Springer Theses
Recognizing Outstanding Ph.D. Research

Heike Pfau

Thermal Transport in
Strongly Correlated '
Rare-Earth —
IE ]| To—
Comg

Springer



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

e They must be written in good English.

e The topic should fall within the confines of Chemistry, Physics, Earth Sciences,
Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

The work reported in the thesis must represent a significant scientific advance.
If the thesis includes previously published material, permission to reproduce this
must be gained from the respective copyright holder.

e They must have been examined and passed during the 12 months prior to
nomination.

e Each thesis should include a foreword by the supervisor outlining the signifi-
cance of its content.

e The theses should have a clearly defined structure including an introduction
accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790


http://www.springer.com/series/8790

Heike Pfau

Thermal Transport

in Strongly Correlated
Rare-Earth Intermetallic
Compounds

Doctoral Thesis accepted by
the Technical University Dresden, Germany

@ Springer



Author Supervisor

Dr. Heike Pfau Prof. Frank Steglich

Max Planck Institute for Chemical Max Planck Institute for Chemical
Physics of Solids Physics of Solids

Dresden Dresden

Germany Germany

ISSN 2190-5053 ISSN 2190-5061 (electronic)

Springer Theses

ISBN 978-3-319-39542-5 ISBN 978-3-319-39543-2  (eBook)

DOI 10.1007/978-3-319-39543-2
Library of Congress Control Number: 2016942006

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Supervisor’s Foreword

Heavy-fermion (HF) materials are intermetallic compounds of certain rare earths
and actinides with partially filled 4f- or 5f-shells, where the electronic correlations
increase the effective mass of the charge carriers by a factor of order 1000. This is a
consequence of the lattice Kondo effect by which entangled localized f-electron and
delocalized conduction-electron states (“Kondo singlets”) form composite quasi-
particles at sufficiently low temperatures, which act as the charge carriers. The
lattice Kondo effect gives rise to a renormalized large Fermi surface including the f-
states in addition to the ordinary conduction-electrons. Intensive research on these
systems revealed fascinating, yet complex, collective quantum states, such as
unconventional superconductivity and unconventional quantum criticality.
A so-called quantum critical point (QCP) denotes a continuous phase transition at
zero temperature. In case of HF metals, such a QCP typically separates antiferro-
magnetic order from a paramagnetic metal which has the properties of a heavy
Fermi liquid. The collective quantum fluctuations associated with the HF QCP
cause distinct non-Fermi-liquid phenomena in transport and thermodynamic
properties. In addition, the huge entropy accumulated in the vicinity of a QCP
commonly leads to the formation of some novel ordered phase; in most cases
unconventional superconductivity is encountered.

There are two different kinds of HF QCPs, depending on the fate of the com-
posite charge carriers. In the conventional type, the renormalized Fermi surface may
undergo some nesting due to antiferromagnetic correlations which results in
spin-density wave (SDW) order. In case of three-dimensional critical fluctuations,
the effective charge-carrier mass does not diverge at the SDW QCP, i.e., the charge
carriers are well defined even at this instability. On the other hand, if the critical
fluctuations are of lower dimension they may become strong enough to break up the
lattice Kondo effect which implies an abrupt change from a large to a small Fermi
surface, the latter being formed by the conduction-electrons only. This is called an
unconventional QCP. In the past two decades, several HF metals have been
established to fall into this category. A model system is the tetragonal compound
YbRh,Si,, which has been intensively investigated over the past 15 years. The main
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result of these studies was a destruction of the composite charge carriers on the
brink of weak antiferromagnetic order. This breakdown of the lattice Kondo effect
bears resemblance to a so-called Mott transition at which the electrons can be either
localized in an antiferromagnetic insulator or itinerant in a bad metal due to their
strong mutual correlations. A well-known example which puts the Mott transition
into the spotlight is the cuprate high-T, superconductors. In contrast to the cuprates,
however, rare-earth-based HF metals have well-separated energy scales for the
relevant electronic, magnetic, and elastic excitations, which allow physicists to
study quantum fluctuations and superconductivity near a Kondo destroying insta-
bility in great detail. This then promises deeper insight into the origin of
high-temperature superconductivity in the cuprates, one of the most eminent
unsolved problems in condensed-matter physics.

Heike Pfau started her thesis work in the fall of 2010 by preparing thermal and
electrical transport measurements on YbRh,Si, at temperatures as low as 25 mK.
With an exception of one team all other groups worldwide specialized on
low-temperature heat-transport experiments are able to perform such measurements
down to, at best, 40 mK. Heike’s experiments became possible because she took
special care of the electrical shielding as well as the mechanical shock absorption of
her dilution refrigerator. The aim of her work was to scrutinize the famous
Wiedemann—Franz law, which is a cornerstone of metal physics and must be sat-
isfied for any Fermi liquid. If the Wiedemann—Franz law is valid, the ratio of the
electrical to the thermal resistivity, the Lorenz number, equals a product of natural
constants in the zero-temperature limit. The challenging question at hand was to
find out whether this law also holds for the non-Fermi-liquid ground state that is
anticipated to exist at the unconventional QCP of YbRh,Si, .

First, she could demonstrate that the Wiedemann—Franz law is valid in the
paramagnetic heavy Fermi-liquid regime. This by itself is an important result,
because it has never been shown before for such a strongly correlated system. For
her experiments performed as a function of temperature right at the critical field she
discovered a significant reduction of the Lorenz ratio by about 10 % compared to
the Wiedemann—Franz value by extrapolating her data in the most reliable way to
zero temperature. This discovery, which was published in 2012 in Nature (with
Heike as first author), implies a violation of Landau’s celebrated concept of
quasiparticles and has inspired other groups to repeat her measurements. While all
the published experimental data agree to a large extent their interpretation remains
controversial. This is due to a magnetic contribution to the low-temperature heat
transport, which is masking the more important electronic one and has been
overlooked by some of these groups. When the magnetic part has been established,
however, the question arose how to account for it and warrant the most reliable
extrapolation of the electronic contribution to the zero-temperature limit. In order to
minimize these ambiguities, Heike also studied the isothermal extrapolation from
the Fermi-liquid range at elevated fields into the low-field non-Fermi-liquid regime
at high enough temperatures (100400 mK) where the magnetic heat conductivity is
negligibly small. These results also reveal a 10 % reduction of the Lorenz number at
the lowest temperature close to the critical field, supporting her conclusion of a
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violation of the Wiedemann—Franz law at the Kondo destroying QCP of YbRh,Si,.
Further, the apparent 10 % excess residual thermal resistivity could be related, in
the most natural way, to the fluctuations of the Fermi surface between large and
small, which acts as strong scatterers of the heat carriers at the Kondo destroying
QCP. In conclusion, Heike’s thesis, which was submitted at the Technical
University of Dresden by the end of 2014, proved to be of fundamental importance;
as mentioned, it has initiated a lively debate among condensed matter physicists.

Utilizing a technique to measure low-temperature thermal and electrical trans-
port isothermally as a function of the magnetic field up to 12 T, which was newly
implemented by her in collaboration with Ramzy Daou, Heike was able to interpret
certain high-field transitions in CeRu,Si, and YbRh,Si,, partly discovered by
herself, as Lifshitz transitions. A Lifshitz transition is a change in the topology
of the Fermi surface under variations of a suitable control parameter, here the
magnetic field. While metamagnetic behavior covers the signatures of the Lifshitz
transition in CeRu,Si,, she could demonstrate in her first-author Physical Review
Letter published in 2013 that the Lifshitz transitions in YbRh,Si, go along with a
smooth weakening of the Kondo effect at high magnetic fields.

Finally, by applying this new technique to thermal conductivity measurements
of the 8 K superconductor LaPt,Ge, as a function of temperature, magnetic field,
and field angle, she was able to prove that this skutterudite system is a conventional
superconductor with a single isotropic energy gap. In doing so, she could discard
speculations in the literature about unconventional Cooper pairing in this material.

Dresden Prof. Frank Steglich
February 2016



Abstract

In this dissertation, we study rare-earth intermetallic compounds with the help of
transport measurements—in particular thermal transport measurements at very low
temperatures. These materials are characterized by strong electronic correlations,
which lead to novel properties beyond the fundamental concepts of condensed
matter physics. In this work, we concentrated on three specific scientific questions.

In the first project, we studied the heavy-fermion metal YbRh,Si, performing
thermal conductivity and electrical resistivity measurements to temperatures as low
as 25 mK. Our results demonstrate that the Wiedemann—Franz law, a cornerstone in
metal physics, is violated exactly at the magnetic field-induced quantum critical
point of YbRh,Si,. This first-ever observation of a violation has dramatic conse-
quences as it implies a breakdown of the quasiparticle picture.

In the second project, we utilized a newly implemented technique to measure
thermal and electrical transport isothermally as a function of the magnetic field up
to 12 T to study the Kondo lattice systems CeRu,Si, and YbRh,Si,. We were able
to interpret certain, partly newly discovered, high-field transitions as Lifshitz
transitions related to a change of the underlying Fermi surface. With our results, we
can explain the development of YbRh,Si, in high magnetic fields as interplay of a
smooth Kondo suppression and a spin-splitting of the hybridized bands.

Finally, by applying this new technique to thermal conductivity measurements
of the skutterudite superconductor LaPt;Ge,, as a function of temperature, mag-
netic field and field angle, we show that the system is a conventional supercon-
ductor with a single energy gap.

ix
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The following list specifies symbols used throughout the text. Very specific ones
used only in isolated passages have been omitted. In cases, where it is necessary, we
use bold symbols to indicate vectors.

Coefficient of quadratic term in the resistivity
Cross section of the sample

Magnetic field

Specific heat

Susceptibility

Energy gap

Superconducting gap at 7 = 0

Elementary charge

Fermi energy

Energy

Specific heat coefficient y = C/T

Magnetic field, here also used in units of T
Lower critical field of a superconductor
Upper critical field of a superconductor
Planck’s constant over 271

Electrical current for resistivity measurement
Current, vector

Momentum, vector

Thermal conductivity

Boltzmann constant

Fermi wave vector

Lorenz number

Linear magnetostriction coefficient

Lorenz ratio, L is the Sommerfeld constant
Mean free path

Distance between which AT is measured
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Magnetization

Mass, bare electron mass

Effective mass

Chemical potential

Density of states

Total electron concentration

Heater power

q ratio, ratio between thermopower and specific heat
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Electrical resistivity

Residual resistivity
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Electrical conductivity

Temperature

Scattering time

Temperature gradient

Debye temperature

Kondo temperature

Temperature of the mixing chamber or cold finger
Voltage used to determine resistivity
Thermovoltage
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Bardeen-Cooper-Schrieffer
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Fast Fourier transformation
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Metamagnetic transition

Nuclear magnetic resonance
Physical Property Measurement System
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Renormalized band
Ruderman-Kittel-Kasuya-Yosida
Residual resistivity ratio

“SHE”

Spin-density wave
Wiedemann-Franz
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Chapter 1
Preamble

Richard Feynman aptly summarized the key principle of natural sciences in his
famous lectures (Feynman et al. 1963): “The test of all knowledge is experiment.”
It has been a guidance for all physicists, who try to extract the fundamental laws of
our world from more and more complicated experimental arrangements. This is also
true for condensed-matter physicists, who investigate macroscopic objects, which
are composed of a large number of elementary particles. These objects cannot be
understood only in terms of a simple extrapolation of the properties of the single
constituents. Instead, the complex arrangement of elementary particles causes new
phenomena to emerge. Any small crystal in our salt shaker consists of a myriad of
particles, every of them obeys the fundamental laws of quantum electrodynamics. The
behaviour of the crystal as a whole with its beautiful colourless rectangular shape,
however, is governed by additional mechanisms. To understand the fundamental
concepts of such emergence is the subject of condensed-matter physics. This field,
compared to other branches of physics, has the advantage, that we can actually see
and touch our objects of study in most cases. We can carry them into our laboratories
and directly measure their properties. Therefore, experiment and theory progress in
parallel, which leads to a mutually inspiring scientific environment in this research
field.

In this dissertation, we will investigate metallic materials. Modern condensed-
matter physics of metals rests on two cornerstones, which form the theoretical basis
of our research. The first one is the concept of the Fermi liquid. It was introduced
by Lev Landau in 1956. In this effective single-particle model, we can treat the
electrons in a metal independently as if each of them moves in a background, which
is generated by all other electrons. The electrons confined to a solid—called electronic
quasiparticles—share many properties with free electrons: they have the same charge,
spin, and momentum. But other properties such as the mass of these quasiparticles
are renormalized. In some materials the difference can be as large as a factor of one
thousand.

Metals can also exist in the form of different phases: They may be in a magnetic
state (e.g. ferromagnetic or paramagnetic); they may form a crystallographic structure
(e.g. cubic or hexagonal); or they may have different aggregation states (e.g. fluid or
© Springer International Publishing Switzerland 2016 1
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solid). We can understand these phases and transitions between them with the help
of the second cornerstone—Landau’s concept of phase transitions. It was developed
by Lev Landau in the 1930s and further advanced by Vitaly Ginzburg and Kenneth
Wilson in the 1960s and 1970s. According to this model, every phase is connected
to a set of certain symmetries. A transition from one phase to another signals a
breaking of one of these symmetries. For instance when water freezes into an ice
crystal, the translational symmetry breaks: The beautiful symmetric phase of the
crystal is—counter-intuitively—less symmetric than the perfect homogeneity of a
fluid.

These two theories—the Fermi-liquid theory and the concept of phase transi-
tions—form the starting point of our research. A major aim of current condensed-
matter physics is to find and investigate systems, which deviate from these established
models. From the discovery of novel phenomena and the failure of established pic-
tures, new physical concepts can emerge, which broadens our horizon of knowledge
and comprehension. Strongly correlated materials are a wonderful playground for
this search, because the strong interactions between the electrons often require a de-
scription beyond single-particle pictures. The electrons in these compounds do not
behave independently but like a fish in a shoal.

The work presented in this thesis is also driven by the search for cases where
fundamental physical laws are violated. We will study three different questions where
previous investigations already indicated unconventional behaviour. To understand
this behaviour more deeply, we will investigate the validity or violation of specific
fundamental physical laws using transport, in particular low-temperature thermal-
transport measurements.

Transport is an established measurement technique, which gives access to many
important quantities describing the particles in a solid, for instance about the number,
the velocity, and the charge of particles, and their interaction with other particles.
But transport is also one of the most difficult properties to describe theoretically,
because it occurs only when the system is out of equilibrium. From a simple clas-
sical viewpoint transport shares many properties with a pinball machine: In such a
machine, the pinballs move along the gradient of potential energy from the top to the
bottom. On their way, they collide with little posts, the walls and other pinballs in the
machine. One can classify machines by their conductivity, which simply compares
the inclination with the average time it takes a pinball to move from the top to the
bottom of a machine. Inexperienced players will of course favour a machine with a
low conductivity.

Transferred to a solid, the pinballs represent particles such as electronic quasi-
particles or phonons. The latter are the quantum-mechanical particles describing
vibrations of the crystal lattice. These particles can collide with defects, the sample
boundary or with other particles. Their motion is driven by thermal or electrical gra-
dients and we will classify materials by their electrical conductivity, their thermal
conductivity, or their thermopower in this work.

It is often challenging to extract the information about the particles provided by
transport measurements out of the experimental data, because several species of
particles can contribute to the transport and they can scatter on even more types of
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particles and defects. In addition, the classical approach of the pinball machine to
transport remains insufficient. The particles and their interactions are highly quantum
mechanical in nature. These complex interactions in turn are responsible for the
unconventional phenomena we want to study in strongly correlated materials. Due
to these challenges, transport and in particular thermal-transport measurements, are
used to answer specific physical questions in systems, which have been characterized
extensively before. However, the lack of theoretical background for many aspects
of transport properties also indicates that there is great potential to develop such
descriptions on the basis of new, high-precision measurements.

In this respect, transport measurements at low temperatures have several advan-
tages. The number of some sorts of particles, particularly phonons, is suppressed
at low temperatures and we can study solely electronic quasiparticles or other low-
energy excitations. Due to the small number of phonons, we can also neglect them as
scattering centres. In Chap. 3 we will describe the technique used to measure thermal
transport at low temperatures. Chapter 2 will introduce the theoretical background
of transport together with the most important theoretical concepts used throughout
this dissertation. These chapters are followed by the three transport investigations
performed in the framework of this thesis.

In our first study (Chap. 4), we will investigate a magnetic phase transition. We can
change its transition temperature by an external parameter, just as we can decrease
the melting temperature of ice when we apply pressure by our ice skaters. When the
transition temperature is suppressed to zero, we call this a quantum phase transition.
The properties of materials around such a transition differ drastically from the Fermi-
liquid model. We will investigate the material YbRh, Si,, the magnetic order of which
can be suppressed by a small external magnetic field. The properties of the quantum
phase transition in YbRh,Si, are very unconventional and cannot be described within
Landau’s theory of phase transitions.

To investigate the unconventional properties of YbRh,Siy, we study the
Wiedemann-Franz law, which is named after Gustav Heinrich Wiedemann and
Rudolph Franz. They discovered in 1853 that the ratio of the thermal and the electri-
cal conductivity takes the same value in almost all metals. Ludwig Lorenz realized
in 1872 that this ratio is linearly dependent on temperature. The constant of propor-
tionality takes a universal value. Later on, those empirical results were theoretically
verified for a large number of physical systems. To date, the Wiedemann-Franz law
is one of the most fundamental laws in condensed-matter physics, which is obeyed
in virtually all metals. We want to study if the special properties connected to the
non-Fermi liquid in YbRh;Si, also influence the validity of the Wiedemann-Franz
law. A violation has dramatic physical consequences, as the established picture of
electronic quasiparticles would no longer be applicable.

In the second study (Chap. 5), we investigate topological transitions. If two objects
have the same topology, the shape of one can be deformed continuously into the shape
of the other. The most prominent example is the shapes of a coffee mug and a dough-
nut, which have the same topology. Topological transitions are beyond the concepts
of Landaus theory of phase transitions. Topological changes of the Fermi surface of
a metal are called Lifshitz transitions. We will study Lifshitz transitions in the two
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materials YbRh,Si, and CeRu,Si,. To uncover the systematics of these transitions
and explain the magnetic-field evolution of the two compounds, we will investigate
another fundamental physical law—the Mott formula. This law is named after Sir
Nevill Francis Mott. It relates the electrical conductivity and the thermopower and
is, therefore, a transport phenomenon such as the Wiedemann-Franz law. The ratio is
proportional to temperature and the prefactor is a universal number. We will use the
validity and the violation of the Mott formula to analyse the behaviour of CeRu,Si,
and YbRh;Si, in magnetic fields.

In the third project (Chap.6), we will investigate a superconducting material.
Superconductors have the ability to conduct electricity without loss and to expell
magnetic fields. They are a wonderful example for the beauty and surprise of emer-
gence in condensed-matter physics. The transition into the superconducting state is
in general a phase transition in the sense of Landau. Bardeen, Cooper, and Schrieffer
developed a microscopic theory for superconductivity in 1957 called BCS theory,
which could successfully describe many superconductors. However, there are other
materials whose superconducting state cannot be understood within the conventional
BCS picture. The first one, CeCu,Si,, was discovered by Frank Steglich in 1978 and
it was followed by many others such as the high-temperature cuprate superconduc-
tors in the 1980s. In our study, we will use thermal-conductivity measurements to
investigate if the BCS theory can be applied to the superconductor LaPtsGe;, or if
this material also belongs to the class of unconventional superconductors.

Although our three projects are thematically quite different, they all illustrate
that new physical knowledge stems from the failure of established theories during
experimental tests. In this respect, thermal transport experiments are a challenge and
a great opportunity at the same time due to the important information they provide
and the complexity of their interpretation.

Reference
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Chapter 2
Introduction and Theoretical Background

The following chapter will introduce the important concepts and formulas needed
throughout the thesis and is based on standard literature. It starts from the fundamen-
tal Fermi-liquid theory, which is presented following Refs. Ashcroft and Mermin
(1976); Enns and Hunklinger (2005). It then introduces Kondo physics (Hewson
1993; Coleman 2002), classical and quantum phase transitions (Ashcroft and Mer-
min 1976; Vojta 2003), topological transitions (Blanter et al. 1994; Varlamov et al.
1989; Kosevich 2004) and superconductivity (Mineev and Samokhin 1999; Annett
2010; Buckel and Kleiner 2004). The last part is devoted to transport in general and
thermal transport in particular (Ziman 1960).

2.1 Fermi Liquid

The challenge of condensed-matter physics is the treatment of the enormous number
of 10? interacting particles inside a solid. Since it is impossible to calculate the wave
function of all those particles, physicists handle them e.g. by statistical methods.
Drude proposed such a theory, which describes the electrons in a metal as a gas of
non-interacting classical particles. Sommerfeld formulated the quantum-mechanical
version of the Drude theory and treated the electrons as fermions. This model became
known as the Fermi gas. Despite its simplicity, it describes very successfully many
properties of metals such as a well-defined Fermi surface, a linear-in-T specific heat,
a temperature-independent paramagnetic susceptibility and the Wiedemann-Franz
law.

Deviations from the Fermi-gas model were, however, detected in systems with
strong interactions, first in liquid He? and later also in metallic solids. These discrep-
ancies were treated by Landau in an extension to the Fermi gas model—the Fermi
liquid. The ground state of the Fermi liquid can be adiabatically connected to the
ground state of the Fermi gas while gradually turning on the interactions between the

© Springer International Publishing Switzerland 2016 5
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electrons. Landau introduced the notion of quasiparticles, which are the elementary
excitations of the Fermi liquid and which have a one-to-one correspondence to the
excitations of the Fermi gas, although now with a finite lifetime. Thus, quasiparticles
represent a renormalized version of their non-interacting counter parts. The renor-
malization is accounted for by Landau parameters F;’, F{' and becomes most manifest
in the mass enhancement,
s
m*:m(]—}-%) , 2.1

were m™ is called the effective mass of the qusiparticles and can be as large as 1000
times the bare electron mass m, for example in heavy-fermion systems. The mass
renormalization is accompanied by a large density of states (DOS) at the Fermi
energy eg,

m*k}:

Nier) = =25

(2.2)
using the Fermi vector kg and Planck’s constant 4. The temperature dependences
of the specific heat and the susceptibility stay the same compared to the Fermi gas,
however, they are also renormalized. The specific heat C, e.g., can now be written
in terms of the enhanced DOS as

c r?
— = —kiN(ep), 2.3

T 3 B ( F) ( )
where kg is the Boltzmann constant. A very characteristic property of the Fermi
liquid is the resistivity p. It contains now a T2 term due to the electron-electron
scattering,

p=po+ AT?>. (2.4)

po represents the residual resistivity from defect scattering. Another remarkable result
of the Fermi liquid theory can be extracted from the ratio of the A coefficient and of
the linear specific-heat term v = C/T. The so-called “Kadowaki-Woods ratio”,

A
Rxw = —, (2.5)
Y

is found to be constant in certain groups of materials. In heavy-fermion systems the
value of Rgw is approximately 10 wS2cm(mol K/J)?, whereas it is 25 times smaller
in d-electron systems.
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2.2 The Kondo Effect in 4 f Electron Systems

In a simple metal, the electrical conductivity is usually determined by three scatter-
ing mechanisms: Scattering of electrons on defects leads to a constant resistivity at
low temperatures—the residual resistivity. Scattering on phonons and Fermi-liquid-
like electron-electron scattering leads to a monotonic increase of the resistivity with
increasing temperature. In contrast to this picture, de Haas et al. found a minimum
in the resistivity of gold in 1934 (Haas et al. 1934) indicating that there must be an
additional scattering mechanism, which increases its strength as the temperature is
lowered. Later on, the improvement of the crystal-growth techniques permitted the
control of the impurity concentration in metals and a connection between magnetic
impurities and the resistance minimum could be established Berg (1964). This dis-
covery paved the way to resolve the long-standing puzzle of the resistance minimum.
The mechanism is related to a scattering process of conduction electrons off magnetic
impurities involving a spin flip and is called the Kondo effect.

2.2.1 Single-Ion Kondo Effect

To understand the Kondo effect we start with the impurity Anderson model. It
describes localized electrons, e.g. 4 f electrons, in a sea of conduction electrons
(Fig.2.1). The key element is a competition between two types of interactions: First,

conduction electrons

+ local f-state I
Hybridization
+U

Single-impurity
Anderson model

E; E+U
; Schrieffer-Wolff
transformation

Single-ion T«
Kondo model

Fig. 2.1 Ingredients for the Kondo model. (fop to bottom) A magnetic impurity added into a sea
of conduction electrons forms a resonance due to hybridization. Gradually turning on the Coulomb
interaction U splits this resonance, which gives rise to two peaks in the spectral function at E y and
E ¢ + U with opposite spins. They lead to a formation of local moments. Fluctuations between the
spin-up and spin-down state create a third peak in between, which is called “Kondo resonance”. The
hybridization and the Coulomb interaction are the key ingredients for the single-impurity Anderson
model. The Schrieffer-Wolff transformation integrates out the higher-energy physics of this model.
The “Kondo resonance” remains and can be described within the single-ion Kondo model
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the hybridization between f and conduction electrons and second, the repulsive
Coulomb interaction between the electrons of a doubly occupied f state. While the
first leads to a formation of a resonance, the second tends to split this resonance
into a spin-up and spin-down component and consequently local moments form.
Importantly, a finite probability for the spin to tunnel between the up and down con-
figuration leads to spin fluctuations of the local moment and to a resonance between
the two spin states. This resonance is a manifestation of the Kondo effect and is
called “Kondo resonance”.

The interaction U which drives the local-moment formation is of the order of
10eV. On the other hand, the energy range of the Kondo physics is of the order
of 1 meV. Therefore, it is possible to extract the physics of the Kondo effect by
a renormalization approach, i.e., the high-energy physics is integrated out step by
step. In our case, the so-called Schrieffer-Wolff transformation reduces the Anderson
impurity model to the single-impurity Kondo model, in which only the impurity spin
S is left and couples to the conduction electrons via an exchange interaction J:

H= acpcro+JS:s, (2.6)
k.o

where s is the spin density of the conduction electrons at the impurity site. The first
attempt to solve this problem was made by Kondo within a perturbation approach
(Kondo 1964). He found for an antiferromagnetic coupling J a log 7 term in the
resistivity, which could successfully explain the resistance minimum but becomes
unphysical as T — 0. The problem to resolve this divergence became known as the
“Kondo problem” and renormalization group approaches (Anderson 1970; Wilson
1975) posed the first solution for it. They introduce the characteristic energy scale

Ty oc De /NG 2.7)

which is called the Kondo temperature. N (ep) is the density of states at the Fermi
energy and D the conduction-band width. The physics above this temperature scale
in the weak-coupling regime is described by free local moments. For example, the
magnetic susceptibility follows a Curie law in this temperature range. Below Tk in
the strong-coupling regime, the system behaves like a non-magnetic Fermi liquid
but with new composite quasiparticles. The composite quasiparticles are formed
through the binding of high-energy conduction electrons to the local moment. These
composite objects are then injected into the conduction band near the Fermi level,
they hybridize with the conduction electrons, and form the Kondo resonance. The
high effective mass m* of these quasiparticles leads to a strong renormalization of the
Fermi-liquid properties, e.g. an enhanced specific heat and magnetic susceptibility.
The resistivity does not diverge as T — 0 but saturates at low temperature.
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2.2.2 Kondo Lattice

The single-impurity Kondo model can be extended onto a regular lattice of impurities,
which leads to the Kondo-lattice model. In the lattice version, the same composite
fermions are formed as in the single impurity case and they also hybridize with the
conduction electrons. Since there is a composite state at each site, this hybridiza-
tion, however, leads now to a heavy-electron band with a large effective mass and a
hybridization gap (Fig. 2.2). The renormalized large Fermi surface incorporates both
the conduction electrons and the degrees of freedom from the local moment. It is
possible to tune systems continuously from the impurity model to the lattice model
by increasing the amount of magnetic impurities, e.g. Ce in the non-magnetic host
LaCug (Fig. 2.3). While the thermodynamic properties stay essentially the same, the
resistivity drops below a certain coherence temperature 7o, when the concentra-
tion of impurities is high enough. The drop demonstrates that the scattering of the
conduction electrons on the local moments becomes coherent in the Kondo lattice.
Rare-earth electron systems are especially suited for the observation of Kondo
physics for two reasons. First, the 4- f electrons have particularly localized wave
functions. Second, they show a very large spin-orbit coupling compared to the crystal
electric field, which prevents a decoupling of the angular and the spin momentum
! and s. This leads to a large total angular momentum j and a large degeneracy
N = 2j + 1. For example, in Yb 4f'3 systems j = 7/2 and the degeneracy is
N = 8. This considerably enhances the Kondo temperature compared to the case of
a simple impurity spin S = 1/2. In real systems, the degenerate multiplet is split by
the crystal electric field. This leads to two regimes: At higher 7', the full multiplet

()

Fig. 2.2 Bands in the Kondo-lattice model. a The injection of a composite quasiparticle state (light
green) at each site and its hybridization with the conduction electrons (blue) leads to the formation
of heavy bands (dark green) with a hybridization gap in between. b This gap separates two sharp
peaks in the DOS for these heavy bands. ¢ Due to the hybridization, the Fermi surface changes
from a small one, which only counts the conduction electrons (left) towards a large one, which also
contains the composite quasiparticles (right). After Coleman (2002)
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Fig. 2.3 Resistivity of a Kondo system. The temperature dependence of the magnetic resistivity
of CeyLaj_,Cug, calculated as p = p(CeyLa;_,Cug) — p(LaCug) per mole Cerium, is shown for
different concentrations x. Small amounts of magnetic Ce impurities lead to a logarithmic increase
towards lower T until a constant value is reached below Tx. This behaviour is due to the single-
ion Kondo effect. As the impurity concentration is increased, a continuous development towards a
coherent Kondo lattice can be observed. The resistivity exhibits a maximum before it drops towards
lower T. Data taken from Sumiyama et al. (1986)

takes part in the Kondo effect and gives rise to the energy scale Té‘igh, while at lower
temperatures, only the ground state, typically a Kramers doublet, is involved and we
find a smaller but still enhanced T,°¥. In the following, T will refer to T°%.

