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Phantasie ist wichtiger als Wissen,
denn Wissen ist begrenzt.

Albert Einstein



Preface

All the work presented here covers an analytic geometrical way to construct the
shadow of black holes. The shape of the shadow varies in different space-times, i.e.,
it depends on specific properties of the black hole as, for example, the spin. My aim
is to provide calculations as general as possible.

This short book summarizes the scientific results of my doctoral project where
I generalized the existing calculations for the shadow of a Kerr black hole. I found
analytical formulas for the boundary of the shadow for the general Plebański–
Demiański class of stationary, axially symmetric type D solutions of the Einstein–
Maxwell equations. As far as I know, such formulas did not exist before not even in
the Kerr space-time. With my formulas, it is possible to calculate the shadow for
observers at arbitrary positions. In addition, the shadow-plots can be compared with
those of a moving observer. If the motion of the observer is in purely radial
direction, then the aberration formula of Penrose is recovered from my formulas.

As pointed out in Chap. 1, the existence of the photon region is crucial for
determining the shadow of a black hole. This results in the following natural
structure of this thesis. In Chap. 2, I discuss in some detail the Plebański–
Demiański class of space-times and review relevant properties of its metric. The
geometrically important photon region and other interesting regions in the envi-
ronment of a black hole are considered in Chap. 3. The last chapter, Chap. 4, is
dedicated to deduce the formulas that describe the boundary curve of the black
hole’s shadow.

Large parts of the scientific results are already published in three papers. The
corresponding paragraphs are marked in the following references which refer to my
papers Grenzebach et al. (2014, 2015), Grenzebach (2015), respectively. Sentences
marked with [i] can be found in total or only slightly modified in the ith paper.

Bremen, Germany Arne Grenzebach
January 2016
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Abstract

With the upcoming high-resolution observations of the Galactic center, it will be
revealed whether our Milky Way hosts a black hole in its center. Due to the strong
gravity and the resulting deflection of light, the black hole will cast a shadow and an
observed image of the shadow would be a strong evidence for the existence of black
holes. It is expected that the Event Horizon Telescope or the BlackHoleCam project
will produce a radio image of the shadow of the central black hole in a few years’
time. Therefore, it is about time to advance the theoretical investigations of the
shadows of black holes as far as possible, as a basis for evaluating the observational
results.

This short book is about an analytic way to describe the shadow of black holes.
As an introduction, I present a survey of the attempts to observe the shadow of the
black holes in our Galaxy near Sgr A* and in the neighbouring galaxy M87. Black
holes are described by metrics of the general Plebański–Demiański class of
space-times. All these metrics are axially symmetric and stationary type D solutions
to the Einstein–Maxwell equations with a cosmological constant. The space-times
are characterized by seven parameters: mass, spin, electric and magnetic charge,
gravitomagnetic NUT charge, a so-called acceleration parameter and the cosmo-
logical constant.

Based on a detailed discussion of the metrics, I derive analytical formulas for the
photon regions (regions that contain spherical lightlike geodesics) and for the
boundary curve of the shadow as it is seen by an observer at the given Boyer–
Lindquist coordinates in the domain of outer communication. They enable me to
analyze the dependency of the shadow of a Kerr black hole on the motion of the
observer. For all cases, the photon regions and shadows are visualized for various
values of the parameters. The analytical formulas are used to find explicit expres-
sions for the horizontal and vertical angular diameters of the shadow. Finally, these
values are estimated for the black holes at the center of our Galaxy and of M87.

xvii



Chapter 1
Introduction

Abstract Black holes are intriguing astrophysical objects. But it is still unproven
whether black holes exists. Therefore, the observational evidence for black holes is
discussed. This is followed by a survey of the attempts to observe the shadow of the
black holes in our Galaxy near Sagittarius A* and in the neighbouring galaxy M87
by the European BlackHoleCam project and the US-led Event Horizon Telescope
project.

Keywords Observational evidence black holes · Shadow observation · Galactic
center · Observing Sgr A* · Observing M87 · Black hole cam · Event horizon
telescope · VLBI observation
Black holes are perhaps themost fascinating objects in Astrophysics. It is hard to find
any other object or topic that attracts more attention. There are comics that explain
black holes (Petit 1995) or movies where a black hole plays a prominent role like
the recently released Hollywood movie Interstellar. In the movie, it is shown how
nearby observers see the shadow of a rotating black hole surrounded by an accretion
disk (James et al. 2015).[3]

This optical phenomenon arises because light in the gravitational field of a black
hole propagates along curved lines instead of straight lines. Actually, the light deflec-
tion is so strong that spherical light paths exist—this region is called photon region—
and even an event horizon. Whatever passes the horizon is captured for evermore,
even light. But already anything coming from outside and crossing the photon region
has to pass the event horizon. Consequently, a black hole satisfies its name and an
observer really sees just a black spot (as long as there are no light sources in between).
This black spot is called the shadow of the black hole; it could be considered as an
image of the photon region.

In this thesis, we calculate for a general class of space-times what the shadow of
black holes looks like. The theoretical basis is of course Albert Einstein’s theory of
general relativity (Einstein 1915a, b, c) where extensive differential geometric skills
are required for the understanding of the theory and their physical consequences.
But for our calculations of the shadow we do not need much more than the mathe-
matical description of space-times which are solutions of Einstein’s field equations.
Consequently, the curvature of the space-time is determined by the matter which in
turn defines the motion of particles or light.
© The Author(s) 2016
A. Grenzebach, The Shadow of Black Holes,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-30066-5_1
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2 1 Introduction

Now, black holes are special solutions with increasing curvature while approach-
ing the black hole; the curvature diverges in the center of the black hole because of
a singularity. The simplest solution that describes a spherically symmetric, static,
uncharged black hole is the Schwarzschild metric (Schwarzschild 1916); the radius
of its event horizon is named the Schwarzschild radius. Rotating black holes are
described by the Kerr metric (Kerr 1963).

The first confirmation of the relativistic light deflection results from observations
of positions of stars during the total solar eclipse on May, 29th in the year 1919
(Dyson et al. 1920; Kennefick 2009). In two expeditions, which took the astronomer
Arthur Stanley Eddington and Edwin Turner Cottingham to the Island of Príncipe
(near western Africa) as well as Charles Davidson and Andrew Crommelin to Sobral
(Brazil), the positions of stars near the limb of the covered sun were compared
with recorded positions. The resulting deviation matches the relativistic prediction
of Einstein (1916) which is twice as big as the classical Newtonian value which was
calculated by Henry Cavendish and later by Johann von Soldner (von Soldner 1804;
Will 1988).

1.1 Observational Evidence for Black Holes

Since the optical measurements of Cavendish and von Soldner, tremendous progress
in astronomical observations has been made. Observations show that galaxies could
radiate enormously from a compact central region. A good explanation of these
active galactic nuclei (AGN) is the accretion of matter onto a supermassive black
hole (Lynden-Bell 1969;Lynden-Bell andRees 1971;Rees 1974, 1984;Müller 2004)
where the matter comes from an accretion disk accumulated around the galaxies’
center. The accretion model is supported by observations of Tanaka et al. (1995).
They found that the Fe Kα line in the X-ray emission from ionized iron in the galaxy
MCG–6–30–15 is extremely broad and redshifted which indicates that the radiation
has to be emitted very close (3 to 10 Schwarzschild radii) to the innermost region.
Powered by accretion, matter could be ejected from the galaxies as enormous jets of
several thousand light years as it is the case in the elliptical galaxy Messier 87 (M87)
shown in Fig. 1.1b. It is ongoing work to examine the exact formation mechanisms
of these jets (Doeleman et al. 2012).

Besides the supermassive black holes (106–1010 solar masses M�), which are
predicted to be at the centers ofmost—if not all—galaxies, there are stellarmass black
holes. These are remnants of stars after supernovae explosions. They are assumed to
be formed when very high mass stars collapse after fusing all nuclei to iron.

Also our Milky Way hosts a powerful radio source in its dynamical center; the
sourcewas discovered1974 andnamedSagittariusA* (SgrA*)because it is located in
the constellation Sagittarius (Balick and Brown 1974; Goss et al. 2003), see Fig. 1.1a
for an infrared image of the central arcseconds of the Galactic center. But not only the
radio source Sgr A* was observed. It follows from the rise-and-decay times of flare
events that the emission region is small compared to an accretion disk (Gillessen et al.
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(a) (b)

(c)

Fig. 1.1 Images of the Galactic center in our Milky Way, of stars orbiting Sagittarius A* in
the Galactic center and of the supergiant elliptical galaxy Messier 87 with its jet. a Galac-
tic center with Sagittarius A*. b Galaxy Messier 87 (M87) with jet. c Stellar orbits in
the central arcseconds of the Galactic center (“The annual average positions for these stars
are plotted as colored dots, which have increasing color saturation with time,” c© Ghez).
Credits. a original image https://www.eso.org/public/images/eso0846a/ c© ESO/S. Gillessen et al.
b original image https://www.spacetelescope.org/images/opo0020a/ c© The Hubble Heritage Team
(STScI/ AURA) and NASA/ESA, c original image http://www.astro.ucla.edu/~ghezgroup/gc/
images/research/2014plot_central_image_hires.png c© This image was created by Prof. Andrea
Ghez and her research team at UCLA and is from data sets obtained with theW.M. Keck Telescopes

https://www.eso.org/public/images/eso0846a/
https://www.spacetelescope.org/images/opo0020a/
http://www.astro.ucla.edu/~ghezgroup/gc/images/research/2014plot_central_image_hires.png
http://www.astro.ucla.edu/~ghezgroup/gc/images/research/2014plot_central_image_hires.png
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2006; Schödel et al. 2005). Additionally, there is strong evidence for the existence
of a supermassive black hole associated with the radio source Sgr A*. The evidence
results from infrared observations started two decades ago. They show stars orbiting
a common central object close to Sgr A* on Keplerian orbits, see Fig. 1.1c, which
demonstrates that there has to be a heavy object in a distance of roughly rO = 8 kpc1

with a mass of approximately 4 million solar masses M�. Since the mass must
be concentrated within a small volume, the most convincing candidate for such an
object is a black hole. Latest observations reveal values of M = 4.31 × 106M� and
rO = 8.33 kpc (Gillessen et al. 2009) orM = 4.1×109M� and rO = 7.7 kpc (Meyer
et al. 2012a). Older results are given in Eckart and Genzel (1996, 1997), Eisenhauer
et al. (2003), Ghez et al. (1998, 2005, 2008). A geometric way how to determine the
distance rO is described by Salim and Gould (1999).

But the observed phenomena are not exclusively explainable by black holes.
Alternative models are gravastars (Mazur and Mottola 2001) or holostars (Petri
2003a, b). Both are static solutions of Einstein’s field equations where the outer part
is in consequence of Birkhoff’s theorem described by the Schwarzschild solution.
Their interior solutions differ: gravastars contain a shell of some ultra-relativistic
plasma which is stabilized by some type of dark energy while holostars contain a
curvature singularity similar to black holes which can be substituted by some sort of
quantum object, e.g., a string. But their distinctive feature compared to black holes
is the missing event horizon.

By now, observations with higher resolution are possible by combining several
radio telescopes via computers to a giant earth-spanning virtual telescope. More
details about this observational method called very-long-baseline interferometry
(VLBI) will be given in Sect. 1.2. Here, we anticipate an exceedingly remarkable
result. In a first article, Broderick and Narayan (2006) explain that the observed radi-
ation emitted from Sgr A* and not from the accretion process is much less than one
would expect from thermal black body radiation of a surface. Consequently, Sgr A*
could not have a surface which is why it has to be a black hole. Broderick’s follow-up
paper, which takes more recent measurements into account, is more precise: Based
on the three assumptions that Sgr A* is gravitationally powered, has reached an
approximate steady state and that a presumed surface could be modeled by a thermal
spectrum, Broderick et al. (2009) conclude:

“Recent infrared and millimeter-VLBI observations imply that if the matter
accreting onto Sgr A* comes to rest in a region visible to distant observers,
the luminosity associated with the surface emission from this region satisfies
Lsurf/Lacc � 0.004. Equivalently, these observations require that 99.6% of the
gravitational binding energy liberated during infall is radiated in some form
prior to finally settling. These numbers are inconsistent by orders of magnitude
with our present understanding of the radiative properties of Sgr A*’s accretion

1Aparsec (abbr. pc, short forparallax of onearcsecond) is an astronomical unit tomeasure distances.
It is defined as the distance at which the distance Earth–Sun appears at an angle of 1 arcsecond (as).
One finds 1 pc = 3.09 × 1016 m = 3.26 ly.
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flow specifically and relativistic accretion flows generally. Therefore, it is all
but certain that no such surface can be present, i.e., an event horizon must
exist.”

An absolutely certain verification of the existence of black holes would be the
detection ofHawking radiation, a pure thermal radiation arising fromquantumeffects
(Hawking 1974, 1975, 1976). Unfortunately, for astrophysical objects the radiation
is much too weak for being detectable. Nevertheless, the question whether Sgr A* is
a black hole or some other object with a surface could be answered at its best with
the planned (see Sect. 1.2) high-resolution explorations (in the order of magnitude of
the Schwarzschild radius of the central mass) of the center of our galaxy with radio
telescopes in submillimeter wavelength range. For black holes, these observations
will yield an image of its shadow. But it is still discussed whether imaging a shadow
is already sufficient for a proof of the existence of black holes. Cardoso et al. (2014)
analyze how background fluctuations influence the stability of ultracompact objects.
For rotating stars, already linear fluctuations should cause a fragmentation of the
outer layers of the star. Due to the resulting gravitational radiation, the star loses
mass and compactness which leads to stable stars without a photon region or even a
black hole. Thus, they reasoned that an image of a photon sphere, i.e., a shadow is
evidence enough for the existence of black holes!

At this point, it is worth mentioning several informative references. Reviews
about the Galactic center research with arguments for the existence of a black hole
out there were given by Genzel (2014), Falcke and Markoff (2013), Morris et al.
(2012), Genzel et al. (2010), Falcke and Hehl (2003), Melia and Falcke (2001).
Observational techniques needed for exploring the Galactic center are described in
the book by Eckart et al. (2005) together with historical remarks. Since the whole
topic is very popular, there are also several articles in all major science magazines
or even in newspapers like the New York Times. As an introduction, we recommend
the essays by Melia (2003), Broderick and Loeb (2009), Kruesi2 (2012) and Britzen
(2012).

1.2 Observing the Shadow of Black Holes

Currently, there are two cooperating projects—the US-led Event Horizon Tele-
scope (EHT) project3 and the European BlackHoleCam (BHC) project4—which are
attempting to image the shadow of the black hole at the center of our Galaxy using the
very-long-baseline interferometry (VLBI). A detailed explanation how interferom-
etry works and how it is used in radio astronomy is given in the book by Thompson
et al. (2004). We just give a brief description.

22013 awardedwith the David N. SchrammAward for high-energy astrophysics science journalism.
3Project website: www.EventHorizonTelescope.org.
4Project website: BlackHoleCam.org.

http://www.eventhorizontelescope.org
http://blackholecam.org
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The angular resolution δ = λ/D of a single radio telescope is determined by its
apertureD and by the observingwavelength λ. Hence, the resolution can be increased
either by observing at shorter wavelengths or by increasing the aperture of the tele-
scope. The latter is limited by material properties which restrict the dish size of fully
steerable radio telescopes to a maximum size of about 100m in diameter. However, it
is possible to add up the phase correlated signals of several smaller telescopes from
one site; then, the station operates effectively like one single telescope with big-
ger aperture. Furthermore, the data of several sites of telescopes can be combined.
For that purpose, the detected signals are stored and stamped with the exact time
of detection determined by ultraprecise atomic clocks. Then, all raw data packets
are centrally processed by a supercomputer. Based on the time-stamps, interference
patterns between each two telescopes within the network are calculated. With this
interferometric method, one can achieve an angular resolution of5

δ = λ

D
= c

νD
(1.1)

whereD is now the longest baseline, i.e., the longest distance between two telescope
stations within the network! Thus, a virtual telescope of the size of the whole array is
built and this is why the method is called very-long-baseline interferometry (VLBI).

For the EHT or BHC project, the array has Earth-spanning scale with telescopes at
several widespread locations around the Earth, see Table1.1. ALMA6 and the South
Pole Telescope (SPT) will join the network soon which will improve the resolution.
The expanded array features baselines of about 10000 km length (cf. Inoue et al.
2014, Table1) which is 78% of the Earth’s diameter of 12742 km. In Table1.2,
achievable angular resolutions for a baseline of 10000 km for typical millimeter and
submillimeter wavelengths are collected.

