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Supervisor’s Foreword

A physicist’s view of the world used to be rather deterministic 200 years ago. If the
state of all particles and the forces acting between them were known, Laplace
hypothesised, a ‘being’ vast enough to project forward these laws could calculate all
future states of the universe. This concept of a Laplacian daemon is of course
hopelessly out of date. The discovery of quantum mechanics has fundamentally
changed our view of the world; the way we think about determinism and pre-
dictability is rather different than at the times of Newton and later Laplace.
Quantum physics describes randomness which is (as far as we know) intrinsic to
nature, and which cannot be overcome, no matter how hard we try.

Perhaps as important as such aleatoric uncertainty is a second source of ran-
domness in mathematical models of the world around us. Towards the late nine-
teenth century revolutionary ideas about how one might describe systems with large
numbers of interacting particles were developed by heroic figures such as
Boltzmann and Gibbs. The theory of ‘statistical mechanics’ was born. These
concepts are founded on the idea that the detailed trajectories of each and every
particle in a large system are not all that interesting. Instead it is the behaviour of the
system as a whole that we care about. The logical consequence is to study
ensembles of particles, and their ‘statistics’. Unlike in Newtonian physics we no
longer ask: Where is this particular particle going to be at a later time? Instead we
ask: If the initial distribution of particles is this, what is the probability to find a
given particle in a certain area of space, or with a given speed?

This leads to stochastic descriptions of the laws of physics, the equations gov-
erning the dynamics are now subject to noise. This is so-called ‘epistemic noise’, it
originates from the way we model those ensembles of particles. Leaving quantum
physics aside, epistemic uncertainty could be eliminated by making a more detailed
model and including all forces and interactions in a Laplacian sense. But as sta-
tistical physicists we decide not to, because these are not the relevant questions.
What is relevant is how global large-scale behaviour emerges from microscopic
interaction, not the microscopic trajectories as such.
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In order to do this a whole new theory—the theory of stochastic processes—had
to be invented. Much of the twentieth century was spent on trying to understand and
classify the equilibrium states interacting particle systems reach in the long term.
This work is now largely complete, and the focus has moved to systems out of
equilibrium. These are systems which do not settle down, they are subject to
driving, fluxes, and coupling to the external surroundings. No coherent theory exists
for the physics far from equilibrium, but at the same time many pressing challenges
rely on progress in this field. This includes turbulence, plasma fusion, active matter,
quantum materials, and most notably the physics of life. Biology is inherently out
of equilibrium and based on transport of nutrients, energy, the absorption of light,
sudden changes, large deviations, the dynamics of evolution and changing envi-
ronments. It is no surprise that physicists have been able to make remarkable
contributions, and that ideas from statistical physics and the theory of stochastic
processes have delivered important advances.

Peter joined this adventure in 2012, his thesis focuses on the dynamics of
fixation in models of interacting individuals. Peter has investigated several prob-
lems at the boundary of theoretical physics and biology. The thesis contains the
study of an evolutionary model of populations in switching environments, relevant
for example for antibiotic treatment in colonies of bacteria. He has also analysed
metastable states in a model of cancer initiation, and the relation of so-called mixing
times and the dynamics of fixation in birth–death processes. Chapter 6 of his thesis
presents a pedagogical account of the so-called WKB method, a technique from
semi-classical physics used to study phenomena including epidemics, ecosystems
and, in Peter’s thesis, models of cancer evolution.

While I mention the words ‘cancer’, ‘bacteria’ and ‘evolution’ we should be
clear: this is a thesis in statistical physics. It contains mathematics and long
equations, things are complicated and subtle. The problems Peter looks at are
motivated in biology, but the true beauty of this thesis is in the beauty of the
underlying mathematical structures and the theoretical concepts and ideas used to
unveil them.

Santiago de Compostela, Spain Dr. Tobias Galla
April 2016
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Abstract

Individual-based models have been applied to study a broad spectrum of problems
across multiple disciplines, such as the spread of epidemics or the outcome of social
dilemma. They are used to investigate the macroscopic effects that arise from the
microscopic dynamics of interacting individuals. Fixation describes the taking over
of the population by a single type of individual or species. It is a prominent feature
in the field of population genetics, which interprets many biological scenarios of
evolution. Equilibration describes the process of reaching a heterogeneous steady
state. In this thesis we analyse these macroscopic features through techniques
derived from statistical physics and the theory of stochastic processes.

Birth–death processes are used to describe the interaction of two types of indi-
vidual in a population, such as competing strains of bacteria. These interactions are
often specified using the framework of evolutionary game theory. The environment
in which the population evolves can have a crucial impact on selection. In systems
where the environment switches between multiple states we develop a general theory
to calculate the fixation time statistics of a mutant individual in a population of
wild-types, as well as the stationary distributions when mutations are present in the
dynamics. In some birth–death processes, and in particular those described by
evolutionary game theory, the mean fixation time contains only limited information.
By diagonalising the master equation that describes the process, we are able to obtain
closed-form expressions for the complete fixation time distributions.

Individual-based models can also be used to describe the accumulation of
mutations in a cell. This has important consequences for the initiation and pro-
gression of cancer. We find that such systems exhibit metastable states in the
dynamics, and we can exploit the separation of timescales between relaxing to the
quasi-stationary state and reaching fixation to characterise these phenomena. In this
scenario we employ the WKB method to describe the population-level dynamics.
Although this method has been used to describe numerous stochastic processes, a
clear and coherent description is lacking in the literature. Through the use of
multiple examples, including the aforementioned cancer initiation model, we
carefully explain the multitude of constructs and equations that result from the
application of this method.

ix



The analytical characterisation of the evolutionary dynamics that are observed in
these stochastic processes has resulted in a greater understanding of fixation and
equilibration. This thesis promotes the benefits of analytical, or even
semi-analytical methods, and on a more general level contributes towards a more
complete understanding of evolutionary processes.

x Abstract
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Chapter 1
Introduction

Over the next 200 or so pages I will explore how tools and concepts developed
within theoretical physics can be applied to problems in other sciences. Although
more emphasis in this thesis will be directed to biological applications, the successes
of this field can also be seen in social science [1, 2], economics [3, 4], and many
other disciplines where so-called complex systems are a prominent feature.

My motivation for working in this area is the freedom you have to explore these
numerous disciplines, and the satisfaction that arises from solving a long-standing
problem by approaching it from an unconventional point of view. Interactions with
academics from these various backgrounds has provided hours of intellectual con-
versation and brainstorming that have greatly enhanced my knowledge of the world
outside of physics. But ultimately the main reason for joining this area, and choosing
to continue my career in this field, is because the analysis is fun! The benefits of
the approaches I use lie not only in their predictive power, but they are enjoyable,
satisfying, stimulating and infuriating in equal measures.

The success of theoretical physics across multiple disciplines comes from its
ability to break down objects to their fundamental constituents. Analysis of the
inner workings then allows the practitioner to obtain a more complete understanding
of the world. An experimentalist works with the real-world system, or a synthetic
in vitro analogue. Their understanding of this system is achieved through the collec-
tion and analysis of data. Theorists, however, obtain an understanding by considering
a representation of the real-world system, which I will refer to as a model.

For biological systems an exactmodel representation is often impossible due to the
inherent complexity of many interacting entities. If a model is almost as complicated
as the experimental system, it will be just as intractable. In the end you would have
the same data set, but generated in silico, and no new insight or understanding will
have been gained. As the level of abstraction from the real world increases, so does
the level of tractability. The balance between accuracy and tractability is a choice
to be made by the modeller. In the case of this thesis, Occam’s Razor prevails;

© Springer International Publishing Switzerland 2016
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2 1 Introduction

I will focus on the simplest models which reproduce observed behaviours, but can
be applied to a wide range of problems. These models can highlight the underlying
mechanisms that result in the observed phenomenon, something that may not be
immediately obvious from simply conducting an experiment.

One of the most profound examples of this in the biosciences is the explanation
of the regular structures on the coats of animals [5]. The colouration was known
to be caused by melanin in the skin, but there was no explanation for the origin of
the pattern of this colouration in animals such as zebras and leopards. The seminal
work of Alan Turing (1912–1954) provided part of the answer. Turing proposed that
diffusive chemicals can settle into a stable, spatially-inhomogeneous state through
the excitation of the now-called Turing instability [6]. Although the true mechanism
is more complex than the idea proposed by Turing [7], the same basic principles
were applied to reproduce observed animal coat patterns [8].

The class of systems in which my interest lies is not the continuous reaction–
diffusion systems as studied by Turing, but systems that contain a finite number of
discrete, interacting ‘particles’ or individuals. Such systems are ubiquitous in nature,
where particles could represent proteins,molecules, cells, bacteria, animals or people.
The dynamics of the particles can be governed by events such as production (birth),
degradation (death), predation or infection, to name but a few. The discreteness
of the particles, and the nature of the dynamics, are responsible for the observed
stochasticity; that is, there is an intrinsic source of randomness in these systems,
often referred to as demographic noise.

The discreteness of the particles, and with it the intrinsic stochasticity, is retained
when modelling these systems. However, information about the behaviour of every
individual particle is not necessary. Instead, the simplifying assumption that two
particles of the same type are indistinguishable is made. The behaviour of the system
can then be described by the statistics of the group of particles. This procedure is the
basis of statistical mechanics, and the approach is poetically summarised by James
Clerk Maxwell (1831–1879):

And here Iwish to point out that, in adopting this statisticalmethod of considering the average
number of groups of molecules selected according to their velocities, we have abandoned
the strict kinetic method of tracing the exact circumstances of each individual molecule in
all its encounters.

It is therefore possible that we may arrive at results which, though they fairly represent the
facts as long as we are supposed to deal with a gas in mass, would cease to be applicable if
our faculties and instruments were so sharpened that we could detect and lay hold of each
molecule and trace it through all its course.

James Clerk Maxwell, The Theory of Heat [9].

Here Maxwell is referring to the original derivation of the Maxwell–Boltzmann
distribution, which describes the distribution of speeds of molecules of a contained
ideal gas [10].1

1Ludwig Boltzmann (1844–1906) later derived this result from the kinetic theory of gases [11].
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To model the particles in the discrete systems in mass they are treated like mole-
cules of a gas. The interactions then take a form which is similar to that of chemical
reactions. These reactions are dependent on the number of reactants (molecules)
available and the rate at which the gas molecules interact [12]. These models are
referred to as individual-based models, and they have been applied to study epi-
demic outbreaks [13], social dilemma [14], predator–prey interaction [15], and the
list can go on and on. This thesis, however, is not dedicated to a particular system
or application. Instead I will investigate particular phenomena that are observed in a
variety of stochastic systems. These are:

Fixation: The process of a single type of individual taking over thewhole population.
The term originates from the field of population genetics, where the fixation of an
allele was a central topic [16–19]. In this case fixation occurs when all other alleles
are irreversibly lost from the gene pool, and only a single fixed allele remains.
The terminology is now used outside of population genetics and the study of gene
frequencies, for example to describe the eradication of a disease or reaching a
social consensus.

Equilibration: The process of reaching a stable stationary state. If fixation is not
possible in a system, as is the case if individuals can change their type stochas-
tically, then the success of a type of individual is no longer characterised by the
probability that it takes over the population. Instead success can be measured
by its relative concentration at long times. This is described by the stationary
probability distribution. The time to approach this stable state is also of interest.

These two effects are closely linked; if a systemfixates then nomore dynamics can
occur and hence the fixated state is stationary. They are also related if fixation takes
a very long time, such that the system can initially relax into a quasi-stationary state
before fixation occurs. These links will be investigated closely in Chaps. 4 and 5.

A concrete understanding of the effects of fixation and equilibration, and the inter-
play between them, will greatly contribute to our understanding of the process of
evolution. This field of investigating evolution through mathematical approaches has
been dubbed evolutionary dynamics, and it describes the change of populations over
time subject to spontaneous mutation, selection, and random events [14, 20]. Differ-
ent types of individual in the population, which wewill sometimes call phenotypes in
linewith the biological literature, can emerge spontaneously bymutation, i.e. through
errors during reproduction of the pre-existing wild-types. In many cases, wild-type
andmutant individuals are characterised by heritable differences in behavioural traits
or strategies [14]. Selection acts on different (pheno)types and their associated traits
to change the population composition.

One of the great successes of evolutionary dynamics is the quantitative analysis
of cancer, which is a genetic disease and according to Cancer Research UK, “1 in 2
people in the UK born after 1960 will be diagnosed with some form of cancer during
their lifetime” [21]. Mathematical investigations have contributed profoundly to our
understanding of “the emperor of all maladies” [22]. Numerous studies throughout
the 20th century have addressed the kinetics of cancer initiation and progression

http://dx.doi.org/10.1007/978-3-319-41213-9_4
http://dx.doi.org/10.1007/978-3-319-41213-9_5
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[23–28]. In Ref. [23], it was first proposed that “several successive mutations in the
same cell […] would be necessary [for cancer to initiate]”. Empirical observations
of mortality rates across a range of cancer types agreed with this hypothesis [24].
For some varieties of cancer it was shown by Alfred Knudson (1922–) that tumours
can be induced by as few as two mutations, corresponding to the inactivation of both
copies of a specific tumour suppressor gene (TSG) [26]. The data that confirmed
this hypothesis is presented in Fig. 1.1. This is data for the diagnosis of tumours, or
retinoblastomas, in the eyes of children. Knudson hypothesised that if the tumours
required two mutations, we would observe a quadratic incidence rate. However, if
the child had inherited a defective gene, the incidence curve should be linear and
there is a much larger probability that the cancer will be present in both eyes, which
is referred to as bilateral. The data clearly favours Knudson’s interpretation, and this
is the celebrated two-hit hypothesis [26].

The age of stochastic modelling of cancer initiation began in earnest with the
introduction of the branching process, as shown in Fig. 1.2 [28]. Similar models
have been used extensively to describe various aspects of carcinogenesis [29, 30],

Fig. 1.1 Fraction of cases of
retinoblastoma not yet
diagnosed as a function of
the children’s age. The
one-hit (bilateral) curve is
log S = −t/30, and the
two-hit (unilateral) curve is
log S = 4× 10−5t2, where S
is the fraction of cases not
diagnosed and t is the
children’s age in months.
This figure is from Ref. [26]
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Fig. 1.2 The branching process model of cancer initiation introduced in Ref. [28]. On the left is
shown the three possible fates of an un-mutated cell, S: the cell can die (upwards arrow to state
D), reproduce without mutation (downwards arrow to two S cells), or reproduce with mutation
(horizontal arrow to one S and one I ). The mutation occurs with rate µ1, and type-I cells harbour
one mutation. In turn the type-I cells follow the same process of dying or reproducing with or
without mutation. The mutation occurs at rate µ2 and gives rise to a malignant cell M . This figure
is from Ref. [28]

and the branching process itself has received significant analytical attention [31,
32]. Other stochastic models have also been investigated to describe the initiation
of cancer, including the linear process which mimics the spatial structure of some
tissues [33], and well-mixed Moran-type models which represent cells in a tissue of
fixed size [34]. This latter class of models is investigated in Chap.5 of this thesis, as
described below.

Another prosperous area of evolutionary dynamics has arisen through the consid-
eration of interactions between individuals. If, for example, one type of individual
can produce a promoter which benefits the population, then more individuals of this
type will lead to more production and a stronger population. However, this produc-
tion usually comes at a cost to the producer, and the population is vulnerable to
exploitation from individuals who do not produce, but still reap the reward. These
individuals are cheaters, and this scenario is the celebrated public goods game [35].
Considering these types of interactions which are dependent on the state of the popu-
lation leads to rich dynamical behaviour. The mathematical framework for handling
such cases is evolutionary game theory [14, 36–39], and the rich behaviours that it
predicts have been observed in experiments of biological evolution [40–43].

This thesis is dedicated to improving our understanding of the processes of fix-
ation and equilibration through evolutionary dynamics. In the next chapter I will
introduce the framework that will be used to analyse these systems of discrete, indis-
tinguishable particles. Particular attention will be devoted to so-called birth–death
processes, which are highly tractable yet ubiquitous in evolutionary dynamics [14].
These processes describe the temporal behaviour of a population containing two
interacting types of individual, referred to as the wild-type and the mutant. I will also
introduce evolutionary game theory in more detail as it is used throughout this thesis
to illustrate the effects of fixation and equilibration.

http://dx.doi.org/10.1007/978-3-319-41213-9_5
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In Chap.3 I will extend the aforementioned birth–death process to study the
impact of a changing environment on the evolution of a finite population of fixed
size [44]. The rates at which the birth and death events occur are dependent on the
state of the environment, which follows an independent random process. A general
theory is developed to describe the fixation probability of a mutant in a population
of wild-types, as well as the time taken for fixation to occur. The theory is then
applied to evolutionary games for which the payoff structure varies in time. It is
found, surprisingly, that the mutant can exploit the environmental noise; a dynamic
environment that switches between two states can lead to a probability of fixation
that is higher than in any of the individual environmental states. In this chapter I
will also investigate the stationary distribution of the population when mutations are
present in the dynamics, and prescribe approximations of the stationary distribution
which are valid under different environmental dynamics.

The birth–death process will also be the central feature of Chap.4. In this chapter
the novelty comes not from an extension to the model, but from finding an exact
solution to describe the distribution of fixation times. As the title of the associated
article suggests, sometimes the mean is not enough to give a good representation of
the statistics of arrival times [45]. This may be the case if the distribution is broad and
skewed. The distribution can be expressed in terms of the spectrum of the birth-death
process, and the analysis leads to different representations as forward-only processes
in eigenspace. These allow efficient sampling of fixation time distributions and will
be a powerful tool to use in model-reduction schemes. Again evolutionary games
are considered as an exemplary application. In this chapter I will also highlight the
median fixation time as a possible analogue of the time to stationarity in systems
with small mutation rates and no absorbing states, whereas the mean fixation time
has no such interpretation. This provides a crucial link between the effects of fixation
and equilibration.

In Chap.5 I will leave behind evolutionary games and turn my attention to the
initiation of cancer. This work follows on from numerous computational and mathe-
matical investigations of the phenomenon of stochastic tunnelling, where an interme-
diate mutant in a sequence does not reach fixation in a population before generating
a double mutant [34, 46–51]. The field of stochastic tunnelling still lacked a compre-
hensive analytical description, since theoretical predictions of fixation times are only
available for cases in which the second mutant is advantageous. The starting point
for the investigation is the same stochastic model as used in these previous studies.
By systematically analysing the deterministic dynamics of infinite populations, the
parameter regimes captured by existing approaches were shown to be qualitatively
different to those not captured. The analysis reveals the existence of quasi-equilibria
when the final mutant is not the most advantageous in the sequence. The escape from
these states is driven by the intrinsic noise, and the location of these states affects
the probability of tunnelling occurring. Existing methods no longer apply in these
regimes. Instead it is the escape from the quasi-equilibria that is the key bottleneck;
fixation is no longer limited by the emergence of a successful mutant lineage. In
these parameter regimes I employ the Wentzel–Kramers–Brillouin (WKB) method
from mathematical physics to compute the time to fixation.

http://dx.doi.org/10.1007/978-3-319-41213-9_3
http://dx.doi.org/10.1007/978-3-319-41213-9_4
http://dx.doi.org/10.1007/978-3-319-41213-9_5
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In Chap.5 the WKB approach was used as an ‘off-the-shelf’ tool; I primarily
used the method discussed in Ref. [52] to tackle the problem at hand. In Chap. 6 I
take a closer look at the WKB method in the context of stochastic systems. It has
previously been used to describe a variety of systems, including: the evolutionary
dynamics of coexisting bacteria [53], predator–prey systems [54], epidemic models
[55–59], and evolutionary games [60]. However, little attention is devoted to really
understanding and explaining the method used. In this chapter I will discuss the
origins of the WKB method, explain the terminology used throughout the literature,
make connections with the related field of large deviations theory, and highlight what
makes this method superior to other approaches under specific conditions. A central
feature of the method is the construction of a landscape, or ‘quasi-potential’ for sto-
chastic systems. Waddington’s epigenetic landscape [61] is a primitive example of
such a construct, but similar pictures can provide intuition and quantitative predic-
tions for a range of stochastic models. The power of this method will be illustrated
by considering various applications, including the cancer initiation model discussed
in Chap.5.

Finally I will summarise the findings of this work and discuss the avenues of
future research that this thesis has promoted in Chap.7.
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Chapter 2
Technical Background

In this chapter Iwill outline themathematical and numerical techniques used through-
out this thesis to analyse stochastic systems.

2.1 Definition: Stochastic Processes

A stochastic process is defined as a function of stochastic or ‘random’ variables and
time [1]. In this thesis the function describes how the random variables jump between
values as time progresses. We will focus on how the probability distributions of the
stochastic variables evolve in time, and the quantities that can be obtained from this.
As an example consider the stochastic variables n(t) = [n1(t), n2(t), . . . ], where
ni (t) is an integer that describes the number of particles of type i at time t . We
can picture the classic probability exemplar of coloured balls in a bag, with time
evolution described by balls being removed and/or added to the bag at random. The
vector n(t) describes the state of the system. If the initial state of the system is known
at time t0 to be n0, then the state of the system at a future time will be described
by a distribution for the probability that the state n will be observed at time t . We
write this as P(n, t |n0, t0), where the vertical line is to be read as “given that”. This
is known as a conditional probability.

This thesis will focus on a subclass of stochastic processes in which the future
behaviour of a system is determined only by the state of the system at the present
time, and has no dependence on past states. These processes are known as Markov
processes, after the Russian mathematician Andrey Markov (1856–1922). If the
system was observed in the state n j at time t j for j = 0, 1, . . . , k − 1 (t0 < t1 <

· · · < tk−1), then the Markov property can be written as

© Springer International Publishing Switzerland 2016
P. Ashcroft, The Statistical Physics of Fixation and Equilibration
in Individual-Based Models, Springer Theses, DOI 10.1007/978-3-319-41213-9_2

11
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P(nk, tk |n0, t0; n1, t1; . . . ; nk−1, tk−1) = P(nk, tk |nk−1, tk−1), (2.1)

where tk−1 < tk . The semicolons in the above expression are to be read as “and”.

2.2 Chapman–Kolmogorov and Master Equations

The probability of observing a specific ‘path’ through state-space is described by the
joint probability distribution

P(n0, t0; n1, t1; . . . ; nk, tk). (2.2)

This joint distribution is related to the conditional distribution through Bayes’1 rule
[1], which states

P(n j+1, t j+1; . . . ; nk, tk |n0, t0; . . . ; n j , t j ) = P(n0, t0; . . . ; nk, tk)

P(n0, t0; . . . ; n j , t j )
. (2.3)

Together with the Markov assumption (2.1), we can write

P(n0, t0; . . . ; nk , tk ) = P(nk , tk |nk−1, tk−1)P(n0, t0; . . . ; nk−1, tk−1)

= P(nk , tk |nk−1, tk−1)P(nk−1, tk−1|nk−2, tk−2)P(n0, t0; . . . ; nk−2, tk−2)

.

.

.

=
⎡
⎣

k∏
j=1

P(n j , t j |n j−1, t j−1)

⎤
⎦ P(n0, t0). (2.4)

From this equation we can recover two fundamental relations. First, taking k = 1 in
Eq. (2.4) and then summing over n0 (known as marginalising the joint distribution),
we recover

P(n1, t1) =
∑
n0

P(n1, t1|n0, t0)P(n0, t0). (2.5)

Second, taking k = 2 in Eq. (2.4) and summing over n1 gives

P(n0, t0; n2, t2) =
∑
n1

P(n2, t2|n1, t1)P(n1, t1|n0, t0)P(n0, t0). (2.6)

Dividing by P(n0, t0) and applying Bayes’ rule gives

P(n2, t2|n0, t0) =
∑
n1

P(n2, t2|n1, t1)P(n1, t1|n0, t0). (2.7)

1Rev. Thomas Bayes (1701–1761).



2.2 Chapman–Kolmogorov and Master Equations 13

This is the Chapman–Kolmogorov equation, named after Sydney Chapman (1888–
1970) and Andrey Kolmogorov (1903–1987). Analogous expressions for Eqs. (2.5)
and (2.7) can be obtained for continuous state-spaces by replacing sums with the
corresponding integrals.

To simplify the Chapman–Kolmogorov equation we will look at the evolution of
the distribution in a small time-step, �t , conditioned on an initial configuration. We
write the Chapman–Kolmogorov equation as

P(n, t + �t |n0, t0) =
∑
n′

P(n, t + �t |n′, t)P(n′, t |n0, t0). (2.8)

To evaluate the term P(n, t + �t |n′, t), i.e. what is the probability for the system to
be found in state n a short period of time after it was observed in state n′, we introduce
the transition rate wn,n′ . This is the rate per unit time at which the transition from
n′ to n occurs. All processes that will be considered in this chapter will have time-
independent reaction rates. Such processes are referred to as ‘homogeneous’Markov
processes [1]. We can expand the jump probability as

P(n, t + �t |n′, t) = δn,n′ + wn,n′�t + O (�t2
)
. (2.9)

As the system must be found somewhere at time t + �t , we have the normalisation
condition

∑
n P(n, t + �t |n′, t) = 1 for all n′. From this we find

P(n, t + �t |n′, t) = (1 − δn,n′)wn,n′�t + δn,n′(1 − wn,n�t) + O (�t2
)
, (2.10)

where wn,n =∑n′ �=n wn′,n. Substituting this relation into Eq. (2.8) gives

P(n, t + �t |n0, t0) =
∑
n′ �=n

wn,n′�t P(n′, t |n0, t0)

+
⎡
⎣1 −

∑
n′ �=n

wn′,n�t

⎤
⎦ P(n, t |n0, t0) + O (�t2

)
. (2.11)

Taking the limit �t → 0 and rearranging gives the continuous-time master equation

Ṗ(n, t |n0, t0) =
∑
n′ �=n

[
wn,n′ P(n′, t |n0, t0) − wn′,nP(n, t |n0, t0)

]
. (2.12)

This has the intuitive interpretation that the probability of being in state n increases
due to transitions into the state (with rate wn,n′) and decreases due to transitions out
of the state (with rate wn′,n).

Sometimes it is more intuitive to label the transition rates not by their initial and
final state, but by the initial state and the stoichiometric effect of that transition. We
write T ν

n = wn+ν,n for the transition rate from state n to state n + ν, where ν is
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the so-called stoichiometric coefficient [1]. The master equation (2.12) can then be
rewritten as

Ṗn(t) =
∑

ν

[
T ν
n−νPn−ν(t) − T ν

n Pn(t)
]
, (2.13)

where we have suppressed the initial condition notation for optical convenience.
Throughout it will be assumed that all probabilities are conditioned on being in state
n0 at time t0 = 0, such that Pn(t) = P(n, t |n0, 0). The sum in Eq. (2.13) runs over
all possible reactions.

2.3 Birth–Death Process

An interesting case which will feature prominently in this thesis is the one-
dimensional one-step process, often referred to as a birth–death process [2]. This
process has been used to describe the proliferation of a disease, such as influenza,
or the extinction of a colonising species [2]. We will use birth–death processes to
describe the evolution of a population of two competing types of individual, labelled
type A and type B. We assume that the total number of individuals, N , is constant,
such that the state of the population can be described by a single number. We let i
be the number of individuals of type A (0 ≤ i ≤ N ), N − i is then the number of
individuals of type B. Only two possible reactions are allowed:

(i) Birth events where the number of type-A individuals increases by one and the
number of type-B individuals decreases by one. We will often use the notation
i → i + 1;

(ii) Death events where the number of type-A individuals decreases by one and the
number of type-B individuals increases by one, labelled as i → i − 1.

This process is illustrated in Fig. 2.1. We can replace the transition rates T ν
i in the

master equation (2.13) with the birth rate bi if ν = +1 and the death rate di if
ν = −1. These transition rates are extensive; they scale linearly with the system size

Fig. 2.1 The birth–death process described by Eq. (2.14). Given the system is in state i , it can
only jump to states i + 1 or to state i − 1 with rates bi and di respectively. The rates b0 and dN
determine the type of boundary. If b0 = dN = 0 then the boundaries are absorbing, otherwise they
are reflecting. A quantity of interest in the absorbing boundary case is the fixation probability, φi .
This is the probability that the system reaches the absorbing boundary at state N , given that it is
initially in state i
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N such that larger systems have more frequent reactions [1]. The master equation
for the birth–death process is

Ṗi (t) = bi−1Pi−1(t) + di+1Pi+1(t) − (bi + di )Pi (t). (2.14)

The birth and death rates must satisfy the boundary conditions bN = d0 = 0, such
that the number of individuals of a single type cannot leave the domain 0 ≤ i ≤ N .
The states i = 0 and i = N may have a special form, which leads to further boundary
conditions. This is discussed below.

Equation (2.14) can also be written in the more compact matrix representation as

Ṗ(t) = W · P(t), (2.15)

where the (N + 1) × (N + 1) tridiagonal matrix W has elements wi+1,i = bi ,
wi−1,i = di , and wi,i = −(bi + di ). All other elements are zero. Direct integration
of this equation gives the formal solution

P(t) = eWt · P(0). (2.16)

Despite its compact form, this solution is not very helpful as matrix exponentials are
notoriously difficult to evaluate and the computational time to evaluate this function
can scale exponentially with the size of the state-space. In Chap.4 we will use (a
truncated form of) Eq. (2.16) to compute some statistics of birth–death processes. It
is worth noting that Eq. (2.15) and solution (2.16) are not just limited to birth–death
processes, but can also be written down for the more general master equation (2.13)
with appropriate choices of the matrixW and indexing of the state-space.

The birth–death process can also be described in discrete time (as can other
processes). Substituting the birth and death rates into Eq. (2.11) gives the discrete-
time master equation

Pi (t + �t) = �tbi−1Pi−1(t) + �tdi+1Pi+1(t) + (1 − �tbi − �tdi )Pi (t). (2.17)

A suitable choice for the time-step is �t = 1/N as one unit of time is then a
generation with N possible birth and death events. Thus the probability of a birth
or death event happening in a single time-step are bi/N and di/N . These quantities
are intensive. Any global rescaling of the reaction probabilities corresponds to a
global rescaling of time. This allows us to absorb the time-step �t = 1/N into the
transition probabilities bi and di , provided that bi ≥ 0, di ≥ 0, and bi + di ≤ 1 for
all 0 ≤ i ≤ N , and set �t = 1 throughout such that the variable t simply counts the
number of time-steps. This is the convention followed in numerous sources [3–5].
The number of generations, which is the unit of time used in the continuous-time
framework, is then given by t/N.

http://dx.doi.org/10.1007/978-3-319-41213-9_4
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Backward Equations

We can introduce a companion to the master equation which is given by the adjoint
of Eq. (2.14) [1, 2]. For the birth–death process this ‘backward’ equation reads

Q̇ j;i (t) = bi Q j;i+1(t) + di Q j,i−1(t) − (bi + di )Q j;i (t), (2.18)

where Q j;i (t) is the probability to be found in state j a period of time t after being
found in state i . The forward master equation (2.14) describes the distribution at
a future time given a fixed initial condition. The backward master equation (2.18),
however, has a fixed final condition and variable initial state. This is analogous to
the Schrödinger and Heisenberg pictures of quantum mechanics, where the time-
dependence is moved between the state vectors and the operators [1, 6]. The use of
this form of equation will become obvious in the next section. In matrix form the
backward master equation can be written as

Q̇ j (t) = Q j (t) · W, (2.19)

whereW is the same matrix as appears in Eq. (2.15) andQ j (t) is a now a row vector.
We can also write the backward master equation (2.18) in discrete-time form as

Q j;i (t+�t) = �tbi Q j;i+1(t)+�tdi Q j;i−1(t)+(1−�tbi −�tdi )Q j;i (t), (2.20)

and we will use this form in the next section to derive arrival-time statistics of birth–
death processeswith absorbing boundaries. As beforewewill set�t = 1 throughout.

2.4 Fixation Probability and Mean Fixation Times

We continue with the example of birth–death processes. If the birth and death rates
at the boundaries satisfy b0 = dN = 0, then the states 0 and N are absorbing; no
further dynamics can occur once the population has reached one of these states. The
state i = 0 corresponds to the extinction of type-A individuals from the population
and the fixation of type-B individuals. Once extinct, no birth events can take place
that reintroduce type-A individuals (except in the case where mutations can occur
during reproduction events as discussed in the next section). In the state i = N ,
the population consists entirely of type-A individuals. Here type-A individuals have
reached fixation and type-B individuals have become extinct from the population.

Explicit expressions for the fixation probabilities and mean fixation times for the
birth–death process can be obtained from Eq. (2.20) [or equivalently Eq. (2.18) in
continuous time]. The calculations can be found in numerous sources [1–5, 7, 8],
butwewill repeat themhere for completeness.Wewill consider the case of a discrete-
time process, however all results in this section apply to continuous-time processes
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too. As described above we choose the time-step to be �t = 1 and rescale the
transition probabilities bi and di accordingly.

Fixation Probability

To compute the probability that type-A individuals reach fixation, we set j = N in
Eq. (2.20) and take the limit t → ∞. Writing φi (t) = limt→∞ QN ;i (t), we obtain

φi = biφi+1 + diφi−1 + (1 − bi − di )φi . (2.21)

This has the intuitive interpretation that the probability of type-A individuals reaching
fixation fromstate i is givenby the probability of hopping to i+1 and reachingfixation
from there, plus the probability of hopping to i − 1 and reaching fixation from there,
plus the probability of not hopping and reaching fixation from i . Equation (2.21) is
subject to the boundary conditions φ0 = 0 and φN = 1. It can be solved explicitly
by introducing the difference variable υi = φi − φi−1 to give biυi+1 = diυi . The
solution can be found recursively to give

υi = di−1

bi−1
υi−1 = di−1

bi−1

di−2

bi−2
υi−2 =

⎛
⎝

i−1∏
j=1

d j

b j

⎞
⎠ υ1 =

⎛
⎝

i−1∏
j=1

d j

b j

⎞
⎠φ1, (2.22)

where we have used the boundary conditions to write υ1 = φ1 − φ0 = φ1. Taking
the sum over the υi yields

∑N
k=1 υk = φN = 1, and hence we can write

1 =
N∑

k=1

υk = φ1

N∑
k=1

k−1∏
j=1

d j

b j
= φ1

⎛
⎝1 +

N−1∑
k=1

k∏
j=1

d j

b j

⎞
⎠ . (2.23)

Introducing the compact notation γ j = d j/b j , we arrive at

φ1 = 1

1 +∑N−1
k=1

∏k
j=1 γ j

, (2.24a)

φi =
i∑

k=1

υk = φ1

i∑
k=1

k−1∏
j=1

γ j = 1 +∑i−1
k=1

∏k
j=1 γ j

1 +∑N−1
k=1

∏k
j=1 γ j

. (2.24b)

Mean Unconditional Fixation Time

A similar procedure is used to calculate the mean fixation times.We first consider the
case of the unconditional fixation time, that is the number of time-steps taken until
either type A or type B have reached fixation, or simply the number of time-steps
taken to reach either of the absorbing boundaries. This quantity is itself a stochastic
variable which follows a distribution. This distribution can be characterised by the
infinite set of moments, the most informative of which is the mean. We introduce
the variable ϑi (t) = Q0;i (t) + QN ;i (t), which is the cumulative probability to have
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arrived at either absorbing state t time-steps after being in state i . The probability
to arrive at an absorbing boundary at time t is then ϑi (t) − ϑi (t − 1). The mean
unconditional fixation time, given the initial condition i , is then defined by

ti =

∞∑
t=0

t [ϑi (t) − ϑi (t − 1)]

∞∑
t=0

[ϑi (t) − ϑi (t − 1)]

=
∞∑
t=0

t [ϑi (t) − ϑi (t − 1)] , (2.25)

where we have used ϑi (t ≤ 0) = 0 and limt→∞ ϑi (t) = 1 to find
∑∞

t=0 [ϑi (t)−
ϑi (t − 1)] = 1. From the backward master equation (2.20) it can be seen that ϑi (t)
satisfies

ϑi (t + 1) = biϑi+1(t) + diϑi−1(t) + (1 − bi − di )ϑi (t). (2.26)

Subtracting ϑi (t) from both sides, multiplying by t and summing yields

∞∑
t=0

t [ϑi (t + 1) − ϑi (t)] = bi

∞∑
t=0

t
[
ϑi+1(t) − ϑi+1(t − 1)

]

+ di

∞∑
t=0

t
[
ϑi−1(t) − ϑi−1(t − 1)

]

+ (1 − bi − di )
∞∑
t=0

t [ϑi (t) − ϑi (t − 1)] . (2.27)

The left-hand side of this equation needs some work to extract the mean fixation time
ti . We can write this as

∞∑
t=0

t [ϑi (t + 1) − ϑi (t)] =
∞∑
t=1

(t − 1) [ϑi (t) − ϑi (t − 1)]

=
∞∑
t=1

t [ϑi (t) − ϑi (t − 1)] −
∞∑
t=1

[ϑi (t) − ϑi (t − 1)]

=
∞∑
t=0

t [ϑi (t) − ϑi (t − 1)] −
∞∑
t=0

[ϑi (t) − ϑi (t − 1)]

= ti − 1, (2.28)

where we have used ϑi (0) = 0 and in the last step we have used limt→∞ ϑi (t) = 1.
Equation (2.27) can now be written as

ti = bi ti+1 + di ti−1 + (1 − bi − di )ti + 1. (2.29)
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This also has the intuitive interpretation that the time to reach fixation from state i is
given by the probability of hopping to i+1 and reaching fixation from there, plus the
probability of hopping to i − 1 and reaching fixation from there, plus the probability
of not hopping and reaching fixation from i , plus the time taken for this step. This
equation has boundary conditions t0 = tN = 0. Using Eq. (2.29), the difference
variable νi = ti − ti−1 satisfies νi = γi−1νi−1 − 1/bi−1. The solution can be found
recursively to give

νi = t1

i−1∏
m=1

γm −
i−1∑
	=1

1

b	

i−1∏
m=	+1

γm, (2.30)

where we have used the boundary conditions to write ν1 = t1 − t0 = t1. Taking the
sum over the set {νi } yields∑N

k=i+1 νk = −ti . In particular we have
∑N

k=2 νk = −t1.
With this we can write

t1 = −t1

N∑
k=2

k−1∏
m=1

γm +
N∑

k=2

k−1∑
	=1

1

b	

k−1∏
m=	+1

γm, (2.31)

and from this we can calculate

t1 = φ1

N−1∑
k=1

k∑
	=1

1

b	

k∏
m=	+1

γm, (2.32a)

ti = −
N∑

k=i+1

νk = −t1

N−1∑
k=i

k∏
m=1

γm +
N−1∑
k=i

k∑
	=1

1

b	

k∏
m=	+1

γm . (2.32b)

These are expressions for the average number of time-steps taken to reach either
absorbing boundary. The mean unconditional fixation time measured in units of
generations is found by dividing Eq. (2.32) by the system size, N .

If we instead considered a continuous-time process with extensive birth and death
rates bi and di , Eq. (2.32) describe the mean unconditional fixation time in units of
generations. The fraction 1/b	 in the Eq. (2.32) ensures that time is measured in units
of 1/N , i.e. in generations.

Mean Conditional Fixation Time

The conditional fixation time is determined in a very similar way. We here focus
on the fixation of type A. We introduce the variable ϕi (t) = QN ;i (t), which is the
cumulative probability to have arrived at the all-type-A state t time-steps after being
in state i . The probability to arrive in state N at time t is ϕi (t)−ϕi (t −1), and hence
the mean conditional fixation time, given the initial condition i , is then defined by
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ti |A =

∞∑
t=0

t [ϕi (t) − ϕi (t − 1)]

∞∑
t=0

[ϕi (t) − ϕi (t − 1)]

= 1

φi

∞∑
t=0

t [ϕi (t) − ϕi (t − 1)] , (2.33)

where φi is the fixation probability defined in Eq. (2.24) and ϕi (t ≤ 0) = 0.
From Eq. (2.20) it can be seen that ϕi (t) satisfies

ϕi (t + 1) = biϕi+1(t) + diϕi−1(t) + (1 − bi − di )ϕi (t). (2.34)

Subtracting ϕi (t) from both sides, multiplying by t and summing yields

∞∑
t=0

t [ϕ(t + 1) − ϕi (t)] = bi

∞∑
t=0

t
[
ϕi+1(t) − ϕi+1(t − 1)

]

+ di

∞∑
t=0

t
[
ϕi−1(t) − ϕi−1(t − 1)

]

+ (1 − bi − di )
∞∑
t=0

t [ϕi (t) − ϕi (t − 1)] . (2.35)

Following the procedure above, and introducing the variable θi = φi ti |A, we can
arrive at the expression

θi = biθi+1 + diθi−1 + (1 − bi − di )θi + φi . (2.36)

Wenote that Eqs. (2.29) and (2.36) are very similar, but the difference ismore than just
a global pre-factor φi . This equation has boundary conditions θ0 = θN = 0. Using
Eq. (2.36), the difference variable ηi = θi −θi−1 satisfies ηi = γi−1ηi−1−φi−1/bi−1.
This can again be solved recursively to give

ηi = θ1

i−1∏
m=1

γm −
i−1∑
	=1

φ	

b	

i−1∏
m=	+1

γm, (2.37)

where we have used the boundary conditions to write η1 = θ1 − θ0 = θ1. Taking the
sum over the set {ηi } yields∑N

k=i+1 ηk = −θi . In particular we have
∑N

k=2 ηk = −θ1.
With this we can write

θ1 = −θ1

N∑
k=2

k−1∏
m=1

γm +
N∑

k=2

k−1∑
	=1

φ	

b	

k−1∏
m=	+1

γm, (2.38)
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and from this we can calculate

θ1 = φ1

N−1∑
k=1

k∑
	=1

φ	

b	

k∏
m=	+1

γm, (2.39a)

θi = −
N∑

k=i+1

ηk = −θ1

N−1∑
k=i

k∏
m=1

γm +
N−1∑
k=i

k∑
	=1

φ	

b	

k∏
m=	+1

γm . (2.39b)

The average number of time-steps until type-A individuals take over the population
is then given by ti |A = θi/φi . Again these expressions hold for continuous-time
processes with extensive birth and death rates, where time is intrinsically measured
in units of generations.

