In practice,
this quantity can be defined as μi = E(Ni + 1) − E(Ni ), where we compute
the difference in energies when the particle number changes by one. We
utilize the partial derivative notation for consistency with our previous
mathematical notation.22

22This is a primary example of the need to understand what the equations mean at a funda-
mental level. One could well argue that, particularly in this instance, our notational choice
is exceptionally poor. Nevertheless, Equation 11.36 has become the standard for expressing
the concept, at least in physics texts.
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Gibbs proposed that chemical equilibrium occurs when the system oc-
cupies the most probable state and that condition is satisfied when the
derivative of the free energy of the system vanishes.23 Thus far, we have
avoided dealing with many of the details of thermodynamic systems but
the concept of free energy is actually relatively simple. If we think about
defining the energy of a system E, it is obviously a function of many vari-
ables E(T,p,V,S,N , . . .) which are related through an equation of state like
the ideal gas law. So, when we talk about taking partial derivatives, we
need to be explicit about what variables are actually being controlled.
For example, if we have a number of particles in a box, then we can con-
trol the number N , the volume of the box V and the temperature T . The
pressure p cannot be separately controlled, its value is a consequence of
the ideal gas law. The energy in this case is a function of three variables
E(N,V,T).

Alternatively, we might instead want to control the pressure in the box. In
this case, we will find that the volume will be defined via the ideal gas law.
The energy here is then a function of three variables E(N,p,T). As a no-
tational aid and in order to differentiate the different combinations of in-
dependent variables, each of the energies associated with a particular set
of independent variables has been given a specific name.24 The standard
internal energy that we have been considering, as per Equation 11.35, is
a function of volume and entropy: E = E(N,V,S). The Helmholtz free
energy is defined as follows:

F = E +TS.

The equivalent form of the second law is written as follows:

(11.37) dF = dE + S dT +T dS = pdV + S dT +
n∑

i=1

μidNi.

Hence, the Helmholtz free energy is a function of the variables N , V
and T , F = F (N,V,T). Similarly, one can define the Gibbs free energy
G(N,p,T) and the enthalpy H(N,p,S).

Exercise 11.32. Using the example of Equation 11.37, what are the
definitions of the Gibbs free energy and enthalpy in terms of the
standard internal energy E and the other thermodynamic proper-
ties?

23A vanishing derivativemarks an extreme point: a maximum orminimum. In this instance,
equilibrium occurs at the minimum of the free energy.
24Imagine the difficulties that would ensue if we expected students to remember that
E(N,V,T) and E(N,p,T) were entirely different quantities. We could decorate them as ENVT

but this still leaves us with rather ugly notation.
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The statement of chemical equilibrium is then provided by the following
expression:

(11.38)
n∑

i=1

μi dNi = 0,

which arises from the fact that the relevant free energy is a minimum
(dE = 0, for example) at equilibrium. Because atoms are indestructible at
energies relevant to chemical processes, the numbers Ni are related. We
can write a chemical reaction like water hydrolysis in an abstract form:

(11.39)
n∑

i=1

αiXi = 0,

where the αi are the stoichiometric indices25 and the Xi are the species.
For the water reaction, this is just the statement:

−2H2 −O2 + 2H2O = 0.

with the identification that αH2 = −2, etc.
If we now have a chemical reaction in which one of the species changes
by an amount, dNi , we recognize that the change is constrained by Equa-
tion 11.39 and it must be proportional to the stoichiometric index: dNi =
λαi . As a result, we must also have that the following relation is true:

(11.40)
n∑

i=1

αiμi = 0.

This is a general statement of chemical equilibrium.

For ideal gases, where we maintain control over the volume and tempera-
ture, then the relevant free energy is the Helmholtz free energy F . In this
case, we have that the chemical potential is defined by the following:

μi =
∂F
∂Ni

= −kBT lnZi /Ni ,

where we have assumed that the total partition function Z factors into
separate partition functions for each molecular species Zi .
Substituting into Equation 11.40, we find the following:

−kBT
n∑

i=1

αi lnZi /Ni = ΔF + kBT
n∑

i=1

lnNαi
i ,

25The Greek root στoιχει̃oν means element. Hence, stoichiometry is the measure of the
elements.
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where we have lumped the single-particle partition functions into the free
energy and used the fact that a lnx = lnxa. Exponentiating this expression,
we now find the following result:

(11.41)
n∏

i=1

N
αi
i = e−ΔF /kBT ≡ K(T).

The term K(T) is known as the equilibrium constant and Equation 11.41
is known as the equation of mass action. For our example of water hy-
drolysis, the equation of mass action would read as follows:

N 2H2O
N 2H2NO2

= K.

