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Preface

To the old saying that if you want to learn something about a subject, teach a course
on it, I would add the much more arduous option of writing a book about it. The
upside, of course, is that you may gain a perspective on a longtime favorite subject
which can be achieved in no other way. The fact is that the opportunity to write
such a book as this is, indeed, a rare opportunity, especially for someone who by the
calendar is well into retirement years.

While for a physics researcher, high Tc itself was the opportunity of a lifetime,
and revisiting the old milestones within is a genuine nostalgia trip, it is also
important to reflect on the purpose of such a book as this. Now that the great
majority of experimental high-Tc studies are finished, who could be interested in
such a book? To give some kind of answer to this, let me pinpoint the 2006 M2S
Conference in Dresden.1 Not only was it at this conference that the idea for this
book was hatched, but the conference itself evinced an astonishingly high level of
interest in high-Tc issues, especially the theoretical aspects. Since it is now a
number of years since a review of high-Tc studies with NMR has appeared, there
may be a need on the part of theorists and other interested parties for an organized
summary of results and of the ideas which have been advanced to bind them
together.

The foregoing offers a partial answer to the “Why now?” question, but let me
note that excellent answers to that question also emerge from the subject, itself.
Although many issues were settled as of ten years ago, new ideas and even new
phenomena have appeared since that time. Let me offer two examples. The con-
firmation by N. Curro and coworkers of a dynamical exponent crossover in the high
temperature phase diagram opens up a new arena of potential experimental activity.
Pines and coworkers had predicted such an effect; other theorists, including Varma,
had predicted a phase boundary in that region. Another interpretive breakthrough is
to be credited to Uldry and Meier, who in 2005 created a new, general method for

1This was the 8th International Conference on Materials and Mechanisms of Superconductivity
and High Temperature Superconductors, Dresden, July 9–14, 2006.
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analyzing relaxation (T1) data in terms of temperature-dependent spin-spin corre-
lation coefficients for close-neighbor copper sites. Discussed at some length in this
volume, this method rests on a very firm theoretical foundation. It has the great
virtue that it separates these correlation effects from the temperature dependence
of the quasiparticle dynamics, itself, which theoretical modelers have been trying to
get at. If this extraordinarily simple method had been “available” fifteen years ago, I
suggest that our understanding of these issues would be greatly advanced from
where it is.

As for regrets, they come mainly under the heading of omissions. There are
many excellent pieces of work which are not included, simply for want of time and
space. The book was conceived of as a monograph and is in no sense an ency-
clopedia, not even within the narrow purview of high-Tc NMR. As an example, I
greatly regret omitting the large and fascinating subject of impurity doping in
cuprates, from which we have nonetheless learned a lot.

Let me conclude by mentioning just a few of the people who have contributed,
directly and indirectly, to the initiation and creation of this book. First let me thank
Prof. Hiroshi Yasuoka, for bringing me to Tokai-mura in Japan for a five-plus year
extension of my career in solid-state NMR, and through which I also became
involved in the European physics scene. Let me thank Prof. Drs. Frank Steglich and
Jürgen Haase, for their support during my extensive stay in Dresden in 2006 (and
later). Invaluable support came from the Department of Physics at the University of
Michigan in providing work space and the library facilities required for a project
such as this. I want especially to thank Prof. Chandra Varma of the University of
California at Riverside, for shepherding this book into existence through his role as
editor for Springer Verlag, and for his reading of much of the manuscript, giving
penetrating, enlightening, and invaluable comments on the presentation. I also
thank Jinan Yang for help with computer issues and with preparation of the figures.

Ann Arbor, USA Russell E. Walstedt
June 2007

viii Preface



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Basic Phenomenology of High-Tc Materials . . . . . . . . . . . . . 2
1.2 Carrier Doping and the Master Phase Diagram . . . . . . . . . . . . . . . 3
1.3 The NMR Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outlines of the Remaining Chapters . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Summary of Chapter 2—NMR Review . . . . . . . . . . . . . . . 6
1.4.2 Summary of Chapter 3—Preliminary Cuprate NMR . . . . . 7
1.4.3 Summary of Chapter 4—The Pseudogap . . . . . . . . . . . . . . 7
1.4.4 Summary of Chapter 5—T1 Models . . . . . . . . . . . . . . . . . 9
1.4.5 Summary of Chapter 6—The Dynamical Susceptibility . . . 10
1.4.6 Summary of Chapter 7—NMR Studies of Actinide

Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.7 Summary of Chapter 8—The Kondo Effect

and Heavy–Fermion Behavior . . . . . . . . . . . . . . . . . . . . . 12
1.4.8 Summary of the Appendix:

The Properties of Spin Echoes . . . . . . . . . . . . . . . . . . . . . 13

2 Introduction to NMR Studies of Metals, Metallic Compounds,
and Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 The Fundamental Elements of NMR . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Observation of NMR/NQR Signals . . . . . . . . . . . . . . . . . . 17
2.1.2 Definition and Interpretation of NMR Parameters: T2

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 The Basic Structure of NMR Spectra in Solids . . . . . . . . . 22
2.1.4 Definition and Interpretation of NMR Parameters:

The Shift Tensor Kab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Definition and Interpretation of NMR Parameters: T1 . . . . . 29

2.2 NMR Probe of sp-Band Metals and Type I Superconductors . . . . . 36
2.2.1 NMR Shifts and Relaxation in Simple

Pauli Paramagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



2.2.2 The Moriya Theory of Exchange Enhancement in Simple
Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 NMR in the Superconducting State of Simple Metals . . . . 41
2.3 Static and Dynamic Magnetism in d-Band Metals . . . . . . . . . . . . 47

2.3.1 The d-Electron HF Interactions . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Orbital Shift and Susceptibility . . . . . . . . . . . . . . . . . . . . . 50
2.3.3 Spin-Lattice Relaxation Effects for d-Band Electrons . . . . . 53
2.3.4 NMR Studies of 3d Metals as Type-II Superconductors . . . 56
2.3.5 T1 Phenomenology for Type-II Superconductors . . . . . . . . 61

3 The Superconducting Cuprates: Preliminary Steps in Their
Investigation via NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 Cuprate Structures and Doping Effects: LSCO and YBCO . . . . . . 68

3.1.1 LSCO: A Superconductor with Tc(max) ’ 40 K . . . . . . . . 68
3.1.2 The 92 K Superconductor YBa2Cu3O7�x (YBCO) . . . . . . . 70
3.1.3 Physical Models of Itinerant Quasiparticles in Cuprates . . . 71

3.2 Early NMR/NQR Studies: The Early Predominance of YBCO . . . 72
3.2.1 NMR Shift and Relaxation of the 89Y in YBCO7 . . . . . . . 73
3.2.2 Establishing the Site Assignment for the Cu(1)

and Cu(2) NQR Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.3 Variation of the 89Y Shift K89(x) with x

for YBCO6+x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Physical Models for the Relaxation of 63Cu(2)

in YBCO7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.5 Introduction of the Spin Hamiltonian Model

for the Cu2þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.6 Experimental Breakthrough: Oriented Powder

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 The Mila-Rice-Shastry Model: A Universal HF Tensor

for the Cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 General Definition of the HF Tensors . . . . . . . . . . . . . . . . 81
3.3.2 Extracting the Cu(1, 2) HF Tensors for YBCO7

from Shift and Susceptibility Data Using the Spin
Hamiltonian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.3 Quantum Chemistry of YBCO7 and the Hyperfine
Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.4 T1 Ratios and Electron Spin Correlation Effects . . . . . . . . 90
3.4 Incorporating 17O and 89Y Data into the Mila-Rice-Shastry

Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Measurements of T1 for 17O in YBCO7 . . . . . . . . . . . . . . 96
3.4.2 The One-Band, Two-Band Debate: 89Y and 17O(2, 3)

NMR in YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x Contents



3.5 Formulation of T1 in Terms of v00ðq;xÞ and q-Dependent HF
Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.5.1 Derivation of the Dynamic Susceptibility T1 Equation . . . . 99
3.5.2 The Fluctuation-Dissipation Theorem . . . . . . . . . . . . . . . . 100

3.6 A d-Wave Model for the NMR Shift and T1 at T \ Tc . . . . . . . . . 104
3.6.1 The NMR Shift Behavior for T\ Tc . . . . . . . . . . . . . . . . . 104
3.6.2 The Monien-Pines Calculations of NMR

Shifts Below Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6.3 Calculating the Relaxation Decay Curve . . . . . . . . . . . . . . 108

4 Pseudogap Effects in Cuprate NMR Studies . . . . . . . . . . . . . . . . . . . 113
4.1 Pseudogap Effects and Dynamic Susceptibility in La2�xSrxCuO4

(LSCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.1.1 Spin Susceptibility Scaling for La2�xSrxCuO4 . . . . . . . . . . 117
4.1.2 Behavior of the 17O and 63Cu NMR Shifts in LSCO . . . . . 119
4.1.3 T1 Results for Planar 63Cu and 17O. . . . . . . . . . . . . . . . . . 122
4.1.4 Analysis of NMR Data for LSCO Using INS Data for

v00ðq;xÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2 The Pseudogap in Oxygen–Deficient YBCO7-x . . . . . . . . . . . . . . 134

4.2.1 HF Parameters for YBCO6.63 from Scaling
of Shift Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.2 A Simple Model Theory of Spin Dynamics
for YBCO6.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.3 INS Data for Dynamic Susceptibility of Underdoped
YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2.4 T1 Data and Dynamical Susceptibility–Based Analysis
for YBCO6.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 Pseudogap Phenomenology with Other Probes . . . . . . . . . . . . . . . 153
4.3.1 Pseudogap Effects in the Electronic Specific Heat . . . . . . . 154
4.3.2 ARPES Studies of Pseudogapped Cuprates . . . . . . . . . . . . 154

4.4 Pseudogap Behavior of YBa2Cu4O8 (Y248) . . . . . . . . . . . . . . . . . 158
4.4.1 NMR Shift and Relaxation Behavior in Y248 . . . . . . . . . . 158
4.4.2 Measuring the Pseudogap Isotope Effect in Y248

with NMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.4.3 Theory of the Pseudogap by Varma . . . . . . . . . . . . . . . . . 164
4.4.4 Effect of Zn Impurities on the Pseudogap in Y248 . . . . . . 165

5 Relaxation Models for Cuprate NMR . . . . . . . . . . . . . . . . . . . . . . . . 167
5.1 The Uldry-Meier Parameterization Model . . . . . . . . . . . . . . . . . . . 169

5.1.1 Basic Formulation of the UM Analysis . . . . . . . . . . . . . . . 169
5.1.2 The Uldry-Meier Analysis of YBCO7 . . . . . . . . . . . . . . . . 172
5.1.3 The Uldry-Meier Analysis of YBCO6.63 . . . . . . . . . . . . . 177
5.1.4 The Uldry-Meier Analysis of YBa2Cu4O8 (Y248) . . . . . . . 177

5.2 The Millis, Monien, and Pines Model for T1 in Cuprates . . . . . . . 180

Contents xi



5.3 T1 Estimate for YBCO Using INS Data to Model v00ðq;xÞ . . . . . . 186
5.3.1 The Gaussian Model Susceptibility . . . . . . . . . . . . . . . . . . 188
5.3.2 Comparison with the UM Analysis Results for YBCO7 . . . 192

5.4 A Small-U Hubbard Model of Cuprate Spin Dynamics . . . . . . . . . 194
5.4.1 Basic Formulation of the Dynamic Susceptibility . . . . . . . . 194
5.4.2 Remarks on the Hubbard Model Calculations . . . . . . . . . . 197

5.5 The Large-U Hubbard Model of Si, Levin et al. . . . . . . . . . . . . . . 198
5.6 Relaxation via Orbital Currents Proposed by Varma . . . . . . . . . . . 202
5.7 Relaxation of Planar 63Cu and 17O at T\ Tc . . . . . . . . . . . . . . . . 205

5.7.1 v00ðq;xÞ for the Small-U Hubbard Model at T\ Tc . . . . . . 207
5.7.2 T1 and Spin-Spin Correlations Below Tc: The UM

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6 Dynamic Susceptibility Studies via NMR for the Cuprates . . . . . . . . 217
6.1 The Indirect Spin-Spin Coupling Theory of Pennington

and Slichter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.1.1 Some General Properties of the Indirect Spin-Spin

Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.1.2 The Gaussian Model of Indirect Spin-Spin Coupling

in YBCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.1.3 Measuring Indirect Spin-Spin Coupling via Spin-Echo

Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.1.4 Behavior and Interpretation of Indirect Couplings

in YBCO and Y248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.2 The Bulut-Scalapino Calculation of 1/T2g for T \Tc . . . . . . . . . . 228
6.3 Coordinated Interpretation of NMR and INS Data for LSCO . . . . 231

6.3.1 Review of INS Data for Optimally-Doped LSCO . . . . . . . 232
6.3.2 Interpretation of 63Cu and 17O T2 Data with INS Data

for v0ðqÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.4 The Sokol-Barzykin-Pines Scaling Theory of vðq;xÞ . . . . . . . . . . 240

6.4.1 Phase Diagram and Basic Relationships for T1,T2g . . . . . . 241
6.4.2 The Dynamical Crossover Study by Curro et al: Y248. . . . 244

7 NMR on Actinide Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 The Study of 235U and 17O in UO2 . . . . . . . . . . . . . . . . . . . . . . . 250
7.3 Octupolar Ordering in NpO2: 17O and 237Np NMR Parameters . . . 257

7.3.1 Analysis of 17O NMR Shift Data in the AFO/AFQ
Ordered State of NpO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

7.4 Cross Relaxation in NpO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.5 NMR of 239Pu in PuO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.6 A Study of 17O NMR in the Host Compound AmO2 . . . . . . . . . . 267

xii Contents



8 The Kondo Effect and Heavy Fermion Phenomena . . . . . . . . . . . . . 269
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.2 The Isolated Kondo Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.3 The “Kondo Lattice” and Heavy Fermions . . . . . . . . . . . . . . . . . . 273
8.4 A Universal NMR Shift Scaling Plot . . . . . . . . . . . . . . . . . . . . . . 276

8.4.1 The Knight Shift K in Heavy Fermion Materials . . . . . . . . 277
8.4.2 Further Refinement of the NPF Model . . . . . . . . . . . . . . . 279

8.5 One-Component Description of Magnetic Excitations
in CeIrIn5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8.5.1 Treatment of Spin-Spin Correlations in T1 for 115In . . . . . . 283

8.6 A Glimpse at Future Additions . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Appendix A: Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Contents xiii



Chapter 1
Introduction

The discovery of high-temperature superconductors among hole-doped CuO2 struc-
tures was one of those rare events in the scientific sphere which launches a whole
new world of activity for hundreds of theorists and experimentalists alike. It is now
more than 20 years since the New York City APS meeting dubbed the “Woodstock
of Physics” witnessed the announcement of the original high-Tc results [112], and
the level of activity on this topic remains extraordinarily high.

For the nuclear magnetic resonance (NMR) probe, the high-Tc materials have
offered a panorama of new phenomenology to be analyzed and categorized in ways
which had not previously come into use. It is the purpose of this volume to give
a systematic account of many of the phenomena which have come to light in the
process. The style of presentation is intended to be partly historical, partly tutorial
for the non-specialist, and partly a review. There are by now a very large number
of well-established ideas and effects descriptive of the cuprates to be addressed.
However, there is also the feeling, even 20 years on, that this presentation is only a
snapshot of a vigorous and ongoing enterprise.

We begin by presenting in this introductory chapter a broad perspective on the
phenomenology and materials to be addressed, as well as on the NMR probe itself
in the context of the cuprates. This is followed by an organizational synopsis of the
remaining chapters.

Note on the Second Edition: Now 10 years on, the condensed matter research
picture has changed markedly. Certain issues addressed as unresolved in the First
Edition have been substantially clarified, and sections of the presentation have been
updated as a consequence. Comments are inserted in the following subsectionswhere
appropriate. Further, while research on high-Tc materials continues, other areas have
become attractive for study, in particular other examples of strongly interacting elec-
tron systems, including many systems involving 4 f and 5 f electrons. Accordingly,
this edition will include two additional chapters, one on actinide oxides and one on

© Springer-Verlag GmbH Germany 2018
R.E. Walstedt, The NMR Probe of High-Tc Materials and Correlated
Electron Systems, Springer Tracts in Modern Physics 276,
https://doi.org/10.1007/978-3-662-55582-8_1
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2 1 Introduction

the Kondo effect and its consequence in the bulk sphere, namely Heavy Fermion
systems. These subjects have been particularly interesting vis–a–vis the NMR probe.
There are many other potential topics to consider for future editions. The two added
topics for this edition are reviewed briefly in turn in the following section.

1.1 The Basic Phenomenology of High-Tc Materials

The concept of a half-filled “conduction band” which cannot conduct on account
of on-site Coulomb repulsion forces, was inaugurated in 1949 by N. F. Mott—the
“Mott insulator” [122]. Mott, who discussed the case of NiO, commented, “Exper-
iments on the conductivity of cupric salts would be of great interest” [122]. Nearly
40 years later a “cupric salt”, with a modest amount of hole-doping in the conduc-
tion plane, emerged as a superconductor, and “high-Tc” was born. Just how such a
system conducts—and superconducts—then became the investigative preoccupation
of hundreds, possibly thousands of researchers around the world for many years to
follow.

The basic process whereby the entire system of localized, S = 1
2 , Cu

2+ moments
becomes a set of itinerant quasiparticles with the addition of a far smaller number of
mobile hole “carriers” is one of great fascination, upon which even now there seems
to be no clear theoretical consensus. As a basic mechanism, however, the Zhang-Rice
singlet picture [125] provides at least a conceptual framework. Since the quasiparti-
cles which result are known (through NMR studies) to pair off at low temperatures
into a ground state of magnetically inert Cooper-pair singlets, the resulting scenario
of fully itinerant character for the solitary holes on the Cu2+ sites seems at this point
incontrovertible.

Furthermore, these quasiparticles are known to possess a Fermi surface, with
respect to which angle-resolved photoemission studies (ARPES) can be used to mea-
sure the superconducting energy gap. However, in many cases, gapping is also found
to occur in the normal state as well [211–213], in what is known as the “pseudogap”
[187]. Many of the high-Tc systems also exhibit poor, but metallic-like conduction
in the normal state, characterized by a non–Fermi–liquid temperature dependence
ρ ∝ T instead of the usual T 2.

While the cuprates exhibit certain metallic attributes, they also clearly pos-
sess some features characteristic of the undoped insulating host, namely a power-
ful antiferromagnetic (AFM) exchange interaction between nearest-neighbor Cu2+
moments. The effects of theseAFMcouplings have emerged fromvirtually all inelas-
tic neutron scattering (INS) studies of the cuprates, and are amajor feature of theoret-
ical modeling and experimental fits to nuclear relaxation data as well (see Sect. 1.3).
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1.2 Carrier Doping and the Master Phase Diagram

There are by now hundreds of host structures known which contain CuO2 quadratic
layers that superconduct under suitable doping conditions. A partial list is given in
the review by Hazen [214]. In this volume, in order to limit the extent of material
to be covered, we focus on the three principal systems La2−xSrxCuO4 (LSCO:x),
YBa2Cu3O7−x (YBCO7-x), and the related stoichiometric compound YBa2Cu4O8

(Y248). These three were chosen, because they emerged early on as systems easy
to synthesize and characterize. As a consequence, there is an extensive literature
built up around them both in terms of experimental data and, naturally, of theoretical
modeling as well. Even with our purview narrowed to these three systems, there are
unfortunately many interesting studies which had to be omitted.

One of the most important characteristics of the YBCO7-x and LSCO:x are their
phase diagrams, plotted with coordinates T versus x . An early version of the LSCO:x
phase diagram is shown in Fig. 1.1, where the superconducting phase lies under a
dome extending from x = 0.05 up to x ∼ 0.35 [3]. At lower x values there is an AFM
phase which as x → 0 occurs at TN � 325 K. The line extending above and to the
left of the superconducting dome gives the crystallographic boundary between the
high-temperature tetragonal phase and orthorhombic phase below. Other phase lines
have been drawn in a similar location for other putative transitions and crossovers
(such as the pseudogap temperature—see Sect. 1.4).

There is, in principle, a phase diagram similar to Fig. 1.1 for every cuprate struc-
ture. It happens for LSCO:x that the hole doping level can be varied across the entire
superconducting range by varying x . In YBCO7-x, on the other hand, the doping is
controlled via the oxygen content. At x = 0 (YBCO7) the structure is stoichiometric
and the hole-doping level is ∼ 0.33 per Cu ion, which is just slightly above optimal
doping [2, 4]. As x is increased, the doping diminishes all the way into the AFM
insulating phase. However, the overdoped phase which would correspond to negative
values of x simply does not exist.

The stoichiometric compound Y248 is simply YBCO7 with an extra chain layer.
It has a very stable oxygen content up to relatively high temperatures, but its doping

Fig. 1.1 The temperature
versus x phase diagram of
La2−xSrxCuO4, where x is
the number of Sr2+ dopant
ions per formula unit. A
roughly parabolic region of
superconducting behavior is
seen to be centered on
x � 0.15. See text for
additional discussion
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level giving Tc � 84 K cannot be altered without decomposition. It has been an
attractive system for study and will be discussed in Chaps. 4, 5 and 6.

Characterization of samples for experimental investigation is a matter of great
importance, since a large body of reliable data for mainstream structures is on hand.
Sample characterization includes morphology of the sample material, x-ray crystal-
lography for phase purity, superconducting diamagnetism (Meissner effect) includ-
ing the value and sharpness of Tc, and magnetic susceptibility for excessive local
moment content. The NMR and NQR studies themselves include sample character-
ization tests, to be mentioned in Sect. 1.3 to follow.

For articles discussing structures and a variety of bulk and other measurements,
see the reviews edited by Ginsburg [1].

1.3 The NMR Probe

The NMR probe is a local, real–space probe, where the behavior of nuclear spins can
be monitored on a site–by–site basis. The hyperfine (HF) interaction of a nucleus
couples it to magnetic entities in its immediate environment. This interaction rarely
goes beyond nearest-neighbors, though dipolar interactions may have some effects
beyond that range.

One of the remarkable HF effects in cuprates is the extraordinarily large coupling
with neighboring (Cu2+) electron spin moments, which is comparable with on–
site interactions. There is, however, an intervening O2− ligand, so this is a second-
neighbor interaction. Such an effect was unprecedented. The effect of HF couplings
is also strongly affected by site symmetry, where strong, but equal couplings to
antiferromagnetically correlated neighbor spins may be rendered ineffective. Such
effects are well known for insulating antiferromagnets (e.g. 19F in KMnF3).

The measurements performed and type of data received are also very much con-
ditioned by the properties of the naturally occurring nuclear species in the sys-
tem investigated. Thus, the 100% abundant, I = 1

2 ,
89Y in YBCO7, with its nearly

isotropic NMR shift, total absence of quadrupole effects, and weak, but adequate
relaxation times was the subject of the first NMR study on cuprates to be published
[127]. The 63,65Cu isotopes with I = 3

2 , (nearly) axial site symmetry, and very sub-
stantial quadrupolar energies which allow both NMR and NQR to be performed,
were quick to follow [128, 129, 131, 132].

Studies of 17O, which only appeared after an interval of many months, were ham-
pered by the fact that 17O is present in only trace quantities in natural oxygen. Further,
it is too expensive to incorporate into the sample synthesis and has to be diffusively
exchanged into sample materials at an elevated temperature. Such a process is crit-
ically dependent on diffusion rates in any given material. In LSCO:x, for example,
diffusion is fast and single crystals of moderate size are easily doped with 17O. For
YBCO7-x, however, this is only feasible with powders and crystals of the smallest
size. With Y248 it is also very difficult, requiring lengthy high-temperature anneals
[218]. Nonetheless, 17O doping eventually became a routine element of technique.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_6
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A Sampling of NMR Measurements and their Interpretation

We give a brief survey of types of NMR observations made and their significance for
the behavior of cuprate materials. First, the NMR spectrum is fundamental and is a
major element of sample characterization. The width and distribution of NMR/NQR
resonance lines tells a great deal about the phase purity and microscopic quality
of sample material. If there are crystallographically inequivalent sites, they usu-
ally have different spectra. Quadrupolar frequency shifts and broadening and their
field/frequency dependence can usually be analyzed to yield values of coefficients
from the HF Hamiltonian. These matters are reviewed in some detail in Chap.2.

The NMR shift, which is measured as a frequency shift proportional to the applied
field, is fundamentally a measure of the various terms in the magnetic polarization of
the sample, conveyed to the nuclear spins by HF coupling fields. The NMR shift is an
important source of information on intrinsic susceptibilities. For example, the decay
of the spin susceptibility in the superconducting state can usually only be measured
via the NMR shift, where direct magnetic measurements would be swamped by the
much larger diamagnetic response.

There are various contributions to NMR shifts in metals. The s-contact shift,
for which we reserve the term “Knight shift” [32], is a mainstay effect in sp-
band and d-band metals. In cuprates this term is oddly absent. In its place are the
core–polarization shift, orbital shift, dipolar shift, and even “spin-orbit shift”, a
second-order effect which arises in the spin Hamiltonian picture. There are also
very important transferred HF fields giving rise to NMR shifts, originating in the
Mila-Rice [118] and Shastry [146] treatments of cuprate quantum chemistry. NMR
shift measurements are a very important tool for determining the HF parameters,
since any such determination is independent of model assumptions required for the
dynamics.

NMR dynamics, as represented by the spin-lattice relaxation time T1, are a key
diagnostic of quasiparticle dynamics in metals and in cuprates in particular. T1 has
been linked for many years to χ′′(q,ω) via the fluctuation dissipation theorem [163].
In cuprates, T1 measurements have been interpreted (for the first time!) through
theoretical modeling of χ′′(q,ω). What makes this process particularly interesting
is the interplay between the strong AFM fluctuation effects which typically produce
an AFM peak near q = (π,π), and the transferred HF couplings at 17O(2,3) and
89Y in, e.g. YBCO7-x, which cause their relaxation processes to avoid the AFM
peak. Meanwhile, the 63Cu(2) are quite sensitive to the AFM peak. In effect one has,
then, a “q–space spectrometer” for quasiparticle fluctuations. These effects occupy
a substantial fraction of the discussion in this volume. T1 measurements are also
very sensitive to the difference between s–wave and d–wave gap characteristics in
the superconducting state. Calculations of d–wave T1 characteristics below Tc were
among the first strong evidences for d–wave singlet character of quasiparticle pairing
in cuprates [160, 252].

A second relaxation time, the spin-echo decay time T2g , has taken on a major
significance in the effort to characterize the dynamic susceptibility of cuprate com-
pounds. This decay time is actually used to measure a static interactionwhich occurs

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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in cuprates, namely a c-axis indirect spin-spin coupling of the form
Hzz =

∑
i j �= αi j Izi Iz j , which was first identified by Pennington et al. [139]. How

this comes about is discussed in AppendixA.1 and in Chap.6 of the book. Inter-
pretation of Hzz in terms of χ′(q, 0) for q in the vicinity of (π,π) was established
by the Pennington–Slichter model calculation [31]. Through measurements of T2g
the indirect coupling has become a major element in characterizing the strength of
AFM fluctuations in cuprates. In addition, the interpretation of T2g in the super-
conducting state by Bulut and Scalapino [252] again provided dramatic evidence in
favor of d–wave pairing several years before it was widely accepted by the research
community.

The foregoing is just a sampling of interesting effects which have come to light
through NMR studies of cuprate superconductors. We refer the interested reader to
sources on the fundamental principles of NMR [5, 6], on NMR studies of conven-
tional metals and superconductors [7–9], as well as on NMR of high–Tc supercon-
ductors [13–17]. We now give a brief summary of these remaining chapters.

1.4 Outlines of the Remaining Chapters

This section gives a brief summary of the content of Chaps. 2–8.

1.4.1 Summary of Chapter2—NMR Review

In Chap.2 we give a review of the elements of NMR technique and interpretation,
where basic definitions of keyNMRparameters are given and some of the pitfalls and
complexities associatedwith powder samples are discussed. The use of spin echoes—
the standard tool for conducting NMR measurements—is described, with a detailed
derivation including spin echo decay mechanisms presented in AppendixA.1. This
leads into a summary of basic relaxation mechanisms for simple metals, including
the Moriya theory of electron–electron interaction effects [58] and the BCS-based
interpretation of the spin-paramagnetic shift and T1 behaviors in the superconducting
state. The Anderson–Farrell resolution of spin-orbit coupling effects for T < Tc is
covered in some detail. These effects were struggled over for many years, but almost
all problems were finally resolved.

Discussion of the foregoing is extended to d–band metals, including the discov-
ery and establishment of orbital shifts and relaxation effects. The interpretation of
NMR spectra and relaxation effects in the mixed state of type-II superconductors
is discussed at some length, with data from the literature. Many of the associated
problems have cropped up again with the cuprates. The discussion of, e.g. the V3X’s
is offered as a foundation for understanding cuprate mixed-state NMR.

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_8
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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1.4.2 Summary of Chapter 3—Preliminary Cuprate NMR

Chapter 3 gives an account of the early stages of high-Tc NMR research. In the
first 2 years, almost all studies were done with either random powder samples or
microcrystalswith very low signal amplitude. Therewas an intense focus onYBCO7,
because of its high Tc (∼ 90 K) and because of its relative ease of preparation. In
random powders, 63Cu(2) NMR spectra (just the − 1

2 ↔ 1
2 transition) were ∼5 kg

wide in an 8T laboratory NMR magnet, taking several days of signal averaging to
perform a single scan. T1 measurements on the 63,65Cu were done mainly with NQR,
once the frequencies had been extracted from NMR spectra.

63Cu(2) NMR shifts persisting into the superconducting state were identified as
Van Vleck orbital shifts. The anisotropy and magnitude of these shifts fit well with a
simple spin Hamiltonianmodel of the copper ionic state, which appears to resemble
that of a Cu2+ ion in an insulating host for the purpose of analyzing HF effects.
This picture has held up even until now. Moreover, the dx2−y2 ground state orbital
dictates that the normally dominant orbital T1 mechanism effectively vanishes in the
cuprates. In Sect. 5.6 a proposal for its revival via the marginal Fermi liquid theory
is presented [222].

The apparent vanishing of the c–axis spinHFfield led to theMila-Rice proposal:A
massive transferred HF coupling from nn Cu2+ ions nearly 4Å away. This unprece-
dented HF term made sense of the T1 and NMR shift data for the 63Cu(2). Their
watershed paper, including calculated quantum chemistry, provided a framework for
interpretation of cuprate NMR data which has held up ever since [118].

One of the main elements of Chap.3 is the general derivation of spin–lattice
relaxation rates based on χ′′(q,ω) and the Fluctuation–Dissipation theorem. This is
preparatory to doing T1 calculations in Chap.4 based on INS data for χ′′(q,ω). It
naturally incorporates temperature–dependent spin–spin correlations into the calcu-
lation in keeping with the formulation of Mila and Rice [118].

The chapter closes with an account of the first interpretation of T1 data in the
superconducting state using d–wave pairing with BCS theory, by Monien and Pines
[160]. This landmark result gave a clear indication of the correctness of d–wave and
the inadmissibility of s–wave, even though it would be five more years before the
correctness of this picture was widely accepted.

1.4.3 Summary of Chapter4—The Pseudogap

Even before the Mila-Rice resolution of anomalous NMR shift behavior appeared,
workers had begun to explore the highly unusual behavior in the underdoped region
of the phase diagram in Fig. 1.1. There it was found that low-frequency fluctuations
which drive the T1 process, as well as the uniform susceptibility, were beginning to
collapse at temperatures far above Tc. It was as though the superconducting energy
gap were beginning to develop at some T ∗ well above Tc in anticipation of the actual

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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transition to superconductivity. In the spirit of “spin–charge separation”, an idea that
dominated early thinking on cuprate quasiparticle behavior [52], this effect was at
first dubbed the “spin gap”. There was a tacit assumption that charge states were
unaffected. Nonetheless, the spin pseudogap was soon recognized as a universal
feature of the underdoped phases. Moreover, in a most astonishing bit of prescience,
the appearance of such a precursive energy gap in the cuprates had actually been
predicted by Friedel [187], who coined the name “pseudogap”.

Pseudogap characteristics via NMR shift and T1 data are documented in detail for
several compounds in Chap.4. Several years after the spin fluctuation properties of
pseudogap systems were well established, it came to light through both electronic
specific heat and ARPES measurements that charge properties were also profoundly
altered in pseudogap systems. In this chapterwe also review these effects briefly.With
ARPES one finds that certain regions of the Fermi Surface, e.g. the quadratic axes,
are gapped while while the diagonal regions are not. Since the dynamic susceptibility
is a summation over the Fermi surface, this means that the gap reflected by χ′′(q,ω)
may vary significantly with q. It follows that pseudogap T1 behavior can be quite
different at the 63,65Cu site from what it is at the 17O sites. These differences are
clearly observed in a number of cases discussed.

The pseudogap behavior of LSCO:x is particularly interesting. In what was actu-
ally the first pseudogap behavior to be reported [189], the remarkable scaling of
susceptibilies for different x values in this system was at first interpreted with a
model suited to 2D insulating antiferromagnets. This is possible, since the latter
systems exhibit a susceptibility temperature maximum which resembles pseudogap
behavior. The disparate behavior of 1/T1T for the 63,65Cu and the 17O clearly tags
this system as having a pseudogap. The low-T χ0(T ) ∝ T 1/2 behavior of LSCO:x
is in accord with the Varma theory of pseudogap behavior [222], as is that of Y248
[219].

Substantial insight into the pseudogap is provided by comparison of dynamic
susceptibility data for optimally doped LSCO and underdoped YBCO with T1 mea-
surements on both planar 63Cu and 17O in these systems. Quantitative INS data for
χ′′(q,ω) has become available for both of these systems, along with extensive bodies
of T1 data for both the planar 63Cu and 17O for both of the compounds mentioned.
Using the fluctuation–dissipation theorem, Moriya formalized a quantitative relation
between χ′′(q,ω) and T1 which can now be realized with no adjustable parameters
[58]. Calculations testing this relationship are now spelled out in considerable detail
in Chap.4 for both optimally doped LSCO and underdoped YBCO (Tc ∼ 60 K). In
both cases excellent agreement is found near or just above Tc. At higher temperatures,
however, there is clearly a large piece of χ′′(q,ω) that is simply missing from the
INS data for both systems. Possible remedies are discussed. One possibility is that
there is a broad, flat intensity covering the BZ. Such an effect would be, of course,
very difficult to resolve in an INS study.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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1.4.4 Summary of Chapter5—T1 Models

From the earliest days of high-Tc NMRone of the main challenges has been to under-
stand the disparate behaviors of T1 at various lattice sites. In addressing this question,
there are several important branching points in the flow diagram of deduction so to
speak. Magnetic dipole processes are assumed to be predominant. First, then, one
must decide whether spin fluctuations alone will suffice to explain everything, or
whether orbital relaxation, severely inhibited by the dx2−y2 ground–state orbitals,
will play a role as well. Many workers have opted for the spin fluctuation picture,
while the existence of a possible orbital mechanism has been pointed out by Varma
[222]. A summary of the latter calculation is given in Sect. 5.6.

In the purely spin-dynamical picture, one must next decide whether a single
dynamical variable per Cu2+ site, namely the itinerant S = 1

2 hole, is sufficient, or
do the doped–in hole carriers form a second dynamical entity? The general approach
to this question has been to see whether a complete account of the data can be
given with one variable per site. Several T1 modeling efforts based on the latter
assumption are described in Chap.5, where it is presumed with Moriya [152] that
any successful scenario can be expressed in terms ofχ′′(q,ω). Three of these employ
the random–phase approximation in order to incorporate the (mandatory) electron–
electron interactions, and one is simply based on the shape and width of the the AFM
peak in χ′′(q,ω) determined by INS studies.

A novel, but related approach has been pioneered by Uldry and Meier [195], in
which they attempt to systematize T1 data on several cuprates using electronic spin–
spin correlations as parameters which vary with T and in which there is a universal
spin fluctuation frequency (correlation time), also a function of T, which applies to
all T1 processes. The other central assumption is that the HF Hamiltonian has the
Mila–Rice form

HHF =
∑

α

∑

i

Siα

⎡

⎣Aα + B
∑

j (nn)

I jα

⎤

⎦ (1.4.1)

for the planar 63,65Cu nuclei, with similar forms for the ligands.With these ingredients
all of the data are fitted in a self-consistent way. The form (1.4.1) and the admissi-
bility of the spin–spin correlations and correlation time as temperature–dependent
parameters are the main assumptions here. A theoretical basis for this scheme is
derived using χ′′(q,ω) in Chap.3. It yields an internally consistent picture, in which
the dynamically–derived HF constants basically agree with those derived from the
shift. This scheme is useful for evaluating theoretical models as well as for analyzing
experimental data.

http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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1.4.5 Summary of Chapter6—The Dynamical Susceptibility

In this chapter three topics related to modeling and characterization of χ(q,ω) are
presented and discussed. First, large indirect spin-spin couplings in cuprates were
noted early on and modeled quantitatively by Pennington and Slichter [31]. Further,
the strength of indirect spin–spin couplings Hzz noted earlier can be measured by
means of spin-echo decay if the entire nuclear spin transition observed can be inverted
by the spin echo refocussing pulse (θ2 � π). Measurements of this type have been
carried out on a number of systems, yielding a quantitative measure of χ′(q, 0)
q = (π,π). This has become an important source of input data for the dynamical
susceptibility.

Another major data source for χ′′(q,ω) is INS. The compounds LSCO:x with
x � 0.15 and YBCO6.6 became important test cases for χ′′(q,ω) in Chap.4. These
systems bear the distinction of having been measured with INS in absolute units over
most of the first Brillouin zone (all known structure). Further, LSCO:x was measured
over energies ranging from 1 to 200meV, and at temperatures ranging from below Tc
to nearly 300K [278]. The dynamical susceptibility determined in thiswaywas found
to be somewhat incommensurate. These data were used to calculate T1 for 63,65Cu
and for 17O, with interestingly mixed results. See Chap. 4 for a detailed discussion.

The final section of Chap.6 offers a brief review of the behavior of T1 and T2g in
the normal state region above and principally on the left side of the superconducting
dome in Fig. 1.1. Sokol, Barzykin, and Pines have proposed a crossover in the value
of the dynamical exponent from z = 1 (quantum critical phase) to z = 2 (non-scaling
region) [240, 273]. The line dividing these two behaviors is suggested to take place
where the correlation length ξ(T ) = 2a (a = lattice constant). This idea has been
tested up to 700K with Y248 by Curro et al. [242]. A clear transition from z = 1 to
2 was found at T = 500K, giving support to this scaling theory.

1.4.6 Summary of Chapter7—NMR Studies
of Actinide Oxides

This chapter gives a synopsis of actinide NMR research carried out over the last
two decades or so. The discussion is limited here to oxides, which illustrate several
important advances in NMR technique and phenomenology that emerged from the
actinide studies. Actinide hyperfine couplings are much larger than those of spd–
electron compounds. As a consequence, typical spin–lattice relaxation times (T1) are
far shorter than could possibly be resolvedwith conventional pulsedNMR technique.
Interestingly, this is why 235U , which has the smallest nuclear gyromagnetic ratio
γ (γ/2π �0.784 MHz/T), was the first actinide NMR to be observed directly [297].
What was observed was actually AFNMR in the antiferromagnetic ground state of
UO2. Because of the immense static hyperfine field of over 400T at 235U in UO2,
the AFNMR is at ν ∼200MHz and T1 was short enough below T = 14K for direct

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_7
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observation of the nuclear spin echo. This, combined with studies of the 17O NMR
in both the paramagnetic and AFM states, enabled a very extensive study of this
system to be conducted. A detailed description is given of the “3k” AFM ordering of
theU 4+ moments in this system, yielding a substantial internal field at the 17O sites.
Measurements of the latter field and the NMR shift in the AFM state are described
in detail.

The next actinide beyond uranium is neptunium, which in its oxide form has been
the subject of a fascinating study of one of the first magnetic octupolar ground
states to be identified. Both the paramagnetic and ordered states of NpO2 give
fascinating results for different reasons. The ordered state is probed using the 17O
NMR, which behaves almost normally, but which on careful analysis exhibits field–
induced octupolar effects that match relevant theory very nicely. Thus, the octupolar
ordering is confirmed rather indirectly, since there is no known direct probe that
reflects the presence of ordered octupoles.

T1 for 17O in the paramagnetic state of NpO2 reveals the presence of a cross–
relaxation (CR) effect. This takes the form of a field–dependent T1O , which gets
shorter as the field is reduced. The upshot is a T1 process transferred from fluctuating
237Np nuclear spins. Analyzing this process (T1CR) yields some interesting results.
First, plotting T1CR versus ω2

17 gives a straight line, verifying that this process is
driven by 237Np nuclear spin (T1) fluctuations. Second, evaluating the strength of
theCRprocess reveals that there are anomalously large 237Np–17O nuclear spin–spin
couplings, which in second moment form are as much as three orders of magnitude
larger than the classical dipolar contribution. The origin of this is clearly an anom-
alous and novel indirect spin-spin coupling, the nature of which is easy to guess (see
Chap.7).

And finally, the quantitative analysis of T1CR yields a value T1Np �40nsec that is
essentially constant throughout the paramagnetic state. Since the fluctuating dipolar
moments that drive these processes collapse abruptly at T0 ∼30K, T1CR also disap-
pears at that point. Interestingly, T1CR starts up again at low temperatures, reflecting
what may be a process driven by the 237Np T2 fluctuations. This process is weaker,
but is constant with T atmany values of applied field at He temperatures. Themystery
of this effect has yet to be deciphered.

Next, we recount the first observation of 239Pu NMR in a solid host compound in
PuO2. The ground state of Pu4+ in PuO2 is nonmagnetic, so that the immense 5f
hyperfine couplings are disabled from rendering this NMR signal unobservable. On
the contrary, T1 is extremely long and is one of the principal obstacles to resolving
the 239Np NMR signal. A gyromagnetic ratio for 239Pu is obtained after many years
of waiting. However, a difficult–to–determine orbital NMR shift present in this host
may be making a substantial contribution to γ239. At least, this elusive prize was
finally achieved in 2012 [299].

Finally, we recount briefly an effort to study the NMR of 17O in AmO2. The
half–life of 243Am is so short (∼ 4, 000 years) that a synthesized crystal turns into
an amorphous structure in just a few days. NMR spectroscopy reflects this change
in a dramatic way [316].

http://dx.doi.org/10.1007/978-3-662-55582-8_7
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1.4.7 Summary of Chapter8—The Kondo Effect
and Heavy–Fermion Behavior

A couple of decades before the surge of interest caused by the high–Tc discovery
there was a similar surge, though smaller, of course, caused by the Kondo effect. The
discovery by J. Kondo in 1959 that conduction electron exchange scattering from
localized moments diverges logarithmically with declining temperature set the stage
for theKondo “condensation” of localizedmoments inmetallic hosts.While there are
many examples of this effect in dilute alloys with “magnetic” impurities, in contrast
with the high–Tc surge, it took more than a decade for the Kondo condensation to
become a hot research topic. Even in the early seventies, however, there was still no
reliable theory for just how a localized moment “condensed” at low temperatures
into merely an enhanced susceptibility. There was, in fact, great controversy over the
physics of how this happened.

In the first subsection of Chap.8 we discuss the dispute over whether local
moments disappear by acquiring a quasiparticle to cancel the moment or whether
such an induced moment and the spin polarization in its vicinity scale uniformly
as 1/(T + T ∗). That the latter process actually occurs was demonstrated brilliantly
by the Boyce–Slichter study of 63Cu NMR satellites from lattice sites surrounding
Fe impurities in the classic Kondo system [323]. These results and discussion are
reviewed as one of the most important NMR studies of the Kondo era.

Following the Kondo effect of isolated impurities came the “Kondo lattice” with a
high concentration of Kondo scatterers. The Kondo effect was soon realized to be the
basis for “heavy fermion” behavior in many f–electron intermetallic compounds.1

After some decades of heavy fermion studies, it was realized that no first–principles
theory was forthcoming. In place of that, the phenomenological two-fluid model
by Nakatsuji, Pines and Fisk has provided a framework for the understanding of
many basic properties of these systems [330]. We review this model in some detail
in Chap.8. Further, it formed the basis for understanding a very general NMR shift
scaling effect for heavy fermion systems, which is also reviewed [331].

Two other topics close out Chap. 8. First, we illustrate the extent to which the
dynamic mean–field theory of Shim et al. [333] accounts for the development of
heavy–fermion susceptibility in, e.g., CeIr In5 [334]. Second, the dynamical for-
malism of Chap. 3 is employed to interpret the anomalous behavior of c–axis fluc-
tuations that give highly disparate results for T1 at different 115 I n sites in the latter
compound. The key ingredient here is dynamical correlations among the 4 f moments
in the heavy fermion state of this system. Unfortunately, there don’t seem to be any
neutron data on SRO forCeIr In5 to confirm the dynamical correlation modification
of T1.

1As a general reference and for an excellent historical sketch see the book by Hewson [327].

http://dx.doi.org/10.1007/978-3-662-55582-8_8
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1.4.8 Summary of the Appendix: The Properties
of Spin Echoes

The Appendix presents an extended discussion of the properties of spin echoes. First,
the echo signal is calculated in detail using a simple classical model. Behavior of the
echo signal as a function of the relative phase of the two excitation pulses is addressed,
as is the excitation of echo signals under various experimental circumstances. The
direct relation of the integrated area under the echo to the NMR lineshape function
is derived. A summary of the density matrix calculation of spin echo excitation is
presented. The comprehensive spin echo decay calculation given in 1967 by Alloul
and Froidevaux [294] is introduced, and the relation to spin echo oscillations is
highlighted. A special case of the indirect spin-spin coupling derived by Pennington
and Slichter [31] is evaluated in detail. Results for the relaxation of spin echoes by
spin–lattice processes are presented. Finally, a useful scheme to use phase toggling
of echo refocusing pulses along with digital add/subtract of echo signals to eliminate
spurious background effects is described in detail and illustrated with an actual case
study.



Chapter 2
Introduction to NMR Studies of Metals,
Metallic Compounds, and Superconductors

NMR studies of high-Tc materials and other correlated-electron systems developed
in a context of many years of NMR studies of conventional superconductors as well
as of d-band transition metals, alloys, and intermetallic compounds. It is therefore
appropriate to begin this volume with a brief review not only of the NMR probe,
itself, but of the general physical phenomena probed by NMR in metals, alloys and
intermetallic compounds, in both the normal and superconducting states. The pub-
lished literature on this subject matter is, of course, vast, and the references cited
here will necessarily be rather limited. We begin by citing the standard works on
nuclear magnetism by Abragam [5] and Slichter [6], where many basic NMR phe-
nomena are derived and discussed. These sources also present an extensive guide
to the early literature, which the interested reader will find highly informative. For
NMR of metallic systems, there are thorough reviews by Narath [7] and Winter [8]
and for early NMR studies on superconductivity, there is a detailed and informative
review by MacLaughlin [9]. We shall also have recourse to the treatments of super-
conductivity by Tinkham [18] and Schrieffer [19]. Relevant reviews of high-Tc NMR
studies will be cited at the beginning of Chap.3.

2.1 The Fundamental Elements of NMR

The foundation of nuclear magnetic resonance (NMR) rests on the fact that many
stable isotopes in the periodic table possess a nonzero spin quantum number I and,
thus, angular momentum �I and a magnetic momentμ = γ�I, where γ is the nuclear

© Springer-Verlag GmbH Germany 2018
R.E. Walstedt, The NMR Probe of High-Tc Materials and Correlated
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gyromagnetic ratio. In an applied magnetic field H, a nuclear moment μ has an
energy −μ · H and in classical terms undergoes a torque τ = μ × H.1 Equating this
torque to �dI/dt , one finds an equation leading to Larmor Precession of the compo-
nent of μ transverse to the field H. The latter may be written μ − û(μ · û), where
û=H/|H| is a unit vector parallel toH. In this way, the Larmor Precession Frequency
emerges as ω0 = γH. This is the basic nuclear magnetic resonance (NMR) frequency.
In the contrasting case of nuclear quadrupole resonance (NQR), there is no Larmor
precession effect, because the nuclear energy splitting is provided by quadrupolar
coupling with a local electric field gradient (EFG). This effect may, however, still
be called a “magnetic resonance”, because the resonance is excited with an rf field
that couples with the magnetic moment μ, and the signal is received by magnetic
induction.

If we add to the foregoing torque equation ofmotion the terms−û(μ · û − μ0)/T1
and −[μ − û(μ · û)]/T2 to embody the longitudinal (T1) and transverse (T2) relax-
ation processes, one arrives at the celebrated Bloch equation model for NMR spec-
troscopy [10]. Here, μ0 = γ2

�
2 I (I + 1)H/3kBT is the thermal equilibrium nuclear

moment in a field H . The Bloch equations lead to nuclear resonance spectra of
Lorentzian form with a width parameter 〈Δω〉 = (1/T1 + 1/T2) and are well suited
to the study of NMR lines in liquids [11]. For NMRof nuclei embedded in condensed
matter, however, there arise many complexities that go beyond the Bloch equations.
A basic discussion of these effects is given below in this section of Chap.2.

The essence of pulsed NMR is to excite nuclear induction signals through the
application of radiofrequency (rf) pulses of oscillating magnetic field 2H1 cos(ωt)
along an axis perpendicular to H. We illustrate here very briefly the action of
such pulses [10] with the simple case of a narrow NMR line excited at its pre-
cise NMR frequency ω = ω0(1 + K ), where K is the NMR shift, here taken to
be isotropic for simplicity. The action of the pulse must take place in a time tw
short compared with T1,2, after which the nuclear magnetization will take the value
M0[û cos(γH1tw) + (û × H1) sin(γH1tw)/H1] in a reference frame rotating in syn-
chrony with the rotating field H1. The pulse width tw may be adjusted so that γH1tw
= π/2 to obtain the maximum transverse component followed by a free-induction
signal, or it may be adjusted so that γH1tw = π, after which there is no transverse
component, but a maximum inverted magnetization −ûM0, as the first step in a T1
measurement. The first of these is known as a “π/2–pulse”, and the second is known
as a “π–pulse” or an inversion pulse. In practice, circumstances frequently don’t
permit such precise conditions to be achieved, because of linewidths comparable to
or greater than the value of H1 used, or non-uniform values of H1 over the sam-
ple. In spite of small problems such as these, the practitioner frequently speaks of
“π/2–pulses” and “π–pulses” as an idealization of what actually occurs. The action
of (rf) pulses under more general circumstances is discussed in Appendix A, where
spin echoes are also described in some detail.

1Correctly, the field in the magnetic torque expression is the magnetic induction.We use the symbol
H in keeping with the traditional literature.

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Nuclear Spin Echo

Fig. 2.1 A simulated spin echo signal is shown (solid curve), corresponding to the (0.8π/2,π/2)
pulse pair (shown) applied to a broad, inhomogeneous distribution of NMR frequencies. The echo is
the sum of two contributions which are symmetric and antisymmetric, respectively, (dashed lines)
with respect to the center point of the echo. The latter point is at time 2τ + tw2 − tw1 from the
leading edge of the first pulse, where τ is the time interval between the leading edges of the pulses
and tw1,w2 are the respective pulse widths [24]

The basic effects one typically measures and interprets in NMR studies of solids
consist of the shape and structure of the spectrum, the frequency shift tensorKαβ , and
the longitudinal (T1) and transverse (T2) relaxation processes. The acquisition and
interpretation of these basic data will be the preoccupation of most of this volume,
since each of these elements can provide important information about the solid state
environment surrounding nuclear sites. Here we wish simply to introduce them, and
in this section (2.1) the basic definition, measurement and interpretation of these
parameters will be reviewed. A detailed description of spin echo excitation and
behavior are given in Appendix A.

2.1.1 Observation of NMR/NQR Signals

In the early days of solid-state NMR, it was customary to employ continuous wave
(CW) methods to observe NMR signals. Techniques such as the marginal oscillator
and the popular crossed-coil rf bridge spectrometer manufactured by Varian Asso-
ciates, as well as home-built rf bridges, were used to obtain a wealth of useful NMR
data. Compared with pulsed NMR this method has, however, a number of inherent
drawbacks, such as (i) it is not useful for severely broadened lines, (ii) it cannot dis-
tinguish between static and dynamic line broadening, so that (iii) it cannot measure
the dynamic transverse relaxation time T2, nor short values of T1, to name just a
few. Thus, it gradually gave way to pulse methods for solid-state NMR studies [22].
While we do not discuss CW NMR methods in any detail here, it must be noted that
important NMR data on solids have been reported that were taken using CW tech-
niques. A prominent example is a study of the Kondo effect by Boyce and Slichter
[323, 324] discussed in Chap.8.

http://dx.doi.org/10.1007/978-3-662-55582-8_8
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Free Induction and the Spin Echo

Following a single rf pulse as described above in the introduction, one can often
observe a free-induction decay signal with the form

F(t) = F0cos[(ωc − ωr f )t]
∫ +∞

−∞
G(ωc + ω)cos(ωt)dω , (2.1.1)

where G(ωc + ω) is a symmetric lineshape function centered on ωc, and ωr f is
the frequency of the rf pulse and of the phase detector used to display the signal.
In (2.1.1), the rf excitation pulse field is assumed to be large compared with the
linewidth, so the pulse angle is uniform across the spectral width. In this simplified
case, it is seen that F(t) is simply the cosine transformation of the lineshape G(ω)

and vice versa. The difficulty of determining G(ω) this way is that the early part of
F(t) is masked by the dead time of the receiver. Not infrequently, the decay time
T ∗
2 is so short that very little of F(t) can actually be recorded. For these reasons, the

preferred method for extracting G(ω) with pulsed NMR is via the spin echo.
Nowadays, the spin echo [23] is used almost universally for measurements and

observation ofNMR/NQRsignals in solids. Herewedescribe the basic features of the
spin echo and illustrate its use in a simple case. A much more detailed discussion of
echo formation and of the echo decay processes addressed below is given inAppendix
A. Following an initial (t = 0) pulse such as that described above, a second pulse
called the refocusing pulse is applied at the same frequency at t = τ . For simplicity,
we also assume the latter pulse has the same phase as the first pulse.2 We also assume
uniform excitation across the whole spectrum as in (2.1.1).

Taking the leading edge of the first pulse as time zero, then the second pulse at
time τ is followed by a spin-echo signal at time 2τ . The mechanism of this effect
is very simple. The second pulse effectively inverts the dephasing that has occurred
during time τ , so that after the second pulse, the phase deviations of the precessing
nuclei unwind and return to zero at time 2τ + tw2 − tw1. In this way the macroscopic
transverse magnetization that generates an observable NMR signal is restored.

We give here the expression for a spin echo for the same simple case of a uniformly
excited, symmetric lineshape function G(ω) that was assumed for the free-induction
signal in Ex. (2.1.1). Thus, we again assume that the rf field H1 is much greater than
the width of G(ω), i.e. 〈Δω〉/γ (in field units). In that limit, the precessing nuclear
magnetization that makes up the principal component of the echo signal is given by

E(t) = − 1

2
sin(ω1tw1)[1 − cos(ω1tw2)]cos[(ωc − ωr f )(t − tE )]

∫
G(ωc + ω)cos[ω(t − tE )]dω ,

(2.1.2)

where tw1 and tw2 are the widths of the two rf pulses, respectively, and tE = 2τ +
tw1 − tw2 is the center point of the spin echo, measured from the beginning of the
first pulse. The maximum amplitude of the echo is obtained with ω1tw1 = π/2 and

2Phase manipulation on the refocusing pulse to achieve special effects with spin echo studies is
discussed in detail in Appendix A.
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ω1tw2 = π, giving the same expression as for the FID in (2.1.1), except with its sign
inverted. Furthermore, (2.1.2) allows both positive and negative values of t − tE ,
so that the shape of the echo signal in time is very much like two free-induction
signals back to back. In this way, one is able to move the signal away from the
excitation pulses so that it can be measured and recorded without interference from
pulse transients.

We note two additional requirements for the observability of spin echoes in any
given case. The echo signal represented by (2.1.2) will always decay as time τ
increases. This decay time is denoted T2 in the literature and is known as the dynamic
decay time. See the next subsection for a discussion of this parameter. Thus, (2.1.2)
only holds as written for T2 � 2τ .

A second requirement for observability of spin echoes is that the nuclear spins
concerned must have a source of static broadening that is greater that any relevant
dynamic decay process. A detailed discussion of such matters is given in the next
subsection. Thus, the NMR line under study must have a “static width” greater than
its “dynamic width” for spin echoes to be feasible. If the rf field H1 is greater than
the static width of the line, then the rf pulse will excite an echo signal from all
of the nuclei. Otherwise, it will excite just a subset of nuclei centered on the carrier
frequency of the pulse. In many cases the static width of the spectrum is much greater
than H1. A remarkable property of the spin echo is that it can be employed to very
accurately record the detailed shape of such a static spectrum. The basis for such a
capability is discussed next.

We touch here briefly on an important point regarding the frequency resolution
of spin-echo spectroscopy, which is discussed in detail in Appendix A. Since the
NMR signals are excited using pulse fields H1 of typically 100 Gauss amplitude, one
might suppose that these large fields would limit the available frequency resolution
to ∼ γH1. However, this is not the case. It is straightforward to demonstrate that the
total area under the spin echo waveform is proportional to the line intensity at the
frequency of excitation to within a very narrow bandwidth. The resolution obtained
in this way is formally independent of the magnitude of the excitation field H1, but
is actually determined by the time frame over which the echo can be integrated.
See Appendix A for more details. An example of a (simulated) spin echo generated
somewhere in the center of a broad, inhomogeneousNMR line is displayed inFig. 2.1.
On the other hand, in the opposite limit that H1 is actually much greater than the
static linewidth, an excellent way to record the NMR spectrum is simply to Fourier
transform the echo waveform as suggested by (2.1.2).

The question of observability of spin-echo signals is an important one for the
NMR spectroscopist. We note here that solid-state NMR signals are typically of the
order of microvolts, with expected raw signal-to-noise ratios which are typically
of the order of unity or less. Thus, one cannot overemphasize the importance of
digital signal averaging methods to the success of modern pulsed NMR technique.
The great majority of solid-state NMR studies reported nowadays have used digital
signal averaging to improve the signal-to-noise ratio. It is also possible to estimate
the available NMR signal strength given reasonable estimates of the experimental
parameters.
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2.1.2 Definition and Interpretation of NMR Parameters: T2
Processes

T2 processes are the decay of NMR signals in time, i.e., of coherent, transverse
nuclear magnetization. There are two T2 parameters in common use, namely the spin
echo decay time constant T2 and that of the free induction decay T ∗

2 . T2 decay is
strictly a dynamic effect, while T ∗

2 combines static and dynamic components. When,
as is often the case, one has T2 � T ∗

2 , then T ∗
2 will be dominated by purely static

broadening processes. It is important to note that for (2.1.2) to represent an actual
spin echo, one has to have T2 � T ∗

2 for that to be possible. And while there are many
very simple compounds where that condition is not fulfilled, it is rare for solid state
systems with interesting and even exotic properties to have the foregoing condition
fail.

Let us examine the types of hyperfine interactions that contribute to T2 and T ∗
2

decay effects. We note at the outset that a useful formal treatment of spin echo decay
has been given by Alloul and Froidevaux [294]. Here, we give a brief discussion
of dynamic processes that contribute to T2 decay. There are several general classes
of hyperfine fluctuation that can be distinguished, namely spin-spin interactions,
spin-lattice interactions, and spin-flip interactions that are imposed by applied rf
fields. Finally, since spin echoes are relaxed by any change in the local magnetic
environment at the relevant nuclear spin sites, one must include physical diffusion
of ions that carry the nuclear spins. We shall not, however, discuss this mechanism
except simply to mention it.

Let us first consider nuclear spin-spin couplings. These consist mainly of the dipo-
lar,3 pseudo-dipolar, [28] and RKKY [27] exchange interactions. There are several
points about these interactions that need to be addressed in the context of spin-echo
decay. First, which interactions are ‘allowed’ in such a discussion?We take the z axis
as the ‘quantization axis’ in the problem, i.e. the Zeeman term HZ = −�ω0

∑
i Izi

is the principal nuclear spin energy term. Then, spin-spin coupling terms are only
‘secular’ (i.e., effective) if they commute withHZ . Thus, terms of the following form
are generally admissible.

Hss =
∑
i, j

Ai j Izi Iz j +
∑
i, j

Bi j (I+i I− j + I−i I+ j ) +
∑
i, j

Di j Izi I
′
z j + · · · , (2.1.3)

where the prime indicates a different, non-resonant nuclear species in the same crystal
structure, and the dots indicate that other terms involving non-resonant (“unlike”)
spins are omitted. However, what effect would, e.g., the Di j terms have on the decay
process of (a) coherently precessing nuclear magnetization represented by Ix =∑

i Ixi or (b), on a spin echo generated via the unprimed, resonant nuclei? The
answers for these two cases can be markedly different.

3Dipolar couplings are discussed in detail by Abragam [5], Chap. IV, and by Slichter [6], Chap.3.
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With typical dipolar couplings the FID and spin-echo decays are similar, but not
identical. What can make a great deal of difference is inhomogeneous broadening
that is non-uniform on a local level. The Hamiltonian term would have the form
−∑

i Δωi Izi , where Δωi is a static quantity that varies by an amount equal to or
greater than dynamic, interactive broadening terms at the local level. Such terms
will contribute substantially to T ∗

2 decay, but will tend to inhibit spin-echo decay,
making T2 longer. Terms like this arise from local crystalline disorder, imposing
modulation on the NMR shift mechanism. They prevent terms such as the Bi j terms
in (2.1.3) from driving local spin fluctuation processes, because variations in the
local resonant frequencies (i.e., the Δωi terms) prevent flip-flop fluctuations from
conserving energy. The resulting static interaction environment does not contribute
to the spin-echo decay process.

A second type of local coupling that can relax the FID, but may not affect the
spin-echo is the “zz” unlike spin term Di j of the previous paragraph. If the primed
spin system has local fluctuations driven by I ′

±i I
′
∓ j fluctuations, then the Di j terms

shown there will contribute to both the T2 and T ∗
2 relaxation processes. However, it is

not unusual for such unlike spins to be essentially static, whereupon they will make
no contribution to the T2 (spin-echo) decay. Of course, long-range inhomogeneity
also contributes to T ∗

2 decay, but not to T2. When such broadening becomes greater
than γH1, then 1/T ∗

2 ∼ γH1.
A second contributor to spin-echo decay is reversal of neighboring nuclear-spin

orientations by the refocusing pulse. This mechanism makes use of the Ai j terms
in Hss . If such a set of Izi Iz j terms are rendered static by their environment, such
as happens in certain high-Tc systems,4 the only way such terms can be made to
contribute to T2 decay is via the refocusing pulse. The magnitude of this effect
depends on the pulse angle used for the measurement, with maximum effect taking
place for a π pulse. This variation of the Izi Iz j broadening can also be used to separate
this effect from other T2 processes that do not vary with pulse angle.

Another interesting possibility is to employ terms of the Di j form in a spin-echo
double resonance scheme by applying rf pulses at the NMR frequency of an unlike,
i.e., primed spin specieswhilemonitoring the echo signal from the unprimed spins. In
the event that an appreciable fraction of the primed spins are reversed by the second
pulse, a measurable degradation of the unprimed-spin signal will be recorded. By
scanning the frequency of the primed-spin pulse, one can map out the primed-spin
NMR line without ever observing that NMR signal directly. This has been used in
studies of nuclear species that are difficult to observe directly [270]. This technique
is known as spin–echo double resonance (SEDOR).

A thirdmechanism of T2 decay occurs through T1 processes. Only in a rather small
subset of cases is T1 a significant factor in the T2 process, simply because in many
instances T1 � T2. As suggested by the Bloch equations mentioned above, 1/T1 is a
contribution to the linewidth in general, but the situation is a bit more nuanced than
that. The T1 process contributes, of course, to both 1/T2 and 1/T ∗

2 . This is not a
particularly useful effect, but mostly just something one has to watch out for. There
is one small corner of parameter space where the T1 effect on spin-echo decay is

4See the discussion of the Pennington-Slichter indirect coupling and its measurement in Chap. 6.

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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a bit more interesting and useful. This is in the case of odd half-integral nuclear-
spin quantum numbers I , where all but the central ±1/2 ↔ ∓1/2 transition are
heavily broadened by electric-field gradient noise (i.e., “quadrupolar broadened”),
so that only the central transition is resolved. This circumstance arises in a surprising
number of cases in practice. The upshot of it is that one finds a contribution to the
echo decay that is enhanced by a factor (I + 1/2)2 [284]. Thus,

1/T2 = (1/T2)spin−spin + (I + 1/2)2/T1, (2.1.4)

where the first term is the sum total of the other decay processes discussed above.
In metallic host materials the T1 term can often be identified, because it is Korringa-
like, i.e. 1/T1 ∝ T , while the spin-spin term is typically independent of T. There
are corresponding enhancements for other m ↔ m + 1 transitions if their spin-echo
signals can be observed in isolation, but it is only when all transitions of a given
nuclear spin can be excited at once that the echo decay enhancement is simply 1/T1.
The latter holds whenever I = 1/2.

Phenomena related to observation and relaxation of spin echoes are also discussed
in more formal detail in Appendix A [294].

2.1.3 The Basic Structure of NMR Spectra in Solids

While many NMR phenomena can be understood in classical terms (e.g. the Bloch
equations), nuclear spins are fundamentally quantum in nature, and their physics
must be discussed in quantum mechanical terms to obtain a complete picture. As
such, they can interact with their microscopic surroundings in highly complex ways,
which is what allows the study of NMR properties to provide important microscopic
information on the physical properties of host solids. Nuclei with spin quantum
numbers I > 1

2 also possess electric quadrupole moments, denoted Q, which then
couple to static and fluctuating electric field gradients (EFG) generated by electric
charge distributions in their environment. This adds to the richness and complexity
of NMR spectra.

The basic nuclear spin Hamiltonian for spectra is given by (2.1.5), including both
the Zeeman term representing the effect of an applied fieldH and a quadrupolar term
representing the interaction of the nuclear quadrupolemomentwith the electrical field
gradient (EFG) tensor Vuv = ∂2V

∂u∂v
at the nuclear site in question (see [5], Chap. VI).

Thus,

Hspec = −γ�I · (1̂ + K̂) · H + e2qQ

4I (2I − 1)
[3I 2z − I (I + 1) + η

2
(I 2+ + I 2−)],

(2.1.5)
where K̂ is the NMR shift tensor and 1̂ is the unit tensor. In this equation we

use conventional notation, where q = | ∂2V
∂Z2 | = VZZ is the principal component of the
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EFG tensor, and theEFGasymmetry parameter is defined as η = (VXX − VYY )/VZZ .
The (X,Y, Z ) are the principal axes of the tensor, where we define |VXX | ≤ |VYY | ≤
|VZZ | and note that LaPlace’s equation gives VXX + VYY + VZZ = 0. It follows that
0 ≤ η ≤ 1. Hspec will generate the vast majority of NMR spectra found in practice.

Although (2.1.5) is frequently quoted, it has the disadvantage that it assumes that
the applied field is along the principal axis of the EFG tensor. Since one generally
works with the field along some principal axis of the EFG, it is useful to generalize
(2.1.5) for an arbitrarily chosen principal axis. In principal axis coordinates, the
quadrupolar Hamiltonian becomes [5]

HQ = eQ

2I (I + 1)

∑
α

Vαα I
2
α. (2.1.6)

In terms of the Vαα, (2.1.5) becomes in traceless form [6]

Hspec = −γ�I · (1̂ + ·K̂) · H + eQ

4I (2I − 1)
[Vαα(3I 2α − I (I + 1)) + 1

2
(Vββ − Vγγ)(I 2+ + I 2−)] ,

(2.1.7)

whereα is the quantization axis and (α,β, γ) are an arbitrary permutation of (X,Y,Z).
In this form it is clear that first-order splittings will be proportional to | Vαα |, and
the second-order splittings will be proportional to (Vββ − Vγγ)

2.
While (2.1.5) and (2.1.7) are useful for generating spectra, it should be noted that a

number of other terms are necessary for a complete description of NMR phenomena.
Some of the omissions are (a) terms to represent fixed internal hyperfine (HF) fields
which may occur in ordered magnetic systems, (b) spin and orbital fluctuation terms
which drive T1 processes, (c) dipolar and indirect spin-spin coupling terms which
generate T2 processes, and (d) radiofrequency (rf ) excitation terms. Such terms will
be invoked when the need arises.

We make a number of general remarks about the use of (2.1.5) and (2.1.7) to
generate and analyze spectra.

• (i) Experiments are usually carried out in one of two limiting cases, namely, H = 0,
so that quadrupolar energies alone determine the spectrum (NQR), and secondly,
the high field limit γH � e2qQ

4�I (2I−1) , wherein the quadrupolar terms may be treated
with perturbation theory.

• (ii) For I = 1
2 the nuclear quadrupole moment Q vanishes identically, according

to the Wigner-Eckart theorem (e.g. see [6], Chap. 10).
• (iii) For nuclear spin sites with cubic symmetry, one has VXX = VYY = VZZ = 0,
greatly simplifying the spectrum as with I = 1

2 . For quadrupolar nuclei, the effects
of stray EFG’s in nominally cubic structures may still play a role in the spectrum,
however. Crystalline disorder caused by impurities, dislocations, etc., often cause
a distribution of stray EFG’s to occur at the nuclei of interest. Thus, one often finds
cubicNMR lines with complete first-order broadening, so that only the (− 1

2 ↔ 1
2 )

transition is easily resolved [20]. Such cases will be discussed as they arise.
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• (iv) In the almost universally encountered high-temperature limit defined by
�γH 
 kBT , Boltzmann factors are always small compared with unity. The sign
of qQ in (2.1.5) is immaterial to the spectra and is, in fact, indeterminate. For
convenience, we shall always take qQ to be positive. Note also that the term
“−I (I + 1)” in (2.1.5) has been inserted only to render the quadrupole tensor
traceless. It plays no role in the spectral transition frequencies and may be omitted
or replaced by some other quantity for calculational convenience.

• (v) In the most frequently occurring cases of non-cubic site symmetry, i.e. tetrago-
nal or trigonal, the EFG symmetry is termed “axial”, giving VXX = VYY . Thus, η =
0 and the quadrupolar Hamiltonian is greatly simplified. We shall focus primarily
on such cases and comment on how the results are affected if η > 0.

• (vi) In the high-field limit with η = 0, we comment briefly on how the EFG term
affects the spectrum. If we let the angle between H and the EFG principal axis
Z be θ, then the simplest case is when θ = 0. The eigen-energies then have the
exact form Em =−�γH(1 + K )m + hνQm2/2, where νQ = 3e2qQ

2hI (2I−1) ,m is the 〈Iz〉
quantum number, and we have assumed a scalar shift K . In such a case, the energy
levels are shifted as shown in Fig. 2.2. In the spectrum shown, the (− 1

2 ↔ 1
2 )

transition is not affected by the νQ term, and the (±m ↔ ±(m + 1)) transitions
are displaced by ±νQ , ±2νQ, . . ., for m = 1

2 ,
3
2 , . . ., respectively, as shown in the

figure. The lines displaced by ±nνQ are known as first-order satellites.
• (vii) For θ �= 0 the eigenfrequencies can often be estimated satisfactorily with
second-order perturbation theory (see [5], Chap. VI). The first-order resonance
frequencies become

νL + ν(1)
±n = νL ± nνQ(3cos2θ − 1)/2, (2.1.8)

n = 1, 2, . . .. Here, n = 1 corresponds to the (± 1
2 ↔ ± 3

2 ) transitions and n > 1
corresponds to transitions with progressively higher values of m. In the case of
powder sampleswith a uniform distribution of θ over the unit sphere, the first-order
quadrupole shift stated above gives rise to a powder pattern intensity distribution

m = -3/2

m = -1/2

m = 1/2

m = 3/2

Zeeman Zeeman + Quadrupolar

νL

νL

νL

νL

νL + νQ

νL − νQ

νL
Spectra:

νL−νQ νL νL+νQ

Fig. 2.2 On the left, the nuclear Zeeman term gives uniformly spaced energy levels and a single
NMR line. On the right, first-order quadrupole splittings produce “first-order satellites” from the
(±1/2 ↔ ±3/2) transitions. The (−1/2 ↔ 1/2) transition is not affected to first order
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over frequencies ranging from νL − nνQ/2 to νL + nνQ , where the θ = 0 satellite
displacement is nνQ . The normalized distribution function is

ρq(ν) = [6νQ(ν − νL + νQ/2)]− 1
2 , (2.1.9)

so that the θ = 0 line at frequency nνQ becomes a powder pattern with a square-root
singularity at ν = νL − nνQ/2. Here, the Larmor frequency νL = γH(1 + K ). We
note that m is no longer strictly a good quantum number, so there are second-
order frequency shifts as well. Interestingly, the second-order frequency shifts of
the satellites at ±nνQ(3cos2θ − 1) are equal, so that the second-order correction
to their pairwise separation 2nνQ(3cos2θ − 1) vanishes. If η > 0, however, the
singularities all disappear and the peak at that position becomes progressively
broader as η increases.

• (viii) For the often-used (− 1
2 ↔ 1

2 ) transition, the frequency to second order is
given by

ν(2)
± 1

2
= νL − ν2

Q

16νL

[
I (I + 1) − 3

4

]
sin2θ (9 cos2θ − 1). (2.1.10)

In the case of a random powder sample, (2.1.8) and (2.1.10) give rise to charac-
teristic powder patterns which are easy to recognize. Such a pattern is shown in
Fig. 2.3, where a small amount of Gaussian broadening has been added. In cases
where η > 0, these powder patterns are altered significantly. Also, if there is shift
anisotropy K (θ) with a range comparable to the second-order quadrupole shift
of the (− 1

2 ↔ 1
2 ) transition, its powder-pattern shape will also be altered signifi-

cantly, whereas the first-order peaks will all reflect the shift value K (π/2). Further
discussion of these effects is given below.

• (ix) When H = 0 we have the case of nuclear quadrupole resonance (NQR). The
nuclear spin energies are determined entirely by Q, I , and the local EFG’s. If νQ

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Quadrupole Shift (units of 3νQ
2/16νL )

Quadrupolar Powder Pattern
for (- ½ ↔ ½) Transition

Fig. 2.3 Quadrupolar powder pattern for the (−1/2 ↔ 1/2) transition based on the second-order
quadrupolar energy given in 2.1.10 (axial case). Minimal Gaussian broadening has been applied.
The coefficient given is for I = 3/2. For arbitrary half-integral I the coefficient becomes (4I (I +
1) − 3)ν2Q/64νL
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(see item (vi) above) is large enough, i.e. in theMHz range, thenNQRspectroscopy
is feasible. Considering the case of η = 0, (2.1.5) then shows that E|m|+1 − E|m|
= (2|m| + 1)νQ . Thus, there is a series of I − 1

2 NQR lines at frequencies νQ ,
2νQ, . . .. The m-levels are doubly degenerate, since Em is independent of the
sign of m. The two parallel transitions produce identical signals under the usual
excitation conditions [21]. If η > 0, the levels are still doubly degenerate, but the
transition frequencies are now a function of η. If there are two or more NQR
frequencies, their ratio can be used to determine η.

2.1.4 Definition and Interpretation of NMR Parameters:
The Shift Tensor Kαβ

NMR frequency shifts are useful for characterizing a resonance line as well as ana-
lyzing different components in the magnetic susceptibility of a metallic compound.
NMR shifts are useful probes, because they always reflect one or more components
of magnetic polarization in the system, such as spin or Van Vleck paramagnetism.
There can, of course, be magnetic polarization without a palpable NMR frequency
shift, but there is nomagnetic NMR shift without a source of polarization, i.e. suscep-
tibility, to drive it. There are complications, of course, when there are fixed sources of
internal magnetic polarization, such as in themixed state of a type-II superconductor.
Such cases are considered in Sect. 2.3. In general, we have omitted consideration
of cases which involve magnetic ordering. Shifts, then, are defined to be linear in
the applied magnetic field H . Analysis of shifts can be quite complex with random
powder samples when the shift is anisotropic, and even more so if they are combined
with inherently anisotropic quadrupolar splittings. Such cases occur frequently, and
it is important to know how to analyze and characterize them.

Defining the NMR Shift

In general terms, the NMR shift is a measure of how the magnetic induction B differs
at a nuclear site in a metallic specimen from its value in free space when the sample
is removed. In practice, shifts are referred to bare values of the nuclear gyromagnetic
ratio γ, where γ is the ratio

γ = μ

�I
(2.1.11)

of the nuclear magnetic moment μ to its angular momentum �I . “Bare” values of γ
are measured in compounds or other environments which are as magnetically neutral
as possible. For nuclei of elements which are highly active magnetically, defining γ
can be difficult and somewhat arbitrary. On the other hand, even compounds lacking
a form of paramagnetism almost always have so-called chemical shifts, which are
typically of the order of tens or hundreds of ppm. Such shifts are orbital in origin
and have been discussed in detail in [6], Chap. 4.
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NMR shifts in metals are typically two orders of magnitude larger than chemical
shifts, so that the latter are often ignored. In high-Tc compounds, however, we shall
see that, e.g. for 17O and 89Y , chemical shifts may play a role in the discussion. In
d-band metals, however, the NMR shift is dominated by the spin-paramagnetic and
Van Vleck terms mentioned earlier. In Sect. 2.2 we discuss a detailed formulation
of these effects as well as methods for analyzing NMR shift data. Here we focus on
defining and measuring the shift tensor.

Given a suitable reference γ, then, the NMR shift K is defined with respect to a
change in the resonant frequency νres = γH(1 + K ), or

K = νres

γH
− 1. (2.1.12)

Since a lot of NMR spectroscopy is done by scanning the magnetic field, it is
important to note that the fractional shift in the resonant field, which is−K/(1 + K ),
not only has the opposite sign, but a palpably different magnitude than K if the shift
is large. The unmistakable hallmark of an NMR frequency shift or of a spectrum of
shifts for a powder is that they scale precisely with the applied field. If this is not the
case, then one is dealing with quadrupole effects or other complications.

The NMR Shift: Tensor or Scalar?

In practice, most shifts are characterized as scalar parameters. However, formally the
NMR frequency shift tensorKαβ is defined to be theα component of the internal field
at the nuclear spin divided by the β component of the applied field ([5], Chap. VI). In
general, then, the induced, internal shift field is not parallel to the external field. This
can be a complication in the interpretation of large shift effects. However, in cases
where the shift anisotropy is 1% or less, it is a good approximation to replace the
shift tensor with a scalar shift given by K (θ,φ) = KXsin2θ cos2 φ + KY sin2θsin2φ +
KZcos2θ, where the KX,Y,Z are the principal values of the shift tensor and (θ,φ) give
the orientation of the field H in the principal axis coordinates. Another approach,
which involves no approximation, is to confine shift measurements on oriented pow-
der or single crystal samples to field orientations along the principal axes. The (X,
Y, Z) axes will generally coincide with crystalline axes of symmetry.

In metals with cubic crystal structure or with single crystals, then, shift mea-
surements are usually straightforward. If microscopic disorder is reasonably low,
then line-broadening effects will be 0.01% or less and a 1% shift can be reliably
measured to good accuracy. If the nuclear site is non-cubic, however, there is the
possibility of an anisotropic shift as well as the virtual certainty of quadrupolar shifts
and broadening for I > 1

2 . For such cases it is very helpful to have either single crys-
tals or oriented powders for non-cubic systems [40]. Otherwise, data will have to
be obtained by analyzing powder patterns, i.e. broadened spectra which result from
a sample made up of randomly oriented particles. The functional form of the axial
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shift powder pattern is the same as for the first-order quadrupolar satellite pattern
(2.1.9), namely,

ρK (K ) = [6Kax (K − Kiso + Kax/2)]− 1
2 , (2.1.13)

where K is the shift variable, which is distributed over the range Kiso − Kax/2 ≤
K ≤ Kiso + Kax . For a crystal with applied field at an angle θ with respect to the axis
of symmetry, the shift may be written Kiso + Kax (3cos2θ − 1)/2, where Kiso and
Kax are the isotropic and axial components of shift, respectively. If the three principal
shift values are all different, then the symmetry is lower than axial and the singularity
disappears. The distribution will have edges at the maximum and minimum shift
values, with a peak at the intermediate principal shift value. It is possible, although
it may be somewhat laborious, to extract anisotropic shifts as well as quadrupole
frequency parameters from powder patterns. For the (− 1

2 ↔ 1
2 ) transition the change

of these two effects with field are opposite, so that field dependence can be employed
to determine their separate values. An example of this is shown in Fig. 2.4.

0 2 4-2-4

A = 2, B = 1/2

A = B = 1

A = 2/3, B = 3/2

A = 1/2, B = 2

2nd Order Quadrupole + Anisotropic Shift

Fig. 2.4 Powder patterns for a − 1
2 ↔ 1

2 transition, showing several cases of combined effects of
an anisotropic shift and second-order quadrupolar broadening. The total broadening perturbation
is A sin2θ (9 cos2θ − 1) + B (3cos2θ − 1). In applied field H, A ∝ 1/H and B ∝ H . In reduced
units we let B = H , and the frequency displacement is in units of 3ν2

Q/16νL (for I = 3/2). Plotted
spectra then show the progression of powder patterns as H is varied from 1/2 up to 2. The dashed
vertical lines show the positions of the three edges in the absence of broadening. The prominent
upper singularity (see Fig. 2.4) converges with the θ = 0 edge with increasing field and disappears
above B/A = 8/3. However, there is still a visible maximum for the top example, where B/A = 4.
Note that these spectra are actually oriented the way they would appear in a field sweep increasing
to the right, and, therefore, the anisotropic shift coefficient is negative. With B/A < 0, the patterns
would be quite different. Studies such as are shown here allow the practitioner to extract values of
A and B from experimental data
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2.1.5 Definition and Interpretation of NMR Parameters: T1

T1 is the time constant which describes the exchange of nuclear spin energy with the
surrounding lattice, hence it is known as the spin-lattice relaxation time. Referring
to the energy levels in Fig. 2.2, T1 determines the rates at which nuclei make transi-
tions between these levels. Magnetic T1 processes are generated by fluctuating HF
fields. Each magnetic HF interaction5 has a fluctuation spectrum with an amplitude
and an autocorrelation time. The corresponding T1 process is driven by the fourier
component of the latter spectrum at the NMR/NQR resonance frequency. The mag-
netic dipole T1 processes are divided broadly into those driven by spin and orbital
HF fields.

The formulation of the various relaxation processes for metallic systems includ-
ing superconductors has been a major work in progress since NMR was first discov-
ered. Below we review the interpretation of T1 effects for simple metals and Type
I superconductors (Sect. 2.2) and for d-band metals and Type-II superconductors
(Sect. 2.3). The interpretation of T1 processes for the cuprate superconductors will
be discussed extensively in Chaps. 3–6. Particularly important is the role played by
electron-electron interactions in T1 phenomena. Accordingly, we review Moriya’s
theory of correlated electron effects in the T1 processes of simple metals in Sect. 2.2.

Rather more rare in occurrence are quadrupolar T1 processes generated by fluc-
tuating components of EFG. A general theory of such effects caused by the phonon
Raman scattering process was put forward by Van Kranendonk in the early days of
NMR [30]. Such processes are extraordinarily weak, however, and have rarely been
identified in metals. Nonetheless quadrupolar relaxation processes for the 63,65Cu
isotopes have occasionally been claimed to exist in solids, using the isotopic ratio
of T1 values as a diagnostic.6 When quadrupolar T1 effects occur in metals, it is
our conjecture that they are much more likely to be caused by ionic motion (e.g.
diffusion) than by phonons.

The Magnetic Dipole Relaxation Process

Nuclear spin transitions generated by the HF interactions in (2.2.1) are known as
magnetic dipole transitions (as opposed to electric quadrupolar transitions). Here,
we analyze the magnetic dipole T1 process in some detail. We review methods to
measure it as well as certain pitfalls to be avoided in conducting such measurements.
Whether measuring T1 with high-field NMR or in zero field with NQR, the nuclear
spin energy levels Em will be labeled with the Iz quantum number m. To the extent
that m is a good quantum number, the transition rate between states m and m ′ may
be written

|〈m ′|I+|m〉|2W = |〈m|I−|m ′〉|2W = (I − m)(I + m + 1)Wδm ′,m+1 (2.1.14)

5See Sect. 2.2 for a comprehensive definition of the magnetic HF interactions.
6The ratio 63T1/65T1 is a good diagnostic for this purpose, since it is (γ65/γ63)

2 = 1.148 for
magnetic relaxation and is (Q65/Q63)

2 = 0.854 for electric quadrupolar relaxation.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_6
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If I = 1
2 , then there is only a single rate W involved, where T1 = (2W )−1. For I > 1

2
there are 2I rate constants and relaxation eigenmodes. The formula (2.1.14) will be
correct for the cases (a) when I = 1

2 , (b) for arbitrary values of I when η = 0 and the
field is applied along the principal axis of the EFG tensor, and (c) for NQR when η =
0. It is approximately correct for arbitrary η values when νQ 
 γH/2π and for NQR
when η is small. In other cases m-state mixing effects become important and it may
be necessary to solve the spin Hamiltonian (2.1.5) numerically to obtain accurate
matrix elements of I±. In this discussion of T1 analysis, we shall assume (2.1.14) to
be valid, and we shall also neglect nuclear quadrupole relaxation effects. They are,
as noted above, quite rare in metallic systems.

Detailed Balance in T1 Processes

T1 in metals is simplified by the fact that fluctuation spectra for itinerant fermions are
constant over the range of typical NMR frequencies. T1 values are therefore found
to be independent of the Zeeman splitting and are the same for NMR and NQR
measurements alike.7 We shall assume, further, that the lattice constitutes an infinite
heat reservoir at equilibrium at temperature T . To illustrate the incorporation of
detailed balance into the rate equations, we analyze a two-level system with energies
E2 > E1, defining ΔE = E2 − E1. The populations of these levels are designated
p1,2 and will be treated as continuous variables. The rates at which up and down
transitions occur are defined to beW21 (up) andW12 (down), respectively. At thermal
equilibrium the principle of detailed balance gives W21 = e−βΔEW12 ([6], Chap. 5)
(β = 1/kT ). The rate equations for populations are then

dp1,2
dt

= ±[p2W12 − p1W21] , (2.1.15)

where p1 + p2 = N is the total number of nuclei in the ensemble. When the p1,2 are
at equilibrium we have dp1,2/dt = 0, giving p2/p1 = W21/W12 = e−βΔE . Thus, the
Boltzmann distribution of spin populations follows from detailed balance.

Writing p1,2 = ± 1
2 (p2 − p1) + N/2, the (2.1.15) may be combined to give

d(p2 − p1)/dt = (p2 − p1)(W12 + W21) − N (W12 − W21).

From this relation we see that the relaxation rate of (p2 − p1) is (W12 + W21). Since
this quantity must be independent of ΔE , we set (W12 + W21) = 2 W, where W is
a rate constant which depends only on T . Detailed balance then leads immediately
to

W12 = 2W

(1 + e−βΔE )
; W21 = 2We−βΔE

(1 + e−βΔE )
. (2.1.16)

Using (2.1.16), (2.1.15) then becomes

7Note, however, that NMR and NQR reflect different relaxation modes, as will be seen below. For
example, if I = 3

2 , for NMR 1/T1 = 2 W, whereas the single rate measured with NQR is 6 W, or
one-third the length of the conventionally defined T1.
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dp1,2
dt

= −2W

[
p1,2 − Ne−βE1,2∑

i e
−βEi

]
. (2.1.17)

Even though p1 and p2 appear to act independently, they are not, of course, inde-
pendent. The general solution to (2.1.17) is seen to be

p1,2(t) = (p1,2(0) − p01,02)e
−2Wt + p01,02 , (2.1.18)

where p01,02 = N exp (−βE1,2)/
∑

i exp (−βEi ) are the equilibrium population val-
ues. This result also satisfies p1(t) + p2(t) = N if p1(0) + p2(0) = N , which must
be the case.