Higher Moments

Although the mean fixation time can provide useful information, higher moments
are often sought after to provide a more complete picture. For example, the variance
of the random variable X ,

var(X) = 〈X2
〉− 〈X〉2 , (2.40)

which describes the spread of the values of X requires the computation of the second
moment,

〈
X2
〉
. We use the notation 〈·〉 to denote the average value. In general the

r -th moment of the unconditional fixation time is defined by

τ
(r)
i =

∞∑
t=0

tr [ϑi (t) − ϑi (t − 1)]

∞∑
t=0

[ϑi (t) − ϑi (t − 1)]

=
∞∑
t=0

tr [ϑi (t) − ϑi (t − 1)] , (2.41)

where again ϑi (t) − ϑi (t − 1) is the probability to reach either of the absorbing
boundaries at time t . In analogy with Eq. (2.27) we can write

∞∑
t=0

tr [ϑi (t + 1) − ϑi (t)] = bi

∞∑
t=0

tr
[
ϑi+1(t) − ϑi+1(t − 1)

]

+ di

∞∑
t=0

tr
[
ϑi−1(t) − ϑi−1(t − 1)

]

+ (1 − bi − di )
∞∑
t=0

tr [ϑi (t) − ϑi (t − 1)] . (2.42)
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For the left-hand side we write

∞∑
t=0

tr [ϑi (t + 1) − ϑi (t)] =
∞∑
t=1

(t − 1)r [ϑi (t) − ϑi (t − 1)]

=
∞∑
t=1

r∑
k=0

(
r

k

)
(−1)r−k tk [ϑi (t) − ϑi (t − 1)] ,

= τ
(r)
i +

r−1∑
k=0

(
r

k

)
(−1)r−kτ

(k)
i , (2.43)

where τ
(0)
i = 1. Thus the r -thmoment of the unconditional fixation time is dependent

on all lower moments. It satisfies the recursive equation [2, 4, 9, 10]

τ
(r)
i = biτ

(r)
i+1 + diτ

(r)
i−1 + (1 − bi − di )τ

(r)
i − s(r−1)

i , (2.44)

where s(r−1)
i = ∑r−1

k=0

(r
k

)
(−1)r−kτ

(k)
i . The moments also satisfy the boundary con-

ditions τ
(r)
0 = τ

(r)
N = 0.

Equation (2.44) is of the same form as Eq. (2.36). As a result we can immediately
write down the closed-form expressions

τ
(r)
1 = φ1

N−1∑
k=1

k∑
	=1

−s(r−1)
	

b	

k∏
m=	+1

γm, (2.45a)

τ
(r)
i = −τ

(r)
1

N−1∑
k=i

k∏
m=1

γm +
N−1∑
k=i

k∑
	=1

−s(r−1)
	

b	

k∏
m=	+1

γm . (2.45b)

The derivation of conditional fixation timemoments follows the same calculation.
Writing θ

(r)
i = φiτ

(r)
i |A, where τ

(r)
i |A is the r -th moment of the conditional fixation time

distribution, and s(r−1)
i |A =∑r−1

k=0

(r
k

)
(−1)r−kτ

(k)
i |A , this quantity satisfies

θ
(r)
1 = φ1

N−1∑
k=1

k∑
	=1

−φ	s
(r−1)
	|A

b	

k∏
m=	+1

γm, (2.46a)

θ
(r)
i = −θ

(r)
1

N−1∑
k=i

k∏
m=1

γm +
N−1∑
k=i

k∑
	=1

−φ	s
(r−1)
	|A

b	

k∏
m=	+1

γm . (2.46b)

The conditional fixation time moments are then found via τ
(r)
i |A = θ

(r)
i /φi .
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Once the moments have been calculated, the distribution can be recovered by con-
sidering the moment generating function. This is defined as the Laplace2 transform
of the arrival time density [2] and is denoted as Fi (z), where z is a continuous (and,
in general, complex) variable. For the unconditional arrival time we have

Fi (z) =
∞∑
t=0

e−zt [ϑi (t) − ϑi (t − 1)]

=
∞∑
t=0

∞∑
j=0

(−zt) j

j ! [ϑi (t) − ϑi (t − 1)]

=
∞∑
j=0

(−z) j

j !
∞∑
t=0

t j [ϑi (t) − ϑi (t − 1)]

=
∞∑
j=0

(−z) j

j ! τ
( j)
i . (2.47)

The arrival time density is then recovered by performing the inverse Laplace trans-
form of Eq. (2.47) [1, 2],

ϑi (t) − ϑi (t − 1) = 1

2π i

∫
ezt Fi (z)dz. (2.48)

In practice one computes a finite set of moments (say the first one hundred) and
sums these to obtain Fi (z), which can then be inverted. In Chap.4 we go beyond this
approach and compute closed-form expressions for the exact arrival-time distribu-
tions.

2.5 Equilibration

Sometimes theproblemweare studyingwill not have absorbingboundaries. Thismay
be the case if mutations can happen during reproduction events, or due to migration
from an external population. In these scenarios, an extinct type of individual may
be spontaneously reintroduced. In birth–death processes, this corresponds to having
a non-zero birth rate from state i = 0 and non-zero death rate from state i = N ,
i.e. b0 > 0 and dN > 0. We retain the conditions d0 = 0 and bN = 0 such that the
state-space is still restricted to 0 ≤ i ≤ N . Thus if the population is in state i = 0, the
only possible transition is to state i = 1 with rate b0. Hence, this is called a reflecting
boundary [2]. The same is true at the opposite boundary, where N → N − 1 with
rate dN is the only transition from state i = N .

2Pierre-Simon Laplace (1749–1827).

http://dx.doi.org/10.1007/978-3-319-41213-9_4
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Such problems are no longer characterised by the fixation probability, but by the
stationary distribution of the population state. The timescale of this problem is the
time taken to approach this distribution, and is known as the mixing time [11].

Stationary Distribution

If Pi (t) is the probability to find the system in state i at time t , then the stationary
distribution is given by P st

i = limt→∞ Pi (t).We can take the infinite-time limit of the
forward master equation (2.14) [or equivalently the discrete-time equation (2.17)] to
give

0 = bi−1P
st
i−1 + di+1P

st
i+1 − (bi + di )P

st
i for 0 ≤ i ≤ N , (2.49)

where we have used limt→∞ Ṗi (t) = 0. Equation (2.49) can be written in the form
[1, 2]

bi−1P
st
i−1 − di P

st
i = bi P

st
i − di+1P

st
i+1, (2.50)

which states the that net flow of probability from state i − 1 to state i is the same for
all i . Considering the boundary terms, this net flow must be zero, i.e.

bi−1P
st
i−1 − di P

st
i = 0 for 1 ≤ i ≤ N . (2.51)

This equation can be recursively solved to find P st
i , which satisfies

P st
i = bi−1

di
P st
i−1 =

⎛
⎝

i∏
j=1

b j−1

d j

⎞
⎠ P st

0 . (2.52)

The value of P st
0 is then determined by the normalisation

∑N
j=0 P

st
j = 1. This gives

P st
0 =

⎛
⎝

N∑
j=0

j∏
k=1

bk−1

dk

⎞
⎠

−1

. (2.53)

Combining this with Eq. (2.52) gives

P st
i = �i∑N

j=0 � j

, �i =
i∏

j=1

b j−1

d j
. (2.54)

Mixing Time

The timescale of the dynamics is characterised by the so-called mixing time, tmix

[11, 12]. This is the time taken for the probability distribution, P(t), to come within
a specified distance of the stationary distribution Pst. That is to say tmix is the first
time at which d

[
P(tmix),Pst

] = ε. The distance between two distributions P and Q
commonly used in this context is [11, 12]
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d[P,Q] = 1

2

N∑
i=0

∣∣Pi − Qi

∣∣. (2.55)

The factor 1/2 is used so that distributions which are maximally different have a
distance of one. For example, if Pi = δi, j and Qi = δi,k , where δα,β is the Kronecker
delta and j �= k, then

d[P,Q] = 1

2

N∑
i=0

∣∣Pi − Qi

∣∣ = 1

2

N∑
i=0

∣∣δi, j − δi,k
∣∣ = 1

2

(∣∣1∣∣+ ∣∣−1
∣∣) = 1. (2.56)

Example

In Fig. 2.2 we show the approach to equilibrium for a simple process: A population
of size N consists of two types of individual, A and B, with i individuals of type A.
An individual is randomly chosen in the population. If that individual is of type-A
(chosen with probability i/N ), it switches to type-B with rate μN . If the chosen
individual is of type-B (probability (N − i)/N ), it can switch to type-A with rate
λN . Hence the birth and death reaction rates are

bi = λ × (N − i), (2.57a)

di = μ × i. (2.57b)

These reaction rates are extensive, and here we are considering a continuous-time
setup.

As shown in Fig. 2.2a, soon after the dynamics has started the distribution broad-
ens and resembles a normal distribution. It approaches the stationary distribution
(labelled t = ∞) at a decreasing rate. This is highlighted by considering the distance

(a) (b)

Fig. 2.2 a The stationary distribution of the birth–death process described by Eq. (2.57). Distribu-
tions are found from numeric integration of the master equation (2.14). The stationary distribution
(t = ∞) is given by Eq. (2.54). b The distance between P(t) and the stationary distribution (2.54)
calculated using Eq. (2.55). Here tmix is illustrated for ε = 0.1. The parameters are λ = 0.2,
μ = 0.1, and N = 100, and the process was initialised from Pi (0) = δi,10
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to the stationary distribution using Eq. (2.55), and is shown in Fig. 2.2b. The slope
of this approach corresponds to the slowest eigenvalue of the master equation.3 To
specify the time-to-equilibration we must impose a threshold, ε, as described above.
This is illustrated in Fig. 2.2b.

2.6 Deterministic Dynamics and Stability Analysis

In the above example the mean value of i at time t is given approximately by the
location of the peak of the distribution at that time. This mean evolves according
to an ordinary differential equation (ODE). We define the mean value of i at time
t as 〈i〉 = ∑N

i=0 i Pi (t), where the angle brackets indicate an average over many
realisations of the stochastic process up to time t . The ODE for the evolution of the
mean is found by multiplying the master equation (2.14) by i and summing over all
allowed values, such that

N∑
i=0

i Ṗi (t) =
N∑
i=0

[
ibi−1Pi−1(t) + idi+1Pi+1(t) − i(bi + di )Pi (t)

]
. (2.58)

Using the boundary conditions d0 = bN = 0, and the definition of 〈i〉, we can write
Eq. (2.58) as

d〈i〉
dt

=
N∑
i=0

(bi − di )Pi (t) = 〈bi 〉 − 〈di 〉 . (2.59)

We can now introduce the continuous variable x = limN→∞ i/N , such that 0 ≤
x ≤ 1. This is the deterministic limit; the distribution of x approaches a delta-function
centred at limN→∞ 〈i〉 /N , and hence the evolution of x is completely specified by
the ODE for the mean. This ODE is found by dividing Eq. (2.59) by N and taking
the limit N → ∞, which gives

ẋ = f+(x) − f−(x), (2.60)

where we have introduced the functions

f+(x) = lim
N→∞

〈bi 〉
N

= lim
N→∞

b〈i〉
N

= lim
N→∞

bNx

N
(2.61a)

f−(x) = lim
N→∞

dNx

N
. (2.61b)

The step 〈bi 〉 = b〈i〉 does not hold in general as bi could be a non-linear function of
i ; only in the deterministic limit can we make the assumption 〈im〉 = 〈i〉m .

3Specifically of the matrix W shown in Eq. (2.15).
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Fig. 2.3 The phase portrait
of Eq. (2.62) which describes
the time evolution of the
mean number of type-A
individuals in the birth-death
process specified by
reactions (2.57). As in
Fig. 2.2, the parameters are
λ = 0.2 and μ = 0.1

For the reaction scheme in Eq. (2.57), the deterministic equation is simply

ẋ = λ(1 − x) − μx = λ − (λ + μ)x . (2.62)

Plotting the phase portrait of this equation reveals the flow of the system, as shown
in Fig. 2.3. When ẋ > 0, the flow is to the right, and when ẋ < 0 the flow is to the
left. There exists a point at which ẋ = 0 (solid circle in Fig. 2.3). Setting ẋ = 0 in
Eq. (2.62) and solving for x recovers x∗ = λ/(λ + μ). This is a fixed point [13]. In
this example it is stable as the flow from both sides is towards it. This stability can
be further illustrated by direct integration of Eq. (2.62) which gives

x(t) = x(0)e−(λ+μ)t + λ

λ + μ

[
1 − e−(λ+μ)t

]
. (2.63)

From this we can see limt→∞ x(t) = x∗.
For more general problems with non-linear reaction rates and in higher dimen-

sions, determining the stability of fixed points is not quite as simple. In such problems
the approach is to linearise the problem about the fixed point. Hence this method is
known as linear stability analysis [13].

The deterministic equations of motion obtained from the master equation (2.13)
can be recovered by following an analogous procedure to the one described above.
Multiplying Eq. (2.13) by n and summing over n gives

∑
n

n Ṗn =
∑
n

∑
ν

n
[
T ν
n−νPn−ν − T ν

n Pn
]

=
∑

ν

[∑
n

(n + ν)T ν
n Pn −

∑
n

nT ν
n Pn

]

=
∑

ν

ν

[∑
n

T ν
n Pn

]

⇒ d 〈n〉
dt

=
∑

ν

ν
〈
T ν
n

〉
. (2.64)
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Fig. 2.4 The stability of
fixed points in two
dimensions can be classified
in terms of the determinant
[� = det(J)], trace
[τ = Tr(J)], and
discriminant (τ 2 − 4�) of
the Jacobian J. Figure is
adapted from Ref. [13]

Dividing by the system size N and taking the limit N → ∞ gives

ẋ =
∑

ν

ν fν(x) = A(x), (2.65)

where x = limN→∞ n/N and fν(x) = limN→∞ T ν
Nx/N .

Fixed points are found by solving A(x∗) = 0. By expanding Eq. (2.65) about x∗
to first order in u = x − x∗, we arrive at

u̇ = J · u, (2.66)

where Ji, j = ∂Ai/∂x j is evaluated at x = x∗ and is known as the Jacobian.4 This
equation is linear in u and can be solved by expressing u as a linear combination of
the eigenvectors of J, such that

u(t) =
∑
i

civ(i)eλi t , (2.67)

where λi are the eigenvalues of J with corresponding right-eigenvectors v(i). The
coefficients ci are determined by the initial condition. If all eigenvalues have negative
real parts, then limt→∞ u(t) = 0, and x will approach x∗, which is a stable fixed
point, or attractor. If all eigenvalues have positive real parts then uwill diverge and x∗
is an unstable fixed point. If the set of eigenvalues contains a mixture of positive and
negative real values, then there will be divergence in the eigendirections associated
with the positive eigenvalues and x∗ is a saddle point. Non-zero imaginary parts of
the eigenvalues are associated with cycles and spirals, but these do not feature in this
thesis [13].

The case of a two-dimensional system will feature in Chap.5. In this case we can
infer the eigenvalue properties from the determinant (�), trace (τ ), and discriminant
(τ 2 − 4�) of the Jacobian J, as characterised in Fig. 2.4.

4After Carl Gustav Jacob Jacobi (1804–1851), who will reappear in Chaps. 5 and 6.

http://dx.doi.org/10.1007/978-3-319-41213-9_5
http://dx.doi.org/10.1007/978-3-319-41213-9_5
http://dx.doi.org/10.1007/978-3-319-41213-9_6
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2.7 Continuous State-Space Approximations

Exact solutions of the master equation are usually non-existent; for most cases it is
analytically intractable. However, there exists a collection of approximation schemes
that allow us to make further analytical progress. These schemes involve replacing
the discrete variables n by their continuous analogues x = n/N . This allows the
master equation to be approximated by a partial differential equation (PDE), namely
the Fokker–Planck equation.5

Fokker–Planck Equation

The simplest way to arrive at a PDE that describes the probability density is to directly
substitute x = n/N into the master equation (2.13). We can introduce the function
fν(x) = T ν

Nx/N ,which is reminiscent of the function introduced inEq. (2.65)without
imposing the infinite system-size limit. We also introduce the continuous probability
density ρ(x, t) to replace the discrete distribution Pn(t). With this we can rewrite the
master equation (2.13) as

ρ̇(x, t) ≈
∑

ν

[
N fν

(
x − ν

N

)
ρ
(
x − ν

N
, t
)

− N fν(x)ρ(x, t)
]
. (2.68)

If we now consider N to be a large (but not infinite) parameter, then we can expand
the above equation as a Taylor series about x. Truncating the expression up to terms
O (N−1

)
, we can write

ρ̇(x, t) =
∑

ν

⎧⎨
⎩−

∑
i

∂

∂xi
[νi fν(x)ρ(x, t)] + 1

2N

∑
i, j

∂2

∂xi∂x j

[
νiν j fν(x)ρ(x, t)

]
⎫⎬
⎭

= −
∑
i

∂

∂xi
[Ai (x)ρ(x, t)] + 1

2N

∑
i, j

∂2

∂xi∂x j

[
Bi, j (x)ρ(x, t)

]
, (2.69)

where A(x) =∑ν ν fν(x) as described in Eq. (2.65), and where the diffusion matrix
B(x) has elements

Bi, j =
∑

ν

νiν j fν(x). (2.70)

Equation (2.69) is called the Fokker–Planck equation. The first term is represen-
tative of the deterministic drift, and the second diffusion term represents the spread
of the probability density due to the stochasticity [14]. There is a complication that
needs to be considered with this derivation; we need to ensure that the equationmain-
tains a positive probability density. Including a higher number of terms in Eq. (2.69)
[O (Nk≥2

)
] would violate this condition unless the infinite series is considered. This

is the Pawula theorem [15, 16].

5Adriaan Fokker (1877–1972) and Max Planck (1858–1947).
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This derivation is closely related to two rigorous approximation schemes. These
are the Kramers–Moyal6 expansion [17, 18] which considers a truncated series of
jump moments [14], and the van Kampen7 system-size expansion which explicitly
considers a large parameter to recover an equation which describes the fluctuations
about the deterministic trajectory (2.65) [1]. TheFokker–Planck approximation of the
master equation does not feature prominently in this thesis, but for further discussion
about its derivation from the master equation see Refs. [1, 14].

Stochastic Differential Equation

The process described by the master equation (2.13) is a discrete jump process. The
Fokker–Planck equation (2.69) describes the evolution of a continuous variable that
is affected by some noise [1]. We write this as

ẋ = A(x) + 1√
N
G(x) · η(t), (2.71)

whereB = G·GT, and the ηi (t) randomvariables drawn from aGaussian distribution
with zero mean and correlation function

〈
ηi (t)η j (t

′)
〉 = δi, jδ(t − t ′). (2.72)

Equation (2.71) is known as a stochastic differential equation (SDE) or a Langevin
equation, after Paul Langevin (1872–1946). It is an extension to the deterministic
equation (2.65), which can be recovered by taking the limit N → ∞ in Eq. (2.71).

Again there are complications with this derivation, including the famous Itō–
Stratanovich8 dilemma [1, 14, 16]. This states that Eq. (2.71) alone is not well-
specified ifG is dependent on the state of the system x. This is termed multiplicative
noise, and if this is the case it must be stated whether Eq. (2.71) is to be interpreted in
the Itō or Stratanovich sense. Further discussion of this issue here would only pose as
a distraction and would be of no value for the remainder of this thesis. More details
can be found in Refs. [1, 14, 16]. SDEs only appear in this thesis in Chap.6, and we
will always use the Itō interpretation. Equation (2.71) should also be interpreted as
an Itō SDE.

2.8 Evolutionary Game Theory

The interactions between individuals in a population can sometimes be more com-
plicated than A “dies with constant rate μ”. Instead, this interaction rate may have
a non-linear dependence on the state of the population. These interactions can be

6Hendrik Kramers (1894–1952) and José Enrique Moyal (1910–1998).
7Nico van Kampen (1921–2013).
8Kiyoshi Itō (1915–2008) and Ruslan Stratanovich (1930–1997).

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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formalised in an evolutionary game [8, 19–22]. Such games can be used to describe
conflict over food or territory, cheating in resource allocation, as well as interactions
between variants of a gene [10, 23–26]. In an evolutionary normal-form game each
individual can be associated with one out of a finite set of strategies. A payoff matrix
quantifies the reward received by a given individual when it interacts with another
individual [21].

The dynamics of populations interacting in such a game are often described by
deterministic replicator equations (discussed at the end of this section) or similar dif-
ferential equations [20, 22, 27]. While deterministic dynamics are useful to under-
stand the action of selection, a stochastic approach is required to understand the
impact of fluctuations in finite populations [28, 29]. Deterministic approaches fail
to capture effects such as fixation and extinction, or the convergence to a stationary
distribution in systems with mutation [3, 12, 30–32].

The interaction between two individuals in a two-strategy evolutionary game is
characterised by the payoff matrix,

A B
A R S
B T P.

(2.73)

A type-A individual encountering another of its kind receives the reward R, and it
receives the sucker’s payoff S when interacting with a type-B individual. In turn, an
individual of type B interacting with an individual of type A obtains the temptation
payoff T , and P is the punishment payoff for each individual if they are both of
type B.

If there are i individuals of type A in the population and N − i individuals of type
B, the expected payoffs for each type of player are

πA(i) = i − 1

N − 1
R + N − i

N − 1
S, (2.74a)

πB(i) = i

N − 1
T + N − i − 1

N − 1
P. (2.74b)

There exist three general types of two-player two-strategy evolutionary games
which can be described by the payoff matrix (2.73) and payoffs (2.74):

Dominance: If R > T and S > P , then playing strategy A will return a higher
payoff irrespective of the composition of the population. This type is then always
favoured. Likewise, if the inequalities are reversed such that T > R and P > S,
then playing strategy B will always return a higher payoff. This latter scenario
captures the well-studied Prisoner’s dilemma [8]. This also leads to the concept of
Nash equilibria, after John Nash (1928–2015). A Nash equilibrium exists if, with
all players playing the same strategy, no single deviation from that strategy can
lead to an increase in payoff [8, 33]. In the Prisoner’s dilemma, the temptation to
cheat (strategy B) is greater than the reward to cooperate with another cooperator
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(strategy A), and the punishment for mutual defection is a better option than
receiving the sucker’s payoff by cooperating with a defector. Hence defection, or
strategy B, is the Nash strategy in this game.

Coexistence: If T > R and S > P , then choosing the opposite strategy to the other
player yields the highest payoff.Hence the payoff ismaximised in a heterogeneous
population. There exists no pure-strategy Nash equilibrium in this setup.

Coordination: If R > T and P > S, then payoff is maximised when both players
adopt the same strategy. In this case there is a bi-stability and both strategies are
Nash equilibria [8].

The rate at which strategies spread through the population is a function of the pay-
offs in the evolutionary game. A constant parameter β > 0, the so-called intensity
of selection, is introduced to control the how much the game affects the population
dynamics. It can be thought of as the inverse temperature. For β → ∞ (low tem-
perature), the dynamics is controlled by the evolutionary game. For β → 0 (high
temperature), the dynamics is dominated by stochasticity. The regime of weak selec-
tion is interesting as it allows for perturbative treatment to obtain analytic results
[34, 35]. Many functional forms of the mapping between payoffs and population
dynamics are possible, but the update rules can be divided into two distinct classes
[36]:

Pairwise-comparison process: Here two individuals are randomly chosen from the
population, and the second adopts the strategy of the first with a probability
which is a function of the payoff difference. For example, if a type-A individual
is chosen first, and a type-B chosen second, then the type-B adopts strategy A
with probability determined by g[β�π(i)], where �π(i) = πA(i) − πB(i). The
reverse interaction (A adopting strategy B) occurs with probability g[−β�π(i)].
The exact functional dependence has to satisfy the basic properties that 0 ≤ g ≤ 1
and that it is a monotonically increasing function of payoff. Common forms for
this include the linear mapping [12]

g[±β�π(i)] = 1

2

[
1 ± β�π(i)

]
, (2.75)

or the Fermi9 mapping [34]

g[±β�π(i)] = 1

1 + e∓β�π(i)
. (2.76)

This process leads to birth and death rates (extensive) of the form

bi = i(N − i)

N
g[β�π(i)], (2.77a)

di = i(N − i)

N
g[−β�π(i)], (2.77b)

9Enrico Fermi (1901–1954).
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(a) (b)

(c) (d)

Fig. 2.5 a and b show the birth rates and death rates from Eqs. (2.77) and (2.79). c shows the total
exit rate from state i , which is bi + di . d shows the ratio of bi and di . If this ratio is greater than
one then it is more likely to hop to the right than the left. For this example, which represents a
coexistence game, the payoff matrix parameters are R = 1.0, S = 1.5, T = 1.9, and P = 1.0, the
intensity of selection is β = 0.5 and the system size is N = 20

which are similar for both the linear and the Fermimappings as shown in Fig. 2.5a,
b. It is easy to show that g[+β�π(i)]+g[−β�π(i)] = 1 for both Eqs. (2.75) and
(2.76). Thus the total rate at which the population exits state i is simply i(N−i)/ i ,
as shown in Fig. 2.5c.

Fitness-based process: Here individuals reproduce with a rate determined by the
individuals’ own expected payoff. There is no comparison in this process. After
a reproduction event a random individual is removed from the population to con-
serve thefixedpopulation size.Again the functional formof thepayoff dependence
must be monotonically increasing. An exponential mapping is a frequent choice,
such that an individual’s reproductive fitness is given by [37, 38]

f A(i) = eβπA(i), (2.78a)

fB(i) = eβπB (i). (2.78b)

The birth and death rates are then given by

bi = i(N − i)

N

fA(i)

f (i)
, (2.79a)

di = i(N − i)

N

fB(i)

f (i)
, (2.79b)
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where the fitnesses are scaled by the mean population fitness f (i) = [ieβπA(i) +
(N − i)eβπB (i)]/N . This ensures events occur on the same timescale as the above
pairwise comparison process, i.e. Eq. (2.79) is of similar magnitude to Eq. (2.77),
as shown in Fig. 2.5a–c. Interestingly the ratio of birth and death rates is identical
for the Fermi pairwise-comparison process and the exponential fitness process,
as shown in Fig. 2.5d [36].

The reaction rates in Eqs. (2.77) and (2.79) are the update rules of the Moran10

process [4, 39] with frequency-dependent selection. These rules have been widely
used in evolutionary game theory [5, 8, 40]. The Moran process represents a birth–
death process in which the population size remains constant, and by construction it
has absorbing states at i = 0 and i = N . The process can be represented by the
reaction scheme

A + B −→ A + A, (2.80a)

A + B −→ B + B. (2.80b)

Finally, the above interaction schemes can easily be generalised for larger strategy
spaces [8, 21]. However only 2 × 2 games will appear in this thesis.

Replicator Dynamics

By considering the deterministic dynamics of the process specified by the reac-
tions (2.80), we can write

ẋ = x(1 − x) [FA(x) − FB(x)] , (2.81)

where FA(x) and FB(x) represent the frequency-dependent reaction rates,
e.g. FA(x) = g [β�π(Nx)]. Expanding this equation gives

ẋ = x [FA(x) − xFA(x) − (1 − x)FB(x)]

= x
[FA(x) − F(x)

]
. (2.82)

This is called the replicator equation as the fitness of A approaches the mean popu-
lation fitness F = xFA(x) + (1 − x)FB(x) [20, 22, 27].

2.9 Numerical Simulation Methods

Numerical simulations of a stochastic process can serve many purposes. They can
be used to confirm the correctness of analytic work or verify if assumptions made
in the analysis are valid. They can also present some physical intuition about how
a system evolves, and this can in turn guide the analytic procedure. The aim is to

10Pat Moran (1917–1988).
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generate random numbers that are distributed according to the solution of the master
equation.

Monte-Carlo Methods

For a discrete-time system that is described by the master equation (2.11), the corre-
sponding process is easily described: if the system is in state n at time t , then at time
t + �t the system will be in state n′ �= n with probability wn′,n�t , or will remain in
state n with probability 1 −∑n′ �=n wn′,n�t . The simulation of this process follows
directly from this. Namely, we set n(t) = n and evaluate the values of wn′,n�t and
1−∑n′ �=n wn′,n�t . These values are the weights associated with choosing the value
of n(t + �t), such that only a single random number needs to be drawn.

This discrete-time method, however, suffers from two fundamental flaws. Firstly,
only a single reaction can occur in a single time-step, and secondly, a large number
of time-steps may pass by without the system changing state. Choosing a very small
time-step to cure the first problem amplifies the second, and choosing a long time-
step to cure the second problem amplifies the first flaw. To fix these problems we
will consider a continuous-time setup where the length of the time-step is a random
number that is dependent on the state of the system.

Gillespie Algorithm

Trying to deduce the process that is described by the continuous-timemaster equation
(2.13) is significantly more difficult than the discrete-time case. We now need to
answer two questions: which is the next reaction to occur, and at what time does
this happen? As both of these quantities are random variables, we need to compute
the joint probability density p(ν, τ ), which is the probability density that the next
reaction to occur from n is to n + ν, and this happens after a period of time τ [41].
If we consider the reaction to occur in the time interval [t + τ, t + τ + dτ ], then we
can write

p(ν, τ )dτ = P0(n, t + τ |n, t)T ν
n dτ, (2.83)

where P0(n, t + τ |n, t) is the probability that no reactions have occurred in the time
interval [t, t + τ ]. This quantity is found by considering only transitions out of state
n in the master equation (2.13). By relabelling the initial condition in Eq. (2.12), we
can write,

dP0(n, t + τ |n, t)

dτ
= −

∑
ν

T ν
n P0(n, t + τ |n, t). (2.84)

This can be directly integrated to show that P0(n, t +τ |n, t) decreases exponentially
with τ ,

P0(n, t + τ |n, t) = exp

[
−
(∑

ν

T ν
n

)
τ

]
. (2.85)

The value
∑

ν T
ν
n = a0(n) is the total rate at which the system leaves state n.

Substituting this into Eq. (2.83) we can write
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p(ν, τ ) = T ν
n

a0(n)
× a0(n) exp[−a0(n)τ ]. (2.86)

Hence the probability density p(ν, τ ) can be decomposed into two independent
densities: the first describes the choice of reaction with weight T ν

n /a0(n), and the
second describes the time-step which is exponentially distributed. Hence by drawing
two independent random numbers for each time-step, we can simulate a process
that is distributed exactly as described by the solution of the continuous-time master
equation (2.12). This procedure was popularised in Ref. [41], and is known as the
Gillespie algorithm.
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Chapter 3
Finite Populations in Switching
Environments

3.1 Introduction

As discussed in the previous section, selection acts on different phenotypes, such as
‘resident’ and ‘mutant’, and changes the population composition. The environment in
which a population evolves determines the direction of selection. Changes in the state
of the environment can alter these selective pressures such that different phenotypes
are selected for as time progresses. Characterising the evolutionary dynamics of the
population in such a system is non-trivial, but we will shed light on this issue in this
chapter. This work originally appeared in [1], although some of the notation has been
changed to fit in with the rest of this thesis.

Time-varying environments are relevant in the evolution of bacterial populations
subject to environment modulations by a host [2, 3], or varying antibiotic stress
[4]. An illustrative example is the evolution of normal ‘sensitive’ cells and resistant
‘persister’ cells. A stochastic model of this was examined by Kussell et al. [5], where
periods of antibiosis were turned on and off. During times of antibiotic stress the
growth rate of normal cells was reduced, but the resistant cells sustain population
levels. Stochastic switching between the phenotypes ensured that any lost phenotypes
could be reintroduced. This can be seen from the simulation trajectory of this process
shown in Fig. 3.1.

Further mathematical analysis was carried out in the large-population limit in the
absence of intrinsic stochasticity. The population dynamics are then controlled by
the differential equation [5]

dn
dt

= Aε(t) · n(t), (3.1)

where n(t) is the population vector that describes the number of individuals of each
species at time t , and ε(t) is the state of the environment which takes discrete values.
The environment can be periodic as shown in Fig. 3.1, or more generally can follow
a continuous-time stochastic process. The matrix Aε(t) describes the growth of the

© Springer International Publishing Switzerland 2016
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Fig. 3.1 A stochastic trajectory of a population subjected to periodic antibiotic stress. Gray hori-
zontal bars indicate the absence of the drug, and white spaces indicate periods of antibiosis. Dark
blue lines represent the number of wild-type cells which are sensitive to the drug (and hence their
numbers decrease during antibiosis). The pale blue line represents the number of resistant or per-
sister phenotypes, which are able to rescue the population from extinction. Orange and green lines
should be ignored in this instance. Figure is taken from Ref. [5]

number of individuals of each species, including changes fromone species to another,
when the environment is in state ε(t).

The model (3.1) was supported by Acar et al. [6] who provided experimental
evidence by modifying the environment in which two strains of yeast grow. More
complicated studies of dynamics in switching environments rely on cells ‘sensing’ the
environment [7] and on the history or information of the environment that is collected
during a cell’s lifetime [8, 9]. These examples illustrate that the assumption of an
interaction structure independent of time is not always realistic. At the same time it
is largely an open question how complex interactions between phenotypes together
with spontaneous changes in the environment influence the evolutionary dynamics.

While deterministic dynamics are useful to understand the action of selection, a
stochastic approach is necessary to capture effects such as fixation and extinction.
Environmental variability in stochastic systems has been investigated in predator–
preymodels [10]. It has also been studied in the context of evolutionary games, where
(continuous) extrinsic noise is added to model parameters [11].

Rather than selecting a specific form for the dynamics, we will use the generic
birth–death framework such that our results apply to a wide class of population
dynamics. For the environmental dynamics, we will follow the work of Kussell et al.
[5] and consider an environment that stochastically switches between a discrete set
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of states. It is convenient to describe the dynamics in discrete time, as will be seen
below. The model we use is described in detail in Sect. 3.2. In Sect. 3.3 the theory is
developed that allows us to calculate fixation probabilities and mean fixation times
of a rare mutant under fluctuating environmental conditions. We then expand on
the two-environment scenario where further analytical progress can be made. To
illustrate our theoretical results we study the fixation properties in an evolutionary
game that stochastically switches between a coexistence game and a coordination
game in Sect. 3.4.We determine environmental conditions underwhich the success of
a rare invading mutant is maximal. This is seen to occur at a non-trivial combination
of switching rates.

If we introducemutations into the dynamics, the possibility of fixation and extinc-
tion is removed as a lost species can be reintroduced. Instead we seek to describe
the stationary distribution of a population evolving in a switching environment in
Sect. 3.5. We derive approximations for this stationary distribution, which we show
are valid for a large range of switching rates in the two-environment scenario.

3.2 Model

We consider populations consisting of a fixed number, N , of individuals. Each indi-
vidual can be of one of two types, A or B, whichwe refer to as ‘mutant’ and ‘resident’,
respectively. The population is well mixed; every individual can interact with any
other individual. The state of the population (without considering the environmen-
tal dynamics) is fully characterised by the number, i , of individuals of type A. The
remaining N − i individuals are then of type B. We furthermore assume that at any
one time the environment can be in one of � discrete states, labelled σ ∈ �, where
� is the space of states of the environment (|�| = �). Hence the state of the entire
system at any time is given by the pair (i, σ ).

The discrete-time birth–death dynamics of the population for a given environment,
σ , is specified by the transition probabilities b(σ )

i and d(σ )
i of a one-step process. This

is analogous to the birth and death rates discussed in Sect. 2.3. Specifically, if the
system is in state (i, σ ) the population transitions to state i + 1 in the next time-step
with probability b(σ )

i . Similarly the state of the population in the next time step is
i − 1 with probability d(σ )

i . These transitions are shown as short curved arrows in
Fig. 3.2. With probability 1−b(σ )

i −d(σ )
i the population remains in state i . We always

assume that b(σ )
i ≥ 0, d(σ )

i ≥ 0, and b(σ )
i + d(σ )

i ≤ 1 for all (i, σ ). Throughout this
chapter we will use the time-step �t = 1, as described in Sect. 2.3. The quantity t
then counts the number of time-steps. All times shown in figures will be expressed
in generations, i.e. t/N .

For now we will assume that the states i = 0 (all-type-B) and i = N (all-type-A)
are absorbing, i.e. b(σ )

0 = 0 and d(σ )
N = 0 for all σ ∈ �. In the absence of further

mutation events a type, once absent, can never be re-introduced. If mutations occur

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Fig. 3.2 A population undergoes a one-step birth–death process, such that given the population is
in state i , in one time-step it may transition to i−1 or i+1, or remain at i . The states i = 0 and i = N
are absorbing in all environments (no arrows out of these states). The transition probabilities are
dependent on the state of the environment, indicated by solid versus dashed arrows in environments
σ and σ ′, respectively. The environment switches from state σ to σ ′ with probability μσ ′,σ in any

one time-step. The quantity φ
(σ)
i represents the probability of fixation, as discussed in Sect. 3.3

during the dynamics, then the states i = 0 and i = N are no longer absorbing and
the system converges to a unique, non-trivial stationary state. We consider this case
in Sect. 3.5.

In our approach the environment evolves from one state to another independently
of the state of the population. This is a simplification that allows the following analysis
to take place, but this model still captures a wide array of natural scenarios. In this
discrete-time setup we take the dynamics of the environment to be a simple Markov
chain, described by the transition matrix M of size � × �. The entry μσ ′,σ of the
matrix M represents the probability that the environment changes to state σ ′ in the
next time-step, if it is currently in state σ , as shown in Fig. 3.2. The matrix M is a
stochastic matrix,

∑
σ ′ μσ ′,σ = 1 for all σ ∈ �. In other words all columns sum to

one. To ensure this we set μσ,σ = 1 − ∑
σ ′ �=σ μσ ′,σ .

If the system is in state (i, σ ) at a given time, it may transition to 3� possible
states in any one time-step. These are given by (i, σ ′), (i + 1, σ ′) and (i − 1, σ ′),
where σ ′ ∈ � can be any of the � states of the environment. If we write R( j,σ ′),(i,σ )

for the probability of a transition from (i, σ ) to ( j, σ ′), we have

R(i+1,σ ′),(i,σ ) = μσ ′,σb
(σ )
i , (3.2a)

R(i−1,σ ′),(i,σ ) = μσ ′,σd
(σ )
i , (3.2b)

R(i,σ ′),(i,σ ) = μσ ′,σ

(
1 − b(σ )

i − d(σ )
i

)
. (3.2c)

No transitions from (i, σ ) to ( j, σ ′) can occur when |i − j | > 1. In this setup the
birth and death probabilities are determined by the state of the environment at the
beginning of the discrete time-step.
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In analogy with Eq. (2.17), the master equation for the probability to be in state
(i, σ ) is given by

P(i,σ )(t + 1)

=
∑
σ ′∈�

[
R(i,σ ),(i−1,σ ′)P(i−1,σ ′)(t) + R(i,σ ),(i+1,σ ′)P(i+1,σ ′)(t) + R(i,σ ),(i,σ ′)P(i,σ ′)(t)

]

=
∑
σ ′∈�

μσ,σ ′
[
b(σ ′)
i−1 P(i−1,σ ′)(t) + d(σ ′)

i+1 P(i+1,σ ′)(t) +
(
1 − b(σ ′)

i − d(σ ′)
i

)
P(i,σ ′)(t)

]
.

(3.3)

The backward equation, in analogy with Eq. (2.20), is

Q( j,σ ′′);(i,σ )(t + 1)

=
∑
σ ′∈�

[
R(i+1,σ ′),(i,σ )Q( j,σ ′′);(i+1,σ ′)(t) + R(i−1,σ ′),(i,σ )Q( j,σ ′′);(i−1,σ ′)(t)

+ R(i,σ ′),(i,σ )Q( j,σ ′′);(i,σ ′)(t)
]

=
∑
σ ′∈�

μσ ′,σ

[
b(σ )
i Q( j,σ ′′);(i+1,σ ′)(t) + d(σ )

i Q( j,σ ′′);(i−1,σ ′)(t)

+
(
1 − b(σ )

i − d(σ )
i

)
Q( j,σ ′′);(i,σ ′)(t)

]
. (3.4)

3.3 Mathematical Framework

We now demonstrate how to calculate the fixation probability and mean fixation
times in birth–death processes with an arbitrary number of environmental states.
This framework is based on the discrete-time process. In the associated publica-
tion, Ref. [1], we present similar methods for analysing continuous-time processes
alongside the discrete-time formulation.