2.2.3 RKKY Interaction and Doniach Diagram

While the Kondo interaction favours a non-magnetic ground state, there is another
phenomenon called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which
promotes a magnetic one. This interaction must be indirect, since the wave func-
tions of the f moments are usually too localized and their overlap is too small for a
direct exchange to be strong enough for any magnetic ordering. Instead, the coupling
is transmitted by the conduction electrons: A magnetic moment inserted into a sea
of conduction electrons induces Friedel oscillations of the spin density around its
position. The magnetization M of the conduction electrons oscillates with

—X cosx + sinx

M 1 R

2.8)
X

where x = 2kgr, kr is the Fermi wave vector, and r the distance from the local
moment (Fig. 2.4) (Blundell 2009). A neighbouring magnetic moment can couple to
this oscillating spin density, which gives rise to a long range magnetic interaction

between the localized magnetic moments. The sign of the coupling depends on the
distance. Its characteristic energy scale is



2.2 The Kondo Effect in 4 f Electron Systems 11

Magnetisation M

Distance kgr

Fig.2.4 The RKKY interaction. A local moment (large arrow) induces an oscillating magnetization
M of the conduction electrons (small arrows) as a function of distance r and Fermi wave vector
kg (c.f. Eq.2.8). With the help of the polarized conduction electrons, a neighbouring local moment
can couple antiferromagnetically (AF) or ferromagnetically (FM) to the first one

Ti~e VINED

Trkky~JZN(€F)

JN(er)

Fig. 2.5 The Doniach phase diagram. The competition between the Kondo coupling 7k and the
RKKY interaction Trkky leads to the Doniach phase diagram. At low J N (eg), the stronger RKKY
interaction induces long-range magnetic order (LRO), whereas the Kondo interaction dominates at
higher values of J N (ep) and leads to a non-magnetic Fermi-liquid (FL) ground state

Triky o J2 N, (2.9

where J is again the same coupling constant as the one for the Kondo effect.

Doniach pointed out that the competition between the Kondo effect and the RKKY
interaction gives rise to a phase diagram as shown in Fig. 2.5 (Doniach 1977). It shows
the energy scales from Eqs.2.7 and 2.9. For low JN (eg), the RKKY interaction
dominates, and a magnetic ground state develops, whereas the increasing Kondo
energy scale leads to a non-magnetic Fermi-liquid ground state above a critical value
of JN (ep). The transition between both ground states at 7 = 0 marks a quantum
critical point (QCP).

2.3 Classical Phase Transitions

At a classical phase transition, a system changes into an ordered state below a critical
temperature T,. One usually divides phase transitions into first-order and continuous
(i.e. higher-order) phase transitions. While the ordered and disordered phase coexist
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at T = T, for a first-order phase transition, the order develops continuously in the
latter case and is associated with an underlying broken symmetry.

The focus in this chapter is on continuous transitions. They are described by an
order parameter, which is zero in the disordered phase, and finite in the ordered phase.
For example, the total magnetization serves as an order parameter in a ferromagnet
and it is the symmetry with respect to time reversal that is broken. However, the order
parameter is fluctuating around its thermodynamic average value. Towards T, these
fluctuations grow and the correlation length ¢ diverges as

Eoc |t|™, (2.10)

where v is the critical exponent of the correlation length and ¢ is a dimensionless
distance from 7: (e.g. t = |T — T¢|/T:). The divergence of the correlation length
implies, that spacial fluctuations extend over the whole system when we approach
T... Similar fluctuations of the order parameter in the spatial dimension also exist in
the time domain. Hence, we expect the correlation time 7, to diverge as

Te o &8 o [t (2.11)

where z is the dynamic critical exponent. Therefore, fluctuations diverge over all
length and time scales as we approach T.—the system becomes scale invariant.
Close to T, £ and 7, are the only relevant length and time scale. As a result, the criti-
cal behaviour is described by power-law dependences of all observables on external
parameters. The exponents completely characterize the system near the phase tran-
sition and they are the same for entire classes of continuous phase transitions, a
phenomenon called universality. These universality classes are determined by the
symmetry of the order parameter and the spatial dimensionality, but microscopic
details are irrelevant.

The concept of the order parameter for classical phase transitions was first intro-
duced by Landau. It was expanded by the leading-order term in the fluctuations of the
order parameter in the Ginzburg-Landau theory. Later on, Wilson treated this con-
cepts in a renormalization group approach, i.e., all degrees of freedom other than the
order parameter fluctuations are integrated out (Landau-Ginzburg-Wilson theory).

2.4 Quantum Phase Transitions

Thermal fluctuations with an energy scale kg7, are responsible for classical phase
transitions. But in addition there are also quantum fluctuations. They exist due to
Heisenberg’s uncertainty principle and have the typical energy scale of hw. = h/..
Since 7, diverges at a classical phase transition, this energy scale goes to zero as

huwe o |t]"%. (2.12)
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Temperature T

Control parameter r

Fig. 2.6 A schematic phase diagram around a QCP. The ordering temperature 7, (blue line) sep-
arates an ordered phase A from a disordered one. Thermal fluctuations drive the transition at finite
T, but the regime where they dominate becomes smaller for smaller 7t (dark green). The disordered
phase is separated into three regions: B thermally disordered, C quantum critical, and D quantum
disordered, which are separated by crossovers (dashed lines)

Thus, at any finite-temperature phase transition, quantum fluctuations will become
unimportant close enough to 7, and the phase transition can be described classically.

However, one can tune a classical phase transition to 7, = 0 with the help of an
external parameter r, e.g. pressure or magnetic field. In this case, the phase transition
connects two ground states and its behaviour is dominated by quantum fluctuations.
Such transitions are called quantum phase transition. The divergent correlation time
T, therefore, plays an important role in quantum phase transitions while it is less
important for classical phase transitions.

These considerations lead to a phase diagram as shown in Fig.2.6. The ordered
phase is separated from the disordered phase by a line of finite-temperature phase
transitions tuned by the external parameter r. It ends at the QCP for r = r. Classical
fluctuations dominate around this line, but they extend to a narrower region as 7,
becomes smaller. The disordered phase is separated into regions, which are charac-
terized by the relevance of quantum or thermal fluctuations of the order parameter.
Their boundaries are crossovers. In the thermally disordered region, long-range order
is destroyed by thermal fluctuations, whereas quantum fluctuations are responsible in
the quantum-disordered regime. The physics in the quantum-critical region is deter-
mined by thermal excitations of the quantum-critical ground state, thus it is critical in
terms of r but driven away from criticality in terms of 7. The interplay of thermal and
quantum fluctuations in this regime is responsible for unusual physical properties,
e.g. unconventional power laws and non-Fermi-liquid behaviour.

Itis possible to map a quantum phase transition onto a classical phase transition in
degr = d + z dimensions. This allows to use the Landau-Ginzburg-Wilson formalism
also for a QCP. However, there are fundamental differences between classical and
quantum phase transitions especially for dynamic properties. Additional ingredients,
such as coupling to fermionic modes, can also lead to qualitative differences. The
latter may require the application of theories beyond Landau-Ginzburg-Wilson.
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In metals, the coupling of the order-parameter fluctuations to low-energy fermi-
onic fluctuations increases the complexity of the theoretical description. One can
distinguish two cases: conventional and unconventional order parameter/quantum
criticality.

In the case of conventional quantum criticality, the order-parameter fluctuations
can carry a defined momentum Q, which couples to the fermions. For 0 = 0
(e.g. in a ferromagnet), the fluctuations can couple to fermions and create particle-
hole pairs on the whole Fermi surface. The whole Fermi surface is “hot”. If Q is
finite (e.g. in an antiferromagnet), only parts of the Fermi surface, which can be
connected by Q, become “hot”. For metals, which have a magnetically ordered
phase, the case of conventional quantum criticality is often called the spin-density
wave (SDW) scenario. It has theoretically been captured within an extension to the
Landau-Ginzburg-Wilson formalism by Hertz (1976), Millis (1993), Continentino
(1993) and Moriya and Takimoto (1995).

In the case of unconventional quantum criticality, the order-parameter fluctuations
do not carry a specific momentum @, but become critical for all momenta, hence,
are local in real space. This leads to scenarios of “local criticality”.

Heavy-fermion systems, which are also the focus in this work, have proven to
be ideal candidates to study quantum criticality. Due to the presence of very low
energy scales in these compounds, they can easily be tuned to a QCP. Examples
for a SDW-type quantum critical point are CeCu,Si, (Stockert et al. 2004; Arndt
et al. 2011; Stockert et al. 2012) and CeNi,Ge, (Knopp et al. 1988; Kiichler et al.
2003; Kadowaki et al. 2003). Deviations from the SDW scenario and indications for
local quantum criticality could be observed e.g. in CeCug_,Au, (Lohneysen et al.
2007; Stockert and Steglich 2011) and YbRh,Si,. The criticality of the latter was
studied within this work and a detailed description of previous measurement results
and proposed scenarios for its magnetic-field-driven QCP are presented in Chap. 4.

2.5 Topological Transitions

A topology is usually classified by the number of holes. E.g. a coffee mug has the
same topology as a doughnut. The relevant parameter for this classification is the
Euler characteristic . For two-dimensional polygons embedded in three dimensions
with F faces, E edges, and V vertices, this numberis x = F — E 4+ V. A cube and
a pyramid, hence, have x = 2. This principle can be generalized to non-polygonal
surfaces.

For this purpose, we introduce the local curvature of a surface. A surface can
have different curvatures depending on the direction in which it is evaluated. But at
each point of the surface, there will always be a maximum curvature and a minimum
curvature, which are called principal curvatures fyax and K. They define how the
surface looks locally: If k. and ki, have the same sign, the surface looks like a
dome. If one is zero, we have locally a cylinder. And if both have opposite sign, we
have a saddle. Therefore we define the product K = KpaxKmin, Which is the Gaussian
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curvature. It has been shown that

1

2 surface

X KdsS, (2.13)

which is called the Gauss-Bonnet theorem. It says that the total sum of local Gaussian
curvatures at every point of the surface adds up to an invariant number, namely the
Euler characteristic , that only depends on the topology of the surface.

These general considerations, of course, also apply to Fermi surfaces in a metal. A
change of the Fermi-surface topology is called Lifshitz transition. At this transition,
the Euler characteristic of the Fermi surface changes discontinuously. Therefore, one
can call y the “order indicator” of a topological transition. A Lifshitz transition is a
pure quantum phase transition in the sense that there is no line of finite-temperature
classical critical points which terminates at the QCP. There are also no elementary
excitations in terms of fluctuations of x. But there exists a non-analyticity in the
ground-state energy 2 as a function of the distance to the transition z (Lifshitz
1960):

0 z<0
Q x [|Z|5/2 250" (2.14)

formulated here in the case of three dimensions. In the Ehrenfest terminology, this
would correspond to a phase transition of 2.5th order.

As Fig. 2.7 illustrates, a Fermi-surface change can be induced by a varying chem-
ical potential p. The distance z can thus simply be defined by z = u — €., where €,
is the position of the transition. The two most discussed types of topological Fermi-
surface changes are the void and the neck type, which are illustrated in Fig.2.7b, c.
For the void type, a sheet of the Fermi surface vanishes (appears). In the neck type,
a Fermi-surface sheet splits up into two (two sheets join).

There have been theoretical predictions how different physical quantities behave
close to a Lifshitz transition and we will summarize here the results from the review
by Blanter et al. (1994) and Varlamov et al. (1989). Following those ideas, all phys-
ical quantities can be separated into a background contribution, which is a smooth

Fig. 2.7 Lifshitz transition. €t (a) (b) (c)
a Moving the chemical
potential p through a band .

edge induces a Lifshitz

transition of the void type. b

In this case a Fermi-surface

pocket vanishes. ¢ The o
second most important type /il \/

is a neck transition, where
two Fermi surface sheets
merge at the transition A\l
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function across the Lifshitz transition, and a singular part, which shows anomalies
around €.
For the singular part of the density of states N, one finds in three dimensions

0 Region I

. 2.15
|z|'/? Region II (2.15)

N, singular X

There are two regions left and right of the transition, which are defined by the
response of the DOS: in region I, the singular part is zero in the clean limit and in
region II, it is non-zero. For the void type, region I corresponds to the side of the
transition where the additional Fermi surface pocket is absent, and region II to the
side where it appears. For the neck type, region I corresponds to the side where the
Fermi surface consists of a one-sheet hyperboloid, and regions II to the side with a
two-sheet hyperboloid (illustrated in the insets of Fig.2.8).

In the free-electron picture, the singular contribution to the DOS only depends on
the properties of the quasiparticles with an energy close to €.. If we include electron-
electron interactions and consider a Fermi liquid, the transition is not smeared, but
now also quasiparticles away from the critical point contribute to Ngnguiar. This
changes the pre-factor of Ngingutar- In contrast, elastic impurity scattering smears the
transition due to a finite lifetime of the electronic states and the singular term becomes
also non-zero in region I.

For the calculations of thermodynamic and transport properties, we need to distin-
guish four cases: 7 = 0 or finite temperature; clean (7 7/ >> 1) ordirty (T 7/h < 1)
limit. 7 is the scattering time. At T = 0 and in the clean limit, one obtains for the
specific heat

s L B oF vt T N L
AN C)) a (b) (c)
% N\ 0.2+ - 2r X 7
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Fig. 2.8 Signatures of a Lifshitz transition. The void (illustrated in b) and the neck transition
(illustrated in ¢) show the same signatures in all quantities. At low T (blue), the specific heat C/T
(Eq.2.16) and the conductivity o (Eq.2.17) show pronounced signatures in region II (z < 0) but are
constant in region I. The thermopower S (Eq.2.18), however, shows pronounced anomalies in both
regions and diverges in region I. Note that the minimum in S occurs right below z = 0. All signatures
are smeared for intermediate (dark green) and higher temperatures (light green). The following
parameters with the same arbitrary unit are used: 7 = 10000%, 1 = 1, T = 0.01, 0.04, 0.07. We
considered hole carriers. The discontinuities at the limits of the different z intervals in Egs.2.16,
2.17, and 2.18, which are due to approximations in their derivation, are replaced by smoothly
connected curves for this figure
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0 Region I

C/T)s x .
( / )smgular |Z|1/2 Region I

(2.16)

For finite temperature, the singular part becomes non-zero also in region I. The
behaviour for 7 = 0 and the development with increasing 7 is sketched in Fig.2.8a.
For the dirty limit, one obtains similar behaviour, however the governing energy scale
is not 7 but Ar~ L.

At finite temperature, thermal fluctuations additionally contribute to the specific
heat and other thermodynamic quantities. They grow in the vicinity of the Lifshitz
transition. However, their amplitude stays always considerably smaller than the sin-
gular parts.

Transport properties also respond to a Lifshitz transition and it is the change of
the scattering time across the transition that has the largest effect on transport. For
example, the most important contribution to the singular part of the conductivity in a
void formation is the scattering channel between existing Fermi-surface sheets and
the new void.

In contrast to thermodynamic quantities, the signatures in transport are now also
smeared for 7 = 0 due to impurity scattering, which needs to be taken into account.
In the clean limit one finds for the singular part of the conductivity

(Izl/m'7? lz| > T, z < 0 (Region II)
T /)2 <7
Osingular X ( /u)l o) T |Z| B . (217)
(T/ ) ?e= %/ T <z < TIn(T7/k) (Region I)
(/B (u2)™"? TIn(T7/h) <z
and of the thermopower
(/12> |z| > T, z < 0 (Region II)
() TH? Z| T
Ssingular (08 'u/ | | (218)

(u/T)'*(z/T)e /T T <z < TIn(T7/h) (Region I)
(ur/WV2(@r) 3% TIn(Tt/h) <z

The second case in each equation implies, that S and ¢ do not diverge at finite 7.
Again in the dirty case, the equations look similar, except that the relevant energy
scale is now fir~! and not 7. The behaviour of Ssingular aNd Oingutar as a function
of z and their temperature dependences are plotted in Fig.2.8b, c. Especially the
thermopower shows strong signatures at the transition with a rise proportional to
|z|~!/2 and an exponential drop afterwards. This renders the thermopower an ideal
tool to detect Lifshitz transitions.

The above formulas for oingutar and Ssingular are valid for both the neck-type tran-
sition and the void type. The only difference comes in the sign of oingutar, Which is
negative for the void type and positive for the neck type. The formulas are derived
for the three-dimensional case under the assumption that the scattering angles are
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equally distributed. If small-angle scattering is dominant (e.g. very clean materials
with electron-phonon scattering), larger differences between both types of Lifshitz
transitions occur. One also expects differences between the two types in lower dimen-
sions.

2.6 Superconductivity

The superconducting transition is a second-order phase transition (in zero magnetic
field) and the state below the transition temperature T is characterized by the Meifiner
effect and zero electrical resistance. According to the Bardeen-Cooper-Schrie er
(BCS) theory, the electrons of a Fermi gas become unstable against an attractive
potential and form Cooper pairs below 7. These pairs are bosons and condense
into a state with a macroscopic wave function. This wave function is the complex
order parameter of the superconducting state. The symmetry of the order parameter
is intimately related to the pairing interaction. In order to break a Cooper pair, an
energy of 2A is required, hence, an energy gap for a single-particle excitation opens
in the superconducting state. The gap 2A is proportional to the absolute value of the
order parameter, and, therefore, has the same symmetry.

The wave function of a superconductor consists of a spin and an orbital part. The
first determines the parity of a superconductor. It can be even (S = 0) orodd (S = 1).
Additionally, superconductors are labelled s, p, d, . .. depending on the orbital part
(I =0,1,2,...)of the wave function. Due to the antisymmetry of the wave function
with respect to particle interchange, an even (odd) parity SC can only have anss, d, . ..
(p, f,...) symmetry. Multicomponent order parameters are also possible and often
labelled in terms like s + d.

Superconductors can be divided into type-I and type-II materials. In contrast to
type-I superconductors, which expel a magnetic field and have only one critical field,
type-1I superconductors are penetrated by vortices above a lower critical field H.;
and superconductivity breaks down only at an upper critical field H.,. The coherence
length ¢ and the penetration depth A, the two parameters of the Ginzburg-Landau
theory of superconductivity, are particularly useful in this context. £ determines the
spatial variations of the order parameter, while \ sets the scale to which a magnetic
field penetrates the superconductor. Their ratio kg, the Ginzburg-Landau parameter,
divides type-I and type-II superconductors by kg < 1/+/2 and kgL > 1/+/2,
respectively.

A second division of superconductors is by means of the symmetries which are
broken below T.. In general, the symmetry group H of the crystal contains the gauge
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conventional unconventional

Fig. 2.9 Difference between a conventional and an unconventional superconductor. The gap
(dashed line) for a conventional superconductor (lef?) is finite everywhere around the Fermi surface
(solid line), whereas it has nodes in the case of unconventional superconductors (right), which break
an additional symmetry. After Mineev and Samokhin (1999)

symmetry U (1), the crystal point group G, the spin rotation group SU (2) and the
time-reversal symmetry group 7

H=U1)®6SUQR)R®T. (2.19)

While conventional superconducting order only breaks the gauge symmetry U (1),
unconventional superconductors break additional symmetries besides U (1). This
manifests in the presence of nodes in the gap at certain wave vectors and a sign change
of the order parameters at these points (c.f. Fig. 2.9). The attractive pairing interaction
in conventional superconductors is often mediated by phonons leading to a quasi-
isotropic pairing potential and thus to a quasi-isotropic gap. Sometimes, “accidental
nodes” are observed in conventional superconductors. As the name implies, their
presence does, however, not indicate unconventional superconductivity with an addi-
tional broken symmetry besides U (1). More exotic pairing mechanisms, e.g. through
paramagnons, often lead to an anisotropic potential and unconventional SC. Since
the gap contains information about the pairing potential, it is one of the major goals
in the study of superconductors to determine its symmetry.

2.6.1 Properties of Conventional Superconductors

Conventional superconductors are characterized by a finite gap in the excitation
spectrum everywhere on the Fermi surface, which determines the physical properties
at low temperatures. In the following, only isotropic s-wave gaps are considered.
The absence of nodes leads to exponential behaviour in the temperature dependence
of thermodynamic quantities such as the specific heat or in the electronic thermal
conductivity and the penetration depth.
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2.6.1.1 The Gap

The temperature dependence of the gap itself can be described by the gap equation
(Annett 2010)

(2.20)

\/62+|A|2)

th
1= Aep de an
0 e+ |A]2 2kgT

which is the central equation of the BCS theory. A, is the (electron-phonon) coupling
parameter. The gap equation is a numerically solvable integral, whose results are
tabulated e.g. in Miihlschlegel (1959). Forhight = 7'/ T, > 0.7 one can approximate
the integral by (Ferrell 1964)

A(t)2—30161 2.470(1 2 131(1 3 221
) =3 (1—=1)—=24700 —)>+0.131(1 —1)> + - -- (2.21)

and for low ¢ < 0.3 by (Ferrell 1964)

O 0s (1781 B
S =1 [(3.562:) (1 - t)exp( 1.78”)] (2.22)

For an s-wave pairing the BCS theory predicts a gap Ay = A(0) in the weak-coupling
regime, which is related to 7, by

Ao = 1.76kg T . (2.23)

Higher values are usually taken as a sign of strong coupling.

2.6.1.2 The Specific Heat

The specific heat C can be calculated from the entropy S (Tinkham 1996; Bouquet

etal. 2001),
C _ dS/ml)

YnTe dt

(2.24)

using the relation

S 6A¢

Wl _7r2kBTC/0 (fInf+1—Hlnd—fdy, (229

where f = (exp(BE) + 1)~ with 37! = kT determines the quasiparticle occupa-
tion number, E = (¢ + A%(t))" are the fermionic excitation energies, y = ¢/ A,
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and 7, the normal-state specific-heat coefficient. The specific heat has an exponential
temperature dependence at low T < A due to the finite gap.

2.6.1.3 The Thermal Conductivity

Bardeen, Rickayzen, and Tewordt (BRT) developed a theoretical description of the
thermal conductivity for an s-wave superconductor within the BCS theory (Bardeen
et al. 1959). It is regarded as the standard theory for conventional superconductors.

In general, the thermal conductivity both in the normal state " and in the super-
conducting state x° consists of a phonon and an electron contribution

P /{2 —+ /{B N (226)

K=K, + m;. (2.27)

The electronic thermal conductivity in the superconducting state g can be calcu-
lated by

Ky _ S +yind+e™) +y7/2(1 +e) , (2.28)
o 170
with
_AMm (% adz
y= _kBT s f( y) _/0 l+ez+}’ ’ (229)

assuming dominant impurity scattering. A(T) is the temperature dependence of the
superconducting gap as described in Eqs.2.21 and 2.22. This description leads to an
exponential increase of kg at low T.

Within the Debye approximation, «;, can be described by (c.f. Eq.2.47)

kﬁT3 o0 xterr
s — dx2=T 2.30
" T 2rtdv, /0 e —1y (2.30)

The scattering time 7 includes a sum of different scattering mechanisms. The most
common ones are

7V =B+ Px*T* + g(x, y)ExT, (2.31)
where B, P, and E refer to scattering by crystal boundaries, point defects, and

electrons. It is of course possible to include also other scattering mechanisms such
as phonon-phonon scattering or scattering on other types of defects.
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g(x, y) is the ratio of the scattering times 7° /7" for electron-electron scattering in
the superconducting and in the normal state. It was calculated within the BCS theory
(Bardeen et al. 1959)

g,y =(1—e)x " 2J1(x, ) + L(x, V], (2.32)
with
[e') 2
N :/ dEﬂf(E)f(—E/), (2.33)
A(T) €€

—A(T) EE’ ( AZ(T)) )

J =/ dE 1— f(E)f(—E"), (2.34)
—x+A(T) €€’ EE’

where E? = €2 + AX(T), E? = > + AX(T), E' = E+x,y = A(T)/kgT,
the phonon energy x = hw/kgT, and the Fermi function f(E) = (e + )7L
An illustration of g(x) for different y is given in Tewordt and Woélkhausen (1989).
The main feature is a step occurring at the phonon energy x > 2A(7T), which is
high enough to break Cooper pairs. The term g(x, y) in Eq.2.31 leads to the typical
increase of x, below T due to a decrease of electronic scattering centres.

2.6.2 Properties of Unconventional Superconductors

In contrast to conventional superconductors, unconventional ones may have nodes
in the superconducting gap. At low T < A, this leads to power-law dependences
of the thermal conductivity, the penetration depth, and thermodynamic quantities
like the specific heat. The power is determined by the specific gap symmetry, or
more precisely by the shape of the gap around the nodes. However, it is difficult
to connect an experimentally determined power with a certain gap structure, since
small amounts of impurities smear the k-dependence of the gap near the nodes and
thus change the power in the 7" dependence.

The specific heat, e.g., follows a T2 behaviour for a clean d-wave superconductor
with line nodes. These line nodes change into stripes of finite width for small amounts
of impurities and the specific heat becomes linear in 7 (Mineev and Samokhin 1999).

2.6.3 Multiband Superconductivity

Many materials have a complex band structure with several bands crossing the Fermi
level. Consequently, more than one band can become superconducting. This is called
multiband superconductivity. The textbook example is MgB,. Simple theoretical
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descriptions to model experimental data are only available for the case of isotropic
s-wave gaps with a BCS-like temperature dependence. In the following, we will
discuss the o model for the case of two bands (Bouquet et al. 2001).

The phenomenological o model assumes two isotropic s-wave gaps A and A,
both closing at 7,.. The contribution of each single gap to the specific heatis calculated
within the BCS theory assuming A in Eq.2.25 not to be fixed to the BCS value of
1.76. Inpractice, A and A, instead serve as fitting parameters along with a weighting
factor x;, which determines the total specific heat as

G €L (2.35)
= X1 — X . .
wle T VT

~n refers to the normal-state specific-heat coefficient, Cj to the total specific heat in
the superconducting state.

Due to its simplicity, the o model is the most widely used model to describe
experimental data on multiband superconductors.

2.7 Transport in Solids

In a semi-classical picture, transport in a solid is described by the motion of quasi-
particles, e.g. electrons, phonons or magnons, which is interrupted by scattering off
defects or off each other. The generalized transport equations

je= LnE+LpVT,

. R (2.36)
Jg= LuE+LypVT,

describe transport as the linear response of the thermal and the electrical current j,

and j, to an electrical and thermal gradient E and VT. The tensors I:[ j transform
into the known transport tensors

A 2 « A N A Ly Ly,
oc=Ly, a=-Lyp, K=-Ln+— , (2.37)

where ¢ is the electrical-conductivity tensor and & the thermal-conductivity tensor.
From & and &, we derive the thermoelectric tensor

S=-67"4. (2.38)

Although all these are 3 x 3 tensors, the number of their elements reduces considerably
for certain symmetries. In the case of a magnetic field H = (0,0, H,) applied
perpendicular to the currents and with the additional help of Onsagers relations we
arrive at
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R Oxx O " Fxx Koy N Oy Olxy
5= XX Xy . h= XX Xy . a= xx ) (239)
—Oxy Oyy —hxy Kyy —Qxy Qryy

The single elements correspond to the usually measured physical properties: o;; is
the electrical conductivity, o;; is the Hall conductivity, «;; the thermal conductivity
and «;; the thermal Hall conductivity. Care has to be taken to correctly calculate the
resistivities from the above matrices. The thermopower becomes

OyyQxx — OxyQixy

Sex = (2.40)

OxxOyy + O')%y

for the x direction. The off-diagonal elements of S refer to the Nernst coefficient.
For a field parallel to the currents, all off-diagonal elements in Eq. 2.39 become zero,
i.e., we do not observe e.g. a Hall effect.

The currents in the transport Eq. 2.36 can be expressed as an integral of the velocity
v and the distribution function f; paired with the charge e or the energy ¢

X 2
Je = W/ekadek,

(2.41)
/ ekkakd3k .

. 2
Ty
To determine the transport coefficients, the distribution function fj remains to be
calculated, which is often done within the Boltzmann formalism.

2.7.1 Boltzmann Equation

The simplest approach to transport phenomena is the semi-classical Boltzmann the-
ory. It can be used to describe transport in solids due to particles with well-defined
position and momentum. The Boltzmann equation

o po 9 3
(5+;5+F£)f(r,p,t)—5[f] (2.42)

consists of a part representing a continuity equation for the phase-space distribution
f on the left and the scattering functional S[ f] on the right. In the stationary case
the first term O f/0t vanishes. The second term is called the drift term and describes
changes of f due to gradients, e.g. for a thermal gradient

pof _p 0 0f

mor —morlor (2:43)
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The third term describes external forces, e.g. electromagnetic fields. The most
complicated term is the scattering functional S[f], which is mostly treated in the
relaxation-time approximation

f(rvp’t)_fo(r’pvt)

T

SLfl1= (2.44)
This approximation forces f to converge towards an equilibrium distribution fj
within a time scale 7. fj is the usual Fermi or Dirac distribution, 7 the scattering time.
For N different scattering mechanisms, the single 7; may be summed by Matthiessens
rule

1= erl . (2.45)

With the relaxation-time approximation, the Boltzmann equation turns into a lin-
ear partial differential equation. To calculate transport in solids, the phase-space
distribution f(r, p,t), which describes classical particles, can be replaced by the
quantum-mechanical distribution function f; for quantum-mechanical particles. This
procedure is justified by the Wigner-Weyl transformation.

2.7.2 Thermal Conductivity

Within the Boltzmann formalism one can derive the following formula for the thermal
conductivity

11
- Ledk | 2.46
K= i /Ckvkk (2.46)

where d is the dimension of the corresponding quasiparticle system. The related sim-
ple formula x = Cvl/3 is often used to roughly estimate the thermal conductivity. C,
v, and [ are the specific heat, the velocity and the mean free path of the corresponding
quasiparticle, which transports the energy current.