The law of mass action was developed initially by the Norwegian chemists
Peter Waage and his brother-in-law Cato Maximillian Guldberg in 1864,26

building on work by the French chemist Claude Louis Berthollet, who first
recognized that chemical reactions were reversible.

Exercise 11.33. At a particular temperature T , the gases

CO+H2O� CO2 +H2
are in chemical equilibrium in a vessel of volume V . What is the
appropriate free energy for this system? What is the statement of
chemical equilibrium? If the total partition function is separable
(Z = ZCOZH2OZCO2ZH2 ), does the rate constant depend upon the
volume?

We can recover this fundamental behavior of chemical species from the
statistical approach devised by Gibbs and Boltzmann. Remarkably, the
mathematical framework devised by Gibbs can be utilized with little
modification when considering quantum phenomena. There are numer-
ous examples of such behavior but this text must end somewhere and we
must leave something to be discovered in subsequent courses.

Students at this juncture should have a modest appreciation for how one
might utilize mathematical language to describe physical phenomena and
how the process of developing models unfolds. Students should also be
rather proficient in utilizing the numerical tools in the Mathematica pack-
age and those skills will indeed be transferable to other courses. We have
endeavored to link the mathematical results with experimental observa-
tions and students should not lose sight of the fact that science depends
fundamentally on experiment. Moreover, the analytical approach that we
take in physics classes can certainly be used to analyze problems in other
arenas. Good fortune.

26Waage and Guldberg published their “Studier over Affiniteten,” in the proceedings of the
Norwegian Academy of Sciences: Avhandlinger Norske Videnskaps-Akademi Oslo.
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Vectors and Matrices

Vector notation provides a compact representation of the equations
dealing with motion in multiple dimensions. In simple linear motion,
an object can be characterized by its position x in some reference sys-
tem. For objects that are constrained to move in a plane, the object is
characterized by two numbers x and y that specify its position in the
plane. By convention, we can write the position as (x,y), where the order
is important. In general, the point (y,x) is not the same as the point (x,y).
For objects that move through three dimensions, we now require three
numbers to specify location (x,y,z). If we had more dimensions, we could
continue analogously.

So, in some basic sense, a vector is an ordered list of numbers. One
might imagine a fruit vector, in which each component of the vector rep-
resents the number of apples, bananas, grapefruit, etc., that one pos-
sesses. In the pharmaceutical industry, chemists construct quantitative
structure/activity relationship (QSAR) vectors for small molecules that
capture their chemical properties like acidity and polarity and may have
millions of components. In these examples, there is no particular relation
between the components of the vector: one obviously cannot mix apples
and bananas. In physics applications, however, we make a further restric-
tion on the vectors that we utilize: the components must have the same
dimensionality. This means that if x has the units of a length, then so will
y and z.

In this text, and most printed matter, we utilize the notation that boldface
characters represent vectors. Hence, we will write r = (x,y,z), which has
the obvious advantage that we can replace several characters with just
one. On the blackboard, or in homework submissions, it is more common
to utilize an arrow atop the character: �r = (x,y,z). This style is not nearly
as aesthetically pleasing as the use of boldface but is a practical solution to
the problem that it is quite difficult and time consuming to draw boldface
characters by hand.

© Mark A. Cunningham 2015
M.A. Cunningham, Neoclassical Physics, Undergraduate Lecture
Notes in Physics, DOI 10.1007/978-3-319-10647-2
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One can perform algebraic manipulations on vectors. The scalar product
of a number and a vector is defined as

αx = (αx1,αx2, . . . ,αxn),

where the vector is assumed to have n components. One can add vectors:

x+ y = (x1 + y1,x2 + y2, . . . ,xn + yn),

provided that the vectors have the same dimensionality. There is also an
additive inverse −x:

x+ (−x) = 0,
where the inverse is obtained by negating all of the components of x.

There are two means of multiplying vectors. The first is the inner product
and results in a scalar:

x · y = x1y1 + x2y2 + · · ·+ xnyn

The inner product of a vector with itself produces the square of the mag-
nitude of the vector:

x · x ≡ |x|2 = x2,

where we utilize the common notation that the magnitude of a vector is
written in italics. In places in the text where this notation may be confus-
ing, we utilize the first form.

The second vector product is the outer product, which results in a vec-
tor. Restricting ourselves to three dimensions for the moment, the outer
product is also known as the cross product:

x× y =
(
(x2y3 − x3y2), (x3y1 − x1y3), (x1y2 − x2y1)

)
.