Fixation Probability

The fixation probability, φ(σ)
i , is the probability that the system ends up in the absorb-

ing statewith N individuals of type A, conditioned on the initial state (i, σ ). The prob-
ability of fixation of a single mutant, φ(σ)

1 , is of particular interest; rare mutations can
introduce a previously absent strategy into the population, and typically there is only
one individual of this novel type initially. Toobtain an expression for thefixationprob-
ability, we follow Sect. 2.4 and introduce the φ

(σ)
i = limt→∞

∑
σ ′′ Q(N ,σ ′′);(i,σ )(t).

We sum over all final environmental states (σ ′′) as we are only interested in the prob-
ability of type A taking over the population, not the environment in which fixation
is reached. From Eq. (3.4) we obtain

φ
(σ)
i =

∑
σ ′∈�

μσ ′,σ

[
b(σ )
i φ

(σ ′)
i+1 + d(σ )

i φ
(σ ′)
i−1 +

(
1 − b(σ )

i − d(σ )
i

)
φ

(σ ′)
i

]
. (3.5)

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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This is to be solved along with the boundary conditions φ
(σ)
0 = 0 and φ

(σ)
N = 1 for

all σ ∈ �.
To obtain a formal solution, we introduce ψ

(σ)
i = ∑

σ ′ μσ ′,σ φ
(σ ′)
i . The boundary

conditions φ
(σ)
0 = 0 and φ

(σ)
N = 1 translate into ψ

(σ)
0 = 0 and ψ

(σ)
N = 1 for all

σ ∈ �, where the second expression follows fromM being a stochastic matrix. With
this notation we have

φ
(σ)
i = b(σ )

i

(
ψ

(σ)
i+1 − ψ

(σ)
i

)
− d(σ )

i

(
ψ

(σ)
i − ψ

(σ)
i−1

)
+ ψ

(σ)
i . (3.6)

In matrix form we can write ψ i = φi · M, where ψ i and φi are row vectors with �

components.1 Using φi = ψ i · M−1, we obtain

(
ψ

(σ)
i+1 − ψ

(σ)
i

)
= γ

(σ)
i

(
ψ

(σ)
i − ψ

(σ)
i−1

)
+ 1

b(σ )
i

[
(ψ i · M−1)(σ ) − ψ

(σ)
i

]
, (3.7)

where γ
(σ)
i = d(σ )

i /b(σ )
i . This formalism requires the matrix M to be invertible.

However, it will be shown that there is no anomalous behaviour when det(M) = 0.
Tokeep the notation compactwedefine the difference variableυ

(σ)
i = ψ

(σ)
i −ψ

(σ)
i−1.

Usingψ
(σ)
0 = 0,we have

∑i
j=1 υ

(σ)
j = ψ

(σ)
i .With this notationwe canwrite Eq. (3.7)

in the following form

υ
(σ)
i+1 = γ

(σ)
i υ

(σ)
i + 1

b(σ )
i

⎡
⎣

i∑
j=1

υ j · (
M

−1 − I
)
⎤
⎦

(σ )

, (3.8)

where I is the�×� identity matrix. This relation expresses the vector υ i+1 in terms
of the vectors υ1,υ2, . . . ,υ i . We can therefore express all vectors υ i (i = 2, . . . , N )
in terms of υ1. The constraint

∑N
i=1 υ i = ψN = (1, . . . , 1) then determines υ1 self-

consistently. We note that the resulting set of equations is linear in the set
{
υ

(σ)
1

}
.

Hence a solution can be obtained in closed form, in principle. In practice one inverts
the linear system using one of the standard algebraic manipulation packages. Once
υ1 has been found, the other components υ i , with i = 2, . . . , N , can be computed
via Eq. (3.8). One then uses φi = ∑i

j=1 υ j · M−1 to find the fixation probabilities

starting with i individuals of type A in environment σ , φ(σ)
i .

We note here that algebraically inverting the linear system(3.8) when N is large
is difficult due to the increasing number of terms in the corresponding expressions.
Thus, at present, this theory is limited computationally to relatively small system-
sizes. We have shown it is accurate up to N = O (100).

In the case of a single environment, � = 1, the matrix M is simply the 1 × 1
identity matrix, and the solution to Eq. (3.8) simplifies to the well-known result for
birth–death processes, Eq. (2.24) [12–15].

1As the backward equation is the adjoint of the forward equation, the column vectors of probability
are transposed to give row vectors.

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Mean Unconditional Fixation Time

We write t (σ )
i for the expected number of time-steps taken to reach any one of the

two absorbing states, given that the system is started in state (i, σ ). Just like we did
in Eq. (2.25), we define ϑ

(σ)
i (t) = ∑

σ ′′
[
Q(0,σ ′′);(i,σ )(t) + Q(N ,σ ′′);(i,σ )(t)

]
and

t (σ )
i =

∞∑
t=0

t
[
ϑ

(σ)
i (t) − ϑ

(σ)
i (t − 1)

]
. (3.9)

The mean fixation times fulfill the boundary conditions t (σ )
0 = t (σ )

N = 0. Proceeding
as described in Sect. 2.4, from the backward master equation (3.4) we can express
the mean unconditional fixation time as

t (σ )
i =

∑
σ ′∈�

μσ ′,σ

[
b(σ )
i t (σ

′)
i+1 + d(σ )

i t (σ
′)

i−1 +
(
1 − b(σ )

i − d(σ )
i

)
t (σ

′)
i

]
+ 1. (3.10)

Introducing the variable ξ
(σ)
i = ∑

σ ′ μσ ′,σ t
(σ ′)
i , we have

t (σ )
i = b(σ )

i

(
ξ

(σ)
i+1 − ξ

(σ)
i

)
− d(σ )

i

(
ξ

(σ)
i − ξ

(σ)
i−1

)
+ ξ

(σ)
i + 1. (3.11)

With the notation ν
(σ)
i = ξ

(σ)
i − ξ

(σ)
i−1, and using

∑i
j=1 ν

(σ)
j = ξ

(σ)
i , we arrive at

ν
(σ)
i+1 = γ

(σ)
i ν

(σ)
i + 1

b(σ )
i

⎡
⎣

i∑
j=1

ν j · (
M

−1 − I
)
⎤
⎦

(σ )

− 1

b(σ )
i

. (3.12)

This relation allows one to express all vectors νi (i = 2, . . . , N ) in terms of ν1. The
constraint

∑N
i=1 νi = (0, . . . , 0) from the boundary condition then determines ν1,

and the mean unconditional fixation times are computed using ti = ∑i
j=1 ν j ·M−1.

As described previously, the ti are expressed in units of elementary time-steps. In
the results presented below, times are expressed in generations, i.e. we plot t/N on
the time axes.

Mean Conditional Fixation Time

We write t (σ )
i |A for the mean fixation time conditioned on absorption in the all-A state,

given that the system is initially in state (i, σ ). To find this conditional fixation time,
we proceed along similar lines as per the derivation of Eq. (2.39). We introduce the
variable ϕ

(σ)
i (t) = ∑

σ ′′ Q(N ,σ ′′);(i,σ )(t), and define the mean conditional fixation
time as

t (σ )
i |A = 1

φ
(σ)
i

∞∑
t=0

t
[
ϕ

(σ)
i (t) − ϕ

(σ)
i (t − 1)

]
. (3.13)

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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From the backward master equation (3.4), it can be seen that t (σ )
i |A satisfies

φ
(σ)
i t (σ )

i |A =
∑
σ ′∈�

μσ ′,σ
[
b(σ )
i φ

(σ ′)
i+1 t

(σ ′)
i+1|A + d(σ )

i φ
(σ ′)
i−1 t

(σ ′)
i−1|A +

(
1 − b(σ )

i − d(σ )
i

)
φ

(σ ′)
i t (σ

′)
i

]
+ φ

(σ)
i .

(3.14)

Introducing the variable θ
(σ)
i = φ

(σ)
i t (σ )

i |A , which has boundary conditions θ
(σ)
0 =

θ
(σ)
N = 0, and ζ

(σ)
i = ∑

σ ′ μσ ′,σ θ
(σ ′)
i , we have

θ
(σ)
i = b(σ )

i

(
ζ

(σ)
i+1 − ζ

(σ)
i

)
− d(σ )

i

(
ζ

(σ)
i − ζ

(σ)
i−1

)
+ ζ

(σ)
i + φ

(σ)
i . (3.15)

Now introducing the difference variable η
(σ)
i = ζ

(σ)
i − ζ

(σ)
i−1 and noting that∑i

j=1 η
(σ)
j = ζ

(σ)
i , we arrive at

η
(σ)
i+1 = γ

(σ)
i η

(σ)
i + 1

b(σ )
i

⎡
⎣

i∑
j=1

η j · (
M

−1 − I
)
⎤
⎦

(σ )

− 1

b(σ )
i

φ
(σ)
i . (3.16)

The set
{
θ

(σ)
i

}
can then be found using θ i = ∑i

j=1 η j · M−1. Results for the mean

conditional fixation time can then be obtained using t (σ )
i |A = θ

(σ)
i /φ

(σ)
i .

Switching Between Two Environments

We now focus on the case of environments which can be in one of two possible states,
i.e. � = 2. We label the two states as σ = ±1 (� = {+1,−1}). The matrix M can
then be written as

M =
(
1 − p+ p−
p+ 1 − p−

)
, (3.17)

where the quantity pσ is the probability that in a given time-step the environment
switches from state σ to −σ , i.e. if the environment is in state +1, it will switch to
state −1 in the next time-step with probability p+.

We recall that our theoretical results require the inversion of M. Excluding the
case when � = det(M) = 1 − p+ − p− vanishes, this inversion can be carried out
straightforwardly,

M
−1 = 1

�

(
1 − p− −p−
−p+ 1 − p+

)
. (3.18)

For the case � = 0, i.e. p+ + p− = 1, we have verified that there is no anomalous
behaviour of simulation results, see below (Fig. 3.6).

To find the fixation probability in this two-environment system, we substitute the
inverse matrix (3.18) into the general result (3.8). This reduces to the recursion

υ
(σ)
i+1 = γ

(σ)
i υ

(σ)
i + 1

b(σ )
i

pσ

�

i∑
j=1

(
υ

(σ)
j − υ

(−σ)
j

)
, (3.19)
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along with the boundary condition
∑N

j=1 υ j = (1, 1). The fixation probability is
obtained via

φ
(σ)
i =

⎡
⎣

i∑
j=1

υ j · M−1

⎤
⎦

(σ )

= 1

�

i∑
j=1

[
(1 − p−σ )υ

(σ)
j − pσ υ

(−σ)
j

]
. (3.20)

Similarly, Eq. (3.12) for the mean unconditional fixation time reduces to

ν
(σ)
i+1 = γ

(σ)
i ν

(σ)
i + 1

b(σ )
i

pσ

�

i∑
j=1

(
ν

(σ)
j − ν

(−σ)
j

)
− 1

b(σ )
i

, (3.21)

along with the boundary condition
∑N

i=1 ν j = (0, 0). The mean unconditional fixa-
tion times are then found as

t (σ )
i =

⎡
⎣

i∑
j=1

ν j · M−1

⎤
⎦

(σ )

= 1

�

i∑
j=1

[
(1 − p−σ )ν

(σ)
j − pσ ν

(−σ)
j

]
. (3.22)

Finally, Eq. (3.16) for the mean conditional fixation time reduces to

η
(σ)
i+1 = γ

(σ)
i η

(σ)
i + 1

b(σ )
i

pσ

�

i∑
j=1

(
η

(σ)
j − η

(−σ)
j

)
− 1

b(σ )
i

φ
(σ)
i , (3.23)

along with the boundary condition
∑N

i=1 η j = (0, 0). The mean conditional fixation
times are then found as

t (σ )
i |A = 1

φ
(σ)
i

⎡
⎣

i∑
j=1

η j · M−1

⎤
⎦

(σ )

= 1

φ
(σ)
i

1

�

i∑
j=1

[
(1 − p−σ )η

(σ)
j − pσ η

(−σ)
j

]
.

(3.24)
Effective Description for Fast Switching

We say the environment is in the ‘fast switching’ regime if the lifetime of the environ-
mental states are much shorter than the mean fixation time in either environment, i.e.
in the fast switching regime we expect the state of the environment to change many
times before fixation is reached. If this is the case we expect the population dynam-
ics to be controlled by a set of effective transition probabilities, which are weighted
averages of the original transition probabilities in the different environmental states.
The weights are given by the fraction of time spent in each environmental state.

In the two-environment scenario, the dynamics of σ follow a so-called telegraph
process [16]. Writing Pσ (t) for the probability for the environment to be found in
state σ at time t , the evolution of σ is described by the forward master equation
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Pσ (t + 1) = ∑
σ ′ μσ,σ ′ Pσ ′(t). In matrix form this is simply P(t + 1) = M · P(t).

By diagonalising the 2 × 2 matrix M (Eq. (3.17)), we can express P(t) in terms of
the eigenvectors (v1 and v2) and eigenvalues (λ1 = 1 and λ2 = 1− p+ − p−) ofM,
which gives

P(t) = c1v1 + c2v2λt
2, (3.25)

where c1 and c2 are determined by the initial condition. Taking the long-time limit
of this expression reveals the fraction of time spent in the state σ is p−σ /(pσ + p−σ )

for σ ∈ {−1,+1}. Hence the time spent in state σ decreases with increasing pσ if
p−σ is held fixed. Using this long-time limit, the effective transition probabilities are
given by

beffi = p−
p+ + p−

b(+)
i + p+

p+ + p−
b(−)
i , (3.26)

and likewise for deff
i .

In this approximation the dynamics of the population aremapped onto the familiar
birth–death process on the set i ∈ {0, 1, . . . , N } with absorbing states i = 0 and
i = N , as described in Sect. 2.3. Using the expressions from Sect. 2.4 for the fixation
probabilities and mean fixation times, we can describe the fixation properties of
the population in the fast-switching regime. For the fixation probability of a single
mutant, we have

φeff
1 = 1

1 + ∑N−1
k=1

∏k
j=1 γ eff

j

. (3.27)

We have here written γ eff
i = deff

i /beffi . The corresponding approximations for the
mean unconditional and conditional fixation times of a single mutant are

teff1 = φeff
1

N−1∑
k=1

k∑
�=1

1

beff�

k∏
m=�+1

γ eff
m , (3.28)

teff1|A =
N−1∑
k=1

k∑
�=1

1

beff�

φeff
�

k∏
m=�+1

γ eff
m , (3.29)

respectively. These expressions describe exactly the fixation properties of a birth–
death system with the effective transition probabilities; the nature of our approxima-
tion is to assume that the birth–death process in quickly changing environments can
be described by the effective transition probabilities in Eq. (3.26).

Finally we note that this theory is independent of the invertibility of the switching
matrixM (also shown in Fig. 3.6).

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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3.4 Switching Between Two Games

As a direct application of the general theorywehave developed,we nowconsider evo-
lutionary game dynamics in well-mixed, finite populations.Wemodify the dynamics
described in Sect. 2.8 so that at any point in time the environment is in one of two
discrete states (σ ∈ {+1,−1}). In this model the state of the environment affects the
payoff structure. The interaction between individuals is characterised by the payoff
matrix

A B
A R(σ ) S(σ )

B T (σ ) P (σ ).

(3.30)

If the environment is in state σ , and if there are i individuals of type A in the
population and N − i individuals of type B, the expected payoffs for each type of
player are

π
(σ)
A (i) = i − 1

N − 1
R(σ ) + N − i

N − 1
S(σ ), (3.31a)

π
(σ)
B (i) = i

N − 1
T (σ ) + N − i − 1

N − 1
P (σ ), (3.31b)

as described in Eq. (2.74). For this example we choose an exponential mapping
between expected payoff and fitness as described in Eq. (2.78). In environment σ the
fitnesses are

f (σ )
A (i) = exp

[
βπ

(σ)
A (i)

]
, (3.32a)

f (σ )
B (i) = exp

[
βπ

(σ)
B (i)

]
, (3.32b)

where β > 0 is the so-called intensity of selection. Following the update rules of the
Moran process as described in Eq. (2.79), the intensive transition probabilities are
given by

b(σ )
i = i(N − i)

N 2

f (σ )
A (i)

f
(σ )

(i)
(3.33a)

d(σ )
i = i(N − i)

N 2

f (σ )
B (i)

f
(σ )

(i)
, (3.33b)

where f
(σ )

(i) = [i f (σ )
A (i) + (N − i) f (σ )

B (i)]/N is the average fitness of the popu-
lation.

To reduce the parameter space of our model, we consider R(σ ) = P (σ ) = 1 in
the payoff matrix (3.30). The type of game is then determined by the off-diagonal
terms. We choose S(σ ) = 1+ σq and T (σ ) = 1+ σr , where q and r are real-valued

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2


50 3 Finite Populations in Switching Environments

parameters. Thus we have the parametrised payoff matrix

A B
A 1 1 + σq
B 1 + σr 1.

(3.34)

This parametrisation does not span the entire space of all 2 × 2 games, but it covers
the three general types discussed in Sect. 2.8:

Dominance: 1 + σq > 1 and 1 + σr < 1 (or 1 + σq < 1 and 1 + σr > 1), type
A (or type B) always has the higher fitness irrespective of the composition of the
population. This type is then always favoured by selection.

Coexistence: 1 + σq > 1 and 1 + σr > 1, selection drives the population away
from the absorbing boundaries.

Coordination: 1 + σq < 1 and 1 + σr < 1, the population exhibits bi-stability
and selection drives the population towards the monomorphic states.

In the last two cases there exists an internal point in frequency space for which
the direction of selection changes its sign, i.e. at which the gradient of selection,
b(σ )
i − d(σ )

i , is zero. This is referred to as the selection-balance point. This point
can be calculated by solving b(σ )

i∗ = d(σ )
i∗ for i∗. From the transition probabilities

and fitnesses in Eqs. (3.32) and (3.33), we see i∗ satisfies π
(σ)
A (i∗) = π

(σ)
B (i∗). From

Eq. (3.31) we find i∗/N = q/(q +r) for both σ = ±1. In the dominance game there
are no such turning points. For the remainder of this chapter we focus on switching
between coexistence and coordination games. More precisely we choose q > 0
and r > 0 in Eq. (3.34). The coexistence game corresponds to σ = +1 and the
coordination game to σ = −1.

Results

In Fig. 3.3a we show a sample trajectory of a simulation in which a single mutant
reaches fixation. The gradient of selection, b(σ )

i −d(σ )
i , for the two fixed environments

is shown in Fig. 3.3b, c. During periods when the environment is in the coexistence
state (light background; σ = +1) the population fluctuates about the selection-
balance point (dashed line). During periods when the environment is in the coordi-
nation state (shaded background; σ = −1) the population is driven away from the
selection-balance point. In the final period in the coordination state the mutant is
driven to fixation.

In Fig. 3.4 we show the variation of fixation probability and mean conditional
fixation time with the switching parameters p+ and p− obtained from our theoretical
framework. The fixation probability in this example depends non-trivially on the
environmental switching parameters; we find a combination, p+ 
 p−, for which
fixation of a single mutant is most likely, as shown in Fig. 3.4a, b. The initial state
of the environment has very little effect on the fixation probability for p± � 0.1.
In this region the switching process of the environment is too fast for the initial
condition to have any significant effect on the population dynamics, and it is here
that we expect the effective description to approximate the system well. For p± �

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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(c)

(b)(a)

Fig. 3.3 a A sample trajectory (time series) of the fraction of individuals of type A. White back-
ground corresponds to the environment being in the σ = +1 coexistence state, while the shaded
background corresponds to the σ = −1 coordination state. Dashed line is the location of the point
at which selection balances, which is the same in both states of the environment. b Gradient of
selection in the σ = +1 coexistence state, b(+)

i − d(+)
i . Solid circle shows location of the point

of selection balance, and arrows indicate the direction and magnitude of flow towards this point. c
Gradient of selection in the σ = −1 coordination state, b(−)

i −d(−)
i . Empty circle shows location of

the point of selection balance, and arrows indicate the direction and magnitude of flow away from
this point. For the realisation in panel a and the selection bias shown in b and c, the payoff matrix
parameters are q = 0.5 and r = 0.9, the selection intensity is β = 1, the system size is N = 100,
and the switching probabilities are p+ = 10−3 and p− = 10−4. Time is measured in generations

0.1 the fixation probability is affected by the initial condition. This effect can be
understood by considering the deterministic gradient of selection of the two games,
which are qualitatively the same as those shown in Fig. 3.3b, c.2 When starting in the
coordination game, selection pushes the mutant towards extinction. Hence fixation
is more likely if the initial state is the coexistence game.

The mean conditional fixation times shown in Fig. 3.4c, d show very little depen-
dence on the initial state of the environment. Systems started in the coordination
environment will tend to reach extinction relatively quickly due to initial adverse
selection, unless the environment switches to the coexistence state early on. Thus the
sample of runs that reach fixation started in the coordination game will be dominated
by runs in which the environment switches soon after the start of the run. Then we
expect that the value of themean conditional fixation time is close to the one obtained
when starting in the coexistence game.

The fixation time is small for p+ � p− when the environment is found mostly in
the coordination game, and large when the environment is mostly in the coexistence
state (p+ � p−). If fixation happens, it will generally be quicker in the coordination
game than in the coexistence game [17, 18]. This is due to the adverse selection bias in
the coordination game at low mutant numbers, as shown in Fig. 3.3c. The more time
the system spends in this region of adverse selection the less likely it is for the mutant
to reach fixation. Thus if fixation happens in a coordination game then it happens
fast. In the coexistence game on the other hand the direction of selection is towards
the balance point, as shown in Fig. 3.3b. The system can ‘afford’ to spend significant

2Payoff parameters are the same in Figs. 3.3 and 3.4. Although system-size and selection intensity
are different, these parameters do not affect the qualitative features of the gradient of selection.



52 3 Finite Populations in Switching Environments

(a) (b)

(c) (d)

Fig. 3.4 Theoretical predictions of the fixation probability and mean conditional fixation time of
a single mutant as a function of the switching parameters p+ and p−. Panel a shows the fixation
probability (Eq.3.20)when starting from the σ = +1 coexistence game, and panel b shows the same
when starting from the σ = −1 coordination game. Panel c shows the mean conditional fixation
time (Eq.3.24) (time measured in generations) when starting from the σ = +1 coexistence game,
and panel d shows the same when starting from the σ = −1 coordination game. Horizontal lines
correspond to the data shown in Fig. 3.5. The payoff matrix parameters are q = 0.5 and r = 0.9,
the selection intensity is β = 0.5, and the system size is N = 50

time in the region of small mutant numbers and still reach fixation eventually even
after repeated excursions through frequency space. Thus there is no need for fixation
to occur quickly, and conditional fixation times can be long. These observationsmake
it plausible that the mean conditional fixation time will generally decrease when less
time is spent in the coexistence game, which is exactly what we find in Fig. 3.4c, d.
Other choices of the parameters q and r for which the two games are a coexistence
game and a coordination game, reveal that the behaviour of the mean conditional
fixation times is robust under such changes.

To compare how the analytic predictions compare with simulation results we take
a cross-section of the data, shown by the horizontal lines in Fig. 3.4a–d. This data
is shown in Fig. 3.5. The theoretical predictions of Eqs. (3.20) and (3.24), indicated
by solid lines, are in convincing agreement with simulation data (symbols). The
predictions of the effective theory, Eqs. (3.27) and (3.29), agree well with simulation
results in the fast-switching region. The effective theory qualitatively matches the
data, but unsurprisingly there are systematic deviations when switching is slow.
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(a) (b)

Fig. 3.5 a Fixation probability of a single mutant at fixed p− computed from simulation results
(symbols; crosses correspond to σ(0) = +1 and circles to σ(0) = −1), along with the theoretical
results (solid lines) from Eq. (3.20), and the fast-switching approximation result (dashed line) of
Eq. (3.27).bMean conditional fixation time (in generations) of a singlemutant at fixed p− computed
from simulation results as described above, along with the exact theoretical results (solid lines) of
Eq. (3.24), and the fast-switching approximation result (dashed line) of Eq. (3.29). The parameters
are as in Fig. 3.4, and p− = 0.01

In Fig. 3.6, to show that there is no anomalous behaviour when the switching
matrix M is singular, we keep p− = 0.5 fixed and sweep p+ across 0.5, which is
the point at which � = 0. The simulation data does not indicate any singularity
or anomalous behaviour, and this is also confirmed by the effective theory which
does not require M to be invertible. The apparent issue is hence not a fundamental
problem, but merely an artificial singularity that arises from the procedure that we
use to analyse this system.

(a) (b)

Fig. 3.6 a Fixation probability of a single mutant at fixed p− = 0.5 computed from simulation
results (symbols; crosses correspond to σ(0) = +1 and circles to σ(0) = −1), along with the
theoretical results (solid lines) from Eq. (3.20), and the fast-switching approximation result (dashed
line) of Eq. (3.27). b Mean conditional fixation time (in generations) of a single mutant at fixed
p− = 0.5 computed from simulation results as described above, along with the exact theoretical
results (solid lines) of Eq. (3.24), and the fast-switching approximation result (dashed line) of
Eq. (3.29). The parameters are as in Fig. 3.4. Simulation data and the effective theory reveal no
singular or anomalous behaviour at p+ = 0.5
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(a) (b)

Fig. 3.7 a Fixation probability of a single mutant at fixed p− started in the σ(0) = +1 coexistence
game for various system sizes. Simulation results (symbols) are shown along with the theoretical
results (solid lines) from Eq. (3.20). b Mean conditional fixation time (in generations) of a single
mutant. Themain panel shows simulation results, as described above alongwith the exact theoretical
results (solid lines) Eq. (3.24). Inset panel shows the theoretical results scaled by the system size.
Open symbols are averages over 104 simulation runs, filled symbols correspond to averaging over
106 runs. The parameters are as in Fig. 3.4, and p− = 0.01

The features observed in Fig. 3.5, i.e. the peak in the fixation probability and shape
of the mean conditional fixation time as a function of p+, are found to be robust when
the system size is increased, as shown in Fig. 3.7. Fixation probabilities generally
decrease with system size, but the observed peak becomes sharper. This effect is
highlighted by the logarithmic axis in Fig. 3.7a.

The mean conditional fixation time scales exponentially in N when the system
spends most of its time in the coexistence state. This scaling is in-line with existing
results [17, 19]. If the majority of time is spent in the coordination game, then the
mean conditional fixation time increases sub-linearly with N , again in agreement
with existing literature [17]. As can be seen in the inset of Fig. 3.7b, there is a
‘critical’ switching rate p+ 
 p− = 0.01 at which the scaling of the fixation time (in
generations) is linear in N . This is in agreement with the neutral theory result [17].

Finally we comment on how varying the payoff matrix parameters affects the
evolutionary outcome. By considering the deterministic gradient of selection, we
have shown that the selection-balance point is located at i∗/N = q/(q + r) in
both the coexistence and coordination games. If the environment is fixed to the
coexistence-game state, fixation of the mutant is more likely if the selection-balance
point is close to the fixated state as there is a greater region in which selection favours
the mutant. This is shown in Fig. 3.8a. In a fixed coordination-game environment the
reverse is the case. The range of adverse selection is to the left of the balance point,
and so fixation is less likely the closer the point of selection balance is to the fixated
state, again shown in Fig. 3.8a. These views are validated through computation of
the fixation probability in the fixed games using Eq. (2.24) as a function of the fixed
point location, shown in Fig. 3.8b.

Using these ideas we can infer how the system with a switching environment will
behave. For q � r , i.e. a selection-balance point close to i = 0, we expect that the
fixation probability will increase the more time is spent in the coordination-game

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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(a) (b)

Fig. 3.8 a Illustration of selection bias in the two environments for different locations of the balance
point; b Fixation probability of a single mutant in the fixed coexistence and coordination games
calculated using Eq. (2.24). Here q + r = 1 such that the selection-balance point is located at
i∗/N = q. The dotted line is the neutral theory result φ1 = 1/N , found by setting γi = di/bi = 1
in Eq. (2.4). Remaining parameters are β = 0.5 and N = 50

environment, i.e. φ
(σ)
1 is an increasing function of the probability p+ with which

the system leaves the σ = +1 state (coexistence game). For q � r , i.e. i∗ close
to i = N , the reverse is the case. Fixation is more likely in the coexistence game
(σ = +1), and the fixation probability is hence a decreasing function of p+ at fixed
p−.

For q ≈ r the situation is less clear. The fixation probability will be comparable
in both games if the environment is frozen, as shown in Fig. 3.8b. Two effects here
conspire to produce a non-trivial outcome:

(i) Consider the case in which the system is mostly in the coordination-game state,
i.e. p+ � p−. It is plausible that an occasional switch to a coexistence gamewill
make fixation more likely than in a constant coordination game. This is because
the coexistence-game environment pushes the system away from extinction at
low mutant numbers. In the regime of p+ � p− we thus expect the fixation
probability to increase as p+ is lowered. In other words, φ

(σ)
1 is a decreasing

function at large p+.
(ii) Similarly, if the system is mostly in the coexistence-game environment (p+ �

p−), short periods of time in the coordination game canmakefixationmore likely.
This is because selection at large mutant numbers is directed towards fixation in
the coordination game. At p+ � p− we expect φ(σ)

1 to be an increasing function
of p+.

These two effects taken together generate a maximum of the fixation probability at
intermediate values of p+ ≈ p−, which is exactly what we find in Fig. 3.4.

To confirm our picture we find the value of p+ that maximises fixation probability
as a function of q and r in Fig. 3.9 (for a given p− = 0.01). The point of selection
balance is 1/(1+r/q). The presence of diagonal structures in Fig. 3.9 shows that the
behaviour of the fixation probability is determined by the location of the selection-
balance point. If this point is close to the fixation state i = N (q � r , bottom-right

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2


56 3 Finite Populations in Switching Environments

Fig. 3.9 The value of p+ at which φ
(+)
1 is maximal given p− = 0.01 as a function of q and r . Fix-

ation probabilities found using Eq. (3.20). Diagonal structures indicate only the ratio between r and
q, i.e. the location of the selection-balance point, determines the qualitative behaviour. Remaining
parameters are β = 0.5 and N = 50

in Fig. 3.9), then the fixation probability is maximal for vanishing p+. If this point is
close to the extinction state (q � r , top-left in Fig. 3.9), then the fixation probability
is maximal for large p+. For intermediate locations of the selection-balance point
(q ≈ r ) fixation is maximised at a non-trivial combination of environment states.
Starting the environment in the σ = −1 coordination game produces an almost
identical picture to Fig. 3.9.

3.5 Mutation–Selection Equilibria

We now consider systems with mutations occurring during the dynamics. This
removes the possibility of fixation and extinction. The combination of mutation,
selection, and noise can lead to non-trivial stationary states. We introduce mutation
by modifying the discrete-time transition probabilities of Eq. (3.33) and now use

b(σ )
i = (1 − u)

i(N − i)

N 2

f (σ )
A (i)

f
(σ )

(i)
+ u

(N − i)2

N 2
, (3.35a)

d(σ )
i = (1 − u)

i(N − i)

N 2

f (σ )
B (i)

f
(σ )

(i)
+ u

i2

N 2
, (3.35b)

where u � 1 is the mutation rate. The transition probabilities b(σ )
0 = d(σ )

N = u are
now non-zero, and so the states i = 0 and i = N are no longer absorbing.
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The stationary probability ρ(i,σ ) of finding the system in state (i, σ ) (i =
0, 1, . . . , N ; σ ∈ �) is obtained, as described in Sect. 2.5, by taking the infinite-
time limit of the forward master equation (3.3). This gives

ρ(i,σ ) =
∑
σ ′∈�

μσ,σ ′
[
b(σ ′)
i−1ρ(i−1,σ ′) + d(σ ′)

i+1ρ(i+1,σ ′) +
(
1 − b(σ ′)

i − d(σ ′)
i

)
ρ(i,σ ′)

]
.

(3.36)
This equation is of the form ρ(i,σ ) = ∑

σ ′
∑

j R(i,σ ),( j,σ ′)ρ( j,σ ′), and it is solved
by finding the eigenvector of the linear operator R corresponding to the eigenvalue
λ = 1. The stationary distribution for the state of the population is found by summing
over all states of the environment,ρi = ∑

σ ρ(i,σ ). This solution is the exact stationary
distribution of the population.

If the switching probabilities are large, we are in the fast-switching limit described
by Eq. (3.26). In this regime one might expect the stationary distribution of the
population to be approximated by the distribution of a system controlled by the
effective transition rates, beffi and deff

i . The resulting effective stationary distribution
of the population, ρeff

i , is given by Eq. (2.54), i.e.

ρeff
i = �eff

i∑N
j=0 �eff

j

, �eff
i =

i∏
j=1

beffj−1

deff
j

. (3.37)

If the switching probabilities are small, then the environment states are long-
lived. In this regime the population will relax to the stationary state of the current
environment before the next switching event. With this, one might expect that the
stationary distribution of the population is given by the weighted average of the
stationary distributions one would obtain in the respective single environments. The
stationary distribution in a single fixed environment, ρ(σ)

i , can again be read off from
Eq. (2.54) as

ρ
(σ)
i = �

(σ)
i∑N

j=0 �
(σ)
j

, �
(σ)
i =

i∏
j=1

b(σ )
j−1

d(σ )
j

. (3.38)

This can also be derived from Eq. (3.36) by assuming that the transition matrix of the
environment,M, is the identitymatrix. In fact lim pσ →0 M = I. The average stationary
distribution over many slow-switching environments can then be written as

ρi =
∑
σ ′∈�

ρσ ′ρ
(σ ′)
i , (3.39)

where ρσ is the (stationary) probability that the environment is in state σ .

Results

For the environmental dynamics we will again consider the two-state scenario dis-
cussed in Sect. 3.4, where the environment switches between a coexistence game and
a coordination game. Figure3.10a shows the stationary distributions of the population

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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(a) (b)

Fig. 3.10 a The stationary distributions in the single-environment coexistence game ρ
(1)
i,+ (dotted

line) and coordination game ρ
(1)
i,− (dashed lines) calculated from Eq. (3.38), along with the ‘average’

ρi (Eq.3.39) and effective ρi,eff (Eq.3.37) approximate stationary solutions (solid lines) for p+ =
p−. b The exact solution ρi (Eq. (3.36); solid lines and symbols for identification) at different
combinations of magnitudes of p+ = p−. The payoff matrix parameters are q = 0.5 and r = 0.9,
the system size is N = 50, the selection intensity is β = 0.5, and the mutation probability is
u = 0.02

for the fixed environments (calculated using Eq. (3.38)), and the approximate sta-
tionary distributions ρeff

i and ρi for identical switching parameters. In a constant
coexistence game (σ = +1) the stationary distribution is peaked about the point
at which the gradient of selection changes sign, and in a fixed coordination game
(σ = −1) we find a distribution which is strongly peaked about the i 
 N state.
The asymmetry is due to the imbalanced payoff matrix used, such that the basin
of attraction for the i 
 N state is much larger than for the i 
 0 state. For the
parameters chosen in the Fig. 3.10, the selection-balance point is at i∗ ≈ 18. For
equal switching rates, p+ = p−, the averaged stationary distribution ρi lies exactly
in between the two single-environment distributions. The effective distribution ρeff

i is
approximately uniform in the centre of the domain, with a lower probability of being
found close to the domain boundaries. This reflects the fact that for equal switching
probabilities the effective game is close to neutral, but frequent mutations push the
population to the interior.

The exact solution (Eq. (3.36)) is plotted in Fig. 3.10b for a range of magnitudes
of p+ = p−. For large pσ we are in the fast-switching regime, and hence the exact
solution closely matches the effective solution ρeff

i . For small pσ we are in the
slow-switching regime and the exact solution approaches the averaged solution ρi .
For pσ � 10−2, the exact solution matches the features of the single-environment
distributions, with a peak at i 
 N and at the coexistence point i∗. Interestingly, this
solution also predicts a (small) peak at the i 
 0 state, a feature which is not seen in
the single-environment distributions, or in the approximate distributions.

The distributions ρeff
i and ρi are both approximations. To evaluate the accuracy

of these distributions we compute the distance from the exact eigenvector solution
given in Eq. (3.36). For the distances we will use the measure
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(a) (b)

Fig. 3.11 a The distance (Eq.3.40a) between the effective distribution (Eq.3.37) and the exact
stationary distributions (Eq.3.36). b The distance (Eq.3.40b) between the averaged stationary dis-
tribution (Eq. (3.39)) and the exact stationary distribution. The remaining parameters are as in
Fig. 3.10

deff = 1

2

N∑
i=0

∣∣ρeff
i − ρi

∣∣, (3.40a)

d = 1

2

N∑
i=0

∣∣ρi − ρi

∣∣, (3.40b)

which was introduced in Sect. 2.5. These distances are plotted in Fig. 3.11 as a func-
tion of switching parameters p+ and p−. The approach based on effective transition
rates (Fig. 3.11a) is found to be accurate over a large range of switching probabilities
away from the slow-switching pσ → 0 limit. Conversely, the weighted-average dis-
tribution (Fig. 3.11b) is inaccurate for a large range of pσ , but it becomes increasingly
accurate if the dynamics of the environment is slow (pσ → 0). Both approximate
distributions accurately predict the exact stationary distributionwhen the two switch-
ing rates are very disparate, i.e. p+ � p− or vice versa (top-left and bottom-right
corners of the two insets). In these regions the environment spends most of the time
in one state, so that the model effectively reduces to the single-environment case.
All approaches then collapse to the same result, which is the stationary distribution
obtained in a single fixed environment.

To verify the accuracy of the analysis, we compare the stationary distribution
and its approximations against some numerical data. This data can be obtained in
numerous ways. Firstly the master equation (3.3) could be numerically integrated for
a long time. Instead, we will compare with the stationary distribution obtained from
an ensemble of simulations of the exact stochastic process described by reaction
rates (3.35). This distribution is obtained by sampling stochastic simulations at mul-
tiple time points to create a set of distributions for the variable i , and then averaging
over the set of distributions to obtain a closer approximation, Qi , to the stationary

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Fig. 3.12 The distance
(Eq. (3.41)) between the
analytic distributions (3.36),
(3.37), and (3.39) with the
stationary distributions
obtained from simulation, Q.
The remaining parameters
are as in Fig. 3.10

distribution. These distributions are then compared with our analytical distributions
using the distance measure

d[ρ, Q] = 1

2

N∑
i=0

∣∣ρi − Qi

∣∣, (3.41)

where ρ can be the exact, effective or averaged distribution. These distances are
shown in Fig. 3.12. The accuracy of the exact solution is confirmed by simulations
across many orders of magnitude of switching probabilities. Any deviations can be
attributed to incomplete equilibration. For large switching probabilities the effective
stationary distribution, ρeff , approximates the simulation results well. As expected
the effective theory becomes inaccurate for slow switching, roughly below pσ 

10−2, in our example. The averaged stationary distribution, ρ, shows the opposite
behaviour. It is in reasonable agreement with simulations for slow switching, but
shows systematic deviations when the switching process is too fast for the population
to react adiabatically.

An alternative approach to obtain the distance from simulation distributionswould
be to use the time-averaged distance. That is the distance between the sampled
simulation distribution and the analytic distributions is taken at each time point,
and then the set of distances is averaged over time. This approach was used in the
publication associated with this chapter, Ref. [1], and it produces an almost identical
picture to Fig. 3.12.

3.6 Summary

The dynamics of a population evolving under changing environmental conditions
is an important concept in the study of bacterial populations. Some previous works
have focused on deterministic analyses [5], or an environment following a continu-
ous stochastic process [11]. Here we have taken a different route, and assumed that
the environment switches between discrete states whilst retaining the demographic
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stochasticity of the population. We have developed the mathematical formalism to
describe fixation properties in a general birth–death process in an environment fluc-
tuating between an arbitrary number of discrete states. The main results of this
investigation are self-consistent expressions for the fixation probability of a mutant
in a fixed-size population, as well as for the mean unconditional and conditional
fixation times. For short-lived environments we put forward an approximation based
on effective transition probabilities.

As a specific application we discuss the fixation properties in the context of an
evolutionary game in a two-world scenario. The two states of the environment then
correspond to two different payoff matrices of the underlying games. Simulations
confirm our analytic solutions over a wide range of switching probabilities. The
approximation based on effective transition probabilities is seen to reproduce simu-
lation data in the limit of fast switching.

Focussing on the case of switching between a coexistence game and a coordination
game, we find unexpected non-trivial behaviour of the fixation probability of a single
mutant. We observe in our analytical results and in simulations that fixation can be
more likely in a scenario in which the environment switches between the two games
than in either of the constant environments. We provide an intuitive explanation for
this effect, and we have investigated in detail the circumstances under which this
phenomenon can occur.

Adding mutations to the dynamics removes the possibility of fixation, but intro-
duces non-trivial stationary states. We develop a method for calculating this distri-
bution, along with approximations for both long-lived and short-lived environmen-
tal states. These approximations are shown to agree well with simulations in their
respective limits.

