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Preface

Hybrid systems have become increasingly popular during the recent decades in
various fields of the scientific research and are expected to carry on the potential for
further explorations. A hybrid system exhibits a combination or coexistence of
continuous and discrete events and has behaviors determined by the interaction
between the continuous and discrete components, and/or between them with other
environmental factors. From practical perspective, it has been observed that if the
interaction, within a single system, is strong, then the above hybridness has to be
unified in one model. This unification has paved the path to the study of hybrid
systems leading to fascinating outcomes for the following reasons: (i) The hybrid
system paradigm has been recognized as a proper tool to represent a wide range of
diversified applications in nature or in the human-made world. Among those are
systems modeling population growth model, infectious disease models, medical
drugs, chemical reaction processes, heating/cooling systems, several control sys-
tems, power systems, automated highway systems, air traffic control systems, neural
networks, computer synchronization, secure communication networks, just to name
a few. (ii) A large class of systems are intrinsically ruled by multimodal dynamics,
such as those presented in many control systems, multibody mechanical systems,
thermostats in heating/cooling systems, prey—predator systems with finite, different
prey sources and epidemic disease models with periodic vaccinations or treatments.
(iii) Many systems are asymptotically stabilized by multiple control laws monitored
by a high-level supervisory agent, and others are stabilized or state estimated by
discrete events. This is the case when the available information is only measured at
discrete moments, rather than continuous time period, as in the case of vaccination
or drugs administrated by way of injection. On the other hand, systems may
undergo impulsive perturbing forces that must be taken into account in the mod-
eling process. (iv) Nowadays, the technology has produced much hierarchically
sophisticated machinery that cannot be analyzed as a whole system. Hybrid system
representations can also be considered here to minimize the complexity of these
systems. Namely, they provide sequential mathematical descriptions of the system
that are often manageable for analysis. For these listed reasons, the heterogenous

vii



viii Preface

composition in the hybrid systems has become a modeling priority which, as a
result, creates an important, fruitful research field applicable to many practical
areas.

Mathematically, the typical systematic configuration of hybrid systems can be
represented by: (i) a mix of differential equations representing the continuous
evolution of a process and a set of difference equations representing the impulsive
actions. (ii) Another type of hybrid systems consists of a finite sequence of
dynamical subsystems (or modes) combined by a control-based discrete switching
signal. The role of the later signal is to organize the switches among the system
modes to achieve a coherent performance of the system. The first class of hybrid
systems are often called impulsive systems, while the second ones are called
switched systems. (iii) A third class of hybrid systems is referred to as impulsive
switched systems. These systems arise when the impulsive actions occur as a result
of mode switchings. Moreover, hybrid systems become even more complex if time
delay and random noise are taken into consideration. The resulting systems are then
called stochastic hybrid system with time delay.

This monograph aims to give a systematic account on recent developments about
deterministic, stochastic hybrid systems with/without time delay. It includes many
linear, nonlinear systems, large-scale systems, singularly perturbed systems, sys-
tems of differential equations with piecewise constant arguments (EPCA), and
systems subject to input disturbance. It is intended to cover the most interesting
topics, provide a systematic analysis of system theory and control, and enlighten
researchers about further investigations into hybrid systems. The contents of this
monograph are largely based on some recent research developments conducted by
the authors. Its chapters shed the light on several fundamental, important system
properties, such as stability, stabilization, input-to-state stability/stabilization, state
estimation, reliable controllers, H,,-control and variable structure control, also
known as a sliding mode control (SMC). The analysis of these properties utilizes a
variety of techniques including comparison principle, Lyapunov method, or
Lyapunov—Razumikhin technique if time delay is present. Moreover, it has many
illustrative examples with numerical simulations.

We are thankful to Dr. T. Sugati and Ms. H. Kiyak for proofreading the book.
Our special thanks go to Ms. Liping Wang at Higher Education Press and Springer
for her cooperation. The first author wishes to express his profound gratitude to the
staff (academic and nonacademic) of the Department of Applied Mathematics for
their support during his stay at the University of Waterloo. The second author was
supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC) which is gratefully acknowledged.

Waterloo, Canada Mohamad S. Alwan
Xinzhi Liu
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Chapter 1 ®)
Motivating Examples e

To introduce the readers to the notion of hybrid systems, which include switched,
impulsive and impulsive-switched systems, we present in this chapter some real and
human-made phenomena that are ideally modeled by such systems.

1.1 Switched Systems

By a switched system, we mean a dynamical system that consists of multidynamical
subsystems (often called modes) and a monitoring device called a switching signal
also known as switching rule, switching logic or switching law. The main role of this
signal is to orchestrate the switching among system modes to accomplish a desired
feature of the system.

1.1.1 Supervisory Switching Control

Many systems are, for instance, asymptotically stabilized or controlled by several
feedback control signals (or controllers), rather than one signal, and each of these
controllers is set to accomplish a certain desire. The logic-based supervisory control,
here, organizes the switching among them to achieve the overall system stability or
controllability. Figure 1.1 illustrates the supervisory controller [1].

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 1
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_1
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2 1 Motivating Examples

Fig. 1.1 Supervisor
controller

Logic-based controller Supervisor

Controller 1}—e

Process

Controller 2 |—e

1.1.2 Switched Server System

Another class of the discretely controlled continuous system is a switched flow system.
Consider that the system consists of N buffers and one server, where the content of
the buffer is referred to as work. One may think of the buffer as a tank and the
work as a fluid. In this system, the server delivers work from any selected buffer
at unit rate and the work is removed from bufferi (i = 1,2, ..., N) at a fixed rate
of r; > 0. If the system is assumed to be closed, then Zf\': i = 1. The switching
law for the server can be designed as follows: when the server removes work from
a selected buffer for a time period, it instantaneously switches to another buffer that
is determined by the switching rule, o : RN — {1,2,..., N}. Then, the switching
process of the server repeats itself forming a cycle [2].

1.1.3 Singular System with Markov Switching

This type of systems includes an RLC electrical circuit in which the position of the
switch follows a continuous-time Markov process, {r(¢), t > 0}, which takes values
in the index set having finite states, . = {1, 2, ..., N} with following stationary
transition probabilities:

)\,]h+0(h), i ;ﬁ],

Plr(t+h) = jlr(t) =i] =
[r(z+h) = jlr@®) =i] 1+ \ih + o(h), otherwise,

where & > 0, limy,_, % and );; > 0 is the transition probability from mode i to
the mode j at time 7 and \;; = Z?’:,J# Aij-

For instance, the mathematical model of the circuit shown in Fig. 1.2 with N = 3
is given by the following stochastic switched system [3]:

Ex(t) = A(r(t))x(t) + Bu(t)
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Fig. 1.2 Electrical

circuit [3]
where
L0 00 0 110 -1
L1 =10 | —atr@) 11-1 R
E=lo_1 10 A=\ en—ro0o1|" 8= 0
L0 00 —R 100 0
1 .
&, ifr@ =1,
with a(r (7)) = CLZ, ifr(t) =2,
C%, ifr(t) = 3.

1.2 Impulsive Systems

Another special class of hybrid systems is impulsive systems or systems of differen-
tial (or discrete) equations with impulses which is a combination of differential (of
discrete) equations representing the continuous evolution of the system and a set of
difference equation representing jumps or impulsive actions.

1.2.1 SEIRS Epidemic Model with Impulse Vaccinations

An important class of dynamical impulsive systems is the SEIRS disease models
with impulse vaccinations with saturation incidence. Denote by S(t), E(t), I (¢) and
R(¢) the susceptible, exposed (infected but not infectious), infectious and recovered
population at time ¢, respectively, such that the total population at ¢ is N (¢) = S(¢) +
E(t) 4+ 1(t) + R(t). A delayed SEIRS epidemic model with saturation incidence and
the effects of pulse vaccination may be given by the following differential equations
with time delay and impulsive effects [4]
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Co o BSOIM) |
S(t)=A—bS() T ms@ T msQ) +ne ""R(t — 1),
—bw _ _
Ea) = BS)I (1) _ Be ™St —w)(t —w) _bEQ),
1+ mS(t) 14+mS(t—w)
Lo Be ™St —w)I(t —w)
=" i ~ b+l

R(@t) =~®)1(t) —bR(t) —ne " Rt — 1), (k— 1)1 <t <kr, fork €N,
SET) =1 -0)S0),

E(@") = E(1),
1) =1(1),
R(tT) = R(t) +0S(1), t =kr, fork e N,

where A is the constant recruitment rate of the susceptible population, b is the
natural death rate of the population, (3 is the transmission coefficient, « is extra
disease-related death rate of the infectious hosts, y is the recovery rate of infectious
population, 7 is the rate of losing immunity, w is the latent period of the disease, 7
is the immune period of recovered population, and 6 (0 < 6 < 1) is the fraction of
susceptible population to whom the vaccination inoculated at times ¢ = k7.

1.2.2 Insulin Treatment

In pharmacokinetics, the process of maintaining the drug level in a body can be
adequately modeled by impulsive differential equations especially if the time period
in which body responds to the medication is very small that can be reasonably
approximated as a time moment. For instance, diabetics aim to maintain the daily
sugar level in the body at a certain range, say [a, b]. Due to having food, the sugar
level continuously increases in the blood approaching the upper bound of the range.
As a result, the insulin should be injected so that the sugar level instantly jumps
to a lower bound near a. In this example, injection times represent the impulsive
moments, the insulin injections represent the impulsive effects or actions, and the
continuous increase in the blood sugar represents the continuous evolution.
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Chapter 2 ®)
Mathematical Background oo

This chapter serves as an introduction to the rest of the book. Particularly, we
introduce two types of hybrid systems, impulsive systems and switched systems,
with/without time delay and with/without random noise that is represented by Wiener
process. Definitions of solutions of these systems and different stability notions in
the sense of Lyapunov are given. We also address some comparison principles for
these systems.

2.1 Basic Definitions

Denote by R, the set of all nonnegative real numbers, R” the n-finite-dimensional
Euclidean space with the norm || - || (i.e., if x € R” then ||x|| = /> ", xl.z) and R"™*"
the set of all m x n real matrices. If A € R™*", then we define the induced norm of

Aby || Al = Vtr(AT A).
Consider the following initial-value problem (IVP)
{x = f(t, %), o1

x(fo) = xo,

where x € R” is the system state with xo being the initial state, t > f#( represents
the system evolution time with the initial time 7y € R, and the vector field f :
Ry x 2 — R" with 9 C R” being the open domain containing the origin x = 0. To
guarantee that the [IVP has a solution x (¢) in some interval containing 7y, f is assumed
to be continuous in its domain of definition. The solution is unique if f is locally
Lipschitz in x; that is, Vx € Z there exists a ball £ of x such that for all x, y € #
and r € R, there exists an L > 0 such that || f(¢,x) — f(z, Y)|| < L|lx — y|. We
also assume, without loss of generality, that f (¢, 0) = Oforall > 7y sothatx = 0is
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6 2 Mathematical Background

an equilibrium or trivial solution of system (2.1). Note that any nonzero equilibrium
point can be shifted to the origin by a change of variable. We are now ready to
introduce the concepts of (Lyapunov) stability.

Definition 2.1 The trivial solution, x = 0, of system (2.1) is said to be

(i) stable (in the sense of Lyapunov) if, for any € > 0 and ¢y, € R, there is § =
d(e, tp) > 0 such that

Ixoll <&  implies  [x()l <&, Vi > 1o, 2.2)

where x (1) = x(¢; 1y, Xo) is any solution of system (2.1);

(i1) uniformly stable if it is stable and § is independent of 7;

(iii) asymptotically stable if (i) holds and there is a positive constant ¢ = c(fy) such
that, for all ||xg|| < ¢, lim, o x(¢) = 0;

(iv) uniformly asymptotically stable if (ii) holds and there is a positive constant c,
independent of 7y, such that, for any 1 > 0, there is T = T'(n) > 0 such that,
for all ||xo]| < c,

lxll <n,  Vi=1+T);
(v) exponentially stable if there are positive constants ¢, k and A such that
lx@) < kllxolle ™™, Vx|l < c:

(vi) unstable if (i) fails to hold.

Furthermore, the above stability properties are satisfied globally if (i)—(v) hold for
any xo € R", i.e., S(p) (or 2) is taken to be the entire space R".

Having defined the stability concepts, throughout this book we use the method of
Lyapunov to determine these qualitative properties. The Lyapunov stability technique
requires defining a special class of functions, also known as energy-like functions,
which enjoy some positive definiteness features.

Definition 2.2 Let 2 C R" be an open set containing the point x = 0. A function
V : 9 — Rissaid to be positive semi-definite if (i) V (t,0) = 0 and (ii) V (¢, x) > 0,
forallt > fyand x € 2\ {0}. It is said to be positive-definite if the inequality in (ii)
is replaced by V (¢, x) > 0. Moreover, it is said to be radially unbounded (or proper)
if it is positive definite and, for each fixed #, lim |00 V (t, Xx) = 00.

In the Lyapunov stability theorems, the focus is on the time derivative of V along
the trajectories of the dynamical system under consideration. So that, we need the
following definition of upper right-hand derivative, which is also known as a Dini
derivative, of the function V.
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Definition 2.3 Let 2 be anopen subsetof R*. If V : R, x 2 — R., then the upper
right-hand (Dini) derivative of V with respect to system (2.1) is defined by

1
DYV, x) = hnnol+ sup Z[V(t +h,x+hf(t,x)) = V(,0)], Y, x) Ry x 2,

where the limit 4~ — 0" means & approaches 0 from right. If, moreover, V has
continuous partial derivatives with respectto f and x (i.e., V € "' (Ry x 2; R,)),
then the Dini derivative becomes the ordinary time derivative

ov(t, x)

Dt =V =
V(t,x)=V(t, x) ey

+ ViV, x) - fz,x),

where V.V is the gradient vector of V, i.e.,

OV (t,x) AV, oV, x)\"
YVt x) = (t,x) oV, x)  OV(, x)
Ox1 Ox> Ox,
with x = (x; x2---x,)T and “” refers to the dot product of two vectors.
Analogously, one can define other types of Dini derivatives, such as Dy, D~ and
D_, where for instance

1
D_V(t,x) = hliﬁr{)lﬁ inf E[V(t +h,x +hf(t,x) =V, x)], VY x)eR x 7,

is called lower left-hand (Dini) derivative, where the limit 7 — 0~ means h
approaches 0 from left. Likewise, if V € €"!(R, x 2;R,), then the Dini deriva-
tives become the ordinary time derivative.

Toward stating the sufficient conditions that guarantee the stability (or stability-
like) properties, a special class of functions, known as comparison functions, are
needed.

Definition 2.4 A function o € % ([0, p); R.) (for p > 0) is said to belong to class
J (ie., a € &) if itis strictly increasing and a(0) = 0. If, in addition, p = oo and
a(r) — oo as r — 0o, then «v is said to belong to class .

Definition 2.5 A function 5 € €([0, p) x R, ; R,) is said to belong to class #".Z
(ie., 8 € L) if, for each fixed s, G(-,s) € J, and, for each fixed r, B(r, -) is
decreasing and 3(r, s) — 0 as s — oo.

The following function classes will be also used in this book.

Definition 2.6 We define the following classes of functions:



8 2 Mathematical Background
Ki={ge€R+;R4+) | g(0) =0and g(s) > 0fors > 0};
Ky ={ge€R4;R4) | g(0)=0,g(s) > 0fors >0, and limsilgog(s) > 0};
K3 ={ge€ FR+;Ry) | g(0) =0, g(s) > 0fors > 0, and g is nondecreasing in s};
Ki={ge CR{;R4)[g(0)=0,g(s) >0fors >0, and Xgngog(s) = 00}.

Definition 2.7 A function ¢ : R — R is said to be convex if the following holds
PAx + (1 =Ny) = Ap(x) + 1 = Nep(y),  Ae©D).

It is said to be concave if < is replaced by >.

Definition 2.8 A function a € €(Ry x [0, p); Ry) is said to be in class 7, (i.e.,
a e ) ifa(t,0) =0, and a(t, u) is concave and strictly increasing in u for each
t eRy.

Definition 2.9 A function g € ¥ (R, ; R,) is said to be in class 73 (i.e., g € J#3) if
g(0) = 0, and g is concave and nondecreasing.

Definition 2.10 A functionb € % ([0, p); R, ) issaidtobeinclass %, (i.e.,b € )
if b(0) = 0 and, b is convex and strictly increasing.

Theorem 2.1 Let wy and w, be positive-definite functions on the domain % which
contains the point x = 0. Assume that V € €' (R, x 2;R,) such that, for all
(t, .x) € R+ X @,

wi(x) <V, x) < wa(x), (2.3)
% + VVi(t,x)- f(t,x) <O. 2.4)

Then, the trivial solution of system (2.1) is uniformly stable. Moreover, if the inequal-
ity in (2.4) is strengthened to

oV (t, x)

o +VVi(t,x) - f(t,x) < —ws(x), V(,x)eRixI, (2.5)

where the function ws is a continuous and positive-definite on 9, then x =0 is
uniformly asymptotically stable. If, furthermore, there exist positive constants r and
csuch that B, = {x € 7| ||x|| < r} and minj, =, wi(x) > c, then for all x starts in
B, such that w,(x) < ¢, we have

lx@®I < BUlx) I, t — 1), Yt = to, (2.6)

where 3 € # L. If 2 = R" and w, is radially unbounded, then x = 0 is globally
uniformly asymptotically stable. Particularly, if 3(r,s) = re* — 0as s — 00, then
the asymptotic stability result reduces to the exponential stability.
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In reality, systems are often subject to some types of disturbances (or inputs
disturbances). The interest will be, then, to investigate how the systems respond to
these disturbances. This question motivates the notion of (asymptotic) input-to-state
stability (ISS), proposed by Sontag [1, 2]. The importance of ISS is manyfold. It
bridges the gap between the input/output stability concept in which a system is being
viewed as a black box and the Lyapunov stability (of the equilibrium point); that
is, it connects the system equilibrium state (but not the output) to the input. Also,
it has many equivalencies or implications to other stability-like concepts, such as
integral ISS, global asymptotic stability (for zero input) and finite gain with respect
to supremum norms and finite Z2. ISS has found applications in different areas in
linear and nonlinear system and control theory, such as coprime factorization, cascade
or feedforward systems, small-gain theorems and singularly perturbed systems.

Consider the following nonlinear system with the input

{)'c = f(t,x,u), t>t, 27

x(1p) = xo,

where f : Ry x R" x R" — R" withfy € R; andtheinputu € % (R, ; R™) (i.e.,
u is a piecewise continuous function) with bounded energy (i.e., sup,.., | (2)]l < 00).
This system can be considered as a perturbation of the unforced system, i.e., u(t) = 0,

¥ = f(t, x,0), 2.8)

with the same initial state. Assuming that the trivial solution of (2.8) is globally
uniformly asymptotically stable and u is bounded, then the state of the correspond-
ing perturbed nonlinear system remains bounded if further sufficient conditions are
imposed. In the following, we first define the ISS concept, then state these sufficient
conditions.

Definition 2.11 System (2.7) is said to be input-to-state stable (ISS) if there exist
functions § € % and v € £ such that, for any initial state xo and bounded
input u, the solution x () exists and satisfies

lx@1 = Bdlxoll, £ — 20) +7< sup IIM(S)II) . V= 1. (2.9)

to<s<t

In fact, this inequality can be written as follows

lx@1 = B(lxoll, £ — t0) + ( sup IIM(S)H) s Vig=t=to+T,

fo<s<t

x@® < 7( sup IIu(S)I|>, Viz=1+T,

fo<s<t

where T > 0. Evidently, for large enough 7', the #.% function 3 converges to zero
asymptotically and, when ¢ > #; 4 T, the solution will stay bounded by a class—%"
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function v, meaning that the solution of (2.7) has an ultimate bound ~, which is a
ball with a radius depending on the input magnitude.

Clearly, from the inequality (2.9), if the input u is set to zero (i.e., u(¢) = 0), the
ISS reduces to the globally uniformly asymptotic stability of the trivial solution of
the unforced system (2.8).

The following Lyapunov-type theorem gives sufficient conditions that ensure ISS,
which can also prove the asymptotic stability property of x = 0 of the unforced
system (2.8).

Theorem 2.2 Assume that there exist class— Ky functions a and b, a class &
function p and a positive-definite function c. Let V : R, x R" — R, such that the
following conditions holds:

b(lxl) = V(t,x) <a(lxl),  V(r,x) € Ry x RY;
V(. x.u) < —c(x),  whenever x|l = p([lul).
for any (t,x,u) e Ry x R" xR™. Then, system (2.7) is ISS with

y() =b"! (a (p(~))). FParticularly, if u = 0, then the trivial solution of the unforced
system (2.8) is globally uniformly asymptotically stable.

2.2 Comparison Method

An important technique often used in the study of differential equations
x = f(t,x),

where x € R” and t > 1y with £y € Ry, is the so-called comparison principle. The
advantages of this technique are manyfold including: (i) one can find an upper/lower
estimation on || x(¢)|| instead of finding the solution itself. This particularly important
if the corresponding IVP does not admit a unique solution. We should also remind the
readers that the upper estimation can be, in fact, found by the well-known Gronwall—
Bellman inequality and by using Bihari’s Lemma, as will be illustrated later. (ii) It
connects the vector differential equation

X =f( x)
to an auxiliary scalar differential equation
=gt u)

through the scalar differential inequality
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V(t,x) < g(t, V(t,x))

for some a scalar-valued function V; this process will be seen throughout many
chapters of the book. (iii) The comparison principle can also be used if V is not
differentiable, but has a Dini derivative. That is, for instance if D'V exists then V
satisfies the differential inequality

DTV (t, x) < qg(t, V(t, x)).

The following theorems summarize the comparison principle.

Theorem 2.3 (Comparison theorem) Consider the vector IVP

&= f(t,x), (2.10a)

x(ty) = Xxo. (2.10b)
Let V : R, x R" — Ry be continuous on Ry x R" and locally Lipschitz in x.
Assume that V satisfies

DTV(t,x) < g(t, V(t,x)), (2.11)

where g : Ry x Ry — R is continuous on Ry x Ry. Let r(t) = r(t; ty, uo) be the
maximal solution of the auxiliary scalar system

uw=qg(t,u), (2.12a)
u(ty) =ug >0, tHeR,. (2.12b)
Then, V (ty, x0) < uo implies that

Vt,x()) <r(), forallt>1t (2.13)

where x(t) = x(t; to, Xo) is any solution of (2.10) defined on [ty, o).

The following theorem states the sufficient conditions regarding the implemen-
tation of the comparison principle in establishing the stability properties of system
(2.10).

Theorem 2.4 (Stability theorem) Suppose that there exist class— & functions a
and b. Assume that V € € (R4 x S(p); Ry), V is locally Lipschitz in x and the
following conditions are satisfied:

(i) b(lxl) = V(t,x) <a(lxl), V(. x) € Ry x S(p); and
(”) D+V(l,x)§g(l‘,V(t,x)), V(tv-x) ER+ XS(P),
where g € € (R x R; R) and g(t,0) = 0 for all t € R. Then, the stability prop-

erties of the trivial solution, u = 0, of (2.12) imply the corresponding stability prop-
erties of the trivial solution, x = 0, of (2.10).
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2.3 Delay Systems

In contrast to the ordinary differential equations, where the system initial state (or
initial condition) is given at a certain initial time, in the delay-type differential equa-
tions, where the derivative of the unknown function, say x(z), at a specific time, ,
also depends on the values of the function, x, at previous times (i.e., a part of the
history of x). So that, the initial data in this case are generally continuous functions
defined on a time interval, but not only the initial time. To define the initial-value
problem of a delay-type system, we need some definitions and notations.

Let 6, = € ([—r, 0]; R") be the set of all continuous functions from [—r, 0] to R"
where r > 0 represents a time delay. If ¢ € %, the r-norm of this function is defined
by [[#ll, = sup_, -, ll¢(s)|l, where || - || is the Euclidean norm on R".

Definition 2.12 Let t* € R and a > 0. If x is a function mapping [t* — r, t* + a]
into R”, then, for each ¢ € [t*, t* + a], we define a new function x, which maps
[—r, 0] into R" by x,(s) = x(t + ), forall s € [—r, 0] (i.e., x, : [-7,0] — R") and
its norm is defined by |lx;[l, = sup,_, -9, |x ()]

Here, foreach ¢t € [t* — r, t*], x; (ss (_or simply x,) is the segment of the function
x from t* — r to ¢* that has been shifted to the interval [—r, 0]. A general nonlinear
delay-type differential equation may have the form

xX(@) = f(t,x) (2.14a)

and is called functional differential equation, where f is called a functional operator
mapping R, x %, to R”. In fact, the functional f in (2.14a) may also depend on
the system state, that is f = f (¢, x(¢), x,). If t = 1y, then an initial state function is
simply given by

Xy, = @(s), s €[-r0] (2.14b)

Thus, the initial-value problem of a delay-type system is defined by (2.14). Here,

we assume that f is completely continuous and smooth enough to guarantee that the

IVP in (2.14) admits a unique solution. A special class of (2.14) is called a delay

system in which s = —r, i.e., x;(s) = x(¢t — r), and the corresponding differential
equation and initial function are defined accordingly.

In the following, we define some stability concepts of x = 0 for the delay system
in (2.14), where it is assumed that f(¢,0) =0 forall t € R,.

Definition 2.13 The trivial solution x = 0 of (2.14a) is said to be

(i) stableif, foreache > Oand ty) € R, thereexistsad = d(ty, €) > O such that, if
¢ € 6, with ||p]|, < d,then || x(?)| < e, where, forallt > 1y, x(t) = x(¢; ty, P)
is any solution of (2.14);

(ii) uniformly stable if § in (i) is independent of 7y;



2.3 Delay Systems 13

(iii) asymptotically stable if (i) holds and for each 7y € R, there exists an 7y =
N(ty) > 0 such that, if ¢ € €, with ||¢||, < o, then lim,_, ,, x(¢) = 0;

(iv) uniformly asymptotically stable if (iii) holds and there exists an 7y > O such
that, for each ~ > 0, there exists some T = T (1, ) > 0 such that if ¢ € %,
with || @]l < no, then ||x(¢)|| < yforallt >ty + T; and

(i) unstable if (i) fails to hold.

One can similarly define the Dini derivatives with respect to the system of func-
tional differential equations in (2.14).

Definition 2.14 Let J C R, and Z be an open subset of R". If V : J x Z — R,
then the upper right-hand (Dini) derivative of V with respect to system (2.14) is
defined by

1
DV (t,4(0) = Jim. sup E[V(t + 1, p(0) +hf(2,9) — V(2,9 (0)],

for all (z,v) € J x €([—r,0]; 2).

If, moreover, V has continuous partial derivatives with respect to its variables,
then we have

OV (t, (0
# + Vo) V(t, ¥(0)) - £, ).

DTV (1, 9(0) = V (1, (0) =

In the following theorem, we state the sufficient conditions that guarantee some

stability properties for (2.14) by using the Razumikhin—Lyapunov technique in which
the time derivative of a Lyapunov function, but not functional, is investigated.

Theorem 2.5 Suppose that f maps R x 9 into R" where 9 C 6, withx =0 € 2.
Assume there exist functions u € ¥, v € Ko, and w € € (Ry; R,) that is nonde-
creasing. If there is a continuous function V. € € (R x Z; R) satisfying the following
conditions:

(i) u.(||x||) <V, x) <v(lx|) forall (t,x) € R x Z; and
(ii) V¢, 9(0)) < —w([¥0)|)) whenever V(t+0,4(0)) < V(,1(0)),

for 0 € [—r, O], then the trivial solution x = 0 of (2.95) is uniformly stable. If, more-
over, the condition in (ii) is replaced by

(iii) V(t,9(0)) < —w(([Y(0)])) whenever V(i +0,(0)) < p(V(z,1(0))),

where w is strengthened to w(s) > 0 for s > 0 and the function p is continuous
nondecreasing and p(s) > s for s > 0, then the trivial solution x = 0 of (2.14a) is
uniformly asymptotically stable. Iflim_, o u(s) = 0o (i.e., u € Hy,), then the trivial
solution x = 0 of (2.14a) is globally uniformly asymptotically stable.

An important special class of the delay differential equations, which often appear
in applications, has the following linear differential equation with state delay
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x(t) = Ax(t) + Bx(t —r), (2.15)

where x € R"”, A and B are n X n constant matrices, and r > 0 represents the time
delay. When analyzing the stability properties of this system by using the Lyapunov
method, one encounters the following scalar differential inequality

() < —av(t) + 6 sup v(s), (2.16)

t—r<s<t

where a and 3 are positive constants. The interest here is to calculate an upper
estimate on v(¢) for all £ > ¢, with #y € R,. The following lemmas are concerned
with different estimations depending on the values of « and (3.

Lemma 2.1 Suppose that the scalar differential inequality in (2.16) is satisfied
where o« > (3 > 0, then there exist v > 0 and k > 0 such that

v(t) < ke 7TV > g, (2.17)
where the decay rate, 7, is the unique positive solution of the nonlinear equation
—y = —a+ pe" and k = inf,_, <<, y(s).

On the other hand, if the scalar differential inequality has the form

() <av()+ L sup wv(s), (2.18)

t—r<s<t

then the upper estimate along with the growth rate is provided by the following
lemma.

Lemma 2.2 Suppose that the scalar differential inequality in (2.18) is satisfied
where oo > 0 and 3 > O, then there exist v > 0 and k > 0 such that

v(t) < k' V> g,

where y = a + 3 and k = sup, _,_ ., v(s).

Generalization of the last two lemmas to an n-dimensional vector differential
inequality is stated in the following lemmas.

Lemma 2.3 For all t > ty with ty) € Ry, let A1) and B(t) be n x n matrices of
continuous functions such that A(t), B(t) and A(t) are bounded, and A(t) is Hurwitz.
Furthermore, assume that, for all t, the following conditions hold

(i) MAT () + A@) < —a(t) <0, witha(t) > 0;
(ii) —a() +2||B@)|| < =0 <0, with 3 being a positive constant; and
(iii) the differential inequality

y(0) = A@M)y@®) + B(1) sup y(0),

t—7<0<t
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where y(t) = (y1(t) y2(t) -+ y,(t)T > 0 and
SUP; _r<g<¢ y(a) = (Supt—fgegr V1 (©) SUP;_r<g<s )’2(9) st SUP_r<h<t Yn (9))T

Then, for all t > ty, y(t) satisfies
Iy < llyg e,
where ( is the unique positive solution of the nonlinear equation
¢ —a) + [BO| + 1B = 0.

Lemma 2.4 Forall t € [ty, ty + a) with to € Ry and a > 0, let A(t) and B(t) be
n X n matrices of continuous functions, a(t) = )\(A(t) + AT(I)>, IB(@)| < B and
a(t) + || B(t)|| < By. Assume that the vector differential inequality

() < A@®)y@) + B(t) sup y(s)

t—r=<s<t

holds where y(t) = (yl(t) V2 (1) -~y,,(t))T with y;(t) > 0 for all t € [ty, to + a)
and ,
sup y(s) = ( sup  yi(s) sup y»(s) --- sup yn(s)) .

t—r<s<t t—r=<s<t t—r<s<t t—r<s<t
Then, there exists a & > 0, defined by £ = %(ﬁl + 3,), such that

Iy <y, -7, 1 € [t 10 + a).

2.4 Impulsive Systems

A general class of impulsive systems or systems with impulsive differential equations
may have the form

() = f(t, x(1)), K(t, x) £ 0, (2.192)
Ax(t) = Z(t, x(1)), K(t, x) = 0, (2.19b)
x(t) = xo, (2.19¢)

where x € R" is system state vector, Ax(t) = x(t*) — x(¢) for some t € R, with
x(tT) =lim. o+ x(t + €) and x(t) = x(¢t7), i.e., x is assumed to be left-continuous.
Also, in the difference equation (2.19b), the function .# (¢, x(¢)) is state-dependent
representing impulsive amount. In this system, the impulses occur if a spatio-temporal
relation x(¢, x) = 0 is satisfied. Moreover, if we assume that there is no impulsive
action at the initial time 7y, then the initial condition in (2.19c) has the form x (fy) = x.
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The solution of this system evolves as follows: the system state starts when
k(tg, xo) # 0. Then, whenever x(t, x) # 0, the system process is governed by the
ordinary differential equation (2.19a) until r = 7y such that x(7, x(77)) = 0 is sat-
isfied. At this moment, the process is subject to an impulse and instantly changes
by some amount .# (¢, x(¢)), given by the difference equation in (2.19b), causing a
jump discontinuity in the system state. For ¢ > 7, if the relation (¢, x) #% 0 holds,
the process continues according to the differential equation in (2.19a) until an impul-
sive action occurs again. This continues in the same manner as long as the solution
exists. Consequently, the resulting solution is either continuous or piecewise con-
tinuous with simple jump discontinuities at the moments of impulse ¢ for which
F(t,x(t)) #0.

Due to the difficulty in dealing with relations of the type (¢, x) = 0, the interest
deflects to a particular type of relation, where the set of points (¢, x) € Ry x R” for
which x(¢, x) = 0 are assumed to be represented by a sequence of hypersurfaces of
the form ¢t = 7;(x), where generally 7, € ¥(R"; R;) for k=0,1,2,... and 0 =
To(x) < 1 (x) < (x) < -+ with limg_, o, 7% (x) = 0o for each x € R”". Therefore,
the particular system can be written as

x(@) = f(t, x@)), t # 1 (x), (2.20a)
Ax(t) = 7, x(1)), t = T1r(x), (2.20b)
x(tg) = xo. (2.20c)

In this case, the system is said to have impulses at variable times. Indicative features
of this system are that solutions start at different points will be subject to impulses
(or jump discontinuities) at different times. This problem breaks down the classi-
cal continuous dependence or stability since neighbouring solutions tend to undergo
impulses at different times. Also, a solution may hit the same hypersurface several
times or not at all, or intersect it more than once after intersecting other hypersur-
faces. The frequent interception of the same hypersurface is called pulse or beating
phenomenon. To avoid this circumstance, further restrictions have to be made on the
impulsive hypersurface, as will be seen in the following chapter.

If the functions 7’s are constants (i.e., 74 (x) = 7 for all k and x), system (2.20)
is said to have impulses at fixed times and all solutions undergo impulses at the same
times.

Another challenging issue arising in impulsive systems, which makes the theory
of ordinary differential equation not directly applicable, is known as confluence (or
solution merging), which happens when, for instance, two solutions start at different
points merge after a certain impulse. The reason is that, for specific impulse amount
represented by the function ., the mapping x + . (7, x) is not one-to-one in x. On
the other hand, if the mapping is not onto, the backward continuation of solutions
would be impossible.

So far, we have assumed that the solutions of impulsive systems are left-
continuous, instead, one may consider solutions to be right-continuous. Accordingly,
system (2.20) is written as
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x(1) = f(@t,x@)), 1 # T (x(t7)), (2.21a)
Ax(t) = I (t,x(t7)), t=T1(x(t7)), (2.21b)
x(ty) = xo. (2.21¢)

The choice of right-continuous is advantageous when time delay is involved in impul-
sive systems [4].

Due to its importance in this book, the solution of the general impulsive system
presented in (2.19) is given in the following definition, where the definitions of
solutions of special classes, such as the one in (2.21), can be directly extracted.

Definition 2.15 A function x : (¢y, ) — R", for 0 < 1y < 8 < 00, is said to be a
solution of system (2.19) if the following conditions are satisfied:

(i) fort € (1, B), (t,x(t)) € Ry x ;

(ii) the right-hand limit x(tg' )= limHg x(¢) exists and (7, )c(t(;r ) eR. x I

(iii) ¥Vt € (1, 0), if x(t, x(¢)) # 0, then x is continuously differentiable at r and
satisfies the differential equation x(¢) = f (¢, x(¢));

(iv) the set of impulsive moments T = {t € (fy, ) | x(t, x(¢)) = 0} is finite or
consists of countable increasing sequence of points with limit 3; and

(v) if the moment of impulse ¢ € T, then the left-hand limit x(#7) = lim,_,- x(¢)
exists and x(17) = x(¢) for t # ty, meaning that the solution is left-continuous,
and x(tT) exists with x(t7) = x(¢) + £ (¢, x(¢)) for t # 3.

Generally, a solution x(t) = x(¢; ty, xo) of (2.19) defined on an interval (t, 5)
and experiencing impulses at points 7' = {#;}72, with # < ;1| can be described as
follows:

x(t; o, x0), to<t=t,
x(t;t,x(th), 6 <t <,

x(t3 19, X0) = { (2.22)
x(t e, x(G), e <t < tig,

where x (1) = x () + 7 (tx, x ().

Having defined the solution of an impulsive system, we turn our interest to address
the stability concepts of a solution of the impulsive systems. As stated earlier, the
stability property of impulsive systems with time-dependent impulsive moments is
more challenging. As a result, the stability concepts of a nontrivial solution cannot be
shifted by a change of variables to the stability of the trivial solution. This situation
urges a modification to the stability of an ordinary system.

This complicated situation has limited the study of stability for systems undergo-
ing impulses at state-independent fixed times, i.e., 7 (x) = 73 for all x € R”,
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x(t) = f@t,x@), t#7, (2.23a)
Ax(t) = F(t,x()), t=m, (2.23b)
x(to) = xo, (2.23¢)

where the impulsive times 7; (for k = 0, 1, ...) satisfy 7 < 7341 and limg_ oo 7% =
00 . So that, if moreover f (¢, 0) = 0 and .# (¢, 0) = 0, that is system (2.23) possesses
the trivial solution, then the stability notions are identical to those of ordinary systems.
Throughout this book, the stability results are developed for systems with impulses
occurring at fixed times. In the following definition, we define different stability
notions of the trivial solution, x = 0, of (2.23).

Definition 2.16 The trivial solution, x = 0, of (2.23) is said to be
(i) stable if, for each € > 0 and 7y € R, there exists 6 = d(fy, £) > 0 such that

lxoll <& implies |x(®)|| <&, V¢ > to,

where x (1) = x(¢; ty, xo) is any solution of (2.23);

(ii) uniformly stable if ¢ is independent of #y;

(iii) asymptotically stable if (i) is satisfied and for every #, € R, there exists n =
1(tp) > 0 such that

xoll <n implies lim x(z) = 0;
=00

(iv) uniformly asymptotically stable if (ii) is satisfied and there exists 7 > 0 such
that for every v > 0, there exists some time 7" = T (7, ) such that

lxoll <n implies [x()|| <~, Vt>to+T;

(v) unstable if (i) fails to hold.

In the following theorem and as a warm-up, we state and prove the exponential
stability (in the sense of Lyapunov) for a linear impulsive system given by

x(t) = Ax(1), t#t, keN
Ax(t) = Byx(t), or x(tT) =[I+ B lx(@), t =1, (2.24)
x (1) = xo,

where t > 1y with tp e Ry, x e R", A e R, By ¢ R™" and Ax(¢) =x(t") —
x(1).

When investigating the stability properties of an impulsive system, we consider
the following assumptions.

Assumption A1 There exist 0 < p; < psuch that, forall 7, € R (withk € N)and
x defined on € (R, ; 2), for some open set Z € R”, if
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[x(mO)I < o1, then [lx(T)ll < o.
Assumption A2 For all k£ € N, we have
Toup = SUP{Tx — Ty—1} <00 and Ty = inf{7x — 7%_1} > 0.

Remark 2.1 Assumption A1 is made to ensure that the solution be bounded just after
any impulsive effect (i.e., at t = 74) so long as it is bounded just before the impulsive
effects (i.e., at# = 7). While Assumption A2 is made to guarantee that the interval
between any two consecutive impulses be neither infinity nor zero, respectively. The
reason behind imposing Assumption A2 is to avoid the trivialness.

Theorem 2.6 Assume that A is Hurwitz. Then, the trivial solution of (2.24) is glob-
ally exponentially stable if the following condition holds:

Inag — vty — i) <0, keN, (2.25)

T
where oy = A““‘*(U’;&—](:)[’w with P being a positive-definite matrix satisfying the

Lyapunov matrix equation:

ATP+PA=-0Q
for any positive-definite matrix Q and 0 < v < € with € = Apin(Q)/Amin (P).
Proof Forallt > 1y withty € R, letx(t) = x(¢; ty, xo) (or simply x) be the solution

of (2.24) and V(x) = x” Px for P € R"*". Define the time-varying function v(t) =
V(x(t)). Then, the derivative of v along the trajectory of (2.24) is given by

V(1) = —Ev(), 1€ (-1, 4]
where £ = A\nin(Q)/Amin (P), and
v(t) < vt e TR e (foy, 1]
while at t = t,j , we have

v(t) = xtHT Px(t))
=x(t) [ + By)" P[I + Bilx ()
< Amax([I + BI" PIT + BeDx (1) x (1)

= apv(ty).
Namely, we have

V() < apv(ty), (2.26)
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Amax (L[ +Bi 1" P{I+Bi])

S (P) . Now, for instance when ¢ € (¢, t;], we have

where o =
v(t) < v(t)e S
and
v(t) < aqu(ty) < aqoltd)e 00,
Similarly, for ¢ € (#1, t,], we have
v(t) < vt e ST e T = y (1 Py e ),
That is, for all ¢ € (¢, 1], we have obtained
v(t) < vt )age ),
Generally, we have for ¢ € (;, t;+1]

U(l) < U([J)a1a2 e ake_f(l—fo)
U([&r)alaz - akefl/(tfto)ef(gfy)(tito)

v(tg')ale*l/(fl*to)aze*l/(fzftl) . akeﬂ/(tk*lk—l)g*(E*V)(f*to).

Provoking the assumption in (2.25), we get
v(t) < v(te V1> g
which implies that
@I < Kllx(@)lle” 020 1 =14

where K = ,/p; this shows that the trivial solution, x = 0, of (2.24) is globally
exponentially stable.

2.5 Comparison Method for Impulsive Systems

In this section, the comparison principle presented in Sect.2.2 is used to analyse the
stability properties of systems with impulses occurring at fixed times, i.e.,

(@) = f(t,x), t#n, (2.272)
Ax (1) = S (x), t=1t, (2.27b)
x(1g) = xo, 1o>0 (2.27¢)
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where 0 <t) <t <--- <t <--- withlimp_ ooty > 00, f: R X R" - R" is
continuous in (#;_1, ;] x R”?, for all x € R" and k € N, lim(t’y)%(,;!x) f@t,y)=
f(t,j’, x) exists and % : R" — R" for any k € N. Moreover, f(t,0) =0 and
S (0) = 0 for all k € N; that is, the system has the trivial solution.

As done before, we start with following comparison theorem.

Theorem 2.7 (Comparison theorem) Let V : Ry x R" — R, be continuous in
(tr_1, ] X R" for each x € R" and k € N, lim(,’),)ﬁ(,;’x) Vit,y) = V(t,j', X) exists
and locally Lipschitz in x. Assume that V satisfies

DYV(t,x) <g(t,V(t,x)), t#n
Vt,x + 7, x)) < Yp(V(t,x)), t =1y, (2.28)

where g : Ry x Ry — R is continuous in (ty—y, tr] X Ry and, for all x, y €
Ry and k € N, lim; y) 0+ 1) 9(1, y) = g(t;", x) exists and vy is nondecreasing. Let
r(t) = r(t; ty, uo) be the maximal solution of the scalar auxiliary comparison system

u(t) = g(t,u), t#t, (2.29a)
Au(t) = Yp(u), t=1, (2.29b)
u(ty) =uo >0, 1to>0. (2.29¢)

Then, V(tg', Xx0) < ug implies that
Vt,x(t)) <r(t), forallt>1t, (2.30)

where x(t) = x(t; to, Xo) is any solution of (2.27) defined on [ty, 00).

Theorem 2.8 (Stability theorem) Suppose that there exist class— & functions a
and b. Assume that the Lyapunov function V : Ry x S(p) — R, is continuous
in (tg—1, tr] X S(p) for all x € S(p) and k € N, lim(t,y)_wkﬁx) Vi(t,y) = V(t,j',x)
exists. Moreover, V is assumed to be locally Lipschitz in x and the following condi-
tions are satisfied:

(D) b(lxl) = V(t,x) <a(llxl), VY, x) € Ry x S(p);
(ii) DTV (t,x) < g(t, V(t,x)), YVt #t,andx € S(p);
(iii) V(t,x + F(t,x)) <Y (V(t,x)),forallt = trandx € S(p),g: Ry x Ry —
R is continuous in (t;_1, 1] x Ry, g(¢t,0) =0 and, for all x, y € R, and
k eN, lim(,’y)ﬁ(,;’x) g(t,y) = g(t,f, Xx) exists; and
(iv) there exists a py > 0 such that x € S(py) implies that x + F(x) € () for
allk and V (t, x + F(x)) < Y (V (¢, x)), forall t = t, and x € S(pg) where

Uy is nondecreasing.

Then, the stability properties of the trivial solution, u = 0, of (2.12) imply the cor-
responding stability properties of the trivial solution, x = 0, of (2.27).
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2.6 Impulsive Systems with Time Delay

Incorporating impulsive effects of the variable time type in the delay system (2.14)
leads to impulsive system with time delay (ISD)

x@) = f@t,x), t#7n)), (2.31a)
Ax(t) = Z(t, x,-), t=71(x(), (2.31b)
X1y = (), s €[—r0]. (2.31¢)

The extended theory of this system of impulsive functional differential equations
was initially developed in [4]. Studying the fundamental properties of this system,
compared to the impulse-free (or continuous) delay system, can be very challenging
unless further restrictions are imposed on the functional f. In the continuous case on
one hand, if the system state x(¢) is continuous for all ¢ € [ty — r, ty + a] (for some
a > 0), then x, is a continuous function of # with respect || - ||, forall ¢ € [1o, tp + al
and, hence, f is continuous. On the other hand, if x(¢) is discontinuous at a point,
say t* € [tg — r, tp + a], then x, may be discontinuous at some or all ¢ € [#y, tp + a]
and, hence, we cannot draw any conclusion about the continuity of f(-, -) even if it
is continuous in its two arguments. To support this argument, the function

[0, tef1,0)
x(’)_{l, €0, 1]

is discontinuous at = 0, while x; is discontinuous at any ¢ € [0, 1] with respect to
the norm || - ||, [4]. In fact, this problem was ruled out by defining a new functional
space called composite piecewise continuous [4]. In this book, it suffices for us to
state some definitions and theorems regarding the stability notions via Lyapunov—
Razumikhin technique for system (2.31). Later in Chap.3, we fully address the
fundamental properties of the ISD with random noise.

Definition 2.17 For any a, b € R with a < b and for some set 2 € R", define

P (la,b); 2) =[zp :la, bl = 2 | YT) = (@), Vt € [a,b), ¥(t™) exists in 2,
Vi € (a, b], and 1(t7) = 1)(t) for all except at most a
finite number of points 7 € (a, b] }

2 (la,b); ) =[w :la,b) = 2|t = (), Yt € [a,b), (t7) exists in 2,
Vi € (a,b), and ¢(17) = 4(r) for all except at most a finite

number of points ¢ € (a, b) },
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2% (la, 0); ) =|¢ @, 00) = D | Ve > a, Pl € PE(a, c; @)}‘

In these spaces, the functions are right-continuous on their domains and left-
continuous except at simple jump discontinuities where the left-hand limits exist.
The number of discontinuities is finite if the functions are defined on finite intervals;
otherwise (i.e., on infinite interval) the number of discontinuities is countably infinite,
which form an increasing sequence of points tending to infinity.

Let 9‘5,([—;’, (R R") ={¢ | ¢ € P€(—r,0]; R")} and define the r-norm of
¢ € PE, by 6l = sup_, .- 6()|l. If x € PE [ty — r, 00): R") with 19 € Ry,
we define a function x, € ZE ([—r, 0]; R") by x,(s) = x(t + s) forall s € [—r, 0].
Let J C R, and Z C R” be an open set containing x = 0. So that, in (2.31), we
have f : J x € ([—r,0]; Z) — R" and ¢ € LPEC([—r, 0]; 2). If the impulses in
(2.31) occur at fixed times, i.e., when t = 73 for all k € N, then we have

x(t) = f(t’xt)v t 75 Tk (2323)
Ax(t) = (¢, x,-), =1, (2.32b)
X, = P(), s € [—r,0]. (2.32¢)

We also assume that f(¢,0) = Oforallr € R, (7, 0) = Oforall 7, € R, and
due to the local nature of stability analysis, we assume that impulsive system (2.32)
has a local solution, say ||x|| < p for sufficiently small p > 0, and the Lyapunov
function, V, is defined on R, x € ([—r, 0]; S(p)) with S(p) C 2.

Before giving the conditions that guarantee the stability results, we state the def-
initions of different stability notions.

Definition 2.18 The trivial solution, x = 0, of (2.32) is said to be

(i) stableif, foreache > Oandfy € R, thereexistsad = d(fy, £) > 0 such that, if
¢ € PE([—r,0]; S(p)) with ||@|, <9, then ||x(¢)|| < e, where, for all 1 > 1y,
x(t) = x(t; ty, @) is any solution of (2.32);

(i1) uniformly stable if § in (i) is independent of #y;

(iii) asymptotically stable if (i) holds and for each 7y € R, there exists an 1 =
n(tp) > 0 such that, if ¢ € PE(—r, 0];S(p) with |¢|, <n, then
lim; o x(t) = 0;

(iv) uniformly asymptotically stable if (ii) holds and there exists an 1 > 0 such
that, for each v > 0, there exists some 7 = T'(1,~) > 0 such that if ¢ €
PE ([, 0%; S(p) with |6, <7, then [lx(1)]| <~ forall > o and

(v) unstable if (i) fails to hold.

Theorem 2.9 Suppose that there exist functions a,b,c € Ky, p € € R;; Ry)
and g € K3. Assume that the function V : [—r, 00) x S(p) — R, is continuous
in [—7,10] X S(p) and in [1_1, 7) X S(p) for k € N and that, for each x € S(p)
and k € N, lim(,,y)_“Tk—!x) V(t,y) = V(1. ,x) exists. Moreover, V is assumed to be
locally Lipschitz in x and the following conditions are satisfied:
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(i) b(llxll) = V@, x) <a(lx|) forall (t,x) € [—r, 00) x S(p);
(ii) DTV (t,9(0)) < p(t)V(¢t,(0)) for all t # 7, € Ry and ) € PE€([—r, 0];
S(p)) whenever V (t,1(0)) > g(V(t + s, 1¥(s))) fors € [—r, 0];
(iii) V (7, Y(0) + I (11, 9)) < gV (7, 9(0)))  for all (7,v) € Ry x €
([—r, 01; S(p)) for which 1»(0~) = 1 (0),; and
(iv) T =suppen{Tk — Tk—1} <00, M) =sup, f;“ p(s)ds <oco and M, =

: q ds
lllfq>0 9(s) m > Ml‘

Then, the trivial solution x = 0 of (2.32) is uniformly asymptotically stable.

Theorem 2.10 Suppose that there exist functions a, b, c € K1, p € € R,; Ry)
and g, g € K5 such that s < g(s) < g(s) for s > 0. Assume that the function V :
[—r, 00) x S(p) — Ry is continuous on [—7, 19] X S(p) and on [1y—1, 7¢) X S(p)
for k € N and that for each x € S(p) and k € N, lim, .- ) V(t,y) = V(7 , x)
exists. Moreover, V is assumed to be locally Lipschitz in x and the following condi-
tions are satisfied:

(i) b(llxll) = V@, x) < a(lx|) forall (¢, x) € [—r, 00) x S(p);
(ii) DYV (t,9(0) < —p@)V(t,9¥(0)) forallt # 1, € Ry andp € PE ([—r, 0];
S(p)) whenever g(V (t,1(0))) > V(t + s, Y(s)) fors € [—r,0];
(iti) V (7, Y(0) + I (1, ) < g(V (7, ¥(0))) for all (1, ¥) € Ry x PE ([,
01; S(p)) for which ¥ (0™) = ¥ (0), and
(iv) p=infren{rr — %=1} >0, My = Sup, = fq!](s) C(é_j)’ and M, = inf,~g fttJrﬂ
p(s)ds > M,.

Then, the trivial solution x = 0 of (2.32) is uniformly asymptotically stable.