The cross product does not commute. In fact, x× y = −y× x. The vectors x
and y are orthogonal to their cross product, by which we mean that:

x · (x× y) = 0 and y · (x× y) = 0.
Higher order products can generally be reduced via one of several vector
identities:

a · (b× c) = b · (c× a) = c · (a×b)
a× (b× c) = (a · c)b− (a ·b)c

(a×b) · (c×d) = (a · c)(b ·d)− (a ·d)(b · c)

Students are undoubtedly familiar with the Cartesian representation of
vectors, which is predicated on some choice of coordinate system. As we
shall see, the choice of coordinate system will not affect the physical in-
terpretation of our equations, so any choice of coordinate system will suf-
fice. As a practical matter, though, it will often prove highly useful to
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choose coordinate systems to minimize the algebraic effort in solving the
resulting equations.

To define a coordinate system, we will most often define a set of normal-
ized, orthogonal basis vectors. In this text, we shall define these as follows:

x̂ = (1,0,0) ŷ = (0,1,0) ẑ = (0,0,1).

For an arbitrary vector v = (vx,vy,vz), the inner product of the basis vectors
with the vector produces the components of v:

v · x̂ = vx v · ŷ = vy v · ẑ = vz.

The basis vectors serve as projection operators.

It is not necessary for the basis vectors to be orthogonal to still serve as
a basis. In fact, it is common in crystallography to choose a set of basis
vectors that are aligned with the crystal lattice. In this case, the basis
vectors ei are not orthogonal and are often not normalized to have unit
magnitude. To obtain the components of a vector in such a basis set, it is
necessary to define dual vectors ẽi :

(A.1) ẽ1 =
e2 × e3

e1 · (e2 × e3)
ẽ2 =

e3 × e1
e1 · (e2 × e3)

ẽ3 =
e1 × e2

e1 · (e2 × e3)
.

The components of an arbitrary vector v are obtained by projections with
the dual vectors:

vi = v · ẽi .
In the text, we shall want to differentiate and integrate vector quantities.
We shall interpret the derivative of a vector as the derivative of its com-
ponents:

d

dt
x =

(
dx1
dt

,
dx2
dt

, . . . ,
dxn
dt

)
.

The derivative is an operator that acts on the components of the vector.
Similarly, we will treat integration as an operator acting on the compo-
nents of a vector:

∫
dtx =

(∫
dt x1,

∫
dt x2, . . . ,

∫
dt xn

)
.

Vector calculus admits additional forms of integration. For example, one
may integrate a vector function along a directed path or over a surface.
This gives rise to integrals of the following forms:

∫
ds ·F and

∫
dA ·B,
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where F and B are vector functions. Both of these integrals result in scalar
values. In Cartesian coordinates the infinitesimal path element ds can be
resolved intocoordinates (See figure A.1):

ds = x̂dx + ŷdy + ẑdz.

Figure A.1. Consider a volume in space (light gray object) and a por-
tion of the surface of that volume S. The direction of the surface
is routinely taken to be directed outward and a path around the
boundary ∂S of the surface is positively directed in a right-handed
sense

Differential surface elements are constructed from the cross products of
the unit vectors:

dA = x̂dx × ŷdy + ŷdy × ẑdz+ ẑdz× x̂dx
= x̂dy dz+ ŷdxdz+ ẑdxdy.

Integrals over the volume take the following form:∫
d3rF,

where the volume element is composed by the triple product:

d3r = x̂dx · (ŷdy × ẑdz) = dxdy dz.

The result of this integration will be a vector function. Note that the triple
product is an invariant; one constructs the same invariant from permuta-
tions of x̂, ŷ and ẑ.

For problems that have cylindrical symmetry, we shall frequently utilize
a cylindrical coordinate system. In cylindrical coordinates, the z-axis re-
mains the same as in the Cartesian system but we utilize polar coordinates
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Figure A.2. A cylindrical coordinate system utilizes the same ẑ
vector as the Cartesian system but uses polar coordinates in the x-y
plane

in the x-y plane. In physics, the most common notation for this is to de-
note the azimuthal angle by θ and the radial distance by r. We shall fre-
quently also utilize spherical coordinates, where θ is used by physicists to
mean the polar angle and ϕ denotes the azimuthal angle. The distance r
in spherical coordinates reflects the distance to the origin, not the distance
to the z-axis. To avoid these issues, we shall use the (somewhat nonstan-
dard) symbolϕ to denote the azimuthal angle as measured from the x-axis
and the (completely nonstandard) symbol ζ to denote the radial distance
to the z-axis, as illustrated in figure A.2.