The general theory developed here now allows further investigation of evolu-
tionary dynamics in time-varying environments. It provides a first mathematical
characterisation of the effects one may expect in such systems. The closed-form
self-consistent solutions will help to speed up future studies, and they may remove
the need for extensive computer simulations.

While our work is mainly mathematical, we think that our theory can be used
to interpret existing experimental studies such as those studied by Acar et al. [6].
For some biological systems it may be more appropriate to use constant selection
in each environment, as opposed to frequency-dependent selection. Our example of
switching between coexistence and coordination games was chosen to illustrate the
theory and to show the rich dynamical behaviour that can observed in these models.
We note that both types of game have been observed in systems of experimental
evolution [20–22]. We hope the formalism we have developed will be useful to
analyse models closer to other biological applications, and potentially to guide future
experiments on evolutionary systems in time-dependent environments.
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Chapter 4
Fixation Time Distributions in Birth–Death
Processes

4.1 Introduction

As discussed in the previous chapter, the time that it takes for a mutation to reach
fixation in a population is one of the fundamental quantities that is predicted by
evolutionary dynamics. However, the fixation time is itself a random variable, and
while the first moment can provide a good indication of the outcome in some cir-
cumstances, this approach can be insufficient when the distribution of fixation times
is broad [1, 2]. To provide a complete answer to the question ‘how long does it take
for a mutation to fixate in a population?’, we must compute the complete arrival
time distribution. In this chapter we will focus on the original birth–death process
described in Sect. 2.3. This work has been described in Ref. [3].

Although the master equation (2.14) describing the birth–death dynamics is lin-
ear, calculating fixation time distributions is more intricate than one may initially
think. As described in Sect. 2.4, nested expressions for all moments of fixation times
are known [2, 4, 5]. These are given by Eqs. (2.45) and (2.46). From these the
distributions can, in principle, be constructed recursively up to arbitrary precision.
However, this approach does not provide a simple closed-form solution or a means
of efficiently sampling from the arrival time distribution.

An alternative approach is to diagonalise the linear operator of the master equa-
tion and to carry out the analysis in eigenspace. This method was used by Karlin and
McGregor1 to calculate the arrival time distribution at a state N > 0 of a birth–death
process that has a reflecting boundary at state 0 [6]. Provided that the process is
initialised in state 0, Karlin and McGregor showed that the distribution of arrival
times can be expressed as the convolution of exponential distributions parametrised
by each of the non-zero eigenvalues of the master equation [6, 7]. This is equivalent
to stating that the arrival times are given by the sum of independent, exponentially
distributed random variables. We will refer to this result as the Karlin–McGregor
theorem. It has been examined in numerous sources in the probability theory

1Samuel Karlin (1924–2007) and James McGregor (1921–1988).
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literature [7–15]. However, the discussion of these matters is usually very terse, and
not easily accessible to physicists or researchers in adjacent disciplines. Researchers
in the theoretical biosciences are only recently beginning to use these ideas for the
purpose ofmodel reduction [16, 17]. The existing results are limited to specific initial
conditions and types of birth–death chains, and a clear understanding of the analysis
in eigenspace is lacking.

In this chapter we consider birth–death processes with two absorbing states and
a general initial condition, describing the invasion (or extinction) of a number of
mutants in a population of wild-type individuals. The model is described in detail
in Sect. 4.2. In Sect. 4.3 we calculate closed-form expressions for the fixation time
distributions in terms of the eigenvalues of the master equation, before we turn to the
physical interpretation of these and the relation to the Karlin–McGregor results in
Sect. 4.4.We illustrate these results by applying this framework to evolutionary games
in Sect. 4.5. Here we demonstrate the inadequacy of the mean whilst highlighting the
accuracy of our method. We then use our results to relate fixation processes to the
equilibration dynamics of evolutionary systems with mutation (and hence with no
absorbing states) in Sect. 4.6. In these latter systems the timescale is defined by the
mixing time, as described in Sect. 2.5. In the limit of small mutation rates, we identify
the relation between the timescales of equilibration and fixation. Finally, we explore
the efficiency of our method in Sect. 4.7. We demonstrate that our method is a very
effective model-reduction tool, which can generate samples from the arrival time
distributions much faster than direct simulation of the original birth–death process.
We also show that our calculation of the arrival time distribution in terms of the
spectrum of the process is faster than straightforward numerical integration of the
master equation.

4.2 Model

We study a continuous-time birth–death process with states 0 ≤ i ≤ N , representing
a population of constant size N with i individuals of the mutant type and N − i of
the resident wild-type. As described in Sect. 2.3, this process is characterised by the
birth and death rates bi and di (0 ≤ i ≤ N ). Throughout the next section we will
not specify a form for these birth and death rates, but in general they are non-linear
functions of i . At the boundaries the birth and death rates satisfy bN = d0 = 0.
Initially we will consider the boundaries to be absorbing such that we also have
b0 = dN = 0, as illustrated in Fig. 4.1.

This process is described by the master equation for the probability, Pi (t), to be
found in state i at time t , given that the system was started in state i0 at time t = 0.
As in Sect. 2.3, we initially suppress the notation for the initial condition to maintain
readability. We write the master equation in the matrix form

Ṗ(t) = W · P(t), (4.1)

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Fig. 4.1 One-step birth–death process in a population of N individuals. The variable i denotes the
number of invading mutants. The states i = 0 (extinction) and i = N (fixation) are absorbing. Birth
rates are labelled bi and death rates di

where P = (P0, P1, . . . , PN )T, and the (N + 1) × (N + 1) matrix W has elements
wi,i = −(bi + di ), wi+1,i = bi and wi−1,i = di . Our objective in the next section is
to calculate exactly the arrival time densities at the absorbing states, i.e. Ṗ0(t) and
ṖN (t).

4.3 Mathematical Framework

To derive the arrival time densities it is convenient to focus only on the interior
states, 1 ≤ i ≤ N −1, of the birth–death process shown in Fig. 4.1. We introduce the
lower-case notation p = (p1, . . . , pN−1)

T for the interior, where pi (t) = Pi (t) for
1 ≤ i ≤ N − 1. We cannot call this quantity a probability distribution as, in general,
it is not normalised; there is a constant ‘leaking’ from the interior to the absorbing
states. The quantity p satisfies the equation

ṗ(t) = A · p(t) (4.2)

where the matrix A is equal to the matrixW in Eq. (4.1) with the first and last rows
and columns removed. We represent this removal by shading the elements to be
removed, such that the matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d1 0
0 −(b1 + d1) d2 0
0 b1 −(b2 + d2) d3 0

. . . . . . . . . . . . . . .
0 bN−3 −(bN−2 + dN−2) dN−1 0

0 bN−2 −(bN−1 + dN−1) 0
0 bN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

Ignoring the shading, this is the matrixW. We can represent the (N+1)×(N+1)
matrixW in terms of (N − 1) × (N − 1) matrix A in the following way:
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W =
⎛
⎜⎝
0 d1 0 · · · 0
...

[
A

] ...

0 · · · 0 bN−1 0

⎞
⎟⎠ . (4.4)

With this representation it is easy to show the important result that the eigenvalues
of A coincide with the eigenvalues of W. Considering det(W − λI) = 0 gives

0 =

∣∣∣∣∣∣∣

−λ d1 0 · · · 0
...

[
A − λI

] ...

0 · · · 0 bN−1 −λ

∣∣∣∣∣∣∣
= λ2 det(A − λI). (4.5)

Thus the eigenvalues ofW are λ = 0 (with multiplicity 2) and the eigenvalues of A.
We can discern some properties about the eigenvalues of A. As the probability

leaks from the interior states to the absorbing states, the truncated master equa-
tion (4.2) does not conserve probability and the elements of p(t) must approach
zero at t → ∞. Hence, all eigenvalues of the operator A in Eq. (4.2) must have a
(strictly) negative real part. Furthermore, as the sub- and super-diagonal elements of
A are all positive, the matrix is sign-symmetric and can be shown to be similar to
a symmetric matrix. Hence all the eigenvalues of A are real. With this we can say
that the eigenvalues of A are (strictly) negative. To avoid numerous minus signs and
having to specify absolute values, we will work with the eigenvalues of −A, which
are positive. We label these as λi for 1 ≤ i ≤ N − 1. At this stage we do not specify
an ordering of the eigenvalues.

The formal solution to Eq. (4.2) is

p(t) = exp(At) · p(0), (4.6)

where the initial condition is pi (0) = δi,i0 (1 ≤ i0 ≤ N −1). To proceed analytically
we need to make the matrix exponential in Eq. (4.6) more tractable. To do this we
transformEq. (4.6) from the time domain to the complex frequency domain by taking
the Laplace transform. We define the Laplace transform as

f̂ (s) = L[ f (t)] =
∫ ∞

0−
f (t)e−st dt. (4.7)

The use of 0− in the lower integration limit allows us to evaluate theLaplace transform
of a delta function, δ(t), to unity. This will be useful later in this derivation.

Writing p̂(s) = L[p(t)
]
, the Laplace transform of Eq. (4.6) is



4.3 Mathematical Framework 67

p̂(s) =
∫ ∞

0−
p(t)e−st dt

=
∫ ∞

0−
exp
[−(sI − A)t

] · p(0) dt

= −(sI − A)−1 · [e−(sI−A)t
]∞
0− · p(0)

= (sI − A)−1 · p(0). (4.8)

As we know that limt→∞ p(t) = 0, this integral is convergent at least for all
Re(s) > 0.

Our strategy is to compute p̂1(s) and p̂N−1(s), and from these ̂̇P0(s) = d1 p̂1(s)

and ̂̇PN (s) = bN−1 p̂N−1(s). Then by performing the inverse transform, we can
recover the arrival time densities Ṗ0(t) and ṖN (t).

Substituting pi (0) = δi,i0 for the initial condition in Eq. (4.8), and reinstating the
explicit notation, the quantities we want to evaluate are

p̂1|i0(s) = [
(sI − A)−1

]
1,i0

, (4.9a)

p̂N−1|i0(s) = [
(sI − A)−1

]
N−1,i0

. (4.9b)

To proceed, we recall that the (i, j)-th element of the inverse of any invertible
matrix B is given by [B−1]i, j = C j,i/ detB, where C j,i is the ( j, i)-th co-factor of
B. Thus we can write

p̂1|i0(s) = [
(sI − A)−1]

1,i0
= 1

det(sI − A)
Ci0,1, (4.10)

and likewise for the (N − 1, i0)-th element.
To calculate the co-factor Ci0,1, we remove row i0 and column 1 from sI−A and

evaluate the determinant. Again we indicate removal of elements by shading, such
that the co-factor is given by

Ci0,1 = (−1)i0+1

s+ a1 −d2 0
−b1 s+ a2 −d3 0
. . . . . . . . . . . . . . .

0 −bi0−1 s+ ai0 −di0+1 0
. . . . . . . . . . . . . . .

0 −bN−3 s+ aN−2 −dN−1

0 −bN−2 s+ aN−1

, (4.11)

wherewe have introduced the notation ai = bi+di for compactness. Using Laplace’s
formula, the co-factor can be expressed as
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Ci0,1 = (−1)i0+1

(
i0∏
i=2

−di

)
∣∣∣∣∣∣∣∣∣∣

s + ai0+1 −di0+2 0

−bi0+1
. . .

. . . 0

0
. . .

. . . −dN−1

0 −bN−2 s + aN−1

∣∣∣∣∣∣∣∣∣∣

=
(

i0∏
i=2

di

)
det
(
sI − A(N−i0−1)

)

=
i0∏
i=2

di

N−i0−1∏
α=1

(s + xα). (4.12)

The matrix A(N−i0−1) consists of the rows and columns i0 + 1, . . . , N − 1 of the
matrixA, i.e. it is the bottom right (N − i0 − 1)× (N − i0 − 1) sub-matrix ofA. The
matrix −A(N−i0−1) has eigenvalues xα > 0 (1 ≤ α ≤ N − i0 − 1) and determinant

det
(−A(N−i0−1)

) =
N−i0−1∏

α=1

xα = χi0 . (4.13)

The (i0, N − 1)-th cofactor is required for the computation of p̂N−1|i0(s). Thus
we remove row i0 and column N − 1 from sI − A (again indicated by shading) and
evaluate the determinant, such that

Ci0,N−1 = (−1)i0+N−1

s+ a1 −d2 0
−b1 s+ a2 −d3 0
. . . . . . . . . . . . . . .

0 −bi0−1 s+ ai0 −di0+1 0
. . . . . . . . . . . . . . .

0 −bN−3 s+ aN−2 −dN−1

0 −bN−2 s+ aN−1

. (4.14)

Again using Laplace’s formula we arrive at

Ci0,N−1 =
(

N−2∏
i=i0

bi

)
det
(
sI − A

(i0−1)
)

=
N−2∏
i=i0

bi

i0−1∏
α=1

(s + yα). (4.15)

The matrix A(i0−1) consists of rows and columns 1, . . . , i0 − 1 of the matrix A, i.e. it
is the top-left (i0−1)×(i0−1) sub-matrix ofA. Thematrix−A

(i0−1) has eigenvalues
yα > 0 (1 ≤ α ≤ i0 − 1) and determinant
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det
(−A

(i0−1)
) =

i0−1∏
α=1

yα = ψi0 . (4.16)

Putting things together, and writing det(sI − A) = ∏N−1
γ=1 (s + λγ ), we have the

compact expressions

p̂1|i0(s) =
i0∏
i=2

di

N−i0−1∏
α=1

(s + xα)

N−1∏
γ=1

1

s + λγ

, (4.17a)

p̂N−1|i0(s) =
N−2∏
i=i0

bi

i0−1∏
α=1

(s + yα)

N−1∏
γ=1

1

s + λγ

. (4.17b)

Using ̂̇P0|i0(s) = d1 p̂1|i0(s) and
̂̇PN |i0(s) = bN−1 p̂N−1|i0(s), we obtain the Laplace

transforms of the arrival time densities at sites i = 0 and i = N , respectively. They
are given by

̂̇P0|i0(s) = Di0

N−i0−1∏
α=1

(s + xα)

N−1∏
γ=1

1

s + λγ

, (4.18a)

̂̇PN |i0(s) = Bi0

i0−1∏
α=1

(s + yα)

N−1∏
γ=1

1

s + λγ

, (4.18b)

where Di0 = ∏i0
i=1 di and Bi0 = ∏N−1

i=i0
bi .

To return to the time domain, we need to perform the inverse Laplace transform.
To do this we will make use of the convolution theorem. For two functions F(t) and
G(t) defined in the domain t ≥ 0, the convolution of the two functions is defined as

[F ∗ G](t) =
∫ ∞

0
F(t − τ)G(τ ) dτ, (4.19)

where ‘∗’ is the convolution operator. The convolution theorem then states

L−1
[F̂(s) · Ĝ(s)

] = [F ∗ G](t). (4.20)

Therefore, if the terms s+ x and (s+λ)−1 in Eq. (4.18) can be expressed as Laplace
transforms of specific functions, then the arrival time densities Ṗ0|i0(t) and ṖN |i0(t)
can be simply expressed as the convolution of those functions.

It is easy to show that (s + λ)−1 is proportional to the Laplace transform of
an exponential distribution with parameter λ > 0: The exponential distribution is
defined by

E (λ)(t) = λe−λt for t ≥ 0. (4.21)
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The Laplace transform is obtained as follows

L [E (λ)(t)
] =

∫ ∞

0−
λe−λt e−st dt

= λ

∫ ∞

0−
e−(s+λ)t dt. (4.22)

This integral is convergent in the region Re(s) > −λ. Within this region we have

L [E (λ)(t)
] = λ

s + λ
, (4.23)

and hence

L−1
[
(s + λ)−1

] = 1

λ
E (λ)(t). (4.24)

Deriving the function of time that transforms into s + z (where z = xα or yα) is a
little more complicated, but we can show that δ(t) + z−1δ′(t) satisfies this condition
(up to multiplication by a constant). The object δ′(t) is the derivative of the Dirac-
delta distribution δ(t), which can be defined conveniently by its Fourier transform
[18]. It has the form

δ′(t) =
∫ ∞

−∞
(iω)eiωt dω. (4.25)

Evaluating the Laplace transform of δ(t) + z−1δ′(t) gives

L [δ(t) + z−1δ′(t)
] =

∫ ∞

0−
[δ(t) + z−1δ′(t)]e−st dt

=
∫ ∞

0−
e−stδ(t) dt + z−1 [e−stδ(t)

]∞
0− + z−1s

∫ ∞

0−
e−stδ(t) dt

= 1 + z−1s, (4.26)

where we have used limt→0− δ(t) = 0. This expression has no singularities, and thus
the region of convergence in terms of s is the entire complex plane. Hence the inverse
Laplace transform of s + z is given by

L−1 [s + z] = z
[
δ(t) + z−1δ′(t)

]
. (4.27)

It is useful here to define some further properties of the object δ′(t).When it is con-
volved with a test function F(t) with infinite support, one obtains (after integration
by parts) ∫ ∞

−∞
δ′(t − τ)F(τ ) dτ = F ′(t). (4.28)
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If a test function G(t) has finite support, say t ≥ 0, then one finds

∫ ∞

0
δ′(t − τ)G(τ ) dτ = G ′(t) + G(0)δ(t). (4.29)

Using the convolution theorem (4.19), and Eqs. (4.24) and (4.27), the inverse
Laplace transform of Eq. (4.18) is

Ṗ0|i0(t) = Di0χi0



E (λ1) ∗ · · · ∗ E (λN−1) ∗ (δ + x−1

1 δ′) ∗ · · · ∗ (δ + x−1
N−i0−1δ

′) ,
(4.30a)

ṖN |i0(t) = Bi0ψi0



E (λ1) ∗ · · · ∗ E (λN−1) ∗ (δ + y−1

1 δ′) ∗ · · · ∗ (δ + y−1
i0−1δ

′) , (4.30b)

where 
 = det(−A) = ∏N−1
α=1 λα . For compactness we introduce the notation

E� = E (λ1) ∗ · · · ∗ E (λ�), (4.31a)

R� = (
δ + y−1

1 δ′) ∗ · · · ∗ (δ + y−1
� δ′) , (4.31b)

such that we can write Eq. (4.30b) as

ṖN |i0(t) = Bi0ψi0



EN−1 ∗ Ri0−1. (4.32)

The compact version of Eq. (4.30a) follows analogously.
Before turning to the physical interpretation of Eq. (4.32), it is useful to evaluate

the convolutionof an exponential distributionE (λ) with anobject of the form δ+y−1δ′.
Using the result of Eq. (4.29), we arrive at

E (λ) ∗ (δ + y−1δ′) =
∫ ∞

0
λe−λτ

[
δ(t − τ) + y−1δ′(t − τ)

]
dτ

= λeλt − λ2y−1eλt + λy−1δ(t)

= λ

y
δ(t) +

(
1 − λ

y

)
E (λ)(t). (4.33)

Assuming λ/y < 1 (which will be the case throughout our analysis) this describes
a convex combination of a point-mass at zero and an exponential distribution. To
obtain samples from this hybrid distribution, one chooses t = 0 with probability
λ/y, otherwise t is drawn from E (λ)(t). An example of this distribution is illustrated
in Fig. 4.2.

The result (4.33) has an important implication for the interpretation of Eq. (4.32).
As Eq. (4.33) describes a distribution, the quantity EN−1 ∗ Ri0−1 in Eq. (4.32) is also
a distribution. Thus we have
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Fig. 4.2 A comparison
between the
distribution (4.33) and the
exponential
distribution (4.21).
Parameters are λ = 5,
y = 25, and the histograms
are generated from 105

samples of each distribution

∫ ∞

0
ṖN |i0(t) dt = Bi0ψi0




∫ ∞

0
EN−1 ∗ Ri0−1 dt = Bi0ψi0




⇒ φN |i0 = Bi0ψi0



, (4.34)

where φN |i0 is the fixation probability of i0 mutants.
Equations (4.30) have further implications. Choosing the initial conditions

i0 = N − 1 in Eq. (4.30a) and i0 = 1 in Eq. (4.30b) means there are no objects
of the form δ + z−1δ′. Hence Eqs. (4.30) reduce to

Ṗ0|N−1(t) = E (λ1) ∗ · · · ∗ E (λN−1) = φ0|N−1EN−1, (4.35a)

ṖN |1(t) = B1



E (λ1) ∗ · · · ∗ E (λN−1) = φN |1EN−1. (4.35b)

From this we conclude
Ṗ0|N−1(t)

φ0|N−1
= ṖN |1(t)

φN |1
, (4.36)

that is the conditional arrival time distribution at state i = 0 given i0 = N − 1 is
equal to the conditional arrival time distribution at state i = N given i0 = 1. This
symmetry has been known for the mean fixation time [19, 20], and it was recently
shown that the correspondence holds for the full distribution [17]. Our approach
offers an alternative way to obtain this intriguing result.

4.4 Physical Interpretation

We now discuss two possible interpretations of Eq. (4.32) [or equivalently
Eqs. (4.30)]. These different representations arise because the convolution opera-
tor (4.19) is commutative, such that we can order the convolutions in Eq. (4.32) in
multiple ways. We proceed to analyse the different cases separately. In this section
we only focus on arrival at state N . Interpretations for arrival at state 0 follow anal-
ogously.
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Pairing δ + y−1
α δ′ with Individual Exponential Distributions E (λγ )

For want of a catchier title, this process describes evaluating convolutions between
each object δ + y−1

α δ′ in Eq. (4.32) with a separate exponential distribution E (λγ ). We
choose to couple the object δ + y−1

α δ′ with E (λN−α). Using the result of Eq. (4.33), we
can write Eq. (4.32) as

ṖN |i0(t)
φN |i0

= E (λ1) ∗ · · · ∗ E (λN−i0 )∗
[
λN−i0+1

yi0−1
δ +

(
1 − λN−i0+1

yi0−1

)
E (λN−i0+1)

]
∗ · · ·

· · · ∗
[
λN−1

y1
δ +

(
1 − λN−1

y1

)
E (λN−1)

]
. (4.37)

We stress that the objects δ + y−1
α δ′ can be paired with any of the exponential

distributions. We chose to match them in this way so that the reduced chains can be
systematically compared. We now ensure that the eigenvalues are ordered such that
λN−α/yα < 1 for all α. Such an ordering is always possible due to the interlacing
property of the eigenvalues [10].

We now can see that the arrival time distribution, ṖN |i0(t)/φN |i0 , is given by
the distribution of the sum of N − 1 random variables drawn from exponential
distributions or the mixed distribution in Eq. (4.33). This means that an arrival time
[a sample of the distribution (4.37)] can be expressed as the sum of these N − 1
random variables. With this we can construct a forward-only process consisting of
N −1 jumps from states 1 to N in eigenspace. The first N − i0 jumps are compulsory
exponential steps, whereas the final i0 − 1 steps are each exponentials that have a
finite probability (λN−α/yα) of being skipped.

We canmake further simplifications to this process bymultiplying out the brackets
in Eq. (4.37). This creates a total of 2i0−1 possible forward-only channels with up to
i0 − 1 exponential steps skipped, as shown in Fig. 4.3.

Arrival time samples of the original process are generated from Fig. 4.3 in the
followingway:Oneof the channels is chosenwith probability determinedbyproducts
of the terms λN−α/yα and 1 − λN−α/yα , which emerge from the expansion of the
brackets in Eq. (4.37). After a channel has been selected, the clock is started and the
forward-only process of the channel is traversed. The clock is stopped when the final
state in the schematic is reached (‘absorption’).

Recursively Convolving δ + y−1
α δ′ with the Exponential Chain E�

An alternative approach is to successively convolve the i0 − 1 objects of the form
δ + y−1

α δ′ with the full exponential chain EN−1 from the right. We note that

Eκ ∗ (δ + y−1
α δ′) =

[
λκ

yα

Eκ−1(t) +
(
1 − λκ

yα

)
Eκ(t)

]
, (4.38)
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Fig. 4.3 A set of forward-only processes in eigenspace. The λα are eigenvalues of −A, and each
arrow represents an exponential process with the rate indicated. In each run one channel is chosen
with appropriate probability. Transitions indicated by dashed arrows are skipped (zero time). This
process generates arrival times distributed identically to the process in Fig. 4.1. The case shown
here is for arrival at N , starting from i0 = 3 in the original space, such that a maximum of two
possible steps can be skipped

which follows directly from Eq. (4.33). Using this we see that each of the recursive
convolutions introduces a new exponential chain with one step less. Thus, by per-
forming all the convolutions, the arrival time distribution can be expressed as a linear
combination of the distributions EN−α (1 ≤ α ≤ i0), which we write as

ṖN |i0(t)
φN |i0

=
i0∑

α=1

G(y)
N−αEN−α(t), (4.39)

where the G(y)
N−α are constants (independent of time). These coefficients are given by

G(y)
N−α = 1

ψi0

⎛
⎝

α−1∏
γ=1

λN−γ

⎞
⎠

α∑
σ1=1

(
yσ1 − λN−σ1

) α∑
σ2=σ1

(
yσ2+1 − λN−σ2

) α∑
σ3=σ2

. . .

· · ·
α∑

σi0−α=
σi0−α−1

(
yσi0−α+i0−α−1 − λN−σi0−α

)
. (4.40)

We note here that the G(y)
N−α must satisfy

i0∑
α=1

G(y)
N−α = 1, (4.41)

for Eq. (4.39) to be normalised.
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Fig. 4.4 A single forward-only chain in eigenspace in which the final state can be reached directly
from some of the intermediate states. The λα are eigenvalues of −A, and each arrow represents an
exponential process with the rate indicated. The quantity Fα denotes the probability that the next
state of the dynamics in eigenspace is α + 1, as opposed to N , if the current state is α. This process
generates arrival times distributed identically to the process in Fig. 4.1. The case shown here is for
arrival at N , starting from i0 = 3 in the original space

From Eq. (4.39), we can generate samples from the arrival time distribution by
choosing one of i0 exponential channels with probability G(y)

N−α in which the last
α − 1 exponential steps are skipped (1 ≤ α ≤ i0). We can again make further
simplifications to this process by expressing the linear combination (4.39) as the
single chain shown in Fig. 4.4. In this representation the system can transition to two
possible states if currently in eigenstate α: either α → α +1 or α → N . These paths
have transition rate Fαλα and (1 − Fα)λα , respectively. The total transition rate out
of eigenstate α is then λα , and the waiting time at α is an exponential distribution
with parameter λα independent of whether the system transitions to α + 1 or to N .
The quantity Fα denotes the probability that the next state of dynamics in eigenspace
is α + 1, if the system is currently in eigenstate α. With probability 1 − Fα the next
state is eigenstate N . Evaluating the probability of a trajectory in terms of Fα , and
then matching with Eq. (4.39) gives

Fα =
1 −

α∑
κ=1

G(y)
κ

1 −
α−1∑
κ=1

G(y)
κ

for α < N − 1. (4.42)

Arrival time samples are generated from Fig. 4.4 by traversing the forward-only
chain, which can easily be simulated with the Gillespie algorithm [21], see Sect. 2.9.
In practice, however, we find that evaluating the recursive sums in Eq. (4.40) is
inefficient in comparison with the method described in Fig. 4.3.

Comparison of the Two Approaches

The representation shown in Fig. 4.3 corresponds to the picture obtained for a
restricted set of processes by probabilistic methods in Ref. [10]. On the other hand,
Fig. 4.4 reflects the findings of Refs. [13] and [14], derived from the construction of
so-called ‘intertwining processes’. Our analysis shows that these different decom-
positions originate from one common structure, Eq. (4.32). The explicit schemes

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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in Figs. 4.3 and 4.4 provide a computational method to generate samples from the
arrival time distribution, for example by carrying out simulations of these forward
processes using the Gillespie algorithm [21]. It is important to keep in mind that the
eigenstates shown in Figs. 4.3 and 4.4 cannot be mapped one-to-one to the real-space
states in Fig. 4.1. The equivalence of the real and eigenspace representations only
holds on the level of arrival time statistics.

‘Bottom-Line’ Arrival Time Distributions

The final expressions for the arrival time distributions follow directly fromEq. (4.39).
First we note that the convolution of � exponential distributions has the form

E�(t) =
(

�∏
α=1

λα

)
�∑

α=1

�∏
γ=1
γ 	=α

1

λγ − λα

e−λα t . (4.43)

We note that this expression only holds if the eigenvalues λα are distinct. The con-
volution of two identical exponential distributions is given by a Gamma distribution,
but there is no neat general expression for the convolution of multiple exponential
and Gamma distributions with different parameters.

Substituting the result (4.43) into Eq. (4.39), we arrive at the final expression for
the conditional arrival time distribution at state N ,

ṖN |i0(t)
φN |i0

=
(

N−1∏
α=1

λα

)
1

ψi0

N−1∑
α=1

⎡
⎢⎢⎢⎢⎢⎢⎣

i0−1∏
γ=1

(
yγ − λα

)

N−1∏
γ=1
γ 	=α

(λγ − λα)

e−λα t

⎤
⎥⎥⎥⎥⎥⎥⎦

= 


ψi0

N−1∑
α=1

C (y)
α e−λα t . (4.44)

From Eq. (4.44) it is simple to compute the mean fixation time. This is given by

〈t〉 =
∫ ∞

0
t
ṖN |i0(t)
φN |i0

dt = 


ψi0

N−1∑
α=1

C (y)
α

λ2
α

. (4.45)

In fact all higher moments can be computed just as easily, such that

〈
tr
〉 =

∫ ∞

0
tr
ṖN |i0(t)
φN |i0

dt = 


ψi0

N−1∑
α=1

C (y)
α r !

λr+1
α

. (4.46)
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Finally, we state that the conditional arrival time distribution at state 0 is

Ṗ0|i0(t)
φ0|i0

=
(

N−1∏
α=1

λα

)
1

χi0

N−1∑
α=1

⎡
⎢⎢⎢⎢⎢⎢⎣

N−i0−1∏
γ=1

(
xγ − λα

)

N−1∏
γ=1
γ 	=α

(λγ − λα)

e−λα t

⎤
⎥⎥⎥⎥⎥⎥⎦

= 


χi0

N−1∑
α=1

C (x)
α e−λα t , (4.47)

and the unconditional distribution is given by Ṗ0|i0(t) + ṖN |i0(t).

4.5 Application to Evolutionary Games

As an application of this theory we now consider examples of evolutionary dynamics
with frequency-dependent selection, as described in Sect. 2.8. For this example we
assume a pairwise-comparison process, leading to the birth and death rates

bi = i(N − i)

N
g[+�π(i)], (4.48a)

di = i(N − i)

N
g[−�π(i)], (4.48b)

where �π(i)=πA(i) − πB(i) and g(z)=(1 + βz) /2 for selection intensity β. The
payoffs are as described in Eq. (2.74), and the payoff matrix is parametrised by R,
S, T , and P , as described in Eq. (2.73).

As shown in Fig. 4.5, arrival time distributions in the different games can be broad
and skewed, such that the mean fixation time contains only limited information. Our
theory, however, accurately captures the complete arrival time distributions which
are measured from simulations, giving complete information about the arrival time
statistics.

The generalisation of the Karlin–McGregor result to include arbitrary initial con-
ditions was a crucial step. As seen in Fig. 4.6, the initial condition can have a great
effect on the conditional arrival time distribution, illustrated here for the Prisoner’s
dilemma. When the initial condition i0 is close to the final state N , the distribu-
tion is much more peaked than is the case when i0 is close to state 0. The inset of
Fig. 4.6 shows that the distribution tails all decay with the same exponent, given by
the slowest (closest to zero) eigenvalue of the matrix A. However, the amplitude of
the distribution in the tails is vastly different across the initial conditions.

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Fig. 4.5 The conditional fixation time distributions at i = N for different games. Lines show
results from the theory, Eq. (4.44). Symbols are from Gillespie simulations (106 runs per game)
of the birth–death process. The mean fixation times (arrows) are not a good description of the
distributions, especially for the coexistence game where the distribution is very broad. Parameters
used in this figure are N = 100, i0 = 10, β = 0.1. The payoff matrix parameters are: Coexistence
game: R = P = 1.0, S = T = 1.5; Coordination game: R = P = 1.5, S = T = 1.0; Prisoner’s
dilemma: R=−S=0.5, T =1.0, P=0.0)

Fig. 4.6 The conditional
fixation time distributions at
i =N for different initial
conditions in the Prisoner’s
dilemma. Lines show results
from the theory, Eq. (4.44).
Inset plot is the same data
represented on a logarithmic
vertical axis. Parameters
used are the same as Fig. 4.5

4.6 Equilibration Processes in Systems with Mutation

Now that we have calculated the complete arrival time distribution, we will use it
to establish a link between fixation processes and the approach to stationary dis-
tributions. For this we consider birth–death processes without absorbing states. As
described in Sect. 3.5, this can be achieved by adding mutation occurring at a rate
u � 1, such that b0 = O (u) and dN = O (u). All other transition rates depicted in
Fig. 4.1 areO (u0) and are only affected at sub-leading order by u. We will consider
transition rates of the form

bi = (1 − u)
i(N − i)

N
g[+�π(i)] + u

2

(N − i)2

N
, (4.49a)

di = (1 − u)
i(N − i)

N
g[−�π(i)] + u

2

i2

N
, (4.49b)

http://dx.doi.org/10.1007/978-3-319-41213-9_3
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wherewe keep the same pairwise-comparison process as used in the previous section,
i.e. g(z)=(1 + βz) /2, and the payoffs are not affected by u.

Throughout this section we will focus on two games: a symmetric coordination
game and the Prisoner’s dilemma. These games are described by the payoff matrices

Coordination game:
A B

A 1.5 1.0
B 1.0 1.5,

(4.50a)

Prisoner’s dilemma:
A B

A 0.5 −0.5
B 1.0 0.0,

(4.50b)

and the payoff functions are given in Eq. (2.74). In Fig. 4.7, we show the phase
portraits of the deterministic dynamics of these games with and without mutation. As
described in Sect. 2.6, we have x = limN→∞ i/N and ẋ = limN→∞(bi −di )/N . The
effect of mutation is to push the stable (previously absorbing) fixed points towards
the centre of the domain. When mutation is present, there is always some ‘force’
pushing the population away from the boundaries.

As there are no absorbing states when u > 0, the dynamics reaches a stationary
distribution, Pst, with full support, i.e. P st

i > 0 for all 0 ≤ i ≤ N . From Eq. (2.54),
this distribution can be expressed as

P st
0 =

⎛
⎝

N∑
i=0

i∏
j=1

b j−1

d j

⎞
⎠

−1

, P st
i>0 =

⎛
⎝

i∏
j=1

b j−1

d j

⎞
⎠ P st

0 . (4.51)

Examples of these distributions are shown in Fig. 4.8a for the coordination game and
Fig. 4.8b for the Prisoner’s dilemma. For large values of u, the mutation dominates

(a) (b)

Fig. 4.7 Phase portraits of processes described by the rates (4.49) with and without mutation.
Arrows indicate the sign of ẋ , which represents the direction of selection. Panel (a) shows the
deterministic dynamics of the (symmetric) coordination game, with payoffs from Eq. (4.50a). Panel
(b) shows the deterministic dynamics of the Prisoner’s dilemma, with payoffs from Eq. (4.50b).
For both panels the selection intensity is β = 0.1

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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(a) (b)

Fig. 4.8 Stationary distributions of the birth–death process described by rates (4.49) for different
values of u, as described in Eq. (4.51). Panel (a) shows stationary distributions of the (symmetric)
coordination game, with payoffs from Eq. (4.50a). Panel (b) shows the stationary distributions of
the Prisoner’s dilemma, with payoffs from Eq. (4.50b). For both panels the selection intensity is
β = 0.1 and the system size is N = 50

the dynamics and this results in a peak in the centre of the domain. However, as u
decreases so does the probability mass located in the interior of the domain in the
stationary state. Hence as u → 0, the distribution becomes peaked at the boundaries.

The timescale of the system with mutation is characterized by the so-called ‘mix-
ing time’, tmix, as described in Sect. 2.5. This is the time taken for the probability
distribution, P(t), to come within a specified distance of the stationary distribution
Pst, i.e. tmix is the first time at which d[P(tmix), Pst] = ε. The distance between dis-
tributions P and Q commonly used in this context is d[P, Q] = ∑N

i=0 |Pi − Qi |/2
with ε = 1/2 [22, 23]. Using our results we can determine if and when there is a
correspondence between the mixing time in systems with mutation and the fixation
time in systems without mutation. We now describe the dynamics in each of these
cases (with and without mutation) separately.

Dynamics Without Mutation

In the systemwithoutmutation all realisations reachfixation eventually. If the dynam-
ics is started fromstate i0 [i.e. Pi (t = 0) = δi,i0 ], the stationary state of the birth–death
process is of the form

�i |i0 = (1 − φN |i0)δi,0 + φN |i0δi,N , (0 ≤ i ≤ N ). (4.52)

The quantity φN |i0 is the probability that the process reaches the absorbing state N , as
described by Eq. (4.34). The probability of being absorbed at state 0 is then 1−φN |i0 .

Let us now consider the distance of the distribution P(t) from this distribution,

d[P(t),�] = 1

2

[∣∣P0(t) − (1 − φN |i0)
∣∣+

N−1∑
i=1

Pi (t) + ∣∣PN (t) − φN |i0
∣∣
]

. (4.53)

Probability continuously flows into the absorbing states, hence P0(t) ≤ 1 − φN |i0
and PN (t) ≤ φN |i0 for all t . We can therefore simplify the above expression, and we
are left with

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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d[P(t),�] = 1

2

[
(1 − φN |i0) − P0(t) +

N−1∑
i=1

Pi (t) + φN |i0 − PN (t)

]

= 1

2

[
1 − P0(t) − PN (t) +

N−1∑
i=1

Pi (t)

]

= 1 − P0(t) − PN (t). (4.54)

This means that the distance d(t) = d[P(t),�] is given by the probability that the
system has not yet reached fixation in either of the absorbing states by time t . This in
turn means that 1− d(t) = Pr(tfix ≤ t) is the probability to have reached fixation by
time t , i.e. 1 − d(t) is the cumulative distribution of the unconditional fixation time
tfix. Thus the first time when the distance is equal to the mixing time threshold, i.e.
d(t) = ε, corresponds to the (1 − ε)-th percentile of the fixation time distribution.
In particular, the first time at which d(t) = 1/2 is the median fixation time.
Aside: As 1−d(t) = Pr(tfix ≤ t) is the cumulative distribution, it follows that−ḋ(t)
is the probability density function of the unconditional fixation time. With this we
can express the mean unconditional fixation time as

〈tfix〉 =
∫ ∞

0
t
[−ḋ(t)

]
dt

= [−td(t)
]∞
0 +

∫ ∞

0
d(t) dt

=
∫ ∞

0
d(t) dt. (4.55)

Thus the mean unconditional fixation time is the area under the curve d(t).

Dynamics With Mutation

In the limit of small mutation rates (0 < uN � 1), it can be seen from Eq. (4.51)
that

P st
i

P st
0

= b0
bi

⎛
⎝

i∏
j=1

b j

d j

⎞
⎠ = O (u) for 1 ≤ i ≤ N − 1, (4.56)

and

P st
N

P st
0

= b0
dN

⎛
⎝

N−1∏
j=1

b j

d j

⎞
⎠ = O (1) . (4.57)

Together with the normalisation condition (
∑N

i=0 P
st
i = 1) we can determine that

P st
0 and P st

N must beO (u0), and the remaining probability masses in the interior are
O (u). This effect can be seen in Fig. 4.8. It is verified in Fig. 4.9, where we plot the
probability masses at either boundary and the total interior mass in the stationary
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(a) (b)

Fig. 4.9 Probability masses at either boundary and the total probability mass in the interior of
the domain in the stationary state. Panel (a) is the result for the (symmetric) coordination game
(Eq. 4.50a). Panel (b) is the result for the Prisoner’s dilemma (Eq. 4.50b). As selection is pre-
dominantly directed towards the boundary at i = 0 in the Prisoner’s dilemma (Fig. 4.7b), we have
Pst
0 > Pst

N . For both panels the selection intensity is β = 0.1 and the system size is N = 50

state as a function of u. It is seen that both boundary values converge to a fixed value
as u → 0, whereas the interior mass decreases as a power of u (in fact it scales as u1).

As the stationary distributions are peaked at the boundaries for small values of u,
we can write

Pst
i = (1 − σ)δi,0 + σδi,N + O (u) , (0 ≤ i ≤ N ) (4.58)

where σ = P st
N /(P st

0 + P st
N ) = O (u0). It is clear that this distribution is not the same

as � given in Eq. (4.52): Pst in systems with u > 0 is independent of the initial
condition, unlike�. Thus there is no obvious connection between fixation times (the
approach to �) and mixing times (the approach to Pst) in the limit u → 0.

However, equilibration inmany systemswith raremutations is a two-step process;
the system first reaches a quasi-stationary distribution that is dependent on the initial
condition, before ‘leaking’ on a longer timescale into the final stationary state [23].
As the interior birth and death rates of the systems with and without mutation differ
only by corrections ofO (u), we expect the dynamics on a short timescale (t � u−1)
to be essentially the same in both systems. The effects of mutation can only be seen
on a longer timescale. We argue that the system initially approaches a distribution
close to � before reaching its stationary distribution Pst.