2.7 Stochastic Differential Equations

In this section, some basic concepts that will be used throughout this book are pre-
sented. We start with introducing some notations and definitions from the probability
theory. Then, we give the definition of stochastic processes and particularly the so-
called Wiener (or Brownian motion) process. After that, we define a particularly
important class of stochastic integrals, namely It6 integrals, followed by stochastic
differential equations.

2.7.1 Notations and Basic Definitions

Denote by w the outcome of an experience and €2 the probability sample space. If
the event w is a possible outcome of a certain random experiment, we suitably write
w € Q. Denote by .# the family of all interesting events of 2. For further purposes,
Z is required to be a g-algebra (or o-field), which is defined below.
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Definition 2.19 A collection of subsets (or events) .# of Q is said to be a o-algebra
on (2 if the following conditions hold:

(i) the empty subset ) € .F;
(ii) if A € Z#, then A € .F where A¢ stands for the complement of A; and
(ifi) if {A;};>1 € 7, then Uiz A; € Z.

A measure space can then be defined by the pair (2, .%) and the elements of .7,
in this case, are called .% -measurable sets. If .7 is a class of subsets of €2, then one
can find a smallest o-algebra o(.#) on Q that contains .#. Particularly, if Q = R¢
and . is the smallest class of all open setin RY, then ¢ = ¢(.%) is called the Borel
o-algebra and its elements are called Borel sets. We can now give the definitions of
arandom variable and probability measure.

Definition 2.20 A real-valued function X : Q2 — R is said to be a random variable
or F -measurable if {w | X (w) < x} € .Z forall x € R. Also, an R?-valued function
Xw) = (X1(w) X2(w) - Xg(w))T is said to be . -measurable if all the elements
X; are .# -measurable. Analogously, an R¥*™_yalued function X (w) = [X; (@) ]axm
is said to be .7 -measurable if all the elements X;; are .7 -measurable.

Definition 2.21 A function P : .% — [0, 1] is said to be a probability measure on
the measurable space (€2, .%) if the following conditions hold:

(i) P(@) =0and P(2) = 1; and
(ii) for any pairwise disjoint sequence or collection of subsets {4;};>; C Z (i.e.,
AiNA; =0 foralli # j),

Uiz1 Aj) ZIP’(A)

Moreover, the triplet (2, .%, P) is called a probability space. Also, the probability
space is said to be complete if the o-algebra is complete, i.e., & = .#, where .Z is
the completion of .%. In this book, we will always assume that the probability space
is complete.

It is well known that the probabilistic behavior of a random variable is completely
and uniquely described by its distribution function F (x), which is defined by

F(x) =Plw| X(w) < x}, for all x € R.

Assume that X is a continuous random variable, then there exists a nonnegative
and integrable function f(x) such that, for every x,

F(x) = /x f(s)ds,
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which implies that f(x) = dg%, which is called the (probability) density function
of X.

Let (2, .#, P) be a probability space and X be a random variable that is integrable
with respect to the probability measure PP, then the mathematical expectation, also
known as mean or average value of x = X (w) with respect to IP, is a real number
defined by

E[X] = / X(w)dP(w) =/ xdF(x),
Q —00
the pth moment of X is defined by
E[X?] = / XP(w)dP(w) =/ xPdF(x),
Q —00

where p > 0. Particularly, if p = 2, E[X 2] is the mean square (m.s.) of X. Also, the
variance of X is defined by

V(X) = E[X — E[X]]’
and, if Y is another random variable, the covariance of X and Y is defined by
Cov(X,Y) = E[(X — EIX])(Y — E[Y])],
where all involved integrals exist.

Consider the probability space (2, .%#,P), and let X;(w), Xo(w),---, be a
sequence of random variables, and X (w) be defined on the given probability space.
Then, the sequence {X;(w)}i>1 is said to converge to X (w) with probability one
(w.p.1) or almost surely (a.s.) if

Plw| lim X;(w) =Xw)} =1;
k—00
it is said to converge to X (w) in probability or stochastically if, for every € > 0,

g$Pp|mmn—an>d=m

it is said to converge to X (w) in the pth moment if
lim E[|Xk(w) - X(w)|”] =0,
k—00

where all involved integrals exist, and it is said to converge to X (w) in the m.s. if
p = 2. Furthermore, if {X; (w)}x>1 and X (w) have distribution functions Fy(x) and
F(x), respectively, then the sequence of the random variables is said to converge to
X (w) in distribution if
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lim Fp(x) = F(x)
k—o00

in every continuity point of F (x).

2.7.2 Stochastic Processes

Let (22, .%, P) be acomplete probability space. A filtration is a family (or a sequence)
of increasing sub—o-algebra {.%#},59 of & (ie., % C %, C Fforallt € I = [0, s)
with s < oo. The filtration {.%,},>¢ is said to be right continuous if F; = Ny, Fy,
and it is said to satisfy the usual conditions if it is right-continuous and .%; contains
all P-null sets (i.e., any random event A € .%, with P(A) = 0). From now on, the
complete probability space under consideration satisfies the usual conditions and, in
this case, we use the quadruple (2, .%, {Z;}:>0, P).

Definition 2.22 A stochastic process X (t) is a family of random variables
{X;(w) |Vt e I andw € Q},

which is also denoted by X (¢, w) (or for simplicity by X (¢)) for the same ¢ and w.

Throughout this book, we restrict ourselves to a parameter or (index) set / € R,
and state space 2 that is R or R”, unless stated otherwise. Apparently, a stochastic
process is a function of two variables; for each fixed r € I, X,(w) is a scalar real-
valued random variable (or R”-valued), while, for each fixed w € 2, X, (w) is real-
valued (or R"-valued) function defined on /. The latter is called a sample path or
realization of the stochastic process.

Let X (1) be an R?-valued stochastic process. It is said to be continuous (respec-
tively, right continuous, left continuous) if, for almost all w € 2, X, (w) is continuous
(respectively, right continuous, left continuous) for all t € R, . It is said to be cadlag
if it is right-continuous and, for almost all w € €2, the left limit lim,_,.; X (w) exists
and is finite for all # > 0. It is said to be integrable if, for all t € R, X;(w) is an
integrable random variable. It is said to be .%, —adapted (or nonanticipated) if, for
all t € Ry, it is .%,-measurable. If ¥, (w) is another stochastic process, then the two
processes are said to be indistinguishable if

Plw| X (w) =Y, (w), Vi e Ry} = 1.

Let X (t) be an R?-valued cadlag .%;-adapted process and Z be an open subset of
R?. Then, the first exit time of the process X (t) from 2 is defined by

r=inf{t e R, | X(¢) ¢ 9},

where inf ¥ = oco.
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Like random variables, stochastic processes can be characterized by their moments,
variance and autocorrelation.

Definition 2.23 Let X (¢) be acontinuous stochastic process. Then, the mathematical
expectation (or mean or the first moment) of X (¢t) is defined by

[o¢]
m(t) =E[X ()] = / xf(x,t)dx,

—00

where f (or f(x,t)) is the probability density function of x = X(¢); the second
moment (or the mean square) is defined by

my(t) = E[X*(1)] = / N x?f(x, 1) dx;

the variance is defined by
Var[X ()] = EL(X (1) — m(1))*] = ma(t) — m*(1);

and the autocorrelation is defined by

R(t1. 1) = E[X (1) X (12)] = / / wixa f (61, 11: o, 12) dxyda.

Definition 2.24 Let (2,.%#,P) be a complete probability space with a filtration
{Z:}1=0. A stochastic process W (¢) for all # € R, that is continuous (a.s.) and .%;-
adapted is said to be Wiener (or Brownian motion) process if

(i) Plw | W) =0}=1,
(ii) forany 0 < s <t < 00, the increment W (¢t) — W (s) is independent of .%;; and
(iii) for any ¢ € R, and h > 0, the increment W (t + h) — W(¢) is Gaussian (or
normally) distributed with
E[W(t + h) — W(t)] = ph; and
E[(W(t + h) — W(1))*] = o°h,

where the mean y € R and the variance ¢ is a positive constant.

If 4 = 0 and 0> = 1, W is said to be a standard Wiener process.

Following the definition of distribution function F, the jointly distribution function
of X(11), ..., X(¢,) is defined by

Fxay, o x@y X, -, x0) =P{X (@) <xp,..., X(5) < x,)
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and, if F has partial derivatives at xi, ..., x,, then the corresponding probability
density function of (xi, ..., x,) is given by
an
Xiy oo, Xp) = ———F XiyoonyXp).
S n) Bxy O, LX), X () (X1 n)

A stochastic process X (¢) is said to be stationary if and only if, for all time instants
t,...,t, and any time difference 7,

Sx@) o xa) X1, - Xn) =[x+ X tgtr) X1 -0 Xn).

We conclude this subsection with a mathematically useful stochastic process
called Gaussian white noise process.

Definition 2.25 A stochastic process .4 is said to be a Gaussian white noise process
if and only if it is a stationary Gaussian process with mean zero and autocorrelation
given by

R(7) = Cé(1),

where C is a constant and ¢ is a Dirac delta or impulse function.

Clearly, the variance of the Gaussian white noise is Var[ 4 (t)] = oo.

2.7.3 Stochastic Differential Equations

Suppose that a physical process is described by the following ordinary differential
equation

dx
()] (233)

If it is perturbed by some disturbance having a stochastic behavior, say £ = £(¢)
for all t > ty with ty € R, then (2.33) may be written as

X _ F(t, X,¢) (2.34)
dr T '
Due to the random part, this differential equation cannot be interpreted as its
ordinary counterpart in (2.33). To better understand the new situation, we consider
the following special form of (2.34)

(Z—); =ft, X)+ g, X)N (1), (2.35)
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with a deterministic drift coefficient f(z, X) perturbed by a noise term g(z, X).4 (t)
with .4 being a Gaussian white noise process and the diffusion coefficient g(t, X)
is the noise intensity. Integrating (2.35) over [fy, 7] yields

X(t) = X(t0) + f F(s, X(s))ds + / 905, X ()N (5)ds., (236)

)

where the first integral is deterministic for almost every w € 2, while the second one
cannot be defined in any meaningful manner.

To cope with this difficulty, we replace the aforementioned second integral by an
integral of the form

/ g(s, X)d W (s), (2.37)

fo

where W is a Wiener process with the formal relationship with the Gaussian white
noise process being given by W(t) = A (t) andsodW (t) = A (t)dt. The resulting
integral in (2.37) cannot be defined as a Riemann-Stieltjes integral because, for
almost all w € 2, the Wiener sample path W (w) is nowhere differentiable and has
unbounded variation over every time interval.

However, one can define this integral on a larger class of stochastic processes
depending on the properties of Wiener process. This definition was first proposed by
K. Itd, and the integral is now known as [t stochastic integral.

Consider the integral of the form

b
/ g(s,w)dW(s,w), (2.38)

where g is a stochastic process with appropriate conditions and W is a Wiener process,
where we generally assume that the two processes are not mutually independent and
g(t, w) is not absolutely continuous for almost all w € Q.

The core feature of the Itd integral is that the random function g is nonanticipative
or adapted to the filtration {.%, },>0; that is, g (¢, w) can at most depend on the present
and past, and not on the future, values of the Wiener process W (¢, w). More precisely,
let (2, Z#, {Z:}i>0, P) be a complete probability space on which the Wiener process
W (t,w) is defined for all t € R, and

(i) forevery 11,1, € Ry, t; < t, implies that %, C %,,;
(ii) for all + € R, the random variable W (¢, w) is .%;-measurable; and
(iii) fort; 1y > ; > t, the increment W (f;,1, w) — W (#;, w) is independent of .%,.

Fora, b € R, witha < b, denote by L?[a, b] the class of all real-valued random
processes (functions) g(¢) defined on [a, b] and satisfying the following conditions:

(iv) forallt € [a, b], g(t, w) is #;-measurable; and
(v) the integral
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b
/ g (t, wydt (2.39)

is finite w.p.1.

To define the It6 (stochastic) integral, consider the partitiona =t <t < --- <
t+1 = b, and let g(¢, w) be a step or simple function, i.e., g(t, w) = g(t;, w) for
all ¢ € [t;, t;41], which is assumed to be .%, -measurable, bounded random variable.
Then, the It6 integral is defined by

b k
/ g(t, AW (1) = Y g1, D)W (ti41) — W(@)]. (2.40)

i=1

Another way to define It6 integral is as a limit of a m.s. convergent sequence of
simple processes. Let g, (¢, w) € L[a, b] be an arbitrary sequence of simple pro-
cesses. Then, the It6 integral is defined by

b b
/g(t,w)dW(t): 11330/ gu(t, W)AW (1) (2.41)

in L?[a, b), i.e.,

b
lim IE/ lg(t, w) — gp(t, w)|*dt = 0.

n—o00o

The Itd integral in (2.41) has some nice properties. Assuming that g € %, ([a, b,
R%), i.e., g is an R?-valued .%,-adapted process such that fab E|lg(t)|?dt < oo, some
of these properties are

b
G) E |:/ g(t)dW(t)i| = 0; and

2 b
(i) E U } _ / Ellg(t)| d.

Replacing the stochastic integral in (2.36) by the Itd integral in (2.38) results in
the following stochastic integral equation

b
/ g()dW (1)

a

X(t) = X(t) + [ fGs, X(s)ds + f g(s, X (8)dW (s), (2.42)

to

which is equivalent to the symbolic stochastic differential equation (SDE) of It6 type

dX (@)= f@t, X@)dt + g, X()dW (1), (2.43)
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with the initial state X (zp) = X,. Before presenting the solution of this equation, we
need to define the following class of random processes (functions).

Definition 2.26 Let (2, .7, {-%#};>0, P) be a complete probability space. For any
w € Q,a,b e Ry, witha < band p > 1,arandom process f (¢, w) is said to belong
to class .Z,4(2; LP[a, b)) if it is .%;-adapted and almost all its sample paths are pth
integrable in the Riemann sense.

Definition 2.27 For any 1,7 € R;, the R"-valued stochastic process
x(t) = x(; to, xo) is said to be a solution of n-dimensional initial-value problem

dx(t) = f(t,x(@)dt + g(t, x(t))dW(t), telt T], (2.44a)
x(fo) = xo, (2.44b)

where W(t) = (W, (t) Wa(t) --- W,,(1))T € R™ and x, is an F1,-measurable R"-
valued random variable such that E[||xo]|?] < oo, if the the following properties
hold:

(1) x(¢) is continuous and .%,-adapted,
(i) the R"-valued f € .Z,4(Q; L'[a, b]) and the R -valued g € Z,q(2; L?
la, b]);
(iii) for all 7 € [tg, T], x(¢) satisfies the SDE in (2.44a) w.p.1; and
(iv) att = fy, x satisfies the initial condition in (2.44b) w.p.1.

Furthermore, a solution x is said to be unigue if any other solution y is indistinguish-
able from x, i.e.,

Plx(t) = y(1), Vt € [10, T1} = 1.

When working on [t6 SDEs, there arise some peculiarities, and among them is that
if x is a solution of an It equation and V (¢, x(¢)) is a sufficiently smooth function,
we cannot use the chain rule of the classical calculus to set up the SDE governing
V(t, x(1)). Instead, we use the stochastic version of the chain rule, which is called It

formula. Before stating the definition of Itd formula, we define €"'*(R, x R"; R,)
to be the space of all real-valued functions V (¢, x) defined on R, x R” such that they
are continuously differentiable once in ¢ and twice in x. For instance, if V (¢, x) €
€12 (R4 x R"; R,), then we have

oV (t, x)

V,(t,x) = T

V(t,x) 9V, x) 62V(t,x)>

a0 = (g ) Ve = (T

Definition 2.28 (It6 formula) For all t > ty with gy € R, let x(t) = x(t; to, xo) be
an R”-dimensional .%,-adapted stochastic process satisfying

x(t) = x(1p) +/ f(s,x(s))ds +/ o(s, x(s)dW(s), (a.s.)

to
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where f and g are as defined in the last definition and W is the Wiener process.
Suppose that V € %1*2(R+ x R"; R). Then, for all ¢t > t(, V (¢, x(¢)) is a stochastic
process satisfying

Vt,x()) = V(to,x(to))—i—/ LV (s, x(s))ds

+/ Ve(s, x(s)o(s, x(s)dW(s), (a.s.)

fo

where
LV, x() = Vi(t,x(0) + Vo(t, x(®) f (1, x(1)) + %tr[UT(t, X)) Vix (&, x (1)) (t, x(1))]

is the infinitesimal operator acting on the process V (¢, x(t)) with V,(¢, x(¢)),
Vi(t, x(t)) and V., (¢, x(¢)) being the partial differentials of the process V (¢, x(¢))
as defined above.

In fact, the It6 formula may be stated in an equivalent form in which the two
integral equations take the differential forms. That is, if x is a stochastic process
satisfying

dx(t) = f(t,x@)dt + o(t, x(t))dW (1), (a.s.)

and V € ‘51~2(R+ x R™; R). Then, for all t > 1y, V (¢, x(¢)) is a stochastic process
satisfying

dV(t, x(t)) = LV, x(1))dt + Ve (t, x()o(t, x@)dW(s),  (as.)

where ZV (¢, x(t)) is defined above.
The operator .Z (or £V as a single notation) is also called the averaged derivative
(or infinitesimal diffusion operator) at a point (¢, x) and can be generally defined as

1
LV(t,x) = hlinol+ E[E[V(r +h,x(t+h)] =V, x)]
As mentioned earlier, a more general system than (2.44) is when the system states
are subject to time lag. This leads to stochastic systems with time delay or systems
with stochastic functional differential equations, which are typically defined by
dx(t) = f(t, x)dt + g, x)dW(t), 1 €1, T], (2.45)
Xy, () = @(s), s € [—r, 0], ’

forall T > fy withfy € R,..
We have stated clearly that one of the main discrepancies between ordinary and
delay systems is the amount of the initial data, which, in the latter case, must be given
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over a certain period of time rather than at a specific time instance. Moreover, due
to the randomness that drives the system states, the given initial condition function
is generally defined as a stochastic process. Consequently, to define a solution of the
initial-value problem given in (2.45), it is natural to consider the initial function ¢ to
be .%#,-measurable, continuous random variable mapping [—r, 0] into R” such that
E[l1¢]I71 < oo for some p > 0. The solution of (2.45) can then be defined similarly
to that of (2.44) except, of course, x(¢) is defined over the interval [#y) — r, T] for all
T € Ry (or [ty — r, to + ] for ae > 0).

Having defined the solution x of (2.45) and the 1t6 formula, we can present the
definition of some stochastic properties of the trivial solution of (2.45).

Definition 2.29 The trivial solution x = 0 of (2.45) is said to be

(1) almost-surely stable (or stable w.p.1) if, for any given ¢, ¢ > 0 and 1) € R,
there exists 6 = d(g, €', 1) such that

loll, <6  implies  P{w | sup |lx(@)] > €'} <&

t>t
where x(t) = x(¢; ty, ¢) is any solution of system (2.45);
(ii) pth moment stable if, for any € > 0 and t; € R, there exists 6 = d(e, #y) such

that, for p > 0,

ol <6  implies  Efsupllx()[|”] < e

1=y
(iii) asymptotically stable if, for any € € (0, 1), there exists § = d(¢, t() such that
ol <6  implies P{w | tlirglo sup |[x(®)]| =0} < 1 —¢;
(iv) almost-surely asymptotically stable if it is almost-surely stable and
Plw] lim sup x()]l = 0} = 1;
(v) pth moment asymptotically stable if it is stable in the pth moment and
Jlim Efsup [lx(0)]”] = 0;

(vi) pth moment exponentially stable if there exist positive constants p, K and A
such that, for any fH € Ry,

gl <& implies  E[lx(1)]"] < Kllgl|Pe .
Moreover, the above stability properties are said to be satisfied globally if they hold

for arbitrarily large 0. Also, they are said to hold uniformly if § is chosen to be
independent of #,.
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2.7.4 Comparison Method for Stochastic Systems

In this subsection, we state the comparison results for the initial-value problem with
the stochastic differential equations of Itd type

dx(t) = f(t,x@))dt + g(t, x(t)dW(t), (2.46a)
x(ty) = xo, (2.46b)

where f € € (Ry x R"; R"), g€ ¥ (R+ x R"; R”X"’) and W is a Wiener process
defined on the complete probability space (2, F, {% }1>0, P) forall t € R,..

Theorem 2.11 (Comparison theorem) Let V € €2 (R, x R"; R) such that the
differential inequality

DYV (t,x) < h(t, V(t,x)) (2.47)

holds (a.s.) for all (t,x) € Ry x R", where h € € (R, x R"; R), and h(t, z) is
concave and quasi-monotone nondecreasing in z for all fixed t € R,. Let r(t) =
r(t; ty, ug) be the maximal solution of the auxiliary scalar differential system

u(t) =h(t,u), teRy (2.48a)
u(ty) = ug. (2.48b)

Then, forallt € R, E[V (ty, x0)] < ugimplies that E[V (¢, x(¢))] < r(t; ty, uo) with
x(t) being the solution process of (2.46).

Theorem 2.12 (Stability theorem) Suppose that there exist functions a € . and
be X, Let Ve €"2(Rs x S(p); R) with S(p) C R" for p > 0 such that, for all
(t,x) € Ry x S(p), the following conditions are satisfied

(i) b(lx[|”) = V&, x) <a(x|?), (as.)
(ii) ZLV(t,x) < h(, V(t,x)), (a.s.)

where p > 1, h € € Ry x Ry;R), h(t,0) =0, and h(t, z) is concave and quasi-
monotone nondecreasing in z for all fixed t € R. Then, the stability properties of
the trivial solution, u = 0, (2.48) imply the corresponding pth moment stability of
the trivial solution, x = 0, of (2.46).

On the other hand, if the system states of (2.46) experience impulsive effects
at fixed times, we are led to stochastic impulsive systems or systems of stochastic
impulsive differential equations, which are generally given by

dx(t) = f(t, x(@®)dt + g(t, x(@))dW (), t F# 7,
Ax(t) = FL(t,x(t7)), t =1y, (2.49)
x(t9) = xp.
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2.8 Stochastic Impulsive System with Time Delay

We have previously described stochastic systems with time delay and systems of
stochastic impulsive differential equations. In this section, these systems are com-
bined to lead us to consider stochastic impulsive system with time delay (SISD).
Before formulating and for convenient reading, we restate some of the notations that
have been presented in previous sections.

Let (2, .7, {# };>0, P) be a complete probability space with filtration {.%},>¢
satisfying the usual conditions (i.e., it is right-continuous and .%; contains all P-null
sets). Let W(t) = (W (t) Wa(t) --- W, (1))T be an m-dimensional Wiener process
defined on the above probability space. Let r > O represent time delay and denote by
€ ([—r, 0]; R") (and € ([—r, 0]; R")) the space of continuous (piecewise contin-
uous) functions ¢ mapping [—r, 0] into R". Moreover, if x : [t — r, c0) — R", we
define x; by x, = x(¢ + s) for s € [—r, 0] and the corresponding r-norm is ||x;||, =
SUP,_, <5< IX(s)||. We also define x,- € ZE€ ([—r, 0]; R") by x,-(s) = x(t + 5) for
—r <s <0 and X~ (s) = x(¢t7) for s = 0. We should mention that this does not
mean x;,- = lim,_,,- x; because, if x € L2E€ ([—r, 0]; R"), the limit lim,_, ,- x, does
not generally exist. For p > 0, let X}U ([—r, 0]; R") be the set of all .%,-measurable
PE ([—r, 0]; R")-valued random variables ¢ = {¢(s) | —r <s < 0} such that
E[l¢]I71 < ¢, for some ¢ > 0. We also assume that ¢ is independent of W (¢, w). Fora
given Wiener process W (¢, w) and filtration {.%,| a < t < b}, we assume that W (¢, w)
is Z;-adapted (i.e., foreach t € [a, b], W (¢, w) is .#,-measurable) and for any s < ¢,
the random variable W (¢, w) — W (s, w) is independent of the o-algebra .%;.

Since the solution of a stochastic initial-value problem is a random process, rather
than merely a deterministic function, we need to define the piecewise continuous
function.

Definition 2.30 For a, b € R with a <b and 2 C R", a random process 1 :
[a, b] x Q@ — 2 is said to be an element of the space € ([a, b] x 2; 2) (or Z-
cadlag) if, for almost all w € @, (t 1, w) = ¥ (t,w) Yt € [a, b) and (¢t ~, w) exists
inZ VvVt € (a,b]land ¥ (t~, w) = ¥(t, w) for all but at most a finite number of points
t € (a, b]. Furthermore, a random process 1 : [a, 00) X Q — Z is said to be an
element of % ([a, 00) x Q; P) if, for almost all w € 2, ¢ > a, where t € [a, c],
Y(t,w) € P€(a, c]l x 2; D).

Consider now the following nonlinear SDE with time delay

dx(t) = f(t,x;)dt + g(t,x,)dW(t), t€la,b], (2.50a)

where x € R" is the system state random process, f € R" and g € R"*". The initial
condition is given by
X, = ¢(s), s €[-r0] (2.50b)

where ¢ € X;O([—r, 0]; R") (i.e., the initial state is assumed to be .%#-adapted,
piecewise continuous with finite pth moment); thus, the corresponding stochastic
integral equation takes the form
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x(1) =¢(0)+/ f(s,x.y)ds—i—/ g(s, xs)dW(s), (a.s.) (2.51)

Iy

for all ¢ > ty. The first integral is a Riemann integral almost surely (a.s.) and the
second one is an It0 integral satisfying

EL[}@JgdW@ﬂ=o,mdEW[}@JgdW@w2=/ﬂmmngwd&

fo

Considering impulse effects (of variable times) in (2.50a) leads to the following
SISD

dx(@) = f(t,x)dt +g(t,x))dW(@), t#m(x(t7)), (2.52a)
Ax(t) = 2 (t, x;-), t =7 (x(t7)), (2.52b)

where 7, € €*(R"; R, ) represents an impulsive hypersurface, for k € N, and sat-
isfies 0 = 1o(x) < 1 (x) < »(x) < --- and limg_, o 7 (x) = o0 for x € R". The
initial condition is given by

X, = @(s), s €[-r 0] (2.52¢)

We also assume that the solution of (2.52) is right-continuous (i.e., x (t7) = x(z)).
In difference equation (2.52b), Ax = x(¢) — x(¢~) and the functional .#(-) is the
impulse amount, which is assumed to be .%, -adapted.

In the following, we define the solution of the initial-value problem (2.52).

Definition 2.31 For any 7 € R; and a > 0, an R"-valued random process x €
PE [ty — r, th + «]; R") is said to be a solution of (2.52) if it satisfies the following
conditions:

(1) the set of impulses T = {t € (9, o + a]‘ t = 1 (x(¢t7)) for some k} is finite;
(ii) x(¢) is continuous for all ¢ € (fo, tp + ]\ T and .%#;-adapted,;
(iii) the functionals f € Zq(Q; Llto, to + ) and g € Zq (2 L {19, to + a);
(iv) for any t € (to,to + o, ¢ € Z;O([—r, 0; R"), and .7 (1, x,-) that is .-
adapted, the following equation

ot — 1), t € to—r, 0]
x(t) =1 6O0) + [ f(s,x)ds + [, g(s, x,) dW(s) (2.53)
+ Z{k:tke(m,t]} It %), t € (ty, fo + ]
holds w.p.1;

(v) foranyr € T, x(t) satisfies the difference equation in (2.52b) w.p.1; and
(vi) x satisfies the initial condition in (2.52c) w.p.1.
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We should also mention that, in this definition, we have restricted ourselves to the
case where solutions undergo a finite number of impulses over any finite interval.
However, letting ¢ € (¢, 00), there would be a countably infinite number of impulses,
which represent the simple jump discontinuities of x.

A special class of the SISD (2.52) is when the impulsive instances occur at fixed
times, i.e.,

dx(t) = f(t,x)dt + g(t, x,))dW(t), t# 7, (2.54a)
Ax(t) = F(t, x;-), t =T, (2.54b)
Xy, = @(s), s €[—r0] (2.54¢)

This system will be studied in later chapters for the stability-like properties.

2.9 Switched Systems

As described in the introductory chapter of this book, a switched system is a com-
bination of a finite number of subsystems (or modes) and a control-based switching
logic to organize the switching among the subsystems. In this section, we focus on a
mathematical formulation of such a system, including defining what is meant to be a
switching signal or law. Then, we state and prove a stability property of the switched
system. This result is considered as a warm-up for further stability theorems of the
system that will be presented in this book.

2.9.1 System Formulation

Consider the following controlled system
X = f(t,x)+u®), (2.55)
with the initial state x(#p) = xo € R", where x : Ry — R” is the system state, f :

Ry x R" — R" is the system vector field, and u € R" is the system input having the
form

u(t) = Z Crx () (1), (2.56)

k=1
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with Cy being a control gain matrix with appropriate dimensions and /;(-) being the
ladder function defined by

I = { Lt =t <, (2.57)

0, otherwise.
Controller (2.56) can be written as
u) = Cix(t), telun,t), keN,

meaning that the controller u(¢) switches its values at every time instant t = #, i.e.,
u is a switching controller. Accordingly, closed-loop system (2.55) becomes

{x =ft.x)+Cx. 1 €n1.04), keN (2.58)

x(ty) = xo.

This system is called switched system. Typically, a general nonlinear switched
system takes the form

)‘C:fo'([)(tsx)v tZth

2.59
{x(m) = X, (259
where o : [tg, 00) = & ={1,2,..., N}, forsome N € N representing the number

of subsystems in the entire switched system, is a piecewise constant function called
switching signal, also known as a switching law or switching rule, and takes values
in the compact set .¥, which is also named by the finite state space. The role of o
is to switch among the vector fields on the right-hand side of (2.59), i.e., f; for all
i € ., s0asto accomplish a certain desired task. The solution of (2.59) is generally
equipped with a proper switching signal, i.e., it is represented by the pair (x, o) to
emphasize the switching signal in use.

As in systems and control theory, one of the most important problems in switched
systems is the search for conditions assuring stability. The basic problems in stability
of switched systems are introduced in [5] and classified into the following three
categories.

Problem A (Stability under arbitrary switching) Finding sufficient conditions to
guarantee asymptotic stability of a switched system for an arbitrary switching signal.

Problem B (Stability by a constrained switching) Identifying the switching signals
for which a switched system is asymptotically stable.

Problem C (Stabilizability) Constructing a switching signal that makes a switched
system asymptotically stable.

Problems A and B are usually considered under the hypotheses that the individ-
ual subsystems are asymptotically stable, while Problem C is considered under the
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assumption that the individual subsystems are unstable. In this book, we are mainly
concerned with Problems B and C.

We have mentioned earlier that switched systems inherit the stability properties of
the fundamental theory of single mode systems. However, a possible strange behavior
is that switching among all asymptotically stable subsystems does not necessarily
guarantee the stability of switched system. The remedy to this undesirable situation
is to design a logic-based switching law in order to control the transition among the
involved subsystems. It has been shown in [5-7] that, if the running time of each
single mode is sufficiently large to allow the switching effect to diminish, then it
ensures that the entire switched system preserves the same stability property. This
type of switching is often named by slow or constrained switching and the running
time between any two successive switching moments, say #; for any k € N, is called
dwell time and is denoted by 7. This type of switching signals can be represented by

Fnf(T) ={7 | inftp =ty = 7, Vk € N}, (2.60)

for some 7 > 0.

In fact, the above switching signals (or dwell-time conditions) are particularly use-
ful for linear switched or restricted nonlinear systems. Along this line of dwell-time-
type conditions that is applicable for general nonlinear systems are state-dependent
dwell-time [8, 9] or initial-state-dependent dwell-time condition, denoted by Tigq,
[10]. For time being, it suffices to state the latter one for a stochastic switched system
as it will be used later in this monograph. For k € N and i € .%, the Tj5q condition
is defined as follows:

02, (a1 Elllxoll”]) }

Tisd = 1t — i1 > In
isd {k - 01, (acELx[17])

where a; are positive real constants with ap = 1, a; < ax—; and limy_, o, gy = 0, and
01, and 605, are some nonlinear class—. %5, functions. Clearly, if the switched system
is linear and, hence, 6’s are identity functions, i.e., f(s) = s, then the i34 reduces to
the dwell-time condition (2.60).

From a practical perspective, it may not be suitable to activate every individual
subsystem over a time period 7 to accomplish the asymptotic stability property.
Instead, to achieve the same qualitative property, as proposed in [7], the average
dwell time, denoted by Tave, can be taken sufficiently large. This type of switching
signals, denoted by .%4ve (7, Ny), is defined as follows: for any 7' > t > 1,

T —1t
Ny(T, 1) < No + ) (2.61)

Tave

where N, (T, t) represents the number of switching moments of ¢ in the interval
(t, T) and N is the chatter bound.

A more general class of switching signal than . (7) is called Markovian switch-
ing, in which the signal o is a right-continuous Markov chain (or process), which
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takes values in a finite state space .’ with generator I' = (v;;) nx; that is, the jumps
among the system modes follow a probabilistic rule defined by

vijh +o(h), if i#],

14 ’Y,',‘/’l +o(h), if i= Js (2.62)

P{r(t+h) = jlr@®) =i} = {

where & > 0. Here, «;; > 0 is the transition rate from i to j if i # j, and v;; =
— 3114 iy and o(h) is such that limy,_o 4 = 0.

Conventionally, if the switching signal is represented by a Markov process, the
corresponding switched system (2.59) has the form

x(to) = x0, o(to) = 00,

{)'c(t) = f(t.x(t),0(), t=1, (2.63)

for some initial state oy € ..

2.9.2 Systems with Stable Subsystems

In the following theorem, we state sufficient conditions that guarantee exponential
stability of the linear system

X =A;x, t € [t_1, k), (2.64a)
x(0) = xo, (2.64b)
where k € N, t,_| < t; withlim;_, . = co and A; € R"*" foreachi € ..

Theorem 2.13 Consider the switched system (2.64). Let A; be a Hurwitz matrix
foreachi € .. Then, trivial solution, x = 0, of (2.64) is exponentially stable if the
following inequality holds:

IHM —v(ty — 1) <0, keN (2.65)

where 1 = i—’" with Ay = max{Amax (P;) foralli € .}, N,y = min{\nin(P;) for all
i € ./}, P;is a positive-definite matrix satisfying Lyapunov matrix equation

ATP 4+ P A = -0, (2.66)

for any positive-definite matrix Q;, and v is such that 0 < v < \; where \; = ¢; /Ay
with c¢; being a positive constant such that

oV,
—LAix < —¢|Ix]* (2.67)
Ox
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Proof For all t > 1ty with tp € Ry, let (x(¢),o(z)) (or for simplicity x(¢) = x
(t; 19, x9)) with o taking values in . be the solution of (2.64). For any i € .,

define the Lyapunov function by
Vi(x) = xT Px.
Then, it is guaranteed that
Anllxl? < Vi) < Awllx])?
and along the trajectories of (2.64) the time derivative of V; satisfies

oV;
—Aix < —¢i|I x|

Ox
Combining (2.69) and (2.70) leads to
Vi(x) < =AiVi()
where \; = ¢;/Ay. The solution of this differential inequality is
Vi(x(0) < Vi(fop)e My

From (2.69), we have, for any i, j € %

Vi(r(0) < pVi(x(@),  where ji = i—M

m

(2.68)

(2.69)

(2.70)

@2.71)

(2.72)

For instance, activating subsystems 1 and 2 on the first and second intervals,

respectively, gives

Vi(x(t) < e M0V (xg), 1€ [to, 1)
Va(x(1) < eV (x(n)),  telh,t)
< e Vi (x (1))
< ﬂe*)\z(l*tl)e*)w(f]*fo)vl (XO)

Generally, for any i € . and t € [tx_1, #), one may get

Vi(x(1)) < /j/i_le_)\[(l_tk—l)e_/\[—l(tk—l_tk—z) s M) Vi (x0).

Let A = min{)\; foralli € .¥}. Then

(2.73)
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Vi(x() < p e ATV (xg)
_ Mi—le—u(t—to)e—()\—”)(’_lo)V1 (xo0)
< /uLifle*l/(tk*fo)e*()‘*”)(tit[)) Vi(x0)

= i leT V=10 pvlmt) L eV Y () e~ AT (2 74)
or, fort € [t;_1, t)
Vi(x(1)) < pe "7 e BT e TR Y (g e (AT (2.75)
Provoking the switching signal in (2.65), we obtain
Vi(x(1) < Vilxg)e” A0 v > g,
By (2.69), we have
Xl < K |lxolle” @02 v > 1

where K =, /pi. This shows that the trivial solution x = 0 of the switched system is
exponentially stable.

Remark 2.2 In Theorem 2.13, one can write condition (2.65) as follows:

1
h — 1 > i =7 k=>1 (2.76)
14

The fixed positive constant 7 is called dwell time. Also, Theorem 2.13 says that if the
switched system has exponentially stable subsystems and the interval between any
two consecutive discontinuities is larger than 7, then the trivial solution of system
(2.64) is exponentially stable. Hespanha and Morse in [7] showed that a similar result
still holds if the dwell time condition is not satisfied, but the average interval between
consecutive discontinuities in no smaller than 7. In the latter case, 7 (or often denoted
by Tave) s called the average dwell time [7, 11]. To consider 7, in the proof, let the
number of switchings in the time interval (¢, t), N (o, t), satisfies

1 — I
N(to. 1) < N + ——, 2.77)

THVC

where N is defined as the chatter bound. Then, rewrite the inequality in (2.73) as
follows:

‘/1(x) < e(i—l)ln/t—)\(t—to) VI (x0)~
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Let No =n/Inp (with g # 1) where 7 is an arbitrary constant and T, =
In 1/ (A — A*) where (\* < \). Then, applying the average dwell-time in (2.77) leads
to

Vi(x) < eIV ().

It is worth mentioning that the last inequality can be found as follows:

t—1

(i—l)ln,u—)\(t—to)f(No—i— )lnu—)\(t—to)

_ (L A=A — 1)
~ \lnp In p
=n—=A(t—1).

TﬂVC

)ln,u—)\(t—to)

2.10 Stochastic Switched Systems with Time Delay

In the nonlinear switched system (2.59), if we consider time delay and random noise,
we are led to the following nonlinear stochastic switched systems with time delay
(SSSD)

X, () = P(s), s €[—r,0], (2.78)

{dx(t) = fowy(t, X)dt + Gy (t, x)dW (1), 1 =1,
where f, : R, x €([—r,0]; R") — R” is assumed to belong to the function
class Z,,(2; L[a, b]) forsomea, b € R, witha < b, g, : Ry x €([—r,0]; R") —
R™*™ represents the noise intensity, which belongs to the function class %4 (2; L?
[a,b]), W : Ry x Q — R™ is m-dimensional Wiener process defined on the com-
plete probability space (2, .%;, {%};>1,, P) and ¢ : R, — R” is the initial function,
which belongs to a class of .%,-measurable € ([—r, 0]; R") random variable ¢ with
E[ll¢]I71 < oo. The latter function class is denoted by ngo([—r, 0]; R") for some
p > 0.

In the following, we define the solution of SSSD.

Definition 2.32 Forallt € [ty, T] with #y, T € R, and ty < T, and R"-valued ran-
dom process x(t) = x(¢; ty, ), the pair (x(¢), o(¢)) is said to be a solution of SSSD
in (2.78) if it has the following properties:

(i) x(z) is continuous and adapted with respect to the filtration {.%,},>,;
(i) for)(t, X1) € ZLaa(2; Llto, T1) and go(r) (2, X;) € Loa (25 L*[10, T1); and
(iii) the stochastic integral equation

x(1) = ¢+/ fg(s>(s,xs)ds+/ Go(s) (8, X:)d W (s) 2.79)

Iy
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holds w.p.1, where x(¢) = ¢(t) for all t € [—r, O].

For simplicity of notation, we denote the solution of (2.78) by the process x,
after dropping out the switching signal o. Also, to avoid any confusion between the
domains of the solution x and switching signal o, we state it clearly that x is defined
for all t > —r, while o is defined over R .

A solution x(#) of a stochastic differential equation is said to be unique if any
other solution y(¢) is indistinguishable form x(¢) for all r > —r.

Classical hypotheses that ensure the existence of a unique solution of SSSD are
that the vector fields satisfy a linear growth condition and Lipschitz condition in the
second variable. The following theorem summarizes these conditions.

Theorem 2.14 Let 0 : R, — . be a switching signal. Assume that there exist a
positive constant C such that functionals f, and g, satisfy the following conditions:

I it DI + Nl goio (2, I < CA+ W1, (as.) (2.80)

forallt € Ry and € €([—r, 0]; R"), and

I frioy (8, 1) = Fotr (8, P12
+ 190t V1) = Gotoy (8, V) I* < Clipy — all?,  (as.)  (2.81)

forallt € Ry and 1, ¥, € €([—r, 0]; R"). Then, there exists a unique solution x
defined for all t > —r with the initial function ¢ € Lf';o([—r, 0]; R™). Furthermore,
the solution x satisfies

E[ sup ||x(t)||2] <00, forallT > 0. (2.82)

—r<t<T

Once again, if the switching signal o is a Markov process, which is assumed to
be independent of the Wiener process, the corresponding SSSD is conventionally
written as

d-x(t) = f(t’xt’o-(t))dt+g(t1xf9a(t))dW(t)’ t 2t01
X, (8) = @(s), s e[—r0] (2.83)
o(ty) = oo,

where f : Ry x €([—r,0; R") x ¥ - R"'andg : R, x €([—r,0]; R") x .¥’ —
R™™ for some oy € ., and W : R — R is a Weiner process. The solution x of
SSSD in (2.83) can be similarly defined as the solution of (2.78) except that the
stochastic integral is slightly modified as follows:

x)=2¢ +/ f(s, x5, 0(s))ds +f g(s, x5, 0(5))dW(s), (2.84)

fo
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which is required to hold w.p.1. Common assumptions guaranteeing the existence of
a unique solution are stated in the following theorem.

Theorem 2.15 Let 0 : Ry — ¥ be a switching signal that is represented by a
Markov process. Assume that there exist a positive constant C such that the func-
tionals f and g satisfy the following conditions:

I £t 0, @)+ g, 1, c@)II> < CA+ 117, (as.) (2.85)

forallt e Ry and € €([—r, 0]; R"), and

If (b1, a(0) = £, 42, o)

+ lg(t, 1, o) — g(t, Yo, cEDII* < Clir — all?,  (a.s.)
(2.86)

forallt € Ry and v, ¥, € € ([—r, 0]; R"). Then, there exists a unique solution x
defined for all t > —r with the initial function ¢ € Lf';o([—r, 0]; R™). Furthermore,
the solution x satisfies

E[ sup ||x(t)||2] <00, forallT > 0. (2.87)

—r<t<T

In previous section, we introduced an important diffusion operator (., or £V
as a single notation) associated with the underlying stochastic differential equation
and then examined its estimated upper bound along the trajectories of the system
solutions. In SSSD, we continue to present such an operator. However, due to the
deterministic or probabilistic nature of the switching signal o, the operator can be
defined accordingly. Particularly, if o is of a deterministic type, then we define .%; (or
ZLV;) as before, where i is such that 0 = i € .¥; thatis, % (or £V;) is the operator
of the solution process of the subsystem associated with the €'-2-function V;, which
is designated to the same subsystem. If o, on the other hand, is a Markov process,
one has to take into account the transition rates of this jump process when writing
this operator. In the following definition, we state the generalized Itd formula [12].

Definition 2.33 (Generalized It6 Formula) If x : [—r, 00) — R” is an It6 process

governedby (2.83)and V (¢, x, i) € €V 2(R; x R" x .; Ry ) withc =i € .7, then
V (¢, x, 1) is an Itd process with its differential equation given by

dV(t,x;, i) =LV (t, x;,0)dt + Vi (t, x,0)g(t, x,), 1))dW(t), (as.) (2.88)

where
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LV(t, x,0) =V, (t, x(@), 1) + Vo (t,x@), 1) f(t, x;,0)

+ %tr[g% Xpy 1) Vi (8, x(2), D) g(t, xp, )]

N
+ Y Vi x®. ), (as). (2.89)

Jj=1

Remark 2.3 For simplicity of notation, we wrote the differential dV and functional
operator .ZV in terms of x, only while they also depend on state x(¢).

In analyzing a certain switched system, it may be convenient to specify the switch-
ing signal o in .# to indicate the system mode in action and the subinterval on which
the selected mode is being activated. If, for instance, we have chosen a switching
law, say ®, then generally, we use i; to refer to the ith mode, for any i € ./, and
kth subinterval [#._1, #;), for any k € N. Also, we denote by {#;}ren the switching
sequence or signal, which is generated by the switching law ®. Furthermore, when-
ever investigating a system property, we always assume that the switching sequence
is strictly increasing and that limy_, o #x = 00, solongas ¢ € R, to avoid a problem
trivialness. The second issue of importance is that any mode cannot be activated on
any two successive subintervals [#;_1, #;) and [#, fx+1), and the switching sequence
in this case is usually called minimal. Consequently, following the above particular
notation, SSSD in (2.83) is simply written as follows:

dx(t) = f(t, x;,0)dt + g(t, x;,1)dW (1), t € ti_1, ),
-xto(s) = ¢(S)1 s € [_rs 0]7 (290)
o(ty) = o0yp.

One more issue about switched systems is the stability definition. In fact, it can be
formulated parallel to that of a single-mode system except that, in switched systems,
we should highlight the switching law under consideration. In the following, we state
some stochastic stability properties of the trivial solution of SSSD in (2.83), which
of course imply the corresponding definitions of the other special systems.

Definition 2.34 For any 7y € R, and a given switching law ¢ with an initial state
o € ¥, the trivial solution, x = 0, of (2.83) is said to be

(i) stable in the pth moment if, for any given € > 0, there exists a d = d(fy, €) > 0
such that

Efllollf1 <¢é  implies  E[llx()"] <&, Vi =1,

where (x(¢), o(t)) or simply x(t) = x(t; to, ¢) € €([to — r, to + ]; R"), for
some « > 0, is any solution of (2.83) with ¢ € L;To(f([—r, 0]; R™);
(ii) wuniformly stable in the pthmoment ifitis stable in the pth momentand § = d(¢);
(iii) asymptotically stable in the pth moment if it is stable in the pth moment and
there exists an = 7(fy) > 0 such that
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Efllolf1 <n  implies  lim E[|lx()[|”] = 0;
—00

(iv) uniformly asymptotically stable in the pth moment if it is uniformly stable in
the pth moment and there exists 7 > 0 such that, for a given v > 0, there exists
T = T(n,~y) > 0 such that

E[ll¢l”] <n  implies  E[|x(OI"] <~v, VYt >t +T;

(v) exponentially stable in the pth moment if there exist positive constants K and
A such that

E[lx()[”]1 < KE[||¢7]e " whenever E[||¢[I’] < 7.

Moreover, the above stability properties are said to hold globally if § and 7 are chosen
arbitrarily large.

Having familiarized ourselves with impulsive and switched systems, we are in a
position to define another type of hybrid systems, namely impulsive-switched sys-
tems, also known as switched systems with impulsive effects. The impulses arise when
a switched system transits from one mode to another. Such systems have applica-
tions in biology, pulse vaccination and engineering. An early study that formulated
this system and developed some of its qualitative results was in [13]. Later, this
type of systems was appeared in some other works including papers [14, 15] and a
book [16].

A nonlinear deterministic impulsive-switched system can have the following form

xX(t) = fou(t, x(1)), t #ty, (2.91a)
Ax(t) = F(t,x(t7)), =1y, (2.91b)
x(ty) = Xxo, (291c¢)

where o : [fy, 00) — & for any #p € R, is the switching signal that is a piece-
wise constant function. The discontinuities of o, which represent both the impul-
sive moments and at the same time switching moments, form a strictly increasing
sequence T = {#; }reny With lim_, o fr = 00. As elaborated above, if one is interested
in labeling a system mode which is operating on the k" subinterval, we will write
o = i for any iy € .. It follows that the differential equation (2.91a) is written as
follows:

X(t) = fi(t,x(@), teltior,t).

We next define a solution of the initial-value problem in (2.91).

Definition 2.35 For any r >ty with tp € Ry, x € € ([tp — r, tp + a]; R"), for
some o > 0, and a given switching signal o, the pair (x(z), o(¢)) is said to be a
solution of the impulsive-switched system in (2.91) if
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(i) x(t)iscontinuousforallz € R except at the switching (or impulsive) moments

T = {ti}ken (e, Ve € R\ T);

(ii) the derivative of x exists and continuous for all  # #; and, at t = #;, the right-
hand derivative exists;

(ii1) the right-hand derivative of x satisfies the differential equation in (2.91a) for
allt e R\ T;

(iv) x satisfies the difference equation (2.91b) for all ¢ € T; and

(v) x satisfies the initial condition in (2.91c).

Finally, it could be of special interest to write the general form of the above
solution, which is, after using the so-called method of steps,

x(t) = xo +/ fi (s, x(s))ds + Z I (e, x(1)), (2.92)

{k:to<ti <t}

for all t > 1.

2.11 Singularly Perturbed Systems

In networks or in models of large-scale interconnected systems such as power sys-
tems, large economies, control systems, biochemical or nuclear reactor models, one
encounters dynamics with different speeds or multiple timescales. The corresponding
dynamical systems are often known as singularly perturbed systems or multiscale
systems. Mathematically, a singularly perturbed system is a dynamical system in
which a small parasitic parameter multiplies time derivatives of some of the system
states.

Assume that the dynamics in the aforementioned systems have the the following
form:

X = f(t, x,2)
z=G(,x,2) (2.93)

where x € R™ is the slow variable and z € R” is the fast variable. Here, we assume
that during the fast transients the slow dynamics remain approximately constant
and that, over longer time, they become noticeable, while the fast dynamics have
already reached their quasi-steady states. Therefore, as we shall see in later chapters
of this book, in a short period of time, slow variables are considered constant, and
fast variables eventually reach their quasi-steady state. Over long period of time, the
system variables are represented by slow variables and the quasi-steady state of the
fast variables, as shown in the following system:
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).Cs = f(t7 Xy Zs)
O = G(tv -xss ZS) (2’94)

where x; and z; are referred to as quasi-steady states. Clearly, the second equa-
tion has degenerated into an algebraic (or transcendental) equation, meaning that
the time-varying variable is treated as constant (z = 0). To remove this mathemati-
cal inconsistency, system (2.93) is treated as a two-time-scale singular perturbation
problem with a perturbation parameter, say €. Re-scaling the timescale of system
(2.93) yields the so-called singularly perturbed system or fast—slow system:

X = f(t,x,2)
ez = g(t,x, 2) (2.95)

where g = eG with0 < ¢ < 1.
Setting € = 0 reduces the dimension of the full state from m + n to m. Then,
system (2.95) becomes

X = f(t,x,h(t,x))
0=g(x,2),

where h(t, x) is the solution of the algebraic equation 0 = g(¢, x, z) (ie., z =
h(t, x)). The result is the same as that of (2.95), but the derivation is now differ-
ent.

In reality, the perturbation parameter ¢ has different meaning in different systems.
For instance, in some power systems it indicates machine reactance, in a biochemical
model e might represent a small quantity of an enzyme, and in nuclear reactors model
¢ is due to the fast neutrons.

In fact, to study the stability notion of this system, it is very convenient to treat
this system as a large-scale system or an interconnection of lower order subsystems.
As will be seen later in this book, a proper way to deal with such complex systems is
to decompose interconnected systems into small isolated subsystems and study the
stability of each individual subsystem.

That is, after initially ignoring the interconnection between the subsystems, we
study the stability property of each isolated subsystem. In the next step, we combine
our results from the first step with the connection among these subsystems, which are
viewed as a perturbation, to draw a conclusion about the stability of the interconnected
system. The following analysis explains these two steps:

Let the nth-order interconnected system has the form

&= filx) +gitx), i=1,2....m (2.96)

T
where x; € R% with /" n; =nandx = (xlT Xl x,ﬁ) . Assume that for every
iandallt > fy with 1y € Ry,
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fi(t,0) =0 and g¢;(t,0) =0.