Based on the interference patterns, the brightness of the source, i.e., an image of
the observed sky can be reconstructed, see Thompson et al. (2004), Thiébaut (2009).
As a matter of fact, each baseline represents a grid point of the approximation of the
(complex) visibility function V (u, v) that is the 2D Fourier transform of the bright-
ness. In order to improve the approximation of V , it is fortunately not mandatory
to expand the telescope array (which would not be affordable). The Earth’s rota-
tion helps instead. In consequence, all telescopes are rotated relative to the source
which yields rotated grid points. Thus, (under the assumption of a sufficiently stable
visibility function) just simple multiple repeated measurements enhance the image
quality. In the literature, the rotation of the Earth can be identified by bows that are
drawn in “u-v coverages”. Nevertheless, the reconstructed image is defective, since
V is only given at a discrete number of points. But the quality of this “dirty” image
can be significantly improved by image processing methods such as deconvolution.

5Wavelength λ and frequency ν are linked by the speed c of light: λν = c = 299 792 458m
s .

6Initially, ALMA was not designed for VLBI observations. In order to work as a phased array
equivalent to a single big telescope, ALMA’s processing unit that correlates the signals from the
single antennas was changed.
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Table 1.1 Radio telescopes in the VLBI network; CARMAwas shut down in April, 2015; ALMA
and SPT are not yet fully integrated, the GLT is under construction

Sign Telescope Location

PdBI Plateau de Bure Interferometer Grenoble, France

IRAM Institut de Radioastronomie
Millimetrique

Pico Veleta, Spain

SMT Submillimeter Telescope Observatory Mount Graham, Arizona

JCMT James Clerk Maxwell Telescope Mauna Kea, Hawaii

SMA Submillimeter Array Mauna Kea, Hawaii

LMT Large Millimeter Telescope Sierra Negra, Mexico

APEX Atacama Pathfinder Experiment Chajnantor-Plateau, Chile

CARMA Combined Array for Research in
Millimeter-wave Astronomy

Inyo Mountains, California

ALMA Atacama Large
Millimeter/submillimeter Array

Chajnantor-Plateau, Chile

SPT South Pole Telescope Amundsen–Scott Station, Antarctica

GLT Greenland Telescope Summit Station, Greenland

Table 1.2 Achievable angular resolutions δ for a maximal baseline of D = 10000 km for typical
observing frequencies ν in the mm/sub-mm wavelength range

Frequency ν (GHz) 150 230 345 450 500

Wavelength λ (mm) 2 1.3 0.87 0.67 0.60

δ(104 km) (µas) 41.22 26.89 17.92 13.74 12.37

One algorithm that is used is the CLEAN algorithm from Högbom (1974), see also
the historic remarks and comments given by Högbom (2003) himself and Cornwell
(2009).

Even though higher resolution is achieved with submillimeter wavelength astron-
omy, it is technically very difficult. In fact, observations are not disturbed by interstel-
lar dust, but by atmospheric streams or by water that is contained in the atmosphere.
For some wavelengths, the radiation (microwaves) is even completely absorbed, see
for example Fig. 1 by Maiolino (2008) which shows the atmospheric transmission
for the ALMA site in the Atacama Desert, Chile. This effect determines possible
observing frequencies. Furthermore, the signals itself get Doppler shifted because of
the Earth’s rotation which complicates the comparison among the different locations.

Besides all technical challenges that have to be solved for imaging the shadow
there are several other questions that have to be clarified first:

• How would the shadow look like?
• Will the contrast be high enough to see the shadow?
• How does an accretion disk or a jet affect the shadow?
• Is it possible to localize the targets with sufficient precision?
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These are answered with the help of analytic and numerical calculations.7

Synge (1966) was the first to calculate what we nowadays call the shadow8 of a
Schwarzschild black hole. He found that the angular radius ρ of the circular shadow
is given by the simple formula

sin2 ρ = 27

4

(ρO − 1)

ρ3
O

(1.2)

where ρO = rO/(2m) is the ratio of the observer’s r coordinate rO and the Schwarz-
schild radius. Here, circular light orbits exist on the photon sphere at r = 3m. For a
rotating Kerr black hole, the photon sphere breaks into a spatially three-dimensional
photon region filled by spherical lightlike geodesics, i.e., by light paths on spheres
r = constant. The shadow is non-circular and gets a D-shaped contour in the extreme
case. Bardeen (1973) was the first to correctly calculate the shadow of a Kerr black
hole; the results can also be found in Chandrasekhar’s book or in Volker Perlick’s
Living Review (Chandrasekhar 1983; Perlick 2004). Bardeen’s distant observer is
suitable for describing the shape of the shadow. The size is not characterized.

The shadow has also been discussed for other black holes, e.g., for charged black
holes (and for naked singularities) in the Kerr–Newman space-time (de Vries 2000),
for δ = 2 Tomimatsu–Sato space-times (Bambi and Yoshida 2010), for black holes
in extended Chern–Simons modified gravity (Amarilla et al. 2010), in a Randall–
Sundrum braneworld scenario (Amarilla and Eiroa 2012) and a Kaluza–Klein rotat-
ing dilaton black hole (Amarilla and Eiroa 2013), for the Kerr–NUT space-time
(Abdujabbarov et al. 2012), for multi-black holes (Yumoto et al. 2012) and for reg-
ular black holes (Li and Bambi 2014). None of these descriptions is an analytic
one.

Light rays near the central black hole are expected to be affected by the luminous
accretion disk or other dust that surrounds the black hole, see Fig. 1.2 for a schematic
illustration of the shadow. The matter causes a spreading such that the black hole’s
silhouette is not sharply delimited. In order to generate a more realistic image of
the black hole’s shadow, the visual appearance of an accretion disk or jets is studied
with the help of sophisticated numerical ray-tracing programs by several authors,
following the pioneering work of Bardeen and Cunningham (1973) and Luminet
(1979). Here, opacity effects caused by absorption, emission or scattering could be
modeled by general relativistic magnetohydrodynamics (GRMHD) or general rela-
tivistic radiative transfer (GRRT). Starting from a grid which represents the observed
image, the resulting equations are solved backwards in time simultaneously with the
geodesic equation.

There are numerous articles about these simulations. Since this doctoral the-
sis covers an analytic way to calculate the shadow neglecting all effects of matter,
we refer only to a selection. Influences of jets, accretion disks/tori (optical density,

7The following two paragraphs are based on expositions in [1].
8Synge did not use the word “shadow” but he investigated the condition under which photons could
escape to infinity; this complement of the shadow he called “escape cone”.
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disc black hole

photographic plate

Fig. 1.2 Schematic illustration of the shadow of a black hole with accretion disk (Credit c© J.-P.
Luminet, original from Luminet 1998)

magnetic properties, polarization) or compton scattering at relativistic electrons were
explored by Agol (1997), Armitage and Reynolds (2003), Broderick and Narayan
(2006), Bromley et al. (2001), Dexter (2011), Dexter et al. (2012), Mościbrodzka
et al. (2011, 2012, 2014), Vincent et al. (2015), Younsi et al. (2012), Younsi and Wu
(2013). Furthermore, one can determine how the shadow looks like for an approach-
ing observer (Marck 1996), during a star collapse (Ames and Thorne 1968; Ortiz
et al. 2015) or for the collision or the merger of two black holes (Yumoto et al. 2012;
Bohn et al. 2015). For the movie Interstellar, an algorithm for tracing ray-bundles
instead of single photons was developed. It was used to generate high resolution
sequences of the shadow of an almost maximally rotating Kerr black hole with an
accretion disk (James et al. 2015). Finally, the paper by Falcke et al. (2000) has to be
mentioned. Here, Heino Falcke, Fulvio Melia and Eric Agol demonstrate the effect
of scattering on the visibility of the shadow. Since publication, this paper is quoted
in virtually all publications regarding the black hole’s shadow!

Besides the nearest candidate Sgr A* (8.3 kpc away with mass 4.3 × 106M�)
another promising candidate for a supermassive black hole is the object at the center
ofM87 (16.7Mpc awaywithmass 6.2×109M�), see Lu et al. (2014), Broderick et al.
(2015) for black hole argument for M87 and Gillessen et al. (2009), Broderick et al.
(2015), Kormendy and Ho (2013) for the black hole parameters. A broad overview
of observations as well as simulations of phenomena for the black holes near Sgr A*
and in M87 is given by Dexter and Fragile (2013).[1]

Using Eq. (1.2), we can estimate the angular diameter of shadows casted by the
black holes in the Galactic center and inM87, see Table4.1 in Sect. 4.6. According to
that, one expects for Sgr A* and M87 angular diameters of 53 and 40 µas (microarc-
seconds) which are comparable to the angular diameter of an orange on the moon
observed from the earth. Although tiny, such a diameter should be resolvable with
VLBI; to achieve angular resolution of 20 µas, submillimeter wavelength observa-
tions at 0.87mm (345GHz) or even better at 0.67mm are necessary, cf. Table1.2. The
submillimeter wavelength range has the advantage that these wavelengths are less
distorted by interstellar scattering on galactic electrons (Ricarte and Dexter 2015).
Just as important as the achievement of the required angular resolution is the question

http://dx.doi.org/10.1007/978-3-319-30066-5_4
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whether it is possible to localize SgrA* andM87 within somemicroarcseconds. This
was answered positively by Broderick et al. (2011).

Fortunately, the numerical studies by Falcke et al. (2000) reveal that the shadow
is visible at 0.6mm submillimeter wavelength but not at 1.3mm, see also Doeleman
et al. (2008),Huang et al. (2007). In addition, there is a newpaper byFish et al. (2014).
After generating aVLBI simulation at 1.3mmwavelength by image processing tools,
they show that image reconstruction by deconvolution is possible.

First VLBI observations at 1.3mm (three-station VLBI: SMT, CARMA, JCMT)
show structure in the order of the event horizon of the black hole near Sgr A* but
did not resolve the shadow (Doeleman et al. 2008). The needed higher resolution is
expected to be achieved in the near future when ALMA and SPT are fully integrated
in the network. For sure, the first actually observed shadow will be posted on the
internet blogDark StarDiaries9 established as public outreach from the EHTproject;
the already existing posts contain useful informations around the project.

In spite of the fact that first observations have not resolved the shadow, they do
not disappoint. They do show that the bulk of the Sgr A* emission is slightly offset
of the center of gravity. Consequently, the radio source Sgr A* does not coincide
with the black hole. Doeleman et al. (2008) suggest that the emission arises in the
surrounding accretion disk or jet. The observed offset is explained by doppler effects.
Other observations confirm a small emission region (Krichbaum et al. 1998; Fish
2010), resolve a jet launching structure (Doeleman et al. 2012) or show that the
accretion disk is tilted with aligned inclination (50°–60°) of source and the inner
stellar disk (Dexter and Fragile 2013; Mościbrodzka et al. 2014; Psaltis et al. 2015).

Special interest has been devoted to the question of whether the shadow of a
black hole can be used as a test of the no-hair theorem[1], which states that a black
hole is completely characterized by mass, spin and electric charge (Misner et al.
1973). Recently, Norman Gürlebeck showed that the no-hair theorem is not only
valid for isolated black holes but also for astrophysical situations where black holes
are distorted by matter (Gürlebeck 2015; Ashtekar 2015). The observational aspects
were mainly discussed by Tim Johannsen, see for example Johannsen and Psaltis
(2011); Johannsen (2012a, b, 2013); Broderick et al. (2014). If the shadow of a black
hole will be observed, its shape will give important information on the parameters of
the black hole. There are considerations whether it is possible to constrain at least the
spin from the shadow (Takahashi 2004; Zakharov et al. 2012; Tsukamoto et al. 2014).
For this purpose, Hioki and Maeda (2009) introduced a deformation parameter that
characterizes the deviation of the shadow from a circle.[1] Abdujabbarov et al. (2015)
gave a more elaborated, coordinate independent characterization of the shadow.

Every few years, review articles about the current status and the future of VLBI
appear; the reports of the last decade are focussed on the shadow observations
(Spencer 1991; Moran 2003; Fish and Doeleman 2009; Doeleman 2009, 2010;
Krichbaum et al. 2012). Observational perspectives for submm VLBI with ALMA
are highlighted by Krichbaum (2010), Fish et al. (2013), Tilanus et al. (2014).

9Blog website: blogs.scientificamerican.com/dark-star-diaries/.

http://blogs.scientificamerican.com/dark-star-diaries/
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Since the beginning of the Event Horizon Telescope project it is aimed to extend
the existing network of mm/submm telescopes in order to increase the resolution.
This is done by deploying receivers for missing submm wavelengths in the simplest
case, by upgrading existing telescopes, as for example ALMA, or by commission-
ing completely new VLBI stations. The most suitable sites are those with relatively
stable atmospheric conditions, in particular with low fractions of water vapor. Thus,
deserts or the arctic regions are highly favored. Indeed, after ALMA (in the Atacama
Desert) and the SPT, the Greenland Telescope (GLT), which is currently under con-
struction, will join the VLBI network (Nakamura et al. 2013; Inoue et al. 2014).
Furthermore, there are plannings for a phase-a study for a new telescope in Africa
(possible site: Namibia, Kili) within the BlackHoleCam project. If everything works
well and the 10-meter space-based radio telescope Millimetron goes into operation
at the Lagrangian point L2 probably in the mid-2020s (Kardashev et al. 2014), then
the resolution will be further improved. With this Russian satellite, the Earth-based
telescope network is upgraded with an extra-long Space-Earth baseline of 1.5million
km. Perhaps, it is then possible to observe shadows of other black holes candidates
like those listed by Inoue et al. (2012).

For observing the position of stars, the breakthroughwas succeeded with develop-
ing adaptive optics.With this technology, the atmospheric blurring effects are reduced
notably by adjusting the (segmented) mirrors of the telescope depending on Laser
measurements of the atmosphere. The observations of stellar orbits in the Galactic
center are expected to become even more precise when the GRAVITY instrument
at the Very Large Telescope (VLT) in Chile (Eisenhauer et al. 2007, 2009) goes
into operation soon.[1] Higher resolutions are guaranteed with the next-generation
optical/near-infrared telescope. Last year, the constructing phase of the new 40-meter
European Extremely Large Telescope (EELT) started. It is also located in the Ata-
cama Desert in Chile (Cerro Armazones) and first light is anticipated for the next
decade (Lyubenova and Kissler-Patig 2011).

With these new telescopes, stellar orbits at 100 Schwarzschild radii could be
discovered—more than one order of magnitude better than today. It will be also
possible to study the origin of flares in more detail. After imaging the shadow of the
black hole in the Galactic center near Sgr A* or that one in M87, the scientific main
goal of the Event Horizon Telescope or the BlackHoleCam project is to estimate
black hole parameter from the data like mass and distance or spin, orientation or a
putative quadrupole moment for tests of general relativity.

Finally, Table 1.3 gives a chronological overview from the first considerations
of gravitational light deflection by Cavendish and von Soldner to the subsequently
presented analyitc description of the shadow of a black hole. Listed are important
steps for the theoretical description and for the observational techniques needed to
observe the shadow.
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Table 1.3 Timetable

1784 Newtonian light deflection (H. Cavendish) Will (1988)

1801 Newtonian light deflection (J. von Soldner) von Soldner (1804)

1905 Special Relativity Einstein (1905)

1915 General Relativity Einstein (1915a, b, c)

1916 First solution of Einstein’s field equations Schwarzschild (1916)

1919 Confirmation of Einsteinian light deflection Dyson et al. (1920)

1963 Discovery of the Kerr solution Kerr (1963)

1964 Origin of the naming “black hole” Ewing (1964)

1966 Shadow of a Schwarzschild black hole Synge (1966)

1967 First VLBI observations Kellermann (1972)

1971 Active galactic nuclei hosts supermassive black holes Lynden-Bell and Rees (1971),
Rees (1984)

1973 Shadow of a Kerr black hole Bardeen (1973)

1973 “A black hole has no hair” (no-hair theorem) Misner et al. (1973)

1974 Discovery of the radio source Sagittarius A*
(Sgr A*) in the Galactic center

Balick and Brown (1974), Goss
et al. (2003)

1979 First lensed double image of twin quasar
QSO 0957+561

Walsh et al. (1979)

1979 Shadow of a black hole with accretion disk Luminet (1979)

1992 First measurements of proper motion of stars in the
Galactic center

Eckart and Genzel (1997), Ghez
et al. (1998)

2000 Shadow of Kerr–Newman black hole and naked
singularities

de Vries (2000)

2000 First ray-tracing simulation for Galactic black hole Falcke et al. (2000)

2008 First NSF grant for the Event Horizon Telescope

2013 ERC grant for the BlackHoleCam project

2015 No-hair theorem for astrophysical black holes Gürlebeck (2015)

2015 Shadows for moving observers, aberration Grenzebach (2015)

2015 Shadows of black holes in the Plebański–Demiański
class

Grenzebach et al. (2015)

By [1–3] I refer to my papers Grenzebach et al. (2014), Grenzebach (2015) and Grenzebach et al.