Let P(u=0)(t) = [
P (u=0)
0 (t), . . . , P (u=0)

N (t)
]T

be the probability distribution of the
system without mutation. The time evolution is described by the master equation

Ṗ
(u=0) = W · P(u=0), (4.59)

whereW is the (N+1)×(N+1) transitionmatrix fromEq. (4.1). In fact, this equation
is exactly Eq. (4.1). Let P(u)(t) be the distribution in the system with mutation whose
evolution is described by

Ṗ
(u) = (

W + uQ
) · P(u), (4.60)
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where the matrix Q reflects the difference between the systems with and without
mutation. The elements of both matrices W and Q are independent of u. Now, let
q(t) = P(u)(t) − P(u=0)(t), such that

q̇ = W · q + uQ · P(u). (4.61)

We want to calculate how the separation, q, grows in time given that both systems
(with and without mutation) start from the same initial condition [i.e. q(0) = 0].
For this purpose it is convenient to work in the eigenspace of W. As described in
Eq. (4.5), W has two zero eigenvalues, μ0 = μN = 0, with eigenvectors v

(0)
i = δi,0

and v
(N )
i = δi,N . These are the absorbing states of the system without mutation. The

remaining eigenvalues of W, μα (1 ≤ α ≤ N − 1), are negative (c.f. Sect. 4.3).
Decomposing q(t) = ∑

α q̃α(t)v(α) into eigendirections v(α) of W we have

˙̃qα = μαq̃α + ugα(t), (4.62)

where we have writtenQ · P(u)(t) = ∑
α gα(t)v(α) and we note that gα(t) = O (u0).

This can be integrated to give

q̃α(t) = u
∫ t

0
eμα(t−τ)gα(τ ) dτ. (4.63)

On short timescales (t � u−1) we have q̃(t) = O (u), and hence the separation q(t)
is also O (u). That is to say in the limit u → 0, both systems (with and without
mutation) initially evolve along the same trajectory. On this timescale both systems
approach the distribution �. This is shown in Fig. 4.10.

On a longer time scale [t = O (u−1
)
], differences between the two systems

become of O (u0). However, these differences are concentrated on the states i = 0
and i = N as this is where all the probability mass is located. Effectively, a redistri-
bution of probability mass between the boundary states takes place. The distribution
of the system with mutation evolves from (1 − φN |i0)δi,0 + φN |i0δi,N + O (u) to
Pst
i = (1 − σ)δi,0 + σδi,N + O (u), as shown in Fig. 4.10.
Approximating the stationary distribution of the system with small mutation rate

as Pst
i = (1− σ)δi,0 + σδi,N [i.e. neglecting terms O (u)], the distance between the

distribution P(u)(t) at time t and the stationary distribution is

d[P(u)(t), Pst] ≈ 1

2

[∣∣∣P (u)
0 (t) − (1 − σ)

∣∣∣+
N−1∑
i=1

P (u)
i (t) +

∣∣∣P (u)
N (t) − σ

∣∣∣
]

. (4.64)

While P (u=0)
0 (t) and P (u=0)

N (t) are monotonically increasing with time in the system
without mutation, this is not necessarily the case if there is mutation. This can be seen
for PN (t) in Fig. 4.10. Hence we cannot easily drop the absolute values in Eq. (4.64)
as in the case without mutation.
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(a) (b)

Fig. 4.10 Probability masses as a function of time at either boundary in systems without (solid
lines) and with (symbols) mutation. Without mutation, PN (t) is given by the integral of Eq. (4.44)
and P0(t) by the integral of Eq. (4.47). These values converge to φN |i0 and φ0|i0 = 1−φN |i0 (dotted
lines) as t → ∞. The probability masses in the system with mutation, found from numerical
integration of the master equation, initially follow the trajectory of the system without mutation
before approaching the stationary state (dashed lines). Panel (a) is the result for the (symmetric)
coordination game (Eq. 4.50a), in which the probability masses at each boundary in the stationary
state are equal (just below 0.5). Panel (b) is the result for the Prisoner’s dilemma (Eq. 4.50b). For
both panels the selection intensity is β = 0.1, the system size is N = 50, and the initial condition
used is i0 = 40. The mutation rate is u = 10−4

Relation Between Dynamics With and Without Mutation

We observe, though, that P (u)
0 (t = 0) = 0 and P (u)

N (t = 0) = 0 for 0 < i0 < N .
Hence there is an initial phase of the dynamics in which P (u)

0 (t) < 1 − σ and
P (u)
N (t) < σ . Let us write t∗ for the first time at which either P0(t∗) = 1 − σ or

PN (t∗) = σ (whichever happens first). In Fig. 4.10a, we can identify this time as
t∗ ∼ 101–102, i.e. when PN (t) = P st

N . In Fig. 4.10b, however, t
∗ ∼ 100–101.

Prior to the time t∗ we have

d[P(u)(t), Pst] ≈ 1

2

[
(1 − σ) − P (u)

0 (t) +
N−1∑
i=1

P (u)
i (t) + σ − P (u)

N (t)

]

= 1 − P (u)
0 (t) − P (u)

N (t). (4.65)

This is the same [up to O (u)] as the distance to the fixation distribution, �, in the
system without mutation, given in Eq. (4.54). From this we can conclude that

d[P(u)(t), Pst] ≈ d[P(u)(t),�] for t < t∗. (4.66)

This is illustrated in Fig. 4.11, where the distributions Pst and � are represented as
single points in the (P0, PN ) plane. The approximate equality (4.66) only holds for
points on the trajectory [P (u)

0 (t), P (u)
N (t)] which lie inside the shaded region shown

in Fig. 4.11. If the fixation distribution, �, and the stationary distribution are similar,
then a lot of the trajectory [P (u)

0 (t), P (u)
N (t)] will be contained in this shaded region,

and the equality (4.66) holds for a longer period of time.
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Fig. 4.11 Approach to the stationary distribution for the coordination game described by payoff
matrix (4.50a). Dots show the trajectory of [P(u)

0 (t), P(u)
N (t)] from Fig. 4.10a. The probability

quickly approaches the fixation distribution, �, before slowly leaking to the stationary state, Pst .
For 0 < i0 < N , the trajectory starts at (0, 0) and leaves the shaded area at time t∗. For any point
inside the shaded area, the distance to the points (1 − φN |i0 , φN |i0 ) and (1 − σ, σ ) in our metric
(solid lines) are equal. Parameters are as in Fig. 4.10a

Fig. 4.12 Correspondence of mixing time and median fixation time for small mutation rates. Panel
(a) shows the unconditional fixation time distribution for the coordination game, constructed from
Eqs. (4.44) and (4.47). Panel (b) depicts the mixing time for u > 0 and ε = 1/2 (from numerical
integration of the master equation). Remaining parameters are as in Fig. 4.10a

Aswe have determined that the systemswith andwithoutmutation initially evolve
along the same trajectory, we can extend the approximate equality (4.66) to

d[P(u)(t), Pst] ≈ d[P(u)(t),�] ≈ d[P(u=0)(t),�] for t < t∗. (4.67)

Thus the first time at which d[P(u)(t), Pst] = ε, provided t < t∗, is approximately
the (1 − ε)-th percentile of the unconditional fixation time distribution. Choosing
ε = 1/2, we have the equivalence between the mixing time and the median fixation
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time. This is illustrated in Fig. 4.12 where we consider the coordination game. Again
it is important to stress that this equivalence only holds if t∗ satisfies d[P(u)(t∗), Pst] ≤
ε. It does not hold in the example of the Prisoner’s dilemma shown in Fig. 4.10b, as the
distance to the stationary state (or the fixation distribution) when PN (t) crosses the
dashed line representing the stationary distribution is close to one, i.e. larger than ε.

4.7 Efficiency of the Method

Finally we briefly comment on the efficiency of our approach. The forward-only
process described in Fig. 4.3 provides a very simple method of sampling from the
arrival time distributions. We compare the computational cost of this method with
the cost of simulating the original birth–death process using the Gillespie algorithm.
Specifically, wemeasure how long it takes, in absolute ‘wall-clock’ time,2 to generate
1,000 samples from the unconditional and conditional arrival time distributions.
These results are shown in Fig. 4.13. The time to generate samples using the forward-
only process is always shorter than simulating the original process. This difference
is particularly noticeable when sampling from the conditional distributions. When
using the forward-only processwe only need to generate the eigenvalues of thematrix
A and one of the sub-matrices A(i0−1) or A(N−i0−1) (depending on the arrival state),
and we have full control over the arrival state. On the other hand, when simulating
the original birth–death process there is no control over the arrival state, and many
realisations may arrive at the ‘wrong’ boundary. Thus the computation cost is related
to both the fixation time, which is exponentially long in the coexistence game [19],
and the fixation probability, which is exponentially small in the coordination game
and Prisoner’s dilemma when the mutants have to overcome adverse selection [19].

An alternative approach to measure the computation cost is to compare how long
it takes to obtain the arrival time distribution using our spectral method with the time
taken to numerically integrate the master equation (4.1). In Fig. 4.14 the benefits of
our approach over the conventional methods are clearly seen.

As a final remark, we state that our method is limited by the computational effi-
ciency of evaluating the eigenvalues of the tridiagonal matrix A. Numerical tests
have shown that this computation can become unstable when N ≈ 1500. For larger
matrices computational precision limits the calculation of the smallest eigenvalues.

2All samples were generated on the same computer, a 2012MacBookAir with 1.8GHz i5 processor
running OSX 10.10.4. Software used is Mathematica 9.0.1, and times were measured using the
AbsoluteTiming[] function.
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(a) (b)

Fig. 4.13 Times to generate 1,000 samples of a the unconditional arrival time, and b the arrival
time conditioned on reaching state N . Empty symbols/dashed lines show the time taken to generate
samples by simulating the forward-only process in Fig. 4.3, including the time to compute all
eigenvalues of −A and its sub-matrices. Filled symbols show the time taken to generate samples
through Gillespie simulations of the original birth–death process. The payoff parameters used are
the same as in Fig. 4.5. The remaining parameters are β = 0.1 and i0 = N/10

Fig. 4.14 Times to generate the unconditional arrival time distribution.Empty symbols/dashed lines
show the time taken using our spectral method. Filled symbols show the time taken to numerically
integrate the master equation (4.1) until the median unconditional fixation time, i.e. up to the time
at which P0(t)+ PN (t) = 1/2. Here we use the simple explicit Euler numerical integration method
with time-step �t = 1/N [24]. Parameters are as in Fig. 4.13

4.8 Summary

Birth–death processes have received significant attention partly because of their
applicability [4, 25], but mainly because of their apparent simplicity. However, a
clear understanding of fixation in these processeswas lacking, orwas lost deepwithin
the literature of probability theory. Existing studies have been limited to investigating
the distribution of fixation times in specific birth–death processes, or have simply
been limited to finding the mean. As we have shown, however, sometimes the mean
does not contain enough information to accurately represent the fixation statistics.
In this chapter we have considered a birth–death process with two absorbing states
that describes the evolution of a population featuring two types of individual, where
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the types may be genotypes or strategies, for example. The probability that, a single
type of individual or strategy takes over the population, and the time that this takes,
is dependent on the initial condition. We formulated our theory to allow for a general
starting point for the state of the population. This is in contrast to some of the proba-
bility theory literature, where reflecting boundaries or specific initial conditions are
required to obtain results [6, 7].

The main result of this work is the closed-form solutions for the fixation time
distributions, along with efficient methods of sampling from these distributions by
reducing the birth–death process to a forward-only process in a different space of
states. These results are expressed in terms of the spectrum of the original process. To
illustrate these results we calculated the distributions of arrival times in a collection
of evolutionary games. This showed that, especially when a coexistence of strategies
is favoured by selection, the arrival time distributions can be broad and skewed, and
vary greatly with the choice of initial condition.

Using these results, we have established a link between the time-to-fixation in
the birth–death process with absorbing states, and the time-to-equilibration in sys-
tems where rare mutations can reintroduce lost strategies/genotypes. In the limit of
small mutation rates, and under specific choices of game, we have demonstrated the
equivalence of the so-called mixing time with the median fixation time.

The reduced forward-only processes provide methods to sample from the arrival
time distributions, and these have been shown to be much more efficient than sim-
ulating the original birth–death process. This is emphasised when sampling from
the conditional arrival time distribution as we have complete control of the terminal
state, which is in contrast with simulations of the original process.

In this work we have placed existing representations for simpler cases into a wider
and more coherent context [10, 13, 14]. We have established that different repre-
sentations reported in the probability theory literature stem from a single common
origin. Nevertheless, there are fundamental open questions. Claims of probabilistic
interpretations of Karlin and McGregor’s theorem have been made [11, 12], but in
our view this picture is still incomplete.Wewould argue that a full probabilistic inter-
pretation of the representations in eigenspace is only reached when each time-step of
the forward-only process can be constructed directly and uniquely from realisations
of the original process alone. Whether or not this is possible is unclear.
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Chapter 5
Metastable States in a Model of Cancer
Initiation

5.1 Introduction

We now turn our attention to a more applied subject, the accumulation of mutations
and the initiation of cancer. With an ageing population, the prevalence of this genetic
disease in the UK (and across developed countries) has sky-rocketed, with one in
two people expected to be diagnosed with cancer in their lifetime [1]. This issue is
close to the hearts of the British population. Cancer Research UK, the UK’s leading
healthcare charity, received donations in excess of £500m in the last financial year
(2014–2015), 80% of which was used to fund research [2]. Although the majority
of research is clinical or experimental, theoretical approaches greatly contribute to
our understanding of this malady.

The initiation and progression of cancer is a result of the accumulation of genetic
alterations [3]. The dynamics of mutation acquisition is governed by evolutionary
parameters such as the rate at which alterations arise, the selection effect that these
alterations confer to cells, and the size of the population of cells that proliferatewithin
a tissue. Therefore these processes are amenable to mathematical investigation, and
much effort has been devoted to modelling these systems and analysing the rates at
which mutations arise within pre-cancerous tissues [4–16].

Models of the initiation and progression of cancer vary dramatically in their
complexity and tractability. At the most complex end of the scale, mathematical
models consider explicit tissue structure and mechanics [17, 18], as well as resource
competition and the creation of ‘public goods’ [19]. Simpler spatialmodels have been
designed to replicate some tissue structures, such as the linear process for describing
the accumulation of mutations in a colorectal crypt [20]. In terms of the dynamics
of mutation acquisition, the effects of genetic instabilities [21] or the hierarchical
organisation of cells within the population [22] have been considered.

At the more tractable end of the scale of cancer models are the well-mixed,
birth and death representations of mutation acquisition. For tumour progression,
modelling a growing population is crucial as, by definition, cancerous phenotypes
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in the population grow in an uncontrolled manner [16]. For this reason branching
processes have been used to describe the progression of cancer [9, 23]. During the
initiation of cancer, however, the number of cells in pre-cancerous tissues fluctuates
by only a small amount. One can then make the simplifying assumption that the
population size is constant. This is the approach often used to describe the inactivation
of tumour suppressor genes (TSG) [24, 25], which directly regulate the growth and
differentiation pathways of cells [3]. This simple fixed-size model will be the subject
of our analysis. The work in this chapter has been published in Ref. [26].

Although the birth–death processes that we have investigated in the previous
Chapters capture a wide variety of applications, it is often the case that the popu-
lation is described by more than one variable. Such scenarios occur when there are
multiple (more than two) types of interacting individuals. This is evident in recent
modelling works of mutation acquisition [21, 24, 25, 27–30], which have focused on
the accumulation of two mutations in a fixed-size population of cells, such that there
are three cell types present in the population. These studies have revealed a more
detailed picture of the initiation of cancer; a homogeneous population harbouring no
mutations can move to a homogeneous state in which all cells carry two mutations
without ever visiting a homogeneous state in which all cells harbour just one muta-
tion. This phenomenon is referred to as ‘stochastic tunnelling’, and is illustrated in
Fig. 5.1.

The term ‘stochastic tunnelling’ is, however, an unfortunate use of vocabulary. The
‘stochastic’ part indicates that this route to fixation does not occur with certainty.
As indicated in Fig. 5.1 there are two routes to the homogeneous state with two
mutations. The sequential route is still available to the system, but it becomes less
likely in certain parameter regimes. As will be shown below, the ‘stochastic’ route
is actually predicted by the deterministic dynamics, adding further confusion to the
terminology. The process we refer to as ‘tunnelling’ is not limited to the scenario

Fig. 5.1 The population can reach the all-type-2 state via two routes. The first is the sequential
fixation route in which the first mutation takes over the population, and where this is then followed
by the second mutation. The second route does not visit the all-type-1 state. This is the stochastic
tunnelling route. The arrows are related to the change of state only, and imply nothing about the
fitness of these states



5.1 Introduction 93

of ‘going under’ a potential barrier as described by quantum-mechanical tunnelling.
Here ‘tunnelling’ refers only to overlapping transitions between the homogeneous
states.

The fixation of mutations is an important phenomenon if the cells harbouring
mutations are deleterious, i.e. less fit than the wild-type un-mutated cells. If cells are
less fit they will generally have low concentrations within the tissue. Then the chance
of a cancerous phenotype emerging (further mutation) is very low. Demographic
fluctuations can drive the disadvantageous cells to higher numbers, but these states
are short-lived. If these mutations become fixated in the tissue, however, then the
state is maintained until a further mutation occurs and the chance of a cancerous
phenotype emerging is much greater.

The existing analytical approaches provide accurate approximations for the time
to fixation of cells harbouring two mutations in a subset of the parameter space;
there are extensive regions which, up to date, have been left unexplored. These
are predominantly situations in which the cell harbouring two mutations is not the
most advantageous in the sequence. Before the double mutant reaches fixation, the
population has to travel across a fitness hill or move constantly downhill in fitness
space. The dynamics can then become trapped in quasi-equilibria, or metastable
states, which are a consequence of the adverse selection being balanced by the effect
ofmutation [31]. These long-lived equilibria support a heterogeneous population, and
fixation is driven purely by demographic fluctuations. We address this regime based
on ideas frommathematical physics. Specifically we employ theWentzel–Kramers–
Brillouin (WKB) method to derive quantitative predictions for fixation times. The
WKBmethod has been used to describe the escape frommetastable states in a variety
of systems, including predator–prey and epidemic models [32–37]. It has also been
used in models of mutation acquisition to describe the escape over a ‘recombination
barrier’ in a sexually reproducing population [38], and in amodel ofMuller’s ratchet1

[40].
In this chapter wewill investigate amicroscopic model that describes the accumu-

lation and spread of two mutations in a population of cells. This model is described
in Sect. 5.2, along with a brief summary of the previous analytical approaches used
to investigate this model. We then investigate the underlying deterministic dynamics
of this model in Sect. 5.3, where we compute the locations and stability properties of
fixed points. In Sect. 5.4 we classify the stochastic behaviours that can occur. These
are, to some extent, determined by the previous deterministic analysis. By employing
the WKB method in Sect. 5.5, we obtain analytical and semi-analytical approxima-
tions for fixation times in parameter regimes which could not be captured by previous
methods, i.e. regimes in which metastable states exist. We then discuss these results,
and the implications they have on our understanding of stochastic tunnelling, the
accumulation of mutations, and the initiation of cancer.

1The process of repeatedly accumulating disadvantageous mutations [39], named after Hermann
Joseph Muller (1890–1967).
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5.2 Model

We consider the same microscopic model that has been used to describe the inactiva-
tion of a tumour suppressor gene in a pre-cancerous tissue, as presented in Ref. [24].
We first describe the microscopic model, and then comment on the approach of the
previous analyses.

Microscopic Model

We consider a well-mixed, finite population of N cells. Each cell can be of one of
three possible types:

(i) Type 0—a wild-type cell harbouring no mutations;
(ii) Type 1—a cell harbouring one mutation;
(iii) Type 2—a cell harbouring two mutations.

Initially, all cells are of type 0, which we refer to as the all-wild-type state. The
evolution of the population is determined by a Moran process in continuous time
[41]. During each elementary time-step of this process, a cell is randomly chosen to
reproduce proportional to its fitness. In the same time-step a cell is randomly removed,
such that the total population size remains constant. The daughter cell can either
inherit its type from the parent, or acquire a single mutation during reproduction.
The relative fitness values of type-0, type-1 and type-2 cells are denoted by r0, r1
and r2, respectively. These fitnesses can be thought of as basic reproductive rates.
Without loss of generality, we use r0 = 1 throughout, such that all fitness values are
relative to thewild-type. This is equivalent to rescaling time such that it ismeasured in
generations of thewild-type cells. Themutation rates u1 and u2 denote the probability
that the daughter of a type-0 cell is of type 1, and the probability that the daughter of a
type-1 cell is of type 2, respectively. We neglect all other combinations of mutations,
i.e. back mutations and multiple mutations during a single reproduction event are not
possible. The assumption of no back-mutation is commonly used in the population
genetics literature [42]. It means that a cell with i mutations cannot produce an
offspring with less than i mutations. The assumption is justifiable since the human
genome is very large, ∼3×109 base pairs, and the probability of mutating a specific
base per cell division is very small, ∼10−10–10−11 [43]. Therefore the chance of
undoing a specific point mutation is vanishingly small. The probability that a second
critical alteration occurs at a different locus is much higher.

In our model finite populations will eventually reach a state in which all cells
have acquired two mutations. This state is ‘absorbing’, i.e. once this state has been
reached, no further dynamics can occur. There are of course physical processes
beyond the second mutation. In pre-cancerous tissues for example, there will be a
finite probability that cells progress from this state to accumulate further changes.
These processes are not the focus of our work though, and so are not included in the
model.

Let us denote the number of type-0, type-1, and type-2 cells by n0, n1 and n2,
respectively. The total population, N = n1 + n2 + n3, is constant. We label the
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transition rates for the Moran process as T i→ j , which is the rate per unit time that a
cell of type i is replaced by a cell of type j . In a process labelled T 0→1, for example,
the state of the population changes from (n0, n1, n2) to state (n0 − 1, n1 + 1, n2).
There are six possible changes to the state, labelled by the stoichiometry coefficient
ν. The set of transition rates are

T 0→1 = n0
N

× u1r0n0 + (1 − u2)r1n1
r

, ν = (−1,+1, 0), (5.1a)

T 0→2 = n0
N

× u2r1n1 + r2n2
r

, ν = (−1, 0,+1), (5.1b)

T 1→0 = n1
N

× (1 − u1)r0n0
r

, ν = (+1,−1, 0), (5.1c)

T 1→2 = n1
N

× u2r1n1 + r2n2
r

, ν = (0,−1,+1), (5.1d)

T 2→0 = n2
N

× (1 − u1)r0n0
r

, ν = (+1, 0,−1), (5.1e)

T 2→1 = n2
N

× u1r0n0 + (1 − u2)r1n1
r

, ν = (0,+1,−1). (5.1f)

The quantity r = (r0n0 + r1n1 + r2n2)/N is the average fitness of the population.
As an example, the first reaction rate, T 0→1, in Eq. (5.1) can be broken down as
follows: a type-0 cell is randomly chosen to be removed with probability n0/N .
Meanwhile, either a type-0 cell is chosen to reproduce at rate r0n0/r , and a mutation
occurs (u1) during the reproduction to produce a type-1 daughter cell, or a type-1
cell is chosen to reproduce with rate r1n1/r without a mutation (1 − u2). The rates
for the other processes can be interpreted analogously. We choose a continuous-time
setup, and correspondingly all rates in Eq. (5.1) scale linearly in the population size
N . Simulations are carried out using a standard Gillespie algorithm as described in
Sect. 2.9, and times are measured in generations of the wild-type cell.

The probability, Pn(t), that the population is in state n = (n0, n1, n2) at time t is
described by the master equation

Ṗn(t) =
∑

ν

[
T ν
n−νPn−ν(t) − T ν

n Pn(t)
]
, (5.2)

where T ν
n is the transition rate from Eq. (5.1) that has the corresponding stoichio-

metric coefficient ν, evaluated when the population is in state n.

Previous Analyses

The majority of analytical investigations of mutation acquisition and stochastic tun-
nelling [21, 24, 25, 27–30] have been limited to considering transitions between
homogeneous states of the population, as illustrated in Fig. 5.1. If we let �i (t) be
the probability to be found in the state in which all cells in the population harbour
i mutations (i = 0, 1, 2), and Ri→ j ( j > i) is the rate at which we move from the

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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homogeneous state with i mutations to the homogeneous state with j mutations, then
we can write the three-state master equation as

�̇0 = −R0→1�0 − R0→2�0, (5.3a)

�̇1 = R0→1�0 − R1→2�1, (5.3b)

�̇2 = R0→2�0 + R1→2�1. (5.3c)

Here R0→2 is the so-called tunnelling rate, and the quantity �̇2(t) describes the
probability density of arrival times at the homogeneous state with two mutations.
Although Eq. (5.3) is easy to solve, the form of the rates Ri→ j as a function of the
underlying model parameters is non-trivial. It is finding these rates, in particular
R0→2, that has been the focus of the above mentioned recent investigations.

In Ref. [24], the transition rates in Eq. (5.3) are computed as

R0→1 = u1N
1 − r0/r1

1 − (r0/r1)N
, (5.4a)

R1→2 = u2N
1 − r1/r2

1 − (r1/r2)N
, (5.4b)

R0→2 = u1N

⎡
⎣−(r0 − r1) +

√
(r0 − r1)2 + 2u2r1(r0 + r1)

1−r0/r2
1−(r0/r2)N

r0 + r1

⎤
⎦

+
, (5.4c)

where the notation [·]+ indicates this function cannot have a negative value, i.e.
[x]+ = 0 if x ≤ 0 and [x]+ = x if x > 0. The first rate can be interpreted as
follows: an entirely wild-type population produces a single mutant with rate u1N .
Ignoring anymutational effects, thismutant takes over the populationwith probability
(1−r0/r1)/[1−(r0/r1)N ],which canbe computed fromEq. (2.24). The rate R1→2 can
be interpreted analogously. The tunnelling rate, R0→2, is constructed by considering
the probability that an independent lineage of type-1 cells (which emerges with rate
u1N ) produces a further mutation which takes over the population. The predictions
for the mean fixation time from this formulation are in very good agreement with
simulation results when r2 is large, or when the system size is small such that the
tunnelling probability is low [24].Wewill show later in this chapter that this approach
does not accurately capture fixation times when the type-2 cells are deleterious and
N is large.

5.3 Deterministic Analysis

As a starting point, we will first consider the deterministic limit of Eq. (5.2). This
approach does not capture any of the stochastic effects. However, the types of sto-
chastic trajectories that can be observed for different parameter sets are, to some

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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extent, set by the underlying deterministic dynamics. This approach will highlight
the expected qualitative behaviours of our model.

We have derived the deterministic equations for amaster equation of the form (5.2)
in Sect. 2.6, i.e. Eq. (2.65). Writing xi = limN→∞ 〈ni 〉 /N , we have the relation
x0 + x1 + x2 = 1, and the average fitness is given by r = r0x0 + r1x1 + r2x2.
Inserting the transition rates (5.1) into Eq.2.65, the deterministic equations governing
the dynamics of the population can be written as

r ẋ0 = [
(1 − u1)r0 − r

]
x0, (5.5a)

r ẋ1 = u1r0x0 + [
(1 − u2)r1 − r

]
x1, (5.5b)

r ẋ2 = u2r1x1 + (r2 − r)x2. (5.5c)

Given the relation x0 + x1 + x2 = 1, there are only two independent degrees
of freedom. Thus the state-space can be projected onto the two-dimensional plane,
which we will refer to as the concentration simplex. This is illustrated in Fig. 5.2.
Each point in the simplex represents one particular state (1 − x1 − x2, x1, x2) of
the population. At points in the interior of the simplex all three types of cells are
present in the population (xi > 0 for i = 0, 1, 2). Points on the edges of the simplex
represent states in which one of the three types is not present, for example x0 = 0
for points along the edge connecting the lower-right corner of the simplex with the
upper corner. We will refer to this as the 1–2 edge in the following, and similarly for

Fig. 5.2 The concentration simplex, or barycentric coordinate system. The bottom-left corner cor-
responds to x0 = 1. Labels along the left edge indicate the concentration of type-0 cells. The
bottom-right corner corresponds to x1 = 1 and the labels on the bottom edge indicate the concen-
tration of type-1 cells. The top corner corresponds to x2 = 1 and labels on the right edge indicate
the concentration of type-2 cells. For the point shown, the population consists of 20% type-0 cells,
50% type-1 cells, and 30% type-2 cells

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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the other edges. The three corners of the simplex represent the homogeneous states,
i.e. x0 = 1 (lower left corner), x1 = 1 (lower right) and x2 = 1 (upper corner).

Stability Analysis

The deterministic equations (5.5) can permit fixed points, that is a point x∗ at which
ẋi = 0 for all i = 0, 1, 2. Themost obvious of these is at (0, 0, 1), which corresponds
to the absorbing state. The equations can have a further zero, one, or two non-trivial
fixed points, depending on the values of the fitness parameters and the mutation
rates. These additional fixed points correspond to points at which the ‘push’ of
mutation balances the adverse effect of selection [28, 31]. The stability of the fixed
points, as described in Sect. 2.6, is determined by the eigenvalues of the Jacobian
of Eqs. (5.5). We define the two-dimensional Jacobian in terms of x1 and x2, and
impose x0 = 1 − x1 − x2. The Jacobian is given by

J(x1, x2) =
(

∂1 ẋ1 ∂2 ẋ1
∂1 ẋ2 ∂2 ẋ2

)
, (5.6)

where ∂i f = ∂ f/∂xi .
Along the 1–2 boundary of the concentration simplex (x0 = 0) we have

x2 = 1 − x1. A fixed point of Eqs. (5.5) can then be found at

x∗
1 = (1 − u2)r1 − r2

r1 − r2
, (5.7a)

x∗
2 = u2r1

r1 − r2
. (5.7b)

The parameter range in which this fixed point exists is determined by the condition
0 < x∗

1 < 1, which we can write as (1− u2)r1 > r2. The fixed point on the 1–2 edge
therefore exists when type-1 cells have a fitness advantage over type-2 cells. The
factor 1 − u2 accounts for the effect of the mutation ‘push’. Increasing this fitness
advantage moves the fixed point towards x1 = 1, or equivalently away from the
absorbing state at x1 = 0. For vanishing mutation rate u2, the fixed point approaches
the x1 = 1 state. Evaluating the Jacobian in Eq. (5.6) at the fixed point (5.7), we find
that the determinant and trace satisfy

det[J(x∗
1 , 1 − x∗

1 )] = [(1 − u2)r1 − r2][(1 − u2)r1 − (1 − u1)r0]
[(1 − u2)r1]2 , (5.8a)

Tr[J(x∗
1 , 1 − x∗

1 )] = (1 − u1)r0 + r2 − 2(1 − u2)r1
(1 − u2)r1

, (5.8b)

and from this the discriminant is always positive such that the eigenvalues of J are
real. Using the classification scheme in Fig. 2.4, we can characterise this boundary
fixed point in the following way:

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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⎧⎨
⎩

Fixed point exists if (1 − u2)r1 > r2,
and is stable if (1 − u1)r0 < (1 − u2)r1,

or is a saddle point if (1 − u1)r0 > (1 − u2)r1.

⎫⎬
⎭ (5.9)

These inequalities contain regions I and II of the phase diagram shown in Fig. 5.3.
The stable fixed point can be seen in Fig. 5.4a, and the saddle point can be seen in
Fig. 5.4b.

A further fixed point of Eqs. (5.5), this time with x∗
0 > 0, can be found at

x∗
1 = [(1 − u1)r0 − r2]u1r0

u2r1(r0 − r2) + (r0 − r1)[(1 − u1)r0 − r2] , (5.10a)

x∗
2 = u1u2r0r1

u2r1(r0 − r2) + (r0 − r1)[(1 − u1)r0 − r2] , (5.10b)

which exists if the model parameters satisfy (1 − u1)r0 > (1 − u2)r1 and (1 − u1)
r0 > r2. If this is the case we find det[J] > 0 and Tr[J] < 0, and the discriminant is
always positive. Hence, according to Fig. 2.4 this fixed point is always stable. This
is the case in regions II and III in Fig. 5.3, i.e. when cells harbouring one and two
mutations are less fit than the wild-type. The fixed point can be seen in Fig. 5.4b, c.
The fixed point moves closer to x0 = 1 when the fitness advantage of the wild-type
cells is increased (i.e. by lowering the fitness of type-1 and type-2 cells). Decreasing
the mutation rates also moves the fixed point closer to x0 = 1.

Fig. 5.3 Boundary fixed points occur when (1 − u2)r1 > r2 (regions I and II; mutation–selection
balance between types 1 and 2). Stable interior fixed points occur when (1 − u1)r0 > (1 − u2)r1
and (1 − u1)r0 > r2 (regions II and III; mutation–selection balance between all three types). No
additional fixed points are found in regions IV and V (beneficial type-2 mutation). In all regions,
the point x2 = 1 is an absorbing state and is therefore a fixed point as well

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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(a) (b) (c)

Fig. 5.4 The streamlines of Eqs. (5.5) in parameter regions which permit non-trivial fixed points,
which are regions I, II and III of Fig. 5.3. The thick line is the deterministic flow from the all-
wild-type initial condition. Solid circles indicate stable fixed points, and the open circle for region
II corresponds to the saddle point that is stable along the 1–2 boundary. The fitness landscape
that generates each type of behaviour is shown below each simplex. Region II corresponds to the
case of Muller’s ratchet, where increasingly deleterious mutations are accumulated [39]. In these
illustrations the mutation rates are u1 = u2 = 10−2. a Region I. b Region II. c Region III

(a) (b)

Fig. 5.5 The streamlines of Eqs. (5.5) in parameter regions where x2 = 1 is the only fixed point,
which are regions VI and V of Fig. 5.3. The thick line is the deterministic flow from the all-wild-type
initial condition. The fitness landscape that generates each type of behaviour is shown below each
simplex. Region IV is the classic valley crossing scenario [38, 44–47]. In these illustrations the
mutation rates are u1 = u2 = 10−2. a Region IV. b Region V

In the remaining regions of parameter space, namely regions IV and V in Fig. 5.3,
there are no non-trivial fixed points. As seen in Fig. 5.5a, b, the flow from the all-
wild-type state is directly towards the all-type-2 state. Returning to the discussion of
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stochastic tunneling, we can see that the deterministic trajectories in Fig. 5.5a, b do
not pass through the all-type-1 state. Hence the deterministic dynamics predicts the
stochastic tunnelling route.

5.4 Types of Stochastic Behaviour

The deterministic equations (5.5) can provide some intuition into the qualitative
stochastic behaviours that can occur. We now analyse this behaviour in each region
of parameter space outlined in Fig. 5.3.

Region I

In region I, the deterministic dynamics flows towards the stable fixed point on the
1–2 edge of the concentration simplex (x0 = 0). The type-0 cells have the lowest
fitness, and are deterministically lost by selection. The fixed point is a consequence
of the mutation–selection balance between type-1 and type-2 cells [31]; selection
acts to reduce the number of type-1 cells, but mutation from cells of type 1 acts
to increase their number. Writing r2 = (1 − s)r1, the existence condition for the
equilibrium, (1 − u2)r1 > r2, reduces to u2 < s. It is a well-known result from
population genetics that this condition prevents the deterministic loss of the type-1
cells [31, 48]. The deterministic system gets stuck at this fixed point, but a finite
population will eventually reach the all-type-2 state.

At large but finite population sizes, the stochastic dynamics are expected to
approximately follow the deterministic path such that type-0 cells quickly become
extinct. This is shown in Fig. 5.6. The lack of backwards mutations means the pop-
ulation cannot depart from the 1–2 edge and the problem reduces to one degree

(a) (b)

Fig. 5.6 a Thin line shows a single stochastic trajectory in the concentration simplex for parameters
in region I. The trajectory closely follows the deterministic trajectory and type-0 cells become
extinct. b The individual components of the same trajectory as a function of time. Type-0 cells
reach extinction very quickly, and the population composition fluctuates about the fixed point,
indicated by dashed lines. Eventually type-1 cells are lost and type-2 cells reach fixation. A moving
average over a time window of 200 generations has been taken to improve clarity. Parameters are
as in Fig. 5.4a, i.e. r0 = 1.00, r1 = 1.05, r2 = 1.00, u1 = u2 = 10−2, and N = 300
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of freedom. The mutation–selection balance maintains the heterogeneous popula-
tion state of type-1 and type-2 cells, which fluctuates about the fixed point location
as shown in Fig. 5.6b. The intrinsic noise then has to drive the system from this
metastable state into the absorbing all-type-2 state against the direction of selection.
Fixation times are expected to grow exponentially with the population size in-line
with existing results [38, 49, 50].

Region II

In region II, the deterministic flow from the all-wild-type state is towards a stable
fixed point in the interior of the simplex. This point corresponds to the mutation–
selection balance point of all three cell types. There is a second fixed point located
on the 1–2 edge, which corresponds to mutation–selection balance between types 1
and 2 in the absence of type-0 cells (analogous to region I). As type-0 cells have the
highest fitness in this regime, selection is directed away from the 1–2 edge. Thus the
fixed point on this edge is a saddle.

As before the stochastic dynamics in finite populations will reach the all-type-
2 state eventually. The population will closely follow the deterministic trajectory
before reaching the metastable state about the stable interior fixed point. This can be
seen in Fig. 5.7a. Here the mutation–selection balance maintains the heterogeneous
state with all three species present. The population fluctuates about this fixed point as
shown in Fig. 5.7b until it eventually overcomes the adverse selection and escapes.
There are two possibilities for the subsequent behaviour:

(i) Type-0 cells become extinct and the population settles into the metastable state
on the 1–2 edge. Intrinsic fluctuations enable the population to overcome the

(a) (b)

Fig. 5.7 a Thin line shows a single stochastic trajectory in the concentration simplex for parameters
in region II. The population fluctuates about the interior stable fixed point before type-0 cells become
extinct. b The individual components of the same trajectory as a function of time. The population
quickly reaches themetastable state andfluctuates about the fixed point location, indicated by dashed
lines. Eventually type-0 cells are lost at t ≈ 5500. After this the population of type-1 and type-2
cells fluctuates about the boundary fixed point location, before type-1 cells are lost and type-2 cells
reach fixation. A moving average over a time window of 200 generations has been taken to improve
clarity. Parameters are as in Fig. 5.4b, i.e. r0 = 1.00, r1 = 0.98, r2 = 0.95, u1 = u2 = 10−2, and
N = 300
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adverse selection along the edge and eventually reach the absorbing all-type-2
state. This corresponds to sequential extinction, first of type-0 cells, then of type-
1 cells. This process is equivalent to a minimal model of Muller’s ratchet [39],
in which the most advantageous phenotypes are sequentially lost. A trajectory
of this type is illustrated in Fig. 5.7b.

(ii) Cells of type 0 and type 1 can, in principle, go extinct (almost) simultaneously.
The trajectory of the system then hits the 1–2 edge close to the all-type-2 corner
of the simplex. It does not become trapped in the metastable state located on the
1–2 edge.

We observe that this second path to extinction is realised only very rarely, which is
in agreement with similar studies of predator–prey dynamics [32]. Hence our further
analysis will only consider the sequential fixation path.

Region III

In region III the deterministic dynamics has a single stable fixed point in the interior
of the concentration simplex. This point again corresponds to the mutation–selection
balance point of all three cell types. Large, but finite populations will behave as dis-
cussed in case (ii) for region II: They will initially become trapped in the metastable
state about the mutation–selection balance point, before intrinsic fluctuations even-
tually drive the system to the absorbing all-2 state. In region III, type-0 and type-1
cells go extinct at essentially the same time. The type-0 cells can reach extinction
first, and then type-1 cells quickly follow as selection along the 1–2 edge is directed
towards the absorbing state [(1 − u2)r1 < r2]. This is illustrated in Fig. 5.8.

(a) (b)

Fig. 5.8 a Thin line shows a single stochastic trajectory in the concentration simplex for parame-
ters in region III. The population fluctuates about the interior stable fixed point before type-2 cells
eventually fixate. b The individual components of the same trajectory as a function of time. The
population quickly reaches the metastable state and fluctuates about the fixed point location, indi-
cated by dashed lines. Eventually type-0 and type-1 cells are lost almost simultaneously. A moving
average over a time window of 200 generations has been taken to improve clarity. Parameters are
as in Fig. 5.4c, i.e. r0 = 1.00, r1 = 0.95, r2 = 0.98, u1 = u2 = 10−2, and N = 300
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Regions IV and V

In a subset of the parameter space, shown as regions IV and V in Fig. 5.3, the deter-
ministic flow from the all-wild-type state is directly to the absorbing all-2 state, as
shown in Fig. 5.5. For such model parameters we expect that fixation in finite pop-
ulations will be quick (relative to fixation times in regions with metastable states)
as type-2 cells are favoured by selection (and mutation). These scenarios agree with
the theory of natural selection, in which the populations fitness increases over time
[51]. In region IV this is achieved by crossing a fitness valley, and in region V it is
achieved by sequentially selecting the most advantageous phenotype.