That is, system (2.96) admits a trivial solution x = 0 € R". Ignoring the inter-
connection between the subsystems, g; (¢, x), results in the following m isolated
subsystems

xXi = fi(t, x;). (2.97)

Assume that the trivial solution x; = 0 of (2.97) (for every i) is uniformly asymp-
totically stable. Define the scalar composite Lyapunov function candidate

V(t.x) =Y diVilt. x). (2.98)
i=1

where V;(¢, x;) is the Lyapunov function related to the ith subsystem and d; are
positive constant. Then, the time derivative of V along the trajectories of (2.96) is

. — . [OVi | OVi AL
Vi =Y d[ G+ G e [+ ds et (299)
i=1 ! i=1 !

The first term on the right-hand side is negative definite since V;s are Lyapunov
functions for the m asymptotical stable subsystems, while the second term is, gen-
erally, indefinite; so that, we assume that [0V;/0x;]g; is bounded by a nonnegative
upper bound. To pursue the analysis mathematically, assume that V; (¢, x;) satisfies

oV,

oV
oty i) = —i g} (%), 1= 1o (2.100)

|25 = o (2.101)

where o; and ; are positive constants and ¢; is a positive-definite function. Suppose
that the g; (¢, x) satisfies

m

lgi e O <D i), i=1.2,....m (2.102)

j=1
where «;; are nonnegative constants. Then, the equality in (2.99) leads to
V() < 3 d] - it + Y Bt () |
i=1 j=1

The right-hand side is a quadratic in ¢y, ¢, ..., ¢p,; that is,
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y _l T T
Vit x) < 2¢ (DS+ S D)¢

where ¢ = (¢ ¢ -+ én)7, D =diag(d;, d>, ..., d,) and S is an n x n matrix
whose elements are given by

a; — Bivij, i =]
sij = ., (2.103)
Y { —Bivij L # ]

Clearly, the asymptotic stability of the interconnected system is guaranteed if the
diagonal matrix D is chosen such that the matrix
DS+ STD > 0. (2.104)
The existence of such a diagonal matrix D is ensured if S is an M-matrix as stated
in the following definition.
Definition 2.36 Ann x n matrix S is said to be an M-matrix if its leading (succes-
sive) principal minors are positive, i.e.,
S11 812 00 Sik
det s21 s22 Szk >0, k=1,2,...,n.
Sk1 Sk2 * - Skk

The following lemma provides the sufficient condition that guarantees the exis-
tence of D.

Lemma 2.5 There exists a positive diagonal matrix D that satisfies (2.104) if and
only if S is an M-matrix.

The next theorem summarizes the above results.

Theorem 2.16 Consider the interconnected system (2.96). Assume that, for i =
1,2, ..., m, there exists a positive-definite function V; (t, x;) that satisfies (2.100) and
(2.101), and that g;(t, x) satisfies (2.102). If S defined by (2.103) is an M -matrix,
then the trivial solution of (2.96) is uniformly asymptotically stable. Moreover, it
is globally asymptotically stable if the assumptions hold globally and V;(t, x;) is
radially unbounded.

The stability property of hybrid singularly perturbed systems will be addressed
later in this book.

2.12 Miscellaneous Results

We conclude this chapter by presenting material that will be used throughout this
book.
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Jensen’s Inequality. If o : R — Ris a convex function and x : 2 — R is arandom
variable on a probability space (22, %, P) such that E[x] < oo, then

e(E[x]) < E[px)].

Tchebychev’s Inequality. If x : 2 — R” is a random variable such that E[||x||”] <
oo, for some p > 0, then

E[||x 7]
Plw e Q| |Ix|| zs}f—p, for some € > 0.
€

Holder’s Inequality. Let x and y be R”-valued random processes. If p, g € (1, 00)
and 1/p + 1/q = 1, then

|Elx"y1| < EllxI”1/7E[y]|91"/

holds provided that the pth moments on the right-hand side are finite.

Bihari’s Inequality. For all 7 € [0, T] with T > 0, let u(¢) > 0 be a Borel measur-
able function and v(#) > O be an integrable function. Suppose that K : R,y — R, is
a continuous nondecreasing function such that K (¢) > 0 for all r > 0. If, for some
c>0,

u(t) <c +f v(s)K (u(s))ds, Vi el0,T],
0
then
u(t) < G’I(G(c)+/ v(s)ds)
0

holds for all ¢ € [0, T'] such that
t
G(c) +/ v(s)ds € Dom(G™),
0

where G(r) = foi %, for r > 0, and G~! is the inverse function of G.

Let x and y be two R"-valued random processes having probability measures
P, and P, respectively. Then, the Prokhorov distance between the (probability)
measures is denoted by Z(x, y) = Z(P,, Py). Moreover, if Z(x, y) = 0, then x and
y have the same probability measure. Also, if ]P’{w € Q| lim, o |x, (W) —x(W)| =
O} = 1, then {x,} is a Z-Cauchy sequence. The converse of this fact is true in the

following sense.

Skorokhod’s Theorem. Let {x,} be a Z-Cauchy sequence of random variables.
Then, one can construct another sequence of random variables {y,} and a random
variable y such that
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D (xn, yn) =0 and IP>{C‘) € Q| lim ”yn(w) - Y(W)H = 0} =1L

Definition 2.37 A collection of sequences of random variables Q = {x, | r € A},
for some index set A, is said to be totally Z-bounded if every infinite sequence
{xn,} C O has a 2-Cauchy subsequence.

Prokhorov’s Theorem. Q is totally Z-bounded if and only if, for every € > 0, there
exists a compact set K. of R” such that

Plx e K.} > 1—¢,

for every x € Q.

2.13 Notes and Comments

This chapter serves as an introductory chapter for the rest of this book. The basic
definitions of existence and uniqueness of solutions and stability notions of the trivial
solution of ordinary differential equations are taken from [3], and the ISS definition
and related theorems are taken from [17, 18]. The comparison functions used in the
definitions of stability and ISS of nonlinear systems are taken from [3, 19]. Further
reading about the ISS, one may consult the references [1-3, 17, 18, 20-23]. The
comparison method for ordinary differential equations stated in Sect.2.2 is taken
from [3]. Section2.3 is concerned with delay differential equations. The stability
definitions and theorem are taken from [24-27], Lemma 2.1 and Theorem 2.5 are
taken from [28], Lemmas 2.2 and 2.4 are taken from [29, 30], while Lemma 2.3
is taken from [31]. The impulsive systems of ordinary differential equations can be
read in [32-36], Theorem 2.6 is taken from [14]. Also, one may read about ISS for
impulsive systems, for instance, in [37]. The fundamental properties of impulsive
system with time delay were initially developed in [4, 38, 39]. Section 2.7 deals with
stochastic differential equations, where readers may refer to [40-50] and comparison
method for stochastic system is taken from [51]. In fact, Theorems 2.11 and 2.12 have
been slightly modified to fit our needs in this book. Section2.9 addresses switched
systems; the basic problems of the system, the definitions of dwell-time and average
dwell-time switching signals can be read in [5-7], the Markovian switching can be
read in books such as [12, 52], ISS with Markov switching can be read in [53], the
state-dependent condition is taken from [8, 9] and initial-state-dependent dwell-time
condition is taken from [10]. Further reading about switched systems can be found,
for instance, in [6, 11, 54-83]. The singularly perturbed systems has been addressed
in Sect.2.11. One can read the theory of this system in, for instance, [3, 70, 71,
84-88]. As stated earlier, these systems are viewed as large-scale systems; so that,
the theory of the latter systems can be read, for instance, in [3, 89-92]. The definition
and properties of the M-matrix can be found in [3, 26]. Finally, in the miscellaneous
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section, the Jensen’s inequality, Tchebychev’s inequality and Holder’s inequality are
taken from [12], Bihari’s inequality is taken from [93] and Skorokhod’s Theorem,
Definition 2.37 and Prokhorov’s Theorem are taken from [51].
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Chapter 3 ®)
Fundamental Properties of Stochastic oo
Impulsive Systems with Time Delay

In this chapter, we address stochastic impulsive systems with time delay, where
the impulse times are state-dependent. Using It6 calculus, we develop the essential
foundation of the theory of the mentioned system, namely local and global exis-
tence, forward continuation and uniqueness of strong solutions. As a consequence of
state-dependent impulses, nonidentical solutions can experience impulses at different
times, but not at fixed times as in the case of state-independent impulse times. This
also leads to an undesirable phenomenon, namely rhythmical beating upon impulsive
hypersurfaces, which may arise when we attempt to extend the solution, unless some
further conditions are imposed on these surfaces, as will be seen later.

Particularly, we start with establishing a local existence result assuming that the
functionals f and g are bounded by a nonlinear random function having an integrable
property. Also, we will state some conditions to ensure that when the solution hits
the (impulsive) hypersurface, it will leave it immediately. Due to technical difficul-
ties in extending the solution backwards, we concentrate on the classical forward
solution that does not exhibit rhythmical beating phenomenon. A global solution is
also obtained under the same bounded nonlinear estimate. Finally, we address the
uniqueness problem supposing that a locally Lipschitz condition holds.

Consider the following stochastic impulsive system with time delay

dx(t) = f(t, x)dt + g, x)dW (1), 1 #7(x(17)), (3.1a)
Ax = I(t, x-), t =7 (x(t7)), (3.1b)

where x € R” is the system state random process, f € R", g € R"*™ and 7; €
C>(R",R,) represents an impulsive hypersurface, for k € N, and satisfies 0 =
T0(x) < T1(x) < »(x) < --- and limy_, 5 7% (x) = oo for x € R". We also assume
that the solution of (3.1) is right-continuous (i.e., x(¢7) = x(¢)). In the difference
equation (3.1b), Ax = x(t) — x(¢7) and the functional .# (-) is the impulse amount
which is assumed to be .%, -adapted.

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 59
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The initial condition is given by

Xy, = @(s), se€[—r0] 3.1¢)

where ¢ € ‘,?f?%([—r, 0] x Q; R") (or ¢ € .Z;O([—r, 0]; R*) after dropping the
probability sample space 2 for simplicity of notation). That is, the initial state is
assumed to be .%y-adapted with finite pth moment.

Integrating the stochastic differential equation over (7o, t) gives

x(t) = ¢(0)+f f(S,xs)dS+f g(s, x) dW(s). (3.2

fo

The first integral is a Riemann integral almost surely (a.s.), and the second one is an
16 integral satisfying

t t 2 t
E[[ g(s,xx)dW(s)] — 0, and IEH/{ g(s,xx)dW(s)H =/ Ellg(s, x;)| ds.

fo

In the following, we define indistinguishable solutions and forward continuation
of a solution.

Definition 3.1 The two random processes x (¢, w) and y(¢, w) are said to be indis-
tinguishable if, for almost all w € 2, x(¢, w) = y(¢, w) for all t > 0, that is

Plw | x(t,w) = y(t,w) forallt >0} =1

or, for simplicity, we say x = y (a.s.).

Definition 3.2 Let x and y be solutions of the impulsive stochastic system (3.1)
that are defined on the intervals J; and J,, respectively, where J; C J, and both
intervals have the same closed left endpoints. If x(¢) and y(¢) are indistinguishable
forallt € J; (i.e., x(t) = y(¢) (a.s.) Yt € Jp), then y is said to be a proper forward
continuation of x, or simply continuation of x. In this case, a solution x defined on
J1 is said to be continuable; otherwise, it said to be noncontinuable, and J; is called
the maximal interval of existence of x.

We also need the following lemma to prove the existence result and whose proof
is inspired by that of Lemma 2.1.1 in [1].

Lemma 3.1 Let N be the set of natural numbers, 9 C R", a,b € Ry witha < b,
and c and ¢ are some positive constants. Then, the set

o' ={x<"> € C(la, b; 2) | E[lIx"™ ®)|I*] < ¢ and

E[|lx™ () —x™(t)|*] <e, VneN, Vi, 1 € [a, b]}

is totally D—bounded subset of C([a, b]; D).



3 Fundamental Properties of Stochastic Impulsive Systems with Time Delay 61

Proof By Tchebychev’s inequality, one can find, for every € > 0, () and v, (¢)
such that P{w € Q | [x™ ()] > 11 (e)} < 5 and P{lw € Q | lx® () — xP (@) >
72(6)} < §.Hence, P{w € Q[ [|x™ ()]| > vi(e) or [|x® (1) = xP (1) | > 72(e)} <
&, which implies that P{w € | [|x™ (0)[| < 71(e) or [x™ (1) — x" (1) < 72(e)}
> | — ¢ forevery x € Q. For some o > 0, let

K. :{x<"> e ([, 1o+ al, )| 1x™ (@[] < 71 (e) and

1 1) = xP ()] = ), Vi, 12 € 1o, 10 + a1}

Clearly, P{x € K.} > 1 — <. By Arzela—Ascoli’s theorem, the compactness of
K. follows. Applying Prokhorov’s theorem yields the totally & —boundedness of
the subset Q'.

Remark 3.1 Q' is a collection of sequences which are both uniformly bounded and
equicontinuous in the m.s.

3.1 Ecxistence of Solution

We start this section with establishing a local existence result of the initial-value
problem in (3.1). We first show how the solution evolves between two impulsive
hypersurfaces, and then, under the condition in (3.4), if this solution starts initially
at a hypersurface, it will depart this surface in mean.

Theorem 3.1 Let J C R, and 9 C R" be an open set containing ¢(0). Assume
that f € Z,q(2% Llty, to + «]) and g € Loq(2; L?[to, to + a]), where o > 0 and
[to, to + ] C J, and are continuous in their second argument ). Moreover, there
exists a (random) function m(t) such that, for (t,) € [ty, to + B] x F, for some
positive B < « and compact set F C 9,

Lf @IV llg, vIF < m@), (as.) (3.3)

where

/ m(s)ds < o0, (a.s.).

fp

Then, for almost all w € Q and each (t, ¢) € J X .,Z;O([—r, 0]; R"), there exists
a (local) #,-adapted solution x(t) = x(t; ty, @) of (3.1) on [ty — r, ty + 3]. Further-
more, assume that 7, € €*(2; R,), for k € N, and, whenever t* = i, (x*) for some
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(t*, x*) € J x 9 and some k, there exits a § > 0, where [t*, t* + 6] C J, such that
E[ZLT(x@)] # 1, (3.4)

Sforallt € (t*, t* + 0] and for all functions x that are F;-adapted PC([t* — r, t* +
01; D) and continuous on (t*, t* + 6] and satisfy x(t*) = x* and E[||x (s) — x*||?] <
Afors € [t*,t* 4+ 8] and \ > 0. Then, the solution x leaves the hypersurface 7;(x)
in mean; i.e., x exists on [ty — r, to + ] for some 3 > 0 for which x will not intersect
any impulse hypersurface at any time t € (ty, ty + 5].

Proof Let (¢, ¢) € J X Z}O([—r, 0] x ©2; R™) and choose o > 0 such that [y, ty +
«] C J. Since for almost all w € 2, ¢(0) € Z and Z is an open set, one can choose
A > 0 such that

F=FZ,N)={zeR"||z—¢0)] <A C 2. (3.5)

Clearly, F is a compact set. Set
t
M(t) = / m(s)ds, t € [to, to + .
o

Then, M (t) is absolutely continuous (a.s.) and nondecreasing (a.s.). Als~0, M(ty) =
0 and M (¢) is bounded (a.s.). Therefore, there is a positive number, say M, such that

M(t):/ m(s)yds < M, t €[ty to+al.

fo

Let § = min{a, —/\ii — 1} > 0. For 0 < 3; < (3, define

0= {x € PC([ty — 1, tg + 511, D)| x1, = ¢, x is continuous on (ty, fo + 1]

and .%,-adapted and ||x(¢) — HO))*> < X (a.s.) Vt € (to, to + 61]}.

Ifx € Q,(i.e.,x iscontinuous on [fy, o + (1] and .%,-adapted), then the composite
functions f (¢, x,) and g(¢, x,) are adapted and (a.s.) integrable (respectively square
integrable) since f(t,x;) € L (Q; Llto, o + f1]) and g(t, x;) € Lo (2 L[t0, 1o
+ BiD.

For n € N, define the sequence of random processes

¢(t_t0)’ re [IO_”, IO],
; $(0), , 1 € (1o, to + 3/nl,
)C( )(t) = ¢(O) + /;:]—ﬁ/" f(s,x}"))ds (3.6)

+ [T (s, xMYAW (s), 1 € (to+ B/n, to + B,

0
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By the above argument and ¢ € .i’fén([—r, 0]; R™), the sequence {x™} is well

defined and, for each n, x®(¢) is .%-adapted. Moreover, for t € (to + 3/n, to +
2/3/n], we have

t—fB/n t—=p/n
k™ () — $O)] < ”/t £, x| + H/, 905, AW (s)].

So that, in view of (3.3),

B[1x 0 - o0 1] <2{] [ T eas]’ | / T g xawo )
0

0

=

[\

to+p3/n to+53/n
[ B Ras+ [ Blge. 1) Pas)
n Ji to
g

<22+ )M < ),
n

where we used (a + b)? < 2(a® + b*) and Caushy—Schwartz inequality. If a sub-
sequence of {x™} is taken, then {x™} € Q (a.s.), and by the mathematical induc-
tion, we can show that this is true for ¢t € (fo + kG3/n, ty + (k + 1)3/n], for k =
1,2,...,n— 1. Thus, forn > 2, x® belongs to Q. We also have, from (3.6),

@Ol < 16O + |

t—3/n t—03/n
/ Fs.x™)ds H + H / (s, x™)dW (s) H
Iy to

So that

E[1s”01] < 3{EIs0R + 2] [ T s+ / T g awes|)
0 0

to+53/n to+53/n

<3fe +§/ E|\f<s,x§"’)||2dx+/ Ellg(s. x")ds}
10 fo

s

53{c1+<;+1)1\7}.

Namely, we have
E[ Ik 01| < . (3.)

where \' = 3{01 + (g + )M ] . By Tchebychev’s inequality, one can find, fore > 0,
~1(€) such that

€

E[lk0]  y
< =-.
nE? T mE? 2

PlI” 01 > n@) <
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Now, for each n, let y™ denote the restriction of x™ to [ty, ty + 3]. Then, y™ is
continuous on [y, ty + 3], and moreover, for t € [z, to + (3], we have

Pl 0l > n@] = (3:8)

3
7’

meaning that the sequence {y®™ (¢)} is uniformly bounded (a.s.). We also have

1 n
YO () — Y (1) = / Fsoy™yds + / o5, )W (s).
15}

15}

so that
e[ -] <2fe] [ root s 42 [ gl awe )
2 2
<2M%|n —nl(n —nl+1) <<

namely

B |y - 0| <<

which implies that, for a positive ¢, there exists 7, (¢) such that

P{Iy® ) =y ) > @] < (3.9)

9
7’

which shows that the sequence {y™} is equicontinuous (a.s.).
Combining (3.8) and (3.9) yields

P{Iy™ O = 3@ orlly® ) =y W)l < 12@) > 1-,
Set

K. :{yw e C(lto. 1o+ BL D) | Iy 0 < (e

and [[y*(1) =y )] < 1)}

The following part of the proof is aimed to prove the convergence of the sequence
in (3.6)." Since K. is uniformly bounded and equicontinuous, by Arzela—Ascoli’s
theorem [1], it is a compact subset of C ([, o + 3]; Z). In addition, by Lemma 3.1,
it satisfies P{y™ e K.} > 1 — . Thus, by Prokhorov’s theorem, the collection of

I'This part of the proof is inspired by that of Theorem 4.2.1 in [1] except the dynamics there are
delay-free. We reproduced it here for self-contained proof reading.
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continuous processes {y® (¢)} is totally D—bounded. Thus, {(y™ (t), W™ (1), y{")}
is totally bounded, where W (¢) = W (¢) and yé") = ¢(0) =: yp. Therefore, one can
finda D-Cauchy subsequence {(y") (), W) (), y")} of {(y™ (1), W™ (1), yi™)}.
By Skorohod’s theorem [1], we can construct a sequence of random functions
(@™ (t), w™ (r), uy)} and a random function (u(z), w(t), up) such that the dis-
tance

DG @, W@, 3, @ @), w0, uf™)) =0, (3.10)
for ny, ny, n3, ..., and
P{(u("’)(t), W) (), ) = (e), w(t). uo)} —1 3.11)

asr — OQ.

Notation. Denote the superscript n, by the subscript r; for example, the subsequence
{u" (1)} becomes {u, ()}.

The subsequence {u,(t)} is a D—Cauchy sequence. By the definition of totally
D—bounded set, one can construct or find (n-indexed) D—Cauchy subsequence
{ul(t)} of {u,(¢)} and construct a subsequence {u"(¢)} of the (restricted) solution
sequence {y™} as follows

Urys t € (1o, 1o + 3/n],
Wy =+ i7" Fis ul)ds
—i—f,f]_ﬂ/"g(s,u;’s)dw,.(s), t € (to+ B/n,to + 51,

foreveryr =1,2,...,and

uo, 1 € (to, to + 3/nl,
u' () = { uo+ ft:)_“d’/n f(s,ul)ds
+ [ g (s ul) dw(s), t € (to+ B/n 1o+ 1.
Set

t t

1,(t) =/ f(S,MrJ)dS+/ g(s, uy,) dw,(s), (3.12a)
1 1
Ot—ﬂ/n ’ t—03/n

I"(1) :/ f(s,ufx)ds+/ g(s, u" ) dw, (s), (3.12b)
Ty to

I1(1) =f f(s,us)ds +/ qg(s, ug)dw(s), (3.12¢)

)
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1=f3/n t—03/n

ro= [ feandst [ g du). (3.12d)
1 1
Or—ﬁ/r 0z‘—\@/r

1;(;):/ f(s,u:x)ds—}-/ g(s, ul) dw, (s). (3.12¢)
1) )

From (3.12a) and (3.12b), we have

lo

t—p3/n t
ro-10= [ feuds- [ fouds

Io

t—03/n t
+/ g(s,ufs)dwr(S)—/ g(s,ur)dw,(s)  (3.13)

fo to

Iy

The stochastic integral [y and /; can be written as follows

t t
[ rreuas. [ oo,
fo

fo

where f"(s, uy;) and g" (s, uy,) are sequences of step functions. As for /" and g",
the least we expect that they are piecewise continuous functions. Also, since the
functionals f and g are continuous in the second argument and u/' (¢) is a D—Cauchy
sequence which converges to u,(t), we have

t
/ 1Lf" (s, ) = fsoun) [P ds — 0
1ty
and
t
f 19" (s, ) — g(s. up )P ds — 0
4]
in probability. Therefore, the sequence of the deterministic integrals converges to

/ f(s,u)ds

and by the definition of Itd integral, we have

/g(s,urx)dwr(S)Z/ g" (s, u) dw,(s)

fo fo

2In fact, if a subsequence is taken, the convergence holds with probability one.
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in probability. Hence, I (¢) converges to I,(¢) uniformly in probability as n — oo;
namely, we have, for any r € N and given e > 0,

P @) — LDl > e} < e (3.14)
as n — oo. Similarly, from (3.12¢) and (3.12d), we obtain
P{I"(t) — 1(1)|| > €} < e. (3.15)
From (3.12b) and (3.12d), we get
P{I'(t) - I"(n)} =1 (3.16)
as r — oo, because we have a sequence of stochastic integrals {/(¢)}°2, which,

by (3.11), converges to the stochastic integral /" (¢) as r — o0. Also, (3.16) implies
that, for any € > 0, there exists a positive number r such that » > ry = ro(¢),

n n 63
IfCs,u)) — fs,upl < e

n n 53
llg(s, uy) — g(s, up)| < 5

to+f3
B0~ LOPT<28[5 [ 15 Gul) ~ Fod P ds]

fo

and

Hence

1o+
w2 [ g ut) - g P s

fo
fo+03 &3
541[-3[/ —ds] _
I 4ﬁ
and by Tchebychev’s inequality, we get
PIL'@®) = 1"O > e} <&, r=ro(e). (3.17)

We want now to show that

=:1(1)

u(r) =¢>(0)+/ .f(s,us)ds-i-f g(s,ug) dW(s)

fo
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holds. Note that

P{llut) = 6(0) — 1) > 6]
=0
—t~——
= P{Ilu(t) —up (1) +urg + 17 (1) =p(0) — L () + 1" (1) = 1" () + [} (1) — I}' (1)

+ 10 = 1O > 6}

=Pl = uf0) + ry = $O0) = (1) = ") + (1) = I"(1))
+ ) = 1) + UF O = @) > 6c)

=PlIy®) =i 01l > e} + Plur, = 01 > e} + P11y = 1" 01 > <
+Plir o - "ol > e} + Plin-o - o) > <]

+IP>{||1,’(z) “ Lol > e} < 6e,
namely
IP’{Hu(t) —60) — 1) > 65] < 6e.

Since € > 0 is arbitrary, this implies that

u(t) = ¢(0) +/ f(s,us)ds +/ g(s,ug)dW(s), (a.s.).

fo

Hence, y = u. Finally, define

¢(t_t0)’ re [tO_r’ tO],

y(@), t € (to, 1o + Ol (3.18)

x(t) = {

Thus, x is the required solution of (3.1). In the rest of the proof, we show that,
under the condition in (3.4), the solution x cannot continue along the hypersurface
t = T (x) after it initially starts on it. Define the random function

g(t) =t — 1(x()), (3.19)
for all t € [ty, to + 3. Then, g(ty) = ty — Te(¢(0)) = 0 and g(¢) has a derivative in

mean. Differentiating with respect to ¢, applying Itd formula and taking the mathe-
matical expectation lead to

d
EE[QU)] =1-E[Z7n(x(0)]. (3.20)
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Clearly, the right-hand side of (3.20) is continuous at least in a small neighborhood
of 1y, so that if we let t* = 1y and x* = ¢(0) and apply (3.4), g(¢) is either strictly
increasing or strictly decreasing in mean on (t*, t* + §). Hence, the solution will
depart any hypersurface = 7 (x(#)) in mean for some amount of time after ¢y (or
t*) before it hits another hypersurface. This completes the proof.

3.2 Forward Continuation

Having seen how the solution x evolves between two hypersurfaces, regardless of
where it initially starts, we address now the problem of forward continuation of
solution of (3.1) which, at the same time, does not exhibit the beating phenomenon
upon an impulse hypersurface. These extensions require further conditions on the
impulsive moments 7, and function .# as stated in the following theorem.

Theorem 3.2 Suppose that the functionals f and g satisfy the conditions in Theo-
rem 3.1, v € €*(2; R,), for some k € N, and limy_, o T¢ (x) = 00 uniformly in x.
Assume that

E[Z7(0)] < 1, (3.21)
forall (t,v) € J x PEC([—r,0]; ) and k € N, and the relations

P(0) + 7 (1 ((0), ) € D; and
Te((0) + S (1 (1(0)), ¥)) < 7 (x(0)) (3.22)

hold almost surely for all ) € PE ([—r, 0]; D) for which 1»(07) = 1(0) (a.s.) and
for all k € N. Then, for every continuable solution x of (3.1), there exists a continu-
ation y of x that is noncontinuable. Moreover, any solution x of (3.1) can intersect
each impulse hypersurface at most once.

Proof Let x(¢) be any solution of (3.1) that is defined on [fy — r, ty + [3) or [ty —
r, to + (1], where 0 < 3; < oo. Denote by X the set of all solutions x with their
continuations. For any y, z € X, we define the partial ordering < by y < z if, for
almost all w € Q, either y = z or z is a continuation of y. Let S be a totally ordered
subset of X. Now for y € S, we associate 3(y) such that 3; < B(y) < oo and by
which the solution y is defined on [fy — r, ty + B(y)) or [ty — r, to + B(¥)].

Define

B2 = sup{B(y) |y € S}.

Clearly, 3 < (3, < oo and y is defined on a subset of [ty — r, t) + (»] if 3, < 00
or [ty — r, to + (32) if B, = oo. At this stage, one considers two cases. The trivial case
is when /3, < 00, and there is a solution y defined on [#y — r, fy + (32]. Consequently,
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this solution y of (3.1) is an upper bound on S, and at the same time, it is the required
solution continuation. In the other case, we will show that there is a solution z defined
on [fy — r, o + ) such that for all y € S, y < z, that is z will be an upper bound
on S. Hence, by Zorn’s lemma, the set X has a maximal element. To show this fact,
fort € [ty — r, ty + 32), we define the following function

(1) = y(), (as.) (3.23)

where y is any solution in S for which ¢ < fy + (3(y). The new function z is well
defined, it is right-continuous (i.e., z(t7) = z(¢) (a.s.)) for all ¢ € [ty — 7, to + 32),
the left limit z(¢7) exits forall r € (tg — r, to + 32) and z(¢t~) = z(t) (a.s.) for all but
at most finite number of points in (ty — 7, fy). Moreover, if z has a finite number of
simple jump discontinuities in any finite interval of (¢, fy + (32), then z is a solution
of 3.1) (i.e., z € €[ty —r, to + B2); Z) and F;-adapted). To show this is the
only possible case, for 3, < oo, define

T = {t € (to, to + 3») | t = 7x(z(t ")) for some k}.

Then, except at these points, z(r~) = z(¢) (a.s.). At this point, we also consider two
case; the first one is when T is finite. By the assumptions imposed on the functionals
f and g from the last theorem, f (¢, z,) and g(t, z,) can only have a finite number of
simple jump discontinuities on the interval (¢y, o 4+ 3,), and except at these point or at
the points of T, the solution z is continuous and has the solution form given in (2.53).
This is because the functionals f (¢, z;) and f (¢, y;) have the same properties. We
conclude that, if y € 22€ ([to —r, 1o + [(2); Z) and %;-adapted, so is z. The more
challenging case is when 3, < oo and T has an infinite number of discontinuities in
(to, to + [32). Inthis case, T has an increasing sequence of impulse times T = {#:}72,,
wherety <ty <thh <--- <ty <---<ty+ frandlimy_, o tr =ty + B,.Fork € N,
denote by j; the index of the unique impulse hypersurface 7;, that the solution z
reaches at ;, i.e., fy = 7, (z(t, ). For some finite integer number N > 0, if jz < N,
then z can reach only a finite number of impulse hypersurfaces. Since, as assumed,
there is an increasing number of impulse times, the solution z must reach at least
one impulse hypersurface more than once. In other words, jix = jitm, and hence,
th = 7, (z(t;)) and ty,, = 7, (2(f,,,)) for some positive integers k and m (i.e., the
hypersurface 7;, is being hit at times #; and ;). This also implies thatif y € S, then
=7, (v() and try = 7, (¥(t,,)) Where tx i, < fo + B(y). We will show that,
according to our assumptions, this cannot happen for the solution y to reach the same
hypersurface more than once. For this purpose, fori =0, 1,2, ..., m, we define

hyi(0) =t — 75, (@),  (as.) (3.24)
for t € [to — 1, trym]. Note that fyy; (7, ;) = 0 for all i. Suppose for the sake of

contradiction that, for some 0 <i <m — 1, we have jiy; > jiy;+1 and hence
Ti W) > Tj,,.,(v) for all v € 2. This implies

hicyivi(teyi) 20, (as.) (3.25)
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On the other hand, differentiating %;;41(¢) with respect to ¢, for all ¢ € (x4,
tr+i+1), applying 1t6 formula and taking the mathematical expectation give

d
EE[thH(t)] =1-E[ZL7,,,, ()], (3.26)

for all 1 € (tx4i, tiviv1)- By (3.21) and the fact that iy (7, ;) = 0, we conclude
that A1 11 (tx+;) < 0 in mean, which contradicts with what we got in (3.25). Thus,
Jk+i < Jk+i+1 and hence ji < jiy1 < -+ < jk+m, Which also contradicts with our
supposition jiy = jr+»,. Therefore, the solution y and hence z must intersect a given
impulse hypersurface at most once in mean. This completes the proof.

Before developing our global existence result, we would like to address the case
where the solution is noncontinuable in the sense that the solution cannot be entirely
contained in any compact set.

Theorem 3.3 Let x be a solution of (3.1) that is defined for all t € [ty — r, ty +
0B), where 0 < 3 < 0o and [ty, to + 8] C J. If x is noncontinuable, then there is
a sequence {si}7o,, wWithty < §; < 8§ < -+ < S < -+ <ty + [ and limy_, 5 =
to + (3 (a.s.) such that x(s;) ¢ F, for any compact set F C 9.

Proof Assume, for contradiction, that there is a compact set F; C Z and 3; > 0 for
which x(t) € F) forallt € [ty + 1, tp + ). Let F, be the closure of the range of the
solution x when 7 is restricted to [ty — r, tp + (31]. Then, the set F = FiUF, C &
is also compact and x(r) € F for all 7 € [ty — r, o + ). Now, for any 7,7 € [tp +
081, to + 3), we have from (2.53)

ey =<t < | [ s + | / Gexave| a2
Hence
B0 —xi] <2(g] [ sosas] +E] [ g xawe )
<2{ir -7 [Enf(s,xx)nzds + [E||g<s,xs)||2ds}
<2M*t —T|{|t—F|+ 1} <e, (3.28)

for some arbitrary positive £ > 0 and M > 0, which is guaranteed by Theorem 3.1.
Then, by Tchebychev’s inequality, we obtain

Plie) 2@l > n} = .



72 3 Fundamental Properties of Stochastic Impulsive Systems with Time Delay

for some 1 > 0. Also, by Cauchy criterion, the limit lim,_, (,,+ gy x (¢) exits with prob-
ability one and its limit point, say ¢, is in F'. That is, the solution x can be continued
by defining x () + ) = (. But this contradicts with our supposition that x is non-
continuable. Thus, the conclusion of the theorem follows.

3.3 Global Existence

Having shown the evolution of a local solution of (3.1), we address the problem of
the global existence of the solution. This demands imposing further assumptions on
the functionals f and g.

Theorem 3.4 LetJ = R, 2 = R" be an open set containing ¢(0) and the function-
als f € Z,q(2 Llty, to + a) and g € L,q(Q; L?[1y, to + o), where o > 0 and
[to, to + ] C J are continuous in their second argument, say 1. Assume further
that there are two measurable functions hy, hy (or hy, hy € PER,; R,y)) and a
continuous increasing concave function k : Ry — Ry such that

I D)V g, I < ki) + 3 @Ow[Y]%)

for all (t,7) € Ry x Z}r([—r, 0]; R™) (i.e., ¥ is an F;-adapted and E[||1/J||f] <
00). Then, for each (t, ¢) € Ry x f}o([—r, 0]; R™), there exists a local F,-adapted
solution x = x(t; ty, ¢(0)) for (3.1) that can be continued to [ty — r, 00).

Proof For all (¢, ) € Ry x f}o([—r, 0]; R™), let x(t) = x(¢; ty, ¢(0)) be a local
solution of (3.1) that is guaranteed by Theorem 3.2. Suppose that, for contradiction,
for a finite 3 the solution x is noncontinuable in the sense of Theorem 3.3. We will
show that based on the theorem assumptions this supposition would be impossible.

Leta = E[|¢(0)[*] + E [(z{k:,ke(,oy,]} |1 x,k)H)z}, b= (3+ 1)Bh2, where

h = sup{h(t) | V1 € [ty to + (]} and ¢ = E[[|p]|2].
Then, for all t € (1o, ty + 3),

B2t < 4B P+ E[( Y [reeso])] +ﬁ/tt1E||f(s,xs)||2ds
{kiteetro 11} 0

t
+ [ Elgts. x1as)
1

0

t
< 4{a +bh+(@B+1) / h3 (s)k(E[|xs ||%])ds} (3.29)
)



3.3 Global Existence 73

which implies that
Elllx |’ < c+4@+b) +4(B+1) / 3 ()R (ELlx,1171) ds
— B4+4B+ 1) / B2(s)R(EL1x, |21) ds.

where B = ¢ + 4(a + b). Using Bihari’s Lemma yields

Bl 21 = 67 (G(B) + 4+ 1) [ 1(o1ds).

where

“ds
G(u)z'/mm, u>0

and G(B) +4(B+1) ftf] h3(s)ds € Dom(G™").If B — 0, then G(B) — —o0 and,
hence, G™! — 0. Thatistosay,if B — 0, thenE[||x,||?] < 0 < oo. Thus, E[||x()]|%]
< 00. This contradicts with that x is noncontinuable. Therefore, the solution must
be bounded when t — (#y) + )~ and the global existence result follows.

3.4 Uniqueness of Solution

Having established the local/global existence result for impulsive system (3.1), we
are in a position to prove the uniqueness of the solution.

Theorem 3.5 Suppose that the assumptions of Theorem 3.4 hold and that the func-
tionals f(t,) and g(t, ) are locally Lipschitz in i for all t € J. Then, sys-
tem (3.1) has a unique solution defined on [ty — r, ty + ), where 0 < § < o0 and
[to.to+3) CJ =R,.

Proof For all t € [ty —r, ty + ) with 0 < 8 < oo and [ty, o+ 3) C J, let x =
x(t; to, ¢(0)) and y = y(¢; 9, ¢(0)) be two solutions of (3.1). So that, x () = y(¢) =
¢(t — ty) for all ¢ € [t — 1y, tr]. For contradiction, assume that x # y (a.s.) (i.e.,
x(t) # y(t) (a.s.) for all t € J). Then, there would be some ¢ € (fy, o + 3) such
that x(¢t) # y(¢) (a.s.). Define the stopping time #; = inf{t € (fo, fo + 3) | x(t) #
y(®)}. If #; is not an impulsive time (i.e., #; # 7Tx(x(f; )) or equivalently #; #
Tk (y(t;)) for all k), then x(t;) = x(¢;) = y(t;) = y(t1) (a.s.); otherwise, x(f;) =
x(t))+ A1, X)) = () + A, yi) = y(11). Hence, in both cases, we have
x(t;) = y(t1) (a.s.). Let € > 0 be sufficiently small such that t{ +¢ < ) + § and
the solutions x and y do not reach any hypersurface over (f1, t; +¢]. Let § > 0
be a sufficiently small number such that § < € and (0 + DL? < %, where L > 0,
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suchthat || f(z, 1) — f (&, Y2 V Ilg@t, 1) — g(t, Y2)Il < LYy — 42l forallr €
[to, t1 + €] and all ¢y, 1, in some compact set F C & with & being an open subset
of R”, where the last inequality is guaranteed as f and g are locally Lipschitz in
1. Then, for all 7 € [1, t; + 6] (where x and y do not intersect with any impulsive
hypersurface), we have from (2.53)

2

Bllx0) - ol =2{E] [ (0 = F 3 ds
+E| [(g(s, ) =96 30w )]

< 2{5/ Ell £ (s, x5) — f(s, y)|*ds

n

+ [ Elgs.x0 - g6,y ds|

3]

t
<264+ 1) / E[L2[x, — v, IP1ds
t

t
<205+ 1)L2f sup Ellx(u) — yu)|’ds
1

u€lty,s]

H+0
<205+ 1)L2/ sup  Ellx(u) — y(u)|’ds
1 u€lty,t+0)

<200+ DL* sup Elx@) —yw)|?
uety (1 +9]

1
<= sup Elx@ —yw]|?
uety (1 +9]

forallt € [t1, #; + 0]. The lastinequality implies that sup;, , .5 E[llx(#) — y@®)|I?] =
0. Since x and y are continuous functions for all ¢ € [#;, t; + J], then

P( sup Jx() - ()] > 0) =0, (3.30)

[t1,1146]

which implies that x (1) = y(¢) (a.s.) for all ¢ € [#1, t; + §] [2]. But this contradicts
with our supposition that x # y (a.s.). Thus, it must be true that (3.1) has a unique
solution.

3.5 Notes and Comments

In this chapter, we have considered a general nonlinear stochastic system with time
delay and impulsive effects occurring at state-dependent variable times. We have first
addressed alocal existence result for the system over a space of piecewise continuous,



3.5 Notes and Comments 75

Z,-adapted functions. The material of this chapter is taken from [3]. Also, if the
stochastic diffusion process is completely set to zero (i.e., g = 0), then system (3.1)
reduces to impulsive system (2.31). So that, one may refer to [4, 5] to further study
the fundamental properties system (2.31). We should mention that, in proving the
equi-continuity property of the solution sequence, one may get the same result by
following another, but lengthy, approach and then employing Kolmogorov’s theorem
for continuity. As mentioned earlier, the proof of the convergence of sequence of
SIEs is inspired by that of Theorem 4.2.1 in [1]; instead, one can obtain the same
convergence property if the functionals satisfy the Lipschitz condition. We have also
shown that, by imposing further restriction on the impulsive hypersurface, solutions
leave this surface in mean. Due to some technical difficulties in backward extending
a given solution of an impulsive system with or without time delay, we have focused
on forward continuation, which meets our interest in this book when studying the
qualitative properties of the stochastic delay system with fixed impulses. Later, under
further conditions on the impulse function and impulses, solutions evolve without
exhibiting rhythmical beating upon a hypersurface. Supposing that the drift and
diffusion coefficients (i.e., f and g) are bounded by some nonlinear estimate in their
delayed-state argument, a global result has been achieved. In fact, one can reach the
same finding if the coefficients are assumed to grow linearly; however, the result will
be analyzed differently. Finally, a unique solution is guaranteed if f and g be locally
Lipschitz.
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Chapter 4 ®)
Stability of Stochastic Impulsive Systems | o
with Time Delay

In this chapter, we consider nonlinear stochastic impulsive systems with time delay.
Particularly, the time delay here is finite; the stochastic noise is represented by a
Wiener process, and the impulses are state-independent and are of types diminishing
and unbounded in total. Namely, we consider the following system

dx(t) = f(t, x)dt + g(t, x,) dW(t), t # T, (4.1a)
Ax = I (t, x;-), t =T, (4.1b)
Xy, = ¢(s), s €[—r0] 4.1¢)

The main interest here is to address the problem of mean square (m.s.) global
asymptotic stability and the problem of stabilization by impulsive controller. Pre-
cisely, we develop Lyapunov-like sufficient conditions to ensure the stability property
using the classical Lyapunov-based approach and the comparison method.

Similar to those stated in Chap. 2, while investigating the stability properties of
impulsive systems, we make for convenient reading two assumptions, taking into
account the random noise affecting the system in Assumption Al.

Assumption A1 There exist 0 < g; < psuch that, forall 7, € R, and x defined on
PE([—r,0]; D), for some open set Z € R", if

E[llx(r)II*1 < 01, then E[x(m)[*] < o
Assumption A2 For any k € N, we have

Toup = SUP{Tx — Tk—1} < 00 and Tint = Inf{my — 7,1} > 0.
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Definition 4.1 The trivial solution of system (4.1) is said to be

(i) stable in the m.s., if forevery e > Oand ¢y € R, thereexistsad = d(tg, ) > 0
such that

E[ll¢I?]1 <6 implies E[|x(®)|*]1 <e, V> 1,

where x(t) = x(t; ty, ¢) is any solution of (4.1), with x € L€ [ty — r, th +
al; ) for some o > 0 and ¢ € ﬁ}o([—r, 01; 2);

(i1) uniformly stable in the m.s. if § in (i) is independent of 7y;

(ii1) asymptotically stable in the m.s. if it is stable and for any 7y € R, there exists
n = n(ty) > 0 such that

Elll¢l;]<n  implies Jlim E[[lx(0)]*] = 0;
—00

(iv) uniformly asymptotically stable in the m.s. if it is uniformly stable in the m.s.
and there exists some 7 > 0 such that, for every v > 0, there exists a constant
T =T (n,~) > 0 for which

E[ll¢Z1 <n  implies  E[|x()I*]1 <7, Vt>t9+T;

(v) uniformly attractive in the m.s. if, for any n > 0, there exists a o = dy(n) and
T = T(n) > 0 for which E[||x(¢)||*] < n, for all t > T, whenever E[||¢]*] <
do. It is said to be uniformly asymptotically stable if it is uniformly attractive
and (ii) holds simultaneously.;

(vi) exponentially stable in the m.s. if there exist positive constants K and A\ such
that

E[llx(t)*] < KE[[|¢[?1e 27, Vi > t;

(vii) unstable in m.s. if (i) fails to hold.

4.1 Stability Analysis by Classical Lyapunov Technique

In this section, we address the m.s. stability properties of (4.1) using Lyapunov-
based theorems together with Razumikhin technique. Particularly, in Theorem 4.1,
the underlying continuous system is assumed to have unstable trivial solution that
is stabilized by the action of impulsive effects, which are not necessarily bounded.
Later in Corollary 4.1, the underlying continuous systems is assumed to be stable
that is perturbed by impulses. To maintain the stability property, the impulses are
treated as perturbation to the continuous system.
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Theorem 4.1 Assume that Assumptions Al and A2 are satisfied and there exist func-
tionsa,c € Ho, be Hyandp € PERy;Ry). Let V e €12 ([—r, 00) x R"; R,)
such that the following conditions hold:

(i) for all (t,4(0)) € [—r, 00) x S(0),
b(lP(0)I1*) < V (1, ¥(0) < a([l¥(0)]%), (a.s.);

(ii) forallt # 7 € Ry and v € PE€([—r, 0); S(0)),
ZLV(t,Y) < pt)e(V(t,¥(0)), (a.s.)

provided that g(V (t + s, ¥(s))) < V(t,(0)) for some s € [—r, 0], where g €
(%;
(iii) at any impulsive moment 7, € T and » € L€ ([—r, 00); S(0)),

V (7, ¥(0) + I (i, ¥(1,)) = g(V (7, ¥(0))), (a.s.)

with 1(07) = ¥(0), where (1., ¥(7;)) € Ry x PE([—r, 0]; S(01));
(iv) M, = supt>0 f’” p(s)ds < oo, with T = supyn{Tk — Ti—1} < 00 and My =

infq>o 3@ ds/c(s) > M.

Then, the trivial solution x = 0 of (4.1) is uniformly asymptotically stable in the m.s.

Proof From condition (i), we have for s S [0, 0],b(s) < a(s), sothat we can find two
functions b € Jyanda € J, such thatb(s) < b(s) <a(s) <a(s)foralls € [0, o].
This implies

bV (0)1%) < V(t,1(0)) < a(llw(0)]?), (as.),

forallt e Ry and ¢ € @%([—r, 0]; S(g)).

We first prove uniform stability in the m.s. Let 0 < € < py and x(¢) = x(¢; tg, @)
be a solution of (4.1) with its maximal interval of existence [z, tp + ). Choose
6 = d(¢) such that 6 < Zz’l(g(l;(z-:))). Since, by the definition of M>,0 < g(¢) < g,
wehave 0 < § < ¢.

Claim 1 Let ¢ be the initial function such that E[||q5||f] < 6. Then, x =0 is uni-
formly stable in the m.s.

Proof of Claim 1. If our claim were not true, there would be some ¢ € [f9, t) +
B3) for which E[||x(¢)]|?] > €. Then, define f = inf{t € [to, 21> ¢}
Clearly that E[||x(1)[|*] < E[[¢l?]1 < & < e forall ¢ € [ty — r, to], and particularly,
E[llx(t9)||*] < €. Therefore, € (ty, ty + 3), E[x ()] < e < o, forall t € [ty — r, 1)
which is guaranteed by Assumption A1 and either E[||x(¢)[?] = cor E[||x(1)||?] > ¢
atf = 7, for some k. Therefore, V (¢, x(¢)) is defined for all ¢ € [1y, f]. Thus, define
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m(t) = E[V (¢, x(¢))]. With the aid of 1t6 formula and the property of the function
c, we get, after taking the mathematical expectation,

m(1) SM(S)+]E/ LV, x)du, Ntg<s<t<t
= m(s) + p(H)c(m(t)),

which implies that the Dini derivative of m is given by

1
D¥m(r) = hlinol+ sup E[m(t +h) —m(t)] < p(H)c(m(1)), (4.2)

for all t # 7 in (to, f], provided that m(t) > g(|lm(t)|,) and, at the impulsive
moments, we have

m(7) < g(m(7,)), (4.3)

for all 7 € (to, f]. Let t* = inf{t € [to, ]|m(t) > b(e)}. Since m(ty) < a(||¢||?) <
b(8) < g(b(e)) < b(e) and m(?) > b(e), which is guaranteed by b(E[||x(1)|*]) <
m(t) < a(E[||lx()|I*]), we conclude that t* € (ty, f]. Furthermore, m(t) < 13(5) for
allt € [ty — r, t*). This is because, as seen above, m(t) < 5(5) forallt € [tg — r, tp],
m(f) > l;(a) and the definition of ¢*. Before finishing the proof of Claim 1, we need
to prove the following result.

Claim 2 For 7y, € (t, t] (for any k), m(t*) = l;(s) and t* # .

Proof of Claim 2. Note that, from the definition of ¢*, m(t*) > l;(e) > 0. Now, if
t* = 7, for some k, then

0 < b(e) < m(r*) < Ggm(t*)) <m(t*") < b(e)

which is impossible. Thus, r* # 7, for any k. This also implies that m(t*) = l;(e)
because m(t) is continuous at t*. This completes the proof of Claim 2.

To pursue the proof of Claim 1, consider that 7, <17y < t* < 7. Let 7 =
sup(t € [to, t*1|m(t) < §(b(e))}. We have seen m(tg) < G(b(e)), m(t*) = b(e) >
G(b(¢)) and m(z) is continuous on [fo, t*]. Then, 7 € (ty, t*), m(7) = §(b(c)) and
m(t) > g(l;(s)) for all ¢ € [t, t*]. Hence, for ¢t € [f,t*] and s € [—r, 0], we have
gm(t +s)) < g(l;(s)) < m(t). Thus, the inequality

D¥m(1) < p()c(m(1))
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holds for all ¢ € (z, t*]. Integrating this differential inequality yields

m(t*) ds t +7 +7
/ s / p(s)ds < / p(s)ds < sup / p@)ds = My, (4.4)
m@ c(s) 7 7 7

On the other hand, we have

m(t*) d l;(E) d
/ L. f Doy, (4.5)
m@ () 3y €(s)

which contradicts with the assumption M, > M;.
Next, we consider the case where 7, < * < 7,1 for some k > [. Then, we have

m(r) < §m(r,)) < g(b(e)),

where the second inequality is guaranteed because m(t, ) < 13(5) and g is a nonde-
creasing function. Define 7 = sup{r € [, t*]}m(t) < g(l;(a))}. Then, as achieved in
the previous analysis, we get 7 € [, t*), m(f) = g(l;(e)) and m(t) > g'](l;(s)) for all
t € [f,t*). Following the same argument applied to the differential inequality over
the interval [z, t*], we reach the same contradiction. Thus, we conclude that the trivial
solution x = 0 is uniformly stable in the m.s. This completes the Proof of Claim 1.

Now, we are aiming to prove that x = 0 is uniformly asymptotically stable in the
m.s. Since it is uniformly stable in the m.s., there exists > O such that E[|| ¢||f] <n
implies E[||x(¢)]|?] < o1 for all >ty — r. We also have that, with the aid of (i),
E[V (¢, x())] < a@E[lx(®)]1*]) < a(or)forallt >ty — r.Let0 < v < o, and define

1 N n
0<M=M®) =sup{—1|s € [§(b()), alon]}.
c(s)
For b(v) < ¢ < a(or), we have §(h(7)) < §(q) < ¢ < a(or) and so that

9 ds B
szf — < Mlq — g(q)],
a(q) €(5)

from whichq — g(q) > My/Morg(q) < q — % < q —d,whered = d(v) is cho-
sensothatd < (M, — M)/M < My/M.