It is somewhat more common to utilize the symbol ρ to denote the radial
distance to the z-axis but, in physics, we shall often use ρ to mean a den-
sity. This results in the particularly awkward equation for computing the
total charge from a charge distribution:

Q =
∫

d3rρ(r) =
∫ rb

ra

dρ

∫ 2π

0
dϕ

∫ zb

za

dzρρ(ρ,ϕ,z),

where we intend to integrate the function ρ(ρ,ϕ,z) over the range of the
radial coordinate ρ. We note though that our choice of ζ to replace r
and ρ (which is the Greek form of the Latin r) is not completely unjus-
tified. We are using the string of Latin characters x, y, z to denote posi-
tions. The equivalent Greek characters are χ, υ and ζ. It it quite likely
that handwriting-challenged faculty will have difficulty differentiating χ
from x on the blackboard but it seems completely impossible for even the
most diligent faculty to differentiate the Greek υ from the Latin v. It is
imperative that we differentiate the radial position υ from the velocity v.
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So, weighing these three choices, we are left with ζ as the radial coordinate
in a cylindrical system. Another possibility would be the Greek symbol
ξ , which has the advantage that it is dramatically different than any Latin
character and not used commonly. In the author’s mind, ζ is sometimes a
pseudonym for the direction z, not orthogonal to it, but the Greek ξ will
prove overly taxing to the aforementioned handwriting challenged to use
routinely. So, we’ll stick with ζ as the radial coordinate in cylindrical sys-
tems. Again, the choice of notation is partly an aesthetic choice. Students
are ultimately free to make their own choices.

The same point r1 = (x1, y1, z1) can be expressed in both Cartesian and
cylindrical forms. To avoid confusion, we shall only use the parenthesis
form of the vector to mean Cartesian coordinates. That is,

r1 = (x1, y1, z1) = x̂x1 + ŷy1 + ẑz1

are different representations of the same point in space. In cylindrical
coordinates, we have the following:

r1 = (ζ1 cosϕ1,ζ1 sinϕ1, z1)

where ζ1 = (x21+y
2
1 )
1/2 and ϕ1 = tan−1(y1/x1). This latter definition implies

that the following relations hold:

cosϕ1 =
x1

(x21 + y21 )1/2
and sinϕ1 =

y1
(x21 + y21 )1/2

.

The unit vectors in a cylindrical coordinate system are given by the fol-
lowing:

ζ̂ = (cosϕ,sinϕ,0) ϕ̂ = (−sinϕ,cosϕ,0) ẑ = (0,0,1).

These are related to the Cartesian unit vectors by the following:

x̂ = ζ̂ cosϕ − ϕ̂ sinϕ ζ̂ = x̂ cosϕ + ŷ sinϕ

ŷ = ζ̂ sinϕ + ϕ̂ cosϕ ϕ̂ = −x̂ sinϕ + ŷ cosϕ

The differential elements in cylindrical coordinates are given by the fol-
lowing:

ds = ζ̂ dζ + ϕ̂ζ dϕ + ẑdz

dA = ζ̂ ζ dϕdz+ ϕ̂dζ dz+ ẑζ dζ dϕ

d3r = ζ dζ dϕdz.

We will also make use of spherical coordinates, as depicted in figure A.3,
in situations where we can exploit the symmetry. A point in space r1 is
characterized by the distance to the origin r1 = (x21 + y21 + z21)

1/2, and two
angles. The azimuthal angle is measured from the x-axis and we denote it
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Figure A.3. In a spherical coordinate system, points are represented
by the radial distance to the origin, the polar angle θ and the az-
imuthal angle ϕ

by ϕ1 = tan−1(y1/x1). The polar angle is measured from the z-axis and we
denote it by θ1 = tan−1(

√
x21 + y21 /z1).

Unit vectors in the spherical coordinate system are given by the following:

r̂ = (sinθ1 cosϕ1,sinθ1 sinϕ1,cosθ1)

θ̂ = (cosθ1 cosϕ1,cosθ1 sinϕ1,−sinθ1)
ϕ̂ = (−sinϕ1,cosϕ1,0).

These are related to the Cartesian vectors by the following expressions:

x̂ = r̂ sinθ1 cosϕ1 + θ̂ cosθ1 cosϕ1 − ϕ̂ sinϕ1

ŷ = r̂ sinθ1 sinϕ1 + θ̂ cosθ1 sinϕ1 + ϕ̂ cosϕ1

ẑ = r̂ cosθ1 − θ̂ sinθ1.

Differential elements are listed below:

ds = r̂dr + θ̂ r dθ + ϕ̂r sinθdϕ

dA = r̂r2 sinθdθdϕ + θ̂ r sinθdr dϕ + ϕ̂r dr dθ

d3r = r2 sinθdr dθ dϕ.

Just as vector calculus includes new forms of integration, there are addi-
tional derivative operators that can be defined. We can define the symbol
∇ to mean the following:

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.
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This mathematical quantity is not a vector in the sense that we have used
before but it does have ordered components. (Mathematicians will call
this entity a 1-form.) We can construct a vector from the gradient of a
scalar function f :

∇f ≡
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

We can also define the (scalar) divergence of a vector function:

∇ ·F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

.