Relaxation Equations for I > 1
2

Generalization of the foregoing result to multi-level nuclear relaxation equations is
straightforward. They can always be written in terms of the difference variables

dm = pm − p0m, with p0m = N exp(−βEm)/
∑
m

exp(−βEm), (2.1.19)

wherem is the quantum number for the energy eigenvalues. We note that the value of
p0m does not depend on the choice of the zero-point of energy. In general, then, one
canmeasure T1 by creating a non-equilibrium population distribution, then observing
the decay toward equilibrium of the population difference of some suitable pair of
levels using spin-echo excitation. The latter pair must be chosen to have |Δm| = 1 for
magnetic excitation, and they must be chosen to reflect a non-equilibrium population
difference during the equilibration process.

If the initial non-equilibrium condition is created by applying an rf pulse to some
pair of levels, note that the recovery can often be observed using spin-echo signals
from a different pair of levels.8 This degree of experimental freedom is not often
used in NMR. It could be used, for example, to avoid multiple echo effects in a T1
measurement when T1 is very short.

Relaxation Eigenmodes for I > 1
2

For multi-level nuclear spin Hamiltonians (I > 1
2 ) [42] there is an eigenmode struc-

ture to the relaxation equations with multiple relaxation eigenrates. We illustrate this
situation with the simple example of I = 3

2 , for which there are four energy levels as
shown in Fig. 2.2. The dynamical equations for the differences dm are then

8This requires the ability to be able to apply rf pulses to the sample at two separate frequencies,
which can be a very useful adjunct to the usual spectrometer setup.
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dd3/2
dt

= −3Wd3/2 + 3Wd1/2 (2.1.20a)

dd1/2
dt

= 3Wd3/2 − 7Wd1/2 + 4Wd−1/2 (2.1.20b)

dd−1/2

dt
= 4Wd1/2 − 7Wd−1/2 + 3Wd−3/2 (2.1.20c)

dd−3/2

dt
= 3Wd−1/2 − 3Wd−3/2 (2.1.20d)

We seek solutions of the form dm = cm exp(−λWt). Substitution into (2.1.20) then
yields the matrix equation

⎡
⎢⎢⎣

λ − 3 3 0 0
3 λ − 7 4 0
0 4 λ − 7 3
0 0 3 λ − 3

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

c3/2
c1/2
c−1/2

c−3/2

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

This matrix is solved straightforwardly. The characteristic equation is

λ4 − 20λ3 + 108λ2 − 144λ = 0 , (2.1.21)

for which the solutions are λ = (0, 2, 6, 12). The corresponding decay rates are
λ0 = 0, λ2 = 2W = T−1

1 , λ6 = 6W = 3T−1
1 , and λ12 = 12W = 6T−1

1 . Ignoring the null
mode, the corresponding eigenvectors for T1, T1/3 and T1/6 may be written {3, 1,
−1, −3}, {−1, 1, 1, −1}, and {−1/3, 1, −1, 1/3}, respectively.

The solutions to (2.1.20) may be applied to different techniques for measuring
T1. We illustrate their use in the simple case of a cubic environment where Em =
−�γn(1 + K )Hm. Since |Em | 
 kBT , we may write (2.1.19) p0m ≈ N

2I+1 (1 − δm),
where δ = �γnH(1 + K )β. Then if we apply an rf pulse with pulse-angle θ to the
spins, the resulting initial condition is

pm(0) ≈ N

2I + 1
(1 − δ cos θm).

As a result, the initial values are dm(0) ≈ N
2I+1 (1 − cosθ)m. The dm(0) have the

form {3, 1, −1, −3} of the “T1” mode, so that the solution can be written

dm(t) ≈ Nmδ

2I + 1
(1 − cos θ) e−t/T1 .

If θ = π, then one has a perfect inversion, which gives the largest excursion in
signal amplitude. The time variation of the spin echo signal is then proportional to
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pm(t) − pm+1(t) = Nδ

2I + 1
[1 − (1 − cos θ) e−t/T1 ]. (2.1.22)

If pm(0) = pm+1(0) for all applicable m, then we have a condition known as satu-
ration, which also yields a single-exponential recovery ∝ (1 − exp(−t/T1)).

Recovery Mode When Only the (− 1
2 ↔ 1

2 ) Transition is Excited

If there are quadrupolar splittings, then a single pulse applied to the (− 1
2 ↔ 1

2 )
transition results in a {dm(0)} vector with the form a0{0, 1,−1, 0}. Writing the
decay mode as a superposition of the foregoing eigenmodes, we have

{dm(t)} = 1

10
a0[{3, 1,−1,−3} exp−t/T1 +9{−1/3, 1,−1, 1/3} exp−6t/T1 ].

The spin echo signal for the (− 1
2 ↔ 1

2 ) transition will therefore exhibit the well-
known decay function

E(t) = E0 (0.9 exp−6t/T1 + 0.1 exp−t/T1) . (2.1.23)

Such a precise mathematical form occurs only for excitation of a single pair of levels
over a time interval which is short compared with T1/6. If relaxation begins to take
place during the initial excitation phase, then the simple formof the initial condition is
lost and the decay will be rather more complicated. In the foregoing example, d3/2(t)
would be proportional to (exp−t/T1 − exp−6t/T1), so that it would deviate very
quickly from its initial value of zero. Aswe noted earlier, the relaxationmeasurement
could be conducted in this fashion, i.e. by monitoring a different transition frequency
from the one used for the initial excitation.

The T1 analysis described here for I = 3
2 is straightforwardly extended to larger

(half-integer) values of I . There will be 2I + 1 equations such as the (2.1.20) above,
so the solutions will have added complexity. But solving the determinants for I > 3

2
is simplified by the fact that as increments of 1 are added to I , the eigenvalues for
the previous case are carried forward.

The NQR Case

Continuing our discussion of an I = 3
2 nucleus, we consider finally the NQR case,

where the ± 1
2 levels and the ± 3

2 levels are degenerate pairs separated by an energy
difference of hνNQR = hνQ(1 + η2/3)1/2. A single excitation pulse at the NQR
frequency then creates an initial condition given by {dm} = a0{−1, 1, 1, −1}. This
effectively 2-level system relaxes entirely via the symmetric modewith a single decay
rate 3/T1. One must be careful to take account of the relaxation mode effects when
comparing T1 data obtained with different methods.

We make a few additional remarks about the decay mode effects described above
for the I = 3

2 system. First, there are many nominally cubic systems where the
observed signal is dominated by the (−1/2 ↔ 1/2) transition, because transitions
to higher m-values are broadened by stray first-order quadrupolar splittings. Such
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splittings are the consequence of impurities and other forms of crystalline disorder. If
such broadening is severe, magnetization recovery may take place via (2.1.5) rather
than with the expected single-exponential T1 decay. Since there is a dramatic differ-
ence between these two cases, it is very important to be aware of such broadening
effects.

A second point we wish to emphasize is that the analysis of T1 relaxation curves
given here for I = 3

2 is entirely independent of the nature of the NMR spectrum.
The functional behavior depends only on which pair of levels is used to excite a
non-equilibrium initial condition, and on the fact that the quantum numbersm = 〈Iz〉
are relatively pure in characterizing the energy eigenstates. If the latter condition is
not fulfilled, then numerically evaluated eigenfunctions may be needed to generate
sufficiently accurate relaxation rates.

Measuring T1 in the Presence of Spectral Diffusion

We consider briefly some well-known problems encountered in T1 measurements.
Two of the most troublesome are the related problems of inhomogeneous broaden-
ing and spectral diffusion. These problems occur frequently in d-band metals and
intermetallic compounds. The key to accurate T1 measurements is the experimenter’s
ability to create a strongly non-equilibrium population difference between a pair of
nuclear energy levels as an initial condition. The T1 recovery will then be accom-
panied by a spin-echo signal which undergoes a substantial change in amplitude. In
cases of severe inhomogeneous broadening such as that shown in Fig. 2.5, a difficulty
arises from the fact that a single pulse of rf field will only affect a region of width
γH1, where H1 is the amplitude of the rf pulse field. The narrow region saturated
by a single pulse is shown as a dotted line in Fig. 2.5a. If the broadening is entirely
static, it may be possible to focus the measurement on the polarization behavior at
precisely the irradiation frequency, i.e. the center frequency of the population dis-
turbance shown in the figure. As noted in Sect. 1.2.2, this can be done by carefully
integrating the entire area under the spin echo, so that the measured recovery curve
will accurately reflect what is taking place at ω = ωr f .

However, such broadening may actually have a partially dynamical character
owing to the presence of spin-spin couplings of the form

H f f = BIi± I j∓ (2.1.24)

between neighboring nuclei. Under circumstances which occur frequently, the H f f

interactions lead to flip-flop dynamic processes between neighboring spins, which
then leads to a rapid smearing of the band of excited spins over a much wider range
of frequencies than those excited directly by the rf pulse(s). This process, known
as spectral diffusion, is illustrated with dashed lines in Fig. 2.5b. There results what
appears to be a rapid recovery of the polarization at the excitation frequency.However,
such a recovery has nothing to do with the T1 process, but is easily mistaken for it.
Often it is much faster than T1, and results in the experimenter’s inability to achieve
inversion of the polarization [43]. This highly undesirable effect has been known in
adverse cases to render T1 measurements unfeasible.

http://dx.doi.org/10.1007/978-3-662-55582-8_1
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Fig. 2.5 a The saturation
effect of a π/2 pulse applied
at frequency ω0 is shown for
an effective pulse field
amplitude of 20 in units of
the frequency scale. The
polarization curve is also
shown at several later times
as T1 recovery takes place
without spectral diffusion.
b Development with time of
the polarization curve is
shown at several stages
following the same initial
saturation pulse as in (a).
The curves are a Gaussian
model in which there is no T1
recovery effect, thus the total
polarization, plus its first
moment

∫
(ω − ω0)P(ω)dω,

are conserved over the time
interval shown. Note the
spurious “recovery” of the
polarization at frequency ω0
as a function of time
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We consider here the circumstances which give rise to spectral diffusion effects
and offer a few suggestions on how to deal with this problem. The flip-flop process
(m,m ′) → (m ± 1,m ′ ∓ 1) between (primarily) nearest-neighbor (nn) spins has
been recognized since the early days of NMR as essential for spin diffusion, as
well as for maintaining thermal equilibrium within the nuclear spin system. Spectral
diffusion is, in fact, a process whereby a disturbance in a narrow frequency range is
able to diffuse over the entire NMR line so as to create a uniform spin temperature.
However, since an energy-conserving flip-flop transition can only take place between
neighbors with nominally the same Larmor frequency, i.e. the same shift value, it is
interesting to consider how polarization can migrate over large frequency intervals
such as depicted in Fig. 2.5b. With coupling energy of the form of (2.1.24), it is
plausible that a flip-flop transition could take place between neighboring spins with
a Zeeman frequency mismatch of the order ofΔω ∼ B and still conserve energy, the
difference in Zeeman energies being taken up by the transverse terms and eventually
dissipated by other flip-flop processes. Over a large number of such fluctuations, the
narrow polarization disturbance created by an rf pulse could broaden symmetrically
over frequencies well beyond the confines of the initial excitation profile. To have
this happen, of course, the inhomogeneous broadening must be local in character
and be otherwise configured to facilitate the process.
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Onemethod for measuring T1 under these circumstances is to endeavor to saturate
the entire line with a string of pulses known as a comb instead of a single pulse. Were
this possible, then all polarization variables would relax back to equilibrium with the
single time constant T1. If pulses at a single frequency do not produce the desired
saturation effect, then applying frequency modulation to cover the entire resonance
line is known to be effective [44]. At low temperatures, however, long strings of
pulses may produce undesirable heating effects. If T1 is long enough, another more
exotic (but widely used) method is to use field switching to create a non-equilibrium
initial condition for the T1 measurement. The field at the sample can be switched
mechanically or electronically.

The most obdurate cases occur when T1 is too short, even at low temperatures,
for field switching, and pulse combs are also not feasible. One’s only option may to
be hope that spectral diffusion will run its course in a time less than T1, and that the
final stage of the polarization recovery process can be analyzed to extract the T1 rate.
Needless to say, such an approach also has limited applicability.

2.2 NMR Probe of sp-Band Metals and Type I
Superconductors

In order to put high-Tc materials into context, this section gives as background mate-
rial a brief summary of the basic static and dynamic magnetism of “simple” metals as
sensed by the NMR probe. These systems give a historical perspective of the subject
and provide foundation for the treatment of the more complex d-electron metals.
In typical good metals we think about electrons as itinerant fermions which occupy
Blochwavefunctions uk(r)eik·r. Such orbitals are often far removed in character from
the atomic states they are actually composed of. Calculations of NMR shift, relax-
ation, and indirect spin-spin couplings in metals were originally formulated in this
band-theoretical language. The s-character of band electrons is always present and
often plays a major role. In contrast, high-Tc systems are bad metals, often with
just enough mobile carriers to render the d-holes on the Cu2+ sites itinerant. Some
properties remain atomic-like in character and can be thought of usefully in terms of
localized wavefunctions. Perhaps by accident, there is very little s-character in the
wavefunctions of most high-Tc ions, allowing the less familiar p and d orbitals to
dominate.

In this section we review the energy-band, k-space picture used to describe the
static and dynamic magnetism sensed by the NMR probe in both the normal (non-
superconducting) and superconducting (SC) states. We begin the discussion with the
idealized Korringa treatment of NMR shifts and relaxation, then discuss important
modifications of this picture for actual sp-band metals.

Historically, the first NMR studies of superconductivity were done on this class
of materials. We review problems encountered in reconciling both the shift and
relaxation behavior with the BCS theory [39] for these systems. It waswith elemental
metals such as Hg, Sn, Pb, and Al that questions such as that of the role played by
spin-orbit coupling in the behavior of the spin susceptibility and correspondingNMR
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(Knight) shift first came to light. They also gave us our first clear understanding of
the BCS coherence peak in the T1 rate [64].

Since even before the BCS theory of superconductivity [39] was announced,
NMR shifts have been employed to investigate the nature of the superconducting
state. In the early days the only known metallic NMR shift was the s-contact Knight
shift. Moreover, the original BCS ground state was an eigenfunction of Sz , leading
to the naive expectation that K (T ) ∝ χspin(T ). The actual reality was rather more
complex. This interesting piece of NMR history will be touched upon in Sect. 1.2.
Measurement of such effects has become a standard application for NMR studies.
Observation of shift behavior is also very important in the study of high-Tc systems
and for any of the latter-day unconventional superconductors.

2.2.1 NMR Shifts and Relaxation in Simple Pauli
Paramagnets

Following on the discovery of the s-contact NMR shift by Knight [32], one of the
first theoretical milestones for the NMR study of metals was the Korringa relation
between the latter shift and the product T1T , whichwas also shown to be independent
of temperature [41]. These results were expected to apply to cubic sp-band metals,
where it is noteworthy that the p-electrons with their far smaller HF couplings have
a nearly negligible effect on both the NMR shift and T1. The surprise of substantial
deviations from the Korringa relation for simple systems such as the alkali metals
were therefore a stimulus for Moriya’s treatment of electron-electron interactions in
these systems. The result was important modifications to the Korringa relation which
were verified experimentally. This was a very important step in the treatment and
understanding of electron interactions in metals. We review these developments in
the following subsections.

The Comprehensive HF Coupling Hamiltonian in Solids
As a preliminary step we introduce here the comprehensive HF Hamiltonian

HHF = 2γ�μBI ·
[
l
r3

− s
r3

+ 3r(s · r)
r5

+ 8

3
πsδ(r)

]
, (2.2.1)

where γ�I is the nuclear moment located at r = 0 and l and s are the orbital and spin
angular momentum operators, respectively, of an itinerant fermion located at r (see
[5], Chap. VI). Equation (2.2.1) can be written −γ�I · He, where He is an effective
HF-field operator which is the ultimate source of all magnetic shift and relaxation
effects in the metallic environment. There are three distinct types of interactions,
namely the orbital field, the dipolar field, and the s-contact interaction. Although it
took a number of years for them to emerge, calculations for the metallic shifts listed
above were all ultimately based on (2.2.1). Evaluating the thermally averaged effects

http://dx.doi.org/10.1007/978-3-662-55582-8_1
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of He in metallic systems is a matter of great subtlety and complexity. In a very real
sense, this is the essence of the high-Tc problem for the NMR probe.

The Knight Shift: s-contact HF Coupling in an sp-Band Metal
The so-called s-contact HF field and its corresponding NMR shift in copper metal

were discovered by Knight [32]. This shift is simply given by the expectation value
of the final term of (2.2.1) when spin polarization from an external field H is present.
There results a temperature-independent NMR shift given by

Ks = αsχsp, (2.2.2)

where αs = 8π
3 〈|uk(0)|2〉, 〈 〉 indicating an average over the Fermi surface. χsp =

1
2 (gμB)2n(EF ) is the spin susceptibility of the sp band, where n(EF ) is the Fermi
surface density of states per atom for one direction of spin [75]. We also note that the
dipolar HF coupling, i.e. the second and third terms of (2.2.1), also yields a palpable
NMR shift in many cases. It vanishes at sites having cubic symmetry, and is typically
an order ofmagnitude or so smaller than the contact shift. In high-Tc materials, where
contact shifts are often absent, the dipolar terms take on a much greater significance
than for cubic metals.

Interestingly for the case of copper metal, it later developed that some 40% of the
orbital character of the Fermi surface is d-like [33]. As a result, a significant fraction
of the observed Knight shift for copper is attributable to the orbital Van Vleck term
discussed in the next subsection [34].

The Korringa Calculation of T1

The idealized viewpoint regarding a simplemetal is epitomized by the seminal calcu-
lation of NMR shift and relaxation time by Korringa [41]. In this case, noninteracting
electrons were assumed, with a density of states at the Fermi surface describable by
band theory. HF interactions with the relevant nuclear spins were limited, not unrea-
sonably, to the s-contact interaction (2.2.1), the p-electron dipolar coupling being
negligibly weak in comparison. Cubic symmetry allowed quadrupolar effects and p-
electron contributions to the NMR shift to be ignored, and any gradient to the density
of states deemed too small to alter low-temperature behavior. The shift expression is
given above in (2.2.2).

Next, we need to develop an expression for T1 at the same level of approxima-
tion. We use the basic golden rule expression from time-dependent perturbation
theory, where the perturbing interaction is the s-contact term from (2.2.1), Hsc =
− 8π

3 �
2γnγeδ(r)I · s. If we consider the elemental transition from state |k ↑ m〉 to

state |k′ ↓ m + 1〉, where m is the initial nuclear spin quantum number, the rate for
such a transition may be written [6]

Wk′↓m+1,k↑m = 2π

�
|〈k′ ↑ m + 1|Hsc|k ↓ m〉|2δ(Ek − Ek ′). (2.2.3)

To complete the calculation this transition rate must be summed over initial electron
states |k ↑〉 which are occupied and final states |k′ ↓〉 which are unoccupied.
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The operative term inHsc is the one∝ I+S−, whereupon the squared matrix element
becomes

|〈k ↑ m|Hsc|k′ ↓ m + 1〉|2 =
[
4π

3
γnγe�

2|uk(0)uk ′(0)|
]2

(I − m)(I + m + 1).

(2.2.4)
The principal approximation is to assume that all states in the vicinity of the Fermi
surface have approximately the same probability density at the nucleus. Thus, we
may replace the quantity |uk(0)uk ′(0)|2 with the squared Fermi surface average
〈|uk(0)|2〉2. Introducing the restricted sums on k and k′ and noting further that 1/T1
is twice the coefficient of (I − m)(I + m + 1) (see Eq. (2.1.14)), this gives [63]

1/T1 = 4π

�

[
4π

3
γnγe�

2〈|uk(0)|2〉
]2 (r)∑

k,k′
δ(Ek − Ek′). (2.2.5)

The restricted sums
∑(r)

k,k′ can be replaced with energy integrals where, for example,
the sumon k of stateswith energy E becomes

∫
n(E)dE , where n(E) is the density of

states, and the occupation restriction is enforced with the Fermi occupation function
f (E) = [expβ(E − EF ) + 1]−1.
The summation in (2.2.5) then becomes

∫
dE

∫
dE ′n(E)n(E ′) f (E)(1 − f (E ′))δ(E − E ′) =

∫
n(E)2 f (E)(1 − f (E)) dE .

(2.2.6)

The final step is to note that the function f (E)(1 − f (E)) is very sharply peaked
at EF at the usual experimental temperatures, so that n(E)2 can be replaced with
n(EF )2. Then we note that the area under the peak in f (E)(1 − f (E)) is easily
shown to be kBT . The relaxation rate becomes

1/T1 = 4πkBT

�

[
4π

3
γnγe�

2〈|uk(0)|2〉
]2

n(EF )2. (2.2.7)

This expression may be combined with the result in (2.2.2) to give the Korringa
product, which we write as

1

T1T K 2
s

= 4πkBγ2
n

�γ2
e

. (2.2.8)

Equation (2.2.8) suggests that 1/T1T divided by K 2
s for these kinds of metals

should equal an expression made up of physical constants which is independent of
the other properties of the metal. As we shall see below, the result of Moriya’s theory
is to multiply the right-hand side of (2.2.8) by a constant factor <1. Setting that
aside for the moment, however, let us see how well the Korringa relation is obeyed
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in simple metals. In Table 2.1 shift and relaxation data from the literature are listed
for the alkali metals and the noble metals Cu, Ag, and Au [7].

These elementalmetals all have cubic crystal structures, so that dipolar shift effects
do not come into play. Using the measured shift values, values of T1T extracted
from (2.2.8) are compared with experimental values. It is seen that the latter values
are generally smaller than those obtained from (2.2.8). Including p-electron dipolar
hyperfine fields in the relaxation calculationwould onlymake this discrepancy larger.
Thus, the most serious defect in the Korringa treatment appears to be the neglect of
electron-electron exchange enhancement effects, which we shall discuss next.

2.2.2 The Moriya Theory of Exchange Enhancement
in Simple Metals

There are various corrections one could make to the Korringa treatment of relax-
ation. The electron-electron interaction potential has the effect of enhancing the spin
susceptibility, and thus the NMR shift [57], in close analogy with the enhancement
effect of ferromagnetic exchange among localizedmoments. However, it was pointed
out by Moriya [58] that exchange fluctuations would also enhance the T1 process.
Moriya’s calculation of this effect in the random phase approximation showed this
enhancement effect to be substantial, but not as great as that of the shift and suscepti-
bility. This is consistent with the values shown in Table 2.1, where the experimental
Korringa product (Relative Korr. Prod.) is consistently smaller than the result in
(2.2.8). Thus, the measured Korringa products can be used with the Moriya theory
to estimate the magnitude of these enhancement effects (see below).

We give an outline of the random-phase approximation calculation here, and
refer the interested reader to Refs. [7, 58] for a more detailed account. As noted

Table 2.1 NMR shift and relaxation data are tabulated for alkali metals and for the noble metals,
along with values of T1T derived from (2.2.8) from the compilation by Narath [7]. To test the
validity of the Korringa relation, a relative Korringa product defined as (T1T K 2

s )−1 divided by
4πkBγ2

n/�γ2
e is listed in column five

Metal and isotope Ks(%) T1T (expt.) (s K) T1T (Korringa) (s
K)

Relative Korr.
Prod.

7Li 0.0263 45.0 ± 2 26.0 0.58
23Na 0.112 4.8 ± 0.1 3.1 0.65
85Rb 0.650 0.81 ± 0.08 0.63 0.78
133Cs 1.47 0.13 ± 0.01 0.069 0.53
63Cu 0.232 0.9 ± 0.2 0.7 0.78
109Ag 0.522 9.0 ± 1.0 4.5 0.50
197Au 1.4 4.0 ± 0.5 4.5 1.13
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Table 2.2 A tabulation of enhancement parameters α derived for a selection of s-band metals from
experimental data using (2.2.9). For comparison, calculated values given by Pines [57] are listed

Elemental metal α from K(α) α calc. (Pines)
7Li 0.36 0.37
23Na 0.30 0.24
85Rb 0.19 0.15
109Ag 0.43 0.32

above, the shift has a simple exchange-enhancement factor, Ks = Ks0/(1 − α)

=αsχs0/(1 − α),whereα=ρ0χs0, andρ0 =2πζ/�
2γ2

e . Finally, ζ is theq-independent
(by assumption) electron-electron interaction potential. The single parameter ζ drives
the enhancement of both static and dynamic spin susceptibilities in the random phase
approximation picture. For T1 the fluctuation enhancement is q-dependent. In Sect.
3.5 these magnetic properties will be discussed in terms of q and ω-dependent sus-
ceptibilities. Here, we simply state the result for a spherical Fermi surface:

1

T1T K 2
s

= 4πkBγ2
n

�γ2
e

K(α), (2.2.9)

where K(α) = 2(1 − α)2
∫ 1
0 dx x/[1 − αG(x)]2. Here G(x) is the Lindhard func-

tion for free electrons given by 1
2 {1 + [(1 − x2)/2x]ln|(1 + x)/(1 − x)|}, with x =

q/2kF . G(x) is integrated over the range of q values which span the Fermi surface.
We see in (2.2.9) that the Korringa product of (2.2.8) is simply multiplied by the
quantity K(α). The enhancement factor for Ks is that for q = 0 (G(0) = 1), while
that for 1/T1 is for |q| > 0 (G(|q| > 0) < 1). Therefore, K(α) declines from 1 to 0
as α varies from 0 to 1 [61].

If other effects which modify the Korringa product are largely absent [62], the
experimental value of K(α) can be used to estimate the electron-electron exchange
(i.e. the value of α) in sp-band metals. A few examples are given in Table 2.2, where
α values in the range of 0.2 ≤ α ≤ 0.4 are seen to be typical. Rather surprisingly,
susceptibility enhancement effects are present to the degree of 25% to more than
50% in these nearly free-electron metals. The Korringa product is often used as a
diagnostic tool to examine the nature of the T1 process.

2.2.3 NMR in the Superconducting State of Simple Metals

We present here a brief account of the superconducting properties of sp-band metals.
Historically, several fundamental issues were resolved with these systems following
initial uncertainties regarding both theory and experiment. A clear and comprehen-
sive review of early work was given by MacLaughlin [9]. Some elemental metals

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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addressed in the early dayswereHg(4.15K),βSn(3.74K), Pb(7.22K), andAl(1.18K),
where their respective values of Tc are given in parentheses. They are all Type I super-
conductors, which means that their coherence lengths ξ(0) are long compared with
their London penetration depths λ(0) [60].

With the announcement of BCS theory [39], there were a number of interesting
issues to investigate. The principal ones for the NMR probe were (a) the expected
collapse of the spin susceptibility at T < Tc owing to the SC energy gap for quasipar-
ticle excitations and (b) the existence of a singularity, which becomes the coherence
peak, just below Tc in a plot of 1/T1 versus T . Because of the large superconducting
diamagnetism which occurs below Tc, virtually the only means of measuring the rel-
atively tiny Pauli susceptibility term is through the associated Knight shift Ks (Eq.
2.2.2). We shall discuss the superconducting shift measurements first.

The Knight Shift for T < Tc: Verifying the Yosida Function
Performing NMR measurements in the SC state of Type I superconductors was a
particular experimental challenge, because of the limited magnetic field penetration
depth λ ∼ 500Å for these systems. In order to get a reasonably uniform internal field
for NMR studies, experiments were performed on fine particles or thin films with
at least one dimension which was small compared with λ. The resulting samples
generally exhibited superconductivity with Tc near the bulk value and NMR lines
with relatively little diamagnetic shift or inhomogeneous broadening. Particles with
dimension d 
 λ have greatly reduced diamagnetism in the SC state. Other than
that, it was generally believed that these samples exhibited bulk NMR properties.

However, the peculiar results obtained at first for K (T ) versus T for T < Tc
demonstrated that the foregoing statements were not entirely correct. To see this
clearly, we must first describe the results that were expected from the shift measure-
ments, then what was actually found, and finally, how to account for the observed
data. The BCS theory prescribed an energy gap Δ(T ) above the superconducting
ground state for quasi-particle excitations when T < Tc. As Δ(T ) increases below
Tc the spin susceptibility χsp(T ) and Ks(T ) = αsχsp(T ) were expected to decline
and asymptotically approach 0 as T → 0. The theoretical functional form of χsp(T )

for T < Tc is known as the Yosida function [49].
Experimentally, however, large residual T → 0 shift values were reported. For

the 199Hg NMR in SC Hg, for example, Ks(T → 0)/K (T > Tc) � 2/3 was found
[48], with similar results for 119Sn in βSn [59], 207Pb in Pb [45], and 27Al in Al
[47]. These results caused great consternation and confusion, and it was a number
of years before a satisfactory understanding was reached [50].

Spin-Orbit Scattering: The Ferrell–Anderson Picture
In the end, it was realized that the theoretical preparation was incomplete, and fur-
ther developments with the Al metal samples showed that the earliest results were
incorrect. We shall return to the Al story below. The problem with the Yosida/BCS
calculation was that it had neglected spin-orbit coupling and its role in generating
spin-flip scattering processes. The situation was eventually addressed and for the
most part resolved in short papers by Ferrell [51] and Anderson [52], as well as in a
longer paper by Abrikosov and Gorkov [53].
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We consider briefly the physical picture presented in Anderson’s treatment [52].
In the presence of spin-orbit coupling onemust bear inmind that 〈Sz〉 for the electrons
is no longer a good quantum number, and that the spin-up and spin-down states are
mixed into eigenstates which no longer have any particular average value of spin.
However, a very subtle point is this: In clean, bulk regions of the pure metal there is
no spin-flip scattering even in the presence of strong spin-orbit coupling. Thus, the
spin susceptibility will still vanish as T → 0 in the SC state. However, what modifies
this ideal result is a spin-flip scattering lifetime τso which is short enough that the
quantity �/Δ(0)τso is no longer small. In other words the smearing of the eigenstate
energies from τso becomes comparable with the SC energy gap. Spin-flip scattering
occurs only where ordinary potential scattering is strong, e.g. near surfaces and near
impurities in the bulk. Ironically, then, this effect will be important near surfaces
where rf fields penetrate and NMR signals are excited, but not necessarily in bulk
regions which cannot be probed.

Anderson treated the spin-orbit scattering problem using his theory of dirty super-
conductors [54]. His result for the T → 0 susceptibility ratio is an expression which
can be integrated numerically, from which the following limiting cases are given
[52]:

χso(T 
 Tc)

χso(T > Tc)
≈ 1

6

�

Δ(0)τso
, Δ(0) � �/τso (2.2.10a)

χso(T 
 Tc)

χso(T > Tc)
≈ 1 − 2

Δ(0)τso
�

, Δ(0) 
 �/τso. (2.2.10b)

Equations (2.2.10) show that when τso is long there is only a small residual value
of χso(T 
 Tc), but when it is short, i.e. strong spin-orbit scattering near surfaces,
χso(T 
 Tc) is only slightly perturbed from its normal state value. The latter case
is often found for heavy metals such as Hg [48] and Pb [45], and was also found
for βSn [46, 59]. These authors performed various doping experiments, which were
also consistent with (2.2.10). Ferrell obtained a result similar to (2.2.10b) by means
of a physical argument [51].

In a metal as light as elemental Al one might expect spin-orbit effects to be very
small. Since colloids of Al are difficult to prepare, shift studies were performed on
thin film samples. The first results gave, surprisingly, residual shift values of ∼75%
[47]. It appears that orientation of their multi-film samples was quite critical, as
subsequent work [55] yielded a very small residual shift. Later measurements by
Fine, et al., on a single thin-film sample [56] gave results in good agreement with the
Yosida function [49]. These data are displayed in Fig. 2.6, finally giving verification
to the BCS theory-based prediction.

T1 Behavior Below Tc: The BCS Coherence Factor
The behavior of T1 for an sp-band (Type I) superconductor according to the BCS
theory was first investigated, theoretically and experimentally, by Hebel and Slichter
[64]. We sketch the calculation of T1 in the SC phase following the derivation in
[9]. First, recall from Sect. 1.2.1 that the T1 process consists of scattering fermions

http://dx.doi.org/10.1007/978-3-662-55582-8_1
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Fig. 2.6 Data for the 27Al
Knight shift in Al metal from
[56] are shown, plotted in
units of the normal state shift
as a function of T/Tc. The
solid curve is the Yosida
function, i.e. behavior
expected on the BCS theory
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from an initial state |kσ〉 to a final state |k′ − σ〉, while the nuclear spin goes from
m to m ± 1 so that angular momentum is conserved. This outline is maintained
in the SC state, but other circumstances change drastically. For T < Tc there is
some fraction of fermions which are paired (|kσ〉 and | − k − σ〉) in the ground
state and do not scatter. The quasiparticles not condensed into the ground state are
thermally excited above the energy gapΔ(T ) and are available to scatter as sketched
above. Themain differences are that, first, there appears in the summation in (2.2.5) a
factorC±(k, k′) = 1

2 [1 ± (Δ2/EkEk′)] known as the coherence factor, and second, the
normal state density of states factors in the integrals leading to (2.2.7) are replaced by
the BCS density of states nBCS(E) = n(EF )E/(E2 − Δ2)1/2, where Δ ≤ E ≤ ∞.
The coherence factor arises because of the pairing of electrons in the condensed
phase, and is characteristic of many dynamic properties treated with BCS theory
[19]. The choice of sign forC±(k, k′) depends on whether the scattering perturbation
is invariant under time reversal applied to the fermion bath. If it is, as in the case
of phonons (e.g. ultrasonic attenuation) then C−(k, k′) applies. If it is not invariant,
such as for electromagnetic absorption and magnetic dipolar nuclear relaxation, then
C+(k, k′) applies.

For the superconducting nuclear relaxation rate 1/T1s one finds, in units of the
normal state rate 1/T1n ,

T1n
T1s

= 2

kBT

∫ ∞

Δ

dE (EE ′ + Δ2) f (E) (1 − f (E ′))
[(E2 − Δ2)(E ′2 − Δ2)]1/2 , (2.2.11)

where E ′ = E ± �γnH . Below Tc the excitation probability is the Fermi function
f (Eg) = [exp(βEg) + 1]−1 of the gapped energy Eg = (E2 + Δ2)1/2. Since the
nuclear Zeeman energy �γnH is minuscule on the scale of the quasiparticle energy,
there is in fact a logarithmic singularity in (2.2.11) for the case of the coherence factor
C+(E, E ′). The most satisfactory explanation for how this singularity is “tamed” is
by means of anisotropy of the gap energy Δ(T ) [9, 65, 66]. The nuclear Zeeman
energy will be neglected henceforward.

Thebehavior ofT1n/T1s in (2.2.11)maybedivided into two regions, kBT 
 Δ(T )

and kBT > Δ(T ). For kBT 
 Δ(T ) the integral is dominated by the peak in
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nBCS(E) near the gap, which becomes very nearly constant Δ(T ) ≈ Δ(0). In this
limit the factor f (E)(1 − f (E)) ≈ exp(−βΔ(0)), so that 1/T1s decays exponen-
tially at lowT. In the other limit kBT > Δ(T ) (T near Tc), the factor f (E)(1 − f (E))

will have nearly its normal-state value, and the singularity in (2.2.11) has the poten-
tial to elevate T1n/T1s to values considerably in excess of 1. This is the source of
the well-known BCS coherence peak in 1/T1(T ) at T < Tc. This peak was first
measured on 27Al in Al metal and identified by Hebel and Slichter [64], establishing
a major milestone in experimental confirmation of the BCS theory.

It is important to note that for measurements such as ultrasonic attenuation the
appropriate coherence factor to use is C−(k, k′), whereupon the factor (EE ′ + Δ2)

in the numerator of (2.2.11) is replaced by (EE ′ − Δ2). This effectively cancels the
singularity at E � Δ. As a result, the ultrasonic attentuation coefficient was expected
to fall abruptly below Tc, as had been confirmed experimentally [67]. This striking
contrast between results obtained with probes having different symmetry properties
was a very important confirmation of the correctness of the BCS picture.

Following the Hebel-Slichter results, Masuda and Redfield [65] reported further
T1 measurements on 27Al in Al metal taken at temperatures ranging from above to
well below Tc. Their results (Fig. 2.7) offered a full panorama of the BCS-theoretical
behavior, with a coherence peak (in 1/T1) rising above the normal state Korringa
curve by a factor ∼ 2, then descending into the superconducting state in a clearly
exponential fashion. These data were obtained with a field-switching technique sim-
ilar to that used in [64], the main difference being that pumped 3He cooling allowed
them to extend the measurements to 0.35 K, i.e. far below Tc = 1.18 K for Al metal.

Analyzing T1 Data in the Superconducting State
Since the formulation of (2.2.11) has been widely employed to analyze SC-state
data on high-Tc materials as well as all manner of unconventional superconductors,
we recount here the analytic procedure used to fit the Al data in some detail [9, 65].
These results are referred to in other sections of the book as well.

In order to control the singularity in (2.2.11), Hebel and Slichter [64] postulated a
broadeningof the electronic energy levels.While such adevice enabled them toobtain
a reasonable result for the coherence peak, it lacked a clear physical basis. Masuda
and Redfield, on the other hand, suggested that the observed peak was conditioned
by a mild anisotropy of the gap parameter Δ(T ). Not only does this give a better fit
to the peak data, but it also has a clear physical origin in the BCS equations. There,
the gap parameter is formally a function of k, and the k-independent gap parameter is
just a convenient approximation used to solve the equations [66]. Ample theoretical
evidence has been reported for gap anisotropy effects from van Hove singularities
and other causes [68].

To illustrate the T1 analysiswith (2.2.11)we summarize briefly the development in
[9] and [65], and refer the reader to these sources for a more detailed discussion. The
procedure is to incorportate the gap anisotropy into the BCS density of states factors
in (2.2.11) at the point where sums on k and k′ are converted to energy integrals. We
therefore back up a step from (2.2.11) and rewrite it as
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Fig. 2.7 A semilog plot of T1 data for the superconducting state of Al metal versus Tc/T (dots)
from [65]. Also shown is their fit of the data to the BCS theory (solid line), where the coherence
peak (i.e. T1 minimum) amplitude was adjusted using a distribution of energy gap values attributed
to anisotropy. The low-temperature energy gap value is adjusted to the slope of the data, yielding
Δ0 = 3.2 in reasonable accord the the BCS weak-coupling value of 3.52 kBTc

T1n
T1s

= 2

kBT

∫ ∞

0
[Ns(E)2 + Ms(E)2] f (E) (1 − f (E))dE, (2.2.12)

where

Ns(E) = Re
∫ a2

a1

E P(a)da

[E2 − Δ(T )(1 + a)2]1/2 , (2.2.13a)

and Ms(E) = Re
∫ a2

a1

Δ(T )(1 + a) P(a)da

[E2 − Δ2(1 + a)2]1/2 . (2.2.13b)

In (2.2.13) the variation of Δk over the Fermi surface is represented as a distribution
P(a) extending over a1 ≤ a ≤ a2, whereΔk ⇒ Δ(T )(1 + a) and

∫
a P(a)da = 0 by

definition. As noted in [9], because the averaging over a is followed by integration
over E , the precise shape of P(a) is functionally immaterial to the final results. In
fitting the T1 data of Fig. 2.7, 〈a2〉 determines the depth of the T1 minimum and
Δ(0) fixes the slope of the exponential tail. The fit shown corresponds to 2Δ(0) =
(3.2 ± 0.2) kBTc and 〈a2〉1/2 � 0.05, in reasonable agreement with the BCS weak-
coupling theoretical value 2Δ(0) = 3.52 kBTc. Comparable gap values are given by
other probes [9].
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There has also been extensive experimentation with doping effects on the SC T1
behavior, yielding some interesting effects. For example, it was found that shortening
the mean free path l of the quasi-particles led to even larger coherence peaks in the
T1 data for Al [69] and In-based [70] dilute alloys. This effect can be rationalized in
terms of the theory of “dirty superconductors” [54], where potential scattering caused
by impurities can become strong enough to cause effective mixing between Bloch
functions on different parts of the Fermi surface. The result is a smoothing out of
intrinsic gap anisotropy. Data for the Al-based systems was in good agreement with a
theory of this effect [71], but for In-based alloys, there was only agreement for l > ξ0,
where ξ0 is the coherence length. It was suggested that gap inhomogeneity might be
suppressing the coherence peak in such a case. However, no further resolution of this
point has apparently been reported.

As we shall see in the next subsection, there are a number of d-electron super-
conductors where T1 has no coherence peak for reasons which are also not clear.
Moreover, among high-Tc systems, suppression of the coherence peak in T1 is uni-
versal, as is also the case for many unconventional superconductors. We defer further
discussion of this point to subsections below, where fuller descriptions of the systems
concerned are presented.

2.3 Static and Dynamic Magnetism in d-Band Metals

In this subsection we review the additional complexities which arise when a conduc-
tive solid has an open d-shell in addition to its sp-band effects. The d-electrons in
solids are typicallymore tightly bound to their host ion, interactingmoreweakly with
neighbors. As a result they have narrower, more highly structured energy bands with
substantially higher densities of states at their Fermi surfaces. Moreover, they are
subject to a crystalline electric field (CEF)which results from bonding and proximity
to neighboring ions, which breaks the full rotational potential symmetry enjoyed by
a free ion. As a result, the d-electron angular momentum “always” has a zero expec-
tation value in the ground state. On the other hand, the greater densities of states
of d-bands, when combined with the electron-electron exchange effects [57] which
came quite clearly to light in the Moriya treatment of enhanced NMR shifts and
relaxation [58], lead to strongly enhanced susceptibilities and even to permanently
magnetized ground states in a number of pure metals (e.g. Fe, Co, and Ni in the 3d
series). Moreover, ions with d-electrons as dilute impurities or dopants frequently
possess a localized magnetic moment. As an example, the high-Tc materials do not
exhibit localized magnetism per se, but theMott insulators that they are derived from
exhibit local-moment antiferromagnetism at low doping levels. When the d-holes
become itinerant through doping, a localized d-electron spin Hamiltonian continues
to be a reliable model for properties such as hyperfine (HF) effects, spin and Van
Vleck paramagnetism, as well as hybridization effects witn p-electron neighbors.
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Special Features of NMR in d-Band Metals and Superconductors
Keeping superconductivity in mind, we shall restrict our attention to d-electron

systemswhich do not order magnetically.We shall discuss, as an example, the behav-
ior of the V3X series of compounds, which are superconductors as well. There is a
wealth of interesting NMR phenomena which arise in such systems, including:

• Prominence of the core-polarization (CP) d-spin HF field in studies of d-band
magnetism. Since d-electrons have no contact interaction, this isotropic, negative
HF coupling, which was identified by Heine [35] and by Wood and Pratt [35, 77],
takes its place. The core polarization plays a major role, since dipolar interactions
are often smaller and are cancelled by cubic symmetry.

• The greatly enhanced importance of orbital effects, both the static (Van Vleck)
shift and susceptibility and the robust orbital T1 mechanism. The d-band orbital
susceptibility was first formulated by Kubo and Obata [36]. Its contribution to
the NMR shift was identified by Clogston et al. [37] in connection with the V3X
compounds,where it had a profound effect on the interpretation of superconducting
shift data.

• The latter authors [38] also pioneered the use of the K − χ plot as a means of
analyzing NMR shifts and their corresponding susceptibility components in d-
band metals. This technique continues to be used very widely and has led to great
insight into the magnetic infrastructure of metals and intermetallic compounds.
We present their method here.

• When d-electronmetals are superconductive, they are nearly always Type-II super-
conductors. Thus, NMR studies are very often conducted in the mixed state, i.e.
in the presence of a large magnetic field and a vortex lattice. The field penetrates
throughout the sample, dividing itself into as many flux bundles as possible, which
occurs when each vortex contains just one fluxon.We shall review results on NMR
shifts, lineshapes, and on T1 studies as well. These effects are directly relevant to
superconductive high-Tc NMR studies, since they are largely conducted under the
same conditions.

2.3.1 The d-Electron HF Interactions

In general there are two types of d-electron HF interactions, namely spin and orbital,
the latter arising from the first term in (2.2.1), and the former from the second two
terms. In d-band metals there are also multiple bands with their own Fermi surface
density of states and corresponding HF interaction terms. These terms will make
additional contributions to the NMR shift and relaxation rates, rendering the task of
analyzing experimental data for these parameters a bit more complex. By and large,
however, d-electron bands are somewhat more “lively” than their rather prosaic s and
p counterparts, and tend to dominate the nuclear spin properties. In high-Tc materials,
depending on your point of view, there is scant evidence for actual sp-bands per se,
so the d-electron HF effects are, by any measure, the dominant ones.
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Anisotropic d-Spin Susceptibility and HF Tensor
Allowing for anisotropic d-spin HF coupling, we then take

Hds =
∑

β=x,y,z

Adβ IβSβ with χdβ = NAgβμB〈Sβ〉
H

. (2.3.1)

The d-spin shift coefficient is then defined as

αdβ = Kdβ

χdβ
= Adβ

NAγ�gβμB
. (2.3.2)

For ordinary 3d metals we shall take gβ ∼ 2, whereupon χdβ becomes isotropic.
However, these definitions carry over into the discussion of cuprates inChap. 3,where
there is evidence for substantial g-shifts. We also note here that the HF coefficient
can be quoted as simply Adβ in energy units, as Adβ/� in units of s−1, as Adβ/γ� in
kG/spin, or as Adβ/γ�gβ in units of kG/μB . Although itmay be somewhat confusing,
one finds all of these units in use in the high-Tc literature. The d-spin HF field is also
known as the core-polarization HF field (hence Ad → Acp), which we now discuss.

Core-Polarization Hyperfine Coupling: The Mechanism
Since d-electron wavefunctions vanish at the site of the nucleus, they possess no
direct contact HF field from the final term in (2.2.1). However, they do activate a
contact HF term indirectly in such a way as to generate an effectively isotropic HF
coupling term with the nuclear spins. This mechanism came to light with the work
of Heine [35] and of Wood and Pratt [77]. Detailed calculations have been given
by Freeman and Watson [72]. The mechanism of the core polarization HF field is
a simple consequence of the Pauli exclusion principle, and works as follows. In d-
electron atoms there are two or more filled s-shells which are magnetically inert.
Nonetheless, these filled s-shells undergo repulsive coulomb interactions with the
Fermi-surface d-electrons which, generally speaking, lie outside of them spatially.
Thus, coulomb repulsion drives the s-shell electron orbitals closer to the nucleus. This
repulsive effect is, however, dependent on spin. Consider themajority d-spinmoment
to point up. The up-moment s-shell electrons are then known to avoid close proximity
with the up-moment d-electrons in a Pauli-exclusion effect known as the Fermi hole.
The down-moment s-electrons have no such effect. With the same wavefunction,
then, the down-moment s-electrons will have a higher coulomb repulsion energy.
For that reason, a down-moment s-shell orbital will “shrink” toward smaller radii
relative to the up-moment s-shell orbital, creating a net down moment of s-electron
density at the nucleus, i.e. a net negative contact HF interaction. The differential
orbital distortion effect is small, but the core s-shell HF couplings are enormous,
so that there is a substantial net HF coupling from this effect. For 3d-electrons the
resulting Hf field is ∼ −125 kG/µB, increasing gradually across the 3d series. For
the 4d and 5d shells the effect is generally larger [72]. As an example, we note that
the 5µB S-state moment of Mn2+ in MnF2 generates a HF field � −127 kOe/µB

at the 55Mn nucleus. This compound has purely 3d-spin magnetism.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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2.3.2 Orbital Shift and Susceptibility

The orbital term in (2.2.1) comes into play for both the NMR shift and T1. The orbital
shift is driven by the Van Vleck orbital susceptibility, which was first formulated for
band electrons in a simple model by Kubo and Obata [36]. The susceptibility was
formulated in a tight-binding approximation, yielding the following expression for
the β-axis susceptibility,

χorb = NA�μ2
B

∫
dk

(2π)3

∑
nn′

f (Enk) − f (En′k)

En′k − Enk
〈nk|lβ |n′k〉〈n′k|lβ|nk〉 , (2.3.3)

where NA is Avogadro’s number, � is the atomic volume, and the summing indices
n and n′ represent the five d-orbital subbands as well as the spin quantum number.
The quantity f (Enk) = [exp(β(Enk − EF )) + 1]−1 is the Fermi occupation function.
χorb is written here as a molar susceptibility.

Clogston et al. [76] have derived a companion expression to (2.3.3), which gives
the induced orbital hyperfine field at the nucleus when the effects of the spin-orbit
coupling and certain other terms in the general expression, deemed to be small, are
neglected. The simplified expression is

Horb = �μ2
B

∫
dk

(2π)3

∑
nn′

f (Enk) − f (En′k)

En′k − Enk
〈nk|2lβ/r3|n′k〉〈n′k|H lβ |nk〉,

(2.3.4)
where the field H is taken to be directed along the β axis. If we make the assumption
that the radial functions of all the d-orbitals in the band are approximately the same,
then we may extract 〈1/r3〉 from the latter expression, finding

Korb = [2〈1/r3〉/NA] χorb , (2.3.5)

where the quantity in brackets is identified as the orbital shift coefficient αorb. When
using calculated ionic values for 〈1/r3〉 [78], the foregoing authors suggest that a
correction factor ξ = 〈1/r3〉metal/〈1/r3〉ion � 0.75 be invoked for realistic estimates
of the metallic shift coefficient αorb.

It should be noted that the foregoing expressions for the orbital shift and suscepti-
bilitywere derivedwith the applied field assumed to be lying along a particular spatial
axis. However, these calculations were originally presented in application to cubic
d-band metals, for which no appreciable spatial anisotropy was expected to occur. In
applications to high-Tc materials with their nearly 2D structures, these expressions
are easily adapted to reflect the expected anisotropy. In such applications, we note
that the orbital shift coefficient in (2.3.2) will be generally assumed to be isotropic.

Analysis of NMR Shift and Susceptibility for d-Band Metals: The (K,χ) Plot
With the foregoing additions to our list, we are now in a position to formulate a
complete model of the shift and susceptibility of a d-band metal. The following
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model would apply to a pure metal from the 3d, 4d, or 5d transition series, but also
is intended to represent a binary or ternary intermetallic compound as long as its
Fermi surface can be modeled with two bands, an sp-band which belongs mostly to
the transition metal atoms and a d-band which belongs exclusively to the transition
metal atoms. The p-orbitals on the ligands are assumed to be strongly mixed into the
d-band, while the s-orbitals are not, i.e. are presumably nearly filled [38]. We then
write for the susceptibility,

χtot = χdia + χs + χd(T ) + χorb , (2.3.6)

where χs and χd(T ) are the spin-paramagnetic terms, χorb is the d-electron orbital
term given by (2.3.3), and χdia is the core diamagnetic term. Among these, χs

is quite small, though its associated Knight shift may not be, so that any Landau
diamagnetism is very small, indeed. Neither the latter nor χdia has any appreciable
NMR shift effect [76]. Molar susceptibilities are used throughout this volume [79].

The NMR shift of the transition ion, then, has only three significant terms [76],

K (T ) = Ks + Kd(T ) + Korb = αsχs + αdχd(T ) + αorbχorb , (2.3.7)

in conventional notation for the shift coefficients. Typically, the only temperature
dependence originates in χd(T ). Therefore an experimental plot of K (T ) versus
χtot (T ) with T as the implicit variable should yield a straight line of slope αd . An
experimental K versus χ plot is just the beginning of a full (K ,χ) analysis of the
various terms in (2.3.6) and (2.3.7). Such an analysis for the case of Pt metal was
presented in [76], with the plotted result shown here in Fig. 2.8. We give a brief
account of the analytical procedure.

First, any K − χ analysis must begin at the origin, and several parameters need
to be estimated in order to proceed. We refer the reader to the original paper for full
details. The first step is to plotχdia � −28 × 10−6 emu/mol at K = 0 (point 1), since
there is no appreciable diamagnetic shift [76]. This value of χdia is taken from the
literature [80]. From point 1 we construct a line of slopeαs to extend over the interval
Δχ = χs . For this step, αs is obtained from HF structure parameters derived from
optical data, yielding αs � 2.12 × 103 (emu/mol)−1. χs is estimated using a free-
electronmodel, where the number ns,d of (s, d) electrons satisfies ns + nd = 10.With
a parabolic model for the 5d-band a value of ns = 10 − nd = 0.2 was obtained, giving
χs � 4.8 × 10−6 (emu/mol). The s-band line in Fig. 2.8 then extends from point 1
to point 2. Next, we construct a line from point 2 with a slope equal to the estimated
value of αorb = 2〈1/r3〉/NA. The ionic value of 〈1/r3〉 has been estimated to be 9.5
a.u. [79] from HF spectroscopic data, leading to the value αorb � 264 (emu/mol)−1,
including a relativistic correction [76]. Drawing a line with slope αorb from point 2,
the intersection of that line with the line through the data (point 3) then partitions the
remaining susceptibility into orbital and d-spin contributions as shown.

In the case of Pt metal, χtot is dominated by χd(T ), and χorb is a relatively small
fraction (� 15%) of χtot . In cases where χorb is a signficant fraction of the total,
its temperature dependence may be a big enough effect so that a simple (K ,χ) plot
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Fig. 2.8 A K-χ plot is shown for 195Pt in Pt metal from [76]. Plotting successive contributions to
(K,χ) carries one from the origin to point 1 (χdia), then from point 1 to point 2 (Ks ,χs ), and finally
from point 2 with an estimated slope αorb. The intersection at point 3 with the line through the
experimental data completes the partition of the susceptibility. A detailed discussion of the analysis
is given in the text

is no longer reliable [76]. Nonetheless, the (K ,χ) method has been widely used to
analyze NMR shift data with experimental susceptibilities. For example, it was used
to determine that substantial χorb terms were present in the V3X ’s and in V metal
[37]. We reproduce in Table2.3 the table of results from [37].

In this table, values of χorb from (K ,χ) analyses are subtracted from experi-
mental susceptibilities to estimate χd , which is given as χexpt − χorb. The latter
values are then to be compared with d-spin susceptibilities estimated from the spe-
cific heat coefficient γ, where χsp.ht. � 3μ2

Bγ/π2k2B . A simple theory gives electron-
phonon enhancement of γ by a factor [1 + N (0)V]. V is the BCS electron-phonon
interaction parameter. Since χd is not so enhanced [84], one may estimate VN (0)
� χsp.ht./χd − 1. In the last two columns of Table2.3, values of N (0)V deduced
in that way are compared with those derived from Tc using the BCS formula
N (0)V = [ln(0.855 θD/Tc)]−1. Considering the difficulty of estimating the relevant

Table 2.3 Table of susceptibility components and BCS parameters for V3X compounds and V
metal. The estimates for χorb were determined using (K ,χ) plot analyses. The values of χd �
χexpt − χorb so deduced are checked using density-of-states estimates from specific heat data
as corrected for electron-phonon enhancement by means of BCS theory. See text for detailed
explanation. All susceptibilities are in units of 10−4 emu/mol

R ≡ χd (0)/
χd (Tc)

χexpt χorb χsp.ht. χexpt − χorb N (0)V
(Sp.Ht.)

N (0)V
(BCS)

V3Ga 0 ≤ R ≤ 0.25 17.9 5.2–7.5 14.0 12.7–10.4 0.13–0.39 0.35

V3Si 0 ≤ R ≤ 0.25 15.7 5.2–7.5 10.7 10.5–8.2 0.09–0.35 0.35

V 3.08 2.11 1.22 0.971 0.244
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parameters, this analysis gives a nicely consistent picture in which it is established
that (a) χd at T 
 Tc is a small fraction of its normal-state value, and (b), values
of χd consistent with electron-phonon enhancement of γ are obtained. Note that χs

� 0.3 (units of Table2.3) has been ignored and is essentially negligible.

2.3.3 Spin-Lattice Relaxation Effects for d-Band Electrons

An open d-band brings added richness—and complications—to the T1 process as
well, contributing a total of three additional terms to the T1 rate. These are the d-
spin core polarization (CP), the d-spin dipolar, and the d-orbital terms. The d-orbital
relaxation process was first discussed by Obata [81]; we shall spell out the results
of that calculation below. The general treatment of the CP relaxation process, on
the other hand, is an enterprise of great complexity. Under a set of straightforward
restrictions, Yafet and Jaccarino have presented a very clear discussion of this prob-
lem [82], which has been useful under a variety of circumstances. Here we discuss
briefly the approximations employed and give the results.

The stated approximations are as follows:

• Spin-orbit coupling is disregarded.
• The unperturbed states (i.e. without HF terms) are taken to be Hartree-Fock solu-
tions of the simplified Hamiltonian.

• Exchange intergrals responsible for the CP effect are treated in first order.
• Exchange effects between conduction band orbitals are neglected.
• Conduction band states are self-consistent Bloch states, which are admixtures of
s, p, and d orbitals.

• The conduction band d-states are treated in a tight-binding approximation.
• Finally, consideration is limited to the case of a cubic metal. As a result, the cross
terms between sp and d-orbital matrix elements can be shown to vanish.

The resulting expressions for the shift and relaxation rate are:

K = 4π

3
(γe�)2[〈φ2

s (0)〉(1 − Fd) − |φcp(0)|2 Fd ]n(EF ) (2.3.8)

and

1

T1T
= 4πkB

�

[
4π

3
γnγe�

2
]2 [

〈φ2s (0)〉(1 − Fd )2 + |φcp(0)|4F2
d (

1

3
f 2 + 1

2
(1 − f )2)

]
n(EF )2,

(2.3.9)

where Fd is the fraction of d-character of all the states at the Fermi surface, and
n(EF ) is the total density of states (of all “bands”) at the Fermi surface. Thus, even if
there is appreciable s-d mixing in the Bloch functions the contributions to shift and
relaxation will occur separately as shown. CP terms are only kept for the d-orbitals,
even though they may occur in the calculation for the s and p orbitals. The reason
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for this is that the contact terms dominate the sp regions of the Fermi surface, and
any CP terms are neglected for those states as small corrections.

The parameter f gives the relative weight of �5 character for d-orbitals at the
Fermi surface, while 1 − f gives the proportion of �3 character [83]. It is seen that
the sp-contact and d-CP portions of the formulas for K and 1/T1T obey separate
Korringa-like relations (see (2.2.8)), where the Korringa relation for the CP terms
has a reduction factor q( f ) = 1

3 f
2 + 1

2 (1 − f )2, i.e.

1

T1cpT
= 4πkB

�

[
4π

3
γnγe�

2|φcp(0)|2
]2

nd(EF )2q( f ) = 4πkBγ2
n

�γ2
e

K 2
cpq( f ),

(2.3.10)

where the second equality shows themodifiedKorringa relation. q( f ) is essentially a
degeneracy factor, having a value 1/2 for the two�5 orbitals ( f = 1), 1/3 for the three
�3 orbitals ( f = 0), and 1/5 when all five d-orbitals are equally weighted ( f = 0.6).
Thus the five d-orbitals contribute independently to 1/T1CP , very much like the
fluctuations of separate magnetically-active neighbors contribute to the T1 process
of a ligand nucleus [62]. The difficulty in utilizing (2.3.10) is that the parameter f
for d-band metals is generally unknown.

The orbital T1 process was first discussed in detail by Obata [81], treating both
orbital and dipolar relaxation rates in the same calculation. Aswith theCPcalculation
above, spin-orbit coupling is neglected, the d-orbitals are treated in a tight-binding
approximation, and the system considered is a cubic metal. There are no cross terms
between orbital and spin-scattering relaxation processes. It was noted in [82] that
the dipolar process has interference with the contact and CP processes, but if the
states at the Fermi surface can be separated into a d-band and an sp-band, then the
interference terms vanish. For a cubic metal, both the orbital and dipolar relaxation
rates are isotropic, but both depend on the symmetry parameter f , according to

1

T1orbT
,

[
1

T1dipT

]
= 4πkB

�
[γn�Horb]2nd(EF )2 p( f ), [d( f )], (2.3.11)

where Horb = 2μB〈1/r3〉, p( f ) = 2
3 f [2 − 5

3 f ], and d( f ) = 5
49 [ 13 f 2 + 2

5 (1 − f )].
Comparison of the dependences of q( f ), p( f ) and d( f ) on f is shown in Fig. 2.9.

The orbital relaxation rate (p( f )) is seen to vary from zero, when the �5 orbitals
alone are occupied at the Fermi surface, to a maximum when all five orbitals are
equally occupied, since the orbital matrix elements between the two symmetries are
the largest ones. The dipolar relaxation rate (d( f )) varies only slightly across the full
range of f , but it is only about 10% of the average value of p( f ). Thus, the dipolar
relaxation is only significant when p( f ) is near zero.

The complete list of magnetic relaxation processes for d-band metals is then

1/T1 = 1/T1s + 1/T1cp + 1/T1orb + 1/T1dip. (2.3.12)
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Fig. 2.9 The symmetry factors q( f ), p( f ), and d( f ) pertaining to CP, orbital, and dipolar relax-
ation rates discussed in the text, respectively, are plotted as a function of the fraction f of �5
character in the relevant d-band orbitals at the Fermi surface. The point f = 0.6 represents equal
weight of all five d-orbitals and is themaximum andminimum point of p( f ) and q( f ), respectively.
In many cases the dipolar rate is negligible, as it is only ∼ 9% of the average value of the closely
related orbital rate

We illustrate the analysis of experimental T1 rates into these different contributions
with calculations given by [82] for d-band metals V and Nb. In stating these results
we define Hs = (8/3)πμB〈φ2

s (0)〉 and Hcp = (8/3)πμB |φcp(0)|2, whereupon (2.3.9)
becomes

1

T1s,cpT
= 4πkB

�
[γn�Hs,cp]2 n2s,d [1, q( f )] (2.3.13)

for the s-band and CP contributions. The parameters Hs,cp are the HF fields per unit
of spin from these sources. The T1 contributions from the three main sources have
been estimated [82] for V and Nb metals as listed in Table2.4. For this purpose,
Hs has been estimated using data from the literature [82], and Hcp and Horb have

Table 2.4 Table of HF parameters and specific heat densities of states leading to estimates of
(T1T )−1 for elemental V and Nb using the formulas given in the text. The total relaxation rates are
stated for f = 0.6, but would not change significantly for other values of f . The theoretical estimate
undoubtedly exceeds the experimental numbers because of the electron-phonon enhancement of
the specific heat density of states, which does not affect nuclear relaxation rates. See text for data
sources and additional discussion. HF fields are given in units of 106 Oe, densities of states in
states/eV-atom, and relaxation figures in (sK )−1

Hs Hcp Horb ns (EF ) nd (EF ) Rs Rcp R1orb (T1calckT )−1 (T1expT )−1

V 1.12 −0.117 0.19 0.12 1.84 0.642 1.65 4.35 2.86 1.27

Nb 2.48 −0.21 0.285 0.14 1.66 3.76 3.74 6.9 7.55 2.8
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been derived fromHartree-Fock calculations given by Freeman andWatson [78]. The
total densities of states for these elements are taken from specific heat measurements,
where the s-band components are estimated assuming for simplicity one s-electron
per atom. The quantities Rs , Rcp, Rorb are defined to be the expressions given above
for 1/T1T from these sources without the symmetry factors [1, q( f ), p( f )]. The
experimental values of (T1expT )−1 are data reported by Butterworth [85].

What this table shows is that the CP and orbital mechanisms of relaxation are
important. For the lighter metals, where the s-band contribution is smaller, these
d-electron terms may even be the dominant ones. On the other hand, we see that the
specific heat density of states clearly overestimates the relaxation rates, pointing to a
substantial electron-phonon enhancement effect for V and Nbmetals (which are also
superconductors). In [9] a quantitative discussion of the latter effect is given, finding
reasonable agreement between the nuclear relaxation data and estimates from other
measurements, somewhat like the comparisons in Table2.3. As the details go beyond
the intended scope of this discussion, the reader is referred to [9] and references
therein for further discussion.

This completes our discussion of normal-state NMR shift and relaxation effects
in transition metals. The mechanisms in (2.3.7) and (2.3.12) are the foundation of
effects to be found in high-Tc materials, though the details remain to be worked out.
We next consider the effects of Type II superconductivity in the d-band metals.

2.3.4 NMR Studies of 3d Metals as Type-II Superconductors

The type-II superconductivity of d-bandmetals and intermetallic compoundspresents
a rather different set of problems from those of the type-I systems discussed in
Sect. 2.2.2. First, type-II systems exhibit great complexity of behavior in a magnetic
field, showing three phases as a function of the magnitude of the applied field for
T < Tc and exhibiting two critical fields, Hc1 and Hc2. Below Hc1 there is the typical
Meissner exclusion of all magnetic flux except for the usual penetration depth λ.

Between Hc1 and Hc2 there is a state of essentially complete, but inhomogeneous
field penetration in the form of superconducting current vortices which allow a single
fluxon of field to exist in a region of normal (i.e. nonsuperconducting) metal with
a diameter ∼ ξ0, the Pippard coherence length. Of course, the magnetic field of a
fluxon penetrates the surrounding material to a depth of ∼ λ. Each fluxon comprises
one flux quantum �0 = hc/2e = 2.07 × 10−7 G cm2.

Because of the accommodation of type-II superconductivity to applied fields
through the penetration of vortices, the superconducting state can persist up to fields
much higher than the thermodynamic critical field Hc.9 One can make a rough esti-
mate of Hc2 using a picture of vortices with normal cores of approximate radius ξ0. In
the mixed state with field H (T 
 Tc) the density of vortices is H/�0. The fraction

9Hc is defined as the field giving the field energy density H2/8π equal to the condensation energy
into the superconducting state [18].
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of normal sample material is then ∼ πξ20H/�0. Setting this expression equal to 1
gives an estimate Hc2 ∼ �0/πξ20 . This is only slightly larger than the expression
deduced from Ginzburg-Landau (GL) theory,

Hc2 = �0

2πξ20
. (2.3.14)

Aswas first demonstrated byAbrikosov [92], the normal-superconducting bound-
ary wall has positive energy for λ <

√
2ξ. However, if the GL parameter κ = λ/ξ

>
√
2, then the boundary wall has negative energy, so that the system will lower its

free energy bymaking the boundary area as large as possible. Thus, the field arranges
iself into individual fluxons, each surrounded by a normal-superconducting wall. In
this way we see that the condition κ >

√
2 is the definition of a type II superconduc-

tor, κ being the GL parameter. Abrikosov predicted the existence of such a mixed
state, in which the vortices arrange themselves (in reasonably clean material) into
an ordered lattice if κ = λ/ξ >

√
2 [92]. The lowest energy state of such a lattice

was shown to be minimized by a triangular arrangement of vortices by Kleiner et al.
[93]. Below, we describe NMR spectra which are consistent with this theoretical
conclusion.

It is interesting to look at simple expressions for ξ and λ to see why there is a
general tendency for d-electron superconductors to exhibit type-II superconductivity.
The expressions

λ0 =
[

m c2

4πns e2

]
and ξ0 = a

�vF

kBTc
, (2.3.15)

where a is a constant of order unity, come from the London equations and from
Pippard’s uncertainty principle argument, respectively. Since d-bands tend to have
large effective masses and high-Tc materials in particular have low carrier densities
ns , we expect λ0 values to be larger than for sp-band superconductors. Furthermore,
small values of EF (and thus of vF ) as well as higher values of Tc will make for short
ξ0’s. Thus, it is generally expected that λ >

√
2ξ0. As an example, we mention V3Si ,

a superconductor at∼ 17 Kwhich we shall discuss further below. Here, we only note
that Greytak and Wernick [94] reported a measurement of λ0 = 1500 Åand a related
estimate of ξ0 = 25 Å. Thus, κ � 60 and from (2.3.14) we estimate Hc2 � 530kG.
A second estimate can be made from the thermodynamic critical field Hc = 6370G
[86] and the measured value of λ0 using (4–62) from [18], Hc2 = 4πλ2

0/�0. This
yields Hc2 = 550 kG which is in surprisingly good accord with the previous number.
In any case, V3Si is a very “hard” superconductor, indeed.

Internal Field Distributions in the Mixed State from NMR Studies
NMR studies of type-II superconductors are typically done in the mixed state, i.e. for
Hc1 < H < Hc2. There is substantialNMRlinebroadening fromspatially-dependent
shielding supercurrents in the mixed state. We shall first review studies conducted to
map the distribution of such currents, after which we will look at shift and relaxation
studies. A number of internal field studies have been reported for V and Nb metals
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Fig. 2.10 a Distributions of
diamagnetic shielding fields
measured using rf saturation
of the 51V NMR in
superconducting V metal,
and b simulations of internal
field distributions under
similar circumstances for
both square and triangular
vortex lattices. In (a) results
are given for T � 1.4K and
for fields of 0.73 Hc2 and
0.88 Hc2 as shown, where
Hc2 = 2720G. For (b) the
field simulations were done
on the basis of solutions of
the Ginzburg-Landau
equations in the Abrikosov
limit. The inset shows the
triangular lattice unit cell,
with points there and on the
distribution labelled V, S,
and C corresponding to a
vortex (V), a saddle point (S)
showing a divergence, and
the minimum field (C)

[87–89]. We review briefly the results given by Redfield [87], who conducted the
following field-switching NMR experiment on 51V in V metal. The sample was
polarized in � 10kG, after which the field was switched to a value below Hc2 ∼
3, 000G for a time of 0.1 s, during which an rf field was applied transverse to the
steady field. The fieldwas then switched back to 10kGwhere the nuclear polarization
was recorded. By scanning the frequency of the rf, the spectrum of internal fields was
able to be mapped out. Results from this study are shown in Fig. 2.10a for two field
values. These data have been fitted to calculated internal field distributions based
on the GL equations in the Abrikosov limit, assuming both square and triangular
lattices. The raw calculated distributions are shown in Fig. 2.10b. Fits are carried
out by convoluting the latter distributions with a Gaussian of adjustable width, then
adjusting the width and total area for best fit.

The triangular lattice unit cell is shown as an inset to Fig. 2.10(b), where the points
V, C, and S are seen to correspond to the maximum field, minimum field, and the
singularity in the distribution, respectively. The singularity appears much closer to
C for triangular lattice than for the square lattice. Results for the lower field value
(� 0.73Hc2) are seen to be in good accord with the triangular lattice. The higher
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field value is rather closer to Hc2, where a kind of gapless superconducting state sets
in and there are many corrections to the simple field-distribution calculation. Thus,
it is not surprising that the simple triangular lattice calculation is no longer accurate
[87]. Studies of effects near Hc2 are reviewed in [9]. We shall, however, restrict our
attention here to the region Hc1 
 H 
 Hc2.

It is interesting to compare the field distribution results from [87] with theoretical
predictions. For example, the results from Kleiner, et al. [93] predict that HV − HS

= 1.35 (H − B). From [87] we find for the conditions of Fig. 2.10 the experimental
value HV − HS = 285G, while under the same conditions 1.35 (H − B) � 165G, a
considerable underestimate. On the other hand, according to the Abrikosov solution
[9, 92] 1.35 (H − B) = 1.35 (Hc2 − H)/βa(2κ2 − 1), which we find to be 520G,
which is a considerable overestimate. For this purpose we take βa = 1.16 for the
triangular lattice from [93] and obtain ξ0 = [�0/2πHc2]1/2 = 348Å. The estimate
λ = 400Å[91] then givesκ= 1.15. Substantial corrections to these simple theoretical
results have been given by Eilenberger [90].

The NMR Shift in Type-II Superconductors
In the foregoing study of elemental vanadium, the precision with which the vortex
lattice could be characterized was not great enough to resolve changes in the d-spin
shift Kd(T ) below Tc [87]. However, in a truly hard type-II systemwhere κ � 1, it is
possible to resolve small shift changes at field values such that Hc1 
 H 
 Hc2. The
reason for this is that theNMR lineshape is then strongly dominated by the singularity
from the saddle regions S (Fig. 2.10b), which is therefore shifted only slightly away
from the applied field. Moreover, the NMR linewidth from diamagnetic shielding is
typically only modestly greater than one might find in the normal state.

We illustrate these points with data and discussion of the closely related cases
of V3Si and V3Ga, where V3Si was touted earlier as a truly hard superconductor.
Interestingly, somewhat before the nature of the the type-II diamagnetic shielding
was investigated in detail in the 1960s, The NMR shifts in these compounds of both
51V and 71Ga were reported by Clogston et al. [37]. We reproduce their (K ,χ) plot
in Fig. 2.11. The interesting point here is that all NMR shift values here are consistent
with the interpretation that, at T = 1.8K, the corresponding d-band susceptibility is
diminished to∼ 25%of its value at 20K. Further, its low temperature value is smaller
than that at room temerature. Since these NMR shifts were measured in the mixed
state at a field of 14kOe, where they found “negligible diamagnetic rf susceptibility”
[37], one can only conclude that spurious frequency shift effects from the diamagnetic
shielding are negligibly small in comparison. Note that the total range of 51V shift
values here is only ∼ 0.1%.

It is interesting to consider the nature of the internal field distribution in V3Si
given the values of its parameters ξ0 and λ0 (25Åand 1500Å, respectively) stated
above. First, the second moment of this distribution has been calculated by Pincus
et al. [86], yielding the expression

〈ΔH 2〉1/2av � �0

4π3/2λ2
(2.3.16)
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Fig. 2.11 Measured Knight shifts are plotted versus molar susceptibilities for 51V in both V3Si
and V3Ga and for 71Ga in V3Ga [37]. For the 51V shifts a (K ,χ) construction is shown, including
the s-band contribution (point A) and the orbital contribution (points A–B), which intersects with
lines through the data points. For the 71 Ga the results clearly show a transferred shift which is
driven by the temperature-dependent d-band susceptibility. In both cases the location of the shift
values measured at 1.8K are shown, indicating that the negative CP shift is diminished to ∼ 75%
of its value at 20K, and that the values of |Kd (T )| in both cases are smaller than the values found
at room temperature

under conditions where not only Hc1 
 H 
 Hc2 holds, but also λ/d � 1, where
d is the separation of vortices in the mixed state. At H = 14kOe (i.e. for the data
of Fig. 2.11), we find d = [2�0/

√
3H ]1/2 = 413Å for the triangular lattice, giving

λ/d = 3.6. For these conditions (2.3.16) gives 〈ΔH 2〉1/2av = 41Oe for a square lattice.
This may be a slight overestimate, but is of the right order, since the measured peak-
to-peak derivative linewidth is 39 ± 5Oe [86]. It is interesting to note in this case,
where κ � 1, the Abrikosov relation ([92]) yields HV − HS = 86G, barely twice the
second moment estimate.

We therefore find for the hard type-II superconductors that it is quite feasible
to measure shift values with weak temperature dependences in the mixed state of
superconductivity. This is a very important result for high-Tc NMR studies.
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2.3.5 T1 Phenomenology for Type-II Superconductors

In this final subsection of Chap.2 we review T1 behavior at T < Tc for type-II
d-band superconductors. Because of the complications which attend the measure-
ment and interpretation of T1 in the mixed state of these systems, our discussion of
this topic will be limited to a few simple cases. A clear and thorough discussion of
these effects, in terms of both theory and experiment, is given in [9]. The hallmarks
of type-I system T1 behavior are the coherence peak (in T−1

1 ) just below Tc and the
exponential decay T−1

1 ∝ exp(−Δ0/kBT ) for T 
 Tc. For type-II systems these
behaviors carry over in a modified way or not at all. The differences found between
type-I and type-II behavior appear to be caused by the field penetration in the mixed
state and the consequent spatial inhomogeneities.

The Coherence Peak Region, T ≤ Tc(H)

Caroli et al. have shown that in the vicinity of a vortex core the excited state energies
are diminished toΔE ∼ Δ2

0/EF 
 Δ0 [107]. Thus, for points near the (H, T ) phase
boundary, i.e. for H near Hc2(T ), there is a gapless region which has received a
detailed theoretical examination [95–97]. The fluctuation (i.e. T1) properties in this
region are different from a type-I system and appear to depend onwhether the carriers
have a long mean-free path l � ξ0 (“clean”) or whether it is short l < ξ0 (“dirty”). In
the simpler dirty limit case the electronic properties are local in character, and Cyrot
[98] has derived the relation

T1n
T1s

= 1 + ec

σkBTc
(Hc2 − H) g(t), (2.3.17)

where t = T/Tc, σ is the normal state conductivity and Hc2 = Hc2(T ). This relation
is only valid for (Hc2 − H ) 
 Hc2, so that it only gives the slope T1nd(T−1

1s )/dH
near Hc2. The function g(t) > 0 for t > 0.6, while g(t) < 0 below that point. One
must be very careful in using (2.3.17) to interpret actual data, since T1 is usually
measured by scanning temperature rather than field.

Masuda and Okubo have obtained T1 data on 51V in V3Sn, a superconductor with
Tc � 3.6K (their sample) and Hc2(0) = 16kG [99, 100]. Their data are shown for
three values of applied field in Fig. 2.12. These authors used (2.3.17) to show that

d(T1n/T1s)/dT ∝ g(t) (T ≤ Tc(H)), (2.3.18)

as well, and have evaluated the constant of proportionality. We note that for H =
(4470, 8940, 13410)G,Tc(H)= (3.2, 2.6, 1.8)Kand thus t (Hc2)= (0.89, 0.72, 0.50)
for the three data curves in Fig. 2.12. Thus, the slopes of the data plots at T ≤ Tc are
nicely consistent with these parameters, since d(T1n/T1s)/dT is positive for the first
two, then turns negative for the third, where t (Hc2) falls below 0.6. It seems, then,
that measurements at low (or zero) field on V3Sn yield a conventional BCS coherence
peak, but that it is gradually quenched out by fluxoids at higher field values.
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Fig. 2.12 A semilog plot of data for T1 of 51V in V3Sn versus Tc(0)/T in the superconducting
state for three values of applied field as shown from [99]. The data shown exhibit coherence peaks
for 1341 and 8940G, but not for 13410G. All three plots show deviations from the exponential BCS
behavior at the lowest temperatures, an effect attributable to spin diffusion to the normal cores. See
text for discussion

We mention three other cases of type-II T1 studies at T ≤ Tc. Each is somewhat
anomalous in its own way. The first is the case of elemental V metal [101], where
no convincing coherence peak was observed. The authors considered a number of
possible explanations, finally suggesting that the T1 peak may be suppressed by
trapped flux. However, sometime after these results were published, the theory of
T1 in the clean limit emerged [95], and this interpretation was applied to the case of
vanadium by Pesch [97]. The result was a good fit to the data for both samples [101],
with no sign of a coherence peak. It seems, then, that coherence peaks will appear
at low fields in the dirty limit, but not in clean samples.

No coherence peaks were observed in any of the V3X compounds, where X = Ga,
Si, Ge, and Pt, in the study conducted by Silbernagel et al. [102, 103]. The ostensible
reason for this is disorder caused by the “Martensitic” structural transformation
which was reported at temperatures just above Tc in these compounds [104, 105].
The authors offer no further discussion of the point [103].

Themost anomalous case to be reported was that of niobium [106]. The relaxation
of 93Nb nuclear spins was studied in the SC state at field values varying from 2.40kG
up to 6.80kG corresponding to Tc values which vary from 6.8K down to 3.0K. Using
(2.3.14), Hc2 corresponds to ξ0 ∼ 200Å, so that the givenmean-free path l � 140Å is
on the borderline between the clean and dirty cases. In any case, the T1 data were
found to fit the gapless theory [96, 97] for the higher field values. For the lower two
field values, however, the T1 data were found to execute a deep minimum just below
Tc(H), contrary to the gapless theoretical fits. Such behavior is clearly reminiscent
of the V3Sn data in Fig. 2.12, and one might inquire as to whether the calculation of
d(T1n/T1s)/dT given in [100] based on (2.3.17) could be applied in this case. The
authors did such a calculation and found that the coefficient of g(t) for Nb is smaller
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Fig. 2.13 A semilog plot of
data for T1 of 51V in V3Si
versus Tc/T in the
superconducting state for
four values of applied field
as shown from [102]. The
data shown exhibit no
coherence peaks, but follow
exponential BCS theory
behavior up to Tc/T ∼ 4.
Beyond that point the
mechanism of spin diffusion
to the normal fluxoid cores
takes over, giving a
relaxation rate which is
proportional to the applied
field (i.e., to the fluxoid
density), as expected. See
text for further discussion

by a factor 150–200, so that similar behavior cannot be expected on that basis. There
seems to be no straightforward explanation for this anomalous result.
Type-II T1 Behavior for T 
 Tc

For values of T well below Tc, an exponential decay T−1
1s ∝ exp(−Δ0/kBT ) has

generally been found to appear. However, as this intrinsic BCS rate weakens, another
contribution attributable to the fluxoids is often seen. Since the energy gap near the
fluxoids is very small [107], T1s for a region of area ∼ ξ20 is essentially that of the
normal state. When the BCS T1 process in the bulk of the SC material becomes very
slow, then a process whereby the nuclear polarization diffuses to the normal cores
becomes predominant. This process was found to be present in three of the four
examples given above [99, 101, 102] but was studied most systematically in the case
of V3Si [102].

51V T1s data for V3Si [102] are plotted semilogarithmically in Fig. 2.13 as a func-
tion of Tc/T , where Tc = 15.35K. Results are given for four different field values at
temperatures in the SC state which extend down below Tc/10. At higher tempera-
tures the data points asymptotically approach the dashed line which represents BCS
behavior, i.e. T1s ∝ expΔ0/kBT , where Δ0 = 1.76 kBTc. T1s veers away from the
BCS curve at Tc/T ≥ 4, then ranges up to values more than three orders of mag-
nitude longer than its value at Tc. The flattening of these curves is suggested to be
caused by spin diffusion to the normal cores, which then becomes the only effective
T1 mechanism at the lowest temperatures. If the spin diffusion time, estimated below,
is not an impediment, then at the lowest temperature we should have
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T1n
T1s

= hξ20H

�0
. (2.3.19)

where h is a numerical factor of order unity. Equation (2.3.19) simply states that the
normal T1 should be diluted by the ratio of hξ20 to the area per fluxoid �0/H . First,
we note that 1/T1s should be linear in H , as is clearly the case in Fig. 2.13. With
the estimate ξ0 � 25 Åfor V3Si given above, we find h = 1.9, so that the effective
area of normal-state relaxation is a circle of radius slightly smaller than ξ0 for each
fluxoid. The corresponding spin diffusion times for the results in Fig. 2.13 we can
estimate with

tdi f f ∼ d2

4Dsp
, (2.3.20)

where d is the distance between fluxoids and Dsp is the spin diffusion constant.
Taking d = [2�0/

√
3H ]1/2 and Dsp ∼ 10−12 cm2s [108], we find tdi f f ∼ 13 s at H

= 4450G. This is an order of magnitude less than T1 itself, lending credence to the
use of (2.3.19).

While the foregoing scenario gives an appealingly straightforward interpretation
of the V3Si data for T1s , there did arise in the literature a rather knotty problem in
connection with this interpretation. Genack and Redfield suggested some time later
[109] that the spin diffusion relaxation mechanism in type-II superconductors would
not work, because it did not conserve energy. We give the essence of their argument
here, then cite further workwhich provides something of an antidote to this objection.

If spin diffusion takes place along a field gradient, then the simple flip-flop events
between neighboring nuclei no longer conserve energy. The difference in Zeeman
(field) energies has to be taken up by the spin-spin (usually dipolar) interactions.
Viewing this process thermodynamically, the dipolar reservoir then quickly becomes
overheated and must, itself, relax to the lattice. The total relaxation process by spin
diffusion is thus formulated as a dual process, with Zeeman (magnetization) and
dipolar energies both diffusing to the normal cores in the mixed superconducting
state. These processes were analyzed in [109] and found to be too slow to provide
the observed T1 processes in V metal [101]. It was concluded that these clearly
observed diffusion-like T1 processes must originate in some other way [109].

The problem is, of course, that no other ideas to explain type-II relaxation have
been forthcoming. However, more recently, this problem has been revisited in terms
of basically the same ideas, but using more sophisticated mathematical methods (see
[110] and references cited therein). These authors have analyzed in detail the relax-
ation curves of 51V in V metal at T 
 Tc taken from [101] in terms of spatially
varying Zeeman and dipolar spin temperatures. They find a good fit to the vana-
dium data, where the dipolar relaxation time constants are relatively short, thus not
obstructing the longer diffusion-mediated Zeeman T1’s.

It seems, then, that the phenomenology of (2.3.19) is basically correct, so that low-
temperature, type II T1 behavior is clearly understood. This is very important for the
interpretation of T1 data for high-Tc systems as well. However, as we shall see, the
fundamental behavior of T1 in high-Tc compounds involvesSCgap symmetrieswhich
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usually have line nodes, giving power-law behavior at low temperatures [111]. Thus,
the issues regarding T1 data analysis differ somewhat from those of d-band SCmetals
discussed here. Nonetheless, the spin-diffusion-to-normal-cores T1 mechanism in the
mixed state has been found to play a significant role in the phenomenology of cuprate
superconducting T1 effects. The understanding of this effect gained with ordinary 3d
metals will be an important resource in the chapters to follow.



Chapter 3
The Superconducting Cuprates: Preliminary
Steps in Their Investigation via NMR

The purpose of this chapter is twofold. First, it is partly historical, to recount the
somewhat uncertain beginnings and explain how ideas developed the way they did,
and secondly, to review the early milestones which laid the foundations for the many
years of study which were to follow. These agendas will unfold simultaneously in an
essentially chronological recounting of the important first steps in constructing the
edifice of high-Tc NMR phenomenology which exists today.

Although the cuprates form a large family of compounds,1 in recounting the
major accomplishments in the field of NMR studies, one’s attention is drawn to
three compounds, namely La2−xSrxCuO4 (LSCO:x), YBa2Cu3O7−x (YBCO7-x),
and YBa2Cu4O8 (Y248). These three have played a major role, both in terms of
experimental results and theoretical interpretation. There are other interesting com-
pounds with higher Tc’s (e.g. Tl2Ba2CaCu2O8) and with quantum chemistry just as
clean (Hg2Ba2Cu2O4). It seems that it was just an historical accident that the three
listed above became prominent. Accordingly, they will become our main focus.

In Sect. 3.1 we review the structures, phase diagram, and some of the early the-
oretical models regarding transport and quasiparticle dynamics. Of course with a
research topic as completely new and unfamiliar as the cuprates, one spends a great
deal of time and effort at the outset simply establishing the basic experimental fea-
tures of the system under investigation. Some of this activity is reviewed in Sect. 3.2,
where we shall see that the anomalous nature of the spin dynamics (i.e. T1) was
already evident in the earliest high-Tc NMR papers.

A major milestone in understanding all HF effects in the cuprates came with
the Mila-Rice-Shastry picture of predominant transferred HF couplings with their
quantum-chemical foundations [118, 146]. This work, presented and discussed in
Sect. 3.3 for 63,65Cu, established a model HF Hamiltonian for the principal nuclei,

1See, for example, the wide variety of cuprate structures reviewed by Hazen [214].
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which has been an important touchstone ever since. The application of this picture
to the NMR studies of planar 17O and the 89Y in the YBCO structure is the subject
of Sect. 3.4.

The relationship between nuclear spin-lattice relaxation (T1) and the dynamic
susceptibility χ(q,ω) via the fluctuation-dissipation theorem has been well known
for many years [163]. With the cuprates, however, this quantity quickly became the
basis for the expression of static and dynamic NMR, for inelastic neutron scattering
(INS) results, aswell as for theoreticalmodeling. In Sect. 3.5we review the derivation
of the basic results and give standard expressions for T1 at various nuclear sites in
cuprates for reference throughout the book.

Finally, in Sect. 3.6 the early and highly significant d-wave interpretation of T1
in the superconducting state by Monien and Pines [160] is reviewed in some detail.
This was based on an RPAmodel of the dynamic susceptibility which formed a basis
for future modeling of normal-state dynamics as well [161, 162]. As we shall see
throughout the volume, fundamental d-wave behaviors for T1 and for the transverse
decay constant T2g were firmly established several years in advance of the Josephson
junction phase-boundary results that finally turned the tide on the d-wave versus
s-wave question.