(2015), respectively. Sentences marked with [i] can be found in total or only slightly modified in

the ith paper

http://www.eventhorizontelescope.org
http://blackholecam.org
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Chapter 2
The Plebański–Demiański Class of Black
Hole Space-Times

Abstract The Plebański–Demiański class contains stationary, axially symmetric
type D solutions of the Einstein–Maxwell equations with a cosmological constant. It
covers many well-known black hole space-times like the Schwarzschild, Kerr or the
Kottler space-time. The space-times are characterized by seven parameters: mass,
spin, electric and magnetic charge, gravitomagnetic NUT charge, a so-called accel-
eration parameter and the cosmological constant. We review space-time properties
like symmetries and isometries as well as the appearance of singularities as ring
singularities or axial singularities. Furthermore, we discuss horizons, the ergoregion
and a region with causality violation.

Keywords Plebanski-Demianski ·Schwarzschild ·Kerr ·Kerr-Newman ·Reissner-
Nordstroem ·NUT ·C-metric ·Metric tensor ·Boyer-Lindquist coordinates ·Space-
time properties · Symmetries · Isometries · Singularities · Ring singularity · Axial
singularity · Black hole horizon · Ergoregion · Causality violation · Conformal
factor

We consider the general Plebański–Demiański class of stationary, axially symmetric
type D solutions of the Einstein–Maxwell equations with a cosmological constant.1

In fact, these solutions were first found by Debever (1971) but are better known in
the form of Plebański and Demiański (1976). For the case without cosmological con-
stant, these metrics can be traced back to Carter (1968) and in the Boyer–Lindquist
coordinates, which we will use in the following, to Miller (1973). A detailed discus-
sion of the Plebański–Demiański metrics can be found in the books by Griffiths and
Podolský (2009) or Stephani et al. (2003). It is common to use units in which the
speed of light and Newtons gravitational constant are normalized (c = 1, G = 1).
With this rescaling, the Plebański–Demiański metric can be written in the Boyer–
Lindquist coordinates (r, ϑ, ϕ, t) as

1The first four paragraphs as well as parts of Sect. 2.3 are based onmy papers [1] and [3]. Section2.4
contains expositions given in [3].
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see Griffiths and Podolský (2009, p. 311). Here, we use the abbreviations
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with the following coefficients of the polynomials Δϑ and Δr
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and
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3
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1 + 3 α2

ω2 �2(a2 − �2)
(a2 − �2), ω =

√
a2 + �2. (2.5)

Basically, the coordinates t and r may range over all of R while ϑ and ϕ are
standard coordinates on the two-sphere. Note, however, that for some values of the
black-hole parameters r and ϑ have to be restricted, see Sect. 2.3. The Plebański–
Demiański space-time depends on seven parameters (m, a, β, �, α, Λ and C) which
are to be interpreted in the following way: m is the mass of the black hole and a is
its spin. β is a parameter that comprises electric and magnetic charge, β = q2

e + q2
m

at least, if it is non-negative; for negative β, the metric cannot be interpreted as a
solution to the Einstein–Maxwell equations because the electric or magnetic charge
has to be imaginary then. Nonetheless, the case β < 0 is of interest because metrics
of this form occur in some braneworld scenarios (Aliev and Gümrükçüoğlu 2005).
The NUT parameter � is to be interpreted as a gravitomagnetic charge (Griffiths and
Podolský 2009, p. 219). The parameter α gives the acceleration of the black hole
(Griffiths and Podolský 2009, p. 258) while Λ is the cosmological constant. The
quantity C , which was introduced by Manko and Ruiz (2005), is relevant only if
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� �= 0. In this case, there is an axial singularity on the z axis and by choosing C
appropriately this singularity can be distributed symmetrically or asymmetrically on
the positive and the negative z axis. All the parameters, m, a, �, β, Λ, α and C ,
may take arbitrary real values in principle, albeit not all possibilities are physically
relevant.

If only the mass and the acceleration parameter are different from zero, we have
the so-called C-metric2 which describes a space-time with boost-rotation symmetry.
This solution to the vacuum Einstein field equation was found by Levi-Civita (1919)
and Weyl (1917, 1919). The name C-metric refers to the classification in the review
of Ehlers and Kundt (1962). The rotating version of the C-metric was considered
by Hong and Teo (2005) while a detailed discussion of accelerated space-times in
general can be found in the book by Griffiths and Podolský (2009).

Commonly the C-metric is given in the form introduced by Hong and Teo (2003)

gCμν dx
μ dxν = 1

α2(x + y)2

(
−F(y) dτ 2 + dy2

F(y)
+ dx2

G(x)
+ G(x) dϕ2

)
(2.6)

with cubic functions F(y) = −(1 − y2)(1 − 2αmy) and G(x) = (1 − x2)(1 +
2αmx). The metric depends on two parameters, the mass m and the accelera-
tion parameter α. The domain covered by the coordinates (τ, x, y, ϕ) actually
contains two black holes accelerating away from each other with a conical singularity
(a “strut”) on the axis of rotational symmetry (Griffiths and Podolský 2009; Kinner-
sley andWalker 1970; Bonnor 1983; Bonnor and Davidson 1992). For our purposes,
Boyer–Lindquist coordinates aremore suitable, seeEq. (2.1),which cover only one of
the two black holes.

The Plebański–Demiański class (2.1) covers many well-known space-times like
the Schwarzschild, Kerr or Taub–NUT space-time; their charged versions (β > 0)
and versions with non-vanishing cosmological constant Λ or acceleration α are also
included. The non-accelerated space-times (α = 0) are comprised in the Plebański
or Kerr–Newman–NUT–(anti-)de Sitter class of metrics. Details about the cov-
ered space-times and the particular parameters of the space-times can be found in
Table2.1; a similar one is also presented in the book by Stephani et al. (2003, p. 325).

In some of these cases, the two polynomials Δϑ and Δr , see (2.2), reduce to
much simpler forms. For α = 0, we find k = (1 − �2Λ)(a2 − �2), ω = √

a2 + �2

and hence
Δϑ = 1 + Λ

(
4
3a� cosϑ + 1

3a
2 cos2 ϑ

)
,

Δr = Δ − Λ
(
(a2 − �2)�2 + ( 13a

2 + 2�2)r2 + 1
3r

4
)
,

(2.7)

while � = 0 yields k = a2, ω = √
a2 + �2 = a and

2Note that this parameter C has nothing to do with the name “C-metric” for space-times of accel-
erated black hole(s).
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Table 2.1 Metrics covered in the Plebański–Demiański class

a β � α Λ Space-time

× × × × × Plebański–Demiański

Schwarzschild

× Reissner–Nordström

× Kerr

× × Kerr–Newman

× Taub–NUT

× × Kerr–NUT

× × × Kerr–Newman–NUT

× Kottler or Schwarzschild–(anti-)de Sitter

× × × × Plebański or Kerr–Newman–NUT–(anti-)de Sitter

× C-metric or accelerated Schwarzschild

× × Rotating C-metric or accelerated Kerr

The × marks the particular black hole parameters of the space-time additional to the mass m

Δϑ = 1 − 2αm cosϑ + (
α2(a2 + β) + Λ

3 a
2
)
cos2 ϑ,

Δr = Δ(1 − α2r2) − Λ
3 (a2 + r2)r2,

(2.8)

where Δ = r2 − 2mr + a2 − �2 + β.

2.1 Symmetries

In the Plebański–Demiański class, all metric coefficients gμν noted in Eq. (2.1) are
independent of t and ϕ which is why all space-times of this class stay invariant under
translations of t and ϕ. Thus, the corresponding coordinate vector fields

∂t = ∂
∂t , ∂ϕ = ∂

∂ϕ
(2.9)

are Killing vector fields that describe the symmetries of the space-time. Since their
scalar products reproduce the t and ϕ metric coefficients

gtt = g(∂t , ∂t ), gtϕ = g(∂t , ∂ϕ), gϕϕ = g(∂ϕ, ∂ϕ) (2.10)

these coefficients have a geometric meaning, see Sect. 2.4.
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2.2 Isometries

Wehave learned from the symmetries that it is not important at which time or atwhich
angle ϕ we are looking at the black hole. The metric is the same and consequently
also the described geometry. Of course, the translations of t and ϕ are isometries
but there are more. In general, space-times which differ in one of the black hole
parameters describe different geometric situations since themetric is changed.But for
the Plebański–Demiański class there are globally isometric cases with opposite signs
for some black hole parameters. Two are given by the coordinate transformations,
see Appendix B

(M[m, a,β,�, C,α,λ], g)⏐⏐
(
ϑ
ϕ

)
�→

(
π−ϑ−ϕ

)
(M ′

[m,−a,β,�,−C,α,λ], g
′)

(M[m,a,β, �, C, α,λ], g)⏐⏐
(
ϑ
ϕ

)
�→

(
π−ϑ

ϕ

)
(M ′

[m,a,β,−�,−C,−α,λ], g
′)

(2.11)

These isometries tell us the following: Two black holes (C = 0) which differ in
the rotation direction only describe the same geometry but space-times have to be
mirrored at the equatorial plane (ϑ �→ π − ϑ) and at the plane defined by the rotation
axis and the ϕ = 0 direction (ϕ �→ −ϕ). For black holes which differ in the sign of
� and α, one gets space-times mirrored at the equatorial plane.

2.3 Singularities

The metric (2.1) becomes singular at the roots of Ω , Σ , Δr , Δϑ and sin ϑ . Some of
them are mere coordinate singularities while others are true (curvature) singularities.
As this issue is of some relevance for our purpose, we briefly discuss the different
types of singularities in the following paragraphs.

Conformal factor. Ω becomes zero if

r =
√
a2 + �2

α(� + a cosϑ)
. (2.12)

As the metric blows up if Ω → 0, Eq. (2.12) determines the boundary of the space-
time.BecauseΩ enters as square into themetric (2.1),we restrict the space-timewith-
out loss of generality to the region where Ω is positive, see Fig. 2.4 on page 29. The
allowed region is a half-space bounded by a plane (� = 0), a half-space bounded by
one sheet of a two-sheeted hyperboloid (�2 < a2), a domain bounded by a paraboloid
(�2 = a2), or a domain bounded by an ellipsoid (�2 > a2); see Fig. 2.1 for appropriate
illustrations of these regions. For α = 0 there is no restriction because Ω ≡ 1. Note
that Eq. (2.12) gives positive as well as negative r values depending on the signs of
α, �, a.
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plane hyperboloid paraboloid ellipsoid

� = 0 �2 < a2 �2 = a2 �2 > a2

Fig. 2.1 Hyperboloids

Ring singularity. The equation Σ = 0 is equivalent to

r = 0 and cosϑ = −�/a. (2.13)

If �2 < a2, this condition is satisfied on a ring. The singularity on this ring turns
out to be a true (curvature) singularity if m �= 0. It is usually referred to as the ring
singularity. Note that, apart from this singularity, the sphere r = 0 is regular. Hence,
it is possible to travel through either of the two hemispheres (“throats”) that are
bounded by the ring singularity—from the region r > 0 to the region r < 0 or vice
versa.

If �2 > a2, there is no ring singularity. Σ is different from zero everywhere and
the entire sphere r = 0 is regular.

In the limiting case where �2 = a2, the ring singularity degenerates into a point on
the axis. It becomes a point singularity for � = a = 0 that disconnects the space-time
into the regions r > 0 and r < 0. The ring singularity is unaffected by α.

Axial singularity. The metric is singular on the z axis, i.e. for sin ϑ = 0, and this is
always the case when using spherical polar coordinates. If α �= 0 or � �= 0, this is not
just a coordinate singularity but rather a true (conical) singularity on (at least a part
of) the rotational axis. In the NUT case, the singularity depends on the Manko–Ruiz
parameter C .

To demonstrate this, we observe that in the limit cosϑ → ±1 we have Σ →
r2 + (� ± a)2 and χ → −2�(±1 + C). As a consequence, the metric coefficient

gtt = Ω2

(
χ2

ΣΔϑ sin2 ϑ
− (Σ + aχ)2

ΣΔr

)
(2.14)

diverges unless C = ∓1. This divergent behavior indicates that either the coordinate
function t or the metric g becomes pathological. It was shown by Misner (1963)
that this singularity can be removed if one makes the time coordinate t periodic.
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C < −1 C = −1 −1 <C < +1 C =+1 C > +1

Fig. 2.2 Singularities on the z axis in Kerr–NUT space-times marked as (red) rotating rods

(Misner restricted himself to the Taub–NUT metric, a = β = Λ = 0, with C = 1
but his reasoning applies equally well to the general case.) We do not follow this
suggestion because it leads to a space-time with closed timelike curves through every
event. Instead, we adopt Bonnor’s interpretation (Bonnor 1969, p. 145) of the axial
singularity who viewed it as a “massless source of angular momentum”, see also
Stephani et al. (2003, p. 310). As pointed out by Manko and Ruiz (2005), this source
term is splitted into two semi-infinite rotating rods with negative masses and infinite
angular momenta where the rotation direction of the rods depends on C , see Fig. 2.2.
TheManko–Ruiz parameterC is balancing the singularity. ForC = 1, the singularity
is on the half-axis ϑ = 0, for C = −1 it is on the half-axis ϑ = π and for any other
value of C it is on both half-axes. Thus, by choosing the Manko–Ruiz parameter C
appropriately, one can decide on which part of the axis the singularity is situated.
Note that each half-axis extends from r = −∞ to r = ∞.

Metrics (2.1) with different values of C are locally isometric near all points off
the axis. This follows from the fact that a coordinate transformation t ′ = t − 2�C̃ϕ

yields, again, a metric (2.1) with C ′ = C + C̃ . For C̃ = −C such a coordinate trans-
formation eliminates the parameterC from themetric, seeKagramanova et al. (2010).
Note, however, that this transformation does not work globally because ϕ is periodic
and t is not, and it does not work near the axis because ϕ is pathological there. But
there are globally isometric space-times as pointed out in Sect. 2.2.

Horizons. Straumann (2013, p. 471ff) explained in detail that horizons for the Kerr–
Newman family are the null hypersurfaces

H = {
g(ξ, ξ) = 0

}
with ξ = ∂t − gtϕ

gϕϕ

∂ϕ. (2.15)

His argumentation applies equally well to the general Plebański–Demiański class.
Therefore, the horizons of a Plebański–Demiański black hole are at

g(ξ, ξ) = 0 ⇐⇒ 0 = g2ϕt − gtt gϕϕ = ΔrΔϑ sin2 ϑ

Ω4
(2.16)
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and can be found as real roots of Δr or Δϑ which are coordinate singularities. In the
following, we successively discuss both cases.

(i) A Plebański–Demiański space-time exhibits up to 4 horizons r1 > r2 >. . . on
spheres r = constant since Δr is in general a polynomial of degree 4. If α = 0 and
Λ = 0, then Δr reduces to a second-degree polynomial

Δr = r2 − 2mr + a2 − �2 + β (2.17)

and horizons can be found at

r± = m ±
√
m2 − a2 + �2 − β (2.18)

as long as a2 ≤ a2max := m2 + �2 − β. Then r+(= r1) is the outer (event) horizon
of the black hole and r−(= r2) is the inner horizon. For a2 > a2max we would find,
instead of a black hole, a naked singularity or a regular space-time. But we will not
consider this possibility in the following because we are interested in the black hole
case only. Then, the spin a is bounded by amax and a maximally rotating black hole
(a2 = a2max) is called extremal black hole. Since ∂r is space like outside of the event
horizon (Δr > 0), communication is possible here. Therefore, this region is called
domain of outer communication and we will place our observers for observing the
shadow of the black hole within this region.

With cosmological constant (but α = 0) we obtain for Δr , see Eq. (2.7)

Δr = (r2 − 2mr + a2 − �2 + β) − Λ
(
(a2 − �2)�2 + ( 13a

2 + 2�2)r2 + 1
3r

4
)

(2.19)

which has a strictly positive second derivativeΔ′′
r ifΛ < 0, as forΛ = 0. Hence, the

number of zeros of Δr is either 2 or 0 and as above we have a black hole or a naked
singularity or regular space-time. Again, the domain of outer communication around
the black hole is the region between r = ∞ and the first horizon at r1. If Λ > 0, the
vector field ∂r is timelike for big values of r . Therefore, the first horizon, if existing,
is a cosmological horizon. We have a black hole if there are four horizons altogether.
Then, the domain of outer communication is the region between the first and the
second horizon. But in both cases the horizons could in general not be specified in a
simple form because of the higher degree of Δr .