Different quasiparticles can contribute to the thermal transport. Along with
defects, all of them also serve as scattering centres. Therefore, the separation of the
single contributions to « turns out to be difficult in practice. Additionally, the theo-
retical description of thermal transport is generally more complex than for electrical
transport with only one contribution from electrons. Simple temperature dependences
can only be derived under certain assumptions. More complex scattering mechanisms
or excitation spectra considerably alter these dependences or even render a theoretical
description impossible.
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2.7.2.1 Phonon Contribution

In a simple approximation, lattice vibrations are described with a harmonic potential.
Together with the Debye model and the relaxation-time approximation, one can
derive the following formula for the phonon thermal conductivity:

3 e/T
kB kB 3 x4ex
Kph = 20\ 7 T T()C)—(ex 12 dx.
0

To sketch the temperature dependence of the phonon thermal conductivity, we will
use the more simple relation sy, = Cvl/3, derived from Eq.2.46 assuming a k-
independent mean free path and velocity. Following this equation, we can distinguish
two regimes: At low temperatures compared to the Debye temperature ®, umklapp
scattering is frozen out and the mean free path becomes constant, limited only by
scattering on crystallite and sample boundaries. x, thus follows the specific heat
with a T3 dependence. At high temperatures, umklapp scattering leads to a mean
free path [ oc T~!. The specific heat becomes constant and r, follows 7. This
behaviour can be observed e.g. in sapphire, which is sketched in Fig. 2.10a. Scattering
due to electrons or other quasiparticles is not included here.

(2.47)

2.7.2.2 Contribution Due to Magnetic Excitations

Magnetic excitations, like phonons or electrons, carry entropy and thus can transport
heat. This was theoretically predicted quite early (Frohlich and Heitler 1936) and
observed experimentally on Yttrium-Iron-Garnet in the nineteen sixties (Douglass
1963). The observation of large magnetic contributions to the heat conduction in the

10° T T T T T T
(a) Saphire 100 k(b) Sr14CUs4041 _| . (c) Copper
— 10" r T
£ £ E
X X
4 108 i § 50 - g E
S 2 2
“ * “ 108 .
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Fig. 2.10 Textbook examples for the thermal conductivity by phonons, magnons, and electrons.
The thermal conductivity x as a function of temperature 7 is plotted in a double-logarithmic way
for a sapphire after Touloukian (1970), b Sr14Cu404; after Hess et al. (2001), and ¢ copper after
Touloukian (1970). Sapphire is a typical phonon conductor, while Sr14Cu404; shows a phonon
and a magnon contribution as maxima at lower and higher T, respectively. The thermal conductivity
in copper is dominated by electronic transport
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low-dimensional spin systems of the cuprates (Sologubenko et al. 2000; Hess et al.
2001) and the prediction of ballistic transport in integrable one-dimensional models
(Zotos et al. 1997; Zotos 1999) inspired the research on magnetic heat transport.

Due to the large number of magnetic structures, a comparable large number of
models exists to describe their ground states and excitations. The main differences
lie between fermionic spin excitations called spinons and bosonic excitations called
magnons. In a simple approximation, magnons without a gap in their excitation
spectrum can be treated in an adapted Debye model leading to the same temperature
dependences as for phonons at low temperatures. Butin contrast to phonons, magnons
usually show a magnetic-field dependence. Spinons, since they are fermions, do not
freeze out at zero temperature unlike magnons. Therefore, they can contribute to the
thermal transport x/7T at T = 0 similarly to electrons.

An example for magnon transport, where its contribution can be nicely separated
from the phonon contribution, is found in the spin-ladder compound Sri4Cu;40yy,
which is sketched in Fig.2.10b.

2.7.2.3 Electron Contribution

The thermal conductivity in metals is dominated by the contribution of electrons.
In the free-electron picture the thermal conductivity again becomes r¢ = Cvgl/3,
with the Fermi velocity vg. As seen in Eq.2.3 the specific heat is proportional to
T. Considering electron-phonon scattering, the scattering rate 7~' = vg/[ and the
thermal conductivity shows the following dependence

const., T K€ ©® T, T K06
Tt~ T3, T<®, ka~{T2 T<O . (2.48)
T, T >0 const., T > 0O

This can be observed, e.g., in copper as shown in Fig.2.10c.

2.7.3 Wiedemann-Franz Law

Let us consider transport due to electrons and compare the ratio of the thermal and
electrical conductivity

L=—. 2.49
To (2.49)

L is called the Lorenz number. An important prediction of the Fermi-liquid theory is
that L = Lo at T = 0, where Ly = 2.44 x 1073 WQK~2 is Sommerfeld’s constant.
This is called the Wiedemann-Franz (WF) law. This fundamental physical law is,
however, not only valid in a Fermi liquid, but generally in systems, which can be
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electrical gradient thermal gradient

Fig. 2.11 Effects of a thermal (right) and an electrical (left) gradient on the excitations around
the Fermi surface (fop) and the distribution function f(e) (bottom). Closed (open) dots represent
occupied (unoccupied) states when a gradient is applied. Large-angle scattering (bright green) is
able to relax excitations in both cases, whereas small-angle scattering (dark green) is only efficient
for thermal gradients. f(e) with (without) an applied gradient is represented by a solid (dotted)
line. After Ziman (1960)

described in the framework of quasiparticles. Some non-Fermi liquids also belong
to this class such as systems with a conventional quantum critical point.

The following considerations together with Fig.2.11 offer an instructive access
to the WF law: Applying a gradient, the distribution of the electrons is changed in a
different way for a thermal and an electrical gradient as illustrated in Fig.2.11. Scat-
tering processes tend to relax the distribution back to equilibrium. One distinguishes
different types of scattering processes: elastic and inelastic as well as horizontal
(large-angle) and vertical (small-angle) processes.

An elastic process scatters an electron to another position on the same constant-
energy surface. In the framework of the linearised Boltzmann equation, the scattering
times for the electrical and the thermal conductivity are the same in this case. Hence,
L = L for elastic scattering. From Fig. 2.11 it becomes clear that large-angle elastic
scattering has the same effect on both, the thermal and the electrical current. Small-
angle elastic scattering has only little impact on the distributions. An example of
elastic processes is scattering off defects, which is the only mechanism acting at
very low temperatures 7 < ©. “Quasi-elastic” large-angle processes occur at large
temperatures 7 > © due to phonons, which have a comparably small energy but
large wave vectors in this regime.

In contrast, small-angle inelastic scattering is very efficient to reduce the thermal
but not the electrical current. In this case, the WF law no longer holds. An example
is electron-phonon scattering at low temperatures 7 < ©.

2.7.4 Thermopower

A very sensitive transport property in a metal is its thermopower S. From the Boltz-
mann equation it can be expressed by the energy derivative of the conductivity at the
Fermi energy
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w2kzT (Olno (€)
= 2.
S 3e ( Oe )(F ’ 2.50)

which is called Mott formula. e denotes the elementary charge and ¢ the energy. In a
Fermi liquid, the thermopower usually becomes linear in T at low temperatures. The
derivative in the above equation can be translated using o = ¢/ A/127>h, where A
is the Fermi-surface area, into (Ziman 1960)

dlno(e)  JInl(e) N JlIn A (¢)

Oe Oe Oe @51)

which demonstrates the sensitivity of the thermopower to Fermi-surface properties.
The Mott formula (2.50) can also be expanded in a different way using the simple
free-electron picture o = ne’7/m*, together with m* o« N?/3,

Olno(e) OdlnT 20InN
Oe T 0 3 Oe 2.52)

where n is the total electron concentration, N the density of states and 7 the scattering
time. This version demonstrates the large sensitivity of the thermopower to the energy
dependence of the DOS. It also provides a simple picture to understand the large
values of the thermopower in heavy-fermion compounds. They usually have a Kondo
resonance in the DOS slightly below (for holes) or above (for electrons) the Fermi
energy. At low enough temperatures, the steep slope of N at e leads to large values
of § with the opposite sign as expected from the charge of the carriers.

In the case of a multi-band system, the contributions to the thermopower from the
single bands S; sum up as

oS=> Sio;. (2.53)
i

Different scattering contributions are accounted for by the Gorter-Nordheim rule

pS=> S, (2.54)

which is derived under the assumption, that the Wiedemann-Franz law holds.

The thermopower in form of the Mott formula describes only one contribution to
S, namely the diffusion term. It was derived under the assumption that the phonon
system stays in equilibrium. However a thermal gradient always gives rise to heat
transport by phonons and an electric current transfers momentum to the phonon
system. This leads to the so-called phonon drag effect and an additional contribution
to the thermopower. In the compounds and temperature ranges studied throughout
this thesis, this effect and also similar effects due to magnons are insignificant.
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Chapter 3
Experimental Techniques for Transport
Measurements

The focus of this thesis in terms of experimental techniques lies on thermopower
and thermal-conductivity measurements in a dilution refrigerator at temperatures
below 1K. This chapter provides a general description of this method as well as the
specifics of the three different set-ups in which the experiments where performed.
In this context, I will also refer to the possibility to measure in-situ the electrical
resistivity in two of these set-ups. Additional measurements of thermal transport at
higher temperatures and of other quantities were performed with a commercially
available Physical Property Measurement System (PPMS). A detailed description of
its capabilities and the methods can be found at QuantumDesign (1999a, b, c).

3.1 General Principle of Thermal Transport
in a Dilution Refrigerator

The standard two-thermometers-one-heater set-up to measure thermal transport is
illustrated in Fig. 3.1. To determine the thermal conductivity, a heater with the power
Py generates a thermal gradient AT = T, — T), which is measured by two ther-
mometers (1, 2). The thermal conductivity x is then

Is P
k=L 3.1)
As AT
where [g is the distance between which AT is measured and Ag the cross section of
the sample. To determine the thermopower

AU
§=—L (3.2)
AT

two additional thermovoltage leads are attached to the same contacts as the
thermometers. They measure the thermovoltage AUr across the sample. The
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Fig. 3.1 Scheme of the two- m Heater
thermometers-one-heater .

measurement set-up

RuO, Temperature Sensors
Sample
(v) DC Current for Resistivity
UT/Ures lres

Thermovoltage/
Voltage for Resistivity

IR - sorere Hoder

thermopower S and the thermal conductivity x can be measured simultaneously.
The configuration in Fig. 3.1 offers the opportunity to measure the electrical resis-
tivity p as well. While it has to be determined in a separate run, advantageously it is
not necessary to warm up the whole cryostat. For the electrical resistivity

p= ﬁ AUres
lS Ires

(3.3)

the contacts to the heater and to the sample holder are used to apply an electrical cur-
rent I, the voltage drop AU, is measured in the same way as for the thermopower.
This configuration ensures the same geometry factor Is/As for x and p, which is
important for an accurate determination of the Lorenz ratio for the Wiedemann-
Franz law.

3.2 The Three Set-Ups Used

The general principle explained above applies for all set-ups, however, the specific
layout and the materials differ a little. Three different set-ups were used on three
different refrigerators, which we will call “Franz” (F), “Rotator” (R), and “SHE” (S).
Table 3.1 summarizes the important specifications of the three set-ups. “Franz” is used
for measurements where it is important to reach temperatures as low as possible. The
“SHE” is used for the highest fields. The “Rotator” offers two magnets—a horizontal
and a vertical one. Since the cryostat including the magnet coils can rotate around
the fixed insert of the dilution refrigerator, this set-up is used for measurements with
variable field directions.
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Table 3.1 Overview of the specifications for the different set-ups

35

Cryostat “Franz” “Rotator” “SHE”
Dilution refrigerator | Kelvinox MX 400 Kelvinox 100 SHE
Base temperature 9mK 14mK 50mK
Lowest measurement |27 mK 50mK 70mK
temperature (k, )
Magnetic field 8T vertical 0.4 T vertical 12T vertical
4T horizontal,
rotatable

Sample holder
Frame gold coated silver + Gold coated silver Silver

vespel
Calibrated RuO; on CF RuO; at MC Ge at MC
thermometer
Sample thermometer | RuO; RuO, RuO,
Sample heater (10k<2) | Chip resistor Chip resistor Strain gauge
Thermometer/heater | Gold plates Gold plates Silver rods
platforms on nylon
web
Wires and connections
Electrical connection | NbTi NbTi PtW
of thermometers/
heater
Thermovoltage NbTi to frame - NbTi to frame

Cu to nanovoltmeter Cu to nanovoltmeter
Sample—cold finger | Clamped + Glued Clamped + glued Soldered silver wire
Sample—thermometer | Gold wire Gold wire Silver wire
and sample—heater
Contacts on the Evaporated Au pads + | Evaporated Au pads + | Soldered

sample

silver paint

silver paint

MC stands for mixing chamber, CF for cold finger

The Fig.3.2 shows photographs of the sample holders for the “SHE” and the
“Franz” set-up. The one for the “Rotator” looks similar to the latter. A very detailed
description of the sample holders for the “Rotator” and for “Franz” can be found
in Vieyra (2011) and Hartmann (2010), respectively. At the “Rotator”, only thermal
conductivity can be measured. At “Franz”, a measurement of the thermal conductiv-
ity, the thermopower and the resistivity is possible. The “SHE” additionally provides
the possibility to measure Nernst and thermal Hall effect.

The devices used for the measurement are almost identical for all three set-ups
and are summarized in Table 3.2.
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Fig. 3.2 Sample holders of “SHE” (left) and “Franz” (right). The sample holder of the “Rotator”
set-up looks similar to the “Franz”, however it does not contain thermovoltage leads. The arrows
mark the sample (blue), the sample thermometers (green) and the sample heater (red)

Table 3.2 Overview of the devices used at the different set-ups

Quantity Device
Thermometer resistances LakeShore Resistance Bridge LS370
and temperature control + LakeShore Scanner Model 3716
Sample heater current Keithley 6220 (S), Keithley 224 (R), Keithley 263 (F)
Sample heater voltage Nanovoltmeter Keithley 2182
Thermovoltage EM D.C. Nanovolt Amplifier Model A14
+ Keithley Multimeter 2001 (S),
EM D.C. Picovoltmeter Model P13
+ Keithley Nanovoltmeter 2182 (F)

F, S, and R refer to “Franz”, “SHE”, and ‘“Rotator”

3.3 Measurement Procedure—Steady State

For the standard steady-state method illustrated in Fig.3.3, the temperature of the
sample holder Tyc is stabilized using the calibrated thermometer which sits either
on the cold finger or the mixing chamber. The values of the sample thermome-
ter resistances R;, and the voltage between the thermovoltage leads Ur are then
detected in both states, when the sample heater is switched off and on. The first
values of the sample-thermometer resistances R;»(Py = 0) serve as calibration
points for the thermometers, the latter are used to determine the thermal gradient
AT. The thermovoltage AUr is the difference between the background measure-
ment, i.e., in the heater off state, and the points when the heater is switched on
AUt = Ur(Py # 0) — Up(Py = 0). This procedure is normally repeated first with
several different values of the sample heater power Py = Ugly to check for linear
response. Afterwards, the above procedure is repeated with different Ty;c. The mean
value of the temperatures 77 and 75 during the heater on stage is taken as the average
sample temperature 7 and is used for all plots shown throughout this thesis. It is
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Fig. 3.3 Measurement procedure for the steady-state method. When the heater is off (Uy = 0 in
panel ¢), the points from the sample thermometer resistance R; (a) and the mixing chamber/cold
finger temperature Tyic (b) are used to create the calibration curve 7' (R ) of the sample thermometer
1 shown as blue dots in panel d. The calibration function is a linear interpolation between neigh-
bouring points (red line in d). For the heater-on states, the sample temperature 77 can be calculated
from R; using this calibration function. The same procedure applies for 7>

useful to apply several different gradients for one Tyc, because it is often faster to
change the sample temperature by a different applied gradient than by a different
Twvc. Therefore, it reduces the time per measured «(7) value.

The in-situ calibration of the sample thermometers is necessary because their char-
acteristics change in magnetic field and due to mechanical stress e.g. after changing
the sample.

The same principle is used for the steady-state resistivity measurements. The
thermal current produced by the sample heater is replaced by an electrical current
from a current source.

3.4 Measurement Procedure—Pseudo AC

The pseudo AC method, illustrated in Fig. 3.4, is used for isothermal measurements,
which depend on an external parameter x, e.g. magnetic field or magnetic-field angle.
For the simplest measurement of this type, a fixed sample holder temperature Tyic
is stabilized by the calibrated thermometer. The external parameter is swept contin-
uously, while the sample heater is alternately switched on and off. This creates an
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Fig. 3.4 Measurement procedure for the pseudo-ac method. While the external parameter, in this
case B, is swept (a), the heater is switched on and off (e). Four periods of the induced square wave
in the thermovoltage Ut (d) produce a sharp peak in the fast Fourier transformation (FFT) spectrum
(g). Its height is proportional to the thermovoltage drop AUt across the sample. The calibration map
for the sample thermometer (f) is constructed from a standard steady-state calibration at constant
field (blue dots) and from the heater-off points of Ry (c), Tmc (b), and B (a) (yellow dots). The
points are linearly extrapolated across the B-R; plane

almost rectangular wave (depending on the coupling of the sample to the cold finger)
of the sample thermometer resistances R », the voltage between the thermovoltage
leads Ur, the heater current Iy and the heater voltage Uy . A Fourier analysis of Uy
leads to the thermovoltage AUr, the ones from heater current and heater voltage give
Py. To deduce the sample temperatures from the sample thermometer resistances,
one also needs a calibration T'(R| », x). It is constructed from (a) the resistance val-
ues of the x sweep, when the sample heater is switched off, and from (b) a separate
T (R; ) calibration for a fixed value of x. Since the changes of R; and R, stay
small during the measurement, temperature variations of R(x) in this interval are
neglected and the points from (a) are linearly extrapolated along the points from (b).
AT = T, — T can then be extracted from the resistance values R, , of the x sweep,
when the heater is switched on. A cross-check with an extensive calibration map for
selected temperature windows verified a sufficient accuracy of this approximation.

If the thermal conductivity of the sample changes within the measured interval of
x, the mean temperature of the sample will also change and the measurement is not
truly isothermal. In cases where the deviations are too strong, the mixing-chamber
temperature is, therefore, not left fixed, but is adjusted during the measurement using
a feedback loop in the measurement program to ensure a constant average sample
temperature in the heater-on state.
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The resistivity can be determined in a similar fashion as described above. In this
case, the electrical current /. is alternately switched on and off and the FFT of the
U.es-signal determines the voltage drop AUkes.

3.5 Origin and Estimation of Measurement Uncertainties

The Table 3.3 summarizes the estimated uncertainties for the sample temperature,
the thermal conductivity, the thermopower and the resistivity. They result from the
uncertainties of the different measured quantities, which are presented below. The
values listed in the Table 3.3 are only a guide and do not represent true upper limits
of the uncertainties.

Mixing-Chamber Temperature

Using the PID control of the resistance bridge, the error of the mixing-chamber
temperature is below 0.5 % and, therefore, negligible.

Sample Temperature

The measurement of the temperatures on the two contact points on the sample, T}
and T3, are most susceptible to errors. They determine the thermal gradient AT and
the average sample temperature 7. The uncertainty does not only depend on the error
of the resistance measurement, which is below 2 %, but also on other factors.

The second error source for T; and 7> comes from the calibration of the ther-
mometers. In the case of the steady-state method, the errors of Tyc, R;, Ry, and of
the linear interpolation sum up to a value of below 1 %. For the pseudo-ac method, the
error for the linear interpolation across the whole x-R; » calibration map is higher,
but below 3 %.

The third error source is connected to small leakage currents of the current source
for the sample heater. They lead to a systematic error of the calibration, which is
performed at zero heater current. This error can be severe in the case of a very good
thermal conductor where only a small gradient, hence small heater currents, can be
applied for low-temperature measurements. Therefore, special care has to be taken
for the electrical wiring of the current source.

Table 3.3 Estimated uncertainties

Systematic error (%) Random error
Sample temperature 7' 5 2%
Thermal conductivity 13 3%
Thermopower 5 2% -S+0.01nV/K
Resistivity 8 1%

They represent a guide for the reliability of the data presented in this thesis
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The fourth error source derives from the relative thermal resistance between the
thermometers and the sample, and between the thermometers and the environment.
This must be sufficient to ensure that the thermal current is not bypassed through
the electrical connections of the thermometers, the heater and the thermovoltage
leads. For an estimation of the error of the thermal gradient AT due to a small heat
leak, one can translate the thermal circuit of the set-up into the equivalent electrical
circuit as shown in Fig.3.5. For simplicity, contributions from thermovoltage leads
are neglected in the following.

The real gradient across the sample can be determined from the idealized circuit
on the right side of Fig.3.5 to

AT, = LhRs; . (3.4)

On the other hand, the measured gradient determined from the real circuit on the left
side of Fig.3.5 is

ATw = LhRsy + I4Rc) — IsRc2 = ATy + I4Rey — IsRc - (3.5)
RA3
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Fig. 3.5 The real and the idealized electrical circuit representing the measurement of the thermal
gradient
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Using Kirchhoff’s current laws, this expands to

ATn — AT, Rci(Rss + Rg)(Ra> — Rai) — RsoRea(Rei + Rai + Rss + Rg)

I (Rc2 + Ra2)(Rci + Rai + Rs3 + Rp) 3 6.)
Assuming a good link between the sample and the thermometers and a bad one
between the thermometers and the environment, one can further simplify this equa-
tion llSiIlg RALZ > R, Rci12 > R52’3 and Eq34

Ra1 Ra2

ATy _ | . RuRo (1 1 Re
AT; Rs>

- —. 3.7

Some typical numbers for the resistances taken from Seyfarth (2006) are Ra;, =
B0+ 1R, Reip = 059, Ry = 0.002Q (v = 0.5WK?2m™!, I5/As =
50000m~"), Rg = 0.1 Q. They sum up to an error of

ATy
AT

=140.02-0.02. (3.8)

This quite large systematic error makes it necessary to take special care in the choice
of the materials used for the wiring on the sample holder and the kind of contacts on
the sample. One needs to ensure that Raj » > Rg, Rci12 > Rso.3.

In spite of a careful choice of the materials, one can observe a decoupling of the
sample thermometers from the sample at low-enough temperatures. This is best vis-
ible in a bending over of the normally almost linear calibration curve log 7' (log R »)
(c.f. Fig.3.3d). This is usually caused by a heating of the thermometer due to an
external heat entry, e.g. mechanical vibrations, and simultaneously a comparably
weak link between sample and thermometer. Thus both, a better contact and a lower
external heat entry can increase the measurable temperature window to lower 7. Con-
siderable work to improve the contacts is presented in Seyfarth (2006), Hartmann
(2010). Those ideas were implemented in this work. Additionally, the mechanical
damping of the whole set-up was improved as well as the filtering of the small signals
and their shielding from electrical noise.

Thermovoltage

To avoid spurious thermovoltages between the thermovoltage leads and to mini-
mize the background, the number of joints was minimized along the thermovoltage
cables up to the voltmeter. The joints were placed inside the dilution refrigerator
and thermally well anchored. Clamped joints were preferred over solder joints. The
thermovoltage AUt is corrected for remaining spurious voltages between the ther-
movoltage cables by a background measurement in the heater off state. Systematic
errors from wiring are, therefore, assumed to be negligible.
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For the steady state, the random error of AUy calculated from the standard devi-
ation amounts to 0.3nV. Typical measured absolute values of AUt are 20nV. They
always stay below 0.5 wV in our measurements. Therefore, the smallest relative error
isbelow 1 %, but it becomes very large if the signal is small. The uncertainties of AUt
determined by the pseudo-ac method can be attributed to the square-wave approxi-
mation and the accuracy of the fit on the FFT data. The resulting error amounts to
roughly 0.05nV.

Heater Power
The error of the heater power Py stays below 1 % and can be neglected.
Resistivity

The current source has an accuracy of far below 1 %. The accuracy of the voltage
measurement also stays below 1 %.

Sample Dimensions

The variation of the cross section Ag along the sample length and its measurement
sum up to an accuracy of 3 %. The finite width of the contacts is responsible of an
error of 5 % for the length I5. Thus, the geometry factor /s / As enters with a systematic
error of 8 %. Please note, that the systematic error due to the sample geometry in
the thermal conductivity and the resistivity cancels out for the determination of the
Lorenz ration L/Ly = pr/T if one measures p and  on the same sample with the
same contacts.

References

S. Hartmann, Thermoelectric Transport in Correlated Electron Systems. PhD thesis. Technische
Universitit Dresden (2010)

Quantum Design, Physical Property Measurement System—Hardware Manual. Quantum Design
(1999a)

Quantum Design, Physical Property Measurement System—Heat Capacity Option User’s Manual.
Quantum Design (1999b)

Quantum Design, Physical Property Measurement System—Thermal Transport Option User’s Man-
ual. Quantum Design (1999c)

G. Seyfarth, Multiband Superconductivity in the Heavy Fermion Compounds PrOssSbi; and
CeColns. PhD thesis. Université Joseph Fourier Grenoble (2006)

H. Vieyra, Resistivity and Thermal Conductivity Measurements on Heavy Fermion Superconductors
in Rotating Magnetic Fields. PhD thesis. Technische Universitidt Dresden (2011)



Chapter 4
The Wiedemann-Franz Law in YbRh,Si,

Based on Landau’s description of metals within the Fermi-liquid theory and their
phase transitions in terms of an order parameter, Hertz, Millis, and Moriya developed
a successful theory of quantum phase transitions. Its predictions could nicely be
confirmed on various Kondo-lattice systems such as CeNi,Ge,. However, a number
of other heavy-fermion compounds were found, which do not fit into this pattern and
require new theoretical models. In this chapter, we study the example of YbRh;Si,,
which has a field-tuned unconventional quantum critical point (QCP). To investigate
whether a theory for this QCP can be formulated in the framework of quasiparticles,
we experimentally study the Wiedemann-Franz (WF) law as an established test for
their existence. This law relates the electrical and thermal conductivity and is valid
in the limit of zero temperature if quasiparticles exist. While we can confirm the WF
law in the Fermi-liquid regime on either side of the QCP, we deduce a violation at the
QCP from an extrapolation of our data. The extrapolation and the concluded violation
of the WF law, however, is disputed due to an extra contribution in the thermal
conductivity, which we ascribe to magnons and which masks the low-temperature
behaviour. Our result puts strong constraints on any theory which tries to describe
the QCP in YbRh;Si,. Most of the following work is published in Pfau et al. (2012).

4.1 Quantum Criticality in YbRh;Si;—Phenomenology

YbRh;,Si, crystallizes in the tetragonal ThCr,Si, structure with the space group
I14/mmm (see Fig.4.1). The high-temperature effective moment of jter = 4.4up is
close to the one for an Yb** configuration (Trovarelli et al. 2000). The resulting 7/2
multiplet is split into four Kramers doublets due to the crystal electric field (Stockert
et al. 2005). The ground-state doublet is well separated from the first excited level
by 200K. YbRh,Si, is a Kondo-lattice system. The energy scale corresponding to
Kondo scattering on the whole 7/2 multiplet is 80K (Kohler et al. 2008). At low
© Springer International Publishing Switzerland 2016 43
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B(T)

Fig. 4.1 Left Tetragonal crystal structure of YbRh,Si, with Yb (red), Rh (green), and Si (blue).
Right B-T phase diagram of YbRh,Si, for B L c¢. The Néel temperature of the antiferromagnetic
phase (AF) is suppressed towards a QCP by a tiny magnetic field of 60 mT. On the other side of the
QCP, a paramagnetic Fermi liquid (FL) can be observed. The crossover scale T* terminates at the
QCP and its width (FWHM) is proportional to B. The dashed vertical lines indicate the temperature
scans of thermal and electrical transport measurements presented in this chapter. Horizontal lines
are the field dependences derived from those 7 scans

temperatures, the scattering on the ground state dominates with an energy scale of
25 K (Kohler et al. 2008; Gegenwart et al. 2006), which is also the scale where Kondo-
lattice coherence develops (Ernst et al. 2011). The Kondo effect leads to a screening
of the magnetic moments towards e = 1.4up at low temperatures (Gegenwart
et al. 2002).

YbRh;Si, develops an antiferromagnetic (AF) state below Ty = 70 mK (Trovarelli
et al. 2000) with a tiny ordered moment of the order of 10~3ug (Ishida et al. 2003).
The order can be continuously suppressed towards a QCP by a very small magnetic
field of B, = 0.06T for B L c and B, = 0.66T for B || ¢ (Gegenwart et al.
2002), or by substitution of Si by Ge (Custers et al. 2003). In every case, the transi-
tion stays second order down to the lowest accessible temperatures (Krellner et al.
2009). The studies presented in this chapter are performed for fields B L ¢, but are
also compared to results for B || ¢. Most of the signatures of quantum criticality
are the same for both field directions and they are not distinguished in the follow-
ing. However, there are certain qualitative differences, e.g. in the magnetoresistance
(Custers 2004). The QCP in Ge-substituted YbRh,Si, shows similar properties to
the one tuned by field, but it is not discussed in detail here.

The phase diagram around the magnetic-field-driven QCP is shown in Fig.4.1. A
second phase transition, observed at 2.2 mK in ultra-low-temperature measurements
(Schuberth et al. 2009), is not included because its nature is still unclear. In the AF
ordered phase for B < B, and in the Fermi-liquid regime at B > B., YbRh;Si, shows
typical signatures of a heavy Fermi liquid: the resistivity follows a 7% dependence
(Gegenwart et al. 2002). The specific heat and the susceptibility are temperature
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Table 4.1 Comparison of the spin-density wave (SDW) scenario (Hertz-Millis-Moriya theory)
with the properties observed in YbRh,Si; at B,

P Cc/T r
YbRh,Sis (T > 0.3K) T (or T973) log(1/T) T2
(T < 0.3K) T (or TO75) 7043 T7-0.7
SDW 2D AF T log(1/T) eoed/ D
3D AF 732 -T2 -71
2D FM T4/3 =13 772 log(1/T)
3D FM T5/3 log(1/T) (T2 log(1/T))~!

The predictions for the SDW-type QCP for the resistivity p and for the specific heat C/T are taken
from Stewart (2001), for the Griineisen ratio I' from Zhu et al. (2003). See text for the results on
YbRh;,Si;. The resistivity dependence is indicated for samples with a low (high) residual resistivity
ratio (RRR)

independent (Trovarelli et al. 2000; Gegenwart et al. 2002). The large effective mass
is confirmed by the large A coefficient and a large y coefficient (1.7 J/K? for B = 0)
(Gegenwart et al. 2002).

So far, the detailed structure of the AF phase could not be determined due to the
tiny ordered moment and the low ordering temperature. However, despite the AF
order at low 7', a competition of both AF and ferromagnetic (FM) fluctuations was
detected (Ishida et al. 2002; Gegenwart et al. 2005; Stock et al. 2012).

