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Preface

Hybrid systems have become increasingly popular during the recent decades in
various fields of the scientific research and are expected to carry on the potential for
further explorations. A hybrid system exhibits a combination or coexistence of
continuous and discrete events and has behaviors determined by the interaction
between the continuous and discrete components, and/or between them with other
environmental factors. From practical perspective, it has been observed that if the
interaction, within a single system, is strong, then the above hybridness has to be
unified in one model. This unification has paved the path to the study of hybrid
systems leading to fascinating outcomes for the following reasons: (i) The hybrid
system paradigm has been recognized as a proper tool to represent a wide range of
diversified applications in nature or in the human-made world. Among those are
systems modeling population growth model, infectious disease models, medical
drugs, chemical reaction processes, heating/cooling systems, several control sys-
tems, power systems, automated highway systems, air traffic control systems, neural
networks, computer synchronization, secure communication networks, just to name
a few. (ii) A large class of systems are intrinsically ruled by multimodal dynamics,
such as those presented in many control systems, multibody mechanical systems,
thermostats in heating/cooling systems, prey–predator systems with finite, different
prey sources and epidemic disease models with periodic vaccinations or treatments.
(iii) Many systems are asymptotically stabilized by multiple control laws monitored
by a high-level supervisory agent, and others are stabilized or state estimated by
discrete events. This is the case when the available information is only measured at
discrete moments, rather than continuous time period, as in the case of vaccination
or drugs administrated by way of injection. On the other hand, systems may
undergo impulsive perturbing forces that must be taken into account in the mod-
eling process. (iv) Nowadays, the technology has produced much hierarchically
sophisticated machinery that cannot be analyzed as a whole system. Hybrid system
representations can also be considered here to minimize the complexity of these
systems. Namely, they provide sequential mathematical descriptions of the system
that are often manageable for analysis. For these listed reasons, the heterogenous
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composition in the hybrid systems has become a modeling priority which, as a
result, creates an important, fruitful research field applicable to many practical
areas.

Mathematically, the typical systematic configuration of hybrid systems can be
represented by: (i) a mix of differential equations representing the continuous
evolution of a process and a set of difference equations representing the impulsive
actions. (ii) Another type of hybrid systems consists of a finite sequence of
dynamical subsystems (or modes) combined by a control-based discrete switching
signal. The role of the later signal is to organize the switches among the system
modes to achieve a coherent performance of the system. The first class of hybrid
systems are often called impulsive systems, while the second ones are called
switched systems. (iii) A third class of hybrid systems is referred to as impulsive
switched systems. These systems arise when the impulsive actions occur as a result
of mode switchings. Moreover, hybrid systems become even more complex if time
delay and random noise are taken into consideration. The resulting systems are then
called stochastic hybrid system with time delay.

This monograph aims to give a systematic account on recent developments about
deterministic, stochastic hybrid systems with/without time delay. It includes many
linear, nonlinear systems, large-scale systems, singularly perturbed systems, sys-
tems of differential equations with piecewise constant arguments (EPCA), and
systems subject to input disturbance. It is intended to cover the most interesting
topics, provide a systematic analysis of system theory and control, and enlighten
researchers about further investigations into hybrid systems. The contents of this
monograph are largely based on some recent research developments conducted by
the authors. Its chapters shed the light on several fundamental, important system
properties, such as stability, stabilization, input-to-state stability/stabilization, state
estimation, reliable controllers, H1-control and variable structure control, also
known as a sliding mode control (SMC). The analysis of these properties utilizes a
variety of techniques including comparison principle, Lyapunov method, or
Lyapunov–Razumikhin technique if time delay is present. Moreover, it has many
illustrative examples with numerical simulations.

We are thankful to Dr. T. Sugati and Ms. H. Kiyak for proofreading the book.
Our special thanks go to Ms. Liping Wang at Higher Education Press and Springer
for her cooperation. The first author wishes to express his profound gratitude to the
staff (academic and nonacademic) of the Department of Applied Mathematics for
their support during his stay at the University of Waterloo. The second author was
supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC) which is gratefully acknowledged.

Waterloo, Canada Mohamad S. Alwan
Xinzhi Liu
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Chapter 1
Motivating Examples

To introduce the readers to the notion of hybrid systems, which include switched,
impulsive and impulsive-switched systems, we present in this chapter some real and
human-made phenomena that are ideally modeled by such systems.

1.1 Switched Systems

By a switched system, we mean a dynamical system that consists of multidynamical
subsystems (often called modes) and a monitoring device called a switching signal
also known as switching rule, switching logic or switching law. The main role of this
signal is to orchestrate the switching among system modes to accomplish a desired
feature of the system.

1.1.1 Supervisory Switching Control

Many systems are, for instance, asymptotically stabilized or controlled by several
feedback control signals (or controllers), rather than one signal, and each of these
controllers is set to accomplish a certain desire. The logic-based supervisory control,
here, organizes the switching among them to achieve the overall system stability or
controllability. Figure1.1 illustrates the supervisory controller [1].
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2 1 Motivating Examples

Fig. 1.1 Supervisor
controller

1.1.2 Switched Server System

Another class of the discretely controlled continuous system is a switchedflowsystem.
Consider that the system consists of N buffers and one server, where the content of
the buffer is referred to as work. One may think of the buffer as a tank and the
work as a fluid. In this system, the server delivers work from any selected buffer
at unit rate and the work is removed from buffer i (i = 1, 2, . . . , N ) at a fixed rate
of ri > 0. If the system is assumed to be closed, then

∑N
i=1 ri = 1. The switching

law for the server can be designed as follows: when the server removes work from
a selected buffer for a time period, it instantaneously switches to another buffer that
is determined by the switching rule, σ : RN → {1, 2, . . . , N }. Then, the switching
process of the server repeats itself forming a cycle [2].

1.1.3 Singular System with Markov Switching

This type of systems includes an RLC electrical circuit in which the position of the
switch follows a continuous-time Markov process, {r(t), t ≥ 0}, which takes values
in the index set having finite states, S = {1, 2, . . . , N } with following stationary
transition probabilities:

P[r(t + h) = j |r(t) = i] =
{

λi j h + o(h), i �= j,

1 + λi i h + o(h), otherwise,

where h > 0, limh→0
o(h)
h and λi j ≥ 0 is the transition probability from mode i to

the mode j at time t and λi i = ∑N
j=1, j �=i λi j .

For instance, the mathematical model of the circuit shown in Fig. 1.2 with N = 3
is given by the following stochastic switched system [3]:

Eẋ(t) = A(r(t))x(t) + Bu(t)
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Fig. 1.2 Electrical
circuit [3]

where

E =

⎡

⎢
⎢
⎣

L 0 0 0
L 1 −1 0
0 −1 1 0
L 0 0 0

⎤

⎥
⎥
⎦ , A(r(t)) =

⎡

⎢
⎢
⎣

0 1 1 0
−a(r(t)) 1 1 −1

a(r(t)) − R 0 0 1
−R 1 0 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

−1
−1
0
0

⎤

⎥
⎥
⎦

with a(r(t)) =

⎧
⎪⎨

⎪⎩

1
C1
, if r(t) = 1,

1
C2
, if r(t) = 2,

1
C3
, if r(t) = 3.

1.2 Impulsive Systems

Another special class of hybrid systems is impulsive systems or systems of differen-
tial (or discrete) equations with impulses which is a combination of differential (of
discrete) equations representing the continuous evolution of the system and a set of
difference equation representing jumps or impulsive actions.

1.2.1 SEIRS Epidemic Model with Impulse Vaccinations

An important class of dynamical impulsive systems is the SEIRS disease models
with impulse vaccinations with saturation incidence. Denote by S(t), E(t), I (t) and
R(t) the susceptible, exposed (infected but not infectious), infectious and recovered
population at time t , respectively, such that the total population at t is N (t) = S(t) +
E(t) + I (t) + R(t). A delayed SEIRS epidemicmodelwith saturation incidence and
the effects of pulse vaccination may be given by the following differential equations
with time delay and impulsive effects [4]
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Ṡ(t) = A − bS(t) − βS(t)I (t)

1 + mS(t)
+ ηe−bτ R(t − τ ),

Ė(t) = βS(t)I (t)

1 + mS(t)
− βe−bωS(t − ω)I (t − ω)

1 + mS(t − ω)
− bE(t),

İ (t) = βe−bωS(t − ω)I (t − ω)

1 + mS(t − ω)
− (b + γ + α)I (t),

Ṙ(t) = γ(t)I (t) − bR(t) − ηe−bτ R(t − τ ), (k − 1)τ < t ≤ kτ , for k ∈ N,

S(t+) = (1 − θ)S(t),

E(t+) = E(t),

I (t+) = I (t),

R(t+) = R(t) + θS(t), t = kτ , for k ∈ N,

where A is the constant recruitment rate of the susceptible population, b is the
natural death rate of the population, β is the transmission coefficient, α is extra
disease-related death rate of the infectious hosts, γ is the recovery rate of infectious
population, η is the rate of losing immunity, ω is the latent period of the disease, τ
is the immune period of recovered population, and θ (0 < θ < 1) is the fraction of
susceptible population to whom the vaccination inoculated at times t = kτ .

1.2.2 Insulin Treatment

In pharmacokinetics, the process of maintaining the drug level in a body can be
adequately modeled by impulsive differential equations especially if the time period
in which body responds to the medication is very small that can be reasonably
approximated as a time moment. For instance, diabetics aim to maintain the daily
sugar level in the body at a certain range, say [a, b]. Due to having food, the sugar
level continuously increases in the blood approaching the upper bound of the range.
As a result, the insulin should be injected so that the sugar level instantly jumps
to a lower bound near a. In this example, injection times represent the impulsive
moments, the insulin injections represent the impulsive effects or actions, and the
continuous increase in the blood sugar represents the continuous evolution.

References

1. Liberzon D (2003) Switching in systems and control. Brikhauser, Boston
2. Li Z, Soh Y, Wen C (eds) (2005) Switched and impulsive systems: analysis, design and appli-

cations. Lecture notes in control and information sciences. Springer, Berlin
3. Boukas EK (2006) Stochastic switching systems: analysis and design. Birkhauser
4. Zhang T, Teng Z (2008) An impulsive delayed SEIRS epidemicmodel with saturation incidence.

J Biol Dyn 2(1):64–84



Chapter 2
Mathematical Background

This chapter serves as an introduction to the rest of the book. Particularly, we
introduce two types of hybrid systems, impulsive systems and switched systems,
with/without time delay andwith/without randomnoise that is represented byWiener
process. Definitions of solutions of these systems and different stability notions in
the sense of Lyapunov are given. We also address some comparison principles for
these systems.

2.1 Basic Definitions

Denote by R+ the set of all nonnegative real numbers, Rn the n-finite-dimensional

Euclidean spacewith the norm ‖ · ‖ (i.e., if x ∈ R
n then ‖x‖ =

√∑n
i=1 x

2
i ) andR

m×n

the set of all m × n real matrices. If A ∈ R
m×n , then we define the induced norm of

A by ‖A‖ = √
tr(AT A).

Consider the following initial-value problem (IVP)

{
ẋ = f (t, x),
x(t0) = x0,

(2.1)

where x ∈ R
n is the system state with x0 being the initial state, t ≥ t0 represents

the system evolution time with the initial time t0 ∈ R+ and the vector field f :
R+ × D → R

n withD ⊂ R
n being the open domain containing the origin x = 0. To

guarantee that the IVP has a solution x(t) in some interval containing t0, f is assumed
to be continuous in its domain of definition. The solution is unique if f is locally
Lipschitz in x ; that is, ∀x̄ ∈ D there exists a ball B of x̄ such that for all x, y ∈ B
and t ∈ R+, there exists an L ≥ 0 such that ‖ f (t, x) − f (t, y)‖ ≤ L‖x − y‖. We
also assume, without loss of generality, that f (t, 0) = 0 for all t ≥ t0 so that x ≡ 0 is

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
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an equilibrium or trivial solution of system (2.1). Note that any nonzero equilibrium
point can be shifted to the origin by a change of variable. We are now ready to
introduce the concepts of (Lyapunov) stability.

Definition 2.1 The trivial solution, x ≡ 0, of system (2.1) is said to be

(i) stable (in the sense of Lyapunov) if, for any ε > 0 and t0 ∈ R+, there is δ =
δ(ε, t0) > 0 such that

‖x0‖ < δ implies ‖x(t)‖ < ε, ∀t ≥ t0, (2.2)

where x(t) = x(t; t0, x0) is any solution of system (2.1);
(ii) uniformly stable if it is stable and δ is independent of t0;
(iii) asymptotically stable if (i) holds and there is a positive constant c = c(t0) such

that, for all ‖x0‖ < c, limt→∞ x(t) = 0;
(iv) uniformly asymptotically stable if (ii) holds and there is a positive constant c,

independent of t0, such that, for any η > 0, there is T = T (η) > 0 such that,
for all ‖x0‖ < c,

‖x(t)‖ < η, ∀t ≥ t0 + T (η);

(v) exponentially stable if there are positive constants c, k and λ such that

‖x(t)‖ ≤ k‖x0‖e−λ(t−t0), ∀‖x0‖ < c;

(vi) unstable if (i) fails to hold.

Furthermore, the above stability properties are satisfied globally if (i)–(v) hold for
any x0 ∈ R

n , i.e., S(ρ) (or D) is taken to be the entire space Rn .

Having defined the stability concepts, throughout this book we use the method of
Lyapunov to determine these qualitative properties. The Lyapunov stability technique
requires defining a special class of functions, also known as energy-like functions,
which enjoy some positive definiteness features.

Definition 2.2 Let D ⊂ R
n be an open set containing the point x = 0. A function

V : D → R is said to be positive semi-definite if (i) V (t, 0) = 0 and (ii) V (t, x) ≥ 0,
for all t ≥ t0 and x ∈ D \ {0}. It is said to be positive-definite if the inequality in (ii)
is replaced by V (t, x) > 0. Moreover, it is said to be radially unbounded (or proper)
if it is positive definite and, for each fixed t , lim‖x‖→∞ V (t, x) = ∞.

In the Lyapunov stability theorems, the focus is on the time derivative of V along
the trajectories of the dynamical system under consideration. So that, we need the
following definition of upper right-hand derivative, which is also known as a Dini
derivative, of the function V .
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Definition 2.3 LetD be an open subset ofRn . If V : R+ × D → R+, then the upper
right-hand (Dini) derivative of V with respect to system (2.1) is defined by

D+V (t, x) = lim
h→0+

sup
1

h
[V (

t + h, x + h f (t, x)
) − V (t, x)], ∀(t, x) ∈ R+ × D,

where the limit h → 0+ means h approaches 0 from right. If, moreover, V has
continuous partial derivatives with respect to t and x (i.e., V ∈ C 1,1(R+ × D;R+)),
then the Dini derivative becomes the ordinary time derivative

D+V (t, x) = V̇ (t, x) = ∂V (t, x)

∂t
+ ∇x V (t, x) · f (t, x),

where ∇x V is the gradient vector of V , i.e.,

∇Vx (t, x) =
(

∂V (t, x)

∂x1

∂V (t, x)

∂x2
· · · ∂V (t, x)

∂xn

)T

with x = (x1 x2 · · · xn)T and “·” refers to the dot product of two vectors.
Analogously, one can define other types of Dini derivatives, such as D+, D− and

D−, where for instance

D−V (t, x) = lim
h→0−

inf
1

h
[V (

t + h, x + h f (t, x)
) − V (t, x)], ∀(t, x) ∈ R+ × D,

is called lower left-hand (Dini) derivative, where the limit h → 0− means h
approaches 0 from left. Likewise, if V ∈ C 1,1(R+ × D;R+), then the Dini deriva-
tives become the ordinary time derivative.

Toward stating the sufficient conditions that guarantee the stability (or stability-
like) properties, a special class of functions, known as comparison functions, are
needed.

Definition 2.4 A function α ∈ C ([0, ρ);R+) (for ρ > 0) is said to belong to class
K (i.e., α ∈ K ) if it is strictly increasing and α(0) = 0. If, in addition, ρ = ∞ and
α(r) → ∞ as r → ∞, then α is said to belong to classK∞.

Definition 2.5 A function β ∈ C ([0, ρ) × R+;R+) is said to belong to classK L
(i.e., β ∈ K L ) if, for each fixed s, β(·, s) ∈ K , and, for each fixed r , β(r, ·) is
decreasing and β(r, s) → 0 as s → ∞.

The following function classes will be also used in this book.

Definition 2.6 We define the following classes of functions:
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K1 = {g ∈ C (R+;R+) | g(0) = 0 and g(s) > 0 for s > 0};
K2 = {g ∈ C (R+;R+) | g(0) = 0, g(s) > 0 for s > 0, and lim inf

s→∞ g(s) > 0};
K3 = {g ∈ C (R+;R+) | g(0) = 0, g(s) > 0 for s > 0, and g is nondecreasing in s};
K4 = {g ∈ C (R+;R+) | g(0) = 0, g(s) > 0 for s > 0, and lim

s→∞ g(s) = ∞}.

Definition 2.7 A function ϕ : R → R is said to be convex if the following holds

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y), λ ∈ (0, 1).

It is said to be concave if ≤ is replaced by ≥.

Definition 2.8 A function a ∈ C (R+ × [0, ρ);R+) is said to be in class Kc (i.e.,
a ∈ Kc) if a(t, 0) = 0, and a(t, u) is concave and strictly increasing in u for each
t ∈ R+.

Definition 2.9 A function g ∈ C (R+;R+) is said to be in classK3 (i.e., g ∈ K3) if
g(0) = 0, and g is concave and nondecreasing.

Definition 2.10 A function b ∈ C ([0, ρ);R+) is said to be in classKv (i.e., b ∈ Kv)
if b(0) = 0 and, b is convex and strictly increasing.

Theorem 2.1 Let w1 and w2 be positive-definite functions on the domain D which
contains the point x = 0. Assume that V ∈ C 1,1(R+ × D;R+) such that, for all
(t, x) ∈ R+ × D ,

w1(x) ≤ V (t, x) ≤ w2(x), (2.3)

∂V (t, x)

∂t
+ ∇Vx (t, x) · f (t, x) ≤ 0. (2.4)

Then, the trivial solution of system (2.1) is uniformly stable. Moreover, if the inequal-
ity in (2.4) is strengthened to

∂V (t, x)

∂t
+ ∇Vx (t, x) · f (t, x) ≤ −w3(x), ∀(t, x) ∈ R+ × D, (2.5)

where the function w3 is a continuous and positive-definite on D , then x ≡ 0 is
uniformly asymptotically stable. If, furthermore, there exist positive constants r and
c such that Br = {x ∈ D | ‖x‖ ≤ r} andmin‖x‖=r w1(x) > c, then for all x starts in
Br such that w2(x) ≤ c, we have

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0, (2.6)

where β ∈ K L . If D = R
n and w1 is radially unbounded, then x ≡ 0 is globally

uniformly asymptotically stable. Particularly, if β(r, s) = res → 0 as s → ∞, then
the asymptotic stability result reduces to the exponential stability.
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In reality, systems are often subject to some types of disturbances (or inputs
disturbances). The interest will be, then, to investigate how the systems respond to
these disturbances. This question motivates the notion of (asymptotic) input-to-state
stability (ISS), proposed by Sontag [1, 2]. The importance of ISS is manyfold. It
bridges the gap between the input/output stability concept in which a system is being
viewed as a black box and the Lyapunov stability (of the equilibrium point); that
is, it connects the system equilibrium state (but not the output) to the input. Also,
it has many equivalencies or implications to other stability-like concepts, such as
integral ISS, global asymptotic stability (for zero input) and finite gain with respect
to supremum norms and finite L2. ISS has found applications in different areas in
linear and nonlinear systemand control theory, such as coprime factorization, cascade
or feedforward systems, small-gain theorems and singularly perturbed systems.