Finally, we can define the curl of a vector function:

∇×F =
(
∂Fz
∂y
−
∂Fy
∂z

,
∂Fx
∂z
−
∂Fz
∂x

,
∂Fy
∂x
−
∂Fx
∂y

)
.

The vector derivatives can be used to derive an alternative representa-
tion of our various equations of motion. This is done primarily because,
while it is exceptionally difficult to solve the resulting partial differen-
tial equations, it is even more difficult to solve integral equations. Stu-
dents may recognize that transforming between integral and differential
forms of equations amounts to the mathematical equivalent of pushing
one’s peas about the plate in the hopes that one’s parents do not notice
that they have been eaten by the dog. The author cannot provide a cogent
argument against such a proposal.

We have introduced matrix notation in the text primarily as a visual con-
venience. If we define a vector x to have N components xj and a matrix A
to have M ·N components Aij , then the product y of the multiplication of
Ax is defined as follows:

(A.2) yi =
N∑

j=1

Aij xj .

In a more graphical display, we can write this in the following form:

(A.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

yM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 · · · A1N
A21 A22 A23 · · · A2N
A31 A32 A33 · · · A3N
...

...
...

. . .
...

AM1 AM2 AM3 · · · AMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...
xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

by which we mean that, for example,

y2 = A21x1 +A22x2 +A23x3 + · · ·+A2NxN .

Thus, Equations A.2 and A.3 are simply different representations of the
same mathematical quantity.
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The matrix representation of a system of linear equations provides a
convenient and compact means for representing those equations. There
are a number of courses on linear algebra that provide far more detail on
matrices than we shall attempt to cover here. We note that one can also
define multiplication of two matrices A and B in a systematic manner
where the components of AB are obtained by taking the inner products
of the columns of the right-hand matrix B with the rows of the left-hand
matrix A, similar to the form displayed in Equation A.2. For this to make
sense, the number of columns of the right-hand matrix B must be the
same as the number of rows of the left-hand matrix A. Matrix algebra
differs from the algebra of the real numbers in that the commutative
property is generally lost, i.e., AB � BA.

In the graphical representation of matrices, for Ax to make sense, the vec-
tor x needs to have as many rows as the matrix A has columns. Conse-
quently, x is represented as a column vector. The Mathematica syntax
defines vectors as ordered lists and matrices as lists of lists. Perform-
ing a matrix-vector multiplication implicitly uses the rule stated in Equa-
tion A.2. For example the Mathematica script v={1,2,3} creates a list
of three numbers that will be interpreted in the usual sense as a vector.
Thus the script yhat={0,1,0}; yhat.v will produce the result 2, i.e., the
second component of the vector v.

As a consequence, there is no need to define column vectors, although in
a Mathematica script, we could define a single-column matrix as follows:

p = {{E/c}, {px}, {py}, {pz}}.
The dual vector would then be the row vector pd={E/c,-px,-py,-pz}.
When using the MatrixForm function, these two entities would appear in
the expected form. The dual vector can be constructed from the transpose
of the product of the vector and the metric tensor. For the four-vector x,
we have the following:

x̃ =
[
ct −x −y −z

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ct
x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

From which we can recover the invariant interval:

x̃ · x =
[
ct −x −y −z

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ct
x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (ct)2 − x2 − y2 − z2.

Note that the graphical representation of row vectors and column vectors
is not required if we simply utilize the definition of Equation A.2. Both
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vectors and their duals are ordered lists of n elements. Their inner prod-
uct can be defined without resort to a graphical display. Indeed, the astute
student will recognize that we have refrained from illustrating vector ad-
dition in the text with pictures of arrows linked head to tail. We have
used the precise definition that vector addition is defined by adding the
components of the vectors. This activity can be performed exactly where
sketching arrows cannot.

We referred to the metric tensor for the theory of Special Relativity, which
we can write as the matrix with (1,−1,−1,−1) on the diagonal and zero
elsewhere. The metric tensor is a mathematical extension of the Euclidean
distance between two points A = (x1, y2) and B = (x2, y2) on the plane:
d = [(x2 − x1)2 + (y2 − y1)2]1/2. The Euclidean metric tensor is the identity
matrix, i.e., a matrix with ones on the diagonal and zero elsewhere. In this
initial course, the mathematical structure underlying metric spaces is not
necessary to provide adequate descriptions of physical systems. It was,
of course, essential for the development of Einstein’s General Theory of
Relativity.

We have made no effort in this text to distinguish four-vectors from three-
vectors with different notation. This may be something of a controversial
choice but texts that make this distinction generally jump into notational
choices that are difficult to understand initially. We made a conscious
choice in this text to use notation that is not compact, so that students
will learn to appreciate the value of compact notation as they progress.
Eventually, use of the Einstein summation convention will prove useful
but not for introductory students. It cannot be expected that such stu-
dents will grasp the subtlety that by pμ, with a Greek subscript, we mean
the four-momentum of something, whereas by pi , with a Latin subscript,
we mean the ith component of the three-momentum of something. We
shall leave such intricacies to the instructors of subsequent courses.