Summary of Previous Literature

Figure5.9 illustrates in which parameter regimes fixation has previously been stud-
ied in the stochastic tunnelling literature. These existing studies almost exclusively
focus on regions IV and V, i.e. cases in which fixation is driven not primarily by
demographic noise, but by the underlying deterministic flow. As mentioned above
fixation is typically fast in regions IV and V. Based on similar studies in evolutionary
game theory one would expect the fixation time to grow logarithmically with the
population size, τ ∼ ln N [49]. The regions containing non-trivial fixed points are
largely unexplored by previous investigations. Fixation is controlled by stochastic
effects so that fixation times are large and broadly distributed. As we will discuss
below, fixation times grow exponentially with the population size in such cases. This

Fig. 5.9 The coloured area roughly corresponds to the regions in which the probability of fixation
at a given time has been successfully predicted in Ref. [30]. The southwest–northeast striped region,
with r1 deleterious or slightly advantageous, and r2 very advantageous, is the approximate region
of interest of Refs. [21, 25, 27]. These studies focused on the time to emergence of a single type-2
cell. The northwest–southeast striped region, with r1 neutral or deleterious, and r2 advantageous, is
approximately the region of interest of Refs. [24, 29]. These studies were concernedwith computing
fixation times of the advantageous type-2 cells and rely on the assumption that the number of type-
1 cells is small. Finally, the horizontal striped region approximately corresponds to the literature
of fitness valley crossings, notably Refs. [38, 44–47]. These studies are concerned with 1/N <

r2 − r0 
 1
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is perfectly in-line with the findings of Ref. [30], who point out that fixation in these
regions takes a very long time. Efficient measurements of fixation time in simulations
are hence difficult. Methods which require the numerical solutions of, for example,
the backward Fokker-Planck equation or a backward master equation reach their
limits here as well [30]. This is because forward integration of these equations has
to be carried out for increasingly long periods of time. The contribution of this work
is to analyse precisely these previously inaccessible cases.

5.5 WKB Analysis

In this section we compute the fixation properties of systems in which the underlying
deterministic dynamics has one ormore attracting fixed points away from the absorb-
ing all-type-2 state. For this analysis we use the celebrated WKB method. We here
present this method as an ‘off-the-shelf approach’, using existing WKB studies to
guide our analysis. In Chap.6 we further discuss the WKBmethod, and in particular
its mathematical origins and relation to other fields, such as large deviations theory.

To proceed with the analysis of our model we need to make the following simpli-
fying assumptions, which are justified by the previous deterministic analysis:

(i) We assume that the population first settles into a distribution about the fixed
point, as shown in Figs. 5.6, 5.7 and 5.8.

(ii) We assume that the population will ‘leak’ into the absorbing state on a very long
timescale from this distribution. With this assumption we can also say that the
time taken for the population to reach the metastable state is negligible when
compared to the escape time. This is most clearly seen in Fig. 5.6b.

With these assumptions we can compute the distribution about the fixed points, and
the escape rate from these states, from the master equation (5.2). These assumptions
(and hence the subsequent analysis) are only valid when the selective pressure is
greater than the effect of noise, such that the metastable states are long-lived. For
this reason, the approach described here is only valid for large values of N which
satisfy this condition.2

Mathematically we formulate the problem as follows: let πn be the quasi-
stationary distribution (QSD), which is independent of time. This is the distribution
that, prior to the system reaching the absorbing state nabs, we would observe for the
state of the population. This distribution satisfies

∑
n �=nabs πn = 1. We expect that it

is peaked about the stable fixed points of the underlying deterministic dynamics. The
mean time taken to escape from this metastable state, τ , is much greater than the time
taken to initially reach the metastable state tr , i.e. τ � tr . Provided this condition
holds, we can assume that after a short time the probability to find the population in
state n is given by

2The minimum value of N for which our analysis is valid is dependent on the remaining model
parameters, but comparisons with simulation results in the next section show it is accurate for
N � 100.

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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Pn �=nabs(t � tr ) 
 πn e
−t/τ , Pnabs(t � tr ) 
 1 − e−t/τ . (5.11)

The exponential decay factor, e−t/τ , describes the ‘leaking’ process from the
metastable state into the absorbing state. The second equation follows from the
normalisation of Pn(t).

To find the mean fixation time of the type-2 cells, we substitute Eq. (5.11) into
the master equation (5.2) to obtain the quasi-stationary master equation (QSME)

− 1

τ
πn �=nabs =

∑
ν

[
T ν
n−νπn−ν − T ν

n πn
]
. (5.12)

For n = nabs (the absorbing state) we have

1

τ
=

∑
ν

T ν
nabs−νπnabs−ν

= T 1→2
(0,1,N−1)π(0,1,N−1) + T 0→2

(1,0,N−1)π(1,0,N−1), (5.13)

where we have used T ν
nabs = 0 for all ν. Hence if we find the QSD, πn, by solving

the QSME (5.12), we can determine the mean fixation time, τ , and the probability
to have reached fixation by time t , Pnabs(t) = 1 − e−t/τ . By separating variables in
Eq. (5.11), we have reduced the complexity of the master equation (5.2); time does
not feature in the QSME (5.12).

We now change variables from n to x = n/N , and we will interpret x as a
continuous variable. This approximation is valid as we have already stated that we
require N to be large. The continuous version of the QSD is the probability density
ψ(x) = NπNx. We employ the WKB ansatz [52] to represent the QSD as

NπNx = ψ(x) = C exp
[−NS0(x) − S1(x) + O(N−1)

]
, (5.14)

where Sσ (x) = O (1) for all σ ≥ 0 [53], andwe have introducedC as a normalisation
constant. The discussion of the origin of this ansatz follows in Chap.6. To find the
QSD, we substitute the ansatz into the QSME (5.12), and then follow the existing
approaches for solving similar problems (see Ref. [53], for example) by expanding
the resulting equation in powers of N−1.

Further analytical progress can be made if the QSME has only one variable. This
is relevant in regions I and II of our model, where the population must escape from
a metastable state on the 1–2 edge of the concentration simplex. Escape from an
interior metastable state can also be studied using the WKB approach. However, the
QSME then retains two degrees of freedom, and explicit expressions for the QSD
and escape time cannot be obtained. In this scenario we must resort to numerical
methods. In the following we describe the WKB approach for the three regions of
parameter space that contain additional fixed point separately.

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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Region I

We first consider the case in which there exists a single additional fixed point of the
deterministic dynamics, which is located on the 1–2 boundary of the concentration
simplex. In this scenario type-0 cells become extinct very quickly and the population
settles into the quasi-stationary distribution along this edge. As the population cannot
depart from the 1–2 boundary, the system reduces to one degree of freedom. We
parametrise the system in terms of the concentration of type-1 cells, x1. We then
have x2 = 1 − x1, and x1 = 0 is the absorbing state (in which all cells are of type
2). Along the 1–2 boundary there are only two reactions from Eq. (5.1) which have
non-zero rate; T 1→2 and T 2→1. We express these as the intensive quantities

f+(x1) = T 2→1
Nx1

N
= (1 − x1) × (1 − u2)r1x1

r1x1 + r2(1 − x1)
, (5.15a)

f−(x1) = T 1→2
Nx1

N
= x1 × u2r1x1 + r2(1 − x1)

r1x1 + r2(1 − x1)
. (5.15b)

The phase portrait in Fig. 5.10, as described in Sect. 2.6, highlights the location
of the fixed point and the direction of selection away from the absorbing boundary at
x1 = 0. In the figure we have used ẋ1 = f+(x1) − f−(x1). This is exactly Eq. (5.5b)
with x0 = 0 and x2 = 1 − x1.

The aim of this subsection is to compute an explicit expression for the mean
escape time from the metastable state on the 1–2 boundary. The main steps of this
calculation are:

(i) Find an expression for theQSDon the boundary. This is achieved by substituting
the WKB ansatz (5.14) into the QSME (5.12) and solving the equations in
descending powers of N .

(ii) Close to the x1 = 0 boundary we must consider the flux to the absorbing state,
and so we construct a boundary-layer solution in this region. We consider a

Fig. 5.10 The phase portrait of the deterministic dynamics along the 1–2 boundary in region I.
The stable fixed point (filled circle), as described in Eq. (5.7), is found at x∗

1 = 1− u2r1/(r1 − r2).
The absorbing state at x1 = 0 is an unstable fixed point (empty circle). Parameters are r1 = 1.05,
r2 = 1.00 and u2 = 10−2. Other parameters do not feature along this boundary

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Taylor expansion of Eq. (5.12) about x1 = 0 without imposing theWKB ansatz
as the solution.

(iii) The two solutions described above are matched within the boundary-layer to
provide an accurate approximation for the mean escape time, τ .

Once this analysis is complete, we compare the predictions with the results of
stochastic simulations of the original model.

(i) Calculating the Quasi-Stationary Distribution

We will now compute the approximate distribution about the metastable state. On
the boundary the QSME (5.12) is

− 1

Nτ
ψ(x1) =

∑
ν=±1

[
fν
(
x1 − ν

N

)
ψ

(
x1 − ν

N

)
− fν(x1)ψ(x1)

]
, (5.16)

which we can Taylor expand about x1. We first replace ψ(x1) by the ansatz (5.14)
and perform the expansion

ψ
(
x1 − ν

N

)
= C exp

[
−NS0

(
x1 − ν

N

)
− S1

(
x1 − ν

N

)]

≈ C exp

[
−N

(
S0(x1) − νS′

0(x1)

N
+ ν2S′′

0 (x1)

2N2

)
−

(
S1(x1) − νS′

1(x1)

N

)]

= ψ(x1) exp
[
νS′

0(x1)
]
exp

[
− 1

N

(
ν2S′′

0 (x1)

2
− νS′

1(x1)

)]

≈ ψ(x1) exp
[
νS′

0(x1)
] [

1 + ν
S′
1(x1)

N
− ν2S′′

0 (x1)

2N

]
. (5.17)

We have here used S′
σ (x1) to represent differentiation with respect to x1, and we

have assumed that the Sσ (x1) are differentiable. The expansion of the transition
rates is simply fν(x1 − ν/N ) ≈ fν(x1) − ν f ′

ν(x1)/N . Equation (5.16) can hence by
approximated by

0 =
∑
ν=±1

fν(x1)
[
eνS′

0(x1) − 1
]

+ 1

N

∑
ν=±1

eνS′
0(x1)

[
ν fν(x1)S

′
1(x1) − ν2 fν(x1)S′′

0 (x1)

2
− ν f ′

ν(x1)

]

+ O (
N−2

)
, (5.18)

where we have ignored the term O(
(Nτ)−1

)
. We will soon confirm that this term is

much less than O (
N−2

)
as τ scales as eN .

The leading-order terms in the system size of Eq. (5.18) satisfy

f+(x1)
(
ep − 1

) + f−(x1)
(
e−p − 1

) = 0, (5.19)
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where we have introduced p = S′
0(x1). Equation (5.19) can be expressed as a

quadratic equation for ep, from which we find two values of p. One of these is
p = 0, and the other is

p(x1) = ln

[
f−(x1)

f+(x1)

]
. (5.20)

We can then integrate this second expression to recover S0(x1), which we define as

S0(x1) =
∫ x1

x∗
1

ln

[
f−(q)

f+(q)

]
dq. (5.21)

The choice of integration constant is arbitrary as it will be absorbed into the normal-
isation coefficient, C . Here we chose the constant such that S0(x∗

1 ) = 0, where x∗
1 is

the location of the fixed point as described in Eq. (5.7). Substituting in the transition
rates from Eq. (5.15), we obtain

S0(x1) =
[
(1 − q) ln

[
(1 − u2)r1(1 − q)

] − u2r1q + r2(1 − q)

r2 − u2r1
ln
[
u2r1q + r2(1 − q)

]]q=x1

q=x∗
1

.

(5.22)

This function is well-behaved at all points 0 ≤ x1 ≤ 1, as shown in Fig. 5.11a. We
find that S0(x∗

1 ) is a minimum of S0(x1), such that the leading-order contribution (in
the system size) to the QSD,

ψ(x1) = C exp
[−NS0(x1)

]
, (5.23)

is peaked about the fixed point x∗
1 . To determine the normalisation coefficient, C , we

can expand the QSD about the fixed point

(b)(a)

Fig. 5.11 a The leading-order term in the system-size of the WKB expansion, S0(x1), from
Eq. (5.22). b The next-leading-order term, S1(x1) from Eq. (5.29), diverges as x1 → 0. This
divergence is cancelled by replacing S1(x1) by φ(x1) from Eq. (5.30). Arrows indicate the location
of the stable fixed point at x∗

1 = 1 − u2r1/(r1 − r2). Parameters are as in Fig. 5.10
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ψ(x1) ≈ C exp

[
−N

2
(x1 − x∗

1 )
2S′′

0 (x
∗
1 )

]
, (5.24)

where we have used S0(x∗
1 ) = S′

0(x
∗
1 ) = 0. By applying the normalisation condition∫ 1

0 ψ(q)dq = 1, we find that

C ≈
√

NS′′
0 (x

∗
1 )

2π
, (5.25)

where we have assumed that
∫ 1
0 ψ(q)dq ≈ ∫ ∞

−∞ ψ(q)dq, or equivalently that ψ(x1)
is sharply peaked about x∗

1 .
The next-leading-order terms in the system size of Eq. (5.18) satisfy

∑
ν=±1

eνp(x1)

[
ν fν(x1)S

′
1(x1) − ν2 fν(x1)p′(x1)

2
− ν f ′

ν(x1)

]
= 0. (5.26)

Substituting Eq. (5.20) into this expression, it can be shown that S′
1(x1) satisfies

S′
1(x1) = 1

2

[
f ′+(x1)

f+(x1)
+ f ′−(x1)

f−(x1)

]
. (5.27)

Integrating this equation gives

S1(x1) =
[
1

2
ln
[
f+(q) f−(q)

]]q=x1

q=x∗
1

, (5.28)

where again we have chosen the arbitrary constant such that S1(x∗
1 ) = 0. Substituting

in the transition rates from Eq. (5.15), we find

S1(x1) =
[
1

2
ln

(
(1 − u2)r1q(1 − q) × [

u2r1q2 + r2q(1 − q)
]

[
r1q + r2(1 − q)

]2
)]q=x1

q=x∗
1

. (5.29)

This function diverges at x1 = 0 and x1 = 1, as shown in Fig. 5.11b. We can ignore
the divergence at x1 = 1 as this state is not of interest. The divergence at x1 = 0
cannot be ignored if we want to compute the time to reach this absorbing state. To
overcome this we introduce the function

φ(x1) = S1(x1) − ln(x1), (5.30)

which is well-behaved at x1 = 0, as shown in Fig. 5.11b. With this we can express
the QSD as

πNx1 = ψ(x1)

N
= C

Nx1
exp

[−NS0(x1) − φ(x1)
]
, (5.31)
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Fig. 5.12 The measured distribution of concentrations of type-1 cells, x1, at given times (symbols)
in region I of parameter space. These are obtained from an ensemble of 105 Gillespie simulations of
the microscopic model. Inset is the same data with a logarithmic vertical axis. We show the WKB
approximation (5.45) (solid lines; filled bars for x1 = 0), and the boundary-layer solution (5.46)
(dashed lines), which are in good agreement with simulation results in their respective regimes.
The distributions away from x1 = 0 have been re-scaled by a factor 50 for optical convenience.
The arrow indicates the location of the deterministic fixed point, given by Eq. (5.7). Parameters are
r0 = 1.0, r1 = 1.05, r2 = 1.0, u1 = u2 = 10−2, and N = 200

which is illustrated in Fig. 5.12. The x−1
1 divergence has now been isolated outside of

the exponent, whichwill prove to be necessarywhenwe construct the boundary-layer
solution below.

We can attempt to determine the mean fixation time, τ . As an initial guess we can
simply rearrange Eq. (5.13) to write

τ = 1

f−(1/N )ψ(1/N )

=
(
1

N

u2r1/N + r2(1 − 1/N )

r1/N + r2(1 − 1/N )
× C

1/N
exp [−NS0(1/N ) − φ(1/N )]

)−1

= r1 + r2(N − 1)

u2r1 + r2(N − 1)
×

√
2π

NS′′
0 (x

∗
1 )

exp [NS0(1/N ) + φ(1/N )] . (5.32)

However we expect the QSD (5.31) to be a less accurate description of the true
distribution as the distance from the fixed point increases. This is because we have
neglected any flux into the absorbing state. Insteadwe can construct a boundary-layer
solution close to x1 = 0.

(ii) Boundary-Layer Solution

Theboundary-layer solution is calculatedby expanding theQSME (5.12) [and (5.13)]
about x1 = 0 without imposing a specific form for the QSD (i.e. we do not
use the WKB ansatz). We return to the discrete coordinates n1 = Nx1 and
πn1 = ψ(n1/N )/N . For n1 = 0 we have
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1

τ
= N f−

(
1

N

)
π1 ≈ N

(
f−(0) + 1

N
f ′
−(0)

)
π1 = f ′

−(0)π1

⇒ π1 ≈ 1

τ f ′−(0)
. (5.33)

For 1 ≤ n1 
 N we have

0 =
∑
ν=±1

f ′
ν(0)

[
(n1 − ν)πn1−ν − n1πn1

]
, (5.34)

or equivalently

θn1+1 =
[
1 + f ′+(0)

f ′−(0)

]
θn1 − f ′+(0)

f ′−(0)
θn1−1, (5.35)

where θn1 = n1πn1 . This recursive system can be solved to arrive at

θn1 =
n1−1∑
i=0

(
f ′+(0)

f ′−(0)

)i

θ1 =
1 −

(
f ′+(0)
f ′−(0)

)n1

1 − f ′+(0)
f ′−(0)

θ1

⇒ πn1 =
1 −

(
f ′+(0)
f ′−(0)

)n1

1 − f ′+(0)
f ′−(0)

π1

n1
. (5.36)

This is the boundary-layer solution of the QSME (5.12) for dynamics constrained to
the 1–2 edge of the concentration simplex. This is shown in Fig. 5.12. The derivatives
of the transition rates (5.15) at x1 = 0 are

f ′
+(0) = (1 − u2)r1

r2
> 1, (5.37a)

f ′
−(0) = 1, (5.37b)

where the inequality arises from the existence condition of the fixed point, Eq. (5.9).
Now using [ f ′+(0)]n1 � 1 for suitably large n1, i.e. at the edge of the boundary layer,
as well as Eq. (5.33), we can approximate the solution (5.36) as

πn1 ≈ [ f ′+(0)]n1
[ f ′+(0) − 1]

1

τ n1
. (5.38)

We now want to match Eq. (5.38) with the WKB solution (5.31) to determine an
accurate value of τ .
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(iii) Matching WKB and Boundary-Layer Solutions

By expanding the WKB solution (5.31) about x1 = 0, we recover

π(Nx1) ≈ C

Nx1
exp

[−NS0(0) − Nx1S
′
0(0) − φ(0)

]

= C

Nx1
exp [−Nx1 p(0)] exp [−NS0(0) − φ(0)] . (5.39)

Using Eq. (5.20), we can evaluate exp[−p(0)] as

exp[−p(0)] = lim
q→0

f+(q)

f−(q)
= lim

q→0

f ′+(q)

f ′−(q)
= f ′

+(0). (5.40)

Likewise, the function exp[−φ(0)] can be evaluated as

exp[−φ(0)] = lim
q→0

[
f+(q) f−(q)

q2

]−1/2

× [
f+(x∗

1 ) f−(x∗
1 )
]1/2

= lim
q→0

[
f ′′+(q) f−(q) + 2 f ′+(q) f ′−(q) + f+(q) f ′′−(q)

2

]−1/2

× f+(x∗
1 )

= 1√
f ′+(0)

× f+(x∗
1 ), (5.41)

where we have used f+(x∗
1 ) = f−(x∗

1 ) and f+(0) = f−(0) = 0. Hence we can write
Eq. (5.39) as

π(Nx1) ≈ C

Nx1

[
f ′
+(0)

]Nx1 f+(x∗
1 )√

f ′+(0)
exp [−NS0(0)] . (5.42)

We can now equate this with Eq. (5.38) for x1 > 0, and from this we obtain the mean
fixation time

τ = 1

C

√
f ′+(0)

f+(x∗
1 )[ f ′+(0) − 1] exp [NS0(0)] . (5.43)

Inserting the explicit expressions for S0(0), the transition rates, and the normalisation
coefficient, we can write the escape time from the metastable on the 1–2 boundary
as

τ =
√
2πr1r2
Nu2

(1 − u2)(r1 − r2)

[(1 − u2)r1 − r2]2

× exp

{
N

[
u2r1

r2 − u2r1
ln

[
u2(1 − u2)r21

r1 − r2

]
+ ln

[
(1 − u2)r1

] − r2
r2 − u2r1

ln[r2]
]}

.

(5.44)
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As expected, the mean escape time increases exponentially with the system size, but
the dependence on the remaining model parameters is very messy.

Results

We can now compare these results with probability distributions and fixation times
obtained fromGillespie simulations of the microscopic model described in Sect. 5.2.
In Fig. 5.12, we show our theoretical approximation for the distribution of the con-
centration of type-1 cells, which is given by

P[0,Nx1,N (1−x1)](t) = C

Nx1
exp [−NS0(x1) − φ(x1)] × exp(−t/τ) for x1 > 0,

(5.45a)

P(0,0,N )(t) = Pnabs(t) = 1 − exp(−t/τ) for x1 = 0. (5.45b)

Initially this distribution will be an inaccurate representation of the true distribution
as the type-0 cells will not yet have become extinct, but it will become increasingly
accurate as time progresses. This approximation is compared with the distribution
obtained from simulations in Fig. 5.12. Specifically, we measure the probability to
observe a fraction x1 of type-1 cells at a given time t (independent of whether type-0
cells have become extinct or not). The data in the figure reveals good agreement
between theory and simulation data away from the region close to x1 = 0. There
is also good agreement between Eq. (5.45b) and the probability to have reached the
absorbing state by time t measured from the simulations.

Close to the absorbing state x1 = 0, the boundary-layer approximation for the
distribution is given by

P[0,Nx1,N (1−x1)](t) = 1 − [
f ′+(0)

]Nx1

1 − f ′+(0)

1

τNx1
exp(−t/τ) for 1/N < x1 
 1.

(5.46)
This shows improved agreement with simulation results close to x1 = 0 when com-
pared to WKB solution (5.45). This is emphasised in the inset logarithmic plot of
Fig. 5.12.

Results for the mean fixation time in region I are shown in Fig. 5.13a. In
Fig. 5.13b we plot the probability that type-2 cells have reached fixation by time
t∗ = 3× 103 (including fixation earlier than that), and compare this with the predic-
tion of Eq. (5.45b). If a cellular generation lasts for one day, then this time isO (10)
years, which is the same length of time that appears in multiple studies of mutation
acquisition [14, 16]. The mean fixation times increase exponentially with the fitness
of type-1 cells, r1. This is a consequence of the increasing height of the selection
‘barrier’ which must be overcome for type-2 cells to reach fixation. Also, increasing
r1 pushes the boundary fixed point towards the all-type-1 state, which results in a
further increase in fixation time (or decrease in probability of fixation by time t∗).
If the fixed point approaches the all-type-1 state, the probability of the population
reaching this corner of the simplex due to demographic fluctuations increases. Thus
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(a) (b)

Fig. 5.13 a Mean fixation time of type-2 cells in region I. Symbols correspond to mean fixation
times from simulations of the model (averaged over an ensemble of 2–5× 103 samples) initiated in
the all-wild-type state. Shape of symbol indicates fitness of type-2 cells (see legend); filled symbols
are for u1 = u2 = 10−2, empty symbols are for u1 = u2 = 10−3. Solid lines (high mutation) and
dashed lines (lowmutation) are theWKBprediction for fixation time, Eq. (5.44). The approximation
breaks down when (1 − u2)r1 
 r2, which is when the fixed point approaches the absorbing state.
b The probability that type-2 cells have reached fixation by time t∗ = 3 × 103. Lines correspond
to the WKB prediction, Eq. (5.45b). Colours and symbols follow the same convention as in panel
(a). Remaining parameters are r0 = 1.0 and N = 100

increasing r1 decreases the probability of stochastic tunnelling occurring. Increasing
the fitness of type-2 cells, on the other hand, pushes the metastable state closer to the
absorbing state. This leads to a significant reduction in the fixation time (increase in
fixation probability by time t∗). Increasing the mutation rate u2 has a similar effect
to increasing r2; the fixed point approaches the absorbing state, and the net effect
of selection away from the absorbing state is reduced, leading to a decrease in the
fixation time. In line with the previous literature [24, 30], increasing the mutation
rate increases the probability of tunnelling.

In both panels of Fig. 5.13 the theoretical predictions from the WKB method are
in excellent agreement with simulation results. This is the case even at the moderate
population size of N = 100. In Fig. 5.14a we show that this accuracy is retained for
increasing N . Small deviations between the theory and simulation results occur when
mutation rates are low (dashed lines and open symbols in Fig. 5.13). This is seenmore
clearly in Fig. 5.14b. The theory underestimates the fixation time (overestimates the
probability of fixation by time t∗) at small values of u. This is a consequence of
assuming that the population approaches the metastable state in a negligible amount
of time. For very small mutation rates, it takes an increasing period of time for
successful (i.e. non-vanishing) mutant lineages to appear. Deviations between theory
and simulation results occur when (1 − u2)r1 
 r2. At this point the theory breaks
down as the fixed point on the 1–2 edge approaches the absorbing state. The barrier
associated with adverse selection is then negligible and the assumptions underlying
the WKB approximation are no longer justified.

Finally we can compare the predictions of our theory with those based on the
homogeneous-state approach, Eq. (5.3). In particular we compare against the results
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(a) (b)

Fig. 5.14 a Mean fixation time of type-2 cells in region I as a function of system size. Symbols
correspond to mean fixation times from simulations of the model (averaged over an ensemble of
103 samples) initiated in the all-wild-type state. Filled symbols are for u1 = u2 = 10−2, empty
symbols are for u1 = u2 = 10−3. Solid lines (high mutation) and dashed lines (low mutation) are
the WKB prediction for fixation time, Eq. (5.44). bMean fixation time of type-2 cells in region I as
a function of mutation rates. Here we have used r2 = 1 and N = 100. Symbols again correspond
to mean fixation times from simulations of the model (averaged over an ensemble of 103 samples)
initiated in the all-wild-type state

Fig. 5.15 Mean fixation time of type-2 cells in region I as a function of system size. Symbols
correspond to mean fixation times from simulations of the model (averaged over an ensemble of
103 samples) initiated in the all-wild-type state. Solid lines are the prediction of Eq. (5.44). Dashed
lines are the prediction of Ref. [24], which is computed from Eq. (5.3) using the transition rates
shown in Eq. (5.4)

of Ref. [24]. In Fig. 5.15we showmean fixation times as a function of the system size.
This plot shows the homogeneous-state approach (dashed) of Ref. [24] breaks down
in region I for large values of N . The figure reveals that the WKB predictions are of
good accuracy for population sizes greater than 50–200 or so, depending on model
parameters. This confirms that the approximations we make (large population size)
only limit the range of validity of the WKB approach to a relatively minor degree.
If the population of cells is too small then the strength of the noise is greater than
the effect of selection, and the idea of a metastable state breaks down. If this is the
case the process is mutation-limited, and similar fixation times are observed when
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the mutation rate is fixed, but fitness parameters are varied (circles and diamonds
converge at small N , as do squares and triangles, in Fig. 5.15). The WKB solution
becomes more accurate with increasing population size. For N � 100, Eq. (5.44)
is in much better agreement with simulation results than the existing theoretical
estimates.

Region II

We now analyse the case where the system first approaches a fixed point in the
interior of the concentration simplex, before reaching the 1–2 boundary and settling
into the QSD as described above. When a fixed point exists away from the state-
space boundaries, the solution procedure described above is no longer viable. This
is because the QSME (5.12) retains two degrees of freedom. The ansatz (5.14),
however, is still a valid approximation to the QSD about this interior fixed point.
Substituting this into the QSME, and taking the leading-order terms in the system
size gives the expression

∑
ν

fν(x) (exp[ν · p] − 1) = 0, (5.47)

where fν(x) = T ν
Nx/N and p = ∇S0(x). Unlike the boundary case described above,

we cannot discern a non-zero p which satisfies Eq. (5.47). Instead, we identify
Eq. (5.47) as a Hamilton–Jacobi3 equation of the form H(x,p) = 0 and consider
the characteristic equations, also known as Hamilton’s equations [54]. These are of
the form

ẋi = ∂H

∂pi
, ṗ = −∂H

∂xi
. (5.48)

This formulation will be discussed in much more detail in the next Chapter, but for
now we will state that these equations define characteristic curves which satisfy the
principle of least action, i.e. they define the most-likely path between two points in
space [54]. If these trajectories can be found, subject to initial and final conditions,
then the quasi-stationary distribution can be reconstructed by calculating

S0(x) =
∫

p(t) · ẋ(t) dt =
∫

p · dx, (5.49)

which is the integral of p along the trajectory described by x.
For the initial conditions of these trajectories we take x to be the deterministic

fixed point in the interior of the domain, i.e. x = x∗ given by Eq. (5.10), and p = 0.
For the final conditions, we must find a value of p. If the final position x is not
a fixed point, p is not uniquely determined, and it becomes a variational problem
to find a suitable p. We leave this discussion for Chap.6. If x is a fixed point, the
trajectory must end at this point and we have ẋ = 0 and ṗ = 0. Hence the fixed

3After William Rowan Hamilton (1805–1865) and the previously introduced Carl Gustav Jacob
Jacobi.

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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points of Eqs. (5.48) determine the final values of p, and we are then left to solve a
two-boundary-value problem.

We can find three fixed points of Eqs. (5.48) with p = 0. These are the fixed
points of the deterministic equations (5.5), which we label as M1 = (0, 1, 0, 0) for
the absorbing state, M2 = (x∗

1 , 1 − x∗
1 , 0, 0) for the boundary fixed point [with x∗

1
given by Eq. (5.7)], and M3 = (x∗

1 , x
∗
2 , 0, 0) for the interior fixed point [given by

Eq. (5.10)]. The labelling of these states follows the convention of Ref. [32], who
studied a similar scenario in a predator–prey system. As stated, all trajectories start at
the interior point M3. The end points require a non-zero value of p, otherwise we will
end up with S0(x) = 0. These so-called ‘fluctuational fixed points’ of Eqs. (5.48)
are labelled as F1 for the absorbing state and F2 for the boundary fixed point.

Problems of this type can be tackled using different techniques: firstly, the equa-
tions of motion (5.48) could be integrated using a shooting method to find the least-
action trajectory with a given final point [32, 34, 36]; secondly, the equations can be
integrated using an iterative scheme which converges to the optimal trajectory [55]
connecting given start and end points. Alternatively, minimisation techniques could
be used to find the least-action trajectory [56]. A detailed analysis of these differ-
ent methods follows in Chap.6. In the present application we find that the iterative
method quickly converges for our problem. Results presented in the following use
this method, which is outlined below.

As stated earlier, the most probable path to the absorbing state is the sequential
extinction path, where first type-0 cells are lost, and then type-1 cells. Thus we only
focus on the trajectory from the interior fixed point M3 to the boundary fluctuational
fixed point F2, and do not consider the simultaneous extinction path fromM3 to F1. To
determine the least-action trajectory, we initially fix the values of p for all times to the
values at F2, which are found by numerically solving ẋ = 0 and ṗ = 0 in Eq. (5.48).
We then numerically integrate the equations of motion (5.48) for the position vector
x forward in time, starting at M3 and keeping p constant. This integration is carried
out for a sufficient range of time to reach the vicinity of the fixed point F2, but not
too long to avoid numerical errors building up. In the next step the relations for p
in Eq. (5.48) are integrated backwards in time using the trajectory x(t) found in the
previous iteration. Thep values at the start of this backwards integration are chosen as
those corresponding to F2. This procedure is then iterated, with alternating forward
and backward integration of Hamilton’s equation. At each step of the procedure
the ‘action’ of the path is calculated using Eq. (5.49). Following the convention of
Ref. [32], this value is labelled S32 as it begins at point M3 and ends at point F2.
The iteration of alternating forward and backward integration is then repeated until
S32 converges to a stable value. The resulting trajectory through the concentration
simplex [i.e. the projection of the four-dimensional trajectory (x,p) onto the two
dimensional plane of x] is shown in Fig. 5.16a.

The final value of S32 characterises themean time taken to escape from the interior
fixed point to the boundary through the relation,

τ32 ∼ C32√
N
eNS32 , (5.50)

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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(a) (b)

Fig. 5.16 a The dominant escape path from the interior metastable state to the 1–2 boundary in
region II. Parameters are r0 = 1.00, r1 = 0.98, r2 = 0.95, and u1 = u2 = 10−2. The thin line is the
trajectory shown in Fig. 5.7 for N = 300. b The dominant escape path from the interior metastable
state to the absorbing state in region III. Parameters are r0 = 1.00, r1 = 0.95, r2 = 0.98, and
u1 = u2 = 10−2. The thin line is the trajectory shown in Fig. 5.8 for N = 300

where C32 is a constant that is found by fitting to simulation data for the time taken
to reach the boundary [33]. This expression has the same functional dependence on
N as the one given in Eq. (5.44). The mean fixation time is given by τ32 + τ21, which
is the time to escape from the interior metastable state to the boundary plus the time
to escape from the boundary to the absorbing state; it is a two-hit process. The latter
time, τ21, is given by Eq. (5.44). Thus in region II the mean fixation time is given by

τ = C32√
N
eNS32 + τ21. (5.51)

Small changes to the parameters now have significant effects on the fixation time,
as shown in Fig. 5.17 (filled symbols/solid lines). Increasing the fitness of the type-2
cells moves both the interior fixed point and the boundary fixed point towards the
absorbing all-type-2 state. It also reduces the strength of selection away from the
absorbing state. These combined effects dramatically reduce the mean fixation time,
and its rate of increase with the population size.

As in region I, the probability of tunnelling decreases as the fitness advantage
of type-1 cells over type-2 cells increases. This is because the fixed point on the
1–2 edge approaches the all-type-1 state. For the same reason, the tunnelling rate
decreases as the mutation rates decrease.

Region III

In this region fixation is controlled solely by the escape from the interior metastable
state; it is a one-hit process. Type-0 cells are the most advantageous in the sequence,
and the stable interior fixed point is located close to the all-wild-type state. The
mean fixation time is calculated again by considering the least-action trajectories
described by Hamilton’s equations (5.48), which are computed using the iterative
method described above. We now focus on trajectories from the stable interior fixed
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Fig. 5.17 Fixation time in region II (filled symbols) and region III (empty symbols) of Fig. 5.3 as a
function of system size from simulations, averaged over 100 realisations. Lines are from the theory,
see Eq. (5.51) for region II (solid lines) and Eq. (5.52) for region III (dashed lines). Remaining
parameters are r0 = 1.0 and u1 = u2 = 10−2

point M3 to the absorbing fluctuational fixed point F1. This direct path from the
metastable state to the all-type-2 state is shown in Fig. 5.16b. The probability of
tunnelling is higher than in the previous cases. It increases as the fitness of type-2
cells and the mutation rates increase as the stable interior fixed point moves to lower
numbers of type-1 cells (i.e. away from the all-type-1 state).

The ‘action’, S31, is computed from Eq. (5.49) by integrating along the Hamil-
tonian trajectory. The mean fixation time is then given by

τ31 ∼ C31√
N
eNS31 , (5.52)

where again C31 is a constant which is found by fitting to simulation results. We see
in Fig. 5.17 (empty symbols/dashed lines) that varying the model parameters has a
lesser effect on fixation times than in region II. In region III, fixation is a one-hit
process—the population only has to escape the interior stable fixed point—and not
a two-hit process as in region II where the effects of the two steps are compounded.
Contrary to the results for region I, the mean fixation time is a decreasing function
of r1 in region III. This can be explained as follows: by increasing r1, the selection
strength away from the 1–2 boundary decreases and the stable state moves to higher
type-1 numbers, such that the population has an improved chance of reaching the
1–2 boundary. From there selection is directed towards the absorbing state, and the
time spent on the 1–2 boundary is negligible compared to the time to reach this edge.
Hence, the fixation time reduces as type-1 cells become more fit. The rate of increase
of the fixation time with the population size reduces as well.

There are systematic deviations between theory and simulation results in the data
set shown as open triangles in Fig. 5.17, and to a lesser extent also for the data shown
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as open diamonds. This is attributed to the fact that the fitness parameters r1 and r2
are very similar to each other or equal for these instances, and they are also close to
the fitness of the wild-type. Selection is then close neutral and the metastable state is
only weakly attracting. TheWKB approach then reaches its limits as the assumption
of a long-lived metastable state begins to break down.

Comparison Across Parameter Space

Finally, we bring together the different theoretical approximations to the mean fix-
ation time in Fig. 5.18. We fix all model parameters except for r1, and we sweep
across regions I, II and II. The theoretical predictions of Eqs. (5.44), (5.51), and
(5.52) are in excellent agreement with the simulation results within their respective
regimes. The expression for the time to escape from the metastable state on the 1–2
edge of the concentration simplex, Eq. (5.44), is only valid for (1 − u2)r1 > r2.
As Eq. (5.51) is dependent on this expression, it too reaches its limits close to the
boundary of regions II and III. However, the direct simultaneous extinction path used
the characterise absorption in region III accurately predicts the mean fixation time
in part of region II. This suggests that for (1− u2)r1 
 r2, when the boundary fixed
point approaches the absorbing state, it is the simultaneous extinction path, not the
sequential extinction path, that is dominant. As previously mentioned, the prediction
based on the homogeneous-state assumption (from Ref. [24]) does not accurately
represent the data.

We have mentioned through this discussion that the probability of stochastic
tunnelling occurring is dependent on the locations of the fixed points. In Fig. 5.19
we plot the probability of tunnelling (measured from simulations) across the r1–r2

Fig. 5.18 Mean fixation times in regions I, II and III (circles) averaged over 103 realisations. The
thick line in good agreement in region I is from Eq. (5.44). The thick line in region III is prediction
of Eq. (5.52), where the coefficient C31 is found by fitting to numerically obtained fixation times as
a function of N . The dashed line in region II is the prediction of Eq. (5.51), where the coefficient
C32 is found by fitting Eq. (5.50) to the time taken to reach the 1–2 boundary as a function of N . The
faint dotted line is the prediction of Ref. [24], which is based on the homogeneous-state assumption.
Model parameters are fixed to r0 = 1.0, r2 = 0.97, u1 = u2 = 10−2 and N = 300
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Fig. 5.19 This heat map
shows the probability that
fixation occurs via the
stochastic tunnelling route,
as opposed to sequential
fixation route. The
probability is calculated as
the fraction of realisations
(out of an ensemble of 104

simulations) that do not pass
through the all-type-1 state
before reaching fixation. The
remaining model parameters
are r0 = 1.0,
u1 = u2 = 10−2 and
N = 200

parameter space. In regions I and II, for parameters sufficiently far from the region
boundaries, the probability of tunnelling is zero. This is because the fixed point on the
1–2 boundary is close the all-type-1 state, and demographic fluctuations are likely
to push the population to this homogeneous state. Close to the region boundaries,
the fixed point is located sufficiently far away from the all-type-1 state and this
helps to ensure the homogeneous type-1 state is not visited. Hence the probability
of tunnelling approaches one. In region III, when there is only a single fixed point
which is located in the interior of the domain, the probability of tunnelling is one.
This agrees with the predictions of the WKB approach, where the dominant escape
path from this state proceeds directly to the absorbing state, as shown in Fig. 5.16b.
The probability of tunneling is also one in regions IV and V, where the tunnelling
route is predicted by the deterministic dynamics as shown in Fig. 5.5.

5.6 Summary

Previous analysis of models describing the accumulation of multiple mutations in a
tissue have predominantly focussed on the homogeneous-state assumption. That is
the population spends the majority of the time in states where all cells harbour the
same number of mutations. These assumptions are only valid if the final mutant in
the sequence is the most advantageous cell-type, or if population numbers are small.
If this is not the case, then metastable states are found away from the homogeneous
states. Our analysis identified the escape from these metastable states as the key
bottleneck to fixation of cells with two mutations. For parameter values for which
there are no metastable states (i.e. when type-2 cells have the highest fitness), the
fixation dynamics is largely governed by the deterministic flow. The rate-limiting
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steps are then the appearance of successful mutant lineages [25], and the subsequent
fixation of cells with two mutations is a zero-hit process for large population sizes.
As such the progression from healthy tissue (all wild-type) to susceptible tissue (all
type-2; inactivated TSG) will be fast relative to the cases in which a metastable
state exists. If there is one stable fixed point in the deterministic dynamics, the
process becomes a one-hit phenomenon limited by the escape from the corresponding
metastable state. In regions with two fixed points one observes a two-hit process. The
population becomes trapped in a first metastable state, escapes to a secondmetastable
state, and then reaches full fixation.

In addition to this qualitative classification, we used the WKB method to calcu-
late fixation times in parameter regimes previously inaccessible to existing analytical
approaches. Our theoretical predictions in principle rely on a limit of large popula-
tions, however comparison against simulation results demonstrates the accuracy of
our theory even atmoderate population sizes of N = 100 cells. For populationsmuch
smaller than this the assumptions of theWKBmethod break down. The rate-limiting
step is then the occurrence of a successful lineage of mutants and not the escape from
metastable states. The expressions obtained from the WKB approach become more
accurate as the population size increases.