Let N = N(v) be the smallest positive integer for which a(p;) < I;(’y) + Nd
and define T = T(y) =7+ (r + 7)(N — 1). For the given ~, choose 1 such that
E[||¢]1?] < n implies E[||x(¢)||*] < v for any solution x(¢) = x(t, fy, ¢) of (12.4),
to € [11—1, 77]andt > ty + T.From the previous analysis, we have shown thatm (¢) <
a(py) forallt >y — r. Given, 0 < A < a(py) and j > [, we will show that

(1) if m(t) < Afort € [7; —r,7;), thenm(t) < Aforallt > 7;; and
(2) if, in addition, l;(fy) < A,thenm(t) < A —dforallt > ;.
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To prove (1), suppose for contradiction that there exists some ¢ > 7; such that
m(t) > A. Define t* = inf{r > Tj|m(t) > A}. Then, t* € [}, T3+1) for some k >
J. Because m(my) < g(m(7;)) < g(A) < A (i.e,, m(1) < A), then t* € (1, Tyy1).
Moreover, m(t*) = A and, by the definition of t*, m(¢) < A forall t € [7; —r, t*].
Define 7 = sup{t € [, t*]|m(t) < g(A)}.Notethat # t*(i.e.,7 € [74, t*)) because
m(t;) < g(A) < A = m(t*). We canalso see thatm(7) = g(A),andm(t) > g(A) for
all ¢t € [z, t*]. Thus, for t € [z, t*] and s € [—r, 0], we have g(m(t + 5)) < g(A) <
m(t), where we have used the fact m(¢) < A for all ¢ € [7; — r, t*]. Hence, the
differential inequality

D¥m(1) < p(t)c(m(t))

holds for all ¢ € (7, t*], and by integration over the last interval, we obtain

m(t*) ds t* +7
/ Lol / pls)ds < / p(s)ds < M.
m@ () 7 7

On the other hand, we have

m s A ds
/ — = / — > M,

m(f) c(s) 3(A) c(s)
which contradicts with the assumption M, > M. This proves m(t)<A forall t> 7;.
The proof of (2) can be carried over similarly. Assume there is some ¢ > 7; such
that m(t) > A — d. Define t* = inf{t > Tj]m(t) > A —d} and let k > j be chosen
so that t* € [7y, Tr+1). Note that t* # 7 (or ¢t € (7, Tr+1)). This is because g(A) <
A — d, the fact that 13(7) <A <a(g) and m(7) < gm(r;)) < g(A) < A —d.
Moreover, as achieved before, m(t*) = A —d andm(t) < A —d forallt € [, t*].
Define = sup{r > Tk|m(t) <g(A—d) < g(A)}.Sincem(t*) = A —d > g(A) >
m(y), then f € [, t*), m(f) = g(A) and m(t) > g(A) for all ¢ € [z, t*]. By the

same manner, we obtain
ma) g
[
m(@) € (S )
and

/’”(’*) ds /‘A_d ds /A ds /A ds /‘A ds

= = = = = = s M,— =
mi  €(s) gy c(s) 54 ¢(s) A—d €($) A—a €(5)
Let M = sup{c(l—s)|s € [A —d, Al}. Then

m) g
/ —ZMQ—Md>M2+M(M1—M2)/M=M1.
m@  <(s)
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Thus, we have arrived a contradiction which completes the proof of m (1) < A — d
forall t > 7;.

Finally, define the indices k) fori = 1,2, ..., N as follows. Fori = 1,k = 7
and for the rest of 7, we have 7,1 < Txi-1» + r < Tx», which implicitly implies that
Teir — Tpa-v > rand 71 — Tri-n < r.Then,fori = 1,wehave oy =7 <to+ 7
and, fori =2,3,..., N,wehave ;o) < Tpoo_; + 7 < Tgi-n + r + 7.In general, one
may get, after combining the two inequalities, vy <ty +7+ T +7)(N — 1) =
to + T. Now, we claim that, fori =2,3,..., N and t > 1,0, m(t) < A —id. To
justify our claim, note that, for ¢ € [ty — r, T0)), we have m(t) < a(o;). For t >
Ty, we have shown m(t) < a(p;) — d, where we have set A = a(p;). Assume the
inequality is true fort > 73 forsome 1 < j < N — 1;i.e,,m(t) < a(o;) — jd. Let
A = a(py) — jd.From the definition of 73« fori > 2, we get 73(» < 73+» — r. Then,
m(t) < Afort € [pi+v —r, Tpg+v) and m(t) < A —d forall t > 7p5+0 = a(oy) —
Nd. Thus, we have proved our claim by induction. In particular, we have m () <
(13(7) + Nd) — Nd = l;(’y) forallt >ty + T > 7w . To conclude the proof, we use
assumption (i) to get H(E[||x (1) ||2]) < m(t) < b(~), whichimplies that E[||x (1)[|*] <
v, forallt > fy 4+ T. This shows that x = 0 is uniformly asymptotically stable in the
m.s. This completes the proof of Theorem 4.1.

Remark 4.1 The importance of Theorem 4.1 is its applicability to unstable con-
tinuous systems that can be stabilized by impulsive effects. In condition (iv), the
requirement M, > M; is made to ensure that any possible growth in V between
impulses is reduced by V at the impulses. Furthermore, the definition of M| can be
weakened by redefining M as follows

Tk
M, = sup/ p(s)ds.
keN J 7y

Moreover, if we were interested in establishing only m.s. uniform stability, we
could drop the requirement 7 < co. Another interesting finding in this theorem
is that the condition in (iii) is independent of the time delay. Furthermore, the
proof of Theorem 4.1 can be use to establish the pth moment stability of the triv-
ial solution. This requires modifying the inequalities in Theorem 4.1(i) as follows:
b(lvO)||7) < V(t, ¥(0)) < a(]lv(0)|?), (a.s.). Furthermore, as a special result of
Theorem 4.1 is exponential stability in the m.s. or pth moment. In this case, the non-
linear class .7, and %, functions reduce to linear functions as follows: b(||4(0)||?) =
bl ON17, a(lvO)I7) = all(0)|I7, and c(V (2, 4(0))) = cV(t, 4(0)) for some
positive constants a, b and ¢, where for the m.s result, p = 2.

In the following corollary, we only state the sufficient conditions that guarantee the
stability property for system (4.1), where the proof can be obtained from Theorems
4.1and 3.21in[1].

Corollary 4.1 Assume that Assumptions Al and A2 are satisfied and there exist func-
tionsa € Ko b,c € Hyand p € PERL;RL). Let V e €12 ([—r, 00) x R™; R,)
such that the following conditions hold:
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(i) assumption (i) of Theorem 4.1;
(ii) forallt # 1, € Ry and v € PE([—r, 0); S(0)),

LV (t, ) < —pM)c(V(t,¥(0))), (a.s.)
provided that V (t + s, ¥ (s)) < g(V (¢, ¥(0))) for some s € [—r, 0], where g €

%’.
(iii) at any impulsive moment 1, € T and v € PEC ([—r, 0); S(0)),

V (7, Y(0) + I (1, ¥(7)) < g(V (7, 9(0))), (a.s.)
with (07) = ¢¥(0), where (1, ¥(1, ) € Ry x € ([—r,0]; S(01)) and § €
(iv) My = sup, f;](q) L”f—;) < 00 and M, = inf,~ f;w p(s)ds > M, with =

inf{Tk — kal} > 0.
Then, the trivial solution x = 0 of (4.1) is uniformly asymptotically stable in the m.s.

Example 4.1 Consider the following impulsive system

dx = (= ax 4+ bx(t — De™)dt + 1/2x(t — 1)dW, t# T,
Ax(t) = —0.8x(t7), =Tk,

where b > (2a — 1/2)\)/(1 + A) for some positive constants a and 0 < A < 1.
Defining V (x) = x? implies that £V (x) < pc(x) where p = (=2a + (1 + \)b +
1/2X)/2 > 0, ¢(s) = s and g(s) = As. From (iv), we get M| = p7, M = —In(}\)
and the condition M, > M; implies that 7 < —% In(A). Choosing a = 1/2 and
A = 0.8 leads to b > 0.33, so that if b = 1, the 7 < 0.3719 which represents the
upper bound on the time between impulses. Figure 4.1 shows the stabilization of the
trivial solution, where the time between impulses is taken 7 = 0.2.

Fig. 4.1 Mean square 1
asymptotic stability of x = 0
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4.2 Stability Analysis by Comparison Method

‘We continue to address the stability problem for system (4.1) by using the Lyapuno—
Razumikhim technique. In this section, we use the comparison method to estab-
lish some m.s. stability properties for this system. As stated earlier, the comparison
method enables one to compare multivariable systems with an auxiliary scalar sys-
tem, and hence, the features of the latter system imply the corresponding features of
the compared systems.

Theorem 4.2 Assume that Assumptions Al and A2 are satisfied and there exists a
functiona € J#,. LetV € ‘5'*2([—;’, o0) x R™; R+) such that the following assump-
tions hold:

(i) Ve, 9(0) <a(|O)*) < a(ll}), (as.), YV, ¥(0)) € [—r, 00) x S(0);

(it) LV (t, () < h(t, V(t,¥(0))), (a.s.),Vt # 1. andp € 32(5([—;”, 0]; S(g))
providedthat V (t + s, ¥(s)) < q(V(t,¥(0))) foralls € [—r, 0], withq € 2,
where h : Ry x Ry — R is continuous on [1i_1, 1), h(t, z) is concave in z
foranyt € Ry, and, for each x € R" and k > 1,

lim  A(t,y) =h(r ,x)

(t,y)— (1 ,%)

exists;
(iii) V7 € T and € PE€ (1o — r, 00); S(0)),

V(7 ¥ 0) + I (7, (1)) < aw(V (7, 0(07))), (a.s.)

wherep(07) = 1(0), (x, ¥(7)) € Ry x PE([—r,0]; S(01)) (with 01 < ),
and oy : Ry — R, is a non-decreasing, concave function;
(iv) the auxiliary scalar impulsive system

DYv(t) = h(t, v(t)), t # 7,
v(t) = ag(v(t7)), t =T, (4.6)
v(tp) =v9 >0

has a maximal solution r(t) = r(t, ty, Vo).
Then, E[V (ty, x0)] < vo implies E[V (¢, x(¢))] < r(t) forall t > t,.

Proof Let x(t) = x(¢; ty, ¢) be any solution of system (4.1). From (i), we have
E[V (¢, x(t))] < oo. Also, by Itd formula and condition (ii), we have, for all ¢ €
[Th—15 Tk,

E[V(E, x()] < E[V (1k—1, x(T3—1)] +/ h(s, E[V (s, x(s)]ds,

Tk—1
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from which we get
D¥m(r) < h(r, m(1)), t# T,

where m(t) = E[V (¢, x(¢))] for all t € [1x_1, 7¢). At the impulsive moments, we
have from condition (iii), m(7x) < ax(m(7; )). In summary, we have

Dtm(t) < h(t,m(1)), t#7,
m(t) < ax(m(t™)), =,
m(ty) = E[V (19, x0)].

Therefore, comparing with (4.6) leads to (see Theorem 1.6.1 in [2])
m(t) = E[V(t, x(1)] <r(t) =v(), vVt > 1.

This completes the proof.
In this following, we make use of this comparison result to show how the stability
properties of the auxiliary scalar impulsive system (4.6) imply those of (4.1).

Theorem 4.3 Assume that Assumptions Al and A2 hold, and there exist functions
a € X, and b € J,. Assume further that V € ‘51’2([—r, o0) x R, R+) such that
the following hold:

(i) forall (t,4(0)) € [—r, 00) x S(g),
b(I[PO)[1%) < V2, $(0)) < a(lp O], (as.);
(ii) forallt # 7 and b € € ([—r,0]; S(0)),
LV (t.1p(1)) < h(t, V(2. 1(0))), (a.s.)
provided that V (t + s, 1 (s)) < q(V(t,(0))) withs € [—r, 0], where q € 3,
h:R, xRy — R is continuous in its variables, h(t,0) = 0 and h(t, z) is

concave in z for any t € R, and, for each x € R" and k > 1,

lim  h(t,y) = h(7, , x)

(t,y)= (7 ,x)

exists;

(iii) Y1k € T and p € 2€([—r,0]; S(0)),
V(1i, Y(0) + Ik (i, Y(77))) < aw(V (7, 4(07))), (a.s.)

where(07) = ¥ (0), (1, (1)) € Ry x e@%([—r, (R S(Ql)),andak € ;.
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Then, the stability properties of the trivial solution of auxiliary scalar impulsive

system (4.6) imply the corresponding stability properties of the trivial solution of
system (4.1).

Proof Let0 < € < g1 < pandfy € R;. Assume that the auxiliary scalar comparison
system s stable. Then, for given b(¢) > Oandty, € R, thereexistsad = §(y, €) > 0
such that

vo <0 implies  v(¢; fo, vo) < b(e), VYt > 1,

where v(¢; fy, vo) is any solution of the comparison system.

Choose vy = a(||¢||?) and &, = &;(¢) > O for which a(d;) < b(e). Define 5=
min{d, §;}. We claim that, if E[||¢||?] < d, then

Ellx@0I*] <e, V=1
If our claim were not true, there would be a f € [7y, T41) for some k such that
e <E[lx®|’]
and
Ellx@I*] <e, Vi€l

By Assumption Al (i.e., if ]E[||x(7'k_)||2] <€ < o1, then E[|lx(m) 1?1 = E[]
x(1) + I (1, ka—) 11 < 0), there exists a 7 such that 7, < t < 7 satisfying

e<E[lx®I’] < ¢.
Define m(t) = E[V (¢, x(¢))] for all ¢ € [#, t]. By Theorem 4.2, we get
m(t) < r(t; 1o, a@LIIFD), V1€ 1o, 1],

where 7 (¢; to, a(E[||#]|*])) is the maximal solution of the auxiliary comparison sys-
tem.

Finally, by condition (i), we obtain

b(e) <m(t) < r(t; 10, a@lBI)) < r(z: 10, a(6) < b(e),

which contradicts with our supposition. Therefore, it must be true that

Elllx®)l*1 <&, VYt >t

As for the uniform property, it suffices to choose § independent of #,.
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To prove the uniform attractivity, we choose 0 < 7 < 01 < o. Assume that the
comparison system is uniformly attractive; i.e., for a given b(n) > 0, there exist
0 > 0 and a constant T = T'(n) > 0 such that

vo <40 implies  v(t; ty, vo) < b(n), Vi>t+T.
Following the argument used in proving the stability property, we obtain
bELxM’D < v(t: 10, v0) < b(m), Vi =1+T,

i.e., the system (4.1) is uniformly attractive in the m.s., which leads to the m.s.
uniformly asymptotic stability property of x = 0. This completes the proof of
Theorem 4.3.

Corollary 4.2 In Theorem 4.3, assume that, for any (t,1(0)) € R, x PE€ ([t —
r, 00); §(0)),

a(V (7, (07))) = ald) V(7 , ¥(07)), (4.7)

where dy is a nonnegative constant such thatd =) - | dy < 0o and a(dy) > 1 for
all k. If

(i) h(, V(t,¥(0))) =0, (as.) provided that V(t + s, ¥(s)) < q(V (¢, 1¥(0))) for
some s € [—r, 0] and q € 5, then trivial solution x = 0 of (4.1) is uniformly
stable in the m.s.;

(ii) h(t, V(t,(0))) = —c(V (¢, ¥(0))), (a.s.), where q is defined in (i), then the
trivial solution x = 0 of (4.1) is asymptotically stable in the m.s.

Proof (i). Let x(t) = x(t; ty, ¢) be the unique solution of system (4.1) and 0 < ¢ <
01. Defined = [[;2, a(dy). Then, 1 < d < oo because d < co. Choose § = §(¢) so
that 6 < a~! (l;(e) /3) and clearly 0 < ¢ < ¢, where a and b are defined in the proof
of Theorem 4.1.

Let 7y € [1;—1, ;) for some positive integer [ and ¢ for which E[||¢||f] <46. We
claim that the trivial solution is uniformly stable in the m.s. If our claim were not
true, there would exist a t* such that, for all t € [ty — r, *), we have

Ellx()*] <& < o
and either
E[[|lx(#*)[*] = e,
which implies that

Elllx(t)]I*1 = Elllx 121 = ¢
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or
e < E[|lx(t")||?)], where t* =7, forsome k
and, by Assumption Al,
e <E[lx)I’] < 0

since E[||x,.- [|?] < € < o1. Thus, in either case, V (¢, x(t)) is defined for ¢ € [y, *].
Moreover, from (i), we have

ZLV(t, x) <0.

Applying the It6 formula to process V (¢, x(¢)) for t € [tp, t*] and taking the
mathematical expectation yield

EV(E, x(@)] <E[V(s, x(s)] +]Eft$V(u,xu)du Vig<s <t <t*
SEVG L
Define m(t) = E[V (¢, x(¢))] for all ¢ € [ty, t*]. Then, from the last inequality,
D m() <0

provided that m (¢ + s) < g(m(t)); that is, the function m (¢) is nonincreasing for all
t € (ty, t*] between the impulse moments. Furthermore, from (4.7), we have

m(ry) < aldym(r, ), Vit e (to, "]
Consider the following comparison impulsive system
D (@) =0 t#£ T
v(t) = aldv(t™) =Tk
v(t0) = vo > mo = E[V (#9 xo)].
This implies that

v(#) <vg <0 <ce, t €1y, t%)

for the same & and, by Theorem 4.3, one can easily see that E[||x (t*)]*] < ¢.
On the other hand, let t* € [74, 7x+1) for some k > [. In this case, we have

v(t*) < v(m), because v is nonincreasing V¢ < r*, (4.8)
v(T) < u(ty) < a(d), 4.9)
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v(r;) Svu(rim), i=14+1,14+2,... k (4.10)
() <ald)v(r) i=11+114+2... k. 4.11)

By (4.11), we have

v(7i) < a(d)v(r;)

< a(d)v(ri-1) by (4.10)
< a(d)a(di—)v(r,_,) by(4.11)
1
< [T atd)vwo)
i=1
v(r) <dv(ty) <da(d). by (4.8)

Namely, v(r;) < d a(8) which implies that
(") < v(m) = da(),
where the first inequality is from (4.8). With the aid of Theorem 4.3, we have
be) < bEIx(M)I?) < mt*) < v(t*) <da() <be).

This is a contradiction. It turns out that x = 0 is uniformly stable in m.s. This
completes the proof of (i).
(i1) The assertion of this part can be proved easily; thus, it is left here as an exercise.

Remark 4.2 Assumptions (i) (or (ii)) in Corollary 4.2 is made to ensure that the
Lyapunov function V is nonincreasing (or strictly decreasing) in main, which in
turn implies that the continuous system is m.s. uniformly stable (or asymptotically
stable). To guarantee that the overall behavior of V decreases for all time (including
the impulse moments), we assume that V' is nonincreasing at these moments, because,
otherwise, the reduction of V may not compensate the jump increases. This condition
is summarized in (4.7).

Remark 4.3 Using the efficient comparison method, Theorem 4.3 does not impose
any restriction on the stability of continuous system. This fact will be further seen
in Corollary 4.3, where the impulsive effects can have a stabilizing role even when
the underlying continuous system is unstable. The requirement in this circumstance
is that the impulses be small enough to reduce the growth of the continuous part and
be applied to the system more frequently.

Corollary 4.3 In Theorem 4.3, assume that

(i) there exist a function p € PE€(R,;R,) and ¢ € K, such that, for any
(t,%(0) e Ry x PE ([t —r, 00); S(0)),



4.2 Stability Analysis by Comparison Method 91

h(t, V(t,4(0)) = p(D)ec(V (1, 9(0))); (4.12)

(ii) there exist v > 0 and py > 0 such that, for all z € (0, go) and any k € N,
Tk a(2) ds
/ p(s)ds +/ — < —%- 4.13)
Tk z c(s)

Then, the trivial solution x = 0 of (4.1) is uniformly stable in the m.s. If, moreover,
Y o Y = 00, then x = 0 is asymptotically stable in the m.s.

Proof In the light of Theorem 4.2, defining m(t) = E[V (¢, x(¢))] for all # > 1, leads
to the comparison system

D m(r) < p(H)c(m(1)), t# Tk,
m(t) < agp(m(t™)), =1y, (4.14)
m(ty) = mo = E[V (1o, x0)].

Consider the auxiliary scalar impulsive comparison system

DFv(t) = p()c(v(@),  t # T,
v(t) = ap(v(t7)), t =T, 4.15)
v(ty) = vy > my.

Now, we are aiming to prove the stability properties of the comparison system
(4.15), which, by Theorem 4.3, imply the corresponding properties of (4.1).

Let0 < & < gp and tg € [71, 7). Choose § > 0 for which § < min{e, oy (g)} and
0 < vy < 6. We claim that v(¢) < ¢ for all 7 € [#y, 7»), where v is any solution of
(4.15). If our claim were not true, then there would exist a t* € [ty, 72) such that
v(t*) > e. Integrating the differential inequality in (4.14) over (1, t*) gives

v(t*) d t*
f LI / p(s)ds, (4.16)
vy €(8) f

where a variable substitution is performed. By our choice of #y and ¢* and the posi-

tiveness of p, we have
t* ™
/ p(s)ds < / p(s)ds
to T

and, by the early analysis,

/”(’*) ds /’5 ds
— > _—
vy €(8) are) €(s)
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Therefore, (4.16) becomes

ks a(g) d
/ p(s)ds —i—/ & > 0,
T1 € C(S)

which contradicts with (4.13). Thus, it must be true that v(¢) < € for all ¢ € [fy, T)
ort € [11, ).

Suppose that, for all ¢ € [y, 7¢) (or generally ¢ € [Tx_1, T%)), v(t) < €. Then, it
follows from (4.14) that, for all t € [, Tkt1),

(1) ds t Tht1
/ — 5/ p(s)ds 5/ p(s)ds. 4.17)
v(7k) C(S) Tk Tk
Noting that v(7x) = ax(v(7;, )), the last inequality becomes
v g Tht1 a@(r) g
/ = 5/ p(s)ds +/ =< —Vk- (4.18)
v(7) c(s) Tk v(7y) c(s)

Thus, v(t) < v(r, ) < eforall t € [1y, 7k41) and, by induction, v(¢) < ¢ for all
t > ty; that is, the trivial solution v = 0 is uniformly stable.

To prove asymptotic stability of v =0, let ¢ = gy and choose 5y = dy(0) > 0
such that vy < dy implies that v(t) < g for all ¢ > . We will prove under the given
assumption and obtained result that limy_, », v(7;) = 0. If this were not the case,
there would exist an 1 > 0 such that lim;_, o, v(7) = 1. From (4.18), we get

/U(Tk“) ds V(Tig1) — v(7%) <
— = =< —Y%,
vy c(s) c(n)

where

1 1
Tn) = sup {@ |Vs € [v(7x), U(Tk+1)]} >

which also implies, by consecutive induction, that

k
V(1) < V(Teo1) — ) D e

i=1

Letting k go to infinity leads to a contradiction. Therefore, it must be true that
n = 0, which proves the asymptotic stability of v = 0. Finally, applying Theorem
4.3 implies that x = 0 is asymptotically stable in the m.s. This completes the proof
of Corollary 4.3.

Remark 4.4 A similar result can be obtained if p(#) in (4.12) is replaced by — p(¢) for
all ¢ or, particularly, p(f) = £p and the impulsive condition (iii) of Theorem 4.3 is
replaced by o V (7,7, 1(0)). In the latter case, the inequality in (4.13) is simplified to
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+p(me — k1) + Inoye < —, Vk € N. (4.19)
Example 4.2 Consider the following impulsive system
dx = (—4x +x(t — De ™)dr — 0.1sinx(t — 1)dW, t# T,
Ax(t):%xf, t = T.

Define V (x) = x? as a Lyapunov function candidate. Then, one can easily show
that 2V (x) < —c(x) < 0 with ¢ = 2, where c(s) = 3s2. Att = 7, we have

Y

1 N2 2 _
@Ol = () + 53| £ XTI+ 27 k@Ol = T+ 290,

from which we have V (x(7)) < a(dy)V (x (7)), where a(dy)=(1 + V2d;)* and
di=7:. We also have oy < o/(1 + V2d). Choose a(s) = b(s) = s2. Thus, the
assumptions of Corollaries 4.2 and 4.3 are satisfied; i.e., the trivial solution x =
0 is asymptotically stable in the m.s. The simulation result of this example is
shown in Fig. 4.2.

Example 4.3 Consider the following impulsive system

dx = (— Tx — 0.5y(r — 1)e‘x2>dt, t £, keN

Ax( — 1
dy:(—5y+sinx(t—1))dt+<—o%tyz)))de, t £
Ax(r) = —2x(1)),

Ay(ti) =02y(r, — D).
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Define V(x,y) = %(x2 +y?) as a Lyapunov function candidate. Then, after
cumbersome calculation, we get £V (x, y) < —6.98V (x, y), where g = 2, and, at
t =T, weget V(x(r), y(1x)) < apV(x(7,), y(7; ), where o = 6. By (4.19), we
find the upper bound on the time between impulses to be 7, — 71 < 0.6 for all k.
Thus, the trivial solution is asymptotically stable in the m.s. Figure4.3 shows the
simulation result.

Example 4.4 Consider the following impulsive system

dx = <4x X2 — 1)>dz £0.1xdW, t # T
k+2
Ax(t):—kilx(t_) t=7 keN.

Considering the Lyapunov function V (x) = 1x? leads to £V (x) < 5.55x%; i.e.,
the underlying continuous system has an unstable trivial solution. At the impulsive
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effects 1 = 7¢, V(x (1)) < gy V (2 (7)), iees, ap = gz < 1. From (4.19), we
get 7, — Tr—1 < 0.2 for all k. The simulation result is shown in Fig. 4.4, which shows

the stabilizing effects of impulses.

4.3 Notes and Comments

Throughout this chapter, the focus has been on establishing m.s. uniform stability
and uniform asymptotic stability for impulsive stochastic differential equations with
time delay, where we have used two different approaches, the classical Lyapunov
method (Sect.4.1) and comparison method (Sect.4.2). The material of this chapter
is taken from [3]. Also, the stability theory of the nonlinear deterministic impulsive
systems with time delay can be read, for instance, in [1, 4]. In both sections, the
method of Lyapunov—Razumikhim in which we use Lyapunov function is efficient
to examine qualitative properties of delay systems, because it provides results that
are independent of time delay. In contrast, one may use Lyapunov functionals to
address the same qualitative properties; however, the obtained result in this case will
be delay dependent.

Particularly, in Sect. 4.1, the underlying continuous systems are stable or unstable
that are perturbed by impulsive actions, which are not necessarily bounded. It has
been shown that the stable continuous system can preserve its stability property if
the impulses are relatively small and infrequently applied to the system and, if the
continuous system is unstable, the impulses have to be applied frequently in order to
reduce the growth of continuous states. In Sect. 4.2, it has been shown that systems can
maintain their stability properties even if they are disturbed by unbounded impulses
(Corollary 4.2). Moreover, it is evident that impulses can help in stabilizing systems
which are originally unstable (Corollary 4.3).
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Chapter 5 ®
Large-Scale Stochastic Impulsive e
Systems with Time Delay

In this chapter, we consider large-scale nonlinear stochastic systems with time delay
and subject to impulsive effects. The random noise is described by Wiener process,
the time delay is finite and the impulsive actions are applied at fixed times. The focus
is on establishing uniform asymptotic stability property of the system in the mean
square. In fact, stability property of large-scale systems can be achieved in different
ways. As presented in Sect. 2.11, an efficient approach to deal with such a complex
system is to decompose the composite (or interconnected) systems into simpler, more
manageable isolated (also called uncoupled or unperturbed) subsystems at different
hierarchical levels. Analyze each individual subsystem by initially ignoring the inter-
connection between the subsystems, then combine the available results together with
interconnection, which is usually regarded as a perturbation, to draw a conclusion
on the qualitative property of the composite system.

We use Razumikhin technique and comparison method to develop Lyapunov-
like sufficient conditions. We also consider two cases of continuous systems. In the
first case, the isolated subsystems are assumed to be stable in the m.s. and the rest
(i.e., the interconnection) will be viewed as perturbation, which is required to have
magnitude be smaller than the degree of stability of each isolated subsystem. This
type of relation between isolated subsystems and their interconnection is usually
represented in a special type of matrices called fest matrices. In the second case, the
isolated continuous subsystems are assumed to be unstable and are stabilized to be
impulsive effects, which also help to stabilize the entire composite system.

5.1 Problem Formulation

Typically, an interconnected or composite system with decomposition ID; may have
the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 97
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dw'(t) = fi(t, whdt + gi(t, w!, w?, .. iy whdt

Dl Ao whdWi0, tE T
Aw'(1) = Fi(t, wy-), 1 =T,
wy, = ¢i(s), s €[-r0]

where k € Nand i = 1,2, .../ for some [ € N. Here, we have w' (or w!) € R",
which s an n;-dimensional vector state (or delayed state, respectively) andn = Zf n;
for some n; e N. fi : Ry xR" - R%, g; : Ry xR" - R, 0;; : R x RY —
R"*™i m = Yt m; forsomem; € N, ¢; : [-r,0] — R",.7 : T x R" — R" with
T = {m | k € N} where 7, represents constant impulsive moments and satisfies
O0<7 <1 < -+ and limy_, o T = 00.

Define the isolated subsystems S; as follows

dw'(t) = fi(t, wHdt + o;; (t, w)dW;(1), t# T,

Si 1} Aw' () = St wl), =Ty, (5.2)
wp = ¢;(s), s € [—r,0].
Forx € R",letx”=[(wH” w7 --- (w) Tandx] = [(wHT T --- (wH]

denote the composite system state and delayed state, respectively. Define the com-
posite system vector field f : Ry x R” — R” by

) =L @w) ff @ ow)y - fF e wpl,
the interconnection g : R, x R" — R” by

g T @x0) =197 @, x0) gd (1, x0) -+ gF (0, x0)]

T 1 2 I\ T 1 2 1 T 1 2 I
:[gl (t,w[,w[a---yw[)gz(tthyw[,---aw[) g (t,w,,w,,...,wt)],

the diffusion matrix function o : R, x R* — R**™ by
a(t, x) = [oi;(t, w))l,

with 0;; : R x R* — R">" being representing the noise function perturbing the
ith isolated subsystem, and Wiener process vector W : R, — R™ by

wh =[wl wy - W],

where, forany i = 1,2,...,1, W; : R, — R”. We also define the impulsive func-
tional vector of the composite system . : T x R" — R”" by

ITt, x-) =7 ¢, wl) A @ wr) - AT, wl))
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and the initial vector state of the composite system & : [—r, 0] — R” by
o' =[¢f ¢; -+ & .

By adopting these notations, the impulsive composite system with decomposition
ID; can be written in the form S

dx(t) = F(t, x;)dt + o(t, x,)dW (1), t # Ty,
S: 1 Ax(t) = A(t, x,-), t =1y, (5.3)
X, = P(s), s €[—r 0],

where F(r,x,) = f(t,x) + g(t, x,) is an Z,q(S2; L[to, to + ]) function for some
o> 0,0 € Z(Q L*[to, to + ]) and the initial function of the composite system
® € L% (-, 0, R").

Integrating the differential equation and making use of the initial condition yield

x(z)=d>(0)+/ F(s,xs)ds—i—f o, x)dW(s)+ Y S(t.x,),

fo fo {k | 7€ (to,11)

for t # 7, where the first integral is a Riemann integral almost surely (a.s.) and the
second one is an Itd integral satisfying
2:|

t
E [/ a(s,x_q)dW(s):| =0, and IE|:
to

Definition 5.1 The trivial solution x = 0 of (5.3) is said to be

t
/ Ello(s, x5)||? ds.
1

0

t
/ o(s, xs)dW(s)
f

0

(i) stable in the m.s. if forevery e > O and 1y € R, there existsad = §(¢y,€) > 0
such that

E[|®[?1 <6 implies E[|x(®[*] <e,  Vt> 1o,

where x(¢) = x(¢; tp, ®) is any solution of (5.3), with x € L€ [ty — r, tp +
al; @) for some o > 0 and & € .Zf;o([—r, 01, 2);

(ii) uniformly stable in the m.s. if § in (i) is independent of #y;

(iii) asymptotically stable in the m.s. if it is stable and for any 7y € R, there exists
n = n(ty) > 0 such that

E[|®|?] <n implies  lim x(r) = 0;
—>00
(iv) uniformly asymptotically stable in the m.s. if it is uniformly stable in the m.s. and

there exists some 77 > 0 such that, for every v > 0, there exists T = T (, y) >
0 for which
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E[|®[71<n implies E[lx()I*] <y, Vi=19+T;

(v) exponentially stable in the m.s. if there exist positive constants K and )\ such
that

lx@)] < KE[|®21e™ 7, Vi> 1o

(vi) unstable in m.s. if (i) fails to hold.

For convenient presentation, the following properties (or definitions) will be used in
the theorem statements of this chapter.

Definition 5.2 Fori = 1,2, ..., 1, the isolated subsystem S; in (5.2) is said to pos-
sess Property A if Assumptions Al and A2 are satisfied, there exist functions
a; € X, bi, c; € K, aconstanto; < O0and V' € €"%([—r, 00) x S(0)); Ry) such
that the following hold:

(i) forall (¢, (0)) € [—r, 00) x S(),
bi(I¢' O < V@, %' (0) < a9 OIP),  (as.);
(ii) forallt # 7 € Ry and ¥’ € PE€ ([—r, 00); S(p)),
LV ) < oia(ViE 9 0),  (as)

provided that V(¢ + s, ¥ (s)) < ¢ (Vi (¢, 9" (0))) for some s € [—r, 0], where
g € A5
(iii) at any impulsive moment 7, € T and ¥’ € PE ([—r, 00); S(p)),

Vi, ¥10) + I (e, W (70) < g (Vi , 41 (0),  (as.)

with d)’-(Of) = ¢i(0), where (7, W(Tk_)) e Ry x € ([—r,0]; S(p1)) and
g' € J4; and
ff/(q) ds

p <o and —o; > M, with p=infren{mx — 7%—1} > 0.

(iv) Mj=sup,,
Definition 5.3 Fori =1, 2, ..., 1, the isolated subsystem S; in (5.2) is said to pos-
sess Property B if Assumptions Al and A2 are satisfied, there exist functions
aj,ci € Ko b € #,,0; >0and Vi € €V2([—r, 00) x S(p); R, ) such that the fol-

lowing hold:

(i) condition (i) in Definition 5.2 is satisfied;
(i) forallt # 7, € Ry and o' € PE([—r, 0); S(p)),

LVt Y < oici(V(E, ' (0),  (as.),

provided that ¢’ (Vi (¢ + s, 9" (5))) < Vi(z, ¢ (0)) for some s € [—r, 0], where
g € A,
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(iii) at any impulsive moment 7, € T and ¥ € PE ([—r, 00); S(p)),
VAT, 01 0) + I (1, ' (7)) < ¢F (Vi 91 (0))), (as.)

with ¢ (07) = ¢/ (0), where (7, ¥/ (7)) € Ry x € ([—r,0]; S(p1)); and
(iv) infy~0 Z(q) ds/ci(s) > To; with 7 = sup; {7 — Tk—1} < 00.

Remark 5.1 Properties A and B, which are, respectively, extracted from Theorem
4.1 and Corollary 4.1, state that every isolated subsystem S; (for i =1,2,...1)
is uniformly asymptotically stable in the m.s. Also, as can be seen, we assume
that all states of isolated subsystems have impulsive jump discontinuity occurring
simultaneously.

Throughout this chapter, we prove some m.s. stability properties of (5.3) using
the classical Lyapunov theorems and comparison method. Also, in both cases, we
use Razumikhin methodology in which we define a Lyapunov function V (¢, 1(0))
for all r > 0, but not functional V (s, ¥(s)) for all s € [—r, 0].

5.2 Analysis by Lyapunov Method

The focus here is on the classical Lyapunov technique to write some sufficient con-
ditions to guarantee m.s. asymptotic stability of trivial solution, x = 0, of composite
SISD (5.3). We should also remark that impulses applied to the systems do not have
to be bounded or vanishing. In Theorem 5.1, the impulsive effects are considered to
be a perturbation to a stable system. While in Theorem 5.2, the underlying continuous
system is unstable that is stabilized by an impulsive controller.

Theorem 5.1 Suppose that composite system (5.3) satisfies the following condi-
tions:

(i) fori =1,2,...1, the isolated subsystem S; possesses Property A;
(ii) fori, j =1,2,...,1, there exists a positive constant b;; such that

!
gl (t Vi (01 0) < ¢ P O D Gbise > (1v7 O,
j=I

where q > 1 and c; is defined in (i) in Definition5.1;
(iii) fori =1,2,...,1, there exists e; > 0 such that

O Vi i @ T ONY < geilly' 011,

where y' = 0;;(t, Y}, i.e., the ith row of matrix o;
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(iv) for any o;;(t, 1/){), i,j=1,2,...,1, there exists d;j > O such that
lloij (. ) 1% < gdijei (147 O)]1);
(v) matrix S = [si;lix1 is negative definite where
5 = {?i_(ai +gbi) + % D ket ki dokexdiis l = ]:,
39 (ibij + ajbji), i #J,

for some positive constant «; for any i; and
(vi) there exist functions g € 5, ¢ € K. and a constant o <0 such that

sup,-.o fqg(q) ds/c(s) < —ou where p is defined in Definition 5. 1.

Then, the trivial solution x = 0 of composite system (5.3) is uniformly asymptotically
stable in the m.s.

Proof Forallt > tywithfy € Ry, letx = x(¢; fy, P) be the solution of the composite
system (5.3). Define the composite Lyapunov function candidate

1
Vitx) =Y Vit wh),

where V' is the Lyapunov function related to the ith isolated subsystem and «; > 0.
This also implies that

1
LVt x) = Z [.,%V (t.wi) + g7 (6, x) V2, (0, w')

!
% Z tr[o (t w,)V’ i(t,wi)oij(t,wf)]}
J=Li#j
1
=) e a{aici ||)+c'/2(||w||)2qb,, e (w1

1 j=1

1

!

1

+5 Z geilloy ¢, w)
j=Li

1
<Y a {Ulcl(llw ()

i=

—_

1 1
i _ : 1 _ )
e Y Y b Ul P+ 5 Y dedsje P
j=1 J=Li#j
=7z'Sz,
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where z7 = (> (Jlw'1») &2 (1w?1?) - ¢(lw'1?) € R and S is the [ x
negative-definite matrix defined in (v). It follows that the eigenvalues of S are strictly
negative (i.e., Ay (S) < 0). Therefore,

I
LV (t,x) < (8D ci(lw' (),
i=1
ie., ZV(t, x) is negative definite, which implies that
LV, x) < oc(lx0)]),

where 0 < 0 and ¢ € J#; satisfying the condition in (vi). Finally, at the impulsive
moments ¢ = 7, we have

I
VT, x(1)) = Y i Vi, w' (1)
i=1
and, from the isolated subsystems,
Vi, 01 0) + I (1, ¥ (1)) < g (Vi 4 (0))).
Hence,

l
V (7, ¥(0) + I (i, p(70)) = Za;Vi(Tk, PH0) + I (1, ¢ (7))

i=1

1
D g (Vi 4 0))
i=1

L9V (T, ),

IA

where g € ;. Thus, all the conditions of Corollary 4.1 are satisfied; therefore, the
trivial solution, x = 0, of composite system (5.3) is uniformly asymptotically stable
in the m.s. This completes the proof.

In the following theorem, the continuous isolated subsystems and composite sys-
tems are assumed to be unstable and can be stabilized by an impulsive controller.

Theorem 5.2 Suppose that composite system (5.3) satisfies the following condi-
tions:

(i) fori =1,2,...1, the isolated subsystem S; in (5.2) possesses Property B;
(ii) assumptions (ii)—(iv) of Theorem 5.1 are satisfied;
(iii) the matrix S = [sij1ix is positive definite, where
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@i(0; +qbii) + 5 Dtk dokekdii, 1= J,

Sij =1 - . .
5q(qibij + a;bj), i # ],

for some positive constant «; for any i; and
(iv) there exist functions g € Jt3, c € J, andaconstanto > 0suchthatinf . ff(q)
ds/c(s) > ot, where T = infren{m — 711} > 0.

Then, the trivial solution, x = 0, of composite system (5.3) is uniformly asymptoti-
cally stable in the m.s.

Proof For all t > 1y with t) € R, let x = x(¢; fy, P) be the solution of composite
system (5.3). Define the composite Lyapunov function candidate by

1
Vie,x) =) Vit wh),
i=1

where V' is the Lyapunov function related to the ith isolated subsystem and o; > 0.
Then,

LVt x)<z'Sz,

where z7 = (c”(lw" 1) &> (lw?|?) --- ¢/ (Iw'[?), and S is the positive-

definite matrix defined in (iii). It follows that the eigenvalues of S are strictly positive
(i.e., Ay (S) > 0). Therefore,

1
LV, x) <2 (S) Y ei(lw'[1?)

i=1
which implies that
LV (1, x) < oe(lxO]),

where 0 > 0 and ¢ € %, are defined in (iv). As achieved in Theorem 5.1, we have,
at the impulsive moments ¢t = 7,

V (7, Y(0) + I (7k, ¥(11)) = g(V (7, 4(0))),

for some function g € 3. Thus, all the conditions of Theorem 5.1 are satisfied; there-
fore, the trivial solution x = 0 of composite system (5.3) is uniformly asymptotically
stable in the m.s. This completes the proof.

Remark 5.2 In Theorems5.1 and 5.2, we have assumed that the individual isolated
subsystems S; possess Properties A and B, respectively, so as to guarantee their m.s.
uniformly asymptotic stability. Assumptions (ii) (and (iii) and (iv)) in Theorem 5.1
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describe the upper bound on the deterministic (and stochastic) interconnections of
the system. While assumption (v) describes the relationship between the degree of
stability of each subsystem and their interconnections magnitude, which is formed
in the test matrix S. The negative definiteness of the matrix, which is required to
guarantee the stability of the composite system, ensures that the stability margin
of each individual is stronger than the interconnection magnitude. In Theorem 5.2,
the isolated continuous systems S; are unstable and stabilized by impulsive effects,
which also have the role of stabilizing the entire composite system.

5.3 Comparison Method

In this section, depending on the type of composite Lyapunov function candidate
used, we adopt two approaches to analyze the stability property using the comparison
method. In Sect. 5.3.1, a scalar Lyapunov function is considered, while in Sect. 5.3.2,
we use a vector of Lyapunov functions.

5.3.1 Method of Lyapunov Function

In the following theorem, we establish m.s. stability properties of (5.3) after being
compared with an auxiliary scalar comparison system, which enjoys the same sta-
bility properties. In fact, we use Theorem 4.3 in proving the stability properties in
this subsection.

Theorem 5.3 Assume that the assumptions of Theorem 5.1 hold except that, when-
ever Vi(t + s, wi(s)) <qV(, wi (0)) for some g > 1 and s € [—r, 0],
LV ) < hy @ VIEYN0), (as)

and

. . 1 L . .
97 (D) Vis ) (60" O) + 5 DT AR VAT CREL (D) T CRTDY
J=li#j

< hy, (2, V (1, 9(0))),
where hh € %([Tk_l, Ti) X Ry; ]R), h(t, u) is concave in uforallt € Ry and

lim A, y) = h(r], x),

t.y)=> (7 .%)
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where h refers to both h 1, and hy,. Then, the stability properties of composite system
(5.3) are implied by those of the following auxiliary impulsive comparison system

D+U=h(t, U)y I#Tk’
v(t) = a(v(t™)), t =1y, 5.4)
v(fp) = vo > 0,

where h is a scalar function defined later and o € 5.

Proof Letx” = ((w")T (w»)T .-+ (w")T) be the solution of composite system (5.3).
Define the composite Lyapunov function candidate by

1
Vi(t, x) = ZaiVi(t, w).
Then, for all ¢ # 7 with k € N, whenever V (¢, x;,) < qV (¢, x),
1
2Vt =Y {zv (. w') + gi (6 x) TV (0 w')
Ll ! ,
5 Z tI‘ U,](t wt liwi(tv wl)o'ij(t’ wtj)]}
j=Li#j
1
<D o Vi W) ko VG w)

=:h(t, V(t, x)).

It follows that, after applying Itd formula to process V and taking the mathematical
expectation,

D m(t) < h(t,m(1)),

where m(t) = E[V (¢, x(¢))] for all ¢ # 7. At the impulsive moments, ¢t = 73, we
have

m(1) < a(m(r)).
In summary, we have obtained
D¥tm < h(t,m(1)), t#m,

m(t) < a@m(t™)), t =1,
m(ty) < vy,
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which is compared with the auxiliary comparison system (5.4). To conclude the
desired result, it suffices to apply Theorem4.3. This completes the proof.

The following corollary is analogous to Corollary 4.4; thus, we state it without a
proof.

Corollary 5.1 In Theorem5.3, let p € € (R,; Ry) and ¢ € J#, such that

h(t, V(t,x)) = p(O)c(V (1, x))

and
Tk
/ p()ds +Inay (dy) < —y, k eN, (5.5)
Tk—1
where o (dy) = max{a/(dy) | i =1,2,...,1} with o/ (dy) being a constant for
which

Vi (7, %' (07) 4+ (1, ' (1)) < o (@) Vi, ¢1(07))

and satisfying o/ (dy) > 1, [Tie; & (dy) < 00 and Y ;- dy < oo. Then, if v, > 0,
the composite system in (5.3) is uniformly stable in m.s. and, if Y ;- vk = +00, the
system is asymptotically stable in the m.s.

5.3.2 Method of Vector Lyapunov Functions

In this subsection, we continue to use a comparison method to prove the stability
properties for composite large-scale SISD (5.3), where we use a vector of Lyapunov
functions having components which are Lyapunov functions related to the isolated
subsystems and, in this case, the finding of Theorem 5.5 will be carried over to every
individual subsystem. In other words, the comparison occurs between a vector of
differential inequalities and a vector of differential equations whose solutions are
known and enjoy some stability properties. As done early in this chapter and for
convenient theorem statement, we define Property C.

Definition 5.4 Fori = 1,2, ...,1, the isolated subsystem S; in (5.2) is said to pos-
sess Property C if Assumptions Al and A2 hold, there exist functions ¢; € JZ,
a; which satisfies the conditions of 4 in Theorem5.5 and V' € (61*2([—r, o0) X
S(0)); Ry) which is decreasing and satisfies

@) forall (¢, ¢ (0)) € [—r, 00) x S(p),
(I O3 < Vi, ¥ (0)), (a.s.)

and, forall t # 7 in Ry and o' € PE€([—r,0]; S(p)),
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LV ) <a@, VI, 90),  (as)
provided that Vi (t + s, 1 (s)) < gV'(t, ' (0)) forsome g > lands € [—r, 0];
and
(i) forany 7, € T and ¢ € 2% ([to — r, 00); S(p)),

V(7 ¥1(0) + I (i, ¥ (1)) < & d) Vi, ' (0), (as)

where ¥/ (07) = *(0) and [ ;= o/ (dx) < oo with o (dy) > 1 for all k.

Definition 5.5 A function g(¢,u) (or g: Ry x R" — R) is said to be quasi-
monotone nondecreasing in u if, for any u, v € R” such that 0 < u; < v; for all
i # jand 0 < u; = v;, we have g(t, u) < g(¢, v) for any fixed 7 in R,..

Theorem 5.4 (Comparison theorem) Assume that the following assumptions hold:
(i) fori =1,2,...,1, the isolated subsystenz S; in (5.2) has Property C;

(ii) fori =1,2,...,1, there exists afunctionb;(t, u) € %([Tk,l, ) X Ry; R) that

is quasi-monotone nondecreasing in u such that

1
9 ()i (60 0) + 5 7 ol )V 0w 2 (O) i (2, 4]
J=Li#j

< B,’ (l, V(t» ¢(O)))7

where VT (t,x) = (V(r,w") V2@, w?) --- Vi, wh);
(iii) l_efaT(') = (alg') a () --- a(")) € Zua(, Llto, to + o) and )
bT () = (b1() b (") -+ bi(+) € Zua(R2, L?[to, 1o + ), where a; () and b;(-)

are defined in assumptions (i) and (ii), respectively, and assume that the fol-
lowing inequalities hold

la(t, v') + b(t, v))* < hi(t) + ha()s([V'[|%),
la(t, v') + b(t,v') —a(t,v") — bt,v")| < K|v' — "],

forallt € Ry, where hy, h, are Borel measurable functions (or € (R4; R,)

functions), k : Ry — R, is continuous, increasing, concave function, v', v" €
RQL and K > 0; and

(iv) there exists an adapted function p : R' x R, — R such that

!

T j 2
sup Z loy; & ) Viioyawiopll™ < pt, v),
Vi(t,x)<v ij=1

where

p(t,v) < hi(t) + ha(D)k([v]%).
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Then, provided that V (ty, xo) < vo, we have V (t, x(t)) < v(¢), forall t > ty, where
v= " v - V)T (ie, veR)is a solution of the vector stochastic impulsive
differential equation

(5.6)

dv = (a(t,v) + b(t,v))dt + VdW (), t# Th,
Av(t) = ay(dv(E™), t =1,

with V = [v;;1;x; being a matrix random process such that
IVI? < p(, ),
and ay () =max{a’() i =1,2,...,1}.

Proof For all t > 1y with 1y € R4, let x = x(t; tp, ®) be the solution of composite
impulsive system (5.3). Define

Vi, x@0) = (V'@ w" Vi, wd - Vi, wh))

as the vector Lyapunov function candidate for the composite system with V' being
the Lyapunov function related to the i’ isolated subsystem S;. Then, by the vector
form of Itd formula, we have

dvi@, x) = (dv'@, wh dvie, w? - dVit, wh),

where, fori =1,2,...,1,

1
dVi, w') < (a,-(t, Vi w') + b, Vi, w")))dr + ) vydWi),

i.j=1

with Vij = ViT

wi

t, wo; (2, w,j ). It follows that the vector differential inequality is
dV (i, x(1) < (a(t, Vi, x(0) + b, V&, x(t))))dt + VAW (@),

forall t € [1x_1, %) and k € N.
At the impulsive moments ¢ = 7;, we have

VT (7, x (7))
= (Vi w' (7)) V2w ) - Ve wh ()
< (o' @V w ) 2@V W) - dl @V e wl )
< ap(d)(V g w' @) Vi wi ) - Vi wl @)
= ay @)V’ (. x(7)).
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Particularly, for all t € [79, 71) andi = 1,2, ---, 1, we have V' (ty, w' (1)) < vo
and

AVie, w') — dv; < {[ai(l, Vi, w)) —a;(t, o)l + [bi (1, V1, x (1)) — b (1, v(t))]}dt.

Since the composite system satisfies the existence-uniqueness conditions,
V(t,x(¢)) is a continuous process (a.s.) for all [y, 77). Similar conclusion can
be drawn for the process v(¢). Therefore, to ensure that, given V (¢, xo) < vo,
V(t, x(1)) < v(t) (a.s.) forall [y, 71), it suffices to show that Vi (¢, w') — dvi(t) <
0 whenever Vi(t, w') = y'(¢). But this inequality is true because b; is quasi-
monotone nondecreasing. Thus, we obtain that Vi(z, w'(¢)) < v;(¢) for all ¢ €
[70, 71) and, at the impulsive moment 7y, we have

Vi, w'(m) —vi(r) < aM(dk)[Vi(Tf, w' () — Ui(Tl_):I <0,
ie.,
Vi, wh(m) < vi(n).
Similarly, for k =2,3,... and ¢ € [14_;, 7¢), we get Vi(t, w'(t)) < v;(¢) and
at t =7, Vi(1p, w (7)) < v;i(1%). Therefore, for all + >ty and i = 1,2, ...,1,
Vi(t, w'(t)) < v;(t), from which we get the vector inequality

Vt,x(@)) <v(), Vit >t.

This completes the proof.

Theorem 5.5 Suppose that the assumptions of Theorem 5.4 hold, there exist class-
. functions o and ¢, a function h € %([Tk, Te1) x R R+), zeR and U €
%1'2([71{,1, ) x R R+) which is decreasing, U (t,0) = 0 and satisfies

(i) forallt € Ry and v € € [Ry; R,

ar(vl>) < Ut v,  (as.)

U vz <h@ vzl (as)
and
U (t,v) + Uy (1, v)[a(t, v) + b(t, v)] + %h(t, v)pt,v) < —c(vl), (as.);
(ii) forany 7, € Tandv € € R,; R)),

U (i, v(1i)) = a(d)U (1, v(1y ), (a.s.).
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Then, comparison system (5.6) and, hence, composite SISD (5.3) have asymptotically
stable trivial solutions in the m.s.