This applies also to an accelerated scenario with nonvanishing NUT charge � or
cosmological constantΛ. But if both are zero, the horizons can easily be determined.
According to Eq. (2.8) Δr is factorized then

Δr = (r2 − 2mr + a2 + β)(1 − α2r2); (2.20)

therefore, we find the usual (Kerr–Newman) horizons at r = r± given by Eq. (2.18)
with � = 0 and additional cosmological horizons at r = ± 1

α
. Of course, we must
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Fig. 2.3 Different scales for
the r coordinate in extended
polar plots

r
3m−3m

3m

mexp(r/m
) r+

m

Δr

r4 r3 r2 r1

Δr

r4 r3 r2 r1

Δr

r4 r3 r2 r1

r1 r1 r1 r1

Δr ≤ 0
horizons at Δr = 0

observer

sphere r = 0

Ω > 0

α� > 0 α� < 0 α� > 0 α� < 0
r2: cosmol. horizon no cosmol. horizon r1: cosmol. horizon r1: cosmol. horizon
r3: event horizon r1: event horizon r2: event horizon r2: event horizon

NUT dominated (a2 < �2) Kerr dominated (a2 > �2)

Fig. 2.4 Schematic illustrations of the graph of Δr (upper row) and extended polar plots of the
region Ω > 0 (lower row). Depending on the sign of its leading coefficient, Δr goes to ±∞ for
big radii r ; the sign changes if a2 ≈ �2 (equality for Λ = 0) and with the change the space-time
is no longer NUT but Kerr dominated. The space-time is restricted to that region where Ω > 0
( ). Geometrically, the boundary of this region is an ellipsoid (left) or one sheet of a two-sheeted
hyperboloid (right). In the NUT dominated case, the root r1 of Δr is not contained in the ellipsoid
Ω > 0 for α� > 0; thus, the event horizon is at r3 instead. Interestingly, for α� < 0 there is no
cosmological horizon. The red hatched region ( ) marks the outer domain of communication
(Δr > 0) where observers are placed

have |α| < 1
r+ . For analyzing the general case, we have to take into account that

only the regions where Ω > 0, see Eq. (2.12), are allowed. Here, the vector field ∂r
could be timelike or space like for big values of r and this depends, of course, on the
sign of the leading coefficient b4 of Δr . Figure2.4 shows in the first row schematic
illustrations of the graph of Δr and in the second row extended polar plots of the
region Ω > 0.

Following a suggestion by O’Neill (1995), we show the entire range of the space-
time, with the Boyer–Lindquist coordinate r increasing outward from the origin
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which corresponds to r = −∞. But in order to not highlight the outer parts by a strong
deformation, we use two different scales for the radial coordinate (see Fig. 2.3): In
the inner region r < 0 (inside the sphere r = 0 marked by a dashed circle), the radial
coordinate is plotted asm exp(r/m); this is continuously extended with r + m in the
outer region r > 0 (outside the sphere r = 0).

The sign of b4 does not only define the causal character of ∂r but also the character
of the whole space-time since the sign changes at a2 ≈ �2 (equality for Λ = 0), see
Eq. (2.4). Thus, the space-time is NUT dominated with space like ∂r (b4 > 0) for
big r if a2 < �2 and Kerr dominated with timelike ∂r (b4 < 0) for big r if a2 > �2.

In the NUT case (left columns in Fig. 2.4) where according to Eq. (2.13) we have
no ring singularity, interesting things happen. For α� > 0, the first root r1 is not in
the allowed region Ω > 0. Hence, we have a cosmological horizon at r2, the event
horizon of the black hole at r3 and in between the domain of outer communication.
Different signs of α and �, however, result in 3 negative roots of Δr ; thus, the only
positive root r1 is the event horizon and the adjacent domain of outer communication
is not bounded by a cosmological horizon. However, one can easily read of Eq. (2.12)
thatΩ < 0 in the equatorial plane (ϑ = π

2 ) is only possible for negative r values. The
timelike case (right columns in Fig. 2.4) is similar to the non-accelerated space-times
discussed before. Since all real roots of Δr are in the allowed region with Ω > 0,
the first root r1 represents a cosmological horizon and the subsequent root r2 is the
black-hole horizon. Here, the domain of outer communication is the region between
r1 and r2 where Δr > 0.

(ii) As mentioned on page 28, the roots ofΔϑ are coordinate singularities, too; these
indicate further horizons where the vector field ∂ϑ changes the causal character from
space like to timelike, just as the vector field ∂r does at the roots of Δr . However,
since these horizons lie on cones ϑ = constant instead of spheres r = constant, such
a situation would be hardly of any physical relevance. Therefore, we exclude it by
limiting the parameters of the black hole appropriately: As Δϑ = 0 implies

cosϑ± =
−a3 ±

√
a23 + 4a4

2a4
, (2.21)

Δϑ �= 0 is guaranteed for all real ϑ if the radicand in Eq. (2.21) is negative or if
the absolute value of the entire right hand side of (2.21) is greater than 1. In all
subsequently considered cases one of these sufficient conditions is fulfilled, see the
corresponding tables in Appendix A.

For some special cases these conditions define simple constraints on the parame-
ters. If α = 0, Eq. (2.21) ends in a cosϑ± = −2� ± √

4�2 − 3/Λ and

a23 + 4a4 < 0 ⇐⇒ 4�2Λ < 3. (2.22)

For � = 0, Λ = 0 we find



2.3 Singularities 31

α cosϑ± = m ± √
m2 − β − a2

a2 + β
≥ 1

2m
(2.23)

since a2 ≤ a2max = m2 − β and β < m2. Thus, Δϑ �= 0 is assured if |α| < 1
2m .

2.4 Ergoregion and Causality Violation

There are some other interesting regions around a black hole characterized by the
change of the causal character of the Killing vector fields ∂t and ∂ϕ .

In the region where ∂t becomes space like, i.e. gtt > 0, no observer can move on
a t-line. Thus, any observer in this region has to rotate (in ϕ direction). This region
with gtt > 0 is known as the ergosphere or the ergoregion,3

gtt = − 1

Ω2Σ

(
Δr − a2Δϑ sin2 ϑ

); (2.24)

its boundary, gtt = 0, is called static limit. An ergoregion only exists if a �= 0. Note
that at the horizons, i.e., at the roots of Δr , the metric coefficient gtt is positive, see
Eq. (2.24).Hence, the horizons are always containedwithin the ergoregion. Forα �= 0
orΛ �= 0 there are cosmological horizons in addition to the black hole horizons; then
the ergoregion consists of several connected components.At the poles (ϑ = 0, π ), the
boundary of the ergoregion and the horizon share a common tangential plane. Since
sin( π

2 + ϑ) = sin( π
2 − ϑ), the ergoregion is symmetric with respect to the equatorial

plane if α = 0 and Λ = 0, cf. Eqs. (2.24) and (2.7). Actually, the ergoregion stays
almost symmetric for small values of Λ, Λ ≤ 10−2m−2, because then Δϑ ≈ 1. This
behavior is lost with an acceleration α �= 0.

If a �= 0 or � �= 0, there are regions where the Killing field ∂ϕ becomes timelike,
gϕϕ < 0. This indicates causality violation because the ϕ-lines are closed timelike
curves. For � = 0, the region where gϕϕ = 0 is completely contained in the domain
where r < 0 and, thus, hidden behind the horizon for an observer in the domain
of outer communication. In the case � �= 0, however, there is a causality violating
region in the domain of outer communication around the axial singularity.

By [1–3] I refer to my papers Grenzebach et al. (2014), Grenzebach (2015) and Grenzebach et al.

(2015), respectively. Sentences marked with [i] can be found in total or only slightly modified in

the ith paper

3Some authors call only the region between the horizon and the static limit ergoregion. This is that
part of the region gtt > 0 which an outside observer would be able to see.
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Chapter 3
Photon Regions Around Black Holes

Abstract The existence of a photon region, a region that contains spherical light-
like geodesics, is crucial for determining the shadow of a black hole. Here, their
characterizing inequality is derived. The photon regions are visualized together with
ergoregions and regions with causality violation for various values of the parameters.

Keywords Photon region black hole · Equations of motion · Spherical light-rays ·
Plots photon region · Spin · Charge · NUT charge · Cosmological constant · Accel-
erated space-time

In the Plebański class of space-times, i.e., for α = 0, the geodesic equation is
completely integrable.1 In addition to the obvious constants of motion, there is a
fourth constant of motion, known as the Carter constant, which is associated with
a second-rank Killing tensor. If α �= 0, instead of this Killing tensor we only have
a conformal Killing tensor. This is sufficient to assure complete integrability for
lightlike geodesics. The four constants of motion in a Plebański–Demiański space-
time are the Lagrangian

L = 1
2gμν ẋ

μ ẋν, L = 0 for light, (3.1)

(the dot denotes a derivative with respect to an affine parameter τ ), the energy E and
the z-component Lz of the angular momentum

E = −∂L

∂ ṫ
= −gϕt ϕ̇ − gtt ṫ, Lz = ∂L

∂ϕ̇
= gϕϕϕ̇ + gϕt ṫ, (3.2)

which are associated with the Killing vectors ∂t and ∂ϕ from Sect. 2.1 and the Carter
constant K , see Carter (1968). The last-mentioned Carter constant may be regarded
as the separation constant for the r and the ϑ motion of lightlike geodesics.2 The

1Large parts of this section are based on [1, 3] while parts of the Sects. 3.1, 3.2 and 3.3 can be found
in [1] or [3].
2There are other definitions of the Carter constant which differ in additive constants.
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four constants of motion allow us to write the lightlike geodesic equation, L = 0,
in separated first-order form3

Σ

Ω2
ṫ = χ(Lz − Eχ)

Δϑ sin2 ϑ
+ (Σ + aχ)

(
(Σ + aχ)E − aLz

)
Δr

, (3.3a)

Σ

Ω2
ϕ̇ = Lz − Eχ

Δϑ sin2 ϑ
+ a

(
(Σ + aχ)E − aLz

)
Δr

, (3.3b)

(
Σ

Ω2

)2

ϑ̇2 = ΔϑK − (χE − Lz)
2

sin2 ϑ
=: Θ(ϑ), (3.3c)

(
Σ

Ω2

)2

ṙ2 = (
(Σ + aχ)E − aLz

)2 − Δr K =: R(r). (3.3d)

The equations ofmotion canbe solved explicitly in termsof hyperelliptic functions
(Hackmann et al. 2009; Hackmann 2010; Kagramanova et al. 2010). Here, we are
interested in spherical lightlike geodesics, i.e., lightlike geodesics that stay on a
sphere r = constant. The region filled by these geodesics is called the photon region
K . Mathematically, spherical orbits are characterized by ṙ = 0 and r̈ = 0 which
requires by (3.3d) that R(r) = 0 and R′(r) = 0, where the prime stands for the
derivative with respect to r . Thus

KE =
(
(Σ + aχ) − aLE

)2
Δr

, KE = 4r
(
(Σ + aχ) − aLE

)
Δ′

r

, (3.4)

where KE and LE are abbreviations

KE = K

E2
, LE = Lz

E
. (3.5)

After solving (3.4) for the constants of motion

KE = 16r2Δr

(Δ′
r )

2
, aLE = (

Σ + aχ
) − 4rΔr

Δ′
r

, (3.6)

we can substitute these expressions into (3.3c). As the left-hand side of (3.3c) is
non-negative, 0 ≤ (

Σ
Ω2

)2
ϑ̇2, we find an inequality that determines the photon region

K : (
4rΔr − ΣΔ′

r

)2 ≤ 16a2r2ΔrΔϑ sin2 ϑ. (3.7)

Of course, the equality sign defines the boundary of the photon region. Note that
K is independent of the Manko–Ruiz parameter C . Furthermore, all calculations

3This is also possible for matter if α = 0 since Σ has no term depending on both r and ϑ .
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Fig. 3.1 Motion within the
photon region K

rp

presented above do not differ between black holes or naked singularities. They are
valid for both cases, yet.

Just as in the Kerr case (cf. Perlick 2004), through every point (rp, ϑp) of K
there is a lightlike geodesic that stays on the sphere r = rp. Along each of these
spherical lightlike geodesics, the ϑ motion is an oscillation bounded by the boundary
of K , see Fig. 3.1, while the ϕ motion given by (3.3b) might be quite complicated.
For some spherical light rays it is not even monotonic. For pictures of individual
spherical photon orbits around a Kerr black hole we refer to Teo (2003).

A non-rotating black hole (a = 0) is surrounded by a photon sphere, rather than by
a photon region, since the inequality (3.7) defining K degenerates into an equality

4rΔr = (r2 + 
2)Δ′
r . (3.8)

The best known example is the photon sphere at r = 3m in the Schwarzschild
space-time.

The stability of the spherical geodesic with respect to radial perturbations is deter-
mined by the sign of R′′; a spherical geodesic at r = rp is unstable if R′′(rp) > 0,
and stable if R′′(rp) < 0. The second derivative R′′ can be calculated from (3.3d).
With the help of (3.6) this results in

R′′(r)
8E2

Δ′2
r = 2rΔrΔ

′
r + r2Δ′2

r − 2r2ΔrΔ
′′
r . (3.9)

Because of the rotational symmetry, it is convenient to plot a meridional section
through space-time for illustrating the regions around a black hole. The resulting
pictures can be found in the following sections. They are extended (r , ϑ) polar
diagrams where ϑ is measured from the positive z-axis. To view the full range of the
space-times, the radial coordinate is plotted with a special scaling as introduced in
Sect. 2.3 and depicted in Fig. 2.3 (exponentially for r < 0 and linearly for r > 0).
Thus, r = 0 is a sphere whose throats are marked as dashed circle. Each figure
contains the photon region K , where unstable and stable spherical light rays are
distinguished according to (3.9); the horizons r± of the black hole are given as

http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Fig. 3.2 Legend for all
plots illustrating photon
regions

region with Δr ≤ 0; boundary (Δr = 0): horizons
unstable spherical light-rays in photon region
stable spherical light-rays in photon region
region with causality violation (g < 0)
ergoregion (gtt > 0)
throats at r = 0

• ring singularity

boundaries of the region where Δr ≤ 0. Furthermore, the ergoregion, the causality
violating region and the ring singularity are shown. A legend for these quantities is
given in Fig. 3.2.

3.1 Kerr–Newman–NUT Space-Times

The Figs. 3.4, 3.5 and 3.6 show meridional sections, i.e., extended (r, ϑ) diagrams
in Kerr–Newman–NUT space-times (α = 0, Λ = 0). We explore how the rotation
a, the charge β or the gravitomagnetic NUT-charge 
 of the black hole affects the
nearby special regions. Each figure shows amongst others the photon region K
for four different values of the spin a, keeping all the other parameters fixed, see
Fig. 3.2 for a legend. Restricting to black-hole cases, we choose a = λamax, where
λ ∈ {

1
50 ,

2
5 ,

4
5 , 1

}
and amax denotes the spin of an extremal black hole which is

determined by the other parameters amax = √
m2 + 
2 − β, cf. Eq. 2.18.

More precisely, each of the Figs. 3.4, 3.5 and 3.6 shows images of three space-
times in the Kerr–Newman, Kerr–NUT, and Kerr–Newman–NUT class, respectively.
The left column of every figure represents the Kerr space-time for the purpose of
comparison since Kerr space-time is a subclass of each of these classes. Furthermore,
the figures are splitted up into two subfigures where part (a) contains the hole range
while part (b) shows a magnification of the inner part beyond the inner horizon r−.
Supplementary to the plots, all parameters of the black holes that are used in these
three figures are listed in Table A.2 in the appendix together with the r values of the
horizons.

In the Kerr space-time, as shown in the left columns of the figures, there is an
exterior photon region at r > r+ and an interior photon region at r < r−. Both of
them are symmetric with respect to the equatorial plane. Starting from the photon
sphere at r = 3m for the non-rotating Schwarzschild case, the exterior photon region
develops a crescent-shaped cross-section for a �= 0 and grows with increasing
spin a. The interior photon region consists of two connected components that are
separated by the ring singularity. In the exterior photon region, all spherical light
orbits are unstable while in the interior photon region there are stable and unstable
ones. For a maximally rotating black hole, the exterior and interior photon regions
touch the horizon.

http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Fig. 3.3 Five circular
photon orbits, marked with
green dots on the boundary
of the photon region K
around a Kerr black hole.
The corresponding spheres
tangential to K are
represented by the dotted
green circles . The circular
orbits at r� and r⊕ are
counter- and co-rotating,
respectively, with the
rotation of the black hole

r�

r⊕

Asdiscussed earlier, a photononanorbit in thephoton regionpropagates in general
on a sphere where the ϑ motion is an oscillation bounded by the boundary of the
photon region. Only for a non-rotating black hole all these orbits are circular. But also
a rotating black hole has circular photon orbits: A circular lightlike geodesic exists
where the boundary of the photon region is tangential to a sphere r = constant and
is thus characterized by ϑ̇ = 0 and ϑ̈ = 0. In Fig. 3.3, the circular orbits are marked
with green dots in one exemplary plot. We easily recognize the three well-known
circular lightlike geodesics in the equatorial plane, but also two not-so-well-known
circular lightlike geodesics off the equatorial plane. The latter are situated in the
region where r < 0. However, three of the orbits are hidden behind the inner horizon
r−; the other two are in the exterior photon region. Here, light rays on the outermost
circular orbit with radius r� are counter-rotating while those on the smaller orbit at
r⊕ are co-rotating with the rotation of the black hole (cf. Hartle 2003).