Consider the following nonlinear system with the input

{
ẋ = f (t, x, u), t ≥ t0,
x(t0) = x0,

(2.7)

where f : R+ × R
n × R

m → R
n with t0 ∈ R+ and the inputu ∈ PC (R+;Rm) (i.e.,

u is a piecewise continuous function)with bounded energy (i.e., supt≥t0 ‖u(t)‖ < ∞).
This system can be considered as a perturbation of the unforced system, i.e., u(t) ≡ 0,

ẋ = f (t, x, 0), (2.8)

with the same initial state. Assuming that the trivial solution of (2.8) is globally
uniformly asymptotically stable and u is bounded, then the state of the correspond-
ing perturbed nonlinear system remains bounded if further sufficient conditions are
imposed. In the following, we first define the ISS concept, then state these sufficient
conditions.

Definition 2.11 System (2.7) is said to be input-to-state stable (ISS) if there exist
functions β ∈ K L and γ ∈ K such that, for any initial state x0 and bounded
input u, the solution x(t) exists and satisfies

‖x(t)‖ ≤ β(‖x0‖, t − t0) + γ

(
sup

t0≤s≤t
‖u(s)‖

)
, ∀t ≥ t0. (2.9)

In fact, this inequality can be written as follows

‖x(t)‖ ≤ β(‖x0‖, t − t0) + γ

(
sup

t0≤s≤t
‖u(s)‖

)
, ∀ t0 ≤ t ≤ t0 + T,

‖x(t)‖ ≤ γ

(
sup

t0≤s≤t
‖u(s)‖

)
, ∀ t ≥ t0 + T,

where T ≥ 0. Evidently, for large enough T , theK L function β converges to zero
asymptotically and, when t ≥ t0 + T , the solution will stay bounded by a class−K
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function γ, meaning that the solution of (2.7) has an ultimate bound γ, which is a
ball with a radius depending on the input magnitude.

Clearly, from the inequality (2.9), if the input u is set to zero (i.e., u(t) ≡ 0), the
ISS reduces to the globally uniformly asymptotic stability of the trivial solution of
the unforced system (2.8).

The following Lyapunov-type theorem gives sufficient conditions that ensure ISS,
which can also prove the asymptotic stability property of x ≡ 0 of the unforced
system (2.8).

Theorem 2.2 Assume that there exist class−K∞ functions a and b, a class K
function ρ and a positive-definite function c. Let V : R+ × R

n → R+ such that the
following conditions holds:

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), ∀(t, x) ∈ R+ × R
n;

V̇ (t, x, u) ≤ −c(x), whenever ‖x‖ ≥ ρ(‖u‖),

for any (t, x, u) ∈ R+ × R
n × R

m. Then, system (2.7) is ISS with
γ(·) = b−1

(
a(ρ(·))). Particularly, if u ≡ 0, then the trivial solution of the unforced

system (2.8) is globally uniformly asymptotically stable.

2.2 Comparison Method

An important technique often used in the study of differential equations

ẋ = f (t, x),

where x ∈ R
n and t ≥ t0 with t0 ∈ R+, is the so-called comparison principle. The

advantages of this technique are manyfold including: (i) one can find an upper/lower
estimation on ‖x(t)‖ instead of finding the solution itself. This particularly important
if the corresponding IVP does not admit a unique solution.We should also remind the
readers that the upper estimation can be, in fact, found by the well-known Gronwall–
Bellman inequality and by using Bihari’s Lemma, as will be illustrated later. (ii) It
connects the vector differential equation

ẋ = f (t, x)

to an auxiliary scalar differential equation

u̇ = g(t, u)

through the scalar differential inequality
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V̇ (t, x) ≤ g(t, V (t, x))

for some a scalar-valued function V ; this process will be seen throughout many
chapters of the book. (iii) The comparison principle can also be used if V is not
differentiable, but has a Dini derivative. That is, for instance if D+V exists then V
satisfies the differential inequality

D+V (t, x) ≤ g(t, V (t, x)).

The following theorems summarize the comparison principle.

Theorem 2.3 (Comparison theorem) Consider the vector IVP

ẋ = f (t, x), (2.10a)

x(t0) = x0. (2.10b)
Let V : R+ × R

n → R+ be continuous on R+ × R
n and locally Lipschitz in x.

Assume that V satisfies

D+V (t, x) ≤ g(t, V (t, x)), (2.11)

where g : R+ × R+ → R is continuous on R+ × R+. Let r(t) = r(t; t0, u0) be the
maximal solution of the auxiliary scalar system

u̇ = g(t, u), (2.12a)

u(t0) = u0 ≥ 0, t0 ∈ R+. (2.12b)

Then, V (t0, x0) ≤ u0 implies that

V (t, x(t)) ≤ r(t), for all t ≥ t0 (2.13)

where x(t) = x(t; t0, x0) is any solution of (2.10) defined on [t0,∞).

The following theorem states the sufficient conditions regarding the implemen-
tation of the comparison principle in establishing the stability properties of system
(2.10).

Theorem 2.4 (Stability theorem) Suppose that there exist class−K functions a
and b. Assume that V ∈ C (R+ × S(ρ);R+), V is locally Lipschitz in x and the
following conditions are satisfied:

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), ∀(t, x) ∈ R+ × S(ρ); and
(ii) D+V (t, x) ≤ g(t, V (t, x)), ∀(t, x) ∈ R+ × S(ρ),

where g ∈ C (R+ × R;R) and g(t, 0) = 0 for all t ∈ R+. Then, the stability prop-
erties of the trivial solution, u ≡ 0, of (2.12) imply the corresponding stability prop-
erties of the trivial solution, x ≡ 0, of (2.10).
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2.3 Delay Systems

In contrast to the ordinary differential equations, where the system initial state (or
initial condition) is given at a certain initial time, in the delay-type differential equa-
tions, where the derivative of the unknown function, say x(t), at a specific time, t ,
also depends on the values of the function, x , at previous times (i.e., a part of the
history of x). So that, the initial data in this case are generally continuous functions
defined on a time interval, but not only the initial time. To define the initial-value
problem of a delay-type system, we need some definitions and notations.

Let Cr = C ([−r, 0];Rn) be the set of all continuous functions from [−r, 0] toRn

where r > 0 represents a time delay. If φ ∈ Cr , the r -norm of this function is defined
by ‖φ‖r = sup−r≤s≤0 ‖φ(s)‖, where ‖ · ‖ is the Euclidean norm on R

n .

Definition 2.12 Let t∗ ∈ R and a > 0. If x is a function mapping [t∗ − r, t∗ + a]
into R

n , then, for each t ∈ [t∗, t∗ + a], we define a new function xt which maps
[−r, 0] into Rn by xt (s) = x(t + s), for all s ∈ [−r, 0] (i.e., xt : [−r, 0] → R

n) and
its norm is defined by ‖xt‖r = supt−r≤θ≤t ‖x(θ)‖.

Here, for each t ∈ [t∗ − r, t∗], xt (s) (or simply xt ) is the segment of the function
x from t∗ − r to t∗ that has been shifted to the interval [−r, 0]. A general nonlinear
delay-type differential equation may have the form

ẋ(t) = f (t, xt ) (2.14a)

and is called functional differential equation, where f is called a functional operator
mapping R+ × Cr to R

n . In fact, the functional f in (2.14a) may also depend on
the system state, that is f = f (t, x(t), xt ). If t = t0, then an initial state function is
simply given by

xt0 = φ(s), s ∈ [−r, 0]. (2.14b)
Thus, the initial-value problem of a delay-type system is defined by (2.14). Here,

we assume that f is completely continuous and smooth enough to guarantee that the
IVP in (2.14) admits a unique solution. A special class of (2.14) is called a delay
system in which s = −r , i.e., xt (s) = x(t − r), and the corresponding differential
equation and initial function are defined accordingly.

In the following, we define some stability concepts of x ≡ 0 for the delay system
in (2.14), where it is assumed that f (t, 0) = 0 for all t ∈ R+.

Definition 2.13 The trivial solution x ≡ 0 of (2.14a) is said to be

(i) stable if, for each ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that, if
φ ∈ Cr with ‖φ‖r ≤ δ, then ‖x(t)‖ ≤ ε, where, for all t ≥ t0, x(t) = x(t; t0,φ)

is any solution of (2.14);
(ii) uniformly stable if δ in (i) is independent of t0;
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(iii) asymptotically stable if (i) holds and for each t0 ∈ R+, there exists an η0 =
η(t0) > 0 such that, if φ ∈ Cr with ‖φ‖r ≤ η0, then limt→∞ x(t) = 0;

(iv) uniformly asymptotically stable if (iii) holds and there exists an η0 > 0 such
that, for each γ > 0, there exists some T = T (η, γ) > 0 such that if φ ∈ Cr

with ‖φ‖r ≤ η0, then ‖x(t)‖ ≤ γ for all t ≥ t0 + T ; and
(ii) unstable if (i) fails to hold.

One can similarly define the Dini derivatives with respect to the system of func-
tional differential equations in (2.14).

Definition 2.14 Let J ⊆ R+ and D be an open subset of Rn . If V : J × D → R+,
then the upper right-hand (Dini) derivative of V with respect to system (2.14) is
defined by

D+V (t,ψ(0)) = lim
h→0+

sup
1

h

[
V

(
t + h,ψ(0) + h f (t,ψ)

) − V (t,ψ(0))
]
,

for all (t,ψ) ∈ J × C ([−r, 0];D).

If, moreover, V has continuous partial derivatives with respect to its variables,
then we have

D+V (t,ψ(0)) = V̇ (t,ψ(0)) = ∂V (t,ψ(0))

∂t
+ ∇ψ(0)V (t,ψ(0)) · f (t,ψ).

In the following theorem, we state the sufficient conditions that guarantee some
stability properties for (2.14) by using theRazumikhin–Lyapunov technique inwhich
the time derivative of a Lyapunov function, but not functional, is investigated.

Theorem 2.5 Suppose that f mapsR × D intoRn whereD ⊂ Cr with x = 0 ∈ D .
Assume there exist functions u ∈ K , v ∈ K∞ and w ∈ C (R+;R+) that is nonde-
creasing. If there is a continuous function V ∈ C (R × D;R) satisfying the following
conditions:

(i) u(‖x‖) ≤ V (t, x) ≤ v(‖x‖) for all (t, x) ∈ R × D; and
(ii) V̇ (t,ψ(0)) ≤ −w(‖ψ(0)‖) whenever V (t + θ,ψ(θ)) ≤ V (t,ψ(0)),

for θ ∈ [−r, 0], then the trivial solution x ≡ 0 of (2.95) is uniformly stable. If, more-
over, the condition in (ii) is replaced by

(iii) V̇ (t,ψ(0)) ≤ −w(‖ψ(0)‖) whenever V (t + θ,ψ(θ)) ≤ p(V (t,ψ(0))),

where w is strengthened to w(s) > 0 for s > 0 and the function p is continuous
nondecreasing and p(s) > s for s > 0, then the trivial solution x ≡ 0 of (2.14a) is
uniformly asymptotically stable. If lims→∞ u(s) = ∞ (i.e., u ∈ K∞), then the trivial
solution x ≡ 0 of (2.14a) is globally uniformly asymptotically stable.

An important special class of the delay differential equations, which often appear
in applications, has the following linear differential equation with state delay
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ẋ(t) = Ax(t) + Bx(t − r), (2.15)

where x ∈ R
n , A and B are n × n constant matrices, and r > 0 represents the time

delay. When analyzing the stability properties of this system by using the Lyapunov
method, one encounters the following scalar differential inequality

v̇(t) ≤ −αv(t) + β sup
t−r≤s≤t

v(s), (2.16)

where α and β are positive constants. The interest here is to calculate an upper
estimate on v(t) for all t ≥ t0 with t0 ∈ R+. The following lemmas are concerned
with different estimations depending on the values of α and β.

Lemma 2.1 Suppose that the scalar differential inequality in (2.16) is satisfied
where α > β > 0, then there exist γ > 0 and k > 0 such that

v(t) ≤ ke−γ(t−t0), ∀t ≥ t0, (2.17)

where the decay rate, γ, is the unique positive solution of the nonlinear equation
−γ = −α + βeγr and k = inf t0−r≤s≤t0 y(s).

On the other hand, if the scalar differential inequality has the form

v̇(t) ≤ αv(t) + β sup
t−r≤s≤t

v(s), (2.18)

then the upper estimate along with the growth rate is provided by the following
lemma.

Lemma 2.2 Suppose that the scalar differential inequality in (2.18) is satisfied
where α > 0 and β > 0, then there exist γ > 0 and k > 0 such that

v(t) ≤ keγ(t−t0), ∀t ≥ t0,

where γ = α + β and k = supt0−r≤s≤t0 v(s).

Generalization of the last two lemmas to an n-dimensional vector differential
inequality is stated in the following lemmas.

Lemma 2.3 For all t ≥ t0 with t0 ∈ R+, let A(t) and B(t) be n × n matrices of
continuous functions such that A(t), B(t) and Ȧ(t) are bounded, and A(t) is Hurwitz.
Furthermore, assume that, for all t , the following conditions hold

(i) λ(AT (t) + A(t)) ≤ −α(t) < 0, with α(t) > 0;
(ii) −α(t) + 2‖B(t)‖ ≤ −β < 0, with β being a positive constant; and
(iii) the differential inequality

ẏ(t) ≤ A(t)y(t) + B(t) sup
t−τ≤θ≤t

y(θ),
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where y(t) = (y1(t) y2(t) · · · yn(t))T ≥ 0 and
supt−τ≤θ≤t y(θ) = (supt−τ≤θ≤t y1(θ) supt−τ≤θ≤t y2(θ) · · · supt−τ≤θ≤t yn(θ))

T .

Then, for all t ≥ t0, y(t) satisfies

‖y(t)‖ ≤ ‖yt0‖τe
−ζ(t−t0),

where ζ is the unique positive solution of the nonlinear equation

ζ − α(t) + ‖B(t)‖ + ‖B(t)‖eζτ = 0.

Lemma 2.4 For all t ∈ [t0, t0 + a) with t0 ∈ R+ and a > 0, let A(t) and B(t) be

n × n matrices of continuous functions, α(t) = λ
(
A(t) + AT (t)

)
, ‖B(t)‖ ≤ β1 and

α(t) + ‖B(t)‖ ≤ β2. Assume that the vector differential inequality

ẏ(t) ≤ A(t)y(t) + B(t) sup
t−r≤s≤t

y(s)

holds where y(t) = (
y1(t) y2(t) · · · yn(t)

)T
with yi (t) ≥ 0 for all t ∈ [t0, t0 + a)

and

sup
t−r≤s≤t

y(s) =
(

sup
t−r≤s≤t

y1(s) sup
t−r≤s≤t

y2(s) · · · sup
t−r≤s≤t

yn(s)
)T

.

Then, there exists a ξ > 0, defined by ξ = 1
2 (β1 + β2), such that

‖y(t)‖ ≤ ‖yt0‖r eξ(t−t0), t ∈ [t0, t0 + a).

2.4 Impulsive Systems

Ageneral class of impulsive systems or systemswith impulsive differential equations
may have the form

ẋ(t) = f (t, x(t)), κ(t, x) �= 0, (2.19a)

�x(t) = I (t, x(t)), κ(t, x) = 0, (2.19b)

x(t+0 ) = x0, (2.19c)

where x ∈ R
n is system state vector, �x(t) = x(t+) − x(t) for some t ∈ R+ with

x(t+) = limε→0+ x(t + ε) and x(t) = x(t−), i.e., x is assumed to be left-continuous.
Also, in the difference equation (2.19b), the function I (t, x(t)) is state-dependent
representing impulsive amount. In this system, the impulses occur if a spatio-temporal
relation κ(t, x) = 0 is satisfied. Moreover, if we assume that there is no impulsive
action at the initial time t0, then the initial condition in (2.19c) has the form x(t0) = x0.
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The solution of this system evolves as follows: the system state starts when
κ(t0, x0) �= 0. Then, whenever κ(t, x) �= 0, the system process is governed by the
ordinary differential equation (2.19a) until t = τ1 such that κ(τ1, x(τ1)) = 0 is sat-
isfied. At this moment, the process is subject to an impulse and instantly changes
by some amount I (t, x(t)), given by the difference equation in (2.19b), causing a
jump discontinuity in the system state. For t > τ1, if the relation κ(t, x) �= 0 holds,
the process continues according to the differential equation in (2.19a) until an impul-
sive action occurs again. This continues in the same manner as long as the solution
exists. Consequently, the resulting solution is either continuous or piecewise con-
tinuous with simple jump discontinuities at the moments of impulse t for which
I (t, x(t)) �= 0.

Due to the difficulty in dealing with relations of the type κ(t, x) = 0, the interest
deflects to a particular type of relation, where the set of points (t, x) ∈ R+ × R

n for
which κ(t, x) = 0 are assumed to be represented by a sequence of hypersurfaces of
the form t = τk(x), where generally τk ∈ C (Rn;R+) for k = 0, 1, 2, . . . and 0 =
τ0(x) < τ1(x) < τ2(x) < · · · with limk→∞ τk(x) = ∞ for each x ∈ R

n . Therefore,
the particular system can be written as

ẋ(t) = f (t, x(t)), t �= τk(x), (2.20a)

�x(t) = I (t, x(t)), t = τk(x), (2.20b)

x(t0) = x0. (2.20c)

In this case, the system is said to have impulses at variable times. Indicative features
of this system are that solutions start at different points will be subject to impulses
(or jump discontinuities) at different times. This problem breaks down the classi-
cal continuous dependence or stability since neighbouring solutions tend to undergo
impulses at different times. Also, a solution may hit the same hypersurface several
times or not at all, or intersect it more than once after intersecting other hypersur-
faces. The frequent interception of the same hypersurface is called pulse or beating
phenomenon. To avoid this circumstance, further restrictions have to be made on the
impulsive hypersurface, as will be seen in the following chapter.