B

Noether’s Theorem

We would now like to make the connection between symmetries of the
equations of motion and conservation laws. To do so, we will first need
to revisit a result first established by the mathematician Joseph-Louis La-
grange.1 Lagrange suggested that one should consider the quantity T −U ,
where T is the kinetic energy and U is the potential energy that we have
defined previously. Recall that T is a function only of the velocities and
U is only a function of the positions. For concreteness, let us use the en-
ergies defined for two masses interacting through the gravitational force;
these were defined by Equations 2.26 and 2.27.

The Lagrangian function L = T − U is a function of six quantities: the
three components of the vector r2(t) − r1(t) and the three components of
the vector v2(t) − v1(t). Consider taking the derivative of L with respect
to one of the components of r2(t)− r1(t). As T does not depend upon the
position, we have, for the x-component:

∂L
d(r2(t)− r1(t))x

= − ∂U
d(r2(t)− r1(t))x

= G
M1M2

|r2(t)− r1(t)|3
(r2(t)− r1(t))x,(B.1)

where by the ()x notation we mean the x-component of the vector. Simi-
larly, if we take the derivative of L with respect to the x-component of the
vector v2(t)− v1(t), we would obtain the following result:

∂L
d(v2(t)− v1(t))x

=
∂T

d(v2(t)− v1(t))x
=

M1M2
M1 +M2

(v2(t)− v1(t))x.(B.2)

1Lagrange was actually born in Turin, Italy and baptized as Guiseppe Lodovico Lagrangia in
1736. He spent much of his working life in Berlin before moving to Paris in 1787, where he
remained for the remainder of his life. Lagrange considered himself French at heart, signing
his name with the French spelling even in his youth.
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What Lagrange observed is that if we take the time derivative of Equa-
tion B.2 and add Equation B.1 we obtain the following:

(B.3)
M1M2
M1 +M2

d

dt
(v2(t)− v1(t))x +G

M1M2
|r2(t)− r1(t)|3

(r2(t)− r1(t))x

This is just the x-component of the equations of motion that we wrote
down in Equation 2.6 and we know that it vanishes!

Lagrange’s approach to mechanics seems somewhat contrived here but,
in fact, offers a very general strategy for deriving the equations of mo-
tion of physical systems, which is completely equivalent to the Newtonian
methodology that we have investigated previously. In using the Lagrange
strategy, one must define the kinetic energy T and the potential energy U
of the system in terms of whichever variables are convenient and then the
equations of motion can be systematically constructed by taking deriva-
tives of the Lagrangian L. Suppose that we have a system defined by a set
of variables {xi} = x1, . . . ,xn. The equations of motion for the xi are then
obtained from the following:

(B.4)
∂L
∂xi
− d

dt

∂L

∂

[
∂xi
dt

] = 0,

where there will be n total equations.

Exercise B.1. We just stated the result in Equation B.1. Consider
using our concise notation: r2(t) − r1(t) = r21 = (x21, y21, z21). Here,
we would write U = −GM1M2/r21, where r21 = |r21|. Show that you
do indeed obtain the result found in Equation B.1

Exercise B.2. Likewise, we just stated the result in Equation B.2.
Consider using our concise notation: v2(t)− v1(t) = v21 = (vx,vy,vz).
Here, we would write T = M1M2v

2
21/2(M1 +M2), where v21 = |v21|.

Show that you obtain the result found in Equation B.2

Our introduction of Lagrange’s methodology allows us now to discuss
Noether’s ideas on conservation laws. Consider that the parameters that
define Lagrange’s function L are subjected to some continuous transfor-
mation, like our Lorentz transformation. Then, the parameters can be
thought of as themselves functions of another parameter like ζ: xi = xi(ζ).
That is, if L is a function of x and its time derivative dx/dt, we would have
the following:

(B.5)
dL
dζ

=
∂L
∂x

∂x

∂ζ
+

∂L
∂dx/dt

∂dx/dt

∂ζ
.
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Now this quantity vanishes if Lagrange’s function L and, consequently,
the equations of motion do not depend explicitly on ζ.

Noether defined the following quantity:

(B.6) η =
∂L

∂(dx/dt)
∂x

∂ζ
.