Proof Let v > 0 be the solution vector of the comparison system (5.6). Apply Itd
formula to process U to get

LU(t,v) < —c(|v]),

which shows that, by the previous analysis, (5.6) has the desired stability property.
As for composite system (5.3), we have shown in Theorem5.4 that the vector
inequality V (¢, x(¢)) < v(¢) holds for all ¢ > 1. It follows that

! . 1/2
arr @I = [ Y D] = IV xaenl < @l

i=1

where ¢ € JZ. Taking the mathematical expectation and then applying afl to both
sides imply the desired result, i.e., E[||x (¢) %] < al_l E[lv()]|?]) forall t > t,. This
completes the proof.

Corollary 5.2 In Theorem5.5, assume that there exists a positive constant ¢ such
that c(s) = cs forall s > 0 and

BT (a(t,v) +b(t, v)) < —clvll,
for some positive vector (3 € R!. Then, system (5.6) possesses the same stability
property.

Proof Let U(t,v) = 3Tv > 0 be a Lyapunov function candidate. Then, U, = 37
and U,, =0 € R, from which ZU(t,v) < —cl|lv|. Applying the impulsive
effects yields the desired result.

5.4 Examples

As an application of the proposed results, we consider an indirect control system in
automatic control, which describes the longitudinal motion of an aircraft.

Example 5.1 Consider the control SISD
dx = Axdt + bf (y)dt + o1 (x(t — 1))dW; 4+ 012(y)dW,, t # 1%,

dy = (= Cy = &f()dt + a”xdt + 021 (x)d W, (5.7)
+on(y( —1))dW,, 1 Tk,

where xT = (x| x2 x3 x4) is the system state, y € R is the controller (i.e., n; =
4, n, =1), A e R¥*, b e R?, (,€£ eR, f e Riscontinuous forall y € R, f(y) =
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0 if and only if y =0, and 0 < yf(y) < k|y|*> for all y #0 and k > 0, a € R*,
[ATHS R4X4, o € RIXI, o)1 € R4X1, oy € RIXI, W, e R4 and W, € R.
The isolated subsystems are

s, : {dx = Axdt + o1 (x(t — 1))dW,, t# T, 559

dy = (= Cy = &f)dt + oyt — 1)dWa, 1 # 7.

The impulses are given by the following difference equations

{ Ax(1) = A1 (7, x(70)) = (= 2x1(70), —2x02(10), 2x3(70), 0) (5.9)

Ay(m) = S (1, y(1) = =32 (7).
: _ x@=1
50 0 0 sinxy(t —1) ) (IO ’ 12 20
_ (=
Let A = 8 06 —08 8 ,o11 =0.01 0 1+x? 0 —x30 =1 s
0 0 0 —10 0 0 xt—1 0
0 0 0 —xyt—1)

pr=(1111), a’=(1111), (=5 ¢=2 0p=00171, o} =
0.0I(XQ X1 X4 X3) and Oy = 0.01 sin y(t — 1)

Let VI(x) = |x||> and V?(y) = y? be the Lyapunov function candidates for
the isolated subsystems in (5.8). After cumbersome calculations, one may get
L Vx) < (=104 0.00027) (x> and £ V*(y) < (—=2¢ + 0.00017)y? =(—10 +
0.00014)y* (i.e., oy = —10 +0.0002G and 0y = —10 + 0.0001g). For the sta-
bility of the continuous isolated subsystems, we take g = 2. As for the inter-
connections, we have V! (x)gi(x,y) = 2xTEf(y) < 4k|x| |y| (e., by = 4k),
Vyz(y)gz(x, y) =2ya’x < 4| x| |y| (i.e., by =4). The (noisy) interconnections
are: o], (») Vo (y) = 2lon())? < 0.0002y? and 03, (x) V3,021 (x) = 2[| 021 (x) |2
< 0.0002||x || (i.e., e; = e; = 2 and dj5 = da; = 0.0001).

LetV(x,y) = V'(x) + aaV2(y) = |Ix|> + y*(i.e.,a; = ap = 1)bethe com-
posite Lyapunov function candidate for composite system (5.7). Then, the matrix

g (99997 2k +2
“\ 2k+2 —7.9997

is negative definite if k < 3.9998. Let f(y) = I?y 5. Clearly, if we choose k = 2, the

required conditions are satisfied. Therefore, the condition £V (x, y) < 7787z < 0is
also satisfied, where z7 = (||x|| |y]).
At the impulsive moments 7;, we have

V@@, ym) = lIx@)l* + y* ()
5

o ERAYY

2 -\ 12
=0+ DlxEOI"+ A -

< ay(d)V(x(r), y( ),
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Fig. 5.1 Mean square 14
asymptotic stability of
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where ay (dy) =1+ k% As for the impulsive moments, we have, after choosing
k=2, i >0.04 Fori =1,2 and s > 0, choose a;(s) = b;(s) = s to ensure the
asymptotic stability in the m.s. of isolated subsystems. The eigenvalues of matrix
S are —15.082, —2.917. Choose o = 2.917 to obtain y > 0.14. Also, the trivial
solution (x y)” = (0 0) € R (with x € R* and y € R) of composite SISD system
givenin (5.7)—(5.9) is exponential stable in the m.s. if a(s) = b(s) = s> and c(s) = s
forall s > 0. The simulation resultis shown in Fig. 5.1, where we have taken p = 0.5.

Example 5.2 Consider again the continuous control composite system given in (5.7)
and same composite Lyapunov scalar function V (x, y) = ||x||> + y2. By the previous
analysis, we have found

Vgl (. y) < 2k(VI () + VA(y) = 2kV (x, y).
V(s (k. y) <2V (@) + V() =2V (x, ),
ol (MVEon(y) < 0.0002V2(y),

o3 (0)V] 021 (y) < 0.0002V (x),

thatishy, (V! () = o1 V' (), hi, (V2(3)) = 02V2(3), o, (V' (x)) = (2k + 2.0001)
V1(x) and hy, (V?(y)) = (2k +2.0001)V?(y). Therefore,

l
ROV G ) = 3 i, (VG w) + o, (VG ') )
i=l

= (01 4 2k +2.0001) V1 (x) + (05 + 2k + 2.0002) V2(y)
< pV(x,y),



114 5 Large-Scale Stochastic Impulsive Systems with Time Delay

Fig. 5.2 Mean square 14
asymptotic stability of
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where p = 01 + 2k + 2.0001 = —3.9997, from which one has
ZLV(x,y) < pV(x,y).

Consider now the following impulsive difference equations

{ PRSI (5.10)

Ay(me) = =32 y(10).

It follows that V (x (), y(7%)) < oV (x(7 ), y(7)) where oy = 1—16. Making
use of condition (5.5), one obtains 73, — 74— > 0.69 for any k. Therefore, the trivial
solution, x = 0, of the composite SISD given in (5.7) and (5.10) is exponentially
stable in the m.s. The simulation result is shown in Fig.5.2.

Reconsider the control composite continuous system in (5.7) with unstable state
subsystem where

50 0 0
0-60 0
A=100 -8 0
00 0 —10

Following the same analysis, we obtain .Z; V' (x) < (10 4+ 0.0001) V' (x); that
is, the state of the isolated subsystem is unstable, while % V?(y) < —9.9998V2(y).
It follows that the composite system is unstable where A(V(x,y),u) =
6.0005V (x, y) > 0. Considering the stabilizing impulsive effects in (5.10) gives
Tx — Tr—1 < 0.3. Figure 5.3 shows the simulation result.

Example 5.3 Consider the composite system in (5.7) and the same Lyapunov func-
tions. We have found A V' (x) < o1 V!(x) and % V2(x) < 0, V?(x), from which
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Fig. 5.3 Mean square 6
asymptotic stability of
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we get a(V(x, )" = (a1(V'(x)) ax(V(y)) = (61V'(x) 02V?(y)). From the
interconnection, we have found b(V (x, y))T = ((2k 4 0.0001)V (x, y) 2.0001V
(x, y)). Clearly, the functions a and b satisfy the conditions in (iii) of Theorem 5.4.
As for condition (iv), we have

!

o o
SUPE llo; (") Vit (")l
VEvj=1

= sup [ llo (et = DIV @I + e, 0DV 0P Iloh () Vi) 2

V=<v
+ loh (6t = DY VEWI]

< 4sup [V (0)? +0.0004V (1) V2() + £V ()]

V<v

<4sup [E] vl2 + 0.0004v, v, + §2v§]

V<v

< &vl%,

ie., p(v) < 8|v|?, where £ = max{¢;, &), £=1.0004 and &=1.0002 with §=2.
Making use of the impulsive effect given in Example 5.1, we get

VI (x(m), y(m)) = (Vix(m)), V2 (y(m))
1 1
<+ k—2><v1<x<T;>>, Vi) = 1+ k—sz(x(T,;), Y

1
s+ @) =v" ).
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Thus, by Theorem 5.4, V (x(¢), y(¢)) < v(¢), for all # > #,. As for the stability
result, choose U (v) = vy + vy, i.e., 37 = (1 1). It is easy to show that LU (v) <
—5.9997U (v), where we have chosen k = 2. Also, U (v(7)) = am(d) U (v(1;)),
where ay (dy) = 1 + kiz Therefore, the trivial solution of composite system in (5.7)
is asymptotically stable in the m.s.

5.5 Notes and Comments

In this chapter, nonlinear large-scale SISD with fixed impulses has been considered.
The interest has been to demonstrate some qualitative properties by decomposing the
interconnected system into smaller isolated subsystems, and the rest has been treated
as system perturbation. The material of this chapter is taken from [1]. Assuming
that the isolated subsystems have asymptotic stable trivial solutions in the m.s. and
the perturbation, the connection among the subsystems is estimated by an upper
bound, which is smaller than the stability margin of the individual subsystems, and
we have been able to conclude that the interconnected SISD has a trivial solution
that is asymptotically stable in the m.s. Also, it has been shown that if the continuous
system is unstable, helpful impulses can contribute to stabilize such a system. In the
stability analysis, we have used the classical Lyapunov theorems and comparison
method using scalar Lyapunov function and vector Lyapunov functions. In fact, the
stability results obtained by the first two approaches are extension to the results
developed in Chap. 4. Moreover, for further reading about the qualitative notions
analyzed by decomposing the system states of large-scale systems, one may refer
to [2—6]. Finally, to demonstrate the effectiveness of the theoretical results of this
chapter, we have presented the stability and stabilization problems of an automated
indirect control system, which is a modification of Example 4.6.1 in [2], where we
have involved time delay and impulsive effects.
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Chapter 6 ®)
Input-to-State Stability for Stochastic e
Switched Systems

This chapter is mainly concerned with the input-to-state stability concept of nonlinear
stochastic switched systems with bounded disturbance input. The primary objective
is to develop Lyapunov-like sufficient conditions guaranteeing the stability property
in the pth moment. To control the switching among the system modes, we adopt two
switching rules, an initial-state-dependent dwell-time switching signal and Marko-
vian switching. We consider systems consisting of a set of all stable modes and a
set of stable and unstable modes. Also, implications of these results are stated with
enhancing examples.

6.1 Problem Formulation

Consider now the following stochastic switched system

dx(t) = fou (t. x(0), u(®))dt + gou (t, x(0), u())dW (1), (6.1a)
x(tp) = Xo, (6.1b)

where the state vector x € R” is assumed to be a right-continuous stochastic process,
the input u : [y, 00) — R! is an essentially bounded function with ||u(¢)|s < 1,
where [[u (7)o 1= ess.sup,., lu(?)|, and the switching signal o(7) : [fy, 00) —
< is a piecewise constant function taking values in a finite compact set .% =
{1,2,...,N}.

If the switching among the elements of . occurs randomly, we assume that the
switching signal o (-) is a right-continuous Markov chain taking values in . with the
generator I' = [;; ]y xn and its evolution is governed by the following probability
transitions
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. . iih + o(h), if i R
Plo(+h) = jlo@) =i} = {Y;;ihﬂr)o(h), g fj
where h > 0, ~;; is the transition rate from mode i to mode j with ~;; > 0, when
i # j,and~y; = — Zﬁ;i ~ij and o(h) is such thatlim;,_.o o(h)/h = 0. The switching
signal o () is assumed to be independent of W (-).

The switching times {#;}ren (With 7, € R) form a strictly increasing sequence
such that limy_, o #y = co. For any i € . and k € N, the functions f; : [f;_1, t&) X
R* x R' - R", g; : [ti1, tr) x R” x Rl — R™™_ which belong to .Z,(2,
LP[ty_y, 1)) with p = 1 and p = 2, respectively, are assumed to be smooth enough
to guarantee a unique solution, and f;(#,0,0) = 0 and g, (¢, 0, 0) = 0; that is, sys-
tem (6.1) admits a trivial solution, x = 0. We also assume the initial state x, to be
Fp-measurable with finite pth moment (i.e., E[|x¢]|”] < 00).

Definition 6.1 (/16 formula)Forallt > tywithty € R.,let x(¢) be an n-dimensional
continuous adapted process satisfying

dx(t) = f(t, x(@), u(®)dt + g(t, x(), u(t))dW(t), (a.s.)

where f and g are as defined before. Assume that V € ¢*(R,. x R"; R,). Then,
V (¢, x (1)) is a scalar-valued stochastic process satisfying

dV(t,x()) =LV, x@), u(t))dt + Vi (t,x@))g(t, x(@), u(t))dW(t), (a.s.)
where the infinitesimal operator .Z’, associating x(¢) to V (¢, x(¢)) is defined by

LV (t, x(0), u@®) =Vi(t, x(1)) + Vi (t, x (@) f (1, x (1), u(?))

1
+ Etr[gT(t, x(1), u(t)) Ve (1, x (1)) g(t, x(1), u(r))] ~ (6.2)

with V., (¢, x(¢)) and V,, (¢, x(¢)) being the gradient and Hessian matrix of process
V (¢, x (1)), respectively.

The following lemma ensures the global boundedness of the mean value of process
V when the operator .Z'V (as a single operator) is estimated by a positive bound. The
lemma is also interesting on its own because it guarantees a global unique solution
even if a local Lipschitz condition holds.

Lemma 6.1 Assume that a unique solution x(t) = x(t; to, Xo) of the initial-value
problem

dx(t) = f(t,x(@), u(®)dt + g(t, x(@), u(@®))dW (), x(ty) = xo, (a.s.),
exists for all t € [ty, Too) With ty € Ry and T, being the explosion time. Let V €

€12 (Ry x R"; Ry) such that it is radially unbounded (i.e., forall (t, x) € Ry x R,
the limit im |- o0 [inf,zl(J Vi, x)] = o0) and
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LV(t,x,u) <a(V(t, x)), (as.)
where o € ¥,. Then

ELV(t, x(0)] = G [GEIV (o, x0))) + (T = 10)| <00, VT =1,

where G(s) = [} " G=1 s the inverse function of G andG(E[V(to, xo)]) + (T —

1 a@)’
1) € Domain(G™"). Moreover; the solution x(t) is unique and defined for all t > t,.

Proof For all t > 1ty with 1y € R, let x(t) = x(¢; to, xo) be a local solution of the
system. We claim that 7, = oo. If our claim were not true, there would exist positive
constants € and T such that

P{ree < T} > €.

Define a sequence of stopping times 7; (for [ > 1) of the process x from the ball
x|l > 1, i.e.,

n=inf{r = 10 | Ix@)Il > I}
such that 77 — 7o, (a.s.). This implies that, for sufficiently large /*,
P <T}>¢€, forsome ¢’ < ¢, [>1*

For all t € [ty, T] and [ > [*, let 7;(t) = min{7, t}. Apply the generalized It6
formula for the process V (7;(¢), x(7;(¢))) and then take the mathematical expectation
to get

(1)

E[V(n(0), x(n(0)] = E[V (0, x0)] + E LV (s, x(s), u(s))ds

Iy

< E[V (70, x0)] +1E/ LV (1i(s), x(11(5)), u(7(s)))ds

SE[V(to,xO)]+/ a(EL[V (1(5), x(1:(5)))])ds.

By Bihari’s inequality [1, 2], we get
ELV (0, x(n)] = 67 [GELY (0, x0)]) + ¢ = 10)]

= G [GEV o, x0)) + (T —10) | < ox,
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where G(s) = [;' -4, G~ is the inverse function of G and G (E[V (to, x0)1) + (T —

1 a@)’
to) € Domain(G~"). From the above inequality, we see E[V (¢, x(¢)] < oo for any
t €lt, T].
On the other hand,

E[ln=nyV (7. x(1))] < G_l[G(E[V(lo, x0)]) + (T — lo)],
where 1,4 is the indicator function of a set A. Define
ne=nf{V (e, x) | x| =1, t = 10}.
Thus
G [G(ELY (0. x0))) + (T —10) | = niP{m = T) = .

Letting/ — oo implies contradiction because V is radially unbounded; therefore,
it must be true that

P{r > T} = 1.

The uniqueness follows from the definition of x up to equivalence, i.e., if y is
another solution, then

P{llx(@) =yl =0, 1 =1 =<0x}=1

This completes the proof.

Definition 6.2 System (6.1) is said to be uniformly asymptotically ISS (aISS) in the
pth moment if there exist functions § € J#.% and v € % such that, for any u and
p > 1, the solution satisfies

Ellx®II”1 < B(ELlxolI”1, t — t0) + y(lu(®)lloo), Vi > to with 1g € Ry

where E[||xo]|?] < coand x (1) = x(t; to, xo) is any solution of system (6.1). It is said
to be exponentially ISS (eISS) in the pth moment if, in addition, 3 (E[||x0||P 1t —
t0) < KE[|lxol|”]le*"~", for some positive constants K and .

Remark 6.1 Immediate implications of the above definition are, for instance, if u =
0, it reduces to the uniform pth moment asymptotic (or exponential) stability of the
trivial solution of unforced system. If u % 0 and g = 0, it reduces to the standard
definitions of uniform ISS for deterministic systems.
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6.2 Initial-State-Dependent Dwell-Time

In this section, we present the stability property of (6.1), where we use the initial-state-
dependent dwell-time condition (denoted by Tiq) to organize the switching among
the system modes. In Theorem 6.1, the switching occurs among all aISS modes,
while in Theorem 6.2, the switching occurs among stable and unstable modes. In
both cases, we show that the solution converges to a ball of radius depending on the
input magnitude.

Theorem 6.1 Let p > 1. Forany i € ., all t € [tx_1,1t;) and x € R", let V; €
%'*2([&,1, ) x R R+) with V;(t,0) = 0 satisfy the following assumptions:

(i) there exist a concave function v, € Hoo and a convex function oo, € Hoo such
that

a, (IIx]I?) = Vi(t, x) < oy, (Ix1”),  (a.s.); (6.3)
(ii) there exist as, € J, and a function v € & such that

ZLVit, x(), u@) = —az,(Ix[I”),  (as.) (6.4)

provided that || x||? > [a}*;l(%y(nunw))] =: pi(llulloo) (a.s.) where 0 < v <
land o5 (1) = (li—y)a3i(~); and
(iii) forall k € N, the 154 condition

02, (ax—1E[llx0l171)

6.5
01, (axE[lx0l171) ()

Tisd = 1N

holds, where ay are positive real numbers with ag = 1, ap < ay—1 and limy_, o,
ax =0, and 0;, and 0,, are some class— %, functions.

Then, system (6.1) is pth moment aISS with ISS-gain

pu () = max{pi () = o (v()) |i € 7},

where v* = ll/’y.

Proof Forallt >ty withty € R, let x(¢) = x(¢; to, Xo) be the solution of (6.1) and,
for all ¢ € [tx—1, t), let V;(¢, x(¢)) be a Lyapunov function candidate related to the
ith mode. By (ii), we can define the time-varying function m; (t) = E[V; (¢, x(¢))] for
allz € [tx_1, t). Applying Itd formula to m; (¢), taking the mathematical expectation,
and using Fubini’s Theorem and the property of «; function, we get
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t
@) = i) + B [ 2Vi(5.x0).u)ds
tk—1

<m;(tx_1) —/ a;(m(s))ds,

-1

which implies
D m;(t) < —ai(m;(1)),

where a; (1) = a3, (ail (-)). Then, by the classical stability result (see e.g. [3]), there
exists a class—.%".Z function 3 such that

mi(t) < 37 (mi(t—1), t — txk—1).
Then, there exist class—. %%, functions HT,- and 9’2’: [4, 5] such that, by (i),
ELx()17] < 07" [ 02, BLLx (] "De™ ), (6.6)

where 0, (-) 1= 0% (a, (")), 0, (-) 1= 05 ().
To show the solution convergence, we run the first mode on [#y, #;), then last
inequality reduces to

E[flx(®)]I"] < 9;‘[921(E[||x(;0)||p])e—<z—ro>]
and, by the 7;,4 condition, we obtain at the switching time t = t,
E[flx(#) 1”1 < aiE[[xo 1”1,
which also implies after operating the second mode on [f1, #2),
Elllx(®)|”] < 6y, [HZZ]E[”x(t])||p])ef<t—rl>]
< 03[ 62, @EllxoIDe ]

By the same argument, we get
ELx(0)17] < 07" [0, @ Bl De™ ], 1€ [, 10,

whenever |x(¢)| > [pi(lull)]'/? (a.s.) and at the switching time f = f,
Elllx () 17] < arE[]|xo]|7]. Since lim_, o ax = 0, the system states will eventually
approach (in the pth moment) the ultimate bound [p(||u ||« )]'/? where p = max; {p;};
that is, the solution of (6.1) is aISS in the pth moment. This completes the proof.
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Remark 6.2 Assumptions (i) and (ii) are made to ensure the alISS property in the pth
moment of each subsystem. In this case, the function V; satisfying these assumptions
is called stochastic ISS Lyapunov function related to the ith subsystem.

Remark 6.3 The idea behind the dwell-time-based condition, Ty, in (iii) is to gen-
erate a sequence of solution trajectories at the switching times that converges (in
the pth moment) to a limit set with a radius depending on the maximum ISS gain
of the system modes. That is to say, the switching among all stable modes ensures
the stability of the switched system. Furthermore, compared with the existing state-
dependent dwell-time condition which requires the knowledge of the state at the
switching times, the proposed criterion is easier to work with because it depends on
the system initial state only.

Implications of this result are stated in the following corollary whose proofs are
straightforward; thus, they are left here as an exercise.

Corollary 6.1 In Theorem 6.1,

(i) ifon,(r) = a1, g, (r) = agr and o5, (r) = o r forallr > 0, where ay,, o,
and o, are positive constants, then the above alSS properties reduce to elSS,
respectively;

(ii) ifu(t) =0forallt € Ry, then alSS reduces to the pth moment global uniform
asymptotic stability (g.u.a.s.) of the trivial solution of the nonlinear stochastic
switched system

dx(t) = for @, x()dt + gory &, x(@)dW (1),  x(to) = Xo;

(iii) if g (t,x(t),u(t)) = 0and u(t) # 0 for all t, then the alSS property reduces to
the standard alSS of the nonlinear switched system

).C(t):fo'(t)(t’x(t)’u(t))s x(t0)=x07
where LV (1, x (1), u(t)) = V(t, x(1)) = V,(t, x(1)) + Ve f(t, x(@), u(t)); and

(iv) ifu(t) =0andg(t, x(t)) = Oforallt, then the alSS property reduces to g.u.a.s.
of the nonlinear switched system

X(t) = fow (@, x(1)),  x(to) = X0,

where LV (t,x(1)) = V(t, x(t)) = V,(t, x(t)) + Vi f(t, x(1)).
In the following example, we illustrate these results.

Example 6.1 Consider the following switched system

dx = (—a;x +u(t))dt +u(t) sinx dW(¢),



124 6 Input-to-State Stability for Stochastic Switched Systems
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wherei € . = {1, 2} and g; is a positive real number. Let V; (x) = %x“ be a stochas-
tic ISS Lyapunov function candidate related to the ith subsystem. We also choose
a1, (-) = ay, () = V;(-). Then, with little effort, one may get

3
LVi(x,u) < —aix* + |xPlul + 5"4

IA

3
—aix4+a,-9x4—a,-9x4+|x|3|u|+5)64, 0<6<l,

IA

—az, V(x), provided that |x| > |u|/(a;0 — 3/2),

with a;0 > 3/2, where a3, = 4a;(1 — 6) > 0. Thus, both subsystems are aISS in
the fourth moment. Taking a; =4, a, = 8 and 6 = 1/2 gives a3, = 8 and a3, =
14. By Theorem 6.1, we have m;(t) < m;(t_)e %=1 < ¢=(=%1 This also
implies that 61, (r) = 0,,(r) = r and hence E[x*] < E[x*(t;_;)] < e~ There-
1

fore, the 7;,4 becomes t; — t;_1 > ln(%),where we choose a; = m,k =0,1,....

Figure 6.1 shows that the solution is alISS in the first moment where u(¢) = sin(z).

The standard alSS property of the deterministic switched system is shown in
Fig.6.2.

The classical asymptotic stability property of x = 0 of the unforced stochastic
switched system is shown in Fig. 6.3.

In the following theorem, we establish the pth moment alSS property of the
switched system (6.1) with stable and unstable subsystems. For convenience of nota-
tion, we denote by ., = {1, 2, ..., N;} (&, = {1,2,..., N,}),with Ny + N, = N,
the index set of stable (unstable, respectively) subsystems and . = .%; U .%,.

Theorem 6.2 Consider system (6.1) with &/ = ./, U.%,. Let V; € €"2([tx—1, tr) %
R"; R+) with V;(t, 0) = 0 satisfy the following assumptions:

(i) for eachi € .7, there exist a concave function o, € JH, and convex function
v, € JHoo such that
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Fig. 6.2 alSS property with 1
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o, (Ix11”) = Vit, x) < ay, (IxI”),  (as.);

(ii) (1) foreachi € ., there exist as, € K, and p; € JHo, such that

LVit, x,u) < —a3 (Ix11"),  (a.s.), whenever ||x[|” > p;(llullco);

(ii) (2) foreachi € .7, there exist as, € JZ, such that
LVi(t, x,u) < a3, (x]17),  (as.);

(iii) the T;5q condition satisfies

(1) foreachi € %y, ={1,2,3,...,Ny}andk =1,3,5,...
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02, (Elllx0l171)
th—to>In ———— >
01, (a1 ELlxoll71)
0>, (a1 A E[lxo[171)
01, (a2E[llxo171)

b

ts —t >1In

3

(2) foreachi € %, ={1,2,3,...,N,}andk =2,4,6, ...

0 <1 =11 = Gafan, (@ AELIxoll ") | = Ga| s, (@ Ellxol D),

0<t4—13<Gy [0124 (llezE[onHp])] - G4[0414(612E[||x0||p])],

)

where 0 < a < axAy < ax—y withag = 1, 01,(-) := 07 (a1, () and 05,(-) =
03.(-) are functions of class K, and Gy, Ga,--- are functions defined
in Lemma 6.1.

Then, the solution of (6.1) is pth moment alSS stable with the ISS gain py(-) :=
max;e.y pi ().
Proof For all t > ty with 1y € R, let x(¢) = x(¢; to, xo) be the solution of (6.1).
Forall t € [ty_1, ) and i € .7, define V;(¢, x(1)) € €' ([tie1, ) x R"; Ry ) as a
Lyapunov function candidate related to the ith subsystem.

For convenience, we adopt the case where the switching among the stable and

unstable modes occurs alternatively.
Fori = 1andt € [y, t;), we have by Theorem 6.1

Elx 1] < 07, [0, Elllxo 7D,
and, by the stable 7;54 condition in (ii)(1), we have at the switching time t = 7y,
E[llx ()71 < a1 E[||xol”].

If the system switches to an unstable mode on [#;, ,), then by Lemma 6.1, assump-
tion (i) and the last inequality, we have

ELx(0)17] = 03 67! (Gatan@Elxo D) + ¢ —m) |,
which implies that, with the aid of the unstable 7;,; condition in (ii)(2),

E[llx (@) 11”1 = a1 A Elllxo||”].
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By the same manner, one generates a sequence of states at the switching times
Elllx@)II”] < aElllxoll”]  and  E[llx @) 1] < axc AElllxo[|”].

Since a; < arAr < ay_1, limg_,oar =0 (Yk € N,) and E[||xo]|”] < oo, then
limg_, o E[||x(#)]|”] = 0, which means that, when ¢t — o0, the solution will even-
tually linger on at the ultimate bound of the system input. This completes the proof.

Remark 6.4 As can be seen in the assumptions (ii) and (iii) of Theorem 6.2, if
the system switches between stable and unstable modes, the stable modes have to
dominate over the unstable ones. This in turn implies that dwell times of stable modes
are larger than the corresponding times of unstable modes.

The following example illustrates this result.
Example 6.2 Consider the switched system with the following

unstable mode
dx = (—ax® + xu(t))dt + V2ax*dW (1)
and the stable mode
dx = (—ax® = bx + u(0)dt + v2ax>dW @),
where a and b are positive constants. Here, ., = {1} and .%; = {2}. For any i €
< ={1, 2}, define V;(x) = %xz as a Laypunov function candidate related to the
ith subsystem. Then, for i = 1, we have £V, (x, u) = x%, where u(t) = 1 for all
t € [tr_1, 1), i.e., the subsystem is unstable. This also implies that DTE[V;(x(1))] =
2E[Vi(x(t))] and, by Lemma 6.1,
E[Vi(x(1)] = E[Vi(x(te1))]e*" 0,

i, G(r) =In(r) and G~ '(r) = ¢". If we choose oy, (x) = az, (x) = Vi(x), we
obtain

E[xz(t)] = E[xz(l‘k_l)]ez(tft"*l).

Similarly, for i =2, we have ZV,(x,u) < —a3,Va(x) provided that |x| >
[u|/b0, where az, = 2b(1 — 6) > 0 and 0 < 0 < 1, which implies

E[V2(x)] < E[Va(x(tp_1))]e 2% < B[ Vo (x (ft_1))]e 20

if we choose b =2 and 6 =1/2 (ie., 0,,(r) = 62,(r) =r). Choose «y,(x) =
o, (x) = Va(x). Then

E[x*(1)] < Elx*(t-)]e "%, 1€ [tr_1, ).
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Fig. 6.4 First moment alSS 0.5

with u(t) = sin(t) oal I I ” A

oaf/ L R
02t/ | [ Fo / | J

0.1 f | 33 : 1 ‘1‘ 3‘ f 1

E[x(t)]

As for the dwell time, let us first run a stable mode (i.e., k = 1). Then, from (iii)(1),
ifay =1/2, we get t; —tp > In2 = 0.7 and, for k = 2, we run the unstable mode
with A} = 1.5 > 1 which gives h—t < l In 1.5 = 0.2. By the same argument, for
k=3,wegetts —1t, >In “‘ , where a1A1 > ap which implies a, < 3/4; so that,
taking a, = 1/4 gives t3 — tg > 1.1. For k = 4, we get | < A, < 2, so that taking
Ay = 1.5givesty — t3 < 0.2. Figure 6.4 shows the first moment alSS of the switched
system where u(t) = sin(z).

6.3 Markovian Switching

In this section, we consider a more general approach than the dwell-time condition
called Markovian switching to control the mode switchings. In this case, the switch-
ing signal is represented by a Markov chain which takes values in a finite set. An
interesting issue in adopting this type of switching arises from involving the transi-
tion rates of the Markov chain in the calculation of dwell times. One can recognize
that the stability requirement of individual modes is neither sufficient nor necessary
for guaranteeing a stability-like property of a switched system.
Consider the nonlinear system with Markovian switching
{ dx(t) = f(t,x(@), u(t), o@)dt + g(t, x(1), u(r), c(t)dW (1),
(6.7)
x(to) = x0,  o(ty) =09 € .7,

where, for all + > 7y with 7, € R, the switching signal o(¢) is a Markov process
taking values in a finite state space . = {1, 2, ..., N} and oy is an initial state. In
this case, the operator . associating (x(), i) to V (¢, x(t),i) € €2 (R+ x R" x
S Ry) forany i € .7, is defined by
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LV(t, x(t),u(t),i) =V, (t,x(), i) + Vi(t,x (), i) f (&, x(@), u(t),i)

1
+ Etr[gT(r, x(@), u(t), i)V (t, x(2), D) g(t, x(t), u(t), i)]

N
+ Ve x@). ), 6.8)

Jj=1

with ;; being the transition rate defined earlier.
In the following theorem, we state and prove the pth moment eISS of the forced
system (6.7).

Theorem 6.3 For any i € . and all t € [ty_1, ty), assume that the following
assumptions hold:

(i) there exist constants K > 0, a; > 0, p; > 0, and o; > 0 such that

£, x, 0,01 < Klxll, Ix7 f,x,0,0)] < aillx|?,  (as.)
lg(z, x,0, ) < pillxll, Ix" g, x,0,0)] < oillxl®,  (as.);

(ii) there exist positive constants \, ¢, and ¢, such that

cilx|”? < V(t, x,i) < allxlI”,  (as.) (6.9)
LV(t,x,u,i) < =\|x|?, (a.s.) (6.10)

whenever || x|| > p(|lulloo), where V- e €12 ([ty, 00) x R" x .7; R.) and p is
a class-¢ function; and

(iii) the functions f and g are locally Lipschitz in u, uniformly int and x, i.e., there
exist positive constants c3 and c4 such that

If @ x,u, i) = @, x,0,D) <csllull,  (as.)
lg(t, x,u,i) — g, x,0,)| <callull, (as.).

Then, the solution of (6.7)is pthmoment elSSfor0 < p < min{2, (3c4 + 40;)/(c4 +
20;)} with Lyapunov exponent being not larger than —\/c;.

Proof Forallt > ty withty € R, let x(¢) = x(¢; ty, xo) be the solution of (6.7). For
anyi € Y and ; > 0,define V (¢, x(t), i) = 5;||x(t)]|” as astochastic ISS Lyapunov
function candidate related to the ith mode. Then, by (6.8) we have

. _ 1 _ .
LVt xu, i) = pBillx P2 f (e, xu, i) + > P Ix1l” g, x, u, i)|?

N

1 _ .
= 5P@ = PG IxT g w DI + 3 i Bl
Jj=1
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= BN [ w0 = fx, 0,0 + f(x,0,0)]

1 ~ . . .
+ S pBilxIIP2Ng(t, x, u, i) — g(t, x,0, i) + g(t, x, 0, )

2
1 _ . . .
= 5P2=PBilxI? T [gt, x,u, i) — g(t, x,0,0) + g(r, x, 0, D)]]*
N
+ > Billxl
j=1

= PP {IxT L i) = F, 0,001+ 13T 02, 0,01
1
+ 3 PO g 1) = 9o x, 0,001 + g2, x, 0.5) |
+ 2090t x. 1) = g(t.,0.)lg(t. x. 0. )|

1 _ , . ,
+ 5@ = PGP I g x ) = g x, 0D + T g2, x. 0. 1)
N

+ 207 g0, x w0, 1) = g(o, %, 0. DN g(e, %, 0, )} + D308 1x11”
j=1

< pBillx 1P 2T LF (e, x uy i) — £, x, 0,01 + pBillx P2 l1xT f(2,x,0,0)]
1 1
+ 5 P Ix1P=2lg(, x, u, i) — g(t, x, 0, D)1 + 5B 1”2 1lg (2, x, 0, )]
1 _ ‘ . .
+25 pBilxIl” 2||g<r,x,u,z>—g(r,x,o,z)nng(z,x,o,z>||}

1
+ =pQ2 = p)Billx P xT [g(t, x, u, i) — gt, x, 0,112

2
1 _ .
+ 5P = PBIxITH Ix g, %, 0, )
1
+25pC = p)fi 1P~ 1x T [g(r, x, u, i) — g2, x, 0, DI IxT g(r, x, 0, D)
N
+ Y iBlxl?
Jj=1

_ 1 . 1
< pBicslx 1P lull + pBilagllx|1? + Epﬁicﬁnxnp Hul* + Epﬁip?llxn”

_ 1 -~ 1
+ pBipicallx” lulloo + 7P - PBiciIx P2 lull, + 3P - p)Biotix|?
N

+pQ2 = p)Bioicallx 1P llulloo + Y 7ij Billx11”
j=1

N
1 1
= {pBilail + 5 p6i6} + 5@ = pBio} + z:l’Yijﬂj}Hx”p
p

1 _ o 1 -
+{Bresle 1P+ S BRIP4 pAipcalie)”! + S p@ = pBic il

+ P2 = pBioical )’} lullo
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N
1 1
= {plasl + 3 p0F + 5@ = Pt} + 3 s BilxI”
=1

ploo .
+{[es + poica]Ix177t + [Sped + 30 = )G+ p@ = paica|I¥172 Billulloo
2 2

1 2 1 2 uf P

- [plai|+5ppi+5p<2—p)ai}ﬁi+217ijﬁ, Il
p
. p=1 . . r=213
+{[es + poica] 1P +[ = ©5es + 0p)p + (15es + 200 Jeapllel P2l

= A IIP + 2M (D oo
= =Nl + 2M (D e, (6.11)

where \* = min{—/3} | i € .’} with

N
1 1
B =—p; [p|a,-| + 50} + P2 - p>0?} + Db <0,

j=1
and
Ml = max | 33 + ppres 17,

capBi] = O5cs+ o) p + (1.5ey +207) | 1x1772).

To use A*|| p||” to dominate 2M (|| x||)||# ||, We write the last inequality in (6.11)
as follows

LV, x,u, i) < =N =) xl” = vixl” + 2M xDllullo 0<v <A,

<
< =\ =v)|Ix|I” = =Allxll”,
where A := \* — v > 0 provided that v||x||” > 2M (||x||)||u|| o OF

Ixll > 2B; /v - [e5 + ppical llulloo,  if M(IxI)) = B: [e3 + ppical Ix[1P7",
x|l > {283; pea/v - [—(0.5ca + 1) p + (1.5¢4 + 20)] ulloo}'?, if
M(Ix]) = capBi [—(0.5¢cs + o) + (1.5¢4 + 200)] [l x[772.
(6.12)

Applying the generalized It formula to e*/>V (¢, x, i) and taking the mathemat-
ical expectation yield

At Al‘() ! AS /\
E[le2 V (&, x,i)] = E[V (9. x0, 00)]e 2 +E[/ e [*V(s,x,i)+<$V(S,x,i)]dS]
) c2
A [P A
SE[V(to,x(),Jo)]e"ZtO —HE[/ e"ZA[—V(s,x,i) — —V(s,x,i)]ds]
1o c2 c2
A
= E[V (19, x0, 50)]e 2.
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With the aid of (ii) and, after some algebraic manipulations, one may obtain

ElIx(0)]”] < KE[|xol”le 2™, K =cy/er, Vi > .

This result shows that system (6.7) is pth moment eISS with the ultimate bound
given in (6.12) and Lyapunov exponent —\/c,. This completes the proof.

Example 6.3 Consider the switched system in (6.7) with

flt,x,u,1)= 7 j_t(x + u(1)), g(t, x,u, 1) =b(sinx + u(t)),

ft,x,u,2) =cxe ™ +u@)), g, x,u,2) =b(x+u@)n|l+x]),

where a, b, ¢, and d are some constants to be chosen later. The probability transition

matrix is
-1 1
= ()

Clearly, the vector field functions satisfy the conditions in (i) and (ii) of the the-
orem, where K| = a; = ¢3, = |al, Ko = ap = ¢3, = |[c| withc € {—1, 1} or p; =
o1 = c4, = |b|, p2 = 02 = ca4, = |d|,c3 = max{|al, |c|},and c4 = max{|b|, |d|}. For
i=1,2,1et V(x,i) = G;|x|? with 0 < p < min{2, (%C4 + 20’,‘)/(%64 + o;)}. Tak-
ing la| = b] = |c| = |d| = p = 1 yields § = —34 + > and 3 = f — 30, and
by choosing 81 = 5, = 1, we get A* = min{f;, 3>} = —2. Therefore, if v =1 <
=X, LV (x,u,i) < —|x| < 0provided that |x| > 4|u|. By our choice of the proba-
bility transition matrix I' = [7;;]2x2, we get w1 = m = 0.5, which represent the time
spent in the first and second modes. Figures 6.5 and 6.6 illustrate the first moment
alSS property with u(z) = sin(¢) and u(t) = e, respectively. In both cases, the
switching occurs between two stable and unstable modes.

Fig. 6.5 First moment aISS 2
witha = ¢ = —1and
= sin
u(r) = sin(r) sk ]
””QA"‘.
1
1 \ J
h oA
= Ao Ay T M
X o5} ‘ [ Pl [ /] g
w I O T A T [
N i { 4 i i
{o P | | {
of R T B AR
| [ 1 J }
1 ! Y ! y
f b (i | 1
-05t v | | Lo
t f‘ ¥ WS #
) ) Y| ! W
hy Y : ’ v




6.4 Notes and Comments 133

Fig. 6.6 First moment aISS 357
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6.4 Notes and Comments

In this chapter, the pth moment ISS property of nonlinear stochastic switched sys-
tems has been presented. The Lyapunov-like sufficient conditions have been written
and switching rules to guarantee the system stability properties has been designed.
The material of this chapter is taken from [6]. In Sect. 6.2, we have used the 754 con-
dition to control the switching among the system modes. Two cases were discussed;
namely, systems with all stable modes, and systems with stable and unstable modes.
The latter case required developing Lemma 6.1, in which Bihari’s lemma, but not
Bellman-Gronwall lemma, plays an important role. We have shown that the result of
Theorem 6.1 has some implications that can be applied to some special cases, such
as deterministic or unforced systems or systems without these types of perturbations.
In fact, one can also derive some analogous implications from Theorems 6.2 and 6.3.

We should remark that, in [7], the pth moment asymptotic ISS was developed
for a stochastic retarded systems using Markovian switching. In Sect. 6.3, we have
discussed the pth moment exponential ISS property, which necessitates the vector
fields to satisfy Lipschitz condition in the input variable and grow linearly for all
time.

We have also showed that in Theorems 6.2 and 6.3, the stability of each individual
subsystem is not necessary to achieve the stability of the switched system. In such
a case, ISS is guaranteed if stable modes are activated longer than unstable ones.
We should also remark that throughout this chapter the switched system is subject
to the same input. Therefore, one may consider a more general case in which each
subsystem is subject to a different input.
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Chapter 7 )
Reliable Control for Stochastic Switched Guca i
Systems with State Delay

In the feedback control design of real systems, an unavoidable, undesirable control
performance may occur due to the failure(s) in control components, such as actua-
tor or/and sensor failures. Therefore, it is necessary to design controllers to achieve
the desired plant performance, not only when the control components are properly
operational, but also in the presence of failures. Control systems that tolerate sen-
sor/actuator outages are called reliable control systems.

This chapter deals with the design problem of a switching reliable control for
a class of stochastic switched systems. The stochastic differential equation is of
Itd6 type with constant time delay, the nonlinear lumped disturbances have linear
growth bounds and the random noise is approximated by Wiener process. Two sets
of actuators are considered, a set of operational actuators that never fail and a set of
actuators that are susceptible to failure. Primarily, the focus here is to design a state
feedback sub-controller for each system mode such that, for all admissible nonlinear
uncertainties and actuator failures occurring in a pre-specified subset of actuators,
the closed-loop modes are exponential stable in the mean square (m.s.). Moreover, to
maintain the stability property for the closed-loop switched system, the initial state
dwell-time switching rule and the technique of multiple Lyapunov function together
with the Razumikhin methodology are used. This approach leads to solving a set of
algebraic Riccati-like matrix equations.

7.1 Problem Formulation

Consider the following stochastic switched control system with time delay

dx(t) = (Acyx + Byt + fey (X)) di + ey (x) AW (1), (7.1a)
Xty =¢(S)7s € [_r’ 0]7 (7.1b)
© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 135
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where for all # > ¢, with 7y € R, x(t) € R" is the system state vector and u(¢) €
R? is the control system input. « : [y, 00) — . where . = {1,2,---, N} (with
N e N)is a piecewise constant function representing the switching signal. For every
i €., we assume that the functionals f; € R" and g; € R"™, which represent
lumped uncertainties, are bounded above by a linear growth bound and u is a state
feedback controller of the form K;x, where K; € R"* is a control matrix gain.
¢ € R”" is the initial state function which is assumed to be in Z;O([—r, 0]; R™). A;
and B; are real known constant matrices of appropriate dimensions. To guarantee
that (7.1) has a unique regular solution, we assume that f; € £,,(2, L[a, b]) and
gi € Za(, L*[a, b]) and they satisfy Lipschitz condition in their argument. We
also assume that f;(0) =0 € R” and g;(0) = 0 € R"*™ to ensure that the system
admits a trivial solution, x = 0.

To analyse the reliable stabilization with respect to actuator failures, for every
i €. consider the decomposition of the control matrix B’ = B + BL where
Y C{1,2,---,q} the set of actuators that are susceptible to failure (i.e., they may
occasionally fail) and the other set of actuators which are assumed to be robust to
failures & C {1,2,---,q} — X and essential to stabilize the given system. More-
over, B’AE and B% are the control matrices associated with ¥ and ¥, respectively, and
B and Bi-: are generated by zeroing out the columns corresponding to ¥ and X,
respectively. The elements of ¥ are redundant in terms of the stabilization, though
they are necessary to improve the system performance. On the other hand, the ele-
ments of ¥ are required to stabilize the system and assumed that they never fail,
i.e., the pair (A, Bii) is assumed to be stabilizable. For a fixed i € ., letoc C &
corresponds to some of the actuators that experience failure and assume that the out-
put of faulty actuators is zero, i.e., outage case. Then, the decomposition becomes
B' = B, + B, where B} and B} have the same definition of By, and B, respec-
tively. We should emphasize that the pre-specified subset o € ¥ of faulty actuators
of the ith sub-controller may differ from o € ¥ of the jth sub-controller, for any
i,jes.

Applying the control input « of the form

u(t) = K;x(t), Vi e S andt € [, tyr1) (7.2)

to the system plant through the normal actuators and, since we assumed that the
outputs of the faulty actuators are zeros, the closed-loop system of (7.1) becomes

dx(t) = ((A; + Bis Kp)x + fi(x))dt + gi(x)) dW (1), (7.3a)
Xy, = @(5), s € [—r, 0], (7.3b)

foreveryi € % and all t € [#, tyy1).
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7.2 Stability Analysis

In this section, we prove the m.s. global asymptotic stability for the closed-loop
system (7.3), where all actuators are operational (Theorem 7.1). This result will be
carried over in Theorem 7.2 to achieve stabilization property for the system in the
presence of possible actuator failures in all sub-controllers.

Theorem 7.1 Foranyi € ., let the controller gain K; be given. Assume there exist
positive constants &; and positive-definite matrix P; such that the following algebraic
Riccati-like matrix equation

1 T 1
(Ai+BiKi+§Vi1) Pi+Pi(Ai+BiKi+EViI)
L, - 2
+ P +&iqi|Uill"I + a; P; =0,

holds, where o; > 0, g; > 1 and y; > 0 such that, for any ¢ € € ([—r, 0]; R"),

trlg] () Pigi()] < 2viqiyr (0)" Py (0)

and U; is an n x n matrix such that || f; Y)|1> < g ||1U; |* ¥ (0)||%. Suppose further
that, for any k € Nandi € .7, the following dwell-time-type condition

1 a,-d,-,lem"
ho—tfo1 > —In(————) >0 (7.4)

o bl'di

holds, where a; = Amax (P;), bi = Amin(P;) andd; < di—y < 1(fori =2,3,---)such
that lim;_, o d;—_y = 0. Then, the closed-loop modes in (7.3) are m.s. globally expo-
nentially stabilized by the control law given in (7.2) and switched system (7.3) is
asymptotically stable in the m.s.

Proof For all t > 1y with #) € R, let x(¢) = x(¢; to, ¢) be the solution of system
(7.3) and, for any i € .7, define V;(x) = x” P,x as a Lyapunov function candidate
for the ith mode. Then, from It6 formula we have

LVi(x) = ((Aix + BiK)x + fi(x) Pix +xT Pi(Ai + BiKix + fi(x))

1
+ St (o) Pigi ()
<x"(AT' P, + P A; + 2K B P)x + f7 (x)) Pix + x" P; fi(x,)

+ y:gix" x.

By the fact that [1]

1
2xT P fi(x) < xT (1 I\ UG 1T + ;Pz)x, (7.5)

l
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we obtain
ZLVi(x) SXT<(A1' + B;K))' P, + P,(A; + B;K})
- 2 1 2 -
+ &gl UilI° T + ;Pi +Vi61i1>x
1
=—ax"TPx=—o;Vi(x) <O.

Applying the Itd Lemma to process V; (x) and taking the mathematical expectation
yield

D¥mi(t) < —aym;(t), Vi €. andt € [ty, ti1),

where m; (t) = E[V;(x(t))] foranyi € . and allt € [, tx11), and D" m is the Dini
derivative of m defined by

DVtm(t) = hl_i)r& sup %[m(t 4+ h) —m(t)].

It follows that, for any i € . and all t € [#y, tx+1),

a; i (—
E[lx(®)]*] < ;E[nx,kn%]e 10—k

L

that is every closed-loop mode in (7.3) is exponential stability in the m.s. Invoking
the dwell-time condition in (7.4) results in

E[x (1)1 < d; E[|l$]%] (7.6)

and, at the switching moments ¢ = #;, E[||x (#)*] < d; ]E[||q§||f]. Since lim; oo d; =
0, lim,, o E[||x(#)]|*] = 0 asymptotically, which proves the desired result. This
completes the proof.

Remark 7.1 The solvability condition of the algebraic Riccati-like equation is to
guarantee the existence of the positive-definite matrix P; for any i € ./, which in
turn implies that the system modes are exponentially stabilized by the state feedback
control law defined in (7.2). Moreover, the dwell-time-type condition in (7.4) is made
to ensure that the solution of the closed-loop switched system (7.3) converges in m.s.
to the trivial solution by the rate d; during the finite time #; — #;,_; for any i € .%
and k € N; this is can be easily seen in (7.6). We should mention that the dwell-time
condition in (7.4) is a special case of the initial-state-dependent dwell-time condition
presented in Sect. 6.2. The positive tuning parameter ¢; (for any i € .%) is presented
to reduce the conservativeness of the matrix inequality (7.5). We should also remark
that the assumptions of Theorem 7.1 do not impose any restriction on the time delay,
which makes the proposed stability approach efficiently applicable to systems with
state delay.
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Having proved the key-role stability theorem, we are in a position to address the
robust reliable control design.

Theorem 7.2 Foranyi € ., assume that

(i) there exist positive constants &; and &}, and positive-definite matrix P; such that
the following algebraic Riccati-like matrix equation

1 T 1
(Ai + —)/il) P + Pi(Ai + —)/il)
2 2
1
+ Pi(—I — &/ B;BY)P; + &g ||Ui |’ T + i P; = 0
Ei

holds, where a; > 0, g; > 1, y; > 0 and U; are defined in Theorem 7.1; and
(ii) the dwell-time condition in Theorem 7.1 holds.

Then, system modes in (7.3) are m.s. globally exponentially stabilized by the control
law u = K;x, where the control gain K; = —%SZ‘BZ{} P;, for any nonlinear uncer-
tainties and actuator failures in the pre-specified set o € X associated with the ith
mode. Moreover, the entire switched system in (7.3) is globally asymptotically stable
in the m.s.

Proof Since the control input u is applied to the system plant only through the normal
actuators, we have B;K; = —1&¥B;z BL P;, foralli € ..

Forallt > fy withty € R, ,letx(t) = x(¢; ty, ¢) be the solution of (7.1) and define
Vi(x) = xT P,x (fori € ) as Lyapunov function candidate related to the ith mode.
Then, as achieved in Theorem 7.1, we have

1 T 1
(Ai + BiK; + 5)/1'1) P + Pi(Ai + BiK; + 5%‘)

1 _
+ ;P,-z + &g |\ Ui 1’1

1 T 1
= (A +5nl) P+ P(A+ Sl
2 2
1 * T — 2
+ P(—1 —¢;BsB;)P; +&iqi Ui (1”1
&
=—uP <0,

L which follows from the fact
that B;5 BiTi: = BizBL. — Bis_is BY, ,, [2]. That is, the system modes are all m.s.
globally exponentially stabilized by the mentioned feedback control law. Thus, as
achieved in Theorem 7.1, applying the dwell-time condition results in that x = 0 is

m.s. globally asymptotically stabilized. This completes the proof of Theorem 7.2.

where we have used the inequality B;5B'. < Bis B
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7.3 Numerical Example

In the following example, we consider a system switching between two modes with
two cases, normal and faulty control actuators. In Case 1, the actuators are operational
in both modes and, in Case 2, the first mode experiences a failure in the second actu-
ator and the second mode has a failure in the first actuator. In both cases, the normal
and reliable state feedback controllers guarantee the stabilization requirement.