In the quantum critical region and at the critical field, the physical properties
show pronounced non-Fermi-liquid behaviour. Some of these properties are listed in
Table4.1 and are compared to the predictions from the SDW scenario. The dimen-
sionality of the fluctuations is not known yet, but the linear resistivity and the loga-
rithmic divergence of the specific heat C/T (Trovarelli et al. 2000) hints towards a
2D SDW picture at first glance. However, there are a number of deviations:

e The Griineisen ratio I' (T') diverges with a power law (Tokiwa et al. 2009; Kiichler
et al. 2003). The power changes at a crossover scale of 0.3 K.

e The specific heat turns from a logarithmic 7 dependence towards a power-law
divergence below the same scale of 0.3 K (Oeschler et al. 2008; Trovarelli et al.
2000; Kiichler et al. 2003).

e The effective mass diverges at the QCPas m™ o (B — B.)~%33, which was observed
in YbRh,(Sig95Geg.05)> (Custers et al. 2003).

e For samples with a low RRR, the resistivity follows a linear temperature depen-
dence up to 1K in YbRh,Si, (Trovarelli et al. 2000) and up to 10K in YbRh,
(S1,Ge), (Custers et al. 2003).

e The linear-in-7 regime of the resistivity decreases with increasing sample quality.
High-quality single crystals with py &~ 0.5uQcm and a RRR of 150 can be
described by a linear resistivity only below 150 mK. New analyses show, that in a
wide T range they follow p = p{ + A’T%7 (Gegenwart et al. 2008; Steglich et al.
2014; Wolfle and Abrahams 2011).
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e The SDW scenario for a 2D AF would lead to Ty o« |B — Bc|, which is not the
case for YbRh,Si,.

Several thermodynamic and transport measurements revealed an additional energy
scale T* in YbRh,Si; (Paschen et al. 2004; Gegenwart et al. 2007), which is also
shown in the phase diagram in Fig.4.1. It terminates at the QCP (Friedemann et al.
2010), but can be detached from it by chemically applied pressure (Friedemann et al.
2009). The experimentally observed signatures are crossovers. The width of them,
however, was shown to extrapolate linearly towards zero for T — 0 in case of the
resistivity p (B) and the Hall coefficient Ry (B) (Friedemann et al. 2010). The abrupt
jump in Ry(B) at T = 0 was interpreted as a reconstruction of the Fermi surface
(Paschen et al. 2004), which takes place at B, in the pure YbRh;Si,.

The unusual non-Fermi-liquid behaviour in the quantum critical regime and the
properties connected to the energy scale 7* are beyond the predictions of the SDW
scenario and new theoretical concepts are required.

4.2 Quantum Criticality in YbRh,Si,—Theoretical
Concepts

The experimental results on YbRh,Si, at the QCP, especially the diverging effective
mass and the unusual power laws, are incompatible with the SDW scenario. Ear-
lier on, another unconventional QCP was found in CeCug_,Au,, which also shows
unconventional behaviour and signs of local criticality (Lohneysen et al. 2007; Stock-
ert and Steglich 2011). These discoveries stimulated the development of new theo-
retical approaches beyond Hertz-Millis-Moriya in the last few years. The nature of
the QCP in YbRh;Si,, however, is still highly debated.

4.2.1 The Kondo-Breakdown Scenario

Si et al. (2001) and Coleman et al. (2001) proposed an alternative scenario for
CeCug_,Au,, which was later also applied to YbRh,Si,. They suggested that the
heavy composite quasiparticles in a Kondo system may break up and disintegrate
into local f electrons and conduction electrons above an energy scale E*. This scale
corresponds to the observed T* and results in a QCP as T — 0. Consequently, the
whole Fermi surface reconstructs at E* from one, which incorporates the f electrons,
to another, which does not. As an experimental signature, the Hall coefficient jumps
at the QCP. The critical fluctuations may be thought of as fluctuations between these
two Fermi surfaces. Hence, they are fermionic in nature and critical on the whole
Fermi surface in contrast to the bosonic fluctuations with a certain wave vector Q
for an AF SDW QCP. As a consequence, the picture of Landau quasiparticles is no
longer valid at the Kondo-breakdown QCP.
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PM (a)

J

Fig. 4.2 The global phase diagram. a The global phase diagram spanned by the fluctuations of
the local moment G and the Kondo coupling J offers several paths to change from an antiferro-
magnetically ordered state (AF) to a paramagnetic one (PM). The paths differ in the position of
the Fermi surface change. The large (small) Fermi-surface indicates that the f electrons are (not)
incorporated. YbRh;Si, seems to follow the path denoted by the arrow in (a) and depicted in detail
in (b). Here, the Fermi-surface reconstruction coincides with the onset of magnetic order. After Si
(2011)

In the case of pure YbRh,Si,, the order instantaneously sets in at the QCP of
the Fermi-surface reconstruction. This seems accidental in the light of the “global
phase diagram” developed later and also in view of the experiments on Co and
Ir substitution series (Friedemann et al. 2009), which fit into this phase diagram
(Fig.4.2). The localized f moments above E* are responsible for the AF ordering
in the pure YbRh,Si,. The high effective mass in this ordered phase, which was
observed in YbRh,Si,, is due to the dynamical Kondo effect (see Si and Paschen
2013 and references therein).

4.2.2 The Lifshitz Scenario

Hackl and Vojta (2011) introduced the idea that a Zeeman-driven Lifshitz transition
is responsible for the 7* line. The band structure of their model contains a Fermi-
surface pocket at the right distance from the Fermi energy eg. It is split by a magnetic
field and moves through er at the field B* = B(T*). The Lifshitz scenario predicts a
scale 7*, at which thermodynamic and transport properties, especially the Hall effect,
show distinct crossovers as a function of field. They become sharp but continuous for
T = 0. Apparent non-Fermi-liquid behaviour occurs in the temperature dependences
of thermodynamic quantities around this transition, but the system stays a Fermi
liquid at all fields in the low-temperature limit. However, the model does not capture
any magnetic ordering nor does it account for strong correlations (Friedemann et al.
2013; Hackl and Vojta 2013). Hence, experimental observations such as the divergent
effective mass at B, cannot be reproduced.
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4.2.3 Critical Quasiparticle Theory

The phenomenological critical quasiparticle theory introduced in Wolfle and Abra-
hams (2011), Abrahams and Wolfle (2012) and Abrahams et al. (2014) describes
the AF QCP in YbRh,Si, within two stages, which are separated by the crossover
scale of 0.3K. In the first regime above this temperature, the critical fluctuations
are Gaussian, i.e. non-interacting, and either 2D AF fluctuations or 3D FM fluctua-
tions. The heavy composite quasiparticles interact with these Gaussian fluctuations
leading to a logarithmic mass enhancement. Below 0.3 K, the critical fluctuations
change to weakly interacting 3D AF fluctuations. This also influences the coupling
of the fluctuations to the quasiparticles. If the mass enhancement in the first regime is
strong enough, the system is driven to a strong-coupling scenario which can lead to a
power-law divergence of m™*. For the other case—the weak-coupling scenario—the
system would behave like for a typical SDW QCP described by Hertz, Millis, and
Moriya.

The induced order is of an itinerant-heavy-quasiparticle SDW type with a small
ordered moment. The critical AF fluctuations with the wave vector Q would lead to
limited regions of the Fermi surface, which become “hot”. A diverging mass on the
whole Fermi surface is either induced by impurity scattering, which smears these hot
regions (Wolfle and Abrahams 2011; Abrahams and Wolfle 2012), or by a combined
exchange of two AF fluctuations (Abrahams et al. 2014).

The theory is able to predict the exponents for the power-law behaviour of many
observables in accordance with experimental results. An important drawback with
respect to the phase diagram of YbRh,Si; is the additional energy scale 7*, which
is not captured by the critical quasiparticle theory. Hence, there is no destruction
of the Kondo effect at the QCP in this model. In contrast to the Kondo-breakdown
scenario, the heavy quasiparticles in the critical quasiparticle theory are preserved
in the whole phase diagram. This implies that the properties in the non-Fermi-liquid
region can be described by Landau quasiparticles.

4.3 Motivation

Many experiments were already performed on YbRh,Si, to study the properties of
the QCP and to establish constraints on any theoretical model which tries to explain
its unconventional nature. The aim of our study is to determine whether a theory
can be formulated in a Landau-quasiparticle picture, or whether this picture breaks
down at the QCP. In two of the three theories presented above, namely the Lifshitz
scenario and the critical quasiparticle scenario, quasiparticles stay intact at the QCP
in contrast to the Kondo-breakdown scenario.

To test the fate of Landau quasiparticles, the Wiedemann-Franz (WF) law is an
ideal tool. It relates the electrical and thermal conductivity. If quasiparticles are well
defined, their ratio L = /T o is a fundamental physical constant Ly = (kg)?/3¢?
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at T = 0 (see also Sect.2.7.3). Deviations from L/Ly = 1 can be categorized into
three cases:

e L /Ly = 0: superconducting state
e L /Ly > I: other heat carriers in addition to electronic quasiparticles
e L /Ly < I: sign of inelastic scattering

If L/Ly < 1 persists down to T = 0, the WF law is violated and the quasiparticle
picture breaks down.

In a theoretical treatment, Mahajan et al. (2013) pointed out that this simple
view, which describes the violation of the WF law as a perturbation of the Fermi-
liquid ground state introducing additional inelastic scattering, is insufficient when
quasiparticles do not exist at all. From their perspective, the Lorenz number is not a
reference point any more. Nevertheless, an experimental result of L /Ly < 1 requires
a theory beyond Landau quasiparticles.

A reliable extrapolation to zero temperature is essential to test the WF law. There-
fore, we put special effort into very-low-temperature measurements and into a clear
concept for the extrapolation of these results to 7 = 0. A fixed point in this concept
is the high-field phase, which is a Fermi liquid without any doubt. To confirm the
WEF law in this regime is an important starting point. In the next step, the WF law
is tested in the AF phase, which is also a Fermi liquid. This is challenging due to
the low ordering temperature. In the third step, we compare those results with the
behaviour at the critical field.

4.4 Experimental Methods

Both samples used for the study of the WF law were cut from the same crystal
of batch #63129. Thermal and electrical transport coefficients were obtained from
the same rectangular-shaped (4.2 x 0.5 x 0.1 mm?) single crystal (sample 1) with
identical contact geometry. This allows a reliable determination of the Lorenz ratio
L(T)/Ly = p(T)/w(T), since the geometry factor Is/Ag cancels out. I and Ag
are the contact distance and the cross-section of the sample, respectively. Additional
measurements of the electrical resistivity were performed on a second single crystal
(sample 2) with a different geometry factor (1.7 x 0.41 x 0.06 mm?). Because
of the inhomogeneous thickness of the samples, the geometry factor could not be
determined very precisely. However, the measured resistivities of sample 2 could
perfectly be rescaled to those of sample 1 by a factor 1.25 £ 0.03 and a correction
for the residual resistivity of 0.22 pQcm.

Heat and charge currents as well as the magnetic field were applied within the
basal tetragonal plane. However, we did not consider the distinction between the
[100] and the [110] directions. The parallel orientation of the magnetic field to the
heat and charge flow allows us to neglect the contributions of transverse effects
(Nernst and electrical/thermal Hall effects) in all measurements.


http://dx.doi.org/10.1007/978-3-319-39543-2_2
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The thermal conductivity was measured using the “Franz” set-up with the stan-
dard two-thermometers-one-heater steady-state method. The raw data of the thermal
conductivity k were averaged and the error bars in the following plots represent the
standard deviation. Systematic errors would only shift the curves. Due to the very
low Néel temperature 7y = 70mK, considerable effort has been made to extend the
thermal-conductivity measurements down to 25mK at B = 0 and 0.02 T compared
to previous studies, which reached only 40 mK (Tomokuni et al. 2011) and 60 mK
(Tanatar et al. 2007), respectively. To reduce the statistical error especially at such low
temperatures, substantially more temperature scans have been performed at B = 0.
At the critical field, 30mK has been reached as the lowest temperature; 60 mK for
all other fields.

The electrical resistivity p(7) was determined by a four-point AC technique in a
3He-*He dilution refrigerator down to 7 &~ 20 mK in the AF phase, 40 mK at B, due
to heating effects, and 30 mK above B..

4.5 Thermal and Electrical Transport

4.5.1 Phonon Contribution

The thermal conductivity «(7T) between 25mK and 12K is shown in Fig.4.3 for
B = 0. For comparison, kwg(T) = LoT /p(T) was calculated from the measured
electrical resistivity p(T). Above 4K, «(T) exceeds «wg(T) due to the contribu-
tion of phonons «py(T') to the heat transport. Below 4K, kpn(7) is suppressed,
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Fig. 4.3 Estimation of the phonon contribution to the thermal conductivity. The total thermal
conductivity x (T) (dots) at zero field is shown up to 12 K. For comparison, we calculated kwg(7T) =
LoT/p(T) as an indication of the electronic contribution. To determine the phonon contribution,
we subtract kwg(7) from «(7) above 6 K. A power-law fit of the result is extrapolated to lower
temperatures and serves as an estimate for «ph (7')
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Fig. 4.4 Thermal and electrical resistivity. The thermal resistivity w(T) = LoT /k(T) (red) and
the electrical resistivity p(T') (green) are shown below T = 0.5K and at different fields between
B = 0 and 1T. The error bars show representative standard deviations. The lines correspond to
extrapolations of the data in the quantum critical regime, which is indicated in Fig.4.7. Long dashed
lines are linear fits, short dashed lines are fits with a power law p} + A'T%78. The power 0.78 is
deduced from a prior fit to p(7, B = 0.06 T). The fit range for all curves starts above Ty and Tf,
for p(T') and above the onset of the magnon contribution for w(7') (see main text). The fit interval
for the linear fits at B = 0, 0.02T, and 0.06 T ends at 0.35K, 0.30K, and 0.12K for p, respectively,
and at 0.40K, 0.35K, and 0.2K for w. For the power law fit, it ends at 0.5 K for all curves

and «(T) becomes smaller than «wg(7). The crossing indicates the presence of
inelastic scattering processes. The contribution of phonons can be estimated by
kph(T) = k(T) — kwr(T) above 6K. The result is found to follow a T¢ depen-
dence with ¢ = 2 & 0.2. An extrapolation of the power law to lower temperatures
serves as an estimation of the phonon contribution and indicates a negligible «pn (')
below 1K, i.e., within the temperature range of interest in the present work. Later
we will see, that « (T") becomes again somewhat larger than kwgp(7) below 35mK
due to a magnon contribution (Fig. 4.4a).
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4.5.2 Low-Temperature Data and the Wiedemann-Franz Law

Figure4.4 depicts the low-temperature behaviour of both the electrical resistivity
p(T) and the thermal resistivity w(T) = LoT/«(T) in the AF phase (B = 0,
0.02T), at the critical field (B = 0.06T ~ B.), and in the paramagnetic Fermi-
liquid region (B > B.). For a direct comparison, w(7') is shown in the same units
as p(T). Figure4.5 displays the difference §(T) = w(T) — p(T) and the Lorenz
ratio L /Ly for the data shown in Fig. 4.4. These direct comparisons show that w(7T)
exceeds p(T) over a wide range of temperature and field indicating strong inelastic
scattering.

4.5.2.1 Paramagnetic Fermi-Liquid Regime

Below T = 0.15K and for B > 0.6 T, w(T) = p(T) within the experimental
resolution. This is illustrated in Fig.4.5f, which shows that §(7") approaches zero,
and in Fig.4.5c, which demonstrates that L(7)/Ly = 1. In this high-field range,
both Ap(T) = [p(T) — po] « T? and [w(T) — wy] o T? below the Fermi-
liquid crossover temperature. Here, py and wy are the residual electrical and thermal
resistivities. These results establish the validity of the WF law in the Fermi-liquid
phase for B > 0.6 T. For 0.2 T and 0.4 T, the results shown in Fig. 4.5 suggest similar
Fermi-liquid behaviour at lower temperatures.

4.5.2.2 Antiferromagnetic Phase and Magnon Contribution

Upon cooling in zero field and for 0.02T, p(T") drops at the Néel transition into the
AF phase, reflecting the freezing out of spin-disorder scattering. Below Ty, o(T)
exhibits a Fermi-liquid 72 dependence (c.f. Gegenwart et al. 2002). w(7T') drops as
well, but already at higher temperature (T =~ 0.1K at B = 0). Furthermore, §(T')
becomes negative below T = 33mK (Fig.4.5d), and L /L, exceeds one (Fig.4.5a).
An upturn of L(T)/Ly just below Ty was also observed in Tomokuni et al. (2011)
down to 5S0mK, where L(T) /L, is still below one but appears to extrapolate to one
as T — 0. Recent studies also show the same upturn (Machida et al. 2013; Reid
et al. 2014; Pourret et al. 2014) and L(T)/Ly > 1 is observed in the cases where
low-enough temperatures were reached (Machida et al. 2013; Pourret et al. 2014)
(c.f. Fig.4.9).

w(T') may drop because inelastic scattering of electronic quasiparticles off spin
fluctuations freezes out. However, the observation of L(T)/Ly > 1 below T =
0.033 K clearly shows that the thermal transport is not entirely due to electronic qua-
siparticle transport, as concluded in Tomokuni et al. (2011). Instead, it is masked
by that of an additional heat channel k(7). Its contribution falls in the range
2—5x 1073 W/Km between 25 and 30 mK. Because this value of k., (T') is close to the
experimental uncertainty, its detailed temperature dependence cannot be determined.
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Fig. 4.5 Validity and violation of the WF law. The temperature dependence of the Lorenz ratio
L/Ly = p/w (a—c) and of the difference § = p — w ((d)-(f)) is shown for the same fields as in
Fig.4.4. The error bars are derived from the standard deviation in the data of Fig.4.4. The WF law
is found to be valid below 7' = 0.15K for B = 1 T and 0.6 T (c, f). It is anticipated to hold also
at lower 7' and B > 0.2T (b, c, e, f). The dashed lines in (a), (b), (d), (e) correspond to power
law fits a 4+ bT978 to w(T) and p(7T) in the quantum critical regime as shown in Fig.4.4. Their
T = 0 extrapolation demonstrates a violation of the WF law by approximately 10 % in a putative
paramagnetic non-Fermi-liquid ground state. a, d The strong deviations from the fits at low T for
B < 0.06T and a Lorenz ratio L /Lo > 1 illustrates the onset of a magnon contribution to the
thermal transport, which is supposed to vanish for 7 — 0

Nevertheless, its existence has been confirmed by repeated measurements and by
recent studies (Machida et al. 2013; Pourret et al. 2014). Lattice vibrations are unsuit-
able to account for this extra thermal conductivity: The largest kpy, is estimated to be
less than 1 x 1073 W/Km in this range using the lattice specific heat (Custers et al.
2003), and the sample dimension (100 pwm) limiting the mean free path.
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Fig. 4.6 Specific heat of 35 ‘ ‘ -
YbRh;Si> at B =0 as s /,/
AC/T versus T2. The line 3r . JPtes =

represents a fit of the
low-temperature part with a
Debye-like function

AC/T =y + BT?, which is
used to estimate the AF
magnon specific heat and
velocity. Data taken from
Custers et al. (2003)
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Another potential thermal-transport channel is that of AF magnons. Signatures of
spin-wave excitations were observed in the zero-field specific heat examined down
to T = 18 mK for an YbRh;,Si, single crystal being of similar quality as samples 1
and 2 (Custers et al. 2003). One can roughly estimate the magnitude of the magnon
thermal conductivity with the classical kinetic relation, kp, = (1/3)Cy v/, Where
Iy is the magnon mean free path, Cp,, and vy, are the magnon specific heat and
velocity. To obtain Cy, and vy, one can analyse the specific heat assuming a simple
Debye model for its magnon contribution. Figure 4.6 shows a fit to the specific-heat
data below T = 50mK with AC = C — Cp, — Cq = yT + BT?, with Cp, and
Cq being, respectively, the phonon and the nuclear quadrupole contributions. The
huge electronic contribution C;; = y T with ¥ = 1.64J/K?mol denotes a heavy
Fermi-liquid phase (Custers et al. 2003). The Debye-like term C,, ~ T3 describes
long-wavelength AF acoustic magnons. From 8 = 132.2J/K*mol one can extract
the “magnetic” Debye temperature 6, and the group velocity v, using the Debye
model. In order to obtain a ky of 2-5x 1073 W/Km in the range 25-30mK, as
observed in Fig.4.4, the corresponding magnon mean free path [, has to be of the
order of 10 pwm. The low-temperature limit /;,, is expected to be equal in size to that
of the AF domains. Compared to other AF compounds (Cr: 16 wum (Werner et al.
1967), UPt;: 1 wm (de Visser et al. 1998), a few wm below about 0.03 K, indeed,
seems to be a reasonable order of magnitude. YbRh,Sij is thus one of the rare cases
where magnons can be observed not only as scattering centres but as heat carriers in
ametal (e.g. Yelon and Berger 1972; Mori et al. 1984). Usually their contribution is
strongly suppressed by magnon-electron scattering.

Since magnons are bosons, their contribution to the specific heat and the thermal
conductivity will vanish in the 7 = 0 limit. But our lowest temperature of 25 mK
and even the 8 mK reached in recent experiments (Pourret et al. 2014) were not low
enough to observe any decrease of this extra contribution. Instead, it grows sub-
stantially down to 8 mK, concealing the low-temperature behaviour of the electronic
contribution k. However, the AF phase is a Fermi liquid. Hence, we expect the WF
law to hold in the 7 = O limit.
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4.5.2.3 Critical Field and Quantum Critical Regime

While p(T') is linear from 70 mK up to 0.4 K for B = 0, it bends for higher fields and
the linear regime shrinks to below 0.12K at the critical field. This non-linearity was
also observed in other samples (Reid et al. 2014; Gegenwart et al. 2008; Wetserkamp
et al. 2008). Therefore, not only a linear fit but in addition a fit with a different power
p(T) = py+ A'T* was used to describe the data. The power was determined
from p(T) at the critical field B, to « = 0.78. Both types of extrapolations are
shown in Fig.4.4. In particular, the 7%7® fit can describe p(T') well not only at B,
but in the whole field range 0 < B < 0.1T above Ty and Tgp. This regime is
shown as the “quantum critical regime” in Fig.4.7. In the quantum critical regime,
YbRh,Si, shows the same properties as exactly at the critical field. Therefore, the
T = 0 limit, which is extrapolated from this regime, captures the properties of the
QCP.

Since w(T") shows a similar dependence as p (T'), the same relations are used for its
T — 0 extrapolation in the quantum critical regime. For B = 0 and B = 0.02 T, this
works well down to 0.1 K at which point the magnon contribution leads to a down-
turn of w(7T') as described above. Surprisingly, a similar downturn can be observed
also at B.. The downturn cannot be captured by a T°7® fit and it extrapolates to
w(T) < p(T).Recentexperiments confirm this crossing (Pourretet al. 2014). Hence,
an extra contribution to the thermal conductivity similar to the AF phase appears
also at B.. This can be interpreted as the contribution of overdamped magnons in
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Fig. 4.7 Regime for T = 0 extrapolations around the QCP. The phase diagram of YbRh,Si is
shown as a zoom of Fig.4.1 around the QCP. The dashed lines mark the temperature scans for the
transport measurements shown in Fig.4.4. The data for w and p in Fig. 4.4 indicate, that a magnon
contribution in w (blue) does not only exist in the AF phase, but also in the paramagnetic regime
close to the phase boundary, especially at B = B.. To obtain the 7 = 0 limit of the electronic
transport, the data above the onset of magnons are extrapolated (red). This extrapolation in the
quantum critical regime can also be performed at fields slightly below and above B, since they
capture the behaviour of the QCP as well. The quantum critical regime also extends to temperatures
higher than 0.15K
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the paramagnetic regime close to the QCP. Inelastic neutron-scattering experiments
showed that overdamped magnons exist for antiferromagnetically ordered materials
substantially above the Néel temperature (Wiltshire and Elcombe 1983; Wiltshire
etal. 1983; Merchant et al. 2014), and for antiferromagnetic quantum critical systems
beyond the critical value of the tuning parameter (Arndt et al. 2011). In addition, heat
transport by short-lived magnon excitations has been reported, e.g., for La;CuQy, an
2D § = 1/2 antiferromagnet with a Néel temperature Ty =~ 310K (Hess et al. 2003).
In particular, S = 1 chain systems, such as Y,BaNiOs (Kordonis et al. 2006) and
Ni(C;HgN,),NO,(ClO4) (NENP) (Sologubenko et al. 2008) have served as model
systems in this context.

As for B = 0, the magnon contribution to w(T) is expected to vanish in the
T — 0 limit also at B.. Unfortunately, it masks part of the temperature dependence
of the electronic thermal conductivity at very low 7', which is important for the
investigation of the WF law. But it is reasonable to assume that w(7") above the drop
is entirely due to an electronic thermal conductivity and can be extrapolated towards
T = 0 in the same way as p(T). As Figs.4.4 and 4.5 demonstrate, this procedure
leads to wy — pp > 0 and L/Ly < 1 in the zero-temperature limit not only at B, but
for extrapolations from the whole quantum critical regime which is defined above
and sketched in Fig.4.7. Hence, we find a violation of the WF law at the QCP of
YbRh;Si;.

A violation of the WF law has drastic physical consequences. We have seen in the
previous sections that the WF law is valid in the Fermi-liquid regime and, hence, that
quasiparticles exist on either side of the QCP. A violation of the WF law at B, implies
that these quasiparticles break up exactly at the QCP of YbRh,Si,. This puts strong
constraints on every theory which aims to describe the QCP in YbRh;Si,. From the
three theoretical concepts introduced in Sect. 4.2 only the Kondo-breakdown scenario
implies a description beyond quasiparticles.

4.5.2.4 Isothermal Field Dependence of the Lorenz Ratio

The magnetic-field dependence of the Lorenz ratio between 0.1 and 0.4K was
extracted from the data in Fig. 4.5 and is plotted in Fig. 4.8. L(B) /L, shows a shallow
minimum. Its position shifts to higher fields with higher temperature and lies within
the FWHM of the T* line. The minimum narrows as the temperature is reduced, but
no attempt was made to quantify this dependence due to the large error. An isother-
mal field-dependent measurement of the Lorenz ratio on another sample of better
quality (RRR of 150) is included. Measured at slightly higher temperature, it nicely
confirms the evolution of the minimum in L(B)/Ly.
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Fig. 4.8 Magnetic field dependence of the Lorenz ratio. Dots and error bars are extracted from the
temperature scans shown in Fig.4.4. Lines are guides to the eye. Squares represent an isothermal
field scan for a second sample 63116_1#1 used for the high-field study in Chap. 5. A clear minimum
is visible, which shifts to higher B for higher T and, thereby, approximately follows the T* scale
(arrows). No attempt was made to analyse lower temperature data due to the magnon contribution
below 0.1 K

4.5.3 Comparison with Results from Other Groups

Since there is controversy as to whether the WF law is violated or not at the QCP in
YbRh;Si,, we will compare the different experimental results of all groups investi-
gating this topic. Figure 4.9 summarizes the results for w(T), o(T) and L(T)/Ly at
B = 0 and B, of our investigation and from the publications Machida et al. (2013),
Reid et al. (2014), Pourret et al. (2014), and Tomokuni et al. (2011). The different
field configurations, sample qualities, and the relations used to scale w(7') and p(T')
are listed in Table4.2.

Figure 4.9a demonstrates that w (7)) and p(7T") from all measurements can be scaled
almost perfectly on top of each other using a constant factor plus a correction for
the residual resistivity. The same scaling is used for both w(7) and p(T'). There are
only minor differences in the AF phase, which do not change the general picture.

The curves for B, in Fig.4.9b are scaled with the same relations as for B =
0. Although they deviate a little more, the overall behaviour is the same for all
measurements: p(7') follows a power law slightly less than linear down to lowest T,
while w(T') deviates from this behaviour at around 70 mK, drops and starts to cross
p(T).

Figure4.9¢c, d compare the Lorenz ratio. The results for B = 0 and B, look
almost identical. Deviations between the groups are minor and are restricted to slight
variations of the absolute value and slight differences in the curvature. The overall
picture, however, is the same for all measurements: an almost constant Lorenz ratio of
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Fig. 4.9 Comparison of our results with data published by other groups. The top panels show the
thermal and electrical resistivities at B = 0 (a) and approximately at the critical field (b), which is
0.07T for B L cand 0.66 T for B || ¢. At B = 0, the data from the other groups can nicely be scaled
on top of ours using the relations in Table 4.2. The same scaling is used in (b). ¢, d Show the Lorenz
ratio L /Lo for the same but unscaled data sets adding Pourret et al. and Tomonuki et al.. All of
them show the same tendency in L/L¢ with a flat part above 0.1 K and a steep increase below 0.1 K
when the magnon contribution sets in. All data are extracted from the following references with
the following fields used for the plots (b), (d): Pfau et al. B = 0.06 T, Machida et al. B = 0.66T
(Machida et al. 2013), Reid et al. B = 0.6 T and 0.06 T (Reid et al. 2014), Pourretetal. B = 0.07T
(Pourret et al. 2014), Tomokuni et al. (2011). L/Ly from Reid et al. was calculated using the
extracted values for w and p. From Tomokuni et al., only L/Lg at B = 0 was included due to the
large noise level in the other data
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Table 4.2 List of all published measurements, which were performed to test the WF law

Group Sample | Field Residual RRR | Scaling of p, w to match
resistivity Pfau et al.
(ncm)
Pfau et al. 1 Blc |15 50 |1
2 Blc | 1.1 70 | 1.25p 4 0.22 pQcm
Machida et al. (2013) B|c 0.9 90 | 1.3(p, w) +0.31 nQcm
Reid et al. (2014) A Blc | 075 105 | 1.5(p, w) + 0.5 nQcm
B B¢ 0.66 120 | 1.25(p, w) 4+ 0.5 pQ2cm
Pourret et al. (2014) B1lc 1.7 65
Tomokuni et al. (2011) B¢ 0.85 90

They differ in field orientation and sample quality. The latter is expressed in terms of residual
resistivity and RRR. For the sample used in Pourret et al. (2014), these values are taken from
Taupin (2013). Figure 4.9 compares the data of these measurements

L/Ly = 0.85=%0.05 between 0.1 and 0.5K and a sharp increase towards L/Ly > 1
below 0.1 K. The crossing of L /Ly = 1 is observed for measurements which reached
low-enough temperatures.