3.1 Cuprate Structures and Doping Effects: LSCO
and YBCO

The first high-Tc materials to be announced [112] left some degree of uncertainty
about the actual crystal structures of the superconducting phases. In the weeks that
followed, among the first structural refinements to be announced were those of
La2−xSrxCuO4 (LSCO) [113] and YBa2Cu3O7−δ (YBCO) [114]. For that reason
as well as the fact of their ease of synthesis into high-quality specimens and of sub-
sequent characterization, these two compounds and closely related materials have
been a strong focus of NMR/NQR studies from the inception down to the present
era. In this section we present a brief discussion of the structures, doping, and qua-
siparticle dynamics in these typical cuprates. Discussions of research studies on the
LSCO family of compounds will be given in Chaps. 4 and 6.

3.1.1 LSCO: A Superconductor with Tc(max) � 40K

LSCO has the K2NiF4 crystal structure shown in Fig. 3.1a [115]. The key struc-
tural element in all of the cuprate superconductors is the CuO2 quadratic array
(Cu-O1) in Fig. 3.1a, which has been identified as the region where the hole cur-
rent is carried in these systems. Note that the O1 ions also form a quadratic array
rotated 45◦ from that of the Cu, and having a lattice constant of a/

√
2. Cu ions in
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(b)(a)

La,Sr

Fig. 3.1 a The (K2NiF4) structure of La2−xSrxCuO4, showing the locus of the CuO2 conducting
plane. The Sr2+ dopant ions go substitutionally into the La3+ (Ba) sites, leading to a set of mobile
holes which run on the square lattice of planar O2− ions. The structure shown has tetragonal
symmetry. However, below a few hundred K an orthorhombic distortion sets in, where the CuO6
octahedra tilt through small angles in the [110] planes [116]. b The YBa2Cu3O7−x structure is
shown with the chain layers (Cu(1)) on the top and bottom and a pair of Cu(2)O(2, 3)2 layers in
the middle. Note that there is no bonding between adjacent Cu(2) layers except via rather inert Y3+
ion cores. The O1 sites are shown filled, forming chains along the b axis. The structural symmetry
is orthorhombic

adjacent planes are staggered, so that with AFM short–range order (SRO), magnetic
couplings between layers are extremely weak. The physics of these structures is
strongly two dimensional.

The physics of transport is dramatically different in the cuprates from what it
is in an ordinary d-band metal. For LSCO we consider first the case of x = 0,
i.e. La2CuO4. With the expected valence (La3+, Cu2+, and O2−), the conduction
plane consists of Cu2+ ions, i.e. with a single hole in the d shell (dx2−y2 ) plus O2−
closed-shell ion cores. The 3d holes are strongly hybridized with theO2− 2p orbitals,
such that over 30% of the localized d-hole density resides on the planar oxygens
[119, 120]. In the conventional picture of weakly-interacting fermions, this would
simply be a half-filled band like an alkali metal.

On the contrary, however, the hopping process which might lead to hole con-
duction is strongly inhibited by coulomb repulsion (U ∼ 10eV) on the Cu+2 ion
complexes in what is known as a “Mott insulator” [122]. Instead, immobile S = 1/2
local moments on theCu+2 ions condense to an insulating, antiferromagnetic ground
state with TN � 325K. In order to generate conductivity in theCuO2 planes, it is nec-
essary to dope additional holes into the system. This may be done by replacing some
of the La+3 ions with Sr+2 ions as in LSCO. For each such substitution a hole must
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appear in or near the CuO2 plane. Above a small threshold concentration these holes
become mobile. In the Zhang-Rice singlet picture, they combine with Cu2+ holes
to form a singlet quasiparticle [125]. After considerable investigation and debate,
such singlets have finally been concluded to have negligible HF interactions on their
own. It has been suggested that they serve the function of rendering the Cu2+ holes
itinerant [125].

The LSCO Phase Diagram

The phase diagram of Fig. 1.1 illustrates the resulting behavior as a function of the
hole-doping parameter x. First, the antiferromagnetism collapses very quickly with
hole doping.At x ∼ 0.02 there is an insulator-to-metal transition, thoughconductivity
is still rather poor. In this region, spin-glass behavior is thought to occur. At x � 0.05
the superconducting phase appears, although the normal-state conductivity is still that
of a very bad metal. With an optimum concentration of x = 0.15, Tc then peaks at
∼40K. Beyond that point is the overdoped region, where the system becomes more
and more like a normal metal. Tc then declines to zero at x ∼ 0.35. The pattern
seen with LSCO is repeated with essentially every cuprate superconductor, except
that in many cases it is not possible to vary the carrier content all the way from the
antiferromagnetic phase through superconductivity and into the overdoped phase.

The line in Fig. 1.1 running from x = 0.2 upward to join the x = 0 axis at T ∼
500K is a boundary between the tetragonal and orthorhombic phases in LSCO.
However, there is a “crossover” line in approximately that position in various theories
of magnetic behavior [240, 244], for which there is growing experimental evidence
in other cuprate compounds. In the Barzykin-Pines model this is a boundary between
mean-field behavior for the dynamic exponent (z = 2) on the high-temperature side
and quantum-critical (z = 1) behavior on the low-temperature side. There is some
NMR evidence for this which will be discussed in Chap. 6.

3.1.2 The 92K Superconductor YBa2Cu3O7−x (YBCO)

Many cuprates have multiple CuO2 planes neighboring each other with a single
layer of cations between them. YBa2Cu3O7−x (YBCO7-x) has two such neighboring
planes separated by a single layer of Y 3+ ions, as shown in Fig. 3.1b. This structure
also features a “chain” layer, known as the Cu(1) sites, which is a quadratic array
of copper ions, but where half of the ligand O2− ions seen in the Cu(2) layers are
absent, leaving 1D Cu-O chains running along the b axis of the crystal. The chain
sites are a complication in understanding the behavior of YBCO, because as we shall
see below, the Cu(1) and Cu(2) sites behave rather differently.

On the other hand, regarding the level of mobile carriers, the YBCO7-x system
is self-doping. The minimum doping level is effectively zero when x = 1, giving six
oxygens per formula unit.With the expected valencies (Y3+, Ba2+, Cu(1)+, Cu(2)2+,
and O2−), YBa2Cu3O6 is in a vacuum state for conductivity similar to La2CuO4. In
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this structure there are no oxygens at all in the Cu(1) planes, and their corresponding
valence state isCu1+. Themaximum doping occurs when x = 0, whereupon the Cu(1)
chains are fully oxygenated, and one finds an average charge of +2.33 per Cu ion.
This is considered to be slightly overdoped, where the maximum Tc � 92K occurs
for x � 0.1. It is noteworthy, however, that YBCO7 is stoichiometric and therefore
has minimal disorder, i.e. far less disorder than optimally doped LSCO.

3.1.3 Physical Models of Itinerant Quasiparticles in Cuprates

At optimum doping levels, then, the cuprate conduction planes then appear to contain
a small concentration of mobile holes moving in a sea of S = 1/2, exchange-coupled
local moments. Because of the coulomb repulsion, these holes are thought to be
restricted to the oxygen sites. The description of this mixture as a superconducting
quantum fluid is therefore dramatically different from a simple 3d-band of partially-
occupied Bloch functions. It has posed a stiff theoretical challenge from the begin-
ning, and even now there is not a clear consensus about it. One thing we understand is
that it is not a set of exchange-coupled local moments simply coexisting with a hole
band of itinerant fermions. For example, at T � Tc all spin magnetism decays to a
small fraction of its normal-state level, as we know from NMR shift and relaxation
measurements (Sect. 3.2.5). Upon a (low, but) sufficient level of doping, then, all
Cu2+ holes become effectively itinerant and part of a superconducting quantum fluid
at T < Tc.

The t-J Model

How this takes place has been the topic of many theoretical papers. We mention
here the “t-J” model [123, 124], which is an approximation to the one-band Hubbard
model. A number of theory papers have shown that the t-J model Hamiltonian (here
simplified)

Ht−J = J
∑

i,j(nn)

Si · Sj + t
∑

i,j(nn)

[c∗
i cj + cic

∗
j ] (3.1.1)

results in a band of itinerant quasiparticles of width ∼ J ∼ 0.15eV [126].

Zhang-Rice Singlets

A detailed model for the structure of the quasiparticles themselves, known as the
“Zhang-Rice singlet model”, appeared very early on and is still considered an inter-
esting conceptual picture [125]. In thismodel themobile holes form a singlet complex
with neighboring Cu2+ “localized” holes, rendering them itinerant. In spite of their
small numbers, the mobile holes are said to render all of the Cu2+ moments effec-
tively itinerant and part of a quantum liquid which condenses into a superconducting
spin-paired ground state. That this actually occurs is concluded from decay of the
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Cu(2) Knight shift and relaxation rate, and thus the spin paramagnetism of YBCO7,
to a value small compared with its normal-state value for T � Tc (see Sect. 3.2).

The “Oxygen Hole Band” Issue

Contrary to the Zhang-Rice singlet picture, many early papers considered that the
doped holes in cuprates would result in a separate hole band residing on the oxygen
lattice with its own independent HF effects. This idea was often advanced when it
seemed that the fluctuating S = 1

2 moments which occupy the Cu2+ sites would not
give an adequate explanation of NMR shift and relaxation effects at all sites studied.
Often the papers concerned made important contributions in spite of maintaining
this point of view. Eventually, as will become clear in Chaps. 4 and 5, it was realized
that there was simply no need for oxygen hole bands with independent HF effects
and no evidence for them either. This issue will be mentioned at appropriate points
in reviewing the relevant literature.

3.2 Early NMR/NQR Studies: The Early Predominance
of YBCO

It was, of course, realized immediately that NMR studies of the 63,65Cu, 17O, and in
the case of YBCO, 89Y nuclear spins could yield a great deal of detailed information
about static and dynamic fermion behavior in these systems. Perhaps because of its
very high Tc value, there was an intense focus on YBCO at the outset, which was
facilitated by the ease with which samples could be synthesized. Accordingly, there
were a great many NMR papers on YBCO, mainly fully doped (YbCO7) during the
first year or two. Our focus in this section will be these early studies of YBCO and
the issues they raised. LSCO eventually received its share of attention, and will be
addressed both in the next chapter and in Chap. 6.

In this section we examine the developments which took place during 1987–
88 following the discovery of high-Tc superconductors. It was a time of intensive
activity, but at the same time, sample preparation was still in a rather primitive state.
There was a definite focus on YBCO7, the 90–92K superconductor, because of its
spectacularly high Tc value, and because it is a stoichiometric compound. Even so,
almost all of the samples studied during this period were either random powders or
milligram-scale crystals which gave narrow resonance lines, but very small signals.
The random powders gave (− 1

2 ↔ 1
2 ) transition spectra ∼0.5T wide in a typical

laboratory (7–8T) field, and it took a great deal of noise averaging to obtain a single
spectrum. Only with NQR was it possible to do a T1 measurement.

Even so, many basic issues concerning the NMR/NQR study of the cuprates were
addressed during this time period, and impressive progress was made toward their
resolution. At the end of the 2-year period we are focusing on, there were two events
which marked the beginning of a more settled period, namely the appearance of
the Mila-Rice-Shastry papers to clarify the quantum chemistry and the transferred–
HF–interaction picture [118, 146], and secondly, the advent of the oriented powder
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sample preparation method, which dramatically improved the prospects for precise
determination of nearly all experimental NMR parameters. The Mila-Rice-Shastry
picture for HF couplings in YBCO is presented in Sect. 3.3.

3.2.1 NMR Shift and Relaxation of the 89Y in YBCO7

Not surprisingly, the first papers on cuprate nuclear spin dynamics to appear featured
studies of 89Y T1 behavior in both the normal and superconducting states [127,
128]. The 89Y nuclei have very small, I = 1/2 nuclear spin moments, but are 100%
abundant. They are very weakly hybridized with the Cu(2) 3d moments, giving them
a long T1, but a relatively isotropic NMR shift, so that they are easy to study in a
random powder sample. The quick appearance of these 89Y studies was a harbinger
of a great many fruitful 89Y NMR studies to follow.

The 89Y T1 data from [127], shown in Fig. 3.2, immediately revealed two striking
behaviors. First, T1 follows a Korringa-like, inverse–T law in the normal state, giving
actually a misleading impression of the behavior at its neighboring Cu(2) site to be
unveiled soon after. The normal-state data of [128] were in agreement with this
finding, and both papers found a normal-state shift K � 0.02% as well. As for T1,
there is no hint of any coherence peak below Tc; moreover, the decline of 1/T1 below
Tc is remarkably abrupt. It behaves in a roughly exponential fashion when plotted
versus T/Tc, and has a slope much larger that the expected asymptotic BCS slope
(plotted). If the BCS curve reflects a gap 2ΔBCS � 3.5 kBTc, the 89Y T1 curve shows
a gap value 2ΔY � 11.2 kBTc. While such a characterization is somewhat superficial
at this stage, it shows at least that the superconducting T1 behavior is dramatically
different from that of any ordinary d-band metal (See Sect. 3.6 for further elucidation
of T1 behavior below Tc).

NMR/NQR Studies of 63,65Cu(1, 2): The Quadrupolar Tensor and T1(T)

Next, many papers appeared in which the four-line NQR spectrum (or part thereof)
was reported (63,65Cu(1) and 63,65Cu(2)) in YBCO7 [128, 129, 131, 132]. Of course,
for the I = 3/2, 63,65Cu nuclei the value of η cannot be derived from NQR fre-
quencies alone. The full quadrupolar frequency tensor has been deduced from NMR
studies of small single crystals of YBCO7-x, with x � 0 [133, 134], yielding essen-
tially equivalent results. After some refinement, these tensors may be given (inMHz)
as ναα = (−19.03(7), 19.17(7),−0.16(3)) for Cu(1) and (15.94(5), 15.56(5),
−31.50(5)) for Cu(2) at 100 K [139], where the numbers in parentheses are the
uncertainties in the last digit quoted. This quadrupolar tensor has been analyzed by
Frank Adrian [142].

NQR Studies of Cu(1, 2) T1 in YBCO7

NQR was used to measure T1 for both the 63Cu(1) and 63Cu(2) lines at 22MHz and
31.5MHz, respectively, giving the first glimpse of T1 behavior for the copper sites
in the cuprates [128, 129]. The T1 data from [129] are displayed in Fig. 3.3, where
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Fig. 3.2 1/T1 of 89Y in
YBa2Cu3O9−δ from [127] is
plotted versus Tc/T in a
semilog plot, where δ � 2.1.
In the normal state the data
are within error limits of a
Korringa curve (solid line,
1/T1 ∝ T ). Below Tc the
measured relaxation rate
drops much faster than the
BCS energy gap would allow
(dashed curve—BCS). See
text for discussion

markedly different behavior is seen to occur for the two copper sites, both above
and below Tc. In the normal state, the Cu(1) site T1 behavior is rather Korringa-like,
similar to the 89Y , whereas the Cu(2) site 1/T1 behaves initially like a + bT , but then
flattening off near room temperature. The normal state data from [128] behave in a
similar fashion to that in Fig. 3.3, except that T1 values appear to be about 15% longer
than from [129]. The value quoted in [141] is also slightly longer, but well within
error limits of the data in Fig. 3.3. The reader may note that different references
cited here give T1 values which are defined variously, none of which agree with the
discussion of T1 in Sect. 1.1.5. Recall that theNQRvalue of relaxation timemeasured
for I = 3/2 is 1/3 of the formally defined T1 (see Sect. 2.1.5). Finally, regarding the
data shown in Fig. 3.3, we shall not consider the temperature dependence of T1 in
depth until Chap.4. We comment briefly on the general features of these data.

Below Tc the Cu(2) relaxation rate declines very steeply, rather like the 89Y data
in Fig. 3.2. The data from [128] for T < Tc are also similar, the main difference being
that the Cu(2) curve is extended to somewhat lower temperatures, where it is found to
level off markedly. Such behavior is very likely sample dependent. Fitting the Cu(2)
rate below Tc (Fig. 3.3) to a BCS-style exponential decay, a reasonable fit gives 2ΔY

� 8.3 kBTc with Tc = 92K [129]. This is a qualitatively similar result to the slope
found above for the 89Y , but since the latter studies were done in a field of 50kG
and the present data were taken in zero field, a quantitative comparison may not be
warranted. See Sect. 3.6 for further discussion of T1 below Tc.
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Fig. 3.3 The 63Cu relaxation rate 1/T1 is shown plotted versus T for Cu(1) (crosses, triangles) and
Cu(2) (squares) in a YBCO7 sample (Tc � 92K) [129]. The NQR rate is shown, which is 3 times
the formally defined rate 1/T1

3.2.2 Establishing the Site Assignment for the Cu(1)
and Cu(2) NQR Spectra

Following the publication of [129] (and [130]) therewas a brief period of controversy,
caused by the fact that the identification of the NQR frequencies with the Cu(1) and
Cu(2) sites in these papers was reversed from the correct assignment stated above.
The T1 results are valid when attributed to the correct sites, but a large portion of the
discussion, based on the incorrect identification, would need to be revised [129, 130].
Since a number of discussion points have also been rendered moot by later insights
and improved understanding, we shall attempt no such revision here. The incorrect
assignment was made on the basis of (i) similarity of normal-state T1 curves between
the 63Cu(1) (Fig. 3.3) and the 89Y (Fig. 3.2) and (ii) on the relative intensities of the
21 and 31.5MHz NQR lines in [129] as well as in other papers [131, 132]. These
intensitieswere essentially reversed from the 2:1 ratio expected from theCu(2):Cu(1)
site count, showing the general unreliability of NQR intensities recorded at different
frequencies.

Following these papers, other papers appeared whose main purpose was to doc-
ument the correct site assignment. References [133, 134] argued the correct assign-
ment on the basis of data for the EFG tensor. After all, the Cu(2) site has very nearly
axial symmetry, while Cu(1) does not, features which are expressed very strikingly
in the EFG tensor. Meanwhile, [135] argued the case on the basis of 63Cu relaxation
studies conducted on a sample ofGdBa2Cu3O7. TheGd3+ ions each possess a local-
izedmoment of nearly 7μB, which fluctuates as a consequence of exchange couplings
with the other Gd3+ moments. The nearby Cu(2) nuclei are strongly relaxed by fluc-
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tuating dipolar fields from these moments, whereas, the Cu(1) are largely unaffected.
These observations confirm the correct assignment.

The (− 1
2 , 1

2 ) Quadrupolar Powder Pattern for Cu(2) in YBCO7

The authors of [129, 130] also conducted NMR intensity studies for the purpose
of site verification, partitioning the (−1/2, 1/2) NMR line intensity for YBCO7
into Cu(2) and Cu(1) contributions [137] (see also [133]). The intensity of the NMR
spectrumwas calibrated by comparisonwith spectra from a known quantity ofCu2O,
yielding an absolute intensity of 2.7 ± 0.3 Copper ions per unit cell of the YBCO7.
The Cu(2):Cu(1) intensity ratio was found to be 2 within experimental error. A
byproduct of the latter exercise was a very precise fit to the η = 0, second-order
quadrupolar powder pattern for the (−1/2, 1/2) (central) transition at T = 105K
[137], using the same procedures which gave sample powder patterns in Figs. 2.2
and 2.4. This fit is shown in Fig. 3.4, both as spin echo intensity data recorded at
pulse separation τ = 20µs and as the extrapolated, τ = 0 curve with its fit to a
quadrupolar powder pattern form (see Fig. 2.2) with Gaussian broadening shown as
a dashed line. The residual area above the dashed line fit curve is identified as the
Cu(1) site intensity. See [137] for a detailed discussion. Shift values for the Cu(2)
are also deduced from this fit (see below).

3.2.3 Variation of the 89Y Shift K89(x) with x for YBCO6+x

A study of the doping dependence of the 89Y NMR shift K89(x) in YBCO6+x by
Alloul et al. [136] uncovered some very interesting behavior regarding the Pauli
paramagnetism of this system. For x ≥ 0.4 they found an essentially linear increase
K89(x) ∝ (x − 0.4), belowwhichK89 levelled off to a value which remained constant
throughout the insulating phase. It was concluded that the latter value of shift K89 �
2.25 × 10−5 relative to the shift of YCl3 is actually the zero of K89 in this system.
The discrepancy with the YCl3 was attributed to a difference in the chemical shifts
of the two systems. However, similar results by Balakrishnan et al. [154] included a
study of chemical shifts suggesting that the actual chemical shift in YBCO6+x at low
values of x is somewhere above 200ppm relative to YCl3, contrary to the foregoing
conclusion. Eventually, the latter value gained acceptance as the correct zero for the
89Y spin paramagnetic shift in YBCO.

The behavior of K89(x) with doping is shown in Fig. 3.5. The change in K89

above x = 0.4 is seen to be negative and is attributed to the core polarization of
the Y3+ 4d orbitals hybridized into the conduction band in the CuO2 planes of
YBCO6+x. The Pauli paramagnetism varies in a similar fashion to K89, so that
in a plot of K89(x) versus χm(x) the behavior for x > 0.4 is linear with a slope
dK89/dχm = −4.6 (emu/mol)−1. This is much smaller than would correspond to
the full core polarization HF field, showing that the 4d admixture is very slight. The
authors comment that this behavior seems contrary to the proposed separation of
spin and charge behavior of the RVB model [123, 124].
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Fig. 3.4 NMR field-sweep spectrum of 63Cu in YBCO7 at T = 105K and an NMR frequency of
84.07MHz. Part (a) is uncorrected data taken with a spin-echo pulse separation of 20µs. In part
(b) the signal has been extrapolated back to τ = 0 using measured values of T2 at various points
in the spectrum. The outer singularity peaks are characteristic of an η = 0(−1/2, 1/2) quadrupolar
powder pattern. Such a powder pattern has been fitted to these peaks (dashed line), and serves to
distinguish the Cu(2)-site intensity from that of the Cu(1) sites, which lies above the dashed line.
There is a spurious peak to the left of center thought to be caused by accidental powder orientation
in this otherwise random sample. The calculated Cu(1) intensity with this scheme is �54% of that
assigned to the Cu(2) sites

3.2.4 Physical Models for the Relaxation of 63Cu(2)
in YBCO7

One of the major challenges to the NMR community and to the theorists as well
has been the interpretation of the copper-site T1 data, which is to say the magnitude
of T1, its anisotropy, and its temperature dependence. We discuss the temperature
dependence of T1 (for all sites) in Chap.4, and as of this writing, it is still an unsettled
issue. The magnitude and anisotropy of T1, however, came to light early and were
the main influences which brought about the Mila-Rice discussion and formulation

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 3.5 The room
temperature 89Y NMR shift
in YBa2Cu3O6+x is plotted
for a series of x value
ranging from nearly zero to
one. This is interpreted (see
text) to mean that the Pauli
paramagnetism vanishes
below X = 0.4 and the shift
value below that point is
simply the difference in
chemical shifts between
YBCO6 and YCl3

of the problem. We review here two background developments which highlighted
the situation, namely the model treatments of T1 in experimental papers by Walstedt
et al. [138] and by Pennington et al. [139].

Reference [138] reported the first data on the anisotropy of the 63Cu(2) T1, finding
T1c/T1ab � 3.5. This was done with a random powder sample, using NQR (θ = 0),
and the up-field and down-field singularities of the (−1/2, 1/2) powder pattern (θ �
43◦ and θ = 90◦, respectively). The data were not first-rate, but the result for T1c/T1ab
held up in later studies with oriented powders [143]. The paper goes on to discuss
the feasibility of explaining the foregoing T1 data using the typical formulation of
spin-lattice relaxation in 3d metals given by Yafet and Jaccarino [82] and discussed
in detail in Sect. 3.3. The hyperfine constants are well-known for the Cu2+, and the
density of states is derived from the susceptibility, where the orbital component is
estimated and subtracted off. The result is, if anything, an overestimate for n(EF).
The normally dominant orbital relaxation mechanism is vitiated in YBCO by the
nearly pure dx2−y2 ground state, which has negligible matrix elements for the orbital
HF process. As a result, the estimated relaxation rate with this scheme falls far short
of the magnitude of the observed rates, and the peak anisotropy available falls well
short of the measured ratio. The standard d-band relaxation model was concluded to
be incapable of accounting for the cuprate T1 data.
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3.2.5 Introduction of the Spin Hamiltonian Model
for the Cu2+

A different tack was taken by Pennington et al. [139]. The Cu(2) relaxation tensor
was measured using NMR on single crystal samples, finding similar numbers, but
an anisotropy of 4.2, rather larger than the 3.5 reported in [138]. This discrepancy
is most likely a difference in samples. In any case it has never been resolved. For
the analysis of T1 these authors adopt a model of fluctuating Cu2+ local moments,
adopting a spin Hamiltonian form for the spin–HF tensor [144] and simply deducing
the anisotropy of the spin–HF field from the corresponding anisotropy of T1 for
Cu(2) given above. Simultaneously, however, Takigawa, Hammel et al. announced
their result that the c–axis NMR shift changed very little below Tc, while other
components underwent substantial changes [135, 140]. They concluded that the
spin paramagnetism declined effectively to zero for T � Tc. It followed that the net
c–axis spin–HF component for Cu(2) is nearly zero! From this observation sprang
the Mila-Rice model for Cu(1, 2) HF couplings, presented in Sect. 3.3. Both papers
introduced a local moment-based calculation of the orbital susceptibilities on the
Cu2+ sites, which, along with the spin and orbital HF tensors, constitutes the spin
Hamiltonian picture for the detailed physics of the Cu2+ ions [145]. We shall discuss
this point of view in detail in Sect. 3.3.

In the meantime, it is interesting to consider the vanishing of the cuprate spin sus-
ceptibility χs(T) at temperatures T � Tc, postulated above, in the context of all of
the difficulties over this point which occurred vis-a-vis the simpler superconductors
discussed in Sect. 2.2.2. We recall that vanishing of χs(T) required that the inverse
lifetime from spin-orbit scattering must be small compared with the energy gap [52]
(see (2.2.8)). That this must be so for YBCO7 results from the combined facts that
(i) Cu is a very light element with relatively small spin-orbit coupling and (ii) energy
gaps in the cuprates are roughly an order of magnitude larger than those found for
sp-band superconductors. It is reasonable to suppose, then, that �/Δ(0)τso � 1
(2.2.8a), even in the mixed state, from which it follows that χs(T � Tc)/χs(T > Tc)
� 1.

3.2.6 Experimental Breakthrough: Oriented Powder Samples

Late in 1987 a paper appeared which reported the technique of creating powdered
samples of YBCO in which each crystallite is oriented with its c axis parallel to an
applied magnetic field [117]. This scheme relies upon the anisotropy of the (orbital)
susceptiblity to provide the torque necessary to align each particle with the field.
The other necessary condition has to do with the morphology of the polycrystalline
material to be oriented. It is assumed that upon reducing sample material synthesized
in polycrystalline form to fine powder, each particle of such a powder will be a single
crystal, and thus, free to orient with its c axis along the applied field. Any particle
consisting of two or more crystallites will not align properly.

http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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The success of this technique is therefore dependent on the particular cuprate
under study. YBCO is generally a good candidate for this effect, where one can
generally expect the Cu(2) (− 1

2 ↔ 1
2 ) NMR line to assume a width of 100 Oe or less

[143]. Following the original announcement,manyNMRstudies have appeared using
oriented samples [134, 143]. Powder orientation results in an enormous improvement
in the NMR signal strength, where signals requiring accumulation of ∼105 echo
traces for adequate noise resolution [130] become visible on a single oscilloscope
trace. TheCu(1)NMR signal is also greatly improved, where the quadrupole splitting
along the c axis corresponds to an extraordinarily small component of the quadrupolar
tensor, resulting in a weakly split line [143]. The real significance of this method
is that one can now measure the anisotropy of T1 with a conveniently large signal
[143], although remarkably good results were obtained with milligram-scale single
crystals [139]. To measure oriented samples in a transverse field, one customarily
sets the oriented particles in epoxy. Field oriented samples yield a 2D powder pattern
in a transverse field, which is also important for studies of the 17O and 89Y NMR
parameters.

3.3 The Mila-Rice-Shastry Model: A Universal HF Tensor
for the Cuprates

The Mila-Rice-Shastry model [118, 146] for HF coupling with itinerant Cu2+ holes
in a superconducting cuprate clarified a number ofmurky points regardingNMR shift
and T1 behavior. Important features were (i) transferred HF couplings and (ii) the
ability to account for observed behavior with a single “band” of excitations, and (iii)
the quantum chemistry framework for the HF Hamiltonian which emerged. Looking
back, this was an important turning point in our understanding of HF interactions and
of their dynamics. Previous workers had tried to formulate the NMR shift and relax-
ation in terms of Cu2+ local moment dynamics driving purely on-site HF couplings,
but found peculiar results when trying to fit the extraordinarily large T1 anisotropy
at the Cu(2) site [139]. The demise of the local HF coupling picture was sealed by
the observation that the Cu(2) c-axis shift term attributable to 3d-spin moments was
vanishingly small [135, 140], while, in contrast, c-axis HF fluctuations dominated
the T1 process [138, 139, 143]. It was clear that there were two or more independent
contributions to the c-axis HF coupling which vanished when superimposed to form
the net shift, but produced fluctuations which did not cancel and were in fact very
large.

The Cu(2)-Cu(2) Transferred HF Coupling

The resolution of the vanishing c axis spin shift questionwas concluded to be a highly
unusual transferred HF coupling between a Cu-site nuclear spin and the four nn Cu
spin moments, for which it is difficult to find a significant precedent. The putative
isotropic transferred nn coupling may be written



3.3 The Mila-Rice-Shastry Model: A Universal HF Tensor for the Cuprates 81

HTr = B
∑

i(nn)

I · Si, (3.3.1)

where the sum is over the four nearest-neighbor Cu(2) sites to the site in question.
Nonetheless, it was argued that the only alternative to this was HF coupling with

mobile holes on the planar oxygen lattice.Any suchhole statewould need to hybridize
with the Cu(2) 4s state in order to explain the large, isotropic HF coupling. Suitable
oxygen hole states for this purposewere argued to be energetically unfavorable [118].
It was also argued byMila and Rice that doped holes would be in singlet states which
have negligible HF coupling with nuclear moments [157]. Whether this is correct or
not is unresolved. To our knowledge, however, no unidentified HF effect, static or
dynamic, has ever been reported to contradict this conclusion.

The result is a quantum fluid of Cu2+ quasiparticle holes which is expected to
be the sole source of HF effects in the normal state and to form spin pairs in the
superconducting ground state. Hybridization with the O2− neighbors has been pro-
posed as the source of spin HF effects for the 17O(2, 3) sites by Shastry [146], and
hybridization with the Y3+ 4d orbitals has been demonstrated by Alloul et al. [136].
That this is a correct picture is evidenced by the vanishing of 1/T1 at T � Tc for the
63,65Cu, 17O, and 89Y NMR lines for which data have been reported, as well as of the
spin-paramagnetic NMR shifts.

3.3.1 General Definition of the HF Tensors

Before entering into the details of extracting the HF tensors from shift and suscepti-
bility data, we set down a general framework for the structure of all HF couplings to
be discussed from this point forward. The YBCO HF tensor components are defined
by

HHF =
∑

i,α

I (1)iα

⎧
⎪⎪⎪⎪⎪⎩A(1)

α Siα + B(1)
∑

j(nn)

Sjα

⎫
⎪⎪⎪⎪⎪⎭ +

∑

i,α

I (2)iα

⎧
⎪⎪⎪⎪⎪⎩A(2)

α Siα + B(2)
∑

j(nn)

Sjα

⎫
⎪⎪⎪⎪⎪⎭

+
∑

i,α

17Iiα
∑

j(nn)

CαSjα +
∑

i,α

89Iiα
∑

j(nn)

DαSjα. (3.3.2)

The four terms in (3.3.2) refer, respectively, to nuclei on the Cu(1), Cu(2), O(2, 3),
and Y sites. In the first two terms the nn couplings B(1,2) are introduced as defined
in the foregoing paragraph. The coefficients A(1,2)

α are composites of the on-site
Cu(1, 2) HF couplings which are derived from the spin Hamiltonian model below.
For the O(2, 3) and Y, the sums on j cover two and eight nn Cu(2) sites, respectively.
Omitted are oxygen sites O(1) and O(4) for the sake of simplicity. Their shift and
relaxation behavior have been recorded, but are not essential to our understanding
of the CuO2 planes where the superconductivity resides. The 63,65Cu(1, 2) nuclear
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spins are labelled I(1)
i and I(2)

i in an obvious notation. The 17O(2, 3) spins are labelled
17Ii and the 89Y spins are labelled 89Ii.

Note that all HF effects are assumed to be driven by the Cu2+ spin operators Sj,
which are rendered itinerant by the hole doping as in the Zhang-Rice model [125].
Our viewpoint regarding hole doping is that there are no HF effects which stem
directly from the doped holes [157]. Such effects have been discussed extensively in
the literature, and we shall review these discussions where appropriate. It is not felt,
however, that convincing evidence for oxygen hole-band HF effects has ever been
developed for the cuprates.

Evaluation of the HF Coefficients

The clearest and simplest way to evaluate HF coefficients (e.g. A(1)
α , A(2)

α , Cα, and
Dα in (3.3.2)) is by means of analysis of the NMR shifts and the measured sus-
ceptibility. In the case of YBCO7-x which we are concerned with here, there is the
complication of partitioning the measured susceptibility between the Cu(1, 2) sites
and neighbors, principally because modeling the behavior of the Cu(1) sites involves
a certain amount of guesswork. The spin-Hamiltonian model is used to estimate the
orbital terms. In the end, MR simply partitioned χs(T) equally between the three
copper sites of the formula unit. Efforts in the literature to improve on this have only
been partially successful [179].

To proceed, then, we first estimate the orbital (Van Vleck) susceptibilities and
NMR shifts by means of the spin Hamiltonian model [145]. The core diamagnetic
term can be estimated from tables. Subtracting these terms from the measured total
then yields the spin susceptibility χs(T). Provisions to be described below will be
made for its anisotropy, which for the Cu(2) sites will be ∝ g2α, α = ab, c, according
to the spin Hamiltonian.

HF tensor components will then be derived as follows. We take the 17O(2, 3)
sites as a typical example, where HHF17 =

∑
i,α C

17
α Iiα

∑
j Sjα is the O(2, 3) nuclear

spin Hamiltonian term from (3.3.2). Taking the expectation value of this term in
the presence of a field H along the β axis and equating this result to a nuclear shift
Zeeman term −γ17�H

∑
i IiβKβ , we find

Kβ(T) = 2Cβ

�γ17gβμBNA
χsβ(T) = α17βχsβ(T), (3.3.3)

where α17β is the shift coefficient and χsβ(T) = −gβμBNA〈Sjβ〉/H is the molar sus-
ceptibility (〈Sjβ〉 < 0 is independent of j) of a Cu(2) site.

In practice the shift coefficient is determined experimentally by dividing a mea-
sured spin-paramagnetic shift by a “best estimate” of the corresponding molar sus-
ceptibility. The tensor Cβ has the units of energy, so what we will tabulate is the
quantity

C′
β = NAμBα17β/2 = Cβ/�γ17gβ, (3.3.4)

in units of “kOe/μB”, since this is the HF field which would be found if there were a
magnetization of one μB on each Cu(2) site. It is divided by 2, because each O(2, 3)
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has two Cu(2) neighbors. Appropriate definitions of the HF constant for each case
discussed will be given as they come up.

We finally want to emphasize one point, which is that the scale of the HF constants
will depend on the value of the χs(T) tensor adopted. It is given in Table3.4 and
corresponds to T = 100K. No other standard will be used for HF coefficients for
YBCO7-x, including for the deoxygenated phases. As we shall see, the shift values
forYBCO7 are fairlywell established, and ifmore accurate values for theχsβ(100K)

are determined, it is a simple matter to scale all of the HF coefficients uniformly. We
proceed, then, with the determination of the HF coefficients.

3.3.2 Extracting the Cu(1, 2) HF Tensors for YBCO7 from
Shift and Susceptibility Data Using the Spin
Hamiltonian Model

As a preamble to their quantum chemical calculation of hybridizedwavefunctions for
theCu(1, 2) sites,Mila andRice [118] analyzed themeasured shifts and susceptibility
for YBCO7 with the aid of a spin Hamiltonian model, yielding both spin and orbital
HF tensors for the Cu(1, 2) sites, as well as crystal-field splittings for the Cu(2) site.
Although the spin Hamiltonian model is most appropriate for insulators, it appears to
provide an accurate description of HF effects in the narrow-bandwidth doped cuprate
superconductors.

Since late 1988 when this was first proposed, a good deal of additional data for all
the experimental quantities has been reported. Although the original data used served
a very important purpose, newer data were published with smaller error bars, and
we believe that they lead to a picture with better internal consistency. Accordingly,
we discuss here the original K and χ analysis, but re-work the numbers at the same
time. The changes are small, but appear to be significant.

The Spin and Orbital NMR Shift Tensors for Cu(1) in YBCO7

We shall use the notation K (1,2)
tot (a, b, c) = K (1,2)

orb (a, b, c) + K (1,2)
s (a, b, c) to represent

the total, orbital, and spin shifts along the a, b, c axes for Cu(1, 2). In Table3.1 we
list the original Cu(1)-site shifts [135, 140] and other data which were published a bit
later. The total shift values listed were measured at T = 100K, and the orbital shifts,
which are assumed to be temperature independent, were measured at 4.2K, where
it is assumed that K (1,2)

s (a, b, c) = 0. The spin components listed then correspond to
100K. Note that the differences between these two sets of data are not large, but are
outside of the stated error bars in a number of cases.

Spin and Orbital NMR Shift Tensors for Cu(2) in YBCO7

For the Cu(2) NMR shift data in Table3.2 there are additional data sources listed,
and we also include susceptibility data. Since it is not feasible to resolve a and b axis
data for the Cu(2) shift, nor for the susceptibility, the in-plane data are labelled “ab”.
Again, the original Mila-Rice data are given on the top line, and other sources of data
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Table 3.1 Table comparing Cu(1)-site shift values from the original Mila-Rice data [135, 140] and
other data which appeared later. The data from [147] are used in the analysis discussed in the text.
The spin components are obtained by subtraction: Ks = Ktot − Korb. Shift values are in (%). The
numbers in parentheses are uncertainties in the last digit quoted

Source K (1)
tot (a) K (1)

tot (b) K (1)
tot (c) K (1)

orb(a) K (1)
orb(b) K (1)

orb(c) K (1)
s (a) K (1)

s (b) K (1)
s (c)

[135,
140]

1.34(2) 0.61(2) 0.60(8) 1.18(2) 0.43(2) 0.31(8) 0.16(2) 0.18(2) 0.29(8)

[139] 1.38(7) 0.55(7) 0.60(4)

[147] 1.32(2) 0.56(2) 0.59(1) 1.08(4) 0.27(4) 0.25(1) 0.25(4) 0.29(4) 0.33(1)

Table 3.2 Table comparing Cu(2)-site shift values for YBCO7 from the original Mila-Rice data
[135, 140] with other sets of data which have subsequently been reported. Data from the bottom
line are employed for the analysis discussed here [147]. No distinction is made between the a and
b planar axes. The susceptibility components given for [137] are derived by the procedure stated
in the text. We note that the spin components are obtained by subtraction: Ks = Ktot − Korb. Shift
values are in (%) and susceptibilities in units of (10−4 emu/mol f.u.). The numbers in parentheses
are uncertainties in the last digit quoted

Source K (2)
tot (ab) K (2)

tot (c) K (2)
orb(ab) K (2)

orb(c) K (2)
s (ab) K (2)

s (c) χtot(ab) χtot(c)

[135,
140]

0.61(2) 1.27(8) 0.24(2) 1.35(8) 0.37(2) −0.08(8) 2.50 3.39

[139] 0.59(4) 1.267(1)

[137] 0.55(5) 1.30(3) 2.24(10) 3.61(10)

[148] 0.25(2) 1.28(2)

[147] 0.58(2) 1.27(1) 0.28(1) 1.28(2) 0.30(1) −0.01(1)

are listed below. There is reasonably good consistency between the last two sources
listed. We shall use the bottom line numbers for analysis here. The susceptibility
components attributed to [137] were obtained in the following way. The actual data
in [137] are measurements on a random powder sample. The 100K susceptibility
from these data (2.70× 10−4 emu/mol f.u.) has been partitioned between χtot(c) and
χtot(ab) assuming the ratio χtot(c)/χtot(ab) = 1.61, as reported in [149]. This is, to
our knowledge, the largest anisotropy ratio which has been reported for an oriented
powder sample, and therefore corresponds to an unusually high degree of crystalline
alignment. The resulting values for χtot(ab) and χtot(c) are given in the table and are
used in the analysis discussed in the text.

Determination of the Orbital Susceptibility Tensors

Our next step is to use the Cu(1, 2) shift tensors from the bottom lines of Tables3.1
and 3.2 to determine the orbital susceptibilities, using the relation

χorb(a, b, c) = Korb(a, b, c)/αorb, (3.3.5)
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Table 3.3 Table listing orbital susceptibility components derived from the orbital shifts from the
bottom lines of Tables3.1 and 3.2 using (3.3.5). Also, total susceptibilities from second line of
Table3.2 are listed here after correction for atomic core diamagnetism (see text). Susceptibilities
are given in units of (10−6 emu/mol) for individual sites and (10−6 emu/molf.u.) for χtot

s+orb

χ
(1)
orb(a) χ

(1)
orb(b) χ

(1)
orb(c) χ

(2)
orb(ab) χ

(2)
orb(c) χtot

s+orb(ab) χtot
s+orb(c)

76.5 19.1 17.7 19.8 90.7 399 536

where αorb = 2〈r−3〉/NA. Equation (3.3.5) may be employed for either Cu site. We
take 〈r−3〉 = 6.3 a.u. from [118], yielding αorb = 141 (emu/mol)−1. The resulting
orbital susceptibility values for the Cu(1, 2) sites are listed in Table3.3. Note that the
a and b axis values are identical for Cu(2). Also tabulated are susceptibility values
labelled “s+orb”, which are obtained with the following equation:

χtot
s+orb = χtot

s + χtot
orb = χtot − χdia (3.3.6)

where χtot is the experimental value, and where we use the (isotropic) χdia =
−1.75 × 10−6 emu/mol from [118]. The measured susceptibilities cannot distin-
guish between the a and b axes.

Determination of the Spin Hamiltonian Parameters

Using the spin Hamiltonian expressions [145] χorb(c) = 0.70 (8μ2
B/Δ0) and χorb

(ab) = 0.70 (2μ2
B/Δ1), we may now use the numbers in Table3.2 to estimate the

crystal field energiesΔ0,1. The numerical factors 0.70 in these formulas are reduction
factors based onmeasurements [119] and calculations [120] of covalency in theCuO2

planes.
Inserting the values of χ(2)

orb(ab, c) from Table3.3 then leads to Δ0 = 2.00 eV
and Δ1 = 2.29 eV. The calculations of McMahan et al. [150] suggest Δ0,1 to lie
in the vicinity of 2.0eV and to differ by ∼10%. We can now evaluate the g-factor
expressions g⊥ = 2 − 2λ/Δ1 and g‖ = 2 − 8λ/Δ0, where λ is the spin-orbit coupling
parameter. The free ion value of λ � −830 cm−1 ([145], Table7.6). Mila and Rice
adopted the value λ = −710 cm−1 = −0.088 eV. We suggest that a slightly greater
reduction factor is appropriate here, such as the value 0.75 given by Owen and
Thornley for Ni2+ in MgO [121]. This yields λ = −0.077eV, which we employ
henceforward. With this value we find

g⊥ = 2.067; g‖ = 2.308. (3.3.7)

The expected value for the anisotropy As of the spin susceptibility then becomes
As = χs‖/χs⊥ = g2‖/g

2
⊥ = 1.247. We note that g-factor anisotropies in metals are not

unusual, as may be seen in data reported for Cu and other noble metals [33].
Our next task is to partition the measured susceptibility between the Cu(1) and

Cu(2) sites. Where Mila and Rice assumed the same isotropic spin susceptibilities
for Cu(1) and Cu(2), we shall use the same axial susceptibility tensors for both sites.
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As discussed in [118] this is an oversimplified viewpoint for the Cu(1) site, for which
the error incurred is hopefully not too large.

We equate the “s+orb” values in Table3.3 to expressions using the same axial
spin susceptibility tensor components for the Cu(1) site (a axis) and the Cu(2) sites
(c axis). For this purpose we introduce the variable χs⊥ for a single-site transverse
component and χs‖ = Aχs⊥ for the longitudinal component, where A and χs⊥ are to
be determined. This leads to the following equations for A and χs⊥:

χtot
s+orb(c) = 2χ(2)

orb(c) + χ(1)
orb(c) + (2A + 1)χs⊥ (3.3.8a)

2χtot
s+orb(ab) = 4χ(2)

orb(ab) + χ(1)
orb(a) + χ(1)

orb(b) + (A + 5)χs⊥. (3.3.8b)

Inserting the numbers from Table3.3 we solve (3.3.8), finding A = 1.166 and χs⊥ =
1.01 × 10−4 emu/mol. This “experimental” value for A is somewhat smaller than
the spin Hamiltonian g-factor-based estimate of 1.247 calculated in the previous
paragraph. The spin susceptibility tensor components deduced here are then 1.01 and
1.18× 10−4 emu/mol for χs⊥ and χs‖, respectively, as compared with the isotropic
Mila-Rice value of 1.08× 10−4 emu/mol.

It is interesting to inquire what the possible source might be for the foregoing
discrepancy in values for A. First, it seems likely that the correct value would agree
with the spin Hamiltonian model, since other aspects of the model are quite success-
ful. Next, it seems unlikely that approximate treatment of the Cu(1) site behavior is
the source of the discrepancy. For example, assuming the Cu(1) site susceptibility to
be isotropic would only increase the deduced anistropy for the Cu(2) site by ∼1%.
On the other hand, the deduced anistropy A is quite sensitive to the experimental
anisotropy value, which was taken to be χt(c)/χt(ab) = 1.61 [149] in the foregoing
analysis. If this were increased by less than 4% to 1.67, (3.3.8) would yield the the
spin Hamiltonian value χs‖/χs⊥ = 1.247. This result suggests that the correct value
for the susceptibility anisotropy may actually be a few percent larger than the largest
experimental value which has been reported.

3.3.3 Quantum Chemistry of YBCO7 and the Hyperfine
Tensor

While it is to be expected that there is strong covalency between the Cu2+ moments
and the oxygen ligands in the cuprate conducting planes, it seems quite surprising
that there is a substantial admixture of the 4s wavefunctions of the nearest-neighbor
Cu2+ ions as posited in (3.3.1). Yet this is precisely what the quantum-chemical
calculations show [118, 151]. We outline the calculation here and refer the reader to
the original papers for the details [118, 151]. The tight-binding quantum-chemical
calculations for Cu(2) are based on the diagram shown in Fig. 3.6, where the relevant
orbitals are shown at each ionic site. The dx2−y2 orbital is shown at the central (planar)
Cu2+ ion, the pσ orbitals on the oxygen ligands, and the 4s orbitals on the four nnCu2+



3.3 The Mila-Rice-Shastry Model: A Universal HF Tensor for the Cuprates 87

Fig. 3.6 A schematic
representation of the dx2−y2

orbital at a Cu(2) site and the
pσ orbitals of the O2−
ligands, as well as the 4s
orbitals on the four nn Cu(2)
sites, which are admixed to
form the total wavefunction
of the Cu(2) 3d-holes for the
Mila-Rice quantum
chemistry calculation (see
text). The tα’s show hopping
matrix elements, and the
signs give phase conventions
for admixed orbitals

ions. With the sign conventions given in the figure, the p and s-orbital admixtures
which couple to the central dx2−y2 orbital are p = (p1x − p2y − p3x + p4y)/2 and s =
(s1 − s2 + s3 − s4)/2. The energies are as follows: The 3d-orbital energy is taken
as the origin, εd = 0. The ligand on-site energies are taken to be εp = 4eV and εs
∼ −6eV. The hopping energies shown in Fig. 3.6 are t1 = 0.33 eV, t3 = 1.38eV, and
t8 = 3.9eV. The Hamiltonian is then solved in conjunction with the somewhat more
complex Cu(1)-site Hamiltonian.

The Wannier Wavefunction for Cu(2)

The Cu(2) tight-binding (Wannier) wavefunction is written

|ψ(2)〉 = αd |dx2−y2〉 + αp|p〉 + αs|s〉, (3.3.9)

where the solution presented givesαd = 0.9,αp = −0.34, andαs = −0.26. In addi-
tion there is a coupling to the apical oxygen that is ligand to the nearest Cu(1) site
and to the 4s state on that site. This coupling has some effect on the Cu(2) shift, but
an essentially negligible effect on the Cu(2) T1. For simplicity we shall omit these
terms. The transferred isotropic HF coupling (3.3.1) from the nn Cu(2) sites may
be estimated as follows. The 4s contact HF coupling from EPR data for atomic Cu
[152] is

16π

3
|ψ4s(0)|2 = 0.45 × 1027 cm−3. (3.3.10)

Referring to (2.2.2) and (2.2.7), the corresponding 4s contact HF coupling is
2,080 kOe/μB. The total transferred coupling is then estimated to be α2

s × 2080 =
141 kOe/μB, as compared with ∼160 kOe/μB required to give the nearly vanishing
c axis spin-paramagnetic shift. Mila and Rice note that the value stated is for atomic
Cu, whereas Cu2+ will have an enhanced value of |ψ4s(0)|2 because of the ionic plus

http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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charge. There seems little doubt that the nn 4s admixture effect is the correct answer
to the c axis HF anomaly.

The Composite Cu(2) Spin Hyperfine Tensor

Let us now state the remainder of the HF coupling terms for Cu(2) and then formulate
the Mila–Rice T1 relaxation tensor. The full HF tensor may be written [145],

H(2)
HF =

∑

α

A(2)
α IαS0α + B(2)

∑

i(nn)

I · Si, (3.3.11)

with
A(2)

α = A(2)
cp + A(2)

dip,α + A(2)
so,α, (3.3.12)

where the three terms shown are the isotropic core polarization term, the dipolar term,
and the spin-orbit term, and where α = (ab, c) for the axially symmetric Cu(2) site.
The spin-orbit terms, being a second-order perturbation effect to higher crystal field
states driven by the spin-orbit coupling, are a special feature of the spin Hamiltonian
picture. They are actually an orbital field admixed into the spin HF terms.

The core-polarization term is sometimes given as proportional to 〈r−3〉, which is a
holdover fromEPRstudieswhere the origin of this termhadnot been identified.2 Here
we shall simply appeal to systematic studies, which give Acp/2�γn � −127 kOe/μB.
The dipolar and spin-orbit terms may be written (in energy units)

Adip,ab = 2γn�μB
2

7
〈r−3〉, (3.3.13a)

Adip,c = −2γn�μB
4

7
〈r−3〉, (3.3.13b)

Aso,ab = 2γn�μB〈r−3〉
[
− 11λ

7Δ1

]
, (3.3.13c)

Aso,c = 2γn�μB〈r−3〉
[
− 6λ

7Δ1
− 8λ

Δ0

]
. (3.3.13d)

We use the same parameters used earlier to evaluate theVanVleck orbital susceptibil-
ities and in (3.3.7) for the anisotropic g-factor to calculate the spin HF tensor. These
are λ = −0.077eV,Δ0 = 2.00eV,Δ1 = 2.29eV, and 〈r−3〉 = 6.3a.u. The resulting
values for the Cu(2) spin HF tensor (3.3.11) are listed in Table3.4 in units of kOe/μB

(see Sect. 3.3.1). We also employ the reduction factor 0.70 derived from determina-
tions of covalency [119, 120] for these parameters, as well as the core polarization
HF field, in the second line of Table3.4. The value of B(2) shown is adjusted to give
minimum error for the Cu(2) spin-paramagnetic shift values K (2)

s (ab) and K (2)
s (c)

(bottom line of Table3.2), with the resulting estimated values K (2)
sE (ab) and K (2)

sE (c)
also listed in the table. A good fit is seen to be obtained. To the far right are listed
the components of the composite on-site HF tensor A(2)

α defined by (3.3.12).

2The work of Heine [35] later revealed that it had no connection with 〈r−3〉.
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3.3.4 T1 Ratios and Electron Spin Correlation Effects

Mila and Rice introduced the concept of electronic spin-spin correlation factors
in their T1 calculation, but did not use them in their discussion of T1 anisotropy.
Subsequent discussions of the T1 problem in cuprates have made extensive use of
this idea. Here, we find it necessary to consider the effect of spin-spin correlations
to obtain agreement with experimental data. All HF constants are given in (kG/μB).
The primed notation for this option introduced with (3.3.3) and (3.3.4) is suppressed
in this section for simplicity.3

Using expressions similar to MR, we now present results for the Cu(2) relaxation
tensor. The 1/T1ab,1c have the form H2

HF(ab, c)χ′′
s (ω0), where the squared HF field

parameters are

H2
HF(c) = 2 [A(2) 2

ab + 4B(2) 2 + 8A(2)
ab B

(2) K01 + 4B(2) 2 (2K12 + K13)] (3.3.14)

and

H2
HF (ab) = [A(2) 2

ab + A(2) 2
c + 8B(2) 2 + 8 (A(2)

ab + A(2)
c )B(2) K01 + 8B(2) 2 (2K12 + K13)], (3.3.15)

where Kij = 4〈Si · Sj〉 is the normalized spin-spin correlation between sites labeled
i and j (see Fig. 3.6). The quantity χ′′

s (ω0) has the dimensions of a correlation time,
but also has in it the density of states and temperature factors that arise out of some
specific model of quasiparticle dynamics appropriate to the cuprates. If the system
were a Fermi liquid one would have χ′′

s (ω0) ∝ T . Without such modeling this theory
cannot give absolute values for T1, but it can predict the anisotropy of T1 at the Cu(2)
site using the HF tensor data from Table3.4. Having minimized the error in the spin
paramagnetic shift tensor to estimate the value of B(2) given in the table, we insert
the parameter values into the ratio of (3.3.15) to (3.3.14) to determine the expression,

T1c
T1ab

= 2.64
[1 − 1.69K01 + 0.38 (2K12 + K13]
[1 + 0.29K01 + 0.99 (2K12 + K13)] . (3.3.16)

Equation (3.3.16) is to be compared with experimental data giving values of
T1c/T1ab of ∼4.5 [139], ∼3.6 [143], or the later value ∼3.4 [153].4 In any case, it
is clear that the spin-spin correlation factors in (3.3.16) are going to have to play a
role in order to achieve quantitative consistencywith experiment. Regarding (3.3.16),
sinceK01 is a nearest-neighbor correlation it must be negative, whileK12 andK13 are

3In (3.3.2) and again in (3.3.11)–(3.3.13) hyperfine (HF) terms are introduced, with expressions
given in energy units. In (3.3.4) a primed notation is introduced, giving the HF constants in the more
convenient kG/μB units. In all subsequent discussion, the latter units will be used and the primed
notation dropped. See, e.g., Tables3.4, 3.6, and 4.1, etc.
4The difference between these two measurements is outside of error estimates, and can only be
attributed to a difference in samples. The lower numbers agree with earlier measurements made on
a random powder [138].

http://dx.doi.org/10.1007/978-3-662-55582-8_4


3.3 The Mila-Rice-Shastry Model: A Universal HF Tensor for the Cuprates 91

Fig. 3.7 1/T1ab (θ = π/2)
and 1/T1c (θ = 0) are plotted
versus temperature over the
range 90K ≤ T ≤ 300K
for Cu(2) sites in an oriented
powder sample of fully
oxygenated YBCO7 [143].
The data are scaled so that T1
values for the two
orientations coincide at
T = 100K, so as to highlight
the decrease of the T1c/T1ab
ratio over range of T
measured

correlations between neighbors on the same “sublattice”, so to speak, so they will be
positive and undoubtedly smaller in magnitude thatK01. Thus,K01 will have a clear
effect of increasing the ratio if its value is negative and appreciable. For example,
if we neglect the K12,13 terms for the moment, then a value of K01 = −0.07 would
yield a T1 ratio of 4. With only a modest amount of correlation we can obtain a
realistic value for T1c/T1ab.

Temperature-Dependent Spin-Spin Correlations

It is not clear from the Mila-Rice presentation, either, whether they intended the
correlations to be used as temperature-dependent parameters or not, but a number
of subsequent developments have employed them in just that role. For example,
temperature-varying correlations give a straightforward explanation for the variation
found for the T1 anisotropy in YBCO7 between 100 and 300K [143]. These data are
shown in Fig. 3.7, where it is seen that T1c/T1ab diminishes by barely 10% over that
temperature interval, and is only barely outside of the error bars. Nonetheless, the
trend persists over a series of data points and is clearly established.5

Aswe shall see inChap.5, extensive use has beenmade of theKij’s as temperature-
dependent parameters to describe the behavior of T1. In the Uldry-Meier T1 analysis,
for example [195], the temperature dependence of all T1’s is described in terms of the
spin-spin correlations and an effective correlation time. The theoretical basis for this

5It would have been desirable to have this effect confirmed by another experimental group. To our
knowledge, no such confirmation has been reported.

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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approach is derived in Sect. 3.5. Meanwhile, we also recall that the first Mila-Rice
paper [118] made no attempt to apply their model to the interpretation of the peculiar
temperature dependence of the T1 data. Indeed, theories addressing the behavior of
T1(T) were fairly quick to follow, but are still under discussion, as will be seen in
Chaps. 4 and 5.

3.4 Incorporating 17O and 89Y Data into the
Mila-Rice-Shastry Picture

Following the Mila-Rice (MR) paper there were many new developments, some
going beyond the scope of the present chapter. There were new data on 17O NMR
in YBCO, as well as a great deal of discussion regarding the question of a two-fluid
picture of quasiparticle dynamics, i.e. whether there is evidence for a separate hole
band on the oxygen sites. There were also efforts to treat the temperature dependence
of the copper T1, along with discussion of just how the Cu(1) chain sites in YBCO
differ from the Cu(2). In the midst of these many challenging questions and almost
immediately followingMila andRice, reports on the peculiar behavior of the oxygen-
deficient phases made a sudden appearance. These effects, known collectively as the
pseudogap and their interesting history in the high-Tc field are the subject of Chap.4.

We consider here the first reports on the behavior of the planar 17O NMR, as well
as the closely related 89Y. Detailed theories which address the contrasting behavior of
63,65Cu, 17O, and 89Y in YBCO are presented in Chap.5. Following the discussion of
the 17O data for YBCO7, we consider again the possible occurrence of oxygen hole
bands along with the Cu2+-related (Zhang-Rice) quasiparticles in the total picture of
fermion dynamics.
17O(2, 3) NMR Data and Interpretation for YBCO7

By the middle of 1989, 17O NMR studies on YBCO7 had been reported by several
groups [156, 168–170]. Here we shall review and discuss the results reported by
Takigawa et al. [156, 168] in some detail. A comparable set of results was reported
byHorvatić et al. [169], covering awider range of temperatures. The high temperature
results for the quadrupolar and shift tensors for the O(2, 3) sites from the latter study
were found to agree within error bars with those from [168], and the quadrupolar
data from [170] is also in accord. The HF tensor is analyzed below and compared
with the MR model calculation. There is some disagreement in detail, but this, we
suggest, may arise from inaccuracies in the MR quantum chemistry results.

17O spectra were taken on oriented powder samples of YBCO7 [168], for which
17O-enriched oxygen gas was used to exchange 17O into the sample material at a
temperature of 900 ◦C. The resulting (nearly) complete NMR spectrum for all of
the oxygen sites is shown in Fig. 3.8 for the case of field oriented along the c axis.
The identification of all the peaks in this spectrum is a real tour-de-force of NMR
shift and quadrupole splitting analysis. Although the c axis is expected to be one
of the principal axes of the EFG tensors for each oxygen site, the EFG tensors are

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_5


3.4 Incorporating 17O and 89Y Data into the Mila-Rice-Shastry Picture 93

Fig. 3.8 17O NMR spectrum taken at 49.8MHz on an oriented powder sample of YBCO7 with
enriched 17O content [168]. The field was oriented along the c axis. Sample temperature was 160K.
For 17O γn/2π was taken to be 0.577186 kHz/Oe. The sites were identified as labelled, with the (Bn,
B′
n) pairs of lines very close together for the O(2, 3) sites. See text for discussion of the quadrupolar

and shift tensors for the O(2, 3) sites

decidedly non-axial in character. The peaks have been fitted using the I = 5
2 second-

order perturbation formulas [168]

[
−1

2
↔ 1

2

]
: Δν = Kz + 2

9
(νx − νy)

2/ν0, (3.4.1a)

[
±1

2
↔ ±3

2

]
: Δν = Kz ± νz + 5

36
(νx − νy)

2/ν0, (3.4.1b)

[
±3

2
↔ ±5

2

]
: Δν = Kz − 1

9
(νx − νy)

2/ν0, (3.4.1c)

where ν0 =γnHres andΔν = νres − ν0. TheNMRfrequency is νres, andHres is the value
of the field at the peak in question. The quantities νx,y,z are quadrupole frequency
parameters defined as να = 3

20eQ Vαα. Equation (3.4.1a) will be recognized as (2.1.7)
written out with Vαα parameters. Note that no relative size or sign relationship is
implied here among the νx,y,z, except, of course, that

∑
α να = 0. The parameters are

adjusted for each site so as to give a best fit to the spectrum shown, as well as spectra
taken with H ⊥ the c axis, an exercise of considerable complexity.

For the case of the O(2, 3) sites, it was not clear from the data alone whether the
principal axis of the EFG was along the c axis or along the bond axis. To decide this,
trial calculations of the EFG tensor were made assuming a point-charge contribution
multiplied by a Sternheimer factor (1 − γ) [171], where γ was taken to be 9, plus
an on-site p-electron contribution of ( 3

20 )(
4
5e

2|Q|〈r−3〉), where 〈r−3〉 was taken to be

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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3.63a.u. [168]. On this basis, the only reasonable outcomewas obtained assuming the
principal axis is the bond axis, giving an estimated result (0.97,−0.42,−0.55)MHz
as compared with (0.976,−0.598,−0.378)MHz shown in Table3.5. Note that the
transverse axis values are reversed between modeling and experiment, so that the fit
is close, but not exact. The principal EFG values for all sites lie along the bond axes.

Our interest in the shift data shown in the table is in comparing them with the MR
calculated results and ultimately to see whether the 17O data are compatible with a
single-fluid description of the distribution of electronic (i.e. hole) spin density. Shift
values are given for all sites at two temperatures, 160 and 30K. In the latter case, we
suppose that the spin susceptibility is essentially zero (see e.g. shift measurements
for T < Tc in [140, 147]), so that these residual values may be regarded as orbital
shifts. This surmise is verified by a detailed plot of Kc(T) versus T by Horvatić et
al. (see Fig. 4 in [169]). Subtracting the 30K shift values from the 160K ones, we
find estimates of the spin paramagnetic shift components, listed under “Ks(160K)”.
The latter values form a tensor for each site, which has been divided into an isotropic
component Kiso = (K‖ + 2K⊥)/3 and an anisotropic (axial) component with Kax =
(K‖ − K⊥)/3. The latter parameters are tabulated in the final two columns. It is seen
for the O(2, 3) that there is a fairly large isotropic component as expected, with quite
a sizeable axial shift Kax = 0.03% as well. It seems that the main hybridization is
into the 2pσ orbitals as expected.

On the other hand, the MR quantum chemistry calculation predicted a rather
smaller value for Kax than what was found. We analyze this point by noting
that the axial shift coefficient for a pσ orbital occupied with a fraction f of the
S = 1

2 moment is given by αax = 2
5 f 〈r−3〉/NA. According to the MR quantum

chemistry (Sect. 3.3), f = α2
p/2 = 0.058. Using the value 〈r−3〉 = 3.63a.u. [168],

we find ασ = 0.94 (emu/mol)−1. With a transverse susceptibility component of
1.01 × 10−4 emu/mol Cu(2) (Table3.4), we find Kax(MR) � 0.0095%. This is
approximately 1/3 the experimental value in Table3.5. So although the experimental
value has a large error bar, it is certainly much larger than the MR calculated value.

Is this evidence for an oxygen hole band? We think not, but unfortunately, there
is no trend with doping or even temperature dependence to check such a hypothesis.
However, there is another experimental number which comes to mind here, namely
the determination of the covalency of La2CuO4 at high temperatures using 17ONMR
shift measurements [119]. The total fraction of spin density residing on the O(2, 3)
with the MR result (foregoing paragraph) is 2f = 11.6%. The comparable experi-
mental result for La2CuO4 is 31% [119]. Scaling the foregoing estimate by the ratio
of these numbers, one finds a result nearly a factor of 3 larger and in much better
agreement with the O(2, 3) axial shift in Table3.5. The La2CuO4 measurement is
also in good agreement with, but actually slightly less than theoretical values given
by Hüsser et al. [120]. We suggest that the value for La2CuO4 should not be very
different from that for YBCO7. Thus, it is possible that the expected number for
the 2pσ spin density is quite a bit larger than the MR value, and that the reported
17O(2, 3) shift values in [168] are consistent with a one-band picture.
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Table 3.6 Spin components of NMR shift are tabulated for the 17O(2, 3) and 89Y, 17Ksα and 89Ksα,
respectively, for YBCO7 at T = 100K. See text for the origins of these data. The corresponding
HF tensors obtained with (3.3.4) are also listed, along with susceptibility tensor from Table3.4.
Note that for the 89Y case the denominator in (3.3.4) is “8” rather than “2”. Cα and Dα are given
in kOe/μB and χsα in 10−4 emu/mol

Axis 17Kα (%) 89Kα (ppm) Cα Dα χsα (100K)

a 0.26(1) 247 72(3) 1.71(9) 1.01

b 0.16(1) 247 44(2) 1.71(9) 1.01

c 0.16(1) 315 38(2) 1.86(9) 1.18

HF Tensors for 17O(2, 3) and 89Y in YBCO7

In Table3.6 we collect data for the 17O(2, 3) and 89Y NMR shift tensors and list the
corresponding HF tensors defined in (3.3.2) and (3.3.4). For the 17O(2, 3) case we
take NMR shift data from Table3.5. For the 89Y case the data are taken from Alloul
et al. [200], which reports the highest numbers available for an oriented powder
sample.6 The HF tensors are then obtained with (3.3.4) using the spin susceptibilities
in Table3.4.

The HF constants for the various sites in and near the CuO2 in Tables3.4 and
3.6 are expected to hold for reduced oxygen phases of YBCO7-x as well. A very
important test of this idea occurs in Chap. 4, where these values are compared with
precisely determined relative values for the YBCO6.63 phase.

3.4.1 Measurements of T1 for 17O in YBCO7

The foregoing authors also reported T1 measurements for various oxygen sites in
YBCO7 [156]. As found earlier for the 89Y [127, 128], the 17O(2, 3) relaxation
in the normal state is very Korringa-like, with T1T � 2.7sK. The authors chose to
give a qualitative discussion of this result, along with their 63Cu(2) data, in terms of
the Korringa relation (1.2.8). Following that, however, they discuss the T1 results in
terms of the dynamic susceptibility χ′′(q,ω), which became the method of choice
for analyzing relaxation. In the following section (Sect. 3.5) we present for reference
purposes a derivation of the relaxation rates for 89Y, 17O(2, 3), and 63Cu(2) in YBCO
in terms of χ′′(q,ω). We shall use formulas given there for our present discussion of
data from [156].

First, let us consider the simple Korringa relation (2.2.8) in relation to the current
problem. One could hardly expect it to apply in any strict fashion to YBCO, owing
to unknown particle dynamics, q-dependent HF coupling tensors, etc. Nonetheless,

6We take larger numbers for the 89Y NMR shift at 100K to be a sign of full oxygenation. Moreover,
the plot reported for 89Kα(T) versus T [200] shows a gradual increase from 300K down to a
maximum at T ∼ 120K. This is a characteristic of a fully oxygenated sample as well [179], rather
than declining curves which then give smaller values of 89Kα at T = 100K [166].

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_1
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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it does serve a sort of qualitative purpose in comparing the behavior of different
nuclear sites. The 89Y and 17O(2, 3) T1 processes are at least Korringa-like in their
temperature dependence, though this may be somewhat illusory because of spin-spin
correlation effects. Nonetheless, if you take the isotropic shift value from Table3.5,
you find for 17O(2, 3)

1

Ks(iso)2T1T
� 1.4 ×

[
4πkBγ2

n

�γ2
e

]
. (3.4.2)

To compare the latter result with the Cu(2) site they used T1ab, because it relates
to the largest on-site HF term Ac = −221 kOe/μB. Since Aab is very small, however,
they divided the expression (3.4.2) by two,7 finding a multiplier of 11 for the Cu(2)
Korringa product. So there is a very clear enhancement of the Cu(2) relaxation, with
almost none for the O(2, 3). If we look at the q-dependent expressions for 1/T1 in
Sect. 3.5, the Cu(2) expression for the field ⊥ c axis, it is essentially independent
of q, whereas for both the 89Y and 17O(2, 3) cases, the integrand vanishes at QAF =
(π/a,π/a). If χ′′(q,ω) has an AFM enhancement peak, the Cu(2) rate will receive
full enhancement, but the 89Y and 17O(2, 3) will have little or none. This is the
explanation offered in [156] for the discrepancy in Korringa ratios which they find,
but has been put forward bymany other observers as well [158]. It was also generally
thought to be related to the peculiar temperature dependence of the Cu(2) relaxation
rate while the 89Y and 17O(2, 3) rates were Korringa-like.

Reference [156] also presented data on relaxation rates for T < Tc for YBCO7,
but discussion of those results will be combined with consideration of the Cu(2) data
in Sect. 3.6.

3.4.2 The One-Band, Two-Band Debate: 89Y and 17O(2, 3)
NMR in YBCO

The MRmodel theory purported to explain the Cu(1, 2) NMR (in YBCO7) behavior
at 100K with a single spin fluid, where all HF couplings were assumed to originate
with the S = 1/2 coupled moments on the Cu2+ sites. At the same time or slightly
later, other interpretive papers appeared as well as experimental papers with more
data on the 89Y and 17O NMR shift and relaxation properties.

In this section we consider arguments presented on the question of one quantum
fluid versus two separate fluids needed to account for the T1 data. Monien et al.
[164] presented an analysis similar to MR, including the transferred HF term for
the Cu(2) sites, but also considering a possible “oxygen hole band” characterized by
susceptibility χh as well as a Cu(2) HF coupling Ah. In similar fashion to Sect. 3.3,
they concluded that the one-fluid model could not explain the data unless there were
spin-spin correlations. However, they also pointed out the possibility that the (χh,Ah)

7Thus, only one axis is effectively contributing to the T1 rate.
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oxygen band, if present, could be the explanation. The question was how to decide
whether the hole band was necessary.

A substantive discussion of this point was given by Mila and Rice themselves in
a follow-up paper [157]. We shall briefly recap their main points here. First, they
note that while one could consider the possibility of a hole band on the O(2, 3)
sites, the Zhang-Rice singlet picture essentially rules this out, since the singlets are
magnetically inert.8 Thus, one would expect that HF parameters should not depend
on the doping level. In this connection they noted that in the large 89Y study by
Alloul et al. [166], the slope of K versus χ plots is invariant from full doping all the
way down into the insulating regime. Thus, the 89Y HF coupling is independent of
doping, consistent with the Zhang-Rice singlet picture.

Next, they consider what one would expect if there actually were a hole band. On
the basis of quantum chemistry, MR argue that such a hole band would have a much
strongerHF couplingwith the 89Y nuclei than theCu2+ moments have. The reasoning
is as follows. First, the Cu2+ are too far from the 89Y for direct coupling, and for
the (strongly) hybridized 2pσ orbitals on the O(2, 3), the MRWannier wavefunction
(3.3.9) has the wrong symmetry to couple to the Y s or d orbitals. The answer, they
suggest, is a possible double hybridization path through 2pπ orbitals to the Y 4d.
This is, of course, very weak, and they argue that any hole band, which starts with
either the 2pσ or 2pπ orbitals, will be at least 5 times larger. Because of this, the 89Y
HF parameter in such a case would vary sharply with hole concentration. Since it
does not, they conclude that an oxygen hole band is essentially ruled out.

There was further discussion of oxygen bands in a few additional papers
[147, 160], but no really cogent evidence confirming their existence. In Chap.5 a dis-
cussion is presented of several models for calculation and interpretation of T1 data for
various nuclear species in the YBCO family of compounds. With the development
of various theoretical models and schemes for interpretation of relaxation effects,
there seemed less and less motivation to include oxygen hole bands. There was no
evidence to support their suggested existence once it was realized that q-dependent
susceptibilities and HF couplings could account for the observed behavior. There,
however, we shall also reconsider the possibility of an orbital relaxation term.

3.5 Formulation of T1 in Terms of χ′′(q,ω) and
q-Dependent HF Couplings

Even though transferred HF couplings quite obviously underlie the shift and relax-
ation effects of the 89Y nuclei in YBCO [127, 128, 136, 154], their presence—and
the concomitant effects of antiferromagnetic (AFM) spin-spin correlations—were
brought to our attention by the MR [118] analysis. However, the spin-spin correla-
tion picture was not destined to become the language of choice for this problem, but

8There were, however, two-band models proposed at the time, such as that given by Emery and
Reiter [167].

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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rather that of the well-known dynamic susceptibility χ(q,ω) pioneered by Moriya
[58] (see also the discussion by Jaccarino [155]). While these pictures are, as will be
seen below, completely equivalent, the q-space methodology is perhaps a bit more
convenient, as well as tying in directly with INS measurements. While the potential
of this approach to distinguish the behavior of 63,65Cu, 17O, and 89Y in YBCO was
noted early on [137], its dramatic consequence of cancelling AFM fluctuations at the
planar oxygen was first articulated by the analysis of Shastry [146]. Subsequently, it
has been widely invoked for discussion of T1 effects [111, 156–158, 161, 162].

3.5.1 Derivation of the Dynamic Susceptibility T1 Equation

The formula for T1 in terms of χ′′(q,ω) and q-dependent HF couplings is widely
quoted. For reference, we give here a simple derivation of this result, starting from
themaster equation for the interaction representation density matrix for nuclear spins
ρ∗(t) [5],

dρ∗

dt
= −

∫ ∞

0
dτ [H∗

1(t), [H∗
1(t − τ ), ρ∗(t)]], (3.5.1)

where H1 is the spin-lattice interaction being treated here as a perturbation, and the
overline represents an average over t which is long compared with the correlation
time scale of τ , but short compared with the time for the nuclear spin polarization to
change. The star indicates operators which have been transformed into the interaction
representation as inO∗(t) = exp(i(F + H0)t)O exp(−i(F + H0)t), whereH0 is the
unperturbed nuclear spin Hamiltonian, and F is the Hamiltonian for the rest of the
dynamic variables in the system. Here, for simplicity we take H0 to be a Zeeman
term with a field H applied along the cartesian axis labelled α,

H0 = −ω0

∑

i

Iαi, (3.5.2)

where ω0 = γnH. The density matrix for spin-lattice relaxation in such a case is
simply ρ∗(t) = ρ(t) = a(t)

∑
i Iαi, where a(t) is a variable which represents the

changing nuclear magnetization during a T1 experiment.
We illustrate the q-dependent HF coupling effects withH1 for the Cu(2) sites,

H1 =
∑

j,β

Ijβ

[
AαSjβ + B

∑

k=nn

Skβ

]
, (3.5.3)

where the B term is an isotropic coupling between Ij and the four nn spins Sk to the j
site. It will simplify the procedure if we neglect the imaginary part of the time factors
exp(±iω0t)which occur for each of the operators Ijβ in the interaction representation,
and simply represent them as a factor cosω0τ times the correlation functions. The
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correlation functions are assumed to be even in the variable τ , and the sinω0τ terms
will always vanish in the applications considered here.

A second simplification occurs if we operate on both sides of (3.5.1) with
Tr(Iiα . . .). Since the spin correlation functions are even functions of τ so that
Sjβ(t)Skβ(t + τ ) = Sjβ(t + τ )Skβ(t), we may write (3.5.1), in part, as

a−1 da

dt
= −

(N)∑

i

∫ ∞

0
dτcosω0τ [AxSix(t) + B

∑

k=nn

Skx(t)][AxSix(t + τ ) + B
∑

k=nn

Skx(t + τ )], (3.5.4)

where we are displaying only the x axis fluctuation term as an example.
The next step is to Fourier transform the spin operators with

Siβ(t) =
(N)∑

q

eiq·ri Sq(t) , β = x, y, z, (3.5.5)

where the summations are normalized so that
∑(N)

q exp[iq · (r − ri)] = δr,ri , etc.
9

In (3.5.5) Sq(t) is defined to be an isotropic, q-dependent spin fluctuation operator.
Using (3.5.5) in both factors in (3.5.4) and noting that

∑(N)
i exp(i(q + q′) · ri) =

δq,−q′ , (3.5.4) becomes

a−1 da

dt
= −

(N)∑

q

Ax(q)2
∫ ∞

0
dτSq(t)S−q(t + τ )cosω0τ , (3.5.6)

where Ax(q) = [Ax + 2B(cos(qxa) + cos(qya)]. In (3.5.6) the Ax(q) are in circular
frequency units per unit of spin. We now proceed to replace the time average with
an ensemble average

∫ ∞
0

dτSq(t)S−q(t + τ ) cosω0τ =
∫ ∞
0

dτ 〈Sq(0)Sq(τ )〉Ens cosω0τ = S(q, ω0), (3.5.7)

where we have also assumed that Sq(t) has inversion symmetry. The quantity on the
far right of (3.5.7) is known as the dynamic structure factor.

3.5.2 The Fluctuation-Dissipation Theorem

The dynamic structure factor may be related to χ(q,ω0) using the fluctuation-
dissipation theorem [163], which says

9In this and chapters to follow, the summation
∑(N)

q indicates an integration over the 2DcuprateBril-

louin Zone (BZ). A convenient equivalent operator may be written (a2/4π2)
∫ π/a
−π/a dqx

∫ π/a
−π/a dqy.

For a q-independent integrand, this BZ integral is normalized to unity.
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Im [χs(q,ω0)] = χ′′
s (q,ω0) = (ei�ω0β − 1)

�ei�ω0β
S(q,ω0), (3.5.8)

where β = 1/kBT and we note that �ω0β � 1. The subscript “s” is a reminder that
the spin-only susceptibility defined by (3.5.8) has a dimension of inverse energy.
Inserting this into (3.5.6) and combining terms for x and y-axis fluctuations yields
for −a−1da/dt,

1

T1α
= γ2kBT

μ2
B

(N)∑

q

∑

β

Aβ(q)2χ′′
β(q,ω0)/(g

2
βω0). (3.5.9)

The latter expression for 1/T1α hasAβ(q) in Gauss per unit of spin and a conventional
susceptibility per formula unit of CuO2. The sum on β is over the two directions
normal to α.

Next, we introduce a simplification just for convenience. One could use (3.5.9)
by absorbing the g-factor denominator into the HF coefficients and work with the
primed coefficients via (3.3.4). Following Auler et al., we find it more convenient to
define an isotropic susceptibility via χ′′

is(q,ω) = 4χ′′
β(q,ω)/g2β , whereupon (3.5.9)

becomes
1

T1α
= γ2kBT

4μ2
B

(N)∑

q

∑

β

Aβ(q)2χ′′
is(q,ω0)/ω0. (3.5.10)

In this way only the natural anisotropy of the HF couplings from (3.3.2) comes into
the T1 formula.

Next, we present expressions for 1/T1 for the various nuclear species in YBCO,
using the HF tensors developed in the text. For the c axis relaxation of Cu(2), Aβ =
Aab, for both terms, so (3.5.9) becomes

1

T1c

∣∣∣∣
Cu(2)

= γ2kBT

2μ2
B

(N)∑

q

[Aab + 2B (cos qxa + cos qya)]2χ′′
is(q,ω0)/ω0 , (3.5.11)

where the susceptibility is per CuO2. For the field in the ab plane, we have

1

T1ab

∣∣∣∣
Cu(2)

= 1

2T1c

∣∣∣∣
Cu(2)

+ γ2kBT

4μ2B

(N)∑

q
[Ac + 2B (cos qxa + cos qya)]2χ′′

is(q, ω0)/ω0 . (3.5.12)

However, for the Cu(2) HF couplings given in Table3.4 Ac is the dominant term,
so that for 1/T1ab the contribution of 1/2T1c is essentially negligible. Unless the
correlations are known to be large, a good estimate can be obtained by dropping the
“B” term as well, so that the HF coupling becomes essentially independent of q.

For the planar oxygen sites and the yttrium sites in YBCO the HF couplings are
dominated by hybridization effects with the 2s [146] and 4d [136] holes, giving
isotropic HF coupling terms
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AO(q) = 2C cos(qxa/2) and AY (q) = 8D cos(qxa/2) cos(qya/2), (3.5.13)

respectively, where it is noted that the HF coupling for the Y3+ is thought to be
dominated by the 4d core-polarization HF field [136].

The corresponding expression for the 17O relaxation rate is, e.g.,

1

T1c

∣∣∣∣
O

= γ2kBT

2μ2
B

(N)∑

q

[C2
x (1 + cos(qya)) + C2

y (1 + cos(qxa))]χ′′
is(q,ω0)/ω0 ,

(3.5.14)
where T1 along other axes is analogous to the case for Cu(2).

For the case of 89Y, we give here an expression in which interplanar correlations
are neglected. Thus,

1

T1c

∣∣∣∣
Y

= 4γ2kBT

�μ2
B

(N)∑

q

[D2
x + D2

y ](1 + cosqxa)(1 + cosqya)χ
′′
is(q,ω0)/ω0. (3.5.15)

The essential physics of the T1 process is more clearly evident if we recast
(3.3.14) and (3.3.15) in terms of the T-dependent parametersKij and τe, to be defined
presently.10

Kij and øe Expressed in Terms of Ø′′(q,ω)

Dynamic AFM spin-spin correlation effects in these relaxation processes are embod-
ied in the factors such as (1 + cos qx,ya), the mean value of which will approach zero
in the event of strong correlations. Such correlation factors were introduced by Mila
and Rice [118], where in Sect. 3.3 they took the form Kij = 4〈SiαSjα〉. It is useful to
introduce an equivalent definition of the Kij in terms of χ′′(q,ω). For example, the
sum on q in (3.3.14) can be put into the form

(N)∑

q

[ ] = μ2
B

kBT
[C2

x + C2
y ][1 + K01]τe , (3.5.16)

where

τe = kBT

μ2
B

(N)∑

q

χ′′
is(q,ω0)

ω0
and K01 = kBT

μ2
Bτe

(N)∑

q

cos qx,ya
χ′′
is(q,ω0)

ω0
. (3.5.17)

The quantity τe(T) is a fundamental correlation time for itinerant spin fluctuations in
theCuO2 planes. Furthermore, τe ∼ �kBTN(0)2 gives the correlation time alongwith
the statistical weight of the T1 process, where N(0) is the density of states/atom at
the Fermi surface for one direction of spin in an energy band environment. The other

10It is noteworthy that the parameter Xat , used in the first edition of this monograph, is being
replaced here by the more intuitive quantity (μ2

B/kBT)τe.



3.5 Formulation of T1 in Terms of χ′′(q,ω) and q-Dependent HF Couplings 103

factor (1 + K01(T)) gives the temperature variation of T1 arising from dynamic cor-
relations for the case of transferred HF interactions. Equations (3.5.16) and (3.5.17)
therefore effect a separation of these two fundamental—and very different—factors
in the temperature dependence of T1. This result will be used extensively in subse-
quent chapters.

To complete the picture of spin–spin correlations used for the YBCO family of
compounds, we have, in analogy with (3.5.17),

K12 = kBT

μ2Bτe

(N)∑

q
cos qxa cos qya

χ′′
is(q,ω0)

ω0
and K13 = kBT

μ2Bτe

(N)∑

q
cos 2qx,ya

χ′′
is(q, ω0)

ω0
.

(3.5.18)
We may now introduce these forms into the T1 expressions (3.5.11)–(3.3.15). As an
example we consider the expression (3.5.11), where the HF coefficient factor [ ]2

may be expanded aselectfont

[A2
α + 4B2 + 2B2(cos 2qxa + cos 2qya) + 8B2cos qxa cos qya + 4AαB (cos qxa + cosqya)]. (3.5.19)

Using the definitions (3.5.17) and (3.5.18), the expression for 1/T1 becomes

1

Tmf
1c

∣∣∣∣∣
Cu(2)

= γ2
63

2
τe{A2

ab + 4B2[1 + 2K12 + K13] + 8AabBK01}, (3.5.20)

where we recognize the same expression for the HF constants and correlation func-
tions as in (3.3.14). Expressions such as (3.5.20) give a more direct idea of the
dependence of T1 on the spin-spin correlations than expressions given earlier in
terms of χ′′(q,ω).

The corresponding equation for 17O(2, 3) is

1

T1z

∣∣∣∣
O

= γ2
17

2
τe[C2

x + C2
y ][1 + K01], (3.5.21)

and for 89Y is
1

T1z

∣∣∣∣
Y

= 4 γ2
89τe[D2

x + D2
y ][1 + 2K01 + K12], (3.5.22)

for any permutation of axes (x, y, z). Equations (3.5.20)–(3.5.22) are quite general
and are useful for discussing cases where τe(T) and the Kij(T)’s are both changing
substantially with temperature. We emphasize that the behavior of τe(T) is indepen-
dent of any HF coupling tensor, being a fundamental property of the quasiparticles
via χ′′

is(q,ω).
For examples of the application of the foregoing results to the pseudogap problem

in high Tc, see Sects. 4.1 and 4.2.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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3.6 A d-Wave Model for the NMR Shift and T1 at T < Tc

FollowingMila and Rice, a number of relaxation model calculations were developed
which made use of the random phase approximation (RPA) to include electron–
electron interaction effects in the calculations. Several of these model calculations
are reviewed in Chap.5, as well as a proposed orbital relaxation term for the 63Cu(2)
based on the marginal Fermi liquid hypothesis [159].

Among the RPA schemes which appeared early on was an interacting Fermi
liquid theory with strong AFM exchange couplings put forward by Monien and
Pines (MP) [160], where they used the RPA to construct a model for χ′′(q,ω) with
an adjustable enhancement level in the vicinity of QAF . An important innovation in
this work was the introduction of an energy gap with d-wave symmetry for T1 and
NMRshift calculations forT < Tc. Even though therewere theoretical developments
from very early on suggesting the suitability of d-wave superconductivity for the
cuprates [175–177], up to this point no one had tried to interpret NMR data with
the d-wave picture. In spite of the apparent success of this interpretation as seen in
[160], widespread acceptance of d-wave symmetry did not occur until the dramatic
confirmation of d-wave superconductivity in the cuprates by means of phase jumps
at Josephson junction boundaries, which was still several years away [172, 173].
The NMR modeling described here followed closely upon a successful application
of d-wave theory to Raman scattering experiments [174].

The RPA theory of [160] was applied to the Cu sites in YBCO7, giving a realistic
account of the shift and of T1 versus T at for T < Tc. This first NMR test of d-wave
calculations was an important step along the path of eventual adoption of the singlet
d-wave interpretation of cuprate superconductivity. By this point in time, there was
ample T1 data below Tc on which to apply calculations such as this. As we shall see,
however, both the theoretical details and some of the data were destined to undergo
revision in later years. Nonetheless, these preliminary exercises in understanding the
cuprate NMR data were both very encouraging and highly suggestive.

3.6.1 The NMR Shift Behavior for T < Tc

To discuss the Cu(1, 2) NMR shift below Tc, we must first address the experimental
situation. We therefore digress briefly here to discuss the NMR shift measurements
conducted by Barrett et al. [147] and Takigawa et al. [178]. Both papers appear to
be very careful pieces of work. The biggest problem involved in such measurements
is accounting for the diamagnetic shift of the internal field in the superconducting
vortex state. This was dealt with in sharply contrasting ways in the two papers cited,
leading, unfortunately, to slightly different results. Here we suggest a compromise
interpretation.