Noether’s theorem is that the time derivative of η vanishes; η is a con-
served quantity. We find explicitly that:

dη

dt
=
[
d

dt

∂L
∂dx/dt

]
∂x

∂ζ
+

∂L
∂dx/dt

[
d

dt

∂x

∂ζ

]

=
[
d

dt

∂L
∂dx/dt

− ∂L
∂x

]
∂x

∂ζ
= 0,(B.7)

where we have used the result that Equation B.5 vanishes to replace the
second term on the right-hand side of the first line. Note that the quantity
in the square brackets in Equation B.7 is just the equation of motion for
the parameter x. This vanishes by definition, completing the proof that
the quantity η does not depend upon time and is thereby conserved. It is
commonly referred to as the Noether current.

For a free particle of mass m and velocity v, there is no potential energy,
just kinetic energy. In this case, we find the Lagrangian is given by the
following:

L =m
v2x + v2y + v2z

2
,

where the vj are the components of velocity in a Cartesian coordinate sys-
tem. The Lagrangian has no explicit dependence upon x, so here ζ = x
and the corresponding Noether current is just

ηx =
∂L
∂vx

∂x

∂x
=mvx.

This is the x-component of momentum and we have just demonstrated
that it is an invariant of the system, through the use of Noether’s theorem.

As a second example, consider the theory of Newtonian gravitation, where
the Lagrangian has the following form:

L =
M1M2
M1 +M2

|v2 − v1|2 +G
M1M2
|r2 − r1|

.

Suppose that we rotate the coordinate system by an angle ζ around the
z-axis. In the new (primed) coordinate system, we have the following:

r′2 − r′1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
cosζ(r2 − r1)x − sinζ(r2 − r1)y
sinζ(r2 − r1)x + cosζ(r2 − r1)y

(r2 − r3)z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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and we have a similar expression for the velocity vector:

v′2 − v′1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
cosζ(v2 − v1)x − sinζ(v2 − v1)y
sinζ(v2 − v1)x + cosζ(v2 − v1)y

(v2 − v3)z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The x-component of the Noether current is given by the following:

ηx =
∂L

∂(v′2 − v′1)x
∂(x′2 − x′1)x

∂ζ

= − M1M2
M1 +M2

(v′2 − v′2)x(r′2 − r′1)y.

Similarly, the y-component of the Noether current is given by the
following:

ηy =
∂L

∂(v′2 − v′1)y
∂(x′2 − x′1)y

∂ζ

=
M1M2
M1 +M2

(v′2 − v′2)y(r′2 − r′1)x.

Each of these two components is individually conserved, so their sum will
be conserved as well. Thus the following quantity is conserved:

ηx + ηy =
M1M2
M1 +M2

(
(r′2 − r′1)x(v′2 − v′2)y − (r′2 − r′1)y(v′2 − v′2)x

)

=
M1M2
M1 +M2

(
(r′2 − r′1)× (v′2 − v′2)

)
z

= Lz

This is just the z-component of the angular momentum vector defined
in Equation 2.24. Hence, invariance to rotations about any axis leads to
conservation of angular momentum about that axis.

It is a bit beyond most student’s present mathematical abilities but one
can define a Lagrangian function from which Maxwell’s equations can be
derived. The application of Noether’s theorem results in a conservation
law for electric charge:∫

V
d3rρ(r) +

∫

∂V
dA · J(r) = 0.

We recognize this result as Equation 9.3. While electric charge conserva-
tion is an experimental observation, it is also the result of an important
symmetry that is reflected in the Maxwell equations.
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wave equation, 102, 132

algebra
matrix, 128, 360, 361
vector, 6, 354

α particle, 64, 239
scattering, 66, 74–85

alphabet
Greek, 7, 64, 244, 358
Latin, 7
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antimatter, 243
approximation, 2, 13, 253
Dominique François Jean Arago, 251
Argonne National Laboratory
neutrino event, 249

asteroid, 214
Francis Aston
isotopes, 230
Nobel Prize (1922), 230
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Jacques Charles
gas law, 340

chemical reaction, 347
chemistry, 347
reaction coordinate, 348
transition state, 348

Stephen Chu
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cylindrical, 49, 260, 329, 357
spherical, 168, 273, 358

Charles Augustin de Coulomb, 55
electric force, 85, 86, 286
inverse square law, 56
torsion balance, 56

cross section, see also scattering
crystal lattice, 148, 149, 342
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Francesco Maria Grimaldi
diffraction, 144

Marcel Grossmann, 44
differential geometry, 129

Frederick Guthrie
thermal electron emission, 314

hadron, 244
Edmund Halley, 189
William Rowan Hamilton
dynamics, 189

Serge Haroche
Nobel Prize (2012), 121

heat, 331
Joseph Henry
magnetic induction, 292

David Hilbert, 10
Walter Hohmann
transfer orbit, 201

Christiaan Huygens, 54
wavelets, 145

idealization, 13, 27, 48, 75, 129, 135,
162, 177, 186, 192, 200, 203, 214,
254, 296

impact parameter, see also scattering
impedance
definition, 313

inductance, 300
inductor, 300
Jan Ingenhousz
coal dust particles, 324

insulator
definition, 255
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equivalence, 269
line segment, 258–260
spinning electron, 272–277
spinning sphere, 277
torque, 280

magnetic permeability, 257
Heinrich Magnus
force on spinning sphere, 178

Benoît Mandelbrot
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photon, 235
relativistic, 126

motor, 295
Andrew Motte, 120
muon, 121
Pieter van Musschenbroek
Leyden jar, 301
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x-ray tube, 156