To answer the question whether the WF law is valid or violated, an extrapolation
of w(T) and p(T) towards T = 0 is necessary. The nice agreement between all mea-
surements shows that the groups only differ in the way they interpret and extrapolate
their data.

We ascribe the upturn of L/Lj below 0.1K to a magnon contribution for both
fields B = 0 and B = B.. However, we observe a clear L/Ly > 1 only for B = 0.
Due to the extra magnon contribution, we extrapolate only the data at temperatures
above the onset of this contribution. This analysis indicates a violation of the WF
law. In the studies by Reid et al. and Machida et al., which followed our publication,
the upturn in L /Ly was also observed, but similar to our study L /L stayed smaller
than 1in the measured temperature range at the critical field B.. In contrast to our
interpretation, these authors associate the upturn in L/Lj at B, not with a sign of
additional heat carriers and, therefore, use the data below 0.1K as a basis for an
extrapolation to 7 = 0. These extrapolations resultin L /Ly = 1 at T = 0. However,
a crossing of w(T') and p(T') was indeed observed also at the critical field B, in the
most recent investigation by Pourret et al., which includes data at temperatures as low
as 8mK. This confirms our interpretation of an additional heat channel. In the light
of these new findings, the extrapolation procedure in the reports of Reid et al. and
Machida et al. appears questionable. Although Pourret et al. also express their doubts
concerning a violation of the WF law, no reliable alternative extrapolation procedure
is available to date. This is due to the difficulties to analyse the additional contribution
to the heat transport. Only a deeper understanding of this extra contribution can settle
the debate about whether the WF law is valid or violated in YbRh,Si5.
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4.6 Conclusion

‘We performed measurements of the electrical and the thermal conductivity to test the
WF law across the field-tuned QCP in YbRh;Si,. Using an elaborate set-up, we were
able to reach temperatures as low as 25 mK. These turned out essential to develop
a conclusive concept for the zero-temperature extrapolation. Several other groups
performed similar experiments, a very recent one reaching even 8 mK (Pourret et al.
2014). All of them confirm our data in the respective parameter range.

We could clearly confirm the Wiedemann Franz law in the Fermi-liquid phase at
magnetic fields above the QCP. In the AF phase, we detected an extra contribution
to the thermal transport, which we identified as due to (para-)magnon heat transport.
It sets in at approximately 100 mK slightly above the Néel temperature and grows
down to 8 mK. Up to now, a decrease of this magnon thermal conductivity could not
be observed. However, we expect it to vanish at 7 = 0 due to the bosonic charac-
ter of the magnons. Unfortunately, it masks the thermal transport of the electronic
quasiparticles in the AF phase, which prohibits an extrapolation to 7 = 0. But we
believe that the WF law holds here as well due to the Fermi-liquid character of the
AF phase.

A similar extra contribution also appears at the critical field. We assign it to
overdamped paramagnons, which implies that it vanishes at T = 0. Again, this
contribution masks the low-temperature behaviour of the electronic quasiparticles.
We argue that an extrapolation of the quantum critical regime right above the onset of
this extra contribution captures the behaviour at the QCP. This extrapolation indicates
a violation of the WF law with a Lorenz ratio L /Ly of approximately 0.9 at the QCP.

The way how the experimental data should be extrapolated to zero temperature—
and consequently the validity of our result—is highly debated among the different
groups. Meanwhile, the presence of an extra contribution to the thermal transport
in the AF phase and at the critical field is clearly confirmed. It vanishes in the
paramagnetic regime for fields B > 0.2 T within our accessible temperature window.
However, only a deeper understanding of the extra contribution can ultimately resolve
this issue.

A violation of the WF law as suggested by our analysis has dramatic physical
consequences. This law is a fundamental result of the presence of quasiparticles.
Hence, its validity permits the description of a system—whether it is a Fermi liquid
or a non-Fermi liquid—in terms of quasiparticles. Conversely, a violation of the
WF law indicates a breakdown of this quasiparticle concept and puts very strong
constraints on a theoretical description. From the three concepts for the quantum
criticality in YbRh,Si,, which are mentioned above, only the Kondo-breakdown
scenario implies a description beyond Landau quasiparticles.
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Chapter 5
Kondo Lattices in Magnetic Field

This chapter is devoted to Kondo-lattice systems in magnetic fields for which the
Zeeman energy reaches the order of the Kondo temperature. We studied CeRu, Si; and
YbRh;Si,. In both compounds, transitions were reported at 8 T and 10T, respectively,
the origins of which are debated. We investigate the development of the quasiparticle
bands of the these two Kondo lattices as a function of magnetic fields in general and
study the reported transitions in particular. For this purpose, detailed field-dependent
thermopower, resistivity, and thermal-conductivity measurements were performed.
For CeRu,Si,, we demonstrate that the thermopower is consistent with a Lifshitz
transition predicted by previous electrical-transport studies. However, rigid-band
models seem insufficient to account for thermodynamic observations and a satisfying
description is still missing. For YbRh,Si,, our measurements reveal in total three
transitions at high fields instead of a single one at 10T. We find an unexpected
validity of the Mott formula above 2T and an extraordinarily good agreement of
field-dependent renormalized band (RB) structure calculations with experimental
results. They allow to identify the observed transitions as Lifshitz transitions, which
are superposed on a smooth suppression of the Kondo effect in magnetic field. Field-
dependent transport measurements turned out as an excellent method for studying
the validity of Mott’s formula in heavy-fermion systems and for identifying Lifshitz
transitions. Most of the following work was published in Pfau et al. (2012a, 2013).

5.1 Introduction and Motivation

Over the past years, so-called metamagnetic transitions were reported in many heavy-
fermion systems (Lohneysen et al. (1993); Sugiyama et al. (1990); Sechovsky et al.
(1986); Franse et al. (1984); Oda et al. (1994)). The term “metamagnetism” is com-
monly used for magnetic-field-induced phase transitions, which lead to a strong
increase of the magnetization. However, in Kondo systems—as in the following—
“metamagnetism” and “metamagnetic transition (MMT)” mostly refer to a crossover-
like, superlinear rise in M (B) around a magnetic field of the order of 10T. The
origin of these transitions, however, can be very diverse and is unclear in many cases.
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Sometimes it is related to a line of first-order transitions, which terminates at a criti-
cal end point at a certain temperature, above which metamagnetic behaviour occurs
(Uhlarz et al. (2004); Taufour et al. (2010)).

CeRu,Sij is the prototype example of metamagnetism in Kondo-lattice systems.
Its transition around 8 T was discovered 30 years ago, but its origin is still under de-
bate. The Kondo-lattice compound YbRh,Si, also exhibits a field-induced transition
at 10T, however its signatures are quite different with a kink in the magnetization
instead of a strong increase. Despite their different phenomenology, very similar
models have been proposed for both cases. The first one is an abrupt destruction of
the Kondo effect and a breakup of the heavy composite quasiparticles. In this model,
the Fermi surface would include the f degrees of freedom only on the low-field side
of the transition. The second model is a topological change of the Fermi surface called
Lifshitz transition (for an introduction see Sect. 2.5). The study of Lifshitz transitions
is of particular importance as they might be connected to the onset of superconduc-
tivity (Liu et al. (2010); Yelland et al. (2011); LeBoeuf et al. (2011)). Moreover,
they are discussed in metamagnetic ferromagnets (Kotegawa et al. (2011); Yamaji
et al. (2007)) and observed within the hidden-order phase of URu,Si, (Malone et al.
(2011); Altarawneh et al. (2011)).

While these two interpretations—the destruction of the Kondo effect and Lifshitz
transitions—seem quite different at first sight, they essentially rely on the Kondo-
lattice model: Only in the presence of the very flat bands of the composite fermions,
the Zeeman splitting can induce such large effects on the Fermi surface at moderate
fields as observed in CeRu,Si; and YbRh,Si,. A splitting simultaneously leads to a
continuous decrease of the quasiparticle mass. Since the bandwidth of the flat bands
as well as the strength of the Kondo effect is connected to the energy scale Tk, also
the field scale for both processes is related to T (Tokiwa et al. (2005); Bercx et al.
(2012)). Therefore, a detailed knowledge of the field evolution of the composite
quasiparticles in the Kondo lattice and their quasiparticle bands is a prerequisite to
get a deeper understanding of such transitions.

The evolution of the quasiparticle bands in magnetic field is important in more
general terms, e.g. in the interpretation of Haas-van Alphen (dHvA) experiments,
which have contributed a large amount to the current knowledge on heavy-fermion
systems. They need to be performed at very high fields, however band structure
calculations necessary to interpret these data almost exclusively exist at zero field.

To study the transitions in CeRu, Si, and YbRh;Si; in particular and the field evo-
lution of the composite quasiparticles in general, we performed field-dependent ther-
mopower, resistivity and thermal-conductivity measurements. Transport coefficients
are very sensitive to quasiparticle properties and to changes in the Fermi surface.
We put particular focus on magnetic-field-dependent isothermal thermopower and
resistivity and analyse these data in detail using different approaches: We compare
them to renormalized band (RB) structure calculations and rigid-band models and
we test the validity of the Mott formula.

The chapter is organized as follows: We will first describe the experimental method
(Sect.5.2), before we introduce the specifics of the two compounds and show the
related experimental results from our transport measurements. We will start with
CeRu,Si, (Sect.5.3) and continue with YbRh,Si, (Sect.5.4). For YbRh,Si,, we
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will also compare the experimental results with elaborate RB structure calculations.
Since these calculations are quite demanding and not available e.g. for CeRu,Si,
at the moment, we will also apply more simple rigid-band models in Sect.5.5. We
want to illuminate their applicability in particular for the analysis of our data on both
compounds and in general for the detection of Lifshitz transitions. Further on, we will
use the advantage of field-dependent measurements to study the validity of Mott’s
formula in these two systems and across their high-field transitions in Sect.5.6.

5.2 [Experimental Methods

Thermal- and electrical-transport properties were measured on the “SHE” set-up
using the standard one-heater-two-thermometers technique as described in Chap. 3.
Low-resistance contacts to the samples were made by soldering. In order to avoid
the high thermal resistance of superconducting contacts used in the experimental
stage, the minimum magnetic field we applied was 0.2 T. We applied a maximum
field of 12T and studied the temperature range between 100 and 700 mK. The cur-
rent and magnetic field were reversed to check for thermoelectric contributions to
the DC resistivity, but these were found to be negligible for the currents employed
(I0pA < I <150A). This was also a useful check to confirm that transverse
transport properties (i.e. Hall, thermal Hall and Nernst effects) made no detectable
contribution to the measurements. With this set-up, we studied two compounds:
CeRu,Si, and YbRh,Si,.

The sample of CeRu,Si, was grown by E.S. Tautz in Cambridge. The residual re-
sistivity, pg, was 1.1 p2cm, compared to 0.4 L. Q2cm for a sample from the same batch
measured in Daou et al. (2006b). Resistivity, thermopower, and thermal conductivity
were measured on a single crystal of dimensions 3.5 x 0.28 x 0.08 mm? (a x b x c).
The magnetic field was applied along the crystallographic ¢ axis, while thermal and
electrical currents were applied along the a axis.

In the case of YbRh,Si,, two high-quality samples from the same batch were
investigated, with residual resistivities of approximately 0.5 Qcm. On sample
#1 (63116_1) simultaneous DC-resistivity, thermal-conductivity, and thermopower
measurements were performed. Sample #2 (63116_2) was used to extend the resis-
tivity data down to 0.03 K on another set-up applying an AC technique by T. West-
erkamp. The magnetic field B was always applied perpendicular to the ¢ axis. The
currents for resistivity and thermal transport were parallel to B.

5.3 CeRu;,Si;

CeRu,Siy, as well as YbRh;Si,, crystallizes in the tetragonal ThCr,Si, structure
(see Fig.4.1 in Chap.4). It is a Kondo-lattice system, which has an uncomplicated
phase diagram without any order such as magnetism or superconductivity. For a


http://dx.doi.org/10.1007/978-3-319-39543-2_3
http://dx.doi.org/10.1007/978-3-319-39543-2_4

68 5 Kondo Lattices in Magnetic Field

good review of the many thermodynamic, transport, and spectroscopic experiments
on CeRu,Si,, see Flouquet et al. (2002).

5.3.1 The Metamagnetic Transition

CeRu,Si, attracted much interest due to a large anomaly in all thermodynamic prop-
erties when a magnetic field of Byt ~ 8T is applied along the crystallographic ¢
axis. The most obvious effects are a rapid non-linear rise in the magnetization and
a pronounced peak in the electronic specific heat coefficient ~. The thermodynam-
ics of this MMT is consistent with the proximity to a quantum critical end point
(Weickert et al. (2010); Millis et al. (2002)). In the low-temperature limit, how-
ever, the material exhibits Fermi-liquid-like properties at all magnetic fields and the
MMT remains always a crossover. Despite of more than 30 years of research on this
compound, the origin of the MMT is still under debate.

First dHVA measurements across the transition detected an abrupt change in the
oscillation frequency at Byvr. Together with a decrease in the «y coefficient, this was
interpreted in terms of a destruction of the composite fermions above Byt (Aoki
etal. 1993). Later on, the maximum in the specific heat coefficient could be modelled
using a simple rigid-band approach, where a peak in the density of states (DOS)
moves through the Fermi energy (Aoki et al. 1998). Meanwhile, low-temperature
Hall-effect measurements showed a very small but distinct negative dip that appears
to be sharper than the thermodynamic signatures of the MMT (Daou et al. 2006b).
This was interpreted as a sign of a topological transition of the Fermi surface, driven
by enhanced Zeeman splitting of the heavy-fermion bands. Indeed, spin-splitting and
a considerable spin dependence of the quasiparticle masses was directly detectable
via dHvA measurements in some of the lighter bands (Daou et al. (2006a); Takashita
et al. (1996)).

To shed more light on the origin of the MMT and to study the magnetic-field
development of the composite quasiparticles in CeRu,Si,, we performed detailed
magnetic-field-dependent electrical- and thermal-transport measurements. We re-
peated the magnetoresistance measurements from Daou et al. (2006b) to pin down
the transition field Byvr and investigated in detail the thermopower S(B) around
Byt

5.3.2 Transport Data

Figure 5.1 gives an overview of our measurement results, which we will describe in
detail in the following. It also includes a comparison to results obtained by other
groups.

Figure 5.1b presents the magnetoresistivity p(B), which increases with increasing
magnetic field B. The small maximum at higher temperatures around the MMT
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Fig. 5.1 Properties of CeRuySi, as a function of magnetic field B. a The A coefficient of the
resistivity, p, peaks at Byt = (7.80 £ 0.05) T. For comparison, similar data is included for the
sample of Daou et al. (2006b) and also published specific-heat data on another sample (Aoki et al.
1998). b A peak in p(B) appears at higher temperatures. The resistivity measured at 100 mK is close
to the residual resistivity pg, however, and shows no such peak at the MMT. We compare our results
with those from Daou et al. (2006b), the data of which have been slightly scaled: p values by a
factor of 2.5 and B values so that ByymT matches, accounting for a misalignment of the sample. The
MMT appears much broader in p of the present sample. ¢ The thermopower divided by temperature
for field sweeps (filled circles) and temperature sweeps (open squares) is in excellent agreement.
S/ T shows multiple sign changes and a strong negative peak near the MMT. There is a sharp kink
in the thermopower precisely at Byvt Which is more clearly seen in the inset. An additional peak
at 1 T becomes sharper as the temperature is reduced. d The Lorenz ratio at 100mK. L/Ly = 1
within the noise level of our measurement
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disappears for lower T, where we observe a monotonic behaviour with a step-like
increase in p(B) around the MMT. These observations are in accordance with those
reported in Daou et al. (2006b). The lowest-temperature data are close to the residual
resistivity pg. Apart from the ordinary magnetoresistance arising from cyclotron
motion of the electrons, a variation of py with magnetic field can arise either from
changes in the shape of the Fermi surface (orbital contributions) or from modification
of the impurity potential, perhaps due to enhanced zero-temperature fluctuations
(Miyake and Narikiyo 2002). Calculations based on this second mechanism in the
vicinity of a ferromagnetic quantum critical point show that the fluctuations generate
a peak in pg at the critical field. We know that the ferromagnetic fluctuations in
CeRu,Si, are also peaked around the MMT (Sato et al. 2004). pg shows a monotonic
increase, however, suggesting that the orbital mechanism is more important.

We will use a comparison of p(B) to previous data from Daou et al. (2006b) to
pin down the transition field Bypr. Examining the data from Daou et al. (2006b)
more carefully, we see that dp/d B peaks at precisely the same field as that where
the small negative dip in the Hall resistivity occurs. In the current data, the peak in
dp/dB (not shown, see Pfau et al. (2012a)) is at Byt = 7.80 £ 0.05T.

The temperature dependence of the resistivity p(7) is Fermi-liquid-like at low
temperatures as in previous studies, i.e., p = po + AT? at all fields. Figure5.1a
shows A extracted from temperature sweeps. A is expected to be proportional to the
square of the electronic specific-heat coefficient y according to the Kadowaki-Woods
relationship (Kadowaki and Woods 1986) and is, hence, a thermodynamic property.
This relationship has been seen to hold well in other samples (Kambe et al. (1996);
Aoki et al. (2011)). Bymt determined from p(B) coincides with the peak in A within
the resolution of the measurement. Hence, the transition appears at the same field in
transport and in thermodynamics.

Figure 5.1d shows the Lorenz ratio L(B)/Ly. It relates the electrical and thermal
conductivity via the Wiedemann-Franz (WF) law L/Ly = k/LooT where Ly =
Wzké /3e? is Sommerfeld’s constant. This ratio holds to within 5% for all fields at
100mK, as we might expect in the Fermi-liquid regime. Previous studies down to
0.64 K were not able to test the validity of the WF in the low-temperature limit (Amato
et al. (1989); Sera et al. (1997)).

Figure5.1c shows the isothermal thermopower of CeRu,Si, as S(B)/T, which
has a complex field dependence with multiple sign changes reflecting the multi-band
electronic structure (Amato et al. 1989). The sign of the thermopower is often used
as an indicator of the sign of the dominant carriers. An electron band would make
a negative contribution to the thermopower, and a hole band a positive contribution.
In a multiband system, however, the sum of the contributions to the thermopower is
weighted by the band conductivity, and S can acquire either sign depending on the
details of the band structure. In addition, sign changes in the thermopower are often
used to detect points of transitions in a system. Buhmann et al. recently showed,
however, that also in a very simple one-band tight-binding model, the thermopower
shows sign changes on non-specific points as a function of band filling (Buhmann
and Sigrist 2013). Hence, we expect sign changes in the thermopower in CeRu,Si,,
but they do not necessarily determine points of transitions.
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Close to Byt = 7.8 T, which we determined by our magnetoresistance and
specific-heat measurements, the thermopower shows a broad negative peak, appar-
ently at a field slightly below Bywr. Precisely at By, there is a sharp kink in the
thermopower. S(B)/T changes slope suddenly, within the resolution of our mea-
surement of about 0.05T. This feature is more clearly seen in the inset of Fig.5.1c.
The kink is resolved up to the highest temperature that we measured (0.57 K). This
temperature dependence is similar to that of the narrow feature in the Hall effect at
By, Which is clear and essentially unchanged below 0.5 K (Daou et al. 2006b).

There is an additional peak at 1 T, that becomes sharper at low temperatures. It is
not associated to any known feature in other transport or thermodynamic properties.
This peak is not resolved in measurements at 1.5 K (Bel 2004), but could recently be
confirmed by thermopower measurements in Boukabhil et al. (2014).

We will discuss the features at Byt in all quantities later on in detail, but keep
the discussion short for the other transition, since thermopower is so far the only
quantity which detected it.

5.4 YDbRh;Si;

An introduction to some general properties of YbRh,Si; is given in Sect.4.1 in the
previous chapter, where we discuss the validity and violation of the Wiedemann-
Franz law at the magnetic-field-induced quantum critical point (QCP).

5.4.1 The High-Field Transition

YbRh,Si, also exhibits a high-field transition, although not a prototypical MMT
with an S-shape in M, but with a kink structure at By = 10T (Gegenwart et al.
2006). Specific-heat, susceptibility and magnetostriction measurements indicate a
rapid decrease of the effective mass across By (Tokiwa et al. (2004, 2005); Gegenwart
et al. (2006)). Together with a scaling of By with the Kondo temperature Tx under
pressure, this was initially interpreted as a breakdown of the Kondo screening with
decomposed quasiparticles on the high-field side. Later, dHVA experiments were
interpreted in terms of a Lifshitz transition at By, where a spin-split band disappears
(Rourke et al. (2008); Lifshitz (1960); Bercx et al. (2012)). The transition field of a
Lifshitz transition in a Kondo lattice would also scale with Tx (Bercx et al. 2012).
To elucidate the origin of the transition at 10 T in YbRh;Si,, we performed detailed
measurements of the field-dependent resistivity, thermopower and thermal conduc-
tivity. Additional Hall-effect measurements, which were performed at our institute
on a sample from the same batch, are published in Naren et al. (2013) but will not be
discussed in this thesis. The experimental results are compared with predictions from
RB structure calculations by G. Zwicknagl. The analysis and discussion focuses on
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the field and temperature region within the paramagnetic Fermi-liquid regime above
2T away from the QCP, which was discussed in Chap. 4.

5.4.2 Transport Data

Figure 5.2a shows the magnetic-field-dependent specific heat as C(B)/T and the
susceptibility x (B) of YbRh,Si, taken from Tokiwa et al. (2005). x (B) was measured
at 40mK, C(B)/T was determined from zero-temperature extrapolations of the
electronic specific heat C(T') at different fields. They fall on top of each other and their

Fig. 5.2 Properties of
YbRh;Si, as a function of
magnetic field B. Lines and
dots denote field sweeps,
open squares are extracted
from temperature sweeps. a
The specific heat C(B)/T
and the susceptibility x(B)
taken from Tokiwa et al.
(2005) show a monotonic
decrease with a large slope
across By with kinks at By
and B3. b p(B) shows three
kinks at By = 3.4T,

B, =9.3T,and B3 = 11.0T.
Insets: enlarged view for
0.03 and 0.19K. ¢ S(B)/T
of sample #1 at the same
temperatures as in (b). The
complex behaviour with
several zero crossings
reflects the multi-band
character of YbRh,Si,. All
three transitions are
characterized by pronounced
steps (insets enlarged view).
d The Lorenz ratio L(B) /Ly
at 0.49K is below unity with
a minimum at about 0.5T
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field dependence mimics that of the effective mass. Clearly visible is the monotonic
decrease of both with increasing field and their drop across By = 10T.

Figure 5.2b, c present our measurements of the low-temperature magnetoresistiv-
ity p(B) and the isothermal, field-dependent thermopower S(B)/ T, respectively. The
Lorenz ratio L(B) /L obtained from magnetoresistance and thermal conductivity x
is shown in Fig. 5.2d only for 490 mK, because of an enhanced noise level at lower
temperatures. Considering the B-T' phase diagram of YbRh,Si, (Gegenwart et al.
20006), it is natural to relate the low-field (B < 2 T) behaviour of all these quantities
to the signatures of the QCP and the surrounding non-Fermi-liquid regime. These
signatures are in agreement with previously reported results: the step in magnetore-
sistance (Gegenwart et al. 2007), the pronounced minimum in S(B)/T (Hartmann
et al. 2010b) and the minimum of the isothermal Lorenz ratio (Pfau et al. 2012b) (see
also Chap.4) are clearly visible.

Next, we focus on the high-field properties beyond 2T, where YbRh,Si; is a
Fermi liquid below 200 mK. The key features are three transitions. As in CeRu,Si,,
we determine their exact position again with the help of the magnetoresistivity p(B),
which shows three tiny kinks at By = 34 £0.1)T, B, = (9.3 £0.1)T, and
B3 = (11.0£0.2) T. The transitions are more obvious in the thermopower: S(B)/T
shows three pronounced steps at these fields, which become sharper at lower T'. The
position of By, B,, and Bj is sample and temperature independent: The resistivity
of three measured samples including the one for Hall-effect studies exhibits kinks
at the same position. Recently, Pourret et al.(Pourret et al. 2013) also performed
thermopower and resistivity measurements on a sample from a different batch. Their
results confirm our measurements. Additionally, they claim to observe more than
three transitions. Indeed, there is some additional fine structure also visible in our
data of p(B), however, we will concentrate in the following on the far strongest
features at By, B>, and Bs.

In summary, our transport studies reveal that, in contrast to previous reports on
thermodynamic properties Tokiwa et al. (2004, 2005); Gegenwart et al. (2006), the
transition at Bp = 10T is actually composed of two well-separated features at 9.3 T
and 11.0T, which do not merge in the extrapolation 7 — 0. Additionally, we resolve
another transition at 3.4 T, which was also not observed previously.

5.4.3 Renormalized Band Structure Calculations for
YbRh»Si,

Our experimental data on YbRh;Si, together with previous results on this compound
already indicate the complex nature of the band-structure effects responsible for By,
B, and Bj. For example, the transition around By is actually composed of two
transition fields and the Sommerfeld coefficient v(B) decreases only moderately
between them from 250 to 100 mJ/molK? (Tokiwa et al. 2004). It is therefore unlikely
that either a single Lifshitz transition (Rourke et al. 2008) or a sudden localization of
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the f electrons (Tokiwa et al. (2004, 2005); Gegenwart et al. (2006)) is—on its own—
a sufficient model to describe this behaviour. Hence, a theory of the field evolution
should include not only the Kondo effect to describe de-renormalization processes,
but also the specific correlated band structure to reveal topological transitions.

The renormalized-band method is a theoretical approach, which combines
material-specific ab initio calculations with phenomenological parameters to ac-
count for the strong correlations at 7 = 0. The zero-field results are obtained by
including, e.g., the experimentally determined crystal electric field scheme and the
effective mass from the specific heat. The properties of the quasiparticles in finite
magnetic field are then determined using the single-impurity Anderson model cal-
culated by means of the numerical renormalization group. Details can be found in
Zwicknagl (2011, 1992).

The previously calculated field dependence of the DOS at the Fermi energy by
G. Zwicknagl using the RB method was able to quantitatively describe the field
evolution of the specific heat (Fig.5.3) (Zwicknagl 2011). Therefore, G. Zwicknagl
extended these calculations focused on the detailed development of the Fermi sur-
faces and the energy-dependent DOS in finite magnetic field. She used a tight &
mesh in zero field of 8125 points in the irreducible wedge to resolve changes in the
isoenergy surfaces. In finite fields she used 405 k points.

Figure 5.4a shows the calculated zero-field quasiparticle DOS N (¢). Below the
Fermi energy, a van-Hove-type singularity is clearly visible. This structure is caused
by the anisotropic hybridization of the 4 f states with the conduction bands, due
to the highly anisotropic crystal electric field ground state. Figure 5.4b displays the
corresponding isoenergy surfaces of the most important Fermi-surface sheets with
f character—the so-called “doughnut” (top) and the “jungle gym” (bottom), respec-
tively. Scanning through N (e) within the displayed energy range, the calculations
predict the four colour-coded regimes characterized by different topologies of the
isoenergy surfaces, separated by Lifshitz transitions.
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Fig. 5.3 Comparison of the field-dependent DOS from experiment (Tokiwa et al. 2005) and from
RB calculations (Zwicknagl 2011). The DOS extracted from the specific heat C/T (squares)
(Zwicknagl 2011) fits nicely to the predictions of the RB calculations (dots). The dashed line is a
guide to the eye. Since the susceptibility x (solid line) follows the specific heat, we also included
these data here and scaled them accordingly
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Fig. 5.4 Isoenergy surfaces for B = 0 and the quasiparticle DOS development in finite field
calculated using the RB method. The zero-field DOS in (a) is divided into four regions (blue (A),
green (B), yellow (C), red (D)) distinguished by different topologies of the isoenergy surfaces shown
in (b). In the yellow region (C), we show in plan view the “jungle gym” Fermi-surface sheet exactly
at the topological transition between B and C. ¢ illustrates the magnetic-field evolution of the DOS
for selected fields, with the zero-field DOS in grey for comparison. Inset in a Energy-field map
of the DOS interpolated in 1T steps. One can assign the four energy regions and their isoenergy
surfaces in (a) and (b) to the four field ranges and their Fermi surfaces separated by Bj, B>, and B3

In a magnetic field, the 4 f states are split which, in turn, leads to a Zeeman
splitting of the quasiparticle bands. The relative shifts of the quasiparticle bands are
enhanced by a field-dependent Sommerfeld-Wilson ratio, which reflects the local
many-body effects. As a consequence of the band splitting, also the DOS spin-splits
into a minority and a majority branch in magnetic field: one spin part moves through
the Fermi energy, the other moves quickly away from it (see inset Fig.5.4a). They
also do not shift rigidly in field but the amplitude of the coherence peak, i.e., the
van-Hove singularity, decreases continuously, mainly because of the weakening of
the Kondo effect (Fig.5.4c). Nevertheless, the characteristics of the band structure
are not changed. Therefore, we expect the energy evolution of the isoenergy surfaces
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in Fig. 5.4b to be the same as the field evolution of the Fermi surface. This implies
that the Fermi surface of the majority band stays in the red (D) regime, while the
Fermi-surface topology of the minority band changes from the red (D) type through
yellow (C) and green (B) to the blue one (A).

One can take advantage of the similar shape of the zero- and finite-field DOS
and assign the energy of a topology change (in zero field) to a magnetic field where
the corresponding feature in the DOS crosses eg: The transition from the blue (A)
to the green (B) regime corresponds to a kink in the DOS which reaches e for

B; = (11 &£ 1) T. Similarly, one obtains 32 = (9 £ 1) T for the second transition
(green (B) — yellow (C)). The difference B; — B, fits to the linear shift of 0.1 meV/T
(inset Fig. 5.4a), which in turn matches the ESR g-factor of 3.5 (SchaufufB3et al. 2009)
(applying € = gugB/2). We will return to this linear shift in Sect.5.6 when we
analyse the transport data using the Mott formula. One can use the shift to estimate
the field corresponding to the weak third transition from yellow (C) to red (D) to
l~?1 = (2.5 £ 1)T. These ficlds, extracted from the calculations, are in excellent
agreement with the transitions B, B,, and Bz found experimentally. This proves
that By, B;, and B3 correspond to three Lifshitz transitions of the types illustrated in
Fig.5.4b.