This analysis allowed us to classify how changes to the fitness landscape, mutation
rates, and population size affect the probability of tunnelling and the time-to-fixation
of cells harbouring two mutations. In terms of the development of tumours, our
analysis shows that the path to accumulating mutations is not simply limited by the
mutation rates, but also by the escape from metastable states. Populations can exist
in a heterogeneous state for very long periods of time before fluctuations eventually
drive the second mutation to fixation. The probability with which stochastic tun-
nelling occurs is, in part, determined by the location of these metastable states. If
they are located close to the all-type-1 state, then the probability of tunnelling is low.

Although our theory is aimed at large population sizes and exponentially growing
fixation times, we have shown that it can also make accurate predictions on biologi-
cally relevant timescales. Assuming a cell generation lasts for one day, our theory can
capture fixation times of around 3 years or more (>103 generations). Related studies
on the progression of cancer suggest a typical timescale on the order of 10 years to
accumulate a sufficient number of mutations [14, 16], which is well within the scope
of our theory. However, the times predicted by our theory are extremely sensitive to
parameter variation. This limits the parameter ranges for which biologically relevant
timescales can be generated. Specifically, the selective (dis)advantages need to be
small (�10%). This is in agreement with selection coefficients in related studies
[16]. Of course the length of a cellular generation can vary by an order of magnitude
or so, depending on the specific cell type [3].

Our results do, however, allow an extrapolation to situations when fixation times
become very long, for instance for very large populations and/or when selection is
strongly against the invading mutants. In these scenarios, stochastic simulations can
become too expensive computationally to provide meaningful measurements. Ana-
lytical methods based on backward master equations or backward Fokker–Planck
equations suffer from computational limitations as well in such cases. Our mathe-
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matical work complements existing analytical approaches to the Moran model of
cells acquiring two successive mutations. This work fills the gap left by the existing
literature and leads to a more comprehensive understanding of mutation acquisition
and stochastic tunnelling in evolving populations.
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Chapter 6
The WKB Method: A User-Guide

6.1 Introduction

The Wentzel–Kramers–Brillouin (WKB) method has been used to address a variety
of problems in physics and at the interface of biosciences, from problems in optics,
quantum mechanics and General Relativity to estimating the lifetime of a disease
outbreak. In this chapter we explore the mathematical basis of the method in its
application to stochastic processes. The aim of this work is to create a self-contained
tutorial that will introduce the reader to the concepts that may be familiar to those
who have worked in this field for a long time, but may seem bewildering when
looking from the outside. This is currently work in progress, and although an article
is in preparation, this is not a complete representation of the document we hope to
produce.

TheWKBmethod has its origins in mathematics in the early 19th century. George
Green (1793–1841) and JosephLiouville (1809–1882) first applied themethod tofind
approximate solutions to secondorder differential equations [1, 2]. Itwas extendedby
Harold Jeffreys (1891–1989) to handle turning points [3], before it was popularised
by GregorWentzel (1898–1978), Hendrik Kramers (1894–1952) and Léon Brillouin
(1889–1969), who used the method to find approximate solutions to the Schrödinger
equation of quantum mechanics [4–6].

In systems subject to random dynamics, such as those described by stochastic
differential equations (SDEs) or Markov jump processes, the WKB method was
popularised by Refs. [7–10]. It has been used to compute the statistics of rare events,
as reviewed in Ref. [11]. These events could be switching between attractive states
[10, 12–15], or reaching an absorbing boundary, such as the extinction of a population
[16–21].As such it is natural tomake comparisonswith large deviations theory (LDT)
[22, 23]. On the other hand, theWKB approach can also be used to make predictions
about the stationary states of these stochastic systems [9, 24–26].
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The WKB method is built around the expansion of the probability distribution of
the stochastic process in terms of a small parameter, which is the amplitude of the
‘noise’ in these systems. The ‘traditional approach’, in the sense that this procedure
is followed by the majority of the WKB literature, is to replace the probability
distribution with the WKB ansatz, also known as the eikonal approximation1 [10].
The Fokker–Planck or master equation describing the stochastic process can then be
expanded in powers of the small parameter, and the equations obtained at each order
can be solved. The resulting leading-order equation in terms of the small parameter
is of the form of a Hamilton–Jacobi equation, and when analytic solutions are not
possible, it is solved by either themethod of characteristics or minimisation schemes.
This approach recovers the leading-order contribution to the stationary distribution
in terms of the small parameter. However, many questions are left unanswered by
this procedure: Why are the characteristic trajectories obtained from the Hamilton–
Jacobi equation called ‘most-likely paths’? In systems with absorbing boundaries,
how can we define the quasi-stationary distribution? How does this method compare
with the theory of large deviations and the concept of quasi-potentials?

In this chapter we will present the method in such a way that shows it is a rigorous
mathematical procedure, but it can be understood and applied across a wide range
of problems. Through the analysis of examples of increasing complexity, we will
define and illustrate the multitude of terms and expressions that appear throughout
the literature. We will show that the WKB approach provides an efficient method
for computing (quasi-)stationary states in high-dimensional systems. Perhaps most
usefully, it allows the construction of quasi-potential landscapes, from which one
can extract transition statistics between basins of attraction, such as exit times and
most-likely transition paths.

In Sect. 6.2 we introduce a very simple toy model with one degree of freedom
which allows us to discuss and compute most-likely paths and quasi-stationary dis-
tributions. This model is analysed using a perturbative approach, but this method is
limited to cases in which there exists an explicit small parameter in the forward oper-
ator of the stochastic process. In Sect. 6.3 we show that theWKBmethod can be used
when the small parameter is the intrinsic noise intensity to generate expressions for
the quasi-stationary distribution. In Sect. 6.4 we use a four-state, ‘two-dimensional’
toy model to introduce the concept of a landscape and multiple transition paths.
Sect. 6.5 then contains the main body of this chapter, in which we discuss how to
generate landscapes and (quasi-)stationary distributions, as well as how the WKB
method relates to other approaches, such as path-integral formulations or the theory
of large deviations. Finally, we illustrate some of the possible results that can be
obtained in Sect. 6.6.

1This was the approximation scheme used by physicists to investigate wave-scattering phenomena
in problems such as optics and quantum mechanics.
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Fig. 6.1 One-dimensional asymmetric random walk on a lattice. State 0 is a reflecting boundary;
the only transition from state 0 is to state 1. At the opposite end, state N is an absorbing boundary,
and when N is reached the process is terminated

6.2 Toy Model with One Degree of Freedom

To introduce some of the terminology and concepts that feature throughout theWKB
literature, we will first consider the asymmetric random walk on a one-dimensional
lattice, as shown in Fig. 6.1. The state of the system is given by a single stochastic
variable, i , which describes the position of a particle on the lattice. This can also be
interpreted as a birth–death process inwhich the birth and death rates are independent
of the state of the population. In this process a single particle located at site i (0 <

i < N ) can hop to state i − 1 with a rate 1, or to state i + 1 with a rate ε � 1.
Additionally, state 0 is a reflecting boundary such that the only transition is to state
1 with rate ε. Once state N has been reached the process is terminated. State N is
effectively an absorbing boundary, i.e. there are no transitions out of this state.

Denoting the probability to be found in state i at time t as Pi (t), the process in
Fig. 6.1 is described by the continuous-time master equation

Ṗ(t) = W · P(t), (6.1)

where P = (P0, P1, . . . , PN )T and W is the (N + 1) × (N + 1) transition matrix
which has elements wi,i = −(1 − δi,0 + ε), wi+1,i = ε and wi−1,i = 1 for 0 ≤ i <

N . All other matrix entries are zero. In particular the entire final column of W is
zero, indicating that there are no transitions out of state N .

Most-Likely Path

One feature that is mentioned throughout the WKB literature is the ‘most-likely
path’ between two states. In this model we can consider the trajectories connecting
the reflecting state 0 to the absorbing state N . As shown in Fig. 6.2, a typical trajectory
of our toy model with N = 5 spends the majority of the time hopping between states
0 and 1, with frequent visits to state 2, occasional visits to state 3 and very rare visits
to state 4. After∼15,000 state transitions, or a time of∼60,000 units, this realisation
reaches state N = 5. But how can we measure the likelihood that we observe this
trajectory, and in what space is the probability of a path defined?

The space of trajectories connecting states 0 and N is uncountably infinite. It
is uncountable because the transitions can occur after any positive length of time.



130 6 The WKB Method: A User-Guide

(a) (b) (c)

Fig. 6.2 Example trajectory from state 0 to state N of the model shown in Fig. 6.1 and described by
the master equation (6.1). a The full trajectory. b The last 100 steps. c The last 10 steps. Parameters
used are N = 5 and ε = 10−1

This space then lends itself to the path-integral description, which we will discuss
in Sect. 6.5. We can, however, define the most-likely path in a countable space of
trajectories by considering only the state of the system (i = 0, 1, . . . , N ) and ignoring
the time at which the transitions occur. This space is a projection of the former onto
the state space, but still path probabilities are not clear due to the large degeneracy
of trajectories hopping to and from state 0 multiple times. If a path visits 0 m-times
before reaching state N , then there are m paths from 0 to N contained within this
single path. To avoid this degeneracy we only focus on the final path from 0 to N .
That is we compute a realisation of the birth–death process until state N is reached.
We then look from the final time to the point at which we first reach state 0. In
Fig. 6.3a, we show ten realisations of this final path from state 0 to state N = 5.
Just focusing on the state-space (ignoring time), we see that nine out of ten of the
trajectories shown follow the path 0 → 1 → 2 → 3 → 4 → 5. We refer to this as
the forward-only path. Only one of the paths shown has a backwards step where
i → i − 1.

We can now define our ensemble of paths as those which leave state 0 (and do not
return) and reach state N with k ∈ {0, 1, 2, . . . } backwards steps. The most-likely
of these paths is then the forward-only path (k = 0), as seen in Fig. 6.3b. We can
determine how likely it is to observe paths with k backwards steps by considering
the probability of stepping forwards or backwards, as we do when we execute the
Gillespie algorithm. For a particle at site 0 < i < N , the probability that the next
transition is to i + 1 is qi+1,i = ε/(1 + ε). The probability that the next transition is
to i − 1 is qi−1,i = 1/(1 + ε). As state 0 is a reflecting boundary, we have q1,0 = 1.

The forward-only path (k = 0) from state 0 to state N is observed with probability

Pr(k = 0) = 1

Z

N−1∏
i=0

qi+1,i = 1

Z

(
ε

1 + ε

)N−1

, (6.2)
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(a) (b)

Fig. 6.3 a Examples of final trajectories from state 0 to state N in our toy model, Fig. 6.1. Here
the ‘time to absorption’ is defined as s = t − tfix, such that all runs reach state N at s = 0. The
trajectory marked with a thick line is the only one out of the ten samples shown in which a step
i → i − 1 is observed. b Histogram of final trajectories with k backwards steps, computed from
an ensemble of 104 realisations. The crosses are the predictions of Eq. (6.4), where the number of
possible paths are M0 = 1, M1 = 3, M2 = 8, M3 = 21, M4 = 55, M5 = 144. We only consider
this set of paths when we normalise the probability distribution. Parameters used are N = 5 and
ε = 10−1

where Z is a normalisation factor for this probability space (to be determined below).
A trajectory with a single backward step, as shown in Fig. 6.3a, is observed with
probability

Pr(k = 1) = 1

Z

N−1∑
j=2

⎧⎨
⎩

(
j−1∏
i=0

qi+1,i

)
× q j−1, j ×

⎛
⎝

N−1∏
i= j−1

qi+1,1

⎞
⎠
⎫⎬
⎭

= 1

Z

N−1∑
j=2

{(
ε

1 + ε

) j−1

× 1

1 + ε
×

(
ε

1 + ε

)N− j+1
}

= 1

Z

N−1∑
j=2

ε

(1 + ε)2

(
ε

1 + ε

)N−1

= 1

Z
(N − 2)

ε

(1 + ε)2

(
ε

1 + ε

)N−1

. (6.3)

We note that the backwards step 1 → 0 is not included in the above sum as we only
consider trajectories which leave state 0 and do not return. In general, a path with k
backward steps is observed with probability

Pr(k) = 1

Z
Mk

(
ε

(1 + ε)2

)k (
ε

1 + ε

)N−1

, (6.4)
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where Mk is the number of possible paths that have k backward steps.2 We can
calculate the normalisation factor by imposing

∑∞
k=0 Pr(k) = 1. The predictions of

Eq. (6.4) are in excellent agreement with numerical results, as shown in Fig. 6.3b.
If we were to consider the timing of the transitions, then the probabilities of

observing specific paths become zero. Instead we must consider the probability
density of paths, which is closely linked with the theory of large deviations and
the path-integral framework. These links will be discussed in Sect. 6.5.

Quasi-Stationary Distribution

As qi−1,i � qi+1,i , we expect the system to be found close to state 0 if it has not
already reached the absorbing state. Indeed this is what we see in the time-series
in Fig. 6.2. The distribution in which the system is found prior to fixation, which in
this case is peaked about state 0, is referred to as the quasi-stationary distribution
(QSD). A mathematician would describe this as “the distribution that is invariant
under time-evolution when the process is conditioned on survival (non-absorption).”
[27]. The system leaks from this distribution to the absorbing state on a very long
but finite timescale.

To identify the QSD, we decompose the solution of the master equation (6.1) onto
the eigen-basis of the matrix W. This gives

P(t) =
N∑

α=0

cαv(α)eλα t , (6.5)

where λα and v(α) are eigenvalues and eigenvectors ofW, and the cα are coefficients
determined by the initial condition. As state N is absorbing, one eigenvalue (λ0) of
W is zero and the corresponding eigenvector is v(0)

i = δi,N . We must have c0 = 1 as
PN (t → ∞) = 1.All other eigenvalues are negative (and real), as argued in Sect. 4.3.
We order these remaining eigenvalues by there magnitudes, such that |λ1| ≤ |λ2| ≤
· · · ≤ |λN |.

In our toy model there is a separation of timescales. This is characterised by
a separation of the eigenvalues, |λ1| � |λ2|, which can be seen in Fig. 6.4a. One
eigenvalue (λ1) behaves as a power of the small parameter ε, whereas the other
eigenvalues (λα≥2) are much larger in magnitude and are almost independent of ε.
For times t � |λ2|−1, all contributions to Eq. (6.5) from the eigenvectors v(α≥2) will
be exponentially small. This fast timescale corresponds to the relaxation to the QSD.
On this timescale we can approximate the distribution as

P(t) ≈ v(0) + c1v(1)eλ1t . (6.6)

The eigenvalue λ1 characterises the slow timescale, which corresponds to the leaking
to the absorbing state. After a short period of time which satisfies |λ2|−1 � t �

2The quantity Mk is found by enumerating the paths with k backwards steps. We have not found a
general expression for this number.

http://dx.doi.org/10.1007/978-3-319-41213-9_4
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|λ1|−1, we have PN (t) ≈ 0 and eλ1t ≈ 1. Thus from Eq. (6.6) we require c1v
(1)
N =

−v(0)
N = −1. Without loss of generality, the coefficient c1 can be set to unity, and

we change the normalisation of the eigenvector v(1) such that v(1)
N = −1. Using

v(0)
i = δi,N , we can now express P(t) as

P0≤i≤N−1(t) ≈ v(1)
i eλ1t , PN (t) ≈ 1 − eλ1t . (6.7)

This is exactly Eq. (5.11) from the previous chapter. As the QSD, P∗, is conditioned
on non-absorption, we can write P∗

i = (1 − δi,N )v(1)
i for 0 ≤ i ≤ N . Thus, the QSD

is given by the eigenvector of the master equation which corresponds to the slowest
eigenvalue.

We can now determine the scaling of the slowest eigenvalue with the small para-
meter ε by considering the mean fixation time. First, using Eq. (6.7), we observe that
the mean fixation time is given by

〈tfix〉 =
∫ ∞

0
t ṖN (t) dt ≈ −λ1

∫ ∞

0
teλ1t dt = −λ−1

1 . (6.8)

Second, we can calculate the mean fixation time from the backward master equation,
as described in Sect. 2.4. Following the derivation of Eq. (2.25), the mean fixation
time conditioned on starting in state i < N , ti , is given by

ti =
N−1∑
k=i

ε−(k+1)

(
1 +

k∑
�=1

ε�

)
. (6.9)

For all initial conditions i < N , there is a term O (
ε−N

)
. Hence, for small ε, we

arrive at 〈tfix〉 ∼ ε−N . Equating this with Eq. (6.8), we can conclude that λ1 ∼ −εN .
This scaling is shown in Fig. 6.4a.

(a) (b)

Fig. 6.4 a Absolute value of the non-zero eigenvalues of the matrix W in Eq. (6.1), along with
the predicted scaling of the slowest eigenvalue, |λ1| ∼ εN . b Elements of the eigenvector v(1)

(or equivalently the QSD) are approximately εi , in agreement with our perturbative treatment.
Eigenvectors are scaled such that v(1)

N = −1. In this illustration we have used N = 5

http://dx.doi.org/10.1007/978-3-319-41213-9_5
http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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The eigenvector v(1), and hence the QSD, can be approximated by considering
a perturbative expansion of the forward operator W = W

(0) + εW(1) and of the
probability P(t) = ∑∞

k=0 εkP(k)(t). At leading order, O (
ε0
)
, one recovers

Ṗ
(0)

(t) = W
(0) · P(0)(t) ⇒ P (0)

i (t) = exp
[
W

(0)t
] · P(0)(0). (6.10)

This is the solution to themaster equation in which particles can only hop from state i
to state i − 1 with a rate 1 (this is the process described by the matrixW(0)). Starting
with the initial condition i0 = 0, no dynamics can happen and hence P (0)

i (t) = δi,0.
For initial conditions i0 > 1,we see that P (0)

0<i≤i0
(t) = t i0−i e−t/(i0 − i)! ∼ e−t ,which

quickly collapses to δi,0. For this reason we only consider the initial condition i0 = 0,
andhence P (0)

i (t) = δi,0 for t ≥ 0.By considering the higher-order equations in terms
of ε, which are of the form

Ṗ
(k)

(t) = W
(0) · P(k)(t) + W

(1) · P(k−1)(t), (1 ≤ k < N ) (6.11)

we can recover P (i)
i (t) ∼ εi for 1 ≤ i < N . Hence, from our definition of the QSD

we obtain v(1)
i ∼ εi for 0 ≤ i < N . This scaling is shown in Fig. 6.4b.

Although this perturbative approach is very intuitive, its applications are limited.
This is because the method relies on the presence of an explicit small parameter in
the forward operatorW. In many processes, as we will see in the next section, there
are no explicit small parameters in the reaction scheme. Instead it is the amount of
noise that is the small parameter of interest. If this is the case, how do we extract the
quasi-stationary distribution? For this we introduce the WKB method.

6.3 The WKB Method in One Dimension

The WKB method is most easily illustrated by considering problems described by a
single stochastic variable. In these one-dimensional scenarios we are able to make
analytical progress and obtain closed-form expressionswhich approximate the quasi-
stationary distribution (QSD). We apply the WKB method to two distinct classes of
problem: those described by a Fokker–Planck equation, and the familiar individual
based-models described by a master equation. As discussed in Sect. 2.7, the Fokker–
Planck equation can be used to approximately describe an individual-based model.
However, we will first consider it here as the outright description of a continuous
stochastic process. Comparisons with results obtained from the master equation will
be made at the end of the section. We will start with the Fokker–Planck equation
as the mathematical motivation for the WKB method is more clear in the differen-
tial equation framework. The treatment of the master equation is then effectively a
generalisation of this method to jump processes.

http://dx.doi.org/10.1007/978-3-319-41213-9_2
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WKB and the Fokker–Planck Equation

The evolution of a continuous variable that is affected by noise can be described by
a Fokker–Planck equation [28]. If the strength of this noise is given by a parameter
ε � 1, then the Fokker–Planck equation is given by

ρ̇(x, t) = − ∂

∂x
[A(x)ρ(x, t)] + ε

2

∂2

∂x2
[B(x)ρ(x, t)] , (6.12)

where ρ(x, t) is the probability density function for the continuous variable x at time
t . The drift term A(x) describes the deterministic evolution of x , and the diffusion
term B(x) > 0 describes the influence of the noise.

For simplicity we assume that the drift term permits a unique stable fixed point
at x∗ > 0, i.e. A(x∗) = 0. The scenario of multiple stable states will be discussed
in Sect. 6.5. We also assume that there is an absorbing boundary located x = 0.3

Considering the deterministic dynamics, or using the arguments of the previous
section, the systemwill relax to theQSDabout the stable fixed point x∗. The escape to
the absorbing state is a rare event, and can be pictured as the leaking of the probability
density function from the QSD to x = 0. Assuming this leaking timescale is very
long, we can determine the QSD by setting ρ̇(x, t) ≈ 0 in Eq. (6.12). We can also
arrive at the condition ρ̇(x, t) ≈ 0 by replacing the probability density function with
an ansatz of the form of Eq. (6.7). This approach was described in the previous
chapter for jump processes. We label the QSD as ρ∗(x), which satisfies the second-
order ODE

0 ≈ − d

dx

[
A(x)ρ∗(x)

] + ε

2

d2

dx2
[
B(x)ρ∗(x)

]
. (6.13)

This equation is singularly perturbative in the small parameter ε; the behaviour of
the solution in the ε → 0 limit cannot be approximated by setting ε = 0 and then
solving Eq. (6.13) [30]. To analyze the behaviour of the solution in the small-ε limit,
one considers an ansatz of the form ρ∗(x) ∼ exp

[−∑∞
σ=0 δσ−1Sσ (x)

]
. Here δ > 0

is a small parameter that contains the ε-dependence of the solution, such that the
Sσ (x) are independent of both δ and ε. The parameter δ acts as a rescaling of the
amplitude of ρ∗(x), allowing us to zoom in to regions where there is exponential or
dissipative behaviour [30]. In our process, there is a rapid dissipation, or fast decay,
of the probability density away from the stable fixed point. To determine the relation
between δ and ε, we substitute the ansatz into Eq. (6.13). Applying the product rule
for differentiation gives

3We assume that this boundary is ‘regular’, i.e. the probability of reaching the boundary is non-zero
and the expected time to reach the boundary is finite [29].
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0 = − A′(x) + A(x)

[ ∞∑
σ=0

δσ−1S′
σ (x)

]
+ ε

2
B ′′(x) − εB ′(x)

[ ∞∑
σ=0

δσ−1S′
σ (x)

]

− ε

2
B(x)

[ ∞∑
σ=0

δσ−1S′′
σ (x)

]
+ ε

2
B(x)

[ ∞∑
σ=0

δσ−1S′
σ (x)

]2

, (6.14)

where we have used the notation F ′(x) = dF/dx , and we assume the fields Sσ (x),
as well as the drift and diffusion terms, are smooth. As A(x), B(x), and Sσ (x) are
independent of the parameters δ and ε, we can be sure that the largest terms in this
expression are δ−1A(x)S′

0(x) and δ−2εB(x)
[
S′
0(x)

]2
/2. Through dominant balance

these terms must be of the same order and cancel each other out, hence δ = O (ε) is
required. For simplicity we choose δ = ε, such that the QSD is of the form

ρ∗(x) ∼ exp

[
−

∞∑
σ=0

εσ−1Sσ (x)

]
. (6.15)

The values of Sσ (x) are then found by substituting the ansatz (6.15) into Eq. (6.13)
[i.e. replace δ with ε in Eq. (6.14)], and considering equations at different powers of
ε. Taking only the leading-order terms in ε gives

A(x)p(x) + 1

2
B(x)p2(x) = 0, (6.16)

where we have introduced p(x) = S′
0(x). Equation (6.16) is quadratic in p(x). One

solution is simply p(x) = 0, and the other is p(x) = −2A(x)/B(x). Integrating this
second solution gives

S0(x) = −
∫ x

x∗

2A(y)

B(y)
dy, (6.17)

where the arbitrary constant of integration is chosen such that S0(x∗) = 0. A
similar procedure can be used to find the next-leading-order correction, S1(x) =
ln[B(x)/B(x∗)]. The approximate solution to Eq. (6.13) is then

ρ∗(x) ∼ N
B(x)

exp

[
1

ε

∫ x

x∗

2A(y)

B(y)
dy

]
, (6.18)

where N is an overall normalisation constant.
If the system does not have an absorbing state at x = 0, then Eq. (6.18) is the exact

stationary distribution of the Fokker–Planck equation found by setting the probability
current to zero [31], i.e. ρ∗(x) is given by the solution of

J (x) = A(x)ρ∗(x) − ε

2

d

dx

[
B(x)ρ∗(x)

] = 0. (6.19)
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WKB and the Master Equation

We can now describe the application of this method to individual-based stochastic
processes that are described by a discrete variable, n, which can take the values
0 ≤ n < ∞. If there are M possible reactions, and the r -th reaction occurs with rate
T νr
n and has stoichiometric effect νr on the population, then the master equation can

be written as

Ṗn(t) =
M∑
r=1

[
T νr
n−νr

Pn−νr (t) − T νr
n Pn(t)

] =
M∑
r=1

(E−νr − 1)T νr
n Pn(t), (6.20)

whereEνr is the shift operator:EνrF(n) = F(n + νr ) [29].We assume the systemhas
a typical (large) number of individuals,�, which is referred to as the system size. This
parameter determines the influence of the intrinsic noise in these discrete processes
[29]. As in the Fokker–Planck scenario, we will assume there exists a unique stable
fixed point in the deterministic dynamics at x∗, where x = lim�→∞ n/�, and that
there exists an absorbing boundary at n = 0.

The WKB treatment of Eq. (6.20) was first achieved in Ref. [9] by replacing the
shift operators in Eq. (6.20) by their continuous counterparts

Eνr → exp

[
νr

�

∂

∂x

]
=

∞∑
�=0

1

�!
(νr

�

)� ∂�

∂x�
, (6.21)

which is valid provided that the transition rates vary smoothly between states. The
master equation in the continuum limit can then be written as

1

�
ρ̇(x, t) =

M∑
r=1

∞∑
�=1

1

�!
(−νr

�

)�
∂�

∂x�

[
fr (x)ρ(x, t)

]
, (6.22)

where ρ(x, t) = �P�x (t), and fr (x) = T νr
�x/� as before.4

As can be seen, derivatives of order � are multiplied by the small parameter
�−� and Eq. (6.22) is singularly perturbative. To characterise the behaviour, the
ansatz (6.15) has previously been employed [9], where we now replace the noise
strength ε with the inverse system size, �−1. Setting ρ̇(x, t) ≈ 0 in Eq. (6.22), we
seek to solve

0 ≈
M∑
r=1

∞∑
�=1

1

�!
(−νr

�

)� d�

dx�

{
fr (x) exp

[
−

∞∑
σ=0

�1−σ Sσ (x)

]}
. (6.23)

4We could expand the reactions rates in further powers of �, such that T r
�x = � fr (x) + gr (x) +

hr (x)/� + . . . , as described inRef. [19].However in this sectionweonly consider the leading-order
contributions.
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At leading order in the system size we have the expression

M∑
r=1

wr (x)
(
eνr p(x) − 1

) = 0, (6.24)

where again p(x) = S′
0(x). Equation (6.16) can be recovered by replacing the expo-

nentialwith 1 + νr p(x) + ν2
r p

2(x)/2.However this approximation is not necessarily
justified as we cannot assume terms p3(x) or greater are negligible.

For the case in which the process can only step from state i to i ± 1, i.e. ν = ±1,
Eq. (6.24) can be solved to find p(x). Similar to Eq. (6.16), there are two possible
solutions, p(x) = 0 and p(x) = ln[ f−(x)/ f+(x)]. Integrating this second solution
leads to

S0(x) =
∫ x

x∗
ln

(
f−(y)

f+(y)

)
dy, (6.25)

where again the constant of integration is defined by S0(x∗) = 0. This gives the
leading-order contribution in the system size to the QSD as

ρ∗(x) ∼ N exp

[
�

∫ x

x∗
ln

(
f+(y)

f−(y)

)
dy

]
, (6.26)

whereN is anoverall normalisation constant. This is the sameexpressionweobtained
in the previous chapter when we discussed the escape from the metastable state
located on the state-space boundary. In that case we estimated N by considering a
Gaussian approximation to the QSD about the fixed point x∗.

Equation (6.26) can be compared with the stationary solution of Eq. (6.20) in the
absence of the absorbing state [29, 32].5 From Eq. (2.54), this stationary solution is
given by

Pn(∞) = N
n∏

i=2

T+
i−1

T−
i

= N exp

[
n∑

i=2

ln

(
T+
i−1

T−
i

)]
. (6.27)

Comparison

We can now compare the results of the WKB treatment of the master equation with
those obtained from the Fokker–Planck equation that approximately describes the
same individual-based process. The construction of the Fokker–Planck equation is
described in Sect. 2.7, and for the birth–death process we have A(x) = f+(x) −
f−(x), B(x) = f+(x) + f−(x), and ε = �−1. We summarise the WKB results in
Table6.1. As pointed out in Ref. [33], the values of S0(x) in the Fokker–Planck
and master equation formalisms are not in exact agreement with each other. These
differences will be inflated in the QSD, ρ∗(x), where S0(x) features in the exponent.
However, at the deterministic fixed point x∗, S0(x∗) and its first and secondderivatives

5The absorbing state can be removed by setting T−
1 = 0.

http://dx.doi.org/10.1007/978-3-319-41213-9_2
http://dx.doi.org/10.1007/978-3-319-41213-9_2
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Table 6.1 Comparison of results of the WKB approach from the Fokker–Planck and master equa-
tions for the birth–death individual-based process (ν = ±1)

Fokker–Planck Master equation

p(x) − 2A(x)
B(x) ln

(
f−(x)
f+(x)

)

S0(x) − ∫ x
x∗

2A(y)
B(y) dy

∫ x
x∗ ln

(
f−(y)
f+(y)

)
dy

ρ∗(x) ∼ exp
[
�

∫ x
x∗

2A(y)
B(y) dy

]
∼ exp

[
−�

∫ x
x∗ ln

(
f−(y)
f+(y)

)
dy

]

We have replaced the small parameter ε with �−1 in the Fokker–Planck results, and the drift and
diffusion terms are given by A(x) = f+(x) − f−(x) and B(x) = f+(x) + f−(x), respectively

are the same between the two formalisms [33]. Thus, close to the fixed point, we
expect the functions to be very similar. This agreement has also been pointed out in
Refs. [13, 31].

Example: Logistic Population Growth

An illustrative example of a stochastic process which features a quasi-stationary
distribution is the well-studied birth/death/competition process [19, 34–37], which
is based on the Verhulst model of population growth [38].6 This process is described
by the reactions

A
α−→ 2A, A

β−→ ∅, 2A
γ /�−−→ A, (6.28)

where A represents an individual, α, β, and γ are rates and � is the (large) system-
size parameter. The state of the system is described by the stochastic variable n,
which is the number of individuals present in the population. The time evolution
of the probability distribution of n is described by the master equation (6.20) with
transition rates

T+
n = αn, (6.29a)

T−
n = βn + γ n(n − 1)

�
, (6.29b)

where we have combined the death and competition reactions in Eq. (6.28) as they
have the same stoichiometric coefficient, ν = −1.

Thedeterministic dynamics of thismodel for the concentration x = lim�→∞ n/�,
satisfy

ẋ = (α − β)x

[
1 − γ

α − β
x

]
. (6.30)

This is simply the logistic equation with a stable fixed point at x∗ = (α − β)/γ

(provided α > β) and an unstable (but absorbing) fixed point at x = 0.
In Fig. 6.5 we show the leading-order contributions to the QSDs in terms of the

system size, as described inTable6.1. The distribution obtained from simulations is in

6Pierre François Verhulst (1804–1849).
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Fig. 6.5 b The quasi-stationary distributions (QSDs) calculated from the master equation (solid
line) and from the Fokker–Planck equation (dashed line), as described in Table6.1. These are com-
pared with the QSD calculated from simulations of the individual-based model (dots). Simulations
are initialised at the fixed point and run until a fixed time (t = 104). The final state is then recorded,
and runs that have reached fixation are discarded. The dots are a histogram of the remaining data
points from 107 realisations. Inset plot shows the same data on a linear vertical axis. Parameters
used are α = 1.0, β = 0.05, γ = 1.0, � = 20

very good agreementwith these results.As the distance from thefixed point increases,
so does the deviation between results from the master equation and Fokker–Planck
approximation.

It is worth noting here that naivelywe expect the results obtained from the Fokker–
Planck approximation to become increasingly accurate as the systemsize is increased.
This is true in the bulk of the distribution close to the fixed point x∗. However, in
the tails of the distribution the separation between the Fokker–Planck results and
those obtained from the master equation grow exponentially with the system size.
Although the absolute difference between the two quasi-stationary distributions is
decreasing due to narrowing of the tails as � increases, the relative difference can
grow to several orders of magnitude.

6.4 Four-State Toy Model

To further illustrate the concepts of quasi-stationary distributions and most-likely
paths, we introduce the four-state toy model shown in Fig. 6.6. The system starts
in state 0, and will jump to either state 1 or 2 with equally small transition rates
ε � 1. From these states there is a large transition rate back to state 0, or a small
transition rate ( f1ε or f2ε, respectively) to state 3 which is absorbing. There are now
two separate routes to the absorbing state, either proceeding through state 1 or state
2, and hence it can be thought of as a process in two dimensions (even though it can
be described by a single stochastic variable).

As the reaction rates have a similar structure to the one-dimensional toy model
introduced in Sect. 6.2, it is clear that prior to absorption the system spends the
majority of the time in state 0. This is seen in the sample trajectory shown in Fig. 6.7.
The master equation describing the process in Fig. 6.6 can be written as
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Fig. 6.6 Illustration of the four-state, ‘two-dimensional’ toy model. The arrows indicate the pos-
sible transitions between the states. Bold arrows indicate that those transitions occur with a larger
rate. No arrows out of state 3 indicate that it is an absorbing state

Fig. 6.7 Time series of the
toy model shown in Fig. 6.6.
The spikes indicate that time
time spent in states 1 and 2 is
very small. The absorbing
state is reached through state
2 in this simulation. The
parameters used are
ε = 10−2, f1 = 1, and
f2 = 3

⎛
⎜⎜⎝
Ṗ0
Ṗ1
Ṗ2
Ṗ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2ε 1 1 0
ε −(1 + f1ε) 0 0
ε 0 −(1 + f2ε) 0
0 f1ε f2ε 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
P0
P1
P2
P3

⎞
⎟⎟⎠ . (6.31)

Through a simple perturbative expansion in the small parameter ε (similar to the
procedure described in Sect. 6.2) it can be shown that the probability to be found
in state 0 (prior to fixation) is 1 − 2ε + O (

ε2
)
and the probability to be found in

either of states 1 or 2 (prior to fixation) is ε + O (
ε2
)
. This is the quasi-stationary

distribution.
Once the system reaches the absorbing state, its final trajectory from state 0 to state

3will be 0 → 1 → 3with probability f1/( f1 + f2) and 0 → 2 → 3with probability
f2/( f1 + f2). In Fig. 6.7 we have used f1 = 1 and f2 = 3. Hence we expect the first
path through state 1 to be realised 25% of the time, and the second path through state
2 to be realised 75% of the time. This is confirmed in Fig. 6.8a.

The arrival times at the absorbing state are determined by the slowest eigenvalue
of the matrix in Eq. (6.31), λ1. This eigenvalue controls the leaking from the QSD, as
described in Sect. 6.2, and we expect λ1 to scale as ε2 (as we require two consecutive
steps of rate ∼ ε). To adjust for the increased rate of reaching the absorbing state,
we expect the eigenvalue to be of the form λ1 ≈ −c( f1 + f2)ε2, for constant c. The
approximation for the arrival time density is then Ṗ3(t) ∼ eλ1t . The accuracy of this
approximation is confirmed in Fig. 6.8b, where we find c ≈ 1.
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(a) (b)

Fig. 6.8 a The probability of observing each of the path to absorption, obtained from 105 sim-
ulations of the process shown in Fig. 6.6. b The arrival time distribution at the absorbing state
from the same data used in (a). The leading eigenvalue of the matrix in Eq. (6.31) scales as
( f1 + f2)ε2 + O (

ε3
)
. The parameters are the same as Fig. 6.7, i.e. ε = 10−2, f1 = 1, and f2 = 3

In more general systems which do not exhibit the small parameter in the for-
ward operator, we can again use the WKB method to predict the quasi-stationary
distribution and also most-likely paths.

6.5 The WKB Method in Higher Dimensions

For stochastic processes described by two or more variables, analytic progress is
almost impossible.7 If the number of stochastic variables in the system is given
by d ≥ 2, then we call this a d-dimensional system. As described in Sect. 6.3, the
small parameter in these systems corresponds to the strength of the noise, rather than
explicitly appearing in the dynamics. Following Sect. 6.3, we start by analysing a
continuous stochastic process described by a Fokker–Planck equation, before gen-
eralising the approach to discrete jump processes.

An important consideration, which will be illustrated through an example at the
end of this chapter, is whether there exist multiple stable states in our system. In the
one-dimensional system analysed in Sect. 6.3, we restricted ourselves to the case of
a single stable state, and hence we had a unique QSD. If there are multiple stable
states, labelled {x∗

1, x
∗
2, . . . }, then there are a corresponding number of QSDs. The

distribution of probability mass between these states on the fast relaxation timescale
is determined by the initial condition, and on longer timescales by the leaking from
one state to another. If we start in the basin of attraction of x∗

a , then we will initially
relax to the QSD about this stable state. As time progresses, the probability slowly
(i.e. more slowly than the relaxation timescale) leaks to neighbouring stable states.
The quantities of interest are now the QSDs about each of the stable states, the time to

7Analytical solutions are available for the two-type branching process [39], but, in general, such a
description is usually lacking.
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escape from these states, the most-likely transition paths, and the overall stationary
state. Note that the scenario of systems with absorbing states is included in this
framework.

The Fokker–Planck equation in d-dimensions, with a small noise strength ε � 1,
is given by

ρ̇(x, t) = −
∑
i

∂

∂xi
[Ai (x)ρ(x, t)] + ε

2

∑
i, j

∂2

∂xi∂x j

[
Bi j (x)ρ(x, t)

]
, (6.32)

where ρ(x, t) is the probability density function at time t for the continuous vari-
ables x = (x1, . . . , xd)T. The drift term A(x) describes the deterministic evolution
x, and the diffusion matrix Bi j (x) describes the influence of the noise, including the
correlations of the noise between the stochastic variables which are described by the
off-diagonal terms of this matrix [28].

To find the QSD about the stable state x∗
a , we restrict the process to the basin

of attraction of this state and assume that it is approximately stationary such that
ρ̇(x, t) ≈ 0. We can then write Eq. (6.32) as

0 ≈ −
∑
i

∂

∂xi

[
Ai (x)ρ∗

a (x)
] + ε

2

∑
i, j

∂2

∂xi∂x j

[
Bi j (x)ρ∗

a (x)
]
, (6.33)

where ρ∗
a (x) is the QSD about the stable state x∗

a . Equation (6.33) is singularly
perturbative as the small parameter ε multiplies the highest-order derivatives. As a
result, the quasi-stationary solution ansatz will be analogous to the one-dimensional
scenario, Eq. (6.15). Thus within the basin of attraction of x∗

a , the QSD takes the
form

ρ∗
a (x) ∼ exp

[
−

∞∑
σ=0

εσ−1S(a)
σ (x)

]
. (6.34)

Substituting this ansatz into Eq. (6.32), and taking leading-order terms in the small
parameter ε, we arrive at

H (FPE)(x,p) = A(x) · p + 1

2
p · B(x) · p = 0, (6.35)

where p = ∇S(a)
0 (x). The one-dimensional example is included in this framework.