If the functions τk’s are constants (i.e., τk(x) = τk for all k and x), system (2.20)
is said to have impulses at fixed times and all solutions undergo impulses at the same
times.

Another challenging issue arising in impulsive systems, which makes the theory
of ordinary differential equation not directly applicable, is known as confluence (or
solution merging), which happens when, for instance, two solutions start at different
points merge after a certain impulse. The reason is that, for specific impulse amount
represented by the functionI , the mapping x + I (τk, x) is not one-to-one in x . On
the other hand, if the mapping is not onto, the backward continuation of solutions
would be impossible.

So far, we have assumed that the solutions of impulsive systems are left-
continuous, instead, onemay consider solutions to be right-continuous. Accordingly,
system (2.20) is written as
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ẋ(t) = f (t, x(t)), t �= τk(x(t
−)), (2.21a)

�x(t) = I (t, x(t−)), t = τk(x(t
−)), (2.21b)

x(t0) = x0. (2.21c)

The choice of right-continuous is advantageouswhen time delay is involved in impul-
sive systems [4].

Due to its importance in this book, the solution of the general impulsive system
presented in (2.19) is given in the following definition, where the definitions of
solutions of special classes, such as the one in (2.21), can be directly extracted.

Definition 2.15 A function x : (t0,β) → R
n , for 0 ≤ t0 < β ≤ ∞, is said to be a

solution of system (2.19) if the following conditions are satisfied:

(i) for t ∈ (t0,β), (t, x(t)) ∈ R+ × D ;
(ii) the right-hand limit x(t+0 ) = limt→t+0 x(t) exists and (t0, x(t

+
0 )) ∈ R+ × D ;

(iii) ∀t ∈ (t0,β), if κ(t, x(t)) �= 0, then x is continuously differentiable at t and
satisfies the differential equation ẋ(t) = f (t, x(t));

(iv) the set of impulsive moments T = {t ∈ (t0,β) | κ(t, x(t)) = 0} is finite or
consists of countable increasing sequence of points with limit β; and

(v) if the moment of impulse t ∈ T , then the left-hand limit x(t−) = limt→t− x(t)
exists and x(t−) = x(t) for t �= t0, meaning that the solution is left-continuous,
and x(t+) exists with x(t+) = x(t) + I (t, x(t)) for t �= β.

Generally, a solution x(t) = x(t; t0, x0) of (2.19) defined on an interval (t0,β)

and experiencing impulses at points T = {tk}∞k=1 with tk < tk+1 can be described as
follows:

x(t; t0, x0) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t; t0, x0), t0 < t ≤ t1,
x(t; t1, x(t+1 )), t1 < t ≤ t2,
...

x(t; tk, x(t+k )), tk < t ≤ tk+1,
...

(2.22)

where x(t+k ) = x(tk) + I (tk, x(tk)).
Having defined the solution of an impulsive system, we turn our interest to address

the stability concepts of a solution of the impulsive systems. As stated earlier, the
stability property of impulsive systems with time-dependent impulsive moments is
more challenging. As a result, the stability concepts of a nontrivial solution cannot be
shifted by a change of variables to the stability of the trivial solution. This situation
urges a modification to the stability of an ordinary system.

This complicated situation has limited the study of stability for systems undergo-
ing impulses at state-independent fixed times, i.e., τk(x) = τk for all x ∈ R

n ,
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ẋ(t) = f (t, x(t)), t �= τk, (2.23a)

�x(t) = I (t, x(t)), t = τk, (2.23b)

x(t0) = x0, (2.23c)

where the impulsive times τk (for k = 0, 1, . . .) satisfy τk < τk+1 and limk→∞ τk =
∞ . So that, if moreover f (t, 0) = 0 andI (t, 0) = 0, that is system (2.23) possesses
the trivial solution, then the stability notions are identical to those of ordinary systems.
Throughout this book, the stability results are developed for systems with impulses
occurring at fixed times. In the following definition, we define different stability
notions of the trivial solution, x ≡ 0, of (2.23).

Definition 2.16 The trivial solution, x ≡ 0, of (2.23) is said to be

(i) stable if, for each ε > 0 and t0 ∈ R+, there exists δ = δ(t0, ε) > 0 such that

‖x0‖ < δ implies ‖x(t)‖ < ε, ∀t > t0,

where x(t) = x(t; t0, x0) is any solution of (2.23);
(ii) uniformly stable if δ is independent of t0;
(iii) asymptotically stable if (i) is satisfied and for every t0 ∈ R+, there exists η =

η(t0) > 0 such that

‖x0‖ ≤ η implies lim
t→∞ x(t) = 0;

(iv) uniformly asymptotically stable if (ii) is satisfied and there exists η > 0 such
that for every γ > 0, there exists some time T = T (η, γ) such that

‖x0‖ ≤ η implies ‖x(t)‖ ≤ γ, ∀ t ≥ t0 + T ;

(v) unstable if (i) fails to hold.

In the following theorem and as a warm-up, we state and prove the exponential
stability (in the sense of Lyapunov) for a linear impulsive system given by

⎧
⎨
⎩
ẋ(t) = Ax(t), t �= tk, k ∈ N

�x(t) = Bkx(t), or x(t+) = [I + Bk]x(t), t = tk,
x(t+0 ) = x0,

(2.24)

where t ≥ t0 with t0 ∈ R+, x ∈ R
n , A ∈ R

n×n , Bk ∈ R
n×n and �x(t) = x(t+) −

x(t).
When investigating the stability properties of an impulsive system, we consider

the following assumptions.

Assumption A1 There exist 0 ≤ �1 ≤ � such that, for all τk ∈ R+ (with k ∈ N) and
x defined on PC (R+;D), for some open set D ∈ R

n , if
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‖x(τ−
k )‖ < �1, then ‖x(τk)‖ < �.

Assumption A2 For all k ∈ N, we have

τsup = sup{τk − τk−1} < ∞ and τinf = inf{τk − τk−1} > 0.

Remark 2.1 Assumption A1 is made to ensure that the solution be bounded just after
any impulsive effect (i.e., at t = τk) so long as it is bounded just before the impulsive
effects (i.e., at t = τ−

k ). While Assumption A2 is made to guarantee that the interval
between any two consecutive impulses be neither infinity nor zero, respectively. The
reason behind imposing Assumption A2 is to avoid the trivialness.

Theorem 2.6 Assume that A is Hurwitz. Then, the trivial solution of (2.24) is glob-
ally exponentially stable if the following condition holds:

lnαk − ν(tk − tk−1) ≤ 0, k ∈ N, (2.25)

where αk = λmax([I+Bk ]T P[I+Bk ])
λmin(P)

with P being a positive-definite matrix satisfying the
Lyapunov matrix equation:

AT P + PA = −Q

for any positive-definite matrix Q and 0 < ν < ξ with ξ = λmin(Q)/λmin(P).

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) (or simply x) be the solution
of (2.24) and V (x) = xT Px for P ∈ R

n×n . Define the time-varying function v(t) =
V (x(t)). Then, the derivative of v along the trajectory of (2.24) is given by

v̇(t) ≤ −ξv(t), t ∈ (tk−1, tk]

where ξ = λmin(Q)/λmin(P), and

v(t) ≤ v(t+k−1)e
−ξ(t−tk−1), t ∈ (tk−1, tk]

while at t = t+k , we have

v(t+k ) = x(t+k )T Px(t+k )

= x(tk)
T [I + Bk]T P[I + Bk]x(tk)

≤ λmax([I + Bk]T P[I + Bk])x(tk)T x(tk)
= αkv(tk).

Namely, we have

v(t+k ) ≤ αkv(tk), (2.26)
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where αk = λmax([I+Bk ]T P[I+Bk ])
λmin(P)

. Now, for instance when t ∈ (t0, t1], we have

v(t) ≤ v(t+0 )e−ξ(t−t0)

and

v(t+1 ) ≤ α1v(t1) ≤ α1v(t+0 )e−ξ(t1−t0).

Similarly, for t ∈ (t1, t2], we have

v(t) ≤ v(t+0 )α1e
−ξ(t1−t0)e−ξ(t−t1) = v(t+0 )α1e

−ξ(t−t0).

That is, for all t ∈ (t0, t2], we have obtained

v(t) ≤ v(t+0 )α1e
−ξ(t−t0).

Generally, we have for t ∈ (tk, tk+1]

v(t) ≤ v(t+0 )α1α2 · · · αke
−ξ(t−t0)

= v(t+0 )α1α2 · · · αke
−ν(t−t0)e−(ξ−ν)(t−t0)

= v(t+0 )α1e
−ν(t1−t0)α2e

−ν(t2−t1) · · · αke
−ν(tk−tk−1)e−(ξ−ν)(t−t0).

Provoking the assumption in (2.25), we get

v(t) ≤ v(t+0 )e−(ξ−ν)(t−t0), t ≥ t0

which implies that

‖x(t)‖ ≤ K‖x(t+0 )‖e−(ξ−ν)(t−t0)/2, t ≥ t0

where K = √
μ; this shows that the trivial solution, x ≡ 0, of (2.24) is globally

exponentially stable.

2.5 Comparison Method for Impulsive Systems

In this section, the comparison principle presented in Sect. 2.2 is used to analyse the
stability properties of systems with impulses occurring at fixed times, i.e.,

ẋ(t) = f (t, x), t �= tk, (2.27a)

�x(t) = Ik(x), t = tk, (2.27b)

x(t+0 ) = x0, t0 ≥ 0 (2.27c)
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where 0 < t1 < t2 < · · · < tk < · · · with limk→∞ tk → ∞, f : R+ × R
n → R

n is
continuous in (tk−1, tk] × R

n , for all x ∈ R
n and k ∈ N, lim(t,y)→(t+k ,x) f (t, y) =

f (t+k , x) exists and Ik : Rn → R
n for any k ∈ N. Moreover, f (t, 0) = 0 and

Ik(0) = 0 for all k ∈ N; that is, the system has the trivial solution.
As done before, we start with following comparison theorem.

Theorem 2.7 (Comparison theorem) Let V : R+ × R
n → R+ be continuous in

(tk−1, tk] × R
n for each x ∈ R

n and k ∈ N, lim(t,y)→(t+k ,x) V (t, y) = V (t+k , x) exists
and locally Lipschitz in x. Assume that V satisfies

D+V (t, x) ≤ g(t, V (t, x)), t �= tk
V (t, x + I (t, x)) ≤ ψk(V (t, x)), t = tk, (2.28)

where g : R+ × R+ → R is continuous in (tk−1, tk] × R+ and, for all x, y ∈
R+ and k ∈ N, lim(t,y)→(t+k ,x) g(t, y) = g(t+k , x) exists and ψk is nondecreasing. Let
r(t) = r(t; t0, u0) be the maximal solution of the scalar auxiliary comparison system

u̇(t) = g(t, u), t �= tk, (2.29a)

�u(t) = ψk(u), t = tk, (2.29b)

u(t+0 ) = u0 ≥ 0, t0 ≥ 0. (2.29c)

Then, V (t+0 , x0) ≤ u0 implies that

V (t, x(t)) ≤ r(t), for all t ≥ t0, (2.30)

where x(t) = x(t; t0, x0) is any solution of (2.27) defined on [t0,∞).

Theorem 2.8 (Stability theorem) Suppose that there exist class−K functions a
and b. Assume that the Lyapunov function V : R+ × S(ρ) → R+ is continuous
in (tk−1, tk] × S(ρ) for all x ∈ S(ρ) and k ∈ N, lim(t,y)→(t+k ,x) V (t, y) = V (t+k , x)
exists. Moreover, V is assumed to be locally Lipschitz in x and the following condi-
tions are satisfied:

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖), ∀(t, x) ∈ R+ × S(ρ);
(ii) D+V (t, x) ≤ g(t, V (t, x)), ∀ t �= tk and x ∈ S(ρ);
(iii) V (t, x + I (t, x)) ≤ ψk(V (t, x)), for all t = tk and x ∈ S(ρ),g : R+ × R+ →

R is continuous in (tk−1, tk] × R+, g(t, 0) = 0 and, for all x, y ∈ R+ and
k ∈ N, lim(t,y)→(t+k ,x) g(t, y) = g(t+k , x) exists; and

(iv) there exists a ρ0 > 0 such that x ∈ S(ρ0) implies that x + Ik(x) ∈ S () for
all k and V (t, x + Ik(x)) ≤ ψk(V (t, x)), for all t = tk and x ∈ S(ρ0) where
ψk is nondecreasing.

Then, the stability properties of the trivial solution, u ≡ 0, of (2.12) imply the cor-
responding stability properties of the trivial solution, x ≡ 0, of (2.27).
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2.6 Impulsive Systems with Time Delay

Incorporating impulsive effects of the variable time type in the delay system (2.14)
leads to impulsive system with time delay (ISD)

ẋ(t) = f (t, xt ), t �= τk(x(t
−)), (2.31a)

�x(t) = I (t, xt−), t = τk(x(t
−), (2.31b)

xt0 = φ(s), s ∈ [−r, 0]. (2.31c)

The extended theory of this system of impulsive functional differential equations
was initially developed in [4]. Studying the fundamental properties of this system,
compared to the impulse-free (or continuous) delay system, can be very challenging
unless further restrictions are imposed on the functional f . In the continuous case on
one hand, if the system state x(t) is continuous for all t ∈ [t0 − r, t0 + a] (for some
a > 0), then xt is a continuous function of t with respect ‖ · ‖r for all t ∈ [t0, t0 + a]
and, hence, f is continuous. On the other hand, if x(t) is discontinuous at a point,
say t∗ ∈ [t0 − r, t0 + a], then xt may be discontinuous at some or all t ∈ [t0, t0 + a]
and, hence, we cannot draw any conclusion about the continuity of f (·, ·) even if it
is continuous in its two arguments. To support this argument, the function

x(t) =
{
0, t ∈ [1, 0)
1, t ∈ [0, 1]

is discontinuous at t = 0, while xt is discontinuous at any t ∈ [0, 1] with respect to
the norm ‖ · ‖r [4]. In fact, this problem was ruled out by defining a new functional
space called composite piecewise continuous [4]. In this book, it suffices for us to
state some definitions and theorems regarding the stability notions via Lyapunov–
Razumikhin technique for system (2.31). Later in Chap.3, we fully address the
fundamental properties of the ISD with random noise.

Definition 2.17 For any a, b ∈ R with a < b and for some set D ∈ R
n , define

PC
([a, b];D) =

{
ψ : [a, b] → D | ψ(t+) = ψ(t), ∀t ∈ [a, b), ψ(t−) exists in D,

∀t ∈ (a, b], and ψ(t−) = ψ(t) for all except at most a

finite number of points t ∈ (a, b]
}
,

PC
([a, b);D) =

{
ψ : [a, b) → D | ψ(t+) = ψ(t), ∀t ∈ [a, b), ψ(t−) exists in D,

∀t ∈ (a, b), and ψ(t−) = ψ(t) for all except at most a finite

number of points t ∈ (a, b)
}
,
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PC
([a,∞);D) =

{
ψ : [a,∞) → D | ∀c > a,ψ|[a,c] ∈ PC ([a, c];D)

}
.

In these spaces, the functions are right-continuous on their domains and left-
continuous except at simple jump discontinuities where the left-hand limits exist.
The number of discontinuities is finite if the functions are defined on finite intervals;
otherwise (i.e., on infinite interval) the number of discontinuities is countably infinite,
which form an increasing sequence of points tending to infinity.

Let PC r
([−r, 0];Rn

) = {φ | φ ∈ PC ([−r, 0];Rn)} and define the r -norm of
φ ∈ PC r by ‖φ‖r = sup−r≤s≤0 ‖φ(s)‖. If x ∈ PC ([t0 − r,∞);Rn)with t0 ∈ R+,
we define a function xt ∈ PC ([−r, 0];Rn) by xt (s) = x(t + s) for all s ∈ [−r, 0].
Let J ⊆ R+ and D ⊂ R

n be an open set containing x ≡ 0. So that, in (2.31), we
have f : J × PC ([−r, 0];D) → R

n and φ ∈ PC ([−r, 0];D). If the impulses in
(2.31) occur at fixed times, i.e., when t = τk for all k ∈ N, then we have

ẋ(t) = f (t, xt ), t �= τk, (2.32a)

�x(t) = I (t, xt−), t = τk, (2.32b)

xt0 = φ(s), s ∈ [−r, 0]. (2.32c)

We also assume that f (t, 0) = 0 for all t ∈ R+,I (τk, 0) = 0 for all τk ∈ R+, and
due to the local nature of stability analysis, we assume that impulsive system (2.32)
has a local solution, say ‖x‖ ≤ ρ for sufficiently small ρ > 0, and the Lyapunov
function, V , is defined on R+ × PC ([−r, 0]; S(ρ)) with S(ρ) ⊂ D .

Before giving the conditions that guarantee the stability results, we state the def-
initions of different stability notions.

Definition 2.18 The trivial solution, x ≡ 0, of (2.32) is said to be

(i) stable if, for each ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0 such that, if
φ ∈ PC ([−r, 0]; S(ρ)) with ‖φ‖r ≤ δ, then ‖x(t)‖ ≤ ε, where, for all t ≥ t0,
x(t) = x(t; t0,φ) is any solution of (2.32);

(ii) uniformly stable if δ in (i) is independent of t0;
(iii) asymptotically stable if (i) holds and for each t0 ∈ R+, there exists an η =

η(t0) > 0 such that, if φ ∈ PC ([−r, 0]; S(ρ)) with ‖φ‖r ≤ η, then
limt→∞ x(t) = 0;

(iv) uniformly asymptotically stable if (ii) holds and there exists an η > 0 such
that, for each γ > 0, there exists some T = T (η, γ) > 0 such that if φ ∈
PC ([−r, 0]; S(ρ)) with ‖φ‖r ≤ η, then ‖x(t)‖ ≤ γ for all t ≥ t0; and

(v) unstable if (i) fails to hold.

Theorem 2.9 Suppose that there exist functions a, b, c ∈ K1, p ∈ PC (R+;R+)

and g ∈ K3. Assume that the function V : [−r,∞) × S(ρ) → R+ is continuous
in [−τ , τ0] × S(ρ) and in [τk−1, τk) × S(ρ) for k ∈ N and that, for each x ∈ S(ρ)

and k ∈ N, lim(t,y)→(τ−
k ,x) V (t, y) = V (τ−

k , x) exists. Moreover, V is assumed to be
locally Lipschitz in x and the following conditions are satisfied:



24 2 Mathematical Background

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ [−r,∞) × S(ρ);
(ii) D+V (t,ψ(0)) ≤ p(t)V (t,ψ(0)) for all t �= τk ∈ R+ and ψ ∈ PC ([−r, 0];

S(ρ)) whenever V (t,ψ(0)) ≥ g(V (t + s,ψ(s))) for s ∈ [−r, 0];
(iii) V (τk,ψ(0) + I (τk,ψ)) ≤ g(V (τ−

k ,ψ(0))) for all (τk,ψ) ∈ R+ × PC
([−r, 0]; S(ρ)) for which ψ(0−) = ψ(0); and

(iv) τ = supk∈N{τk − τk−1} < ∞, M1 = supt≥0

∫ t+τ

t p(s)ds < ∞ and M2 =
infq>0

∫ q
g(s)

ds
c(s) > M1.