The causality violating region is adjacent to the ring singularity in the Kerr space-
time and lies to the side of negative r . Thus, this region is hidden behind the outer
horizon similar to the three innermost circular photon orbits. For small a, the ergore-
gion does not intersect the exterior photon region, but for a2 > 1

2m
2 it does. This

confirms that the circular photon orbit in the exterior photon region with smaller
radius r⊕ a co-rotating orbit.

An added electric or magnetic charge parameter β = q2
e + q2

m of the Kerr–
Newman space-time affects the photon regions little for small charges, see Fig. 3.4.
For large charges, for instance β = 8

9m
2, the exterior and interior photon regions do

not touch the horizon any longer for a maximally rotating black hole. The reason for
this is that the value of the maximal possible spin amax = √

m2 − β of a maximally
rotating black hole decreases with increasing charge β. Hence, some properties of
highly charged and maximally rotating black holes are similar to those of slowly
rotating but hardly charged black holes. Nevertheless, there is a qualitative effect
of β: one of the two connected components of the interior photon region is now
detached from the ring singularity.
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(a)

Fig. 3.4 Photon regions in Kerr–Newman space-times for spins a = λamax where amax =√
m2 − β. The black hole parameters are listed in Table A.2. a Photon regions in Kerr–Newman

space-times. b Magnified inner part of plots in (a)

From Sect. 2.3 we know that a gravitomagnetic charge 
 �= 0 results in a true
singularity on the z axis. Hence, we have to expect different images for NUT space-
times. At first, the additional gravitomagnetic charge 
 of theKerr–NUT space-time

http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Fig. 3.4 (continued)

changes the symmetry behavior significantly, see Fig. 3.5. The plots are no longer
symmetric with respect to the equatorial plane (but they remain, of course, axially
symmetric). The exterior and interior photon regions and also the interior part of the
causality violating region clearly show this asymmetry. The sign of 
 determines the
nature of the symmetry violation, see Fig. 3.7.
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Fig. 3.5 Photon regions in Kerr–NUT space-times with C = 0 for spins a = λamax where
amax = √

m2 + 
2. The black hole parameters are listed in Table A.2. a Photon regions in Kerr–
NUT space-times (C = 0). bMagnified inner part of plots in (a)

For a slowly rotating Kerr–NUT black hole, a2 < 
2, there is no ring singularity,
and there are no stable spherical light rays. If the spin is increased, the ring singularity
appears at a2 = 
2, degenerated to a point on the rotational axis off the equatorial
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Fig. 3.5 (continued)

plane. With further increase of a, the ring singularity moves towards the equator
and stable spherical light orbits appear between r = 0 and r = r−; as in the Kerr
case, the interior photon region consists of two connected components that are sep-
arated by the ring singularity. In contrast to the ergosphere, which stays symmetric
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Fig. 3.6 Photon regions in Kerr–Newman–NUT space-times with C = 0 for spins a = λamax

where amax = √
m2 + 
2 − β. The black hole parameters are listed in Table A.2. a Photon regions

in Kerr–Newman–NUT space-times (C = 0). bMagnified inner part of plots in (a)



3.1 Kerr–Newman–NUT Space-Times 45

a
=

1 50
a m

ax
a
=

2 5
a m

ax
a
=

4 5
a m

ax
a
=
a m

ax

β = 0, � = 0 β = 5
9m

2, � = 3
4m β = 8

9m
2, � = 4

3m

(b)

Fig. 3.6 (continued)
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β = 0 β = 5
9m

2

� = 3
4m � = − 3

4m � = 3
4m � = − 3

4m

Fig. 3.7 Photon regions for different signs of the NUT parameter 
, where C = 0, a = amax =√
m2 + 
2 − β. By changing the sign of 
, the asymmetric regions are mirrored at the equatorial

plane

(see Sect. 2.4) and is not significantly affected by 
, the causality violating region
changes fundamentally. Now there is an additional causality violating region in the
domain of outer communication; it is located around the z axis and encloses the
axial singularity which is also caused by 
. This external region extends from the
outer horizon at r = r+ to r = ∞ while the interior causality violating region is
now extending from the inner horizon at r = r− to r = −∞ which corresponds to
the origin in the extended polar plots. In addition to the changes mentioned before,
the causality violating region depends similar to the axial singularity on the Manko–
Ruiz parameter C which was chosen equal to zero in Fig. 3.5. The dependency on C
is investigated in the more general Kerr–Newman–NUT space-time, see below and
Fig. 3.8 for the appropriate graphics for other values of C .

Combinations of these phenomena are visible in the axially symmetric plots in
Fig. 3.6 belonging to the Kerr–Newman–NUT space-time which contains the up to
now considered space-times. As in the Kerr–NUT space-time, the plots are not sym-
metric to the equatorial plane in consequence of the gravitomagnetic charge 
. The
sign of 
 determines how the plots are deformed asymmetrically, cf. Fig. 3.7. The
effects of the charge β are also preserved. Again, the two connected components
of the interior photon region get detached from the ring singularity with a charge β

but now if a2 > 
2. And also highly charged fast rotating black holes are similar to
slowly rotating but hardly charged black holes. Since the condition—Eq. (2.13)—for
the existence of the ring singularity is independent of β, there are no changes in com-
parison to the Kerr–NUT space-time. Furthermore, the ergoregion stays symmetric
and the causality violating region appears in the domain of outer communication,
too.

As mentioned before, the causality violating region depends on the Manko–Ruiz
parameterC . The appropriate images for fixed Kerr–Newman–NUT space-time with
C ∈ {−2,−1,− 1

2 , 0,
1
2 , 1, 2} are shown in Fig. 3.8. Since there are no changes except

for the causality violating region, we added a cosmological constant Λ = 10−2 m−2

for positive Manko–Ruiz Parameter C in anticipation of the following Sect. 3.2. The

http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Kerr–Newman–NUT: a= 4
5amax, β = 5

9m
2, � = 4

3m

Λ = 0, amax = 2
√
5

3 m Λ = 10−2m−2, amax = 1.51m

C = −2 C = −1 C = − 1
2 C = 0 C = 1

2 C = 1 C = 2

Fig. 3.8 Causality violation for varying singularity parameter C . If C = ±1, one of the two half-
axes is regular and not surrounded by a causality violating region which is consistent with Fig. 2.2.
For Λ �= 0, the additional cosmological horizon restricts the region ( ) where the causality is
violated. Parameters are listed in Table A.3

corresponding plots for completing both series are shown in Fig. 6 in Grenzebach
et al. (2014).

Compared to Fig. 2.2, we see that the exterior causality violating region is always
situated along the singularity on the z axis. This is also the case for C �= ±1 where
one of the two semi-axes is regular. Here, the causality is not violated on the regular
part. With changing C , the size of the causality violating region varies which goes
along with the increasing/decreasing angular momenta of the semi-infinite rotating
rods. Hence, the parameter C is not only balancing the distribution of the singularity
but also of the causality violating region. Bigger values of C lead to the joining of
the two disconnected causality violating regions, for instance at C = 2 in Fig. 2.2.
Then they cover the entire z axis tubular.

3.2 Space-Times with Cosmological Constant

Here, we consider the Plebański class of black hole space-times which consists of
Kerr–Newman–NUT space-times amended with the cosmological constant Λ, com-
pare Table2.1. Figure3.9 comprises several plots of photon regions around maxi-
mally rotating black holes for those four subclasses we have discussed for Λ = 0
in the previous section. We only consider extremal black holes here since we are
interested in the consequences of the cosmological constant; effects of the spin can
be deduced from the previously discussed space-times. For the sake of completeness,
Table A.5 contains also the parameters for slower rotating black holes. For the pic-
tures, we have chosen a (small and) positive value forΛ such that the domain of outer
communication is bounded by a cosmological horizon. The latter is not shown in

http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Fig. 3.9 Photon regions in Plebański space-timeswith cosmological constantΛ for a fixed extremal
spin a = amax. Table A.5 contains a complete list of parameters
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β = 5
9m

2, � = 3
4m,C = 0

Λ = 6×10−2m−2

amax = 1.08m

Fig. 3.10 Magnified inner part of an asymmetric ergoregion in Kerr–Newman–NUT space-
time with cosmological constant Λ. Even with the green auxiliary lines, the asymmetry is hard to
recognize

all pictures in Fig. 3.9 because these pictures do not extend so far. The cosmological
horizon restricts the causality violating region which depends on the Manko–Ruiz
parameter C , see Fig. 3.8, and it is covered by a second new part of the ergoregion.

Besides these changes, the cosmological constant Λ affects the shape or the size
of the regions only marginally, see Fig. 3.9. The reason for this is of course the
apparently small value of Λ, but compared to a realistic4 value of Λ, the ones used
for generating the images are already extremely large. Nevertheless, the biggest
deviation besides the additional horizon is that the ergoregion is not symmetric any
longer, see Eq. (2.24) with Eq. (2.7). But also this asymmetry is hardly recognizable.
The best candidatewould be the plot in the bottom right corner in Fig. 3.9 and actually
the asymmetry is visible in the magnification of the inner part shown in Fig. 3.10.

Moreover, for non-zeroΛ higher spin values amax are possible compared to space-
times with Λ = 0 where amax = √

m2 + 
2 − β, cf. Tables A.2 and A.5. But for
Λ �= 0 there is no convenient formula for amax because one has to evaluate a fourth-
order polynomial.

3.3 Accelerated Black Holes

The acceleration parameter is the last missing parameter of the Plebański–Demiański
class for which we have not yet discussed its influence on the regions around a black
hole. The appropriate images are contained in Fig. 3.11 where the subclass of the

4As realistic value ofΛ one findsΛ ≈ +10−52 m−2 (Unsöld and Baschek 2005) which corresponds
to Λ ≈ 10−122 measured in Planck units (Barrow and Shaw 2011; Riess et al. 1998; Perlmutter
et al. 1999).

http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Fig. 3.11 Photon regions inPlebański–Demiański space-timeswith varying accelerationα for fixed
spin a = amax, see Table A.6 for values of amax. In each column, the plots for the unaccelerated
cases (left) are opposed to the accelerated ones (right)

space-times is varied from line to line as in Fig. 3.9. Because the consequences of
the spin were discussed in detail earlier, we consider again only maximally rotating
black holes but list the space-timeparameters also for slower spinning black holes, see
Table A.6. Pictures for slower rotating accelerated Kerr black holes can be found in
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Fig. 3.12 Photon regions for different signs of the spin a, the NUT charge 
 (C = 0) and the
acceleration α for extremal Kerr, Kerr–Newman and Kerr–NUT space-times. Values for |a| =
amax = √

m2 + 
2 − β are noted in Table A.7. The asymmetric regions affected by the change of
a sign get mirrored at the equatorial plane

Grenzebach et al. (2015) in Fig. 2. Even though in reality only very small acceleration
parameters are expected, we choose relatively large values (α ∈ {

0, 1
8m , 1

4m

}
) for a

better illustration of the effects, similar as for the cosmological constant.
The plots for the accelerated space-times look similar to the non-accelerated

ones. There are no new qualitative effects of β and Λ if α is present. But there are
two significant differences. Firstly, a non-zero acceleration parameter gives rise to
additional horizons, analogous to a cosmological constant. Secondly, the plots are
no longer symmetric with respect to the equatorial plane which is similar to the
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Table 3.1 Sign changes for which regions get mirrored at the equatorial plane

Kerr Kerr–Newman Kerr–NUT

Photon region K ( , ) α �→ −α α �→ −α aα �→ −aα

Causality violation ( ) aα �→ −aα aα �→ −aα aα �→ −aα

Ergoregion ( ) aα �→ −aα aα �→ −aα aα �→ −aα

NUT case. The additional outer horizon, a cosmological one, is seen in almost all
illustrations. In principle, such a horizon appears in all plots but it happens that most
or even all of it is located outside of the shown clipping. Only for slowly rotating
black holes (not shown here) with dominant NUT property and 
α < 0 there is no
additional cosmological horizon that restricts the domain of outer communication.
Then,Δr has three negative roots as explained in the paragraph about the horizons in
Sect. 2.3; see Table A.7 for examples. The asymmetry with respect to the equatorial
plane is best seen forα = 1

4m .With the exception of the causality violating region, the
entire picture looks as if pushed into the negative z direction, i.e., into the direction
against the direction of the acceleration.

As expected, the photon region, the ergoregion and the causality violating region
(more precisely, their deformations) depend on the signs of a, 
 and α. From Fig. 3.12
we see that these regions are mirrored at the equatorial plane if the sign of α alone
or of the product aα is changed, see Table3.1.

Considering the plots in Fig. 3.12 for the Kerr–NUT space-time, one notices that
these are in fact very different from line to line but very similar within a line. This
behavior is in accord with the isometries discussed in Sect. 2.2 since 
 and α have
opposite signs in the last row while the signs coincide in the row next to the last.

3.4 Summary

In all considered space-times, the photon regionK develops a crescent-shaped cross-
section if the described black hole rotates. For theKerr, Kerr–Newman (KN),Kerr–
NUT (KNUT) and Kerr–Newman–NUT (KNNUT) space-times, we summarize in
Table3.2 whether amax is increased or decreased in comparison to Kerr space-time.

Table 3.2 Summary of properties of different space-times

Space-time amax Photon region Ring singularity Causality violation

Kerr Spherical symm. Exist Hidden by horizon

KN Decreased Spherical symm. Exist Hidden by horizon

KNUT Increased Rotational symm. Exists if a2 ≥ 
2 In dom. of out. com.

KNNUT Increased Rotational symm. Exists if a2 ≥ 
2 In dom. of out. com.

http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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Furthermore, we indicate the symmetry property of the photon region K , the exis-
tence of a ring singularity and where the causality gets violated. The ergoregion is
always symmetric unless Λ �= 0 or α �= 0. If Λ �= 0 or α �= 0, then there exists an
additional cosmological horizon in the domain of outer communication.

By [1–3] I refer to my papers Grenzebach et al. (2014), Grenzebach (2015) and Grenzebach et al.

(2015), respectively. Sentences marked with [i] can be found in total or only slightly modified in

the ith paper
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Chapter 4
The Shadow of Black Holes

Abstract It is explained how to derive analytical formulas for the boundary curve of
the shadow as seen by an observer at given position in the domain of outer commu-
nication. The formulas are used to analyze the dependency of the shadow of a black
hole on the motion of the observer. Furthermore, the horizontal and vertical angular
diameters of the shadow are calculated. Although explicit formulas are given for the
Kerr space-time only, the method holds true for the general Plebański–Demiański
class. After all, the angular diameters for the black holes at the centers of our Galaxy
and of M87 are estimated.

Keywords Shadow black hole · Shadow analytic formula · Shadow boundary
curve · Moving observer · Inclination observer · Galactic black hole · Penrose
aberration · Angular diameter shadow · Sgr A* shadow · M87 shadow

For an observer pointing the telescope into the direction of a black hole, there is a
region on the sky which stays dark, provided that there are no light sources between
the observer and the black hole.1 This dark region is called the shadow of the black
hole. To determine the shape of the shadow, it is convenient to consider light rays
which are sent into the past from the position2 (rO, ϑO) of a fixed observer in the
domain of outer communication. Then we can distinguish between two types of
lightlike geodesics: Those where the radial coordinate increases to infinity after
possibly passing through aminimum and those where the radial coordinate decreases
until reaching the horizon at r = r+. If we assume that there is a distribution of light
sources in the universe, excluding the region between the observer and the black
hole, geodesics of the first kind could reach a light source; so we assign brightness
to the initial direction of such a light ray. Vice versa, we assign darkness to the initial
directions of light rays of the second kind, i.e., these initial directions determine the
shadow of the black hole. The boundary of the shadow corresponds to light rays on
the borderline between the two kinds. These light rays spiral asymptotically towards
one of the unstable spherical light orbits in the exterior photon regionK as discussed

1Parts of this section are taken from my three papers. The Sects. 4.1, 4.5 are based on [1], Sect. 4.4
on [2] and Sects. 4.3, 4.6 on [3].
2Because of the symmetry of the Plebański–Demiański space-time, it is enough to specify the r and
ϑ coordinate to define a fixed position in space-time.

© The Author(s) 2016
A. Grenzebach, The Shadow of Black Holes,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-30066-5_4
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in the Chap.3. Hence, the essential information for determining the shadow of a black
hole is in the surrounding photon region K given by (3.7). One may even say that
the shadow is an image of the photon region (but not of the event horizon).

In the following, we derive analytical formulas for the boundary curve of the
shadow seen by our fixed observer and by observers at the same position (rO, ϑO) that
are moving relatively against the fixed observer. At first, we choose an orthonormal
tetrad (Griffiths and Podolský 2009, p. 307) for the fixed observer, see Fig. 4.1

e0 = Ω
a∂ϕ + (Σ + aχ)∂t√

ΣΔr

∣∣∣∣
(rO,ϑO)

, e2 = −Ω
∂ϕ + χ∂t√
ΣΔϑ sin ϑ

∣∣∣∣
(rO,ϑO)

,

e1 = Ω

√
Δϑ

Σ
∂ϑ

∣∣∣∣∣
(rO,ϑO)

, e3 = −Ω

√
Δr

Σ
∂r

∣∣∣∣∣
(rO,ϑO)

.