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 3.9 a Corrected and uncorrected NMR shift data for Cu(2) in YBCO7 from [178] are shown
plotted as a function of temperature for field parallel (top) and perpendicular (bottom) to the c axis.
The correction scheme is described in the text. Cu(2) NMR shift data for YBCO7 from [147], i.e.
Ks(c) − Ks(ab) normalized to 1 at 100K, are plotted versus T/Tc in (b) and (c). Yosida function
fits to the data are shown using s-wave symmetry (b) and d-wave (d′-wave) symmetries (c) from
Fig. 3.10a as a solid (dashed) line. Fit parameters are shown in Table3.7 and discussed in the text

Correcting for Diamagnetism via Magnetization

In [178] the internal field was corrected for using an effective demagnetizing factor,
which is applied to the measured magnetization of the oriented powder sample. The
demagnetizing factor was determined with a careful calibration procedure, which is
too lengthy to discuss here. However, the risk with such a procedure lies perhaps
not in the demagnetizing factors, but in using magnetization measurements on a
powder sample set in epoxy. There is always a risk of non-intrinsic Curie-Weiss-like
anomalies affecting such a procedure. Indeed, the c-axis shift for Cu(2) has an upturn
below∼50Kwhichwe suggest may be spurious. This is shown in Fig. 3.9a where the
Cu(2)-site shift results are plotted with corrections. Interestingly, no such feature is
found for the ab-plane result. This same kind of anisotropic Curie-Weiss background
effect was also reported later in an attempt to determine the intrinsic normal-state
susceptibility of YBCO [148]. In the present case we note that the shift corrections
become nearly 0.25% as T → 0. The size and temperature dependence of this effect
do not seem compatible with superconducting diamagnetism.

Calibration of Internal Field with the 89Y Shift

On the other hand, in [147] the 89Y NMR line was used as a reference for the internal
field at low temperatures, which is a very sound method in principle, as long as the
89Y NMR shift is reliably known. If, for example, the resonance frequencies ν63 and
ν89 were measured in the same field, then we have
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KCu =
⎧
⎪⎩ν63γ89

ν89γ63

⎫
⎪⎭ + KY − 1. (3.6.1)

In practice, KY � −0.03% at T = 100K, and it was assumed [147] that KY ∝ Ys(T),
Ys(T) being the Yosida function [49] for s-wave gap symmetry. Since one may be
looking here for a d-wave Yosida function effect, the foregoing assumption may
cause a problem, but in fact the difference is small enough to be within the error
bars. The Cu(2) shift results are shown in Fig. 3.9b and c. It is noteworthy that the
maximum c-axis internal field correction (for Ks(c)) is ∼0.05% or only ∼20% of
that found at low T in Fig. 3.9a. Although the latter correction cannot be arbitrarily
curtailed, it seems likely that it is primarily responsible for the discrepancy between
the c-axis results. The ab-plane results are also slightly outside error bars (0.37(2)%
for [178] and 0.30(2)% for [147]). However, this difference is as much a result of
disparate normal-state shifts as it is of low-T corrections, which are similar.

We suggest the following composite picture based on the combined results of [178]
and [147]. The c-axis result of [147] is to be accepted as is, which says that Ks(c) is
negligibly small on the scale ofKs(ab). The axial and isotropic shifts thus behave in a
very similar fashion, since they both reflect the behavior of Ks(ab). Thus, we suggest
that the contrasting behaviors of Kax(T) and Kiso(T) highlighted in [178] may have
been generated, in part, by subtracting and adding the strongly corrected c-axis shift,
respectively. It is suggested that the sharp contrast which results is unreliable. On the
other hand, the corrected Kab(T) curve in Fig. 3.9a shows a very interesting linear-T
behavior below 50K which is clearly not a result of the correction process. This may
therefore be a sign of d-wave symmetry behavior, as reflected in theMP interpretation
below. The behavior of Kax(T) in Fig. 3.9b and c is also compatible with d-wave, as
we shall see below. Both of these papers considered the isotropic component of shift
as heavily contaminated with “oxygen hole band” effects. Following MR and MR2
[118, 157], we maintain their occurrence to be unlikely.

3.6.2 The Monien-Pines Calculations of NMR Shifts
Below Tc

MPbegan by applying different pairing symmetries to the interpretation ofNMRshift
variation below Tc. For comparison purposes they applied the pairing symmetries
shown in Fig. 3.10a. The pure s-wave and d-wave are flat and ∝ cosφ, respectively,
where φ is the azimuthal angle for the cylindrical 2D Fermi surface for the CuO2

planes. They argue in detail that triplet pairing states are inappropriate for this case
[160]. Then, still concerned about the possibility of an oxygen hole band, following
[178] they consider only the axial component of the shift, which they suggest would
reflect only the spin paramagnetism of the Cu(2)2+ sites11 The data which were fitted
are shown in Fig. 3.10b [178] and in Fig. 3.9b and c.

11The essential assumption here is that any oxygen hole-band NMR shift would be isotropic.
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Fig. 3.10 a Gap energy variation for several choices of gap symmetry from [160] shown as a
function of azimuthal angle φ over one quadrant. b Plot of Ks(ax) from [178] as a function of T/Tc
(dots) for temperatures in the superconducting state. The solid and dashed lines are calculated fits
for gap functions labelled “d” and “d′” in the (a) portion [160], as described in the text. Noteworthy
is the d-wave-like linear T behavior at the lowest temperatures

Calculating the Yosida Function

To compare with NMR shift data, the Yosida function Y(T) is calculated using the
weak-coupling BCS formula for an anisotropic, singlet superconductor,

Y(T) =
∫ ∞

−∞
dE

⎧
⎪⎩− ∂f

∂E

⎫
⎪⎭ N(E), (3.6.2)

where N(E) is the density of states, and f is the Fermi distribution function. The
behavior of Y(T) for an s-state gap is Ys(T) ∝ exp(−Δmin/kBT) for T � Tc, Δmin

being the minimum gap energy as T → 0. In contrast, for the case of a d-state gap
N(E) ∝ E for E � Δ(0), leading to a linear variation of Yd(T) with T for T � Tc.
MP used the maximum gap value Δ(0)/kBTc and the specific heat jump at Tc

ΔC/C ∝
⎧
⎪⎪⎩

∂Δ2

∂T

⎫
⎪⎪⎭

Tc

(3.6.3)

as parameters for calculating Yd(T) which is plotted in Fig. 3.10b. The d-wave result
is seen to be in good agreement with the Cu(2)-siteKax data from [178]. Values of the
parameters for the cases of (i) weak-coupling BCS theory and (ii), (3.6.2) fitted to
the NMR shift data in Figs. 3.9b, c and 3.10b are given in Table3.7. Strong coupling
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Table 3.7 Table of fitting parameters Δ0/kBTc and ΔC/C from [160] for the NMR shift data in
Fig. 3.10b [178] (top part) and for the data in Fig. 3.9b and c (bottom). The values of these parameters
for weak-coupling BCS theory are shown on the left-hand side for comparison. The pairing states
shown in Fig. 3.10a were used for these calculations

Data plot Pairing state Weak
coupling
Δ0/kBTc

Weak
coupling
ΔC/C

Optimal fit
Δ0/kBTc

Optimal fit
ΔC/C

Figure3.10b d 2.13 0.95 2.44 1.97

Figure3.10b d′ 1.93 1.17 1.74 2.36

Figure3.9b s 1.76 1.43 1.90 2.77

Figure3.9b s′ 2.10 1.27 2.16 2.49

Figure3.9c d 2.13 0.95 14.7 1.76

Figure3.9c d′ 1.93 1.17 3.13 2.14

effects are seen to be appreciable, but also, the d-wave calculation is quite successful
in reproducing the linear temperature behavior of the shift data.

3.6.3 Calculating the Relaxation Decay Curve

By fitting the relaxation, the viability of using d-wave gap symmetry to interpret
NMR data was tested. We begin with a brief synopsis of the calculation of T1 [160].
In the presence of an AFM interaction Jeff (q,T) the RPA expression for the dynamic
susceptibility becomes

χ(q,ω,T) = χ0(q,ω)

1 − N(0)Jeff (q,T)χ0(q,ω)
, (3.6.4)

whereχ0(q,ω) is the noninteracting susceptibility. For aT1 calculation such as (3.5.9)
from the previous section, one only needs the imaginary or dissipative part χ′′(q,ω).
Monien and Pines make the following approximations to treat T1 behavior below
Tc. Assuming AFM enhancement effects are large (such as for Cu(2) in YBCO),
the enhancement denominator in (3.6.4) is first replaced by its average, temperature-
dependent value at QAF , so that (3.6.4) becomes

1

T1
= 1

(T1)free

1

[1 − λ(T)]2 , (3.6.5)

where
λ(T) = 〈N(0)Jeff (QAF,T)χ′

0(QAF,T)〉. (3.6.6)
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It was then further assumed that the real part of the dynamic susceptibility atQAF ,
χ′
0(QAF,T), scales with temperature like the noninteracting uniform susceptibility

χ′
0(q = 0,T). T1 (3.6.5) can then be expressed in terms of the Yosida function (see

Sect. 2.2.2)
Y(T) = χ′

0(q = 0,T)/χ′
0(q = 0,Tc) (3.6.7)

as
1

T1
= 1

(T1)BCS

1

[1 − λ(Tc)Y(T)]2 , (3.6.8)

where 1/(T1)BCS may be calculated for any pairing symmetry desired in the absence
of quasiparticle interactions. In this simple approximation the falloff of 1/T1 below
Tc will be enhanced by the decline of the enhancement factor, which in turn falls off
according to how the Yosida function diminishes below Tc.

For other than s-wave gap symmetries, we may write the BCS relaxation expres-
sion (cf. Sect. 2.2.2)

1

(T1T)BCS
∝

∫ ∞

−∞
dE

⎧
⎪⎩− ∂f

∂E

⎫
⎪⎭ [N2(E) + M2(E)], (3.6.9)

where N(E) andM(E), which account for the BCS coherence factor, are defined by
[9]

N(E) =
〈
Re

⎧
⎪⎪⎩

E

(E2 − Δ2
k)

1/2

⎫
⎪⎪⎭

〉

FS

and M(E) =
〈
Re

⎧
⎪⎪⎩

Δk

(E2 − Δ2
k)

1/2

⎫
⎪⎪⎭

〉

FS

.

(3.6.10)
The latter definitions allow for the possibility of a complex gap function. Combining
(3.6.8) with (3.6.10) yields an expression for the relaxation rate which will decline
below Tc, both because of the growth of the superconducting energy gap and because
of the decline of the enhancement factor owing to the decrease in Y(T). Because of
the d-wave gap function described above, the linear-E density of states will lead to
asymptotic 1/T1 ∝ T 3 behavior for T � Tc.

Application of MP T1 Calculations to Cu(2) Data for YBCO7

MP illustrated the above formalism by using it to fit the NQR T1 data on 63Cu(2) in
YBCO7 by Imai et al. [180]. The fitting function is shown as a solid line in Fig. 3.11a,
and is seen to give an excellent representation of the data over two full orders of
magnitude of the decline of 1/T1 below Tc. We make a number of explanatory
remarks regarding this T1 fit. First, for the d-wave gap function (see Fig. 3.10a),
there is no vestige of the coherence peak, unlike what is found for the s-wave cases
[160]. Moreover, the very steep decline found just below Tc can be achieved in
two different ways. This is illustrated by the fit parameters shown in Table3.8. The
actual curve plotted in Fig. 3.11 does not allow the enhancement factor to change
below Tc, for reasons to be discussed presently. As a consequence, a very large gap
parameter of 5.12kBTc is needed to cause the steep fall-off near Tc. However, MP

http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2


110 3 The Superconducting Cuprates: Preliminary Steps in Their Investigation via NMR

0.00001

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000
T(K)

1/
T1

 (m
s-1

)

(b)   YBCO7

T/TC

(m
s-1

)
(a) YBCO7

NQR

NMR

MP Fit

∝ T

∝T 3

Fig. 3.11 a NQR T1 data for Cu(2) in YBCO [180] is plotted versus T/Tc for temperatures above
and below Tc. The MP theoretical fit described in the text is shown as a solid line. b The same data
as in part (a) are plotted as dots on a scale of absolute temperature. Also plotted for comparison are
a set of NMR data (open squares) for the same nominal compound taken in a field of 7.4T [156].
For the NQR data the regions of data which vary as T3 and as T are indicated with straight lines
(see text for discussion)

Table 3.8 Table of fitting parameters for the T1 data of Fig. 3.11a using a d-wave gap function
[160]. The top line shows parameter values for a fit assuming a constant enhancement below Tc. In
this case the effective value of λ is zero. The second line shows an essentially equivalent fit in which
λ is allowed to decay below Tc according to the d-wave Yosida function. The remaining parameters
are those used to fit the NMR shift data, as shown in Fig. 3.9c

Weak coupling
Δ0/kBTc

Weak coupling
ΔC/C

Optimal fit
Δ0/kBTc

Optimal fit
ΔC/C

λ(Tc)

2.13 0.95 5.12 1.89 0.0

2.13 0.95 2.44 1.97 0.5

have calculated another fit curve for the data shown, corresponding to the second row
of parameters in the table, which is almost indistinguishable from the first ([160],
Fig. 3d). In the latter case the enhancement parameter λ � 0.5 (see [160]) contributes
to the decline of 1/T1, but the gap parameter Δ0/kBTc = 2.44 is only half as great as
for the calculation shown. This may be a more physically reasonable scenario. The
corresponding (second row) parameters from Table3.8 is in fact the same set used
to fit the shift data in Fig. 3.9c.

Referring to Fig. 3.11b, the solid dots plot the same data as in the (a) panel. There
we compare the decline of 1/T1 with a line of slope ∝ T 3 in the middle region and a
linear T curve at the lowest temperatures. The ∝ T 3 behavior is expected at low T as
mentioned earlier, because of the linear-E character ofN(E)which results from the d-
wave gap having a line of nodes. Further, the suggested crossover to linear T behavior
often results from disorder in the sample causing quasiparticle states to occur in the
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gap region. The progression of T 3 → T behavior has been found to occur below Tc in
many non-cuprate unconventional superconductors. A few cases we could mention
are 115In in CeIrIn5 [181], 69Ga in PuCoGa5 [182], 69Ga in PuRhGa5 [183], and 23Na
in Na0.35CoO2·yH2O [184].

Does AFM Enhancement Decay Below Tc?

Next, we discuss the difference between theNMRandNQRdata shown in Fig. 3.11b.
Along with the NMR data shown, Hammel et al. also reported a T1 curve for the
(planar) O(2, 3) sites over the same temperature range. Comparison of the NMR data
for the Cu(2) and the O(2, 3) created something of a sensation when their varia-
tion below Tc turned out to be precisely the same over two decades. In terms of the
MP theory outlined above the implication is that even though the Cu(2) undergoes
substantial enhancement in the normal state, any such enhancement becomes tem-
perature independent below Tc. This was taken to be a constraint on the theory, and
is the reason whyMP calculated the solid curve fit in Fig. 3.11a without allowing the
enhancement to vary with temperature.

However, the contrast between the NQR and NMR measurements suggests very
strongly that there is an additional T1 mechanism operating in a high magnetic field.
Detailed studies which came later showed this to be the case, namely relaxation to
the normal cores in the vortex state just as occurred in V3Si (see Fig. 2.1.3). For
that reason, the Cu(2) and O(2, 3) relaxation curves in [156] are not really intrinsic
superconducting behavior. Later studies, as we shall see in Chap.4, show that the
AFMenhancement in the SC state really does decay away to zero at low temperatures.
Therefore, for the data of Fig. 3.11a, the fit calculated including enhancement decay
is probably the more realistic one.

In sum,wefind that the d-wave description of theYBCO7NMReffects forT < Tc
according to the MP model theory is successful in an essentially quantitative way.
Fitted parameter values suggest that strong-coupling effects are quite important. It
remains to be seen whether this kind of RPA model for the dynamic susceptibility
can be applied to interpret the disparate temperature dependence which occurs in the
normal state. This is the theme of a series of theory papers which came soon afterMP
and which are expounded in some detail in Chap.5.We shall see that the latter papers
uphold the continued success of the single quantumfluid picture of these systems that
was initiated by the papers by Mila and Rice. Meanwhile, the pseudogap effect for
underdoped materials came to light, and as we shall see in the next chapter, became
a major sub-theme of cuprate physics.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_5


Chapter 4
Pseudogap Effects in Cuprate NMR Studies

Up to this point the discussion has focused on fully oxygenated YBCO7 and nearby
compositions, for which Tc is very near its peak value � 92 K for this compound.
In 1989, detailed studies began to appear for underdoped YBCO7-x , 0.3 ≤ x ≤ 0.6,
as well as for La2−xSrxCuO4 over its entire range of superconducting behavior
0.05 ≤ x ≤ 0.25. These phases brought the new and surprising pseudogap effect to
light, an effect that is unique to the cuprates and ismost pronounced in the underdoped
phases. However, over a long–time perspective it seems that nearly all superconduct-
ing cuprates are subject to anomalous behavior that is referred to as the pseudogap
effect. Thus, the affected properties that depend on excitations near the Fermi sur-
face behave as though parts of the FS were acquiring an energy gap and effectively
disappearing.

First observed via NMR properties [25, 166, 185, 186], the essential pseudogap
effect was a gapped appearance to the NMR shifts, susceptibility, and low-energy
excitations via 1/T1T . Examples of this type of behavior, observed in T1 studies
on oxygen–depleted YBCO6.64, are shown in Fig. 4.1. In part (a) of the figure we
see that the rise in 1/T1T as T descends is diminished as compared with YBCO7
(dashed line), and there is no longer any noticeable feature at Tc(∼ 64K), with a
marked roll–off of 1/T1T above Tc. In part (b) similar behavior is seen for 89Y with
data taken on the same specimen as in Fig. 4.1a. In this case, however, the roll–off of
1/T1T starts at temperatures well above 200K, with the magnitude at T = Tc down
to less than a quarter of its value near room temperature.

A short time later, a comprehensive study appeared of both NMR shift and T1
for 89Y in a series of oxygen–deficient phases of YBCO (Fig. 4.2), showing that
both the spin paramagnetism (i.e., the shift Ks(T )) and the Korringa relaxation
gradually decay away at low temperatures in progressive fashion as the oxygen
doping in this system is reduced [166]. While the NMR pseudogap results were first
interpreted with a Fermi-liquid model, that interpretation was later revised [200].
Early results appeared to establish another important high–Tc result contrary to the

© Springer-Verlag GmbH Germany 2018
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Fig. 4.1 a 1/T1T is plotted
versus T over the interval
40K ≤ T ≤ 300K for two
NQR peaks associated with
63Cu(2) sites in YBCO6.64
(Tc � 64K) [185]. For
comparison, the dashed line
shows the behavior recorded
earlier for the YBCO7 phase
(Tc � 90K). The inset shows
the shift in the resonance
frequency of the NQR coil
which occurs as the sample
goes superconducting at T �
64K. b 1/T1T is plotted
versus T for 89Y NMR in the
same sample used as in (a).
On account of the
pseudogap, these data show a
sharp, characteristic
deviation from Korringa–like
behavior seen in the YBCO7
phase

0               100          200         300
T (K)

(a)

(b)

usual Korringa behavior: The relaxation rate product 1/T1T in some instances is very
nearly proportional to the spin susceptibility χs(T ) (cf. 2.2.8). In Sect. 4.2 we will
discuss the physical meaning of this along with a theoretical model which yields this
result. It was to be several years before techniques such as ARPES and specific heat
would demonstrate that actual gapping of the Fermi surfacewas primarily responsible
for the behaviors in Figs. 4.1 and 4.2. Those results are reviewed briefly below.

However, it was noted at the time [166] that Friedel had suggested that “pseudo-
gaps”might occur as a result ofAFMcorrelations in the band theory of thesematerials
[187]. The detailed physics of this mechanism was not forthcoming, but the name
stuck: these effects were ever–after attributed to a “pseudogap” or to a “spin–gap”
by those who thought prematurely that the effects were limited to spin–dynamical
effects of the mobile carriers.

In this chapter we review and analyze pseudogap phenomena for both the
La2−xSrxCuO4 Sect. 4.1 and YBa2Cu3O7−x Sect. 4.2 series of compounds. For this
purpose we use data derived from INS studies of these systems as well as from

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 4.2 a The negative of
the 89Y NMR shift ΔK is
plotted as a function of
temperature for a series of
compositions YBCO6+x , for
0.4≤ x ≤ 1.0 [166]. ΔK is
measured relative to the 89Y
gyromagnetic ratio found in
a solution of YCl3. In
Sect. 4.2 the chemical shift is
determined to be 89Korb,α �
160ppm, where α = ab, c. b
Plots of 1/T1T versus T for
the same series of
compositions used in a
[166]. In both cases the data
show the progressive
development of a pseudogap
effect in which they exhibit a
maximum at progressively
higher T for increasing
dilution of hole carriers.
These data can also be
plotted to show the relation
1/T1T ∝ (89Korb,α − Δ

Kα(T )) characteristic of the
pseudogap region (see text)

NMR shift and relaxation measurements. At this point there are, for certain doping
levels, INS data for both of these compounds that provide an absolute, quantitative
calibration of χ′′(q,ω). Such data may be employed in the spin–lattice relaxation
formulation of Sect. 3.5.2 to estimate the variation of T1 over a wide range of tem-
peratures. For both YBCO and LSCO there is quantitative agreement between INS
and NMR data at low temperatures. However, INS intensity that represents the bulk
of the relaxation rates 1/T1 at higher temperatures as well as the pseudogap effect is
absent from the available INS data for both systems. This type of analysis, the first
of its kind, will be spelled out in detail for LSCO and YBCO in Sects. 4.1 and 4.2,
respectively.

We present a summary of ARPES and specific heat data that revealed for the
first time that pseudogap effects actually correspond to progressive gap formation in
the Fermi surface. These studies launched a theoretical investigation of the physical
origin of the pseudogap effects that has been ongoing. Recent theoretical work will
be summarized briefly. We also review the interesting case of the YBCO–related

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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compound YBa2Cu4O8, which in its stoichiometric form constitutes an underdoped
cuprate with a pronounced pseudogap.

We also highlight in this chapter a very interesting susceptibility scaling effect for
LSCO that was originally reported by D. C. Johnston [189]. It was found that χs(T )

for a series of underdoped samples of La2−xSrxCuO4 not only exhibited a gap-like
feature, but were found to scale rather precisely using a reduced temperature variable
T/T ∗. Although this effect was interpreted at the time in terms of a theoretical model
for insulating antiferromagnets, it seems clear in retrospect that it is linked with the
pseudogap effect. Recently this effect has also received an interpretation with a first-
principles theory. The data and interpretation are presented briefly in Sect. 4.1.

An excellent review of both theory and experimental results up to 2006 on many
aspects of “doped Mott insulators”, including pseudogap effects, has been given
by Lee, Nagaosa and Wen (LNW) [188]. These authors seek to characterize the
pseudogap systematically, noting that this is best done with the spin paramagnetic
NMR shift or susceptibility. They also point out that the behavior of T1(T ) for the
Cu(2) site is not a suitable indicator of the strength of the pseudogap effect, where
it sometimes agrees with the NMR shift behavior and sometimes not. While this is
a well–taken point, we believe that the origin of this problem lies in the dynamical
spin–spin correlation factorsKi j that vary strongly with temperature and could mask
the behavior of the basic quasiparticle dynamics in the T1 formula (see 3.5.20). As
will be seen in the discussion below, the pseudogap effect for the T1 process is much
simpler and clearer when the dynamic spin–spin correlation effects are taken account
of.

4.1 Pseudogap Effects and Dynamic Susceptibility
in La2−xSrxCuO4 (LSCO)

Apart from introducing the LSCO structure in Sect. 3.1, there has not been up to this
point much discussion of LSCO. In spite of its rather low Tc relative to other cuprates,
LSCO has played a major role in high-Tc physics research. This was because, (i) it
was one of the first cuprate structures identified [113], (ii) it has a very interesting and
accessible phase diagram (Fig. 1.1), and (iii) it is relatively easy to make large single
crystals of LSCO. For the latter reason a greatmany neutron scatteringmeasurements
have been conducted on this system, making its dynamic susceptibility perhaps the
best characterized of all of the cuprates.

We take up the case of LSCO first, because of clearer INS data and because
of its simplicity as a single–layer cuprate. Further, it illustrates in a clear–cut way
the complexities of the normal–state T1 process in cuprates. From the standpoint
of NMR technique, LSCO is a far simpler system to work with than YBCO. First,
there are only one Cu2+ site and two 17O sites, making spectra and relaxation studies
generally easier to interpret. For the purposes of conducting 17O NMR studies in
crystals, LSCO is also a favorable case, because it has very high oxygen mobility at

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_1


4.1 Pseudogap Effects and Dynamic Susceptibility in La2−xSrxCuO4 (LSCO) 117

relatively modest temperatures. Thus, it is easy to exchange 17O into a crystal and
homogenize it with simple annealing procedures.

The foregoing circumstances notwithstanding, we shall see that the pseudogap
effect in LSCO is not quite the same as in the other cuprates. One rarely even finds the
word pseudogap applied to LSCO. While the NMR shift and susceptibility behavior
is pseudogap-like (with important differences), the relaxation behavior of the 63Cu
is quite different from that of YBCO6.63. One reason for this is the important role
played by the dynamical spin-spin correlation effects on the T1 process. The dynamic
susceptibility analysis we present below is the first one in which the latter effects
were taken into account [204]. However, see also the work of Uldry and Meier in
Sect. 5.1.

Before addressing the INS results and relaxation effects, we recount a unique and
interesting scaling effect in the static susceptibility exhibited by LSCO.

4.1.1 Spin Susceptibility Scaling for La2−xSrxCuO4

Around the time that the first studies of underdoped YBCO7-x appeared, it was
revealed by D. C. Johnston that the static susceptibility of La2−xSrxCuO4 (LSCO)
obeys a simple scaling law that can be summarized by a single equation [189]. Over
essentially the entire range of superconducting compositions, one has

χ(x, T ) = χ0(x) + χs,max (x) Fs(T/Tmax (x)) + C(x)/T , (4.1.1)

where χ0(x) is a temperature-independent background susceptibility, χs,max is the
maximum spin susceptibility for composition x , which occurs at Tmax (x), and
Fs(T/Tmax (x)) is a scaling function valid for 0.05 ≤ x ≤ 0.30 [189]. C(x) is a spuri-
ous Curie term which occurs at higher doping levels [232]. By definition Fs(1) = 1.
The term χ0(x) represents Van Vleck orbital and diamagnetic contributions (see
Sect. 2.3.2). The function Fs(T/Tmax (x)) is such that χ(x, T ) is qualitatively similar
to the YBCO6.63 result in Fig. 4.16.

To illustrate the behavior of χ(x, T ) for LSCO we display the somewhat more
complete data set reported later by Nakano et al. [232] in Fig. 4.3 for 0.08 ≤ x ≤
0.26, all superconducting samples. While the latter data extend up to ∼ 550 K ,
data from another study extending up to ∼ 1000 K show that χ(x, T ) for x ≤ 0.09
had no (accessible) maximum value, but all data plots for x > 0.09 exhibited a
maximum at some temperature [233]. This Curie-Weiss-like rise in susceptibilities
at low temperatures for the higher doping levels is one factor which sets LSCO apart
from the pseudogap behavior of other cuprates.

Nonetheless, there is a clear gap feature inχ(x, T ), which may be seen in Fig. 4.4,
where χs(T )/χs,max = (χ(x, T ) − χ0)/χs,max is plotted versus T/Tmax [232]. The
data for the eleven compounds shown follow this scaling curve to a remarkable
degree. It seems highly plausible that this behavior is related to the pseudogap effect
identified in bothYBCO6.63 andY1248. This scaling of datamay not reflect a simple

http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 4.3 Susceptibility data for La2−xSrxCuO4 are plotted as a function of temperature for a range
of random powder samples with 0.08 ≤ x ≤ 0.26 [232]. These data are found to scale as described
in the text and in Fig. 4.4

Fig. 4.4 The data from Fig. 4.3 are plotted as χs(T )/χs,max versus T/Tmax as defined in (4.1.1).
The resulting scaling curve defines the function Fs(T/Tmax (x)) from the latter equation as well,
identified as “Universal Curve F” [232]. The inset shows that comparedwith previous scaling curves
(e.g. [189]) represented by the dashed line, the present data decline more sharply as T → 0. As
noted in the text, the theory by Varma [222] predicts χs(T ) ∝ T 1/2 near T = 0, very near to what
is observed

energy gap parameter as in Fig. 4.16. The limiting, low-T behavior χs(T ) ∝ T β ,
β ∼ 0.5, is actually one of the predictions of the pseudogap theory given by Varma.

It is interesting to examine the behavior of the other parameters in the fit to (4.1.1).
The values obtained for Tmax (x), χ0(x), and C(x) are displayed as a function of x
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Fig. 4.5 a The fitting
parameters Tmax (x) and
χ0(x), and b C(x) from
(4.1.1) are plotted as a
function of x for the series of
fits shown in Fig. 4.4. The
behavior of these parameters
clearly divides this doping
range into regions I and II,
where x � 0.20 is the
boundary line. See text for
more discussion

in Fig. 4.5a. It is seen that there is a peculiar sort of transition point between data
fits for 0.10 ≤ x < 0.20 (Region I) and 0.20 ≤ x ≤ 0.28 (Region II). In Region I,
Tmax declines in a roughly linear fashion1 from Tmax ∼ 700K for x = 0.10 down to
Tmax ∼ 100K at x = 0.20. In region II, Tmax ∼ 100K. In Region I, χ0 rises from a
slightly negative value at x = 0.10 toχ0 ∼ 1.8×10−7 emu/g at x = 0.20 and remains
constant above that point. Finally, C(x) = 0 in Region I, rising rapidly in Region II
to where it becomes a major feature of the susceptibility data. Although there is
no result given which identifies χ0(x) as the residual susceptibility at T 	 Tc, we
regard χs(T ) as the spin susceptibility. The magnetic behavior then distinguishes
Regions I and II very clearly as “underdoped” and “overdoped”, respectively. Or in
a more speculative vein, one could term these subcritical and supercritical relative
to a putative quantum critical point at x � 0.20.

4.1.2 Behavior of the 17O and 63Cu NMR Shifts in LSCO

Scaled 17O NMR shift values are plotted as a function of temperature in Fig. 4.6 for
x = 0.15 and 0.24 [232]. The shift data used for these plots are from Ishida et al. for

1There were no fits to data below x = 0.10.
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Fig. 4.6 The 17O NMR
shifts measured for
La2−xSrxCuO4 with
x = 0.15 [237] and 0.24
[181] are fitted to
susceptibility curves such as
those shown above in
Fig. 4.3 [232] and plotted
versus temperature. The
scale of shift values is such
that Cc =50-60kOe/μB

x = 0.15 [237] and from Zheng et al. for x = 0.24 [181]. The lines drawn represent
susceptibility data from [232], but the shift scales have been omitted from the figure.
We note that the original data reflect c-axis shift coefficients 50-60kOe/μB , which
is somewhat larger than the values of Cα for YBCO6.63 in Table4.2. In both cases,
the scaled 17O shift values are a good quantitative match to the susceptibility data.

Data for the 63Cu c-axis NMR shifts in LSCO (not shown) have been found to
have the following features [234]. With field along the c axis, compositions in the
superconducting range show a very nearly constant shift Kc � 1.22% independent
of temperature. The latter shift is driven mainly by Van Vleck orbital magnetism.
For fields in the ab plane, shift data appear to follow the same trends as the sus-
ceptibility data in Fig. 4.3. Although to our knowledge they have not been scaled
with susceptibility data as in Fig. 4.6, a simple estimate of ΔKab/Δχ gives a value
Aab � 149kOe/μB , within 2–3% or so of the values given below (Table4.2) for the
composite 63Cu(2) shift coefficients in YBCO. For the Cu2+ at least, the Mila-Rice
HF Hamiltonian from Sect. 3.3.3 appears to have nearly universal validity in the
cuprates.

63Cu NQR Spectra and Sr2+ Doping in LSCO

Whereas oxygen-deficient YBCO7-x shows line-broadening caused by crystalline
disorder, LSCO exhibits nearly–resolved 63Cu NQR and NMR “impurity” lines
attributable to sites neighboring the Sr2+ dopant ions. NQR spectra are shown in
Fig. 4.7a for three Sr2+ doping levels [238]. The spectra have been analyzed into
pairs of 63,65Cu NQR lines representing sites neighboring the impurities and “bulk”
Cu2+ sites away from the Sr2+ sites. Since the charge environment near a dopant site
is quite different from that of a bulk site, it is not surprising to find a different EFG
at such sites. For a sample with x = 0.30 there is a very high probability that a Cu2+
site will have a Sr2+ neighbor, and the corresponding impurity line is now larger
than the bulk line. As may be seen in Fig. 4.8, the T1 behavior of these well-resolved
NQR lines is nearly indistinguishable. Perhaps it is because of this high level of
impurity-induced disorder in LSCO that Tc peaks at ∼ 1/2 the peak level of hole
doping for YBCO7-x.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 4.7 NQR spectra for
63,65Cu in LSCO are shown
for three typical values of x .
the spectra have been
analyzed into a pair of “A”
lines, which represent bulk
material away from the
doping centers, and a pair of
“B” lines representing sites
which have at least one Sr2+
neighbor. For each case there
are two lines representing the
two isotopes with their
roughly 7:3 (63:65)
abundance ratio. For
x = 0.30 the B lines have
well over half of the
intensity. The dashed lines
shown are Gaussian
components in the spectrum
which sum up to the solid
lines drawn, giving a
reasonable facsimile of the
experimental spectra

Fig. 4.8 Data are plotted for
1/T1 as a function of
temperature for both the A
(open circles) and B (closed
circles) sites identified in
Fig. 4.7 in a sample with
x = 0.15. The two data sets,
where comparable, are quite
similar in character. The
A-site measurements show a
typical flat region in the
normal state, with a steep
drop below Tc, then a T 3

region. Very little evidence is
seen of the pseudogap
feature found in the
susceptibility for this
composition
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4.1.3 T1 Results for Planar 63Cu and 17O

We now begin our discussion and analysis of the T1 processes of planar 63Cu and
17O nuclear spins in an optimally doped crystal of LSCO. This work was completed
relatively early (1994), as the INS data on La1.85Sr0.15CuO4 was the first to become
available for any cuprate [274, 275]. The relaxation data shown in Fig. 4.9 are, to our
knowledge, the only relatively complete data set for any doping level of LSCO. [239]
Experimental (c-axis) data are plotted as (T1T )−1 for both 63Cu and the apical 17O in
part (a), where 63Cu NQR data are plotted as filled squares, while some earlier data
from Imai et al. [283] are plotted as “+” symbols. These data sets are in very good
accord where they overlap. In addition, data for the apical 17O scaled to coincide with
the 63Cu data between 100K and 200K are shown as dots with error bars. Since the
apical 17O is relaxed entirely by local HF contact with one Cu-site spin, it is expected
to behave roughly like the 63,65Cu, as is seen to be the case.

Figure4.9bpresents (T1T )−1 versusT for the planar 17O in the samecrystal.Along
with the T1 data (dots) are plotted measurements of the NMR shift (triangles) scaled

Fig. 4.9 a Data for 1/T1T is
plotted versus T for 63Cu
(filled squares, +’s:
right-hand scale) and for
apical 17O (dots: left-hand
scale) in LSCO:0.15 [239].
The data plotted as +’s are
from Imai et al. [283]. The
dotted curve is a plot of the
calculated rate based on INS
data given with (4.1.3) and
HF constants from [239].
See text for discussion of
expected behavior with HF
constants from Table4.1. b
1/T1T data (dots) are plotted
versus T for planar 17O in
LSCO:0.15 [239]. Also
plotted are data points for the
c-axis NMR shift Ks

17p (open
triangles), which have been
scaled to coincide with the
relaxation data (right-hand
scale). The calculated
behavior for 1/T1T based on
INS data given with (4.1.3)
and HF constants from
Table4.1 is shown as a
dotted line. See text for
discussion of these results
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to coincide with the relaxation data. In retrospect we suggest that the coincidence of
the shift and relaxation data is probably accidental. The striking feature of this plot
is the sharp contrast between the planar 17O and 63Cu relaxation curves. In terms of
the Eqs. (3.5.20) and (3.5.21) that relate them to χ′′(q,ω), it is seen that they are both
driven by the same particle dynamics (i.e., τe(T )), so that any contrast between them
can be ascribed to the spin–spin correlation factorsKi j . The discussion of these data
in [239] omitted any consideration of theKi j ’s, leaving some important effects to be
discovered.

Again, the INS data cited were used to estimate values of 1/T1T for 63Cu using
(3.5.20), but ignoring the correlation effects. The results are shown as a dotted line
cutting through the data plot at a rather steep angle [239].With very limited parameter
adjustability, the agreement between INS data and the 63Cu relaxation rate is quite
satisfactory. However, our current estimate of the HF parameters, i.e. B in particular
in Table4.1, is somewhat smaller than that used in [239]. The current values would
therefore lead to estimates of 1/T1T ∼ 30% smaller than those plotted in the figure.
We suggest that this would give a somewhat more realistic result, although it would
clearly show that some other mechanism—presumably from an unidentified contri-
bution to χ′′(q,ω)—becomes important at higher temperatures. This conjecture was
borne out in a later analysis of these data [204]. The particulars of that analysis are
the focus of the next subsection.

4.1.4 Analysis of NMR Data for LSCO Using INS Data for
χ′′(q,ω)

In the foregoing subsections we discussed data for the NMR shifts, uniform suscep-
tibility, and spin-lattice relaxation times T1 for 63Cu and 17O in LSCO for a doping
level x ∼ 0.15 near the peak value of Tc ∼ 40K. This system was seen to exhibit a
peculiar sort of pseudogap effect, which strongly affects the susceptibility even at
the peak of the Tc curve, but allows the 63Cu T1 curve to follow a Curie-Weiss-like
behavior down to temperatures very close to Tc. Here, we gain further insight into
the behavior of quasiparticle dynamics in LSCO by conducting a joint analysis of
INS data for the dynamic susceptibility of LSCO and the T1 behavior of both planar
63Cu and 17O.

This system is unique in having received early on a very thorough characterization
of χ′′(q,ω) bymeans of INS. The observable part of χ′′(q,ω) consists of four mildly
incommensurate peaks near (π,π); these have been scanned in great detail over awide
range of frequencies. As a consequence, LSCO became a classic “test bed” for the
theoretical relationship between NMR and χ′′(q,ω). We first review the theoretical
basis for such an investigation. The fluctuation-dissipation theorem relation between
spin-fluctuation-generated T1 processes in a metallic environment and the dissipative
term χ′′(q,ω) of the dynamical susceptibility, as recounted in Sect. 3.5, had been
known for many decades [58] before it was tested using experimental INS data for

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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χ′′(q,ω). The latter test was conducted via T1 measurements for 63Cu and 17O in
LSCO:0.15 [239] as described in the previous subsection. This test did not include
the effects of dynamical spin–spin correlations, which are evidently important. The
test did establish that the expected quantitative correspondence occurs as expected
at temperatures near Tc, though it did show divergence at higher temperatures.

Our goal then is to correlate two pieces of experimental data using an exact
theoretical relationship.2 This relationship, embodied in (3.5.20)–(3.5.22), was given
its first serious experimental test in 2011 [204], yielding limited success and pointing
up a new set of problems.

4.1.4.1 Review of INS Data for Optimally-Doped LSCO

We first set the stage with a brief review of relevant INS data for La2−xSrxCuO4,
with x∼ 0.15. It seems that of all the cuprate compounds, LSCO alone was available
in large, uniform crystals with homogeneous oxygen content. Conveniently enough,
χ′′(q,ω) is a quantity which can be measured directly by means of INS. Although
INS measurements can only be made at frequencies several orders of magnitude
higher than those at which NMR data are recorded, it is not apparent that there
are any low–frequency physical processes that would invalidate an extrapolation of
χ′′(q,ω) data to frequencies near zero.

Some low-frequency INS data for χ′′(q,ω) are shown in Fig. 4.10. In part (a)
we see data for scans through two of the four incommensurate peaks located at
(π,π) ± δ(0,π) and (π,π) ± δ(π, 0), where δ = 0.245 for La1.86Sr0.14CuO4 [275].
The peaks are seen to be well resolved, with relatively little difference between
behavior near Tc = 35K and that at 4.6K. There is, however, an increase in intensity
midway between the peaks at higher energy. That trend is also visible in the lower-
energy scans fromThurston et al. [276] in part (b) of Fig. 4.10, where atω = 1.5meV
the peaks are completely resolved, while at 4.0meV there is already some filling
in of the space between peaks. The incommensuration varies with composition,
δ � 2x [274], but it shows nomeasurable variation with energy at the lowest energies
scanned [276].

From available INS results for LSCO, then, it does not appear that incommen-
surability will vanish at lower (i.e. at NMR) frequencies. At higher frequencies,
however, early work showed the incommensurability fading into a single broad peak
by ω = 15meV [274]. That this trend would continue to higher energies was ver-
ified by studies to above 200meV carried out at ISIS [277]. In that study, results
for La2−xSrxCuO4(x = 0.14), were compared with the undoped antiferromagnet
La2CuO4, both q-scans and energy spectra. For La2CuO4, incommensurability is
not visible in the lowest energy scans (25–50meV) reported [277], nor any above

2This relationship is very nearly exact under the assumption that spin hyperfine processes are
predominant. However, it has not yet been determined how important the orbital relaxation rates
are for the cuprates (see Sect. 5.6).

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_5
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(a) (b)

Fig. 4.10 a INS q-scans along the path shown at the bottom of the figure are plotted for T ∼ Tc and
for T 	 Tc for the two scattering energies shown [275]. These data show well-resolved incommen-
surate peaks and a relatively small difference in scattering intensity for the two temperatures. The
inset shows the difference in intensity measured for the two temperatures at 9meV. Note the small,
but definite increase in intensity between the peaks between 6meV and 9meV.b INS data at energies
ω ≤ 4.0meV, showing very well-resolved incommensurate peaks with no measurable variation of
the incommensuration δ with ω. These authors find δ = 0.22 for La2−xSrxCuO4 (x = 0.15). They
also find a relatively small variation of intensity with temperature below Tc

that. The resolution in q-space may be somewhat marginal for this purpose, although
the AFM (Bragg?) peak at 295K for La2CuO4 showed a width Δq ∼ 0.25 r.l.u.

We display three composite data plots from Hayden et al. [277], namely the
equal-time spin correlation function S(q) =

∫ ∞
−∞ dω χ′′(q,ω), the zero-frequency

susceptibilityχ′(q) = (2/π)
∫ ∞
0 dω χ′′(q,ω)/ω, and the local susceptibilityχ′′(ω) =∑′

q χ′′(q,ω). These quantities have been computed from the results of a spallation–
source study [277]. The local susceptibilities are shown in Fig. 4.11a, b, where it is
noteworthy that the results are plotted in absolute units, and where in (b), reactor-
based results are included below ∼ 25meV . Below, we shall compare these data
with the absolute susceptibility results which were used to calculate T1 in [239].
The results in Fig. 4.11a, b show that the effect of doping is to concentrate χ′′(q,ω)

at energies below 50meV (as compared with La2CuO4), and that the peak seen at
22meV is a “new energy scale” for this superconductor [277]. This energy is also a
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rough upper limit for the appearance of incommensurability. The solid line plotted
in panel (b) is

χ′′ = �ω

(�2 + ω2)
, (4.1.2)

with � = 22 ± 5meV.
The equal-time correlation function S(q) and the zero-frequency susceptibility

χ′(q) obtained with the Kramers–Kronig relation in [277] are shown in Fig. 4.11 for
the undoped ((c) and (d)) and the doped ((e) and (f)) cases, respectively. Owing to
the near-constant width of χ′′(q,ω) in q-space for La2−xSrxCuO4(x = 0.14) [277],
there is very little difference between S(q) and χ′(q). The associated energy inte-
grals have been carried out for ω ranging from 15 to 150meV. The central peak in
Fig. 4.11e, f has an HWHM of κ = 0.26(5)Å−1, which is just slightly larger than the
incommensurate splitting. Since the Kramers-Kronig integral favors low energies,
one wonders whether there would be visible incommensurate peaks in χ′(q) if the
reactor-based intensity (i.e., that which gives the open circles in Fig. 4.11b) were
included in the calculation of χ′(q). As noted below, such a contribution might be
appreciable for indirect spin-spin coupling with the planar 17O.

The Calibrated Susceptibility for T1 Calculations in LSCO

In order to discuss T1 behavior in LSCO we need two main ingredients. The first
is a calibrated susceptiblity function χ′′(q,ω) for vanishing ω, with detailed q-
dependence, and the second is a measured HF tensor. We begin with the calibrated
susceptibility that was originally used in [239]. It originated with the measurements
of Mason et al. [275]. The absolute calibration for these was presented in [278], but
had also been used, it seems, in the paper by Hayden et al. [277]. We shall recount
here the calibration used in [239]. Some careful checking finds that the latter result
leads to a value for the initial slope of χ′′(ω) in Fig. 4.11b within 10% or less of the
plotted value.

The low-energy INS data for χ′′(q,ω), part of which is displayed in Fig. 4.10a,
may be represented in the normal state by the function

χ′′(q,ω)

ω

]

ω→0

= K0A2 θ[�c − �n(q)]
�n(q)2

, (4.1.3)

where �n(q) = A2[κ2 + R(q)], with

R(q) = 1

8π2a2Lδ
2
{[(qx − qy)

2 − π2δ2]2 − [(qx + qy)
2 − π2δ2]2} . (4.1.4)

HereaL = 3.8Å is theCuO2 lattice constant and δ = 0.245 is the discommensuration
[275]. The other quantities in (4.1.3) are

• The constant A2 = 3.858 eVÅ2 comes from a form used to fit INS data at finite
values of ω [275].
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(a)

(b)

(c)

(d)

(e)

(f)

ħω (meV)

Fig. 4.11 a and b The local susceptibilities χ′′(ω) for La2CuO4 (295K) and La2−xSrxCuO4(x =
0.14) (17K), derived from the data presented in [277], are plotted as a function of energy �ω. As
compared with La2CuO4, the effect of doping is seen to concentrate the amplitude at low energies,
giving a peak at ∼ 22meV. Below that point are plotted data from earlier reactor-based studies
[275], which serve to determine the initial slope used for T1 calculations. c and e are the equal-time
spin correlation functions S(q) defined in the text, for La2CuO4 and La2−xSrxCuO4(x = 0.14),
respectively. d and f are zero-frequency susceptibilities χ′(q) obtained with (6.3.1) in a similar
fashion. For LSCO:0.14 (e and f) these quantities are nearly indistinguishable, since the width of
χ′′(q,ω) shows very little dependence on energy [277]. In c–f the rise in intensity to the right is
caused by phonons, where the suggested behavior of the quasiparticle properties is indicated by
dashed lines. Although the spallation source resolution width is not as good as in reactor-based
studies, it is clearly well below the peak widths found for LSCO:0.14 in e and f

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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• The peak width parameter κ = [(0.034)2 + 31.35(kBT )2]1/2Å−1 is also from an
expression used to fit data over a range of ω values, but is stated here for ω = 0. In
this expression kBT is to be entered in units of eV. We note that this representation
of κ has been updated [278] from what was used in [239]. The two expressions
give very similar values for temperatures of 100K or less.

• The calibration obtained using acoustic phonons [278] gives K0A2 � 2.5μ2
B .• The function θ[p] = 1 if p > 0 and 0 otherwise. In (4.1.3) �c is taken to be an

estimated maximum magnon energy ∼0.3eV.

The foregoing function describes χ′′(q,ω) in q-space as having four incom-
mensurate peaks located at (π,π)± (0,π)δ and (π,π)± (π, 0)δ. These peaks have
adjustable width given by κ. As stated, the function has units of μ2

B/eV 2 per formula
unit. This is the initial slope of χ′′(q,ω), determined by INS data at energies of just a
few meV. From the standpoint of INS methodology, it is supposed that this function
would apply in the energy range in which it was determined and to all energies below
that as well.

As we shall see below, however, there is a problem with this interpretation in
connection with the T1 data for the planar 17O, which will be discussed in Sect. 6.3.
We note here that there is also a second problem with using INS measurements as a
calibration of χ′′(q,ω) for NMR frequencies. This has to do with the behavior in the
superconducting state. We know from T1 measurements for 63Cu in LSCO (as well
as those for other superconductors at T < Tc) that the effective value of χ′′(q,ω)

declines typically by a large factor. For LSCO 1/T1 drops by a factor ∼ 100 at a
temperature of 4.2K relative to its value in the normal state [279]. The INS data for
χ′′(q,ω) as given by Thurston et al., for example, shows no decline whatever below
Tc, particularly at the lowest energies tested �ω ∼ 1.5meV. As the latter authors have
commented [276], this is a situation for which “further theory is required”. It seems,
then, that we do not always understand when the INS results will apply at NMR
frequencies and when they do not.

Hyperfine Constants for LSCO

Below, we apply the calibrated expression forχ′′(q,ω) to T1 data for 63Cu and planar
17O in LSCO. For this purpose, we first review the analysis of the appropriate NMR
shifts and uniform susceptibility data for La2−xSrxCuO4(x = 0.15). The numbers
are similar to those for YBCO given in Chap.3, but need, of course, to be established
independently. Working from the 63Cu shift results of Ohsugi et al. [279], it is first
noted that Kc(T ) is constant at∼1.20%well into the superconducting state. Similar to
YBCO, then,wehave Ac + 4B �0.Next, K vv

c is slightly smaller than that (� 1.28%)
forYBCO. Thus, the crystal-field energies for LSCO are a bit higher and the g-factors
slightly smaller as well. Estimated values are given in Table4.1. From the K vv

α tensor
we use the effective orbital HF shift coefficient αorb = 141 (emu/mol)−1 given with
(3.3.5) for YBCO. This leads to the Van Vleck susceptibility components given in
Table4.1.

The Van Vleck susceptibility tensor is combined with the estimate χdia � −99 ×
10−6 emu/mol [235, 280] to extract the spin susceptibility tensor from

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3


4.1 Pseudogap Effects and Dynamic Susceptibility in La2−xSrxCuO4 (LSCO) 129

Table 4.1 Compilation of parameters related to the analysis of 63Cu and planar 17O NMR shifts
and susceptibilities for La2−xSrxCuO4(x = 0.15) at T = 300K. These quantities are defined and
discussed in the text. The units are as follows: NMR shifts: %; susceptibilities: 10−6 emu/mol; HF
constants: kOe/spin. The HF constants are defined by (2.3.2). They will have their proper energy
units when multiplied by 103�γ17,63
gab gc Kvv

ab Kvv
c Ks

ab χvv
ab χvv

c χsab χsc B Aab Ac K17
a K17

b K17
c Ca Cb Cc

2.06 2.27 0.27 1.20 0.41 19.1 85.1 145 177 76 19 −304 0.274 0.162 0.214 108 64 77

χexpt
α = χs

α + χvv
α + χdia . (4.1.5)

The powder average susceptiblity was found to be 98 × 10−6 emu/mol (300K) [239],
a value within 5% of those given by Ishida et al. [237] and Johnston [281]. Since
χs

α ∝ g2α [58], we define a quantity χs
0 with the relation χs

α = (g2α/4)χs
0. This leads to

the expression for the powder average spin susceptibility 1
3 (χ

s
c + 2χs

ab) = 1.137χs
0

using g-values from the table. With (4.1.5) and the numbers given, we find χs
0 =

137.1 × 10−6 emu/mol. The values forχs
α in Table4.1 follow immediately. These are

essentially the susceptibility results given in [239]. Note that the spin susceptibilities
are substantially larger than those found for YBCO7 (Table3.4).

We now can extract the 63Cu spinHF constants for La2−xSrxCuO4(x = 0.15). The
shift coefficient for Ks

ab � 0.41% (300K) [279] is Ks
ab/χ

s
ab = 28.3 (emu/mol)−1.

Using (3.3.4) this gives Aab + 4B = 325kG/spin. From studies of undoped
La2CuO4 [282] we take the result Aab − 4B = −286kG/spin. Combining the lat-
ter two relations leads to Aab and B as given in Table4.1, as well as the estimate
Ac = −4B = −304 kG/spin. All results are summarized in Table4.1. We believe
that these slightly smaller numbers than used in [26] give a more realistic outcome.

The corresponding values Cα for the planar 17O were derived from room-
temperatureNMRshiftmeasurements and reported in [239]. The shiftmeasurements,
which have been corrected for orbital background shifts Korb

a,b,c = (0.046, 0.008,
−0.027) (in %, from Takigawa et al. [190]), and their corresponding HF constant
values are listed in Table4.1.

Evaluation of T1 for 63Cu and 17O from INS Data

With HF couplings from Table4.1, we can now evaluate T1 for 63Cu and 17O in
La2−xSrxCuO4(x = 0.15) using the INS susceptibility data embodied in (4.1.3).
Relaxation rates are calculated for 63Cu with (3.5.20) and for 17O with (3.5.21)
[239]. We note that the T1 process for any nucleus in this system consists of two
principal ingredients, namely the dynamical spin–spin correlation coefficients for
the first three neighbor pairs3 K1a , K1b, K2, K3a , and K3b, and the correlation time
parameter τe that represents the quasiparticle dynamics of the system. Here we have4

3Note the change in notation for the Ki j ’s from that in Sect. 3.5. This will be used throughout this
chapter and the next.
4We drop the “iso” subscript on χ′′(q,ω) and insert “I” to indicate the INS value given by (4.1.3)
and (4.1.4). The isotropic “iso” value is, however, used throughout (see discussion with (3.5.10).

http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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KnαI =
∫
N dq gnα(q)[χ′′

I (q,ω)/ω]
[∫N dq χ′′

I (q,ω)/ω] , (4.1.6)

where n = 1, 2, 3 is the neighbor index and α = a, b. Here a and b designate in–
plane axis parallel and perpendicular to the incommensuration axis, respectively,
while g1α = cos(qαa), g2 = cos(qaa)cos(qba), and g3α = cos(2qαa). Finally, we
have

τeI (T ) = kBT

μ2
B

∫

N
dq χ′′

I (q,ω)/ω (4.1.7)

for the quasiparticle correlation time. Note that the KnαI correlation factors do not
depend on the scale of χ′′

I (q,ω), but only on its shape and width in q space. τeI (T )

on the other hand represents the time scale and T–dependence of the quasiparticle
dynamics.

Using the above components, the nuclear relaxation rates may then be written

1
63T1c

= γ2
63

2
[A2

ab + 4B2 + 2B2(4K2 + K3a + K3b) + 4AabB(K1a + K1b)] τe

(4.1.8)
and

1
17T1c

= γ2
17

4
[C2

a + C2
b ](2 + K1a + K1b) τe (4.1.9)

for planar 63Cu and 17O , respectively, the two nuclear species of interest. In these
equations Aab, B, Ca and Cb are hyperfine tensor components in units of Gauss per
spin. Note that because NMR frequencies are very small on the scale of INS energies,
INS data used here are extrapolated to ω = 0.

Using the functional form forχ′′
I (q,ω) represented by (4.1.3) and (4.1.4) and other

data given, wemay evaluate the relevantKnαI ’s for LSCO over temperatures ranging
from Tc up to 300K. The results are shown in Fig. 4.12. The temperature dependence
exhibited is modest, except that the factor (2 + K1aI + K1bI ) that multiplies the 17O
relaxation is very small and tends to diminish at low temperatures.

NMR and INS data that form the basis for our discussion of T1 and pseudogap
effects in LSCOare analyzed and displayed in Fig. 4.13 as values of τe(T ) and τeI (T ).
There are three separate sets of data points shown, namely values of τeI derived from
INS data for χ′′

I (q,ω), then τe values from T1 data for both 17O (circles) and 63Cu
(squares), which are obtained using (4.1.9) and (4.1.8), respectively and the T1 data in
Fig. 4.9. Values of τeI are seen to decline only very slowly with T in the normal state.
Thus, χ′′

I (q,ω)is seen to obey an ω/T scaling law to quite a good approximation.
Such behavior has been attributed to the formation of stripes in the normal state of
LSCO [193, 194]. Finally, the most important thing to note in this figure is that if
χ′′
I (q,ω) represented the entire dynamic susceptibility of the quasiparticles in LSCO,

then all three curves for τeI and τe would coincide and the problem would be solved.
In fact, we find three disparate curves, so there is quite a bit to discuss.
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Fig. 4.12 The spin–spin
correlation factors Knα

defined in (4.1.6) have been
evaluated using the data in
(4.1.3) and (4.1.4) and are
plotted here as a function of
temperature. It is to be
emphasized that these plots
are based on INS data for
La1.85Sr0.15CuO4.
Accordingly, they are labeled
KnIα. The temperature
dependence is fairly modest,
except to note that the
quantity (2 + K1I a + K1I b)
that modulates the 17O
relaxation rate (see 4.1.9) is
very small compared with
unity
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Fig. 4.13 Plots of τe and τeI , as defined in the text, as a function of temperature T . The red dots
(17O) and blue squares (63Cu) are show values of τe(T ) derived from T1 data in Fig. 4.9 usingKnI ’s
obtained from Fig. 4.12. See text for details. An estimate of τeI (T ) based on (4.1.7) and INS data
for χ′′

I (q,ω) (black triangles) shows a very slight decline with T . Then, below the onset of stripes
labelled Tstr , τeI (T ) executes a Korringa–like downward ramp that is echoed by the behavior of
τe(T ) derived from T1 data, a correspondence that occurs with no adjustable parameters. The dotted
line labeled “YBCO” shows τe(T ) behavior reported by Uldry and Meier [195] with a method of
analysis based only on experimental data. This illustrates the weaker T1 process found in YBCO7
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Below a cutoff temperature that we have labeled Tstr , whatever is causing the
ω/T scaling ceases to operate, and values of τeI begin falling toward zero in a
roughly linear–T fashion. Whatever gives rise to Tstr , we want to emphasize that it
is definitely higher than Tc, which for LSCO never exceeds a value Tc ∼ 40K. What
is also notable here is that values of τe deduced from the 63Cu T1 data descend with
declining T in good accord with τeI below Tstr . The quantitative agreement here is
quite remarkable, because there are no adjustable parameters. The formulation of
the T1 process via the fluctuation–dissipation theorem in Chap.3 is quantitatively
verified in LSCO at temperatures T ≤ Tstr .

There are, on the other hand, some clear surprises in Fig. 4.13. The main surprise
is that above Tstr both plots of τe rise high above that for τeI , clearly indicating
that there is another source of magnetic fluctuations in LSCO that is not represented
by χ′′

I (q,ω). The most salient possibility for this contribution is another term in
χ′′(q,ω) that has a low amplitude, but occupies a broad region in the BZ so that it
has statistical weight equal to if not greater than that of χ′′

I (q,ω). The amplitude of
such a term could be as small as just a few percent of the χ′′

I (q,ω) peak amplitude,
yet have equal weight. Finding the baseline for such a term could require polarized
neutrons, rendering such an enterprise extraordinarily difficult.

Introducing the Pseudogap Term χ′′
P(q,ω).

Thus, we assume the existence of another term χ′′
P(q,ω), so that the total dynamic

susceptibility becomes

χ′′(q,ω)total = χ′′
I (q,ω) + χ′′

P(q,ω). (4.1.10)

The contributions of these two terms toNMRdynamics are independent and additive.
The reason that it is called the pseudogap term is because any pseudogap effect in
LSCO will be a property of χ′′

P(q,ω). In the earlier paper on this analysis, it appears
that such a pseudogap is present [204]. This presents rather unusual behavior, where
there are two disparate terms in χ′′(q,ω), one having a pseudogap and the other not.
Below we discuss the introduction of parameters to characterize χ′′

P(q,ω). Before
that, we note that (4.1.10) will be incorporated into (3.5.20) and (3.5.21), yielding
two sets of terms of the form of (1/63T1cI + 1/63T1cP ) (4.1.8) and of (1/17T1cI +
1/17T1cP ) (4.1.9). Terms subscripted ‘1cI’ will incorporate KnαI and χ′′

I (q,ω) from
(4.1.6) and (4.1.7), respectively, and those subscripted ‘1cP’ will have KnαP and
χ′′
P(q,ω). The INS data as described above determine the values of 1/T1cI for both

nuclear species. These values are then subtracted from the experimental data (Fig. 4.9)
to determine values of 1/63T1cP and 1/17T1cP at each temperature plotted (with some
interpolation). Those are then the input datawhich determine thewidth and amplitude
parameters of χ′′

P(q,ω)(T ).
We adopt a squared Lorentzian profile for χ′′

P(q,ω) in q space, which then
has fourfold symmetry in the basal plane. Following [278], this gives the form
χ′′
P(q,ω)/χ′′

P(peak) = q4
w/(q2

w + q2
x + q2

y )
2 with the origin at Q = (π,π). With

fourfold symmetry there are only three correlation coefficients KnP , n = 1, 2, 3
(4.1.6). With this formulation in mind, the goal is to find values of χ′′(peak)and

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 4.14 Values of τeP deduced from T1 data and the squared Lorentzian model for χ′′
P (q,ω) are

plotted for both 17O (circles) and for 63Cu (squares). By adjusting the KnP ’s as described in the
text, the two curves for τeP versus T are made to coincide as they must. This process yields the
variation of the KnP ’s with T (see inset) and estimates of the width parameter for χ′′

P (q,ω). The
resulting curve for K1P versus T is represented quite accurately by the temperature function given
in the text. For comparison, the INS–derived value of τeI (T ) is shown as a solid line

qw at each temperature. Although there are two parameters and two unknowns, this
is a somewhat nonlinear procedure that requires a bit of interpolation. In practice,
as one progresses along the temperature scale, the coefficient of τeP that determines
1/63T1cP changes very slowly, so 1/63T1cP can be used to estimate τeP . Then the
rapidly changing coefficient for 1/17T1cP can be used to estimate qw. Iterating this
process, one finds that it converges quickly, giving essentially coincident curves of
τeP versus T for the two nuclear species, as is shown in Fig. 4.14. There, values
determined for τeI and τeP are plotted separately versus T . This result suggests that
the somewhat hypothetical form adopted for χ′′

P(q,ω) is physically realistic. The
curves of the KnP , (n = 1, 2, 3) are shown in the inset to Fig. 4.14.

The key correlation parameter K1P can be satisfactorily represented here as

K1P(T ) = −0.81 exp[−(T − 50)/600]. (4.1.11)

The small value exhibited by the quantity 1+K1P at low temperature and its steep
increase with T serve to explain the dramatic difference between the temperature
profile of 1/17T1cP and 1/63T1cP seen in Fig. 4.9.

At a more general level, the predominance of 1/T1P over 1/T1I at the higher
temperatures is clear evidence for a hitherto unresolved term in χ′′(q,ω) in LSCO.
Moreover, the resulting coincident curves for 1/17T1cP and 1/63T1cP and their joint
extrapolation to zero at a temperature near Tstr gives evidence for a consistent inter-
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pretation in terms of the squared Lorentzian model for χ′′
P(q,ω) and for an apparent

pseudogap effect in LSCO. It does, however, require a substantial amount of analysis
to detect the presence of this effect, and it depends quite strongly on the apparent
vanishing of τeP (i.e. of 1/17T1cP and 1/63T1cP ) in the vicinity of 1/Tstr . Whether the
presence of χ′′

P(q,ω) can be resolved by INS techniques is an important question.
Some discussion of this point is given with the presentation of similar results for the
case of YBCO6.5 in the following subsection. Again, the dotted curve in Fig. 4.13
shows values of τe for YBCO7 determined in a purely empirical scheme described
by Uldry and Meier [195]. It illustrates the distinctly stronger T1 processes in LSCO
as compared with YBCO7.

4.2 The Pseudogap in Oxygen–Deficient YBCO7-x

Since pseudogap effects in the NMR data first came to light in studies of YBCO7-x
with some depletion of the oxygen content (and thus of hole doping), it was for this
system that the most precise and comprehensive bodies of data were first developed.
In this section we discuss a set of results on both the NMR shifts and relaxation rates
for 89Y, 17O(2, 3), and 63Cu(2) for a representative composition YBCO6.63 [148,
190, 191]. This compound is a well-characterised example of a high-Tc pseudogap
system.5 Relaxation data for 63Cu(2) are shown in Fig. 4.1, where the low-frequency
excitation spectrum (

∑
q A2

qχ
′′(q,ω)/ω) is seen to decline at low temperatures as

though an energy gap had set in below T ∼ 300 K . At Tc � 64K there is no break
or other feature in the Cu(2) T1 data (Fig. 4.1a), in striking contrast with the sharp
drop which takes place for the YBCO7 phase (see the dashed line in Fig. 4.1a as well
as data in Fig. 3.11). Nonetheless, monitoring the rf coil susceptibility (Fig. 4.1a,
inset) gives good evidence that the sample material undergoes a transition to bulk
superconductivity at that temperature. This behavior is confirmed throughout for this
cuprate.

In this subsection we first analyze some very elegantly presented NMR shift data
to obtain values for hyperfine coefficients for the 60Kphase ofYBCO,which are then
compared with those for YBCO7. Here, the case of 89Y presents special problems in
that, first, dipolar HF fields are appreciable, but do not have the Spin–Hamiltonian
form exhibited by (3.3.2) that was adopted for subsequent analyses of T1 processes.
Second, 89Y also has the slightly unfortunate property that it couples with Cu(2) spins
in two neighboringCuO2 planes of the YBCO structure, and thus, its HF fluctuations
are subject to interplanar spin correlations, which have been found to be appreciable.
For these reasons, we will discuss 89Y HF effects in the next two subsections on HF
constants and early relaxation models for the pseudogap systems, but they will not be
included in the joint analysis of T1 and INS data for χ′′(q,ω) in the final subsection.

5Although a continuum of Tc values has been reported for YBCO7-x, the “60K phase” is the most
homogeneous underdoped phase, since dTc/dx is quite small in that region.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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We present and discuss the calibrated measurements of χ′′
I (q,ω) by Stock, et al.

[201] in the third subsection, and in the fourth, a joint analysis of NMR and INS data
along the lines of that for LSCO in Sect. 4.1.4 is presented for YBCO6.5.

4.2.1 HF Parameters for YBCO6.63 from Scaling
of Shift Data

We first discuss NMR shift and susceptibility data for YBCO6.63 with the goal in
mind of extracting HF parameters to use in fitting the corresponding T1 data. In
Fig. 4.15a NMR shift data for 63Cu(2) in an oriented powder specimen are plot-
ted for field orientation both parallel and perpendicular to the c axis [185]. The
c axis–data show only a slight increase below Tc, so that 63Korb,c = 1.28(1)%
and 63Ks,c = −0.01(1)% (near 300K). This result for 63Korb,c is indistinguish-
able from that for YBCO7.0 [147]. The zero–temperature intercept for 63Kab(T ) is
63Korb,ab = 0.25(2)%,which is also unchanged fromYBCO7 [147]. Thedownward–
curving spin paramagnetism is the essence of spin pseudogap behavior.

In Fig. 4.15b are plotted 17O NMR shift values (17K‖, 17K⊥, 17Kc) as functions of
temperature for the three principal axes of the O(2, 3) sites [190]. The quadrupole
tensor has also been evaluated and is virtually indistinguishable fromwhat was deter-
mined for YBCO7 (see Fig. 3.8 and discussion). The shift 17K‖(T ) corresponding to
the Cu(2)-Cu(2) bond axis is seen to bemore than half again as large as the transverse
components. The latter (17K⊥(T ) and 17Kc(T )) have slightly different chemical (i.e.
orbital) shifts, but their temperature variation is essentially indistinguishable. The
17O(2, 3) shift can therefore be characterized by axial and isotropic components
defined by

17Kax = (17K‖ −17 K⊥)/3, (4.2.1a)
17Kiso = (17K‖ +17 K⊥ +17 Kc)/3. (4.2.1b)

As with YBCO7 (Sect. 3.4) there is a dominant isotropic HF effect from 3d-2s
hybridization [146] and a lesser axial shift term corresponding to dipolar coupling
from the 3d-2pσ hybridization, although the latter admixture is much greater than
the former.

The 17O NMR shifts 17K‖ and 17K⊥, plus that for 63Cu(2) [190] have been scaled
to coincide with 17Kc(T ), the most accurate data set, between Tc and 300K, and
are plotted with separate vertical axes in Fig. 4.16. All shifts are seen to follow a
common temperature variation very closely, i.e. that of the spin susceptibility. The
scaling fits then yield the following relations:

17Kax (T ) = 0.1886 ×17 Kc(T ) + 0.0151%, (4.2.2a)
17Kiso(T ) = 1.057 ×17 Kc(T ) + 0.039%, (4.2.2b)

63Kab(T ) = 1.522 ×17 Kc(T ) + 0.32%. (4.2.2c)

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 4.15 a The NMR shift
for 63Cu(2) in an
oriented-powder sample of
YBCO6.64 [185] is plotted
versus temperature for field
orientation parallel and
perpendicular to the c axis.
The upper solid line is a
representation of data for
YBCO7, while the lower one
is a guide to the eye. As with
YBCO7 it is assumed that
the orbital shifts are
independent of temperature
and that the spin
susceptibility goes to zero at
T 	 Tc. The breakdown of
both shifts into spin and
orbital components is given
in the text. b Data for the
17O(2, 3) NMR shift is
plotted as a function of
temperature up to 300K for
an oriented powder sample
with field oriented along
three mutually perpendicular
axes, where the axis for 17K‖
is the Cu(2)–Cu(2) bond axis
[190]. The solid line is the
variation of 17Kc(T ) for
YBCO7 [147]. Analysis of
these results is given in the
text

This result gives additional strong evidence for a one-component quasiparticle state,
since multiple bands would have to have susceptibilities with precisely the same
spin-gapped temperature variation to produce this result. Such an effect seems quite
implausible.

The scaled curves in Fig. 4.16 come apart a bit below Tc, an effect that is attributed
to varying levels of superconducting diamagnetic shielding for the different cases.
However, because 17K‖ and 17K⊥ are both measured with field ⊥ c axis, there
is no diamagnetic correction to 17Kax (see (4.2.1a)). Extrapolating the curves in
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Fig. 4.16 a Data for 63Kab(T ) for the Cu(2) sites [190] (similar to Fig. 4.15a) as well as for
17K‖(T ) and 17K⊥(T ) have been scaled to 17Kc(T ) and are plotted with the latter data as a
function of temperature. The T → 0 (orbital shift) limits of these shifts plots have been determined
as discussed in the text, leading to an estimate for the zero of the spin components of the shifts and
of the spin susceptibility. Scales for the various shift components are shown on the left. The scale
for χs(T ) has been estimated from the knowledge of HF constants (see text) and is shown on the
right side of the plot. The solid line represents the estimate of χs(T ) so determined. The inset shows
an Arrhenius plot of ln(χs(T )) versus 1000/T(K). The linear behavior seen illustrates the gapped
nature (i.e. pseudogap) of χs(T ), where the gap energy is found to be ΔGap � 104K

Fig. 4.15b to T = 0, then, yields 17Kax (0) = 0.013(2)%. One can then use (4.2.2) to
obtain the other orbital shift values, which are 17Kc(0) = −0.014(7)%, 17Kiso(0) =
0.024(11)%, and 63Kab(0) = 0.30(2)%. These values are virtually unchanged from
those determined earlier for YBCO7 (See Table3.2).

Using the relation χs(T ) =63 Kab(T )/[ fCu(Aab + 4B)], where Aab + 4B �
198kOe/μB [192], and the estimate fCu � 0.7 for the fraction of χs which resides
on the Cu(2) site, we have determined the scale shown for χspin(T ) in Fig. 4.16. The
parameters derived from a Mila-Rice fit to the data in Sect. 3.2 (see Table3.4) would
give a slightly larger value for (Aab + 4B). Other fits to the shift and relaxation data
in Chap.5 will also give slightly different values for the scale of χspin(T ). These
scaling factors may have a slight dependence on composition, a point that will be
discussed further in Chap.5.

In any case, Fig. 4.16 represents a very precise characterization of the pseudogap
effect in YBCO6.63. One can probe the energy gap origin of the decline of the the
quasiparticle density of states in Fig. 4.16with anArrhenius plot of theχspin(T ) data,
i.e. by setting χspin(T ) = χ0 exp(−ΔGap/T ). Such a plot is shown in the inset to

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 4.16, where it is found to yield a rather accurate representation of the data, with
ΔGap � 104K. Such a result was also implied by the fitting procedure of Uldry and
Meier [195], to be discussed in Chap.5. To our knowledge, this representation has
not been predicted by any model calculation up to now and has not been emphasized
in the literature. This result will be compared with INS data on a similar sample
below.

We may complete the NMR shift picture for YBCO6.63 by adducing the 89Y
NMR shift and relaxation data which came two years later [191]. The corre-
sponding shift data for both YBCO6.63 and YBCO7 cases are plotted versus T
in Fig. 4.17a, where the “6.63” data are seen to exhibit a very similar temperature
dependence as the scale plot Fig. 4.16. This idea is tested in Fig. 4.17bwhere the latter
data for both field orientations are plotted versus 17Kc(T ) data from Fig. 4.15. The
resulting curves are straight lines within narrow error limits and the extrapolation
to 17Kc(0) = −0.014(7)% then gives the chemical shifts 89Korb,c = 160(15) and

Fig. 4.17 a The negative of the 89YNMR shift in YBCO6.63 is plotted as a function of temperature
for applied field both parallel and perpendicular to the c axis of an oriented powder sample [191],
which is actually the same sample used in the foregoing Cu(2) and O(2, 3) NMR studies [190]. For
comparison, previous data on YBCO7 [191] are also shown. b The YBCO6.63 shift data from part
(a) are plotted versus the oxygen shift data 17Kc(T ) from [190]. Extrapolation of these curves to
17Kc(0) yields the chemical shift values for 89Y given in the text. These linear fits also demonstrate
that all NMR shifts in YBCO6.63 follow the same temperature dependence, namely that of χs(T )

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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89Korb,ab = 152(10)ppm. Thus, the 89Y shift data also follow the curve in Fig. 4.16
to high precision.

Scaling of HF Coefficients to Match YBCO7

We therefore have a complete characterization of NMR shifts for all significant sites
and field orientations in YBCO6.63 in terms of a single universal curve [190]. The
resulting shift values at T = 300K are listed in Table4.2 (“300K Values”). Also
listed there is the estimated Cu(2) susceptibility tensor at 300K from [190]. We
suggest, however, that the latter values are very approximate and that better values
for both the susceptibility tensor and the HF coefficients can be assigned by scaling
the HF tensor components so that they match the YBCO7 values from Tables3.4
and 3.6 as closely as possible. For convenience, the latter set of values (“YBCO7
Values”) is also listed in Table4.2.

A “trial” set of HF coefficients can be defined from the data in Table4.2 using the
relation from (3.3.4)

Ai = NAμBKi/ziχsi , (4.2.3)

where Ki are the “300K”values from the table, zi are the numbers ofCu(2) neighbors,
and χsi is the appropriate susceptibility estimate from the same line of the table. The
Ai are multiplied by a scaler S, which is then adjusted to minimize a weighted total
fractional squared error defined by

E =
∑

i

wi [SAi − Ai ]2
A2
i

=
∑

i

wi [1 − SRi ]2, (4.2.4)

where the YBCO7 coefficients are labelled Ai , and Ri = Ai/Ai . This procedure
will also yield a new estimate of the susceptibility tensor, from (4.2.3), of χsi/S. The
ratios Ri are listed in Table4.2, and are seen to be grouped closely around a value
� 1.36.

It is easy to show that the errors are minimized when

S =
∑

i wi Ri∑
i wi R2

i

= 0.723. (4.2.5)

The optimally scaled coefficients obtained are stated in Table4.2 (“YBCO6.63”).
Correspondencewith theYBCO7 values is seen to be quite satisfactory. The resulting
(scaled) susceptibility components are also given. They are somewhat larger than the
values from Fig. 4.16, but are ∼ 80% of the corresponding values in Table3.4, in
reasonable agreement with the relative values shown by experimental data given in
[190].

One important consequence of this fitting procedure is that the reduction fac-
tor 0.70 used to estimate the HF coefficients in Table3.4 is corroborated by the
YBCO6.63 shift scaling (Fig. 4.16) results. These results strongly suggest that the
composite Cu(2) shift coefficient, for which we find the value A(2)

ab � 155kOe/μB

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Table 4.2 TheNMR shift tensors for 17O(2, 3) and 89Y in YBCO6.63 at 300K [190, 191] are listed
in the top line, then the corresponding HF coefficients are stated for YBCO7 from Tables3.4 and
3.6, below which the scaled coefficient values for YBCO6.63 derived from the stated shift values
are listed for comparison. The scaling procedure is described in the text, wherein the weighted sum
of fractional errors defined by (4.2.4) is minimized. Weighting factors wi are designed to give each
species the statistical weight it has in the unit cell. NMR shift values are given in %, the spin HF
coefficients in kOe/μB , and susceptibilities in 10−6 emu/Cu(2)

Shift comp. 63Ks,ab
17Ks,a

17Ks,b
17Ks,c

89Ks,ab
89Ks,c χs⊥

(300 K )

χs‖
(300 K )

300K values 0.218 0.205 0.124 0.143 0.0173 0.0255 58 72

Spin HF Coef. A(2)
ab Ca Cb Cc Dab Dc

YBCO7 (Ai ) 155 72 44 38 1.71 1.86

YBCO6.63 152 71.4 43.2 40.0 1.51 1.87 80 100

Ri 1.370 1.386 1.372 1.470 1.231 1.338

wi 4 8/3 8/3 8/3 1 1

(Table4.2), must, in fact, be rather smaller than the value � 198 kOe/μB given
by [192].

Next, we consider the anisotropy of the 17O(2, 3) and 89Y HF coefficients Cα

and Dα, respectively. Not surprisingly, the Cα have a strong axial component along
the Cu(2)-Cu(2) bond axis owing to the 2pσ hybridization. The observed c/a axis
anisotropy is, however, mainly a g-factor effect. The constants Cα to be used in
the main Hamiltonian (3.3.4) are proportional to gαCα, which differs by only a few
percent between the b and c axes. This is within the expected errors. The Dα values,
however, display a clear anisotropy if we consider the quantities g‖Dc versus g⊥Dab,
where the former is∼30% larger. The origin of this effect is not clear, but the Y 3+ HF
response is clearly more than simply the isotropic core polarization HF field [190].

Dipolar Contribution to 89Y HF Coupling

One candidate effect for the Dα anisotropy is direct dipolar coupling from the Cu2+
moments, which has been considered by Takigawa et al. [191]. Since the 89Y HF
couplings are rather small for YBCO, one must consider the possibility that the dipo-
lar interaction between any Cu2+ moment −∑

α gαμB Sαûα, where ûα is a cartesian
unit vector, and a 89Y nuclear spin moment 89I,

Hdipolar = −γ89�μB

r3

[
∑

α

gαSα
89 Iα − 3

(89I · r)
∑

α gαSαrα
r2

]

(4.2.6)

is a significant HF energy. The importance of this is that (4.2.6) does not have
the simple diagonal form of (3.3.4), thereby changing the nature of the dynamics
calculations if it is an important effect.

To consider the direct dipolar HF coupling with the 89Y, we note that owing
to hybridization, the Cu2+ moment at the origin (Fig. 2.1(b)) actually consists of
a fraction1 − 4δ,with fractions δ locatedon the fournnO(2, 3) sites.At thehybridiza-
tion level δ � 0.08, the two O(2, 3) sites nearest the 89Y are quite significant, since
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they are rather closer to the Y 3+ than the Cu2+. We ignore the two more distant O(2,
3) sites in this estimate. The positions of various ions in the crystal (Fig. 3.1) are such
that the Cu(2)–O(2, 3) horizontal distance is d = 1.95Å, and the vertical distances
between 89Y and Cu(2) and O(2, 3) are Δc1 = 1.65Å and Δc2 = 1.42Å, respec-
tively. Using (4.2.6) we then find for the total contribution to the HF coefficients

ΔDdip,ab = −8μB

∣
∣
∣
∣
1 − 4δ

r3Cu

⎧
⎪⎪⎩1 − 3

d2

r2Cu

⎫
⎪⎪⎭ + δ

r3O

⎧
⎪⎪⎩2 − 3

d2

r2O

⎫
⎪⎪⎭

∣
∣
∣
∣ (4.2.7a)

ΔDdip,c = −8μB

∣
∣
∣
∣
1 − 4δ

r3Cu

⎧
⎪⎪⎩1 − 3

Δc12

r2Cu

⎫
⎪⎪⎭ + 2δ

r3O

⎧
⎪⎪⎩1 − 3

Δc22

r2O

⎫
⎪⎪⎭

∣
∣
∣
∣ , (4.2.7b)

where rCu = îd + ĵd + k̂Δc1 and rO = îd + k̂Δc2. Inserting the foregoing num-
bers into these equations, we find ΔDdip,ab = 0.14kOe/μB and ΔDdip,c =
−0.28kOe/μB . These are of the order of 20–30% of Dα and so they are quite
appreciable as suggested in [190]. However, since they have the opposite sign of
the observed anisotropy, it is clear that there is another source of anisotropy which
is twice as large.

The other noteworthy point is that there are a number of dipolar terms that are
effective for the T1 process but which have an angular dependence that does not
vanish at the “magic angle” and therefore may be considerably larger than the shift
coefficients estimated above. Thus, one may not find that T1 for 89Y exhibits the
expected anisotropy from the measured Dα coefficients. The dipolar effects for the
89Y were also discussed in detail by Auler et al. [245]. We shall address this matter
further in the next subsection.

4.2.2 A Simple Model Theory of Spin Dynamics
for YBCO6.63

The Spin-Hamiltonian formulation of HF coupling at the Cu2+ sites combined with
the Mila-Rice-Shastry [118, 146] picture of transferred HF couplings from the Cu2+
moments to the Y and O(2, 3) sites provides a definite basis for discussing electron
spin-based static and dynamic NMR properties. In the last subsection we saw that
one finds a consistent picture of HF couplings from NMR shift data, which apply to
both YBCO7 and YBCO6.63. The coupling constants we refer to here are found in
Tables3.4, 3.6 and 4.2. They were used in the Mila-Rice discussion of T1 in Chap.3.

Meanwhile, here we consider the relaxation properties of YBCO6.63, where spin-
spin correlations will be used to discuss comparative temperature variations of T1
in terms of dynamical spin fluctuations. As was noted in Sect. 3.3.3, dynamical spin
correlations are the apparent cause of theT-varying 63Cu(2) T1 anisotropy forYBCO7
[143]. Although a comparable data set is not available for YBCO6.63, we shall find

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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application in this case for similar formulations of the 89Y and 17O(2, 3) relaxation
properties as well as for those of the 63Cu(2).

Let us anticipate some of the themes as well as stumbling blocks which arise in
the course of trying to account for the relaxation behavior of the YBCO6.63 (60K)
phase. First, we note the pervasive characteristic temperature variation 1/T1T ∝
Ks(T ), which arose in an empirical way, but then found a measure of theoretical
justification [196]. Secondly, the case of 89Y has two special problems, which have
been discussed by Takigawa et al. [191]: (i) The direct dipolar interaction is large
enough to make an important contribution to the overall HF coupling, as we saw in
the previous subsection. Thus, the HF couplingHamiltonian does not have the simple
form of (3.3.4). This complicates the relaxation calculations. (ii) The 89Y relaxation
is driven by Cu2+ spin moments in neighboring CuO2 planes (see Fig. 3.1), so the
question of interplanar spin correlations is an important one for T1. As there is
neutron-scattering evidence for such correlations [199], the 89Y T1 phenomena are
more complex on that account.

T1 Enhancement and a Model Dynamic Susceptibility for Underdoped Cuprates

It was first noted empirically that the quantity (T1T Ks(T ))−1 is approximately con-
stant for 89Y and 17O(2, 3) in both the YBCO7 and YBCO6.63 phases [148]. More-
over, the same quantity for the 63Cu(2) no longer exhibits a peak around 150K,
but executes a roughly power-law rise as T approaches Tc in the normal state. These
behaviors are shown in Fig. 4.18 using data from various sources (see figure caption).
Interestingly, the 63Cu(2) data for YBCO7 show a similar temperature charactistic.
The 89Y and 17O(2, 3) data shown indicate very little change with T , i.e. 1/T1T ∝
χs(T ). Later, more complete data, however, deviated from this simple picture.

The data plotted in Fig. 4.18 is scaled as [T1(Korr.)/T1(T )] [Ks(300 K )/Ks(T )],
where

T1(Korr.) = Nsγ
2
e�/(4πkBTγ2

n K
2
s ), (4.2.8)

which is the usualKorringa expressionwith a factor Ns to account formultiple sources
of HF fluctuations. Here, Ns = 4, 2, and 8 for Cu(2), O(2, 3) and Y, respectively.
Note that Ns = 4 for the c-axis Cu(2) T1 process, which is dominated by the four
nn couplings. The shift has also been normalized arbitrarily to its room-temperature
value, so that the absolute values plotted are only a relative indication of fluctuation
enhancement levels. Clearly, for Cu(2) the YBCO6.63 case is smartly enhanced
over the YBCO7, and both of these by a considerable margin over the ligands. These
effects were attributed toAFMfluctuations, which barely touch the ligands, but could
strongly enhance the Cu(2) relaxation and increase quickly with carrier dilution.

The proportionality between 1/T1T and Ks(T ) is suggested by themodel dynamic
susceptibility form [148, 161]

χ′′(q,ω) = πχ0ω

�
G(q) (4.2.9)

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 4.18 The quantity [T1(Korr.)/T1][Ks(300 K )/Ks(T )] is plotted versus T in a log-log plot
over the range 50K ≤ T ≤ 300K for a series of cases as follows: Closed and open circles are
for 63Cu(2) in YBCO6.63 [148] and YBCO7 [143], respectively. Closed squares are 89Y data for
YBCO6.63 from Alloul et al. [166] using, however, an independently determined value for the 89Y
chemical shift [148]. (A similar value was reported later by Alloul et al. [200]). The open squares
are data for YBCO7 from [154] using the same chemical shift. Finally, the open triangles represent
17O(2, 3) data on YBCO7 from [178]. The inset shows preliminary data for 63Cu(2) from [148].
See text for a definition of T1(Korr.)

for the low-frequency dynamics (ω 	 �) of the quasiparticles, where χ0 is inter-
preted as an estimate of the static susceptibility, and the factor G(q) embodies any
q-dependent enhancement effects which occur. Since 1/T1T ∝ ∑

q G(q), this form
suggests that 1/T1T ∝ χ0. To use this form evenwhenχ0 has the gapped temperature
characteristic of an underdoped cuprate is to go beyond the usual mean-field theory
interpretation of (4.2.9). Nonetheless, this procedure was adopted in order to treat
T1 phenomena in spin-gapped superconductors [162].

However, not long after the latter work appeared, a theoretical model was devel-
oped which actually exhibited such behavior. This was the “attractive” (i.e. negative-
U) Hubbard model of Randeria, Trivedi et al., which was studied using QMC tech-
niques [196]. The authors only studied local, q-independent HF couplings, and
emphasized that this was not a suitable model for cuprate physics in other ways.
Nonetheless, their results for the gapped behavior of both susceptibility and 1/T1T ,
shown in Fig. 4.19, give a remarkably realistic version of the effects seen in Fig. 4.18
for, e.g. the 89Y and 17O(2, 3) sites. To account for the Cu(2) data would require inclu-
sion of q-dependent enhancement effects in the negative-U Hubbard model, which
has not, to our knowledge, been done. In any case, the results of Fig. 4.19 offer some
support for the phenomenological treatment based on (4.2.9) with χ0 = χs(T ).
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Fig. 4.19 The variation of
1/T1T versus χs , with T as
an implicit parameter, for the
attractive-U Hubbard model
calculations of [196]. Over
the lower 40% of the
variation of 1/T1T , this
quantity shows a very clear
linearity with the spin
susceptibility, with a constant
of proportionality which is
essentially independent of
the value of U

The Problem of 89Y T1 Behavior in YBCO6.63

In Fig. 4.18 89Y T1 data are plotted so as to test the pseudogap scaling with χs(T ).
The result is a very flat curve, based on data from [166]. However, there are twomore
recent sets of T1 measurements, by Takigawa et al. [191] and by Alloul et al. [200],
neither of which agree with the previous conclusion. Data plots from [191] are shown
in Fig. 4.20. In Fig. 4.20a are plotted 1/T1T for 89Y in YBCO6.63 with both field
orientations as a companion to the NMR shift measurements in Fig. 4.17 on the same
sample, as well as the 17O(2, 3) relaxation data from Fig. 4.23 for comparison. It is
clear that 1/T1T for the oxygen declines rather less at low temperatures than either
89Y measurement. This point is illustrated further in Fig. 4.20b, where 17T1c/89T1c is
plotted for 100K≤ T ≤ 300K. At 100K this ratio is seen to have increased by more
than 20% over its value at 300K. Similar data are given in [200] for both Ks(T )

and 1/T1T for 89Y in YBCO6.64. Although the latter data have somewhat larger
error bars, they are consistent with the data shown in Fig. 4.20. Since these more
recent data are much more complete than those shown in Fig. 4.18, we conclude that
(T1T Ks(T ))−1 for 89Y is not constant in this composition, in contrast with the 17O(2,
3) data in Fig. 4.23.