Then, the trivial solution x ≡ 0 of (2.32) is uniformly asymptotically stable.

Theorem 2.10 Suppose that there exist functions a, b, c ∈ K1, p ∈ PC (R+;R+)

and g, ĝ ∈ K3 such that s ≤ ĝ(s) < g(s) for s > 0. Assume that the function V :
[−r,∞) × S(ρ) → R+ is continuous on [−τ , τ0] × S(ρ) and on [τk−1, τk) × S(ρ)

for k ∈ N and that for each x ∈ S(ρ) and k ∈ N, lim(t,y)→(τ−
k ,x) V (t, y) = V (τ−

k , x)
exists. Moreover, V is assumed to be locally Lipschitz in x and the following condi-
tions are satisfied:

(i) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ [−r,∞) × S(ρ);
(ii) D+V (t,ψ(0)) ≤ −p(t)V (t,ψ(0)) for all t �= τk ∈ R+ and ψ ∈ PC ([−r, 0];

S(ρ)) whenever g(V (t,ψ(0))) ≥ V (t + s,ψ(s)) for s ∈ [−r, 0];
(iii) V (τk,ψ(0) + I (τk,ψ)) ≤ ĝ(V (τ−

k ,ψ(0))) for all (τk,ψ) ∈ R+ × PC ([−r,
0]; S(ρ)) for which ψ(0−) = ψ(0); and

(iv) μ = infk∈N{τk − τk−1} > 0, M2 = supq≥0

∫ g(s)
q

ds
c(s) , and M1 = inf t≥0

∫ t+μ

t
p(s)ds > M2.

Then, the trivial solution x ≡ 0 of (2.32) is uniformly asymptotically stable.

2.7 Stochastic Differential Equations

In this section, some basic concepts that will be used throughout this book are pre-
sented.We start with introducing some notations and definitions from the probability
theory. Then, we give the definition of stochastic processes and particularly the so-
called Wiener (or Brownian motion) process. After that, we define a particularly
important class of stochastic integrals, namely Itô integrals, followed by stochastic
differential equations.

2.7.1 Notations and Basic Definitions

Denote by ω the outcome of an experience and � the probability sample space. If
the event ω is a possible outcome of a certain random experiment, we suitably write
ω ∈ �. Denote byF the family of all interesting events of �. For further purposes,
F is required to be a σ-algebra (or σ-field), which is defined below.
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Definition 2.19 A collection of subsets (or events)F of � is said to be a σ-algebra
on � if the following conditions hold:

(i) the empty subset ∅ ∈ F ;
(ii) if A ∈ F , then Ac ∈ F where Ac stands for the complement of A; and
(iii) if {Ai }i≥1 ∈ F , then ∪i≥1Ai ∈ F .

A measure space can then be defined by the pair (�,F ) and the elements ofF ,
in this case, are calledF -measurable sets. IfS is a class of subsets of �, then one
can find a smallest σ-algebra σ(S ) on � that contains S . Particularly, if � = R

d

andS is the smallest class of all open set inRd , thenBd = σ(S ) is called the Borel
σ-algebra and its elements are called Borel sets. We can now give the definitions of
a random variable and probability measure.

Definition 2.20 A real-valued function X : � → R is said to be a random variable
orF -measurable if {ω | X (ω) ≤ x} ∈ F for all x ∈ R. Also, anRd -valued function
X (ω) = (X1(ω) X2(ω) · · · Xd(ω))T is said to beF -measurable if all the elements
Xi areF -measurable. Analogously, anRd×m-valued function X (ω) = [Xi j (ω)]d×m

is said to be F -measurable if all the elements Xi j areF -measurable.

Definition 2.21 A function P : F → [0, 1] is said to be a probability measure on
the measurable space (�,F ) if the following conditions hold:

(i) P(∅) = 0 and P(�) = 1; and
(ii) for any pairwise disjoint sequence or collection of subsets {Ai }i≥1 ⊂ F (i.e.,

Ai ∩ A j = ∅ for all i �= j),

P
( ∪i≥1 Ai

) =
∞∑
i=1

P(Ai ).

Moreover, the triplet (�,F ,P) is called a probability space. Also, the probability
space is said to be complete if the σ-algebra is complete, i.e., F = F̄ , where F̄ is
the completion ofF . In this book, we will always assume that the probability space
is complete.

It is well known that the probabilistic behavior of a random variable is completely
and uniquely described by its distribution function F(x), which is defined by

F(x) = P{ω | X (ω) ≤ x}, for all x ∈ R.

Assume that X is a continuous random variable, then there exists a nonnegative
and integrable function f (x) such that, for every x ,

F(x) =
∫ x

−∞
f (s)ds,
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which implies that f (x) = dF(x)
dx , which is called the (probability) density function

of X .
Let (�,F ,P) be a probability space and X be a random variable that is integrable

with respect to the probability measure P, then the mathematical expectation, also
known as mean or average value of x = X (ω) with respect to P, is a real number
defined by

E[X ] =
∫

�

X (ω) d P(ω) =
∫ ∞

−∞
x dF(x),

the pth moment of X is defined by

E[X p] =
∫

�

X p(ω) d P(ω) =
∫ ∞

−∞
x p dF(x),

where p > 0. Particularly, if p = 2, E[X2] is the mean square (m.s.) of X . Also, the
variance of X is defined by

V (X) = E
[
X − E[X ]]2

and, if Y is another random variable, the covariance of X and Y is defined by

Cov(X,Y ) = E
[
(X − E[X ])(Y − E[Y ])],

where all involved integrals exist.
Consider the probability space (�,F ,P), and let X1(ω), X2(ω), · · · , be a

sequence of random variables, and X (ω) be defined on the given probability space.
Then, the sequence {Xk(ω)}k≥1 is said to converge to X (ω) with probability one
(w.p.1) or almost surely (a.s.) if

P
{
ω | lim

k→∞ Xk(ω) = X (ω)
} = 1;

it is said to converge to X (ω) in probability or stochastically if, for every ε > 0,

lim
k→∞P

{
ω | |Xk(ω) − X (ω)| > ε

} = 0;

it is said to converge to X (ω) in the pth moment if

lim
k→∞E

[|Xk(ω) − X (ω)|p] = 0,

where all involved integrals exist, and it is said to converge to X (ω) in the m.s. if
p = 2. Furthermore, if {Xk(ω)}k≥1 and X (ω) have distribution functions Fk(x) and
F(x), respectively, then the sequence of the random variables is said to converge to
X (ω) in distribution if
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lim
k→∞ Fk(x) = F(x)

in every continuity point of F(x).

2.7.2 Stochastic Processes

Let (�,F ,P) be a complete probability space. A filtration is a family (or a sequence)
of increasing sub−σ-algebra {Ft }t≥0 ofF (i.e.,Ft ⊂ Fs ⊂ F for all t ∈ I = [0, s)
with s < ∞. The filtration {Ft }t≥0 is said to be right continuous if Ft = ∩s>tFs ,
and it is said to satisfy the usual conditions if it is right-continuous andF0 contains
all P-null sets (i.e., any random event A ∈ F0 with P(A) = 0). From now on, the
complete probability space under consideration satisfies the usual conditions and, in
this case, we use the quadruple (�,F , {Ft }t≥0,P).

Definition 2.22 A stochastic process X (t) is a family of random variables

{Xt (ω) | ∀t ∈ I and ω ∈ �},

which is also denoted by X (t,ω) (or for simplicity by X (t)) for the same t and ω.

Throughout this book, we restrict ourselves to a parameter or (index) set I ⊆ R+
and state space � that is R or Rn , unless stated otherwise. Apparently, a stochastic
process is a function of two variables; for each fixed t ∈ I , Xt (ω) is a scalar real-
valued random variable (or Rn-valued), while, for each fixed ω ∈ �, Xt (ω) is real-
valued (or Rn-valued) function defined on I . The latter is called a sample path or
realization of the stochastic process.

Let X (t) be an R
d -valued stochastic process. It is said to be continuous (respec-

tively, right continuous, left continuous) if, for almost allω ∈ �, Xt (ω) is continuous
(respectively, right continuous, left continuous) for all t ∈ R+. It is said to be cadlag
if it is right-continuous and, for almost all ω ∈ �, the left limit lims→t Xs(ω) exists
and is finite for all t > 0. It is said to be integrable if, for all t ∈ R+, Xt (ω) is an
integrable random variable. It is said to be Ft−adapted (or nonanticipated) if, for
all t ∈ R+, it is Ft -measurable. If Yt (ω) is another stochastic process, then the two
processes are said to be indistinguishable if

P
{
ω | Xt (ω) = Yt (ω), ∀t ∈ R+

} = 1.

Let X (t) be an Rd -valued cadlagFt -adapted process andD be an open subset of
R

d . Then, the first exit time of the process X (t) from D is defined by

τ = inf{t ∈ R+ | X (t) /∈ D},

where inf ∅ = ∞.
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Like randomvariables, stochastic processes canbe characterizedby theirmoments,
variance and autocorrelation.

Definition 2.23 Let X (t)be a continuous stochastic process.Then, themathematical
expectation (or mean or the first moment) of X (t) is defined by

m(t) = E[X (t)] =
∫ ∞

−∞
x f (x, t) dx,

where f (or f (x, t)) is the probability density function of x = X (t); the second
moment (or the mean square) is defined by

m2(t) = E[X2(t)] =
∫ ∞

−∞
x2 f (x, t) dx;

the variance is defined by

Var [X (t)] = E[(X (t) − m(t))2] = m2(t) − m2(t);

and the autocorrelation is defined by

R(t1, t2) = E[X (t1)X (t2)] =
∫ ∞

−∞

∫ ∞

−∞
x1x2 f (x1, t1; x2, t2) dx1dx2.

Definition 2.24 Let (�,F ,P) be a complete probability space with a filtration
{Ft }t≥0. A stochastic process W (t) for all t ∈ R+ that is continuous (a.s.) and Ft -
adapted is said to be Wiener (or Brownian motion) process if

(i) P{ω | W (0) = 0} = 1;
(ii) for any 0 ≤ s < t < ∞, the incrementW (t) − W (s) is independent ofFs ; and
(iii) for any t ∈ R+ and h > 0, the increment W (t + h) − W (t) is Gaussian (or

normally) distributed with

E[W (t + h) − W (t)] = μh; and

E[(W (t + h) − W (t))2] = σ2h,

where the mean μ ∈ R and the variance σ2 is a positive constant.

If μ = 0 and σ2 = 1, W is said to be a standard Wiener process.

Following the definition of distribution function F , the jointly distribution function
of X (t1), . . . , X (tn) is defined by

FX (t1),...,X (tn)(x1, . . . , xn) = P{X (t1) ≤ x1, . . . , X (tn) ≤ xn}
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and, if F has partial derivatives at x1, . . . , xn , then the corresponding probability
density function of (x1, . . . , xn) is given by

f (x1, . . . , xn) = ∂n

∂x1 · · · ∂xn FX (t1),...,X (tn)(x1, . . . , xn).

A stochastic process X (t) is said to be stationary if and only if, for all time instants
t1, . . . , tn and any time difference τ ,

fX (t1),...,X (tn)(x1, . . . , xn) = fX (t1+τ ),...,X (tn+τ )(x1, . . . , xn).

We conclude this subsection with a mathematically useful stochastic process
called Gaussian white noise process.

Definition 2.25 A stochastic processN is said to be aGaussian white noise process
if and only if it is a stationary Gaussian process with mean zero and autocorrelation
given by

R(τ ) = Cδ(τ ),

where C is a constant and δ is a Dirac delta or impulse function.

Clearly, the variance of the Gaussian white noise is Var [N (t)] = ∞.

2.7.3 Stochastic Differential Equations

Suppose that a physical process is described by the following ordinary differential
equation

dx

dt
= f (t, x). (2.33)

If it is perturbed by some disturbance having a stochastic behavior, say ξ = ξ(t)
for all t ≥ t0 with t0 ∈ R+, then (2.33) may be written as

dX

dt
= F(t, X, ξ). (2.34)

Due to the random part, this differential equation cannot be interpreted as its
ordinary counterpart in (2.33). To better understand the new situation, we consider
the following special form of (2.34)

dX

dt
= f (t, X) + g(t, X)N (t), (2.35)
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with a deterministic drift coefficient f (t, X) perturbed by a noise term g(t, X)N (t)
with N being a Gaussian white noise process and the diffusion coefficient g(t, X)

is the noise intensity. Integrating (2.35) over [t0, t] yields

X (t) = X (t0) +
∫ t

t0

f (s, X (s))ds +
∫ t

t0

g(s, X (s))N (s)ds, (2.36)

where the first integral is deterministic for almost every ω ∈ �, while the second one
cannot be defined in any meaningful manner.

To cope with this difficulty, we replace the aforementioned second integral by an
integral of the form

∫ t

t0

g(s, X)dW (s), (2.37)

where W is a Wiener process with the formal relationship with the Gaussian white
noise process being given by Ẇ (t) = N (t) and so dW (t) = N (t)dt . The resulting
integral in (2.37) cannot be defined as a Riemann–Stieltjes integral because, for
almost all ω ∈ �, the Wiener sample path W (ω) is nowhere differentiable and has
unbounded variation over every time interval.

However, one can define this integral on a larger class of stochastic processes
depending on the properties of Wiener process. This definition was first proposed by
K. Itô, and the integral is now known as Itô stochastic integral.

Consider the integral of the form

∫ b

a
g(s,ω)dW (s,ω), (2.38)

where g is a stochastic processwith appropriate conditions andW is aWiener process,
where we generally assume that the two processes are not mutually independent and
g(t,ω) is not absolutely continuous for almost all ω ∈ �.

The core feature of the Itô integral is that the random function g is nonanticipative
or adapted to the filtration {Ft }t≥0; that is, g(t,ω) can at most depend on the present
and past, and not on the future, values of theWiener processW (t,ω). More precisely,
let (�,F , {Ft }t≥0,P) be a complete probability space on which theWiener process
W (t,ω) is defined for all t ∈ R+ and

(i) for every t1, t2 ∈ R+, t1 < t2 implies that Ft1 ⊂ Ft2 ;
(ii) for all t ∈ R+, the random variable W (t,ω) isFt -measurable; and
(iii) for ti+1 > ti ≥ t , the increment W (ti+1,ω) − W (ti ,ω) is independent of Ft .

For a, b ∈ R+ with a ≤ b, denote by L2[a, b] the class of all real-valued random
processes (functions) g(t) defined on [a, b] and satisfying the following conditions:
(iv) for all t ∈ [a, b], g(t,ω) isFt -measurable; and
(v) the integral
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∫ b

a
g2(t,ω)dt (2.39)

is finite w.p.1.

To define the Itô (stochastic) integral, consider the partition a = t1 < t2 < · · · <

tk+1 = b, and let g(t,ω) be a step or simple function, i.e., g(t,ω) = g(ti ,ω) for
all t ∈ [ti , ti+1], which is assumed to be Fti -measurable, bounded random variable.
Then, the Itô integral is defined by

∫ b

a
g(t,ω)dW (t) =

k∑
i=1

g(ti ,ω)[W (ti+1) − W (ti )]. (2.40)

Another way to define Itô integral is as a limit of a m.s. convergent sequence of
simple processes. Let gn(t,ω) ∈ L2[a, b] be an arbitrary sequence of simple pro-
cesses. Then, the Itô integral is defined by

∫ b

a
g(t,ω)dW (t) = lim

n→∞

∫ b

a
gn(t,ω)dW (t) (2.41)

in L2[a, b], i.e.,

lim
n→∞E

∫ b

a
|g(t,ω) − gn(t,ω)|2dt = 0.

The Itô integral in (2.41) has some nice properties. Assuming that g ∈ Lad([a, b];
R

d), i.e., g is anRd -valuedFt -adapted process such that
∫ b
a E‖g(t)‖2dt < ∞, some

of these properties are

(i) E

[∫ b

a
g(t)dW (t)

]
= 0; and

(ii) E

[∥∥∥∥
∫ b

a
g(t)dW (t)

∥∥∥∥
2
]

=
∫ b

a
E‖g(t)‖2 dt .

Replacing the stochastic integral in (2.36) by the Itô integral in (2.38) results in
the following stochastic integral equation

X (t) = X (t0) +
∫ t

t0

f (s, X (s))ds +
∫ t

t0

g(s, X (s))dW (s), (2.42)

which is equivalent to the symbolic stochastic differential equation (SDE) of Itô type

dX (t) = f (t, X (t))dt + g(t, X (t))dW (t), (2.43)
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with the initial state X (t0) = X0. Before presenting the solution of this equation, we
need to define the following class of random processes (functions).

Definition 2.26 Let (�,F , {Ft }t≥0,P) be a complete probability space. For any
ω ∈ �, a, b ∈ R+, with a < b and p ≥ 1, a random process f (t,ω) is said to belong
to classLad(�; L p[a, b]) if it isFt -adapted and almost all its sample paths are pth
integrable in the Riemann sense.

Definition 2.27 For any t0, T ∈ R+, the R
n-valued stochastic process

x(t) = x(t; t0, x0) is said to be a solution of n-dimensional initial-value problem

dx(t) = f (t, x(t))dt + g(t, x(t))dW (t), t ∈ [t0, T ], (2.44a)

x(t0) = x0, (2.44b)

where W (t) = (W1(t) W2(t) · · · Wm(t))T ∈ R
m and x0 is an Ft0 -measurable Rn-

valued random variable such that E[‖x0‖2] < ∞, if the the following properties
hold:

(i) x(t) is continuous and Ft -adapted;
(ii) the R

n-valued f ∈ Lad(�; L1[a, b]) and the R
n×m-valued g ∈ Lad(�; L2

[a, b]);
(iii) for all t ∈ [t0, T ], x(t) satisfies the SDE in (2.44a) w.p.1; and
(iv) at t = t0, x satisfies the initial condition in (2.44b) w.p.1.

Furthermore, a solution x is said to be unique if any other solution y is indistinguish-
able from x , i.e.,

P
{
x(t) = y(t), ∀t ∈ [t0, T ]} = 1.

Whenworking on Itô SDEs, there arise some peculiarities, and among them is that
if x is a solution of an Itô equation and V (t, x(t)) is a sufficiently smooth function,
we cannot use the chain rule of the classical calculus to set up the SDE governing
V (t, x(t)). Instead, we use the stochastic version of the chain rule, which is called Itô
formula. Before stating the definition of Itô formula, we define C 1,2(R+ × R

n;R+)

to be the space of all real-valued functions V (t, x) defined onR+ × R
n such that they

are continuously differentiable once in t and twice in x . For instance, if V (t, x) ∈
C 1,2(R+ × R

n;R+), then we have

Vt (t, x) = ∂V (t, x)

∂t
, Vx (t, x) =

(∂V (t, x)

∂x1
· · · ∂V (t, x)

∂xn

)
1×n

, Vxx (t, x) =
(∂2V (t, x)

∂xi∂x j

)
n×n

.