Example 7.1 Consider system (7.1) where x7 = (x| x3), . = {1,2},¢(s) =1 — s
for all s € [—1,0] (i.e., the time delay r = 1), &; =1, ¢/ =1, g =2, d; =1/2,
o] = 2, 0y = 3, Y1 = 001, V2 = 002,

0.2 0.1 1-0.2 ~50.1
A‘=[o —10]3':[0 1}’1(‘:[0 1]’

filx—1) = I:—O(')(.)é;)lcit(t_—li)} . gi(x(t—1) =001 [xl(zo— ) xz(to_ 1)] ’

and

~11 0 10 10
A2 = [0.2 0.1]’32: [00.1 1]1(2: [0.3 —6]’

HG@—1) = [00'?11;1((;__11))] > sk@-D)= [O'Omét Y o.2x28 - 1)} '

Case 1: When all actuators are operational, we have from the algebraic Riccati-like
equations

0.002 0 0.001 0
Pl:[ 0 0.0011} a“dpzz[ 0 0.0017]

That is, a; = 0.0021, a, = 0.0017, b; = 0.0011 and b, = 0.001. We also have

found A; + B K| = [_3‘8 _09} and A; + B,K, = [_10 O | which are Hur-

04 —59/|

witz matrices. The simulation result is shown in Fig.7.1, where the dwell times of
the first and second modes are, respectively, ty — fx—; > 2.0l and t; — 11 > 2.17,
for any k € N.

Case 2: When there is a failure in actuator 2 in the first mode and a failure in the first
actuator in the second mode, i.e.,
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1.5

EflIx"IR

Fig. 7.1 Mean square asymptotic stability: normal actuators in both modes

15

EllIxTIA

0.5F

Fig. 7.2 Mean square asymptotic stability with failures in the actuator components

10 00
Bl(} = [0 0] and Bg(} = [0 1]

we have from the algebraic Riccati-like equations

0.0047 0.001 0 0

p, _ [ 0:001 0.0067) . _ 0 0
27 10.0067 0.3734 271 -0.0033 —0.1867 |’

P = [0.4815 0.0047j| and K, = |:—0.2407 —0.0024] and

which give a; = 0.4815, a, = 0.3736, b; = 0.001 and b, = 0.0009. We also have

—0.0407 0.0976 —11 0
found 41 + Biz K = [ 0 —10 } and 4z + By Ko = [0.1967 —0.0867}’
which are Hurwitz matrices. The simulation result is shown in Fig.7.2, where the
dwell times of the first and second modes are, respectively, #, — f;_; > 4.78 and
ty — ty—1 > 3.24, for any k € N.
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Remark 7.2 As can be seen in Figs. 7.1 and 7.2, the convergence of the system state
to the equilibrium state in systems with operational control actuators is faster than
the convergence in systems with faulty actuators.

7.4 Notes and Comments

The problem of reliable control for stochastic switched systems has been addressed.
The focus was on the design of such a controller to guarantee m.s. global exponential
stability of each mode, not only when all control actuators are operational, but also
when there is a failure in some pre-specified subset of actuators. The material of this
chapter is taken from [3]. This result has led to establish the asymptotic stability of the
switched system under the prescribed dwell-time condition. The outputs of the faulty
actuators are assumed to be zero; therefore, for further investigation, one may extend
this result to consider sensor outages or faulty actuators with nonzero output signals,
which can be viewed a disturbance inputs. The Lyapunov—Razumikhin approach is
efficiently applicable to systems with delayed states, because these results do not
impose any restriction on the time delay. Also, employing Lyapunov functions has
led to solving Riccati-like matrix equations for positive-definite matrices P;.

In fact, there have been many studies devoted to design different reliable con-
trollers for systems with various levels of complexities; see, for instance, [4—15].
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Chapter 8 ®)
Robust Reliable Control for Impulsive oo
Large-Scale Systems

This chapter deals with the problem of designing a robust reliable decentralized
control for impulsive large-scale systems (ILSS) with admissible uncertainties in
the system states. Then, the same idea is carried over to design reliable observers
to estimate the states of the above systems. The faulty actuator/sensor outputs are
assumed to be zero. The reliability analysis is achieved by using a scalar Lyapunov
function.

8.1 Problem Formulation

Consider the interconnected system

' = (Al + AADYW + Biul + fi(w')
+gi(w]7w27"' ,wi’.'. ’wl)9 t#tkv

) ) . 8.1
AW (1) = S (1)) = Cuw' (), 1 =1, k€N, 61
w' (o) = wy,

where for i = 1,2,....1, w' € R% is the ith subsystem state such that Zle

n; =n, A' € R%*" is a non-Hurwitz matrix, the impulsive times #, satisfy 7y <

h<thh<---<t<---withlimg_ty =00, Aw'(fy) = w’(t,j) — w'(t, ) where

w(t,:r )(or w(t,)) is the state just after (or before) the impulse at #, % : R" — R™
is the impulsive function, u’ = K'w' € RY is the control input for the ith subsystem,
where K' € R7*" is the control gain matrix, f; : R" — R is some nonlinear-
ity and g : R" x R™ x --. x R" — R" is the interconnection. The functions f;
and ¢' satisfy Lipschitz condition. A’, B’ and C;; are known real constant matrices
with proper dimensions, and AA’ is a piecewise continuous function representing
parameter uncertainty with bounded norm.
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System (8.1) can be written in the following form

X=(A+AAx+Bu+ F(x)+Gx), t 1,
Ax(t) = F(x(t7)) = Cex(t7), t=1t, keN, (8.2)
x(tp) = Xo,

where x” = @' w2’ . W), (A+AA)DT = (((Al + AA])wl)T ((a?
+aAtuR)’ (Al aah!)"), (Bu” = ((B'uhT (BT - (BluhT),
FE)" = (A@H” p@)’ - fwh’), Gu)T = (¢'0" Fw'
¢ "), (€T = ((Cuw)) (Cxwd)T -+ (Cpuh)?).

From (8.1), the corresponding isolated subsystems are

w = (A" + AADW + B'u' + fi(w'), t # 1,
Awi(t) = Cikwi(t‘), t=t, keN, (8.3)
w' (o) = wy,

wherei = 1,2, ...,/ and the corresponding closed-loop system is

wi = (A" + AAT + BIKDw' + fi(wh), t # 1,
Aw' (1) = Cypw' (1), t=t, keN, (8.4)
w' (ty) = wy.

As shown in the last chapter, if we consider the decomposition becomes B’ =
B! + B, then closed-loop systems for the faulty case becomes

wi = (A + AAT + BLKDw' + fi(w), t # 1,
Aw' (1) = Cypw' (1), t=t, keN, (8.5)

w' (fp) = wj).

Definition 8.1 The trivial solution, x = 0, of system (8.2) is said_ to be robustly
globally exponentially stable if there exist positive constants A and A such that

||| < Allxolle ™™™, vt > 1

for any solution x () = x(¢; fy, xo) of (8.2) with to € R* and xo € R".

Throughout this chapter, the system uncertainty is assumed to satisfy the following
assumption.

Assumption A Fori =1, 2, ..., [, the admissible parameter uncertainties are defined
by
AA'(t) = D'U'(t)H', VYt e R,
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with D' and H' being known real matrices with appropriate dimensions that give
the structure of the uncertainty and % (¢) being unknown real time-varying matrix
representing the uncertain parameter and satisfying ||%(¢)|| < 1.

Lemma 8.1 For any arbitrary positive constants €1, & and a positive-definite
matrix P, we have

(i) 2x" P(AA)x < x" (e, PDD" P + LH" H)x; and
(ii) 2xTPf(x) < xT (& P* + ‘Z—ll)x such that || f () ||*> < 6||x||*> with 6 > 0.

8.2 Reliable Control

In this section, we address the problems of stability and stabilization by robust con-
trollers for isolated impulsive subsystems in case of operational actuators (Theorem
8.1) and faulty actuators (Theorem 8.2.) Then, these results will be applied to the
large-scale interconnected system (8.2) as presented by Theorem 8.3 (operational
actuators) and Theorem 8.4 (faulty actuators).

Theorem 8.1 Let the control gain K be given and assume that Assumption A holds.
Then, the trivial solution, w' = 0, of system (8.4) is robustly globally exponentially
stable if the following inequality holds

Inajy —vi(ty —tr—1) <0, keN, (8.6)

)T pi ;
where a;, = dmlU+Ce) P U4C)

the Riccati-like equation

, with P being a positive-definite matrix satisfying

(Al +BIK1)TPI +PI(AI +BIK1)+€”PIDID1TPI +_HITHZ +£1iPl2
€1i
0il A
+ = —0;P' =0, (8.7)

li
where €\; and &; are any positive constants, 0 < v; < —o;, 0; < 0and 6; is a positive
constant such that

I fi wHI* < 6] w'|[%. (8.8)

Proof For all t >ty with g € Ry, let w'(t) = w'(¢; to, w))) be the solution of the
ith isolated system in (8.4). For i = 1,2, ...,1, define Vi(w') = wi’ Piw' as a
Lyapunov function candidate for the ith subsystem. Then
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Vi) = w4+ BKOTP + PIAT+ BTKD w4 20 PiAA
2w P (w')
< wiT[(Ai + B KNP+ PI(Al + BK') + 6“PI‘DI'D[TP['
1 . . . 617 .
+—H1THZ+51,‘P12+1—:|U)1
€1i &1

= o V' (w'),

where we used (8.8) and Lemma 8.1 in the second bottom line and condition (8.7)
in the last line. Then, for all # € (#_, #;] with k € N, one may have

Vi (1) < Viw' (5 ))e” 0. (8.9)

Att =1, we have
Vi (1) < Amax (Liow' (t)w' (1) (8.10)
< ap VW (), (8.11)

where a;; = A/\"‘—E?,‘)) and L, = [I + Cix]T P'[I 4+ C;]. From (8.9) and (8.10), we

have for ¢t € [1y, 1], o o
Vl(wl([)) S Vl(wé))egi([*f(])’

and for ¢t € (¢, 5] o o
Vl (wl (t1+)) S ;i Vl (wé)eﬁi(t] —l(J)’

Viw' (1) < V' (5))e” ",
which leads to

Vi (1)) < a; Vi (wp)e 70—

= a; Vi(w))eT 7 for t € [ty, tr].
Generally, for t € (t;_1, tx], we have

Viw' (1) < V(wp) ain i -+ g e
— Vi(wé) aile—l//(tl—to) . —Viltk=tk-1) o (01 +2) (t=10)

< Vi(w(i))e(mJrl/f)(f*fo)7 t> 1,

© aige

where 0 < 1; < —o; and we used condition (8.6) to get the last inequality. The
foregoing inequality implies that

[[w']] < illw[e @021 > g,
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where v; =,/ /;"“—((‘;; This completes the proof of global exponential stability of
trivial solution w’ = 0.

Remark 8.1 Theorem 8.1 provides sufficient conditions to ensure robust global
exponential stability for each isolated impulsive subsystem (8.4). The time between
impulses has to be bounded. This condition is summarized in (8.6). The nonlinearity
is assumed to be bounded by some linear growth bound. Condition (8.7) guarantees
that the Lyapunov function be decreasing along the trajectory of system (8.4); that
is, the continuous system is stabilized by the feedback controller.

The following theorem gives sufficient conditions to guarantee robust global expo-
nential stability for each isolated impulsive subsystems when some control actuators
experience failure.

Theorem 8.2 The trivial solution, w' = 0, of system (8.5) is robustly globally expo-
nentially stable if Assumption A and condition (8.6) hold with P’ being a positive-
definite matrix satisfying the Riccati-like equation

AP 4 PIA 4 Pi(e;D' D' — e BLBL' + &) P
| i
+—H H +——0,P'=0 (8.12)
€1i li
where €y, €, and &,; are positive constants, 0 < v; < —o; with ; <0, J; is a
positive constant such that condition (8.8) holds and the control gain is given by
K =—1eyBi' P
- 7 €2i D5 .

Proof Forallt > to withty € Ry, letw' (1) = w'(¢; o, w))) be the solution of system
(8.5). Define Vi(w') = w'’ Piw' as the Lyapunov candidate. Then

Viw') < w"T[A"TPi 4+ PIA 4 Pi(eyD'D' — ey BLBL + €,,1) P
Lo 6l
+—HH 2w
€1i fli
iT| 4iT pi i g i iniT i pi T i
<w [A Pi+ PIA 4 Pi(eyD'D' — ey BLBL +¢,D)P
1 .7 . 617 .
+_Hl Hl+_]wl
€1i {li
=0o; V(' (1)),

where we used the fact that [1] Bii B’; < Bé(Bg)T in the second last line and
condition (8.12) in the last line. As done in the last theorem, we can show that the
trivial solution, w’ = 0, of the closed-loop impulsive system (8.5) is robustly globally
exponentially stable.

Having proved the stabilizability of the isolated subsystem in Theorems 8.1 and
8.2, we consider the same properties for the interconnected systems.
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Definition 8.2 System (8.4) (or (8.5)) is said to possess property A (or B) if it
satisfies the conditions in Theorem 8.1 (or Theorem 8.2).

Remark 8.2 Property A implies that all the impulsive isolated subsystems are
robustly globally exponentially stable in the normal actuators case, while Property
B implies the same result is held in the faulty case.

Theorem 8.3 Assume that system (8.4) possesses property A. Suppose further that,
foranyi, j=1,2,...,1, there exist positive constants b;; such that

2w Plg ! w? e w e wh) < S byl (8.13)

and the test matrix - = [s;;1;x is negative definite where
Sij = ! . . 8.14
! { L(Bibij + Bibji), i # ] @19

for some constant o} = o; Amax(P) < 0 and positive constant 3;. Then, the trivial
solution of system (8.2) is robustly globally exponentially stable if the following
inequality holds

Inoy — ¢t — 1) <0, keN, (8.15)

for 0 < ¢ < 0 where § = =222 with X = min{Apa (P)) | i = 1,2,...,1} and

fr=min{G | i=1,2,....0}, ap =[max{Anul(I +Ct)" P/ I+ Ci)] | i =
1,2,..., l}]/)\* with \* = min{ i, (P') |i = 1,2, ...,1} and P' being a positive-
definite matrix defined in Property A.

Proof Forallt > tywithty € R,letx(t) = x(¢; ty, xo) be the solution of system (8.2).
Define the composite Lyapunov function V (x(¢)) = Z!_, 8"V (w') as a Lyapunov
function candidate for interconnected system (8.2) where 3’ is a positive constant
and Vi(w') is a Lyapunov function for the ith isolated subsystem. Then, along the
trajectory of (8.2), we have

V) = S BVt < Sl Aioilw 12 + 2wl PG w2 wh e wh)

< T Aol 1P + 11w 1135 bijllw/ 1) = 277z,

where z = ([lw'|| [Jw?|| -+ [Jw'[| -+ [|w'||) and .7 is a negative-definite matrix
with the maximum eigenvalue A\, (). Then, one can write

V(x) < —0V(x),
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where ) = —AA—;” with A = min{Ane (P |i = 1,2, ...,1}and 8* = min{f3; |i =
1,2,...,1}. The last inequality implies that, for all t € (t;—1, #],

V(x(1) < V(x(gh ))e i (8.16)

and, at7 = 1",

V@) = S B @l + )" P+ Ci)lw' (1)
)\*
aV(x(1)), 8.17)

IA

A Viwh

where oy = LA*, L™ = max{\max (L) |i = 1, -+, [} and \* = min{Apin(P)) | i =

1,---,1}. From (8.16) and (8.17), we have for 7 € [1o, 1],
V(x(1) < V(xg)e 0
and for ¢ € (¢, 1], we have
Vx(t)) < a1 V(x(t)) < apV(xe 0=

and
V(x(0) < Vx@)e T < ag V(xg)e M0 0=,

that is
V(x() < a1 V(xg)e "t e[ty tr].

Therefore, for all t € (t;_1, t],

V(x(1)) <V(xo) g an -+ ay e 000

< Vi(xg) ale—@(n —19) a2e—(/>(12—ll) oy e—c})(zk—tk,,)e—(9_¢)(;_t0)

< Vixg) e =000 > g, (8.18)
where 0 < ¢ < 6. The forgoing inequality together with
CH{lxll” = V(@) = C|lx| P,

where C* = \*3* and C** = X\ 3** with \** = max{Amax(P') |i =1,---,1} and
G =max{3; |i =1,---,1} implies that

[x(1)]] < Ellxo||e”O=P00/2 1yt > ¢y,
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where E =,/ % That is, the trivial solution, x = 0, of the composite system (8.2)
is robustly globally exponentially stable.

Remark 8.3 Theorem 8.3 shows that the interconnected system can be robustly expo-
nentially stabilized by the sub-controllers of the isolated subsystems in the case
where all the actuators are operational. Condition (8.13) estimates the interconnec-
tion, which is viewed as a perturbation, by an upper bound. The test matrix . is
needed to guarantee that the degree of stability be greater than the interconnection.

The following theorem shows that the proposed reliable controllers are robust
even in the presence of the interconnection effect. The proof is similar to that of
Theorem 8.3; thus, it is left here as an exercise.

Theorem 8.4 Assume that system (8.5) possesses property B and suppose that for
any i, j =1,2,...,1, there exist positive constants b;; such that the condition in
(8.13) holds, the test matrix ¥ = [s;;11x1 defined in Theorem 8.3 is negative definite
and €; is a positive constant such that K e —%62,‘ BgT Pi. Then, the trivial solution,
x =0, of system (8.2) is robustly globally exponentially stable if (8.15) holds with
P! being a positive-definite matrix defined in Property B.

Example 8.1 Consider the composite system with / = 2 and the following informa-
tion for the subsystems

o] o [0 1] i [-53] »_[1 -3
A —[—110}”‘ —[—100]’3 —[—12 B= 00 -4

Dlz[é},pzz[?]}jl:[01],H2:[10],ag/1:%=sin(t)7

0 0 20 30
fr=05 [sin(wz)] fa=1.5 |:sin(w4):|’c”‘ - [0 2]’C2" - [0 3]’

for all k = 1,2,..., g1 = —2, gy = —2.5, €11 = 2, €12 205, 511 = 1, 512 = ],
€] = 1, € = 0.7, ﬁ] = 1, 62 = 2, b]] = 03, bzg = 1.5, b]2 = 05, b21 =0.3
and 7y = 0. From (8.8), one may get §; = 0.25 and 6, = 2.25.

Cases 1 When all the control actuators are operational, we have from Riccati-like
equation,

pi_ [ 05427 —024197 o [ 29461 —1.2229
=1 -02419 0.1955 | = —1.2229 0.7834
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with Apin(P1) = 0.0713, Anax (P1) = 0.6669, Amin (P2) = 0.2323 and A\ (P?) =
3.4971, so that A\* = 0.0713, A\** = 3.4971 and the control gain matrices are

;[ 12358 —0.5071 , [ —0.9883 0.4006
K _[—0.5722 0.1674 | K= 13814 —0.1873 |-

Thus, A’ + B'K! (for i = 1, 2) are Hurwitz, and the time intervals 7 — f;_; >
2.3328 for the first subsystem and #; — ;1 > 2.7421 for the second subsystem. The
test matrix here is given by

~1.0338  0.55
yz[ 0.55 —14.4855}’

which is negative-definite and 7, — #;_; > 4.4142 for the interconnected system.

Cases 2 When there is a failure in the second actuator in the first subsystem and first

actuator in the second subsystem, i.e., &' = {2} and By = [:? 8:| and %2 = {1}

and B% = [8 :431 :|, we have from Riccati-like equation,

1 | 0.5806 —0.2330 4p? = 3.0616 —1.2448
—0.2330 0.2008 T | —1.2448 0.7834 |’

with Amin(P1) = 0.0901, Apnax (P1) = 0.6913, Apin (P?) = 0.2351 and Ay (P?) =

3.6099, so A* = 0.0901, A\** = 3.6099, and the control gain matrices are

,_ [1.3351 —0.4820 , [ o 0
K _[ 0 0 MK = 14719 -02103

Thus, A’ + BLK' (for i = 1,2) are Hurwitz and the time intervals # — f;_; >
2.2286 for the first subsystem and #;, — #;_; > 2.7519 for the second subsystem.

The interconnected system is shown in Figs. 8.1 and 8.2 for the operational and
faulty cases, respectively.

If we consider fT = 0.5[w; (wp)?*] and fJ = 1.5[w; (w4)?], one can show that
condition (8.8) is satisfied only inside the region 2 = {(w; wr w3 ws)” € R* |w; €
R, -2 <w; <2, w3 € R, —1.5 < wy < 1.5}. Thus, x = Oislocally exponentially
stable. The local stability and instability of the trivial solution are shown in Figs. 8.3
and 8.4, respectively.
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8.3 State Estimation

In this section, we address the problem of state estimation for the ILSS. Consider
the isolated input—output impulsive subsystem

W = (A" + AADYW + Biu' + fi(w'), t # 4, k€N,

Aw'(1) = Cyw' (1), =1ty
Y1) = Clw' (1), (8.19)
w' (1) = w,

where y' € R" is the measured output vector. Define the Luenberger observer by

W = (AT + AADD + Blu + f(D) +.L1(y — CTd), 1 # 1, k€N,
AW (1) = Cy' (17), I =1,
W (1) = W,

(8.20)

where .Z" € R"*" is the observer gain matrix. Define the state estimation error
vector by ¢/ = w' — w'. Then, the closed-loop error system becomes

¢ = (AT + AAT — LICHe + fi(w') — i), t £, keN,
Ae'(t) = Cye'(t7), t=t, (8.21)
e (ty) = wy — Wy =: ¢

Definition 8.3 The pair (A, B) is said to be detectable if there exists a matrix F
such that A — F'B is Hurwitz.

We will adopt the same stability/stabilization analysis followed in the last section
to establish the observability problem of system (8.19).

Theorem 8.5 Let the observer gain matrix, & i be given, Assumption A hold and
the matrix pair (A, C') be detectable. Then, the trivial solution of error system
(8.21) is robustly globally exponentially stable if the following inequality holds

Inajy —vi(ty — t—1) <0, keN, (8.22)

Amaxl(I+Ca)T PIU+Cii)] | iy pi

where) < v; < —o0j,0; < O0and oy, = L being a positive-
‘min

definite matrix satisfying the Riccati-like equation

(Al — 21CHT P4 PIAT — LICY + e, PPD'D P+ —HH +4'l
€1i

— 0P =0, (8.23)
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where €\; is any positive constants and a' > 0 such that
2" P'Lfi(w') — fi(@)] < a'|le'] . (8.24)

Proof Forallt >ty withtg € Ry, lete’ (1) = €' (; 1o, e})) be the solution of the error

system (8.21).Fori = 1,2, ..., define Vi(e') = ¢! Piet asthe Lyapunov function
candidate for the ith subsystem. Then,

Vi) = el [(Al — IO P4+ PLAT — £ el +2¢1 PIAAlel 4267 Pl fel
T . . . . . . LT 1 T
<l (A _flcl)TPt_’_Pl(Al — ZLCY e PIDIDT P g H
€1i
—I—ail]ei = JiVi(ei),

where we used (8.24) and Lemma 8.1 in the second bottom line and (8.23) in the
last line. The last inequality implies that, for all t € (#_;, t;] with k € N,

Vi) < Viee' @t ))em =i (8.25)
and, at t = 1, we have
Vi (t) < auVi(e (1)), (8.26)

where aix = Amax (Lix)/Amin (P) With Ly = [I 4+ Cix]" P'[I + Ci]. From (8.22),
(8.25) and (8.26), we have for t > 1,

Vi (1) < Vi(epeltt—m),
where 0 < v; < —o0;. The last inequality implies that

e[| < 7illeh|le™ G2y > 4,

where y; =,/ f\"‘—g:f)) Then, the trivial solution is globally exponentially stable. This
completes the proof.

As done in the analysis of reliable stabilization, for i = 1, 2, ..., [, consider the
decomposition of the observer matrix C' = Cg, + C} where Cg, and Cj are the
observer matrices associated with Q and Q, respectively, and Cé and C éz are gen-
erated by zeroing out the columns corresponding to 2 and 2, respectively. For any
fixedi € {1,2,...,1},letw € Q correspond to some of the sensors that experience
failure and assume that the output of faulty sensors is zero. Then, the decomposi-
tion becomes C' = C! + CL where C! and C. have the same definition of Cf, and
Cé, respectively. Then, the closed-loop impulsive error system for the faulty case
becomes
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¢ = (A" + AA"— L'ChYe + fi(w') — fi(w'), t #1, k €N
Ael(t) = Cye' (t7), I =1, (8.27)
e (ty) = wy — Wy =: ¢

In the following theorem, we state and prove the robust global exponential stability
for all isolated impulsive subsystems when some control components experience
failure.

Theorem 8.6 The trivial solution of system (8.27) is robustly globally exponentially
stable if Assumption A holds, the matrix pair (A', CL) is detectable and condition
(8.22) holds with P! being a positive-definite matrix satisfying the Riccati-like equa-
tion

AT Pl piAT 4 P [el,-D’D'T _ ezl-cg-zcg-f] P+ —H"H 441 —0,P =0,
€1i

(8.28)

where €1; and €y; are positive constants such that the observer gain matrix £ e

%62,‘ C. P, 0 <vy; < —o; with o; <0, the matrices P' and C}, are commutative
and a' > 0 such that (8.24) holds.

Proof Forallt >ty withtp € Ry andi = 1,2,...,1, lete' (t) = €'(t; 19, €}) be the
solution of system (8.27). Define Vi(e') = (e/)” Pie’ as the Lyapunov function can-
didate for the ith subsystem. Then, one may have

Vi) < o' [(Af = £CHT P4 PI(AT = £C) + ¢, PIDI DT P
I

+—H' H‘+a’l]e’
€li

< |AT P+ PIA + Pi(e,D'D' + eyCiciHP + —HTH
L €1;
+ai1]ei
<e"|AT"P 4 PTA 4 Pl(eyD'D' — e CLCL P 4 —H! H

o €li

+a"1]ei = o, Vi(e (1)),

where we used the fact that [1] Cé—z(Cé-z)T < Cé](Ci-j)T in the second last line and
condition (8.28) in the last line. Finally, following the analysis used in the previous
theorem shows that the trivial solution of the closed-loop impulsive error system in
(8.27) is robustly globally exponentially stable.

Definition 8.4 System (8.21)(or (8.27)) is said to possess property C(or D) if it
satisfies the conditions in Theorem 8.5 (or Theorem 8.6), respectively.

Remark 8.4 Property C implies that all the impulsive error isolated subsystems are
robustly globally exponentially stable in the normal actuators case, while Property
D implies the same result is held in the faulty case.
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Considering the interconnection g’ in system (8.19) results in the composite sys-

tem

W = (A" + AADHW + Byl + fi(w')

+g'(w', w?, - wh), t # 1,
Aw' () = Cipw'(t7), t=t, keN,
yit) = Clwi (),

wi(ty) = wf).
Similarly, we define the response system as follows

W = (AT + AADD + Biul + £, (@)

+g @', w2, D)+ LG - CTR, t # 1,
AW () = Cipi (t7), t=t, keN,
W (19) = Wi,

Then, the closed-loop error system becomes

¢ = (AT + AAT — Z1CHe + fi(w') — fi (')

+gi(w1,w2,~-~,wl)—gi(zi)l,zi)z,~~-,zi)l), t # 1,
Ae' (1) = Cye' (t7), t=t, keN,
e (to) = wy — Wy =: €.

This system can be re-written in the following form

6. = (A+ AA — LC)e. + F(x) — F(R)

+G(x) — G(%), t#t, keN,
Ae (1) = Ii(e.(t7)) = Crec(t7), t=t,
eC(tO) - 6607
where xT = (w'T w2’ ... w!T), £T = ((ﬁ)')r @7 ... (ﬁ)’)T),
el = (e'T 2l elT)

(8.29)

(8.30)

(8.31)

(8.32)

(A+AA — LC)e)T = [[(A1 +aAl = 21chel]T (A2 + aA? — 22

ez]T -~-[(A1 + AA! _jlcl)el]T:I’
(FNT = (AT @ AT w?) -+ fif@wh),
(FENT =(AT@YH LT@ -+ AT @)

G = (0" @ ¢ @ - T @) GE = (9" D P B g

(Creo)” = ((Cixe")T (CueH)™ -+ (Cpe)T).

T®),
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Theorem 8.7 Assume that system (8.21) possesses property C and the observer
gain matrix £ is given. Suppose further that for any i, j = 1,2, ..., 1, there exists
a positive constant b;; such that

il pir,i S BN - i '
2¢" Pllg' (', w?, - wh) —g' @', D%, - D] < (IS5 bijlle’ || (8.33)

and the test matrix S = [s;j1;x; is negative definite where

sij = {ﬁi(U;k + bii), i=j (8.34)

5Bibij + Bibji), i #

for some constant o} = o; Amax(PY) < 0 and a positive constant 3;. Then, the trivial
solution of system (8.32) is robustly globally exponentially stable if the following
inequality holds

Inoy — ¢ty — 1) <0, k €N, (8.35)

for 0 < ¢ < 0 where 0 = —% with A = min{\max(P") | i = 1,2, ...,1} and
fr=min{f | i=12,....0} op =[max{dnul(I +Ci)" P+ Cip)] | i
=12,..., l}]/)\* with \* = min{Amin(P)) |i = 1,2, ..., 1} and P! being apositive-
definite matrix defined in Property C.

Proof For all t > 1y with o € Ry, let e.(t) = e.(t; ty, e.o) be the solution of sys-
tem (8.32). Define the composite Lyapunov function V (e.(t)) = £'_, 3 Vi(e') with
Vi(e') being the Lyapunov function related to the ith isolated subsystem and 3’ > 0.
Then, one may get after using property C and (8.33)

Vie) < Eleﬁi{ailleiIIZ +2¢" Pl wh) — g @ ﬁ/)]}

< =18 ulle! I+ 1112 gl 11}
=17z,
where z7 = (|le']| [l€*]| - |le'[]). Then, Ve < —0V(e.) where § = —A"“i‘é;y)

with A = min{Amax (P | i = 1,2,...,1} and 0 =min{G; |i =1,2,...,1}. The
rest of the proof is similar to that of Theorem 8.3; thus, it is left here as an exercise.

In the following theorem, we state that the proposed reliable sensors are also
robust in the presence of the interconnection effect. The proof of this theorem can
be achieved in the same way we proved the analogue stability theorem in the last
section; thus, it is left here as an exercise.

Theorem 8.8 Assume that system (8.27) possesses property D. Suppose further that,
foranyi, j =1,2,...,1, there exist positive constants b;; such that the condition in
(8.33) holds, the test matrix S = [s;;11x; defined in Theorem 8.7 is negative-definite,
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the observer gain matrix L= %ezi CU’QJTPi where €y; is a positive constant, and
P’ and CL are commutative. Then, the trivial solution of system (8.32) is robustly
globally exponentially stable if (8.35) holds with P’ being a positive-definite matrix
defined in Property D.

Example 8.2 Consider the composite system with [ = 2, where
| —40 2 |50 150 2 |30
A_|:04’A_0—5 ¢ = 0 1.5 ’C_03’

D1=|:1],D2=|:(]):|,H1=[Ol],H2=[10],?/1=%2=sin(t),

0 0 20 30
fr=05 |:sin(w2)] »fo=15 [sm(w‘*)]’cl" - [0 2]’C2" - [0 3]

for all k € N, g = -2, o) = —2.5, €11 = 2, €12 = 0.5, € = 1, € = 0.7, /81 =
1, B =2, b;1 =1, by =1.5, b; =0.5 and by; = 0.3. From (8.8), one may get
61 = 0.25 and §, = 2.25.

Cases 1 When all the control sensors are operational, we have from Riccati-like

equation,
. _[00416 0 . [2280 0
P —[ 0 45182 M= 0 02512

with Apin (P1) = 0.0416, Apax (P = 4.5182, Amin(P?) = 0.2512 and Apax (P?) =
2.2800; so that, A* = 0.0416, A** = 4.5182 and the observer gain matrices are

. [00312 0 , [23940 0
z _[ 0 33887 ML= 0 02638

Thus, A — Z'C! (for i = 1,2) are Hurwitz and the time intervals #; — t;_; >
3.6238 for the first subsystem and #;, — #;,_; > 2.4891 for the second subsystem. The

test matrix in this case is
7 —8.364 0.55
— |1 055 -84

Cases 2 When there is a failure in the first sensor in the first subsystem and second

0 O],and92={2}

sensor in the second subsystem, i.e., Q' = {1} and Cslz = |:0 15

and C 522 = |:3 8i| , we have from Riccati-like equation,

00411 0 ,_[2.2800 0
d _[ 0 4sis2 [ M= 0 0204
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With Amin(P1) = 0.0411, Apax (P = 4.5182, Amin(P?) = 0.2942 and Apax (P?) =
2.2800; so that, A* = 0.0411, A** = 4.5182 and the observer gain matrices

Lo o ) [2:39400
< _[03.3887] and .2 _[ 0 o]

Thus, A" + %' CL (for i = 1,2) are Hurwitz and the time intervals # — t;_; >
3.6300 and # — ;1 > 2.4101 for the first and second subsystems, respectively.
Figures 8.5 and 8.6 show the interconnected error system, ||e.|| for the operational
and faulty sensors respectively.

8.4 Notes and Comments

This chapter has been devoted to address the problem of designing a robust reliable
controller for the uncertain ILSS with fixed impulses. The material of this chapter is
taken from [2]. The exponential stability property for such a complex system has been
analyzed by decomposing the system into lower order, isolated subsystems and the
interconnection was treated as a system perturbation. The isolated subsystems were
assumed to be globally exponentially stabilized by the state feedback controllers
and the interconnection was estimated by an upper bound which is required to be
smaller than the stability degree of the isolated subsystems in order to guarantee
the stability of the interconnected system. The scalar Lyapunov functions have been
used to achieve our purpose, where this approach has led to solving a Riccati-like
equation. In addition, the output of the faulty actuators has been treated as an outage.
So that, one may extend these results by considering nonzero outage, where in this
case it would be viewed as a perturbation. These results have been carried over to
address the problem of state estimation for the input—output ILSS.
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Chapter 9 ®)
Switched Singularly Perturbed Systems ez
with Time Delay

This chapter deals with exponential stability of a switched system consisting sin-
gularly perturbed subsystems with time delay. The multiple Lyapunov functions
technique with the dwell-time approach is used to establish stability properties for
the switched system.

9.1 Problem Formulation

Consider the following switched singularly perturbed systems with time delay

X(t) = fou(t, x (1), x;, 2(2), 20),
‘C:Z(t) ZQU(Z,X(t),Xt, Z(t)7 Zf)a (91)

where, for all r > 1y with 1o € Ry, x € R™ and z € R" are, respectively, the slow
and fast system states or variables, 0 < ¢ < 1 is perturbation parameter and o :
[tg, 00) — .7 is the switching signal which is a piecewise constant function taking
valuesin. = {1, 2, ..., N} with N > 1.If, forinstance, ¢ = i forany i € ., then
system (9.1) becomes

x(t) = fi(tsx(l)sxl» Z(l)s Zt)v re [tkfl»tk)
ez(t) = gi(t, x (1), x1, 2(t), 20), 1 € [tx—1, Ir)- 9.2)

For every i € ./, we assume that f; and g; are smooth enough to guaran-
tee the existence of the solution of system (9.2), and f;(¢,0,0,0,0) =0 and
gi(¢,0,0,0,0) = 0 (for all 7) to ensure that system (9.2) has the trivial solution
(x 2)7 = (07 07). Let x, = x(t + 0) be the delayed state where # € [—7, 0] with
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T being a positive constant representing the time delay, x(t) = x(t; oy, x,, 21,) and
z(t) = z(t; to, X4, 24,) be the solutions of (9.2) with the initial conditions x;, and z;,,
respectively.

Definition 9.1 The trivial solution of system (9.2) is said to be exponentially stable
if there exist positive constants K and A such that

@)1+ 120 = K (el + 1z )0, 1210

where x () and z(¢) are any solution of system (9.2).

9.2 Stability Analysis

In this section, we address the exponential stability of switched systems. We consider
modes represented by linear time-varying and then a special class of nonlinear system.
Let., ={1,2,...,r}and %, = {r + 1,r + 2, ..., N} be the sets of indices of the
unstable and stable modes, respectively.

9.2.1 Linear Systems

Consider the following linear time-varying switched singularly perturbed systems
with time delay

X = A, )x + A, (t)x + By, (t)z + Bio, ()24,
€z = As, ()x 4+ Axn, ()X, + By, (1)z, t € [tri—1, ), 9.3)

where foreachi € .7 = .7, U .7, A, (1), By, (¢) and By, (¢)(r, s = 1, 2) are con-
tinuous matrices where A, € R™*™, By, € R™*", Ay, € R™ and By, € R™".
The matrices Ay, (f) and By, () are continuously differentiable, B, (¢) is nonsin-
gular and 0 < € < 1. Here, we deal with the subsystems of (9.3) as interconnected
systems. As said earlier, this system is viewed as a large-scale system when analyzing
its stability properties. So that, we decompose them into small isolated subsystems

x = A, (H)x
2= By, (1)z

and the rest will be considered the interconnection between them. In the following
theorem, we state and prove exponential for the switched system in (9.3).

Theorem 9.1 The trivial solution of system (9.3) is globally exponentially stable if
the following assumptions hold:
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Al. There exist positive constants o and 3 such that

(i) foranyi € &, Re[A(A11,(1))] > 0 and Re[A(Ba, (1))] < —«,

(ii) foranyi € Z;, Re[A(A11,(1))] < —aand Re[A(Byy, (1))] < —«,
(iii) foranyi € ¥ andt € [ty_1, ), k € N

max{|| A1, ()1l 1A, I, B2y, (),
1 Ba1, ()l B3 (1) Aoy, (0, | B3y (1) Ana, (DI} < B;

A2. let hi(t) = —B;ﬁ(t)[Agli (t)x + A, (t)x:], and Py, (t) and Py, (t) be, respec-
tively, the solutions of the Lyapunov matrix equations

AT OPL () + PO AL () = —T,,
B, (t) Py, (1) + Py, (1) Boy, (1) = —1,,

with 1, being the identity matrix of dimension q x q. Assume that there exist
bounded functions a,, (t) and b,s,(t) (for r, s = 1, 2) satisfying

2xT Py, (O[ A, (1)x, + Bi1, ()2 + Bio, (2,1 + x7 Py, (1)x <
arn, Ox 11 + @i, O 1% 12 + biy, Oz — h)1* + bio, () 11z — i) 12,

—~2(z — )T Py, (t)h; + (z — hi) T Py, (1) (z — i) <
ar, ()X N* + a2, O N1x, 12 + bar, (DN (z = )P + oo, (D1 (2 — hi)e |12

A3. (i) foranyi € .7, let a(t) = N(AT (t) + A; (1)) and | Bi(1)|| < B where

2v+an, (1) bu, () ap; (1) bip; ()
~ Alm Aom ~ Al Aom
Ai(t) = . Bi(t) = ,
ay () 1=eiby, (1) ax; (1) by, (1)
Am €i Nam

)\lm )\Zm
and +y is a positive constant such that the matrix Ay, — I has eigenvalues
with negative real parts. Assume that a(t) + || B; (t)|| < B2, (G2 > 0);
(ii) for anyi € ¥ there exist positive constants € and 1) such that —A; (1) is
an M —matrix and \(A; (t) + Al.T ®) +2||B;(®)]] < —n < 0 where

_1-a, ) b, (1)

ap, (t) by ()
- Aim Aom ~ Am Aom
Ai(t) = ,Bi(t) =
ay; (1) 1=efby, (0) axn, (t) by, (t)
Alm efdam Alm Aom

where Apy = min{Ayin(Py,), i € S} and My = max{ Ao (Py,), i € S} for
r=1,2;and
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A4. let \t = max({ | Vi € .} and \™ = min{(; | Vi € .4} with & and (; being,
respectively, the growth rates of the unstable subsystems and the decay rates of
the stable subsystems, and T (ty, t) and T~ (ty, t) denote the total activation
times of the unstable and stable modes, respectively. Assume that, for any ty €
R, the switching law guarantees that

T (t, 1) - AT+ N

94
o T+ 1) — A — A O
where \* € (0, \7); furthermore, there exists 0 < v < \* such that
(i) fori e %,
lnu—u(tk—tk_l)SO, k=1,2,...,r (9.5)

(ii) fori € &
Inp+Gr—v(y —tx-1) <0, k=r+1,r+2,....,N, (9.6)
where (; is a unique positive solution of
G =MA] + &) + B/l + 1B ]| e
Proof Forall t > ty with #p € Ry, let x(t) = x(; to, X4, 21,) and z(¢) = z(t; to, Xy,
2,,) be the solutions of (9.2). For each i € ., define V;(x(t)) = x7 (¢) Py, (t)x(¢)
and W;((z — h;)(t)) = (z — hi)T (t) P5, (t)(z — h;)(¢) as the Lyapunov function can-
didate for the ith slow and fast subsystems, respectively. Then, for any i € .7, the

derivative of V;(¢) = V;(x(¢)) along the trajectories of the slow state x is given by

Vi(x(1)) = &7 P (0)x + xT Py (0% + xT Py (D)x

apy. (t by (t ap. (t
<@y + Dy 4 1;;()W,-(z>+ 20y,
1m m 1m
by, (1)
Wl
+ o W,

where W;(¢t) = W;((z — h;)(t)). Similarly, for any i € ./, the derivative of W;(¢)
along the trajectories of the fast state z is given by

Wi((z = hi)(®) = (G — h)" Po,(t)(z — i) + (2 — h) " Po, (1) (2 — hy)
+(z—h)" Py, () (z — hy)
1 \T
= (2(Aa1, 0% + A, O, + Boy, 02) = i) Py (0 = o)
1 .
@ = 1) Py (1) x (2 (Ao, (0% + Azs ()3, + Bay, ()2) — )
+(z—h) Py (z — hy)
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- asy, (t) Vi) — 1- 5;\1921,»(1)Wi(t) 4 22 (1) Vil
by :
+ )\;m Wi -
by (t
+ 322:1 w1

where €7 > ¢; > 0. )
Combining V (¢) and W (¢) in a vector form yields

) Dvytany, bt
V() 5 Y Aalj,,l'(t) 1;;:) V)
W(I) - a, (1) 1—eiby,; (1) W (1)

Alm i Aom
ap; (t) by, (1)
Atm Aom < Vi Il - )
axn; (t) by, (1) W:
Alm Aom || " ”T

Then, by A3(i) and Lemma 2.4, there exists a positive constant &; such that

Vix(0) < (Vi Nl + Wi, [I)es 0
Wiz = h)(@®) < (IVi,_ Il + Wi, 1-)es 0,
Fori € .%,, we have
. 1 —a, (1) by, (1) ap, (1) b1o, (1)
Vi) = === Vi) + = Wil + == IVl =W
M 2m 2m
and
. 1—ayy, (1) by, (1)
(V(t)) B il (V(r))
i = ay, (1) 1—&tbyy; (1)
W e AN

ai; (1) b[zi (1)
+ Aim Aom Vi, Il -
ax, (t) by, (1) A=
Al Aom
Then, by A3(ii) and Lemma 2.3, there exists a positive constant (; such that
Vit) = (”‘/i’k—l Il + ”Wilk—l ||T)€7§i(t7tk")
W) < (1Vi,_ ll- 4+ I1W;,_ e 5050,

Tk—1
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Recall that for any i, j € .% we have

Vi(t) = pVi(0)
Wi(t) < pW; (1)

where ¢ = max{y; = i’I—M forl =1, 2}. Then

r N—-r—1
Vn(x(1)) < que&(t’;t"*‘) X 1_[ ZMeCJ'Tg*Q(tj*tj—l)
i=1 Jj=r+1

X (Vi Il =+ Wy, Il )e” v e=v=n
Making use of Assumption A4, we get
V(@) < (Vi Il + Wy, ll)e™ 720 1 e g, 00)
Similarly, we have
Wy ((z = hw)(0) < (Vi I + Wy, l)e” X200 1 e 1, 00).
Then, there exists K such that
X @1 < K1l Nl 4 llzg e~ X072,
and, by the fact that,

172

1
lzll = 17 ll < llz = hill = —=W,"",
\/)\2m

there exists K, such that
I2O1 < Kol s + 1zl )e= =072,
Hence,
x|+ Iz < K(1x 1+ + N1z [|-)e” N =0C=0/2,

where K = K| + K;. This shows that the trivial solution of (9.3) is exponentially
stable. This completes the proof.

Remark 9.1 Assumptions A1[(i),(iii)], A2 and A3(i) are to ensure that, fori € .%,,
the ith mode is unstable, while Assumptions A1[(ii),(iii)] and A3(ii) are to guarantee
that, for i € ., the ith mode is exponentially stable. As well known in switched
systems, the exponential stability of each subsystem is insufficient to guarantee expo-
nential stability of the entire switched systems; so that, an additional condition is
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required; namely, the total activation time of stable subsystem is larger than that of
unstable ones as represented in Assumption A4.
The following example shows these results.

Example 9.1 Consider the following switched system with the unstable and stable
modes

X =0.1x +0.04z(r — 1)
ez =045x(@ —1)—0.1z

x=—-15x—-01z(t =1
ez=—x(@t—1)—2z

with the initial condition (x, z,O)T = ({+0.3,r+0.3) for t € [—1,0]. For the
unstable mode, takingy = 0.2, = 0.3, Q;, = 0.1and Q,, = 0.07 gives P}, = 0.5,
P, =0.35,

A, = (0'34 —0.8948> and B, = (0.315 0'0371 ) Clearly, Assumption A3(i)
holds which affirms the instability of mode 1; so that, by Lemma 2.4, the growth rates
are £ = {0.2207, 0.755}, while for the stable mode, taking Q;, = 1.5 and Q,, =5
gives P, = 0.5, P, = 1.25and pp = 3.5714; from A3(ii), we gete* = 1.5238. Thus

A, = <_(2)'9 _2.8297) and B, = (1.575 0'1329); hence, by Lemma 2.3,
the decay rates are ¢ = {0.5927, 0.5791}. Taking A™ = 0.755, A~ = 0.5791 and
A* = 0.25 gives T~ > 3.05T*. Taking v = 0.2, by A4[(i),(i1)] we get, respectively,
Tt =99and T~ = 29.5. Figure 9.1 shows these results where unstable and stable
modes are activated alternatively. In this example, the unstable mode is activated on
subintervals [0,9.9) and [39.4,49.3). This result illustrates the necessity for running
stable modes longer than the unstable ones.

9.2.2 Nonlinear Systems

Consider the following nonlinear switched DSPSs

.)2: = ﬁ(xaxl7zazf)
€z = By, 2+ Bi(x,x:), t€ [tz ), .7

where fi(x, x;, z, z;) = An,x + gi(x, X, 2, z;) for any i € .. We assume that sys-
tem (9.7) has a unique equilibrium point at the origin and the matrix By, is nonsin-
gular.

In the following theorem, we state the sufficient conditions to guarantee exponen-
tial stability of system (9.7).
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70 T T T T T T T T

— x1(t)
- = x2(t)
- z1(t)
60 co Z2(1)

T

50 b

(x(1),z(1)

Fig. 9.1 Linear system with unstable and stable modes

Theorem 9.2 The trivial solution of system (9.7) with . = ./, U .%; is globally
exponentially stable if the following assumptions hold:

Al. (i) foranyi € ./, Re[A\(A11,)] > 0 and By, is Hurwitz;
(ii) foranyi € %, A, and By, are Hurwitz;

A2. foranyi € .7, there exist positive constants a,, and by, (forr,s = 1,2) such
that

T 2 2 2 2
2x7 Pgi(x, xe, 2, 20) < aryllxll” +ar; lxell7 +brag iz = hill” + b1 1@ = hidell7,

20z — h)T Py < any, X1 + arg, 112 + buy, llz — il + bi2 Iz — hidell2,

where h; = —B{]}B,- (x,x¢), and Py, and P,, are positive-definite matrices
satisfying Lyapunov matrix equations

Al Py + Py AL, = =0,
Ble,Pzi + Py, By, = =0,
with Q1, and Q,, being given positive-definite matrices;
A3. (i) foranyi € .7, lety > 0 be a positive constant such that the matrix Ay, —

Y1 has eigenvalues with negative real parts and assume that 5, = a; +
B1, > 0 where By, = | Bill, i = MAT + A)),
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2 4 buy a; by
~ Alm Aom ~ Atm - Aom
A = and B; =

@1 _ Awin(Q2;)—¢ibay; an; by
Alm €idam Atm Aom

(it) foranyi € 7, there exist positive constants €} and 1) such that —Z,- is an
M —matrix and \(A; + A) +2||B;|| < —n < 0 where

i (@) —any, b, ap; by
A — Aim Ao Do X 2 ).
Aj = ay; _ Anin(Q2)—gfbay; | 0 B; = an, by, | and

Alm g \am Atm - Aom

A4. Assumption A4 of Theorem 9.1 holds.

Proof Forall t > to with #o € Ry, let x(¢) = x(t; to, X4, 24,) and z(¢) = z(¢; to, Xy,
2,,) be the solutions of (9.2). For each i € .7, define V;(x) = x” P;.x and W;(z —
hi)=(z— hi)Tle, (z — h;). Then, for any i € .¥,, the time derivative of V; along
the trajectories of the state x is given by

V,(t) = ).CTP]l.)C +XTP]’.)'C

apy, by, ay, by,
< (2 — Vz t 'VVi t . Vz T — Wi T
_(7+)\1m) ()+)\2m ()+>\1m” Al +)\2m|| Al
and for any i € ., we have
. Apin(01) — ar. b, . b,
Vitry < ~2mn(@u) Z iy g Py gy 92y Py
AlM )\Zm )\lm )\Zm

Similarly, the time derivative of W; along the trajectories of the state z is given
by

Wit) = ¢ — hi)" Py, (z — hi) + (z — h)" Py, (2 — hy)
T
= [2(321,1 + Bi(x,x;)) — ill} Py, (z —hy)

1 .
+(z—h)" P, [;(le,.z + Bi(x,x,)) — h,}

asy, Amin(Q2,) — €5byy,
< _/V t) — i i i ‘171 t
T Am ) ef ham ®+ Alm

any. bzz.
— Vi ll- + )\—‘IIWi,IIT
2m

where €* > ¢ > 0. Then, there exists a positive constant &; such that

Vix()) < (IVi, s + W, [l)ebe
Wi((@ = h)(®) < (Vi e + W, [1)e505.

Tk—1 Tk—1
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While for stable modes, there exists a positive constant (; such that

I )e*C,-(tftH)

e T

”T)e_C[(l_tk—l)‘

Vi @) < (Vi ll- + W,
Wiz — b)) < (1Vi, Il + W,

k-1 k-1

The rest of the proof is similar to that of Theorem 9.1.

Example 9.2 Consider the switched system with following unstable and stable
modes

% =0.1x +sinz(t — 1)
ez=0.1x -z

and

x=—10x+In(1 + x>t — 1) +z

€z =x — 2z.

For the unstable mode, we take V, = 0.5x% and W, = 0.5(z — h)? where h =
0.1x. With little effort, one may find V, <14V, + Wy, |l and W, < (——

1.4 0
0.12)W, +0.01V, + 0.01||V,, |l + 0.1[|W,, ||-, so that A, = (0_01 _2 +0_12),

70

— x1(t)
- = x2(t)
= zZ1(t)
60 o Z2(1)

T

(x(),2(1)

Fig. 9.2 Nonlinear system with unstable and stable modes
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0.01 0.1

the stable mode, taking V, = 0.5x2 and W, = 0.5(z — h)? where h = 0.5x gives
Vo < =14V, + W, + 4|V, |, and Wy < (=2 + 11.5)W, + 5.5V, + 2|V, | thus,
A, = (;154 s Jlr 11.5), B, = <‘2‘ 8); by A3(ii), we get £* = 0.2341. When
e =0.1 € (0,0.2341], the decay rates are ¢ = {1.5279, 2.4432}. Take AT = 4.81
and A\~ = 1.5279. If we choose \* = 0.52 and v = 0.5, then we get T~ > 5.3T*.
In this example, we have ;1 = 1, and from A4, T+ = 1.38 and T~ = 8. The unstable
mode is run on [0, 1.38) and [9.38, 10.76). These results are illustrated in Fig.9.2.