We discuss the data in Fig. 4.20 further by means of the general T1 formulas
(3.5.22) and (3.5.21). Taking the ratio of these equations, we find

89T1ab
17T1c

= γ2
17

γ2
89

[C2
a + C2

b ]
[D2

ab + D2
c ]

[1 + K01]
[1 + 2K01 + K12 + KIC ] (4.2.10)

where we have added an interplanar correlation coefficient KIC to take account
roughly of that possibility for the 89Y. In the high temperature limit where Ki j 	
1, one would expect 89T1ab/17T1c → γ2

17[C2
a + C2

b ]/γ2
89[D2

ab + D2
c ]. Inserting para-

meter values from Table4.2, we find a limiting ratio of 2360, as compared with the
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Fig. 4.20 a Data for 1/T1T
for 89Y (89Wab,c) in both
YBCO7 (O7) and
YBCO6.63 (O6.63) and for
both “ab” and “c” axis field
orientations are plotted from
100K to above 300K [191].
For comparison, 1/T1T for
17O(2, 3) (17Wc), measured
on the same samples, is also
plotted. b With the same
notation as in (a) the ratios
R =17 Wc/

89Wc are plotted
for both compositions and
the same temperature range
[191]

experimental ratio of 1305 at T = 300K (Fig. 4.20) [191]. It seems, then, that the
estimated rate 1/89T1 is too small by as much as a factor ∼ 2 when analyzed on the
same basis as the 17O(2, 3).

On the other hand, this analysis has some positive points. First, the anisotropy of
89T1 according to the model (3.5.22) is given by 89T1c/89T1ab = [D2

ab + D2
c ]/[2D2

ab]� 1.17 by the data in Table4.2. With modest error bars on that value, the data in
Fig. 4.20 are in reasonable agreement with the latter estimate for both YBCO7 and
YBCO6.63 and at all temperatures shown. Furthermore, when correlations become
important at low temperatures, one would certainly expect that

[1 + 2K01 + K12 + KIC ] < [1 + K01]. (4.2.11)

One would therefore expect 89T1α/17T1α to increase at low T, as it does in Fig. 4.20b.
If we examine the effects of dipolar terms, in the case of negligible correlations

they add less than 10% to the estimated rates. The case of dipolar terms in the
presence of intraplanar and interplanar correlations has been discussed in detail by
Takigawa et al. [191]. While they could become significant in such a case, they have
the opposite anistropy to the Dα’s, which is a serious deterrent. One cannot see how
a calculation based entirely on the model Hamiltonian (3.3.2) can heal the disparity
in the estimated T1 for 89Y. Additional calculations with the full dipolar Hamiltonian

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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have been performed by Auler et al. [245]. These are discussed in Sect. 5.3, where a
substantial contribution to the 89Y relaxation was reported.

Another possible answer for the 89Y T1 problem is that theremaybe enoughY(3d)-
hole character hybridized into the Cu2+ spin states to generate a significant orbital T1
effect. After all, the measured Dα coefficients in Table4.2 are undoubtedly the result
of such an hybridization,which has itsmain effect through the core-polarization term.
The orbital HF effects are typically of the same order, but are probably more nearly
isotropic. Since there is no Fermi-surface orbital shift effect related to the orbital T1
term, the latter would just appear as a “background” relaxation effect unrelated to
the spin HF effects. There could also be a small Van Vleck orbital NMR shift as part
of the positive, temperature-independent chemical shifts recorded for the 89Y.

4.2.3 INS Data for Dynamic Susceptibility
of Underdoped YBCO

In this and the following subsection we discuss the T1 processes in underdoped
YBCO in terms of the treatment of nuclear relaxation given in Sect. 3.5, where the
electron spin dynamics are represented by the dynamic susceptibility χ′′(q,ω). For
that purpose we review in this subsection available INS data for underdoped YBCO.
In Sect. 4.1 of this chapter the same treatment was presented for LSCO, for which
absolute, quantitative χ′′(q,ω) data have been available for more than two decades.

INS data for underdoped YBCO appeared in the early 1990’s [197, 199], along
with evidence that χ′′

I (q,ω) obeys an ω/T scaling law [202]. However, it was not
until 2004 that high–quality, quantitative data taken on a single crystal specimen of
YBCO6.5 were published, including calibration of χ′′

I (q,ω) on an absolute scale
[201]. With suitable preparation, the latter data will be used in Sect. 4.2.4 to calcu-
late values of T1 versus T with no adjustable parameters. This constituted another
opportunity to test and validate the formulation of T1 in terms of χ′′(q,ω) spelled
out in Sect. 3.5. Before [204], no such comprehensive test had been conducted since
this result was derived in 1963 by Moriya [58]. A preliminary test of this result
was performed on LSCO in 1994 [239] with some measure of success, but dynamic
spin–spin correlations such as appear in (3.5.20) were not taken into account in the
latter test, leading to apparent discrepancies. With correlation effects included, a
different conclusion was reached [204], namely that an important term in χ′′(q,ω)

embodying the pseudogap had not yet been resolved for LSCO, YBCO, or any other
cuprate. Summarizing the results from [201] briefly, the dynamic susceptibility was
found to exhibit incommensurate peaks near Q = (π,π), with an unresolved split-
ting when scanned along [100] (see Fig. 4.21a), but with no such splitting along [010]
(Fig. 4.21b). Thus, there appeared to be an anisotropic incommensurability. More-
over, as with the results given in [202], data for χ′′

I (q,ω) were found to exhibit ω/T
scaling at the low–frequency end of the scale. The ω/T scaling effect was compared
with 63Cu T1 data in a somewhat odd fashion in Ref. [201], as shown in Fig. 4.22.

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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http://dx.doi.org/10.1007/978-3-662-55582-8_3


4.2 The Pseudogap in Oxygen–Deficient YBCO7-x 147

Fig. 4.21 a This is a [100]
scan through an
incommensurate peak
centered at (π,π) at the
energy and temperature
shown, taken from the
absolute χ′′(q,ω) data in
Ref. [201]. The solid line is a
fit to the functional form
given by Chou, et al. [203],
as described in the text.
These data are used to
calibrate the integrated area
I (ω, T ) that follows ω/T
scaling for YBCO6.5. See
text for discussion. b A [110]
scan transverse to that shown
in part (a), showing dimin-
ished incommensuration
along the y axis. The solid
line is a fit to the functional
form given by Chou, et
al. [203], discussed in the
text, in order to calibrate the
area under the dynamical
susceptibility data

There, 1/T1T is plotted as a function of T, along with the peak amplitude of χ′′(q,ω)

recorded at an energy of 12.4meV. These plots display an obvious discrepancy in
that 1/T1T exhibits a clear pseudogap feature in rolling over and declining at T well
above Tc ∼ 60K, while χ′′

I (q,ω) shows no such feature. This discrepancy will be a
principal concern throughout this section.With ω/T scaling, the integral of χ′′

I (q,ω)

over the BZ varies simply as 1/T.
What is omitted in Fig. 4.22 is that it is the integral of χ′′

I (q,ω) over the BZ, rather
thanχ′′

I (q,ω) itself, thatmust be comparedwith 1/T1T . Even then, such a comparison
neglects dynamic correlation effects between neighboring electronic moments that
also affect T1 behavior. As in the case of LSCO [278], the authors of [201] argue that
the behavior of χ′′

I (q,ω) for underdoped YBCO is largely caused by the occurrence
of dynamical stripes in this cuprate as well as in others. The details of stripe effects
go beyond the intended limits of our discussion here, so we refer the interested reader
to [193, 194, 201] and references cited therein for a more in–depth look at the stripe
phenomenon.



148 4 Pseudogap Effects in Cuprate NMR Studies

Fig. 4.22 The peak susceptibility at 12.4meV as a function of temperature. For the normal phase,
the solid curve is a fit to the analysis of Birgeneau, et al. [202] (see text for details). This fit confirms
ω/T scaling at low frequencies for these data. A clear suppression of the scattering is found in the
superconducting state. The low–frequency susceptibility sensed by the 63Cu relaxation (1/T1T ) is
suppressed below a temperature T ∗ ∼ 150K, while the peak susceptibility continues to rise down to
Tc � 59K. This evident pseudogap effect is analyzed in the text. NMR data are for YBCO6.64 [201]

What we need to interpret the T1 data is, first, a quantitative calibration of the
quantity χ′′

I (q,ω)/ω at very low frequencies ω, and second, a realistic representation
for the q dependence of χ′′

I (q,ω), both of these over temperatures ranging from
below Tc up to room temperature. These results have been derived from INS data
with a fairly elaborate analysis, whichwe summarize here in the next few paragraphs.
To begin, χ′′

I (q,ω) is represented as

χ′′
I (q,ω) = B�ω f p(q), (4.2.12)

where ω is the NMR frequency (i.e., �ω 	 kT ), f p(q) describes the form taken by
χ′′
I (q,ω) in q space and is, along with B, an implicit function of T. f p(q)peak is of

order unity, so that B(T) is essentially the peak value of χ′′
I (q,ω)/�ω.

The incommensurate peaks in YBCO6.5 are well represented by the squared
Lorentzian form

f p(q) = 1

[1 + ξ20(q + qinc)2]2 + 1

[1 + ξ20(q − qinc)2]2 , (4.2.13)

where qinc = (0,πδ/a) is the incommensuration vector for peaks displaced from the
origin at (π/a,π/a). Fits to data such as the scans in Fig. 4.5S (S = Stock [201])
yield the parameter values δ = 0.06 and ξ0 � 20Å. Accordingly, peak values for
χ′′
I (q,ω) have been measured at �ω = 12.4meV as a function of temperature. Such

data are plotted in Fig. 4.9S, top panel, for T varying from well below Tc to T =
300K.
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Using the empirical formχ′′
I (q,ω)peak = Ctan−1(�ω/0.9kT ), a fit has beenmade

to the 12.4meV data that leads to the �ω 	 kT result wherein χ′′
I (q,ω) obeys

ω/T scaling. This is represented by the solid line passed in Fig. 4.9S. The width
parameter ξ0 is said to be essentially constant up to 300K. Adopting the above
form, we determine the value of C using χ′′

I (q,ω)peak = 171μ2
B/eV at T = 59K,

yielding C = 140.5μ2
B/eV . Then, expanding the expression χ′′

I (q,ω)peak =
Ctan−1(�ω/0.9kT ) for �ω/0.9kT 	 1, we obtain the result

χ′′
I (q,ω)peak

�ω
= (9.745 × 1013/kT )

μ2
B

erg2 − f.u.
, (4.2.14)

where �ω and kBT are expressed in ergs. Using this result and f p(q)peak =
f p(qinc) = 1.045 we find, with (4.2.12), B = (9.523 × 1013/kT )μ2

B/erg2 − f.u.

Finally, (4.2.12) gives

χ′′
I (q,ω)/�ω = [9.523 × 1013 f p(q)/kT ] μ2

B

erg2 − f.u.
(4.2.15)

Equations (4.2.13) and (4.2.15) are now ready to be used to calculate the T1 parame-
ters for the 60K phase of YBCO.

4.2.4 T1 Data and Dynamical Susceptibility–Based Analysis
for YBCO6.63

As we saw in Sect. 4.2.1, and in particular in Fig. 4.4, YBCO6.3 presents a classic
pseudogap case in its static susceptibility and NMR shift behavior. Here we will
present and analyze this system’s equally classic pseudogap behavior for the T1 of
planar 63Cu and 17O nuclei, where we employ INS–generated data for the dynamic
susceptibility χ′′(q,ω) to add insight to our understanding of the spin–fluctuation
physics of this system. The latter analysis, which appeared in 2011 [204], was the
first of its kind in solid–state NMR. A principal conclusion from [204] was that
an important piece of the dynamic susceptibility χ′′(q,ω) was missing from the
available INS data. As of this writing, no further data have appeared on this system.

In this subsection a similar analysis of data for T1 and χ′′
I (q,ω) is presented for

the 60K phase of YBCO as was for LSCO in Sect. 4.1. The result is a very similar
outcome, with an even more predominant pseudogap term χ′′

P(q,ω) to be modeled
and parameterized, and with a markedly higher pseudogap temperature. For a pair
of systems having such contrasting structures and static magnetic properties, the
sub–components of dynamic behavior for the two of them are remarkably similar.

Relaxation (T1) data for 63Cu(2) and 17O(2, 3) in YBCO6.63 corresponding to
the NMR shift and spin susceptibility results of Figs. 4.16 and 4.17 are shown in
Fig. 4.23, along with similar data for the composition YBCO7 for comparison. These
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Fig. 4.23 a Data for 1/T1T for 17O(2, 3) in both YBCO7 (“y = 0”, open circles) and YBCO6.63
(“y = 0.37”, closed circles) are plotted from 300K down to well below Tc [190]. b With the same
notation and symbols as in (a), the corresponding data for 63Cu(2) are shown [190]

are companion data to the shift results plotted in Fig. 4.4 and are of remarkably high
quality [190]. The Tc points indicated refer to YBCO6.63, where Tc � 64K. This is
substantially lower than the value Tc � 92K for YBCO7 that is evident in Fig. 4.23,
as is characteristic of pseudogap behavior.

For YBCO6.63 (closed circles) the overall curves are very different fromYBCO7,
and neither data plot shows any visible feature at Tc (indicated by arrows), where
both curves are smooth and continuous. As shown in the inset to Fig. 4.1a, however,
the resistive superconducting transition remains as sharp as ever. As with χs(T )

(Fig. 4.16), then, the low-frequency spin dynamics show only a smooth decline in
the vicinity of Tc. This behavior shows that the pseudogap merges smoothly into the
superconducting gap which presumably forms below Tc.

We present an analysis ofχ′′
P(q,ω) for YBCO6.63 that is closely analogous to that

for LSCO in Sect. 4.1.4. Again, we employ (4.1.6–4.1.9), with χ′′
P(q,ω) substituted

for χ′′
I (q,ω), to define the KnP ’s, τeP , 1/63T1cP , and 1/17T1cP , as well as the INS–

measured χ′′
I (q,ω) and its associated parameters. As a preliminary step, we evaluate

the KnI ’s using 4.2.13 with the parameter values given. For the crystal sample of
[201], which consists of 70% of one domain orientation and 30% of the other, one
finds a slight anisotropy of K1I and K3I , leading to

K1I a = −0.895

K1I b = −0.962

K2I = 0.865

K3I a = 0.639

K3I b = 0.877. (4.2.16)
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Those values only apply, of course, to the INS crystal. For the oriented powder
NMR sample we can only assume equal occupation of both domains, so that we
average the “a” and “b” values from (4.2.16) to give K1I � −0.929; K2I � 0.865;
and K3I � 0.758.

Using the latter numbers for T1 interpretation, we now employ (4.1.8) and (4.1.9)
with T1 data from Fig. 4.23 and HF constants from Table4.2 to obtain estimates of
τe for both 63Cu and 17O . These are plotted in Fig. 4.24a as dash–dot lines labeled
for the two nuclear species. Here we encounter a peculiar and unexpected problem,
namely that the dash–dot lines are expected to converge in the vicinity of Tc, as
they did for LSCO in Fig. 4.13. In this case, however, they remain rather widely
separated near Tc. The source of this behavior was not hard to find, stemming from a
large contrast in the width parameters ξ0 for the INS and NMR samples. Thus, if the
effective width parameter for the powder NMR samples is allowed to be ∼ 2.5 times
larger than that measured for the INS crystal, then the values ofKnI used to calculate
the 1/T1I c’s from (4.1.8) and (4.1.9) will be strongly affected and the curves of τe
versus T will actually be brought into coincidence near Tc. This result is shown in
the τe plots for 17O (circles) and 63Cu (squares) in Fig. 4.24a.

Combining (4.2.15) with (4.1.7), we also find a value for τeI , which is independent
of T because of ω/T scaling. For consistency, the plot τeI = constant must also
meet the two τe curves at T � Tc in Fig. 4.24a, because that is where the INS curve
χ′′
I (q,ω) versus T breaks downward in Fig. 4.9S [201]. But here we find another

inconsistency, namely that the calculated value of τeI based on the fit to INS data
via (4.2.15), shown in Fig. 4.24a as a dashed line, is ∼50% too large to meet the τe
curves at Tc. We therefore suggest that the curve for τeI should be the horizontal solid
line in Fig. 4.24a. Why the result for τeI is slightly at odds with the T1 data is not
known, but the earlier problem with the two τe curves from the T1 data suggests that
inhomogeneous broadening of the f p(q) profilemay be the source of the discrepancy.
One may also blame both of the problems here on the general difficulty of obtaining
high–quality single crystals of YBCO, while such specimens of LSCO have been
available from the earliest days of high–Tc.

The results so far with YBCO6.63 T1 data bear a close resemblance to those for
LSCO in Sect. 4.1. In Fig. 4.24a we see a tremendous increase in the values of τe over
τeI as temperature rises toward 300K. Thus, we suggest again that there is another
susceptibility term χ′′

P(q,ω) that eventually becomes an order of magnitude larger
than χ′′

I (q,ω). Again, there is no obvious clue from other physical data suggesting
the appearance of χ′′

P(q,ω). As before, then, we proceed to model this effect with
a squared Lorentzian centered on (π,π) and having a width parameter of the order
of the incommensurate splittings observed in these systems. We return to this model
below after discussing the analysis of τeP values that are derived from such a term.

The parameters that determine τeP ’s for the two NMR nuclei of interest must
merge smoothly with those from the INS data in the vicinity of T = Tc. Thus, we
assume values of the KnP essentially the same as the KnI near Tc. That, plus the
values of the τeP ’s determines the amplitude and width parameters for χ′′

P(q,ω). As
T is increased above Tc, the width parameter has to be adjusted so as to keep the τeP ’s
the same, as is mandated by the fluctuation–dissipation model of (3.5.19)–(3.5.21).

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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(a)

(b)

Fig. 4.24 a Plots of τe and τeI , as defined in the text, as a function of ambient temperature T . The
dash-dot lines show values of τe(T ) derived from T1 data in Fig. 4.23 using KnI ’s obtained with
INS data using (4.1.7). Recalculating the τe’s with a broader estimate for the profile of χ′′

I (q,ω)

leads to data points plotted as circles for 17O and as squares for 63Cu. See text for details. An
estimate of T–independent τeI based on (4.1.6) and (4.2.15) is shown as a dashed line. This result
was judged∼50% too high to be consistent with the τe data described. Amore nearly valid estimate
of τeI (T ) is shown as a solid line. See text for discussion. b Values of τeP deduced from T1 data
and the squared Lorentzian model for χ′′

P (q,ω) are plotted for both 17O (circles) and for 63Cu
(squares). By adjusting theKnP ’s as described in the text, the two curves for τeP versus T are made
to coincide. This process yields the variation of the KnP ’s with T (see inset) and estimates of the
width parameter for χ′′

P (q,ω). The resulting curve for K1P is represented quite accurately by the
temperature function given in the text. For comparison, the adjusted value of τeI (T ) is shown as a
solid line
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Fig. 4.25 Plot of
low–frequency q–scan
through incommensurate
peaks and (π,π), based on
discommensuration model
for LSCO along with a
squared Lorentizian form for
χ′′
P (q,ω), as described in the

text. Relative magnitudes
represent conditions at
T ∼ 100K. For the case of
YBCO6.5 the pseudogap
peak intensity is more
difficult to resolve, because
the incommensurate peaks
are themselves not as well
resolved

Not surprisingly, the principal adjustment is to values ofK1P . The other correlations
are not tightly constrained. For simplicity, then, we assume the correlations to vary
exponentially with bond length. As for LSCO, the temperature variation was found
to follow a simple exponential form K1P(T ) = −0.87exp[−(T − 62)/725], with
corresponding expressions for the other two coefficients. These results are plotted
in an inset to Fig. 4.24b. The resulting plot of τeP values is shown in the main part
of this figure, along with the ’adjusted’ value τeI � 0.18×10−15s. The agreement
between τeP values for the two nuclear species is well within the scatter of the data. A
successful account of the data with this picture is therefore achieved for both LSCO
and YBCO6.63. For YBCO6.63 the statistical weight of the pseudogap term is, by
room temperature, an order of magnitude greater than that of the incommensurate
peaks sensed by INS.

An important question arises as to why the INS doesn’t ‘see’ the pseudogap term.
To discuss this point, we return to the squared Lorentzian model for χ′′

P(q,ω). If the
latter model were superimposed on χ′′

I (q,ω) for LSCO with parameters suitable for
T = 100K, then a scan through the incommensurate peaks, intersecting themodel for
χ′′
P(q,ω) at its maximum point (π/a,π/a) would appear as shown in Fig. 4.25. The

increase in intensity between the peaks as shown would be extraordinarily difficult
to resolve. An equally interesting question is, of course, that of the physical origin
of the pseudogap term in χ′′(q,ω).

We turn now to pseudogap phenomenology as seen with other probes.

4.3 Pseudogap Phenomenology with Other Probes

In this section we address briefly several topics relating to pseudogap effects in the
cuprates, but not directly related to NMR. Thus, we are discussing “background
material”, the point of which is to give a deeper context in which to present and
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discuss the NMR results. It is essential to point out that pseudogap effects have been
observed and studied in great detail with several other techniques. In particular, it is
interesting to note that the presence of the pseudogap is felt in both spin and charge-
based properties. One example is the in-plane conductivity σab(T ) of underdoped
YBCO at 250cm−1, which according to Rotter et al. [207] exhibits a gap-like feature
at low temperatures very similar to 1/T1T for 89Y and 17 O(2, 3) for that case (see
Figs. 4.1b and 4.23a). A clearly presented review of pseudogap effects has been given
by Randeria [208].

4.3.1 Pseudogap Effects in the Electronic Specific Heat

We offer brief descriptions of experimental results which detect and elucidate the
pseudogap effect in cuprates, the first ofwhich is the electronic specific heat. By using
a very precise differential technique, J. W. Loram and co-workers have produced an
extraordinarily clear and detailed picture of the behavior of low-energy electronic
states in the cuprates [209, 210, 230]. We review here a selection of their results on
YBCO7-δ.

A sampling of specific heat results is shown in Fig. 4.26a, b. In (a) one sees that,
first, the peak in γel(T) (≡ Cp(T )/T ) at Tc gradually vanishes as δ is increased
from 0, and simultaneously a pseudogap maximum appears at temperatures T � Tc,
causing γel to decline as it approaches Tc from above. The peak at Tc makes a rather
weak reappearance at Tc ∼ 60K, then declines further as superconductivity fades
away at larger δ values.

In Fig. 4.26c the entropy Sel = ∫ T
0 γel(T ′)dT ′ is plotted as Sel/T versus T. Such a

plot closely resembles γel(T ). The superconducting gap feature is very pronounced
for δ 	 1, persisting up to δ ∼ 0.20. Then entropy loss at T > Tc becomes a major
feature—i.e. the pseudogap—as δ increases, while the decline in Sel/T begins at ever
higher temperatures. Note, however, that a vestige of the superconducting gap feature
beginning at T ∼ Tc remains in place until superconductivity disappears altogether.

These effects on γel and Sel (T) seem to be entirely consistent with what one would
expect based on the spin susceptibility and low-energy spin excitations reflected in
the 1/T1T results given in Sect. 4.2. Loram et al. present a companion set of spin
susceptibility curves [230] to confirm this point. There is a clear conclusion of non-
separation of spin and charge behavior, contrary to some of the early models of
high-Tc properties [123, 231].

4.3.2 ARPES Studies of Pseudogapped Cuprates

Angle-resolved photoemission studies (ARPES) on cuprates exhibiting pseudogap
effects have also given a great deal of insight into the microscopic physics of cuprate
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Fig. 4.26 a and b Data for
the electronic specific heat
coefficient γel of YBCO7-δ,
obtained via differential
measurements with
YBCO6.0, are plotted for
different doping levels δ as a
function of temperature up to
250K [230]. In b there is
clear evidence for a
pseudogap creating broad
maxima in γel at
progressively higher
temperatures with increasing
carrier dilution. c The
quantity Sel /T, where Sel is
the electronic entropy
calculated from the data in a
and b, is plotted as a function
of temperature up to 300K.
The superconducting gaps
occurring at Tc as well as the
pseudogap effects in these
data are discussed in the text
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superconductors as well as the pseudogap phenomena per se. Since this method
offers good resolution of energies as well as of k values, one is able to study both
gap energies and their anisotropy over the Fermi surface. Extensive investigations
of the cuprate properties have been conducted. We shall briefly review studies of
pseudogap effects in the Bi2212 family of superconductors by Harris, Shen et al.
[211–213].

WhatARPES reveals is not only that gaps appear anisotropically around the Fermi
surface, but also that quasiparticle peaks in the normal state are greatly diminished.
They appearmainly at temperatures below Tc. Gap energies aremeasured, then, as the
distance between EF and the “leading edgemidpoint” of the photoemission intensity.
The pseudogap is found to behave in similar fashion to a d-wave superconducting gap,
namely to be at its maximum along the cut from (π, 0) to (π,π) and to vanish along
the diagonal cut (0, 0) to (π,π). With that in mind, we examine the temperature
dependence of experimental gap data, which offers some insight into the relation
between the pseudogap behavior and that of the superconducting gap which sets in
below Tc.

Harris et al. reported a study of Bi2Sr2Ca1−xDyxCu2O8+δ untwinned thin-film
crystals with variable doping controlled by the parameters x and δ [211]. Their gap
energy data scans extend over 1/8 of the (2D) Fermi surface.6 Two separate doping
levels yielded a sample with a “strong” pseudogap effect (Tc = 42K) and a second
one with a much “weaker” pseudogap (Tc = 78K), where “strong” and “weak” are
to be defined presently.

In Fig. 4.27a, b experimental gap energies are shown along an arc of the Fermi
surface which extends from the diagonal (0.4, 0.4)π where the abscissa is zero to
(1, 0.2)π, where it is nearly one. The abscissa is defined as 0.5|cos kxa-coskya|,
which would yield a linear variation of gap energy with a d-wave (dx2−y2 ) super-
conducting gap. For the data in Fig. 4.27a, the superconducting state data (closed
circles) show a nearly linear variation of gap energy along this path. In a conven-
tional superconductor there would be no gap energy above Tc; thus, the curve would
remain flat. However, this Tc = 78K sample has a “weak” pseudogap, so that there
are substantial gap energies at 100K and 150K which behave qualitatively like the
superconducting gap.

On the other hand, the Tc = 46K sample exhibits a “strong” pseudogap, which
means that the gap energy profile shown is the same both above and below Tc,
exhibiting a flat region near the null (abscissa = 0) and rising to a maximum which
is the same near the point (1, 0.2)π both above and below Tc. At 150K the gap
energy shows a small decline. Thus, with a “strong” pseudogap, the gap energy
profile in k–space is very nearly the same above and below Tc. For either a weak or
strong pseudogap, the gap energy behaves in k–space in a very similar fashion to a
superconducting gap, giving the impression that these effects are related.

6The region of k-space considered is triangular, extending from (0, 0) to (π, 0), then to (π,π) and
back to (0, 0). The Fermi surface is an arc extending from ∼(0.4, 0.4)π on the diagonal around to
the point ∼(1,0.2)π on the (0, π)–(π,π) axis.
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Fig. 4.27 a Measurements of anisotropic gap energies taken as described in the text on untwinned
thin film crystals of Bi2Sr2Ca1−xDyxCu2O8+δ are plotted at a series of points near the Fermi
energy for two different doping levels and three temperatures for each [211]. The abscissa (see text)
is such as to give a straight-line characteristic for a dx2−y2 superconducting gap. b Gap energy data
obtained for an underdoped sample of Bi2Sr2CaCu2O8+δ [211] in the same fashion as in (a) are
plotted versus temperature for the square axis region (filled circles) where the gap is maximum and
for the zone diagonal (open circles) where the gap is null. These data show the pseudogap for this
sample vanishing at T ∼ 250K

At what temperature, then, does the energy gap finally collapse in an underdoped
sample? This question is answered in Fig. 4.27, where measured gap energies at the
maximum point (∼(1, 0.2)π) (solid circles) and at the null point (∼(0.4, 0.4)π) (open
circles) are plotted versus T for temperatures up to 250K (Tc = 85K) [211]. At the
uppermost temperature the pseudogap has fully collapsed, the decline beginning at
some point below Tc. Note that these data were taken on a slightly different sample
from those used in Fig. 4.27.

The anisotropic gap behavior found in this system and presumably occurring
widely in the cuprates would have interesting consequences for the behavior of
χ′′(q,ω) and therefore for T1 measurements of pseudogap systems. Although to
our knowledge no such calculation has been reported, it seems very likely that the
observed anisotropy of gap effects over k space would result in some distribution
of gapping effects in q space as well. Speculating about the consequences of this,
it seems likely that nuclei such as 89Y and 17O(2, 3) in YBCO, which depend for
relaxation on q values over the entire zone except near the (0, π) axes would therefore
always be subject to pseudogap effects. On the other hand, the pseudogap anisotropy
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may allow situations where the fluctuations peak strongly at (π,π) and are driven
by k vectors on or near the diagonals. Such behavior could tend to dominate the
planar 63Cu T1 process, which would not then be strongly affected by the pseudogap
behavior. Such a case is found for La2−xSrxCuO4, as was discussed in Sect. 4.1.

4.4 Pseudogap Behavior of YBa2Cu4O8 (Y248)

Another pseudogap system which has been studied intensively is Y248, a supercon-
ductor which is unique among the cuprates in having a fixed, stoichiometric carrier
doping level, which pegs it as slightly underdoped. It appears to have a pseudogap
not unlike that of YBCO6.63 presented in Sect. 4.2. The structure of Y248 is closely
related to YBCO7, except that there are two oxygenated chain layers between the
pairs of CuO2 planes instead of one. Cu(1) sites in the chain layers are staggered
along the b (chain) axis, so that the b-axis oxygen sites O(4) for one chain are apical
oxygens for Cu(1) sites in the neighboring chain. Thus, planar arrays separated by a
double chain layer are also staggered, making the unit cell ∼ 27Å high [214]. This
structure of chains is unusually stable, as the chain oxygens remain bound in place
up to temperatures beyond 700K.

Thus,Y248 is a nearly ideal cuprate onwhich to conduct high-temperature studies.
The equilibrium stoichiometric structure of Y248 also yields unusually narrowNMR
lines, offering the possibility of high-precision NMR studies. We shall see some
examples of this in Sect. 5.1.4.

It is very difficult to measure the ratio of mobile holes which occupy the Cu(1)
and Cu(2) regions of the Y248 structure. It is, however, useful to estimate the doping
level with the simple valence method. Assigning the usual valences, there is a single
mobile hole per formula unit of YBa2Cu4O8, which gives 0.25 carrier holes per Cu
ion. With YBCO6.63, by comparison, the situation is more complicated in that 63%
of the chain sites are oxygenated Cu2+ and 37% are two-fold coordinated Cu+ ions.
On that basis one calculates 0.24 mobile holes per Cu2+ ion, giving very nearly equal
doping for these two systems. There are marked differences in Tc, however, which
is ∼ 81 K for the “best” samples of Y248, but only 60–65K for YBCO6.63. As we
shall see, there are other important differences as well.

4.4.1 NMR Shift and Relaxation Behavior in Y248

It is both interesting and important to compare the pseudogap character of Y248 with
that of YBCO6.63 and other systems. Owing to the simple and seemingly immutable
character of this compound, a big responsibility seems to have been placed upon
it, with a great deal expected of it. Here we examine the general behavior of the
pseudogap effect as reflected in NMR shift (i.e. susceptibility) and relaxation data.
Our point of reference will be the simple behavior found for YBCO6.63 as reflected

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 4.28 NQR results for
1/T1 versus T are shown for
the 63Cu(1) and 63Cu(2) sites
in Y248 and for temperatures
ranging from 4.2K up to
700K [215]. The log-log plot
emphasizes major features in
the data. See text for detailed
discussion

by the data in Figs. 4.16 and 4.23. As concerns the immutability issue, we look at
reproducibility of experimental measurements in data from several research groups.

Let us first look at the overall relaxation behavior in Fig. 4.28. The log scales
give a broad overview of the Cu(1, 2) sites both above and below Tc [215]. The
Cu(1) relaxation rate crosses through Tc looking Korringa-like, much as it did in
YBCO7. For the Cu(2) there is a near discontinuity of slope at Tc which is muchmore
pronounced than in the YBCO6.63 data of Fig. 4.23. Below Tc there is a steep drop
into a very brief T 3 region, which then flattens into a presumably disorder-related (i.e.
states in the gap) Korringa runout below ∼20 K . Above Tc there is a near-Korringa
stretch which flattens into a very gradual increase above ∼200 K . Similar data have
been given by Zimmerman et al. [229]. Apart from the pseudogap onset point around
∼200 K , the normal state behavior is quite featureless. Nonetheless, it is useful to
have data extending as high as 700K. For another view of 63Cu(2) data for Y248 see
the presentation by Yasuoka [217].

In Fig. 4.29 similar data for 63Cu(2) are plotted as 1/T1T versus T [216]. These
data were also taken with NQR, but on a different sample, and are in good agreement
with Fig. 4.28. In Fig. 4.29, data for the 17O(2, 3) are compared with those for 63Cu(2)
up to 250K. The 17O(2, 3) data also show a very definite kink at Tc, below which
they fall well below the corresponding curve for YBCO6.63. Recall that the latter
17O(2, 3) T1 data in Fig. 4.23a show no feature whatever at Tc. The pseudogap effect
in Y248 is therefore somewhat like the Tc = 78K BSCCO sample in Fig. 4.27a for
which the superconducting gap has its own distinct character, while YBCO6.63 is
like the Tc = 46K (b) sample in that same figure, where the SC gap is completely
merged into the pseudogap.
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Fig. 4.29 Relaxation data
for both 63Cu(2) and 17O(2,
3) in Y248 are plotted as
1/T1T versus T , showing
detailed behavior near Tc.
Like the 63Cu(2) plot in
Fig. 4.28, the planar 17O
show a visible break in slope
at Tc

Fig. 4.30 17O(2, 3) NMR
shift data for Y248 are
plotted versus T for
temperatures up to 300K
[215]. Note that the O(2) and
O(3) NMR lines are resolved
below T ∼ 150K, but merge
above that point. See text for
discussion and possible
interpretation

In contrast with T1 data, neither the Cu(2) NMR shift [215] nor that of the
17O(2, 3) show any abrupt change at Tc. The latter shift data 17Ki,c(T ), i = 2 and 3,
are shown in Fig. 4.30 where, unlike the case of YBCO6.63, they are resolved and
separately measurable. The latter data presumably offer a reasonable measure of
the pseudogap, but unfortunately these data have a very large, negative intercept at
T = 0, and no value of the zero shift has been given for either site. We shall make
some guesses about the T = 0 shifts and diamagnetic corrections in our analysis
below.

Another peculiar feature of the latter 17O(2, 3) NMR shift data is the fact that these
two sites have distinct and well-resolved T = 0 shift values, but as the temperature
rises above Tc the two lines gradually merge together. This could be entirely coin-
cidental, resulting from slightly different HF coefficients. Alternatively, there could
be chemical migration of O2− ions in the CuO2 planes at a rate τ−1

cm which increases
with temperature and eventually becomes fast enough

γ17HΔK2,3τcm 	 1 , (4.4.1)
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Fig. 4.31 An Arrhenius plot of several sets of NMR shift data for Y248 is presented to make
estimates of the pseudogap energy for the density of states. The data are scaled to arbitrary positions
along the vertical axis for display purposes. The data shown are, set (i): 17Kab(T ) (triangles),
17Kc(T ) (diamonds), 65Kab(T ) (circles) from [218]; set (ii) and (iii) (same data, see text) 17Kc(T )

(open and closed squares) from [216]; and set (iv) 89Kc(T ) (dots) from [219]. The lines drawn are
approximate fits to the data for the purpose of extracting pseudogap energies from the slopes

so that the two NMR lines merge into one. The latter possibility seems a bit remark-
able, but would avoid an evenmore remarkable coincidence with the HF coefficients.
It would be easy to test the chemical migration hypothesis with selective saturation
techniques. As far as we know this has not been done.

We now inquire as to whether the Y248NMR shift data can provide a simplemea-
sure of the pseudogap energy, as they did for YBCO6.63 (see the inset to Fig. 4.16).
Accordingly, several NMR shift data sets are plotted as ln(K(T)) versus 1000/T
in Fig. 4.31 for temperatures down to Tc. The linear slope of such a plot gives one
measure of the pseudogap energy. The data shown here have been scaled up and
down for display purposes. At the top we see data set (i), 17Kc,ab(T ) and 65Kab(T )

(triangles, diamonds and circles) from Bankay et al. [218]. The straight line drawn
through these points defines a gap energy TG � 84 K , which is ∼20% smaller than
that of YBCO6.63. The open and filled squares are both plots of the data for 17O(3)
from Fig. 4.30, with two different assumptions regarding 17K3,c(0). In (ii) 17K3,c(0)
is assumed to be−0.04%, with a diamagnetic correction of−0.005%, while in (iii) it
is assumed to be −0.02% with a diamagnetic correction of −0.025%. Both assump-
tions lead to a reasonable straight line, with TG � 96K and 106K for (ii) and (iii),
respectively. Option (ii) probably makes better physical sense and gives a gap energy
closer to that of data set (i). Our main conclusion from plots (i)–(iii) is that Y248
NMR shifts showArrhenius-type behavior with pseudogap energies 10-20% smaller
than YBCO6.63.

Data plot (iv) in Fig. 4.31 presents the 89YNMR shift data byWilliams et al. [219],
which the authors presented in a proposed test of the pseudogap isotope effect. The
undifferentiated data points shown are for both 16O and 18O-doped samples, which
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gave indistinguishable behavior over the range of temperatures (131–370K) shown.
The data are very precisely measured as one can see from the small scatter of the
points, but the most striking thing is, first, how differently these 89Y data points
behave compared with the other two data sets, and secondly, that they do not appear
to correspond to a well-defined gap energy in this kind of plot. Noting that in a
stoichiometric sample of Y248 with low disorder one would expect NMR shifts of
the 89Y, 17O(2, 3), and 63,65Cu(2) to follow a common temperature dependence as
they did in YBCO6.63 (Fig. 4.16), the results shown suggest that the sample material
used for data set (iv) is somewhat different from that used for data sets (i)–(iii).

In the following subsectionwe review effortswhich have been reported tomeasure
the pseudogap isotope effect in Y248.

4.4.2 Measuring the Pseudogap Isotope Effect in Y248
with NMR

The 89Ydata set (iv) inFig. 4.31was reported as part of an effort to evaluate the isotope
effect, if any, on the pseudogap and on Tc in Y248 [219]. The samples employed for
that purpose were annealed with 16O and and with 18O, respectively, and were found
to have Tc(16O) − Tc(18O) � 0.65K, in reasonable agreement with previous work
[220]. The shift data, as noted in the previous subsection, show no isotope effect to
the unaided eye for T > 130 K , while undergoing a pseudogap-related decrease of
∼40% from their peak values at 370K. It is interesting at this point to inquire as to
how large a change in the NMR shift curve is expected if the isotope effect parameter
αg = αc?

First, let us define αc,g = dln(Tg,c)/dln(M), where M is the oxygen atomic
weight. Note that if αc = αg , then ΔTg/Tg = ΔTc/Tc. We shall now use this in
a very simple way to estimate the change which might be expected in the 89Y NMR
shift curve. If we consider the gap function K(T) = K0 exp(−Tg/T ) (or any function
purely of Tg/T ), then the temperature interval ΔT between equal values of shift for
the two curves is |ΔT/T | = |ΔTg/Tg|. The fits to shift data in Fig. 4.31 gave Tg ∼
90K; at T = 130K, then, we expect curves shifted by ΔT ∼ 1.1K.7 At the lower end
of the data curve the slope is ∼ 1ppm/K, leading one to expect deviations with the
foregoing temperature shift of ∼ 1 ppm. As the inset shows, there are deviations of
that order, but the fluctuations are large. To resolve such an effect would require a
very precise fitting curve and a large number of data points. In the light of the analysis
given below for a different experimental effort to achieve the same end, we suggest
that the 89Y NMR shift data given were excellent, but the foregoing analysis in the
present case does not quite rule out the possibility of a pseudogap isotope effect.

A second effort to measure the pseudogap isotope effect was made via NQR
studies of the 63Cu(2) relaxation curve for Y248, with the basic data plot of 1/T1T
versus T shown in Fig. 4.33b [221]. The data shown are for two samples, one with

7This estimate is somewhat smaller than that of the authors [219], which is not stated explicitly.
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16O and one with∼ 90%18O, as in the previous case. The peaks in the two curves are
seen to occur at T ∼ 150K, where there is a razor-thin margin between the curves
fitted to the two sets of data. At 0.47K, the measured difference in Tc values for
the 16O and 18O samples is slightly smaller than in the previous case. The key to
analyzing the isotope effect here is to find a functional fit to the data curves. For this
purpose the authors have used

1
63T1T

= C

T a

[

1 − tanh2
[

Δ

2kBT

]]

, (4.4.2)

where the factor T−a ,a ∼ 1, fits theCurie-like decline of 1/T1T at high temperatures,
and Δ = kBT ∗ acts as the spin pseudogap energy—see discussion below. The data
are a good fit to (4.4.2), but the deviations were not quite random. The authors have
therefore tinkered with the temperature scale a bit [221] and thus achieved the high-
quality fit to the data shown in Fig. 4.33. This fit gives a shift in T ∗ for the two samples
test of 0.96K. It is interesting that this temperature shift is less than was predicted
for the 89Y NMR shift curves in Fig. 4.32, but was resolved using a precisely fitting
function and a large number of data points.

The pseudogap energy value turned out to be T ∗ = 246.9K for the 1/T1T curves
[221]. This is more than twice the values found with the Arrhenius plots in Fig. 4.31.
Further, although (4.4.2) is just a fitting function, T ∗ really serves as an energy gap,
since the asymptotic form of (4.4.2) is 1/T1T ∝ T−a exp(−T ∗/T ) for T ∗/T � 1.
Note, however, that the NMR shifts represent the residual density of states, whereas
T ∗ represents the DOS squared. The appropriate comparison is therefore between
T ∗/2 and Tg ∼ 90K from the NMR shift results. Whether you consider T ∗/2 or Tg

to be the pseudogap energy is a matter of preference.
It seems, then, at least for the dynamics there is a pseudogap isotope effect which

is similar to that of Tc. So far as we are aware, there is no theoretical prediction
available for the variation of the pseudogap with the atomic weight of the oxygen.

Fig. 4.32 ynmrshift@89Y
NMR shift data measured on
two samples of Y248, one
with nearly 100% 16O (+
symbols) and the other with
� 94% 18O (circles) [219].
The difference between these
data plots is clearly smaller
than the plotting symbols.
Inset: Plot of the differences
along with calculated
difference curves. See text
for discussion
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Fig. 4.33 T1 data are plotted as 1/T1T versus T for two samples of Y248, one with 16O and the
other with ∼ 88% 18O [221]. Using the functional fit shown (see text) the difference in these two
relaxation curves near their peak at T ∼ 150 K is analyzed to find a difference in the pseudogaps
roughly equal to that found for Tc. See text for detailed discussion. Inset: Detailed view of the peak
vicinity

4.4.3 Theory of the Pseudogap by Varma

The only successful theory of the pseudogap which we are aware of is that by Varma
[222]. Varma has constructed a theory of cuprate superconductivity and ancillary
properties, based on the existence of a quantum critical point (QCP) at the center
of the superconducting dome of the phase diagram shown in Fig. 4.34, where the
abscissa is the doping level or carrier concentration in the CuO2 planes. Region I
is the marginal Fermi liquid regime proposed and expounded in [159]. The pseudo-
gap effects occur in Region II below the line Tp(x) [222]. In Region II there is a
broken symmetry based on time-reversal violating (TRV) states in which fluctuating
currents flow in the CuO2 plane. The existence of such currents has been verified
experimentally via neutron-scattering experiments [223].

The aforesaid theory also predicts anisotropic gapping in k-space near the chemi-
cal potential in Region II of the phase diagram, as was depicted by the gapping curves
in Sect. 4.3.2. Corresponding calculations of the density of states in the pseudogap
regime have been presented for comparison with experimental data on Y248. In
Fig. 4.35 the 89Y NMR shift data from [219] (see Fig. 4.32) are compared with a
calculated pseudogapped density of states from [222], where an excellent correspon-
dence is seen to occur. It would, of course, be most interesting if more detailed calcu-
lations of, e.g. χ′′(q,ω)would be forthcoming, for comparison with the q-dependent
relaxation effects in these systems.
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Fig. 4.34 Phase diagram of
doped cuprates showing the
putative quantum critical
point at the center of the
superconducting dome [222].
From normal metal behavior
at high doping levels (III),
there is a crossover to the
marginal Fermi liquid
behavior in (I) followed by
pseudogap behavior below
the line Tp(x) emanating
from the QCP. The
calculations presented in
[222] are for Region II

Fig. 4.35 The 89Y NMR
shift data from Y248 (see
Fig. 4.32) is shown here fitted
by the pseudogap theory
given by Varma [222] (solid
line), yielding an excellent fit
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4.4.4 Effect of Zn Impurities on the Pseudogap in Y248

From early on it has been known that Zn impurities—thought to substitute for the
Cu(2)—cause a dramatic reduction of Tc in high-Tc cuprates [224]. Even though
Zn2+ is a nonmagnetic ion core, its presence in the CuO2 plane (as well as Li+) is
thought to cause potential scattering which destroys d-wave pairs, and it also causes
the occurrence of a small localized magnetic moment in the same vicinity [225].
The latter is a very interesting effect in its own right, even exhibiting a Kondo effect
[226, 227].

The strategy of Zn-doping to eliminate the effect of the SC transition on the
pseudogap was adopted by Zheng et al. [228]. However, instead of the collapse of
AFM spin fluctuations as found with YBCO7-x, the Zn-doped Y248 undergoes an
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Fig. 4.36 A plot of data for
1/T1T for 63Cu(2) in Y248
made with samples which
are undoped (open circles)
and doped with 1% Zn
(closed circles) and 2% Zn
(closed diamonds), showing
suppression of Tc from 74K
to 53K and ∼ 27 K ,
respectively, combined with
large progressive increases in
the value of 1/T1T at
T = Tc [228]. The
corresponding change in the
NMR shift curve is slight
and barely resolvable

enhancement of 1/T1 for 63,65Cu similar to the Curie-Weiss Behavior of T1T in
LSCO:x [279], as shown in Fig. 4.36. With 2% Zn substitution, the peak value of
1/T1T is almost three times the peak value of that quantity in the undoped case.
Meanwhile, the NMR shift profile remains spin-gapped with effectively no change
[228], in spite of a reduction of Tc by a factor ∼ 3. The latter result suggests that the
SC transition was already having very little effect on the shift profile in the undoped
case.

The Zn impurities, while suppressing Tc, have the very specific effect of un-
gapping the Fermi surface regions which contribute to χ′′(q,ω) near q = (π,π),
or so it would appear. In connection with these remarkable data, the results of two
additional relaxation measurements would be of great interest. First, a comparative
plot of T2g for the 63Cu(2) over the same temperature range would give a direct
measure of the doping effect on χ′(Q) (see Sect. 6.1). Second, the T1 behavior of
either 89Y or of 17O(2, 3) would test the effect of Zn doping on low–frequency
fluctuations away from Q as a corroboration of the unchanged NMR shift results.
In other words, these measurements would further test the scenario where the Zn
doping effect appears to be confined to the region of the AFM peak.

http://dx.doi.org/10.1007/978-3-662-55582-8_6


Chapter 5
Relaxation Models for Cuprate NMR

From the very beginning of cuprate NMR studies, it was clear that understanding
the relaxation properties for all sites with nuclear spin species would be one of
the major challenges for the theorist and experimentalist alike. In Chap. 3 the Mila-
Rice-Shastrymodel [118, 146] was presented, including the quantum-chemical basis
for transferred HF couplings and the spin Hamiltonian treatment of local spin and
orbital HF effects on the Cu2+ sites. With the latter formulation a complete charac-
terization of the NMR shift tensors for YBCO7 and YBCO6.63 has been presented
in Chaps. 3 and 4. Then, using general expressions for 1/T1, Mila and Rice dis-
cussed T1 anisotropy for 63Cu(2) in YBCO7 (Sect. 3.3.4). A simplified model given
in Sect. 4.1.2 offered an interpretation of T1 anisotropies and spin correlation effects
for the 89Y and 17O(2,3) sites. These developments set the stage for the most serious
challenge, which is the locally-varying, overall temperature dependences of the T1
processes in these compounds. Such a panorama of complex relaxation behavior was
never encountered before the cuprates were discovered.

A variety of models treating the relaxation processes have been put forward in
the literature. Here, we will review the results of several of these models in an
effort to gauge the present status of our understanding of these matters. There have
been phenomenological models put forward by Monien and Pines [160] and Millis
et al. [161, 162], where the AFM fluctuations are taken into account by means of
an RPA treatment of the AFM exchange interactions. Moreover, it is assumed and
is consistent with experiment that the Cu2+ spin variables are itinerant and undergo
pairing in the superconducting state. Similar modeling along these lines has also
been put forward by Horvatić et al. [250].

These models were presented early on and gave a reasonable account of the data
which were available at the time. In particular, they met the challenge of explaining
the behavior of allmeasured relaxation processeswith a single dynamical variable per
Cu site, and did so using only HF couplings generated by the Cu2+ spin moments, in
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a picture consistent with the Mila-Rice model [118] of on-site spin Hamiltonian and
transferred HF couplings of the general form

∑
α AαSαIα. A possible deviation from

this form may occur in the case of 89Y in YBCO compounds, where the transferred
coupling is very weak and the dipolar interactions, which do not have the latter form,
come into play.

In Chap.3 a relaxation formalism was reviewed in which, using the fluctuation–
dissipation theorem, 1/T1 may be expressed as a summation over the Brillouin zone
(BZ) of the dynamic susceptibility χ′′(q,ω)multiplied by Fourier components of HF
coupling energies having the form given in the previous paragraph. Thus, T1 may be
estimated from absolute and quantitative data for χ′′(q,ω), combined with HF cou-
pling data derived from NMR shift and susceptibility measurements. In Chap.4 such
data derived from INS studies and the NMR literature are presented, and quantitative
analyses of T1(T) are reviewed for optimally doped LSCO and for oxygen-deficient
YBCO6.5. Over limited ranges of temperature and composition quantitative agree-
ment between INS and NMR data are found to occur, with no adjustable parameters.
That is the strength of this scheme. The weakness is that the INS data, in particular,
are extraordinarily difficult to obtain, and it was found for both systems studied that
the term inχ′′(q,ω) that exhibits the pseudogap effect is inaccessible to conventional
INSmethods, while such a term completely dominates the T1 process at temperatures
well above Tc.

It is clear from the foregoing, however, that a “theory” of the T1 process is essen-
tially a theory of χ′′(q,ω). A slightly different approach to modeling the dynamical
susceptibility has been pursued by Auler et al. [245], where the basic form of the
dynamic susceptibility was taken directly from INS data. This scenario had the
unusual feature that the range of spin-spin correlations was fixed, although their
strength was allowed to increase as temperature was lowered. These authors also
made the unusual step of using spin-echo decay time (T2g) measurements to deter-
mine the strength of the AFM susceptibility peak. In reviewing the results of their
analysis, we shall find that a satisfactory account of the data can be achieved in this
fashion.

Beyond phenomenology, there have also been first-principles model calculations
by Bulut and Scalapino [158] and by Si et al. [254]. The latter are, of course, more
difficult to formulate and execute, but these have yielded impressive insights. Finally,
there has been a proposal by Varma which departs from the usual spin HF-only
picture wherein an intersite orbital matrix element is suggested to make an important
contribution to the Cu(2)-site relaxation process [244]. The essence of these various
results will be summarized below.

This chapter will begin, however, with discussion of a simple, yet ingenious
scheme to characterize the cuprate relaxation processes developed by Uldry and
Meier [195] (UM). This is a scheme of a fairly general nature for characterizing
the spin dynamics and spin-spin correlations which determine the relaxation behav-
ior in the CuO2 planes. It serves as a useful framework for evaluating almost any
experimental data or theoretical picture.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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5.1 The Uldry-Meier Parameterization Model

TheUldry-Meier (UM) approach to the analysis of cuprate relaxation data relies only
on a general formulation of spin-fluctuation T1 processes, which is characterized
by just three elements, (i) the HF constants, (ii) real-space, dynamical spin-spin
correlation coefficients, and (iii) an effective correlation time variable in which the
temperature variation of the spin dynamics is also implicit in a very general way. The
HF parameters used are those derived from the Mila-Rice-Shastry model (3.3.4) for
each site in and near the CuO2 planes.1 The spin-spin correlations and correlation
time which characterize the relaxation processes are assumed to apply to all nuclear
species considered, e.g. the 63Cu(2), 17O(2,3), and the 89Y inYBCO7andYBCO6.63,
etc. The spin-spin correlations are allowed to be anisotropic, but the correlation time
variable is assumed to be isotropic and common to all spin fluctuation processes.
After describing the UM analysis, the broader significance of this methodology will
be discussed at the end of this section.

5.1.1 Basic Formulation of the UM Analysis

In the first step, UM define single-axis T1 components

1

T1α
= Uβ +Uγ , (5.1.1)

where the subscripts are a permutation of the axes (a, b, c). Thus,Uα is an axis-specific
fluctuation term given by

Uα = 1

4

∑

i,j

[AiαAjαKα
ij ]τeff , (5.1.2)

where Aiα is the HF coefficient for the ith neighbor spin Siα (see (3.3.2)), and theKα
ij

are now defined as
Kα

ij = 4〈SiαSjα〉 , (5.1.3)

where the index α allows the spin-spin correlations to be anisotropic. The only
Kα

ij ’s which will occur in the analysis are Kα
ii = 1 and Kα

01, Kα
12, and Kα

13, where the
subscripts refer to the sites in Fig. 3.6. However, as was done in Chap.4, we shall
relabel these coefficients Kα

1 , Kα
2 and Kα

3 , respectively, for the first three neighbor
pairs of Cu(2) sites in the CuO2 lattice. This notation is used for the remainder of
Chap.5.

1The Cu(1) sites and environs in YBCO are set aside as a separate problem.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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http://dx.doi.org/10.1007/978-3-662-55582-8_4


170 5 Relaxation Models for Cuprate NMR

The correlation factors, originally introducedbyMila andRice [118],were defined
and discussed in Sects. 3.2 and 3.5. In particular, they are easily expressed in terms
of χ′′(q,ω) (see (3.5.17) and (3.5.18)). The parameter τeff plays the role of a corre-
lation time in (5.1.2), but also contains the effects of quasiparticle dynamics in the
calculation. At low temperatures, for example, τeff ∝ T . In Sect. 3.5 a similar quan-
tity Xat was introduced, where we can make the identification τeff = (kBT/�)Xat . In
fitting (5.1.2) to the experimental data, the principal assumption is the form of the
HF coupling Hamiltonian (3.3.4), where it should be noted that deviations from this
form (e.g. dipolar coupling) are not unusual.

In order to fully characterize the relaxation process of a given nuclear site, it
is necessary to have T1 data from all three axes, since from (5.1.1) we have Uα =
1
2 [1/T1β + 1/T1γ − 1/T1α]. It simplifies, of course, if there is ab plane symmetry.
Thus, it is necessary to have a full data set for all nuclear sites of interest in order
to apply this scheme of analysis to any given cuprate. In Fig. 5.1a–c, a 100–300K
data set is shown for 63Cu(2) [143, 156], 17O(2,3) [205], and 89Y [191] in YBCO7,
plotted as 1/T1T versus T . Using (5.1.1), the corresponding (interpolated) plots for
63Uα, 17Uα, and 89Uα are shown in Fig. 5.1d–f. It is remarkable how similar the latter
curves look when plotted as 1/T1 rather than as 1/T1T .

The next step is to make a simplifying approximation regarding the Kn’s. Since
the three coefficients described above correspond to spin sites separated by dis-
tances r1 = a/2, r2 = a/

√
2, and r3 = a, respectively, UM have assumed that

Kα
2 = (Kα

1 )
√
2, and Kα

3 = (Kα
1 )2, which is equivalent to the assumption of the form

Kα
n = exp(−2rn/aλα). At each temperature, then, the fit procedure only has to deter-

mine the two values λab,c, rather than six Kα
n ’s. If this approach should prove unsat-

isfactory it could easily be modified.
It is also convenient to define, along with the kUα’s, a parallel set of coefficients

kVα, given by kUα =k Vα τeff. Then from (3.5.20), (3.5.21), and (3.5.22) we have

63Vα(T) = 1

4
[A2α + 4B2 + 8AαBKα

1 (T) + 8B2Kα
2 (T) + 4B2Kα

3 (T)] (5.1.4a)

17Vα(T) = 1

2
C2

α[1 + Kα
1 (T)] (5.1.4b)

89Vα(T) = 2D2
α[1 + 2Kα

1 (T) + Kα
2 (T)], (5.1.4c)

where superscripts are used to label the isotope concerned. Since the HF coefficients
used here relate directly to (3.3.2), their anisotropies as well as those of the λα’s
should stem directly from the data in a natural way.

Finally, it is important to note that the Eq. (5.1.4) derived by UM with a very
simple equation of motion, are exactly equivalent to (4.1.8) and (4.1.9) for 63Cu and
17O, respectively, in the case of isotropic correlations, derived originally in Chap.3.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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(a) 63Cu(2)

(d) 63Cu(2)

(b)  17O(2,3)

(e)  17O(2,3)

(c)  89Y

(f)  89Y

Fig. 5.1 a–c Relaxation data for YBCO7 plotted as circles, upward triangles, and diamonds from
[156] (63T1c), [143] (63T1ab), [205] (17T1α), and [191] (89T1γ ) are plotted as 1/T1T versus T . Solid
lines drawn are fitted curves derived from the UM model calculations (see text). The downward
triangles are supplemental data included to illustrate high-T behavior for the 17O(2,3) [147] and the
89Y [206], as discussed in the text. d–f Interpolated values of kUα(T) derived from the data shown
and described in (a)–(c), with which the actual fitting process was conducted. The solid lines drawn
are guides for the eye. The straight line drawn in panel (d) shows 1/63T1 versus T for Cu metal for
comparison
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5.1.2 The Uldry-Meier Analysis of YBCO7

To apply this formulation to the data in Fig. 5.1d–f, the following procedure was
employed. Defining the six ratios,

R1 =
63Uc

17Uc
; R2 =

63Uab

17Ua
; R3 =

63Uab

17Ub
; R4 =

17Ub

17Uc
; R5 =

89Uc

89Uab
; R6 =

17Ua

89Uc
,

(5.1.5)

the HF constants in (5.1.4) and the λα’s are then determined by minimizing the
quantity

χ2 = 1

nR

nR∑

i

np∑

j

[Rexp
i (Tj) − Rmod

i (Tj)]2
Rexp
i (Tj)2

, (5.1.6)

where nR and np are the numbers of ratios (= 6) and the numbers of points (= 10),
respectively, and where the Rmod

i for the “model” are actually calculated from (5.1.4)
in terms of the HF constants and the λα’s. The HF parameters so obtained are listed
in Table5.1, where for comparison a “standard” set of parameter values from UM
are given, as well as the YBCO parameters derived from NMR shift data in Chaps. 3
and 4. We consider these comparisons in detail below.

Theλα’s and the results for τeff from the fitting procedure are displayed in Fig. 5.2a
and b, respectively. The correlation lengths, which are of the order of the lattice con-
stant, are seen to execute a smooth progression toward longer values as T decreases,
a process which accelerates below 150K. They also find consistent anisotropy of
∼20%, the stronger c-axis correlations suggesting the possibility of a corresponding
exchange anisotropy between neighboring Cu2+ spins. Although the fitting scheme
with the ratios ri promotes consistency among τeff values it is nonetheless remarkable
how nicely they each describe a very similar arc with temperature. As we shall see
below, some of the most subtle physics of the cuprate spin fluctuations is embodied
in the behavior of τeff, where even at this point a great deal remains to be understood.

Table 5.1 HF coefficients defined in (3.3.4) and derived from the UM fit procedure with the T =
100K relaxation data shown in Fig. 5.1, as described in the text, are listed and compared with data
presented by Nandor et al. [206] as well as with data derived from NMR shift measurements as
described and presented in Tables3.4 and 3.6. HF coefficient values are given in units of 10−6 eV.
See text for discussion of these results

HF
constant

63Ac
63Aab B 17Ca

17Cb
17Cc −89Dab −89Dc

UM fit −1.68 0.168 0.438 0.259 0.173 0.196 0.00280 0.00349

Nandor −1.6 0.29 0.4 0.25 0.13 0.156 0.0048 0.0048

Shift
Coef.

−1.67 0.05 0.409 0.355 0.217 0.209 0.00286 0.00369

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 5.2 a Correlation
lengths λab (circles) and λc
(triangles) derived from the
UM fit to YBCO7 are plotted
versus T over the range of
the fit. Inset: Low and high-T
asymptotic behavior used to
extrapolate the λα’s is shown
with dotted lines. b The
average (circles) and
extremal (dashed lines)
values for the seven sets of
τeff parameters obtained
from the T1 data fit for
YBCO7 are plotted versus T .
The dotted line is a fit to
these data which is
extrapolated down to T = 0
and upward to T = 600K.
This fit and its interpretation
are described in the text

The HF coefficients from the fit are compared with values from other sources
in Table5.1. The HF constants labelled “Nandor” [206] are actually mostly derived
from Barzykin and Pines [240], and are seen to be in rough accord with the fit.
The “Shift Coef.” values shown have been converted from the primed coefficients
in Tables3.4 and 3.6 using (3.3.4) so that g-factor anisotropy (3.3.7) comes into
play. The value of B given, for example, comes from c-axis shift measurements. The
value of 63Aab = 0.05 × 10−6 eV is obtained by subtraction of large values and is
correspondingly unreliable. The agreement of the 63Ac and of the 89Dα tensor is very
good, indeed.

The fitted values of the 17Cα are 10–20% below those derived from the NMR
shifts. This is an interesting point, because the “T1 problem” for the 89Y discussed in
Sect. 4.2.2 has been managed in the UM fit process not by enhancing the 89Dα tensor
coefficients, but by reducing the 17Cα ones. Either way, there will be a discrepancy
between shift coefficients and those derived from relaxation. We continue to believe
that there is an additional 89Y relaxation process (orbital or dipolar), which is beyond
the effects of the MRHamiltonian (3.3.2). In spite of this effect, there is quite a good

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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correspondence between HF constants derived from the UMfit and those fromNMR
shifts.

It is also noteworthy that the fitting procedure based on (5.1.5) is independent
of scale. That is, all HF constants (i.e. the kVα’s in (4.1.4)) can be multiplied by a
uniform scale factor and the results will not be affected. Thus, any set of results for
the HF constants needs to be keyed to some particularly reliable value. In Table5.1
the results are, in effect, keyed to 63Vc.

The UM fitting procedure leads to temperature dependences for the correlation
lengths λα shown in Fig. 5.2a and to seven estimates (from the kVα’s in (5.1.4)) for
the correlation time curve τeff(T), which are summarized in a plot in Fig. 5.2b. In
the latter case the extrema of the bundle of seven curves are shown as dashed lines,
where the circles are the average values. The dotted line is a functional fit described
below. Considering the 89Y relaxation rate anomaly noted above and in Sect. 4.2.2,
the degree of consistency among τeff values is surprisingly good.

Extrapolation of the Fits to Higher Temperatures

In Fig. 5.1a–c we see that the fits are generally very good over the fitting temperature
range. However, UM went on to extrapolate their fits to higher temperatures with a
fitting function ansatz as follows. The general behavior of τeff(T) in Fig. 5.2b is one
of downward curvature, but linear in T at the low-T end. The latter feature is expected
in metallic hosts, but the curving over is much greater than could be attributed to loss
of Fermi-statistical degeneracy. They propose a fitting function wherein a Fermi-
statistical term τ1 = aT is combined in an inverse fashion with a constant term τ2
which dominates at high temperatures. Thus [195],

1

τeff
= 1

τ1
+ 1

τ2
= 1

aT
+ 1

τ2
, (5.1.7)

where a = 7 × 10−18 s/K and τ2 = 3 × 10−15 s. The line representing this function
is plotted in Fig. 5.2b as a dotted line up to 600K. In Sects. 5.4 and 5.5 we shall look
for the possible origin of this flattening effect in the Hubbard models. However, it
does not appear to have been successfully identified yet.

The physics of the ansatz (5.1.7) is a bit unfamiliar, because normally when two
rates combine inversely, it is the “faster” of the two which dominates. Here, however,
at high temperatures when the Korringa T1 is very short, it is undercut by a weaker
relaxation process. As for the form of τ1, Pines and Slichter [241] suggest a picture
where τ1 = τcT/TF is made up of a correlation time factor τc ∼ �/EF representing
the dwell time of a carrier in the unit cell, and T/TF represents a Fermi-statistical
scattering probability factor. Thus, a = �/kBT 2

F , from which UM estimated TF ∼
1000K. Meanwhile, τ2 appears to represent the behavior of the gas of quasiparticles
when the degeneracy is completely lifted.

This extrapolation of the curve for τeff(T) is also used to extrapolate the fit curves
in Fig. 5.1a–c. It is interesting to compare these extrapolations with high-temperature
data by Nandor et al. [206] for 17O(2,3) and for 89Y, shown in panels (b) and (c) as
downward triangles. The data for 17O(2,3) fall somewhat below the fitted data, but

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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show a temperature dependence which is in general accord with the extrapolated
model prediction. For the 89Y, however, contrary to the model the data are flat if
not slightly rising with temperature. This behavior is consistent with the finding in
Sect. 4.2.2 that there is an additional relaxation term for the 89Y beyond what is
derived from (3.3.2). A possible orbital term was mentioned in Sect. 4.2.2. There are
also dipolar terms which do not follow the spin-spin correlations [191]. The dipolar
terms have also been calculated by Auler et al. [245] and are discussed further in
Sect. 5.3.

The Spin Correlations and the “Basic” Relaxation Mechanism

The fit to YBCO7 data illustrates rather dramatically the role played by antiferro-
magnetic (AFM) spin-spin correlations in the relaxation processes of all nuclei. It is
interesting in this connection to examine the behavior of kVα(T). According to the
definitions (5.1.4), the kVα(T) can vary fromahigh-temperature limitwhereKn → 0,
to a fully correlated limit at low T where (in principle) K1 → −1 and K2,K3 → 1.
The T → ∞ limits for the kVα(T) are defined to be kV 0

α , and are given by

63V 0
α = 1

4
(A2

α + 4B2) (5.1.8a)

17V 0
α = 1

2
C2

α (5.1.8b)

89V 0
α = 2D2

α . (5.1.8c)

The “basic” relaxation mechanism is what it would be in the absence of AFM cor-
relations and is given by 1/kT1α =k V 0

α τeff. Thus, apart from a scale factor, it is the
same for all nuclei in the system.

The AFM correlation factors are the only thing which distinguishes the behavior
of different nuclei. Figure5.3a–c illustrate this point by plotting the kVα(T) versus
T for the YBCO7 fit. (Figure5.3d–f plot the same quantities for YBCO6.63—see
discussion below.) The high-temperature (Kn = 0) limits are shown as solid bars
on the right, and the low-temperature limits by solid bars on the left side of the
figures. The T → 0 behaviors are estimated by extrapolating the correlation lengths
in Fig. 5.2a by means of the dotted lines shown in the inset. The behavior seen in
these plots shows (i) that the correlation causes the relaxation rates of the 63Cu(2) to
increase and those of the 17O(2,3) and the 89Y to decrease, and (ii) that the behavior of
all three nuclear species is changed by similar amounts as a result of the correlations.
In this picture it is something of an accident that the 17O(2,3) and the 89Y relaxation
processes appear to be Korringa-like in the normal state.

According to Fig. 5.3a–c the AFM correlations make sharp increases in the super-
conducting state. It must be emphasized that this is an extrapolation of normal-state
behavior and is entirely hypothetical. As we shall see in Sect. 5.7, the actual behavior
below Tc is quite different from what is shown here.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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(a) 63Cu(2)

YBCO7 (d) 63Cu(2)

YBCO6.63

(b)17O(2,3)

YBCO7

(e) 17O(2,3)

YBCO6.63

(c) 89Y 

YBCO7

(f)  89Y

YBCO6.63

Fig. 5.3 a–c Curves are plotted representing 63Vα(T), 17Vα(T), and 89Vα(T) for the fit to YBCO7
in (a), (b), and (c), respectively. The solid bars on the right represent the values of kV 0

α corresponding
to zero spin correlations, and the bars on the left represent maximum correlations as explained in the
text. The data plotted are seen to run between these two limits. The zero-temperature points for these
curves were obtained by extrapolating the variation of the λα’s near 100K to zero temperature. Such
an extrapolation is entirely hypothetical. d–f Curves are plotted representing 63Vα(T), 17Vα(T),
and 89Vα(T) for the fit to YBCO6.63 in (d), (e), and (f), respectively. These results are similar to
those on the left, but AFM correlations show a wider range and reversed curvature as compared
with YBCO7



5.1 The Uldry-Meier Parameterization Model 177

5.1.3 The Uldry-Meier Analysis of YBCO6.63

Avery similar analysis to that described abovewas carried out byUMforYBCO6.63.
The quality of the input data was perhaps not quite as good, and there were no
data at all for 63T1ab. The analysis was simplified a bit by adopting the HF tensor
values shown in Table5.1 for the YBCO6.63 analysis (recall that the values derived
from NMR shifts in Chap.4 were found to be nearly the same). The fitted curves
(not shown) were only slightly less good, where, not surprisingly, the 89Y fits were
noticeably worse than the others.

The results for kVα(T) curves are shown in Fig. 5.3d–f, where they are seen to be
quite different from those for YBCO7. The correlation lengths for YBCO6.63 were
longer than for YBCO7, reaching ∼2.5 a or so. As a result the range and magnitude
of the correlation factors driving the kVα(T) curves are considerably greater than for
YBCO7. Another interesting feature is that the curvature of the kVα(T) curves is in
all cases the opposite in these two systems.

There was also slightly more scatter in the τeff(T) curves for YBCO6.63, shown
in Fig. 5.4a, where they execute a considerably greater range than for YBCO7
(Fig. 5.2b). This, of course, results from the gapped nature of the static and dynamical
properties of YBCO6.63. The average curve for τeff (circles) was again fitted with
the ansatz (5.1.7), except that a gap feature is introduced into the density of states
with

τ1(T) = a T exp(−Tg/T). (5.1.9)

With that modification, (5.1.7) was fitted to the data in Fig. 5.4a and is shown as
a dotted line extending from 0 to 600K. The fitting parameters are listed below in
Table5.2, where a and τ2 are seen to be quite similar to those for YBCO7. The gap
energy Tg = 94K is very close to that (104K) derived from the susceptibility in
Fig. 4.16, rather than being twice that value as we found for Y248 in Sect. 4.4. The
slightly lower value for a suggests a somewhat lower degeneracy temperature for
YBCO6.63 as shown in the table.

5.1.4 The Uldry-Meier Analysis of YBa2Cu4O8 (Y248)

The foregoing analytical scheme was also applied, in a somewhat restricted fashion,
to the case of Y248, analyzing the same body of NQR data for 63Cu(2) as were
discussed in Sect. 4.4. The method was restricted owing to a total lack of T1 data for
other sites and orientations. As a consequence, the 63Vab(T) curve for YBCO7 (see
Fig. 5.3a) was adopted for the Y248 calculation, where

1
63T1c

= 2 63Vabτeff. (5.1.10)

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 5.4 a The data for
τeff(T) derived from the fit to
several relaxation curves
from YBCO6.63, as
described in Sect. 5.1.3. The
circles plot the average
values of τeff, and the dashed
lines show the most extreme
values. The dotted line is a fit
of (5.1.7) and (5.1.9) to the
average values, extrapolated
to 0 and 600K. b Values for
τeff(T) derived from the fit to
the relaxation curve for
63Cu(2) in Y248, shown in
Fig. 5.5, as described in
Sect. 5.1.4. The dotted line is
a fit of (5.1.7) and (5.1.9) to
the data (circles),
extrapolated to 0 and 600K.
Parameters from the fits
shown are presented in
Table5.2) and discussed in
the text

(a) YBCO6.63

(b) Y248 

63Cu(2)

This is a fairly “neutral” assumption, since the temperature profile of 63Vab(T) is
seen to be very flat for both YBCO7 and YBCO6.63 in Fig. 5.3, but particularly in
the former case. In any case, the fit to the data for 1/63T1cT , shown in Fig. 5.5a and b,
is seen to be excellent, and furthermore, extends up beyond 700K. Note that the
100–350K data set from Williams et al. [219] (crosses) has been augmented with
high-temperature data from Curro et al. [242] (triangles pointing right) and from
Tomeno et al. [216] (triangles pointing down).

Although the profile of τeff(T)may be slightly different from what one would find
with a full-blown analysis such as that for YBCO7, it behaves in a very interesting
fashion as shown in Fig. 5.4b. Here there is only one data set from the fit (circles),
which has very little scatter. The dotted line is a fitting of the ansatz (5.1.7) with the
gap modification (5.1.9) used for YBCO6.63. The parameters from this fit are given
in Table5.2, where they may be compared with those for YCBO7 and YBCO6.63.

The parameters in Table5.2 shown an interesting progression for the threeYBCO-
related systems. Although the forms of τeff(T) in (5.1.7) and (5.1.9) are really just
educated guesses, theymatch the temperature dependence from thefits better thanone
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Fig. 5.5 a 63Cu(2) NQR
data from [221] for Y248
(crosses) are plotted as
1/T1T versus T . The solid
line shows the Uldry-Meier
fit to these data described in
Sect. 5.1.4. b The fit curve
shown in part (a) is extended
to above 700K. Also shown
there are high-temperature
data by Curro et al. [242]
(triangles pointing right) and
by Tomeno et al. [216]
(triangles pointing down).
The data and the fit are seen
to be extremely precise

Table 5.2 Parameters from fits to the ansatz (5.1.7) for YBCO7 and with the gap modification
(5.1.9) for YBCO6.63 and Y248 are listed, showing a, τ2, and the gap, crossover, and Fermi tem-
peratures derived from their respective (average) data curves for τeff(T). The crossover temperature
is where τ1 = τ2, and the estimated Fermi temperature is obtained from TF ∼ (�/kBa)1/2. These
results are discussed in the text

System a (s/K) τ2 (s) Tg(K) Tcr(K) TF(K)

YBCO7 7 × 10−18 3.0 × 10−15 0 420 1,050

YBCO6.63 10 × 10−18 2.9 × 10−15 97 375 880

Y248 44 × 10−18 1.9 × 10−15 195 154 420

might have expected, giving very convincing extrapolations to higher and lower tem-
peratures. After modest changes between YBCO7 and YBCO6.63, with the appear-
ance of a ∼100K gap in the latter case, the jump to Y248 shows a doubling of the
density of states (∝ √

a) and a corresponding reduction by half of the estimated
degeneracy temperature, as well as a doubling of the gap energy, which now exceeds
the cross-over temperature.
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A somewhat different view of the dynamic magnetism of Y248 via dynamical
scaling theory is presented in Sect. 6.4.

The Wider Role of the Uldry-Meier Model Analysis

The UM analysis has offered a highly revealing and greatly unifying look into the
microscopic phenomena associated with the cuprate T1 processes. From this per-
spective, the difference between different sites and nuclear species essentially ceases
to be an issue. This analysis is in no sense a theory, though it incorporates a widely
accepted and time-tested formulation of the T1 process, and it puts the Mila-Rice
HF Hamiltonian to a severe test, which it mostly passes in good order. Note that
this Hamiltonian is essentially unique to cuprates among metallic environments. It
is worth emphasizing that the UM picture is also implicit in the general χ′′(q,ω)

formulation of the T1 process, as demonstrated in Sect. 3.5.
Perhaps the most significant advantage of the UM analysis is that it partitions

the T1 problem into three independent phenomenological pieces. These are (i) HF
constants, which are essentially inert, (ii) AFM correlation factors, which are much
larger and universally more important than hitherto realized, and (iii) a universal
fluctuation rate, which embodies all of the low-frequency spin fluctuation physics
of the cuprates, including, but not limited to, Fermi liquid, spin pseudogap, and
exchange-coupled local moments. These three elements are also very prominent in
the INS-based analysis worked out in detail in Chap. 4, but that, of course, requires
external data for χ′′(q,ω). The ability to separate elements (ii) and (iii) in either
an experimental or theoretical evaluation is a considerable simplification and an
enormous advantage over previous practice. We emphasize that this analysis offers a
useful way to evaluate model theories of χ′′(q,ω). One can simply evaluate (ii) and
(iii) as defined above and judge these components separately on their own merits.
This procedure offers a new perspective on theory building for the cuprates and quite
possibly for other materials as well.

5.2 The Millis, Monien, and Pines Model for T1 in Cuprates

This straightforward phenomenological model [161, 162] served the important role
of discussing and testing certain key ideas in the early days when both NMR shift
and relaxation data were still unfolding. This model emerged at a time when there
was still a great deal of uncertainty about what the ultimate theoretical basis for
cuprate T1 processes was going to be. Of the several lines of theoretical approach
to cuprate spin dynamics which we discuss in this chapter, the conceptually simple
MMP model is a good place to begin.

One of the main objectives of MMP was to show that the relaxation of 63Cu(2),
17O(2,3), and 89Y can all be accounted forwith a single dynamical variable associated
with each Cu2+ site. In this matter they largely succeeded, although as noted in
Sects. 4.4 and 5.1 there are other apparent contributions to the 89Y relaxation process.

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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However, there is no evidence for another set of dynamical variables besides the
Cu2+ spin moments.

In addition to the foregoing, these two papers [161, 162] give an in-depth discus-
sion of the physics issues surrounding the NMR T1 problem in cuprates. Although
the actual model they expound is a phenomenological treatment of the Mila-Rice
Hamiltonian [118], they present a derivation [162] showing that such treatment is
equivalent to a tight-binding, band-theory model of an interacting Fermi liquid.

TheMMPmodel is based on amean-field treatment of AFM exchange interaction
effects in a system of itinerant quasiparticles, i.e. a metal, which would be a simple
Fermi liquid without the exchange interactions. We begin by reviewing their deriva-
tion of the mean-field dynamic susceptibility, in the course of which the relevant
parameters are introduced and discussed. The following is just a brief summary. We
refer the interested reader to the original papers for more details [161, 162].

Themean-field complex susceptibilityχ(q,ω) = χ′(q,ω)+ iχ′′(q,ω) of an inter-
acting spin system is given by

χ(q,ω) = χ(q,ω)

1 − Jqχ(q,ω)
, (5.2.1)

where χ(q) is the noninteracting susceptibility, and Jq is the interaction potential.
Since NMR frequencies are generally much smaller that the electronic frequencies
in such a system, we are concerned here with the region near ω → 0. In this limit it
is assumed that

χ′′(q,ω)|ω→0 → π
ω

Γq
χ′(q,ω = 0) ≡ π

ω

Γq
χq, (5.2.2)

where Γq is a characteristic energy for spin fluctuations at wave vector q. Corre-
spondingly, in the same limit (5.2.1) gives

χ′′(q,ω) −→ π
ω

Γq
χ

1

(1 − Gq)2 + (πω/Γq)2G2
q

, (5.2.3)

where Jqχq ≡ Gq. As we are treating AFMfluctuations which appear to be diverging
as the system is approaching a Neél point, Gq is assumed to be peaked at the AFM
pointQ = (π/a,π/a), at which point it has a value of slightly less than 1. For (5.2.3)
we expandGq about the AFM point:Gq = GQ − q2β2

0 , where q is measured fromQ.
The correlation length is defined by GQ = 1 − ξ20/ξ

2. Setting Gq = 1 in the second
term of the denominator of (5.2.3), we obtain

χ′′(q,ω)

ω
= πχ

Γ

(ξ/ξ0)
4

(1 + q2ξ2)2 + (πω/Γ )2(ξ/ξ0)4
� πχ

Γ

(ξ/ξ0)
4

(1 + q2ξ2)2
. (5.2.4)

Because of the peaked nature of this function, the q-dependence of the parameters
χq and Γ q has been dropped. They argue further that when q is far away from Q,
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χ′′(q,ω) should be comparable with the uncorrelated value, so a q-independent term
of that magnitude is added in, giving

χ′′(q,ω)

ω

∣
∣
∣
∣
ω→0

= πχ

Γ

[

1 + β
(ξ/a)4

(1 + q2ξ2)2

]

, (5.2.5)

where β = (a/ξ0)4(χ/χ0)(Γ /Γ ), χ0 is the uniform susceptibility, and Γ is the spin
fluctuation frequency of the noninteracting system. Equation (5.2.5) may then be
used to model quasiparticle dynamics for cuprate systems not too far from an AFM
instability, i.e. when ξ/a � 1. From (5.2.4) we also see that the effective spin fluc-
tuation frequency is

ωSF ∼ Γ ξ20
ξ2

, (5.2.6)

which can be greatly diminished if ξ � ξ0.
The q-dependent HF coupling Hamiltonian terms are denoted kFα(q) here (3.5.6)

for nuclear spin species k and axisα. Thus, the relaxation rate kWα ≡ 1/kT1α is given
by [162]

kWα = kBT

4�μ2
B

∑

q

[
kFβ(q)2 +k Fγ(q)2

] χ′′(q,ω)

ω

]

ω→0

, (5.2.7)

where (α,β, γ) are any permutation of the (a, b, c) axes. In (5.2.7) the kFα(q) and
χ′′(q,ω) have the dimensions of s−1 and s, respectively (see (3.5.9)). For YBCO the
kFα(q) are

63Fα(q) =63Aα − 2B(cos qxa + cos qya), (5.2.8a)
17Fα(q) = 2Cαcos

2( qx,ya/2) , (5.2.8b)
89Fα(q) = 8Dα cos(qxa/2) cos(qya/2) cos(qza/2) (5.2.8c)

(see (3.5.10)–(3.5.14)).
The fitting procedure, which is described briefly below, thus consists of estimating

the HF constants (A, B, C, D’s) from NMR shift and susceptibility data, and then
adjusting the parameters Γ , β0, and ξ from (5.2.5) to match the calculated rates
kWα(T) as well as possible with experimental data.

The MMP Fitting Process for YBCO7

Here we summarize the issues regarding this fitting procedure as well as a brief
description of the procedure itself. We first note that the squared Lorentzian form for
χ′′(q,ω) in (5.2.5) is valid when ξ/a � 1, whereas the deduced YBCO7 values of
ξ/a are of order unity. For this reason,MMalso discussed the case of aGaussian form
for the peak at Q [162]. The latter is more nearly consistent with peaks in χ′′(q,ω)

which have been reported from neutron scattering studies [199]. The latter results
also showed some sign of incommensurability, which is also a major effect in LSCO.
The question is whether the incommensurability observed by neutron scattering at

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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energies of more than 1meV is still present at NMR frequencies, which are roughly
four orders ofmagnitude smaller. In Chap. 6 it will be shown that incommensurability
in χ′′(q,ω) is incompatible with NMR data on LSCO. We assume this is also true
here and adopt with MM [162] a picture with commensurate AFM fluctuations.

The HF parameters used byMM are compared with those from the UM fit as well
as those from NMR shift values in Chap.3 (see Table5.1) in Table5.3. In MM the
HF values are given in units of μ2

B/χ0. Here we convert them to units of 10−6 eV.
Since the susceptibility is assumed to be isotropic, we have used the powder average
susceptibility per Cu(2) ion from Table3.4 for this purpose. It was also assumed that
Ac + 4B = 0, essentially consistent with earlier practice. The otherMM values show
some small differences with the other values listed. The ratio Ca to Cc is ∼1.5, in
rough agreement with the others. However, the ratio Ca/D � 69 is rather smaller
than the “Shift Coef.” value �113, so that the “problem” with the T1 of 89Y (see
Sect. 4.1.2) will not arise here. We firmly believe this problem to exist.

In the MM fit there was no value available for Aab, so this was left as a parameter
to be “fitted”. From the Cu(2) T1 anisotropy 63Wab/

63Wc it was decided that 0.1 ≤
Aab/4B ≤ 0.2, which is not unreasonable. This estimate is compared with other
values in Table5.3. The susceptibility parameters β and ξ from (5.2.5)—and their
temperature dependences—were to be extracted from the data fits. This was not a
simple matter, since these parameters have qualitatively similar effects on the results.
There were twomain questions to be decided: (i) Can the relaxation of all three nuclei
be quantitatively accounted for with (5.2.5) and (5.2.8); and (ii) does a picture of
AFM correlations emerge here, where ξ(T) increases when T descends toward Tc?

The first answer is definitely “yes”, but the second one is a bit more murky. It
depended on the relative behavior of 17Wα(T) and 89Wα(T), for which the avail-
able data for the input parameters were not particularly accurate. Calculated ratios
of these relaxation rates from MM are shown in Fig. 5.6 for the cases of Gaussian
and Lorentzian models for χ′′(q,ω) and several sets of parameters. The calculations
are based on the assumption that 63Wc/17Wc = 19 at 100K and 63Wc/

17Wc = 10
at 300K, these values being taken from experiment. Shown is the variation of
17Wc(T)/89Wc(T) between 100 and 300K for several sets of parameters, which are

Table 5.3 The HF parameters for YBCO7 and YBCO6.63 used by MM [162] are compared with
values from the UM fit and those derived from NMR shift coefficients in Chap.3 (both given in
Table5.1). The coefficients in MM were given in units of μ2

B/χ0, which have been converted to eV
using the powder average susceptibility based on values given in Table3.4, where χ0 is interpreted
to be the value for a single Cu(2) site. The values for Ca and Cc have been reversed, since the larger
value corresponds to the Cu-O-Cu (a) axis and the smaller one to the c axis. Parameters are given
in units of 10−6 eV

Source Aab + 4B Aab/4B Ca Cc D

MM [162] 1.45 0.1–0.2 0.33 0.22 0.0048

UM fit 1.92 0.096 0.259 0.196 0.00303

Shift Coef. 1.69 0.03 0.355 0.209 0.00314

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 5.6 Plots of the ratio 17Wc(T)/89Wc(T) versus T for 100K ≤ T ≤ 300K calculated with the
model susceptibility shown in (5.2.5) (Lorentzian case) in panel (a) and a Gaussian version in panel
(b). The Gaussian is written as β exp(−q2ξ2) and is centered at Q. The calculations are based on
the ratios 63Wc/17Wc = 19 at 100K and 10 at 300K. Since the variation of 17Wc(T)/89Wc(T) is
roughly linear, straight lines are drawn between values calculated for the two extremal temperatures.
Calculations are carried out for constant β and T-varying ξ (solid lines) and for constant ξ with β
varying (dashed lines). The parameter sets used are listed in Table5.4. The same parameters are
used at 100K, but then different ones for 300K. These calculated results are simply connected with
a straight line

shown in Table5.4. There are two assumed cases here: (i) β is constant and ξ varies
with temperature, and (ii) ξ is constant and β varies with temperature. The experi-
mental ratio is around 1,300 and is very nearly flat. These circumstances favor the
Gaussian form for χ′′ and the assumption of a constant β with temperature-varying
ξ, and thus the solid line in Fig. 5.6b, case (B).