Definition 2.28 (Itô formula) For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be
an Rn-dimensional Ft -adapted stochastic process satisfying

x(t) = x(t0) +
∫ t

t0

f (s, x(s))ds +
∫ t

t0

σ(s, x(s))dW (s), (a.s.)
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where f and g are as defined in the last definition and W is the Wiener process.
Suppose that V ∈ C 1,2(R+ × R

n;R). Then, for all t ≥ t0, V (t, x(t)) is a stochastic
process satisfying

V (t, x(t)) = V (t0, x(t0)) +
∫ t

t0

L V (s, x(s))ds

+
∫ t

t0

Vx (s, x(s))σ(s, x(s))dW (s), (a.s.)

where

L V (t, x(t)) = Vt (t, x(t)) + Vx (t, x(t)) f (t, x(t)) + 1

2
tr[σT (t, x(t))Vxx (t, x(t))σ(t, x(t))]

is the infinitesimal operator acting on the process V (t, x(t)) with Vt (t, x(t)),
Vx (t, x(t)) and Vxx (t, x(t)) being the partial differentials of the process V (t, x(t))
as defined above.

In fact, the Itô formula may be stated in an equivalent form in which the two
integral equations take the differential forms. That is, if x is a stochastic process
satisfying

dx(t) = f (t, x(t))dt + σ(t, x(t))dW (t), (a.s.)

and V ∈ C 1,2(R+ × R
n;R). Then, for all t ≥ t0, V (t, x(t)) is a stochastic process

satisfying

dV (t, x(t)) = L V (t, x(t))dt + Vx (t, x(t))σ(t, x(t))dW (s), (a.s.)

where L V (t, x(t)) is defined above.
The operatorL (orL V as a single notation) is also called the averaged derivative

(or infinitesimal diffusion operator) at a point (t, x) and can be generally defined as

L V (t, x) = lim
h→0+

1

h

[
E[V (t + h, x(t + h))] − V (t, x)

]
.

Asmentioned earlier, a more general system than (2.44) is when the system states
are subject to time lag. This leads to stochastic systems with time delay or systems
with stochastic functional differential equations, which are typically defined by

{
dx(t) = f (t, xt )dt + g(t, xt )dW (t), t ∈ [t0, T ],
xt0(s) = φ(s), s ∈ [−r, 0], (2.45)

for all T > t0 with t0 ∈ R+.
We have stated clearly that one of the main discrepancies between ordinary and

delay systems is the amount of the initial data, which, in the latter case, must be given
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over a certain period of time rather than at a specific time instance. Moreover, due
to the randomness that drives the system states, the given initial condition function
is generally defined as a stochastic process. Consequently, to define a solution of the
initial-value problem given in (2.45), it is natural to consider the initial function φ to
be Ft0 -measurable, continuous random variable mapping [−r, 0] into R

n such that
E[‖φ‖p

r ] < ∞ for some p > 0. The solution of (2.45) can then be defined similarly
to that of (2.44) except, of course, x(t) is defined over the interval [t0 − r, T ] for all
T ∈ R+ (or [t0 − r, t0 + α] for α > 0).

Having defined the solution x of (2.45) and the Itô formula, we can present the
definition of some stochastic properties of the trivial solution of (2.45).

Definition 2.29 The trivial solution x ≡ 0 of (2.45) is said to be

(i) almost-surely stable (or stable w.p.1) if, for any given ε, ε′ > 0 and t0 ∈ R+,
there exists δ = δ(ε, ε′, t0) such that

‖φ‖r < δ implies P{ω | sup
t≥t0

‖x(t)‖ > ε′} < ε;

where x(t) = x(t; t0,φ) is any solution of system (2.45);
(ii) pth moment stable if, for any ε > 0 and t0 ∈ R+, there exists δ = δ(ε, t0) such

that, for p > 0,

‖φ‖p
r < δ implies E[sup

t≥t0
‖x(t)‖p] < ε;

(iii) asymptotically stable if, for any ε ∈ (0, 1), there exists δ = δ(ε, t0) such that

‖φ‖r < δ implies P{ω | lim
t→∞ sup ‖x(t)‖ = 0} < 1 − ε;

(iv) almost-surely asymptotically stable if it is almost-surely stable and

P{ω | lim
t→∞ sup ‖x(t)‖ = 0} = 1;

(v) pth moment asymptotically stable if it is stable in the pth moment and

lim
t→∞E[sup ‖x(t)‖p] = 0;

(vi) pth moment exponentially stable if there exist positive constants p, K and λ
such that, for any t0 ∈ R+,

‖φ‖p
r < δ implies E[‖x(t)‖p] ≤ K‖φ‖p

r e
−λ(t−t0).

Moreover, the above stability properties are said to be satisfied globally if they hold
for arbitrarily large δ. Also, they are said to hold uniformly if δ is chosen to be
independent of t0.
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2.7.4 Comparison Method for Stochastic Systems

In this subsection, we state the comparison results for the initial-value problem with
the stochastic differential equations of Itô type

dx(t) = f (t, x(t))dt + g(t, x(t))dW (t), (2.46a)

x(t0) = x0, (2.46b)

where f ∈ C (R+ × R
n;Rn), g ∈ C

(
R+ × R

n;Rn×m
)
and W is a Wiener process

defined on the complete probability space (�,F , {Ft }t≥0,P) for all t ∈ R+.

Theorem 2.11 (Comparison theorem) Let V ∈ C 1,2 (R+ × R
n;R) such that the

differential inequality

D+V (t, x) ≤ h(t, V (t, x)) (2.47)

holds (a.s.) for all (t, x) ∈ R+ × R
n, where h ∈ C (R+ × R

n;R), and h(t, z) is
concave and quasi-monotone nondecreasing in z for all fixed t ∈ R+. Let r(t) =
r(t; t0, u0) be the maximal solution of the auxiliary scalar differential system

u̇(t) = h(t, u), t ∈ R+ (2.48a)

u(t0) = u0. (2.48b)

Then, for all t ∈ R+,E[V (t0, x0)] ≤ u0 implies thatE[V (t, x(t))] ≤ r(t; t0, u0)with
x(t) being the solution process of (2.46).

Theorem 2.12 (Stability theorem) Suppose that there exist functions a ∈ Kc and
b ∈ Kv . Let V ∈ C 1,2(R+ × S(ρ);R) with S(ρ) ⊂ R

n for ρ > 0 such that, for all
(t, x) ∈ R+ × S(ρ), the following conditions are satisfied

(i) b(‖x‖p) ≤ V (t, x) ≤ a(‖x‖p), (a.s.)
(ii) L V (t, x) ≤ h(t, V (t, x)), (a.s.)

where p ≥ 1, h ∈ C (R+ × R+;R), h(t, 0) ≡ 0, and h(t, z) is concave and quasi-
monotone nondecreasing in z for all fixed t ∈ R+. Then, the stability properties of
the trivial solution, u ≡ 0, (2.48) imply the corresponding pth moment stability of
the trivial solution, x ≡ 0, of (2.46).

On the other hand, if the system states of (2.46) experience impulsive effects
at fixed times, we are led to stochastic impulsive systems or systems of stochastic
impulsive differential equations, which are generally given by

⎧
⎨
⎩
dx(t) = f (t, x(t))dt + g(t, x(t))dW (t), t �= τk,
�x(t) = I (t, x(t−)), t = τk,
x(t0) = x0.

(2.49)
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2.8 Stochastic Impulsive System with Time Delay

We have previously described stochastic systems with time delay and systems of
stochastic impulsive differential equations. In this section, these systems are com-
bined to lead us to consider stochastic impulsive system with time delay (SISD).
Before formulating and for convenient reading, we restate some of the notations that
have been presented in previous sections.

Let (�,F , {Ft }t≥0,P) be a complete probability space with filtration {Ft }t≥0

satisfying the usual conditions (i.e., it is right-continuous andF0 contains all P-null
sets). Let W (t) = (W1(t) W2(t) · · · Wm(t))T be an m-dimensional Wiener process
defined on the above probability space. Let r > 0 represent time delay and denote by
C ([−r, 0];Rn) (and PC ([−r, 0];Rn)) the space of continuous (piecewise contin-
uous) functions φ mapping [−r, 0] into R

n . Moreover, if x : [t − r,∞) → R
n , we

define xt by xt = x(t + s) for s ∈ [−r, 0] and the corresponding r -norm is ‖xt‖r =
supt−r≤s≤t ‖x(s)‖. We also define xt− ∈ PC ([−r, 0];Rn) by xt−(s) = x(t + s) for
−r ≤ s < 0 and xt−(s) = x(t−) for s = 0. We should mention that this does not
mean xt− = lims→t− xs because, if x ∈ PC ([−r, 0];Rn), the limit lims→t− xs does
not generally exist. For p > 0, letL p

F 0
([−r, 0];Rn) be the set of allF0-measurable

PC ([−r, 0];Rn)-valued random variables φ = {φ(s) | − r ≤ s ≤ 0} such that
E[‖φ‖p

r ] ≤ c, for some c ≥ 0.We also assume thatφ is independent ofW (t,ω). For a
givenWiener processW (t,ω) andfiltration {Ft | a ≤ t ≤ b}, we assume thatW (t,ω)

isFt -adapted (i.e., for each t ∈ [a, b],W (t,ω) isFt -measurable) and for any s ≤ t ,
the random variable W (t,ω) − W (s,ω) is independent of the σ-algebra Fs .

Since the solution of a stochastic initial-value problem is a random process, rather
than merely a deterministic function, we need to define the piecewise continuous
function.

Definition 2.30 For a, b ∈ R with a < b and D ⊂ R
n , a random process ψ :

[a, b] × � → D is said to be an element of the space PC ([a, b] × �;D) (or D-
cadlag) if, for almost all ω ∈ �, ψ(t+,ω) = ψ(t,ω) ∀ t ∈ [a, b) and ψ(t−,ω) exists
inD ∀ t ∈ (a, b] and ψ(t−,ω) = ψ(t,ω) for all but at most a finite number of points
t ∈ (a, b]. Furthermore, a random process ψ : [a,∞) × � → D is said to be an
element of PC ([a,∞) × �;D) if, for almost all ω ∈ �, c > a, where t ∈ [a, c],
ψ(t,ω) ∈ PC ([a, c] × �;D).

Consider now the following nonlinear SDE with time delay

dx(t) = f (t, xt )dt + g(t, xt ) dW (t), t ∈ [a, b], (2.50a)

where x ∈ R
n is the system state random process, f ∈ R

n and g ∈ R
n×m . The initial

condition is given by
xt0 = φ(s), s ∈ [−r, 0], (2.50b)

where φ ∈ L 2
F 0

([−r, 0];Rn) (i.e., the initial state is assumed to be F0-adapted,
piecewise continuous with finite pth moment); thus, the corresponding stochastic
integral equation takes the form
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x(t) = φ(0) +
∫ t

t0

f (s, xs)ds +
∫ t

t0

g(s, xs) dW (s), (a.s.) (2.51)

for all t ≥ t0. The first integral is a Riemann integral almost surely (a.s.) and the
second one is an Itô integral satisfying

E

[ ∫ t

t0

g(s, xs) dW (s)
]

= 0, and E

∥∥∥
∫ t

t0

g(s, xs) dW (s)
∥∥∥
2 =

∫ t

t0

E‖g(s, xs)‖2 ds.

Considering impulse effects (of variable times) in (2.50a) leads to the following
SISD

dx(t) = f (t, xt )dt + g(t, xt ) dW (t), t �= τk(x(t
−)), (2.52a)

�x(t) = I (t, xt−), t = τk(x(t
−)), (2.52b)

where τk ∈ C 2(Rn;R+) represents an impulsive hypersurface, for k ∈ N, and sat-
isfies 0 = τ0(x) < τ1(x) < τ2(x) < · · · and limk→∞ τk(x) = ∞ for x ∈ R

n . The
initial condition is given by

xt0 = φ(s), s ∈ [−r, 0]. (2.52c)

We also assume that the solution of (2.52) is right-continuous (i.e., x(t+) = x(t)).
In difference equation (2.52b), �x = x(t) − x(t−) and the functional I (·) is the
impulse amount, which is assumed to beFtk -adapted.

In the following, we define the solution of the initial-value problem (2.52).

Definition 2.31 For any t0 ∈ R+ and α > 0, an R
n-valued random process x ∈

PC ([t0 − r, t0 + α];Rn) is said to be a solution of (2.52) if it satisfies the following
conditions:

(i) the set of impulses T = {t ∈ (t0, t0 + α]
∣∣∣ t = τk(x(t−)) for some k} is finite;

(ii) x(t) is continuous for all t ∈ (t0, t0 + α]\T and Ft -adapted;
(iii) the functionals f ∈ Lad(�; L[t0, t0 + α]) and g ∈ Lad(�; L2[t0, t0 + α]);
(iv) for any t ∈ (t0, t0 + α], φ ∈ L 2

F 0
([−r, 0];Rn), and I (tk, xt−k ) that is Ftk -

adapted, the following equation

x(t) =
⎧
⎨
⎩

φ(t − t0), t ∈ [t0 − r, t0]
φ(0) + ∫ t

t0
f (s, xs)ds + ∫ t

t0
g(s, xs) dW (s)

+ ∑
{k:tk∈(t0,t]} I (tk, xt−k ), t ∈ (t0, t0 + α]

(2.53)

holds w.p.1;
(v) for any t ∈ T, x(t) satisfies the difference equation in (2.52b) w.p.1; and
(vi) x satisfies the initial condition in (2.52c) w.p.1.



38 2 Mathematical Background

We should also mention that, in this definition, we have restricted ourselves to the
case where solutions undergo a finite number of impulses over any finite interval.
However, letting t ∈ (t0,∞), therewould be a countably infinite number of impulses,
which represent the simple jump discontinuities of x .

A special class of the SISD (2.52) is when the impulsive instances occur at fixed
times, i.e.,

dx(t) = f (t, xt )dt + g(t, xt ) dW (t), t �= τk, (2.54a)

�x(t) = I (t, xt−), t = τk, (2.54b)

xt0 = φ(s), s ∈ [−r, 0]. (2.54c)

This system will be studied in later chapters for the stability-like properties.

2.9 Switched Systems

As described in the introductory chapter of this book, a switched system is a com-
bination of a finite number of subsystems (or modes) and a control-based switching
logic to organize the switching among the subsystems. In this section, we focus on a
mathematical formulation of such a system, including defining what is meant to be a
switching signal or law. Then, we state and prove a stability property of the switched
system. This result is considered as a warm-up for further stability theorems of the
system that will be presented in this book.

2.9.1 System Formulation

Consider the following controlled system

ẋ = f (t, x) + u(t), (2.55)

with the initial state x(t0) = x0 ∈ R
n , where x : R+ → R

n is the system state, f :
R+ × R

n → R
n is the system vector field, and u ∈ R

n is the system input having the
form

u(t) =
∞∑
k=1

Ckx(t)lk(t), (2.56)
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with Ck being a control gain matrix with appropriate dimensions and lk(·) being the
ladder function defined by

lk =
{
1, tk−1 ≤ t < tk ,
0, otherwise.

(2.57)

Controller (2.56) can be written as

u(t) = Ckx(t), t ∈ [tk−1, tk), k ∈ N,

meaning that the controller u(t) switches its values at every time instant t = tk , i.e.,
u is a switching controller. Accordingly, closed-loop system (2.55) becomes

{
ẋ = f (t, x) + Ckx, t ∈ [tk−1, tk), k ∈ N

x(t0) = x0.
(2.58)

This system is called switched system. Typically, a general nonlinear switched
system takes the form

{
ẋ = fσ(t)(t, x), t ≥ t0,
x(t0) = x0,

(2.59)

where σ : [t0,∞) → S = {1, 2, . . . , N }, for some N ∈ N representing the number
of subsystems in the entire switched system, is a piecewise constant function called
switching signal, also known as a switching law or switching rule, and takes values
in the compact set S , which is also named by the finite state space. The role of σ
is to switch among the vector fields on the right-hand side of (2.59), i.e., fi for all
i ∈ S , so as to accomplish a certain desired task. The solution of (2.59) is generally
equipped with a proper switching signal, i.e., it is represented by the pair (x,σ) to
emphasize the switching signal in use.

As in systems and control theory, one of the most important problems in switched
systems is the search for conditions assuring stability. The basic problems in stability
of switched systems are introduced in [5] and classified into the following three
categories.

Problem A (Stability under arbitrary switching) Finding sufficient conditions to
guarantee asymptotic stability of a switched system for an arbitrary switching signal.

Problem B (Stability by a constrained switching) Identifying the switching signals
for which a switched system is asymptotically stable.

Problem C (Stabilizability) Constructing a switching signal that makes a switched
system asymptotically stable.

Problems A and B are usually considered under the hypotheses that the individ-
ual subsystems are asymptotically stable, while Problem C is considered under the
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assumption that the individual subsystems are unstable. In this book, we are mainly
concerned with Problems B and C.

We havementioned earlier that switched systems inherit the stability properties of
the fundamental theory of singlemode systems.However, a possible strange behavior
is that switching among all asymptotically stable subsystems does not necessarily
guarantee the stability of switched system. The remedy to this undesirable situation
is to design a logic-based switching law in order to control the transition among the
involved subsystems. It has been shown in [5–7] that, if the running time of each
single mode is sufficiently large to allow the switching effect to diminish, then it
ensures that the entire switched system preserves the same stability property. This
type of switching is often named by slow or constrained switching and the running
time between any two successive switching moments, say tk for any k ∈ N, is called
dwell time and is denoted by τ . This type of switching signals can be represented by

Sinf(τ ) = {τ | inf tk − tk−1 ≥ τ , ∀k ∈ N}, (2.60)

for some τ > 0.
In fact, the above switching signals (or dwell-time conditions) are particularly use-

ful for linear switched or restricted nonlinear systems. Along this line of dwell-time-
type conditions that is applicable for general nonlinear systems are state-dependent
dwell-time [8, 9] or initial-state-dependent dwell-time condition, denoted by τisd,
[10]. For time being, it suffices to state the latter one for a stochastic switched system
as it will be used later in this monograph. For k ∈ N and i ∈ S , the τisd condition
is defined as follows:

τisd =
{
tk − tk−1 ≥ ln

θ21 (ak−1E[‖x0‖p])
θ1i (akE[‖x0‖p])

}
,

where ak are positive real constants with a0 = 1, ak < ak−1 and limk→∞ ak = 0, and
θ1i and θ2i are some nonlinear class−K∞ functions. Clearly, if the switched system
is linear and, hence, θ’s are identity functions, i.e., θ(s) = s, then the τisd reduces to
the dwell-time condition (2.60).