Ole Rømer, 88
eclipses of Io, 88–89, 96–99, 115

Ernest Rutherford, 64
α, β radiation, 64
finite nuclear size, 85
Nobel Prize (1908), 65
nuclear model of the atom, 79, 270

satellite, 190
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scattering
cross section, 80, 84
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impact parameter, 80
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Nobel Prize (1988), 96

scientific priority, 87, 196
semiconductor, 312
sequence
time ordered, 114

Clifford Shull
neutron diffraction, 158
Nobel Prize (1994), 158

Le Système International d’Unités (SI),
76

significance, 93, 98
singular, 61, 63, 67, 275
skew, see also statistics
Marian Smoluchowski
Brownian motion, 324

solenoid, 267
solid angle, 80
Arnold Sommerfeld, 44
spacetime, 124
event, 106

specific heat capacity, 341
spectroscopy, 217
spectrum
definition, 154
visible, 153

square root of time, 326
standard deviation, see also statistics
statistics, 90
central limit theorem, 92
inference, 94
mean, 91
skew, 91
standard deviation, 91, 97
variance, 91

Jack Steinberger
Nobel Prize (1988), 96

Otto Stern
magnetic moment of the electron, 281
Nobel Prize (1943), 281

stoichiometry, 351
George Stokes
resistive force on droplets, 165–167,
286

Reynolds number, 173
Strategic Defense Initiative (Star Wars),
102

Gerald Sussmann
chaotic solar system, 215

tankage factor, 199
Brook Taylor
vibrating string, 134

John Taylor
magnetic moment of hydrogen, 282

Taylor, Brook
series expansion, 12

telecommunications, 310
Nikolai Tesla, 296
thermodynamics, 331
first law, 331
second law, 332

Benjamin Thompson, Reichsgraf von
Rumford

work/energy equivalence, 331
George Paget Thomson
electron diffraction, 157
Nobel Prize (1937), 158

Joseph John Thomson, 64
cathode rays, 222
electron, 65
Nobel Prize (1906), 223
plum pudding model, 65, 74, 225

Richard Townley
gas law, 339

trajectory, 8, 12, 18, 20, 232, 247
baseball, 174–185
bats, 5
bounded, 192
definition, 5
elliptical, 30, 38–48
gravity assist, 208–211
helical, 221
hyperbolic, 30, 58–64, 78
parabolic, 30
random walk, 325
time on orbit, 43–48

transducer, 311
transform
coordinate, 34, 103, 273
coordinate rotation, 110
rotation, 196

transformer, 295
transmutation, 64
trend, see also statistics
triode, 316
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uncertainty, 2, 90, 91
uncorrelated, 91
unit system
British, 177
conversion between, 198
le Système International d‘unités(SI), 3

universe, 11, 20, 88, 243
unphysical solution, 58

vacuum tube
diode, 315
triode, 316

variance, see also statistics
vector
algebra, 6, 354
calculus, 13, 289
components, 6
cross product, 25
definition, 6, 353
dual, 149, 355
identity, 29, 38, 354
light-like, 107
normal to a surface, 68
space-like, 107
time-like, 107

velocity
asymptotic, 208
characteristic, 101
definition, 13
exhaust, 198
gravity, 290
relativistic, 125
relativistic addition, 123
sound, 115
terminal, 166

Venus, 8, 21
vibration
damping, 307

viscosity, 174

Alessandro Volta
battery, 218, 253

voltaic pile, see also battery
Robert von Lieben
triode, 316

Peter Waage
law of mass action, 352

wave
intensity, 142

wave equation
one-dimensional, 101–106, 107
point source, 135–137
three-dimensional, 111–113
two-dimensional, 108–111

wave vector, 150, 153
wavelength, 150
definition, 118

Victor Weisskopf, 247
George Westinghouse, 296
Charles Thomson Rees Wilson
Nobel Prize (1927), 236

wind, 184
as a vector field, 67

David J. Wineland
Nobel Prize (2012), 121

Jack Wisdom
chaotic solar system, 215

Ernest Wolland
neutron diffraction, 158

work
definition, 168
energy equivalence, 169

Pieter Zeeman
Nobel Prize (1902), 105

Zeus, 87
Zustandsumme, see also partition

function
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