Eu = ( 0 1 ) When ¢ = 0.1, the growth rates are & = {1.8499, 4.81}. For

9.3 Notes and Comments

Stability of switched systems incorporating unstable, stable singularly perturbed sys-
tems with time delay has been established. The material of this chapter is taken from
[1]. Particularly, linear time-varying and a special class of nonlinear systems are con-
sidered. Multiple Lyapunov functions technique along with a dwell-time switching
signal is used to analyze the stability of these systems. We have shown that, when
stable subsystems are run longer than unstable modes, exponential stability of the
entire switched systems is guaranteed. For further reading about singularly perturbed
system, one may refer to [2—11]. Particularly, [3] is concerned with reviewing sev-
eral control problems including optimal controls of various systems with singular
perturbations.
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Chapter 10 )
Singularly Perturbed Impulsive-Switched |
Systems with Time Delay

This chapter deals with some stability notions for impulsive-switched systems with
time-delayed singularly perturbed subsystems. The technique of multiple Lyapunov
functions and dwell-time switching signal are used to analyze the stability properties.
As will be seen, the impulses can contribute to obtain stability properties even when
the system consists of only unstable subsystems.

10.1 Problem Formulation

Consider the following impulsive-switched delay systems

X = fa‘(t)(tv-x»-xtvzszt)v I £ 1

€2 = Go)(t, X, X1, 2,21), 1 F I (10.1)
Ax = Bx(t7), t=1
Az=Crz(t™), t=1t

where x € R™ and z € R" are, respectively, the slow and fast states of the system,
and ¢ is a small positive perturbation parameter. For o € R, and .¥ = {1, 2, ..., N}
with N > 1 being the number of subsystems, o : [fy, 00) — .¥, which is represented
by {ix} according to [#;_1, ty) — iy € ., is a piecewise constant function switching
signal. Here, iy, (or i for simplicity of notation) means the ith subsystem is activated on
the subinterval [#._1, #;). The discontinuities of o form a strictly increasing sequence
of impulsive-switching times {#};2, satisfying f;_; < #; with lim_, # = oo; that
is, the impulses are here a consequences of the switchings. For any switching signal
o, we denote by T (1, ) and T~ (fo, t) the total activation time of unstable and
stable subsystems, respectively, over the time interval [y, t).
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M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8046-3_10&domain=pdf

178 10 Singularly Perturbed Impulsive-Switched Systems with Time Delay

We assume that x(t,:r ) = x(t) and z(t,jr ) = z(#;), meaning that the solution of
(10.1) is right continuous. In the difference equation, Ay = y(¢) — y(¢~), where
y(t7) = lim;_,,- y(s), represents the state just before and after the impulse action.
The vector field functions, f; and g;, are assumed to be smooth enough to guarantee
that system (10.1) has a unique solution, and f;(¢, 0, 0, 0, 0) = 0 and g; (¢, 0, 0, 0, 0)
= 0; that is, system (10.1) admits a trivial solution, (x z)” = (07 07).

10.2 Stability Analysis

In this section, we write some Lyapunov-type sufficient conditions to guarantee some
stability properties of linear and a special class of nonlinear systems. Throughout
this chapter, we denote by ., = {1,2,...,q}and % ={g+ 1,9 +2,..., N} the
sets of indices of the unstable and stable subsystems, respectively.

10.2.1 Linear Systems

Consider the following linear impulsive-switched system

).C:A][l.x—G—A]z,)Ct+Bll,-Z+BIZ,-Zta t#tk

€iz = An,x + A, x; + Boy,z, t# 1 (10.2)
Ax = Bix(t7), t=1
Az = Cpz(t7), =1

Where, for any ie? = yu UL%, All,vv A121 S Rmxm’ B11,., B12,v S Rmxn,
Ags,, Ay, € RM™, By, € R and By, is nonsingular and Hurwitz. Let the uncou-
pled slow and fast subsystems of (11.2) be, respectively, given by

X = All,.x and EiZ. = leiZ.

Theorem 10.1 The trivial solution of (10.2) is exponentially stable if the following
assumptions hold:

Al. foranyi € .7, Ay, has eigenvalues with positive real parts and, for any
i € S, Ay, is Hurwitz;

A2. foranyi e & andallt € [ty_1, 1), there exist positive constants ayy,, aa,,
ay;, Az, b]]l., b]zi, b21, and bzzi such that

2xT Py, [A1,x + B,z + Bigzil < any, 11 + an, 16112 + by, 1z — k) lI?
+ b1y, Iz = hi)elI2,
—2(z — hi)T Pohi < aon, I1X N1 + a2, 1112 + bar, 11z — h) Il + b, 1z — hi)e )12,
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where h;(t) = —B{lf[Azh.x + Ay, x:] and Py, and P,, are positive-definite
matrices satisfying the Lyapunov matrix equations

Al P+ PLAn, =04,

Bj, Po + Py, By, = —Qs,,

Jfor any given positive-definite matrices Q1, and Qo,;
A3. (i) foranyi € .¥,, assume that /\mm(AT + A, D+ ||B || > 0, where

ayy, by, ap; by

~ 2 =+ —i ~ e
- )\]m Aom = A M
Ai = ( ay; _ Amin(Q@y)—€ibay; | B; = azZ sz
/\1m i \om Atm Aom

and ~y* is a positive constant such that the matrix Ay, — v*1 is Hurwitz;
(ii) foranyi € 7, there exist positive constants €} such that —A; is an M-
matrix and )\max(A + AT) + 2||B | <O where

_ Amin(Q1)—any, bu, ap; by

A Aum Ao Bo— | X Pom
A= ;. _ Amin(Q@2)—€iba; | o B; = dzlzi by, |

Alm efdom Atm - Aom

and Qy, and Q», are defined in assumption A2;
Ad. let N\t =max{§ |i € L), A =min{(; | i € S} with & and (; being the
growth and decay rates of unstable and stable subsystems, respectively, and,
for any ty, assume that the switching signal guarantees that

T (ty,t) AT+ X*
in > ,
1=tg TH(tg, 1) = A= — A*

(10.3)

where T (to, t) and T~ (ty, t) are defined in the previous section and \* €
(0, A7). Furthermore, there exists 0 < v < (; such that

(i) forie Syandk=1,2,...,1
In pu(au + B + W + i) — vite — fr—1) < 0 (10.4)
(ii) forie{l+1,14+2,...,.N—-1}andk=1+1,14+2,...,N—1
In (o + B + % + ke + GT — vty — o) <0, (10.5)
where (; is the unique positive solution of

G+ Amax (AT + A) 4 ||Bi|| + || Bifle5™
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pNE (U + B, B = 22 (WUl + ric + s0)re,

Yo = u<||Uk|| e sONUL = 32 (WUl + e+ so)s

U, =1+,
ri = max{|| Ryt || : Rix = [I + C¢]1B3,' Aay, — By Aoy [T + Bi] Vi € .7),
and

s = max{[|Sic|| : Sy = [I + Ci1By; Ay, — By, Ay, [ + By Vi € 7).

Proof For all t > 1y with 1ty € Ry, let x(t) and z(¢) be the solution of (10.2).
Define  Vi(r) = V;(x(1)) =x"(t)Pi,x(t) and  W;(r) = W;((z — hy) (1)) =

(z — hi)T (1) P5,(z — h;)(t). Then, the time derivative of V; and W; along the tra-
jectories of x and z are:

(i) forany i € .7,

Vi) < v + —>v O+ 25w o)+ D2 v 1+ 22w
A2m Alm A2m
Wit) = (2 — hi)" Pzi (z—hi) + (2 — hi) Py, (2 — hy)
1 \T
= (S(Aax + A+ Bu,2) = i) Pz —ho)

1 .
+ (z—h)" P, (g(Azlix + Ap,x; + By, z) — hi)

min i) ib . X b .
Gy gy - 2min(Q2) 7 Eban gy Gy D
)\]m Z':i)\ZM >\1m m

=

(ii) for any i € .

V,(t) < _Amin(Ql,')

by, by,
‘V t - t N Vl T : i N7
N ()+>\2mW()+>\ Vi ll- + )\zmHW,H
. asy, Amin(Q2,) — €7'bay, ; by,
Wi@) < —Vi(t) — ) eib LWy + Ve 4 — (W s
()_)\lm @) 5% ()+>\1m|| Al +>\2m|| Al

where € > ¢; > 0. Combining V and W in a vector form yields, for i € .7,

. ay blli
(Y(t)) - (27 + 3 NP )(V(r))
— ay; min (Q2,)—¢€ibay;

we) i s AU

ap; by
N e Vi Il
A AN VAT

Atm - Aom

and, by A3(i) and Lemma 2.4, there exists &; > 0 such that

Vi) < 1V, I + W,
Wi < (1V;,_ Il + W,

I )e& (t—t—1)

Tk—1

I )eﬁf(t*tk-l).

-1 1T
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Similarly, for any i € .%;, we get

. Amin (Q1,)—ai by,

V(t) - : — V()
X —< aZAl{M )\mm(é‘;‘")_e;(bzl'

W) i _ Zmind %% 7O 720 W (t)

)\lm E?/\ZM
ap,; by,
o R 2 ) (Vi
ey AN
/\lm )\2/11

and, by A3(ii) and Lemma 2.3, there exists ¢; > 0 such that

Vi) < (Vi Nl + W5, ll-)e 0%

Wit) < (Vi llr + W, Il;)e S0,

Tk—1 Tk—1

At the impulsive-switching moment, ¢ = #;, we have
Vi(te) = x(tx)" Pyx(t)

A (L1 + BRI Py + Be] )T () (1)
= o Vi(t,),

IA

where a; = A2, (I + By). We also have at t = ;

max

T
Wit = (200 = hia) Py, (200 = hi w0

T
{Z(tk) + Bi}[AZIiX(tk) + A22,-th]} Py, {Z(lk) + B{J [A21;x (1) + Azz,-er]}
T
{[1 + Crla(ty) + By A1, [ + Bilx (i) + Aga, [T + Bk]x,k—]} Py,
x {[1 + Cle(ty) + B3 TA21, 1T + Blx(r) + Aga, 11 + Bk]xl;]}
- -\ /7 - - T~ pT -
= (20 = hi @) U] Py U (26) = b)) +xT (I RL Py, Rigx (1)
T T - N\ -
xSy Sikn, - 2<z(tk ) — i )) Ul Py, Rixx ()
- N\, T T, pT
- 2(z(tk ) — hity )) U Py S = 26T (0O RY Pa S,
< WU P, zGe7) = By GO + IRk 21 P 1 (50112
+ ISik 1P, - 17 + 1T P, ||||Rl-k||(||z(z,:) — h (DI + ||x(t,:>||2)
+ NUNP2 1Sie N (1200 = By GO + I, 1)

+ IRl Sig I (GO + I, 12)
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Wl IRl
= s (P2) (U + IRt 1) {22 Wate) + 5 Vi)
15l
Vi e
+>\min(P1i)|| k ” }
2]
< dow (10l 450 |55 W) + Vi) + L1V,
Im

= Wi a0) + Vi) + el Vil

where 5 = aus (UKl + 7+ 5 ) 20 2% = Ao (IUell + 12+ 51 ) B, e = Do

(WUl + 7+ 5¢) 5 7 = max (| Rigll | Yi € ) and s = max({[|Sigll | Vi € 7).
For instance, if we run an unstable subsystem on the first interval and a stable one
on the second interval, we get, respectively,

Vi) < (IVa, I + Wi, I, )51,
VZ(I) =< (”VZ,] ||T + ”"Vzl1 ||T>e_<2(t—ll)’
where

1Vaulle = ara(I1Vi, - + 1, I )@,

IWa, lle < 1By + 3+ 00 (Vi 4 W ] ).

Generally, one may have

N—-I—1
vNa)<1‘[u<a,+6,+m+w>ef'<" T IT mley + 85+
i=1 j=l+1

1 eliT)ebiTe Gl (” Vi, s + Wy, ”T>€f<N<zftN4>_
Making use of A4, we have
Vv = (IVa, - + 1Wy, Il e,
Similarly, we have
Wx (@) = (I, Il + W, ]l e =0,
Then, there exists K such that

Ix (] < Ki(llxgllr + llzg I e” X 7002
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and by the fact that

1
lzll = sl < Nz — il < —W,/?
)\Zm

there exists K, such that
Iz < Ka(llxi Il + llzg ll)e” > 20072,
Hence,
@+ 12O < K Ul + llzg Il )e 0072,

where K = K| + K,. This shows that the trivial solution of (10.2) is exponential
stable.

Example 10.1 Consider the impulsive-switched system (10.2) with the following
unstable and stable subsystems

XxX=x4+4z(t —1),
ez=x(t—1) —z,

and
X=-5x+z(t—-1)
ez=x@t—-1)—z
and, in the difference impulsive equations for any k € N, By = —1/2 and Cy =

—1/2. In this example, the switching signal o takes values in the set {1, 2} alterna-
tively.

For the unstable subsystems, when v =3, ¢ =04, @, =13 and 0y, =1,
then, from the Lyapunov matrix equations, we get P;, =3.25 and P, =0.5,
i 10 0 0 26

“TN0 -6 031 0
isfied. While for the stable subsystem, when Q;, = 44 and Q,, = 8, then, from
the Lyapunov matrix equations, we get P;, = 4.4 and P,, = 4, and, from condition
in A3(ii), we get * = 0.15, A, = (_09 _?40) and B, = <625 8(‘)8>. The dwell
times for the unstable subsystem is 1.5 and for the stable one is 4. Figure 10.1 illus-
trates these results where unstable and stable subsystems are run alternatively. The
set of switching or impulsive times is {#}f=% = {1.5,5.5,7, 11, 12.5, 16.5, 18, 22}.
For instance, o(¢) = 1 (or2) for ¢ € [0, 1.5)(or [1.5, 5.5)), respectively.

In the following theorem, we show how impulses can play as a stabilizer in some
linear impulsive systems with unstable subsystems.

and Eu = . In this case, the condition in A3(i) is sat-
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Fig. 10.1 Impulsive-switched system with unstable and stable subsystems

Theorem 10.2 Consider system (10.2) with ¥ ={1,2, ..., N}. Assume that the
following assumptions hold:

Al. foranyi € ., Ay, has eigenvalues with positive real parts;
A2. assumptions A2 and A3(i) of Theorem 10.1 hold;
A3. there exists a constant 9 > 1 such that

In (19#(041' + 6 + i + ¢i)> + &t — 1) <0,

where i, o;, Bi, Vi, Ui and &; are defined in Theorem 10.1.

Then, the trivial solution of (10.2) is stable if ¥ = 1 and asymptotically stable if
9> 1

Proof Forall t > 1y with #p € R, let x(¢) and z(¢) be the solution of (10.2). Define
Vi(t) = xT P;,x and W;(t) = (z — h;)T P5,(z — h;). Then, the time derivative of V;
and W; along the trajectories of system (11.2) are

Vi) < @+ v + 2w + D2 v g+ 22w,
- )\lm )\2}% )\1m ! )\Zm !
. , Amin(02.) — ;b . b
Wity < Sy, () = 2min(@2) = Eibar gy Gy By
)\lm 51‘)\2M >\lm )\Zm

Then, there exists a positive constant &; such that
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Vi) < (lvi I|,)ei =it

W) < (IlVi

I~ + Wi
-+ [IW;

k-1 k-1

”7_)efi(l_tk—l).

Tk—1 Tk—1

From Theorem 10.1, we have at t = 1;,

Vilte) < axVi(ty)
Wit = BiVi() + W) + el Vil

We also have, for ¢ € [#;, tr+1),

Vi(0) < IV llr + W, 1€ e + Bi 431 + e
x p(an 4 Bo 472 + 12)e? BT e + B+ i + e W

1
= IV, [l + 1Wy, ”T)ﬁe&m_mﬁﬂ(al + B1 + 71+ hy)e e
X 7_9#(0[2 + ﬁz + Y2 + 1!)2)852([3712) e ﬁu(ak + ﬁk + o + 'l/)k)egi(tk+17tk)

1% 1 _
< Vi, - + Wy, ||T)Wesl<n )
Similarly,
Wi(0) < (IVy, ll- + Wy, I )i € (t1—10)
i L Il 1, I ﬂke .

From Theorem 10.1, there exists a positive constant K such that

K _
@1+ 120N < —=z Ul - + e
Clearly, if 99 = 1, then the trivial solution of system (10.2) is stable and, if ¢ > 1
and k — oo, then the trivial solution of the system is asymptotically stable. This
completes the proof.

Example 10.2 Consider the impulsive-switched system (10.2) with the following
unstable subsystems

X=x+4+3zt—-1),
ez=2x(t—1)—2z, =07

and

XxX=x4+2z(@—1),
ez=4x(t—1)—2z, =07
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Fig. 10.2 Impulsive-switched system with all unstable subsystems

and difference equations are Ax = —0.97x(¢) and Az = —0.9z(¢). The switching
signal ¢ takes values in {1, 2} alternatively.

When~y =2, 01, =2and Q,, =2, then we get P, = 1 and P,, = 0.5, while, if
Q1, =3and 05, = 1, thenwe get P, = 1.5and P, = 0.25, so that = 2. We also
get, for the first subsystem, )\(AT + A1) = {-2.3571, 14} and ||Bl|| = 12, so that
the growth rates are §; = {19, 10.8214}. For the second subsystem, )\(AT + Az) =
{—0.9286, 14} and ||Bz|| = 12, so that the growth rates are &, = {19, 11.5357}. The
impulse parameters are, for any k € N, ay, = 0.0018, G = 0, 7 = 0.048 and ¢, =
0.0672. A simple check shows that A3 holds if ¥ € [1, 4.2735). Taking ©} = 2 and
&1 = 10.8214 gives fy41 — t < 0.0702 and &, = 11.5357 gives t;1; — t; < 0.0658.
Thus, if we choose Tp = 0.0658, then the switching or impulsive times are {#;}f=3° =
kTp. Figure 10.2 shows the simulation results.

10.2.2 Nonlinear Systems

Consider the following nonlinear impulsive-switched system

X=An +9(x,x,2,2), t#Fnk

et =Baz+ Bi(x.x), #1k (10.6)
Ax = Bix(t), t=1t
Az = Crz(t), t=1

where i € ¥ = ., U.%;, and the n x n matrix By, is nonsingular and Hurwitz.
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In the following theorem, we state and prove exponential stability of the trivial
solution of system (10.6).

Theorem 10.3 The trivial solution of (10.6) is exponentially stable if the following
assumptions hold:

Al. assumption Al of Theorem 10.1 holds;

A2. (i) thereexistpositive constants ayy,, aia,, dzi;, a2;,bi1,, bia,, ba, andbyy,
such that
2T Py gi (o e 20z) < ang X2 + arg, 12 + biyg e — hill? + bio; 1z — hi)elI2,

=2z = h)" Py by < ay, IXI17 + aza, 13112 + boy, llz — hil|? + bo, 1z — hi)e |12

where h;(t) = —Bz_lll,Bi (x(t), x;), and P), and P, are positive-definite
matrices satisfying Lyapunov matrix equations

Ay Py, + Py Ay, = =04,

B2TIZ-P2,’ + PZ,»BZII- = _QZ,"

for any given positive-definite matrices Q1, and Qo,;
(ii)  there exist positive constants a, b and ¢ such that

T
2(260) = hiD) ) U + CaT P U+ Culhie) = hitao) |

T
+ U+ CmaD) = me ) Pt + Cani ) = hitwo
<allz(t) — i GO + bllx @O + cllx- 112,

where h; (tr) = — B3, B; (x (), x,,);
A3. assumption A3 of Theorem 10.1 holds, and
Ad. assumption A4 of Theorem 10.1 holds where oy = ul)\fmx([l + B), O =
b/ Ay, Ve = pa i (LI + Cil) + a and Yy = ¢ /A

Proof For all ¢t > 1ty with 7p € Ry, let x(z) and z(¢) be the solution of (10.6).
Define V;(t) = xT(¢)Py,x(t) and W;(t) = (z — h;)T (t) Py, (z — h;)(t). Then, the
time derivative of V; and W; along the trajectories of x and z are:

(i) foranyi € .7,

. aip, by, ap, by,
Vi(t) < Qv+ —)Vi) + —W; (1) + Vi llr + —IW,ll-
A]m >\2m )\lm >\2m
. , Amin (02 ) — £ibo1. _ by
W) < 2oy - Amnt@2) ZEibai gy Oy P
Alm €idom Alm Ao
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(ii) for any i € .,

. Amin(Q1,) — ayy, by, ay, by,
Vi) £ ———— Vi) + — W) + —IIVi,II- + —IW, I~

)\IM >\2m )\lm )\Zm

. asy, Amin(Q2,) — €7'bay, an, by,
Wi(t) < 24 Vi(e) — - Wi () + ==Vl + = Wi, -

Alm &; Aom Alm A2m

Then, as done before there exists positive constants &; (for any i € .#,) such that

Vi) < (Vi e + 1W; . (l)et )

Wilt) < (1Vi, e+ 1IWy, [l)es
and (; (fori € .#;) such that

Vi) < (Vi NI+ IW,_
Wi < (Vi llr + 1W;,_ [l-)e” S,

||T)e_<i(f_tk—l)

At the impulsive-switching moments ¢ = #;, we have
Vilte) < o Vit ),

where oy = pA2, (I + By), and

max

Wit = (20 — b)) Py (200 — hia)
= (20 - h,-(z,;))T[I + " Py + G (260) = i)
+2(260) - hi(tk_))T[I + G Po {1 + Culhy07) = i)
+ U+ i) - h,-(tk)}rpg, [+ Came) = hitan |
< s (1 + T P, 1+ G 27) = b DI + ) = eI
+ bllx () + cllx, 112
=B Vi) + Wit + ¢k||Vi,k_ Il

where B = b/ Aim, e = Mam Ao [ + Cil + a) /Ao and 1 = ¢/ A1y, The rest of
the proof is similar to that of Theorem 10.1; thus, it is left here as an exercise.
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Example 10.3 Consider impulsive-switched system (10.6) with the following unsta-
ble and stable subsystems

X =0.1x +sinz(t — 1)
ez=0.1x — z,

and

x=—10x+In(l+x2¢ - 1) 4z
ez =x—12z

and, in the difference equation, By = —1/2 and C;, = —1/2.
For the unstable subsystem, define Vi(x) = 0.5x% and W, (z — h) =0.5(z — h)?,
where 4 = 0.1x. Then, one can find V,(x) < 1.4V, + |W,, |l and W, < (=2/e +

~ 1.4 0
0.12)W, +0.01V, + 0.01[|V, |l + 0.1[| W, ||, A, = <0'01 _2/5+0.12> and

0.01 0.1

the stable subsystem, defining V;(x) = 0. 5x2, Wy(z — h) = 0.5(z — h)*> where h =
0.5x give V, < —14V, 4+ W, + 4|V, |l and W, < (—4/e* + 11.5)W, + 5.5V, +
2|V, |+ thus, A, = < 5.154 _4/5*1+ 11'5) and B, = (;1 8) By A3(ii), we get
e*=0.2341; if we take £=0.1 € (0,0.2341], the decay rates are ( =
{1.5279, 2.4432}. The dwell times for the unstable subsystems is 1.1 and the stable
oneis 5. Figure 10.3 shows these results after running unstable and stable subsystems
alternatively.

In the following theorem, we state sufficient conditions to guarantee stability and
asymptotic stability of systems (10.6) with all unstable subsystems.

EM = ( 0 1 ) Taking € = 0.1, the growth rate are £ = {1.85, 4.8}. While for

Theorem 10.4 Consider the impulsive-switched nonlinear system in (10.6) with
< ={1,2,..., N}. Assume that the following assumptions are satisfied:

Al. foranyi € ., Ay, has eigenvalues with positive real parts;
A2. assumption A2 of Theorem 10.3 and A3(i) of Theorem 10.1 hold; and
A3. there exists a constant ¥ > 1 such that

In (19M(Oéi + 6+ + ¢i)> + & (1 — 1) <0,

where p and & are defined in Theorem 10.1 and «;, (3;, y; and v); are defined
in Theorem 10.3.

Then, the trivial solution of system (10.6) is stable if ¥ = 1 and it is asymptotically
stable if ¥ > 1.
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Fig. 10.3 Impulsive-switched system with unstable and stable linear subsystems

The proof of this theorem is a consequence of the previous theorems; thus, it is left
here as an exercise.

10.3 Notes and Comments

Throughout this chapter, an impulsive-switched singularly perturbed system with
time delay has been addressed. Particularly, some stability properties of the system
have been presented. The material of this chapter is taken from [1]. We have shown
that exponential stability of the system that consists of unstable and stable subsystems
is guaranteed if the total activation time of stable subsystems be larger than that
of the unstable ones. We have also explored that impulses do contribute to achieve
stability properties of systems consisting of unstable subsystems. Multiple Lyapunov
functions technique and dwell-time approach are used to analyze the qualitative
properties of the system.

Reference

1. Alwan MS, Liu XZ (2009) Stability of singularly perturbed switched systems with time delay
and impulsive effects. Nonlinear Anal Theory Method Appl 71(9):4297-4308



Chapter 11 )
Stabilization and State Estimation st
via Sliding Mode Control

This chapter deals with designing a nonlinear sliding mode control (SMC) and non-
linear sliding mode observer (SMO) for a class of linear time-invariant (LTI) sin-
gularly perturbed systems (SPS) subject to impulsive effects. As treaded in the last
two chapters, the continuous states of the system are viewed as a large-scale inter-
connected system with two-timescale (slow and fast) subsystems. The impulses are
considered as a perturbation to the system. To analyze the stabilization and state
estimation problems, Lyapunov function technique is used. As will be seen, the goal
is to design a SMC law through the slow reduced order subsystems to achieve closed-
loop stability of the full-order system. This approach in turn results in lessening some
unnecessary sufficient conditions on the fast subsystem. Later, assuming that partial
output measurement of the slow subsystem is available, a similar control design is
adopted to estimate the states of full-order SPS, where a sliding mode modification
of a Luenberger observer is used.

11.1 Problem Formulation

Consider the following impulsive singularly perturbed system with control feedback

X = A;1x + Az + Bu, t # Ty, (11.1a)
€z = Ayx + Anz, 1 # Tk, (11.1b)
x(t) =+ E)x(t), t = Tk, (11.1¢)
2t) = (I + Fz(t), =, (11.1d)
x(0) =x9,  2(0) = zo, (11.1e)

where x € R” and z € R™ are, respectively, the slow and fast state vectors of the
system, u € R” is the system r—dimensional feedback control or input of the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 191
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_11
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Kx with K € R"™" being the control gain matrix, € is a small positive parameter,
A e R A, e R Ay € R™ | Ayy € R™*™ are real constant matrices, B €
R™ is the control matrix, and E; € R"" and F; € R™*" are the impulsive gain
matrices. For all k € N, 7; form a strictly increasing sequence of impulsive moments
{7 }keny With 71 > 0 and limy_, o 7x = 0o. Throughout this chapter, we assume that
the solution is right-continuous (i.e. x (7;") = x(7;) and z(7;") = z(y) forall k € N)
and the matrix A,; is nonsingular and Hurwitz.

In the following, we state the definitions of exponential stability of impulsive SPS,
where we assume that there is no impulsive action at the initial time.

Definition 11.1 The trivial solution of system (11.1) is said to be globally exponen-
tially stabilized by the feedback control law u if there exist two positive constants K
and A such that

IOl + 1zl < K (Ixoll + llzoll)e ™, ¥t > toand 19 € Ry,

where (x(¢) z(t))7 is any solution vector of (11.1). Particularly, if this relation holds
with u = 0, then the trivial solution of (11.1) is said to be globally exponentially
stable.

11.2  Slow Sliding Mode Control Design

In this section, we start with designing the SMC through the slow reduced, nonim-
pulsive subsystem, then it is carried over to stabilize the full-order SPS under the
impulsive effects. Moreover, it is reasonable to assume that the system is impulsive-
free during the reachability stage, because the system states reach the sliding surface
in a finite, short period of time.

Toward our goal, for any # # 7y, setting € = 0 in (11.1b) yields

X =A11X+A122+Bu, (112&)

0= Ayx+ Apz. (11.2b)
From (11.2b), we get

7= h(x) = —A5) Ay x (11.3)

and, by substituting z into (11.2a), we obtain the reduced subsystem
Xs = Aoxs + Bous, (11.4)

where AO = A]1 — A]2A2_21A2] and BO = B.
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11.2.1 Sliding Mode Control with Multiple Inputs

Consider the r —dimensional sliding mode hyper-surface defined by the vector-valued
function

s1(xy) Cl Xg C1
52(x5) €2 X o)

Sx(x.v) = . = . = . Xy = Cs Xs» (115)
sy (xs) rxl CrXs |, Cr L rxn

where s; (x;) is a scalar-valued function which represents the i th sliding mode hyper-
surface and is defined by s;(x;) = ¢;x, with ¢; e R!*" (i =1,2,...r) and C, €
R"™". Then, the time derivative of each s; (x,) is given by

a i\As d K .
5 (0) = (Vs () i, = i X e e AL6)
Ox, dt
8 i s a i K
where Vs; stands for the gradient of s;, i.e. Vs;(xy) = [ i1 (%) - Osiz (%)
axsl 8xs2
asir(xs) T . T .
3 ] with x; = [X51 X520 -+ Xg,]" . In a matrix form, (11.6) becomes
xsn
(Vs1(x,))"
. (Vo) | ,
Ss(x.v(t)) = . Xs = Csxx(t)~ (117)
Vs, )],
Thus, along the trajectories of (11.4), we have
Ss(xy) = CyAgxs + CsBouy = 0 (11.8)
which leads to the r— dimensional equivalent control
uld = —(C,By) ' CyApx,, (11.9)

where By € R and (C;By)~! is the inverse matrix of C; By € R™*". Substituting
us? into (11.4) leads to the corresponding closed-loop equivalent reduced system.
The n x n matrix A,, is stable as it has n — r eigenvalues in the left half of the
complex plane, and r zero eigenvalues to endure the system’s motion on the sliding
surface.
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11.2.2 Reachability Analysis

To analyze the motion of the reduced slow system with multiple inputs outside the
sliding surface (i.e. S;(x5) 7# 0), we define

V(Ss(xy) = %Sf(xx)sx(xx) (11.10)

and require that the time derivative

OV dS,(xs)

V(Sy(xy)) = 3500 di

= ST (x,) 85 (xs) = ST (x,)(CyAoxs + CsBouy) < 0

which is guaranteed if the r —dimensional control is given by
us(1) = u? (1) — (Cy Bo) ™ diag(1)Sgn(S; (x,)), (1L1D)

where diag(n) is anr x r diagonal matrix with diagonal elements being equal to pos-
itive constant numbers n; (fori = 1,2, ..., r) and Sgn refers to the r —dimensional
signum vector function defined as follows:

Sgn(sl(xs)) .
sgn(sz(xy)) i si(x) > 0
. where sgn(s; (x;)) = 1 0, if 5;(x;) =0
—1, if s;(x) < 0.

Sgn(Ss (xs)) =

sgn(s, (xy))
(11.12)

Therefore, the continuous closed-loop full system outside the sliding surface is
given by

Xy = Anxs + Az + Bug(), t # Ty, (11.13a)
€z = Anxs + Anz, t # 7, (11.13b)
x5(0) = x50,  2(0) = zo. (11.13c)

Clearly, on the sliding surface S(x;) = 0, we have Sgn(S;(x;)) = 0 which leads
to us () = us’ (¢) and, hence, the continuous closed-loop system during the sliding
motion is given by

Xy = Anxs + Apz + Bull(r), t# Tk, (11.14a)
€z = Ay xg + Apz, t# Ty, (11.14b)
x(0) = x50,  2(0) = 2. (11.14c)
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We now aim to apply the designed control law with multiple inputs of the reduced
slow system in (11.11) to establish the stability property of the closed-loop system
of the full-order impulsive SPS.

Theorem 11.1 Assume that the following assumptions hold:

(i) the reduced slow subsystem (or the matrix pair (Ag, Bo)) is stabilizable and
Ay is Hurwitz;
(ii) forallt # Ty, there exist positive constants ay; and ayy such that

~2(z = h(x))" Ph(x) < anx"x +an(z — h() (z = hx)),

where P is an m X m positive-definite matrix satisfying the Lyapunov matrix
. . Oh(x), . Oh(x) .
equation A5 P + PAy = —I and h(x) = P with 3 being the m x
X X

n Jacobian matrix;
(iii) there exists a positive constant €* such that — A is an M -matrix, where

A i (-1 an
i Bae* B

- |:al2 max{Re[\(A))]} ﬁ
= )|’

where i, i, 1 and 3, are positive constants that will be defined later,
Ay = A+ LARAL — ApA5) Ay — Bi(CBo)~'C Ag with y, being a pos-
itive constant and max{Re[\(A 1)1} is the maximum of real parts of the eigen-
values 0fA~] 1, and

(iv) foranyi =1,2,...,k, the time between impulses satisfy

1
L=t > 5111(0611‘ + i + (o),

with ¥, ay;, an; and [By; being positive constants such that oy + o + Bo; > 1.

Then, the SMC law (11.11) guarantees that the closed-loop of the full-order impulsive
system be globally exponentially stable for ¢ € (0, £*].

Proof Forallt > fywithty € R, letx(t) = x(¢; ty, X0, zo) and z(t) = z(t; ty, X0, Z0)
be the solution of (11.1). Define V(x) = 1x"x and W(z — h(x)) = (z — h(x))”
P(z — h(x)) as Lyapunov function candidates for the slow and fast subsystems,
respectively. Then, there exist positive constants oy < Lo, >4 G1 < Amin(P) and
B> > Amax (P) such that

arllx]* < V(x) < aallx|?, (11.15)
Billz = hNI? < W(z — h(x)) < Ball(z — k)1 (11.16)
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The time derivative of V along the continuous trajectories of x during the sliding
motion (S; = 0) is given by

V@) =" (Anx + Ap( — h(0) + Ah(x) = Bi(CBy)~'CAox)
< XT<A11 + %Alesz — A12A2_21A21 - BI(CBO)71CAO)X
1
+ — (@ —h(x)"(z — h(x))
2

1 ~ 1
< — max{Re[A(A1 D}V (x) + 5 — W(z — h(x)), (1L.17)
Qi 271/81

where we have used assumption (ii), the fact that 2x7 A1, (z — h(x)) < WI)CTAle]T2
X+ %(z — h(x))T(z — h(x)), right inequality in (11.15), and left inequality in
(11.106).

Likewise, the time derivative W along the trajectories of z during the sliding
motion is given by

. 1 . T
W(z - h(x) = (;(Azlx + An2) — () P = h(x)
_ :
+ (2 — h(x)) P(;(Am + An2) — h(x))

1 .
= —(Anz - Aph(x)" P(z = h(x)) — kT (x) P(z — h(x))

1 T T pj
+ E(Z — h(x))" P(Anz — Apnh(x)) — (z — h(x))" Ph(x)

- é(z ChNT (ALP + PAR) G — h(x) — 2 — h(x) Ph(x)
L - he + 2v, (11.18)
Bae B a

= —(

where we have used the second inequality in assumption (ii), left inequality in (11.15)
and right inequality in (11.16).
Combining the last inequalities in (11.17) and (11.18) yields the matrix inequality

V(x) - V(x)
[W&—h@»}SA[W&—huD}

where — A is an M-matrix for a positive constant £*, as defined in assumption (iii).
Then, there exists a positive constant & such that, for all ¢ € [7x, T11),

V@) < (V@I + W@ l)e s, (11.19)
W((z —h)(®) < (V@I + W @m)l)e ™, (11.20)
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where V(1) = V(x(7x)) and W(r) = W((z — h(x))(7%)). At the impulsive
moments ¢ = 7, we have

V(x(1) = anVx(m)), (11.21)

where a, = A2, (I + E) and

max

=A

W((z = h(0) (1)) = <z(7‘k) + A3 (Az1 — Ba(CyBo) ' Cs Ag) x(Tk))TP
>< (z(Tk) + A3} (Az1 — Ba(Cy Bo)_lcsAo)x(Tk)>
= (U + Foze) + A+ EgxD) P(U+ Fozty)
LA+ Ek)x(r,;))

=F =4y

— _ o T
= (T4 FoG = o)) + (AU + Eo) = (I + FoA)x()

x P((I + F @ — h()) () + (AU + Ex) — (I + Fk)A)x(r,;))
_ _ T _ _
= (Fez = he) () + Acx(r)) P(Fetz = o) (7)) + A (7))

= (z - h(x))T(T,:)ﬁkTPﬁk(z — h(x))(T,:) + X(T,;)TAZPA](.X(TI:)
+2(z — h(x)) (7 Fl P Ak
=:ITg

= (e = h) GO B PEA+ (R PAGF PADT)

=:8g

1
x (2= h) () +x( O (AL PA+ ! )x (1)
< BuW((z —hQ) (1) + o V(x (7)), (11.22)
where we have used h(x(r;)) = —A,, (A21 — Ba(CyBo) "' CyAg)x (1) =

—Ax(7), ay = [|Exll/ay > 0and By = || TIk||/ 31 > 0.
For instance, for t € [, 71) with ty = 7, we have

V@) < (V@) + W (t)ll)e s,
W((z = h(x) (@) < (IV @)l + | W (1) [[)e$¢),

and for t € [17, 7), we have

V@) < (IIVEDI+ W) )e s,
Wz —h)@®) < (IVEDI+ IWEI)e .
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Using (11.21) and (11.22) with k = 1 yields, for ¢ € [#y, 72),

V(x(®) < (an +ax + B)(IVE) N+ W) [)e ),
W ((z — h(x))(1)) < (an + a1 + B IV @) + W (ko) |)e <.

By the mathematical induction, one may get, for ¢ € [ty, 7),

k
V) < [ [ + aai + Ba) (IV @) | + W o)) e,

i=1

k
W((z —h(x)(®) < [ (i + eai + Bad) (1V @)l + W (o) [[)e 7.

i=1

Choose 0 < v < ¢ and provoke the impulsive effects (i.e. assumption (iv)) to
obtain, for all ¢ > 1,

V@) < (IVa)l + W t)ll)e ¢V,
Wz —h(x))(1)) < (IIV(t0)|| + ||W(t0)||)e_(f—v)(f—lo).

As proceeded in Chap. 9, there exists K > 0 such that
IxO1 + Iz < K (Ix @)l + llz(t) ) e CC/2 vt > .

This completes the proof of exponential stability of the full-order, closed-loop impul-
sive SPS.

Remark 11.1

(i) To guarantee the exponential stability of the continuous composite SPS, it is
required that the degree of stability for the uncoupled slow and fast subsystems be
larger than the strength of the interconnection which is treaded as a perturbation
to the isolated slow and fast subsystems. This requirement is represented by
assumption (iii).

(ii) In the Lyapunov function W related to the fast system, we have considered the
vector (z — h(x))(t) = z(t) — h(x(2)), but not z(¢), to shift the equilibrium state
z to the origin [1].

11.3 Sliding Mode Luenberger Observer

In this section, we carry over the control design adopted in the last section to design

a sliding mode observer (SMO) to estimate the states of the full-order system.
Consider again the impulsive system in (11.1) and measured outputs y € R/ of

the slow system y = Dx for some matrix D € R/, As presented in the last section,
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the interest here is to design an SMO through the reduced slow system to observe the
states of the full-order impulsive system in (11.1). To that goal, we define the state
estimate impulsive SPS by

A=At +Api+Bu+Lv—y), t#m7, (11.23a)
el = Apk + Ani, £, (11.23b)
() = U+ E)x@), t =T, (11.23¢)
2 = U+ F)z(t), t =Tk, (11.23d)
x(0) =X,  2(0) = Zo, (11.23e)

where X € R" and Z € R™ are, respectively, the slow and fast state vectors of the esti-
mate system, Ay, € R™*” is a nonsingluar, Huwritz matrix L € R"*” is the observer
gain matrix which plays a similar role as in the traditional linear Luenberger observer
and v is a nonlinear vector function of the error between estimated state y = DX and
the available measured output y and satisfies v(0) = 0. Here, v is considered the
r—dimensional observer (or control law) to be designed.

Defining the error states e, = X — x and e, = Z — 7 leads to the corresponding
impulsive error system

éx = Aj1ex + Ape, + Lu(ey), t # Tk, (11.24a)
gé; = Ayex + Ane;, r# Tk, (11.24b)
ex(t) =+ Epex(t), t =1, (11.24c¢)
e(t) =+ Fe (), =Ty, (11.244d)
ex(0) = ey, e:(0) = ¢, (11.24e)

where v(e;) = v(De,). As proceeded earlier, setting € = 0 results in the reduced
error subsystem

éx, = Acey, + Liv(ey,), (11.25)

where e, = h(e,) = —A3, Asje,, A, = Ay — AjpAj) Ay and Ly has the definition
of L. Define the sliding mode error surface by

Se(ex,) = Cees,. (11.26)
for some matrix C, € R"*". Then, in the sliding mode the equivalent control becomes
Ueq(ex,) = —(CeLs) ™' CeAcey,

and the corresponding equivalent reduced system is given by

éx, = (I = Ly(C.Ly)'C,)Acey, =1 Ae,,.



200 11 Stabilization and State Estimation via Sliding Mode Control

1
As for the reachability condition, define V (S, (e,)) = ESZ (ex,)Sc(ey,). Then, as

done in the last section, along the sliding surface V(Se) = Se(exl‘_)S'e (ex,) <O is
guaranteed if

v(ey,) = Ueq(ey,) + 0 (11.27)
with
0% = —(C.Ly)" 'diag(n)Sgn (S, (ex,))

where the r x r matrix diag(n) and r —dimensional vector Sgn (S, (e, )) are as defined
in the last subsection.

In the following theorem, we prove that the impulsive error system (11.24) is
globally exponentially stabilized by the designed SMC in (11.27).

Theorem 11.2 Assume that the following assumptions hold:

(i) the reduced slow and fast subsystems are observable;
(ii) there exists a positive constant €* such that the matrix — A is an M -matrix where

~ a a
Az|m  an ’
ar —(= —an)

with ayy, ain, a1 and ayy being some constants defined later;
(iii) foranyi =1,2,...,k,

1
=t > 5111(0611‘ + g + Bai),

for some positive constants ¥, a;, an; and [2; such that ay; + oo + B > 1.

Then, the sliding mode control law in (11.27) guarantees that the closed-loop
full-order error system (11.24) is globally exponentially stable for € € (0, €*].
Proof For all t > fy with g € Ry, let e, (t) = e, (; 1y, ex,, €;,) and e, (t) = e (¢; 1y,
ey, €;,) be the solution of (11.24). To analyze the exponential stabilization of
the full order of the impulsive error system in (11.24) during the sliding mode,
define V(e,) = 1ele, and W(e. — h(ey)) = (e — h(ex))" P(e. — h(ey)) as Lya-
punov function candidates, where the subscript s of state x is dropped for simplicity
of notation. Then,

=G

Ve, <el ( A+ ARAL + ApAy) Ay — Ly(C,Ly) ' (C.A,) )ex

1 T
+ —(e; — h(ey))' (e, — h(ex))
!

<anVie) +anpWie, — hiey)) (11.28)
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where aj; = ;- max{Re[A(G)]}, aix = ﬁ and the fact that 2e” A s (e, — h(e,)) <

mel AnAfe + 3-(e; — h(en)' (e; — h(ey)). Similarly,
X 1 T T
Wi(e, — h(ey)) = g(ez —h(ex) (A3, P + PAx)(e; — h(ey))
—2(e; — h(ex)) Ph(ey)
1 T 2 T
< ——(e; —h(ey)) (e; — h(ex)) + —e ex
€ V2
+ an(e; — hiex)" (e; — h(ey))
1
< —(g —an)W(e, — h(er)) +axnV(ey), (11.29)
where ay; = ﬁ and axy = 2||[PA|ATP 4+ PA,|| with A = Ay} — AjpAy) Ay —

Ly(C.Ly)"'C.A,, Ay = A} AyyA and A, = A3 Ay Ay,
Combining the inequalities in (11.28) and (11.29) in a matrix inequality yields

Ve Tl Ve
Wie: —h(e))] = 7 [Wle: —h(e) |’

where A is defined in assumption (ii) with —A being assumed to be an M —matrix
for some positive number £*. Then, there exists £ > 0 such that, for all # # 7,

Viexn) < (V@ + W @) l)e ™, (11.30)
W((e: —h(e) @) < (IV@Il + W @) [)e ™, (11.31)

where V(1) = V(ex(r,)) and W (7)) = W((eZ — h(ex))(Tk)). As achieved in Theo-
rem 11.1, at the impulsive moments ¢ = 73, we have

Viexmy) = anViey ), (11.32)
W ((e: — h(e)) (1)) < BuW ((e: — h(e)) (1) + aV (exiry), (11.33)

where vy = A2 (I + Ep), ax = ||Cf + %I”/al’andﬁZk = || B}, + Bj, |/ 51, with
Cf = (A} — AT (AL = AD). Bl =+ F)T PU + Fo, By = (U + Fo'

T
P(AL = AR) (U +FOTP(AL = AR), Ay = Azl Au(l + Ep) and A, =
(I + E) A3 Ay

Considering the impulsive effects in (11.24¢) and (11.24d) results in that the full-
order impulsive error system (11.24) is globally exponentially stabilized by the SMC
in (11.27). This completes the proof.
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11.4 Numerical Examples

We present some numerical examples to illustrate the developed results.

Example 11.1 Consider the impulsive SPS in (11.1) where

—-10 —0.08 0 1
An=|:1 1] Alzz[ 0 } 32[02}, Ek:_2_5k12><2»

1
A21 = [01 1] s A22 = —01, Fk = _ﬁ12X23

where k € N. Setting ¢ = 0 gives z = h(x) = 0.025x; 4 0.5x,. Then, the reduced
slow system becomes

. _[-19975 057 2
Y =10.1025 015 T os| "

where x” = (x; x2). Choosing C; = [—1 —0.1], the equivalent control is
ull = Kx, = [0.758 —0.08] X,
the corresponding equivalent system is

4 _[04815 —0.11
Yo = AegXs = 04815 0.11 |

which is only stable, where A(A.,) = —0.3715, 0. Thus, the feedback control law is
given by

us (1) = ug? () — 4 diag(n) Sgn(S; (xy)),

where 1 = diag(8, 5, 0.2). Define V(x) = 0.5x7x and W(z — h(x)) = 0.05(z —
h(x))T(z — h(x)). Then, one can show that

o _[0212 4
- 1 —(2-0.062)

is an M-matrix if ¢ € (0, 0.1057],i.e. €* = 0.1057 where we have taken oy = a, =
0.5,8, =0.125, 3, = 0.5, = 1,7, = 2and~; = 5. We also found, from assump-
tion (iv), Tk+1 — Tk > 0.975. The simulation results of this system are shown in
Fig. 11.1.

Example 11.2 Consider the impulsive SPS in (11.24) where Ay, A2, Az1, A and
B are given in Example 11.1 and the impulsive state estimate system is as defined
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Fig. 11.1 Impulsive system states, x, x2, and z

in (11.23) with D = I,4». The corresponding impulsive error system is defined in
(11.24).

Let LT =[0.02 —0.026]. Then, the equivalent control system is v;’(ey,) =
[315.8333 —33.3333] ey, and the corresponding equivalent reduced system is

—8.3142 0.7167
> — A% —
o = Acer = [ 8.3142 —0.7167} g

which is a stable system with the eigenvalues being —9.0308 and 0. The control law
is given by

Us(ey,) = 059 (ey,) — 1.6667 x 10~ 3diag(n) Sgn(S,(ey,)).

Adopting the same Lyapunov functions, one can show that

i _[-0338 20
— 7| 20 163213

withe* = 0.0505, where we have taken o = o = 0.5, 51 = 0.125, 5, = 0.5, v, =
1,7 = 2and 3 = 5. We have also found that, from assumption (iv), the 74+ — 7% >
4.5348. Clearly, the time between impulses is larger than that in Example 11.2 due to
the small decay rate of the interconnected full-order system. The simulation results of
the error SPS states are shown in Fig. 11.2, and control inputs are shown in Figs. 11.3

and 11.4.
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1

Fig. 11.4 Control input v(ey,)

11.5 Notes and Comments

The state feedback law represented by an SMC is an efficient designing tool for stabi-
lizing closed-loop variable structure systems undergoing matched uncertainties and
external input disturbances. That is, SMC provides robust stabilization for systems
with uncertainties because of its fast response, good transient performance and its
tolerance to model uncertainty and perturbations. Throughout this chapter, we have
addressed the problems of stabilization and state estimation for impulsive singularly
perturbed systems via a sliding mode control. The material of this chapter is adapted
from [2]. The continuous SPS has been viewed as a large-scale interconnected system
for which state feedback control laws are synthesized. In this chapter, however, the
controller has been designed through the dominating reduced order subsystem to sta-
bilize the full-order system. This approach has lessened some unnecessary sufficient
conditions imposed on the fast subsystem. Along this line of design, one can also
see [3]. The impulsive effects of fixed types were considered as a perturbation to the
system. This results in that the time between impulses is bounded below. In analyzing
the stabilization and state estimation, the classical Lyapunov function technique has
been used. The general theory and design of SMC have been addressed in several
works, readers may refer to [4-9] and many references therein. The modified Luen-
berger observer, which is an efficient estimator to provide output approximation, can
be read, for instance, in [10]. Due to the system complexity, the stabilization prob-
lem of these systems by such a state feedback control law is actively researched; see



206

11 Stabilization and State Estimation via Sliding Mode Control

[11-13]. A part of this literature focused on designing decentralized controllers for
the slow and fast subsystems [11, 13].
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Chapter 12 ®)
Comparison Method and Stability e
of EPCA

This chapter deals with systems of nonlinear differential equations with piecewise
constant arguments (EPCAs). We start by developing a comparison principle for
this system. Then, this result will be used later to establish some stability properties
of the system. As will be seen, the piecewise (constant) arguments can play as a
stabilizing role in some cases where the underlying systems are unstable. A class
of linear retarded EPCA 1is also considered in this chapter. Numerical examples and
an application to a single-species logistic growth model with density-dependence
harvesting are presented to show the effectiveness of the theoretical results.

12.1 Introduction

By EPCA, we mean differential equations with piecewise constant arguments over
certain intervals. The arguments can be delay, advanced, or a mix of these two types.
The dynamics of these differential equations generally depend on both continuous
and discrete arguments. Hence, such equations can form a special class of hybrid
systems. From the functional differential equation theory perspective, EPCA is spe-
cial equations where the state history is given at certain individual points, rather than
on intervals. Typically, nonlinear EPCA has the form

xX(@) = [t x@), x(v(1))), (12.1)

where the argument -y is a piecewise constant function defined on intervals with a
certain length, and it may be defined by v(¢) = [¢], [t — n], t — n[t], [t + 1], for all
t and a positive integer n, where [-] is the greatest integer function [1-3].

These differential equations have a similar structure to those seen in some
“sequential-continuous” disease models treated by Busenberg and Cooke [4]. Also,
the system of differential equations having the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 207
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-8046-3_12&domain=pdf

208 12 Comparison Method and Stability of EPCA

50 = (120, M@D)). 1€ 1]

was considered in [5] where, for some nonnegative integer number &, x; = x(#;) and
A, are some continuous functions. The system state experiences impulsive effects
due to the switching in the arguments Ay and x;.

In this chapter, the system of nonlinear EPCA is being viewed as a hybrid, partic-
ularly switched, system, which allows us to apply the theory of continuous ordinary
differential equations to each individual subsystem. This approach motivates concept
of dwell time.