At the topological transitions Bj, B, and B3, we also observe abrupt changes
of the density of states N (ep) and the effective mass m* in our calculations. Espe-
cially for B, and Bj; these changes are also visible experimentally in the specific
heat and susceptibility (Fig.5.3). We were also able to detect a thermodynamic re-
sponse at B in the second derivative of the magnetostriction (see Fig. 5.8 in Sect. 5.6,
where we discuss the Mott formula). These abrupt changes contradict results of the
single-impurity Kondo model: Numerical renormalization group calculations predict
a continuous decrease of the effective mass m™ as we suppress the on-site Kondo
effect by a magnetic field Hewson et al. (2004, 2006); Bauer and Hewson (2007);
Peters et al. (2006)). Experiments on diluted 4 f alloys, which are the experimental
realization of single-ion Kondo systems, show exactly this behaviour (Samwer and
Winzer 1976). Therefore, the single-impurity model alone cannot account for the
observations reported above. The features at B, B,, and B3 have to be attributed
to coherence effects arising from the periodic arrangement of the Kondo ions in a
lattice. These coherence effects are captured by our RB calculations. Hence, our
results demonstrate that the magnetic-field evolution of YbRh;Si, is a combination
of Lifshitz transitions due to coherence effects in the Kondo lattice superimposed on
a smooth suppression of the Kondo effect.

5.5 Rigid-Band-Shift Models for the Field-Induced
Transitions in CeRu;Si; and YbRh;Si;

In the previous two sections, we presented our experimental results on the two com-
pounds CeRu,Si, and YbRh;,Si, together with an introduction into the most com-
mon and debated interpretations of their high-field transitions from literature. For
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YbRh,Si,, we could compare our and previous experimental results with predic-
tions from RB calculations. They account for all observations in thermodynamics
and transport and can successfully explain the behaviour of YbRh,Si, as a combi-
nation of Lifshitz transitions and a smooth suppression of the Kondo effect. Such
calculations are demanding and do not exist for CeRu,Si, at the moment. Therefore,
we want to compare our experiments with more simple rigid-band models. In the
case of YbRh,Si,, we profit from the results of the RB calculations and can illustrate
to which extend these models can be applied to the Lifshitz transitions. For the case
of CeRu,Si,, we can demonstrate that the thermopower, as well as other transport
properties (Daou et al. 2006b), are compatible with a Lifshitz transition, but that none
of our rigid-band models alone can account for both transport and thermodynamic
features at the MMT.

The rigid-band models that we will consider in the following are related to sugges-
tions from previous studies. The first one is a “Lifshitz model”, which was proposed
for CeRu,Si, in Daou et al. (2006b) and for YbRh,Si, in Rourke et al. (2008). The
second model is the “peak model”, where eg is driven through a sharp peak in the
DOS, which was suggested for CeRu,Si, in Aoki et al. (1998).

5.5.1 Transport Signatures

We will first compare the transport signatures of the models with the observed changes
in our materials at the different transitions in Fig.5.5. For the Lifshitz model, the
signatures of the thermopower and the conductivity are calculated e.g. in Blanter
etal. (1994) and Varlamov et al. (1989) and sketched in Fig. 5.5a, f (see also Sect. 2.5
for an introduction). Both quantities are shown for a transition from region II to
region [ in the notation of Blanter et al. (1994). The thermopower is sketched for hole
carriers and either for the case of a neck formation or a void disappearance. For the
conductivity, the type of the charge carriers does not matter, but the type of transition
is important here and we chose a neck formation. The peak model shows a slight
monotonic decrease in the conductivity and a symmetric peak in the thermopower
(not shown) (Pfau et al. 2012a). Since the signatures of the peak model are not able
to explain our observations in transport for any of the four transitions, we restrict
the following discussion of Fig. 5.5 to the Lifshitz model. For the electrical transport
data we chose 0 = 1/p for simplicity. Note that for Bj, a smooth background has
been subtracted for S and o, since both vary strongly in this field range due to the
quantum critical fluctuations of the QCP at 60 mT.

The MMT in CeRu,Si, and the transition at By in YbRh, Si, show clear similarities
to the Lifshitz model. In both cases, the asymmetric minimum in the thermopower,
slightly left of the transition, points towards a transition from region II to region I for
a Fermi surface, which has hole character. The sign of the singular contribution to
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Fig. 5.5 Transport signatures of a Lifshitz model versus data. a and f show the calculated response
of the thermopower and the conductivity for a Lifshitz model for three different temperatures
(after Blanter et al. (1994)). We use here the same parameters as in Fig.2.8 of Sect. 2.5. They
are compared with the experimental signatures across the MMT in CeRu,Si, (b, g) and the three
transitions in YbRh,Si (c—e, h—j). We use the same data already presented in the Figs.5.1 and 5.2.
The calculated thermopower is shown for hole-like carriers for a transition from region II to region
1. The conductivity is independent of carrier type but is shown here for a neck formation. Note that
for (¢) and (h) a background was subtracted, which was estimated by a power-law fit including data
points between 0.5T < B < 25T and 4.5T < B < 8.0 T. We omit the resistivity data for the
lowest temperatures in (h—j) due to an enhanced noise level. The data in (h) at 190 mK (dark green)
are averaged. The highest temperature data in (i, j) are omitted due to strongly smeared transitions.
Gray lines indicate the transition fields

the conductivity indicates a neck formation. A change in the dHvA frequencies was
indeed observed for the hole-like Fermi surface across the MMT in CeRu,Si, (Aoki
etal. 1993). The low field of B; = 3.4 T of YbRh,Si, is, unfortunately, not accessible
by quantum oscillations. However, the frequencies of the “doughnut” hole-like Fermi
surface were observed to change across B, and B; (Rourke et al. 2008). As we
saw in the last Sect.5.4.3 from the RB structure calculations, both hole-like Fermi
surfaces of YbRh;Si,, the “doughnut” and the “jungle gym”, undergo topological
transitions at B;, B, and Bj (see Fig.5.4). At Bj, the RB calculations predict that
a hole appears in the “jungle gym”. This corresponds to a ring of Fermi surface
points, which becomes critical. This is a very special case of a neck transition and
not covered by the calculations shown in Figs. 5.5 and 5.6 (Blanter et al. 1994).
The transitions at B, and B3 in YbRh;Si; look different compared to the Lifshitz
model. Unfortunately, the two fields lie too close together in order to clearly separate
the transitions especially in thermopower. Additionally, the field range of our mea-
surement is with 12T too small to estimate the background contribution. However,
one can identify kinks in o at the two transition fields and the thermopower shows
an asymmetric signature at B,, while it seems point symmetric at Bs. At B,, the RB
calculations predict a neck formation in both considered Fermi-surface sheets. This
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Fig. 5.6 Thermodynamic signatures of the Lifshitz and the peak model versus data. The calculated
response of the specific heat C/T for T — 0 in the Lifshitz model (a) and in the peak model (b)
are compared with experimental results on CeRu,Siz (¢) and YbRhySi (d). For CeRu,Sia, we
show the specific heat from Aoki et al. (1998) (red line) and our data for the A coefficient (green
dots). For YbRh,Sis, we show the specific heat (red dots) and the susceptibility (green line) from
Tokiwa et al. (2005) together with the results from RB structure calculations (blue dotted line) from
Zwicknagl (2011). Gray lines indicate the transition fields

is at least consistent with the kink in o and the asymmetry of S. At B3, a flat sheet on
the “jungle gym” vanishes at the zone boundary according to the RB calculations.
Unfortunately, it is not clear from the calculations in which way the band disappears.
Two ways are conceivable: a simple void transition (2D case) or a combined neck
and void transition (3D case). Both cases will create a response in the thermopower
which is difficult to predict: For 2D in contrast to 3D, it was shown that scattering
by a random potential caused by all sorts of impurities and dislocations is equally
important as scattering between the two Fermi-surface sheets. This renders general
statements about ¢ and S almost impossible for 2D (Ablyazov et al. (1991); Blanter
etal. (1992)). For the second case, the signatures of a neck transition followed closely
by a void transition would simply lie too close together to be separated. All in all, only
very elaborate calculations of the transport coefficients using the real band structure
from the RB calculations could improve our analysis for B, and Bj.

5.5.2 Thermodynamic Signatures

We now turn to the thermodynamic signatures of the transitions in YbRh,Si, and
CeRu,Siy. In order to compare them with the predictions from the Lifshitz and the
peak model, we plot the specific heat coefficient C /T as well as the susceptibility for
YbRh,Si, (Tokiwa et al. 2005),and C/ T (Aokietal. 1998) as well as the A coefficient
for CeRu,Si; in Fig. 5.6 together with the model calculations. The predictions from
the Lifshitz model are again taken from Blanter et al. (1994) and Varlamov et al.
(1989) and plotted for the case of a transition from region II to region I as for the
transport signatures in Fig.5.5. C/T shows a kink at the transition with a diverging
slope on one side. Here, it does not matter which kind of carrier and which type of
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Lifshitz transition is considered. For the peak model, the specific heat shows a peak
at the transition.

While the transport signatures in CeRu,Si, can be well described with the Lifshitz
model, it fails to account for the specific heat. On the other hand, the peak model
can reproduce the peak seen in C/T. Hence, either model alone is insufficient to
explain the features seen in both transport and thermodynamics. For YbRh;Si,, the
RB calculations proved that B, B, and B3 are Lifshitz transitions. Concerning
the transport signatures, only B clearly followed the predictions from the Lifshitz
model, however. The specific heat in turn does not show any divergence typical for a
Lifshitz transition. Also a rigid shift of the DOS peak calculated with the RB method
(cf. Fig.5.4a) cannot account for the data (Zwicknagl 2011). Instead, only the full
field-dependent RB calculations shown in Fig.5.6d are able to describe the whole
field range, in particular the signatures at the transitions.

5.6 The Mott Formula in CeRu;Si; and YbRh;Si,

In the following section, we want to investigate the validity of the Mott formula in
CeRu,Si; and YbRh,Si,. This formula relates the thermopower with the electrical
conductivity and is thus a similar transport ratio as the WF law, which we studied in
Chap. 4. Due to the more complicated structure of the Mott formula, it was, however,
not studied as extensively as the WF law both experimentally and theoretically.
The analysis we present in the following proves a violation of the Mott formula
in CeRu,Si,, but its validity in a wide field region for YbRh,Si,. This enables us
to investigate in detail differences in the scattering mechanisms present in these
two compounds in the different magnetic-field regions. The very good agreement
of the thermopower and thermodynamic quantities in comparison with an extended
version of the Mott formula in YbRh,Si, especially around the three transitions
corroborates our analysis with the RB structure calculations. At the end of this section,
we comment on the ¢ ratio to illuminate the limits of this widely used quantity to
interpret thermopower investigations.

5.6.1 General Approach

We analyse our data with the help of the Mott formula (Mott and Davis 1971) for
the diffusion thermopower (cf. Sect.2.7.4). It relates the thermopower to the energy
derivative of the electrical conductivity o
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The above relation is derived using the Sommerfeld expansion to leading order
and the relaxation-time approximation (Ashcroft and Mermin 1976). It is also valid
for a multi-band case where single contributions to the thermopower are summed
by 08 = > S;o; (cf. Sect.2.7.4). Since we cannot access the energy derivative
experimentally, we further expand Eq.5.1 and exchange the energy with the field
derivative using 0B/0e. Further on, we assume a linear relationship between ¢ and
B, which can be written as an effective Zeeman energy € = gegrptp B/2:
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We will use this formula to compare the thermopower with the electrical conductivity
for CeRu,Si, and YbRh,Si, in Sect.5.6.3.

In a second step, we modify Eq.5.2 using the free-electron picture and insert
o = ne’*r/m* together with m* o« N>/3 (in 3D) to obtain

;cx 2 (81n7 231nN) . 53)
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Here, n is the total electron concentration, N the DOS, m™ the effective mass, and 7
the scattering time. This splits the thermopower into a scattering part (7) and a part
representing the band structure (V). We will use Eq. 5.3 in Sect. 5.6.4 to compare the
thermopower with the magnetostriction coefficient for YbRh;Si,.

A very simple form of the Mott formula is the widely used g ratio. This ratio
quantifies an empirical relationship between S/7T and + in heavy-fermion systems
as T — 0 (Behnia et al. 2004):

A4l . (5.4)

It is derived from the Mott formula in Eq.5.1 under the assumption of a free elec-
tron gas and a scattering time following 7 = 7oe¢. For ¢ = 0, namely an energy-
independent scattering time, we obtain ¢ = %1, where +1 accounts for electrons,
—1 for holes. Here, Nay is Avogadro’s number. We will comment on the ¢ ratio for
both compounds in Sect.5.6.5.

5.6.2 Phonon Drag

The Mott formula is only applicable when the phonon-drag contribution to the ther-
mopower is negligible. One expects the diffusion thermopower to be linearin 7', while
the phonon drag contribution usually has a different 7 dependence, which however
varies strongly between different materials (Blatt et al. 1976). A negligible phonon-
drag contribution within our investigated temperature window has been proven for
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Fig.5.7 Temperature dependence of the thermopower in CeRu, Si;. Below 0.6 K, the thermopower
S/ T varies linear with T for small magnetic fields and changes to a constant temperature depen-
dence at higher fields. One expects S/ T = const. for a negligible phonon-drag contribution to the
thermopower

YbRh,Si, (Hartmann 2010a) from a linear-in-7" behaviour of S in this compound
above 0.4 T and in the reference LuRh,Si, for zero field. In CeRu,Si,, the situation
is less clear. While S/ T is linear in T for zero field below 500 mK, it turns over to
S/T = const. only above 8T (see Fig.5.7 and Boukahil et al. (2014)). At the same
field also the range of the 7% behaviour of the resistivity dramatically increases. One
expects, however, the largest phonon-drag contribution with a peak around 0.10p
(Blatt et al. 1976), which is above 10K (Besnus et al. 1985). In this temperature
range, the thermopower is completely dominated by a peak due to Kondo scattering
(Haen et al. (1987); Amato et al. (1989)). The origin of an additional extremum
around 1 K (Amato et al. (1989); Boukahil et al. (2014)) is unclear.

5.6.3 Validity in YbRh,Si; but not in CeRu,Si,

We will start our analysis with the case of YbRh,Si, and compare S/T with
0ln o /0B in Fig.5.8a. Since the field was applied parallel to the current, we will use
o = 1/p. In the low-field region below 2T both curves show a disparate behaviour.
However, above 3T, they can be scaled almost perfectly on top of each other using
a gegr of 16 £ 1. The only adjustable parameter leading to this remarkable accuracy
of the Mott formula is g.¢. An offset is not required. Moreover, the thermopower as
well as Olno /OB are independent of sample geometry, thus systematic errors are
almost negligible.

The linear energy-field dependence found in our analysis confirms the linear sweep
of the van-Hove singularity predicted by the RB calculations presented in Sect. 5.4.3.
However, getr = 16 (corresponding to a de/OB = 0.5meV/T) differs from g = 3.5
(0.1meV/T) of our calculations. But this is unsurprising, since a rigid-band shift is
insufficient to account for the experimental data as we discuss in Sect. 5.4.3 in detail,
where we present our RB calculations. Unexpectedly, these field-induced changes
of the band structure also enter linearly into ge.
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Fig. 5.8 Analysis of the thermopower of YbRh,Si, with the Mott formula. The measured S/T
(dots) is compared with that calculated (lines) from (a) the electrical conductivity using Eq.5.2
and from (b) the magnetostriction coefficient using Eq.5.3 with dln N/OB o« Oln\/OB and
Oln7/0B = 0. Within the Fermi-liquid regime (B > 2 — 3T) all curves show the same overall
behaviour. In the representation of the magnetostriction as shown in (b), we are able to prove the
presence of the transition Bj also in a thermodynamic probe

We will now turn to CeRu,Si,. The comparison of our electrical-resistivity and
thermopower data according to Eq. 5.2 is shown in Fig. 5.9. The electrical conductiv-
ity is calculated using the data from Daou et al. (2006b) by o = py,/(p2, — p%,). We
use here the notation of Daou et al. (2006b) where p,, denotes the longitudirial and
Pxy the transverse magnetoresistivity. Similar results are obtained using our magne-
toresistance alone. We choose g.;t = 250, to reach a reasonable agreement of the
average values. However, it is obvious that the modified Mott formula of Eq. 5.2 is not
valid over the whole field range. There are some similarities, such as the minimum
at Byvr and a shoulder to the left of it. To emphasize this, we show an enlarged
view around the MMT in the inset of Fig.5.9 and shifted the curve of dlno /0B
by —0.5 WV /K?. However, the relative magnitude of the effects remains different
compared to the thermopower. Interestingly, the signature at 1 T is absent also in the
derivative of 0.

To explain the differences for both materials, we go back to the assumptions made
for Eq.5.2. These are

(@) ex B

b)) T < Tr

(c) o,i.e.also v and 7, are analytic functions of €
(d) isotropic scattering, 7 only depends on e.

We introduced (a) in order to expand the original Mott formula 5.1 towards Eq.5.2,
which is suitable for our data analysis. (b) and (c) originate from the Sommerfeld
expansion. While (b) is valid for the measurements on both materials, (c) can cause
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Fig. 5.9 Analysis of the thermopower of CeRu;Si, with the Mott formula. Following Eq.5.2, we
calculated the field derivative of the electrical conductivity o using the data from Daou et al. (2006b).
We used gefr = 250. The curves for o and S share some similarities but do not overlap in the whole
field range. Inset Enlargement around Bypyr. The curve derived from o is shifted by —0.5 /K2
for the inset to illustrate the different development of S/ T and 91n o /0B across Bymt

problems at Lifshitz transitions. The single relaxation-time approximation is ap-
plicable if one assumes (d). At very low temperatures, electron-defect scattering
and electron-electron umklapp scattering are relevant contributions to momentum
relaxation. Scattering on point defects is isotropic, whereas scattering on line defects
like dislocations or on surface defects is anisotropic. Umklapp scattering, which
is responsible for the Fermi-liquid T2 behaviour, is anisotropic due to the strong
momentum-space constraints. In this spirit, the validity of Mott’s formula is dis-
cussed in detail from the theoretical point of view by Buhmann and Sigrist (2013).
On the basis of a simple band structure, they observe severe discrepancies between
the thermopower calculated using the Mott formula and the one derived from the
Boltzmann equation including the full collision integral taking angular and radial
degrees of freedom into account. These discrepancies occur when the umklapp scat-
tering is highly anisotropic, but vanishes at low-enough temperatures, when only
isotropic electron-impurity scattering and electron-boundary scattering is relevant.
However, they survive at a Lifshitz transition even to low temperatures due to a
vanishing quasiparticle velocity.

The validity of the Mott formula in YbRh,Si, above 2T consequently indicates
that all scattering processes and in particular electron-electron scattering, which is
still present in the investigated temperature range (p o« T2, L/Ly < 1), must be
isotropic. Custers (2004) shows that p in zero field is anisotropic above 20K with
respect to the current directions j L ¢ and j || ¢. However it becomes isotropic at
low T. The validity of the Mott formula also at Bj, B, and Bj is very surprising,
since they mark Lifshitz transitions, as we proved in Sect.5.4.3.

In the low-field region below 2T, S/ T and O In o /9 B show a disparate behaviour.
Therefore, either (a), (c), or (d) are violated. First of all, the Fermi-liquid scale Tgr is
strongly reduced in this field range: While T &~ 0.4 K at4 T, itis reduced to 0.2 K at
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1 T. These values nicely agree with the increasing range of validity of the Mott formula
as we reduce the temperature. In the non-Fermi-liquid regime, which is connected
to the quantum critical fluctuations of the field-induced QCP, additional scattering
mechanisms can lead to a violation of (d). Close to a QCP, also the assumption (a)
with € o« B may be wrong.

In the case of CeRu,Si,, where the Mott formula 5.2 is not valid, again either (a),
(c), or (d) may be inadequate assumptions. Away from the MMT, (a) and (c) are rea-
sonable assumptions. This suggests that the umklapp scattering is anisotropic. Indeed,
an anisotropy with respect to the current direction was observed in the magnetoresis-
tance down to 30 mK and also in the field and temperature-dependent thermopower
down to 200 mK (Boukahil et al. 2014). In particular, the violation of the Mott formula
above the MMT, where both the resistivity and the thermopower show clear Fermi-
liquid-like behaviour in the whole investigated temperature range, demonstrate the
sensitivity of the Mott formula to subtle details of scattering mechanisms.

Close to By, all three assumptions are certainly problematic: (a) The magne-
tization shows a strong increase around Bypvr. A more advanced version of Eq.5.2
with € o« M is also not able to achieve a better agreement (Pfau et al. 2012a). (c)
Since the signatures around Byt are compatible with a Lifshitz transition, this as-
sumption may also be violated. (d) The Fermi-liquid scale although finite is strongly
reduced at Byyr. This gives rise to additional scattering channels, which may be
anisotropic.

The above analysis illustrates the ability of the Mott formula to indicate
anisotropies in scattering processes. Electron-electron umklapp scattering can be-
come very anisotropic in cases of low-dimensional Fermi surfaces or for small Fermi
surfaces, which have a size at the limit where umklapp scattering becomes possible.

5.6.4 Comparison of Thermopower and Density of States in
YbRh>Si>

Since the Mott formula works very well in the case of YbRh, Si,, we will now compare
the thermopower with thermodynamic probes using Eq. 5.3. Several thermodynamic
probes depend upon the DOS, while being independent of scattering effects. We
use the linear magnetostriction coefficient ), since the data available have a higher
resolution than, e.g., specific heat or magnetization. Applying a constant scaling
factor, @ In A/OB matches S/ T in Fig. 5.8b, which implies a power law A o« N*. Only
the double hump around 10T is more pronounced. Considering the nice agreement
at low fields, it is likely that the discrepancy of S and ¢ in this regime is due to
anisotropic scattering rather than a failure of ¢ ~ B.

Encouraged by the good qualitative agreement between S/ 7 and A in Fig.5.8b,
we calculate the field-dependent DOS at g straightforwardly from the thermopower
measurements by integrating S over B (ignoring (0 In 7/0B) in Eq. 5.3). Importantly,
the so obtained DOS (Fig.5.10a, b) matches the features at the transition fields as
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Fig. 5.10 Field dependence
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calculated by the RB method (Fig.5.10c): a kink at B; and a step-like decrease
between B, and Bj.

The surprisingly good qualitative agreement in the comparisons of S with A and
with the DOS, especially at By, B;, and Bj, proves again that the origin of all three
transitions lies within the correlated band structure of YbRh,Si,.

5.6.5 The q Ratio

Now, we compare the thermopower with the specific heat using the ¢ ratio as defined
in Eq.5.4. We will do that explicitly for CeRu,Si,. In Fig.5.11 we compare a v,
which is defined by the A coefficient (74) via the Kadowaki-Woods relationship,
with another v defined by S/T via the g ratio (vs). We use ¢ = —1. Although the
zero-field values do not match (note that g is shifted), the enhancement of v, at
the MMT is indeed similar in magnitude to the enhancement of vg. With ¢ = —1,
we thus interpret the large peak as an enhancement of contributions from a hole-
like Fermi surface. This is also in line with the results from the analysis using the
“Lifshitz model” in Sect.5.5. The natural candidate is the heavy hole band observed
by dHvA (Takashita et al. (1996); Aoki et al. (2001); Daou et al. (2006b)). However,
the detailed field dependence of 4 and s is very different. The kinkin S/ T at Byvr
corresponds to the location of the peak in A, but the structures around Byv in the
thermopower are much richer than the thermodynamic ones. This poor agreement is
not surprising given the bad results already seen for the previous comparison with
Eq.5.2. The peak at 1 T is also not correlated with any feature seen in thermodynamic
properties.
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Fig. 5.11 The g ratio in CeRu;Si. We calculate the electronic specific-heat coefficient, 7, in two
ways. On the left scale we plot v obtained from the Kadowaki-Woods ratio, using the A coefficient
of the electrical resistivity in the formula A/4? = Rgw. On the right scale we use the g ratio
(see text) to scale the thermopower data into units of . We also invert the sign and offset it by
0.45Tmol~! K=2 to match the left scale at zero field. An offset is justified by the presence of other
bands, while the sign inversion is appropriate for heavy-fermion materials. Clearly, the structure in
the thermopower is more complex than the signatures in the conductivity and specific heat

The same comparison can be done for YbRh; Si,. We do not show it explicitly here,
but the general trend is already obvious from a comparison of S/7 and v = C/T
in Fig.5.2 in Sect.5.4.2: With ¢ = —1 (for Yb systems Behnia et al. (2004)), there
are again some similarities such as the general decrease of v and ¢S/T = —S/T
with increasing magnetic field and the overall magnitude of this decrease seems to
be similar in both. But although the Mott formula works exceptionally well in this
material even in the very simple form of Eq.5.3 ignoring any contribution from 7,
severe differences between v and S/ T occur in the details of the field dependence
using the q ratio. This is especially pronounced around the transitions By, B;, and Bj.

Hence, the q ratio can indeed be used to estimate the magnitude of field-driven
effects in the thermopower from the specific heat, however, it is too simple to serve
as an adequate description of structures in S(B).

5.7 Conclusion

With the help of field-dependent thermal and electrical transport measurements, we
studied the magnetic-field evolution of the Kondo-lattice states in YbRh,Si, and
CeRlleiz.

In YbRh;Si,, previous thermodynamic measurements found a magnetic-field-
induced transition at 10 T. With our transport studies, we were able to decompose its
structure and detected two transitions at 9.3 and 11 T. In addition, another one at 3.4 T
could be resolved. All of them were identified as Lifshitz transitions by a comparison
with predictions from detailed RB structure calculations. The agreement of our and
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previous experiments with RB calculations implies that the unusual high-field prop-
erties of YbRh,Si, arise from the interplay of a continuous suppression of the local
Kondo effect and coherence effects due to the periodicity of the lattice. The first leads
to a reduction of the effective mass and a field-dependent Sommerfeld-Wilson ratio.
The latter is responsible for three Lifshitz transitions in the investigated field range.
The coherence effects are determined by the symmetry of the 4 f wave function
characterizing the crystal electric field ground state, which leads to an anisotropic
hybridization and a van Hove singularity in the DOS. The excellent agreement be-
tween our experimental results and the theoretical predictions demonstrates that RB
calculations are a very suitable approach to describe quasiparticle bands in the Kondo
lattice.

The thermal transport properties of CeRu,Si, at the MMT are also compatible
with a Lifshitz transition, a model proposed by earlier electrical-transport studies.
However, a conclusive picture, which can also incorporate the thermodynamic fea-
tures, is still lacking. With the thermopower we could additionally detect another
transition at 1 T, which is not resolved by any other probe.

Generally, the flat bands of Kondo-lattice systems and the reduced energy scales
of Tx of the order of 10K are very suitable to observe Lifshitz transitions induced
by a spin splitting in magnetic field. Our investigation proved that the thermopower
measurements are a very sensitive tool to detect such transitions. However, it is also
one of the most difficult probes to understand. Hence, we started to systematically
compare experimental signatures with rigid-band models. The Lifshitz model was
able to account for many transport signatures. To establish it as a reference point
to detect Lifshitz transitions, however, a larger systematic study and a better theo-
retical foundation is required to account for effects of magnetic field, for electronic
correlations, and also for other special symmetry cases. The discrepancies between
the model calculations and especially thermodynamic data highlights the boundaries
of rigid-band models and demonstrates the necessity of more advanced theoretical
tools such as the RB method.

Our low-temperature measurements as a function of magnetic field also allowed us
to study the validity of Mott’s formula. We find an extraordinary good agreement with
Mott’s formula for YbRh;Si, starting at moderate fields above the quantum critical
regime. This validity is especially unexpected close to the Lifshitz transitions. In
contrast, the Mott formula seems to be violated in CeRu,Si, in the whole field range
and in YbRh;Si, at low fields. While the validity indicates isotropic scattering of
electronic quasiparticles, the violation of the Mott formula suggests the presence of
anisotropic scattering mechanisms.

The present study will serve as a starting point for a more systematic investigation
of Mott’s formula and of Lifshitz transitions in correlated electron materials and
especially Kondo lattices. Investigations on YbNisP, are currently under way. They
seem to reveal at least three transitions in fields up to 12T, some of which show
typical Lifshitz signatures in transport properties. One can also find other materials in
literature such as G-YbAIB4 (Matsumoto et al. 2014), which are promising candidates
for such a study.