From a practical perspective, it may not be suitable to activate every individual
subsystem over a time period τ to accomplish the asymptotic stability property.
Instead, to achieve the same qualitative property, as proposed in [7], the average
dwell time, denoted by τave, can be taken sufficiently large. This type of switching
signals, denoted by Save(τ , N0), is defined as follows: for any T ≥ t ≥ t0,

Nσ(T, t) ≤ N0 + T − t

τave
, (2.61)

where Nσ(T, t) represents the number of switching moments of σ in the interval
(t, T ) and N0 is the chatter bound.

Amore general class of switching signal thanSinf(τ ) is calledMarkovian switch-
ing, in which the signal σ is a right-continuous Markov chain (or process), which



2.9 Switched Systems 41

takes values in a finite state spaceS with generator � = (γi j )N×N ; that is, the jumps
among the system modes follow a probabilistic rule defined by

P{r(t + h) = j |r(t) = i} =
{

γi j h + o(h), if i �= j ,
1 + γi i h + o(h), if i = j ,

(2.62)

where h > 0. Here, γi j > 0 is the transition rate from i to j if i �= j , and γi i =
− ∑N

j=1, j �=i γi j and o(h) is such that limh→0
o(h)

h = 0.
Conventionally, if the switching signal is represented by a Markov process, the

corresponding switched system (2.59) has the form

{
ẋ(t) = f (t, x(t),σ(t)), t ≥ t0,
x(t0) = x0, σ(t0) = σ0,

(2.63)

for some initial state σ0 ∈ S .

2.9.2 Systems with Stable Subsystems

In the following theorem, we state sufficient conditions that guarantee exponential
stability of the linear system

ẋ = Ai x, t ∈ [tk−1, tk), (2.64a)

x(0) = x0, (2.64b)

where k ∈ N, tk−1 < tk with limk→∞ = ∞ and Ai ∈ R
n×n for each i ∈ S .

Theorem 2.13 Consider the switched system (2.64). Let Ai be a Hurwitz matrix
for each i ∈ S . Then, trivial solution, x ≡ 0, of (2.64) is exponentially stable if the
following inequality holds:

ln μ − ν(tk − tk−1) ≤ 0, k ∈ N (2.65)

whereμ = λM
λm

withλM = max{λmax(Pi ) for all i ∈ S },λm = min{λmin(Pi ) for all
i ∈ S }, Pi is a positive-definite matrix satisfying Lyapunov matrix equation

AT
i Pi + Pi Ai = −Qi , (2.66)

for any positive-definite matrix Qi , and ν is such that 0 < ν < λi where λi = ci/λM

with ci being a positive constant such that

∂Vi

∂x
Ai x ≤ −ci‖x‖2. (2.67)
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Proof For all t ≥ t0 with t0 ∈ R+, let (x(t),σ(t)) (or for simplicity x(t) = x
(t; t0, x0)) with σ taking values in S be the solution of (2.64). For any i ∈ S ,
define the Lyapunov function by

Vi (x) = xT Pi x . (2.68)

Then, it is guaranteed that

λm‖x‖2 ≤ Vi (x) ≤ λM‖x‖2 (2.69)

and along the trajectories of (2.64) the time derivative of Vi satisfies

∂Vi

∂x
Ai x ≤ −ci‖x‖2. (2.70)

Combining (2.69) and (2.70) leads to

V̇i (x) ≤ −λi Vi (x)

where λi = ci/λM . The solution of this differential inequality is

Vi (x(t)) ≤ Vi (x(tk−1))e
−λi (t−tk−1) (2.71)

From (2.69), we have, for any i, j ∈ S

Vj (x(t)) ≤ μVi (x(t)), where μ = λM

λm
. (2.72)

For instance, activating subsystems 1 and 2 on the first and second intervals,
respectively, gives

V1(x(t)) ≤ e−λ1(t−t0)V1(x0), t ∈ [t0, t1)
V2(x(t)) ≤ e−λ2(t−t1)V2(x(t1)), t ∈ [t1, t2)

≤ e−λ2(t−t1)μV1(x(t1))

≤ μe−λ2(t−t1)e−λ1(t1−t0)V1(x0)

Generally, for any i ∈ S and t ∈ [tk−1, tk), one may get

Vi (x(t)) ≤ μi−1e−λi (t−tk−1)e−λi−1(tk−1−tk−2) · · · e−λ1(t1−t0)V1(x0). (2.73)

Let λ = min{λi for all i ∈ S }. Then
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Vi (x(t)) ≤ μi−1e−λ(t−t0)V1(x0)

= μi−1e−ν(t−t0)e−(λ−ν)(t−t0)V1(x0)

≤ μi−1e−ν(tk−t0)e−(λ−ν)(t−t0)V1(x0)

= μi−1e−ν(t1−t0)e−ν(t2−t1) · · · e−ν(tk−tk−1)V1(x0)e
−(λ−ν)(t−t0) (2.74)

or, for t ∈ [tk−1, tk)

Vi (x(t)) ≤ μe−ν(t1−t0)μe−ν(t2−t1) · · · μe−ν(tk−tk−1)V1(x0)e
−(λ−ν)(t−t0) (2.75)

Provoking the switching signal in (2.65), we obtain

Vi (x(t)) ≤ V1(x0)e
−(λ−ν)(t−t0), ∀t ≥ t0.

By (2.69), we have

‖x(t)‖ ≤ K‖x0‖e−(λ−ν)(t−t0)/2, ∀t ≥ t0

where K = √
μ. This shows that the trivial solution x ≡ 0 of the switched system is

exponentially stable.

Remark 2.2 In Theorem 2.13, one can write condition (2.65) as follows:

tk − tk−1 ≥ lnμ

ν
=: τ k ≥ 1. (2.76)

The fixed positive constant τ is called dwell time. Also, Theorem 2.13 says that if the
switched system has exponentially stable subsystems and the interval between any
two consecutive discontinuities is larger than τ , then the trivial solution of system
(2.64) is exponentially stable. Hespanha andMorse in [7] showed that a similar result
still holds if the dwell time condition is not satisfied, but the average interval between
consecutive discontinuities in no smaller than τ . In the latter case, τ (or often denoted
by τave) is called the average dwell time [7, 11]. To consider τave in the proof, let the
number of switchings in the time interval (t0, t), N (t0, t), satisfies

N (t0, t) ≤ N0 + t − t0
τave

, (2.77)

where N0 is defined as the chatter bound. Then, rewrite the inequality in (2.73) as
follows:

Vi (x) ≤ e(i−1) ln μ−λ(t−t0)V1(x0).
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Let N0 = η/ ln μ (with μ �= 1) where η is an arbitrary constant and τave =
ln μ/(λ − λ∗)where (λ∗ < λ). Then, applying the average dwell-time in (2.77) leads
to

Vi (x) ≤ eη−λ∗(t−t0)V1(x0).

It is worth mentioning that the last inequality can be found as follows:

(i − 1) ln μ − λ(t − t0) ≤
(
N0 + t − t0

τave

)
ln μ − λ(t − t0)

=
( η

ln μ
+ (λ − λ∗)(t − t0)

ln μ

)
ln μ − λ(t − t0)

= η − λ∗(t − t0).

2.10 Stochastic Switched Systems with Time Delay

In the nonlinear switched system (2.59), if we consider time delay and random noise,
we are led to the following nonlinear stochastic switched systems with time delay
(SSSD)

{
dx(t) = fσ(t)(t, xt )dt + gσ(t)(t, xt )dW (t), t ≥ t0,
xt0(s) = φ(s), s ∈ [−r, 0], (2.78)

where fσ : R+ × C ([−r, 0];Rn) → R
n is assumed to belong to the function

classLad(�; L[a, b]) for some a, b ∈ R+ with a < b, gσ : R+ × C ([−r, 0];Rn) →
R

n×m represents the noise intensity, which belongs to the function classLad(�; L2

[a, b]), W : R+ × � → R
m is m-dimensional Wiener process defined on the com-

plete probability space (�,Ft , {Ft }t≥t0 ,P) and φ : R+ → R
n is the initial function,

which belongs to a class of Ft -measurable C ([−r, 0];Rn) random variable φ with
E[‖φ‖p

r ] < ∞. The latter function class is denoted by L p
F 0

([−r, 0];Rn) for some
p > 0.

In the following, we define the solution of SSSD.

Definition 2.32 For all t ∈ [t0, T ] with t0, T ∈ R+ and t0 < T , and Rn-valued ran-
dom process x(t) = x(t; t0,φ), the pair (x(t),σ(t)) is said to be a solution of SSSD
in (2.78) if it has the following properties:

(i) x(t) is continuous and adapted with respect to the filtration {Ft }t≥t0 ;
(ii) fσ(t)(t, xt ) ∈ Lad(�; L[t0, T ]) and gσ(t)(t, xt ) ∈ Lad(�; L2[t0, T ]); and
(iii) the stochastic integral equation

x(t) = φ +
∫ t

t0

fσ(s)(s, xs)ds +
∫ t

t0

gσ(s)(s, xs)dW (s) (2.79)
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holds w.p.1, where x(t) = φ(t) for all t ∈ [−r, 0].
For simplicity of notation, we denote the solution of (2.78) by the process x ,

after dropping out the switching signal σ. Also, to avoid any confusion between the
domains of the solution x and switching signal σ, we state it clearly that x is defined
for all t ≥ −r , while σ is defined over R+.

A solution x(t) of a stochastic differential equation is said to be unique if any
other solution y(t) is indistinguishable form x(t) for all t ≥ −r .

Classical hypotheses that ensure the existence of a unique solution of SSSD are
that the vector fields satisfy a linear growth condition and Lipschitz condition in the
second variable. The following theorem summarizes these conditions.

Theorem 2.14 Let σ : R+ → S be a switching signal. Assume that there exist a
positive constant C such that functionals fσ and gσ satisfy the following conditions:

‖ fσ(t)(t,ψ)‖2 + ‖gσ(t)(t,ψ)‖2 ≤ C(1 + ‖ψ‖2r ), (a.s.) (2.80)

for all t ∈ R+ and ψ ∈ C ([−r, 0];Rn), and

‖ fσ(t)(t,ψ1) − fσ(t)(t,ψ2)‖2
+ ‖gσ(t)(t,ψ1) − gσ(t)(t,ψ2)‖2 ≤ C‖ψ1 − ψ2‖2r , (a.s.) (2.81)

for all t ∈ R+ and ψ1, ψ2 ∈ C ([−r, 0];Rn). Then, there exists a unique solution x
defined for all t ≥ −r with the initial function φ ∈ L p

F 0
([−r, 0];Rn). Furthermore,

the solution x satisfies

E

[
sup

−r≤t≤T
‖x(t)‖2

]
< ∞, for all T > 0. (2.82)

Once again, if the switching signal σ is a Markov process, which is assumed to
be independent of the Wiener process, the corresponding SSSD is conventionally
written as

⎧
⎨
⎩
dx(t) = f (t, xt ,σ(t))dt + g(t, xt ,σ(t))dW (t), t ≥ t0,
xt0(s) = φ(s), s ∈ [−r, 0],
σ(t0) = σ0,

(2.83)

where f : R+ × C ([−r, 0];Rn) × S → R
n and g : R+ × C ([−r, 0];Rn) × S →

R
n×m , for some σ0 ∈ S , and W : R → R

m is a Weiner process. The solution x of
SSSD in (2.83) can be similarly defined as the solution of (2.78) except that the
stochastic integral is slightly modified as follows:

x(t) = φ +
∫ t

t0

f (s, xs,σ(s))ds +
∫ t

t0

g(s, xs,σ(s))dW (s), (2.84)
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which is required to hold w.p.1. Common assumptions guaranteeing the existence of
a unique solution are stated in the following theorem.

Theorem 2.15 Let σ : R+ → S be a switching signal that is represented by a
Markov process. Assume that there exist a positive constant C such that the func-
tionals f and g satisfy the following conditions:

‖ f (t,ψ,σ(t))‖2 + ‖g(t,ψ,σ(t))‖2 ≤ C(1 + ‖ψ‖2r ), (a.s.) (2.85)

for all t ∈ R+ and ψ ∈ C ([−r, 0];Rn), and

‖ f (t,ψ1,σ(t)) − f (t,ψ2,σ(t))‖2
+ ‖g(t,ψ1,σ(t)) − g(t,ψ2,σ(t))‖2 ≤ C‖ψ1 − ψ2‖2r , (a.s.)

(2.86)

for all t ∈ R+ and ψ1, ψ2 ∈ C ([−r, 0];Rn). Then, there exists a unique solution x
defined for all t ≥ −r with the initial function φ ∈ L p

F 0
([−r, 0];Rn). Furthermore,

the solution x satisfies

E

[
sup

−r≤t≤T
‖x(t)‖2

]
< ∞, for all T > 0. (2.87)

In previous section, we introduced an important diffusion operator (L , or L V
as a single notation) associated with the underlying stochastic differential equation
and then examined its estimated upper bound along the trajectories of the system
solutions. In SSSD, we continue to present such an operator. However, due to the
deterministic or probabilistic nature of the switching signal σ, the operator can be
defined accordingly. Particularly, if σ is of a deterministic type, then we defineLi (or
L Vi ) as before, where i is such that σ = i ∈ S ; that is,Li (orL Vi ) is the operator
of the solution process of the subsystem associated with the C 1,2-function Vi , which
is designated to the same subsystem. If σ, on the other hand, is a Markov process,
one has to take into account the transition rates of this jump process when writing
this operator. In the following definition, we state the generalized Itô formula [12].

Definition 2.33 (Generalized Itô Formula) If x : [−r,∞) → R
n is an Itô process

governed by (2.83) andV (t, x, i) ∈ C 1,2(R+ × R
n × S ;R+)withσ = i ∈ S , then

V (t, x, i) is an Itô process with its differential equation given by

dV (t, xt , i) = L V (t, xt , i)dt + Vx (t, x, i)g(t, xt ), i)dW (t), (a.s.) (2.88)

where
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L V (t, xt , i) =Vt (t, x(t), i) + Vx (t, x(t), i) f (t, xt , i)

+ 1

2
tr[gT (t, xt , i)Vxx (t, x(t), i)g(t, xt , i)]

+
N∑
j=1

γi j V (t, x(t), j), (a.s.). (2.89)

Remark 2.3 For simplicity of notation, we wrote the differential dV and functional
operator L V in terms of xt only while they also depend on state x(t).

In analyzing a certain switched system, it may be convenient to specify the switch-
ing signal σ inS to indicate the systemmode in action and the subinterval on which
the selected mode is being activated. If, for instance, we have chosen a switching
law, say �, then generally, we use ik to refer to the i th mode, for any i ∈ S , and
kth subinterval [tk−1, tk), for any k ∈ N. Also, we denote by {tk}k∈N the switching
sequence or signal, which is generated by the switching law �. Furthermore, when-
ever investigating a system property, we always assume that the switching sequence
is strictly increasing and that limk→∞ tk = ∞, so long as t ∈ R+, to avoid a problem
trivialness. The second issue of importance is that any mode cannot be activated on
any two successive subintervals [tk−1, tk) and [tk, tk+1), and the switching sequence
in this case is usually called minimal. Consequently, following the above particular
notation, SSSD in (2.83) is simply written as follows:

⎧
⎨
⎩
dx(t) = f (t, xt , i)dt + g(t, xt , i)dW (t), t ∈ [tk−1, tk),
xt0(s) = φ(s), s ∈ [−r, 0],
σ(t0) = σ0.

(2.90)

One more issue about switched systems is the stability definition. In fact, it can be
formulated parallel to that of a single-mode system except that, in switched systems,
we should highlight the switching law under consideration. In the following, we state
some stochastic stability properties of the trivial solution of SSSD in (2.83), which
of course imply the corresponding definitions of the other special systems.

Definition 2.34 For any t0 ∈ R+ and a given switching law σ with an initial state
σ0 ∈ S , the trivial solution, x ≡ 0, of (2.83) is said to be

(i) stable in the pth moment if, for any given ε > 0, there exists a δ = δ(t0, ε) > 0
such that

E[‖φ‖p
r ] < δ implies E[‖x(t)‖p] < ε, ∀t ≥ t0,

where (x(t),σ(t)) or simply x(t) = x(t; t0,φ) ∈ C ([t0 − r, t0 + α];Rn), for
some α > 0, is any solution of (2.83) with φ ∈ L p

F 0
C ([−r, 0];Rn);

(ii) uniformly stable in the pthmoment if it is stable in the pthmoment and δ = δ(ε);
(iii) asymptotically stable in the pth moment if it is stable in the pth moment and

there exists an η = η(t0) > 0 such that
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E[‖φ‖p
r ] < η implies lim

t→∞E[‖x(t)‖p] = 0;

(iv) uniformly asymptotically stable in the pth moment if it is uniformly stable in
the pth moment and there exists η > 0 such that, for a given γ > 0, there exists
T = T (η, γ) > 0 such that

E[‖φ‖p
r ] < η implies E[‖x(t)‖p] < γ, ∀t ≥ t0 + T ;

(v) exponentially stable in the pth moment if there exist positive constants K and
λ such that

E[‖x(t)‖p] ≤ KE[‖φ‖p
r ]e−λ(t−t0), whenever E[‖φ‖p

r ] < η.

Moreover, the above stability properties are said to hold globally if δ and η are chosen
arbitrarily large.

Having familiarized ourselves with impulsive and switched systems, we are in a
position to define another type of hybrid systems, namely impulsive-switched sys-
tems, also known as switched systemswith impulsive effects. The impulses arisewhen
a switched system transits from one mode to another. Such systems have applica-
tions in biology, pulse vaccination and engineering. An early study that formulated
this system and developed some of its qualitative results was in [13]. Later, this
type of systems was appeared in some other works including papers [14, 15] and a
book [16].

A nonlinear deterministic impulsive-switched system can have the following form

ẋ(t) = fσ(t)(t, x(t)), t �= tk, (2.91a)

�x(t) = I (t, x(t−)), t = tk, (2.91b)

x(t0) = x0, (2.91c)

where σ : [t0,∞) → S for any t0 ∈ R+ is the switching signal that is a piece-
wise constant function. The discontinuities of σ, which represent both the impul-
sive moments and at the same time switching moments, form a strictly increasing
sequenceT = {tk}k∈N with limk→∞ tk = ∞. As elaborated above, if one is interested
in labeling a system mode which is operating on the kth subinterval, we will write
σ = ik for any ik ∈ S . It follows that the differential equation (2.91a) is written as
follows:

ẋ(t) = fik (t, x(t)), t ∈ [tk−1, tk).

We next define a solution of the initial-value problem in (2.91).