Thus, it was concluded that the constant β picture was more the satisfactory,
because ifβ varies, while ξ is constant, thenΓ must have a compensating temperature
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Table 5.4 Parameter values for the calculated curves in Fig. 5.6 are listed for cases (A), (B) and
(C), plotted both for a Lorentzian susceptibility peak (a) and for a Gaussian peak (b). Two curves
are plotted for each case, both with the same parameters at T = 100K and at 300K with a constant
value of β with ξ varied (first values listed) and with both ξ and β varied (values in parentheses)

Case T(K) ξ (Lor.) β (Lor.) ξ (Gauss.) β (Gauss.)

A 100 1.9 30 1.4 30

A 300 1.3(1.9) 30(16) 1.1(1.4) 30(11)

B 100 2.4 10 2.0 10

B 300 1.7(2.4) 10(3.4) 1.4(2.0) 10(4)

C 100 3.7 3.0 3.3 3.0

C 300 2.5(3.7) 3.0(1.1) 2.2(3.3) 3.0(1.2)

dependence to keep the pre-factor in (5.2.5) approximately constant. This may be
difficult to account for. MM also concluded that ξ/a � 1.0–1.5 for the Gaussian case
and 1.5–2.0 for the Lorentzian case, while β ∼ 15 or greater.

It is interesting to view the results of theMMP analysis in the context of the results
of the UM analysis of Sect. 5.1. The parameter values obtained in these cases are
similar with some important differences. The MMP scheme assumed HF parameters
derived from NMR shift measurements which are at least a rough facsimile of those
obtained in Chap.3 and of those obtained from the UM fit (Table5.3). The coherence
lengths appear to be similar, though it is not clearwhether ξ fromMMPcan be directly
compared with the λα’s in Fig. 5.2a. The trend with temperature is, of course, the
same.

One trouble spot in this comparison is the variation of the integrated area∑
q χ′′(q,ω)/ω with temperature. For the UM picture, this simply goes as τeff/T ,

while in the MMP case (i.e. from (5.2.5)) this area is very nearly equal to

∑

q

χ′′(q,ω)/ω � πχ

Γ
[1 + βξ2]. (5.2.9)

If the prefactor is independent of T as onemight suppose for YBCO7, then the known
behavior of τeff(T) from the UM fits tells us that βξ2 from the MMP model should
be roughly constant. Thus, if ξ varies appreciably with T , β should vary inversely
and twice as fast. This does not square well with the MM result.

On the positive side of things, one could say that the results of the UM analysis
would be an excellent starting point for someone setting out to model the mean-field
dynamic susceptibility as MMP did. As regards the possibility of accounting for
cuprate T1 behavior with an RPA type of model where the q-dependence of χ′′(q,ω)

(and thus ξ) has no temperature dependence, the UM analysis also gives a definite
negation of any such possibility.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Millis and Monien: Discussion of YBCO6.63 and of Neutron Scattering Char-
acterization of χ′′(q,ω)

MM analyze YBCO6.63 in a fashion similar to YBCO7. They note that rather
larger values of 63Wc/

17Wc indicate stronger AFM correlations in YBCO6.63, in
accord with the UM result. As a result, they note that the constant-ξ option implies a
somewhat larger increase in the ratio 17Wc/

89Wc at lower temperatures, inconsistent
with preliminary data available at the time. However, the subsequent T1 results of
Takigawa et al. [191] showed an increase in the latter ratio of ∼20% below 300K,
which therefore cannot quite rule out the constant-ξ hypothesis. Again, the UM
analysis of YBCO6.63, showing longer and more temperature-dependent correla-
tion lengths in YBCO6.63, would preclude a fixed-ξ scenario.

Another troubling point about theMMdiscussion of YBCO6.63 is the assumption
without justification that χ0 in (5.2.5) be simply replaced by the gapped χ(T) shown
in Fig. 4.16 (or its equivalent). Some kind of assumption along these lines is evidently
necessary for this model, but then leads to difficulties in accounting for 89Wα(T) and
17Wα(T), as was noted in Sect. 4.2.2. This played, unfortunately, into the weakness
of employing the MMP model to deduce the temperature dependences of both ξ and
β from NMR data alone.

MM also offer a deep and useful discussion [162] of the behavior of χ′′(q,ω) at
higher frequencies, with an eye to gleaning further insight about its characteristics
from inelastic neutron scattering (INS) data. Again, specifically, would it be possible
to determine the behavior of ξ(T) from the width of the peak at Q? They note, with
a detailed model example, that there is a tendency at typical INS frequencies for the
measured peak width to appear independent of temperature while ξ is undergoing a
significant variation with T1 and that measurements must be conducted at very low
energies to avoid this.

To our knowledge there has never been any successful study of the T-dependence
of AFM peak widths in cuprates or of pseudogap effects on χ′′(q,ω). If we take the
INS results of Tranquada et al. [199] as an example, the desired effects are often
masked by incommensurability. However, unknown at the time of MMP and MM,
the most penetrating insights about pseudogap behavior in cuprates would come
not from INS, but from ARPES (see a brief review of this in Sect. 4.3). This point
will be considered further in Chap. 6, where extensive INS studies of LSCO will be
discussed.

5.3 T1 Estimate for YBCO Using INS Data to Model
χ′′(q,ω)

In the first two subsections of this chapterwe saw howbothUMandMMP interpreted
cuprate relaxation data in terms of AFM fluctuations with a temperature-dependent
correlation length. In the present subsection we review a fit procedure performed by
the Berthier group, wherein T1 data from a YBCO6.9 sample are interpreted in terms

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_6
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Fig. 5.7 a Relaxation rate
1/T1T for 63Cu(2) in
YBCO6.9 [245], showing
typical anisotropy for
YBCO7, but pseudogap-like
rolling off of the data below
120–130K. Note that there is
no break or other feature in
the data at Tc ∼ 90K

of an AFM fluctuation peak characterized by INS measurements [245]. INS data are
quoted which show the AFM peak to have a constant width, i.e. the fluctuations have
a temperature-independent correlation length.2 Here we review the data and analy-
sis for this interesting case, which also includes extracting dynamic susceptibility
parameters from data for T2g , the Gaussian spin-echo decay from indirect spin-spin
couplings (see Chap.6). We compare this case with the UM fits in Sect. 5.1 in some
detail. In the end, it is found that they are strikingly similar, and that the contrast
between them may reflect a difference in samples rather than one of methods.

When large single crystals of YBCO7 became available, extensive neutron scat-
tering measurements were reported, e.g. by Regnault et al. [246], Rossat-Mignod
et al. [247], and by Tranquada, Sternleib et al. [199, 248]. NMR measurements on
63Cu(2) and 89Y in single crystals so characterized have been reported by Auler
et al. [245], where they noted that the AFM peaks from INS data on their sample
and related samples are well-fitted by a Gaussian, with a peak width which is essen-
tially independent of temperature. The sample of YBCO6.9 in question gave some
indication of disorder in spite of being nearly fully oxygenated. This was attributed
to the presence of Sr2+ as a dilute substitutional impurity for Ba2+, leading to fairly
broad NMR lines with field ⊥ c axis [249]. However, the NMR measurements were
conducted normally. The other apparent consequence of this was that the sample
exhibited a somewhat pseudogapped character compared with other YBCO samples
with Tc = 90 ± 1K.

The pseudogap effect is noticeable in relaxation curves for 63Cu(2) shown in
Fig. 5.7, where the data are seen to roll off below T ∼ 125K for both field orienta-
tions. Furthermore, there is no visible break in the relaxation curve at Tc, which is a
characteristic of pseudogapped material. On the other hand, the ratio T1c/T1ab � 3.7
at T ∼ 100K and declines slightly at higher temperatures, which is typical behav-
ior for YBCO7. This YBCO sample is therefore rather unique in having pseudogap
features with Tc ∼ 90K.

2The MMP picture did not rule this possibility out, but in the absence of reliable INS data preferred
the scenario with temperature-variable correlation lengths [162].

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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Fig. 5.8 a NMR shift data
for 89Y in YBCO6.9 from
[245] for field oriented both
‖ and ⊥ c axis. 89Kα(T)

shows pseudogap-like
decline below T ∼ 200K.
b Data for the 89Y relaxation
rate 1/T1T for the same
sample and conditions as in
part (a)

Both NMR shift and relaxation data for the 89Y nuclei are shown in Fig. 5.8. The
NMR shift is seen to roll off at lower temperatures, much like one of the slightly
deoxygenated samples in Fig. 4.2. Correspondingly, 1/T1T in Fig. 5.8b is also seen
to decline at lower temperatures, though not quite so much as for YBCO6.6 (see, e.g.
Fig. 4.1b). Again, like the 63Cu(2), the general character is that of a pseudogapped
system.

5.3.1 The Gaussian Model Susceptibility

The authors introduce their Gaussian susceptibility model as follows [245]. Begin-
ning with the standard form (cf. (4.2.2))

χ′′(q,ω)

ω

]

ω→0

= χ′(q, 0)
Γq

, (5.3.1)

it is supposed that on account of AFM exchange forces χ′(q, 0) is peaked at q ∼ Q,
and the spin fluctuation frequency Γq has a minimum at the same point. Further, it
is assumed that χ′(q) = χAF(Q) f (q − Q) and Γ −1

q = Γ −1
AF f (q − Q) have the same

functional form in the vicinity of Q, which is taken to be a Gaussian

f (Δq) = exp(− | Δq |2 ξ2/4). (5.3.2)

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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The value ξ = 1.3a is taken from INS measurements on the same sample mate-
rial [245]. Then, if we put the origin in q-space at Q, we may write f (Δq) =
exp[−0.4225 (qa)2]. As in the MMP model, a noninteracting, q-independent term
χ0/Γ0 is added to give the relations

χ′′(q,ω)

ω

]

ω→0

= χ0

Γ0
+ χ′

AF(Q)

ΓAF(Q)
exp[−0.845 (qa)2] (5.3.3a)

χ′(q) = χ0 + χ′
AF(Q) exp[−0.4225 (qa)2] . (5.3.3b)

The parameters in this model ((5.3.2) and (5.3.3)) were then extracted from exper-
imental data. We give here just a brief summary of the procedure. χ0(T) was defined
to be the uniform susceptibility, the temperature-dependence ofwhich is derived from
NMR shift data in Fig. 5.8a, where the orbital shift value 89Kc,orb = 160ppm is taken
from [191]. The scale factor for χ0(T) was obtained by comparing shift coefficients
for 89Y and 17O with values from the literature [245]. The resulting curve of χ0(T)

versus T is shown in Fig. 5.9a. In that same figure is shown the curve for χ′
AF(T).

This was extracted from data for 63T2g(T), which is shown in Fig. 5.9b, using the
relations

1
63T 2

2g

= c63
8

⎡

⎣
∑

q

(azind(q))
2 −

[
∑

q

azind(q)

]2
⎤

⎦ (5.3.4)

with

azind(q) = γ63�χ′(q)
g2
cμ

2
B

[Ac + 4B cos qxa]2 . (5.3.5)

These formulas are derived and discussed in Chap. 6. Here, we simply note that the
T2g data of Fig. 5.9b were analyzed with the foregoing equations to obtain the plot
of χ′

AF(T) shown in Fig. 5.9a.
The final step, which is to evaluate the spin fluctuation parameters Γ0 and ΓAF

as functions of temperature, requires a bit more explanation. Auler et al. [245] note
that the dipolar interaction makes an appreciable contribution to 1/89T1, which is not
taken account of by the “D” terms of the HF tensor (3.3.2). This point has been noted
by Takigawa et al. [191] and was discussed briefly in Sect. 4.2.2. Auler et al. provide
a separate calculation to estimate the extra dipolar relaxation terms, which behave a
bit like the 63Cu(2) terms in that they do not cancel at q = Q. In evaluating Γ0 and
ΓAF as functions of temperature, these authors present several “options” regarding
the dipolar terms. We first describe their procedure for obtaining the Γ ’s and then
describe the options.

The values of Γ0 and ΓAF are obtained by fitting the 63Cu(2) and 89Y T1 data with
themodel susceptibility (5.3.3) with (5.3.2), using (3.3.11)–(3.3.13), i.e. the standard
Mila-Rice HF Hamiltonian. As an example, these authors note that if the AFM
susceptibility peak were narrow enough it would not make a significant contribution
to 1/89T1T , which would then be given by [245]

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 5.9 a The susceptibilities χ0 and χ′
AF are plotted as a function of temperature. χ0 is the

uniform susceptibility, with temperature dependence and amplitude scale derived principally from
89Y NMR shift measurements as discussed in the text. χ′

AF is the amplitude of the AFM fluctuation
peak at Q. Its value as a function of temperature was derived from measurements of T2g for the
63Cu(2) NMR line. Equations (5.3.4) and (5.3.5) were used to interpret T2g data shown in part (b)
of this figure. See text and Chap.6 for more details [245]. b Data for T2g on 63Cu(2) taken in the
present study [245]. These data were interpreted to yield the values of χ′

AF shown in part (a) of
this figure. See text and Chap.6 for more details of interpretation. The inset shows how data vary
with the bandwidth of the refocussing π-pulse of the echo sequence, where a large bandwidth is
essential to obtain accurate data

1
89T1T

= 2�γ2
89kBDab

gabμBΓ0(T)

89Kab(T) , (5.3.6)

so that Γ0(T) could be extracted directly from the data for 89Kab(T) and 89T1(T).
In practice, (5.3.6) is not a good approximation, but serves to illustrate the method.
In general, one has to use the data mentioned plus 63T1(T) to evaluate both Γ0 and
ΓAF simultaneously. For this purpose they have used values of the 63Cu(2) and 89Y
HF tensors, in units of 10−6 eV, as follows: Ac = −1.56 (−1.64), Aab = 0.35 (0.16);

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_6
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Fig. 5.10 a Values of the spin-fluctuation frequency Γ0 deduced from fitting the relaxation data
for both 63Cu(2) and 89Y to the form for χ′′(q,ω) (5.3.3) discussed in the text. Results from
the oversimplified approximation in (5.3.6) are shown as solid squares. Open circles show values
obtained when the dipolar terms for the 89Y relaxation are taken into account, and down triangles
show values obtained when they are not. The up triangles result when the dipolar terms are kept,
and the value of Aab is increased by 25% over that given in the text. See text for discussion. bValues
of ΓAF (see (5.3.3)) obtained in same way as in (a), with symbols indicating the same cases listed
there

B = 0.39 (0.41); Dab = −0.0035 (−0.0028); and Dc = −0.0043 (−0.0035), where
the values in parentheses are the fitted values from the UM analysis in Table4.1 for
comparison. Apart from Aab, which is small and difficult to evaluate, these are all
quite reasonable.

The values derived for Γ0 and ΓAF are plotted in Fig. 5.10a and b, respectively.
The down triangles are obtained ignoring the dipolar terms altogether, while the open
circles correspond to taking the dipolar terms fully into account. For the up triangles
the value of Aab was also increased by 25%. Our main concern here will be the open
circles, which correspond to apportioning a sizeable fraction of the 89Y relaxation to
dipolar terms.

Since the susceptibility model has an AFM peak with a temperature-independent
width, the temperature dependence of theT1 data has to be accounted for by assigning
the temperature variation (of 1/T1T ) to the susceptibilities χ0 and χ′

AF and to the
spin-fluctuation parameters Γ0 and ΓAF . The value of Γ0 is seen to approximately
double from 250K down to 100K andΓAF to change by less than that. It is, of course,
very difficult to know whether this is a reasonable scenario from the standpoint of
microscopic physics, but it describes the data well enough. What is interesting is to

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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compare this outcome with the results of the UM analysis, for which a temperature-
dependent correlation length ξ(T) was employed (Sect. 5.1).

5.3.2 Comparison with the UM Analysis Results for YBCO7

To effect a comparisonwith theUManalysis, we use (3.5.17) and (3.5.18) to calculate
τeff and the Kij’s, since χ′′(q,ω) is fully specified by (5.3.3) and (5.3.2) with the
parameter values in Figs. 5.9a and 5.10a and b (circles). For these evaluations we
use the other parameter values from [245], which were stated above. We first note
the contrast in parameterization of the Kij’s between UM and the present work. We
adopt a general form

Kij = K0 g(rij/λ) , (5.3.7)

where K0 and λ are both possible functions of temperature. In the UM analysis, K0

was taken to be unity and g(rij) = exp(−2 rij/aλ), with all temperature dependence
in the correlation length λ. For the Gaussian χ′′(q,ω) model of Auler et al. [245],
however, the width parameter ξ is fixed. The temperature variation has to reside in
K0(T). Thus, it is possible to have temperature varying correlations even when there
is a fixed correlation length. Calculations of the Kn’s (see below) reveal that, for
example, K1(T) reaches a value of −0.47 at 100K and is about half that value at
250K. These are typical numbers from the UM analysis.

For comparison purposes the quantities τeff(T) and the 63Vα’s have been evalu-
ated using the model susceptibility parameters given by the analysis of Auler et al.
described above. First, we evaluate τeff(T) using (3.5.17) and (5.3.3), finding

τeff(T) = �kBT

4μ2
BNA

[
χ0

Γ0
+ 0.0936

χ′
AF

ΓAF

]

, (5.3.8)

where the prefactor has been adjusted for susceptibilities in (emu/mole). Using the
parameters from Figs. 5.9a and 5.10a and b (circles), we find the values plotted in
Fig. 5.11a versus T (open squares). For comparison, The curves of τeff(T) for YBCO7
(open circles) and YBCO6.63 (closed circles) from the UM analyses (Figs. 5.2b and
5.4a, respectively) are plotted. Recalling that the YBCO6.63 curve was “gapped”,
we see that there is a remarkably close correspondence in absolute magnitudes for
τeff and that the values from the present study are definitely “gapped” as well. As we
noted earlier, the NMR shift and relaxation curves showed definite signs of a spin
pseudogap.

Corresponding to the foregoing expression for τeff, we find for the Kn’s,

Kn = 0.0936χ′
AFΓ0

χ0ΓAF + 0.0936χ′
AFΓ0

[−0.745; 0.555; 0.309] , (5.3.9)

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 5.11 aData for τeff(T) have been calculated using (5.3.8) with interpolated data from Figs. 5.9a
and 5.10a and b (open squares). These are compared with plots of τeff(T) for YBCO7 (open circles)
and for YBCO6.63 (dots), which have been calculated using (5.1.7) and (5.1.9) with parameter
values from Table5.2. Comparison shows a marked similarity with a clearly gapped character for
the present YBCO6.9 sample. The main difference between the present case and the UM YBCO7
fit is the marked pseudogap character of the results. b Plots of 63Vc (filled squares) and 63Vab (filled
diamonds) for the same series of temperatures shown for τeff in part (a). These quantities have
been calculated with the HF parameter values from [245] given in the text using (5.3.9). Shown for
comparison are the same quantities from the YBCO7 fit by UM (Fig. 5.3a) (solid lines), where the
discrepancy in both cases is a scale factor of order unity

where the numbers in the brackets represent K1, K2, and K3, respectively. To plot
63Vc and 63Vab, this expression was used with interpolated data from Figs. 5.9a and
5.10a and b to calculate the 63Vα’s shown in Fig. 5.11b (filled squares for 63Vc and
filled diamonds for 63Vab). For comparison the same quantities for YBCO7 from
the UM analysis (Fig. 5.3a) are plotted as solid lines. Again, considering that these
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materials are quite different in detail, the correspondence is remarkably close. Notice
that the three Kn’s are in a constant ratio of −0.745:0.555:0.309 at all temperatures,
but their coefficient changes by about a factor two over 100K ≤ T ≤ 250K.

It seems, then, that there may be a variety of parameterizations which will give
the same form for τeff(T) and kVα(T), which is all that is needed to fit the relaxation
data. If follows that it will be very difficult to work backward from such data to try
to determine the details of some particular parameterization, as was the case with
MMP. In first-principles model theories such as those in the next two subsections,
however, we suggest that it would be very useful and informative to calculate both
τeff and the Kn’s as diagnostics.

5.4 A Small-U Hubbard Model of Cuprate Spin Dynamics

Extensive model calculations of NMR shift and relaxation behavior have been per-
formed byBulut et al. [158], using, among others, the 2DHubbardmodel to represent
a cuprate-like systemwith enhancedmagnetic fluctuations near the AFMwavevector
Q. These calculations with the Hubbard model bear some similarity to the mean-field
phenomenological model of MMP, the difference being that one is actually doing a
first-principles calculation of quasiparticle dynamics using a simplified Hamiltonian
and approximate methods. The up side of this is that the results of such calcula-
tions have been adapted to realistic cuprate (i.e. Mila-Rice-Shastry) HF couplings
and form factors to obtain shift and relaxation behavior which is not unlike typical
experimental data. If there is a down side, it is that the 2D Hubbard model, as solved
in this way, presents some rather quirky behavior with certain parameters which have
no clear relation to microscopic physics. There is also some “implausible fine tun-
ing” of parameters to obtain desired behavior. The authors argue that this is simply
a necessary aspect of using such a Hubbard model.

In this section we present a brief summary of Hubbard model behavior and some
calculated results for the NMR shift and relaxation of 63Cu(2) and 17O(2,3) sites of
YBCO7. Behavior at T < Tc has also been treated in detail with these methods. The
latter results will be presented in Sects. 5.7 and 6.2, along with other model results
for the superconducting state.

5.4.1 Basic Formulation of the Dynamic Susceptibility

The following is a summary and discussion of results for the square-lattice Hubbard
model of a doped systemwithmetallic behavior. For derivations the reader is referred
to the original papers [158] and references therein. The basic Hamiltonian is

H = −t
∑

〈ij〉α
[c+

iσcjσ + c+
jσciσ] +U

∑

i

ni↑ni↓ , (5.4.1)

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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consisting of nearest-neighbor hopping terms and on-site coulomb repulsion, where
U is actually a renormalized interaction parameter. The basic (U = 0) band profile has
widthW = 8t with a logarithmic singularity at the center. The band filling is 0 ≤ n ≤
2 particles per site. Near half filling there are commensurate and incommensurate
spin-density wave phases, which must be avoided. For the assumed ratio U/W =
0.25, the critical value is nc = 0.865, above which there is an “unphysical phase
transition” for theHubbardmodelwhereUχ(q∗, 0) = 1. The amount bywhich n falls
below nc determines the temperature T∗ at which the amplitude of AFM fluctuations
saturates on lowering the temperature. Thus, n is only qualitatively related to the
doping level parameter of the cuprate being modeled.

The basic solutions to the Hubbard model (5.4.1) are as follows: The band energy
is E(k) = −2t(cos kxa + cos kya) and the single-particle density of states is

N(E) = 1

2π2
K[(1 − (E/4)2)1/2], (5.4.2)

where K[ ] is the complete elliptic integral. The U = 0 (noninteracting) susceptibility
is then given by

χ0(q,ω) = 1

N

∑

p

f (Ep+q) − f (Ep)
ω − (Ep+q − Ep) + i0+ , (5.4.3)

where f (Ep) = 1/[exp(β(Ep − μ)) + 1] is the Fermi occupation function and μ is
the chemical potential.

For the interacting system the authors use the RPA to approximate χ(q,ω), giving

χ(q,ω) = χ0(q,ω)

1 −Uχ0(q,ω)
, (5.4.4)

closely analogous to (5.2.1). However, while (5.2.1) gave a peak near Q which dom-
inated the behavior of interest or could be modeled with something else, here it
was pointed out that the RPA approximation (5.4.4) does not accurately render the
detailed dependences of K(T) and 1/T1 on U and on the band filling n [158]. The
best one can hope for is to choose U and n appropriately to extract the essential
features of large-q spin fluctuations.

If we choose a band filling n near to but less than nc, then AFM fluctuations
will grow with declining temperature down to some point T∗ where their amplitude
saturates. T∗ is controlled by the value of n. By choosing U/W = 0.25 and n = nc,
the authors presented results for a case with large AFM enhancement effects and a
peak in χ′′(q,ω) near (but not precisely at) Q. The calculated NMR properties then
give for the shift at low temperatures

K = 2γe
γn

A(0)
N(μ)

1 −U N(μ)
, (5.4.5)
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for a HF interaction parameter A(q), and for the relaxation rate

1

T1
= kBT

�N

∑

q

A(q)2
χ′′(q,ω0)

ω0
, (5.4.6)

where A(q) has the dimensions of frequency and χ′′(q,ω) of time (see (3.5.8)),
and where the actual form of A(q) varies from site to site as usual. With the RPA
susceptibility (5.4.4), (5.4.6) can be rewritten

1

T1
= kBT

�N

〈 |A(p − p′)|2
[1 −Uχ0(p − p′)]2

〉

, (5.4.7)

where the brackets indicate that p and p′ are to be summed over the Fermi surface.
The foregoing formalism has been used to calculate approximations to the NMR

shift and relaxation behavior for 63Cu(2), 17O(2,3), and 89Y in YBCO7. For this pur-
pose calculations on the simple square-lattice Hubbard model have been generalized
to include the effects of Cu-O hybridization in a Hubbard model of CuO2 [158].With
a 3-center unit cell, the CuO2 lattice is modeled using “partial susceptibilities”, with
coulomb repulsion only on the Cu site [158]. T1 calculations were presented with
and without this modification and, remarkably, the differences in T1 behavior were
found to be fairly subtle. Here we present some of the results for each model.

TheNMRshifts at all sites undergo someStoner enhancement according to (5.4.5),
with very little temperature dependence. In Figs. 5.12 and 5.13, some of theT1 results
are displayed, to be compared with experimental data for YBCO7. The bandwidthW
is set at 1.2 eV, withU/W = 0.70, and n = 0.865, very near to the critical value. The
field is placed along the c axis.An on-siteHF coupling formhas been used for both the
Cu(2) and O(2,3) for the first two results shown. In Fig. 5.12a, the relaxation curves
for Cu(2) and O(2,3) are compared, where each is plotted as a fraction of its value
at T/W = 0.025, which is approximately room temperature. The Cu(2) relaxation
rate is seen to level off completely by room temperature, with rather more downward
curvature than exhibited by the data (see Fig. 3.7), while the O(2,3) data also exhibit
a slight downward curvature which is not unlike the experimental data (Fig. 4.23a).
It seems that this extreme rollover of the Cu(2) relaxation is necessary in order to
achieve the desired level of enhancement. The enhancement is shown for both Cu(2)
and O(2,3) in Fig. 5.12b, where the Korringa products (T1TK2)−1 are plotted versus
T as fractions of the noninteracting values (T1TK2)−1

0 = [(4π�/kB)(γn/γe)2]. This
gives an enhancement of �4 for the Cu(2) and slightly greater than 1 for the O(2,3).
The authors quote experimental values of 5.5 for Cu(2) and 1.4 for O(2,3) [156],
in reasonable accord with their calculations. The Cu(2) enhancement, however, has
declined to near the noninteracting value by just above room temperature, which is
rather unlike the experimental results.

Finally, we show in Fig. 5.13 a comparison of Hubbard model calculations with
experimental data for 63Cu(2) and 17O(2,3) in YBCO7. For these calculations, the
simple Hubbard model results were used [158] with realistic Mila-Rice-Shastry HF

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 5.12 a Relaxation rates
1/T1 calculated for the Cu(2)
and O(2,3) sites in YBCO7
and scaled to their values at
T/W = 0.025 (approx.
300K) are plotted versus
T/W . Calculations are made
with the CuO2 model
described in the text and
references, using on-site HF
couplings. The U = 0
(dashed) curves are also
shown for reference.
Conditions shown are E = 0,
U/W = 0.7, and
nh = 2 − n = 1.165, where
E is the energy of the O(2pσ)
orbitals with Ed = 0, and nh
is somewhat above the
critical value nh = 1.135.
b The Korringa ratios for
both Cu(2) and O(2,3) are
plotted as a function of T/W
in units of their
noninteracting fermion
values (4π�/kB)(γn/γe)

2.
The low-T enhancement ∼ 4
for the Cu(2) has decayed
most of the way to its
noninteracting, high-T limit
by 300K

coupling form factors (i.e. | Aab/Ac |= 0.21 and | B/Ac |= 0.22), where we note
that Aab is a bit larger here than usual estimates. In this case the Hubbard model
parameters were also slightly different from the foregoing, with U/W = 0.25 and
n = 0.86 slightly below the critical value. Taken with the others, these calculations
show that a fair range of T1 behaviors can be obtained with this model.

5.4.2 Remarks on the Hubbard Model Calculations

One must, of course, evaluate the merits of this model in terms of the time frame
of its development, in which case it was obviously highly successful. It was a first-
principles model for the spin dynamics of superconducting cuprates which gave a
remarkable facsimile of experimental behavior with a single dynamical variable. The
model was also an important test for the use of suitable form factors to shield the
O(2,3) sites from enhanced AFM fluctuations while the Cu(2) sites are very directly
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Fig. 5.13 Small-U Hubbard
model calculations, similar
to those for Fig. 5.12, have
been applied to fitting T1
data, where the Mila-Rice
HF tensor given in the text
has been used. Calculated T1
curves have been fitted to
63Cu(2) (+) and 17O(2,3) (•)
data curves from [156] and
[243], respectively. The
conditions are slightly
different from Fig. 5.12, with
U/W = 0.25 and n = 0.86

affected by them. That said, the authors note that this model probably cannot bemade
to give a truly quantitative account of the NMR data in the normal state. The physics
of the high-temperature region is quite different from an actual cuprate, which typ-
ically approaches the degeneracy temperature not far above room temperature. The
Hubbardmodel spin dynamics will clearly be Korringa-like up to any experimentally
attainable temperature, while it seems that the cuprates are making a transition to
insulator-like dynamics at high temperatures. The latter result is illustrated by the
behavior of τeff(T) for several systems in Sect. 5.1.

In spite of the apparent drawbacks, however, the authorswent on to treat relaxation
in the superconducting state with the Hubbard model, with very interesting results.
The latter results are discussed in Sects. 5.7 and 6.2.

5.5 The Large-U Hubbard Model of Si, Levin et al.

An RPA model of cuprate quasiparticle dynamics, which is of the same class of
models as the MMP mean-field model [161, 162] and the small-U Hubbard model
of Bulut et al. [158], has been developed and discussed extensively by Si, Levin, and
co-workers [253–256]. This is a 3-band Hubbard model with U essentially infinite,
wherein the nearest-neighborAFMexchange fromcombinedO2−-mediated superex-
change plus RKKY sources is incorporated via the RPA technique. Thus it is similar
to the foregoingmodels, except that the authors report that they havemicroscopically
derived the Lindhard (noninteracting) susceptibility. As we shall see, this is not only
a first-principles calculation, but one with entirely realistic physical parameters. Here
we will comment very briefly on their results, and discuss a comparison with INS

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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data and with T1 curves for 63Cu and 17O nuclei in the CuO2 planes. We suggest
below, however, that further calculations with this theory would be very interesting.

The interesting difference between this model and those mentioned in previous
subsections is that on a decrease in doping level, the system nears a localization
transition rather than a magnetic (AFM) one. Moreover, owing to strong coulomb
correlation effects, the renormalized antibonding band narrows as the insulating limit
is approached. Thus, the principal bandwidth parameter tpd → tpd(1 − nd)1/2, where
Mott localization occurs as the electron concentration nd → 1. The latter effect,
then, lowers the coherence temperature at which Fermi liquid behavior gives way
to temperature-independent relaxation. In cases under consideration, this has been
estimated to occur at a few hundred Kelvin [253–255]. Evidence for such effects
is clearly present in the Uldry-Meier analysis of cuprate T1 data in Sect. 5.1. For
example, in Table4.2 the effective degeneracy temperature for YBa2Cu4O8 (Y248)
is seen to be as low as 420K. It would be very interesting if the large-U, tight-binding,
Hubbard model calculation could account for this effect.

Extensive calculations of dynamical susceptibilities have been made with the
method described [256]. These results may then be compared with INS data and with
T1 data for both the 63Cu and 17O nuclei in the CuO2 plane. Plots of the structure
factor S(q,ω) (i.e.χ′′(q,ω)) for two different scans in q-space (see figure caption) are
shown in Fig. 5.14a for YBCO7 and b for YBCO6.7.3 These results were calculated
with the expression

χrr′(q,ω) = χ0
rr′(q,ω) + χ0

rd(q,ω)[−JH(q]χ0
dr′(q,ω)

1 + JH(q)χ0
dd(q,ω)

, (5.5.1)

where the χrr′’s are “partial susceptibilities” [257], with r = p or d, χ0
rr′(q,ω) is the

microscopically-derived Lindhard function [257], and JH(q) is the composite Cu-Cu
exchange coupling, which is modeled here with

JH(q) = J0[cos qxa + cos qya]. (5.5.2)

There is a critical value J0 = Jc, above which χrr′(q,ω) is unstable. For YBCO7, J0
was taken to be 0.5Jc and for YBCO6.7 J0 = 0.7Jc, while the doping for these two
was x = 0.18 and 0.36, respectively. For other details we refer the reader to [256]
and [257].

Referring to the theoretical scan results in Fig. 5.14, plots ofχ′′(q,ω) are shown for
T ∼ 12K and T ∼ 120K. The AFM peak is commensurate and noticeably narrower
for YBCO6.7, as expected. Although the authors emphasize the constancy of these
results with temperature [256], the peaks in all cases seem somewhat lower and
wider at 120K, this effect being incrementally greater for YBCO6.7. One can only
imagine that at 300K the peaks would be even wider, giving a palpable temperature
dependence to the correlation lengths. Comparing these results with the INS data
for reduced oxygen YBCO given by Stock et al. in Fig. 4.21 [201], there is some

3Similar results were also presented for LSCO. These are invoked in a discussion of that system in
Chap.6.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_6
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Fig. 5.14 aCross sections of S(q,ω) forYBCO7are shown forω = 15meV, first along the diagonal
at T = 1meV and 11meV, and then along the qy axis for q = ( 12 , qy) for the same two temperatures.
b Cross sections of S(q,ω) for YBCO6.7 are shown for the identical set of conditions as in part (a).
All results were calculated as described in [256]

difference in peak shape, with the INS scan distinctly narrower. The frequency of
the measurement was ω = 12.4meV, while that of the calculation is 10meV. It was
reported that the INS χ′′(q,ω) peak width was independent of temperature [201].
However, there was some evidence for inhomogeneous broadening of the latter peak,
casting some doubt on that result. See Sect. 4.2 for further discussion.

The authors also use their results for χ′′(q,ω) to simulate relaxation rate curves
for 63Cu and 17O as a function of temperature, using the same HF tensors as those
employed by Bulut et al. in [158]. The results are shown for both compositions in
Fig. 5.15 as temperature plots up to 360K [256]. We make the following remarks
about the nature and significance of these results.

• Comparing these plots with experimental data (see Fig. 4.23), certain trends are
seen to be qualitatively correct. The deviation from Korringa behavior is greater
for the 63Cu than for the 17O, and greater for the YBCO6.7 than for the YBCO7.

• The amplitude trends are dramatically different from the experimental data, where
for 63Cu, the experimental curves are intertwined so that YBCO6.7 rises above
YBCO7 at T ∼ 150K, but falls below YBCO7 at room temperature. For 17O
the curves are reversed, where experimentally (Fig. 4.23a), 1/T1T for YBCO7 is
relatively flat and lying above the curve for YBCO6.7, which descends to a small
fraction of its room temperature value at T = Tc ∼ 60–65K.

• The latter circumstances arise, in part, because YBCO6.7 exhibits a spin pseudo-
gap effect in which the susceptibility, as well as 1/T1T for the 17O, decline at

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 5.15 a Relaxation rates 1/T1 for 63Cu, calculated for both YBCO7 and YBCO6.7 using the
results for χ′′(q,ω) shown in Fig. 5.14 and the HF tensor given by Bulut et al. [158], are plotted
as a function of temperature [256]. b Similar calculated results are plotted versus T for the case of
planar 17O, using the same resources

low temperatures ∝ exp(−Δ/kBT), where Δ/kB = 104K (see Sect. 4.1.2). The
Hubbard model discussed here [256, 257] does not have this feature, so that com-
parison with YBCO6.7 data, especially at low temperatures, is not meaningful.
The only successful model of low-frequency spin fluctuations for the case of a
pseudogap is that of Varma [222].

• The authors have some concern that the 17O results are not as Korringa-like as the
experimental data for YBCO7 and/or are not compatible with their calculation for
63Cu. The straightforward answer to this is found in the Uldry-Meier analysis of
T1 data, presented in Sect. 5.1. This type of analysis was not, of course, available
in the early 1990’s when the Hubbard-model calculations were being developed.
The main significance of the UM analysis is that it separates the dynamical spin-
spin correlations (Kn from (2.5.17)–(2.5.18)) from the quasiparticle dynamical
function (2.5.17) Xat(T) = ∑

q[χ′′(q,ω)/ω]ω→0. (This quantity is called τeff(T)

in the UM analysis.) Given a theory for χ′′(q,ω), thenKn and Xat(T) are straight-
forward quantities to evaluate. In the latter formulation, the 63Cu and 17O curves
contain the same dynamical information, but very different correlation effects.
The latter may be seen in Fig. 5.3a and b. The experimental dynamical function
for YBCO7 is shown in Fig. 5.2b.

• Si et al. attributed the strong curvature of the 63Cu 1/T1 curve to a coherence
temperature [253]. This may be something of a misapprehension, since the curve
is strongly affected by T-dependent spin-spin correlations. The true picture of
dynamical behavior with temperature would be given byXat(T) versus T . It would
be most interesting to see whether this theory would provide an explanation for the
flattening off of dynamical fluctuations at high temperatures, since at the present
time there is no theory for this available. The large-U RPAmodel seems especially

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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suited to this, because the band-narrowing effect with hole dilution [254] is similar
to what is observed in practice (see Table4.2).

• We further suggest that the reason for the strong deviation from Korringa-like
behavior for the 17O in Fig. 5.15b is that the corresponding peak in Fig. 5.14 has
much wider wings than the INS-measured peak in Fig. 4.21. This situation is a bit
like the Lorentzian versus Gaussian models by MM [162], where the Gaussian
model with steeper sides gives far less contribution to the 17O(2,3) relaxation rate.
The downward curvature of the plot of 1/T1 for the 17O is probably mainly due to
the dynamical correlation factor, leaving the impression thatXat(T)may be nearly
linear in T .

• Nonetheless, an actual evaluation of Xat(T) for different carrier levels would
answer a very interesting question about the large-U Hubbard model, namely
whether it can account for the high-temperature transition in the dynamics seen in
the experimental data, such as Figs. 5.2b and 5.4b.

5.6 Relaxation via Orbital Currents Proposed by Varma

Up to this point only spin-paramagnetic T1 processes have been considered for the
doped cuprate superconductors. However, in 1989 a somewhat radical idea was
proposed for these systems, namely that for a certain class of charge excitations
the polarizability has a term which obeys [159]

ImP̃(q,ω) ∼
{−N(0)(ω/T) for | ω |< T
−N(0) sgn(ω) for | ω |> T , (5.6.1)

where N(0) is the one-particle density of states. Applying this marginal Fermi liquid
(MFL) ansatz to magnetic processes at NMR frequencies ω0 � kBT/�, we have

χ′′
mfl(q,ω) = �

2N(0)ω0

kBT
, (5.6.2)

where we have added the factor �
2/kB to make clear that this is dimensionally a

correlation time.
To apply this ansatz to an HF perturbation process, we suppose that there is a qua-

siparticle interaction term γnHmflI · f (q)with a (dimensionless) q-dependence factor
f (q). Then, by the fluctuation-dissipation theorem ((3.5.8)–(3.5.9)) this generates a
temperature-independent T1 process

1

T1
= 4γ2

nH
2
mflkBT

�

∑

q

f⊥(q)2
χ′′
mfl(q,ω0)

ω0
= 4�γ2

nH
2
mflN(0)

∑

q

f⊥(q)2, (5.6.3)
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where the second step used (5.6.2), and �N(0) ∼ �/EF is a correlation time. Such
processes in metals would be very strong. It has already been noted that such a
dynamic would not apply to spin fluctuation processes in cuprates.

However, it was subsequently proposed by Varma [244] that the MFL scenario
could be applied to magnetic fluctuations which result from circulating orbital cur-
rents, yielding a T1 process for the Cu(2) sites. Here we review the arguments leading
to an estimate given for 63T1orb [244]. The proposed T1 mechanism would operate
via the orbital HF interaction (see (2.2.1))

Horb = I · Morb = i�I · L/r3 = i�I·r × ∇/r3 , (5.6.4)

where the local angular momentum operator L is associated with the Cu(2) site.Horb

could then act to scatter quasiparticles from k + q/2 to k − q/2, where the squared
matrix element for the relaxation process would be summed over k and q. However,
since the occupied 3d wavefunction in the cuprates is thought to be purely dx2−y2 ,
the orbital HF matrix element

〈k + q/2 | Morb | k − q/2〉 = �〈e−iq·rU∗
k+q/2(r)

L
r3
Uk−q/2(r)〉, (5.6.5)

(exp[i(k + q/2) · r]Uk+q/2(r) is a typical Bloch function) will have no intrasite con-
tribution ∼ �forbγnμB〈r−3〉, where forb is the orbital symmetry factor (see Fig. 2.9)
and 〈r−3〉 ∼ 6a.u. for 3d electrons. Thus, for a dx2−y2 ground state forb = 0. It is for
this reason that the conventional orbital T1 mechanism, which is often predominant
in d-band metals, is absent in the cuprates.

The leading contribution to (5.6.5) will come from cross terms between the Cu(2)
site and its oxygen neighbors. To show how this develops, the behavior of 〈k + q/2 |
Morb | k − q/2〉 was examined [244] for k ∼ 0 and small values of q. In this limit,
Uk+q/2(r) ∼ U0(r) can be written

U0(r) = 1√
N

∑

i,α

Ai,α(0)φ(r − Ri,α) , (5.6.6)

where α is summed over the three sites in the CuO2 unit cell, and i is summed
over cells. The local wavefunctions are φ(r − Ri,α) ∼ dx2−y2 in a Cu(2) site and
∼ pσ = px,y on the oxygen neighbors. The phase factors Ai,α(0) = ±1 must be
adjusted appropriately (see [244], Fig. 1).

The principal HF fluctuations from orbital currents will be along the c axis, which
we label z. Since Lzφd(r) ∼ dxy for φdx2−y2

at the origin, one must find dxy-like sym-
metry on the oxygen neighbors. For small q the relevant term (5.6.5) becomes

〈k + q/2 | Morb | k − q/2〉 � i�
∑

n

q · 〈rφp(r − Rn)
Lz
r3

φd(r)〉, (5.6.7)

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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where n is summed over the neighbors. One can then choose the term from rφp(r −
Rn)which has xy symmetry to obtain a non-zeromatrix element. There will evidently
be a non-zero contribution from larger values of q as well. On the other hand it is
argued that there is no corresponding non-zero Cu-O term if the origin is placed
on the oxygen site. This is fairly obvious, because at r ∼ îx, Lzpx ∼ py, and xpy is
orthogonal to dx2−y2 . So the orbital currents can produce a z-axis T1 fluctuation, and
possibly through the apical oxygens some smaller in-plane fluctuations at the Cu(2)
site, but not at the O(2,3) sites.

To estimate the strength of the corresponding T1 process, we can write the orbital
dynamical structure factor, in analogy with (3.5.6)–(3.5.8), as

1

T1orb
= 2kBT

�ω0

γ263μ
2
B

�2

∑

q
〈Morb(q)Morb(−q)〉ω0 = kBT

�ω0

63A2orb
∑

q
(qa)2χ′′

mfl(q, ω0) ,

(5.6.8)
where 63Aorb is γ63μB/� times the intersite matrix element from the right-hand side
of (5.6.7). To obtain the final expression for T1orb the MFL ansatz correlation time
(5.6.2) is modified by replacing the effective quasiparticle scattering rate kBT/� in
the denominator by kBT/� + 1/τ0, where 1/τ0 is a disorder-generated scattering rate
of the order of tens of degrees [244]. With this change, (5.6.8) then gives

1

T1orb
= �

63A2
orbN(0)

kBT

kBT + �/τ0
. (5.6.9)

In applying this to cuprate relaxation data, we note that for T > 100K, (5.6.9)
assumes a nearly constant value 1/T1orb � �

63AorbN(0). The HF parameter 63Aorb

is very difficult to estimate from (5.6.7). The main contribution will come from the
overlap region between the Cu(2) and O(2,3) sites, and is probably 1–2 orders of
magnitude smaller than the 3d on-site orbital HF field (see Sect. 2.3.3 and Table2.4)
Horb = 2μB〈r−3〉3d ∼ 125kOe/μB. From the UM analysis of Sect. 5.1 (Table5.2) we
estimate �N(0) ∼ �/kBTF � 8 × 10−15s for YBCO7. In this case, taking an optimal
symmetry factor forb = 0.6, we find

1

T1orb

]

opt

= forbγ
2
63H

2
orb�N(0) = 3.8 × 103 s−1. (5.6.10)

This is ∼3 times the measured relaxation rate for YBCO7 at T = 100K. The rate in
(5.6.9) is therefore estimated to be of the order of 10% of that at most.

Interestingly, the combination of (5.6.9) and spin-paramagnetic processes which
vary as 1/T1 ∝ T have been shown to give a good account of 63Cu(2) relaxation data
for both YBCO7 and optimally-doped LSCO. These results are shown in Fig. 5.16,
where they are compared with data from [143] and [239]. For the calculated curves in
this figure 1/τ0 is taken to be 25Kand 100K forYBCO7andLSCO, respectively. The
quantity �

63A2
orbN(0) is taken to be ∼3 × 103 s−1, which is very near the estimated

upper limit for an orbital contribution.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 5.16 Orbital relaxation
rates estimated with (5.6.9)
are compared with
experimental data for
YBCO7 [143] and
optimally-doped LSCO
[239] as shown. For the
plotted curves 63A2

orb �N(0)
is taken to be 3200 s−1 and
2800 s−1, and 1/τ0 is taken
to be 25K and 100K for
YBCO7 and LSCO,
respectively. See text for
discussion of these
calculations

A final point has to do with how the orbital relaxation would fit into the scheme of
T1 analysis described in earlier subsections of this chapter. Since the UM analysis in
Sect. 5.1, for example, is internally consistent and is consistent with the Mila-Rice,
spin Hamiltonian parameters derived from shift measurements in Chaps. 3 and 4, a
contribution from 1/T1orb at the 10% level would pose no problem. To accommodate
a larger contribution than that would pose something of a challenge to the internal
consistency of our current thinking on T1 in the cuprates.

The presence of orbital current fluctuations in cuprates has now been verified by
neutron scattering studies [223], so there is no doubt about their existence. Further,
they appear to be closely associated with the pseudogap effect. Whether these fluctu-
ations are observable via NMR (other than the well-known NMR pseudogap effects
reviewed in Chap.4) remains to be established. An important theoretical step toward
further elucidation would be a serious effort to evaluate the intersite orbital matrix
element in (5.6.7).

5.7 Relaxation of Planar 63Cu and 17O at T < Tc

In Sect. 3.6 we saw how a straightforward adaptation of the RPA susceptibility model
to the BCS formulation of nuclear relaxation by Monien and Pines [160] gave a
good account of the NQR T1(T) for 63Cu(2) at T < Tc (YBCO7). Following that
pioneering work there were important developments on the experimental side. As
shown in Fig. 3.11b, there had been a serious discrepancy between high-field NMR
T1 data below Tc and that obtained with NQR. One suspected that, as was found for
the V3X compounds in Sect. 2.2.5 (see Fig. 2.13), relaxation by spin diffusion to the
normal cores becomes appreciable in high fields. Thus, the precise scaling between

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 5.17 63Cu(2) relaxation
data from the work of
Martindale et al. [258].
a Semilog plot of 1/T1 for
63Cu(2) (63W1) versus T in
the range 0 ≤ T ≤ 100K for
YBCO7. Data are presented
for different values of
applied field, including NQR
data for zero field. The open
symbols show data with field
(i.e., quantization axis) along
the c axis, while filled
symbols are for field ⊥ the c
axis. b Semilog plot of
1/T1abT for 63Cu(2)
(63W1a/T ), normalized to its
value at Tc, as a function of
T ≤ Tc. This plot illustrates
the exponential behavior, as
well as the weak field
dependence of 1/T1abT
below Tc

T1 curves for 63Cu(2) and 17O(2,3) observed by Hammel et al. is strongly dependent
on the applied field [156].

In an effort to determine the intrinsic relaxation times for 63Cu(2), a careful study
of the field dependence of T1 below Tc in YBCO7 using oriented powder samples was
conducted by Martindale et al. [258]. The results are as follows: For field (i.e. quan-
tization axis) along the c axis, T1 was measured in 8.31T, 4.14T, and 0T (NQR). For
field⊥ c axis, T1 was measured in 8.31 and 0.45T. Measurements were conducted at
a series of temperatures 20K ≤ T ≤ 100K, with the results plotted semilogarithmi-
cally in Fig. 5.17a. ForH0 ‖ c axis, the variation of T1 with field is substantial, where
at 20K an 8T field increases the relaxation rate by a factor∼5. The field dependence
with the field in the ab plane is measurable, but much smaller.4

4The authors refer to the conclusion by Redfield and Genack [109] that relaxation by diffusion to
the normal cores in the vortex state is not physically viable. Further analysis of this problem by
Furman and Goren seems to have restored the validity of such a T1 process [110]. Experimental
evidence for it is, of course, very strong.
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In the remainder of the discussion, then, NQR data or data taken in very low
applied field will be preferred. In Fig. 5.17b 1/63T1abT , scaled to its value at Tc, is
plotted semilogarithmically versus T . It is seen to behave very nearly as

1
63T1abT

� e−b(1−T/Tc), (5.7.1)

with b ∼ 6. The c axis data exhibits similar behavior, except that it begins a bit more
slowly and the coefficient b is slightly larger. Over a decline in relaxation rates of
a factor ∼300, the ratio 63T−1

1ab/
63T−1

1c behaves as shown in Fig. 5.19a. To discuss
the curves and data presented there, however, we must first review the calculations
reported by Bulut and Scalapino [251, 252].

5.7.1 χ′′(q,ω) for the Small-U Hubbard Model at T < Tc

The calculations by Bulut et al. [158] of T1 behavior in the normal state based on

χ(q,ω) = χ0(q,ω)

[1 −Uχ0(q,ω)] , (5.7.2)

where U is the coulomb repulsion renormalized due to particle-particle correlations,
is discussed at some length in Sect. 5.4. This theory was fitted to relaxation data by
choosing U = 2t and band occupation number 〈n〉 = 0.86. Their treatment of the
superconducting state with these same parameter values [251, 252] is discussed in
this subsection.

To model the dynamic susceptibility for T < Tc, these authors used the RPA form
(5.7.2) with the “irreducible BCS susceptibility” given by [252]

χ0(q,ω) =
1

N

∑

p

[
1

2

[

1 + Ep+qEp + Δp+qΔp

Ep+qEp

]
f (Ep+q) − f (Ep)

ω − (Ep+q − Ep) + iΓ

+ 1

4

[

1 − Ep+q

Ep+q
+ Ep

Ep
− Ep+qEp + Δp+qΔp

Ep+qEp

]
1 − f (Ep+q) − f (Ep)

ω + (Ep+q + Ep) + iΓ

− 1

4

[

1 + Ep+q

Ep+q
− Ep

Ep
− Ep+qEp + Δp+qΔp

Ep+qEp

]
1 − f (Ep+q) − f (Ep)

ω − (Ep+q + Ep) + iΓ

]

(5.7.3)

In (5.7.3) the dispersion relation is Ep = (E2
p + Δ2

p)
1/2 and Ep = −2t (cos pxa +

cos pya) − μ, where μ is the chemical potential and Δp is the gap function. For Δp

we will consider here the case of a d-wave form

Δp(T) = [Δ0(T)/2](cos pxa − cos pya), (5.7.4)
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where a BCS temperature dependence is adopted for Δ0(T). There is a finite broad-
ening parameter Γ (T) to be specified below. Finally, the superconducting transition
temperature was taken to be Tc = 0.1 t, where at T = Tc the 63Cu(2) relaxation rate
has approximately the correct value and degree of AF enhancement to correspond to
YBCO7 at 100K.

In [252] this formalism was used to treat and discuss both s-wave and d-wave
gap symmetries with different choices of parameter values. Since this work was
completed several years before d-wave symmetry was confirmed for the cuprates
through the observation of phase jumps at the boundaries of Josephson junctions
[172, 173], at that time there were still many proponents of s-wave pairing. We shall
not dwell on the s-wave case here, but will point out how convincingly the relaxation
behavior argues in favor of d-wave pairing in this theory. The early work of Monien
and Pines [160] discussed in Sect. 3.6 also weighed heavily on the side of d-wave.

We first look at the behavior of T1 as treated with this formalism [252]. The usual
expression (3.5.9)

1

T1
= kBT

4�

∑

q

| A(q) |2 χ′′(q,ω0)

ω

]

ω→0

(5.7.5)

is employed with the Mila-Rice-Shastry HF tensors (3.3.11). To see how this model
distinguishes s-wave and d-wave behavior, it is useful to consider how the quantity

χ′′(q,ω)

ω

]

ω→0

= χ′′
0(q,ω)/ω]ω→0

[1 −Uχ0(q)]2 (5.7.6)

behaves with temperature in different regions of q-space. For the s-wave case,
χ0(q, 0) declines for all q values below Tc, so that the enhancement factor [1 −
χ(q, 0)]−2 will decline for all HF tensors [252]. In contrast, for the d-wave case,
χ0(q, 0) is only suppressed for | q |≤ 1/ξsc, where ξsc is the superconducting corre-
lation length. The region around Q = (π,π) is not suppressed because of the nodes
in the gap. Thus, AFM fluctuations persist into the SC state for the d-wave case.

The other factor present in (5.7.6) is

D0(q) = χ′′
0(q,ω)

ω

]

ω→0

. (5.7.7)

Figure5.18a is a plot of how D0(q) varies with temperature for a very small value
of q, and in part (b) it is shown how it varies for q near to Q. In the s-wave case the
two are very nearly the same, but for d-wave they are quite different. This sets up
a diagnostic where if we look at the ratio of T1 values for sites which depend very
differently on q, there will be a large expected difference between predicted behavior
for s-wave and d-wave.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Comparison of RPA Calculations with T1 Data

The authors have calculated and discussed T1 behavior for a number of cases of
parameter values with both s-wave and d-wave gap symmetry. The contrast between
these two symmetries is best displayed by taking the ratio ofT1 values for caseswhich
have different degrees of dependence on fluctuations near Q, as shown in Fig. 5.18.
As was clearly illustrated by Takigawa et al. [259], T1ab for 63Cu(2) is most strongly
dependent on AFM fluctuations, with a lesser dependence for T1c, and very nearly
zero dependence for the oxygen 17O(2,3) relaxation T1O (for any axis).

To illustrate the foregoing effect, calculations and experimental data were pre-
sented for T1c/T1ab (63Cu(2) in YBCO7) [251], which we reproduce in Fig. 5.19a.
Over a range of ∼3 orders of magnitude in relaxation rates, the variation of T1c/T1ab
is relatively slight, but has a definite signature. The data shown are the low-field mea-
surements of Martindale et al. [258] (squares) reviewed above, and similar low-field
measurements of T1ab combined with low-field NMR measurements (filled circles)
and NQR (H = 0) measurements (open circles) of T1c [259], which give equiva-
lent results. The theory curves plotted for s-wave (2Δ0/kBTc = 4 (dotted line) and
8 (dashed line)) are seen to drop slightly, then remain flat, since there is no real
distinction between the D0(q) curves (Fig. 5.18). For the d-wave case (solid curve),
however, the drop and then rise reflect clearly the difference in behavior of the respec-
tive D0(q) curves in Fig. 5.18a and b. The observed ratio in Fig. 5.19a is a very clear
sign in favor of d-wave gap behavior, which appeared several years before d-wave
symmetry was widely accepted for the cuprates.

The ratio T1O for 63Cu(2) to T1c in Fig. 5.19b is also clearly supportive of d-wave
symmetry. The message here is somewhat muted, owing to the fact that no low-field

(a) (b)
s _ wave 
d _ wave 

s _ wave 
d _ wave 

q = (0.05π, 0) q = (π, 0.9π)

T/TC T/TC

D
0(

q)

D
0(

q)

Fig. 5.18 a The quantity D0(q), defined in (5.7.7), characterizes the variation in intensity of low-
energy fluctuations over the Brillouin zone. In part (a) this quantity is plotted versus T/Tc at
q = (0.05π, 0) for s-wave and d-wave gaps as shown. Here and in part (b), 2Δ0 = 3.52kBTc, and
broadening Γ = 0.3Tc has been used to control the coherence factor singularity. b The quantity
D0(q) is plotted for the same parameters as in part (a), except that q = (π, 0.9π). A sharp contrast
between s-wave and d-wave behavior is seen to prevail
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(a)

(b)

T/TC

T/TC

T 1
c/T

1a
b

T 1
O
/T

1c

Fig. 5.19 a For 63Cu(2) in YBCO7, a plot of the ratio T1c/T1ab versus T/Tc for temperatures in the
superconducting state. The square symbols represent low-field data fromFig. 5.17 [258]. The circles
are data from Takigawa et al. [259], where the open circles represent T1c data taken using NQR
(H = 0) and the closed circles represent data taken in a c-axis field of 0.44T. The data for T1ab were
taken in a transverse field of 0.44T. See the text for an explanatory note on these measurements.
The solid line is the calculated curve for a d-wave gap as described in the text, using 2Δ0/kBTc = 8.
The other lines represent calculations with an s-wave gap, assuming 2Δ0/kBTc = 4 (dotted) and
8 (dashed), respectively. b The ratio of the 17O(2,3) relaxation time T1O and T1c (for 63Cu(2)) is
plotted versus T/Tc as in (a), but with plotted data scaled to their value at Tc. The data are from
Hammel et al. [156] and were measured in fields of 7–8T. The calculated curves correspond to the
same set of cases as in (a)
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17O(2,3) T1 data were available at the time, so the entire data base for the latter plot
is 7–8T NMR data [156]. The latter circumstance would only affect behavior at the
low-temperature end, however, so the comparison with theory is for the most part
justified.

It is interesting to note that a simple modification of the analysis would make
the displayed effect in Fig. 5.19a somewhat more dramatic. This is suggested by the
method of T1 measurement employed by Takigawa et al. [259], in which they write

1

T1ab
= Jab + Jc; 1

T1c
= 2 Jab , (5.7.8)

where the Jα’s are terms corresponding toHFfluctuations along theα axis.5 Withfield
applied ⊥ to the NQR principal axis to measure T1ab, a complex set of terms occurs
in the relaxation process. Thus, Jc(T) and Jab(T) are actually measured separately.
Compared with T1c/T1ab, a plot of Jab/Jc [259] would show a more striking contrast
between s-wave and d-wave.

Finally, it is interesting to simply compare anRPAcalculation ofT1c(T) forT < Tc
[252] with NQR data attributed to Takigawa et al. [259]. These results are shown
in Fig. 5.20a, where the experimental points are open circles and the calculation
is shown as a solid line. The data points are seen to drop very steeply below Tc,
then approach a T 3 behavior (dashed line), as expected for a d-wave gap. The RPA
calculation gives a very good account of this behavior [252].

RPA Theory for the NMR Shift Below Tc

Bulut and Scalapino also calculated the NMR shift behavior with their model [251,
252], which is simply given by

Ks(T) ∝ χ(q → 0, 0) = χ0(q → 0, 0)

1 −Uχ0(q → 0, 0)
. (5.7.9)

There is also a temperature-independent VanVleck shift term, which renders the zero
ofKs(T) a bit uncertain. This has been subtracted off in the data plot of Fig. 5.20b. The
data shown are for 63Cu(2) by Barrett et al. [147] (crosses) and 17O(2,3) by Takigawa
et al. [178, 260] (circles).All data are scaled to their total estimated excursionbetween
Tc and 0K. Theoretical curves are shown for U = 2t and several values of the d-wave
gap parameter 2Δ0/kBTc. As the authors note [252], the lowest-temperature value is
very important here. If the curves had been least-squares fitted to the two sets of data,
it appears that the dashed curve (2Δ0/kBTc = 6) would have been an excellent fit.

The distinction between Ks(T) for s-wave and that for d-wave is that for d-wave
the curve approaches T = 0 with a finite slope, but with zero slope for s-wave [252].
The data are certainly consistent with a finite slope, although the scatter is large

5This is the same procedure as that used in the UM analysis of Sect. 5.1, where the Uα’s defined
there are the same as the present Jα’s.
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Fig. 5.20 a The c-axis
relaxation rate 1/T1c for
63Cu(2), scaled to its value at
Tc, is plotted logarithmically
versus T/Tc. The data are
attributed to Takigawa et al.
[259]. The relaxation rate
drops sharply below Tc, then
falls very nearly as T3

(dashed line). The solid
curve shows the RPA theory
calculation for the d-wave
case with U = 2t and
2Δ0/kBTc = 8. b The
behavior of the NMR shift
Ks(T), scaled to its value at
Tc, is plotted for
0≤ T/Tc ≤ 1. The crosses
with error bars are 63Cu(2)
data from Barrett et al. [147],
and the open circles are
17O(2,3) data from Takigawa
et al. [178, 260]. The lines
plotted are calculations for a
d-wave gap with U = 2t and
various values of Δ0 as
shown

enough so that s-wave is not ruled out.All in all, the shift results are a nice complement
to the T1 data. The two together make a very strong case for d-wave symmetry.

5.7.2 T1 and Spin-Spin Correlations Below Tc: The UM
Analysis

In this final subsection we consider the behavior of T1 below Tc from another stand-
point, one which does not employ any particular microscopic model of the spin
dynamics, but relies only on the general formulation of the T1 process involving
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χ′′(q,ω) and theMila-Rice HF Hamiltonian (3.3.2) (see Sect. 3.5.3). This, of course,
is the basic premise of the Uldry-Meier analysis of cuprate T1 data presented in
Sect. 5.1. These authors and co-workers have also employed this approach to discuss
the behavior of spin-spin correlations above and below Tc and have come to two
remarkable conclusions [261]. First, they find that in-plane spin-spin correlations
vanish as T → 0 in a fashion roughly symmetrical to how they vanish at high tem-
peratures. Secondly, they give evidence that it is only the in-plane correlations which
vanish, while the c-axis correlations remain basically unchanged below Tc.

To review theUMformulation, relaxation of the kth nuclear spin species quantized
along the α axis is written (see Sect. 5.1)

1
kT1α(T)

= [kVβ(T) + kVγ(T)] τeff(T) , (5.7.10)

where (α,β, γ) are a permutation of the axes (a, b, c) and kVα(T) is expressed in
terms of the HF constants and the correlation functions Kα

n (T). For example, for
17O(2,3) one has

17Vα(T) = 1

2�2
C2

α [1 + Kα
1 (T)] , (5.7.11)

where we emphasize that the Kα
n were allowed to be anisotropic. For YBCO7 it was

found, for example, that the Kc
n were ∼20% larger than the Kab

n (see Fig. 5.2a).

Behavior of ab Plane Correlations

In this same notation we also have (5.1.4)

63Vα(T) = 1

4�2
[A2

α + 4B2 + 8AαBKα
1 (T) + 8B2Kα

2 (T) + 4B2Kα
3 (T)] .

(5.7.12)
Thus,

17T1c
63T1c

= 2 63Vab(T)

17Va(T) + 17Vb(T)

=⇒
Kn→0

A2
ab + 4B2

C2
a + C2

b

(5.7.13)

is purely a function of in-plane correlations, approaching the value on the right as
they vanish.

Several sets of low-field data for 17T1c/63T1c are plotted in Fig. 5.21a as a function
of T/Tc for 0 ≤ T/Tc ≤ 4.5 for YBCO7 [206, 238, 263, 264] (see figure caption
for details) and for Y248 [218]. Since the only temperature dependence for this ratio
comes from the Kn(T)’s, what the figure shows is that correlations are small at the
highest temperature, grow as T is reduced until they reach a peak value Kab

1 (Tc) ∼
−0.4, and then decline again toward zero at low temperatures. The dashed line in this
plot shows the value of 17T1c/63T1c for Kab

n = 0 (5.7.13), evaluated with numbers
from the UM fit to YBCO7 data (Table5.1). This line is seen to be in very good
agreement with the high and low-temperature limiting values of the experimental T1
ratio.

The shaded triangles in Fig. 5.21a show the same plot for Y248, taken from the
results of Bankay et al. [218]. There we see that the correlation effects are more than

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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Fig. 5.21 a The ratio of 17O(2,3) to 63Cu(2) T1c values is plotted versus T/Tc for YBCO (squares
and circles) and for Y248 (shaded triangles). For YBCO7 the open circles are high-field data from
Yoshinari et al. [238], and filled circles are low-field data from Martindale et al. [263]. The filled
squares denote data points where 63Cu(2) data from Barrett et al. [264] are combined with 17O(2,3)
data from Nandor et al. [206]. The Y248 data are high-field 17O(2,3) data combined with NQR data
for 63Cu(2), both from Bankay et al. [265]. The dashed line is the model prediction for vanishing
transverse AFM correlations (Kab

1 = 0). b The ratio T1c/T1ab for 63Cu(2) is plotted versus T/Tc
for YBCO7 (filled circles) and for Y248 (filled triangles). The YBCO7 data are low-field data from
Takigawa et al. [259] and the Y248 data are low-field data from Bankay et al. [265]. The dotted and
dashed lines are normal state ratios from the same sources for YBCO7 and Y248, respectively. The
open symbols are corresponding predictions from UM model calculations at Tc and at 0K, which
are obtained as described in the text
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twice as great as in YBCO7 and do not seem to be very much affected by the spin
pseudogap, which has quite a powerful effect on τeff for this compound. It follows
that the Kab

n (T)’s are not much affected.

Behavior of c-axis Correlations

The foregoing results show that the ab-plane correlationsKab
n (T) are strongly peaked

at Tc in these systems and vanish at low temperatures T � Tc. However, if one looks
at the ratio T1c/T1ab for 63Cu(2), the value of T1ab is strongly dominated by c-axis
fluctuations, for which 63Vα(T) is markedly dependent onKc

n(T). What they found is
that 63Vα(T) behaves as though theKc

n(T) do not change appreciably below Tc. Data
for T1c/T1ab versus T/Tc are plotted in Fig. 5.21b, showing the variation of this ratio
for both YBCO7 and Y248 [218]. Both sets of data were measured in low magnetic
fields. In the normal state T1c/T1ab is fairly flat for both of these compounds, with a
value ∼3.7 for YBCO7 and ∼3.3 for Y248. Below Tc the data decline slightly, then
rise to new maximum values, Y248 slightly higher than YBCO7.

To discuss these data we use

T1c
T1ab

= 1

2

[

1 +
63Vc(T)

63Vab(T)

]

. (5.7.14)

Data for T2G , to be defined and discussed in Chap. 6, suggest that c-axis corre-
lations do not change much below Tc [261]. If that were true, then the T1 ratio
in (5.7.14) will have the value 1

2 [1 + 63Vc(Tc)/63Vab(Tc)] at Tc and the value
1
2 [1 + 63Vc(0)/63Vab(Tc)] at T = 0. For YBCO7, these values are obtained from
the fits and parameter plots from the original UM paper [195] (see Table5.1 and
Fig. 5.3). The resulting ratio values are plotted in Fig. 5.21b (open circles), where
they are seen to be in good agreement with the YBCO7 data.

To evaluate T1c/T1ab for Y248 one needs a special procedure, because the magni-
tude of the correlations at Tc is not known from experimental data. The asymptotic,
high-temperature value of T1c/T1ab � 3.3 for 63Cu(2) was obtained from the mea-
surements of Bankay et al. [265]. However, it seems unlikely that this corresponds
to Kα

n ∼ 0. From fit results for YBCO7 [195], if Kα
n = 0, one has T1c/T1ab � 2.75.

For Y248, then, the values of Kα
1 were estimated from the fit values for YBCO6.63,

arguing that these two compounds have similar carrier densities and pseudogaps.
Taking Kab

1 (Tc) � −0.53 and Kc
1(Tc) � −0.61 from data fits for YBCO6.63 [195],

they obtained
T1c
T1ab

]

T=Tc

� 3.00; T1c
T1ab

]

T=0

� 5.78 . (5.7.15)

These approximate values are plotted in Fig. 5.21b as open triangles, and are seen to
correspond well with the data.

The point here is, of course, that these results give good evidence that the c-axis
correlations do not decay at low temperatures. If the c-axis correlations decay to
zero as T → 0, then according to (5.7.14) T1c/T1ab → 2.75 in Fig. 5.21b for both

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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compounds. This value is below the dashed and dotted lines and is not in good accord
with the data.

Comparing this discussion with the analysis given by Bulut and Scalapino in
Sect. 5.7.1, their Hubbard model gives a functional form for χ′′(q,ω) at low frequen-
cies at T < Tc which they have used in effect to evaluate theKα

n (T) (see (3.5.17) and
(3.5.18)), and thus the behavior of T1c/T1ab versus T , etc. The major difference with
the present analysis by Uldry et al. [261] is that χ′′(q,ω) for the Hubbard model is
isotropic and would not predict the anisotropic correlation effects seen here. Further,
the Hubbard model with d-wave symmetry does not inhibit AFM correlations in the
superconducting state. As we have seen from the analysis of this subsection, only the
c-axis correlations survive below Tc, with correlations in the basal plane declining
to zero as T → 0. Thus, with the simple analytic method pioneered by Uldry and
Meier, important effects have been uncovered which might never have seen the light
of day through the usual process of theoretical modeling.

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_3


Chapter 6
Dynamic Susceptibility Studies via NMR
for the Cuprates

In Chaps. 3 and 4 we saw how the dynamic susceptibility has come to play a pivotal
role in interpreting cuprate spin-lattice relaxation data and rationalizing the sharp
contrasts in T1 behavior among sites in and near the CuO2 planes. The principal
driving force in all of the magnetic phenomenology of the cuprates is clearly the
AFM fluctuation peak at or near Q = (π,π), which occurs in varying degrees of
dominance depending in an inverse fashion on the degree of carrier doping. This
scenario appears to be a unique property of doped Mott insulators.

A second consequence of strong AFM fluctuation effects is the indirect spin-
spin couplings between neighboring nuclear spins which are thereby induced. This
effect was recognized early on by Pennington et al. [139], shortly after which the
Pennington-Slichter (PS) theory of indirect spin-spin coupling appeared, formulat-
ing this effect in terms of the static, q-dependent susceptibility χ′(q, 0). Equally
important was the recognition that these couplings were responsible for a Gaussian
spin-echo decay (T2g) process which, with due care, could be measured experimen-
tally [31]. In the first section of this chapter we review the PS formulation and survey
a range of experimental cuprate results and interpretations.

The importance of T2g for cupratemagnetism researchwas that now therewere two
methods of characterizing χ(q,ω), namely T1(T ) and T2g(T ). T2g has been shown
(and we document in Sect. 6.1) to be a fairly direct measure of the key parameter
χ′(Q). It soon became de rigueur to measure the NMR shift, T1 and T2g in a cuprate
NMR study. It will become clear in this chapter why this is the case.

The connection between χ′′(q,ω) and χ′(q, 0) is the rather tenuous one through
the Kramers-Kronig (KK) relation. It is, of course, not tenuous in principle, but diffi-
cult to implement experimentally, because it requires the entire frequency spectrum
of χ′′(q,ω). In theoretical modeling, of course, this problem is handled through pa-
rameterization, and the KK relation becomes a constraint. For example, Bulut and
Scalapino have extended their calculations of dynamical properties using a small-U

© Springer-Verlag GmbH Germany 2018
R.E. Walstedt, The NMR Probe of High-Tc Materials and Correlated
Electron Systems, Springer Tracts in Modern Physics 276,
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Hubbard model to the case of indirect spin-spin coupling (T2g) in the superconduct-
ing state. When compared with the data of Ohsugi et al. [279], the result was a
dramatic confirmation of d-wave gap structure below Tc for Y248. We review these
developments at the end of Sect. 6.1.

For a purely experimental implementation of the KK relation we turn to the
case of optimally doped LSCO:x, x ∼ 0.15. For this system there has been an INS
characterization of χ′′(q,ω) for effectively all q values (in the first BZ) and for
all frequencies for which there is a substantial contribution. Moreover, the latter
characterization is in absolute units, leading to a direct comparison between INS
and T1 data with no adjustable parameters. The story of this first-ever quantitative
juxtaposition of quantitative INS and NMR data is spelled out in detail in Chap. 4.
A closely-related T2 study for both 63,65Cu and 17O is included as well, where a
successful implementation of the KK integral has been reported. The points where
INS and NMR data are clearly incompatible is also an interesting part of the story.

An interesting interconnection between T1, T2g , and the dynamic susceptibility
components has been created by the dynamic scaling theories of Pines and
co-workers. This topic is addressed in Sect. 6.4, where in the limit of long AFM
correlation lengths ξ the two parameters ξ(T ) and the spin fluctuation frequency
ωs f (T ) appear to control the dynamical properties accessible to the NMR probe.
In this context a high-temperature investigation of 63Cu(2) static and dynamic
NMR/NQR properties of YBa2Cu4O8 (Y248) by Curro et al. [242] has given ev-
idence for a sharply-defined crossover temperature (∼500K) for the dynamical ex-
ponent (z = 1 → 2) in this system. These interesting developments are spelled out
in detail, as well as suggestions for extension to other systems.

6.1 The Indirect Spin-Spin Coupling Theory of Pennington
and Slichter

Indirect couplings between nuclear spins are very strong in the cuprates [139]. As
was first demonstrated by Pennington and Slichter [31], these can be formulated in
terms of the real part of the dynamic susceptibility χ′(q, 0). χ′(q, 0) can, in turn,
be expressed in terms of χ′′(q,ω), so the estimation of χ′(q,ω) (ω = 0) through
measurements of the spin-echo T2 make the indirect couplings a powerful element
in the NMR methodology for solids. In this section we give the derivation of the
Pennington-Slichter result, which is straightforward, afterwhich various applications
of this result will be presented throughout the chapter.

There are indirect couplings between any pair of neighboring nuclei in (or near)
the CuO2 plane. We shall begin with the pertinent example of interactions among the
63,65Cu nuclear spins. Although T1 can be formulated in terms of χ′′(q,ω) having the
dimension of time (see discussion in Sect. 3.5), here we will use susceptibilities per
mole, since χ′(q,ω) becomes a measured uniform, static susceptibility at ω = 0. We
calculate the indirect coupling of a single 63Cu with surrounding 63,65Cu spins, an

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
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effect which is transmitted via the bath of fluctuating electronic spins Si . It is driven
by the HF coupling tensor

HHF (i) =
∑

α

⎡

⎣Aα IiαSiα + B
∑

j (nn)

IiαSjα

⎤

⎦ , (6.1.1)

where
∑

j (nn) is taken over the four nearest-neighbor spins to the site i . We begin
by using this HF Hamiltonian to calculate the spin polarization created in the local
environment by a nuclear spin Ii located at Ri . The effective field which this nucleus
exerts on spin moments −gαμB Sα(R) in the vicinity is

Hiα(R) = Iiα
gαμB

Fαα(R,Ri ), with Fαα(R,Ri ) = [AαδR,Ri + B
∑

j (nn)

δR,R j ] .

(6.1.2)
The Fourier transform Hiα(q) =

∑
k exp(−iq · Rk)Hiα(Rk) may be written

Hiα(q) = Iiα
gαμB

e−iq·Ri Fαα(q), with Fαα(q) = [Aα + 2B (cos qx + cos qy)].
(6.1.3)

Hiα(q) then induces a q-component of spin moment

Sα(q) = − 1

NAgαμB
Hiα(q)χ′

α(q) , (6.1.4)

where we divide χ′(q) by Avogadro’s number for an atomic susceptibility. The
inverse Fourier transform ofSα(q) gives the resulting spin polarization in the vicinity
of Ri , i.e.

Sα(R) =
′∑

q

eiq·RSα(q) = − �Iiα
NAg2αμ2

B

′∑

q

eiq·(R−Ri )χ′
α(q)Fαα(q) , (6.1.5)

where
∑′

q is a normalized sum over the Brillouin zone.
The interaction energy with a second nucleus I j may now be obtained by inserting

(6.1.5) into (6.1.1), where we use the notation of (6.1.2) to find

∑

α

aα(i, j)Iiα I jα =
∑

α

I jα
∑

Rk

Sα(Rk)Fαα(Rk,R j ) . (6.1.6)

Substituting from (6.1.5) then gives the general result [241]

aα(i, j) = 1

NAg2αμ2
B

′∑

q

eiq·(R j−Ri )χ′
α(q)Fαα(q)2 . (6.1.7)
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A useful relation for calculating the second moment of the line as well as the
Gaussian decay time T2g of the spin echo may be derived with (6.1.7). This result,
given independently by Takigawa [266] and by Thelen and Pines [267], is

∑

j

aα(i, j)2 = 1

(NAg2αμ2
B)2

⎡

⎣
′∑

q

[χ′
α(q)Fαα(q)2]2 −

[ ′∑

q

χ′
α(q)Fαα(q)2

]2
⎤

⎦ .

(6.1.8)

6.1.1 Some General Properties of the Indirect Spin-Spin
Coupling

We adopt a notation where q is dimensionless and Ri = (nxi , nyi ) in units of a,
where nxi,yi are integers. We shift the origin of the q sum to Q, i.e. q = p + (π,π).
Then χ′

α(p) is a symmetric function, where
∑′

p → (1/2π)2
∫ π

π dpx
∫ π

π dpy , and
Fαα(p) = [Aα − 2B(cos px + cos py)]. The exponential factor in (6.1.7) reduces to
cos (nx px ) cos (ny py), since the sine terms cancel by symmetry, where nx = nx j −
nxi , etc. Thus, (6.1.7) becomes

aα(i, j) = (−1)(nx+ny)

NAg2αμ2
B

nx+2∑

n′
x=nx−2

ny+2∑

n′
y=ny−2

Cα(n′
x , n

′
y)Gα(n′

x , n
′
y) , (6.1.9)

where

Gα(n′
x , n

′
y) = 1

π2

∫ π

0
dpx

∫ π

0
dpy χ′

α(p) cos(n′
x px ) cos(n

′
y py), (6.1.10)

and where the Cα(n′
x , n

′
y) are functions of Aα and B.

Some general properties of aα(i, j) are as follows:

• Terms in χ′(q, 0) which are independent of q give no contribution to aα(i, j).
• The essential range function of a(i, j) is the Fourier transform of the peak function

χ′
α(q).

• A sign reversal on moving between nn sites results from the AFM nature of the
fluctuations.

• The range function depends only on the magnitudes of the nx,y and is invariant on
exchange of nx and ny .

• Therefore aα(i, j) is symmetric about the x and y axes, and also about the x = ±y
axes.
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6.1.2 The Gaussian Model of Indirect Spin-Spin Coupling in
YBCO

In the MM follow-up to MMP [162], a Gaussian model has been suggested for
χ′′(q,ω). Citing this example, Imai et al. [268] made use of this model in their
interpretation of data for T1 and T2g (see below for definition of T2g). More recently,
Auler et al. [245] employed this model for similar purposes, citing INS studies which
showed a Gaussian-like shape with a width essentially independent of temperature.
Their interpretation of T1 data on this basis was presented and discussed in Sect. 5.3.

INS data provide an important characterization of χ′′(q,ω), which is then used
to interpret NMR data. An important question regarding INS data is to what extent
they are dependent on the frequency scale. Does a peak in χ′′(q,ω) at or near Q
with a certain measured width at ω = 10meV have the same shape and width at
an NMR frequency four orders of magnitude lower? With the limitations of current
spectroscopic techniques one cannot answer this question experimentally. Many dis-
cussions of NMR T1 interpretation tacitly assume that the INS results will still be
valid at NMR frequencies. We address this question in various contexts throughout
this chapter.

For the purposes of the present discussion we adopt the Gaussian shape and width
for the AFM peak given by [245] (ξ = correlation length in units of a):

χ′
α(q) = g2α

4
χ′
AFe

−(q2
x+q2

y )ξ
2/4) , (6.1.11)

with ξ � 1.3, where we place the origin at Q = (π,π) and we denote χ′(Q) = χ′
AF .

Inserting this into (6.1.10), a simplification occurs, wherewe canwriteGα(n′
x , n

′
y) =

(g2α/4)χ′
AFg(nx)g(ny), with

g(n) = 1

π

∫ π

0
dpe−p2ξ2/4cos(np) ≈ 1√

π ξ
e−n2/ξ2 . (6.1.12)

In (6.1.12) the result on the far right is obtained by extending the upper integra-
tion limit to ∞. Since exp(−π2ξ2/4) � 0.015, we suggest that this is a reasonable
approximation. Inserting this expression for Gα(n′

x , n
′
y) into (6.1.9), we find, with

nx = nx j − nxi , etc.,

aα(i, j) = (−1)(nx+ny)
χ′
AF

πNAξ2g2αμ2
B

e−(n2x+n2y)/ξ
2{A2

α + 4B2

− 4AαB e−1/ξ2 [cosh(2nx/ξ
2) + cosh(2ny/ξ

2)]
+ 8B2e−2/ξ2cosh(2nx/ξ

2) cosh(2ny/ξ
2)

+ 2B2e−4/ξ2 [cosh(4nx/ξ
2) + cosh(4ny/ξ

2)]} . (6.1.13)

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Equation (6.1.13) is used below to calculate indirect coupling energies for YBCO6.9
and to discuss results which have appeared in the literature. Before that, however,
we make a brief digression to introduce spin echo decay measurements.

6.1.3 Measuring Indirect Spin-Spin Coupling via Spin-Echo
Decay

Under suitably restrictive assumptions, it is possible to get good estimates of the
indirect spin-spin coupling (6.1.7) by measuring spin-echo decay times. We give
here a brief review of some of the essential points of spin-echo decay, followed by a
discussion of results from the literature in the next subsection.

We consider spin-echo decay for the specific problem of 63,65Cu(2) NMR in the
CuO2 planes of a cuprate superconductor. If the 63,65Cu isotopes are labelled A and
B, where the A spins are under observation, then the nuclear spin-spin coupling has
the general form

HI I = HAA
I I + HAB

I I + HBB
I I . (6.1.14)

For cases of orthorhombic symmetry or higher, the latter terms can be written

HAA
I I =

∑

i> j

[
αi j I

A
zi I

A
z j + βi j I

A
xi I

A
x j + γi j I

A
yi I

A
y j

]
, and HAB

I I =
∑

i> j

αi j I
A
zi I

A
z j ,

(6.1.15)
where we have taken z to be the quantization axis. For HAB

I I the x and y terms have
been omitted, because they are non-secular and have no measurable effects. Whether
or not the x and y terms for HAA

I I are secular, i.e. physically viable, is a matter of
some discussion.

In cases where there is no detuning of neighboring A spins, i.e., where locally, the
Zeeman splitting γA(1 + K )H as well as quadrupolar splittings are homogeneous,
then the x and y terms are technically viable. However, if the zz coefficient αi j is
much larger than βi j and γi j (a realistic case as we shall see below), then “flip-flop”
processes such as | mA,mB〉 → | mA + 1,mB − 1〉 may become severely inhibited
and the transverse terms become de facto non-secular. Below, a simple test is sug-
gested to determine the effectiveness of the dynamical terms.

For the moment we shall assume the flip-flop terms to be inoperative. Approxi-
mating the decay function with a Gaussian exp(−(2τ )2/2T 2

2g), then the echo decay
time constant is found to be [26]

1

T2g
= sin(θ2/2)

⎡

⎣c63
8

∑

j

α2
i j

⎤

⎦
1/2

, (6.1.16)
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where c63 � 0.69, and the sum is over all neighbors. The dependence on θ2 suggests
an interesting test for the spin dynamics of the sample. If the spins are completely
static on the time scale of the echo sequence, then T2g should become correspondingly
long when θ2 is small. If T2g does not change a great deal over a range of values for
θ2, it probably means that there is an appreciable degree of flip-flop motion taking
place among the spins.

In applying (6.1.16) to actual measurements of
∑

j α
2
i j , it is clearly necessary

to be able to flip over nearly all of the spins with the refocusing pulse. This is an
important constraint on experimental technique. For cuprates this means that one
will probably have to employ only the (−1/2 ↔ 1/2) transition, and possibly work
at low fields in addition in order to narrow the line.

6.1.4 Behavior and Interpretation of Indirect Couplings in
YBCO and Y248

There have been a number of measurements of T2g for both YBCO and Y248 in the
literature, with much discussion of its behavior as compared with T1. Since they are
both driven, at least in part, byAFMfluctuations, these relaxation times are reflections
of the same underlying quasiparticle physics. Thus, the advent of T2g as an additional
characterization of cuprate hole dynamics was a most welcome development.

Results Given by Pennington and Slichter

In their original paper formulating the indirect couplings, expounded in the previous
subsection, PS [31] presented calculations of coupling coefficients aα(i, j) as well
as of T2g for fully oxygenated YBCO7. They calculated their range function using
the MMP Lorentzian form

χ′(q) = χ0

[
1 + (ξ/ξ0)

2)

1 + (q − Q)2ξ2

]
(6.1.17)

centered on Q. The ξ2 factor gives only a rough normalization for χ′(q), since∑
q χ′(q) depends on ln(ξ). The resulting relaxation time is found to vary 1/T2g ∝ ξ

[31]. The parameters and assumptions for various calculations of T2g discussed here
are shown in Table6.1. Adopting the MMP estimate [161] ξ = 2.5 a, the half-width
of the AFM peak in the PS calculations with (6.1.17) is 0.4. Also from (6.1.17),
χ′(Q) = 1.66 × 10−3 emu/molCu(2).With values of Ac and B as shown in Table5.1,
PS find a value of 1/T2g which is just slightly smaller than their experimental number,
which clearly validates their formulation of the indirect spin-spin coupling.

Effects of Transverse Coupling and of Dipolar Fields

Before proceeding with discussion of experimental data, we note in passing that
transverse and dipolar coupling contributions to Hzz are much smaller and can be
ignored for most purposes. The dipolar coupling coefficient for quantization axis

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 6.1 a and b Spin echo
decay curves, corrected for
T1 effects, are plotted
semilogarithmically versus
(2τ )2, showing nearly
perfect Gaussian behavior
over two orders of magnitude
of decay at several
temperatures. These data for
63Cu(2) in YBa2Cu408 are
from Itoh et al. [272]

⊥ CuO2 plane is simply α
dip
c (i, j) = �γ2/R3

i j , which has the value 908 s−1 for nn
63Cu(2). The corresponding second moment value is less than 6% of the estimated
indirect coupling value calculated above. Moreover, it has a constant positive sign
for all in-plane neighbors, so that its effects tend to cancel when combined with
the staggered indirect coupling. We shall ignore the dipolar terms from this point
forward. The transverse indirect coupling terms are alsomuch smaller than the c-axis
contribution, giving a second moment only 15% of the latter effect using Aab ∼ 0.31
in the units of Table6.1, with B having the same value as for the c-axis terms. As far
as we are aware, no effort has been made to measure the transverse terms, and we
shall not discuss them further.

Comparison of the PS Results with Other Models and Data

Throughout the derivation of indirect spin-spin coupling given above [31], it is as-
sumed that the resulting spin-echo decay process will be Gaussian in form or nearly
so. Itoh et al. have tested this hypothesis for the case of NQR studies of 63Cu(2) in
Y248 [272]. Their results are plotted in Fig. 6.1a, b for several temperatures. After
corrections for T1 effects (seeAppendixA.1), it is seen that these decay curves exhibit
nearly perfect Gaussian character over two orders of magnitude. Some discussion
of the origin of such Gaussian behavior, which is very widespread in T2g studies, is
presented in Sect. 6.3.

In the second line of Table6.1 we list the calculated result of Bulut and Scalapino
(BS) based on their small-U Hubbard model calculations [271] along with experi-
mental numbers from Itoh, Yasuoka et al. [272]. BS calculated the indirect coupling
using the same model and parameters they had applied to the T1 problem [251, 252],
finding good agreement with experimental data with an AFM peak width ∼25%
greater than that used by PS. Itoh et al. also tested the proportionality of 63Cu(2) sec-
ond moment to the concentration of 63Cu by measuring a sample which contained
100% 63Cu. The result, shown on the third line of Table6.1, is within experimental
error of the expected increase 1/T2g ∝ (c63)1/2. The BS calculated result scaled in
this fashion is shown for comparison. Itoh et al. [272] also measured the behavior
of T2g in the superconducting state of Y248. The latter results and the BS model
calculations for this case are discussed in the next subsection.
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Wemake further comparisons with the results in Table6.1 with calculations using
(6.1.13) based on the parameters provided by Auler et al. [245]. Results obtained
with a Gaussian peak for χ′(q) and other parameters fromAuler et al. [245] are listed
in line five of the table. The INS-derived peak width is more than three times that
used by PS. The value of (1/T2g)est is substantially larger than the PS value with a
slightly smaller value for χ′(Q). Although this is a satisfactory result, it is puzzling
that it does not give the rather larger relaxation rate which they quote, and from
which the value given for χ′(Q) was supposedly derived [245]. The origin of this
discrepancy is not understood.