References 89

References

N.N. Ablyazov, M.Y. Kuchiev, M.E. Raikh, Topological transition and its connection with the
conductivity and thermopower anomalies in two-dimensional systems. Phys. Rev. B 44, 8802
(1991)

M.M. Altarawneh, N. Harrison, S.E. Sebastian, L. Balicas, P.H. Tobash, J.D. Thompson, F. Ron-
ning, E.D. Bauer, Sequential spin polarization of the Fermi surface pockets in URh,Si> and its
implications for the hidden order. Phys. Rev. Lett. 106, 146403 (2011)

A. Amato, D. Jaccard, J. Sierro, P. Haen, P. Lejay, J. Flouquet, Transport properties under magnetic
fields of the heavy fermion system CeRu,Si; and related compounds (Ce, La)Ru,Si,. J. Low
Temp. Phys. 77, 195 (1989)

Y. Aoki, T.D. Matsuda, H. Sugawara, H. Sato, H. Ohkuni, R. Settai, Y. Onuki, E. Yamamoto,
Y. Haga, A.V. Andreev, V. Sechovsky, L. Havela, H. Ikeda, K. Miyake, Thermal properties of
metamagnetic transition in heavy-fermion systems. J. Magn. Magn. Mater. 177-181 (1998).
International Conference on Magnetism, p. 271

H. Aoki, S. Uji, A K. Albessard, Y. Onuki, Transition of f-electron nature from itinerant to localized:
metamagnetic transition in CeRu, Sij studied via the de Haas-van Alphen effect. Phys. Rev. Lett.
71,2110 (1993)

H. Aoki, M. Takashita, N. Kimura, T. Terashima, S. Uji, T. Matsumoto, Y. Onuki, New features
of the metamagnetic transition in CeRu,Sin from the dHVA effect study under high pressure. J.
Phys. Soc. Jpn. 70, 774 (2001)

D. Aoki, C. Paulsen, T.D. Matsuda, L. Malone, G. Knebel, P. Haen, P. Lejay, R. Settai, Y. Onuki,
J. Flouquet, Pressure evolution of the magnetic field induced ferromagnetic fluctuation through
the pseudo-metamagnetism of CeRu;Sis. J. Phys. Soc. Jpn. 80, 053702 (2011)

N.W. Ashcroft, D.N. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976)

J. Bauer, A.C. Hewson, Field-dependent quasiparticles in a strongly correlated local system. II.
Phys. Rev. B 76, 035119 (2007)

K. Behnia, D. Jaccard, J. Flouquet, On the thermoelectricity of correlated electrons in the zero-
temperature limit. J. Phys.: Condens. Matter 16, 5187 (2004)

R. Bel, Transport d’entropie, thermoélectricité dans les supraconducteurs non conventionnels. PhD
thesis. Université Paris VII, 2004

M. Bercx, EF. Assaad, Metamagnetism and Lifshitz transitions in models for heavy fermions. Phys.
Rev. B 86, 075108 (2012)

M. Besnus, J. Kappler, P. Lehmann, A. Meyer, Low temperature heat capacity, magnetization,
resistivity of CeRu;Sip, with Y or La substitution. Solid State Commun. 55, 779 (1985)

Y.M. Blanter, A.V. Pantsulaya, A.A. Varlamov, Thermoelectric power and topological transitions
in quasi-two-dimensional electronic systems. Phys. Rev. B 45, 6267 (1992)

Y.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, A.A. Varlamov, The theory of electronic topological
transitions. Phys. Rep. 245, 159 (1994)

F.J. Blatt, P.A. Schroeder, C.L. Foiles, D. Greig, Thermoelectric Power of Metals (Plenum Press,
New York, 1976)

M. Boukahil, A. Pourret, G. Knebel, D. Aoki, Y. Onuki, J. Flouquet, Lifshitz transition and meta-
magnetism: thermoelectric studies of CeRu,Si. Phys. Rev. B 90, 075127 (2014)

J.M. Buhmann, M. Sigrist, Thermoelectric effect of correlated metals: bandstructure effects and the
breakdown of Mott’s formula. Phys. Rev. B 88, 115128 (2013)

J. Custers. Quantum-Critical Behavior in the Heavy-Fermion Compounds YbRh,Si; and
Celns_, Sn,. PhD thesis. TU Dresden, 2004

R. Daou, C. Bergemann, S.R. Julian, Spin dependence of the quasiparticle masses in CeRu,Si,.
Phys. B 378-380 (2006a). Proceedings of the International Conference on Strongly Correlated
Electron Systems SCES 2005, 807

R. Daou, C. Bergemann, S.R. Julian, Continuous evolution of the fermi surface of CeRu;Si, across
the metamagnetic transition. Phys. Rev. Lett. 96, 026401 (2006b)



90 5 Kondo Lattices in Magnetic Field

J. Flouquet, P. Haen, S. Raymond, D. Aoki, G. Knebel, Itinerant metamagnetism of CeRu,Sis:
bringing out the dead. Comparison with the new Sr3Ru,O7 case. Physica B 319, 251 (2002)

J.J.M. Franse, P.H. Frings, A. de Visser, A. Menovsky, T.T.M. Palstra, P.H. Kes, J.A. Mydosh, Spin
uctuations and superconductivity in UPt3. Phys. B+C 126, 116 (1984)

P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel,
P. Kerschl, K.-H. Miiller, F. Steglich, High-field phase diagram of the heavy-fermion metal
YbRh;Siy. New J. Phys. 8, 171 (2006)

P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abra-
hams, Q. Si, Multiple energy scales at a quantum critical point. Science 315, 969 (2007)

P. Haen, J. Flouquet, F. Lapierre, P. Lejay, G. Remenyi, Metamagnetic-like transition in CeRu;Sis.
J. Low Temp. Phys. 67, 391 (1987)

S. Hartmann. Thermoelectric Transport in Correlated Electron Systems. PhD thesis. Technische
Universitit Dresden, 2010a

S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, F. Steglich, Thermopower evidence
for an abrupt Fermi surface change at the quantum critical point of YbRh,Si,. Phys. Rev. Lett.
104, 096401 (2010b)

A. Hewson, A. Oguri, D. Meyer, Renormalized parameters for impurity models. Eur. Phys. J. B 40,
177 (2004)

A.C. Hewson, J. Bauer, W. Koller, Field dependent quasiparticles in a strongly correlated local
system. Phys. Rev. B 73, 045117 (2006)

K. Kadowaki, S.B. Woods, Universal relationship of the resistivity and specific heat in heavy-
fermion compounds. Solid State Commun. 58, 507 (1986)

S. Kambe, J. Flouquet, P. Haen, P. Lejay, Characteristic of metamagnetic transition in CeRu, Si
revealed with hall mobility. J. Low Temp. Phys. 102, 477 (1996)

H. Kotegawa, V. Taufour, D. Aoki, G. Knebel, J. Flouquet, Evolution toward quantum critical end
point in UGe,. J. Phys. Soc. Jpn. 80, 083703 (2011)

D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B.J. Ramshaw, J. Levallois, R. Daou,
F. Laliberte, O. Cyr-Choiniere, J. Chang, Y.J. Jo, L. Balicas, R. Liang, D.A. Bonn, W.N. Hardy,
C. Proust, L. Taillefer, Lifshitz critical point in the cuprate superconductor YBa;Cu3Oy from
high-field Hall effect measurements. Phys. Rev. B 83, 054506 (2011)

1. Lifshitz, Anomalies of the electron characteristics of a metal in the high pressure region. Sov.
Phys. JETP-USSR 11, 1130 (1960)

C. Liu, T. Kondo, R.M. Fernandes, A.D. Palczewski, E.D. Mun, N. Ni, A.N. Thaler, A. Bostwick,
E. Rotenberg, J. Schmalian, S.L. Budko, P.C. Canfield, A. Kaminski, Evidence for a Lifshitz
transition in electron-doped iron arsenic superconductors at the onset of superconductivity. Nat.
Phys. 6,419 (2010)

H. Lohneysen, H. Schlager, A. Schroder, Magnetic correlations and magnetic ordering in
CeCug_y Au, single crystals. Phys. B 186-188, 590 (1993)

L. Malone, T.D. Matusda, A. Antunes, G. Knebel, V. Taufour, D. Aoki, K. Behnia, C. Proust, J.
Flouquet, Thermoelectric evidence for high-field anomalies in the hidden order phase of URu, Si>.
Phys. Rev. B 83, 245117 (2011)

Y. Matsumoto, K. Kuga, Y. Karaki, Y. Shimura, T. Sakakibara, M. Tokunaga, K. Kindo, S. Nakatsuji,
Field evolution of quantum critical and heavy Fermi-liquid components in the magnetization of
the mixed valence compound 3-YbAIBy. arXiv:1407.6142. 2014

AJ. Millis, A.J. Schofield, G.G. Lonzarich, S.A. Grigera, Metamagnetic quantum criticality in
metals. Phys. Rev. Lett. 88, 217204 (2002)

K. Miyake, O. Narikiyo, Enhanced impurity scattering due to quantum critical fluctuations: pertur-
bational approach. J. Phys. Soc. Jpn. 71, 867 (2002)

N.F. Mott, E.A. Davis, Electronic Processes In Non-crystalline Materials (Oxford University Press,
Oxford, 1971)

H.R. Naren, S. Friedemann, G. Zwicknagl, C. Krellner, C. Geibel, F. Steglich, S. Wirth, Lifshitz
transitions and quasiparticle de-renormalization in YbRh;Si>. New J. Phys. 15, 093032 (2013)


http://arxiv.org/abs/1407.6142

References 91

K. Oda, T. Kumada, K. Sugiyama, N. Sato, T. Komatubara, M. Date, High field magnetization of
UPd;Al3. J. Phys. Soc. Jpn. 63, 3115 (1994)

R. Peters, T. Pruschke, F.B. Anders, Numerical renormalization group approach to Green’s functions
for quantum impurity models. Phys. Rev. B 74, 245114 (2006)

H. Pfau, R. Daou, M. Brando, F. Steglich, Thermoelectric transport across the metamagnetic tran-
sition of CeRuySiy. Phys. Rev. B 85, 035127 (2012a)

H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S. Friedemann, C. Krellner, C.
Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q. Si, F. Steglich, Thermal and electrical transport
across a magnetic quantum critical point. Nature 484, 493 (2012b)

H. Pfau, R. Daou, S. Lausberg, H.R. Naren, M. Brando, S. Friedemann, S. Wirth, T. Westerkamp,
U. Stockert, P. Gegenwart, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich, Interplay between
Kondo Suppression and Lifshitz transitions in YbRh,Si; at high magnetic fields. Phys. Rev. Lett.
110, 256403 (2013)

A. Pourret, G. Knebel, T.D. Matsuda, G. Lapertot, J. Flouquet, Magnetic polarization and Fermi
surface instability: case of YbRh;Sis. J. Phys. Soc. Jpn. 82, 053704 (2013)

PM.C. Rourke, A. McCollam, G. Lapertot, G. Knebel, J. Flouquet, S.R. Julian, Magnetic-field
dependence of the YbRh,Si; Fermi surface. Phys. Rev. Lett. 101, 237205 (2008)

K. Samwer, K. Winzer, Magnetoresistivity of the Kondo-system (La, Ce)Bg. Z. Phys. B Con. Mat.
25,269 (1976)

M. Sato, Y. Koike, S. Katano, N. Metoki, H. Kadowaki, S. Kawarazaki, Field-induced ferromagnetic
correlation in the metamagnetic crossover in CeRu;Si, as studied by neutron scattering. J. Phys.
Soc. Jpn. 73, 3418 (2004)

U. Schauful3, V. Kataev, A.A. Zvyagin, B. Biichner, J. Sichelschmidt, J. Wykhoff, C. Krellner, C.
Geibel, F. Steglich, Evolution of the Kondo State of YbRh,Si; Probed by High-Field ESR. Phys.
Rev. Lett. 102, 076405 (2009)

V. Sechovsky, L. Havela, F. de Boer, J. Franse, P. Veenhuizen, J. Sebek, J. Stehno, A. Andreev,
Systematics across the UTX series (T = Ru, Co, Ni; X = Al, Ga, Sn) of high-field and low-
temperature properties of non-ferromagnetic compounds. Phys. B+C 142, 283 (1986)

M. Sera, S. Kobayashi, M. Hiroi, N. Kobayashi, H. Ohkuni, Y. Onuki, Thermal conductivity of
single-crystalline CeRu»Siy. Phys. Rev. B 56, 13689 (1997)

K. Sugiyama, H. Fuke, K. Kindo, K. Shimohata, A.A. Menovsky, J.A. Mydosh, M. Date, Field-
Induced destruction of heavy Fermion State in URu,Si5. J. Phys. Soc. Jpn. 59, 3331 (1990)

M. Takashita, H. Aoki, T. Terashima, S. Uji, K. Maezawa, R. Settai, Y. Onuki, dHVA effect study of
metamagnetic transition in CeRu, Sip—the state above the metamagnetic transition. J. Phys. Soc.
Jpn. 65, 515 (1996)

V. Taufour, D. Aoki, G. Knebel, J. Flouquet, Tricritical point and wing structure in the itinerant
ferromagnet UGe;. Phys. Rev. Lett. 105, 217201 (2010)

Y. Tokiwa, P. Gegenwart, F.Weickert, R. Kiichler, J. Custers, J. Ferstl, C. Geibel, F. Steglich, Sup-
pression of the Kondo state in YbRh, Sij by large magnetic fields. J. Magn. Magn. Mater. 272-276,
Supplement (2004). Proceedings of the International Conference on Magnetism (ICM 2003), E87

Y. Tokiwa, P. Gegenwart, T. Radu, J. Ferstl, G. Sparn, C. Geibel, F. Steglich, Field-induced sup-
pression of the heavy-fermion state in YbRh,Siy. Phys. Rev. Lett. 94, 226402 (2005)

M. Uhlarz, C. Peiderer, S.M. Hayden, Quantum phase transitions in the itinerant Ferromagnet
ZrZn;. Phys. Rev. Lett. 93, 256404 (2004)

A. Varlamov, V. Egorov, A. Pantsulaya, Kinetic properties of metals near electronic topological
transitions (2 1/2-order transitions). Adv. Phys. 38, 469 (1989)

F. Weickert, M. Brando, F. Steglich, P. Gegenwart, M. Garst, Universal signatures of the metamag-
netic quantum critical endpoint: application to CeRu,Siy. Phys. Rev. B 81, 134438 (2010)

Y. Yamaji, T. Misawa, M. Imada, Quantum metamagnetic transitions induced by changes in Fermi-
surface topology: applications to a weak itinerant-electron ferromagnet ZrZn,. J. Phys. Soc. Jpn.
76, 063702 (2007)

E.A. Yelland, J.M. Barraclough, W. Wang, K.V. Kamenev, A.D. Huxley, High-field superconduc-
tivity at an electronic topological transition in URhGe. Nat. Phys. 7, 890 (2011)



92 5 Kondo Lattices in Magnetic Field

G. Zwicknagl, Quasi-particles in heavy fermion systems. Adv. Phys. 41, 203 (1992)
G. Zwicknagl, Field-induced suppression of the heavy-fermion state in YbRh,Si. J. Phys.: Con-
dens. Matter 23, 094215 (2011)



Chapter 6
The Superconducting Order Parameter

of LaPt4Geqs

Filled skutterudites have attracted much interest due to a remarkable variety of phys-
ical properties and ground states. Particular attention has been paid to the supercon-
ductors, which range from conventional Bardeen-Cooper-Schrieffer (BCS) types to
multiband or unconventional superconductors. Here, we present results on the filled
skutterudite LaPt;Ge;,, which becomes superconducting below 7, = 8.3 K. While
for its Pr-counterpart an unconventional and/or a multiband coupling mechanism is
discussed, NMR and photoemission measurements on the La compound suggest con-
ventional s-wave superconductivity. However, results on the series La, Pr|_,Pt4Ge;
indicate compatible order parameters for the two stoichiometric end compounds. We
performed specific-heat measurements above 2K and a detailed temperature, mag-
netic field, and field-angle-dependent thermal-conductivity study down to tempera-
tures below 100 mK. All our results are compatible with a single superconducting
s-wave gap. The field-angle dependence of the thermal conductivity surprisingly
shows a rich oscillatory component. Oscillations below T;. are often connected to
the presence of nodes in the gap. The nodeless character of the gap in LaPty;Ge;
conducted from all other measurements demonstrates that a careful analysis of the
field-angle dependence is essential for a reliable determination of the gap symmetry.

6.1 Introduction and Motivation

In every superconductor, electrons form Cooper pairs due to an attractive interac-
tion which overcomes the Coulomb repulsion. However, the nature of the attraction
can vary considerably for different materials. In most superconductors, the cou-
pling is mediated by phonons, but for others, e.g., magnons are considered to be
the driving force. The pairing mechanism is directly related to the symmetry of the
superconducting order parameter, which in turn is connected to the symmetry of
the superconducting gap. Phonon coupling, e.g., leads to an s-wave symmetry of the
© Springer International Publishing Switzerland 2016 93
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order parameter, which can be described by the Bardeen-Cooper-Schrieffer (BCS)
theory. From today’s perspective, unconventional superconductors which go beyond
this scenario are most interesting. Their gaps contain nodes and the coupling in these
materials can be mediated by magnons or other more exotic excitations.

To establish the unconventional nature of a superconductor, one often concentrates
on proving the existence of nodes in the superconducting gap. By now, a whole fleet of
experimental methods has been developed for this purpose. Examples are temperature
and magnetic-field-dependent specific-heat and thermal-conductivity measurements,
nuclear magnetic resonance (NMR), muon spin rotation (uSR), and tunnel-diode
oscillator-based measurements. Apart from the existence of nodes, these probes are
also able to put some more constraints on the symmetry of the order parameter. To
determine the exact position of the nodes and thus the exact order parameter, how-
ever, directional probes are necessary. An example of such a probe is angle-resolved
photoemission spectroscopy, which was successfully used to determine the gap struc-
ture of the high-T7.. cuprates. However, its energy resolution is insufficient for low-T
systems and it is a surface sensitive probe. In recent years, field-angle-dependent
thermal-conductivity (and also specific heat) measurements were established as an
angular-sensitive bulk probe of the superconducting gap (for a review see Matsuda
et al. (20006)).

The search for and study of unconventional superconductors was triggered by the
discovery of heavy-fermion superconductivity (Steglich et al. 1892) and the high-
temperature cuprate superconductors (Bednorz and Miiller 1986). By now, many
more materials are believed to be unconventional superconductors. In this context,
the filled skutterudite compounds R7; X, (R = rare-earth metal, T = transition
metal, X = usually a pnictogen) attracted much attention with the discovery of
PrOs4Sbj, (Bauer et al. 2002), which is believed to be an unconventional supercon-
ductor (Aoki et al. 2005). It exhibits exotic properties probably connected to the
quadrupole degrees of freedom (Aoki et al. 2005).

The newly discovered PrPt;Ge;, and LaPt,Ge;, are skutterudites with a Pt-Ge
framework, which show superconductivity at relatively high transition temperatures
compared to other skutterudites with 7. = 7.9 and 8.3 K, respectively (Gumeniuk
et al. 2008). PrPt;Ge;, seems to be a good candidate for unconventional supercon-
ductivity. It is considered to be a strong-coupling SC from the large specific-heat
jump compared to the BCS value (Gumeniuk et al. 2008). While a number of inves-
tigations revealed multiband superconductivity in this compound (Nakamura et al.
(2012); Chandra et al. (2012); Zhang et al. (2013)), there are additionally indications
of point nodes from NMR (Kanetake et al. 2010), specific heat and penetration depth
(Zhang et al. 2013). uSR measurements detected a time-reversal symmetry breaking
below T.(Maisuradze et al. 2010).

The evolution of T, across the doping series (La,Pr;_,)Pt4Ge;, indicates, that
the order parameters of the end members PrPtsGe;, and LaPt,;Ge,, are compatible
(Maisuradze et al. 2010). However, the few investigations on LaPtsGe;, point towards
a single isotropic gap: the specific-heat jump is only slightly above the BCS value
suggesting a weaker coupling than in PrPt;Ge;, (Gumeniuk et al. 2008). NMR and
photoelectron-spectroscopy results could be best explained by a single isotropic gap
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(Toda et al. (2008); Nakamura et al. (2012)). No time-reversal symmetry breaking is
observed in SR (Maisuradze et al. 2010).

To resolve this discrepancy, it is necessary to shed more light on the supercon-
ducting properties of both end members LaPt,Ge|, and PrPt;Ge),. Since the single
crystals available for both compounds are relatively small for a sufficient geometry
factor but still larger for LaPt;Ge,, we decided to study this compound. To this
end, we performed first specific-heat measurements at temperatures down to 0.4 K to
obtain a thermodynamic indicator of the gap structure. We use these results to analyse
our detailed thermal-conductivity study. The focus of the thermal-transport measure-
ments was on the low-temperature behaviour below 1 K and we performed extensive
temperature, field-, and field-angle-dependent measurements. Those results are com-
pared with predictions from the BCS theory for conventional superconductors and
with predictions for multiband or unconventional superconductors.

The thermal-transport measurements were also used to test and extend the abil-
ities of the “Rotator” set-up. We put special effort to increase the resolution and
decrease the required measurement time for the field-angle-dependent measurements
by implementing a continuous method (see Chap. 3).

6.2 Experimental Methods

We investigated three high-quality single crystals of LaPtsGe;, from the same batch
1289s2k. They were grown by applying multistep thermal treatments as described
in Zhang et al. (2013). Sample #1 (1289s2k_4) with a mass of m = 14.7mg and
sample #2 (1289s2k_6) with 67.2mg were used for specific-heat measurements in
a Quantum Design Physical Property Measurement System (PPMS). On sample #3
(1289s2k_3) we performed transport measurements. To this end, we cut it first into
a rectangular bar along the principal cubic crystal axes with a cross-sectional area of
0.492 mm? and placed the contacts for the two thermometers along the longest crystal
axis separated by 1.08 mm. This arrangement was used for thermal-conductivity
measurements in a PPMS above 2K and in zero magnetic field. Afterwards, a long
plate (1289s2k_3a) was cut from sample #3 again along the principal cubic crystal
axes with the dimensions (0.04 x 0.50 x 1.92) mm. This sample #3a was used to
measure thermal conductivity below 1K for magnetic fields' of 0 < H < 2T with
the current j applied along the same direction as for the PPMS measurement. We used
the “Rotator” set-up, where a superconducting split-coil magnet supplies a magnetic
field H L j.To vary the angle of the magnetic field within the plane perpendicular to
J» the magnet is mechanically rotated around the sample. Sample #3a was also used
to measure the d.c. resistivity between 0.3 K < T < 20K with the same contacts as
for the thermal transport.

1 As it is common for superconductors, we will use the symbol H for the magnetic field instead of
B in this chapter. However, we will stick to the more illustrative unit Tesla.
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Fig. 6.1 Temperature dependence of the resistivity. The sample shows a sharp superconducting
transition, which persists to much higher fields than H;; = 1.4 T determined from bulk methods.
This can be attributed to surface effects or stoichiometric variations in small parts of the sample. In
the normal state, p is constant below 6 K indicating dominant impurity scattering

6.3 Resistivity

In Fig. 6.1, we present the resistivity p(T) of LaPtyGe,. We observe a sharp super-
conducting transition at 8 K. It is suppressed with increasing magnetic field and
broadens only weakly compared to zero field. However, superconductivity is still
present at 2T, which is well above the reported critical field of 1.6 T (Gumeniuk
et al. 2008) and above the one obtained from specific heat and thermal conductivity
of 1.4T (see below). Only a field of 2.5T pushes the superconducting transition
below our measurement limit of 300 mK. This effect is frequently observed also in
other superconductors and can be attributed for example to a superconducting surface
layer with different physical properties compared to the bulk, or to superconducting
impurity phases perhaps due to stoichiometric variations, which short-cut the sample.

In the normal state, p(T') is almost constant below 6 K with a residual resistivity of
po = 3.8 wQcmindicating dominant impurity scattering. Furthermore, the magnetic-
field dependence is almost negligible below 20 K. The residual resistivity ratio (RRR)
of the crystal is RRR = p(300K)/p(0.3K) = 17.

6.4 Specific Heat

We measured the specific heat C(T') of LaPt;Ge,, at zero field and in a field of 2T
above the critical field (Fig. 6.2a). The latter is used as an estimate of the phonon
contribution. Since the resistivity shows a much higher H.,, we also performed
measurements at 2.5 T, which turned out to be identical to the results at 2.0 T. To
obtain the electronic contribution to the specific heat C, at zero field, the results
at 2T are subtracted from the zero-field data except for a constant normal-state
electronic contribution v, = C,/T = const., which is determined by a Debye fit,
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Fig. 6.2 Temperature dependence of the specific heat. a At zero field, C shows a superconducting
transition at 8 K, which is absent at 2T > Hgp. A fit of the results at 2T with a Debye model falls
on top of the data, except below 4K, where the phonon contribution follows 3 T25 (see inset).
From a, the electronic contribution C, to the zero-field curve can be calculated (b). It follows a
BCS behaviour with Ag = 2.03kp 7. Both samples show the same results

C=wT +pT?, (6.1)

to C(2T) between 0.3K < T < 10K, which is also plotted in Fig. 6.2a. From the
fit we obtain 7, = 56mJ/molK? and 8 = 3.7 mJ/molK*. The fit can describe the
data in the whole temperature range well, only below 4 K there are small deviations
and the phonon contribution follows (372>, This deviation is negligible for the
following analysis, but becomes important in Sect. 6.5, where we discuss the thermal
conductivity. The result for the electronic contribution to C (0 T) is shown in Fig. 6.2b
as the specific heat coefficient 7v(T') = C./T. Unfortunately, the low-temperature
data are too noisy to analyse and we restrict the following discussion of C./T to
T >2K.

The specific heat exhibits a very sharp superconducting transition at 8.0 K, which
is an indication of the good quality of the sample. The jump is higher than expected
from the predictions of the weak-coupling BCS model (Ag = 1.76kgT.), which
cannot reproduce our data. However, we are able to describe C./ T adjusting the gap
to Ag = 2.03kgT.. This value is in agreement with the results from photoelectron
spectroscopy: Ao = 1.95 kg7, (Nakamura et al. 2012), and NMR: Ay = 1.92kgT,
(Kanetake et al. 2010).

Band-structure calculations by H. Rosner showed, that several bands cross the
Fermi energy (cf. Fig. 6.6), which opens up the possibility of multiband supercon-
ductivity. If there are two gaps, as was observed in the case of PrPt4Ge,, the specific
heat can be described as a weighted sum of the contributions from both gaps within
the two-gap o model (cf. Sect.2.6.3). Hence, both gaps can have either almost the
same size A or the weighting factor of the second gap is small compared to its size. In
the latter case, its contribution to the specific heat stays tiny and only shows up below
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2 K. The question whether there is a second gap may be solved by measurements on
the substitution series (La,Pr;_,)Pt;Ge,.

6.5 Thermal Conductivity

6.5.1 T Dependence of the Thermal Conductivity

Figure 6.3a shows the temperature dependence of the thermal conductivity (7))
below 1K in zero magnetic field and for different finite fields. The measurements
were performed on warming. For finite magnetic fields they show no difference
between field- and zero-field-cooling. While for H = 0, x/ T increases with increas-
ing temperature, it rapidly approaches a behaviour x/T = const. for H > 0.5 T.

To gain information about the superconducting gap structure, we analyse the zero-
field curve in more detail. Figure 6.3b shows a power-law fit x(T) /T = o/ T +bT*
to our data below 7' = 0.4 K.

From the fit, we obtain a residual term xo/7 = 0.01 W/K?m, which is of the
order of our measurement uncertainty. A sizeable residual term is expected for a
nodal SC (Graf et al. (1996); Durst et al. (2000); Shakeripour et al. (2009)) due to
pair-breaking impurities. Our observed /T is small compared to these expectations
and experimental results for unconventional superconductors (Watanabe et al. (2004);
Proust et al. (2002)). Hence, this result points towards a superconductor with a finite
gap everywhere on the Fermi surface.
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Fig. 6.3 Temperature dependence of the thermal conductivity below 1 K. The zero-field thermal
conductivity from (a) can be fitted with a power law /T o T 14 (solid line) shown in (b) leading to
a residual term of /T (T — 0) = 0.01 W/K?m. A second fit (dashed line) with Eq. 6.2 using the
specific-heat results indicates a dominant phonon contribution scattered by boundaries (see text).
Applying a magnetic field leads to an almost constant /T above 0.5T with parallel shifts for
increasing field
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The exponent we obtain from the power law fit is @ = 1.4. In an s-wave super-
conductor, the low-temperature thermal conductivity is expected to be entirely due

to phonons. With the relation

1
Kp = gcpvplp, (6.2)

one can estimate the phonon contribution x, from the specific heat C, and the mean
free path [,. C, = BT is the phonon specific heat from a Debye model determined
above. The velocity v, can be calculated from Cj, using

BT?

_lart TR kBG)( 4 )‘/3 .
B 672N ' ’

s Vg w=T
where © is the Debye temperature, V = 7.25 x 10~"m? is the crystal volume of
sample #2 and N = 17m Npy/M = 3.84 x 10%° is the number of atoms in the
crystal. This leads to ® = 208K and v, = 1860m/s. However, the experimental
specific-heat data on LaPt,Ge;, follow only approximately a 7> dependence, but
can be better described by a 72 law below 4 K (see inset of Fig. 6.2a). Interestingly,
the thermal conductivity follows a T>* dependence at low T, which is close to the
T dependence of Cp. The almost identical exponents hint towards a scenario, where
phonons scattered on boundaries are the main contribution to « at low T'. A fit of
the thermal conductivity with an adjusted power law C, = 3'T>>, with the velocity
vp, and with the free parameter /, is shown in Fig.6.3b. It leads to a mean free
path of /[, = 0.055mm, which is a reasonable scale considering the shortest of the
sample dimensions (0.04 x 0.50 x 1.92)mm?. This nice agreement points towards
a negligible electronic contribution to « at low 7 and thus to a finite gap at every k
point.

Figure 6.4 presents the thermal conductivity at zero field for temperatures up to
100K. At T, a clear drop is visible followed by a hump at slightly lower T'. In general,
the thermal conductivity both in the normal state " and in the superconducting state
k* consists of a phonon and an electron contribution

K" =Ky + /@;, (6.4)
K= Ky + m;. (6.5)

Assuming an s-wave superconductor, the drop can be attributed to the decreasing
number of electronic heat carriers, hence, g decreases rapidly. The hump indicates
an enhanced mean free path of phonons due to a decreasing number of electronic
scattering centres. Therefore, «; increases below T¢. In the spirit of the theory of
Bardeen, Rickayzen, and Tewordt (BRT) (Bardeen et al. 1959) (for an introduction
see Sect.2.6.1), we plotted a qualitative temperature dependence for both £, and «,
in the inset of Fig. 6.4.
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Fig. 6.4 Temperature dependence of the thermal conductivity at H = 0 up to 100K. Main panel
In the double-logarithmic representation, a clear but smooth drop of x(T") at 7 is visible. A hump
appears at lower 7. Both can be attributed to an decreasing number of electrons as heat carriers
and as scattering centres for phonons, respectively. Inset «(T) on a linear scale. For an s-wave
superconductor, one expects a rapidly decreasing ,, () below T, while , (p) increases forming
a hump. Their 7 dependence is inspired by the theory of BRT for s-wave superconductors. The
dashed lines are guides to the eye

6.5.2 H Dependence of the Thermal Conductivity

6.5.2.1 General Aspects

In a type-II superconductor, a magnetic field is completely expelled up to H;. In
LaPtyGey,, H is very small with 14mT at 1.5K (W. Schnelle, private communi-
cation). Therefore, we do not consider this field region in detail here. Usually, the
thermal conductivity stays almost constant below H,; as a function of field (Lowell
and Sousa (1970); Gupta and Wolf (1972); Boaknin et al. (2003)). However, there
are drastic changes above H,| due to the properties of the vortex state.