Definition 2.35 For any t ≥ t0 with t0 ∈ R+, x ∈ PC ([t0 − r, t0 + α];Rn), for
some α > 0, and a given switching signal σ, the pair (x(t),σ(t)) is said to be a
solution of the impulsive-switched system in (2.91) if
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(i) x(t) is continuous for all t ∈ R+ except at the switching (or impulsive)moments
T = {tk}k∈N (i.e., ∀t ∈ R+ \ T);

(ii) the derivative of x exists and continuous for all t �= tk and, at t = tk , the right-
hand derivative exists;

(iii) the right-hand derivative of x satisfies the differential equation in (2.91a) for
all t ∈ R+ \ T;

(iv) x satisfies the difference equation (2.91b) for all t ∈ T; and
(v) x satisfies the initial condition in (2.91c).

Finally, it could be of special interest to write the general form of the above
solution, which is, after using the so-called method of steps,

x(t) = x0 +
∫ t

t0

fik (s, x(s))ds +
∑

{k:t0<tk≤t}
I (tk, x(t

−
k )), (2.92)

for all t ≥ t0.

2.11 Singularly Perturbed Systems

In networks or in models of large-scale interconnected systems such as power sys-
tems, large economies, control systems, biochemical or nuclear reactor models, one
encounters dynamicswith different speeds ormultiple timescales. The corresponding
dynamical systems are often known as singularly perturbed systems or multiscale
systems. Mathematically, a singularly perturbed system is a dynamical system in
which a small parasitic parameter multiplies time derivatives of some of the system
states.

Assume that the dynamics in the aforementioned systems have the the following
form:

ẋ = f (t, x, z)

ż = G(t, x, z) (2.93)

where x ∈ R
m is the slow variable and z ∈ R

n is the fast variable. Here, we assume
that during the fast transients the slow dynamics remain approximately constant
and that, over longer time, they become noticeable, while the fast dynamics have
already reached their quasi-steady states. Therefore, as we shall see in later chapters
of this book, in a short period of time, slow variables are considered constant, and
fast variables eventually reach their quasi-steady state. Over long period of time, the
system variables are represented by slow variables and the quasi-steady state of the
fast variables, as shown in the following system:
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ẋs = f (t, xs, zs)

0 = G(t, xs, zs) (2.94)

where xs and zs are referred to as quasi-steady states. Clearly, the second equa-
tion has degenerated into an algebraic (or transcendental) equation, meaning that
the time-varying variable is treated as constant (ż = 0). To remove this mathemati-
cal inconsistency, system (2.93) is treated as a two-time-scale singular perturbation
problem with a perturbation parameter, say ε. Re-scaling the timescale of system
(2.93) yields the so-called singularly perturbed system or fast–slow system:

ẋ = f (t, x, z)

εż = g(t, x, z) (2.95)

where g = εG with 0 < ε � 1.
Setting ε = 0 reduces the dimension of the full state from m + n to m. Then,

system (2.95) becomes

ẋ = f (t, x, h(t, x))

0 = g(t, x, z),

where h(t, x) is the solution of the algebraic equation 0 = g(t, x, z) (i.e., z =
h(t, x)). The result is the same as that of (2.95), but the derivation is now differ-
ent.

In reality, the perturbation parameter ε has different meaning in different systems.
For instance, in some power systems it indicates machine reactance, in a biochemical
model εmight represent a small quantity of an enzyme, and in nuclear reactors model
ε is due to the fast neutrons.

In fact, to study the stability notion of this system, it is very convenient to treat
this system as a large-scale system or an interconnection of lower order subsystems.
As will be seen later in this book, a proper way to deal with such complex systems is
to decompose interconnected systems into small isolated subsystems and study the
stability of each individual subsystem.

That is, after initially ignoring the interconnection between the subsystems, we
study the stability property of each isolated subsystem. In the next step, we combine
our results from the first step with the connection among these subsystems, which are
viewed as a perturbation, to drawa conclusion about the stability of the interconnected
system. The following analysis explains these two steps:

Let the nth-order interconnected system has the form

ẋi = fi (t, xi ) + gi (t, x), i = 1, 2, . . . ,m (2.96)

where xi ∈ R
ni with

∑m
i=1 ni = n and x =

(
xT1 xT2 · · · xTm

)T
. Assume that for every

i and all t ≥ t0 with t0 ∈ R+,
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fi (t, 0) = 0 and gi (t, 0) = 0.

That is, system (2.96) admits a trivial solution x ≡ 0 ∈ R
n . Ignoring the inter-

connection between the subsystems, gi (t, x), results in the following m isolated
subsystems

ẋi = fi (t, xi ). (2.97)

Assume that the trivial solution xi ≡ 0 of (2.97) (for every i) is uniformly asymp-
totically stable. Define the scalar composite Lyapunov function candidate

V (t, x) =
m∑
i=1

di Vi (t, xi ), (2.98)

where Vi (t, xi ) is the Lyapunov function related to the i th subsystem and di are
positive constant. Then, the time derivative of V along the trajectories of (2.96) is

V̇ (t, x) =
m∑
i=1

di
[∂Vi

∂t
+ ∂Vi

∂xi
fi (t, xi )

]
+

m∑
i=1

di
∂Vi

∂xi
gi (t, x). (2.99)

The first term on the right-hand side is negative definite since Vis are Lyapunov
functions for the m asymptotical stable subsystems, while the second term is, gen-
erally, indefinite; so that, we assume that [∂Vi/∂xi ]gi is bounded by a nonnegative
upper bound. To pursue the analysis mathematically, assume that Vi (t, xi ) satisfies

∂Vi

∂t
+ ∂Vi

∂xi
fi (t, xi ) ≤ −αiφ

2
i (xi ), t ≥ t0 (2.100)

∥∥∥∂Vi

∂xi

∥∥∥ ≤ βiφi (xi ) (2.101)

where αi and βi are positive constants and φi is a positive-definite function. Suppose
that the gi (t, x) satisfies

‖gi (t, x)‖ ≤
m∑
j=1

γi jφ j (x j ), i = 1, 2, . . . ,m (2.102)

where γi j are nonnegative constants. Then, the equality in (2.99) leads to

V̇ (t, x) ≤
m∑
i=1

di
[

− αiφ
2
i (xi ) +

m∑
j=1

βiγi jφi (xi )φ j (x j )
]
.

The right-hand side is a quadratic in φ1,φ2, . . . ,φm ; that is,
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V̇ (t, x) ≤ −1

2
φT (DS + ST D)φ

where φ = (φ1 φ2 · · · φm)T , D = diag(d1, d2, . . . , dm) and S is an n × n matrix
whose elements are given by

si j =
{

αi − βiγi j , i = j
−βiγi j , i �= j.

(2.103)

Clearly, the asymptotic stability of the interconnected system is guaranteed if the
diagonal matrix D is chosen such that the matrix

DS + ST D > 0. (2.104)

The existence of such a diagonal matrix D is ensured if S is an M-matrix as stated
in the following definition.

Definition 2.36 An n × n matrix S is said to be an M-matrix if its leading (succes-
sive) principal minors are positive, i.e.,

det

⎛
⎜⎜⎝
s11 s12 · · · s1k
s21 s22 · · · s2k
· · · · · · · · · · · ·
sk1 sk2 · · · skk

⎞
⎟⎟⎠ > 0, k = 1, 2, . . . , n.

The following lemma provides the sufficient condition that guarantees the exis-
tence of D.

Lemma 2.5 There exists a positive diagonal matrix D that satisfies (2.104) if and
only if S is an M-matrix.

The next theorem summarizes the above results.

Theorem 2.16 Consider the interconnected system (2.96). Assume that, for i =
1, 2, . . . ,m, there exists a positive-definite function Vi (t, xi ) that satisfies (2.100) and
(2.101), and that gi (t, x) satisfies (2.102). If S defined by (2.103) is an M-matrix,
then the trivial solution of (2.96) is uniformly asymptotically stable. Moreover, it
is globally asymptotically stable if the assumptions hold globally and Vi (t, xi ) is
radially unbounded.

The stability property of hybrid singularly perturbed systems will be addressed
later in this book.

2.12 Miscellaneous Results

We conclude this chapter by presenting material that will be used throughout this
book.
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Jensen’s Inequality. If ϕ : R → R is a convex function and x : � → R is a random
variable on a probability space (�,F ,P) such that E[x] < ∞, then

ϕ(E[x]) ≤ E[ϕ(x)].

Tchebychev’s Inequality. If x : � → R
n is a random variable such that E[‖x‖p] <

∞, for some p > 0, then

P
{
ω ∈ � | ‖x‖ ≥ ε

} ≤ E[‖x‖p]
εp

, for some ε > 0.

Hölder’s Inequality. Let x and y be Rn-valued random processes. If p, q ∈ (1,∞)

and 1/p + 1/q = 1, then

∣∣E[xT y]∣∣ ≤ E[‖x‖p]1/pE[‖y‖q ]1/q

holds provided that the pth moments on the right-hand side are finite.

Bihari’s Inequality. For all t ∈ [0, T ] with T > 0, let u(t) ≥ 0 be a Borel measur-
able function and v(t) ≥ 0 be an integrable function. Suppose that K : R+ → R+ is
a continuous nondecreasing function such that K (t) > 0 for all t > 0. If, for some
c > 0,

u(t) ≤ c +
∫ t

0
v(s)K (u(s))ds, ∀ t ∈ [0, T ],

then

u(t) ≤ G−1
(
G(c) +

∫ t

0
v(s)ds

)

holds for all t ∈ [0, T ] such that

G(c) +
∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) = ∫ r
0+

ds
K (s) , for r > 0, and G−1 is the inverse function of G.

Let x and y be two R
n-valued random processes having probability measures

Px and Py , respectively. Then, the Prokhorov distance between the (probability)
measures is denoted byD(x, y) = D(Px ,Py). Moreover, ifD(x, y) = 0, then x and
y have the same probabilitymeasure. Also, ifP

{
ω ∈ � | limn→∞ ‖xn(ω) − x(ω)‖ =

0
} = 1, then {xn} is a D-Cauchy sequence. The converse of this fact is true in the

following sense.

Skorokhod’s Theorem. Let {xn} be a D-Cauchy sequence of random variables.
Then, one can construct another sequence of random variables {yn} and a random
variable y such that
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D(xn, yn) = 0 and P
{
ω ∈ � | lim

n→∞ ‖yn(ω) − y(ω)‖ = 0
} = 1.

Definition 2.37 A collection of sequences of random variables Q = {xr | r ∈ �},
for some index set �, is said to be totally D-bounded if every infinite sequence
{xnr } ⊂ Q has a D-Cauchy subsequence.

Prokhorov’s Theorem. Q is totallyD-bounded if and only if, for every ε > 0, there
exists a compact set Kε of Rn such that

P{x ∈ Kε} > 1 − ε,

for every x ∈ Q.

2.13 Notes and Comments

This chapter serves as an introductory chapter for the rest of this book. The basic
definitions of existence and uniqueness of solutions and stability notions of the trivial
solution of ordinary differential equations are taken from [3], and the ISS definition
and related theorems are taken from [17, 18]. The comparison functions used in the
definitions of stability and ISS of nonlinear systems are taken from [3, 19]. Further
reading about the ISS, one may consult the references [1–3, 17, 18, 20–23]. The
comparison method for ordinary differential equations stated in Sect. 2.2 is taken
from [3]. Section2.3 is concerned with delay differential equations. The stability
definitions and theorem are taken from [24–27], Lemma 2.1 and Theorem 2.5 are
taken from [28], Lemmas 2.2 and 2.4 are taken from [29, 30], while Lemma 2.3
is taken from [31]. The impulsive systems of ordinary differential equations can be
read in [32–36], Theorem 2.6 is taken from [14]. Also, one may read about ISS for
impulsive systems, for instance, in [37]. The fundamental properties of impulsive
system with time delay were initially developed in [4, 38, 39]. Section2.7 deals with
stochastic differential equations, where readers may refer to [40–50] and comparison
method for stochastic system is taken from [51]. In fact, Theorems 2.11 and 2.12 have
been slightly modified to fit our needs in this book. Section2.9 addresses switched
systems; the basic problems of the system, the definitions of dwell-time and average
dwell-time switching signals can be read in [5–7], the Markovian switching can be
read in books such as [12, 52], ISS with Markov switching can be read in [53], the
state-dependent condition is taken from [8, 9] and initial-state-dependent dwell-time
condition is taken from [10]. Further reading about switched systems can be found,
for instance, in [6, 11, 54–83]. The singularly perturbed systems has been addressed
in Sect. 2.11. One can read the theory of this system in, for instance, [3, 70, 71,
84–88]. As stated earlier, these systems are viewed as large-scale systems; so that,
the theory of the latter systems can be read, for instance, in [3, 89–92]. The definition
and properties of the M-matrix can be found in [3, 26]. Finally, in the miscellaneous
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section, the Jensen’s inequality, Tchebychev’s inequality and Hölder’s inequality are
taken from [12], Bihari’s inequality is taken from [93] and Skorokhod’s Theorem,
Definition 2.37 and Prokhorov’s Theorem are taken from [51].

References

1. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom
Control 34(4):435–443

2. Sontag ED (2002) The ISS philosophy as a unifying framework for stability-like behavior.
Lectures notes control theory, vol 2. Springer, pp 443–468

3. Khalil HK (2002) Nonlinear systems. Prentice-Hall Inc., NJ
4. Ballinger GH (1999) Qualitative theory of impulsive delay differential equations. PhD thesis,

University of Waterloo, ON, Canada
5. Liberzon D, Morse AS (1999) Basic problems in stability and design of switched systems.

IEEE Control Syst Mag 19(5):59–70
6. Morse AS (1996) Supervisory control of families of linear set-point controllers-part I: exact

matching. IEEE Trans Autom Control 41(10):1413–1431
7. Hespanha JP, Morse AS (1999) Stability of switched systems with average dwell-time. In:

Proceeding of the 38th IEEE conference on decision and control. Phoenix, AR, pp 2655–2660
8. De Persis C, De Santis R, Morse AS (2002) Nonlinear switched systems with state dependent

dwell-time. In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas,
Nevada, pp 4419–4424

9. De Persis C, De Santis R, Morse AS (2003) Switched nonlinear systems with state-dependent
dwell-time. Syst Control Lett 50:291–302

10. Alwan MS, Liu XZ, Xie WC (2012) On input-to-state stability of nonlinear stochastic hybrid
systems. Dyn Cont Discret Impuls Syst Ser A 19:513–533

11. HuB,XuX,Michel AN,Antsaklis PJ (1999) Stability analysis for a class of nonlinear switched
systems. In: Proceedings of the 38th IEEE conference on decision and control. Phoenix, AR,
pp 4374–4379

12. Mao X, Yuan C (2006) Stochastic differential equations with Markovian switching. Imperial
College Press

13. Lakshmikantham V, Liu XZ (1998) Impulsive hybrid systems and stability theory. Dyn Syst
Appl 7:1–10

14. Wang R, Liu X, Guan Z (2004) Robustness and stability analysis for a class of nonlinear
switched systems with impulse effects. Dyn Syst Appl 14:233–248

15. Guan Z-H, Hill DJ, Shen X (2005) On hybrid impulsive and switching systems and application
to nonlinear control. IEEE Trans Autom Control 50(7):1058–1062

16. Li Z, Soh Y, Wen C (eds) (2005) Switched and impulsive systems: analysis design and appli-
cations. Lecture notes in control and information sciences. Springer, Berlin

17. SontagED,WangY (1995)On characterization of input-to-state stability property. Syst Control
Lett 24:351–359

18. Sontag ED, Wang Y (1996) New characterization of input-to-state stability property. IEEE
Trans Autom Control 34(41):1283–1294

19. Hahn W (1967) Stability of motion. In: Baartz AP (Trans) Springer, New York
20. Angeli D, Sontag ED, Wang Y (2000) A characterization of integral input-to-state stability.

IEEE Trans Autom Control 45(6):1082–1097
21. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34:93–100
22. Teel AR, Moreau L, Nešic D (2001) A note on the robustness of ISS stability. In: Proceedings

of the 40th IEEE on decision and control, Florida, pp 875–880
23. Teel AR,Moreau L,NeysicD (2003)A unified framework for input-to-state stability in systems

with two time scales. IEEE Trans Autom Control 48(9):1526–1544



56 2 Mathematical Background

24. Driver RD (1977) Ordinary and delay differential equations. Springer, New York
25. El’sgol’ts LE, Norkin SB (1973) Introduction to the theory and application of differential

equations with deviating arguments. Academic Press, New York
26. Gopalsamy K (1992) Stability and oscillations in delay differential equations of population

dynamics. Kluwer Academic Puplishers, Netherlands
27. Hale JK, Lunel SMV (1993) Introduction to functional differential equations. Springer, New

York
28. Halanay A (1966) Differential equations: stability, oscillations, time lags. Academic Press Inc.,

New York
29. Alwan MS (2006) Stability of hybrid singularly perturbed systems with time delay. Master’s

Thesis, University of Waterloo, ON, Canada
30. Alwan MS, Liu XZ (2008) On stability of linear and weakly nonlinear switched systems with

time delay. Math Comput Model 48:1150–1157
31. Liu X, Shen X, Zhang Y (2003) Exponential stability of singularly perturbed systems with

time delay. Appl Anal 82(2):117–130
32. Bainov DD, Simeonov PS (1989) Systems with impulsive effects. Ellis Horwood Ltd., England
33. BainovDD, Simeonov PS (1993) Impulsive differential equations: periodic solutions and appli-

cations. Longman Scientific and Technical Group, England
34. Lakshmiknatham V, Bainov DD, Simeonov PS (1989) Theory of impulsive ifferential equa-

tions. World Scientific, Singapore
35. Samoilenko AM, Perestyuk NA (1995) Impulsive differential equations. World Scientific Pub-

lishing Co., Inc, River Edge, NJ
36. Yang T (2001) Impulsive control theory. Lecture notes in control and information sciences.

Springer, Berlin
37. Hespanha JP, Liberzon D, Teel AR (2005) On input-to-state stability of impulsive systems. In:

Proceedings of the 44th IEEE conference on decision and control, Spain, pp 3992–3997
38. Ballinger GH, Liu XZ (1990) Existence and uniqueness results for impulsive delay differential

equations. Dyn Contin Discret Impuls Syst 6:579–591
39. Liu XZ, Ballinger GH (2000) Existence, uniqueness, and boundedness results for impulsive

delay differential equations. Appl Anal 74(1–2):71–93
40. Gard TC (1988) Introduction to stochastic differential equations. Marcel Dekker
41. Gihman II, Skorohod AV (1972) Stochastic differential equations. In: Wickwire K (Trans

Russian) Ergebnisse der Mathematik und ihrer Grenzgeiete, Band 72, Springer, New York
42. Hasm’iniskii RZ (1980) Stochastic stability of differential equations. In: Sijtjoff, Noordhoff

(Trans Russian edn.)
43. Khasminiskii RZ (1980) Stochastic stability of differential equations. Sijthof & Noordhoff

International Publishers, The Netherlands
44. Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations. Springer
45. Kushner HJ (1967) Stochastic stability and control. Academic Press Inc., New York
46. Mao X (1991) Stability of stochastic differential equations with respect to semimartingales.