In line four of Table6.1 are listed the results of a similar calculation based on
(6.1.13) as well as the HF coupling, χ′(Q), and peak width parameters given by Imai
et al. [268], on which the calculation is based. The estimated value of 1/T2g is in
good agreement with the experimental value given. A result reported by Takigawa
[266] is given in the bottom line of the table. Parameter values were stated in [266]
for the Lorentzian model with a range of peak widths. Choosing the peak width used
by PS for the same model with the same HF parameter values, we simply scale the
PS result to the larger value of χ′(Q) given in [266] to yield the value of (1/T2g)est
stated in the table, which is in good agreement with the experimental value given for
YBCO6.63.

Before continuing to discuss the significance of these results, we address the
question of how the results for 1/T2g scale with the correlation length.

Scaling of T2g with χ′(q) Parameters

There appears to be an interesting difference between Lorentzian and Gaussian mod-
els ofχ′(q)which has to dowith their dependence on the correlation length parameter
ξ. For the Gaussian model as prescribed by Auler et al. [245], we find that the second
moment ∝ ∑

j α(i, j)2 varies roughly as ξ−1. From (6.1.16) it follows that T2g ∼
ξ1/2. In contrast, PS note that T2g ∝ ξ−1 for their Lorentzian model. However, the
latter model (see (6.1.17)) included a prefactor ∝ ξ2 multiplying a peak function of
unit amplitude, whereas the Gaussian has none. The ξ2 prefactor by itself accounts
for the stated variation of T2g with xi . Without the prefactor effect, then, the PS
result is that T2g is essentially independent of ξ.

We next consider whether it is possible to account for the foregoing behaviors
using the expression (6.1.8) for the secondmoment.While under some circumstances
it may be possible to deduce how

∑
j α

2
i j scales with ξ using (6.1.8), there is no

simple answer to this question in general for two reasons. First, if Fαα(q) contains
transferred HF couplings, the cosine factors do not scale in any simple way. Second,
in the case of a Lorentzian form for χ′(q), the sum

∑
qχ

′(q) does not converge at
the boundaries, so that the integration limits become ξ–dependent. This problem is
particularly severe for small values of ξ.

Nonetheless we shall consider what sort of results (6.1.8) gives for q-independent
HF couplings. Such a calculation can be carried out straightforwardly, with the result
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∑

j

α2
i j = 1

2πξ2

[
1 − 2

πξ2

]
. (6.1.18)

Thus, as ξ declines, the leading term gives the T2g ∼ ξ. However, at small values of
ξ the correction term in the brackets becomes increasingly important. For ξ ∼ 1.3,
the correction term increases T2g by ∼25%. We suggest that the q-dependent HF
couplings also contribute to the behavior mentioned for YBCO, where T2g ∝ ξ1/2.

For the Lorentzian case,withχ′(q)=χ′(Q)/(1 + q2ξ2), the leading term in (6.1.8)
gives T2g ∝ ξ as with the Gaussian case. However, the second term gives a somewhat
larger correction than in (6.1.18), so that

∑
j α

2
i j levels off and may even diminish at

low values of ξ. It is plausible that over a modest range of ξ values
∑

j α
2
i j may be

rather flat, leading to the ξ-independent behavior noted, in effect, by PS. Therefore,
it appears that the contrast between Gaussian and Lorentzian susceptibilities may be
accounted for in this simple fashion.

A second and equally important conclusion which we draw from this discussion
is that the results for T2g do not depend strongly on ξ or on the choice of Gaussian
or Lorentzian for the shape of the AFM peak in χ′(q). For this reason it will also be
difficult to extract information from T2g data on either of these points. At the same
time, the results in Table6.1 show that T2g can be analyzed to yield semi-quantitative
results for χ′(Q), even if the width and detailed character of the associated AFM
peak are not well established.

Comparing the Temperature Variation of T2g with that of T1

The relatively weak dependence of T2g on the width of the AFM peak in χ′(q) leads
to an interesting contrast between echo decay times and T1 processes. While 1/T1T
is given by sums of χ′′(q,ω) over all of q-space, 1/T2g is very nearly proportional
to χ′(Q), i.e. to the staggered susceptibility. T1 is, of course, also sensitive to the
staggered susceptibility, since it measures the area under the AFM peak in χ′′(q,ω)

at Q. But T1 for 63Cu(2) has major contributions from the rest of the Brillouin zone
as well, much of which collapses in the presence of a pseudogap. We see the result
of this in Fig. 6.2 from Takigawa [266]. The curve for 1/T2g indicates that the stag-
gered susceptibility is rising fairly rapidly in a Curie-Weiss-like fashion. T1 for the
63Cu(2) rises below 300K at a similar rate. When the spin pseudogap sets in around
200K, however, 1/T1T goes over a maximum and then begins a steep descent which
indicates collapsing behavior for χ′′(q,ω) over much of the BZ. The fact that 1/T2g
is immune to the pseudogap decline suggests that χ′(Q) is made up from parts of the
Fermi surface which are not gapped. A related result is presented in the next subsec-
tion, where 1/T2 for Y248 does not decay in the superconducting state, presumably
because contributions to χ′(Q) are not affected by the superconducting gap either.

Curie-Weiss behavior for 1/T2g is also found in YBCO7 [245, 268], though
with rather smaller increases between 300K and Tc. It would be, of course, most
enlightening to be able to compare such results with INS data on the same systems,
including temperature dependences. While the INS characterizations are not easy to
perform, systems such a YBCO provide an ideal test bed for comparison of results
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Fig. 6.2 Measured values of
1/T2g and 1/T1T for
63Cu(2) in YBCO6.63 are
plotted versus temperature.
The data have been scaled to
coincide near room
temperature, where they
show similar behavior. This
plot is from Takigawa. [266] - 1/T2G 
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for the dynamic susceptibilities. We shall see this in more detail in Sect. 6.3 with the
system LSCO.

Takigawa also made an effort to apply the scaling theory of Sokol and Pines [273]
to the susceptibility behavior of YBCO6.63 [266]. The scaling effect may be seen
in Fig. 6.2, where just at the upper end of the temperature range the ratio T1T/T2g
approaches a constant value. Effects such as this have become a major branch of the
study of cuprate magnetism and will be reviewed at some length in Sect. 6.4.

6.2 The Bulut-Scalapino Calculation of 1/T2g for T < Tc

Bulut and Scalapino (BS) used their small-U Hubbard model of spin dynamics to
treat both T1 (Sect. 5.7) and T2g in the superconducting state [271]. In the latter case
they found a major distinction between the cases of s-wave and d-wave pairing. We
first describe their calculation, and then review the experimental T2g data of Itoh,
Yasuoka et al. [272] on YBa2Cu4O8 (Y248) which has been compared with the BS
theory.

Model Calculations of Bulut and Scalapino: T2g in the Normal State

The BS calculations of T2g used much the same parameter values as employed in
related work on T1 (see Sect. 5.4) [251, 252], where they used the RPA formula

χ′(q) = χ0(q)
1 −Uχ0(q)

(6.2.1)

for the real part of the dynamic susceptibility χ′(q) at ω = 0. They give for the
noninteracting susceptibilityχ0(q → 0) = 0.214 t−1, where t is the hopping integral
giving band energies Eq = −2t[cos qx+ cos qy] − μ. The chemical potential was set

http://dx.doi.org/10.1007/978-3-662-55582-8_6
http://dx.doi.org/10.1007/978-3-662-55582-8_5
http://dx.doi.org/10.1007/978-3-662-55582-8_5
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so that the band occupation 〈n〉 = 0.86, very near the critical value for instability (see
[252] and Sect. 6.4).

The enhanced curve of χ′(q) from the BS model is shown in Fig. 6.3a for the path
in q-space shown in the inset.We determine themolar value ofχ′(Q) as follows. From
discussion of NMR shift calculations in [252] the q = 0 Stoner enhancement is given
as 1.75. Equating their c-axis susceptibility result to χc = 1.18 × 10−4 emu/mol
Cu(2) from Table2.4, we find χ0(0) = 6.74 × 10−5 emu/mol Cu(2). Relative to that
value, the peak value in Fig. 6.3a is enhanced by a factor ∼(3.8/0.214), giving the
estimate χ′(Q) � 1.23 × 10−3 emu/mol Cu(2). The latter value is within ∼15% of
the result obtained by taking t = 0.1eV [252]. The AFM peak half-width of ∼0.5
(Table6.1) is also taken from Fig. 6.3. The latter results apply in the vicinity of 100K.

BS also calculated the temperature variation of 1/T2g , both in the normal state
up to 300K and below Tc down to essentially zero temperature. Their results as given
are shown as the dashed line in Fig. 6.3b, where they are seen to fall just below the
YBCO7 data from Itoh et al. [272] (filled circles). The open circles in the same figure
are a plot of measured values of 1/T2g for 63Cu(2) in Y248 also taken from [272].
The latter data have been compared with the BS calculations (solid lines) from [271],
which have been scaled to coincide with the experimental data in the region around
100K. Since the Y248 data were obtained using NQR, the original (dotted) curve
was first rescaled by

√
2 to reflect the enhanced NQR relaxation rate. Following that,

rescaling with the Stoner factor has been done using (6.2.1) as follows. It is presumed
that the temperature dependence of χ′(Q) is driven by that of χ0(Q). From [271] it
was determined that the enhancement at the peak of the curve in Fig. 6.3a is �5.4 at
T = 100K. Using that fact and (6.2.1) to recover χ0(Q) as a function of T, the dotted
curve with an adjusted value of U was plotted as the solid curve in Fig. 6.3b. For the
region below Tc, the original curves from [271] were simply rescaled to meet the
normal-state curve at T = 82K.

The Superconducting State: A Dramatic Success for D-Wave

The normal-state calculation gives a reasonable account of the Y248 data for 1/T2g .
In the superconducting state, these data, combined with the BS calculations, give
a very dramatic confirmation of d-wave pairing symmetry. The effect of supercon-
ducting pairing on the susceptibility curve is shown in Fig. 6.3a where calculated
susceptibility curves at T = 0.8Tc are shown for both s-wave (dashed line) and d-
wave (dotted line). The contrast between these two is attributed by BS to nodes in
the d-wave energy gap which simply allow contributions to χ′(Q) to persist into the
superconducting state. This is very likely related to the continued c-axis spin corre-
lations below Tc which were demonstrated by Uldry et al. [261], as was discussed in
Sect. 5.7. It may also be related to the fact that χ′(Q) is immune to the pseudogap in
the normal state, exhibiting Curie-Weiss behavior down to Tc. Thus, the pseudogap
and the superconducting gap have similar character in this respect.

Thepresent results alongwith the dramaticT1 effects discussed in the latter Section
consitituted a very strong case for d-wave pairing several years before it was widely
accepted by the high-Tc community. To summarize, we have seen in this section

http://dx.doi.org/10.1007/978-3-662-55582-8_2
http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 6.3 a The enhanced susceptibility χ′(q) obtained with (6.2.1) [271] is plotted for the path
in q-space shown in the inset. The solid curve shows behavior at T ∼ 100K, while the dashed
and dotted curves show behavior for s-wave and d-wave pairing, respectively, at T = 0.8 Tc. See
text and part (b) of this figure for discussion of this effect. (b) NMR measurements of 1/T2g for
YBCO7 (dots) and NQR measurements for Y248 (open circles) by Itoh et al. [272] are plotted
versus temperature. The dotted line shows the normal-state calculations of Bulut and Scalapino
[271] for 63Cu(2) NMR in YBCO7. The solid curves are determined as follows. For the normal
state the dotted line is scaled by

√
2 for the NQR case, then the enhancement is re-calculated using

(6.2.1) to match the experimental curve near 100K. For T < Tc the curves from [271] are simply
scaled to meet the normal-state curve at Tc = 82K. See text for additional discussion
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and the last that the formulation of indirect spin-spin coupling in terms of χ′(q) by
Pennington and Slichter opened up a very important new avenue of approach for the
characterization of the AFM enhancement peaks as well as of χ′(Q).

6.3 Coordinated Interpretation of NMR and INS Data
for LSCO

In Sect. 4.1 we discussed data for the NMR shift, uniform susceptibility, and spin-
lattice relaxation time T1 for 63Cu in LSCO:x, for x ranging over the superconducting
region, 0.06 ≤ x ≤ 0.25. This systemwas seen to exhibit a peculiar sort of pseudogap
effect, which strongly affects the susceptibility even at the peak of the Tc curve, but
allows the 63Cu T1 curves to follow aCurie-Weiss-like behavior down to temperatures
very close to Tc. Here, we look at another aspect of the LSCO system which came
about, because this system emerged as being unique among the cuprates in having
received a very thorough characterization of χ′′(q,ω) by means of INS. The detailed
geometry of the four mildly incommensurate peaks near (π,π) has been scanned in
great detail over a wide range of frequencies. As a consequence, LSCO became a
classic “test bed” for the theoretical relationship between NMR and χ′′(q,ω). We
first review the theoretical basis for such an investigation.

The fluctuation-dissipation theorem relation between spin-fluctuation-generated
T1 processes in a metallic environment and the dissipative term χ′′(q,ω) of the
dynamical susceptibility, as recounted in Sect. 3.5, had been known formany decades
[58] before it was tested using experimental INS data for χ′′(q,ω). The latter test
was conducted via T1 measurements for 63Cu and 17O (both planar and apical) in
LSCO:0.15 [239] and was based on the INS data of Cheong et al. [274] and Mason
et al. [275]. Such an enterprise—to correlate two pieces of experimental data using
an “exact” theoretical relationship1—may not seem well motivated at the outset.
However, this relationship had not been tested experimentally before. Furthermore,
it led to the uncovering of some interesting limitations, among which is the clash
between INS and NMR data for the case of planar 17O [239], which we review below.

In this section we review the circumstances of the latter test and suggest a very
simple resolution, namely that the INS result may not apply at NMR frequencies,
which are lower by a factor ∼104. Additional INS data which have appeared since
that time may throw some new light on the situation, as well. We shall also review
indirect spin-spin coupling measurements for LSCO:0.15, interpreted with values of
χ′(q) which were calculated from the measurements of χ′′(q,ω) using the Kramers-
Kronig relation [5]

χ′(q) = 2

π

∫ ∞

0
dωχ′′(q,ω)/ω . (6.3.1)

1This relationship is very nearly exact under the assumption that spin hyperfine processes are
predominant. However, it has not yet been determined how important the orbital relaxation rates
are for the cuprates (see Sect. 5.6).

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_5
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From (6.3.1) one sees that such a procedure requires data for χ′′(q,ω) over a wide
range of frequencies. Since that time, such high-frequency data have actually ap-
peared in the literature [277]. The latter data will be taken into account in reviewing
this calculation. For the T2 processes we come to a similar conclusion as with T1,
namely a successful account of the 63Cu data with (or without) discommensurations,
but not for the planar 17O (see Sect. 6.3.2).

6.3.1 Review of INS Data for Optimally-Doped LSCO

We first set the stage with a brief review of relevant INS data for LSCO:x, with
x ∼ 0.15. It seems that of all the cuprate compounds, LSCO alone was available
in large, uniform crystals with homogeneous oxygen content. Conveniently enough,
χ′′(q,ω) is a quantity which can bemeasured directly bymeans of INS. The principal
difficulty is that INS measurements can only be made at frequencies several orders
of magnitude higher than those at which NMR data are recorded. We examine the
available INS data with that problem in mind.

Some relatively low-frequency INS data forχ′′(q,ω) are shown in Fig. 6.4. In part
(a) we see data for scans through two of the four incommensurate peaks located at
(π,π) ± δ(0,π) and (π,π) ± δ(π, 0), where δ = 0.245 for La1.86Sr0.14CuO4 [275].
The peaks are seen to be well resolved, with relatively little difference between
behavior near Tc = 35 K and that at 4.6K. There is, however, an increase in intensity
at the point between the peaks at higher energy. That trend is also visible in the lower-
energy scans from Thurston et al. [276] in part (b) of Fig. 6.4, where at ω = 1.5meV
the peaks are completely resolved, while at 4.0meV there is already some filling in of
the space between peaks. The incommensurability varies with composition, δ � 2x
[274], but it shows nomeasurable variationwith energy at the lowest energies scanned
[276].

From available INS results for LSCO, then, it does not appear that discommen-
surations will vanish at lower (i.e. at NMR) frequencies, although the point remains
at issue. At higher frequencies, however, early work showed the discommensura-
tions fading into a single broad peak by ω = 15meV [274]. That this trend would
continue to higher energies was verified by studies to above 200meV carried out at
ISIS [277]. In that study, results for LSCO:x, x = 0.14, were compared with the un-
doped antiferromagnet La2CuO4, both q-scans and energy spectra. For LSCO:0.14,
discommensurations are not visible in the lowest energy scans (25–50meV) reported
[277], nor any above that. The resolution in q-space may be somewhat marginal for
this purpose, although the AFM (Bragg?) peak at 295K for La2CuO4 showed a width
Δq ∼ 0.25 r.l.u.

We display three composite data plots from Hayden et al. [277], namely the
equal-time spin correlation function S(q) = ∫ ∞

−∞ dω χ′′(q,ω), the zero-frequency
susceptibility χ′(q) = (2/π)

∫ ∞
0 dωχ′′(q,ω) /ω, and the local susceptibility χ′′(ω) =∑′

q χ′′(q,ω).These quantities have been computed from the results of the spallation–



6.3 Coordinated Interpretation of NMR and INS Data for LSCO 233

Fig. 6.4 a INS q-scans along the path shown at the bottom of the figure are plotted for T ∼ Tc
and for T � Tc for the two scattering energies shown [275]. These data show the well-resolved
incommensurate peaks and a relatively small difference in scattering intensity for the two tempera-
tures. The inset shows the difference in intensity measured for the two temperatures at 9meV. Note
the small, but definite increase in intensity between the peaks between 6 and 9meV. b INS data
at energies ω ≤ 4.0meV, showing very well-resolved incommensurate peaks with no measureable
variation of the discommensuration δ with ω. These authors find δ = 0.22 for La1.85Sr0.15CuO4.
They also find relatively small variation of intensity with temperature below Tc

source study [277]. The local susceptibilities are shown in Fig. 6.5a, b, where it is
noteworthy that the results are plotted in absolute units, and where in (b), reactor-
based results are included below ∼25meV. Below we shall compare these data with
the absolute susceptibility results which were used to calculate T1 in [239] (see
Sect. 4.1). The results in Fig. 6.5a, b show that the effect of doping is to concentrate
χ′′(q,ω) at energies below 50meV (as compared with La2CuO4), and that the peak
seen at 22meV is a “new energy scale” for this superconductor [277]. This energy
is also a rough upper limit for the appearance of discommensurations. The solid line
plotted in panel (b) is

χ′′ = �ω

(�2 + ω2)
, (6.3.2)

with � = 22 ± 5meV.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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ħω (meV)

Fig. 6.5 a and b The local susceptibilities χ′′(ω) for La2CuO4 (295K) and LSCO:0.14 (17K),
derived from the data presented in [277], are plotted as a function of energy �ω. As compared
with La2CuO4, the effect of doping is seen to concentrate the amplitude at low energies, giving
a peak at ∼22meV. Below that point are plotted data from earlier reactor-based studies [275],
which serve to determine the initial slope used for T1 calculations. c and e are the equal-time spin
correlation functions S(q) defined in the text, for La2CuO4 and LSCO:0.14, respectively. d and f
are zero-frequency susceptibilities χ′(q) obtained with (6.3.1) in a similar fashion. For LSCO:0.14
((e) and (f)) these quantities are nearly indistinguishable, since the width of χ′′(q,ω) shows very
little dependence on energy [277]. In (c)–(f) the rise in intensity to the right is caused by phonons,
where the suggested behavior of the quasiparticle properties is indicated by dashed lines. Although
the spallation source resolution width is not as good as in reactor-based studies, it is clearly well
below the peak widths found for LSCO:0.14 in (e) and (f)
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The equal-time correlation function S(q) and the zero-frequency susceptibility
χ′(q) obtained with (6.3.1) in [277] are shown in Fig. 6.5 for the undoped ((c) and
(d)) and the doped ((e) and (f)) cases, respectively. Owing to the near-constant
width of χ′′(q,ω) in q-space for LSCO:0.14 [277], there is very little difference
between S(q) and χ′(q). The associated energy integrals have been carried out for
ω ranging from 15 to 150meV. The central peak in Fig. 6.5e, f has an HWHM of
κ = 0.26(5)Å−1, which is just slightly larger than the incommensurate splitting.
Since the Kramers-Kronig integral favors low energies, one wonders whether there
would be visible incommensurate peaks in χ′(q) if the reactor-based intensity (e.g.
that which gives the open circles in Fig. 6.5b) were included in the calculation of
χ′(q). As noted below, such a contribution might be appreciable for indirect spin-
spin coupling with the planar 17O.

6.3.2 Interpretation of 63Cu and 17O T2 Data with INS Data
for χ′(q)

In Sect. 6.1 the interpretation of spin-echo decay (T2g) measurements with the purely
static indirect coupling term Hzz (see also Appendix A.1.4) was discussed in some
detail. This technique has been applied widely to cuprate NMR/NQRmeasurements.
Here we consider the case of LSCO:0.15, for which we shall use the INS-derived
calibration of χ′′(q,ω), along with the Kramers-Kronig relation (6.3.1), to obtain
quantitative estimates of χ′(q). The latter data, combined with HF constants from
Table4.1, are used for the indirect coupling calculation.

Spin echo decay in LSCO:0.15 presents a number of complications which did
not occur in the “static” cases discussed in Sect. 6.1. The effects of T1 fluctuations,
both direct and indirect (i.e., of neighbors), are quite important. Moreover, there is
strong evidence that like-spin 63,65Cu neighbors in them = ± 1

2 states are fluctuating
among themselves on the time scale of T2, changing the nature of the problem in a
fundamental way.

The planar 17O also present a different and unique situation, in that T2 is dominated
by the 63,65Cu-17O indirect spin-spin coupling term, which is time-modulated by the
63,65Cu T1 processes. The 17O-17O coupling term is reckoned to be negligibly small.
The somewhat differentmethodology needed to treat these caseswas reported in [26].
The techniques used there will be reviewed briefly here in the course of discussing
the T2 data for LSCO:0.15 and its interpretation.

63,65Cu T2 Data and Simulations of Nuclear Spin Fluctuations

Spin-echo decay measurements for 63,65Cu were carried out on a partially oriented
powder sample of LSCO:0.15 containing ∼30% 17O [26] at T � 100K. The mea-
surements were made on the (− 1

2 ↔ 1
2 ) transition in a field of 7T. Decay curves

were measured for 63Cu with several levels of refocussing pulse as well as for 65Cu
with θ2 � π. The echo decay data obtained are shown in Fig. 6.6a [26].

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 6.6 a Spin echo decay curves for 63,65Cu taken on the (− 1
2 ↔ 1

2 ) transition in a field of 7T at a
temperature of 100K.Data for different refocussing pulses have been displaced vertically for clarity.
Conditions are as follows: Full power, θ2 � π (63Cu–Δ). Power down 10db, θ2 � 3π/4 (63Cu–+).
Power down 10db, θ2 � π/4 (63Cu–◦). Full power, θ2 � π (65Cu–×). The curvature is thought
to be caused by a distribution of indirect coupling strengths. The bottom curve is a composite of
all the data. The solid line is the estimated Gaussian decay with T2g = 75.6µs. These data have
all been corrected for direct T1 effects as described in the text. b and c Simulated decay curves
obtained with random-number selection techniques as described in [26]. Small dots and triangles
show static decay curves for 63Cu and 65Cu, respectively, where the decay is caused by a single π
pulse. The solid lines show pure Gaussian decay. For (b) the large triangles and dots show how the
decay curves are modified if random transitions simulating T1 relaxation effects are included. For
(c) the large triangles and dots show results for when both T1 fluctuations and flip-flop transitions
between the ± 1

2 levels for 63,65Cu are included as described in the text

The decay data shown have been corrected for direct T1 relaxation effects using
results from Appendix A.2. The essence of the procedure is as follows. Direct T1
relaxation effects result in a factor exp(−2τ/T1E ) multiplying the spin echo decay
function. The value of T1E depends on the T1 process of the nuclei observed, i.e. on
its anistropy and on the transition being excited. Defining Wα to be the contribution
to 1/T1 from fluctuations along the α axis, then the relaxation rate with field along
the z axis becomes 1/T1z = Wx + Wy . For arbitrary half-integral spin the (− 1

2 ↔
1
2 ) transition echo decay rate for isotropic spin-lattice relaxation is 1/T1E = (I +
1
2 )

2/T1 [283]. For the anisotropic case this becomes

1

T1Ez
= [I (I + 1) − 3/4]

T1z
+ 1

2T1x
+ 1

2T1y
, (6.3.3)
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in terms of T1 values measured along the three axes. For axial symmetry with I = 3
2

this becomes 1/T1Ez = 3/T1z + 1/T1xy in an obvious notation. With known values
of T1α for LSCO:0.15, this formula gives T1Ec = 90µs for 63Cu and 80 µs for 65Cu.
The corresponding correction factors have been applied to the echo decay data in
Fig. 6.6a. The decay curves in Fig. 6.6a have been shifted vertically for clarity. At
the bottom of the figure is a composite plot of all four curves, which shows that they
are very nearly indistinguishable. This is a remarkable result in the sense that the
decay is independent of θ2 and is also the same for both isotopes, whose γ values
differ by ∼7%. The first effect shows that there is considerable amount of “flip-flop”
motion taking place, and the second can be rationalized by means of the latter effect
combined with the effect of T1 fluctuations [26]. We give here a brief account of
these mechanisms, which were presented in detail in [26].

In order to take account of the foregoing effects in a calculation of spin echo
decay, the decay process has been simulatedwith amodelwhere the spin in question is
coupled to neighbor spinswith a set of randomly chosen coefficients. The coefficients
are scaled to give a second moment adjusted at first to produce the observed value
of 1/T2g (line drawn in Fig. 6.6a) in a static decay process for 63Cu. In a statistical
simulation of such a static echo decay this yields the small dots in Fig. 6.6b for
63Cu and small triangles for 65Cu. Straight lines representing precise Gaussian decay
functions are drawn for comparison. Note that the 65Cu spin echo decays much more
slowly than the 63Cu. This is because the 31% abundant 65Cu has only half as many
“like-spin” neighbors with which to relax the echo [26].

The next step is to introduce the “indirect T1 effects” by allowing the neighbor
spins to execute random transitions between m levels at the correct rate dictated
by magnetic dipole coupling T1 processes. The result of this is shown as large dots
(63Cu) and large triangles (65Cu) in Fig. 6.6b. The decay constant 1/T2g for 63Cu is
increased by ∼15% by the T1 fluctuations, but for 65Cu the increase is nearly three
times as much. This is because the number of neighbor spins relaxing the 65Cu is
increased by about a factor of six, whereas the increase for 63Cu is much smaller.
Now the 63Cu are relaxing ∼10% faster than the 65Cu.

The final step is to initiate flip-flop transitions between the ± 1
2 levels of both

isotopes. That these are actually taking place is evidenced by the absence of change
in the decay curve with θ2 in Fig. 6.6a. Since the (± 1

2 ↔ ± 3
2 ) transitions undergo

severe first-order quadrupolar broadening, flip-flop transitions are only allowed for
the ± 1

2 levels. Estimates from the indirect interaction calculations suggest that flip-
flops are present on a time scale of about 50µs. Introducing these into the simulation
then gives the decay curves shown in Fig. 6.6c (large dots and triangles). The 65Cu
decay time increases slightly, but the 63Cu increases by more than 10%, so that
the two now very nearly coincide. Evidently, the flip-flops give a slightly greater
“narrowing” effect for like spins than for unlike spins. In any case, now the decay
times are nearly the same for both isotopes, as was observed. Quite coincidentally,
they are both now equal to the initially estimated static decay time for 63Cu within
just a small error. We do not believe that there is any simple way to obtain this result
except by simulation [26].
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Fig. 6.7 The calculated
range function αi j for the
“zz” indirect coupling terms
among the 63,65Cu is shown
as filled circles versus ri j .
Only coefficients greater
than 2% of the nn value are
included in the plot. The
inset shows the coefficient
from (6.3.4) which occurs in
the KK integral, adjusted to
yield the measured value of
T2

Indirect Coupling Calculations for 63Cu

Having determined a reasonable experimental estimate of 1/T2g for the 63Cu in
LSCO:0.15, we could now compare that number with calculations based on an eval-
uation of aα(i, j)with (6.1.7), theHFparameters fromTable6.1, andχ′(q) calculated
with INS data for χ′′(q,ω) using the Kramers-Kronig relation (6.3.1). This kind of
calculation was reported in [26], using the form (4.1.3) for χ′′(q,ω) at all energies.
Below, we display the latter results and then make a critical commentary on how this
evaluation should be modified in the light of more recent INS data, particularly the
high-energy spallation source results [277].

In [26] the same basic expression (6.1.9) was used for the coefficients, where the
Kramers-Kronig integral of the expression

χ′′(q,ω) = χ′′
0(ω, T )κ4(ω, T )

[κ2(ω, T ) + R(q)]2 , (6.3.4)

in the same notation as (4.1.3), is used for χ′
α(q). In this expression, one has

κ(ω, T ) = κ2
0 + a2L [(kBT/ET )2 + (�ω/Eω)2], with κ0 = 0.034Å−1 and ET = Eω

= 47meV [278]. For the low-frequency region (ω < 20meV), the function χ′′(ω, T )

can be represented as linear in ω and declining with temperature as 1/T 2 [278]. It
was found that the KK integral up to 20meVwas insufficient to account for 1/T2g , so
the integral was extended, with χ′′(ω, T ) = constant, up to a cutoff for an evaluation
at T = 100K. Adjusting the cutoff to obtain the experimental value of 1/T2g , it was
found to be ωco � 50meV.

The range function αi j for the 63Cu coupling (Hzz) calculated as described is
displayed in Fig. 6.7a, where the KK integrand χ′′(ω, T )/ω is shown in the inset.
Since there are usually four neighbors at each value of ri j , this figure shows that the
indirect coupling second moment is dominated by 15-20 neighbor nuclei.

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4


6.3 Coordinated Interpretation of NMR and INS Data for LSCO 239

It is interesting to consider how this analysis might be changed in the light of high-
frequencyχ′′(q,ω) data [277] (Fig. 6.5),whichwere not available at the time [26]was
submitted. There are two main differences if one envisions using the data of Fig. 6.5.
First, to the extent that discommensurations survived inχ′(q), theywould no doubt be
greatly diminished in importancewith data fromFig. 6.5,whichwould be represented
by a single peakwith amplitude varying as�ω/(�2 + ω2)with� = 22±5meV. This
is probably of little significance for the 63,65Cu, but it will figure in our discussion
of 17O below. Second, the Lorentzian gives a broader “spectrum” of contributions,
extending out to 150meV and beyond. Interestingly, if one performs the KK integral
for these two cases, the results agree within a few percent. Thus, the new data [277]
corroborate the earlier result for 63,65Cu [26].

T2 Decay of the Planar 17O at 100K

The planar 17O spin-echo decay data at 100K are displayed in Fig. 6.8. This de-
cay curve cannot be characterized in a simple way, a circumstance resulting, we
believe, from the nature of the sample. Whereas only a modest percentage of field-
oriented sample material contributed to the Cu NMR signals, the 17O second-order
quadrupolar shifts are negligibly small. As a result, essentially all of the poorly-
aligned sample material contributes to the planar 17O line. We therefore treat the
system as a random powder. Furthermore, quite unexpectedly, the dipolar spin-spin
coupling alone accounts for the decay curve in Fig. 6.8. Its peculiar character, with
a long tail of low amplitude, is caused by the “magic angle” region of phase space
where 3 cos2θ − 1 ∼ 0. The corresponding subset of nuclei relax very slowly.

There is, however, more to the story than just those simple points. On evaluating
the indirect coupling terms for the planar 17O, it was found that the 17O–17O terms
were small, but that there was a sizeable 63,65Cu –17O term, which gives an unlike
spin indirect second moment 〈Δω2〉IAB = 1.5 × 107 s−2 [26], larger than the corre-
sponding dipolar term 〈Δω2〉dipAB = 6.25 × 106 s−2 (98% of which is contributed by
the two nn 63,65Cu spins). This unlike-spin second moment is expected to dominate
the 17O spin-echo decay, because of its time-modulation by the 63,65Cu T1 processes.
Thus, for a crystal of unique orientation one has 1/T2O = 〈Δω2〉ABT1Cu .

The calculation of the powder-average decay curve, including indirect couplings
evaluated as for the 63,65Cu case above, leads to the decay curve plotted with “×”
symbols in Fig. 6.7b. This is widely at variance with the experimental data. The
difficulty, we surmise, is again related to the assumed discommensurations at NMR
frequencies. If δ → 0 in R(q) (4.1.4), the indirect coupling drops by a large factor
and its contribution to 〈Δω2〉AB becomes negligibly small. This inconsistency with
discommensurations is on the same scale as the estimate of T1 in Fig. 4.9b. It again
suggests that the discommensurations are not “seen” at NMR frequencies.

There is yet another small surprise in the interpretation of Fig. 6.8. If one takes
the dipolar second moment in the foregoing formula, i.e. 1/T2O = 〈Δω2〉dipABT1Cu ,
averaged over all orientations, one finds the curve plotted with small triangles in
Fig. 6.7b, not quite in quantitative agreeement with the data. The final curve, plotted
with filled squares, is only obtained when one includes the 50µs–rate flip-flops

http://dx.doi.org/10.1007/978-3-662-55582-8_4
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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Fig. 6.8 Experimental data for the 17O spin echo decay at 100K (filled circles) are plotted versus
(2τ )2. The field is oriented along the c axis. A simulated decay curve with the combined effects of
dipolar and indirect coupling calculated as for the 63,65Cu is shown as “×” symbols. A simulated
decay curve with purely dipolar couplings modulated by T1 processes alone is plotted with filled
triangles connected by a solid line. The same calculation with both T1 modulation and dynamic flip-
flop transitions between the ± 1

2 levels of the 63,65Cu neighbors, shown as filled squares connected
by a solid line, is seen to be in good accord with the data [26]

between the ± 1
2 levels. These, we recall, were important in interpreting the 63,65Cu

T2 decay curves as well.
In the end, however, the most astonishing result is the total abnegation of indirect

spin-spin coupling for the planar oxygen nuclei.

6.4 The Sokol-Barzykin-Pines Scaling Theory of χ(q,ω)

A large body of work has grown up around the discussion of scaling theories in
the normal state of YBCO, Y248, and LSCO by Pines and co-workers [240, 273]
and Moriya et al. [163]. We offer here a brief summary of NMR/NQR results and
interpretation in terms of the theories mentioned. Although a great deal has been
done, there seem to be important questions which remain unresolved as well. The
details of these theoretical models go beyond the scope of this book, so we shall
focus here on predicted behavior and experimental tests thereof. In the interest of
presenting a compact account of this subject, many interesting experimental details
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have been omitted. The interested reader is referred to the literature cited for a more
detailed account of these matters.

6.4.1 Phase Diagram and Basic Relationships for T1, T2g

To facilitate discussionwedisplay the basic phase diagrampresented byBarzykin and
Pines (BP) [240] in Fig. 6.9, which refers specifically to YBCO:y (see also the paper
by Sokol and Pines (SP) [273]). For the superconducting phases (6.45≤ y ≤ 7.0) the
important regions are labelled “quantum critical” (QC), “quantum disordered” (QD),
and “no scaling”, which was formerly termed the “overdamped” (OD) region [273].
These terms refer, of course, to the behavior of the AFM fluctuations in the system,
which are generally assumed to control the static and dynamic magnetic properties.
One of the key parameters is a temperature-varying correlation length ξ, which is
dimensionless in units of the lattice constant a. In the QC region, ξ � 1 but grows
shorter with increasing temperature, until at ξ ∼ 2 there is a crossover labelled Tcr
to the OD region, in which ξ is of the order of 1 or less. At higher temperatures and
doping levels the AFM fluctuations cease to be a controlling factor and the system
reverts to a normal Fermi liquid. The temperature T∗ which marks the boundary
between QC and QD will be defined below.

It is useful to note that the phase boundary in Fig. 6.9 is similar to the phase
boundary between regions I and II of the phase diagram proposed by Varma (see
Fig. 4.34). The implied physical significance of these phase boundaries may also be
quite different in detail [222].

Fig. 6.9 Phase diagram
from Barzykin and Pines
[240] for magnetic scaling
behavior in the YBCO
family of cuprates. In the
superconducting phases
there are three regions
identified, the quantum
critical (QC: z = 1), the
quantum disordered (QD: z =
1), and the “no scaling” (or
overdamped OD: z = 2).
Definition and measurement
of the phase boundaries is
discussed in the text

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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In Fig. 6.9, Tcr has also been identified with a maximum in the uniform suscep-
tibility by BP, and data points shown in Fig. 6.9 for Tcr have derived from NMR
shift data. Large error bars reflect the flatness of such maxima. Below, we review
an effort to locate Tcr more precisely with NQR studies of T1 and T2 of 63Cu(2) in
Y248. From the behavior of 89Y NMR shift data, Han et al. [292] have determined
that the equivalent oxygen level of Y248 in the YBCO:y family is at YBCO6.8. On
that basis, BP suggest that Tcr for Y248 should occur at ∼ 500K.

Although drawn for YBCO, the phase diagram structure shown in Fig. 6.9 is
presumed to apply to all cuprates. The superconducting region lies within the QD
region. A system doped to the right of the Tcr line has no pseudogap and lies in the
OD region at all temperatures. If there are AFM fluctuations in the OD region, they
are assumed to obey mean-field behavior [163] as opposed to QC behavior. We now
define the behavior of χ(q,ω) according to the BP model [240, 273].

To consider the SP-BP model, AFM correlations are characterized by the correla-
tion length ξ and the low-frequency fluctuation energy scale ωsf, both of which may
vary with temperature. These energy and length scales are related by the dynamical
exponent z, thus ωsf ∼ ξz . In this connection it is also useful to employ the MMP
model susceptibility [161, 242, 273]

χ(q,ω)MMP = ξ2χ0

1 + q2ξ2 − iω/ωsf
(6.4.1)

as was employed by PS in their indirect coupling calculation [31]. Then, taking the
simplified forms

1

T1T
∼

∫
d2q

χ′′(q,ω)

ω

]

ω→0

,
1

T2g
∼

∫
d2q χ′(q, 0)2 , (6.4.2)

one finds the relations
1

T1
∼ T

ωsf
,

1

T2g
∼ ξ. (6.4.3)

Without payingmuch attention to the approximations involved,we apply (6.4.3) to
different parts of the phase diagram. In the overdamped, z = 2 region, we have ω−1

sf ∼
ξ2, leading to T1T/T 2

2g ∼ constant, which was the scaling prediction of Moriya et
al. [287]. On this basis it was suggested that T1T/T 2

2g is approximately constant for
YBCO7 [266, 273] (however, see further discussion of this point below). At high
temperatures BP suggest ωsf ∼ T , so that T1 ∼ constant and T2g ∼ T 1/2, which is at
least a semiquantitative description of the data of Imai et al. [268].

The point here is that across the Tcr line in Fig. 6.9 the behavior is expected to
be qualitatively different. Moreover, the approximations for (6.4.2) and (6.4.3) are
better in that ξ � 1. Thus, with z = 1, ω−1

sf ∼ ξ and one expects that T2g/T1T ∼
constant. Again, at high T , ωsf ∼ T , so with (6.4.3) on again expects T1 ∼ constant
[240]. An interesting example of the latter behavior is seen in the LSCO data of
Ohsugi et al. [279] shown in Fig. 6.10. The behavior of T1T versus T is such that the



6.4 The Sokol-Barzykin-Pines Scaling Theory of χ(q,ω) 243

Fig. 6.10 Plot of T1T data
versus T for compositions of
LSCO:x, with x ranging over
the supeconducting phase
(measurements of Ohsugi et
al. [279]). These data exhibit
the high-temperature limiting
behavior of the SP model
[273], where T1T goes
asymptotically as ωsf ∼ T

curve is linear at high temperatures for all compositions of LSCO:x up to x = 0.24.
Lest one suppose that x = 0.24 is “overdoped” (or OD), however, it is noteworthy
that at low temperatures 1/T1T for LSCO:0.24 is more than twice as great as for
YBCO7 [279]. What is quite remarkable, however, is that for x = 0.075 the linear
behavior of T1T in Fig. 6.10 extrapolates nearly to the origin; T1 is almost perfectly
constant from ∼75K up to 300K.

The latter figure also illustrates the QC-QD boundary T∗, which is the point at
which the data for T1T break away from the linear high-T behavior. T∗ is seen to
range from ∼50K to ∼100K over the range of compositions tested.

We note in passing that the behavior of T1T in Fig. 6.10 suggests that the 63,65Cu
relaxation process over this range of temperature and concentrations is dominated
by a single mechanism, namely the contribution of the AFM peak(s) in the vicinity
of (π,π). That viewpoint, however, is not quite consistent with the behavior seen in
Fig. 4.9a, where it appears from the INS data employed there that by room temper-
ature the relaxation will be dominated by a “background” term not resolvable with
INS. This discrepancy remains to be analyzed and understood.

As for the behavior of T2g in LSCO, the variation of T1T/T n
2g , n = 1 or 2, was

examined in somedetail in a studywhere the indirect T1 corrections to spin echodecay
discussed in Sect. 6.3 were carefully evaluated [204]. It was found for LSCO:0.15
that T1T/T2g is constant well within the errors and T1T/T 2

2g was not, clearly placing
this system in the QC category. Interestingly, a similar evaluation for YBCO7 found
that QC behavior for this systemwas favored aswell [204], contrary to the conclusion

http://dx.doi.org/10.1007/978-3-662-55582-8_4
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mentioned earlier [273]. In much of the literature, the indirect T1 corrections to T2g
have not been taken account of. Note, however, the work of Keren et al. [289].

6.4.2 The Dynamical Crossover Study by Curro et al: Y248

A very interesting piece of experimental work regarding the z = 1 to z = 2 crossover
is that of Curro et al. [242], who performed a temperature scan of the dynamics on
the system Y248. To our knowledge, no other such test of the Tcr boundary has been
reported. Y248 is an excellent system for such a test, because it is stable (i.e. does
not lose oxygen) for temperatures well beyond 700K. This study reported T1 and T2g
data up to the latter temperature. In order to perform such a study it was necessary to
use a random powder sample, since no known epoxy resin would be stable at such
high temperatures. Thus, T1 and T2g were measured using NQR and the NMR shift
was measured using the powder-pattern NMR spectrum. Stray magnetic fields had
to be shielded out of the sample space to a fraction of a Gauss, because they disturb
the NQR spin echo decay function. Finally, the authors examined and corrected for
the indirect T1 modifications of T2g described in Sect. 6.3 for LSCO [26].

One stimulus for the Y248 study discussed here was the conjecture by Barzykin
and Pines [240] that the Y248 system would exhibit a crossover transition at T ∼
500K. The 63Cu(2) T1 data fromY248 exhibited a curve of T1T versus T very similar
to one of the lightly-doped compounds in Fig. 6.10 with T∗ ∼200K, but showed no
feature at 500K [242]. The T2g data, on the other hand, showed a definite kink near
500K, as may be seen in Fig. 6.11. Also shown in that figure are data (open circles)
from a previous study by Corey et al. [290] which are in excellent accord, but extend
only to ∼450K.

In Fig. 6.12 T1 and T2g data for 63Cu(2) are combined to make plots of both
T1T/T2g (upper panel) and T1T/T 2

2g (lower panel), using the data described. The
upper panel data show that once past T∗ ∼ 200K, T1T/T2g remains very nearly
constant up to the crossover Tcr � 500K, as expected for QC behavior. Above that
point it veers upward very slightly. In the lower panel, the ratio T1T/T 2

2g is plotted
with the same data. Up to 500K the latter ratio is seen to execute a downward path,
levelling off at 500K just where the putative entry into the OD phase should occur.
This seems about as clear-cut a crossover as one could expect. Moreover, these data
show that the transition from QC to OD behavior is relatively sharp.

The foregoing identification of the crossover was also corroborated by NMR shift
data, which indicate (Fig. 6.13) a flat maximum in the uniform susceptibility in the
vicinity of 500K. These data do not locate the crossover as precisely as the dynamical
plots, but they are consistent with the results in Fig. 6.12.

The authors have also developed a procedure to observe the crossover directly in
terms of ξ(T ). Using, first, (6.4.3) with the coefficient adjusted to give the BP pre-
dicted value 2.0Å at the crossover, they find the bottom curve in Fig. 6.14 (triangles).
Secondly, they have adopted the exact solution for the susceptibility of a Heisenberg
AFM given by Sokol, Singh, and Elstner (SSE) [291] to give a second estimate of the
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Fig. 6.11 Plot of measured
T2g for 63Cu(2), taken on the
NQR line of Y248. Data
from the study of the
dynamical crossover in Y248
by Curro et al. [242] are
shown as solid circles. The
open circles are from a
previous study by Corey et
al. [290]. Note the abrupt
change of slope at 500K

Fig. 6.12 Data for T1 and
T2g for 63Cu(2) in Y248
(Curro et al. [242]) plotted as
T1T/T2g versus T (a) and as
T1T/T 2

2g versus T (b)
(closed circles). The (a)
panel shows the scaling (QC:
z = 1) regime extending from
T∗ ∼200K to Tcr � 500 K .
The (b) panel shows the
onset of the non-scaling
(OD: z = 2) regime at �
500K. The earlier data of
Corey et al. [290] are shown
as open circles
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Fig. 6.13 The 63Cu(2)
NMR shift is plotted versus
temperature, showing the
maximum of the uniform
susceptibility at Tcr ∼
500K, in agreement with the
plot of T2g (Fig. 6.11. From
Curro et al. [242]

ξ(T ) curve, where the latter workers also suggested that this would be a reasonable
approximation to the behavior of lightly-doped cuprates at high temperatures [242].
The latter susceptibility is given by

χ(q,ω, T )SSE = χ0(T )[1 + θ(T )]
1 + θ(T )γ(q) + i�qω

, (6.4.4)

where γ(q) = 1
2 [cos qx + cos qy], θ(T ) = 4ξ2(T )/[1 + 4ξ2(T )], and�q is a fluctu-

ation rate which is not required forχ′(q, 0) (and thus T2g). In using (6.4.4) to interpret
the T2g data, the value of χ0(T ) was taken from the NMR shift measurements, the
known HF constants were used, and the second moment was calculated using the
full expression (5.1.8). The only unknown parameter ξ(T ) is then extracted from the
T2g data in Fig. 6.11. These values are plotted in Fig. 6.14 as open circles. According
to this determination, ξ = 1.4 at the crossover temperature, somewhat less than the
BP estimate. If the determination using (6.4.3) is adjusted to give ξ = 1.4 at 500K,
then the curve with filled squares results, which is remarkably similar to the exact
solution by SSE.

In all three of the plotted curves for ξ(T ) versus T there is a definite point very
near to 500K which one would naturally associate with a transition from one type of
behavior to another, even if there had been no theoretical prediction of such a point.
With the SSE susceptibility (6.4.4), however, there is a remarkably large change in the
slope of the curve at Tcr , giving very dramatic evidence of the dynamical crossover.

In conclusion, it seems that the QC, z = 1 behavior for AFM fluctuations is clearly
established for Y248 as well as for LSCO [204]. For Y248, the present work finds a
clear-cut crossover transition at T � 500K. In the case of LSCO there is evidence for
a crossover curve from susceptibility [189, 232] aswell asHall effect data [240, 293].
It appears quite possible that a crossover curve for LSCO could also be established

http://dx.doi.org/10.1007/978-3-662-55582-8_5
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Fig. 6.14 Values of
correlation length ξ(T )

derived from the data for T2g
in Fig. 6.11 as follows:
Triangles are from (6.4.3)
with coefficient adjusted to
give ξ = 2.0 at T = 500K.
Open circles are from the
SSE exact solution [291],
where χ0(T ) is derived from
the shift data in Fig. 6.13.
Closed squares are from
(6.4.3) with the coefficient
adjusted to give ξ = 1.4 at T
= 500K. See text for
interpretation of this result

using T1T/T n
2g plots as was done with Y248. Measurements would probably have

to be done with single-crystal samples and conducted in an oxygen atmosphere in
order to maintain sample integrity at elevated temperatures (e.g. see [119]). It would
be interesting and important to investigate the sharpness of the crossover transition
in this fashion, since the present work has shown that this could be a very interesting
issue [242].



Chapter 7
NMR on Actinide Compounds

7.1 Introduction

There are relatively few laboratorieswith the specialized facilities required to conduct
NMR research on compounds with uranium or with the transuranium elements Np,
Pu and Am, which we refer to collectively as the actinides. In the last two decades,
however, there has been a substantial increase in the volume of research in general and
in NMR in particular on actinide compounds. Beginning with the first observation
ever of the NMR (i.e., the AFNMR) of 235U in the AFM state of UO2 in 1998
[296], there followed sustained activity that has continued up to the present time. It
must be noted that because the abundant isotopes of uranium are only very weakly
radioactive, research on uranium compounds is far more widely pursued than on
all other actinides combined. Since 235U , with a half-life of only 71 million years,
is required for NMR studies, shielding and handling facilties are a much greater
problem than with the abundant isotope 238U , the half–life of which is nearly two
orders of magnitude longer. The natural abundance of 235U ∼ 0.72%. In this chapter
wewill discuss 235U and 17ONMRstudies inUO2, whilemore exotic heavy–fermion
compounds such asURu2Si2 are deferred to future chapters. In addition to the original
papers referred to here, there was also more recently a review of actinide oxide NMR
studies [298].

Next, we consider 239Np inNpO2, a compound with a somewhat dramatic history.
In the end it has been identified as having an octupolar ground state, the first actinide
identified to have a multipolar ground state. It was also found to exhibit a nuclear
cross–relaxation effect from 237Np to 17O, leading to identification of a new indirect
coupling mechanism between nuclei. A similar cross–relaxation effect was later
identified in another actinide compound, NpPd5Al2 [314]. Results for these effects
are unique among NMR studies and are presented in some detail.

The NMR of the 239Pu nucleus mysteriously eluded discovery for many years,
but was finally reported for the compound PuO2 in 2012 [299]. This is only the
second actinide NMR to be observed. Whereas for most actinides the HF coupling
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is too powerful and T2 is unmeasurably short, in the case of PuO2 the compound
is magnetically inert and there is no obvious T1 mechanism. This makes the NMR
signal very hard to detect. The 239Pu NMR results are discussed briefly.

Finally, we touch upon the difficult case of 17O inAmO2.With each step across the
actinide series the half-life decreases by about two orders of magnitude. For AmO2,
just beyond Pu, it is so short that it is no longer possible to grow a crystal and verify
its properties before recoil damage from α–particle decay renders it as disordered as
a glass. The NMR results will be seen to reflect such a circumstance.

7.2 The Study of 235U and 17O in UO2

There are many interesting NMR–related features to the UO2 compound. Here we
present a selection of highlights and refer the interested reader to [297] for the full
details. The gyromagnetic ratio γ235/2π � 0.78 MHz/T [296] of 235U is one of the
smallest of all detectable nuclei. At the same time, this circumstance can be said to
make it possible to observe the AFNMR of 235U in the AFM ordered state. The point
here is that f–electron orbital HF interactions are somuch larger than any encountered
in spd–band solids that one requires a small value of γ as well as rather low absolute
temperatures for T1 and T2 to be long enough for experimental resolution with pulsed
NMR techniques. Thus, 235U and 239Pu are the only actinide nuclei are for which
there is any prospect of observing their NMR directly, and that only because 239Pu
is available in the non–magnetic host compund PuO2 [299] (see below).

The actinide oxides AnO2 all crystallize in the cubic CaF2 structure. In such a
crystal the An4+ ions form a fcc lattice, while the O2− ions form a sc lattice with
half the lattice constant of the fcc host, with sites located at the centers of An4+
tetrahedra. In addition to the ‘smallness’ of γ235, there are two other circumstances
that render theAFNMRof 235U inUO2 observable, namely the possibility of isotopic
enrichment to as much as 90% ormore and the occurrence in AFMUO2 of a HF field
at the 235U nucleus of∼252T, yielding for the±1/2 transition an AFNMR frequency
of 198MHz. Along with AFM magnetic ordering, it has been shown with resonant
X-ray scattering that there is also quadrupolar ordering among the 5f-electrons [301],
generating an electric field gradient at the 235U with its principal axis parallel to the
magnetic moment. The result is an AFNMR spectrum with a first-order nuclear
quadrupole splitting of about 14MHz as is shown in Fig. 7.1. With I = 7/2, there are
seven roughly equally spaced transitions in the AFNMR spectrum.1

In addition to scanning the AFNMR spectrum of 235U it is possible to measure
235T1 as a function of temperature, as shown in Fig. 7.2. We note in passing that,
since I235 = 7/2, the magnetization recovery curve can be written

1In [298] the value of I for 235U is given at first as 7/2, then later stated to be 5/2. The correct value
is 7/2.
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Fig. 7.1 235U spin echo
spectrum in the AFM state
of UO2 at 1.5K

Fig. 7.2 Spin–lattice
relaxation rates 1/T1 for
235U (filled circles) and 17O
(open circles), measured in
the ordered state of UO2, are
plotted versus T in a log–log
plot. For 17O the data extend
beyond TN = 30.5K up to
50K showing the
paramagnetic peak of critical
fluctuations just above the
first–order transition. The
solid lines through the data
plots are fits to a T7 law. See
text for discussion

M0 − M(t) = M0[Aexp(−t/T1) + Bexp(−6t/T1) + Cexp(−15t/T1) + Dexp(−28t/T1)], (7.2.1)

where M0 is the equilibrium magnetization. If the central transition (m = 1/2 ↔
−1/2) is completely saturated at t = 0, then it can be shown that (A, B, C, D) = (1/84,
3/44, 75/364, and 1225/1716). See Sect. 2.1.5 for further discussion of these modes.

The data in Fig. 7.2 illustrate why it was only possible to observed the AFNMR
of 235U up to T = 14K or so, because above that point 235T1 becomes just a few 100
µs, i.e. no longer than the duration of the two-pulse spin echo sequence. This hastens
the loss of available signal strength with increasing T . Also displayed in Fig. 7.2 is a
plot of 17T1 data for 17O in the sample, which has been isotopically enriched for this
purpose. The T–dependence of 17T−1

1 is seen to follow the same T 7 law as for the

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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235U , except that it is four orders ofmagnitude smaller. NearTN it is slightly enhanced
by critical fluctuations on both sides of what is actually a first–order phase transition.
We finally note that the T 7 variation for both the 235U and 17O nuclear relaxation
rates in Fig. 7.2 has been rationalized as a phonon–like excitation with magnon–like
couplings to the nuclear moments [297]. At low temperatures the phonon–Raman
scattering process that is believed to be at work here varies with temperature as T 7

[302].

17O NMR in the Paramagnetic State

First, we look at the NMR shift and relaxation of the 17O in the paramagnetic state,
as depicted in Fig. 7.3. The small and very flat NMR shift is suggestive of a magnetic
source that is isotropic and little affected by short–rangeAFMorder such as an orbital
susceptibility. Indeed, the dipolar HF effects that are quite powerful at the O2− sites
in the ordered state have far less effect in the paramagnetic state because of the high
symmetry of the lattice. The very–nearly symmetric line profile shown in the inset
to part (a) of the figure shows the absence of any anisotropic shift that would lead to
anisotropic broadening. Meanwhile, the FWHM of about 30G (<20kHz) is clearly
beyond any nuclear dipolar broadening, and could very well represent stray shift

Fig. 7.3 a Temperature
dependence of the NMR shift
at the 17O sites at 61.6MHz
in the paramagnetic state,
which indicates a rather
small transferred HF
coupling constant. The inset
shows the 17O spin–echo
spectrum in the paramagnetic
state. Data were taken with
pulse conditions
4.2µs − τ − 8.4µs. b
Temperature dependence of
17(1/T1) at 62.1MHz, which
stands in sharp contrast with
the constancy of the 17O
NMR shift in the
paramagnetic state
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effects from the relatively huge dipolar HF fields that would cancel under conditions
of perfect cubic symmetry. The bulk of such broadening must be static in order to
permit the observation of spin echoes. Thus, T1 broadening would be less than 1kHz
at any temperature.

The T1 process is, however, another matter entirely. As short–range AFM order
develops on approaching TN , the cancellation of dipolar HF fields that is so effective
with uniform polarization begins to break down, and 1/T1 exhibits a spectacular
critical fluctuation peak. Interestingly, that is eventually cut short and the system
executes a first–order jump into the AFM ordered state. The relaxation rate suffers
an order–of–magnitude collapse at TN . At T = TN the contribution of quadrupo-
lar fluctuations to the T1 process is unlikely to be significant, as the authors point
out [297].

AFM Ordering in the fcc UO2 Lattice

To understand the static and dynamic AFNMR effects in UO2, we need to examine
the basic features of the ordered AFM state.

It is easy to divide the simple cubic and body–centered cubic lattices into a two–
sublattice AFM arrangement of static spin orientations. Not so for the fcc lattice, in
which each site has twelve nearest neighbors. Thus, it was only after the AFNMR
studies of the fcc UO2 that the so-called ‘3k’ ordering was confirmed. The term
‘3k’ refers to the fact that there are components of ordered magnetism along all three
spatial dimensions. A planar rendition of both 2k and 3k ordering is shown in Fig. 7.4,
where 3k order appears to comprise great complexity. It is, however, straightforward
to describe verbally: The fcc lattice is composed of four interpenetrating sc lattices.

Fig. 7.4 The (001) projections of the fluorite structure for the 2k and 3k ordering schemes. The
dipolar fields at the O2− sites point along the (101) directions for the 2k ordering and along the
(111) directions for the 3k ordering. The Jahn–Teller distortions are discussed at length in [297],
but are not shown in this figure. These distortions do not significantly modify the dipolar field at
the 17O sites, but are entirely responsible for the observed EFG splittings. See text for details
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Assign to each sc sublattice one of the four [111] axes of the crystal and you are
very near to the ‘3k’ prescription. The one complication is that there are many ways
to assign the ‘sense’ of the magnetic vectors, so that needs to be specified in detail.
In Fig. 7.4 we are looking down along the z axis. Assigning in–plane x (horizontal)
and y (vertical) axes in the usual way, we see that there are two sublattices in each
[100] and [010] plane. The simplest way to specify the entire ordering scheme is to
focus on the U 4+ moments at the eight vertices of the fcc unit cell, four of which
are visible in Fig. 7.4. The typical U 4+ moment in the lower left corner of the figure
is seen to be oriented along the [111] axis that intersects the neighboring O2− site,
whose local field (see below) is seen to be oriented along the same [111] axis. The
four nnU 4+ moments to that lower–leftO2− site are seen to be pointed along all four
possible [111] orientations in the crystal. That pattern repeats for every fcc vertex
site in the lattice, and it specifies the entire 3k magnetic structure. It is also seen that
for each O2− site, one of the four nn moments is oriented along a [111] axis that
passes through the O2− neighbor. The local O2− field (Hint) is always oriented along
that line. These two statements specify all of the details of the 3k ordering.

As noted by the authors, there is a substantial dipolar magnetic field at the oxygen
sites. This field always points along one of the [111] axes, as noted above. As a
result of the small Jahn–Teller motion of the O2− sites, there is also a small EFG
and quadrupolar splitting of the 17O NMR line. The local field and EFG both have
a considerable effect on the 17O NMR spectrum in the powder sample. At an NMR
frequency of ν0, the resonance condition can be met at field values over the range
ν0/γ − Hint ≤ H0 ≤ ν0/γ + Hint . HereHint is the internal field at the 17O site, which
� 0.74T at low temperatures. At any point on this scale the applied field will point at
some angle θ relative to the internal field, so that the resonant field� H0 ± Hint cosθ.
At such a point the first–order quadrupole splitting will be νQ(3 cos2θ − 1). Such a
splitting will only shift the NMR line by a few kHz, but will affect the excitation
conditions for the spin echo. Moreover, the spin echoes will oscillate according to
these quadrupole splittings in their decay processes, as was shown in an early classic
paper on the subject [303].

To illustrate these points we present in Fig. 7.5 an 17O NMR spectrum taken at a
temperature whereHint ∼0.72T, and at a large enough value of 2τ so that echo oscil-
lations have dissipated. Also shown is a plot of the quadrupole splitting derived from
analysis of spin echo oscillations at points across the spectrum. The NMR spectrum
is the somewhat noisy scan extending from 10.1 to 11.45T. Quadrupole frequen-
cies are shown as solid dots, and the solid line is a fitted curve of |3 cos2(θ) − 1|
scaled in height and width to fit the data. Two critical points are, of course, the
“magic angles”, where cos(θ) = ±1/

√
3. Coincidence between the principal axis of

the electrical field gradient tensor and field data verifies that these share the same
[111] axis in the lattice.

Lastly, we address the discrepancy between the measured value (0.74T) and
the direct dipolar estimate (0.42T) of Hint . We attribute the difference to a small
hybridization transfer of ordered moment from the four nn U 4+ into p–states in
the oxygen. Ordinarily the s–like hybridization might be dominant, but here this
contribution is zero, because the vector–sum moment of the nn sites equals zero.
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Fig. 7.5 The 17ONMR spectrum (noisy trace) inUO2 taken below TN in a scan from 10T to above
11T. The echo amplitude was recorded at a value of pulse separation τ large enough so that the
first–order quadrupolar oscillations have died out. Black dots represent values of the quadrupolar
oscillation frequency recorded using the echo decay oscillations. The solid line fit to the latter data
was determined by least-squares fit to the form |3cos2(θ) − 1|

The 17O 1/T1 curve below TN (see Fig. 7.2) mainly follows the same T 7 behavior
as the 235U in the ordered state, executing a noticeable upward deviation owing to
critical fluctuations as TN is approached from below. However, the inhomogeneous
broadening, shift, and oscillatory spin echo decay present a challenging array of
complex phenomena to be analyzed for the 17O in the ordered state. First, as noted
above, owing to the Jahn–Teller motion of the O2− ions in the ordered state of
UO2 there is a small EFG at the 17O site. Careful studies conducted by the authors
demonstrate that both Hint and the EFG principal axis lie along the [111] axis that
passes through everyO2− site. Moreover, another simplifying feature is that the EFG
appears to be axial in nature. Under these conditions it has been shown [303] that if
the first–order quadrupole splitting is α, then the spin echo decay will have the form2

E(2τ ) = c0 + c1f1(2τ )cos[2ατ + δ1] + c2f2(2τ )cos[2ατ + δ2] + c3f3(2τ )×
cos[2ατ + δ3] + c4f4(2τ )cos[2ατ + δ4], (7.2.2)

where the factors fn(2τ ) represent the approximately exponential decay of the oscil-
lations over several 100 µs.

Next, we note that the EFG principal axis coincides with Hint throughout the
crystal, but the orientation of Hint varies randomly throughout the powder sample

2This is similar to Eq. (8) from [297], except that decay factors fn(2τ ) have been inserted to represent
the roughly exponential decay of the spin echo oscillations.
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used. The 17O resonance condition selects only a particular orientation of the Hint

axis over the sample relative to the applied field H0. We denote that angle θ, so that
the resonance condition may be specified as

ν0 = (1 + K)γ17[H0 + Hintcosθ], (7.2.3)

where the perpendicular component ofHint is neglected, because H0 � Hint . As the
field H0 is swept upward, the resonance condition in (7.2.3) is met over a range
of θ values from 0 to π, over which H0 varies from ν0/((1 + K)γ17) − Hint up to
ν0/((1 + K)γ17) + Hint . This results in the NMR spectrum shown across the bottom
of Fig. 7.5, extending at T = 28K from 10.1 to 11.45T, so that Hint ∼ 0.67T. Since
the first–order quadrupole splitting is only a few kHz, it does not play a significant
role in the resonance condition in (7.2.3). Nonetheless, the orientation of Hint can
be monitored over this field scan using the spin echo decay oscillations given by
(7.2.2) to monitor the first–order quadrupole frequency |ΔνQ| = |νQ(3cos2θ − 1)/2|.
Measurements of |ΔνQ| across the NMR spectrum are plotted as dots in Fig. 7.5. A
fitted curve of |ΔνQ| versus θ is drawn as a solid line, using θ values derived from
(7.2.3), where the end points of the spectrum determine the locus of θ = 0 and θ =
π on the field scale. The correspondence is excellent. The data in Fig. 7.5 can also
be used to determine accurate values of the ordered-state 17O NMR parameters as
follows. The solid line functional fit to the quadrupole frequencies measured across
the broad spectrum is seen to intersect the horizontal axis at two points, known
as the “magic angles”, where cos(θ) = ±1/

√
3. Thus, |ΔνQ| given in the previous

paragraph vanishes at these points, which are labeled H±
ma. These two points are

determined quite accurately by the fit, and the resonant field that is halfway between
them determines the shift at that temperature. Thus, we have

ν0 = γ(1 + K)[H+
ma + H−

ma]/2
Hint = (

√
3/2)(1 + K)[H+

ma − H−
ma], (7.2.4)

where ν0 is the NMR frequency. The first of these may be solved for K , the second
gives Hint , and νQ is extracted from the scale of the solid line in Fig. 7.5. Data for
Hint and νQ are plotted in Fig. 7.6, while K versus T data are shown in the inset.

The data obtained for the NMR properties of UO2 offer a substantial characteri-
zation of this interesting compound. See [297] for more details and for comments on
the f-electron hyperfine mechanism, which goes beyond the scope of our discussion
here.Wefinally note that theT 7 variation for both the 235U and 17O nuclear relaxation
rates in Fig. 7.2 has been rationalized as a phonon–like excitation with magnon–like
couplings to the nuclear moments [297]. At low temperatures the phonon–Raman
scattering process that is believed to be at work here varies with temperature as
T 7 [302].
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Fig. 7.6 Temperature
dependence of the internal
field Hint and the nuclear
quadrupole frequency νQ for
17O spins in the AFM state
of UO2. Over a similar
temperature range, the shift
deduced as described in the
text is plotted in the inset

7.3 Octupolar Ordering in NpO2: 17O and 237Np NMR
Parameters

Early studies of specific heat andmagnetic properties ofNpO2 andUO2 showedwere
antiferromagnets [304, 305].NpO2 showed strong Curie–Weiss behavior with a fluc-
tuatingmoment greater than 3μB. It was rather surprising, then, when somewhat later
both Mössbauer [306] and neutron scattering [307] studies found no evidence for
any nonzero magnetic moments in the “ordered state” of this compound. Eventually,
nearly fifty years after the initial studies of this system, Santini and Amoretti sum-
marized current experimental evidence and proposed a Γ2 ground state that carries
an octupolar moment [308].

The latter proposal was followed by a seminal resonant X-ray scattering paper
and analysis, which showed that [308] was correct in principle, but incorrect in detail
[310]. TheX-ray results showed that the correct ground statewas actually an ordering
of octupoles of Γ5 symmetry, leaving a ground state of zero dipolar moment. The
interesting point about this result is that it was not motivated directly by resonant
X-ray scattering data, which showed strong quadrupole scattering, but essentially
zero octupolar scattering. The only evidence for a ground state that breaks time–
reversal symmetry at the time was μSR data [309] that showed interstitial magnetic
fields below T0 �26K of more than 700G. Such fields could presumably only arise
from a “magnetic” ground state, i.e. from octupolar (or higher multipolar) order. In
retrospect, it seemed clear that octupolar X-ray scattering was not observed only
because the relevant matrix elements were too weak [310].
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It then remained for other probes to verify the octupolar nature of the NpO2

ground state. NMR was an obvious candidate, and we review here results reported
for bothNMRshiftmeasurements on 17O that served to verify both the3k quadrupolar
ordering and the octupolar terms in the shift data. The observed quadrupolar order
[310] was suggested to set up as a 3k charge ordering scheme quite similar to the
magnetic 3k order found for the AFM state ofUO2. Again, each of the four sc lattices
that make up the fcc lattice of the Np4+ ions is assigned one of the four [111] axes
as symmetry axes for quadrupolar ordering. That is the essential result in a nutshell.

7.3.1 Analysis of 17O NMR Shift Data in the AFO/AFQ
Ordered State of NpO2

In the paramagnetic state the crystal has the cubic space group Fm3̄m, while in the
triple-q ordered state the symmetry is lowered to Pn3̄m. In the latter space group
two of the eight O2− sites in the unit cell retain cubic symmetry in their NMR shift
tensors, while the other six have shift tensors with axial symmetry, two each for the
x, y and z axes. None of the ions in the crystal is displaced from cubic symmetry in
the (quadrupolar/octupolar) ground state, so that no EFG’s or local magnetic fields
occur at the O2− sites. Confirmation of the local symmetries of the various 17O sites
has been obtained from a study of the corresponding NMR shifts that occur in the
ordered state. Shift results at a series of temperatures are shown in Fig. 7.7. Frequency
scans are shown for a series of temperatures beginning above T0 = 26K at the top,
progressing down to 14K at the bottom, for each of two field orientations on a single
crystal sample of NpO2. For H‖〈111〉 (part (a)) the six axial site axes were all at
the same angle relative to H and were thus combined into a single NMR line with
three times the intensity of the two cubic sites, which have an isotropic shift. Then
when the field is aligned with one of the cubic axes (i.e., 〈100〉), four of the axial
sites (i.e., with y and z symmetry axes) will combine into a single line while those
with x symmetry axes will form another line with a strongly positive NMR shift
(Fig. 7.7). Meanwhile, the cubic sites have the same (negative) shift as in part (a),
since their shift is isotropic. Thus, the 17O NMR spectra show the expected shift
behavior corresponding to the 3k configuration of quadupolar ordering axes.

There are other 17O NMR effects in the ordered state of NpO2 that are quite
surprising. One is the behavior of the corresponding linewidth as a function of
applied field. This is shown in Fig. 7.8. There we see a striking contrast in the
behavior of linewidth versus field H at T = 17K. For the cubic symmetry line the
linewidth extrapolates quite precisely to zero as H → 0. For the composite axial
symmetry line, however, the linewidth extrapolates to a very substantial non–zero
value. The cause of this effect is clearly some form of vestigial magnetic ordering
in the crystal that can produce local magnetic fields when there is no applied field
present. Interestingly, this effect was anticipated by Santini and Amoretti in their pio-
neering PRL on octupolar order in this system [308]. These authors suggested that
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Fig. 7.7 Frequency–scanned NMR spectra of 17O in a single crystal of NpO2 for two orientations
of the applied magnetic field as shown. Each data set consists of a series of scans at temperatures
beginning just above the ordering temperature T0 � 26K and progressing at intervals of first 0.5K,
then 1.0K, ending at 14K. As described in the text, the spectral features behave as expected for a
3k AFO/AFQ ordered state

Fig. 7.8 17O line
broadening parameters δ are
plotted versus applied field in
Tesla for the cubic sites (O1)
and for the composite line of
axial sites with H‖ [111].
The axial site extrapolated
linewidth extrapolates to a
value of �60G, confirming
the presence of “tiny
moment AFM ordering”
in their vicinity [308]

minuscule distortions of the crystal, particularly along the [111] axis, would result
in “tiny moment antiferromagnetism”. Thus, the occurrence of trigonal strains in
the crystal were suggested to account for zero–field Mössbauer line broadening in
crystals of NpO2. These stray AFM ordering phenomena also clearly account for
zero-field 17O NMR line broadening effects, which, interestingly, only occur for
sites with axial symmetry in the octupolar/quadrupolar state.
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Unfortunately, NMR is unable to probe octupolar moments in the ground state
of systems like NpO2 and Ce1−xLaxB6. This is because octupolar order produces
no magnetic fields at lattice points of high symmetry [308]. While μSR sensed a
substantial field in NpO2 [309], it is not clear that this is a suitable probe of octupo-
lar order. That is because the muon occupies an interstitial position in the lattice,
disrupting the local crystalline symmetry. One cannot be entirely sure that locally a
dipolar moment is not formed as a result of such a perturbation. Thus, there may not
be a suitable probe of octupolar order available for this system.

On the other hand there are field–induced (FI) octupolar effects in NpO2. Sakai,
Shiina and Shiba have contributed a symmetry–based analysis of FI multipole effects
in this system [312]. A summary of these results is shown in Table7.1, which we
now describe in detail.

The top line of Table7.1 gives the EFG axis, then FI terms for different multipoles.
The second line gives the coefficients (C.C.) that are defined in the source paper.
Lines 3–6 give the form of expected results for the four oxygen sites. In particular,
the far–right column gives the form for two types of octupolar shift term allowed by
symmetry. The field–induced EFG terms described in the fourth column have been
too weak to be identified in the NMR spectra.

We now describe a fitting of the FI–AFM and FI–AFO terms to 17O NMR shift
data from an angular scan of field from the [001] axis to the [110] axis in the [110]
plane. The data are shown in Fig. 7.9. The scan is described by the polar angle of
the field, which begins at value θ = 0 with the field along [001] and extends down
to θ = π/2 with the field aligned along the [110] axis. The scan was carried out at
T = 17K, with field components (Hx,Hy,Hz) = H(sinθ/

√
2, sinθ/

√
2, cosθ), where

H = 10.17T. The NMR shift data were fitted to the terms under FI–AFM and the two
kinds of terms under FI–AFO in Table7.1. The expressions fitted to the three curves
in Fig. 7.9 are

Table 7.1 HF interactions with 17O nuclei in the longitidal, triple-q AFO/AFQ ordered state from
[312]. The definitions of coupling constants (C.C.) are given in [312]. qz is the principal axis of the
EFG tensor

Item H = (Hx,Hy,Hz)

Multipole AFQ FI – AFM FI–AFQ FI–AFO (Tβ , Txyz)

C.C. C2,2 2C1,2 C2,5 −2C1,3/C1,4

O1 0 (Hx,Hy,Hz) 0 (0,0,0)/(Hx,Hy,Hz)

O(3)
x qz‖[001] (0, 0,−Hz) [OyzHx + OzxHy] (Hx,Hy, 0)/(−Hx,−Hy,Hz)

O(3)
y qz‖[010] (0,−Hy, 0) [OxyHz + OyzHx] (Hx, 0,Hz)/(−Hx,Hy,−Hz)

O(3)
z qz‖[100] (−Hx, 0, 0) [OzxHy + OxyHz] (0,Hy,Hz)/(Hx,−Hy,−Hz)
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Fig. 7.9 A constant–temperature, constant–field plot of 17O NMR shifts (in field units) for a
rotational scan of the applied field from alignment along the c axis (polar angle θ = 0) to alignment
along the [110] axis in the basal plane. Field alignment in the [110] plane is maintained throughout.
The spectrum consists of three distinct lines, similar to the spectrum in Fig. 7.7. The solid lines
drawn are a fit to the data using possible HF interactions at 17O nuclei as listed in Table7.1 as based
on a AFO–AFQ ground state from [312]. The latter analysis includes field–induced octupolar shift
effects that make an important contribution, as indicated by the noticeably poorer fit that results
when they are omitted (dashed lines)

ΔH1 = [2C1,2 + C1,4]H
ΔH3xy = [C1,2sin

2θ − C1,3(1 + cos2θ) − C1,4cos
2θ]H

ΔH3z = [−2C1,2cos
2θ − 2C1,3sin

2θ + C1,4(2cos
2θ − 1)]H. (7.3.1)

A really excellent fit to the three shift curves is provided by these expressions with
only three adjustable parameters. Their fitted values are C1,2H = −143.7Oe, C1,3

H = C1,4H = 29.5Oe. Moreover, the (induced) octupolar terms make an important
contribution to these fits. Thus, the quality of the fits is grossly degraded if the latter
terms are omitted (dashed lines, Fig. 7.9). The measured octupolar terms are good
evidence that the ordered state of NpO2 is at least very much like the 3k AFO/AFQ
state upon which the calculations in [312] are based. It is interesting to note that
according to recently published calculations the rank 5 term is the dominantmultipole
in NpO2 [313].

7.4 Cross Relaxation in NpO2

Cross relaxation (CR) is a relatively rare phenomenon in NMR, that is, a spin–
lattice relaxation process that is driven by coupling between the nuclear spins under
study with a set of unlike nuclear spins in the same compound. And thus, it may
not always be instantly recognizable. We show in Fig. 7.10 a comprehensive set of
curves showing 1/T1O versus T for the 17O nuclear spins in NpO2. Data are plotted
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Fig. 7.10 The nuclear relaxation rate 1/T1O, measured at a series of applied field values given in the
figure, is plotted as a function of temperature from He temperatures up to 260K or so. T1O becomes
independent of field at frequencies above � 30MHz or so, revealing a background relaxation rate
from exchange–driven dipolar fluctuations. We argue that the increase of relaxation rate observed at
frequencies of 15MHz and below is caused by cross relaxation from the fluctuating 237Np, which are
100% abundant. See text for discussion and detailed modeling of the CR process. The inset shows
a similar plot for 17O in UO2, showing the complete absence of any CR effect for that system

from He temperatures up to nearly room temperature for a series of applied fields
ranging from 0.48T up to 10.25T. There is a marked—and slightly peculiar—field
dependence to the relaxation rate. For comparison, data for UO2 at two extreme
field values (1.02 and 10.25T) are shown in the inset, and are seen to coincide very
precisely, where the data for NpO2 differ widely. In this section we argue and build
a case for a CR process in which the 17O are being relaxed through contact with
the 237Np nuclear spins, which are 100% abundant in this sample. What is peculiar
is that 1/T1O increases as the field is reduced, where the CR effect is visible up to
NMR frequencies of 15MHz. One only rarely encounters nuclear T1 processes fast
enough to have such a broad spectrum. Note, however, that the fluctuation density
increases markedly at lower fields (i.e., lower 17O NMR frequencies), as well as at
lower temperatures, which we make sense of below with a simple model.

What is also evident is that there is anotherT1 process for the 17O, towardwhich the
measured values in Fig. 7.10 asymptotically approach at high fields and frequencies.
This is the process driven by exchange fluctuations of theNp4+ 5f moments, to which
the 17O are coupled by a transferredHFprocess. This latterT1 process is unaffected by
applied field or NMR frequency and is found in many systems containing exchange–
coupled localizedmoments [58].We do not analyze it further, but subtract the 10.25T
curve in Fig. 7.10 from each of the others in order to isolate the CR process more
quantitatively. The results for CR thus quantified are shown in Fig. 7.11. With these
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Fig. 7.11 The data from Fig. 7.10 for NMR frequency 15.4MHz and below are replotted with the
data taken in a 10.4T applied field subtracted off as a field–independent background. What remains
is presumably 100% cross–relaxation in origin. Note that 1/T1CR drops nearly to zero at T0, where
the dipolar magnetism collapses. At 2.8MHZ the relaxation rate drops to a finite value. This effect
and its field dependence are discussed in detail in the text. In the inset, T1CR is plotted versus ω2

17
(see text for details), illustrating the Lorentzian form of the high-temperature T1CR process

data we can study the variation of T1CR with frequency ωO = γ17H. Abragam gives
some examples of CR and states the expected variation with field and with T1Np ([5],
Chap.VIII) as

1

T1CR
= 〈Δ2ω〉αT1Np

[1 + (ωO − ωNp)2T 2
1Np

] + 〈Δ2ω〉βT1Np
[1 + ω2

OT
2
1Np

] (7.4.1)

where the two terms represent processes driven by squared matrix elements of
I±NpI∓O and IzNpI∓O, respectively. Both of these terms behave in a very similar
fashion with frequency, i.e. with H. It is argued that because of the very large shift
for 237Np in NpO2, the α term is bound to be less important. Thus, we complete the
analysis using just the β term. With that term alone, it is clear that a plot of T1CR
versus H2 for any temperature should yield a straight line through the origin. Three
such plots are shown in the inset to Fig. 7.11, where the two at lower temperatures
are seen to behave as expected. The one at 70K yields a straight line, but appears to
miss the origin. That behavior may have to do with baseline subtraction, which is a
bit less certain at 70K.
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The frequency dependence for these cases is satisfactory. A much more pressing
question is the magnitude and temperature dependence of the indirect coupling that
drives T1CR, i.e. of 〈Δω2〉β .

As we shall see, the crucial point here is the magnitude and origin of 〈Δω2〉β .
In a system with itinerant fermions, there is the possibility of indirect spin–spin
coupling between unlike species. In NpO2, however, the only known interaction is
direct dipolar coupling. An estimate shows that the effective value of 〈Δω2〉β at
low temperatures is three orders of magnitude larger than simple dipolar coupling.
Thus, the T1CR effect in NpO2 stumbled onto a new source of indirect spin–spin
coupling between the nucleus of an f–electron–bearing ion and a ligand neighbor.
Casting about for possibilities, it seems likely that the following scenario is in effect
here. The three ingredients are as follows: There is a modest coupling (i.e., classical
dipolar, hybridization) between the f -ion moment and the ligand nuclear spin. The f -
ion nucleus has a strongHF interaction with the f moment. Finally, the f -ionmoment
has a large susceptibility. We reason as follows: The f–moment nucleus produces an
inverse HF field that induces a moment on the f-electron ion. Any such moment
then couples with the ligand ion nucleus. It is easy to write down an estimate of this
mechanism that comes out in the right ballpark for a greatly enhanced coupling.

We can test this hypothesis by fitting the second (“β”) term in Eq. (7.4.1) to
the field (i.e., ω17) and temperature dependence of the data. Fitted results for the
temperature dependence of 〈Δ2ω〉β and the numerical values of T1Np data are shown
in Fig. 7.12. In Part (a) T1Np is seen to give a flat temperature characteristic with a
value around 40nsec. In part (b) the driving matrix element is seen to scale very
nicely with χ2

0 as expected from the foregoing paragraph. We consider this to be a
clear–cut validation of the simple model described above for the indirect coupling.
At T0, the conventional T1 mechanism for both 237Np and 17O collapses abruptly,

since the Np4+ dipolar moment disappears with the onset of octupolar order. What is
interesting is that T1CR does not vanish altogether, but makes a transition into a new
set of values according to the value of applied field H as T is lowered through the
ordered state region, as is shown in Fig. 7.13. Although one can only guess at what is
taking place microscopically, it is noteworthy that the conditions required to support
T1CR are sustained here. First, although the dipolarmoments driving the paramagnetic
state T1 processes are gone, the molar susceptibility of the Np4+ ions decreases only
slightly in the ordered state [305]. The HF couplings to 237Np nuclear moments may
not varymuch, either.What evidently changesmarkedly is the fluctuation spectrumof
the 237Np nuclear moments. This was given in Eq. (7.4.1) as Lorentzian in character,
suitable for fluctuations driven by T1Np. That this spectrum is now rather different
is evident from the sharp dropoff with field in Fig. 7.13. The value of 1/T1O at
2.8MHz drops about a factor of 10, but for the higher fields the drop is several
orders of magnitude. What was Lorentzian in shape above T0 is now much steeper,
possibly Gaussian. This is no longer a T1 spectrum, but may possibly be a “T2
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Fig. 7.12 a Values of T1Np derived from fits to the β term of Eq. (7.4.1) at temperatures ranging
from T0 up to 270K. The data are roughly constant at T1Np � 40nsec. Such a number projects a
spectral width of∼ 4MHz to account for the distribution of T1CR values. bThe effective unlike–spin
secondmomentmeasured by the data for 1/T1CR as a function of temperature. Peak values are nearly
three orders of magnitude greater than classical dipolar coupling. Scaled to the data (solid line) is
a plot of the squared paramagnetic state susceptibility, corroborating the simple indirect–coupling
mechanism described in the text

spectrum”, i.e. driven by spin–spin couplings among the 237Np. Further, the latter are
greatly enhanced compared with classical dipolar interactions, yielding a spectrum
that is MHz in width, but has much steeper sides than the T1 spectrum found in the
paramagnetic state. What is truly fascinating is that these conditions lead to T1CR
for the 17O that is asymptotically independent of temperature at temperatures low
compared with T0. This is strongly suggestive of T2 fluctuations that satisfy the
condition �/T2 
 kBT .

Seemingly, it only requires abundant nuclear spins in a Rare Earth or actinide
compound for CR effects to appear. Thus, one would expect them to be found in
many f–electron compounds. Up to now, the only other such compound for which
they have been reported is NpPd5Al2 [314].
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Fig. 7.13 Cross relaxation
rates for 17O in NpO2 on a
log–log scale to emphasize
behavior at the lowest
temperatures measured (i.e.,
to ∼6 K). The CR rates are
seen to drop with increasing
H as in the paramagnetic
state, but to do so much more
steeply. This is suggestive of
a T2 spectrum of fluctuations
as discussed in the text. Such
an outcome would require
strong indirect 237Np−237Np
couplings analogous to the
237Np−17O couplings
analyzed in the text

7.5 NMR of 239Pu in PuO2

The isotope 239Pu has a nuclear spin I = 1/2, and up until 2012 its NMR signal in
a solid phase had never been observed. Perhaps this was because the element Pu,
either alone or when combined with oxygen, exists in multiple non-stoichiometric
phases, so that the solid forms are difficult to manage. In any case, Yasuoka and
co-workers [299] obtained a very nearly stiochiometric sample of PuO2 of good
crystallinity and were finally able to observe and identify the 239Pu NMR line over
a series of fields and frequencies. The problem with observing 239Pu NMR is not
that T1 is unmanageably short, but that, on the contrary, the ground state of Pu4+ is a
magnetically inert crystal field singlet, so that T1 is almost unmeasurably long, and
thus, the resonance is difficult to excite without saturating the line and rendering it
unobservable. All this was known in advance, because neutron scattering had been
used to verify the Γ1 singlet ground state assignment [300].

The NMR line profile of 237Np in NpO2 (T = 4K) at ν = 20.48MHz is shown
in Fig. 7.14. This NMR line is inhomogeneously broadened to a width of ∼ 320G,
which is much greater than the simple dipolar broadening. The breadth is ascribed to
crystalline disorder, but has an approximately Lorentzian shape. The reason for such
a large inhomogeneouswidth is undoubtedly because theVanVleck shift is estimated
to be 24.8%.Agreat deal of the broadeningwould accrue fromfluctuations in the shift
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Fig. 7.14 A scan of the
237Pu NMR line in NpO2 is
shown at a frequency of
20.48MHz and a
temperature of 4K. The
approximately Lorentzian
line has FWHM ∼320G.
This study is the first ever of
239Np NMR in a solid–state
host material

driven by crystalline disorder. The shift was estimated by multiplying the measured
susceptibility (χ0 = 5.36 × 10−4 emu/mol) by the free–ionHF coupling constant (Ahf

= 253 T/µB), a procedure that was checked against other actinide ions [299]. The
effective gyromagnetic ratio was deduced from a series of line scans at 4K and at
different frequencies. The “bare” nuclear gyromagnetic ratio was thereby estimated
to be γ239/2π = 2.29MHz/T. At T = 4K, T1 could not actually be measured. It was
estimated to be at least 100s.

7.6 A Study of 17O NMR in the Host Compound AmO2

As one progresses across the actinide series, the half–life of available isotopes
decreases by roughly two orders of magnitude per step. For the longest–lived isotope
of americium, 243Am, the half–life is 7,370years. That may seem long, but for a
crystalline sample of AmO2 it is fast enough for massive damage to the crystal
structure to take place in just a few days. The reason for this is that each α decay
event causes recoil damage tomany of the neighboring unit cells. These effects, along
with the low-temperature state of this compound, have been investigated through 17O
NMR studies of freshly–synthesized samples of 243AmO2 [315, 316].