(4.1)

It is chosen such that e0 ± e3 are aligned with both principal null congruences of
our metric. The basis vector e0 is interpreted as the four-velocity of the observer
because it is a timelike vector; e3 points into the spatial direction towards the center
of the black hole. An observer with this tetrad is called a standard observer in the
following.

Observe that Δr is positive since the standard observer is in the domain of outer
communication. Moreover, Σ is positive everywhere (except at the ring singularity
which is not part of the space-time and, moreover, away from the domain of outer
communication) and Δϑ is positive by assumption, see Sect. 2.3. This setting guar-
antees real coefficients in Eq. (4.1) and it is easy to check that the ei are indeed
orthonormal.

Of course, the shape of the shadow depends on the observer’s state of motion.
Therefore, we have to modify the chosen tetrad (4.1) if another observer at (rO, ϑO)

moves with velocity v = (v1, v2, v3), v = |v| < 1 = c, relative to our standard
observer. The four-velocity of the moving observer is

ẽ0 = v1e1 + v2e2 + v3e3 + e0√
1 − v2

. (4.2a)

From {̃e0, e1, e2, e3} we find an orthonormal tetrad {̃e0, ẽ1, ẽ2, ẽ3} with the Gram–
Schmidt procedure3 by adding e3, e1, e2—in this order—successively to ẽ0

3Gram–Schmidt orthonormalization: ẽ3 ∝ e3 + g(e3, ẽ0 )̃e0, ẽ1 ∝ e1 + g(e1, ẽ0 )̃e0 − g(e1, ẽ3 )̃e3,
ẽ2 ∝ e2 + g(e2, ẽ0 )̃e0 − g(e2, ẽ1 )̃e1 − g(e2, ẽ3 )̃e3.

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_2
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rO

Oϑ

e1e2

e3

Fig. 4.1 (After [1]) At an observation event with Boyer–Lindquist coordinates (rO, ϑO)we choose
an orthonormal tetrad {e0, e1, e2, e3} according to Eq. (4.1)

ẽ1 =
(
1 − v22

)
e1 + v1(v2e2 + e0)√

1 − v22

√
1 − v21 − v22

,

ẽ2 = e2 + v2e0√
1 − v22

,

ẽ3 =
(
1 − v21 − v22

)
e3 + v3(v1e1 + v2e2 + e0)√

1 − v21 − v22
√
1 − v2

.

(4.2b)

Note that ẽi = ei if vi = 0, i.e., for v = 0 this procedure recovers the tetrad {e0, e1,
e2, e3} from (4.1). As before, the spacelike vector ẽ3 corresponds to the direction
towards the black hole. The interpretation of ẽ1 and ẽ2 becomes clear if we introduce
celestial coordinates, see Eq. (4.4) and Fig. 4.2. Then, ẽ1 and ẽ2 point into the North–
South and the West–East direction, respectively.

For any light ray λ(s) = (
r(s), ϑ(s), ϕ(s), t(s)

)
, the tangent vector at the position

of the observer can bewritten in two different ways, using either the Boyer–Lindquist
coordinate basis or the tetrad (4.2a, 4.2b) introduced above

λ̇ = ṙ∂r + ϑ̇∂ϑ + ϕ̇∂ϕ + ṫ∂t, (4.3)

λ̇ = σ
(−̃e0 + sin θ cosψ ẽ1 + sin θ sinψ ẽ2 + cos θ ẽ3

)
. (4.4)

The second equation defines the celestial coordinates θ and ψ , see Fig. 4.2, where
θ = 0 corresponds to the direction towards the black hole. The scalar factor σ can be
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ẽ1

ẽ2

ẽ3

θ
ψ

ϑobserver at (rO, O)

light ray
tangent

direction
towards
black hole

ẽ1

ẽ2

ẽ3

Fig. 4.2 (After [2]) On the left: The direction of each light ray reaching the observer at (rO, ϑO)

is given by the celestial coordinates θ and ψ (Eq. 4.4) of their tangents. On the right: The points
(θ, ψ) on the celestial sphere (black ball) can be identified with points in the plane (red ball)
by stereographic projection. The dashed red circles mark the celestial equator θ = π/2 and its
projection

calculated from ẽ0 since σ = g
(
λ̇, ẽ0

)
, see (4.10) below. For the tetrad (4.2a, 4.2b),

we observe the following dependencies

ẽ0 = k0r∂r + k0ϑ∂ϑ + k0ϕ∂ϕ + k0t∂t,

ẽ1 = k1ϑ∂ϑ + k1ϕ∂ϕ + k1t∂t,

ẽ2 = k2ϕ∂ϕ + k2t∂t,

ẽ3 = k3r∂r + k3ϑ∂ϑ + k3ϕ∂ϕ + k3t∂t

(4.5)

where the kμν are the coefficients of the basis ẽμ regarding to the coordinate basis ∂ν

which can be read off Eq. (4.1). Hence

λ̇ = σ
(
(−k0r + k3r cos θ)∂r + (−k0ϑ + k1ϑ sin θ cosψ + k3ϑ cos θ)∂ϑ

+ (−k0ϕ + k1ϕ sin θ cosψ + k2ϕ sin θ sinψ + k3ϕ cos θ)∂ϕ

+ (−k0t + k1t sin θ cosψ + k2t sin θ sinψ + k3t cos θ)∂t
)
.

(4.6)

Comparing coefficients of ∂r , ∂ϑ , and ∂ϕ in (4.3) and (4.6) yields
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ṙ = σ(−k0r + k3r cos θ), (4.7a)

ϑ̇ = σ(−k0ϑ + k1ϑ sin θ cosψ + k3ϑ cos θ), (4.7b)

ϕ̇ = σ(−k0ϕ + k1ϕ sin θ cosψ + k2ϕ sin θ sinψ + k3ϕ cos θ). (4.7c)

These equations can be solved easily for cos θ and sinψ (using k1ϑ sin θ cosψ =
1
σ
ϑ̇ + k0ϑ − k3ϑ cos θ ),

cos θ =
1
σ
ṙ + k0r
k3r

∣∣∣∣∣
(rO,ϑO)

, (4.8a)

sinψ = k3r
(
1
σ
ϕ̇ + k0ϕ − k1ϕ

k1ϑ
( 1

σ
ϑ̇ + k0ϑ)

) − (k3ϕ − k3ϑ
k1ϑ

k1ϕ)( 1
σ
ṙ + k0r)

k2ϕ
√
k23r − ( 1

σ
ṙ + k0r)2

∣∣∣∣∣∣
(rO,ϑO)

,

(4.8b)

where ϕ̇, ϑ̇ , and ṙ have to be substituted from the equations of motion (3.3); since ṙ
and ϑ̇ are given as quadratic expressions, the signs have to be chosen consistently.
More precisely, since we consider light rays that reach the observer, ṙ occurs only
with positive sign ṙ = +√

. . . and because these light rays are parametrized in past
direction, those with positive sign ϑ̇ = +√

. . . belong to the upper part of the shadow
and those with negative sign ϑ̇ = −√

. . . to the lower part.
For calculating the remaining scalar factor σ , we express ẽ0, Eq. (4.2a), in terms

of the tetrad {∂r, ∂ϑ , ∂ϕ, ∂t}, Eq. (4.1)

ẽ0 = Ω√
Σ

√
1 − v2

(
(Σ + aχ)∂t + a∂ϕ√

Δr
+ v1

√
Δϑ ∂ϑ − v2

∂ϕ + χ∂t√
Δϑ sin ϑ

− v3
√

Δr ∂r

)
.

(4.9)

As σ = g
(
λ̇, ẽ0

)
, see Eq. (4.4), we get σ from (2.1), (4.3), and (4.9)

σ = Ω√
Σ

√
1 − v2

(
aLz − (Σ + aχ)E√

Δr

+ v1√
Δϑ

Σ

Ω2
ϑ̇ − v2

Lz − χE√
Δϑ sin ϑ

− v3√
Δr

Σ

Ω2
ṙ

)∣∣∣∣
(rO,ϑO)

(4.10)

where ϑ̇ and ṙ are given by (3.3) with the same sign rules as above.
For the standard observer with v = 0, the coefficients kμν in Eq. (4.5) can be read

off (4.1) since ẽi = ei. With (4.10), Eq. (4.8a, 4.8b) simplifies to

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_2
http://dx.doi.org/10.1007/978-3-319-30066-5_3
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cos θ =
Σ
Ω2 ṙ

(Σ + aχ)E − aLz

∣∣∣∣∣
(rO,ϑO)

, (4.11a)

sinψ =
√

Δϑ sin ϑ√
Δr sin θ

(
Σ
Ω2 ϕ̇ Δr

(Σ + aχ)E − aLz
− a

)∣∣∣∣∣
(rO,ϑO)

. (4.11b)

One gets the same equations by comparing coefficients of ∂ϕ and ∂r in (4.3) and (4.4)
with inserted ei from (4.1). Since (4.11a, 4.11b) is much simpler than (4.8a, 4.8b),
it is possible to write down the explicit expressions. Upon substituting for ϕ̇ and ṙ
from (3.3), we find from (4.11a, 4.11b) that

T := sin θ =
√

ΔrKE

r2 + �2 − aL̃E

∣∣∣∣
rO

, (4.12a)

P := sinψ = L̃E + a cos2 ϑ + 2� cosϑ√
ΔϑKE sin ϑ

∣∣∣∣
ϑO

, (4.12b)

where
L̃E = LE − a + 2�C. (4.13)

Note that we do not have to take care of the signs since we substitute ϕ̇ and ṙ only
but not ϑ̇ .

We observe that the shadow is always symmetric with respect to a horizontal
axis. The latter result follows from the fact that the points (ψ, θ) and (π − ψ, θ)

correspond to the same constants of motion KE and L̃E . For � �= 0 and ϑO �= π/2
this symmetry property was not to be expected.

The Eqs. (4.8a, 4.8b) and (4.12a, 4.12b) are analytical parameter representations
of the boundary curve of the black hole’s shadow for a moving observer and the
standard observer, respectively. The boundary represents lightlike geodesics which,
if you think of sending them from the observer’s position into the past, reach the
photon region asymptotically. Each such geodesic must have the same constants
of motion as the limiting spherical lightlike geodesic with radius rp. By (3.6), the
constants of motion of those light rays that correspond to boundary points of the
shadow are given by

KE = 16r2Δr

(Δ′
r)

2

∣∣∣∣
rp

, aLE = (
Σ + aχ

) − 4rΔr

Δ′
r

∣∣∣∣
rp

⇔ aL̃E = r2 + �2 − 4rΔr

Δ′
r

∣∣∣∣
rp

. (4.14)

Because the shadow of a rotating black hole (a �= 0) seen by the standard observer
is always symmetric with respect to a horizontal axis, there have to be values rp±
such that ψ(rp±) = ±π/2. For these parameters rp± , (4.12b) yields with (4.14)

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
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Fig. 4.3 Illustration of the
parametrization of the
shadow’s boundary curve

O

[rp− ,rp+ ]

KE & LE

(
ΣΔ′

r − 4rΔr ∓ 4ar
√

ΔrΔϑ sin ϑ
)∣∣∣

(rp± ,ϑO)
= 0. (4.15)

Comparison with the inequality (3.7) shows that the radii rp± are in the intersection
of the boundary of the exterior photon regionK and the cone ϑ = ϑO. Thus, substi-
tuting KE and L̃E in (4.12a, 4.12b) by the expressions (4.14) provides the shadow’s
boundary curve

(
θ(rp), ψ(rp)

)
where rp ∈ [rp− , rp+], see also Fig. 4.3.

The light rays that correspond to the boundary of the shadow are independent of
the observer’s state of motion. Thus, in the general case of a moving observer, the
boundary curve of the shadow is given in the same way as for the standard observer.
This means that the shadow’s boundary curve

(
θ(rp), ψ(rp)

)
—now specified by

(4.8a, 4.8b) with KE and LE replaced according to (4.14)—is parametrized by rp ∈ I
where I is the intersection of the exterior photon region K with the cone ϑ = ϑO

as before.
If a = 0, it is not possible to parametrize the boundary curve with rp because

the photon region K degenerates into a photon sphere r = rp with unique rp given
by (3.7). By (4.14), the distinct rp defines a unique KE(rp) but does not restrict L̃E
(or LE). Calculating the corresponding constant θ from (4.8a, 4.8b) or (4.12a, 4.12b)
gives the radius of the shadowwhich is circular in this case. Thus, the boundary curve
of the shadow has the form

(
θ (̃LE), ψ(̃LE)

)
where L̃E ranges between the extremal

values determined by (3.3c) for Θ(ϑO) = 0

LE = χ ± √
ΔϑKE sin ϑ = χ ± 4r sin ϑ

√
ΔϑΔr

Δ′
r

∣∣∣∣
(rp,ϑO)

(4.16a)

⇐⇒ L̃E = −a cos2 ϑ − 2� cosϑ ± 4r sin ϑ

√
ΔϑΔr

Δ′
r

∣∣∣∣
(rp,ϑO)

(4.16b)

Before plotting some shadows of black holes let’s summarize some general prop-
erties of the shadow.

The photon region aswell as the boundary of the shadow are described by identical
formulas, (3.7) or (4.8a, 4.8b) and (4.12a, 4.12b), for thewhole Plebański–Demiański
class of black hole space-times. However,the involved metric functions (2.2) have

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_2


62 4 The Shadow of Black Holes

ẽ
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Fig. 4.4 Relation between celestial coordinates (θ, ψ) and standard cartesian coordinates (x, y) is
given by stereographic projection, see Eq. (4.17)

different meanings. The shadow seen by the standard observer (v = 0) is always
symmetric with respect to a horizontal axis and independent of the Manko–Ruiz
parameter C since L̃E determined by Eq. (4.16b) does not depend on C. For an
observer in a different state of motion (v �= 0) this is in general not the case. Here, the
observed shadow is distorted by aberration and the distortion is in principle given by
the standard aberration formula of special relativity. As the aberration formula maps
circles onto circles, the statement that a non-rotating black hole produces a circular
shadow is true for an observer in any state ofmotion. Evenwith non-zero acceleration
parameter, which breaks the spherical symmetry, these properties are preserved.

The following sections are filled with several plots of shadows for various black
hole space-times. For visualization, the shadows aremapped from the celestial sphere
onto a plane by stereographic projection, as illustrated in Fig. 4.2. Standard Cartesian
coordinates in that plane are given by, see Fig. 4.4

(
x(ρ)

y(ρ)

)
= −2 tan

(
1
2θ(ρ)

) (
sinψ(ρ)

cosψ(ρ)

)
. (4.17)

Consequently, in the projection, i.e., in the xy plane, the θ coordinate can be
regarded as radius while the ψ coordinate is a polar angle.
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4.1 Kerr–Newman–NUT Space-Times

In the Figs. 3.4, 3.5 and 3.6, we showed plots of the black hole surrounding photon
region for the Kerr–Newman, the Kerr–NUT and the Kerr–Newman–NUT class of
space-times. The corresponding images of the shadows seen by the standard observer
are comprised in Fig. 4.5. Here, the observer position is kept fixed at Boyer–Lindquist
coordinates rO = 5m and ϑO = π/2 which is always located in the domain of outer
communication, cf. Table A.2.

Each of the shadings corresponds to a certain choice of black hole parameters β

and �, and for each choice the shadow is shown for four different values of the spin,
a = λamax, where amax = √

m2 + �2 − β. As for the photon regions, the shadow of
a Kerr black hole is plotted for each space-time class for the purpose of comparison
where a class is represented by two exemplary sets of parameters; these are the same
as for the photon regions in Sect. 3.1.

We see that the shape of the shadow is largely determined by the spin a of the
black hole. With increasing a, the shadow becomes more and more asymmetric
with respect to a vertical axis and develops almost always a D-shaped contour for a
maximally rotating black hole; this is a nice description used by James et al. (2015).
The asymmetry is well-known from the Kerr metric and it is easily understood as
a “dragging effect” of the rotating black hole on the light rays. Only for highly
charged black holes, the shadow stays roughly circular at increasing spin, even in the
extreme case as shown in Fig. 4.7. The reason is that amax = √

m2 − β decreases with
increasing charge β. Therefore, highly charged and maximally rotating black holes
are similar to slowly rotating but hardly charged black holes, cf. Sect. 3.1. To highlight
this aspect, Fig. 4.6 contains all possible shadow images for fourKerr–Newman black
holes for the given fixed spin values; plots in the “empty triangle” would, of course,
belong to naked singularities. For the same reason, maximally spinning black holes
in more general space-time classes will lose the D-shaped contour, too, if they are
sufficiently charged.