12.2 Problem Formulation

Let {x}72 and {£,}22,, be sequences of nonnegative real numbers such that limy_, o
t, = 00. Generally, & is defined such that#,_; < & < 1, for any k € N with & = 1.
Consider the EPCA of the form

x(1) = f(t, x(1), )\g(t)(x(’y(t)))>v (12.2a)

where x € R” is the system state, and for all # > #; with 7y € R, o(#) and ~y(¢) are
functions taking values in {k}?>, and {£};2,, respectively. More specifically, for
t € [, tr1], we define o(f) = k and y(¢) = &. These piecewise constant functions,
o and +y, represent the switching signals whose roles of switching between the vector
field function arguments \; and the values of its state argument x, respectively.
Obviously, if, for any k, A\ is an identity function, the EPCA (12.2a) reduces to (12.1).
Also, when k = 0, then we have &y = 1y, ¢ € [fy, t1] and the differential equation in
(12.2a) is an ordinary one. Thus, for k > 0 and t € [#, t;4+1], the system state is
allowed to be fed back with some historic data evaluated at individual moments
& € (tx—1, ). In addition, since the solution depends on the past history through an
individual point, the initial state, in contrast to the functional differential equation
case, is given at a specific time rather than over an interval, i.e.,

x(tg) = xo, (12.2b)

for some xy € R”.
In the following definition, we state the solution of the initial-value problem (IVP)
given in (12.2).

Definition 12.1 A function x : (o, ) — R is said to be a solution of (12.2) if the
following conditions hold:
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(i) x(¢) is continuous for all ¢ € (v, 3);
(ii) the derivative of x () exists and is continuous for all # € (v, 3) exceptatt # &
(k € N), where at t = & the one-sided derivative exists;
(iii) the derivative of x(¢), wherever exists, satisfies the EPCA in (12.2a); and
(iv) x(r) satisfies the initial condition in (12.2b) at t = 1.

System (12.2) may be rewritten in the form

)'C(t):f(t,x(t),)\k(xgk)>, et fin), k=01,2,...  (123a)
x(19) = xo, (12.3b)

where x¢, = x (&) and A (x¢,) = A (x(&)) being constants. Throughout this chapter,
we assume that the function f (¢, x, y) iscontinuous inits variables, i.e., f € €(R; X
R" x R™; R™), and is globally Lipschitz in x and y.

In fact, the dependence of the solution, x, of the IVP (12.2) or (12.3) on the initial
state at ¢ = # allows us to employ the theory of ordinary differential equations. For
instance, for k = 0, and t € [19, t;), the IVP

x(t) = f(t,x(@), Ao(xg)),

x(tg) = x9, Wwith&y =19

has a unique solution, say x(t), forall ¢ € [#y, #;) and liml_),l— xo(t) = xo(t;) € R".
Similarly, for k = 1 and ¢ € [#, 1), we have the IVP!

x(t) = [, x(@), Mi(xg)),

x(t) = xo(t]),

which has a unique solution, say x; (¢), forallz € [#1, t;) and 1imH,2f x1(t) = x1(2y).
By induction, for any k and all ¢ € [#, tx+1), xx(¢) is a unique solution and
limr_nk;1 xy(t) exists. Define the solution x by

X0, =1
xo(2, to, X0), t € [to, 1)
X(t) = x1(t, t1, x1), t € [t, 1), where x; = xo(t] , o, X0)

Xi(t, te, X)), t € [fy, ter), where xp = xp_1 (8, ti—1, Xk—1)

Sincelim, _, .- x(r) exists for any k, the solution x must exist over a right-maximal
interval [#y, 00). These solution steps represent the proof of the following proposition.

I'We should remark that, in the unified notation of the solution x, the initial condition x (r;) = xg )
becomes x(t1) = x (¢, ), by our definition of x.
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Proposition 12.1 Forallk =0,1, ..., let 0 : [ti, tig1) = {k}2 and 7y : [t tit1)
— {& )2 where & is as defined earlier. Assume that f € € Ry x R" x R”; R")
and f(t, x, y) is globally Lipschitz in x and y for all t. Then, the IVP (12.2) or (12.3)
has a unique solution x defined over the right-maximal interval [ty, 00).

The auxiliary scalar initial-value problem can be defined analogously:

u(t) = g, u(t), or(ug)), (12.4a)
u(ty) = uo, (12.4b)

where u € Ry, ug, = u(&), ox € ¢(Ry; R) and g € ¢(R2 x R; R).

Moreover, assume that f(z, 0, \¢(0)) = 0 and g(¢, 0, 04 (0)) = 0 for all r € R,
and then systems (12.3) and (12.4) admit trivial solutions x = 0 and u = 0, respec-
tively.

Definition 12.2 Let x,y € R” and t € [t, tyy1), for k =0,1,2,.... Then,if V €
€ ([tx, trr1) X R"; R,), the upper right-hand (Dini) derivative of V is defined by

DTVt x,y) = hlirgl+ sup %[V(I, x+hf(t, x, () = V(t, x)].

Moreover, if V € €' ([t, tr+1) x R"; R,), then

oV (t, x)

DTV, x, y) = BR +VV(, x) f@&t, x, ().

12.3 Comparison Method

We develop a comparison principle for nonlinear EPCA. Then, we consider some
special case of EPCA and EPCAG.

Theorem 12.1 Assume that the following conditions hold:
(i) fork=0,1,2,...,V € €t trx1) x R R,), V(¢, x) is locally Lipschitz in
x and

D+V(t’ X, V&) S g(tﬂ V(tvx)’ Uk(vfk)))v re (t]w tk-‘r])a

where Ve, = V (&, x(&)); and
(ii) the maximal solution ¥(t; ty, uy) of the auxiliary scalar EPCA (12.4) exists on
[10, 00).

Then, V (ty, x9) < ug implies V (t, x(t)) < 9(t, to, uo) fort > t.

Proof For all t > 1y with 1y € Ry, let x(¢) = x(¢; tp, xo) be the solution of (12.3).
Define m(t) = V (¢, x(¢)) on [ty, o). Then, we have
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D m(r) < g(t, m(1), ox(mg,)), t € (t, ty1)
where m¢, = m(&).

At t = 1y, we have &y = ty and mo = m(&y) = m(ty) = V (ty, xo) and, at t = 11,
we have

m(ty) = V(t, x(t)) = V@, x1(t; 1, x) = V@, x4 1, xo(t 5 10, X0))).-

Thus, particularly, for ¢ € [#, ], the ongoing differential inequality implies that,
with aid of the classical comparison principle [6],

m(t) < Vo(t; to, ug), t € [to, 1]
where Vg (; t9, uo) is the maximal solution of auxiliary scalar IVP

Z’.t(t) = g(t? M([), UO(”{Q))’
u(ty) = uyp.

Likewise, for ¢ € [1, t,], we have
m(t) < 01(t; 1, uy) = 01t 11, oty to, uo)),  uy = u(ty) = Jo(ty; to, uo)
where 9, (¢; t1, u1) is the maximal solution of the IVP

u(t) = g, u(t), oy(ug,)),
u(ty) = uj.

Generally, for t € [#, t;+1], one gets
m(t) < Op(t; 1, u),
where Uy (¢; t;, uy) is the maximal solution of the IVP

u(t) = g(t, u(r), ox(ug)),
u(ty) = uy.

Define u(t) by

uQ, t=1
Yo(t, 19, up), t € (to, 111
u(t) = 91(t, t1, ur), t € (11, 12], where uy = g (11; tg, ug)

Og(t, g, ug), t € (tg, tea1], where ug = 01 (65 te—1, ug—1)
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Then, for t > 1y, we get
m(t) < u(t).

Since Y(¢; 1, up) is the maximal solution of the scalar EPCA (12.4), then for all
t > ty, we reach

m(t) < 93 1o, uo).
This completes the proof.

In the following corollary and example, we address some special cases of EPCA
and EPCAG.

Corollary 12.1 Suppose that the conditions in Theorem 12.1 hold. Let
k=0,1,2,...andt € [t, tyy1]). If we choose that

(i) g(t,u, or(ug)) = Brug, with By being a constant for all k, then

(1) for & = t, we have

14 Bo(t —10) |V (20, x0), k=0, tet]

V@ x@) = {14 e — 10 | TTh-, [1 + 811 —tj—l)]v(tO’XO)’
keN, te(t, tin1],

where t;, < tyy1 lfﬂk > 0 and ey <t — 3%{ lfﬂk <0;
(2) fortiy < & <t where k € N and & = 1y, we have

Vi, x(0) = Volt, x(0) = [ 1+ ot = 10) [ Vo(to, x0)
foranyt € [ty, t)) such that t; — ty < —% and

V(t, x(@) = Vi(t, x(®)) < Vie1(te, x (1) + Bi(t — 1) Viem1 (6, x(&x))

for any t € [t, txr1) Such that, for any k €N, 1 —t < — chc"z where
Pk &g
Ci = Vie1 (i1, x(t—1)) and C¢, = Vi1 (&, x (&)
(ii) g(t,u, ox(ug)) = ou(t) + Brug, with o and By being constants for any k, then

(1) for & = ty, we have



12.3 Comparison Method 213

(1+ %)e(x(l—fo) — % V(ty, x0), k=0,
(1 + i)eﬂ(l—tk) _ B

1€ (to, 1]
Vi, x(@)) < ,
< [T5_, [(1 + dy ettt — ﬂ{—;‘]v(to, X0),
keN, tet, tiq1]

provided that, for k =0,1,2, ..., tyy1 > ty when o > 0 and G > 0, or

when o < 0and B > Owitha > —f; > 0, and ty 4 <tk+éln[%(l+

AN 5 AN
&) | whena > 0and g < Owirh % (14 %) > 1;

(2) forti_y < & <ty where k € Nand & = 1,

V(e x@) = Vott,x0) = [ 1+ B (200 1) Vo, ),
(07

fort € [ty, t1) and
Vi, x(1) = Vi (t, x(1)) < e®COV (11, x(10))

n %I:ea(t—lk) _ 1]Vk_1(£k,x(§k)), 1€ [t tr—1)

provided that, for k =0,1,2,..., iy > t; + iln Ty when o« > 0 and
Or > 0,orwhena < Qand By > Owith Vi_y(t, x(t)) + %Vk,l(fk, x(&))
<0,andtys <t + iln Ty when o > 0and B, < Owith Vi (ty, x(t;)) +

BV x (&) <0, where T = Vi1 (&, ©(€0) (Voo (e, x(80)
-1

+ Vi1 (G 2(6) > 1 and

(iii) g(t,u, ox(ug)) = ou(t) + h(t, u, op(ug)) with c e R h € € Ry x RZ; R,),

and h(t, u, v) is globally Lipschitz in u and v, then
ko
V(t,x(1) < eV (xo) + Z/ e (s, V (s, x(5)), 0k (Ve, ,))ds

j=1 71

ti—1

+/ ea(t_s)]’l(s, V(S, x(s)), O‘k(ng))dS.

3

Proof (i)(1)Fort € [, tx11], since ug, = u,,, the solution of the differential equation
u(t) = Brug, is given by

u(t) = [1 + Bilt —tk)]uk.

Particularly, for k = 0 and ¢ € [ty, #;], we have
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u(® = [14 fott = 10) uo
and, fork = 1 and ¢ € [f, t,], we have
u(t) = [1 + Bt — 11)][1 + Bo(ty — tO):IMO«

Thus, by induction, we reach

1 + Bo(t — to) |uo, k=0, te(t]
wm =4 1146t — 1) | [T, [1 + Bt — fj—l)]um

keN, te,tiv1],

To complete the proof, we use comparison result developed in Theorem 12.1.

Proof (1)(2) For any k and ¢ € [t, t;+1), We have
u(t) = uty) + Bt — tu ).
Particularly, for k = 0, we have &, = #; and
u(®) = [14 Bolt = 10) [uo = uo(0),

where the right-hand side is positive if ¢ < ) — 1/05p; so that, for k =1 and ¢ €
(11, 1), we get

u(t) = uo(ty) + G1(t — tuo(§1) =: u(t).
Thus, by induction, we reach

u(t) = ur (@) = wp—1(te) + G5t — tur—1(§), 1t € [k, rv1), k€N
which implies the general form given in (1)(2).

Proof (ii)(1) For t € (#, tx+1], we have the differential equation
(1) = aut) + Beug,
and its solution is given by
u(e) = [0 + A (e = 1) |, (12.5)
«

from which we obtain
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(14 Dyent=or — iy, k=0, 1€ ,n]
u(t) = A+ %k)ea(t—tk) _ % Hl;zl [(1 + @T—l)ea(t/—tj,,) _ %]uo’

keN, 1€, il

where « and 3;, are defined in (ii). Applying the comparison principle leads us to the
required result. The proof of (ii)(2) can be obtained in a similar way used in (i)(2);
thus, it is left here as an exercise.

Proof (iii) Fork =0,1,2,...and t € [#, tx+1], we have the differential equation
u(t) = au(t) + h(t, u(t), ox(ug))

and its solution is given by
t
u(t) = e Wy, + / U Rh(s, u(s), ox(ug,)) ds.
73
For instance, for t € [fy, 1], we have
t
u(t) = e“""yg + / eI n(s, u(s), oo(ug,)) ds
to
and, att = 14,
1
up = =0y 4 / eI (s, u(s), oo(ug,)) ds.
to
Fort € [#, 1], we have
t
u(t) = @1y, +/ (s, u(s), o1 (ug,)) ds
14

n
= ot=1) [ea(tl_m)uo + / U= p(s, u(s), oo(ug,)) ds}
0]

t
n / ea(t*S)h(s, u(s), o1(ug)))ds
A

n t
=ea’(’—f0>uo+f ea(t_s)h(s,u(s),ao(ugo))ds—i—/ " n(s, u(s), oy (ug,)) ds.
to 131

For t € [1,, t3], we have
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f 5]
u(t) = " ug + f e h(s, u(s), o0 (ugy)) ds + / e h(s, u(s), o1 (ug)) ds
to n

t
+/ ea(t_s)h(s,u(s),az(u&))ds.
n

By induction for ¢ € [f;, tx+1]
ko
u(r) = ey, + Z/ e (s, u(s), oj1(ug,_,))ds
=17t

t
+ / en(t—s)h(s, u(s), O'k(ufk)) ds

173

and for ¢ > 1y, we have
o0 l/
u(t) = ey + Z/ e h(s, u(s), oj_1(ug,_,))ds.
j=11-
Using the comparison result gives
oo 7
Vi, x(1) < eV (1, x0) + ) f (s, V(s, x(5)), 0-1(Ve, ) ds.

j=11

The proof completes the proof.

12.4 Stability Analysis

Having established the comparison results in Theorem 12.1, we prove some stability
notions for the nonlinear EPCA.

Theorem 12.2 In addition to the conditions in Theorem 12.1, assume further that
there exist class— & function a and b such that

b(llxl) = V(z, x) < a(llx|) (12.6)

hold. Then, the stability properties of the trivial solution u = 0 of the auxiliary scalar
system of EPCA in (12.4) imply the corresponding stability properties of the trivial
solution x = 0 of system (12.3).

Proof Letty € R; and € > 0 be given. Suppose that u = 0 is stable. Then, for given
b(e) > 0, there is a §; = §;(fy, €) > 0 such that
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0 <ug <4 implies u(t;ty,ug) < b(e), vVt >ty

where u(t; ty, up) is any solution of (12.4). Choose 6, = §,(¢) suchthata(d,) < b(e).
Define 6 = min{d;, §,}. We claim that the trivial solution x = 0 is stable; that is, if
lxoll < 6, then ||x(¢)|| < €, for t > ty, where x(t) = x(t; to, Xo) is any solution of
(12.3). If our claim were not true, then there would existat* > tp and t; < 1* < f44;
for which ||xg|| < ¢ and

lx@)ll <e for <t =<t (12.7)

x| =e  for f <t <ty

From (12.7), we have ||x(tx)|| < . Hence, we can find a 7 such that f;, <7 < t*
and at which

e < llx@I.

Let up = a(||xol]) < 01, and define m(t) = V (¢, x(¢)) for ty < t <7. Then, by
Theorem 12.1, we have

V(t,x() <9t to, a(lxoll), to <t <7

where J(¢; ty, a(||xo]|)) is the maximal solution of auxiliary scalar system (12.4).
Then, we obtain with the aid of the left inequality in (12.6)

be) < b(lx@I) < V(7 x{@)) < I, 1o, allxol)) < b(e)

which is a contradiction. This shows x = 0 is stable. If, moreover, § is independent
of g, then x = 0 is uniformly stable.

To prove asymptotic stability of x = 0, it suffices to show attractivity of this
solution. Suppose that u = 0 is asymptotically stable. Then, it implies that x = 0 is
stable; that is, for each £ > 0, there is a § = §(¢y, €) such that

lxoll <6  implies |lx()]| <&, Vt=>t.

Since u = 0 is attractive, given b(¢) > 0 and #y € R, there is a 5 = d5(t9) > 0
and T = T (ty, €) > 0 such that

0<up=<d; implies u(t,ty,up) <b(e), Ve=>ty+T.

Choose a § such that a(g) < 4. Define p = min{d;, g}, and let ||xo|| < p. Then,
as we did in proving the stability of x = 0, we can get

b(llx(@®)) = V(z, x(1)) = 9z, 1o, a(llxolD)) < b(e).
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This implies that ||x(¢)|| < € for all ¢+ > #y + T; i.e., x = 0 is attractive. Hence,
x = 0 is asymptotically stable. If T is independent of 7y, then x = 0 is uniformly
asymptotically stable. This completes the proof.

Corollary 12.2 In Theorem 12.2, let g(t, u(t), ox(ug,)) = Brug, with By being a
constant for all k.

(i) Inthe case & = 1,

(1) if Br > O for any k and the infinite series
o
Zﬁj—l(fj —tj—1) (12.8a)
j=1

converges, then x = 0 is uniformly stable;
(2) while if B, < 0 for any k and in addition to assumption in (i)(1), for any j,
the following inequality holds

1
O<l‘j—lj,1 <—ﬁ, (12.8b)
j—

then x = 0 is uniformly asymptotically stable.

(ii) In the case B <0 and ty—) < & <t forany k =0,1,2,... with § = ty, if
uy(t) < L for some positive constant L, where uy (t) is defined in Corollary 12.1
foranykandt € [ty, tyy1), thenu = Qis uniformly stable; if, in addition, u; (t) <
Ly for any k and t € [t, ty11) and Z/io L; < oo, then the trivial solution
u = 0 and, hence, x = 0 is uniformly asymptotically stable. Particularly, one
may define L = sup{Ly | k =0,1,2,...}.

Proof (1)(1) The solution of the auxiliary scalar EPCA
I:t(t):ﬂku&, (S [tk,tk+1], k=0,1,2,...
u(to) = uop

is given by

k

u(t) = (1 + Bt — fk)) H [1 + 8-t — fjﬂ)]uo-

Jj=1

By (12.8a), the product []}Z, [1 + Bj-1(t; — tjfl)jl converges. So that, defining
M = H(,)Ozl [1 + 81t — l‘jq)] < oo yields

u(t, ty, ug) = Mug < Mo, for some ¢ > O such that ug < o,
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meaning that the trivial solution # = 0 is uniformly stable which implies, by The-
orem 12.2, the uniform stability of the trivial solution x = 0. In particular, for

k=0,1,2,..., one may choose that 3; = 2k , teyr — b < 6 for some 6 > 0.

Proof (1)(2) The assumption (12.8b) is equivalent to 0 < 1 + 3;_;(¢; —t;—1) < 1.
So that, if we choose 1 + 3;_1(t; —tj—1) = é then M approaches zero; this proves
the uniform asymptotic stability of # = 0 and x = 0.

Proof (ii) The proof is straightforward; thus, it is left here as an exercise.

Remark 12.2 1t is worth noting that, for any £ and ¢ € [#, t;+), the assumption
0 < ug(t) < Ly is equivalent to

L, —Cy —Cy
_— < s
Bk Ce, BxCe,

where Cy and C¢, are defined in Corollary 12.1.

Corollary 12.3 In Theorem 12.2, let g(t, u(t), ox(ug,)) = au(t) + Brug,, where
a >0, B, <0and & =t for k € N. Then, the trivial solution x = 0 is uniformly
stable if infinite series

i[ Lbyentutiy ﬁf*l] (12.9)

(67

j=

converges. Furthermore, if, in addition, the terms in corresponding infinite product
are all less than unity, then x = 0 is uniformly asymptotically stable.

Proof Since the infinite series in (12.9) converges, so does the infinite product

ﬁ [(1 + %)e(“’f—’fﬂ - E]

e}
j=1

So that, let

el e - )

j=

Then, we have
u(t) < Mo,

for some positive o for which ug < o; that is, u = 0 is uniform stability. Employing
our comparison result, the uniform stability of x = 0 will be a subsequence of this
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stability property. Finally, by our assumption, if, for instance, every term in the infinite
product is less than or equal 1/e, then

. Bi-1 alti—tj_i Bi-1
u(t):jli[l[(l—i—jT)e ( )_JT]MO_) 0.

That is, # = 0 and, hence, x = 0 is uniformly asymptotically stable.

Remark 12.3

(i) The interesting finding of Corollary 12.3 is that the system has unstable ordi-
nary part which is stabilized by negative piecewise constants evaluated at an
individual point in each subinterval.

(i1) Assuming that the product terms equal or less than some positive constant c less
than unity results in, for & = #,

1 ~1
tk+1—tk>—1n[(c+@)(l+@) ],
@ @ «
N ,
where(c—i—%)(l—i—%) >1solongas(1+%)<0andc<1.

Corollary 12.4 In Theorem 12.2, let g(t, u(t), oy (ug,)) = —w(u) + Brug, withw €
K, Br = 0 and & = t for all k. Then, x = 0 is uniformly asymptotically stable
provided that the series Zj’ozl Bj(tj —tj_1) converges.

Proof Since DTV (x, Vg,) < —w(V (x)) + [k Vg, implies
DYV (x, Vg) < B Ve,
then it follows from Corollary 12.3 that u = 0 of the auxiliary scalar EPCA

() = —wux)) + Brug, (12.10a)
u(ty) = ug (12.10b)

is uniformly stable. Thus, for a fixed p > 0, there is a 0 = o (p) > 0 such that

0 <up <o implies u(t;ty,ug) <p, t>*t (12.11)
for any solution of (12.10). Let € € (0, p) be given and § = d(¢). In the rest of the
proof, we need to show that u = 0 is attractive; it suffices to show that there exists a

T = T (¢) > 0 such that

u(t*; to, ug) < 0 = 0d(¢e), (12.12)
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for any t* € [y, fo + T] and any solution of u(z; ty, up) of (12.10) that satisfies
(12.11).
Since Z;‘;l Bj(tj — tj_1) converges, define

0
M = Zﬂj(l‘j —tj_]) < 00.
j=1

Choose Ty = T;(¢) > 0 such that

T, > 2pM[w(§)]7 L. (12.13)
Define
. 20+ 1)
T_max[Tl,W}. (12.14)

We claim that (12.12) is true for 7" given in (12.14). If this were not true, suppose,
for contradiction, that there would be a solution u(t) = u(t; ty, ug) of (12.10) with
Uy < o such that

u(t) > 6, t € [ty, to + T1. (12.15)

Integrating (12.10) from #; to ty + T yields

to+T
O0<u(ty+T) =u0—/ w(u(s))ds
o
k

+ Y Biorue, (t; — tjo1) + Brug (to + T — 1)
j=1
<o —Tw() +pM
B Tw(9) B Tw(d)
2 2
Tw(9)
o—
2

=0 + pM

< —1<0,

which is a contradiction. Thus, (12.12) must be true; that is,
u(t™; 1o, ug) < 6,
for any solution of u(¢; g, ug) of (12.10) with uy < o. Hence, u = 0 is uniformly

attractive and consequently uniformly asymptotically stable which in turn implies
that x = 0 is uniformly asymptotically stable.
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Corollary 12.5 Let g(t, u(t), ox(ug)) = au(t) + h(t, u(t), ox(ug,)) with a < 0.
Then, x = 0 is uniformly asymptotically stable provided that the sum

0 g
Z/ eI (s, u(s), oj-1(ue,_))ds
j=1 ti—1

converges. In particular, h(t, u(t), ox(ug,)) = 0 when k (or t) — oo.

Proof The proof is straightforward since, from the solution
o0 I/
u(t) = ey, + Z/ e R(s, u(s), oji(ug, ) ds,
j=1 7t

we get lim,_, o u(t) = 0.

12.5 Numerical Examples

To illustrate these results, we take some examples.

Example 12.1 Consider the nonlinear EPCA

. 2
{x =2x +20ce" yg, tElf i, k=0,1,2,... (12.16)

Y=y B(l+x%)xg,

where 5, = —3.5forall k. Clearly, the ordinary partis unstable. Let V(x, y) = x + y
for x > 0 and y > 0. Then, one may get

V<aV+6Ve,
where oo = 2. The solution of the differential inequality is given in Corollary 12.1(ii)
and, by Corollary 12.3, the trivial solution x = 0 of (12.16) is uniformly asymptot-

ically stable. If & = #;, then ;4 € (0.15, 0.34), where ¢ = 0.6. Figure 12.1 shows
the simulation result in the case & = # for all k.

Example 12.2 Consider the nonlinear EPCA

276 (12.17)

{)'c:y—x[1+9(x2+y2)], t et igr], k=0,1,2,...
y=—x—y[1+0&>+ yH]+ F,

where 0 < § < 1. Let V(x, y) = %(x2 + y?). Then
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Fig. 12.1 Simulation result of Example 12.1
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Fig. 12.2 Simulation result of Example 12.2

V(x,y)

IA

—0V2(x, y) + BV (xg, ye)

xy — X[+ 0% + y)] —xy — Y [L 4+ 0(x* + y)] +

1
—0% 4y =067+ )+ o

2yye
2k

1
% 437 + 5p (g +55)
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Fig. 12.3 Simulation result of Example 12.3

Let w(u) = Ou?. Then, by Corollary 12.4, the trivial solution of (12.17) is uniformly
asymptotically stable. Simulation result is shown in Fig. 12.2, where § = 0.01, & =
frand tppg —f = 1forallk =0,1,2,....

Example 12.3 Consider the nonlinear EPCA

X =—x,t €k, tre1]l, k=0,1,2,...
{ . xq onye (12.18)
y=-2y+ e e -

Let V(x, y) = 3(x* + y?). Then, one can get

Xg Sinyg 5

Vix,y) = —x*—2y?
(x,y) x y+1+x2

IA

1 _
—(@ )+ 0 e

2V(x,y) + (2V2(x, )+ V(xe,. ygk))e—’
=aV +ht,V, V),
where o = —2 and A(t, V, V) = QV2+ Ve )e™". By Corollary 12.5, the trivial

solution of (12.18) is uniformly asymptotically stable. Figure 12.3 shows the asymp-
totic stability of the trivial solution of (12.18).
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12.6 Application

Consider the logistic population growth model undergoing density-dependence har-
vesting whose dynamics are given by

N@) =rN@)(1 —aN@) — bN(y(®))), t>0, (12.19)

The system, here, is viewed as a switched system in which (¢) represents the
switching signal for all ¢ € [f_;, #;) with k € N and takes values in {§}72, with
& = 1y, for all k. Clearly, the system has two equilibria, Ny = 0 and N, = ﬁ > 0.
To analyze the stability properties of N,, we use comparison method of this chapter.

For convenience, we transfer the desired equilibrium solution to the origin by

applying the change of variable x = b(N — N,) to obtain

x(@) = —r(x(t) + )(ozx(t) + x(§k)),

1
I+«
where a > 1. Define V (x) = x as the Lyapunov function candidate. Then, one may
get

V(x, x(&)) < —AV(x) — puV (x(&)),

where A = {7 and o = 1. Consider the comparison system

I4+a o’

u(t) = —u(t) — pu(&), t €t ), keN,
u(ty) = ug > 0.

One can easily show that

u(t) = [(1 - %L)ei/\(titk) - ILXL] [(1 — g)e*’\(ﬁf*f;‘—l) _ ’L_L]MO_

j=1

As illustrated in Corollary 12.3, assume that infinite series
= [ [

> [a- e -5

j=1

converges. Furthermore, if, in addition, the terms in corresponding infinite product
are all less than unity, say ¢ < 1, then x = 0 is uniformly asymptotically stable. This
implies that, for & = #,

1 cA+
ot 1> = (2,
k+1 — Ik > )\H N—u
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Fig. 12.4 Simulation result of the logistic growth model

which represent the dwell times, where LAATT < lsolongas A > pandc < 1. Forthe
simulation purposes, we take r = 1, @ = 2 and b = 1 to get from the last inequality
t — ty—1 > 0.6 for any k € N. Figure 12.4 shows the asymptotic stability of the pos-

itive equilibrium point N, = —— = 0.33, where ;1 —f, = 1 forallk =0, 1,....

12.7 Notes and Comments

In this chapter, systems of nonlinear EPCA have been viewed as a switched system.
We also presented a comparison method (Theorem 12.1) for the systems which has
been later used to prove some stability properties by the classical Lyapunov method.
We have also shown that piecewise constant arguments do contribute to stabilize
unstable systems of ordinary differential equations (Corollary 12.3). Finally, the
stability result has been applied to address the asymptotic stability of a population
growth model. The material of this chapter is taken from [7].

Initially, the theory of EPCA was developed in [1]. Later, it was well discussed
in the survey paper [2] and book [3]. A general type of EPCA (EPCAG) in which
the piecewise constant real function -y takes values over discrete subintervals instead
of at the most left endpoint of each subinterval, has appeared in some works [8, 9].
In those works, the solutions of linear and quasi-linear EPCAG are determined by a
unique initial datum at an initial moment #y, rather than by a countable set of initial
data defining at discrete moments n for nonnegative integers n or, as in the case of
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functional differential equations, by an initial function defining on some interval from
the past history. In either case, EPCA or EPCAG, functional differential equations
reduce to ordinary ones. Consequently, one can use the theory of ordinary differential

equations.
The logistic population growth model had been studied in [10], where y(¢) = [¢]
forallt € [n,n + 1) withn = 0, 1, 2, .. .. It was shown that the positive equilibrium

solution is globally asymptotically stable if « = a/b > 1 and, whenever N (n) > 0,
N()>Oforallt e [n,n+1),n =0,1,2,.... Later, differential equation (12.19)
in which v(¢) = [¢] for all # > 0 was considered in [11], where stability results were
established by using Lyapunov—Razumikhin method.
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Chapter 13 )
Existence, Uniqueness and Stability oo
of Stochastic EPCA

In this chapter, we consider systems of stochastic EPCA (or SEPCA). We start
with the problem of existence and uniqueness of solutions. Then, we address the
comparison method and the stability notion of the solution.

Consider the nonlinear systems with SEPCA of the form

dx(t) = f(t,x(), Aoy (x (v (@)t + g(t, x (1), Agr) (x (v()))d W (2), (13.1a)
x(ty) = xo, (13.1b)

where x € R” is the system state and, for all # > 7y with o € R, o(¢) and (¢) are
piecewise constant functions taking values in the sets K = {k}?2, and E = {&:}72,,
respectively, where 7, < & < t,_; forany k =0, 1, 2, .. .. As stated in the previous
chapter, these functions represent the switching signals of the system switching
between the piecewise constant argument ), and the values of its state argument x.
Accordingly, one may define system (13.1) as follows: for all ¢ € [#, tx+1),

dx(t) = f(t, x(t), M (x(§)))dt + g(t, x (1), M (x(§:))dW (), (13.2a)
x(fy) = xgo (13.2b)

or, equivalently,

x(1) = xo +/ J s, x(8), Ae(x(&)))ds +/ g(s, x(s), Ae(x (&)W (s).
(13.3)

The following definitions will be needed in this chapter.

Definition 13.1 For any «, 3 € R, an R"—valued stochastic process x : (a, §) —
R is said to be a solution of (13.1) if the following hold:
© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018 229
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(1) x(¢) is continuous and .%, —adapted for all ¢ € («, 3);
(i) [t x(1), M (x(&))) € Zua(Q, L' (v, B)) and
g(t, x(1), M (x(&))) € Zua(22, L* (o, §)); and
(iii) the stochastic integral equation (13.3) holds w.p.1.

Definition 13.2 For all ¢ € [a, b], an R"—valued .%#,—adapted process f(z) with
fab I fOPdt < co(as.)(.e., f € Zu(2; LP[a, b]))issaidtobein.Z7? ([a, b]; R")
ifE[ [7 11 f(0)|17d1] < oo.

Definition 13.3 An R"—valued .#; —adapted integrable process X (¢) is said to be a
martingale with respect to the filtration {Z,};>¢ if

E[X()|.%] = X(s), (as.),forall0<s <t < 00,

where E[ X (¢)|.%,] stands for the conditional expectation of process X (¢) with respect
to the filtration .%,.

Doob’s martingale inequality. For all > 0, let X (¢) be an R"-valued martingale
and [a, b] be a bounded interval of R. If p > 1 and X (¢) € L?(2; R"), then

E[as:tlgb POIUE (ﬁ)pmuxw)n"].

Borel-Cantelli’s lemma. If {A;}{°, C .# and ) ;- | P(A;) < oo, then

P(lim sup Ag) = 0.

k— o0

13.1 Existence and Uniqueness of Solutions

In this section, we address the problem of existence of a unique solution of SEPCA
givenin (13.1) or (13.2). As will be seen, the technique followed here is to generate a
convergent Cauchy sequence of solutions. For this purpose, we assume that the sys-
tem vector fields are bounded by a linear growth estimate and satisfy the Lipschitz
condition. The first condition is to avoid a finite escape time that a solution may have
when time evolves. The second condition is made to be used in proving the conver-
gence of the generated sequence of the solution and to guarantee the uniqueness of
the solution.
Before we prove this theorem, the following lemma is needed.

Lemma 13.1 For any k=0, 1,2, ..., assume that the linear growth condition
holds. Then, solution x cannot grow faster than the following exponential estimate

E( sup ||x(t)||2> < _|’_Ck)e3Ll(1k+l—1k+4)(l‘k+l—l/‘)’

e <t=<ti+
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where ¢, = 3E[|lxol1*] 4 3L (et — tx + 4) (k1 — B[ M (xg) 2] < oc. Inother
words, x € M*([tx, trr1); R") with O < try — t, < 0 < oo for any k.

Proof Choose k arbitrarily and, for any [/ > 1, define a sequence of stopping times
71 = tipr ANE(E € [t i) | X (O] = 1,

where lim;_, o 7; = #41 (a.s.). For simplicity of notation, we set x;(¢) = x(t A 7;)
for all ¢ € [#, ty+1). Then, from system (13.1), we get

xi(t) = x¢ +/ F G, x08), Mg ) gy mds +/ g(s, x1(s), M (xe ) L, ;i d W (),

173

where 1, is the indicator function of a set A. In virtue of (i) and using Doob’s
martingale inequality to the stochastic It6 integral, one may get

E ( sup ||xl(t)||2>
n<t<t

ssmmwﬁ+3haﬂr4w/(Lﬂmwmwﬁ+Em&u@WDm
+1ﬂ4/(%HHMMNﬁ+Em&&wWDM

53waﬁ+u4%4—&+®/(Lummuwmm
+ 3Ly (ter1 — t + Dt — OE NG 171,

which implies that

1+E<wpwmwﬁ

R =<t<t

t
<1+ +3L1 (1 — 1 +4)/ (1 +E[llx(s)[*])ds
Tk

t
<1+ + 3L (ke —tk+4)/ (1+E[ sup [lx,(s)[*])ds.
Tk

=t=m

By the Gronwall inequality, we get

E( sup ||X1(t)||2> < (1 + ) ten =t H ki —10).
1

k=t=t

The desired result is implied by letting [ — oo. This completes the proof.
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Theorem 13.1 Assume the following assumptions hold:

(i) the vector fields functions f and g satisfy the linear growth condition; i.e., there
exists a positive Ly such that

£t x, IF+ g, x, IF < L+ x>+ y1?),  (a.s.),
forall (t,x,y) € [t, txr1) X R x R";

(ii) f and g satisfy a global Lipschitz condition; i.e., there exists a positive constant
L, such that

£t x1, y1 — £t x2, ) I*+ g, x1, y1) — g(t, X2, y))|I*
< Lollxi — x2l> + lly1 — »20%, (a.s.),

forall (t,x,y) € [tx, try1) X R" x R".
Then, system (13.1) or (13.2) has a unique solution, x(t), defined for all t > t,.

Proof The proof is given here for all t € [#y, t;) since the rest will be similar. Define
the sequence x, with the initial state, xg, by the following iteration

1 t
500 = X0+ [ £ 5190 Mot s+ [ 9055160 M1, DAW )
10 0]
(13.4)

where x;, = x; (&o) = x; (o). By Lemma 13.1, x¢ € M*([tr, tegr); R, and by the
mathematical induction, we can see that x,,(t) € .#>([t, ty+1); R") as follows:

Elllxn ()21 < C1 + 3L, + 1) / Ellx_1 (5)]ds,

where C; = 3E[||xol?] 4+ 3Lt (1 + ;) (1 + ]E[||)\k(xn—150)||2]) < 00, where we
used the fact r; — #p < ;. This also implies that, for an arbitrary j,

t
max Efllx,()I"] < C1 +3L1 ¢t + 1) f max B[, 1 (s)]*1ds
n<j o 1Sn<J
t
< Ci+3Li(t+1) / <E[||X0||2] + max E[||xn<s)||2]> ds
0 <n<j
t
= Co+ 3L +n) [ max Bl ) Plds.
1 1=n<j

where C, = C; + 3Lt (1 + tl)]E[||x0||2]. By the Gronwall inequality

max E[||x, (1)]*] < Cpe*ln(+m,
1<n<j
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Since j is arbitrary, we get
E[[lx, ()] < ot (13.5)

ie., forall n, x, € A*([t, tip1); R™); that is, x,,(¢) is bounded over [fo, ;).
Now, we want to prove that this sequence is convergent. Note that

llx1 (1) — x0(0)1* = Ilx1 () — xo1?
2

t 2 t
<2| [ £ x0. Mo s| +2| / 9(s. x0, Me(xo, AW (s)
fo 0 1o 0

which implies, after taking the mathematical expectation,

Ef|lx1 (£) — xo(t)[1%]
< 2Ly [(t; — o) (1 + (t1 — o)1 (1 + Elllxo 1?1 + E[ I\ (xg,)[171) = C,

ie., E[llxi (1) — xo()||I*] < C, where
C =2L; [(t; — to)(1 + (t1 — t0))] (1 + E[llxo(®)1I*] + E[[| A (x,) I*1) -
We will show by mathematical induction that, for any n > 0 and ¢ € [1, t1),

CIM(t — )"

Elllxp41 (1) — X, < — (13.6)

with M = 2L,(t; — fp + 1). Obviously, the relation is true for n = 0, 1. Assume that
it is also true for some n > 0. As for the case of n + 1, we have

IXn42(1) = Xn41(0)12

' 2
< ZH /to (f(S,xn-;-l(S), )\k(xn+150)) — £ (s, xp(s), )‘k(x"fo)))ds H

' 2
+ 2”/; (g(s,xn+1(S),Ak(xn+150))—g(s,xn(s),)\k(xnfo))>dw(s)” )
0

Taking the mathematical expectation and using the Lipschitz condition give

Bll2) ~ X0 O17] = 2220 =10+ DE [ (I3016) = 5,1

fo

G 1) = Mg )12 ds

— M / Efl| o1 (s) — x0(5)|21ds

t n n+1
- M/ C[M(s — ty)] Js — CIM(t —tp)]""
fo n! (n+ 1!
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because \; (xn+1§0) — M (x,,go) = 0 for any n > 0; for instance, for n = 0, we have
k() — Aoy ) = A(x1(f0)) — Ae(x0(0)) =0 (as.).

This is because x((¢) = x¢ for all #, and by the solution sequence (13.4), we have

x1(ty) = x0(ty) = x¢. Thus, the relation is true for n + 1.
To prove that x, is a Cauchy sequence, replace n by n — 1 and consider

sup [[x41 (1) — x, ()]

! 2
<2 sup / L850 (5): MeGing D) = £G52 201 (5), Meinr )]s |
+ 2 SUP /[Q(S Xn (), Ak (Xng, ) — g8, Xn—1(5), Ade(Xn—1g,

which implies, after taking the mathematical expectations and using the Doob’s
martingale inequality

E ( sup [rns (1) — xn<t)||2)

h=t=t

<2Ly(t1 — 1o +4) / E [11xa(5) = 201 ()7 4 1Ak Cong,) — A1) 1?] ds
=2Ly(t — 1o +4) / E [lx,(s) = xu1(s)[1*] ds (13.7)

because )\ (xngo) — M (xn,lfo) = 0 for any n > 1. For instance, for n = 1, we have

Ak(x1g) — Ak(xoy ) = A1 (f0)) — A(xo(f0)) =0 (as.).

This is because xy(f) = xo for all ¢, and by the solution sequence (13.4), we have
x1(ty) = x0(ty) = xo. Therefore, from (13.7), it follows that

) " A4C[M (s — to)]" !
]E(tos;gp“ [[%41(8) — x, (0l ) <4M /, Iy

_4CIM @ — )"

n!

’

from which, we get

1 } < AC[M (1 — to)]”.

n!

IP’{ sup  [[%np1 (1) — x, (1)1

h=<t=<nh 2
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4C[IM (1 —19)]"

p is convergent, by the Borel-Cantelli’s lemma, we

. . 0
Since series Y -,
have

1
sup |1 %ur1(1) = X (D% < 5.
to<t<t 2

It follows that, w.p.1, the partial sums

n—1

X (1) = Xo(1) + ) (xj1 (1) = (1)

j=0

are convergent over [f, t]. Therefore, we conclude that sequence x, is Cauchy; i.e.,
there exists a limit point x such that lim,_, o x,,(f) = x(¢), which implies that, for
allt € [y, 11),

x(t)=xo+/ f(s,X(S),/\k(XgU))der/ g(s, x(s), M(xg,)dW(s).  (13.8)

fo

Similarly, one can show this relation holds for any ¢ € [#, #;+1). We should men-
tion that the inequality in (13.8) is still true for any k because, by defining the general
form of the solution sequence for any ¢ € [#, t;+1), we have

200 = xo(te) + / £ 201 5), My, s

~|—/ g(s, xn—1(8), Mc(Xn—1, AW (5), (13.9)

3

where x;, = x; (&) = x(t); for instance, if n = 2, we obtain

Ak (x2)) = Ae(xie ) = Ao (8)) — A (1 (8))

= Me(x0(tr)) — M (x0 (1))
=0,

w.p.1. Due to the continuity of solution x, lim,_),k—ﬂ x(t) = x(txs1). Thus, the
constructed solution is continuous and .%,—adapted for all ¢ > fy. Furthermore,
from (13.6), for all ¢t > £y, sequence x,(¢) is Cauchy in L?, which implies that
lim,,_, o X, (t) = x(¢) in L. It follows that, by letting n — oc in (13.5),

E[|lx()[12] < Coe31 0+ forall ¢+ > t,

ie, x € #%(R,;R"). Next, we will show that x satisfies the stochastic integral
equation in (13.3), for all ¢ € [#, #1] and every k, as follows:
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! 2
B[ [ #0050 Mt s = £G5.x06). Axe s

1

0 . )
4 5] [ 9600 Ml DAWE) = 905,56 Ml W )|

1o
/58]
< Lr(txy1 — to + 1)/ E|x,(s) — x(s)||2ds — 0, as n — oo.
fo

Therefore, by lettingn — ooin (13.4), we get the required result. Finally, to prove
the uniqueness, assume that there is another solution, say y(¢). Then,

x(t) = y(@) =/ (f (s, x(5), Melxg)) — f (s, ¥(5), Me(vg)))ds

fo

+/ (f (s, x(5), Me(xg)) — f(5, y(5), Me(ye))dW (s),

fo
which implies that, after applying Holder’s inequality, Doob’s martingale inequality

and Lipschitz condition,

E| sup 1¥() =y 2] = 2Lattis1 +4) / EL sup [lx(u) — y(o)|*1ds.

fh=s=t fh=<u=s

By the Gronwall inequality, we obtain

E[ sup [lx(s) = y()I*] =0.

fo<s<t

Thus, processes x and y are indistinguishable for all . Hence, system (13.1) has
a unique solution x (¢) for all # > #y. This completes the proof.

13.2 Comparison Method

Having established the existence of a unique solution, in this section we deal with the
comparison method and stability properties of the trivial solution of system (13.1).

Theorem 13.2 Assume that the following assumptions hold:

(i) foranyk =0,1,2...,V € E2 ([t trr1) X R"; RY), V is bounded below and
satisfies

LV(t,x,y) S h(t,x,01(y), (as.), t€ [, lir1),

where the function h is concave and nondecreasing in x and oy with oy being a
concave function; and
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(ii) the auxiliary scalar comparison system

u(t) = h(t,u(t), ox(ug)), t€lt, tir1), (13.10)
u(to) = ug
has a maximal solution v(t; ty, ug) for all t > t,.

Then, E[V (ty, x0)] < ugimplies E[V (¢, x)] < v(¢; to, uo) for any solution x of (13.1)
forallt > 1.

Proof Forany k =0,1,2...andall ¢ € [#, tx+1), let x(¢) be the solution of system
(13.1) that is guaranteed by Theorem 13.1. Let 7y, or, for simplicity 7; (for/ > 1), be
the first exit time of the process from the ball

Bi(x) ={x e R" | |Ix]| <1},
ie., 7 =inf{t € [t, trrr) | |Xx @) > 1}.

Define 7;(¢) = min{7, t}. Then, by the It6 formula, we have, for all ¢ € [, 7;(¢)],

7(t)
E[V(r(®), x(11()))] = E[V (&, x ()] + E LV (s, x(s), ok (Vg,))ds

Tk

7(1)
< E[V (#, x(t)] + ]E/ h(s, V(s, x(s)), ox(Vg,))ds,

Ik

where Vg, = V (&, x(&)). Definem(t) = E[V (s, x(s))] forall y <s < 7(¢). Thus,
by the properties of 4 and oy, the last inequality becomes

m(t) < m(t;) + /S h(r,m(r), ox(mg))dr, e <r <s <7(1),

173

where mg, = m(&) = E[V (&, x(&))].
By Theorem 12.1, we obtain

m(t) < v(t; by, mg), t € [t, ()]

and by letting / — oo, we obtain, for all t € [#, try1), m(t) < v (t; t, mg,). Partic-
ularly, for t € [y, t;), we have

m(t) < vo(t; by, me,) = vo(t; to, m(to)) < vo(t; to, ug) =: v(¢; to, Uop),

where 1 (¢; 1y, up) is the maximal solution of the auxiliary comparison system (13.10)
for ¢ € [ty, t1) with m(ty) = E[V (19, x(#9))] < uo, as given initially.
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Fort € [#, 1), we have

m(t) < vi(t; ty,me) = vi(t; t, m(t)) = vi(t; t, vt to, o))
=: v(t; to, Uo),

or
m(t) < v(t;ty, ug), 1t € [to, 12).
In general, one obtains
m(t) = E[V (1, x(D)] = v(t; 1o, u0), ¢ = to,

where v(t; 1y, up) is the maximal solution of the comparison system (13.10) for all
t > ty. This completes the proof.

13.3 Stability Analysis

In the following theorem, we prove some stability properties of the trivial solution
of (13.1).

Theorem 13.3 Assume that the conditions of Theorem 13.2 hold. Suppose also that
there exist two functions b € J¢ and a € Jt, such that

b(lx|®) < V(t,x) <a(lx|®, (as.). (13.11)

Then, the stability properties of the trivial solution u = 0 of system (13.10) imply the
stability properties (in the m.s.) of the trivial solution x = 0 of system (13.1).

Proof Assume that the trivial solution u = 0 of comparison system (13.10) is stable.
Then, for every ¢ > 0, there exists § = (¢, €) > 0 for which

v(t, ty, ug) < b(e), whenever uyg <9, V>t >0, (13.12)
where v(t, ty, up) is the maximal solution of comparison system (13.10).

To investigate the stability at #y, we choose § = d(fy, €) < &; (for the same ¢) with
a(6y) < b(e) and let ug = a(E[||xo]I?]) < 6;. Now, let E[||xo]|?] < §. Then, from
(13.11), we obtain

b(E[|x (1) [I°]) < EIV (10, X0)1 < a(E[llx0[*]) < a(6) < b(e),

i.e., E[||xo]|?] < €, whenever E[||xo[|*] < 6.
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Under the given assumptions, we claim that the trivial solution x = 0 of SEPCA
(13.1) is stable in the m.s. for all t > fy; i.e., for the assigned ¢ and 9, the following
statement

Elllxol*l <6 implies E[lx®)|*] <&, Vi>1

holds. If our claim were not true, there would be a t* > 1, > t,, specifically 7, <
t* < tiy1, such that E[||xo]?] < & and

E[llx)I*1 <&, f <t <t (13.13)
E[llx(*)*] = e. (13.14)

Recall that, by Theorem 13.2, we have shown E[V (¢, x(¢))] < v(t; ty, up) for all
t > ty. This, together with (13.12), implies

E[V (%, x(t*)] < v(t™; 1o, uo) = v(t*; to, a(E[ || x0[I”1)) < b(e).
We also have, by (13.11) and (13.14),
b(e) = bE[|Ix(t)|I]) < E[V(*, x ()]

Combining the last two inequality results in a contradiction. Therefore, our claim
must be true; i.e., the trivial solution x = 0 is stable in the m.s. for all r > #;. As for
the uniformity property, it suffices to choose § independently of 7.

To prove the m.s. asymptotic stability property of x = 0, we need only to establish
attractivity of this solution. Assume that u = 0 is asymptotic stable, which implies
the existence of 6, = §(tp) and T = T (ty, €) > 0, for any given &, such that

ug <9 implies  wv(t, ty, ug) < b(e), Vt>ty+T.

Following the same argument of the first part, we choose uy = a (E[||xo 17D < 6,
and 93 < &, such that E[||xo]|?] < 5. Then,

BELIx®*]) < E[V(t, x(1))] < v(t, to, aE[l|x0]1*])) < b(e),

i.e., E[||x(#)||?] < € for all t > ty + T. We have proved that x = 0 is asymptotic
stability in the m.s. Furthermore, choosing 7 = T (¢) leads to the uniformity property.
In the following, we illustrate our theoretical result through a numerical example with
simulation.
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1.4 T T T T T

Ellx®)IN
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Fig. 13.1 First moment asymptotic stability of (x y)T = (0 0)

Example 13.1 Consider the following SEPCA

dx = ( —xA+ 0+ ) + ﬂkx&])dt +axdWy,
dy = bydt — x*d W, + ¢, ye.e ™ dW,. (13.15)

Taking V(x,y) = %(x2 + y?) as a Lyapunov function candidate implies

ﬁk ﬁk 2 ’Yk 2

2) 2+by2+_x§k+_ Ve,

LV < —(\
A+ = > >

6*
< 7(x2 + yz) + zﬁk(xfk +52)
=0"V(x,y) + GV,

where 6* = 2 min{—(\ + + 2) b} < 0Oand (; = max{ﬁk, fyk > (. Choose \ =
2,0=1,a=1,b=-1, ﬂk =yw=1/2anda=b=V = 2||(x, y)|1?. Clearly,
the trivial solution of the comparison system is asymptotically stable. This conclusion
can be checked with Corollary 12.5, where w(s) =s > 0, 5y = (y and t;y — ty_; =

1 for any k. We deduce that (x, y)7 = (0, 0) is asymptotically stable in the m.s.
Figures 13.1 and 13.2 show the simulation results of the mean and m.s. of the solution.
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Fig. 13.2 Mean square asymptotic stability of (x y)T = (0 0)

13.4 Notes and Comments

In this chapter, we have considered systems with SEPCA, which have been treated
as switched systems. The material of this chapter is adapted from [1]. Particularly,
we have addressed the problems of existence and uniqueness of solutions. Then, we
demonstrated some stability properties of the system. As for the existence result,
the vector fields have been assumed to be bounded above by some linear growth
estimation. Therefore, one can extend this result by considering a nonlinear growth
bound. The second part of this chapter has dealt with developing stability results,
where we have used the comparison method and Lyapunov function criteria. We
should mention that Definitions 13.2 and 13.2, and Borel-Cantelli’s lemma and
Doob’s martingale inequality are taken from [2].
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