With normal procedures for sample synthesis, retrieval and characterization, the
delay for observation of the 17O NMR spectrum is 13days, after which the spectrum
appears as in the top (a) tracing of Fig. 7.15. The spectrum is seen to consist of a
very narrow spike on top of a much broader background spectrum. The spike has
the approximate width of the paramagnetic state resonance, while the background
resonance has awidth that canonly be explained if the systemhas entered into a highly
disordered state with, however, magnetic ordering. The large difference between
these two linewidths is explained by the fact that in a crystalline state the dipolar
fields at any oxygen site cancels out because of the cubic symmetry; meanwhile, if
the crystal becomes amorphous and the magnetic moments freeze, then a very large
broadening effect is enabled. The same spectrum is shown in the bottom (b) half
of Fig. 7.15 after 25days following synthesis. Now there is no crystalline vestige
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Fig. 7.15 a Top of figure
shows the 17O NMR
spectrum 13days after the
synthesis of the 243AmO2
polycrystalline sample
material. The narrow peak
corresponds to the crystalline
portion of the sample, and
the broad peak to the part
that has been decrystallized
by α decay of the 243Am. At
the experimental sample
temperature of 1.4K, the
latter portion has become a
spin glass. See text for
further discussion. b The
17O NMR spectrum under
the same conditions as a 25
days after sample synthesis

remaining, and only the spin glass NMR line survives. These spectra were taken at
T = 1.4K, where the spin glass transition temperature is estimated to be 8.9K [316].

It is interesting to note that Fig. 7.15a shows no sign of magnetic ordering for
the crystalline portion at T = 1.4K. The nominal crystal field ground state of this
compound is a Γ7 doublet capable only of dipolar ordering. The Curie–Weiss char-
acter of the paramagnetic susceptibility suggests the possibility of ordering at some
tens of degrees. Thus, the paramagnetic behavior at He temperatures seems rather
anomalous. However, it has been pointed out more recently that through competition
between spin–orbit coupling and Coulomb interactions it is possible that the ground
state has Γ8 character. In that event, quadrupolar and octupolar ground states are also
possible [317]. It seems, however, that to resolve the 243Am ground state question
it will be necessary to take measurements on a sample within just a few days of its
synthesis.



Chapter 8
The Kondo Effect and Heavy Fermion
Phenomena

8.1 Introduction

Recent generations of condensed-matter physicists have devoted a great deal of
attention to the metallic environment and, e.g., the behavior of d and f-electron
ions doped into s–p band host metals. From the indirect exchange between nuclei in
simple metals of Ruderman and Kittel [27] came spin density oscillations surround-
ing localized magnetic moments [318] and indirect exchange couplings between
such moments [319]. There then followed the Anderson model on how such local
moments form on impurities in simple metals [320]. There was a surge of theoretical
activity on these and related questions, [321] and out of that surge came a remarkable
disclosure (among many), namely that in the case of a localized moment that under-
goes antiferromagnetic exchange with electron spins in a surrounding electron gas,
the exchange scattering diverges at low temperatures. And thus, the local moment
d-state itself becomes unstable and collapses. Named after its discoverer, this came
to be known as the “Kondo effect” [322].

The Kondo effect was identified in a number of systems, where the simplest
manifestation of the collapse of an embedded localized magnetic moment appeared
to be a Curie–Weiss form for the susceptibility χK(T) = χmaxT∗/(T + T∗), where
the peak susceptibility χmax occurs as T → 0. Such a form for χ(T) is well known
in the paramagnetic phase of dense, interacting magnetic systems, where the Curie–
Weiss constant is generated by magnetic interactions with neighbors. In the Kondo
effect, however, χK(T) is found to occur for impurities that are isolated from any
magnetic neighbors. It is, thus, the Hallmark of a single magnetic site whose main
interaction with its surroundings is an exchange coupling with quasiparticles.

It was a number of years before a complete theory of the Kondo effect was avail-
able, and in the meantime there was a controversy about just how the local moment
was “quenched” by interactions with the surrounding electron gas. One school of
thought held that a quasiparticle with equal and opposite spin to that of the local
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moment gradually became localized in the vicinity of the Kondo impurity, even-
tually cancelling out the original localized moment and leaving only an enhanced
susceptibility. Such an effect would occasion a substantial rearrangement of spin and
charge densities in the vicinity of the Kondo ion. Opposing theories suggested that
the original local moment simply lost its character as an orientable moment at low
temperatures without changing the near-field environment of the Kondo impurity. A
very elegant NMR experiment on dilute Fe impurities in Cu metal—a well-known
Kondo system—was performed by the Slichter group, [323, 324] clearly distin-
guishing between the competing physical pictures. We begin by describing the latter
experiment in some detail.

8.2 The Isolated Kondo Impurity

Not surprisingly, theKondo effect emerged at a timewhen the study of isolated d-ions
in sp–band metals was fashionable. The question of whether such a d-ion impurity
state would possess a localized magnetic moment gave us the Andersonmodel, [320]
because there were cases such as AlMnwhere no local moment appears to be present
at any temperature. The Kondo case is something in between, where a Curie–Weiss
susceptibility makes the ion seem local-moment-like at high T, but then it simply
melts away at T < TK .

Before an accepted theory of the details of Kondo condensation had emerged,
there was debate about how Kondo condensation took place in detail. It was known
then that localized d-orbitals on impurity sites in sp-band metallic environments
caused spin-density oscillations in their environment (often referred to as “Friedel
oscillations” [318, 319]). The debate concerned how these oscillations would change
with temperature as a local moment was gradually modified into just an enhanced
local susceptibility at TK and below. Boyce and Slichter [323] framed the issue very
clearly when they noted that the controversy was over whether the induced spin
polarization σ(r) at distance r from a Kondo impurity was given by

σ(r,T)/H = χs(T)f (r), (8.2.1)

or by
σ(r,T)/H = χs(T)g(r,T), (8.2.2)

where σ(r,T) is the induced spin polarization in the lattice surrounding the impurity,
H is the applied field, and χs is the conduction electron spin susceptibility. In (8.2.1)
f (r) is the temperature-independent distribution of spin-density oscillations in the
lattice surrounding the Kondo site, while in (8.2.2) g(r, T) is a similar distribution,
except that it is assumed to depend explicitly on temperature as would be required
if another quasiparticle were to be incorporated into the impurity state of the Kondo
ion.
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Fig. 8.1 Magnetic field
dependence of 63Cu NMR
satellite separation from the
main resonance line at 300K.
Plotted is shift ΔH , in Gauss,
from the 63Cu resonance
versus applied field H . Each
line of shift data is labeled
with a value of ΔK/K ,
where δK is the shift of that
satellite, and K is the Knight
shift of the host Cu metal
(Ks = 0.232%—Table2.1).
The fractional deviation
ΔK/K for satellite A
includes a direct dipolar
contribution of −0.5 ± 0.1G
so that the isotropic part of
ΔK/K|A = −5.24 ± 0.3.
Figure reprinted from J.B.
Boyce and C.P. Slichter,
Phys. Rev. Lett. 32, 61
(1974). Copyright 1974
American Physical Society

Since bulk measurements were not able to distinguish between the two foregoing
possibilities, it seemed that only a microscopic probe of the host lattice would be
able to provide the evidence needed to decide between the two possibilities posed
by (8.2.1) and (8.2.2). A scan of the 63Cu NMR line for satellites in the CuFe Kondo
system provided just what was needed: Five satellite NMR lines whose shift away
from the main 63Cu resonance line is precisely proportional to the field [323]. Shift
data taken at T = 300 K for satellite splittings (in Gauss) were plotted as shown in
Fig. 8.1, where data taken in fields ranging from below 10kG to above 60kG are
presented. Data were taken on specimens of CuFe with Fe concentrations c from
as low as c = 500ppm up to 5000ppm. The satellite splittings were found to be
independent of c.

The temperature dependence is, of course, a crucial point for the investigation.
This aspect of the study was impacted by the fact that the satellite lines broaden
rapidly at low temperatures. This was because even at these low concentrations,
there apparently occurred in these powder samples a substantial concentration of
“clusters”, i.e., pairs of Fe impurities and possibly larger agglomerations for which
local moment magnetism persisted at low T. These would be a major source of line

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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broadening for all or nearly all Cu sites. Moreover, satellite sites near to the host
Fe impurity would undergo dipolar broadening averaged over all orientations of the
displacement vector r. As a consequence, line A in Fig. 8.1 could not be effectively
observed below 77K andwas omitted from further study. Line broadening analysis of
line A strongly suggests that this is the first neighbor. The identity of other satellites
is commented on below.

Denoting the satellite splitting ΔK , plots of 1/ΔK versus T showed that where it
could be determined, ΔK varied with T as 1/(T+29) in agreement with the Fe ion
susceptibility. In Fig. 8.2 the shift ratio ΔK/K is plotted versus const./(T+29) for the
four satellites available for such a plot. The data are all consistent with straight line

Fig. 8.2 The shift deviation
ΔK as a fraction of the total
shift K (i.e., ΔK/K) is
plotted as a function of
constant/(T + 29),
emphasizing the
low-temperature points.
Since the splittings from the
main line were all
proportional to H , it is
convenient here and in
Fig. 8.1 to define the quantity
ΔK = ΔH/H and to plot the
ratio ΔK/K and its inverse
as measures of the relative
splittings. Figure reprinted
from J.B. Boyce and C.P.
Slichter, Phys. Rev. Lett. 32,
61 (1974). Copyright 1974
American Physical Society
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behavior, verifying that (8.2.1) is the equation that describes these results. Boyce and
Slichter wrote a second paper [324] in which they summarize their results, but also
confront amuch larger body of data relevant to the choice between (8.2.1) and (8.2.2),
from bulk measurements to Mössbauer, neutron scattering, other NMR studies, etc.,
concluding in the end that the bulk of known data, as well as theory, were consistent
with the validity of (8.2.1). This was indeed a well-documented conclusion.

We offer just a brief note about theory. At the time, a theory consistent with (8.2.1)
had been given by E. Muller–Hartmann [325], while the ultimately incorrect theory
that supported (8.2.2) was that of Heeger et al. [326] Since then, complete theories of
the physics of isolated Kondo “impurities” have been established [327] and interest
has passed on to the case of densely populated Kondo compounds, i.e., the “Kondo
lattice”, which we consider next.

The Boyce and Slichter study of CuFe was without doubt one of the most elegant
NMR studies of the era. And one of the most remarkable things about it was that the
workwas conductedwith “old fashioned”CWNMRspectrometers. It was conducted
at a time when the vast majority of condensed-matter NMR studies employed spin
echo techniques, as has been the case ever since. But it clearly demonstrates that the
CW method functions on a par with spin echoes in cases where extreme broadening
of the resonance is not a problem.

8.3 The “Kondo Lattice” and Heavy Fermions

While the single-site Kondo problem was ultimately manageable, the Kondo lattice
has proved a good bit more difficult, so that as of this writing, no comprehensive
theory is yet available. In an excellent historical sketch, Hewson recounts how it was
realized that the heavy fermion phenomenonwas simply a dense Kondo lattice [327].
Early interpretations of this nature were made, for example, by Mott [328] on the
heavy fermion system CeAl3. In fact, there are a number of heavy-fermion systems
that are simply intermetallic compounds including either Ce or Yb, and thus a single
4f electron or a single 4f hole, with the consequent simplification of atomic 4f states
in their makeup. Interest in these systems was stimulated early on by the discovery
of superconductivity among heavy fermions in the compound CeCu2Si2 in 1979 by
Steglich and co-workers [329].

In this section we present and discuss briefly the two-fluid phenomenological
model by Nakatsuji, Pines and Fisk (NPF) [330]. This model, based on a few simple
assumptions about the physical content of a heavy-fermion system, appears to pro-
vide a reliable framework for systematizing a number of the important properties of
these systems.Theoriginal reference compound for this derivation isCe1−xLaxCoIn5,
“CeCoIn”, although the results will be expected to describe a wide variety of heavy
fermion systems. CeCoIn is very flexible in that for x � 1 one will have a heavy-
fermion transition at some temperature T∗ to a Fermi liquid with relatively massive
quasiparticles, while for (1 − x) � 1 one will have dilute Kondo impurities whose
behavior as a function of T is well known, and which do not form a heavy-fermion
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state. In NPF the focus is on physical behavior in these two limits, and most partic-
ularly on characterization of the heavy-fermion state.

The discussion begins with two-fluid representations of the specific heat and
susceptibility of the system considered. These are written out as follows:

CMAG(T)/T = [1 − f (T)]CKI(T)/T + f (T)CHF(T)/T

χMAG(T) = [1 − f (T)]χKI(T) + f (T)χHF(T), (8.3.1)

where (C,χ)MAG(T) are measured quantities on the system investigated, while
(C,χ)KI(T) are taken from “Kondo impurity” molar data on a dilute sample with
(1 − x) � 1. In (8.3.1) the parameter f(T) is used as an effective order parameter to
describe the interplay between “HF” and “KI” terms for both C(T) and χ(T), a step
that must be justified. This point is argued in terms of the kind of plot, CMAG(T)/T
versus CKI(T)/T , shown in Fig. 8.3. In this kind of plot, the low temperature values
are at the far right. There are several important points to note here. First, at low
T, the variation of CMAG(T)/T with CKI(T)/T is linear for all compositions. Next,
the slope is necessarily 1 for x → 1, but converges to a value �0.1 for all x ≤ 0.25.
Thus, for high concentrations of Ce, f (T) � 0.1,meaning that in samples with highly
concentrated Ce, roughly 10% of the specific heat behavior is that of a dilute Kondo
impurity. Finally, it is to be emphasized that a plot ofχMAG(T) versusχKI(T) given in
[330] yields closely parallel behavior to that of the specific heat, so that the variation
of f(T) with temperature and composition is essentially identical with what is seen
in Fig. 8.3. Thus, using the identical format for CMAG and χMAG in (8.3.1) is justified
here by experimental data.

Fig. 8.3 The f-electron
contribution to the specific
heat divided by T is plotted
versus its single impurity
CKI/T for Ce1−xLaxCoIn5
with temperature T as an
implicit variable. Inset: The
same plot for Ce1−xLaxIrIn5.
The specific heat was
measured by a relaxation
method using high-quality
single crystals grown by an
In self-flux method [338,
339]. Figure reprinted from
S. Nakatsuji, D. Pines and Z.
Fisk, Phys. Rev. Lett. 92,
016401 (2004). Copyright
2004 American Physical
Society
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Fig. 8.4 The relative weight of the heavy fermion component f(T) for CeCoIn5 as a function of
T. The broken line shows a linear fit. Left inset: The scaling behavior with T∗ of f(T)/f(0) for
Ce1−xLaxCoIn5 and CeIrIn5. The solid line represents a fit to the linear increase of f(T) that uni-
versally appears below ∼ T∗. Right inset: T∗CHF/T as a function of ln(T/T∗) for Ce1−xLaxCoIn5
andCeIrIn5 under B= 0T. Here,CHF/T represents the heavy fermion component ofCMAG/T . The
solid line is a fit to the ln(T/T∗) behavior that universally appears for 0.05T∗ < T < T∗. Figure
reprinted from S. Nakatsuji, D. Pines and Z. Fisk, Phys. Rev. Lett. 92, 016401 (2004). Copyright
2004 American Physical Society

Having validated the use of (8.3.1), the remaining challenge is to use these
equations to determine CHF(T), χHF(T) and f(T) with the available data. Since
there are three unknowns, however, another equation relating these quantities is re-
quired. For that, the authors of [330] turned to the Wilson ratio. This is defined
as RW = αχ/CT = where α = π2k2B/3μ

2
B. For a non-interacting electron gas one

expects RW � 1. Interestingly, however, it has been shown (Ref. [327], p. 90), that
for isolated Kondo impurities, on a molar basis, RW = 2. For Ce-rich CeCoIn, the
estimate RW � 2 has been given for the heavy fermion fluid1 [330]. On this basis,
the authors introduce their “local Wilson ansatz”, namely that RW = 2 at all temper-
atures. This ansatz then yields the relation

χHF(T) = 2CHF(T)/αT , (8.3.2)

which, combined with (8.3.1), allows the determination of f(T), CHF(T) and χHF(T)

for all temperatures below T∗. The results are summarized in Fig. 8.4, where it is
seen that f(T) is essentially linear with T∗ �45K, and CHF(T)/T varies ∝ ln(T)

over the low-temperature range of measurements.

1This was obtained by extrapolating the low-temperature behavior of CMAG/T and χ(T)

to CKI/T → 0 and χKI → 0, respectively [330]. This procedure yields the low-T estimates
f (T)CHF/T → 2.90 × 106 ergs/mol-CeK2 and f (T)χHF(T) → 0.008emu/mol-Ce. Noting that
f(T) cancels in the estimate of RW , the latter values lead to RW = 2.01.
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The remarkable results of this two-fluid model show universal behavior, where
even at the lowest temperatures �10% of the behavior of the system is that of the
non-interacting Kondo impurity state. There are many other features expounded by
the authors [330]. How the validity of their main approximation, i.e., theWilson ratio
ansatz, will hold up vis-a-vis a first-principles theory remains to be seen. Since no
such theory appears to be imminent, this two-fluid model remains the state-of-the-art
for the time being.2 It forms the basis for the discussion of NMR shift data on systems
described in the next section.

8.4 A Universal NMR Shift Scaling Plot

In this section we are concerned with the implications of the NPF two-fluidmodel for
NMRfrequency shift effects in heavy fermion systems [330]. This topicwas analyzed
by Curro et al., where by using the two-fluid formulation of the susceptibility and
corresponding NMR shift, a universal plot format was arrived at that exhibits scaling
behavior for the heavy fermion component of susceptibility [331]. Constructing this
plot is an important step in the characterization of these compounds. We begin by
restating the derivation that leads to the universal plot of shiftKHF(T) versus T, where
KHF is the heavy fermion component of shift. Examples of the scaling behavior are
then presented along with examples of other effects that elucidate the behavior of
these systems.

To analyze the NMR shift we first need to understand the susceptibility. We use
a slightly different notation from that in [331] and comment on the difference as we
go along. The magnetization operator may be written,

Msp = gspμB

∑

i

Sci + gf μB

∑

j

Sfj = Sc + Sf , (8.4.1)

where for simplicity we do not identify an axis of quantization, assuming it is the
field axis. In (8.4.1) the sum on i is over a localized Wannier representation of the
conduction electron band and that on j is over the f-electron sites. For completeness
we add a density matrix scheme to derive the form of the two-part susceptibility.
Thus we write for the magnetization,

〈Msp〉 = CNTr{[Sc + Sf ]exp[−H/kT ]}, (8.4.2)

where H = H0 − H0[Sc + Sf ] and CN is the normalization. Taking χ = d〈Msp〉/
dH0, one finds easily that

χ = (CN/kT)Tr{[(Sc)2 + 2ScSf + (Sf )2]exp(−H0/kT)}
≈ χff + 2χcf ), (8.4.3)

2However, please see the report on LDA-DMFT calculations later in this chapter.
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where the small χcc term is neglected, and where the correspondence is clear. In the
same approximation, for the shift calculation below we state the results

〈Sc〉 = χcf and 〈Sf 〉 = χcf + χff. (8.4.4)

For completeness we note the correspondence of the foregoing developments
with the fundamental two-fluid equation of NPF for the susceptibility, namely χ =
[1 − f (T)]χKI + f (T)χHF . Comparing the latter with (8.4.3) and (8.4.4), we see that
[1 − f (T)]χKI = χff and f (T)χHF = 2χcf .

8.4.1 The Knight Shift K in Heavy Fermion Materials

Here we deviate slightly from the style of [331] in taking the traditional hyperfine
Hamiltonian,

Hhyp,α = Aα

∑

l

IαlS
c
α(rl) + Bα

∑

i,l

IαlS
f
α(ri), (8.4.5)

where Aα is the on-site (i.e., contact) interaction and Bα is the transferred coupling,
understood to be that between Iαl and neighboring f-electron spins at sites i. Here
Aα and Bα are in units of ergs, and the constant Bα is assumed re-defined to be
that of z identical neighbor f spins to nuclear site l for simplicity. The subscript α
indicates a crystalline symmetry axis for possible anisotropy. Again, for simplicity,
these subscripts will henceforth be omitted, but are understood to be included. Taking
the thermal expectation value of (8.4.5) = 〈H〉, using the magnetization operators of
(8.4.1) and the definition of the NMR shift (2.32) 〈H〉 = γ�KH0

∑
l I(rl), we find

K(T) = K0 + (αA + αB)χcf (T) + αBχff(T), (8.4.6)

where αA and αB are the shift coefficients defined as, typically, αA = A/(N0γ�gμB),
where the susceptibilities are taken to be emu/mol. Further, a possible T-independent
shift K0 is included.

Equation (8.4.6) illustrates how at high temperature (T > T∗) theNMR shift gives
a straight line when plotted against χ, but below T∗ when χcf is non-zero, it has a
different slope and may not be linear at all. The question is how to sense the presence
of χcf (T) when T < T∗ and even to estimate its magnitude. The strategy adopted by
Curro et al. [331] was to (i) determine the value of αB with a K-χ plot at T > T∗,
then (ii) using (8.4.3), (8.4.4) and (8.4.6), plot

K(T) − K0 − αBχ(T) = Kcf (T) = (αA − αB)χcf (T) = (αA − αB)f (T)χHF(T)/2
(8.4.7)

as a function of T to reveal the presence of the heavy fermion susceptibility χHF(T)

below T∗. When you plot the left-hand side of (8.4.7) versus T, you reveal how a

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 8.5 Kcf (T)/K0
cf versus

ln(T/T∗) for a series of
Kondo lattice systems,
illustrating the scaling
behavior of the Kondo liquid
component of the
susceptibility. The solid line
is a plot of (8.4.8). Figure
reprinted from N.J. Curro,
B.-L. Young, J. Schmalian
and D. Pines, Phys. Rev. B
70, 235117 (2004).
Copyright 2004 American
Physical Society

quantity proportional to f (T)χHF(T) varies with T, but not, of course, χHF(T) itself.
However, there are more effects to uncover using the results of the NPF model, as
discussed in Sect. 8.4.2.

First, let us note that (8.4.7) can be cast as a universal plot. The temperature
scale itself can be plotted in units of T∗, which can be reasonably well estimated
by observing where the high-temperature K versus χ plot deviates from linearity
(see below for examples). Further, the vertical scale of f (T)χHF(T) × Const. can
be gauged by its low-T intercept, so that a universal plot can be constructed of
f (T)χHF(T)/f (0)χHF(0) versus T/T∗, where the denominators of both scales are
estimated experimentally. Such a plot, as the superposition of data from fourteen
different Kondo lattice compounds, is shown in Fig. 8.5. There is clearly a universal
scaling of Kcf (T) for the systems concerned. The functional form of this behavior
was clearly anticipated by the NPF paper [330]. Thus, the heavy fermion NMR shift
is shown to be given by [331]

Kcf (T) = K0
cf (1 − T/T∗)ln(T∗/T), (8.4.8)

where the solid line in Fig. 8.5 is precisely the latter function.
The authors of [331] go beyond what is discussed here to analyze a series of com-

pounds in terms of K-χ plots where the high-temperature data smoothly merge into
(8.4.8). We illustrate this behavior with the K-χ plot for the In(2) site in CeCoIn5.
Recall that the In(2) site is located in the “wall” of the unit cell and thus has only
orthorhombic, i.e., twofold, symmetry for field orientation in the basal plane. The
K-χ plot for the In(2) site in Fig. 8.6 compares results for a and b orientation of the
field. The full K-χ plots have solid lines drawn for the asymptotic high-temperature
behavior. For higher T (lower χ) there is good linear behavior, then both orientations
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Fig. 8.6 Plot of the
In(2)-site (115In) NMR shift
in CeCoIn5 versus bulk
susceptibility. Solid lines are
fits to the high-temperature
(T > T∗) data. Inset shows a
plot of the heavy fermion
shift component Kcf ,
determined as described in
the text, as a function of T.
Kcf (T) curves for both a and
b axes are fitted to (8.4.8)
(solid lines). Figure reprinted
from N.J. Curro, B.-L.
Young, J. Schmalian and D.
Pines, Phys. Rev. B 70,
235117 (2004). Copyright
2004 American Physical
Society

show K(T) deviating downward starting at about χ = 0.006emu/mol. These devia-
tions are the onset of Kcf (T). By subtracting off the solid line (high-temp.) behavior,
one obtains data for Kcf (T) versus T. Those data are plotted in the inset to Fig. 8.6
for both the a and b field orientation. Next, the fitting function of the NPF model,
shown in (8.4.8), can be adjusted to fit the Kcf (T) data. The fit is made by choosing
values of T∗ and K0

cf , the latter of which is simply the value of Kcf (T = 0.259T∗)
[331].

Many other heavy fermion systems are analyzed in a similar fashion in [331],
obtaining uniformly high-quality results. These results serve to validate the NPF
two-fluid picture for behavior of Kondo lattice systems in a very convincing way.
This picture may be simply a phenomenological model, but it offers a very useful
analytical tool for investigating these systems and certainly a foundation for first-
principles theoretical work as well.

8.4.2 Further Refinement of the NPF Model

Yang and Pines have refined the two-fluid model introduced by NPF [330] to correct
small discrepancies with the results of Curro et al. [331] and to incorporate the
results of Hall measurements on CeCoIn5 as well as the brilliant theoretical LDA
+ DMFT results by Shim et al. [333] into their phenomenological model [332].
Principally, they introduce a modified reduced density of states for the Kondo liquid
(KL) contribution,
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Fig. 8.7 The LDA + DMFT
density of states of
quasiparticles in CeIrIn5
from [333] (solid line) is
compared with the
Yang–Pines KL (Kondo
heavy fermion liquid)
density of states ρKL (Eq. (7)
from [332]—filled circles),
showing near coincidence.
Figure reprinted from Y.Y.
Yang and D. Pines, Phys.
Rev. Lett. 100, 096404
(2008). Copyright 2008
American Physical Society

ρKL =
(
1 − T

T∗

)3/2 (
1 + ln

T∗

T

)
, (8.4.9)

where the specification of T∗ is discussed below. Here the dynamic part of the shift is
given by K − K0 = Af(T)χKL + B[1 − f(T)]χSL, where χKL is the emergent “Kondo
Liquid” term and χSL is the “Spin Liquid” or isolated Ce local moment term. Then
the anomalous term χanom = (A − B)f(T)χXL (cf. (8.4.7)) is to be compared with
(8.4.9).3 An excellent correspondence is seen to be obtained [332]. These authors
also analyze an anomalous Hall coefficient for CeMIn5 compounds that not only
follows (8.4.9) but also offers a reliable measure of T∗.

Finally, we would like to highlight the remarkable agreement that Yang and Pines
find between their phenomenological characterization of the Kondo Liquid term
given by (8.4.9) and the calculated density of states of heavy quasiparticles inCeIrIn5
obtained using dynamical mean field theory combined with the local density approx-
imation (DMFT + LDA) given by Shim et al. [333]. The fitted result is shown in
Fig. 8.7, where an excellent fit is seen to hold. An interesting side point of this result
is that it illustrates that T∗ is just a parameter and that nothing special really happens
at T∗. The quasiparticle density of states in Fig. 8.7 goes on with appreciable values
to temperatures well above T∗. We shall discuss further comparisons between the
SHK density of states “D(T)” and NMR data in the next section.

8.5 One-Component Description of Magnetic Excitations
in CeIrIn5

The evident success of the two-fluid model as described up to this point, plus the
nonlinear behavior of the K-χ plot, give good evidence that below T∗ there are

3Note the slightly different hyperfine coefficient notation compared with (8.4.7).
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Fig. 8.8 The HoCoGa5
(I4/mmm) crystal structure is
illustrated for the case of
heavy fermion compound
CeIrIn5, showing the
location of its various
constituents. In the text the
NMR properties of the In(1)
and In(2) nuclei are
presented and discussed in
some detail. Reprinted from
S. Kambe et al., Phys. Rev.
B82, 144503 (2010).
Copyright 2010 American
Physical Society

two distinct components to the susceptibility. Nonetheless, it is interesting to de-
velop an interpretation of both NMR shift and T1 for the 115In isotope in CeIrIn5 in
terms of a single, temperature-dependent hyperfine coupling constant as well as a
one-component dynamical susceptibility. We shall see that a surprisingly successful
picture emerges from such an approach. Our discussion here follows the account of
NMR data interpretation along these lines given by Kambe et al. [334].

At the outset of a discussion of NMR studies on Ce “115” compounds it is useful
to keep in mind the associated crystal structure and the distinction between local
symmetry and environment of the, e.g., In(1) and In(2) sites for NMR-active 115In
nuclear spins. The 115 structure is shown in Fig. 8.8, where the tetragonal In(1)
site symmetry is seen to be rather higher than that of In(2) (orthrhombic), which is
twofold in the basal plane. NMR studies are, of course, typically limited to the ±1/2
transitions.

We first examine the behavior of the K-χ plot for the In(1) and In(2) sites (e.g.,
Fig. 2.8). In Fig. 8.9 we see typical shift behavior for a heavy fermion compound.
The plots are linear for temperatures above some limit, here T ∼ 60K. Then, as the
heavy fermion susceptibility term χhf

α rises up, substantial curvature appears in the
K-χ plots. However, one can account for this in terms of the DMFT-LDA density
of states D(T) [333] shown in Fig. 8.7, and thus indirectly by (8.4.9). We therefore
write

Kspin
i,α = Ki,α − K0

i,α = Ahf
i,αχα + Ci,αχhf

α , (8.5.1)

where χα is the total measured susceptibility and χhf
α = f (T)χKL

α ∝ D(T). The con-
stant shift term K0

i,α, presumably of orbital origin, is subtracted off as irrelevant

to the behavior of Kspin
i,α . Estimates of K0

i,α are derived from extrapolation of high-
temperature data to χα →0 (see, e.g., dashed line in Fig. 8.9). The Ci,α terms in
(8.5.1) are added to account for the deviations from linearity at T < T∗ exhibited
by the data plots in Fig. 8.9, using χhf

α ∝D(T). A satisfactory account of the data

http://dx.doi.org/10.1007/978-3-662-55582-8_2
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Fig. 8.9 Knight shift Kα,i plotted versus static susceptibility χα for the In(1) (i = 1) and the In(2)
(i = 2) sites in CeIrIn5. a Results forH ‖ c axis (α = c) and b results forH ‖ a axis (α = a, b). The
nonlinear behavior looks different for these two orientations, since χc increases more rapidly with
declining T thanχa. In (a), as an example ofKori

i,α (see text),Kori
1,c is shown as an extrapolation (dotted

line) to χc = 0. Solid lines drawn are based on (8.5.1) with Ci,α = 0 (see text for discussion). The
sizes of symbols represent experimental errors. Inset T-dependence of Ki,α. Figure reprinted from
S. Kambe et al., Phys. Rev. B81, 140405(R) (2010). Copyright 2010, American Physical Society

can be achieved in this fashion. In fact, this fitting procedure validates T∗ as a uni-
versal parameter for all sites and all field orientations. Such a result supports the
density-of-states interpretation by Yang and Pines [332].

Pursuing the density-of-states model for χhf
α , we have

χhf
α = 0.5g2

αμ2
Bλ

∗D(T), (8.5.2)

where ga = gb = 1.31 and gc = 1.93, [334] and where the mass enhancement factor
λ∗ �10.4 In (8.5.2), gα is determined by the condition that this expression is equal
to the measured χα at T → 0 where the “spin liquid” term χSL(T) is expected to
vanish.

4λ∗ = γel/γcal , where γcal = π2k2BD(T)/3 = 0.073 J/molK2 is the calculated Sommerfeld coeffi-
cient for D(T) = 12 (states/eV).



8.5 One-Component Description of Magnetic Excitations in CeIrIn5 283

Fig. 8.10 a T-dependence of
relaxation rates along the a
axis: R1,a,R2,a and b axis:
R2,b. b T-dependence of
relaxation rates along the c
axis: R1,c,R2,c. Figure
reprinted from S. Kambe et
al., Phys. Rev. B81,
140405(R) (2010).
Copyright 2010, American
Physical Society

We turn our attention now to the spin-lattice relaxation ratesmeasured forCeIrIn5.
At each In site there are contributions from nn Ce sites, of which there are four
for the In-1 and two for the In-2. The relaxation can be parameterized in terms of
contributions from fluctuations along certain axes. Thus, for the In-1 site we have
1/(T1T)H‖a = R1,a + R1,c and 1/(T1T)H‖c = 2R1,a. At the In-2 site, 1/(T1T)H⊥nzz =
R2,b + R2,c; 1/(T1T)H‖nzz = R2,c + R2,a; 1/(T1T)H‖c = R2,a + R2,b. By measuring
each of those relaxation rates all of theRi,α subcomponent rates can be evaluated. The
results are plotted in Fig. 8.10. It is seen that these rates rise monotonically starting
often above 200K. There is one peculiarity, however, namely the disparity between
R1,c andR2,c atT < T∗. These rates aremade up of the c-axis fluctuations ofmoments
on the Ce sites, yet how could the fluctuations at the In-2 site rise dramatically with
lowering temperature, while the In-1 site shows no increase whatever? This point
was raised in [334], and a suggestion of correlated fluctuations was mentioned but
not discussed in detail.

8.5.1 Treatment of Spin-Spin Correlations in T1 for 115In

There is always, of course, the possibility of short-range correlations among the
fluctuations of neighboring Ce spins in a system such as CeIrIn5. Such correlations
can weaken or strengthen the net effect of two or more fluctuating spins in a T1
process. This effect has been treated in detail in Sect. 3.5, and we shall have recourse
to those results presently. First, it is important to discuss possible correlation scenarios
that might lead to the observed behavior. In the present case these seem at first to
be a bit puzzling. First, a pair of nn sites that contribute equally to fluctuations at an
In-2 site are producing a very large effect (R2,c), while at an In-1 site the combined

http://dx.doi.org/10.1007/978-3-662-55582-8_3
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effects of four nn sites in a square appears to cancel out for the most part (R1,c). We
propose an arrangement of nn correlations that could bring about such an effect.

While it is probably not the only possibility, the following fluctuating AFM SRO
scenario would almost certainly lead to the observed result. We presume the largest
spin-spin exchange coupling to occur between second neighbors, while that between
first neighbors is either weak or even slightly ferromagnetic. Such an arrangement of
couplingsmay seem counter-intuitive, but see below for comments on its plausibility.
Such an arrangement would lead to strongest AFM SRO between second neighbor
spins, i.e., along diagonals of the quadratic array. There are two planar sublattices
of such couplings that do not interact with each other. If the nn coupling is weak in
comparison, then the observed T1 behavior would almost certainly result. For In-1
nuclear spins, the four nn Ce spins would consist of two strongly correlated diagonal
pairs, i.e., one pair from each sublattice. Thus, in terms of the T1 formulation devel-
oped in Sect. 3.5 and applied, e.g., to the cuprate LSCO in Sect. 4.1, the relaxation
rate can be expressed as

1

TIn−1
= γ2

115

2
C2(1 + K01)τe, (8.5.3)

where C is the hyperfine constant coupling diagonally opposed Ce nn’s, τe =
(kBT/μ2

B)
∑(N)

q χ′′
ab(q,ω0)/ω0 andK02 = ∑(N)

q cos(
√
2qdiaga)χ′′

ab(q,ω0). Here,K02

is the correlation factor for diagonally opposite Ce spins in the unit cell and is a num-
ber close to −1 in value if correlation is strong. In Fig. 8.10a R1,c is thus greatly
reduced by the factor (1 + K02), and its attenuating effect grows as T declines. In
this way we account for the flatness of R1,c across the HF region.

On the other hand, R2,c grows very rapidly below T∗. The two Ce neighbors
whose combined effect relaxes the In(2) nuclear spin belong to separate AFM SRO
sublattices. If, as we suggest, their (nn) exchange coupling is rather weaker than the
AFM coupling in the diagonal sublattices or is possibly slightly ferromagnetic in
character, then there is no expected correlation between their fluctuations and maybe
even a slight mutual enhancement. Thus, a similar expression holds as in (8.5.3)
(×1/2), except that K02 in this case is either zero or slightly positive. The In(2) T1
process is unaffected or slightly enhanced. Thus, as HF fluctuations increase with
decreasing T, the large rise in R2,c is not unexpected.

The exchange scenario described here is undoubtedly one of many possibilities.
For the compound CeRhIn5 [1] there are neutron scattering data showing AFM or-
dering in the basal plane with an ordering vector q = [0.5, 0.5], which does not
correspond to the mechanism described. For this case one can only argue in general
terms using the long-established sources on RKKY exchange in conductors [27]
and superexchange [336, 337] in systems where ligand species are embedded with
magnetic ions. In the latter case, for example, there is a general finding of antiferro-
magnetic coupling along straight (“180◦”) bonds with a tendency for ferromagnetic
links in the case of right-angle exchange paths. How RKKY couplings would factor

http://dx.doi.org/10.1007/978-3-662-55582-8_3
http://dx.doi.org/10.1007/978-3-662-55582-8_4
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into this is unknown. Nonetheless, such a scenario would support the above picture
leading to the observed T1 behavior. We await further clarification of these matters.

8.6 A Glimpse at Future Additions

There has been a considerable body of work on superconductivity, antiferromagnetic
ordering andquantumcritical points in recent years, towhichNMRstudies havemade
significant contributions. This area appears to provide fruitful topics for a future
chapter or chapters of this volume. Not only is there substantive and interesting
material to review, but further investigation on themes of this nature seems very
likely to be forthcoming.
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Appendices

A.1 Some Basic Properties of Spin Echoes

We present in this Appendix some basic derivations of spin echo properties, along
with discussion of a number of special topics on spin echo spectroscopy deemed
to be of use to the practitioner. The reader is referred to the original paper by Prof.
E.L. Hahn [23] for a unique and insightful perspective on the problem. An article
by the present author gave a basic derivation, but with emphasis on topics that were
somewhat inaccessible in the early days, such as machine calculations of the echo
response dependence on rf pulse shapes and pulse phasing techniques to mitigate
spurious electronic signals resulting from pulse–induced vibrations of rf coils [24].
While the former topic is not especially useful, the latter will be presented here in
some detail because of its practical importance.

The coverage of spin echo–related topics has been expanded in the second edi-
tion of this monograph. While there are many aspects of spin echo behavior that
are uniquely quantum mechanical in nature, there are also many basic phenomena
that can be studied using classical models without loss of generality. We begin, then,
with a basic classical derivation of the two–pulse spin echo response with its depen-
dence on the phase and pulse–angle of the radio frequency (rf) excitation pulses. The
density–matrix based (quantum) derivation will be included as before, with its ready
application to such topics as spin–echo double resonance and pulse–induced echo
relaxation through reversal of neigboring spin moments, the latter having been pio-
neered by Pennington and Slichter [31]. On the topic of spin echo decay processes,
a basic formal treatment has been given by Alloul and Froidevaux [294], which is
also applicable to oscillatory spin echo decay [340]. A basic discussion of these
results is given below. Other sources may also be useful [26, 284]. Finally, a phase–
stepping method is described here to eliminate signal interference from pickup coil
oscillations in a magnetic field [24].
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A.1.1 Classical Derivation of the Two-Pulse Spin Echo

This derivation was presented in Ref. [24], where a comprehensive expression is
given for both the in–phase (absorption) and quadrature (dispersion) components
of the echo response.1 In the classical picture, we study the motion of a magnetic
moment m under the influence of a steady, uniform applied field H0, applied along
the z axis. The equation of motion for m in field H0 is dm/dt = γm × H0. The
resultingmotion is known as Larmor precession, namely that if γ > 0,mwill precess
in a clockwise direction around H0. The thermal equilibrium position of m is along
the (z-axis) field direction. We can simulate a study of the precessional motion of m
that is the essence of an NMR experiment by applying an oscillating “rf” field along
a chosen axis in the plane ⊥ H0. Such an oscillating field of amplitude 2H1 can
be viewed as two counter-rotating circularly polarized H1 components, only one of
which will be at or near the Larmor precession (NMR) frequency of the nuclei under
study, depending on the sign of γ. The other component will be “off resonance” by
roughly twice the Larmor frequency ω0 = γH0 and can safely be ignored.

To visualize the mechanism of rf pulses to excite NMR signals and ultimately spin
echoes, we picture their mechanics in a reference frame rotating at the frequency of
the applied circularly rotating field H1. In the rotating frame, the transformed field
along the z axis is ΔH = H0 − ω/γ. The equations of motion can be written as

dmx/dt = Δωmy − ω1cosφmz

dmy/dt = −Δωmx + ω1sinφmz

dmz/dt = ω1(mxcosφ − mysinφ), (A.1.1)

where ω1 = γH1, and Δω = γΔH . In the rotating frame diagram of Fig.A.1, the
motion according to these equations can be pictured as precession around the vector
resultant ωe of ΔH along the z axis and ω1 along a direction in the xy plane at an
angle φ relative to the y axis, where φ is the phase of the rf pulse. ωe is γ times
the “effective field” in the rotating frame, which makes an angle θ relative to the
z axis. If m is at equilibrium along the z axis at t = 0, it will precess clockwise
in a cone at an angle θ from ωe, beginning toward the negative x axis. Note that
ωe = γ[sinθ(isinφ + jcosφ)H1 + kcosθΔH ].

For the first excitation pulse, we choose φ = 0, which will be the phase reference
for the second pulse as well as for precessing components of magnetization that
occur. The above equations then simplify to become

dmx/dt = Δωmy − ω1mz

dmy/dt = −Δωmx

dmz/dt = ω1mx , (A.1.2)

1Some unfortunate errors in the out–of–phase component echo expression in [24] have come to the
author’s attention. These are corrected in the current version.
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Fig. A.1 Effective magnetic
fields that appear in a
reference frame rotating
around the z axis at the
frequency ω of an applied rf
pulse

These equations are straightforwardly solved under the initial conditions that mx (0)
=my(0) = 0 andmz(0) =m0. From this point forward we keep track only of magnetic
components in the xy plane, because only they contribute to the spin echo signal. At
the end of the first pulse at time tw1 we have

mx (tw1) = −Sθm0sin(ωetw1)

my(tw1) = SθCθm0[1 − cos(ωetw1)], (A.1.3)

where Sθ = sinθ = ω1/ωe and Cθ = cosθ = Δω/ωe.
The pulses that generate a spin echo consist of the following time sequence. (i)

First pulse from t = 0 to t = tw1; (ii) dephasing interval from t = tw1 to t = τ ; (iii) second
pulse from t = τ to t = τ + tw2; (iv) rephasing interval from t = τ + tw2 to the vicinity
of the echo, which is centered at tE = 2τ − tw1 + tw2. Here we shall represent the
status of the nuclear magnetization with a three vector m(t). The development of the
magnetization vector during any of the time intervals listed is represented by a 3× 3
matrix operatingon themagnetizationvector at the beginningof the interval. Thus, for

the first pulse result above, we have m(tw1) =

⎡
⎣
mx (tw1)

my(tw1)

0

⎤
⎦ =

⎡
⎣
0 0 R13

0 0 R23

0 0 0

⎤
⎦

⎡
⎣

0
0
m0

⎤
⎦ ,

where R13 = − Sθm0 sin(ωetw1) and R23 = Cθm0[1 − cos(ωetw1)].
The next step is the dephasing interval from t = tw1 to t = τ , during which time

there is no rf field, so that Eq. (A.1.1) become

dmx/dt = Δωmy

dmy/dt = −Δωmx

dmz/dt = 0. (A.1.4)

Both mx (t) and my(t) are subject to dephasing to the extent (Δω) to which they are
detuned from the applied rf frequency. The solution to Eq. (A.1.4) is easily found to

be represented by

⎡
⎣
mx (τ )

my(τ )

0

⎤
⎦ =

⎡
⎣

c1 s1 0
−s1 c1 0
0 0 0

⎤
⎦

⎡
⎣
mx(tw1)

my(tw1)

0

⎤
⎦ ,where c1 = cos(Δω(τ −

tw1)) and s1 = sin(Δω(τ − tw1)).
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For the second “rephasing” pulse, we need to use Eq. (A.1.1) as is, because we
need a pulse with a variable phase φ. To simplify the solution of these equations,
they are transformed from variables mx,y to variables m1,2 as follows:

m1 = mx sφ + my cφ and inverse mx = m1 sφ + m2 cφ

m2 = mx cφ − my sφ my = m1 cφ − m2 sφ, (A.1.5)

where cφ = cosφ and sφ = sin φ. In terms of m1,2(t), Eq. (A.1.1) become

dm1/dt = −Δωm2

dm2/dt = Δωm1 − ω1 mz

dmz/dt = ω1 m2. (A.1.6)

It is easy to show that d2m2/dt2 + ω2
em2 = 0, so that m2(t ′) = A cos(ωet ′) +

B sin(ωet ′), where the rephasing pulse goes from t ′ = 0 to t ′ = tw2. But the initial
condition for m2(t ′ = 0) involves mx,y(τ ). Thus A = m2(t ′ = 0) = mx (τ ) cφ -
my(τ ) sφ. Next, taking dm2/dt ′ = Δωm1 at t ′ = 0, thus dropping an mz(τ ) term
that is unrelated to the echo, we find B = Cθ [mx(τ ) sφ + my(τ ) cφ]. Using this
determination ofm2(t ′), we can integrate thefirst ofEq. (A.1.6) using similarmethods
to determine m1(t ′). For completeness we state the solutions for m1(t ′) and m2(t ′)
at t ′ = tw2:

m1(tw2) = −Cθ S2[mx(τ ) cφ − my(τ ) sφ)] − Cθ2(1 − C2)[mx(τ ) sφ + my(τ ) cφ]
+ mx (τ ) sφ + my(τ ) cφ

m2(tw2) = C2[mx(τ ) cφ − my(τ ) sφ] + Cθ S2[mx (τ ) sφ + my(τ ) cφ],
(A.1.7)

where S2 = sin(ωetw2) and C2 = cos(ωetw2). Substituting (A.1.7) into mx and my

from (A.1.5) gives us the Ri j matrix for the rephasing pulse, which may be expressed

as the matrix equation

[
mx (τ + tw2)

my(τ + tw2)

]
=

[
R11 R12

R21 R22

] [
mx (τ )

my(τ )

]
,where we have the

values
R11 = sφ2Sθ2(1 − C2) + C2

R12 = cφ sφ Sθ2(1 − C2) + Cθ S2
R21 = cφ sφ Sθ2(1 − C2) − Cθ S2
R22 = cφ2Sθ2(1 − C2) + C2. (A.1.8)

We shall see that in the echo expression the Ri j only appear in the following combi-
nations, which we quote for convenience:

R22 − R11 = (cφ2 − sφ2) Sθ2(1 − C2) = cos(2φ) Sθ2(1 − C2)

R12 + R21 = 2 sφ cφ Sθ2(1 − C2) = sin(2φ) Sθ2(1 − C2). (A.1.9)
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Following the second pulse is the “rephasing” period leading to the formation of
the echo. The rephasing effect is represented by a similar matrix to the dephasing
matrix following (A.1.4)with s2 = sin(Δω(t−τ−tw2)) and c2 = cos(Δω(t−τ−tw2)).

The formal expression for echo formation may then be written

[
mx (t) − tE
my(t) − tE

]
=

[
c2 s2

−s2 c2

] [
R11 R12

R21 R22

] [
c1 s1

−s1 c1

] [
mx (tw1)

my(tw1)

]
, where mx,y at t = tw1 are given in

(A.1.3). The product of the three 2 × 2 matrices is then a matrix with components
Ti j which can be written

T11 = R11c2c1 − R12c2s1 + R21s2c1 − R22s2s1
T12 = R11c2s1 + R12c2c1 + R21s2s1 + R22s2c1
T21 = −R11s2c1 + R12s2s1 + R21c2c1 − R22c2s1
T22 = −R11s2s1 − R12s2c1 + R21c2s1 + R22c2c1 . (A.1.10)

Each of the products c2c1, c2s1, s2c1 and s2s1 contains a term that yields an echo
response and one that doesn’t. Thus, c2c1 = [cos(Δω(t − tE )) + cos(Δω(t − tw1 −
tw2))]/2, where tE = 2τ + tw2 − tw1 is the center point of the spin echo. At t = tE ,
the first term will assume the value “1” regardless of its position in the line, leading
to macroscopic signal (echo) formation. The second term will vary randomly over
the spins in the system for any value of t > τ and can be discarded. The sine–
cosine products give a different result; thus, c2s1 = (1/2) × [sin(Δω(t − tw1 −
tw2)) − sin(Δω(t − tE ))]. Here the first term leads to no result, while the second
one gives an antisymmetric echo form that is zero at precisely t = tE . See below for
more discussion of this term. For the present discussion we introduce the notation
cE ≡ cos(Δω(t − tE )) and sE ≡ sin(Δω(t − tE )). For evaluation of the T ′

i j s, then,
we have both c2c1 and s2s1 → cE/2, s2c1 → sE/2 and c2s1 → −sE/2.

Insertion of these results into (A.1.10) then leads to

T11 = 1

2
[−(R22 − R11) cE + (R12 + R21) sE ] = Sθ2

2
(1 − C2)(−cos(2φ)cE + sin(2φ)sE )

T12 = 1

2
[(R22 − R11) sE + (R12 + R21) cE ] = Sθ2

2
(1 − C2)(cos(2φ)sE + sin(2φ)cE )

T21 = 1

2
[(R22 − R11) sE + (R12 + R21) cE ] = Sθ2

2
(1 − C2)(cos(2φ)sE + sin(2φ)cE )

T22 = 1

2
[(R22 − R11) cE − (R12 + R21) sE ] = Sθ2

2
(1 − C2)(cos(2φ)cE − sin(2φ)sE ).

(A.1.11)

Combining the sines and cosines, this becomes

T11 = − Sθ2

2
(1 − C2) cos(2φ + Δω(t − tE ))
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T12 = Sθ2

2
(1 − C2) sin(2φ + Δω(t − tE ))

T21 = Sθ2

2
(1 − C2) sin(2φ + Δω(t − tE ))

T22 = Sθ2

2
(1 − C2) cos(2φ + Δω(t − tE )),

where we see quite generally that T11 = − T22 and T12 = T21. Substituting these
expressions into the foregoing matrix form for mx,y(t) we obtain the general answer
for spin echo response of a single frequency component of the NMR spectrum,

mx (t) = m0ω
3
1

2ω3
e

(1 − cos(ωetw2))

{
sin(ωetw1)cos(2φ + Δω(t − tE ))

+ Δω

ωe
(1 − cos(ωetw1))sin(2φ + Δω(t − tE ))

}

my(t) = m0ω
3
1

2ω3
e

(1 − cos(ωetw2))

{
− sin(ωetw1)sin(2φ + Δω(t − tE ))

+ Δω

ωe
(1 − cos(ωetw1))cos(2φ + Δω(t − tE ))

}
, (A.1.12)

where we see that mx and my both have both a symmetrical term (in t − tE ) and an
antisymmetrical one. In addition we see that a positive rotation of the phase of the rf
field H1 by φ leads to a rotation of the phase of the echo signal in the rotating frame
by 2φ. This is an important and useful result, as we shall see below.

Wemay nowwrite down the expression for the spin echo response from irradiating
an NMR “line” that we take to be centered at frequency ω0 = γH0. The lineshape
function g(ω′) will be centered at ω0, which will be taken to be the zero of ω′ and
thus, g(0). Then the macroscopic echo response can be written,

Mx (t) = M0

2

∫ ∞
−∞

dω′g(ω′)(1 − cos(ωetw2))

{
ω3
1

ω3
e
sin(ωetw1)cos(Δω(t − tE ))

+ ω3
1Δω

ω4
e

(1 − cos(ωetw1))sin(Δω(t − tE ))

}

My(t) = M0

2

∫ ∞
−∞

dω′g(ω′)(1 − cos(ωetw2))

{
−ω3

1

ω3
e
sin(ωetw1)sin(Δω(t − tE ))

+ ω3
1Δω

ω4
e

(1 − cos(ωetw1))cos(Δω(t − tE ))

}
, (A.1.13)

where we have specialized to the φ = 0 case for simplicity, and where we emphasize
that Δω = ω − ω′ − ω0 and ωe are both variables along with ω′ in (A.1.13), so
that the integrands vary widely when the integrals are performed. The two principal
assumptions made to arrive at (A.1.13) are, first, the rf excitation pulses are “square”,
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i.e. H1 is assumed to be constant during the pulse, and second, the duration of the
echo signal is assumed to be short compared with T2. The classical picture used here
is also equivalent to the assumption that the nuclear resonance addressed involves a
single pair of magnetic energy levels.

A.1.2 The “Area Theorem” and Special Cases

While the foregoing formulas for the echo response are relatively simple, they have
a few complications if one examines both the x-axis “absorption” and the y-axis
“dispersion”–type signals. However, simplifications and interesting relationships
emerge if one studies the integrated area under the echo signal, i.e. A =

∫
Mx,y(t)dt ,

where the integral needs to extend over the entire region where appreciable signal
is observed. To integrate the area under both Mx (t) and My(t), we use the Fourier
integral theorem, which says that

∫
sin(Δω(t − tE ))dt = 0 and

∫
cos(Δω(t − tE ))dt

= 2πδ(Δω). Applying this to
∫
Mx (t)dt , one finds that the only surviving term is

∫
Mx (t) = M0

2

∫ ∞

−∞
dω′g(ω′)(1 − cos(ωetw2))

ω3
1

ω3
e

sin(ωetw1)δ(Δω)

= M0

2
g(ω − ω0)(1 − cos(ω1tw2))sin(ω1tw1), (A.1.14)

where on the second line, the
∫
dω′ is evaluated using δ(Δω) = δ(ω′ − ω + ω0) The

useful result here is that by recording the area under the echo while ω0 (i.e., H0)
is scanned, one can plot out the profile g(ω − ω0) of the NMR line. There is no a
priori assumption about the lineshape or about the magnitude of H1 relative to the
linewidth of the profile g(ω′). Note that the comparable integral for My(t) vanishes,
so the measured lineshape will not be distorted if the phase of the detector is not set
to precisely select Mx (t). The foregoing interpretation of the area integral is an exact
result which requires only that any effects of transverse relaxation T2 are uniform
over the line scan.

A related but simpler method can be useful in the case that H1 � δH , were δH is
the measured linewidth of the NMR spectrum studied. In such a case the expression
for Mx (t) in (A.1.13) simplifies to

Mx (t) ≈ M0

2

∫ ∞

−∞
dω′g(ω′)sin(ω1tw1)(1− cos(ω1tw2))cos(ω

′(t − tE )), (A.1.15)

where the field and frequency are tuned to the resonance center (ω ≈ ω0) for this
measurement. Then the cosine transform of this result can be written

CosTr{Mx (t)} ≈ M0

2
sin(ω1tw1)(1 − cos(ω1tw2))

∫ ∞

−∞
dω′g(ω′)

∫ ∞

−∞
dtcos(ωsc(t − tE )cos(ω′(t − tE )),

≈ πM0 sin(ω1tw1) (1 − cos(ω1tw2))g(ωsc), (A.1.16)
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and thus one can extract the entire NMR lineshape function g(ωsc) from a single echo
waveform Mx (t). Note that there is no assumption about the shape or symmetry of
the line. The integration limits need to go over the entire time interval where there
is appreciable echo signal amplitude. An experimental example where this method
has been used to good effect is an NMR study of 29Si in URu2Si2 [343].

A.1.3 Density Matrix Derivation for the Spin Echo

It is useful to derive the spin echo in the quantum language of the density matrix,
since nuclear spins are, after all, essentially quantum objects. Such a formulation is
also useful for the purpose of illustrating spin–echo decay processes [294], and in
particular spin–echo decay oscillations. Finally, the same calculations can illustrate
the closely–related basis for spin–echo double resonance. These effects have not
been utilized widely in NMR studies relating to condensed matter physics, but they
have an interesting potential in that regard.

The nuclear polarization can be represented by a density matrix operator ρ(Ts),
where Ts is the effective spin temperature. Here we shall employ the density matrix
formulation given by Abragam [5], in which the state of the spin system at thermal
equilibrium may be represented by the quantum operator

ρ(Ts) = exp(−H/kBTs) ≈ 1−H/kBTs = 1−Σi (γH0 +Δi )Izi/kBTs, (A.1.17)

where H is taken to be a Zeeman Hamiltonian with an inhomogeneous broadening
parameter Δi (γH0 � Δi ). Some degree of static broadening is necessary for an
echo to be observable. We shall take the Δi ’s to be static and independent of field.
Since the energy scale of individual nuclear spins in the present context is typically
very small comparedwith kBTs , the single–term expansion in (A.1.17) will always be
valid. In the manipulations to follow, transient values of nuclear polarization will not
always lie parallel to actual physical magnetic fields. Following (A.1.17), we shall
always represent the nuclear polarization with ρ(t) = α(t)Iδ , where δ represents
some direction in space. The polarization along the δ axis is then given by 〈Iδ〉 =
Tr{ρ(t)

∑
i Iδi}.

The Interaction Representation and rf Pulses.
The equation of motion for ρ(t) is [5]

i
dρ

dt
= [H, ρ] . (A.1.18)

WhenH is a time–independent operator such as the ZeemanHamiltonian in (A.1.17),
then the solution is given by ρ(t) = exp(−iHZ t)ρ(0)exp(iHZ t). However, the echo
excitation pulses are represented by a time–dependent Hamiltonian term

H1(t) = −ω1[Ixcos(ωt) − Iysin(ωt)], (A.1.19)
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where ω1 = γH1. Thus, (A.1.19) represents magnetic coupling with a rotating mag-
netic field H1(t) that is in resonance or nearly so with the Larmor precession of the
nuclear spins. To describe the effects of such rf pulses, it is necessary to transform the
equation of motion into coordinates rotating in sync with H1(t). This is an “interac-
tion representation” for describing the problem, but is also simply the rotating frame
for the density matrix (see Fig.A.1). It is important to view echo formation as a
coherent process, where the rf waveform described by (A.1.19) is the reference sys-
tem required to describe that coherence.2 Second, in this representation the equation
of motion for the density matrix incorporating H1 has no explicit time dependence
and can be solved easily as shown above.

The required transformation may be written ρ∗(t) = exp(−iωt Iz)ρ(t)exp(iωt Iz).
Then the equation of motion for ρ∗(t) becomes

i
dρ∗

dt
= (ω − ω0)[Iz, ρ∗] + [H∗

1, ρ
∗], (A.1.20)

where H∗
1 = exp(−iωt Iz)H1exp(iωt Iz). We substitute from (A.1.19) and use the

relation
exp(−iφIα)Iβexp(iφIα) = Iβcos(φ) ± Iγsin(φ), (A.1.21)

where (αβγ) is a permutation of (xyz). Thus, “+” is used if (αβγ) is a positive
permutation and “–” is used otherwise. We find

i
dρ∗

dt
= [H∗, ρ∗], where H∗ = −(Δω Iz + ω1 Ix ), (A.1.22)

which is equivalent to the classical finding earlier of precession around an effective
field in the rotating frame of ωe = ω1 j + Δωk.

It is a straightforward matter to calculate the mechanics of the rf pulses with
(A.1.22) in terms of the pulse phase φ and the detuning parameter θ (i.e., Δω and
ω1), etc., as was carried out above for the classical case. Here, the discussion will be
simplified by assuming very short rf pulses, i.e. that ω1 � Δω for tuning within a
linewidth or two of the resonance peak.3 Thus, we assume a π/2–π pulse excitation
for all the nuclei with negligible width in time and focus our attention on the echo
formation process which proceeds with the use of (A.1.22) with ω1 = 0. The initial
condition will be ρ∗(0+) = −αIx . The spins will dephase during the time interval
(0+, τ ), after which a π pulse of negligible width will be applied with rotation around
the rotating–frame y axis. After the π pulse, rephasing will occur, generating an echo
in the vicinity of t = 2τ .

Solving (A.1.22) during the dephasing interval then gives, at t = τ ,

2This is because the rf waveform that drives the rotating frame also drives the phase detector that
is used to observed the echo.
3The linewidth here will be roughly given by the RMS inhomogeneous broadening parameter
〈Δ2

i 〉1/2.
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ρ∗(τ ) = −αΣiTdp,i IxiT
†
dp,i , (A.1.23)

where the dephasing operator for spin i is Tdp,i = exp[i(Δω − Δi )τ Izi ]. Of course,
to achieve the result in (A.1.23) one has to apply the full dephasing operator Tdp =
exp[iΣi (Δω−Δi )τ Izi ], where for each term i in the sum in (A.1.23), only operators
pertaining to spin i will survive. This procedure holds for each of the other two steps
as well. In this fashion the π–pulse operator Tpi,i = exp(−iπ Iyi ) at t = τ , followed
by the rephasing pulse Trp,i = exp[i(Δω − Δi )(t − τ )Izi ], are applied, yielding for
the complete echo sequence,

ρ∗(t > τ ) = −αΣiTrp,iTpi,iTdp,i IxiT
†
dp,iT

†
pi,iT

†
rp,i . (A.1.24)

On expanding out the rotation operators and combining the resulting terms using
(A.1.21), the latter result simplifies to

ρ∗(t > τ ) = −αΣi Ixi cos((Δω − Δi )(t − 2τ )) − αΣi Iyi sin((Δω − Δi )(t − 2τ )).

(A.1.25)
Recalling from (A.1.3) that α < 0, we then find the magnetization

Mx (t) = Tr{Σi Ixiρ
∗(t)}

= (M0/2πN )Σi cos((Δi − Δω)(t − 2τ ));
My(t) = Tr{Σi Iyiρ

∗(t)}
= (M0/2πN )Σi sin((Δi − Δω)(t − 2τ )). (A.1.26)

The summation is over the distribution of theΔi , which we represent as a continuum
described by the lineshape function g(Δ′), where

∫
g(Δ′)dΔ′ = 1. Thus,

Mx (t) = (M0/2π)

∫
dΔ′g(Δ′)cos((Δ′ − Δω)(t − 2τ ));

My(t) = (M0/2π)

∫
dΔ′g(Δ′)sin((Δ′ − Δω)(t − 2τ )). (A.1.27)

Weexamine thesewaveforms just briefly.A clear–cut picture emerges if one supposes
that g(Δ′) is symmetrical and centered at zero. Then expanding the cosine in Mx (t)
and the sine in My(t), we find

Mx (t) = (M0/2π)cos((Δω)(t − 2τ ))

∫
dΔ′g(Δ′)cos((Δ′)(t − 2τ ));

My(t) = −(M0/2π)sin((Δω)(t − 2τ ))

∫
dΔ′g(Δ′)cos((Δ′)(t − 2τ )),

where the two sine transform terms of g(Δ′) vanish, because the Δ′ integrand is
antisymmetric. The cosine transform of g(Δ′) is the waveform of the free–induction
signal, with a decay time generally labeled T ∗

2 . In the case of the echo, however,
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the time variable can be negative as well as positive, so the shape function is two
free–induction signals back-to-back.When the frequency is off resonance, the cosine
transform waveform is further modulated by cos(Δω(t − 2τ )) in the case of Mx (t),
maintaining the symmetry of the echo waveform around t = 2τ , while My(t) is
modulated by sin(Δω(t − 2τ )), which is antisymmetric around t = 2τ . Thus, the
area under My(t) is zero, as discussed below.

Next, we integrate the area under the echo envelope, i.e.
∫
Mx,y(t)dt . Again using

the Fourier integral theorem gives
∫
cos((Δ′ − Δω)(t − 2τ ))dt = 2π δ(Δ′ − Δω)

and
∫
sin((Δ′ −Δω)(t−2τ ))dt = 0.With these results, there is no area under My(t)

as noted above, and the area under Mx (t) is

∫
Mx (t)dt = M0

∫
dΔ′g(δ′)δ(Δ′ − Δω) = M0g(ω − ω0). (A.1.28)

This is the same result as (A.1.14) when ω1tw1 = π/2 and ω1tw2 = π. Thus, one can
scan the profile of the NMR line by scanning the area under the echo versus ω or
ω0 (i.e., the applied field). In the case of linewidth � ω1 one can simply Fourier
transform the echo envelope to get the NMR lineshape.

The densitymatrixmethod is seen to give equivalent results to the classical deriva-
tion discussed earlier. It is a bit surprising how simply and quickly the density matrix
result emerges from the formalism. Of course, that was helped by the simplifying
assumptions of a π/2–π pulse sequence and that ω1 � Δω within the resonance
line.Comparing the expressions (A.1.27)with the equivalent classical expressions for
the spin echo response in (A.1.15), the present result appears simpler, first, because
sin(ωetw1 and (1−cos(ωetw2))/2 in (A.1.15) are replaced here by1, the ratio (ω1/ωe)

3

is also unity here, and the terms ∝ Δω/ωe do not appear in the limit of large ω1. The
remaining terms are the same as in (A.1.27). However, it may be useful to note that
solving the density matrix expressions for the general case of arbitrary pulse angles,
as well as of more complex broadening mechanisms gives rise to many operators in
the formal solutions that do not commute with one another, remains a mathematical
challenge.

A.1.4 Spin Echo Decay Phenomena

In the following we shall consider mainly the effects of coupling with other nuclear
spins locatedwithin a few tens ofAngstroms of the relaxing nuclear spin. The relevant
nuclear spin–spin coupling can be written

Hss = 1

2
Σi �= j {ai j Izi Iz j + bi j I i · I j }. (A.1.29)

These couplings appear in addition to the distribution of local inhomogeneous
broadening frequencies Δi . There are in general three sources for the Hss cou-
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plings in a metallic host. These are the classical dipolar spin–spin coupling and
the Bloembergen–Rowland pseudodipolar coupling [28], each contributing to both
ai j and bi j , and finally, the Ruderman–Kittel indirect exchange coupling [27], that
contributes only to bi j .

There are a number ofmarkedly different cases that arise in the context of (A.1.29),
depending on whether some or all of the neighboring spins are a different nuclear
species, as well as on the detailed nature of the broadening parameters Δi . Such a
general case has been discussed at length and a variety of T2 effects calculated for the
high–Tcmaterials [26]. Here we limit the scope of the discussion mainly to like–spin
cases with no T1 effects. First, however, we make a brief comment on the “unlike
spin” case. If unlike spins are fluctuating among themselves, whether through T1
flips or exchange–driven flip–flops, they will relax the like–spin echo through the
like–unlike spin coupling terms. On the other hand, if neighboring unlike spins are
static on the time scale of the echo decay, they will have no effect on T2.

In contrast, like–spin neighbors will have an effect on T2 whether they are fluctu-
ating or not. The nature of the effect for these two cases will, however, be somewhat
different. If the spins are fluctuating “normally”, i.e. on the time scale of the larger
coefficients in H in (A.1.29), then T2 will be affected in the same way it is with
fluctuating unlike neighbor spins. The more interesting case is when the spins are
static.

For the discussion of like–spin–generated echo decay, the crucial point is whether
the broadening by the Δi is long–range, so that terms such as Ii± I j∓ are allowed to
cause ‘flip–flop’ fluctuations among the resonant nuclei. If such is the case, then there
will be echo decay that is independent of the pulse angle of the refocusing pulse. The
opposite is the case where the Δibroadening sufficiently detunes neighboring like–
spins so that they cannot undergo mutual flip–flop fluctuations. This is an interesting
case that does arise in practice, in which the echo decay often has an oscillatory
component. As we shall see below, there are cases of oscillatory decay where simple
theory gives an exact closed–form decay function [294].

Let us set up the general echo formation process including the spin–spin coupling
perturbation given by (A.1.29). The dephasing operator used in (A.1.23) would then
be rewritten as

Tdp,r → exp{iτ [Σi (Δω − Δi )Izi + Hss]}, (A.1.30)

with a similar modification for Trp,r . And while we can still write down the solution
to the equation of motion (A.1.22), the form must be modified from that of (A.1.24),
because the terms ofHss do not commute with each other or with Izi by itself. Thus,
(A.1.24) must be rewritten as

ρ∗
rlx (t > τ ) = −αTdp,rTpi,rTrp,rΣi IxiT

†
dp,rT

†
pi,rT

†
rp,r , (A.1.31)

where the rotation operator exponents must each be summed over all sites, because
of non-commutation of the relaxation terms. (See Tdp following (A.1.23).) The form
(A.1.31) represents a more general form of echo formation and decay, for which
there is no general solution available, and is very similar to the free–induction decay
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problem. In the latter case, series expansions in powers of t are the only available
recourse [4, 341].

Exact Solution in the Static Spin Case

Here, we restrict our attention to a different case that arises in alloys [294] and in
f-electron compounds, namely where the flip–flop terms in (A.1.29) are rendered
inactive by local inhomogeneities. Thus, terms of the form Ii± I j∓ become non-
secular and may be dropped. The broadening implied byHss then becomes entirely
static. In such a static environment, the echo relaxation process is derived solely
from spin reorientation driven by the refocusing pulse. Moreover, it is then possible
to write out an exact evaluation of (A.1.31).

Thus, in the static case, we consider the evaluation of the echo decay process via
E(2τ ) = C Tr [Ixρ∗

rlx (2τ )], using (A.1.31). C is adjusted so that E(0) = 1. In the
static limit all of the terms in Hss commute with each other and with Izi . It is, then,
a straightforward matter to evaluate E(2τ ) for the case of a single crystal specimen,
giving

E(2τ )I = CΣλ� j �=0Σ
+I
m=−I exp(2iτm J̃0 j ), (A.1.32)

where J̃0 j = J0 j − (γ2
�/r30 j + b0 j )(3cos2θ jl − 1), and where the Σλ is a sum over

all possible configurations of neighboring like spins in a lattice with less than 100%
occupation of the resonant nuclear species. For echo formationwith 100%occupation
by the resonant nuclear isotope, the latter summation may be omitted. The derivation
of (A.1.32) with the assumptions given is straightforward. The details may be found
in Sec. IIC of [294].

There is further simplification of the above expression for E(2τ ) if the resonant
nucleus has spin quantum number I = 1/2. In that case the sums onm may be carried
out explicitly to give

E(2τ )1/2 = C ′Σλ� j �=0cos( J̃0 jτ ), (A.1.33)

where the product of cosines should extend over neighbor sites having appreciable
coupling with the nucleus at the origin. Within the assumption of static spins, both
(A.1.32) and (A.1.33) are exact results that can be evaluated to high precision if the
range function of J̃0 j is known to good accuracy. That, unfortunately, is rarely the
case. If the combination of structure and probability of site occupancy gives rise to
dominance by nuclei with one or two nearest neighbor spins, then it is clear from
(A.1.33) that therewill be a significant oscillatory component to the T2 decay process.
This is the basis for oscillatory echo decay observed in doped samples of platinum
and lead [294]. A recent example is described here briefly.

These results have been applied to 29Si NMR in the compound YbRh2Si2 [340],
which is a nearly ideal system for the application of (A.1.33). This is an f–electron
compound with exotic properties such as heavy fermions and a quantum critical
point [342]. The structure is well suited to application of (A.1.33) in that the Si
sites are organized in pairs separated by only 2.39Å. Each Si site has a single close
neighbor, then 12 more neighboring Si sites at distances ranging from 4 to 5Å. The
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latter sites provide a very nearly Gaussian background decay structure, while the
first neighbors (nn) impose a clear sinusoidal oscillation on the decay. As a result,
the entire waveform can be fitted to (A.1.33) in such a way that both the RKKY
and pseudodipolar coupling constants for the nearest neighbors can be measured
experimentally over a wide range of temperatures, providing important physical
input for our understanding of this system [339].

An important question, then, arises as to how to decide whether the spin system
under study is static or not. A useful test on this point is whether the echo decay
process depends on the pulse angle of the refocusing pulse. We may envision two
limits for this effect. If the spin system is fluctuating freely, it won’t make much
difference if the refocusing pulse inverts all the spins halfway through the echo
sequence. Thus, T2 won’t change as the refocusing pulse angle is varied. At the other
limit, T2 will change in a systematic way with pulse angle if the spins are static,
becoming very long for small pulse angles. Such a check provides a straightforward
method to determine whether the spins are actually static in any case of interest.

A More General Case of Static Spins

The exact expression for spin echo decay (A.1.32) was derived under the assumption
of a π–pulse for the rephasing step (i.e., θ2). It is a bit more trouble to generalize this
result to an arbitrary value of θ2. Such a result, however, is called for by experiments
that evaluate the indirect “Izi Iz j” spin–spin coupling measurements pioneered by
Pennington and Slichter [31], where it is important to be able to calibrate echo decay
as a function of θ2.We revert, then, to (A.1.31) and expand theMx (t) echo expression
for arbitrary values of θ2. Again, Hss (A.1.29) is simplified in the dropping of any
Ii± I j∓ terms, so that all perturbation terms in the relaxation (A.1.31) commute, but
they don’t commute with Tpi,r → exp(iθ2 Iy). To deal with this, we expand the
general expression for ρ∗(t > τ ) using (A.1.21), keeping only the terms ∝ Ixi , as
they represent the principal echo response. The y–axis rotation operator is worked
through in this process, giving for t > τ the expression

E(t > τ )/E0 = 1

N
Σi 〈cosθ2 cos(βi (t − τ )) cos(β′

iτ ) − sin(βi (t − τ )) sin(β′
iτ )〉i ,

(A.1.34)

where βi = Δi + Σ j J̃i jm j and β′
i = Δi + Σ j J̃i jm ′

j . The prime indicates that the
quantum number m ′

j must show the effect of operator Iz j being modified by the θ2
pulse. N−1Σi is a normalized sum on the resonating spins andΣ j a sum on neighbor
spins to spin site i with enough coupling to affect its behavior. To show the echo
behavior of (A.1.34) we rewrite it as

E(t > τ )/E0 = 1

2N
{Σi 〈cos(βi (t − τ ) − β′

iτ )(cosθ2 − 1)〉i
+ Σi 〈cos(βi (t − τ ) + β′

iτ )(cosθ2 + 1)〉i }. (A.1.35)

If we examine the t–dependence of theΔi terms in the cosine arguments in (A.1.35),
we find in the first sum Δi (t −2τ ) and in the second, Δi t . These are the major terms
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that determine overall behavior. Thus, the first term gives an echo response at t = 2τ ,
while the second term shows no echo response at all. Dropping the second term and
evaluating the first one at t = 2τ , (A.1.35) simplifies to

E(2τ )/E0 = −1

2
(1 − cosθ2)〈cos[2τΣ j J̃i j (m j − m ′

j )]〉i , (A.1.36)

where on dropping the Σi , the angle brackets are, in effect, an average over all
possible distributions of like–spin neighbors in the lattice surrounding the site of a
resonant nucleus.

Pressing on, we first note that (A.1.36) closely resembles echo expressions given
earlier, where the essential quantity in 〈 〉i is unity at τ = 0 and decays to lower values
as τ increases. It is an approximate formulation of the decay process, where effects
of the off–diagonal terms from the θ2 rephasing pulse are neglected. To continue, we
expand the cosine in (A.1.36) to order τ 2, in what is a Gaussian approximation to
the decay process [26, 31].

E(2τ )/E0 ≈ (1 − cos θ2)

〈
1 − τ 2

2

⎡
⎣∑

j

J̃i j (m
′
j − m j )

⎤
⎦

2〉

i

. (A.1.37)

In squaring the sum
∑

j J̃i j (m
′
j − m j ) the cross terms will average to zero. In the

diagonal terms the quantity (m ′
j − m j )

2 will equal 1 with a probability sin2(θ2/2)
and will be zero otherwise.4 (A.1.37) becomes [26]

E(2τ )/E0 � (1 − cos θ2)

〈
1 − τ 2

2
sin2(θ2/2)

′∑
j

J̃ 2
i j

〉

i

, (A.1.38)

where the
∑′

j indicates a sum only over 63Cu(2) neighbors which are affected by
the θ2 pulse. This means, typically, couplings with the same isotope, and m j -values
belonging to the resonance transition observed. In high-field NMR for I = 3/2, it
applies to half of the neighbor spins. For NQR with I = 3/2, one sums all of the
63Cu(2) neighbor spins, because they are all part of the observed resonance. The
difficulty in applying this is, of course, that often the line is broad and the θ2 pulse is
not uniform over all of the spins. The factor sin2(θ2/2) in such a case is an effective
mean value.

4This result is one of the most basic in all of spin resonance. It’s derivation is discussed at some
length in Ch. II of [5]. Noting that sin2(θ2/2) = (1 − cosθ2)/2, it is seen, e.g., to occur in many
formulations of the spin echo as the probability of flipping the resonant spins with the rephasing
pulse.
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If we suppose that (A.1.38) gives the first two terms of the Gaussian
exp[−(2τ )2/2T 2

2g], then we have for the final result for a high-field NMR transi-
tion for 63Cu(2),

1

T 2
2g

= sin2(θ2/2)
c63
8

∑
j

J̃ 2
i j , (A.1.39)

where the final sum over all neighbor sites is, of course, independent of i . In naturally
abundant 63Cu, c63 � 0.69.

A.1.5 Indirect Coupling with a Gaussian Susceptibility

The indirect coupling range function used in the text is discussed here for the
simple case of a q-independent, isotropic HF tensor and a Gaussian susceptibility
χ′(q). After deriving the range function from (6.1.7), results for the second moment
(
∑

j (�=i) a
2
i j ) obtained in several ways are discussed.

The general result for the indirect coupling coefficient of Izi Iz j is

aα(i, j) = �

NAg2αμ2
B

′∑
q

eiq·(R j−Ri )χ′
α(q)Fαα(q)2 , (A.1.40)

where the prefactor is suited to amolar susceptibility and anHF tensor in units of s−1.
Here we take Fαα(q) = A0, and we use the Gaussian susceptibility form employed
by Auler et al. [245], which is

χ′
α(q) = χ′

AFe
−(q−Q)2ξ2/4 . (A.1.41)

Since χ′
α(q) is symmetric about Q, we move the origin to that point with q =

p+(π,π). The imaginary sine term is then seen to vanish by symmetry. For simplicity
we drop the prefactor (�χ′

AF A
2
0/NAg

2
αμ2

B) and restore it at the end. The sums may
then be taken as integrals, giving,

a(i, j) = (−1)(nx+ny)

4π2

∫ π

−π

dpx

∫ π

−π

dpye
−(p2x+p2y)ξ

2/4 cos(nx px + ny py) . (A.1.42)

The cosine factor can be written cos(nx px ) cos(ny py), since the sine terms vanish.
The integrals can now be written g(nx )g(ny), where

g(n) = (−1)n

π

∫ π

0
dpe−p2ξ2/4cos(np) � (−1)n√

π ξ
e−n2/ξ2 , (A.1.43)

http://dx.doi.org/10.1007/978-3-662-55582-8_6
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where the last step approximates the upper limit of the integral as ∞. This is a
reasonable approximation, since the exponential factor � 0.015 at p = π. We shall
check this approximation below, as well. The final result for our dimensionless range
function is

a(i, j) = (−1)(nx+ny)

πξ2
e−(n2x+n2y)/ξ

2
. (A.1.44)

We now evaluate the second moment sum
∑

j (�=i) a(i, j)2 in three separate ways,
in order to test the approximation in (A.1.43). First, we may do this directly with
(A.1.44), giving the expression

∑
j (�=i)

a(i, j)2 = 1

π2ξ4

⎡
⎣∑

nx ,ny

e−2(n2x+n2y)/ξ
2 − 1

⎤
⎦ , (A.1.45)

where the summation is over all integer values of nx , ny which would give an appre-
ciable contribution. In what may seem a crude approximation for ξ � 1.3 (see text),
we evaluate the sums in (A.1.45) as an integral in a continuum approximation. This
is straightforwardly shown to yield the value πξ2/2, so that we find

∑
j (�=i)

a(i, j)2 = 1

π2ξ4

[
πξ2

2
− 1

]
. (A.1.46)

The foregoing result gives the value
∑

j (�=i) a(i, j)2 = 0.0587 for ξ = 1.3, which is
the minimum value we shall use it for. This sum has also been evaluated by computer
for the same value of ξ, giving 0.0588 for the result. It seems then that the continuum
approximation to the (nx , ny) sums is accurate to a fraction of a percent. However,
the range function itself is an approximate result from (A.1.43).

We make a check on the latter result by evaluating the second moment sum using
the q-space result

∑
j (�=i)

a(i, j)2 =
∑
q

∑
p

e−(q2+p2)ξ2/4 −
[∑

q

e−q2ξ2/4

]
. (A.1.47)

When the first sum is converted to an integral in polar coordinates, the integrand is
proportional to exp(−q2ξ2/2), which, at q = π falls to the value ∼ 2.4 × 10−4.
While this could be accounted for in approximate fashion, we neglect errors of this
magnitude for simplicity here. This term then becomes 1/(2πξ2). The second term in
(A.1.47) can be cast into a very similar form as that of (A.1.43), where we neglect a
correction term of the order of 1.5%. Since this is squared, neglecting these correction
means that the second term in (A.1.48) is small by about 3%. The two terms together
give

∑
j (�=i) a(i, j)2 = 1/(2πξ2)−1/(π2ξ4), which is identical to the summing result

in (A.1.46). We now see that for ξ = 1.3, this result probably errs on the high side by
an amount of order 1%. For larger values of ξ the error will diminish rapidly.
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Restoring the prefactor, and multiplying by the factor c63/8 to give the physically
correct second moment (or (1/T2g)2), which is

(
1

T2g

)2

= c63
8

∑
j (�=i)

a(i, j)2 = c63
8

�χ′
AF A

2
0

NAg2αμ2
B)

1

π2ξ4

[
πξ2

2
− 1

]
. (A.1.48)

A.2 Spin Echo Decay via Spin-Lattice Relaxation

Spin-lattice relaxation of a spin echo was first treated to explain the large disparity
between conventional T1 values and the enhanced exponential decay rates 1/T1E of
spin echoes for nuclear spins with large I values [284]. The relaxation rate for the
(− 1

2 ↔ 1
2 ) transition was shown to be 1/T1E = 2W0(I + 1

2 )
2, where 1/T1 = 2W0.

This result was modified for the case of an anistropic T1 process by Narath [286],
finding

1

T1Ez
= (Wx + Wy)[I (I + 1) − 1/4] + Wz , (A.2.1)

where Wα is the contribution of fluctuations along the α axis to the relaxation rate
for a quantization axis perperdicular to that axis. Thus, 1/T1z = Wx +Wy . The latter
results have been derived using the “fictitious spin 1

2 ” technique. They have been
derived using other methods as well [139, 285].

Since the Wα’s are not measured directly, it is also useful to express the result
(A.2.1) in terms of the anisotropic T1 values T1x,y,z :

1

T1Ez
= 1

T1z
[I (I + 1) − 3/4] + 1

2 T1x
+ 1

2 T1y
. (A.2.2)

We also treat the case of arbitrary direction for the quantization axis, represented
by the Euler angles (θ,φ). We let that be the z′ axis with corresponding x ′ axis in the
xy plane and mutually perpendicular y′ axis. The associated rate parameters for the
(x ′, y′, z′) axes are

Wx ′ = Wxsin
2φ + Wycos

2φ (A.2.3a)

Wy′ = Wxcos
2θ cos2φ + Wycos

2θ sin2φ + Wzsin
2θ (A.2.3b)

Wz′ = Wxsin
2θ cos2φ + Wysin

2θ sin2φ + Wzcos
2θ , (A.2.3c)

whereupon 1/T1Ez′ is given in terms of the Wα′’s by (A.2.1). This result was used to
correct the planar 17O spin echo decay data in [26] for T1 effects.
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A.3 Using rf Phase Toggling to Eliminate Transient NMR
Interference

Spin Echo phase toggling to eliminate spurious signals. As any NMR practitioner
well knows, there are many sources of spurious rf signals that can find their way into
the best of spectrometers. Simple rf pickup from induction heaters and other elec-
trical equipment can usually be eliminated by metal enclosures and other shielding
techniques. One of the most difficult interference problems to deal with is transient rf
signals generated by the high–power rf excitation pulses used to excite spin echoes.
One version of this is transient mechanical vibrations generated in the rf coil of a
typical single–coil spectrometer when high–power rf pulses are applied to the coil
while in a highmagnetic field. The result is transient mechanical vibrations in the coil
wire which, in turn, induce spurious electrical signals in the spectrometer receiver
system. Their generation is so closely related to how NMR signals, themselves, are
generated, that no type of shielding can be put to use in mitigating such effects. One
is occasionally called upon to conduct measurements at relatively low frequencies,
which is where these coil vibration transients are at their worst.

We describe here a scheme using rf phase toggling that is capable of reducing
spurious pulse transients by at least three orders of magnitude.While it is worthwhile
to employ strategies such aswinding rf coilswith bundles of very finewire to suppress
mechanical vibrations, or possibly using an old–fashioned two–coil NMR head,
ultimately the phase toggling scheme can be counted on to do the “heavy lifting”
of transient cancellation. The central principles of rf phase toggling are (i) that the
phase of the echo signal can be reversed by either reversing the phase of pulse 1 or
by changing the phase of pulse 2 by π/2. And (ii) a digital signal averager can be
set to digitize and alternately add and subtract incoming spin echo signals. In this
way, a four–step sequence of phase toggling can be combined with an add–subtract–
add–subtract... phase reversal of the signal averager to diminish any accumulation of
spurious transients by orders of magnitude. We illustrate the phase toggling scheme
in TableA.1, and illustrate the results below with data taken at Bell Laboratories in
Murray Hill, NJ, in the 1980’s.

The four–step sequence of pulse phases is presented in TableA.1, where Pulse one
is at phase 0 for two steps and then at π for two steps. Pulse two toggles between 0
and π/2 for two steps at each of these, but one step out of phase with Pulse one. This
sequence produces a series of echo responses that alternate indefinitely between “+”
and “−”. The digital signal averager simply toggles between “add” and “subtract”,
so that while pulse–driven transients are cancelled on alternate steps, the echo signal
accumulates continuously.

Application of this scheme is illustrated in Figs.A.2 and A.3. In Fig.A.2 the
accumulated result is shown from 64,000 passes of a two-pulse echo sequence with
no form of transient cancellation in use. As the echo should be in the 50µs region,
clearly, any echo signal has been completely swamped by a large oscillating transient
that extends out beyond 100 µs. In Fig.A.3, an identical sequence is shown with the
four–step transient cancellation scheme described above and in TableA.1 activated
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TableA.1 Table giving pulse phasing sequence used to cancel rf pulse–induced electrical transients

STEP Pulse 1 Pulse 2 Echo Averager

1 0 0 + Add

2 0 π/2 − Subtract

3 π π/2 + Add

4 π 0 − Subtract

for the digital averaging process. There we see a cleanly resolved echo signal on a
baseline with a noise level giving a signal–to–noise ratio of better than 10. Note that
in the second figure, the amplitude scale is ten times smaller than in the first one. The
transient cancellation scheme has reduced the random noise level by a factor ∼ 250.
Since there is no discernible sign of the transient in the final result, the transient has
been reduced by a similar or greater factor.

The process of transient cancellation can be analyzed from the pulse toggle
sequences in TableA.1. Both pulses are applied in sequences of identical pairs, while
the digitizer subtracts the receiver transients from the two pulses of any adjacent pair.
For example, transients from the two identical “Pulse 1” pulses in Steps 1 and 2 are
cancelled by the “Add/Subtract” toggle of the digitizer for those steps. The same is

Fig. A.2 Digitally recorded sum of 64,000 63Cu spin echo signals taken without employing any
procedure to cancel and oscillatory electrical transient. This transient is barely visible on a single
trace. See text for a description of the sample and other experimental details. The rf pulses begin at
t = 0 and at 22µs and are 3µs and 5µs in length, respectively
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Fig. A.3 Digitally recorded spin echo signal with identical conditions to Fig.A.2, except that the
“add-subtract” method for cancelling the electrical transient was employed as described in the text.
Note that the vertical scale is an order of magnitude smaller than in Fig.A.2. Resolution of the echo
signal is now only limited by random noise, and could be improved by further averaging

true of Pulse 2 in steps 2 and 3. There is evidently a very nearly linear superposition
of transients from the two pulses in any echo sequence. At least if the second pulse
modifies the transient from the first one in any degree, it does so in a fashion that is
completely independent of its phase. Thus, the combined transients from any pulse
pair are both cancelled almost perfectly. In any case, the cancellation error of this
scheme is well below the resolution of the experimental example presented. The
scheme described has been in operation for many years with entirely satisfactory
results.
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