A magnetic field H > H,; induces vortices along the field direction. The core of
a vortex is in the normal state. Hence, in addition to the delocalized quasiparticles
due to thermal excitations above the gap, there are quasiparticles from the core
region, which can contribute to the heat flow. The low-energy fraction of those
additional quasiparticles is localized within the vortex core, while the higher energy
quasiparticles can extend further out (Hess et al. 1990). With increasing field the
number of vortices increases, their separation decreases, and the core states can
overlap with states from neighbouring vortices. The tunnelling between the cores
contributes to a heat flow perpendicular to the magnetic field (Golubov and Koshelev
2011).

Around the vortex core, a supercurrent flows, the amplitude of which decays
over a distance roughly equal to the penetration depth A. The supercurrent with
the velocity vg leads to a Doppler shift of the energy of delocalized quasiparticles
e(k) — e(k)—hk-vs(H) (Cyrot (1965); Volovik (1993)). This changes the excitation
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spectrum, increases the density of states (DOS), and effectively lowers the gap A for
k directions with a component parallel to vg.

These magnetic-field-induced changes in a type-II superconductor affect the ther-
mal conductivity in different ways:

e Additional core states increase x¢ (Lowell and Sousa (1970); Caroli and Cyrot
(1965); Schmidbauer et al. (1970); Golubov and Koshelev (2011)).

e The Doppler-shifted energy of delocalized quasiparticles increases i (Volovik
(1993); Kiibert and Hirschfeld (1998); Vekhter and Houghton (1999)).

e Scattering of electrons and phonons on the vortex lattice decreases x; and
(Lowell and Sousa (1970); Caroli and Cyrot (1965); Kiibert and Hirschfeld (1998)).

All of these effects are anisotropic with respect to the angle between current and
field and also with respect to the angle between field and wave vector (Brandt et al.
(1967); Maki (1967); Kiibert and Hirschfeld (1998); Lowell and Sousa (1970)). In
the following we restrict the discussion to our case of a field perpendicular to the
current. The thermal conductivity of selected materials with different pairing states,
which are discussed below, is plotted in Fig.6.5.

For an s-wave superconductor at low temperatures and H < H,, the main con-
tribution to the thermal transport is due to phonons. Slightly increasing the field
H., < H <« Hy lowers their mean free path due to scattering off the vortex lat-
tice. At the same time, there is no significant change in the electronic contribution.
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Fig. 6.5 Field-dependent thermal conductivity of different compounds. a The thermal conductivity
of a clean s-wave superconductor (Nb with 7, = 9.1 K Lowell and Sousa (1970)) shows a very
large slope close to Hc, compared to a dirty one (TaggNbyy with 7, = 4.6K Lowell and Sousa
(1970)). Both develop a minimum at intermediate fields for finite 7. b Multiband superconductors
typically show a change of curvature in x(H) as in the case of MgB, (data shown for 7'/ 7. = 0.02,
T. = 38.1K Sologubenko et al. (2002)) or NbSe; (T/T. — 0, T, = 7.0K Boaknin et al. (2003)).
There are also hints that the skutterudite PrOs4Sby, is a multiband superconductor (7'/ 7, = 0.03,
T. = 1.75K) (Seyfarth et al. 2006). The typical unconventional superconductors TloBayCuOg¢s
(T/T. — 0, T, = 15K) (Proust et al. 2002) and UPd,Alz (T/ T, = 0.18, T, = 2.0K) (Watanabe
et al. 2004) show a large residual term, and a steep slope at low fields (especially Tl,BaxCuOg--s),
which can be superimposed by a minimum at low fields and finite 7" as observed in UPd, Al
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At high fields H < H.,, the contribution of the core states increases rapidly. Both
together, the development of the phonon and the electron contribution, gives rise to
a minimum in x(H) at intermediate fields.

For s-wave superconductors at higher temperatures, there is a considerable con-
tribution of delocalized quasiparticles at H < H.;. Increasing the field slightly
H., < H < H also decreases their mean free path due to scattering on vor-
tices, similar to phonons. At higher fields, the DOS of the delocalized quasiparticles
increases due to the Doppler shift as well as the contribution from localized core
states. Again, we observe a minimum in «*(H) at intermediate fields.

The minimum is temperature dependent. It does not exist in the limit 7 — 0 but
becomes more and more pronounced with increasing temperature. At very low 7, it
is mainly due to the reduction of the phonon mean free path, while at higher temper-
atures it is due to the electronic mean free path in the case of clean superconductors
and still due to the phonon mean free path in the case of dirty superconductors (Pesch
etal. 1974).

There are some attempts to calculate the field-dependent thermal conductivity
for an s-wave superconductor. Dubeck et al. (1963, 1964) treated the field depen-
dence with the help of a spatially averaged gap A(T, H) inserted into the theoretical
description of x(T) by Bardeen, Rickayzen, and Tewordt (Bardeen et al. 1959). For
fields close to H,, Maki (1967) calculated «$(H) in a clean superconductor and
obtained x5(H) o (Hp — H)'?. For the case of a dirty superconductor, Caroli
and Cyrot (1965) obtained x3(H) o< (Hp, — H) close to H,. Both cases could
nicely be observed in Nb alloys of different quality (Lowell and Sousa 1970). These
experiments also confirm the above qualitative picture (see Fig.6.5a).

There are superconductors which involve more than one band. The textbook exam-
ple for this case is MgB,. Multiband superconductors can show complex behaviour
in magnetic fields in the case of different sizes A; of the gaps. At finite fields, the
tunnelling probability for the core states is controlled by the ratio of the coherence
length £ and the vortex distance (Golubov and Koshelev 2011), the latter of which
decreases with increasing field. A small energy gap on one of the Fermi-surface
sheets leads to an increase of £ and thus an increase of x at low fields (Kusunose
et al. (2002); Golubov and Koshelev (2011)). This behaviour was observed in MgB,
(Sologubenko et al. 2002) or NbSe, (Boaknin et al. 2003) (see Fig. 6.5b).

Let us now consider the case of unconventional superconductors. The main differ-
ence of superconductors with nodes in the gap compared to fully gapped supercon-
ductors is the larger number of delocalized quasiparticles around the nodes, which
can be excited even at low temperatures. Hence, the transport at low 7 is not domi-
nated by phonons but by those quasiparticles along the nodal direction. Applying a
magnetic field H.; < H < H,, their DOS grows rapidly due to the Doppler shift.
Hence, we expect a larger slope of x*(H) compared to the s-wave case. This can be
observed, e.g., in the typical cuprate d-wave superconductors, such as Tl;Ba,CuOg 4
(Proust et al. 2002). The slope can vary depending on the type of nodes and the purity
of the sample (Kiibert and Hirschfeld (1998); Vekhter and Houghton (1999); Won
and Maki (2001)) (see e.g. UPd, Al; Watanabe et al. (2004) in Fig. 6.5b). At higher
temperatures, this effect is again superimposed by electron-vortex scattering at low
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fields (Vekhter and Houghton (1999); Kiibert and Hirschfeld (1998)) leading to a
minimum in «*(H) similar to the s-wave superconductors described above. This
behaviour could be observed experimentally e.g. in UPd; Al; (Watanabe et al. 2004)
and Sr,RuOy4 (Izawa et al. 2001) (see Fig. 6.5b).

6.5.2.2 Clean or Dirty Limit

The above general considerations illustrate that the properties of superconductors
exhibit distinct differences between the cases of clean and dirty materials. Generally,
a superconductor is in the clean limit if the coherence length & is much smaller than
the mean free path /. > £. The dirty limit is characterized by [, < &.

The Ginzburg-Landau coherence length £ can be calculated by Poole (2000)

P __Hh (6.6)

Ho=—0 = ——
. 27€2 demf?

to& =1.53 x 108 min LaPt,Gej;.

The mean free path is often estimated from the relation x, = Ccvrl./3 for the
electronic thermal conductivity. Using C. = T, k, = kwp = LoT/p, Ly =
3k3/2¢%, and v = 72k N (er)/3, we find three possibilities to estimate /.

_ 3k(T — 0) _ 3Ly _ 27 1
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all of which require the knowledge of the Fermi velocity vr and additionally the
knowledge of the density of states N (ep) in the last case. We extract these values
from band-structure calculations by H. Rosner (cf. Fig.6.6). They revealed three
bands contributing most to N (eg). These bands have the following parameters

Fig. 6.6 Calculated DOS of T T
LaPtyGej,. There are three
bands contributing most to
N (ep) at the Fermi energy:
173,174, and 175.
Calculations by H. Rosner.
For details of the
calculations see also
Gumeniuk et al. (2008)
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states s M

band 173: N(eg) =~ 2 , vp=0.02..1.23 x 10° —, (6.8)
eVcell s
states 6 M

band 174: N(eg) # 8 ——, v = 0.05..0.97 x 10° —, (6.9)
eVcell S
states s M

band 175: N(eg) * 1 ——, vp=0.12..1.12 x 10° —. (6.10)
eVcell S

The unit-cell volume is V. = 641.28 A (Gumeniuk et al. 2008). The above values
lead to a maximum, minimum and average mean free path for the three alternative
estimations

Imax =4x107"m, 3x107'm, 4x10°m, (6.11)
Ipin=6x10""m, 5x107°m, 2x107%m, (6.12)
lyg =2x107%m, 1x10%m, 6x10*m. (6.13)

All three methods give an average mean free path which is roughly the coherence
length /. =~ . Therefore, our sample is located in the dirty limit.
6.5.2.3 Experimental Results

We now turn to the field-dependent «(H)/T for LaPtyGe;,, which is shown in
Fig.6.7a for different temperatures between 290 and 650 mK together with a zero-
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14 | T/T;=0.08
— ' TaggNbyg: T/Tc=0.35 ——
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Fig. 6.7 Magnetic-field dependence of the thermal conductivity. Dots represent field sweeps after
zero-field-cooling. Open squares are extracted from temperature sweeps after field-cooling, filled
squares are their zero-temperature extrapolations. The line is a guide to the eye. a k/T(H) is
almost linear and develops a minimum at low fields which becomes more pronounced with higher
temperature. b We compare the data from (a) for 650mK and 7 — 0 with the dirty s-wave
superconductor TaggNbyy (Lowell and Sousa 1970). Note the different scaling of the field axis to
account for the different H,; and H¢y. The shaded areas illustrate qualitatively how the electronic
and the phonon contribution change with field (Dubeck et al. (1963); Pesch et al. (1974))
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temperature extrapolation. The measurements were performed on increasing field and
are consistent with the temperature dependence shown in Fig. 6.3. Comparison with
measurements during decreasing field showed no hysteresis. A clear kink is visible at
H., = 1.4 T, which is slightly lower than 1.6 T from the extrapolation of the specific-
heat data obtained at 7 > 1.8 K on polycrystals (Gumeniuk et al. 2008). This H.,
is also much smaller than the 2.5 T obtained from our resistivity measurements (cf.
Sect.6.3). The latter value, however, is most likely higher due to surface or impurity
effects. The good agreement of H., determined from thermal conductivity and from
specific heat proves the bulk sensitivity of the thermal-conductivity measurement.
Below H.,, the thermal conductivity shows an almost linear field dependence in the
zero-temperature limit. For finite temperatures, a minimum appears at low fields,
which shifts to higher fields and becomes more pronounced as the temperature is
increased.

The specific heat and the temperature dependence of the thermal conductivity
point towards a single BCS s-wave gap. Additionally, an estimation of the mean free
path and the coherence length suggests that our sample is in the dirty limit. There-
fore, we will first compare our experimental results on the field-dependent thermal
conductivity with predictions and other examples of dirty s-wave superconductors,
which were described in detail above. The predictions of a linear slope of k(H)
close to H., and a minimum at intermediate fields, which is absent for T — 0 but
increases in amplitude with increasing 7', fit nicely to our observations. In Fig.6.7b,
we directly compare our result with measurements on the dirty s-wave superconduc-
tor TaggNbyg (Lowell and Sousa 1970). The results for other examples of this class
look similar (Gupta and Wolf (1972); Lowell and Sousa (1970); Muto et al. (1968);
Dubeck et al. (1964)). Although the lowest-temperature data available for TaggNbyg
are still taken at higher T both absolute (7 = 1.61K) and relative (T/ T, = 0.35)
than our measurements, they fit almost perfectly onto our results for 7 = 650 mK or
T /T, = 0.08, respectively. The main difference is the very large thermal conductivity
at H = H,; for TagoNb,g, which is due to the high phonon thermal conductivity n;
at higher temperature. For LaPtsGe,,, we expect the phonon contribution to increase
considerably with increasing T as can be seen in Fig. 6.4. This suggests an increase
at H = H,; for higher T, similar to TagyNb,, also in LaPt;Ge,.

The very good agreement with results for a dirty s-wave superconductor imply
that the field dependence of the thermal conductivity is composed of a phonon part «,
which decreases with increasing field due to scattering on vortices, and an electronic
contribution, which increases due to an enhanced number of localized states in the
vortex cores tunnelling to ever closer neighbouring vortices.

Since other skutterudites are discussed in terms of multiband superconductivity
(Seyfarth et al. (2006); Zhang et al. (2013)), we also want to study this possibility
for LaPt4sGe;,. As shown in Fig.6.5b for MgB, and PrOssSbi,, a typical feature
of k(H) is a plateau at intermediate fields, which is attributed to the suppression
of the smaller of the two gaps. We do not observe such change of curvature in
LaPt,;Ge;,. However, as in the case of NbSe, (Fig.6.5b), this change can be very
weak. Additionally, we expect from specific heat either two very similar gaps or only
a very small contribution of a second gap. In the first case, the contribution to x(H)
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can be very similar. This case is generally difficult to distinguish from a single-band
superconductor with any method. For the second case, one would expect a small field
scale involved, which could entirely be covered by the phonon contribution at finite
temperatures and missed in the zero-temperature limit due to the small number of
points at low H.

Let us now compare our results with observations and predictions for the case of
nodes in the superconducting gap. There are both theoretical (Vekhter and Houghton
(1999); Kiibert and Hirschfeld (1998)) and experimental (Machida et al. (2012);
Izawa et al. (2001); Watanabe et al. (2004)) reports on a minimum in x(H) for
unconventional superconductors. The slope above the minimum can vary consider-
ably depending on the type of gap and the purity of the sample (see Fig. 6.5b). Hence,
these properties do not rule out nodes in the gap of LaPt;Ge, completely. However,
one expects a sizeable residual term for 7 — 0 in a nodal superconductor. In con-
trast, both single-band (Fig. 6.5a) and multiband (Fig. 6.5b) s-wave superconductors
show a tiny residual term exactly as our results on LaPt;Gey;.

6.5.3 Field-Angle Dependence of the Thermal Conductivity

The variation of the thermal conductivity with the magnetic field direction is a pow-
erful tool not only to probe the existence of nodes in the superconducting gap, but
also to gain information about their position in k space (Vekhter et al. (1999); Yu
et al. (1995); Matsuda et al. (2006)). The Doppler-shifted energy of the delocalized
quasiparticles around the nodes leads to a field-angle-dependent DOS and thus to an
angle-dependent thermal conductivity x (6, ¢) due to the term hk - vs(H ). The angles
6 and ¢ denote, respectively, the azimuthal and polar angle in spherical coordinates.
The oscillation patterns in (6, ¢) depend on the specific gap structure.

However, the analysis of these experiments remains a challenging task. First,
oscillations in (6, ¢) can have several other reasons, some of which are hard to
distinguish from gap nodes. If the oscillations proved to be due to nodes, it is secondly
very difficult to extract their k position, because the magnetic field direction not only
determines the DOS but also the scattering time of the quasiparticles. Additionally,
sign changes of the oscillations are predicted as a function of magnetic field strength
and temperature (Vorontsov and Vekhter (2006); Das et al. (2012)). For this reason,
we focus on the question whether the origin of the oscillation patterns lies within a
nodal structure of the superconducting gap.

Figure 6.8 shows the field-angle dependence of «(¢) at 500 mK = 0.06 7. and
for different magnetic fields between H = 0 and 2 T. We restrict our experiments to
a rotation of H within the plane perpendicular to j (cf. Fig.6.9). Our experiments
do not show any dependence on zero-field versus field-cooling condition, and field
cooling at different angles gives consistent results. At zero field, x(¢) = const.,
which is expected for the magnet rotating around the sample with H = 0. Our
data at finite field show nicely resolved oscillation patterns, which vary drastically
by changing the magnetic field. The oscillations below H., are slightly off-centred,
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Fig. 6.8 Field-angle dependence of the thermal conductivity at 7 = 500 mK. Data were taken in
zero-field cooling (dots) at 0° or 180° depending on the sweep direction indicated by the arrows.
d, g The results are consistent with sweeps under field-cooling (filled squares) again at 0° or 180°,
and with single data points extracted from 7 sweeps under field cooling at different angles (open
squares). Lines represent fits to the data according to Eq.6.14. In d, e, g this fit is performed to the
data for sweeps along 0° — 180°. ¢ The Hc(¢) anisotropy determined from torque measurements
(Forster et.al. 2016) (triangles) can nicely account for the 4-fold oscillation

which indicates that our sample was misaligned by ¢y = 7° (cf. Fig. 6.9). Only at low
fields (see Fig. 6.8g), we find hysteresis effects together with a quite sharp anomaly
around 55° and 110°. They are probably due to vortex pinning and associated jumps
in the vortex lattice during rotation.
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Fig. 6.9 Orientation of sample, current j, and magnetic field H. Left The field rotates around the
sample varying the angle ¢. Middle The field-angle-dependent measurements revealed a misalign-
ment of ¢ in direction of the rotation. Right Furthermore, the measurement results for a rotation
with a field of H = 2.0T can be explained by an additional tilting of the sample along 6

In the following, we will decompose the patterns in Fig.6.8 and model every
oscillation with a sine function with an amplitude A, and a phase shift ¢, (x = 1..4).
The complete model function is

k(@) = ko + A1 sin(2(¢+¢1)) + Az sin(4(p + ¢2))
+ A3sin(2(¢ + ¢3)) + Assin(12(¢d + ¢4)) . (6.14)

The field-independent shifts ¢, are fully determined by the misalignment ¢ of
the sample as is described below in detail. A fit of Eq. 6.14 for each data set in Fig. 6.8
with o and A, as free parameters leads to the lines shown in every sub-plot. We set
Az = 0 for 1.5 and 2.0°T due to the large noise level. We plot the field dependence
of the amplitudes A, in Fig.6.10. As an overview, the origins of all four oscillations
are listed in Table 6.1.

The 2-fold oscillation at 2 T above H,; is not symmetric to (90° — ¢y). It can nicely
be explained by a slightly tilted sample away from H L j assuming a difference
of the thermal conductivity parallel and perpendicular to the field k1 g # K.

Fig. 6.10 Amplitudes A, 15 . . —
for the oscillations found in Ay 2-fold —v— ‘
the field-angle dependence Ay 4-fold

Ay 2-fold

of k(¢). Amplitudes are 4 L A 12-old i

determined by a fit of
Eq.6.14 (lines in Fig. 6.8) to
k(¢) (data in Fig.6.8) and
normalized by

kn = kK(He, T = 500 mK)

Amplitude/x,, (%)
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Table 6.1 List of origins for observed oscillations in x(¢)

Period State Origin of oscillation
Ay 2-fold N, SC Tilted sample (k15 # K| H)
Ar 4-fold SC H¢> anisotropy
Az 2-fold SC Demagnetization effects + phonon-vortex scattering + pinning
Ay 12-fold SC Fermi surface/velocity anisotropy or gap nodes or anisotropic
phonon mean free path

N normal state, SC superconducting state. We can unambiguously connect the first three oscillations
to the listed origins. The source of the last one with a 12-fold symmetry remains unresolved, but
can be limited to three possibilities

Experimentally, a tilting by an angle 6, is most likely to occur around the axis
H (¢ = 90°) as indicated in Fig. 6.9. The shift ¢; = 59° of the resulting sine function
is then solely determined by ¢y. Its amplitude A; depends on the ratio x| g /< r. We
describe this oscillation with the second term in Eq. 6.14. Its amplitude A changes
sign twice at H,, and at very low fields. Sign changes of Aj, i.e., changes in the
anisotropy from x| g < Kju to K1 g > kg are expected (Maki 1967) and observed
(Lowell and Sousa 1970) in the mixed state.

Below H,,, a 4-fold oscillation appears with a phase shift ¢, = 16° (third term in
Eq.6.14). Three different origins are possible: an anisotropy of H,, Fermi-surface
or Fermi-velocity anisotropies, or nodes/extrema in the gap. Torque measurements
revealed a 4-fold H.,(¢) anisotropy Forster et al. (2016), which can be converted into
a k(¢) anisotropy using the results of x(H) close to H.,. We include the so obtained
values into Fig. 6.8c. They fit almost perfectly onto our measured «(¢). Hence, the
4-fold oscillation can be entirely ascribed to a H,, anisotropy. The fit values for A,,
which reach a maximum right at H;, and decrease monotonically towards H = 0,
corroborate this result.

Below 1T, we observe hysteretic jumps in «(¢) at around 55° and 110° due to
the pinning of the moving vortex lattice. Hysteresis effects due to pinning were
also observed before Aubin et al. (1997) in other compounds. In the absence of
any clear model for these hysteresis effects, we include them into a two-fold sine
function (fourth term in Eq.6.14), which we use to model the underlying two-fold
oscillation. This oscillation and the jumps appear again symmetric to (90° — ¢y),
hence ¢3 = 16°. The amplitude A3 reaches its maximum at low fields between 0.2
and 0.5 T. The field dependence of x in Fig. 6.7 indicates that the main contribution
in this field range comes from phonons. Therefore, it is natural to ascribe the 2-fold
anisotropy to an anisotropic mean free path of the phonons. We can simultaneously
account for demagnetization effects, since they also lead to two-fold oscillations.

Below 0.75T, a 12-fold oscillation appears with the same phase shift ¢4 = 16°
(fifth term in Eq.6.14). In general, this feature can have several reasons. First, the
Fermi surface or Fermi velocity in this compound induces higher order oscillations
than the 4-fold cubic symmetry. Such unusual oscillation patterns resulting from
Fermi-surface anisotropies are indeed predicted (Das et al. 2012). Second, the 12-fold
oscillation stems from nodes or deep minima in the gap. Since we do not observe any
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signature of nodes in the temperature-dependent thermal conductivity, these extrema
could only be shallow. They may be connected to a possible second gap with a very
small contribution, since the oscillation disappears at higher fields. Third, the motion
of the vortices leads to anisotropic scattering of phonons or electrons. The main
contribution to x(H) at low fields is due to phonons. Similar to the contribution
of the phonons to «(H), the 12-fold oscillation also flattens out for higher fields.
Therefore, a connection to the phonon scattering time seems likely, however, there
is no obvious explanation for such a high frequency of oscillation.

6.6 Conclusion

We performed specific-heat and thermal-conductivity measurements to study the
superconducting order parameter of LaPtsGej,. Our specific-heat results can be
described with a single BCS gap of the size A = 2.0kgT.. If there is a second
gap involved as in PrPt4Ge,, it has a very similar gap size or its contribution to the
specific heat must either be very small or below our temperature limit.

The focus of our study was on the low-temperature thermal-transport studies and
we used the specific-heat results to analyse them in detail. Both the temperature-
and the magnetic-field-dependent thermal conductivity are compatible with a BCS
s-wave superconductor. No indications were found for a second gap. As for the
specific heat, we can, however, not completely rule out either a very small second
gap with a tiny contribution or two gaps with very similar gap sizes.

As a more complex probe of the order parameter, we also performed field-angle-
dependent thermal-conductivity measurements. Previously, oscillation patterns in
the angle dependence were used to determine the existence and the exact position of
nodes in the gap of several unconventional superconductors. We were able to improve
our set-up, to nicely resolve field-angle-dependent oscillations also in LaPtsGe;,.
They consist of various components involving a lower, a higher, or the same symmetry
compared to the underlying cubic crystal lattice. They could all be assigned to sources
other than nodes in the gap, except of a fast 12-fold pattern, whose origin stays unclear.
All our results point towards conventional superconductivity. The rich pattern, that
we found in the field-angle dependence, therefore, highlights the importance of a
careful analysis of these kind of measurements.
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Chapter 7
Summary and Outlook

In this dissertation, we set out to investigate phenomena in strongly correlated rare-
earth intermetallic compounds, which are unconventional in the sense that they go
beyond the fundamental concepts of condensed-matter physics—the Fermi-liquid
theory and Landau’s concept of symmetry-breaking phase transitions. To gain a
deeper understanding of the underlying physical mechanisms of the unconventional
behaviour, we tested the validity of established physical principles and laws using
transport, particularly thermal-transport measurements at very low temperatures.

For our thermal-transport measurements, we used the standard one-heater-two-
thermometers method to study the behaviour of our materials as a function of tem-
perature in the steady-state procedure. In addition, we also implemented a pseudo-ac
method to perform isothermal investigations as a function of an external parameter,
in our case magnetic field and magnetic-field angle. The magnetic field introduces
an additional energy scale into our systems. It tunes competing interactions, which
are responsible for the interesting phenomena we want to investigate. Using our
experimental set-ups we studied three specific scientific questions.

We first investigated the quantum critical point (QCP) in YbRh,Si,—a point
where a material undergoes a second-order phase transition at zero temperature
driven not by thermal but by quantum fluctuations. The standard Hertz-Millis-Moriya
theory is able to describe many of the observed QCPs, but YbRh,Si,, in which a tiny
magnetic field induces such a transition, shows unconventional behaviour. There is
an ongoing debate and there are several theoretical attempts to describe the QCP in
YbRh,Si,. Our aim was to identify if a theory can be formulated in the framework of
standard quasiparticles or if this picture breaks down at the QCP. An established test
of the existence of quasiparticles is the Wiedemann-Franz law. It is a fundamental
law, which relates the thermal and the electrical conductivity and which is observed
in virtually all metals. It is valid in the zero-temperature limit if quasiparticles exist.

While we observe a validity on either side of the QCP, our extrapolation at the
critical magnetic field suggests a violation of the Wiedemann-Franz law at the QCP.
This implies a breakdown of the standard quasiparticle picture and puts strong con-
straints on every theory which aims to describe the QCP in YbRh;,Si,. Three other
groups repeated our measurements with essentially the same experimental results.
© Springer International Publishing Switzerland 2016 113
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However, their interpretations lead to a verification of the Wiedemann-Franz law.
The different viewpoints are caused by an additional contribution in the heat trans-
port visible both in zero field and at the critical field. We ascribe this contribution to
transport by (para-)magnons. Its existence at the critical field was clearly confirmed
only in the most recent study performed at the lowest temperatures reached so far.
Unfortunately, it masks the low-temperature electronic thermal conductivity. Only a
detailed investigation and a deeper understanding of this contribution can settle the
ongoing debate about the Wiedemann-Franz law in YbRh,Si,.

In the second project, we investigated the evolution of the Kondo effect in magnetic
fields with an energy of the order of the Kondo temperature. We studied the com-
pounds CeRu;Si; and YbRh;Si,, for which transitions at 8 T and 10T, respectively,
were reported. The origins of these transitions are debated. While the experimen-
tal signatures in both compounds are quite different, similar interpretations can be
found in literature. Two models are proposed: an abrupt breakdown of the Kondo
effect or a topological change of the Fermi surface called Lifshitz transition. We
used magnetic-field-dependent resistivity and thermopower measurements to study
the field development of the quasiparticle bands in both materials in general and the
reported transitions in particular. These probes are especially suitable due to their
sensitivity to both changes in the density of states and in the scattering rate. The
latter in particular renders transport measurements an ideal tool to detect Lifshitz
transitions.

For CeRu;Si,, we demonstrated that the thermopower is consistent with a Lif-
shitz transition predicted by previous electrical-transport studies. However, rigid-
band models seem insufficient to incorporate also thermodynamic observations and
a satisfying global description is still missing. For YbRh,Si;, our measurements
revealed in total three transitions at high fields instead of a single one at 10T. We
found an unexpected validity of the Mott formula above 2T and an extraordinary
good agreement of field-dependent renormalized-band structure calculations with
our and previous experimental results. These findings were used to identify Lifshitz
transitions as the origin of all three transitions. They are superposed on a smooth sup-
pression of the Kondo effect in magnetic field. The excellent agreement of experiment
and theory proves that renormalized band calculations are a very suitable approach
to describe Kondo lattices in magnetic field. The knowledge of the field development
of the quasiparticle bands has a strong impact, e.g., on the interpretation of quantum-
oscillation measurements. Moreover, our field-dependent measurements seem to be
an excellent playground for a systematic study of Mott’s formula in heavy-fermion
systems and of transport signatures across Lifshitz transitions.

Within the third project, we studied the superconducting state of LaPt;Ge,. While
previous NMR and photoemission studies on LaPt;Ge;, were interpreted in terms
of a conventional BCS superconductor, more extensive studies on the closely related
PrPt4Ge, revealed signs of unconventional and/or multiband scenarios. Results on
the series La,Pr|_,Pt4Ge|,, however, indicate compatible order parameters for the
two endmembers. To investigate the superconducting order parameter of LaPt;Ge
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in more detail, we performed thermal-conductivity studies combined with specific-
heat and resistivity measurements. We compared our experimental results with pre-
dictions for a fully gapped BCS superconductor and for superconductors with nodes
in the gap.

Our specific-heat and our temperature- and field-dependent thermal-conductivity
results on LaPt;Ge|, can be consistently described by a model of a fully gapped
superconductor. The field-angle dependence of the thermal conductivity shows an
unexpected rich oscillation pattern. Usually, oscillations are taken as a sign of nodes
in the superconducting gap and are used to determine their position. Our studies,
however, indicate a nodeless gap. With a detailed analysis, we were able to assign
most of the frequencies to features other than nodal structures. Only the origin of one
frequency remains unclear. Nevertheless, these results clearly indicate that a careful
analysis of field-angle-dependent studies is indispensable for a reliable interpretation
of the results.

These three diverse projects were all addressed with thermal transport as primary
probe, using the magnetic field to tune the interactions in the systems. They show
that thermal transport can be a very general and powerful tool that complements
other transport and thermodynamic measurements, allowing us to investigate very
fundamental physical laws in strongly correlated condensed matter.
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