However, in d ≥ 2 dimensions we cannot directly identify a non-zero p which satis-
fies Eq. (6.35). In fact the problem is non-integrable and underdetermined; we have
2d degrees of freedom (x1, . . . , xd; p1, . . . pd), but only one constraint (H = 0).
The equation is labelled by H (FPE)(x,p) as it is a Hamilton–Jacobi equation; it is a
first-order differential equation of the form H [x,∇S(a)

0 (x)] = 0 [40].
For individual-based models in d ≥ 2 dimensions, the master equation can again

be expressed in terms of the shift operators as
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Ṗn(t) =
∑
r

[
T νr
n−νr

Pn−νr (t) − T νr
n Pn(t)

] =
∑
r

(E−νr − 1)T νr
n Pn(t), (6.36)

where n = (n1, . . . , nd)T and νr is a d-dimensional vector that describes the change
of state due to reaction r . We assume there exists a large parameter � that charac-
terises the typical system size, and hence the strength of the noise through ε → �−1.
With this we can write the master equation in the continuum limit by replacing the
shift operators with differentials as described in Sect. 6.2. The analysis proceeds as
before, and we arrive at the leading-order equation in the system size

H (ME)(x,p) =
∑
r

fr (x)
(
eνr ·p − 1

) = 0, (6.37)

where p = ∇S(a)
0 (x) is defined in the basin of attraction of the stable state x∗

a .
Solving the Hamilton–Jacobi Eq. (6.37) [or Eq. (6.35)] gives the function S(a)

0 (x),
and this allows us to compute the dominant contribution to the QSDs in terms of
the system size. The solution to these equations can be found using the method of
characteristics, as will be described below. For the transitions between the stable
states, we must construct trajectories from one basin to another. These paths can
be computed by considering the path-integral approach to the stochastic process,
as will be discussed below. Once the functions S(a)

0 (x) have been evaluated, we
want to combine these objects in such a way that we create a landscape over all
of the basins of attraction, which spans the full domain. To do this we match at
the S(a)

0 (x) at the separatrix [10]. This means we must shift the S(a)
0 (x) up or down

by an additive constant. This is analogous to matching potential wells, and hence
the matched function S0(x) is like a potential landscape. In large deviations theory,
the quantity S0(x) is called the quasi-potential. We explore this link further in this
section. The stationary distribution of the process is then characterised by S0(x), i.e.
ρst(x) ∼ exp[−�S0(x)].
Characteristic Solutions

To obtain the solutions of the Hamilton–Jacobi equations, we construct a
2d-dimensional space (x1, . . . , xd;π1, . . . , πd). The function H(x,π) = 0
[either Eq. (6.35) or Eq. (6.37)] specifies a 2d − 1-dimensional surface in this space
[8]. We want to find the values of π which satisfy H = 0. We define these values as
p(x) = ∇S(a)

0 (x). We can use the method of characteristics to identify each pi (x).
As dH/dxi = 0 on the surface H = 0, we can write

dH

dxi
= ∂H

∂xi
+

∑
j

∂H

∂π j

∂p j

∂xi

= ∂H

∂xi
+

∑
j

∂H

∂π j

∂pi
∂x j

= 0. (6.38)

In the last step we have used ∂p j/∂xi = ∂2S(a)
0 /∂xi∂x j = ∂pi/∂x j .



6.5 The WKB Method in Higher Dimensions 145

We can construct a surface πi = pi (x) in the d + 1-dimensional space (x1, . . . ,
xd , πi ) = �i . A normal to this surface in the space �i is

ψ
(i)
⊥ =

(
∂

∂x1
, . . . ,

∂

∂xd
,

∂

∂πi

) [
pi (x) − πi

]

=
(

∂pi
∂x1

, . . . ,
∂pi
∂xd

,−1

)
. (6.39)

A tangent vector along this surface, ψ (i)
‖ , satisfies

0 = ψ
(i)
‖ · ψ

(i)
⊥ =

d∑
j=1

[
ψ

(i)
‖
]
j

∂pi
∂x j

−
[
ψ

(i)
‖
]
d+1

. (6.40)

We can then use Eq. (6.38) to see that the components

[
ψ

(i)
‖
]
1≤ j≤d

= ∂H

∂π j
,

[
ψ

(i)
‖
]
d+1

= −∂H

∂xi
, (6.41)

fulfil the orthogonality condition between the normal and tangent vectors. The vector
ψ

(i)
‖ describes the characteristic curves along the surface πi = pi (x), and this holds

for all 1 ≤ i ≤ d. If these characteristic curves are parametrised by s, they satisfy
the differential equations

dxi
ds

= ∂H

∂πi
,

dpi
ds

= −∂H

∂xi
, (1 ≤ i ≤ d). (6.42)

These are the familiar Hamilton’s equations which describe characteristic curves
along the H = 0 surface [40]. From this S(a)

0 (x) can be found,

dS(a)
0

ds
=

d∑
i=1

∂S(a)
0

∂xi

dxi
ds

=
d∑

i=1

pi
dxi
ds

⇒ S(a)
0 (x) =

∫ d∑
i=1

pi
dxi
ds

ds =
∫

p · dx. (6.43)

Therefore the value of S(a)
0 (x) is given by the integral of the field p along the charac-

teristic trajectories (6.42), which are bound to the surface H = 0. For now we will
define S(a)

0 (x∗
a) = 0, which is equivalent to having all trajectories start at the stable

state x∗
a .
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Aside: We note that ∇pH(x, 0) recovers the deterministic equations of motion,

∇pH
(FPE)(x, 0) = A(x) = d〈x〉

dt
, (6.44a)

∇pH
(ME)(x, 0) =

∑
r

νr fr (x) = d〈x〉
dt

. (6.44b)

Hence it is convenient to replace the parameter s with the time t , and dxi/ds with ẋi .
This apparent equivalence of s and t is coincidental; there is no time in Eqs. (6.35)
and (6.37). As a counter-example to the equivalence, one could consider scaling all
reaction rates in the master equation (6.36) by a constant factor k. This factor would
appear in the mean-field dynamics, but could be removed from H , such that s and t
no-longer coincide.

Path-Integral Formulation

The Hamilton–Jacobi equations (6.35) and (6.37) are not unique to theWKB formal-
ism. The same functions can be recovered by considering the path-integral approach
to the processes described by themaster equation (6.36) and the Fokker–Planck equa-
tion (6.32). As described below, the functions (6.35) and (6.37) also characterise the
probability density of trajectories, and can in turn lead us again to the discussion of
the ‘most-likely path’.

Continuous Process:

The Fokker–Plank equation (6.32) describes the continuous stochastic process that
is given by the (Itō) stochastic differential equation

ẋ = A(x) + G(x) · η(t), (6.45)

where the noise correlation matrix satisfies G · GT = εB, and η(t) are Gaussian
white-noise variables which satisfy

〈ηi (t)〉 = 0,
〈
ηi (t)η j (t

′)
〉 = δi, jδ(t − t ′). (6.46)

Again we are using the small parameter ε to characterise the noise strength.
To define a ‘path’ it is natural to consider a discrete-time approach, where time

is divided into steps of length �. At time t , the state of the system is given by
xt = (x1,t , x2,t , . . . , xd,t )

T, where d is the dimension of our system, i.e. the number of
stochastic variables. We use subscripts, xt , to distinguish the discrete-time variables
from the continuous-time variables, x(t). We can represent the discrete-time SDE by
using the Euler–Maruyama8 numerical integration scheme [28],

xt+� = xt + �A(xt ) + √
�G(xt ) · ηt . (6.47)

8Leonhard Euler (1707–1783) and Gisiro Maruyama (1916–1986).
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Here ηt is the discrete-time analogue of η(t), i.e. it is a d-dimensional vector of
independent Gaussian random numbers of unit variance. The correlation of the noise
between species is contained in the matrix G.

A path in discrete-time can be defined as the set {x} = {x0, x�, . . . , xT }, where T
is the final time. As each xi (1 ≤ i ≤ d) is a continuous variable, the probability to
observe a specific path {x} is zero. We can, however, use Eq. (6.47) to define a path
density,

P[{x}] =
∫ ∏

t

dηt δ
[
xt+� − xt − �A(xt ) − √

�G(xt ) · ηt

]
P[ηt ], (6.48)

where P[ηt ] is the joint probability distribution function of the Gaussian variables
ηt , which can be factorised as the ηi,t are independent. To evaluate the path density
we introduce the auxiliary field x̃ such that we can express the delta-functions in
their exponential representation,

P[{x}] =
∫ ∏

t

dx̃t dηt

(2π)d
exp

{
i x̃t ·

[
xt+� − xt − �A(xt ) − √

�G(xt ) · ηt

]}
P[ηt ].
(6.49)

The integral over the noise variables at each time-point can be evaluated to give

∫
dηt exp

[
i
√

�x̃t · G · ηt

]
P[ηt ] =

∫
dηt

(2π)d/2
exp

[
i
√

�x̃t · G · ηt − 1

2
ηt · ηt

]

= exp

[
−1

2
�x̃t · G · GT · x̃t

]

= exp

[
−1

2
ε�x̃t · B · x̃t

]
, (6.50)

and hence we can write Eq. (6.49) as

P[{x}] =
∫ ∏

t

dx̃t
(2π)d

exp

{
i x̃t ·

[
xt+� − xt − �A(xt ) + i

2
ε�B(xt ) · x̃t

]}
.

(6.51)
We can now restore the continuous-time limit, � → 0. We define lim�→0

∏
t dx̃t/

(2π)d = Dx̃, and using
∏

t exp(·) = exp(
∑

t ·) we can write the path probability
density as

P[{x}] =
∫

Dx̃ exp
{
i
∫ T

0
x̃ ·

[
ẋ − A(x) + i

2
εB(x) · x̃

]
dt

}
. (6.52)

Wecannowdefine the probability density that the system reaches a pointxT at time
t = T , given that it started at x0 at time t = 0. This is achieved by summing over all
possible paths thatmeet these boundary conditions.Wewrite this path integral as [23]
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P[
xT , T |x0, 0

] =
∫ xT

x0
Dx P[{x}]. (6.53)

This is now a probability density in the space of endpoints, xT . Through a relabelling
of the auxiliary field, x̃ = ip/ε, this density is given by

P[
xT , T |x0, 0

] =
∫ xT

x0
DxDp exp

{
−ε−1

∫ T

0

[
p · ẋ − p · A(x) − 1

2
p · B · p

]
dt

}

=
∫ xT

x0
DxDp exp

{
−ε−1

∫ T

0

[
p · ẋ − H (FPE)(x,p)

]
dt

}
. (6.54)

Jump Process:

For the master equation we can construct a similar path-based solution. By following
thework ofRef. [41], we can construct the probability of observing a path by approxi-
mating the discrete dynamics as a series of Poisson-distributed jumps in discrete time.
This is the process described by the tau-leaping stochastic simulation algorithm [42].
If the state of the discrete population at time t is given by nt = (n1,t , n2,t , . . . , nd,t )

T,
then the state at time t + � is described by

nt+� = nt +
∑
r

νrkr,t , (6.55)

where kr,t is a Poisson-distributed random variable with mean λr,t = T νr
nt �. The kr,t

represent the number of jumps of reaction r that occur in a time-step �. As the
state-space of nt is discrete, we can define the probability of observing the path
{n} = {n0,n�, . . . ,nT }. This probability is given by

P
[{n}] =

∏
t

∑
kt

δ

[
nt+� − nt −

∑
r

νr kr,t

]
P[kt ], (6.56)

where P[kt ] is the joint probability distribution of the Poisson random variables
kt , which can be factorised as the kr,t are independent. Note that the vector kt has
elements labelled by the reaction index r , as opposed to the variable index i . The
sum over kt represents

∑∞
k1,t=0

∑∞
k2,t=0 · · · .

We now switch to the continuous variable x = n/�, and introduce the auxiliary
field x̃. We are still considering a discrete-time process, but the continuous state-
space means we need to again consider the probability density of the path {x} =
{x0, x�, . . . , xT }. We write this density as

P[{x}] =
∏
t

∫
dx̃t

(2π)d

∑
kt

exp

{
i x̃t ·

[
xt+� − xt −

∑
r

νr kr,t
�

]}
P[kt ]. (6.57)
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Now separating the terms which are dependent on the kr,t , and inserting the Poisson
probability distributions P[kt ], we have
∑
kt

exp

{
−i x̃t ·

[∑
r

νr kr,t
�

]} ∏
r

λ
kr,t
r,t exp[−λr,t ]

kr,t !

=
∏
r

exp[−λr,t ]
∑
kr,t

(
exp

[−i x̃t · νr/�
]
λr,t

)kr,t
kr,t !

=
∏
r

exp

{
λr,t

(
exp

[−i x̃t · νr

�

]
− 1

)}
. (6.58)

Substituting this expression back into Eq. (6.57) we obtain

P[{x}] =
∏
t

∫
dx̃t

(2π)d

[
exp

{
i x̃t · [xt+� − xt

]}×

exp

{∑
r

λr,t

(
exp

[−i x̃t · νr

�

]
− 1

)}]
. (6.59)

Wecannowrestore the continuous-time limit.Againwedefine lim�→0
∏

t dx̃t/(2π)d

= Dx̃, such that we can write

P[{x}] =
∫

Dx̃ exp

{∫ T

0

[
i x̃ · ẋ +

∑
r

� fr (x)
(
exp

[−i x̃ · νr

�

]
− 1

)]
dt

}
,

(6.60)
where we have used λr,t = T νr

nt � → � fr (xt )�.
We can now define the probability density in the space of end points. That is the

probability that we find the system at state xT at time t = T given it was started at
state x0 at time t = 0. This quantity is given by Eq. (6.53). Substituting Eq. (6.60)
into Eq. (6.53), and relabelling the auxiliary field x̃ = i�p, gives

P[
xT , T |x0, 0

] =
∫ xT

x0
DxDp exp

{
−�

∫ T

0

[
p · ẋ −

∑
r

fr (x)
(
ep·νr − 1

)]
dt

}

=
∫ xT

x0
DxDp exp

{
−�

∫ T

0

[
p · ẋ − H (ME)(x,p)

]
dt

}
, (6.61)

which is of the same form as Eq. (6.54).
The function H (ME)(x,p) (or its Fokker–Planck equivalent) characterises the

probability of observing a path. Using the saddle-point approximation of the path-
integral (6.61) [or Eq. (6.54)], we can define the most-likely path between the
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points x0 and xT as the path, ({x}, {p}), which minimises S[({x}, {p})] = ∫ T
0

[
p · ẋ−

H(x,p)
]
dt . This path is embedded in space and time, such that its relation with the

most-likely paths in Sects. 6.2 and 6.4 is not entirely obvious.
The function S[({x}, {p})] is referred to as the ‘action’ of the path, as this formal-

ism is very similar to the description of classical mechanics [40]. For ({x}, {p}) to
be the most-likely (minimum-action) path, it should satisfy

δS = S[({x + δx}, {p + δp})] − S[({x}, {p})] = 0, (6.62)

where δx and δp are small, independent perturbations to the path. Evaluating the
above function shows that the minimum-action paths are given by the solutions of
Hamilton’s equations, Eq. (6.42) [40]. Hence the characteristic curves obtained from
the WKB formalism are the most-likely paths between two states.

An alternative approach is to first extremise the action at each point along the path
with respect to p. This is a simple exercise in the Fokker–Planck framework, from
which we obtain

0 = ∂

∂pi

[
p · ẋ − p · A(x) − 1

2
p · B · p

]

⇒ 0 = ẋi − Ai (x) − Bi, j p j

⇒ p = B
−1 · [ẋ − A(x)] . (6.63)

Substituting this value back into the action gives

∫ T

0

[
p · ẋ − H (FPE)(x,p)

]
dt = 1

2

∫ T

0
[ẋ − A(x)] · B−1 · [ẋ − A(x)] dt, (6.64)

where the integrand is the Onsager–Machlup9 functional [43]. From the SDE (6.45),
we recognise this as an integral over the noise variables. Along the deterministic
paths, where ẋ = A(x), the action is zero. Such treatment is not possible analytically
in the case of the master equation, but we will describe a numerical method which
directly minimises this action by solving the associated Euler–Lagrange equations
[23].

Large Deviations Theory

Large deviations theory is the field of mathematics concerned with the analysis of
rare events and statistical outliers [23]. The application of this field to stochastic
processes is described in Ref. [22]. The aim of this approach is to construct expo-
nential estimates for the probability densities to observe paths between two states
(not necessarily stable states). If we have a continuous path ϕ(t), then the probability
density to observe a simulation path X�(t) that is within the δ-tube of this path is
given by

9Lars Onsager (1903–1976) and Stefan Machlup (1927–2008).
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Pr

(
sup

0≤t≤T
|X�(t) − ϕ(t)| < δ

)
∼ f (δ) exp (−�S[ϕ]) . (6.65)

Here the function f (δ) is often ignored, aswe are only concernedwith the exponential
approximation, and S[ϕ] is known as the large deviations rate functional [23]. The
Onsager–Machlup functional in Eq. (6.64) is the rate functional of the SDE (6.45)
[22, 23]. From Eq. (6.65), the most-likely path from ϕ(0) = x0 to ϕ(T ) = xT must
minimise S[ϕ].

In the WKB formulation we have not specified the length of the path in terms
of the time, T . If we vary the length of the paths, we would expect the value of the
action to change, and hence it should have a minimum at some value of T . The most
likely path between two states, x0 and y, then has action

V (x0, y) = inf
T

inf
ϕ

{S[ϕ] : ϕ(0) = x0, ϕ(T ) = y} . (6.66)

This quantitymeasures the difficulty inmoving from the point x0 to the point y, and is
referred to as the quasi-potential [22]. This is equivalent to the action recovered from
the WKB formulation, S0(x) [23, 44]. It is called a ‘quasi’-potential as this function
is not additive; for distinct points x0, x1, and x2 we have V (x0, x2) ≤ V (x0, x1) +
V (x1, x2). This inequality becomes an equality only if x1 lies on the most-likely path
between x0 and x2.

The quasi-potential must be defined with respect to a reference state. If there
exists a stable fixed point in the deterministic dynamics, x∗

a , then we will often use
this point as the reference state for the quasi-potential, i.e. V (a)(x) = V (x∗

a, x).

Numerical Methods

As described above, the quasi-stationary distribution about the stable state x∗
a is

characterised by the action S(a)
0 (x) = ∫

p · dx, where ({p}, {x}) is the most-likely
path between the stable fixed point x∗

a and the position x, where t parametrises the
curve. The paths are described by the characteristic equations (6.42). Obtaining S0(x)
thus reduces to solving a two-boundary-value problem, as we have an initial position
[x(0) = x∗

a ,p(0) = 0] and a final position x(T ) = x. Solutions of this problem can be
obtained through the application of shooting methods or iterative schemes. A more
general approach is to directly minimise the action of the path integral by solving
the associated Euler–Lagrange equations. We now discuss these methods in turn.

Solutions of Characteristic Equations: Shooting methods are the conventional
choice of numerical method for solving boundary-value problems. The procedure is
to turn the boundary-value problem into an initial-value problem, which are much
easier to solve. Onemust then find the initial condition that generates the correct final
boundary condition [45]. The new initial condition is specified as a perturbation from
the fixed point x∗

a , i.e. we let x(�) = x∗
a + δx, where � is a small time-step. In the

limit � → 0 this condition is equivalent to specifying a condition for ẋ(0), provided
that δx scales suitably with�. A corresponding perturbation δp is specified and with
these conditions Hamilton’s equations (6.42) are forward-integrated to generate a
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trajectory [10, 26]. Varying the initial perturbation allows us to generate multiple
trajectories across the domain. We can then find the action, S(a)

0 (x) = ∫
p · dx, and

hence the quasi-stationary distribution about this stable state.
The downfall of the shooting method, however, is that convergence to the correct

final boundary condition can be very slow. In fact, if the final boundary condition is
a saddle point, then it is very unlikely that shooting to such a point will be possible
[10]. Furthermore, as the dimensionality gets higher it becomes increasingly difficult
and inefficient to find the target boundary condition.

An alternative approach to solving the boundary-value problem has been used
in Refs. [16, 21, 46, 47]. Here the solution is found through an iterative scheme,
where the characteristic equations (6.42) for x are integrated forwards in time and the
equations for p are integrated backwards in time. This method is straightforward to
implement and was described in Sect. 5.5. It does not suffer from the same problems
as the shooting method. However, this method requires the final value of p, which
is not uniquely specified in d ≥ 2 dimensions. If the final position is a stationary
point of the characteristic equations (6.42), then these can be solved to determine the
boundary condition, otherwise we are in trouble.

Numerical Minimisation: Rather than trying to solve the integral problem as is
done in the shooting or iterative methods, a different approach is to solve the Euler–
Lagrange equations that define the minimum-action path. This can be achieved
through relaxation methods, such as the method of steepest descent [45]. A problem
that is common to the above solution methods is the convergence of the equations of
motion to a stationary point. By definition it takes infinitely long for deterministic
equations to reach a stationary point, so for how long do we integrate Eqs. (6.42)?
The geometric minimum action method (gMAM) overcomes this problem by re-
parametrising the path, in this case onto the interval [0, 1] [44]. Importantly this
method does not require any knowledge of the initial or final values of p, only the
position boundary conditions are needed. Details of this method are omitted from
this thesis due to its complexity, however it is extensively described in Ref. [44].

6.6 Examples

Tunnelling Example

We return to the problem discussed in Chap.5 of the fixation of two mutations in
a fixed size population. We identified different dynamical regimes in that system.
In region I, when there existed a single stable state located on the boundary of the
domain, we were able to compute an analytical expression for the QSD. However, in
regions II and III when a fixed point existed in the middle of the domain, we could
determine the most-likely paths, but not the QSD across the state space. Using the
techniques developed in this chapter, we are now in a position where we can compute
this distribution numerically. To do this we use the gMAM algorithm mentioned
above [44]. The results are shown in Fig. 6.9, where we plot the quasi-potential S0(x)

http://dx.doi.org/10.1007/978-3-319-41213-9_5
http://dx.doi.org/10.1007/978-3-319-41213-9_5
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(a) (b)

Fig. 6.9 a The quasi-potential about the stable fixed point in region II for the cancer initiation
model, along with the dominant escape path from the interior stable state to the 1–2 boundary.
Parameters are r0 = 1.00, r1 = 0.98, r2 = 0.95, and u1 = u2 = 10−2. b The quasi-potential about
the stable fixed point in region III, along with the dominant escape path from the interior metastable
state to the absorbing state. Parameters are r0 = 1.00, r1 = 0.95, r2 = 0.98, and u1 = u2 = 10−2.
In (a and b) the contours are a multiplicative factor of

√
2 apart, such that every two contours

corresponds to a doubling of the quasi-potential. Equal contour levels are used in each panel

about the interior fixed point in regions II and III. The QSD, ρ∗(x) ∼ exp[−NS0(x)],
can easily be inferred from these results as having a peak at the fixed point and steeply
dropping off as the distance from the stable state increases. The most-likely escape
paths, which are the same as those plotted in Fig. 5.16 but obtained using the gMAM
algorithm, are seen to be orthogonal to the equipotential contours, validating the
use of the term ‘potential’. Numerical issues arise close to the boundaries of the
concentration simplex, when the system jumps from being two-dimensional to one-
dimensional.

Toggle Switch

To further demonstrate the applicability of this theory, we will consider a two-
dimensional example which has multiple stable states and transitions between the
different basins of attraction. The example is that of the genetic toggle switch,
which is one of the archetypal problems used to demonstrate the WKB method
and quasi-potential landscapes [15, 48–51]. We consider the minimal model which
only describes the behaviour of the two types of protein, labelled 1 and 2.We assume
that proteins degrade at a constant rate, and they are produced at a rate that is depen-
dent on the presence of the other protein through mutual inhibition. This example is
described by the following reaction scheme:

1 → ∅, T (−1,0)
(n1,n2)

= γ0n1, (6.67a)

2 → ∅, T (0,−1)
(n1,n2)

= γ0n2, (6.67b)

∅ → 1, T (+1,0)
(n1,n2)

= �
αr

1 + (n2/�)h
, (6.67c)

∅ → 2, T (0,+1)
(n1,n2)

= �
r

1 + (n1/�)h
, (6.67d)

http://dx.doi.org/10.1007/978-3-319-41213-9_5
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where γ0 is the protein degradation rate, r is the basic production rate, and the
Hill coefficient h determines the shape of the inhibition function. The system size
is �, which determines the typical protein number. We set the parameter γ0 = 1
throughout, which corresponds to a rescaling of time. The parameter α allows us to
introduce some asymmetry into the problem. We choose the parameter r such that
there exists two stable states in the deterministic dynamics. One of these stable states,
x∗
1, has a low concentration of protein 1 and a high concentration of protein 2, and

vice-versa for the other stable state x∗
2, where x = (n1, n2)T/�. There is a separatrix

between the basins of attraction, and there exists a saddle point on this boundary
at xs .

To determine the quasi-potential landscape in this system, we first need to find the
values of S(a)

0 (x) for each of the stable states. For this we use the gMAM algorithm.
We then match these actions at the saddle point to generate the quasi-potential S0(x),
which satisfies [10]

S0(x) = min

{
S(1)
0 (x),

S(2)
0 (x) + S(1)

0 (xs) − S(2)
0 (xs).

(6.68)

We plot examples of this quasi-potential in Fig. 6.10. In panels (a) and (b) of Fig. 6.10,
we can see that the most-likely transition paths pass through the saddle point in
between the basins of attraction. Once the path has crossed the saddle point, it follows

(a) (b)

Fig. 6.10 a Quasi-potential in the symmetric toggle-switch (α = 1), along with the most likely
path from each stable state to the other. The quasi-potential is symmetric about the separatrix
x1 = x2, so we only show one half of it. The gray lines in right-hand side are the streamlines of the
deterministic flow. b Quasi-potential in an asymmetric toggle-switch (α = 0.85), along with the
most-likely transition paths. The thick black line is the separatrix between the basins of attraction.
In (a and b) the contours are a multiplicative factor of

√
2 apart, such that every two contours

corresponds to a doubling of the quasi-potential. Equal contour levels are used in each panel.
Remaining model parameters are γ0 = 1, r = 2, h = 3
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the deterministic trajectory to the stable state. Again we see that the escape paths are
orthogonal to the equipotential lines. In the asymmetric toggle-switch in Fig. 6.10b,
we see that the stable state x∗

1 to the left of the separatrix has a ‘deeper potential well’
than x∗

2. Considering the stationary distribution, ρst(x) ∼ exp[−NS0(x)], there is a
much higher probability to be found close to the state x∗

1, as opposed to the stable
state x∗

2.

6.7 Summary

TheWKBmethod is a very powerful technique that has been used to describe fixation
and equilibration across a wide-variety of stochastic models, in particular when
describing the statistics of rare-events such as extinction. However, there has been
a lack of consistency across multiple disciplines when describing this approach.
This includes the work of this PhD student. In this chapter we have returned to the
mathematical basis of the WKB method in the hope of clearing up the ambiguities
in the terminology, and we have provided a tutorial-style walk-through of how we
can apply the method to stochastic processes.

Through the use of toy models we have reintroduced the concepts of the quasi-
stationary distribution and the most-likely path between two states. While the QSD
has a rigorous mathematical definition, the most-likely path is a much more subtle
concept. Along with the path, we must also specify the ensemble in which this path
resides. In Sect. 6.2, we identify a hierarchy of three ensembles with varying com-
plexing for a simple individual-based model. The first space of trajectories contains
the full information about the transitions, including the time spent at each state. This
is the most complex space with an uncountable set of trajectories where we can only
define path densities. This object is useful in the path-integral or large-deviations
frameworks, but does not help with the practitioner’s intuition. If we only consider
the states of the system bymarginalising over the time, then we can define the ensem-
ble as all paths which start at stable point in the state-space and reach an absorbing
boundary. However, there is large degeneracy in this space because paths often return
to the stable state. By imposing the condition that the system does not return to the
stable state, we can construct a much smaller space of paths and easily attribute
weights to the associated trajectories. It is not wrong to define the most-likely path
in the other spaces, but the definition is more clear in this smaller space.

To introduce the mechanics of the WKB method, we first focussed on processes
with a single stochastic variable in Sect. 6.3. We discussed the approach used to
analyse continuous stochastic processes described by a Fokker–Planck equation, and
the familiar discrete jump processes described by a master equation. We considered
both frameworks to make contact with the literature from both of these fields, and to
show the similarities, andmost importantly the differences, between these approaches
tomodelling a system. In these one-dimensional systemswe are able to obtain explicit
expressions for the quasi-stationary distributions.
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In a one-dimensional system, it was easy to show that the most-likely path from a
stable state to an absorbing boundary is the path which does not step ‘backwards’, in
the sense that the system always moves away from the stable state (it is easy provided
that we know what we are talking about!). In the scenario where there are multiple
‘forward-only’ paths to the absorbing boundary (or to another stable state), as is
found in higher-dimensional systems, then we again need to define the most-likely
path. In Sect. 6.4, we use a four-state toy model to illustrate this definition. We are
also able to calculate the quasi-stationary distribution in this system.

For stochastic processes featuring a larger number of stochastic variables (d ≥ 2),
analytical progress in theWKB framework is often not possible. Even in the absence
of tractability, theWKBmethod illuminates the problem and provides a large amount
of information bymapping the problem froma stochastic process to classicalmechan-
ics. Applying the WKB method allows us to construct quasi-stationary distributions
about the stable states of the underlying model. These distributions are described by
an ‘action’, which can be derived from the path-integral framework. This approach
also shows that characteristic equations obtained form the WKB method describe
most-likely paths between two states. The action is also closely related to the quasi-
potential described in the theory of large deviations [22]. A variety of numerical
methods have been proposed to extract the quasi-potential and the most-likely paths,
and examples of these quantities are shown in Sect. 6.6.

The WKB approach greatly improves on the ‘traditional’ methods of analysis of
individual-based systems, which include direct numerical integration of the master
equation or using diffusion approximations. Integration of the master equation can
be very inefficient; each point in state-space has an associated equation, and the
complete set of equations need to be integrated in parallel as they are coupled. Also,
as we are often interested in rare events, this integrationmust be carried out for a long
time. At the end of this integration we are left with a description of only a single point
in parameter space, with no knowledge of how the system behaves in the vicinity of
this point. Diffusion approximations can reduce the large set of master equations to
a partial differential equation, which greatly improves the tractability. However, this
approach only yields accurate results for the bulk of the probability distribution, and
the Fokker–Planck equation fails to describe rare events which are characterised by
the tails of the distribution. The WKB method captures these large deviations from
the expected behaviour, providing insight into events such as extinction, fixation and
equilibration.
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Chapter 7
Conclusions

7.1 General Discussion

This thesis has been concerned with the phenomena of fixation and equilibration in
stochastic, individual-based processes. Fixation, which is often a consequence of the
extinction of one or more types of individual within a population, is an important
aspect of biological systems, particularly in the field of population genetics from
where the term originates. Many systems exhibit fixation (or extinction), such as the
disappearance of a disease, the spreading of an opinion, or the propagation ofmutated
cells through a tissue. Equilibration, on the other hand, describes the process of
reaching a steady state. These stationary systems often arisewhen types of individuals
are constantly reintroduced through mutations, for example, or through adopting
novel strategies. These two features can be closely related. In systems where fixation
takes a long time, the population will first relax to a so-called metastable state. In
this thesis these features have been analysed in a range of applications: From simple
one-dimensional birth–death processes describing the interaction of two strategies in
an evolutionary game, to a two-dimensional model describing the accumulation of
mutations during the initiation of cancer. The impact that a switching environment
has on the evolutionary dynamics of a population has also been investigated.

The analysis of these systems is carried out using the tools and techniques of
statistical mechanics. Here knowledge of the underlying microscopic dynamics on
the level of the individual has been used to make predictions about the macroscopic
outcomes at the population level. Through the analytical characterisation of the evo-
lutionary dynamics that are observed in stochastic processes, we have obtained a
greater understanding of fixation and equilibration. For the majority of this thesis we
have not focused on a specific application, instead we have been concerned with con-
structing generic mathematical frameworks to analyse the evolutionary processes.
The application of these techniques is then illustrated through some popular exam-
ples. Often the focus has been on evolutionary game dynamics, which describe the
interaction of competing strategies. These scenarios demonstrate the richness of
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dynamical behaviours that can be seen in these models, such as coexistence and bi-
stability. We have also explored examples of individual-based models that describe
some specific biological processes, such as a genetic toggle-switch or the initiation
of cancer. The accompanying analytical treatment of these models has been pre-
sented in as general a framework as possible, such that these techniques are readily
transferable to different systems.

7.2 Summary of Results

Finite Populations in Switching Environments

Models, and the underlying system that they represent, can contain additional lev-
els of complexity that go beyond just the dynamics of the individuals. In Chap.3 we
investigated the impact of a stochastically switching environment on the evolutionary
dynamics of a two-species population. Such systems are relevant when environmen-
tal changes occur on roughly the same timescale as the population dynamics, as is the
case when bacteria are repeatedly exposed to antibiotics [1]. We were able to extend
the existingmethods used to describe fixation and extinction in birth–death processes
to account for this extra stochasticity. Applying these results to evolutionary games,
where different environments favour different strategies, we observed combinations
of switching rates for which the mutant was more successful in the switching envi-
ronment than in either of the fixed evolutionary games. This non-trivial result can be
explained by considering the interplay between the selection effect of the environ-
ment and the external noise. Equilibration was also investigated in this model. We
introduced mutations in the dynamics, such that the individuals can randomly switch
their strategy, and successfully predicted the resulting stationary states. This work
provides a first mathematical characterisation of the effects one may expect in sys-
tems that are subject to selection, mutation, demographic stochasticity and external
randomness.

Fixation Time Distributions in Birth–Death Processes

In Chap.4 we questioned whether the mean fixation time is a good description of
the overall fixation statistics in a birth–death process. To answer this we computed
the exact fixation time distributions. This was achieved by evaluating the spectrum
of the master equation describing the process, and we considered the dynamics in
eigenspace. Applying this method to some typical scenarios from evolutionary game
theory, we observed that fixation time distributions can be broad and skewed, espe-
cially in the coexistence game where a heterogeneous population is favoured by
selection. Along with the exact representations of the fixation time distributions, we
produced exponential processes that permit efficient sampling from these distribu-
tions. These have the potential to be used as a very effective model-reduction tool.
When rare mutations were introduced into the dynamics, we were able to establish

http://dx.doi.org/10.1007/978-3-319-41213-9_3
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a relation between the mixing time to stationarity and the median time to fixation in
the limit of vanishing mutation rates (in the right circumstances). No such relation
had previously been investigated.

Metastable States in a Model of Cancer Initiation

In Chap.5 we turned our attention to a well-studiedmodel that describes the accumu-
lation of twomutations in a tissue during the initiation of cancer. Previous studies had
been restricted to the regions of parameter space which permitted a coarse-graining
approach to reduce the complexity of the problem. Through analysis of the deter-
ministic equations of motion, we identified parameter regimes where this approach
is not valid because of the existence of quasi-equilibria, or metastable states. It is
in these regimes that we applied the WKB method, a technique from mathematical
physics that relies on the interplay of fixation and equilibration. In these systemswith
metastable states, there exists a separation of timescales. The system quickly relaxes
to a quasi-stationary distribution, but fixation only occurs on a longer timescale.
We were able to exploit this separation to compute the quasi-stationary distribu-
tion about the metastable state, and then we could use this to compute the expected
fixation time. When the system reduced to one dimension (a consequence of hav-
ing absorbing boundaries at the edge of our state space) we obtained closed-form
expressions for the quasi-stationary distribution and the mean fixation time. If the
system does not reduce to one dimension, we rely on numerical methods to extract
the fixation time statistics.

Through our analysis we identified that the phenomenon of stochastic tunnelling
is, in fact, a deterministic effect. Tunnelling is the process that describes how a homo-
geneous population of wild-type cells can evolve into a homogeneous population of
cells with two mutations without visiting the state in which all cells harbour only
onemutation [2]. Furthermore, our analysis identified the escape from themetastable
states as the key bottleneck to fixation of cells with twomutations. For parameter val-
ues for which there are no metastable states (i.e. when cells with two mutations have
the highest fitness, as would be expected from the inactivation of an oncogene [3]),
the fixation dynamics is largely governed by the deterministic flow. The rate-limiting
steps are then the appearance of successful mutant lineages [4], and the subsequent
fixation of cells with two mutations is a zero-hit process for large population sizes.
As such the progression from healthy tissue (no mutations) to susceptible tissue (two
mutations, corresponding to an inactivated tumour suppressor gene) will be fast rela-
tive to the cases in which a metastable state exists. If there is one stable fixed point in
the deterministic dynamics, the process becomes a one-hit phenomenon limited by
the escape from the corresponding metastable state. In regions with two fixed points
one observes a two-hit process; the population becomes trapped in a first metastable
state, escapes to a second metastable state, and then reaches full fixation. Our analy-
sis allowed us to classify how changes to the fitness landscape, mutation rates, and
population size affect the fixation time of cells harbouring two mutations, as well as
the probability of tunnelling.

http://dx.doi.org/10.1007/978-3-319-41213-9_5
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In terms of the development of tumours, our analysis shows that the path to accu-
mulating mutations is not simply limited by the mutation rates, but also by the escape
from metastable states. Populations can exist in a heterogeneous state for very long
periods of time before fluctuations eventually drive the second mutation to fixation.
The probability with which stochastic tunnelling occurs is, in part, determined by
the location of these metastable states. If they are located close to the homogeneous
state with all cells harbouring one mutation, then the probability of tunnelling is
low. This work has filled the gap left by the existing literature and leads to a more
comprehensive understanding of mutation acquisition and stochastic tunnelling in
evolving populations.

The WKB Method

We used theWKBmethod as an ‘off the shelf’ tool to analyse this model of mutation
acquisition. In conducting this study we found inconsistencies and confusion among
the existing literature, and this prompted further investigation into the origins of this
method. In Chap.6 we took a closer look at the WKB method. We explored the
mathematical basis of this approach, and illustrated the different constructs that arise
when it is applied to stochastic systems. Through toy models and some well-studied
systems, we demonstrated the meaning of the multitude of terms that come from
this field, as well as making connections with the related path-integral formulations
and the theory of large deviations. We discussed the different numerical methods
that can be used to solve these problems, and gave examples of the quasi-potential
landscapes that can be computed.

The WKB approach improves on the ‘traditional’ methods of analysis of
individual-based systems; numerical integration of the master equation can be very
inefficient and diffusion approximations only yield accurate results for the bulk of
the probability distribution, failing to capture the rare events which are characterised
by the tails. By mapping the problem from the intractable stochastic process to clas-
sical mechanics, the WKB method provides some much-needed intuition about the
population dynamics in systems described by a large number of random variables.
This approach captures the large deviations from the expected behaviour, which play
a crucial role in describing events such as extinction or switching betweenmetastable
states.

7.3 Outlook

Through these investigations we hope to have promoted the benefits of analytical and
semi-analyticalmethods. In this age of burgeoning computer power, the temptation to
rely on simulations alone is huge. But analytical approaches can greatly complement
this data, allowing us to identify the crucial components of a model that give rise
to observed phenomena. They also allow us to extrapolate to inaccessible parameter
regimes, such as large system-sizes, and highlight possible parameter combinations
where interesting effectsmay be observed. They can even tell uswhatwe need to look

http://dx.doi.org/10.1007/978-3-319-41213-9_6
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for in the experimental or computational data; measuring a most-likely path from
simulation data would be very tricky without prior knowledge of what that object is.
Analytical treatments can also lead us to more efficient simulation procedures. For
example, in this thesis we have documented how mathematical manipulation of the
master equation describing the birth–death process allows us to sample arrival times
much faster than with direct simulations alone.

On a more general level, constructing a mathematical theory of evolutionary
dynamics is verymuchwork in progress. Nature is inherently discrete and stochastic,
and fluctuations must be taken into account when trying to understand these systems.
An integral part of the evolution ofmicrobes and higher organisms alike is frequency-
dependent selection [5–7], as found in evolutionary games. At the same time exter-
nal factors determining the detailed mechanics of selection may vary throughout
the duration of the process. In this thesis we have combined frequency-dependent
selection, fluctuating environments, and stochastic dynamics in discrete populations
into a single model, and we have provided the analytical tools for its analysis. This,
we hope, is a contribution toward a more complete understanding of evolutionary
processes.

The work presented in this thesis can be further developed in many ways.
Individual-based processes can be used to describe systems from a broad range of
disciplines, and the list of possible applications is endless. The methods that we have
developed, which include tools that can handle additional sources of stochasticity
and a solid framework for applying the WKB approach, now allows us to analyse
more models than ever before.

Evolution in a changing environment is a current topic of great interest. The field
of evolutionary rescue is dedicated to describing how populations adapt to sudden
change [8], as observed when the environment switches its state. We expect that the
theoretical framework discussed in Chap.3 could be used to describe these scenarios,
which arise, for example, when drugs are administered to fight diseases or infections,
or when ecological niches are disturbed through anthropogenic effects.

We are currently in the era of ‘big data’, and as such we are surrounded by the
results of experiments, surveys, and numerical simulations. Studies often report only
the mean statistics of these data, and maybe the associated standard deviation. As
the volume of data grows, analysing the full distribution becomes more interesting
and meaningful. The method discussed in Chap.4 describes the first derivation of
exact distributions in scenarios from evolutionary game theory. We see this as a leap
forward in analytical predictions, and we expect to see these techniques become
increasingly popular when describing evolutionary processes.

In some situations, it takes somebody from outside a field to provide new insights.
The influence of physicists is felt across a range disciplines, mostly for the right
reasons. Sometimes wemust depart from the traditional line of thinking and consider
new approaches. Our investigation of the well-studied cancer initiation model is an
example of this. The role of physics in the investigation of cancer is stronger than
ever, and is likely to increase as we seek a more complete understanding of this
disease. Extending our model to investigate the dynamics of the system beyond the
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second mutation, or the emergence of a cancerous phenotype prior to fixation, are
likely directions for the future of our work.

On a personal level the work presented in this thesis, and in particular the mod-
elling of cancer in Chap.5, has fuelled my passion to study biologically-motivated
models. Using the techniques of statistical physics, I hope to obtain further insights
into these fundamental processes of evolution and population dynamics.While doing
so I will be flying the flag for the analytical methods of maths and physics.
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