Such an effect is not observable in the Kerr–NUT space-time since the spin of
an extreme black hole, amax = √

m2 + �2, increases with increasing gravitomagnetic
NUT charge �. This has only small effect on the shadow in contrast to the photon
sphere which is much more influenced by � than by β (in view of the symmetry
loss); � affects the size of the shadow but hardly its shape, at least for the naked
eye. Interestingly, the shadow stays symmetric in spite of the non-symmetric photon
region. Since the shadow seen by the standard observer is independent of theManko–
Ruiz parameter C (consider equations with L̃E), we refer to Sect. 4.4 for images
corresponding to the photon regions in Fig. 3.8; in the mentioned section, we analyze
C-influenced shadows seen by moving observers.

Furthermore, we should mention that in the case � �= 0 some light rays have to
pass through the singularity on the axis. We have assumed that these light rays are
not blocked, i.e., that the source of the gravitomagnetic NUT field does not cast a
shadow.

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3
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Fig. 4.5 Shadows of black holes in Kerr–Newman–NUT space-times for different parameters a, β,
� seen by an observer at rO = 5m and ϑO = π/2, cf. Table A.2. The dashed (red) circle indicates
the celestial equator, cf. Fig. 4.2
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Note that the size of the shadow depends, of course, on rO and that there is no
direct way of comparing radial coordinates in different space-times operationally.
Therefore, if we want to get some information on the space-time from observing the
shadow, the shape is much more relevant than the size. In summary, the standard
observer sees a symmetric shadow of a Kerr–Newman–NUT black hole whose size
depends on β and � but not on the spin in contrast to the shape.

Fig. 4.6 Shadows of Kerr–Newman black holes with fixed spin parameters a, cf. Table A.4. The
color density of the plots corresponds to the ratio a

amax
= a√

m2−β

β
0

5
9m

2

8
9m

2

Fig. 4.7 Contour of the black hole’s shadow in extremal Kerr–Newman space-times presented in
Fig. 4.5. The overlaid green dashed circle shows that the shadow of the highly charged black hole

is almost circular
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4.2 Space-Times with Cosmological Constant

In Fig. 4.8, the shadows of black holes in the Plebański class of space-times are
presented, i.e., shadows of Kerr–Newman–NUT black holes with cosmological con-
stant. Again, the standard observer is located at fixed Boyer–Lindquist coordinates
rO = 5m and ϑO = π/2 in the domain of outer communication, cf. Table A.5. Since
the spin affects the shadow in the sameway as for λ = 0, we consider onlymaximally
rotating black holes. The images show that the effects of the cosmological constant
Λ on the shadow are marginal as it is the case for the photon regions. Only relatively
large values of Λ change the shadow noticeable but just in size. A positive cosmo-
logical constant acts size reducing but changes in the shape are not recognizable.
The most remarkable effect is that the shadows are still symmetric with respect to a
horizontal axis.

4.3 Accelerated Black Holes

The shadows of maximally rotating black holes in accelerated space-times are shown
in Fig. 4.9. FromTableA.6we can read off that for the chosen parameters the smallest
value for the cosmological horizon is r4 = 2.69m in the Kerr–NUT space-time.
Therefore, the standard observer is located at fixed Boyer–Lindquist coordinates
rO = 2.6m and ϑO = π/2 in the domain of outer communication. The different
values of α and Λ are encoded into different shadings.

Also with acceleration, the shape of the shadow is largely determined by the spin
a of the black hole. Hence, the shadow becomes more and more asymmetric with
respect to a vertical axis with increasing spin a where the asymmetry results from
the “dragging effect” of the rotation on the light rays. In view of the small changes
at the special regions this effect is expectable. But there are also non-trivial results:
Although the acceleration parameter breaks the spherical symmetry, a non-rotating
blackhole still has a circular shadowsince (4.8a) depends on the uniqueKE(rp)but not
on L̃E ; consequently, θ = constant which is why the shadow is circular. Independent
of the rotation, the shadow is—as in the non-accelerated case—always symmetric
with respect to a horizontal axis since (ψ, θ) and (π − ψ, θ) are determined by the
same constants of motion KE and L̃E . Because this result is not implied by an under-
lying symmetry unless � = 0, α = 0 and ϑO = π/2, it is non-trivial. Furthermore,
the shadow is still independent of the Manko–Ruiz parameter C which is relevant
only in the case � �= 0. Thus, several properties of the shadow are preserved, even
with added acceleration parameter. The acceleration has an effect on the size of the
shadow, as is visible with the naked eye. This, however, has little relevance in view
of observations because the size also scales with rO and a comparison of the radial
coordinates in different space-times has no direct operational meaning.

Shadow images for different signs of a, � and α are shown in Fig. 4.10. Here,
the standard observer is in almost all cases located at rO = 2.6m and ϑO = π/2 as
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Fig. 4.8 Influence of the cosmological constantΛ on the shadow of extremal Kerr–Newman–NUT
black holes seen by an observer at rO = 5m, ϑO = π/2, cf. Table A.5. The plots of shadows have
different parameters β, � and Λ (C = 0) with color-coded magnitude of Λ. The dashed (red) circle
indicates the celestial equator, cf. Fig. 4.2

before. Only if α� < 0 (last row), the observer has to be fixed at a bigger r coordinate
rO = 7m due to a bigger event horizon, cf. Table A.7. The shadow is reflected at
a vertical axis if the sign of a, i.e., the spin direction, is changed. One might have
expected a similar effect with respect to a horizontal axis if the sign of α is changed.
However, this is not true. As the shadow stays symmetric with respect to a horizontal
axis even if α �= 0, the shadow is independent of the direction of the acceleration,
i.e., of the sign of α.
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Fig. 4.9 Shadows of accelerated extremal Kerr–Newman–NUT black holes seen by an observer
at rO = 2.6m and ϑO = π/2, cf. Table A.6. The plots of shadows have different parameters β, �,
Λ and α (C = 0) with color-coded magnitude of α. The dashed (red) circle indicates the celestial
equator, cf. Fig. 4.2

4.4 Moving Observers

Up to now, we discussed the influence of the different black hole parameters on the
shadow of black holes seen by the standard observer. In the following, we examine
what an observer moving relatively to the standard observer would see. As described
before, we use our analytical parameter representation (4.8a, 4.8b) with (4.10) and
(4.14) to calculate the boundary curve of the shadow as seen by an observer moving
with four-velocity ẽ0. The results in Fig. 4.11 are visualized via stereographic projec-
tion from the celestial sphere onto a plane; see Figs. 4.2 and 4.4 for illustrations and
Eq. (4.17) for standard Cartesian coordinates in this plane. Each subfigure combines
the pictures for four spin values a = λamax.
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Fig. 4.10 Shadows of black holes for different signs of the spin a, the NUT charge � (C = 0) and
the acceleration α seen by an observer at rO = 2.6m or rO = 7m (only last row) and ϑO = π/2.
The magnitude of a is color-coded and values for |amax| are noted in Table A.7

The green star represents the direction of the observer’s motion: It is drawn as
stereographic projection, Eq. (4.17), of the point {θv, ψv} that is given by the usual
transformation from Cartesian to spherical coordinates
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Fig. 4.11 Aberrational effects on the shadows of black holes. The subfigures show the stereographic
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2 ) moving with various velocities v =
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Fig. 4.11 (continued)

tan θv =
√
v21 + v22

v3
, tanψv = v2

v1
. (4.18)

In case of a pure radial motionwith v = {0, 0, v3}, we place the star in the origin if the
observer moves towards the black hole (v3 > 0) and omit plotting the star otherwise.

In principle, the shadows for moving observers (v �= 0) are calculable from the
shadow seen by the standard observer (v = 0) with the help of Penrose’s aberration
formula, cf. Penrose (1959)

tan
α̃

2
=

√
c − v

c + v
tan

α

2
. (4.19)
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But for applying this formula, one may need coordinate transformations since the
angles α and α̃ have to be measured against the direction of the motion. Hence,
no transformations are needed if the observer moves in radial direction. Then, the
shadow ismagnified if the observermoves away from the black hole, and demagnified
if the observer moves towards the black hole. In this case, our formula (4.8a) reduces
to the following common variant of Penrose’s aberration formula (4.19)

cos θ̃ = v + cos θ

1 + v cos θ
. (4.20)

Penrose (1959) emphasized in his article that the aberration formula maps circles
on the celestial sphere onto circles. Thus, the shadow of a non-rotating black hole
(a = 0) is always circular, independent of the observer’s motion. Consequently, our
pictures of the shadow are always circular then, because the stereographic projection
(4.17) maps circles onto circles, too.

Figure4.11b shows several pictures of shadows for differently moving observers
in Kerr space-times. The result for the standard observer (v = 0, ẽμ = eμ) is shown
in the top row. In each of the lower rows we vary only one component vi of v; in
the following we write vi as abbreviation for those observer velocities v with vi �= 0
and vj = 0, j �= i. Due to our definition of the tetrad eμ in (4.1) and of the observer’s
four-velocity ẽ0 in (4.2a), the observer moves in ϑ direction if v = v1, and in r, i.e.,
radial direction if v = v3. For v = v2 the motion is in ϕ direction.

In the last rowof Fig. 4.11b, the shadow images seen by a radiallymoving observer
(v = v3) are shown; it can be seen that the shadows are magnified if the observer
moves away from the black hole (v3 negative), and demagnified, if the observer
moves towards the black hole (v3 positive), as mentioned before.

For velocities v = v1 or v = v2, the shadow is shifted in the direction of the
observer’s motion while the effect increases with the velocities. Also the size of the
shadow is affected. But all these aberrational changes are explainable if one relates
the direction of the observer’smotion to the spin of the black hole and to the equatorial
plane as symmetry plane.

Furthermore, the shadow is symmetric with respect to a horizontal axis as long
as the observer does not move in ϑ direction because, as in (4.8b), sinψ depends
on ϑ̇ which is given by a quadratic expression, see (3.3c). Hence, the different signs
of ϑ̇ yield different solutions of (4.8a, 4.8b) for the points (θ, ψ) and (θ, π − ψ).
Without a ϑ component in the velocity, the symmetry of the shadow is not affected
even if the observer is not in the equatorial plane, i.e. ϑO �= π

2 .
The remainingplots inFig. 4.11c are shadow images calculated for different space-

times but with the same observer at (rO, ϑO) = (5m, π
2 ) moving with velocity v =(

3
10 ,− 3

10 ,− 1
10

)
. We see that all images are affected in the same way by the velocity

v, i.e., all shadows are shifted in the direction of the v. But besides this shift, no
further effects coming from the space-time are visible.

http://dx.doi.org/10.1007/978-3-319-30066-5_3
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All in all, the shadows shown in Fig. 4.11 are calculated for relatively fast moving
observers (v = 0.3 c up to v = 0.9 c). Thus, the aberrational influence for the future
observations of the shadow of Sgr A* within the Event Horizon Telescope or the
BlackHoleCam project is expected to be very small since our solar system orbits the
Galactic center with roughly 250km

s ≈ 1
1000c, see Reid et al. (2009). Nevertheless,

the study of aberrational effects are of interest from a fundamental point of view.

ZeroAngularMomentumObserver (ZAMO). We have seen that theManko–Ruiz
parameter C has no influence on the shadow seen by the standard observer indepen-
dent of the influence on the photon region, see Fig. 3.8. This is in general not true for
a moving observer. If the observer moves with velocity v = (

0,
√

Δrχ

(Σ+aχ)
√

Δϑ sin ϑ
, 0

)
we find for (4.2a, 4.2b)

ẽ0 = gϕϕ∂t − gϕt∂ϕ√
gϕϕ(g2ϕt − gϕϕgtt)

, ẽ1 = 1√
gϑϑ

∂ϑ, ẽ2 = −1√
gϕϕ

∂ϕ, ẽ3 = −1√
grr

∂r .

(4.21)

Here, the spatial vectors ẽi are just the normalized standard basis vectors ∂i and the
observer falls with four velocity ẽ0 towards the black hole. By definition, we have
ẽ0ϕ = ϕ̇ and ẽ0t = ṫ which is why (̃e0)ϕ is the observer’s angular momentum LO, cf.
Eq. (3.2). But since LO vanishes,

LO = (̃e0)ϕ = gϕϕ̃e0
ϕ + gϕ t̃ e0

t 4.21= −gϕϕgϕt + gϕtgϕϕ√
gϕϕ(g2ϕt − gϕϕgtt)

= 0, (4.22)

this observer is called zero angular momentum observer (ZAMO).
Comparing Eqs. (4.21) and (4.5) we find k0r = k0ϑ = k3ϑ = 0, and (4.7a) and

(4.7b) reduce to

ṙ = σk3r cos θ, ϑ̇ = σk1ϑ sin θ cosψ. (4.23)

Apparently, these equations can be solved easily for sin θ and sinψ , much easier
than by inserting the observer’s velocity v in (4.8a, 4.8b). With

σ = −Lzgϕt − Egϕϕ√
gϕϕ(g2ϕt − gϕϕgtt)

∣∣∣∣
(rO,ϑO)

, (4.24)

these calculations yield the following formulas for the shadow’s boundary seen by
the ZAMO

http://dx.doi.org/10.1007/978-3-319-30066-5_3
http://dx.doi.org/10.1007/978-3-319-30066-5_3


74 4 The Shadow of Black Holes

sin2 θ = g2ϕt − gϕϕgtt
(gϕtLE + gϕϕ)2

(
L2
E + Ω2

Σ
gϕϕ

(
KE − (χ − LE)2

Δϑ sin2 ϑ

))∣∣∣∣
(rO,ϑO)

, (4.25a)

sin2 ψ = ΣL2
E

L2
E + Ω2

Σ
gϕϕ

(
KE − (χ−LE)2

Δϑ sin2 ϑ

)
∣∣∣∣
(rO,ϑO)

, (4.25b)

where LE and KE are given by Eq. (4.14) again.
Images of shadows of a Kerr–Newman–NUT black hole seen by the ZAMO are

shown in Fig. 4.12. They correspond to the photon regions in Fig. 3.8. Since the
ZAMO moves relative to the standard observer in ϕ direction, the changes of the
shadow match those for the Kerr space-time in Fig. 4.11b.

C = −2 C = −1 C = − 1
2 C = 0 C = 1

2 C = 1 C = 2

Fig. 4.12 Shadow of a black hole (β = 5
9m

2, � = 4
3m) for varying singularity parameter C

seen by the zero angular momentum observer (rO = 6m, ϑO = π
2 ); the ZAMO moves with

v = (
0,

√
Δrχ

(Σ+aχ)
√

Δϑ sin ϑ
, 0

)
relative to the standard observer. As always, the cross hairs indicate the

spatial direction towards the black hole and the dashed (red) circle indicates the celestial equator

4.5 Inclination of Observer

In Fig. 4.13, we consider a specific Kerr–Newman–NUT black hole with fixed para-
meters β and �. We keep the radius coordinate rO of the observer fixed and vary
the inclination ϑO. Clearly, the dragging asymmetry with respect to the vertical axis
vanishes when the observer approaches the axis; in the limit ϑO → 0, the shadow
becomes circular because with respect to the rotation axis the black hole is symmetric
again. This effect is independent of the observer’s state of motion. We already have
emphasized the remarkable fact that the shadow is always symmetric with respect
to the horizontal axis as long as the observer’s motion does not have a ϑ part, i.e.,
v = {0, ∗, ∗}.

http://dx.doi.org/10.1007/978-3-319-30066-5_3
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4.6 Angular Diameter of the Shadow

From the analytical formulas (4.8a, 4.8b)/(4.12a, 4.12b) and (4.14) for the boundary
curve of the shadow,we candeduce expressions for the horizontal andvertical angular
diameters of the shadow. They correspond to the dashed lines in Fig. 4.14. Owing to
the symmetry, the angular diameters δh and δv are determined by three angular radii
ρh1 , ρh2 and ρv as indicated in Fig. 4.14,

δh = ρh1 + ρh2 , sin ρhi = sinψhi sin θhi = P(rhi)T(rhi), (4.26)

δv = 2ρv, sin ρv = cosψv sin θv =
√
1 − P2(rv)T(rv), (4.27)

where T and P have the same meaning as in (4.12a, 4.12b).
In the following, we restrict ourselves to the Kerr space-time with an observer in

the equatorial plane,ϑO = π
2 . Even in this case, a formula for the angular diameters of

the shadowwas not derived before, as far as we know. In the general case, the angular
diameters can be calculated analogously; then it is true that the radius values rhi and rv
are zeros of a polynomial of higher than fourth order, so they cannot be determined
in closed form. In terms of these radii, however, one gets analytical formulas for
the angular diameters even in the general case. The horizontal angular radii ρhi are
characterized by ψhi = ±π

2 , so we must solve the equation 1 = sin2 ψ(rh) = P2(rh)
which in the Kerr case simplifies to (use Eq. (4.8b) with Eq. (4.14))
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x

y

ρh1 ρh2

ρv

ρv

Fig. 4.14 (From [3]) Angular radii of the shadow of a black hole. Owing to the symmetry with
respect to a horizontal axis, the two angular diameters (dashed lines) of the shadow are given by
three angular radii: two horizontal radii ρhi and one vertical radius ρv. The angular diameters are
calculated as δh = ρh1 + ρh2 and δv = 2ρv, respectively

rh(rh − 3m)2 = 4ma2 (4.28)

⇒ rh1 = 2m + 2m cos(ζ/3), (4.29a)

rh2 = 2m − m cos(ζ/3) − √
3m sin(ζ/3), (4.29b)

rh3 = 2m − m cos(ζ/3) + √
3m sin(ζ/3), (4.29c)

where ζ = arg
(
(2a2m − m3) − i(2am

√
m2 − a2)

)
. Here we have to choose the solu-

tions rh1 and rh2 which are the radii of the two circular photon orbits in the exterior
photon region. Evaluating PT for rh1 and rh2 yields by (4.26) the horizontal angular
diameter δh of the shadow.

The vertical angular radius corresponds to boundary points where the tangent is
horizontal. By (4.27) we have f (rv) := sin2 ρv = (

1 − P2(rv)
)
T 2(rv), so the tangent

is horizontal if df
drv

(rv) = 0. This yields

0 = (1 − P2)T ′ − PP′T |rv (4.30)

=
√

Δ(rO) rv
(
rv(2a2 + r2O) − 3mr2O

)(
a2m − rv(3m2 − 3mrv + r2v )

)
a2

√
Δ(rv)

(
rv(2a2 + r2O + r2v ) − m(r2O + 3r2v )

)2 (4.31)

where we have to choose the unique solution inside the exterior photon region

rv = 3mr2O
2a2 + r2O

. (4.32)

With this value rv, we get an analytic expression of the vertical angular radius



4.6 Angular Diameter of the Shadow 77

sin2 ρv = (1 − P2)T 2|rv = 27m2r2O
(
a2 + rO(rO − 2m)

)
r6O + 6a2r4O + 3a2(4a2 − 9m2)r2O + 8a6

. (4.33)

For a = 0,we recover from (4.33) Synge’s formula (Synge 1966) for a Schwarzschild
black hole,

sin2 ρ = 27m2(rO − 2m)

r3O
. (4.34)

It was already noted as Eq. (1.2) in the introduction. Since the shadow of a non-
rotating black hole is always circular, the horizontal angular radii ρhi are also given
by Eq. (4.34) in this case.4 Note that for all values 0 ≤ a2 ≤ m2 Eq. (4.33) gives the
same result as (4.34), 27m2/r2O, if m is negligibly small in comparison to rO. This
means that for observers far away from the black hole the vertical diameter of the
shadow is independent of a.

In the extremal Kerr space-time, a = m, the circular photon orbits are at rh1 = 4m
and rh2 = m since ζ = arg(m3) = 0.Togetherwith (4.32), this results in the following
formulas for the angular radii

sin2 ρh1 = 64m2(rO − m)2

(r2O + 8m2)2
,

sin2 ρh2 = m2

(rO + m)2
,

sin2 ρv = 27m2r2O
(rO + m)2(r2O + 8m2)

. (4.35)

Finally, we use (4.34) and (4.35) to determine the angular diameters given by
(4.26) and (4.27) for the shadow of the black hole in the center of our Galaxy near
Sgr A* and of that in M87. The resulting values are given in Table4.1 together with
the corresponding values for the massM (in multiples of the Solar massM�) and for
the distance rO of the black holes. We use two sets of parameters for M87 because
the mass estimation based on the modeling of stellar dynamics yields a mass twice
as big as the estimation based on gas dynamical measurements, compare Broderick
et al. (2015), Kormendy and Ho (2013), Gebhardt et al. (2011), Walsh et al. (2013),
see Gillessen et al. (2009) for mass and distance of Sgr A*.

The horizontal angular diameter for the maximally rotating black holes is always
about 13% smaller than for the Schwarzschild case while the vertical angular diam-
eters δv coincide in all cases. We already observed that the latter is a consequence
of the fact that rO is large in comparison to m. It turns out that the shadow of the
black hole in M87 is not much smaller than that of the black hole at the center of our
Galaxy; the bigger distance of M87 is almost compensated by its bigger mass.

4For a = 0, one finds ζ = arg(−m3) = −π and rh1,2 = 3m. Then T2(3m) reproduces (4.34).

http://dx.doi.org/10.1007/978-3-319-30066-5_1
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Table 4.1 Horizontal and vertical angular diameter δh, δv of the shadow for Sgr A* and M87 for a
non-rotating Schwarzschild model (a = 0) or an extreme Kerr model (a = m) of their black holes

Sgr A* M87 M87

δh δv δh δv δh δv

a = 0 53.1µas 53.1µas 37.8µas 37.8µas 20.1µas 20.1µas

a = m 46.0µas 53.1µas 32.8µas 37.8µas 17.4µas 20.1µas

m = MG
c2

M = 4.31 × 106M�, M = 6.2 × 109M�, M = 3.5 × 109M�,
rO = 8.33 kpc rO = 16.68Mpc rO = 17.9Mpc

By [1–3] I refer to my papers Grenzebach et al. (2014), Grenzebach (2015) and Grenzebach et al.
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Chapter 5
Conclusions

Abstract This chapter contains a summary of important properties of the shadow
of black holes and an outlook on upcoming extension.

Based on a detailed analysis of the Plebański–Demiański metric of black hole space-
times, we have derived analytical formulas for the photon regions and for the shadow
of a black hole.1 They are valid for all Plebański–Demiański space-times although
the involvedmetric functions have differentmeanings. In general, the space-times are
not asymptotically flat and may have a cosmological horizon. Therefore, one cannot
restrict to observers at infinity as it is done in many articles by other authors on
shadows of black holes. Our formalism allows for observers at any Boyer–Lindquist
coordinates in the domain of outer communication.

It turns out that the shape of the black hole’s shadow is mostly determined by the
spin of the black hole where the resulting asymmetric deformation can be understood
as a dragging effect of the rotation. But it is unexpected that besides the charge or the
cosmological constant also the NUT charge apparently only affects the size of the
shadow. Since a gravitomagnetic NUT charge causes a North–South violation of the
symmetry of the photon region, which determines the boundary of the shadow, one
would expect an influence on the symmetry of the shadow. However, the calculations
show that the shadow seen by the standard observer stays symmetric with respect to
a horizontal axis, even for non-vanishing NUT parameter and for an observer off the
equatorial plane. Although the acceleration parameter does not destroy the symmetry
of the shadow with respect to a horizontal axis, it does have such an effect on the
photon region, the ergosphere and the causality violating region.

It is possible to consider observers in different states ofmotion. For a radialmotion,
the shadow changes according to Penrose’s aberration formula that is easily deduced
from my formulas. For other states of motion, the shadow is shifted or scaled. The
shadow stays symmetric with respect to a horizontal axis as long as the observer does

1The conclusions in the first and fifth paragraph can be found in [1] while the last sentence of the
second paragraph as well as the fourth paragraph are taken from [3].
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not move in ϑ direction. Indeed, the aberrational influence for attempts of observing
a galactic black hole is small because of small relative velocities.

Our estimates of the angular diameters for the shadows of the black holes in the
centers of our Galaxy and of M87 show that the shadows are roughly of the same
size. Hence the planned observations may provide us with shadow images not only
of the black hole in our Galaxy but also of that in M87. Astronomers expect to image
the shadow of the black hole in the Galactic center in the near future.

Due to the cosmic censorship hypothesis (Penrose 2002), we have restricted our-
selves to black-hole space-times, but a large part is valid for naked singularities, too.
In particular, the characterization of the photon region by inequality (3.7) is true in
general. Amajor difference is the fact that there is no domain of outer communication
in case of a naked singularity. If present, the possible observer positions are restricted
only by a cosmological horizon. The shadow of a naked singularity is drastically dif-
ferent from the shadow of a black hole, as was demonstrated by de Vries (2000) for
the Kerr–Newman case. While for a black hole the shadow is two-dimensional (an
area on the sky, bounded by a closed curve), for a naked singularity the shadow is
one-dimensional (an arc on the sky).

Another obvious way to continue this work is guided by the question whether
it is possible to reveal black hole parameters from an observed shadow of a black
hole. For this, my analytical formulas for the boundary curve of the shadow seem
to be a promising tool since they are valid for a general class of space-times. If
also the aberrational effect is taken into account, the boundary curve depends on the
observer’s velocity and the parameters of the space-time (spin, electric and magnetic
charge, NUT charge, the Manko–Ruiz parameter, acceleration and the cosmological
constant; the mass m gives an overall scale). To make ones life easier, it is enough
to start with the Kerr–Newman space-time as suggested by the no-hair theorem. The
parameter reconstruction is one of the main goals of the BlackHoleCam or the Event
Horizon Telescope projects.

Our analytic way to describe the boundary curve of the shadow is highly idealized
since no effects of matter can be modeled. This has to be done with ray-tracing meth-
ods to achieve realistic images. The big advantage of our formulas is that they image
the shadow of very general classes of black hole metrics. The many singularities that
ray-tracing must overcome are overcome naturally. This provides a powerful tool for
testing the shadow from Sgr A* or M87 against alternative models of black holes,
as well as alternative theories of gravity.

By [1–3] I refer to my papers Grenzebach et al. (2014), Grenzebach (2015) and Grenzebach et al.

(2015), respectively. Sentences marked with [i] can be found in total or only slightly modified in

the ith paper
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Appendix A
Figure Parameters

Abstract The tables in this appendix list the parameters of the space-times for which
the photon regions and shadows are plotted in Sects. 3 and 4.

The subsequent tableswith space-time parameters for the Plebański–Demiański class
are split into three blocks. The first one comprises the black hole parameters a

amax
,

β, �, C , α, Λ and the resulting maximal spin amax that characterizes the space-time.
Since all values are measured in terms of the massm of the black hole, we denote all
with m = 1. In the second block, the roots and, if non-zero, the leading coefficient
b4 of the quartic polynomialΔr are listed. The sign of b4 defines the causal character
of ∂r for large values of r while the roots represent the horizons of the space-time;
furthermore, for each black hole space-time the outer event horizon r+ is marked in
bold so that horizons at larger values r > r+ are cosmological horizons. The third
block is relevant if Λ �= 0 or α �= 0. Then, Δϑ �≡ 1 and Δϑ > 1 is guaranteed for
a23 + 4a4 < 0 or if the right hand side (r.h.s.) of Eq. (2.21) is larger than 1. One of
these conditions is fulfilled for all considered space-times. TableA.1 shows which
tables correspond to which figures.

Table A.1 Overview of corresponding tables and figures

Photon regions Shadows Space-times

TableA.2 Figs. 3.4–3.7 Fig. 4.5 K a, KN β, KNUT �,
KNNUT

TableA.3 Fig. 3.8 KNNUT: singularity C

TableA.4 Fig. 4.6 KN

TableA.5 Fig. 3.9 Fig. 4.8 P: cosmological
constant Λ

TableA.6 Fig. 3.11 Fig. 4.9 PD: acceleration α

TableA.7 Fig. 3.12 Fig. 4.10 PD: signs of a, �, α

Fig. 4.11 Moving observer

Fig. 4.12 Varying C

Fig. 4.13 Inclination of observer
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Table A.2 Black hole parameters for Kerr–Newman–NUT space-times (m = 1)
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Table A.3 Black hole parameters for varying singularity parameter C (m = 1), see Fig. 3.8 for the
corresponding photon regions

http://dx.doi.org/10.1007/978-3-319-30066-5_3
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Table A.4 Black hole parameters for Kerr–Newman space-times with fixed spin values a (m = 1),
see Fig. 4.6 for the corresponding black hole shadows

http://dx.doi.org/10.1007/978-3-319-30066-5_4
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TableA.5 Black hole parameters for Plebański space-times (m = 1), see Fig. 3.9 for corresponding
photon regions

http://dx.doi.org/10.1007/978-3-319-30066-5_3
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Table A.6 Black hole parameters for Plebański–Demiański space-times (m = 1), see Fig. 3.11 for
corresponding photon regions

http://dx.doi.org/10.1007/978-3-319-30066-5_3
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Table A.7 Black hole parameters with varying signs for Plebański–Demiański space-times
(m = 1), see Fig. 3.12 for corresponding photon regions

http://dx.doi.org/10.1007/978-3-319-30066-5_3


Appendix B
Isometries

Abstract In this appendix, it is shown that the coordinate transformations given in
Sect. 2.2 are indeed isomorphisms within the Plebański–Demiański class.

Definition A map (M, g) → (M ′, g′) between semi-Riemannian manifolds is an
isometry iff there is a coordinate transformation f such that

• f : M → M ′ is a diffeomorphism,
• g = f ∗g′, i.e., g is the pullback of g′.

In Riemannian geometry, an isometry is thus a metric conserving map which means
that the length of vectors or curves is preserved but possibly not the distance between
two points. This is different compared to isometries between ordinary metric spaces
which also preserve distances.

We show that the coordinate transformations given in Eq. (2.11)

f 1 : (M[m,a,β,�,C,α,λ], g) −→ (M ′
[m,−a,β,�,−C,α,λ], g

′)

(r, ϑ, ϕ, t) �−→ (r ′, ϑ ′, ϕ′, t ′) = (r, π − ϑ,−ϕ, t)
(B.1)

f 2 : (M[m,a,β,�,C,α,λ], g) −→ (M ′
[m,a,β,−�,−C,−α,λ], g

′)

(r, ϑ, ϕ, t) �−→ (r ′, ϑ ′, ϕ′, t ′) = (r, π − ϑ, ϕ, t)
(B.2)

are indeed isometries between two space-times of the Plebański–Demiański class.
It is clear that the f i are diffeomorphisms. Because the metric coefficients (2.1)

are independent of ϕ, they are invariant under ϕ �→ −ϕ. Thus, we only have to
consider ϑ �→ π − ϑ . For both transformations (B.1) and (B.2), we find

Ω ′ = 1 − α′
ω′ (�

′ − a′ cosϑ)r = Ω, (B.3a)

Σ ′ = r2 + (�′ − a′ cosϑ)2 = Σ, (B.3b)

χ ′ = a′ sin2 ϑ − 2�′(− cosϑ + C ′) =
{−χ if a′ = −a,

χ if �′ =−�
α′ =−α

,
(B.3c)
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Δ′
ϑ ′ = 1 + a′

3 cosϑ − a′
4 cos

2 ϑ = Δϑ, (B.3d)

Δ′
r ′ = b′

0 + b′
1r + b′

2r
2 + b′

3r
3 + b′

4r
4 = Δr . (B.3e)

From (2.3)–(2.5) one can read off that the changed sign for a or � and α yields
a′
3 = −a3, a′

4 = a4 and b′
j = b j which verifies (B.3d) and (B.3e). Thus

g′
r ′r ′ = grr ,

g′
ϑ ′ϑ ′ = gϑϑ,

g′
ϕ′ϕ′ = gϕϕ,

g′
t ′t ′ = gtt ,

g′
ϕ′t ′ =

{ −gϕt if a′ = −a,

gϕt if �′ =−�
α′ =−α

.
(B.4)

For the bases
{

∂
∂r ,

∂
∂ϑ

, ∂
∂ϕ

, ∂
∂t

} =: {
∂

∂xi
}
and

{
∂

∂r ′ ,
∂

∂ϑ ′ ,
∂

∂ϕ′ ,
∂
∂t ′

} =: {
∂

∂y j

}
of the

tangent spaces T M and T M ′, respectively, the pushforward of v ∈ T M belonging
to f = ( fr , fϑ , fϕ, ft ) : M → M ′ is

f∗(v) = d f (v) = ∑
i vi d f

(
∂

∂xi
) = ∑

i vi
∑

j
∂ f j
∂xi

∂
∂y j = ∑

j

(∑
i

∂ f j
∂xi vi

)
∂

∂y j (B.5)

Applied to f i we find with respect to the basis
{

∂
∂y j

}

f 1∗ (v) = (vr ,−vϑ ,−vϕ, vt ), f 2∗ (v) = (vr ,−vϑ , vϕ, vt ). (B.6)

This yields for the pullback of g′

f 1
∗
g′(v,w) = g′( f 1∗ v, f 1∗ w)

= v

[
1 −1

−1
1

] [ grr
gϑϑ

gϕϕ −gϕt
−gϕt gtt

] [
1 −1

−1
1

]
wt

= v

[ grr
gϑϑ

gϕϕ gϕt
gϕt gtt

]
wt = g(v,w), (B.7)

f 2
∗
g′(v,w) = g′( f 2∗ v, f 2∗ w) = · · · = g(v,w). (B.8)

Hence f 1 and f 2 are isometries. �

http://dx.doi.org/10.1007/978-3-319-30066-5_2
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