Longman Scientific and Technical
47. Mao X (1994) Exponential stability of stochastic differential equations. Marcel Dekker
48. Mao X (2008) Stochastic differential equations and applications. Horwood Publishing Ltd.,

England
49. Mohammed SEA (1984) Stochastic functional differential equations. Research notes in math-

ematics, vol 99. Pitman, Boston
50. ØksendalB (1995)Stochastic differential equations: an introductionwith applications. Springer
51. Ladde GS, Lakshmikantham V (1980) Random differential inequalities. Academic Press, New

York
52. Boukas EK (2006) Stochastic switching systems: analysis and design. Birkhauser
53. Huang L, Mao X (2009) On input-to-state stability of stochastic retarded systems with Marko-

vian switching. IEEE Trans Autom Control 54(8):1898–1902
54. Alur R, Henzinger T, Sontag E (eds) Hybrid systems III-verification and control. Lecture notes

in computer science. Springer, Berlin



References 57

55. Antsaklis PJ, Kohn W, Nerode N, Sastry S (eds) (1995) Hybrid systems. Lecture notes in
computer science, vol 999. Springer, Berlin

56. Antsaklis PJ, Kohn W, Nerode N, Sastry S (eds) (1997) Hybrid systems. Lecture notes in
computer science, vol 1273. Springer, Berlin

57. Antsaklis PJ, Koutsoukos X, Zaytoon J (1998a) On hybrid control of complex systems: a
survey. Eur J Automat 32(9–10):1023–1045

58. Antsalkis PJ, Lemmon AD (1998b) J Discret Event Dyn Syst 8(2) (Special issue on hybrid
control systems)

59. Antsalkis PJ, Nerode A (1998c) IEEE Trans Autom Control 43(Special issue on hybrid control
systems)

60. Antsalkis PJ, Kohn W, Lemmon A, Sastry S (eds) (1999) Hybrid systems v. Lecture notes in
computer sciences, vol 1567. Springer, Berlin

61. Antsalkis PJ (2000) Special issue on hybrid systems: theory and applications. Proc IEEE
88(7):879–887

62. Branicky MS, Borker VS (1994) A unified framework for hybrid control. In: Proceedings of
the 33rd IEEE conference decision and control, Lake Buena Vista, FL, pp 4228–4234

63. Branicky MS (1998) Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Trans Autom Control 43(4):475–482

64. Branicky MS, Borker VS (1998) A unified framework for hybrid control: model and optimal
control theory. IEEE Trans Autom Control 43(1):31–45

65. Dayawansa WP, Martin CF (1999) A Converse Lyapunov theorem for a class of dynamical
systems which undergo switching. IEEE Trans Autom Control 44(4):751–759

66. DeCarlo RA, Branicky MS (2000) Perspective and results on the stability and stabilization of
hybrid systems. Proc IEEE 88(7):1069–1082

67. Grossman RL, Nerode N, Ravn AP, Rischel H (eds) (1993) Hybrid systems. Lecture notes in
computer science, vol 736. Springer, Berlin

68. Hespanha J, Tiwari A (2006) Hybrid systems: computation and control. In: 9th International
Workshop HSCC 2006, Santa Barbara, CA. Lecture notes in computer science and general
issues. Springer, USA

69. Henzinger T, Sastry S (eds)Hybrid systems computation and control. Lecture notes in computer
sciences, vol 1386. Springer, Berlin

70. Hoppensteadt F (1968) Asymptotic stability in singular perturbation problems. J Differ Equ
4:350–358

71. Hoppensteadt F (1974) Asymptotic stability in singular perturbation problems II: problems
having matched asymptotic solutions. J Differ Equ 15:510–521

72. Kim S (2005) Switching systems with delayed feedback control. PhD thesis, University of
Waterloo, ON, Canada

73. Kim S, Campbell SA, Liu XZ (1999) Stability of a class of linear switching systems with time
delay. IEEE Trans Circuits Syst I Regul Pap 53(2):384–393

74. Lemmon MD, He KX, Markovsky I (1999) Supervisory hybrid systems. Control Syst
19(44):42–55

75. Liberzon D (2003) Switching in systems and control. Brikhauser, Boston
76. Matveev AS, Savkin AV (2000) Qualitative theory of hybrid dynamical systems. Birkhauser,

Cambridge, MA
77. Morse AS (ed) (1997) Control using logic-based switching. Lecture notes in control and infor-

mation sciences, vol 222. Springer, New York
78. Morse A, Pantelides C, Sastry S, Schumacher J (1999) Automatica 35(Special issue on hybrid

control systems)
79. Narendra KS, Balakrishnan J (1994) A common Lyapunov function for stable LTI systems

with commuting A-matrices. IEEE Trans Autom Control 39(12):2469–2471
80. Peleties P, DeCarlo R (1993) A modeling strategy for hybrid systems based on event structors.

Discret Event Dyn Syst 3:39–69
81. Peleties P, DeCarlo R (1988) Modeling of interacting continuous time and discrete events

systems: an example. In: Proceedings of the 26th annual alleton conference, pp 1150–1159



58 2 Mathematical Background

82. Peleties P, DeCarlo R (1998) A modeling strategy for discrete events supervisory control of
continuous time systems. In Proceedings of the 28th IEEE conference decision and control, pp
1308–1313

83. Sifakis J, Pnueli A (1995) J Theor Comput Sci 138(Special issue on hybrid control systems)
84. Kokotovic PV, Khalil HK (eds) (1986) Singular perturbations in systems and control. IEEE

Press Inc., New York
85. Kokotovic PV, Khalil HK, O’Reilly J (1986) Singular perturbation methods in control: analysis

and design. Academic Press Inc., London
86. Kokotovic P, BensoussanA, BlankenshipG (eds) (1987) Singular perturbations and asymptotic

analysis in control systems. Lecture notes in control and information sciences. Springer, New
York

87. Naidu DS (1988) Singular perturbation methodology in control systems. Peter Peregrinus Ltd.
88. Saberi A, Khalil H (1984) Quadratic-type Lyapunov functions for singularly perturbed system.

IEEE Trans Autom Control 29(6):542–550
89. Michel AN,Miller RK (1977) Qualitative analysis of large scale dynamical systems. Academic

Press Inc., New York
90. Šilijak DD (1991) Decentralized control of complex systems. Academic Press Inc
91. Šiljak DD (2007) Large-Scale dynamic systems: stability and structure. Dover Publications

Inc
92. Zecevic A, Silijak DD (2010) Control of complex systems: structural constraints and uncer-

tainty. Springer
93. Bihari I (1956) A generalization of a lemma of Bellman and its application to uniqueness

problems of differential equations. Acta Math Hung 7:81–94



Chapter 3
Fundamental Properties of Stochastic
Impulsive Systems with Time Delay

In this chapter, we address stochastic impulsive systems with time delay, where
the impulse times are state-dependent. Using Itô calculus, we develop the essential
foundation of the theory of the mentioned system, namely local and global exis-
tence, forward continuation and uniqueness of strong solutions. As a consequence of
state-dependent impulses, nonidentical solutions can experience impulses at different
times, but not at fixed times as in the case of state-independent impulse times. This
also leads to an undesirable phenomenon, namely rhythmical beating upon impulsive
hypersurfaces, which may arise when we attempt to extend the solution, unless some
further conditions are imposed on these surfaces, as will be seen later.

Particularly, we start with establishing a local existence result assuming that the
functionals f and g are bounded by a nonlinear random function having an integrable
property. Also, we will state some conditions to ensure that when the solution hits
the (impulsive) hypersurface, it will leave it immediately. Due to technical difficul-
ties in extending the solution backwards, we concentrate on the classical forward
solution that does not exhibit rhythmical beating phenomenon. A global solution is
also obtained under the same bounded nonlinear estimate. Finally, we address the
uniqueness problem supposing that a locally Lipschitz condition holds.

Consider the following stochastic impulsive system with time delay

dx(t) = f (t, xt )dt + g(t, xt ) dW (t), t �= τk(x(t
−)), (3.1a)

�x = I (t, xt−), t = τk(x(t
−)), (3.1b)

where x ∈ R
n is the system state random process, f ∈ R

n , g ∈ R
n×m and τk ∈

C2(Rn, R+) represents an impulsive hypersurface, for k ∈ N, and satisfies 0 =
τ0(x) < τ1(x) < τ2(x) < · · · and limk→∞ τk(x) = ∞ for x ∈ R

n . We also assume
that the solution of (3.1) is right-continuous (i.e., x(t+) = x(t)). In the difference
equation (3.1b), �x = x(t) − x(t−) and the functional I (·) is the impulse amount
which is assumed to be Ftk -adapted.
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The initial condition is given by

xt0 = φ(s), s ∈ [−r, 0] (3.1c)

where φ ∈ L 2
F 0

([−r, 0] × �; R
n) (or φ ∈ L 2

F 0
([−r, 0]; R

n) after dropping the
probability sample space � for simplicity of notation). That is, the initial state is
assumed to be F0-adapted with finite pth moment.

Integrating the stochastic differential equation over (t0, t) gives

x(t) = φ(0) +
∫ t

t0

f (s, xs)ds +
∫ t

t0

g(s, xs) dW (s). (3.2)

The first integral is a Riemann integral almost surely (a.s.), and the second one is an
Itô integral satisfying

E

[ ∫ t

t0

g(s, xs) dW (s)
]

= 0, and E

∥∥∥
∫ t

t0

g(s, xs) dW (s)
∥∥∥2 =

∫ t

t0

E‖g(s, xs)‖2 ds.

In the following, we define indistinguishable solutions and forward continuation
of a solution.

Definition 3.1 The two random processes x(t,ω) and y(t,ω) are said to be indis-
tinguishable if, for almost all ω ∈ �, x(t,ω) = y(t,ω) for all t ≥ 0, that is

P{ω | x(t, w) = y(t, w) for all t ≥ 0} = 1

or, for simplicity, we say x = y (a.s.).

Definition 3.2 Let x and y be solutions of the impulsive stochastic system (3.1)
that are defined on the intervals J1 and J2, respectively, where J1 ⊂ J2 and both
intervals have the same closed left endpoints. If x(t) and y(t) are indistinguishable
for all t ∈ J1 (i.e., x(t) = y(t) (a.s.) ∀ t ∈ J1), then y is said to be a proper forward
continuation of x , or simply continuation of x . In this case, a solution x defined on
J1 is said to be continuable; otherwise, it said to be noncontinuable, and J1 is called
the maximal interval of existence of x .

We also need the following lemma to prove the existence result and whose proof
is inspired by that of Lemma 2.1.1 in [1].

Lemma 3.1 Let N be the set of natural numbers, D ⊂ R
n, a, b ∈ R+ with a < b,

and c and ε are some positive constants. Then, the set

Q′ =
{
x (n) ∈ C([a, b];D) | E[‖x (n)(t)‖2] ≤ c and

E[‖x (n)(t1) − x (n)(t2)‖2] ≤ ε, ∀n ∈ N, ∀ t1, t2 ∈ [a, b]
}

is totally D−bounded subset of C([a, b];D).
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Proof By Tchebychev’s inequality, one can find, for every ε > 0, γ1(ε) and γ2(ε)
such that P{ω ∈ � | ‖x (n)(t)‖ > γ1(ε)} ≤ ε

2 and P{ω ∈ � | ‖x (n)(t1) − x (n)(t2)‖ >

γ2(ε)} ≤ ε
2 .Hence,P{ω ∈ � | ‖x (n)(t)‖ > γ1(ε) or ‖x (n)(t1) − x (n)(t2)‖ > γ2(ε)} ≤

ε, which implies that P{ω ∈ � | ‖x (n)(t)‖ ≤ γ1(ε) or ‖x (n)(t1) − x (n)(t2)‖ ≤ γ2(ε)}
> 1 − ε for every x ∈ Q. For some α > 0, let

Kε =
{
x (n) ∈ C ([t0, t0 + α], S)

∣∣ ‖x (n)(t)‖ ≤ γ1(ε) and

‖x (n)(t1) − x (n)(t2)‖ ≤ γ2(ε), ∀ t1, t2 ∈ [t0, t0 + α]
}
.

Clearly, P{x ∈ Kε} > 1 − ε. By Arzela–Ascoli’s theorem, the compactness of
Kε follows. Applying Prokhorov’s theorem yields the totally D−boundedness of
the subset Q′.

Remark 3.1 Q′ is a collection of sequences which are both uniformly bounded and
equicontinuous in the m.s.

3.1 Existence of Solution

We start this section with establishing a local existence result of the initial-value
problem in (3.1). We first show how the solution evolves between two impulsive
hypersurfaces, and then, under the condition in (3.4), if this solution starts initially
at a hypersurface, it will depart this surface in mean.

Theorem 3.1 Let J ⊂ R+ and D ⊂ R
n be an open set containing φ(0). Assume

that f ∈ Lad(�; L[t0, t0 + α]) and g ∈ Lad(�; L2[t0, t0 + α]), where α > 0 and
[t0, t0 + α] ⊂ J , and are continuous in their second argument ψ. Moreover, there
exists a (random) function m(t) such that, for (t,ψ) ∈ [t0, t0 + β] × F, for some
positive β ≤ α and compact set F ⊂ D ,

‖ f (t,ψ)‖2 ∨ ‖g(t,ψ)‖2 ≤ m(t), (a.s.) (3.3)

where

∫ t

t0

m(s) ds < ∞, (a.s.).

Then, for almost all ω ∈ � and each (t,φ) ∈ J × L 2
F 0

([−r, 0]; R
n), there exists

a (local)Ft -adapted solution x(t) = x(t; t0,φ) of (3.1) on [t0 − r, t0 + β]. Further-
more, assume that τk ∈ C 2(D; R+), for k ∈ N, and, whenever t∗ = τk(x∗) for some
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(t∗, x∗) ∈ J × D and some k, there exits a δ > 0, where [t∗, t∗ + δ] ⊂ J , such that

E[L τk(x(t))] �= 1, (3.4)

for all t ∈ (t∗, t∗ + δ] and for all functions x that areFt -adapted PC([t∗ − r, t∗ +
δ];D) and continuous on (t∗, t∗ + δ] and satisfy x(t∗) = x∗ andE[‖x(s) − x∗‖2] <

λ for s ∈ [t∗, t∗ + δ] and λ > 0. Then, the solution x leaves the hypersurface τk(x)
in mean; i.e., x exists on [t0 − r, t0 + β] for some β > 0 for which x will not intersect
any impulse hypersurface at any time t ∈ (t0, t0 + β].
Proof Let (t,φ) ∈ J × L 2

F 0
([−r, 0] × �; R

n) and choose α > 0 such that [t0, t0 +
α] ⊂ J . Since for almost all ω ∈ �, φ(0) ∈ D andD is an open set, one can choose
λ > 0 such that

F := F(z,λ) = {z ∈ R
n | ‖z − φ(0)‖ ≤ λ} ⊂ D . (3.5)

Clearly, F is a compact set. Set

M(t) =
∫ t

t0

m(s) ds, t ∈ [t0, t0 + α].

Then,M(t) is absolutely continuous (a.s.) andnondecreasing (a.s.).Also,M(t0) =
0 and M(t) is bounded (a.s.). Therefore, there is a positive number, say M̃ , such that

M(t) =
∫ t

t0

m(s) ds ≤ M̃, t ∈ [t0, t0 + α].

Let β = min{α, λ
2M̃

− 1} > 0. For 0 < β1 < β, define

Q =
{
x ∈ PC([t0 − r, t0 + β1],D)

∣∣∣ xt0 = φ, x is continuous on (t0, t0 + β1]
and Ft -adapted and ‖x(t) − φ(0)‖2 ≤ λ (a.s.) ∀t ∈ (t0, t0 + β1]

}
.

If x ∈ Q, (i.e., x is continuous on [t0, t0 + β1] andFt -adapted), then the composite
functions f (t, xt ) and g(t, xt ) are adapted and (a.s.) integrable (respectively square
integrable) since f (t, xt ) ∈ Lad(�; L[t0, t0 + β1]) and g(t, xt ) ∈ Lad(�; L2[t0, t0
+ β1]).

For n ∈ N, define the sequence of random processes

x (n)(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(t − t0), t ∈ [t0 − r, t0],
φ(0), t ∈ (t0, t0 + β/n],
φ(0) + ∫ t−β/n

t0
f (s, x (n)

s ) ds

+ ∫ t−β/n
t0

g(s, x (n)
s ) dW (s), t ∈ (t0 + β/n, t0 + β].

(3.6)
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By the above argument and φ ∈ L 2
F 0

([−r, 0]; R
n), the sequence {x (n)} is well

defined and, for each n, x (n)(t) is Ft -adapted. Moreover, for t ∈ (t0 + β/n, t0 +
2β/n], we have

‖x (n)(t) − φ(0)‖ ≤
∥∥∥

∫ t−β/n

t0

f (s, x (n)
s )ds

∥∥∥ +
∥∥∥

∫ t−β/n

t0

g(s, x (n)
s )dW (s)

∥∥∥.

So that, in view of (3.3),

E

[
‖x(n)(t) − φ(0)‖2

]
≤ 2

{
E

∥∥∥
∫ t−β/n

t0
f (s, x(n)

s )ds
∥∥∥2 + E

∥∥∥
∫ t−β/n

t0
g(s, x(n)

s )dW (s)
∥∥∥2

}

≤ 2
{β

n

∫ t0+β/n

t0
E‖ f (s, x(n)

s )‖2ds +
∫ t0+β/n

t0
E‖g(s, x(n)

s )‖2ds
}

≤ 2(
β

n
+ 1)M̃ ≤ λ,

where we used (a + b)2 ≤ 2(a2 + b2) and Caushy–Schwartz inequality. If a sub-
sequence of {x (n)} is taken, then {x (n)} ∈ Q (a.s.), and by the mathematical induc-
tion, we can show that this is true for t ∈ (t0 + kβ/n, t0 + (k + 1)β/n], for k =
1, 2, . . . , n − 1. Thus, for n ≥ 2, x (n) belongs to Q. We also have, from (3.6),

‖x (n)(t)‖ ≤ ‖φ(0)‖ +
∥∥∥

∫ t−β/n

t0

f (s, x (n)
s )ds

∥∥∥ +
∥∥∥

∫ t−β/n

t0

g(s, x (n)
s )dW (s)

∥∥∥.

So that

E

[
‖x(n)(t)‖2

]
≤ 3

{
E‖φ(0)‖2 + E

∥∥∥
∫ t−β/n

t0
f (s, x(n)

s )ds
∥∥∥2 + E

∥∥∥
∫ t−β/n

t0
g(s, x(n)

s )dW (s)
∥∥∥2

}

≤ 3
{
c1 + β

n

∫ t0+β/n

t0
E‖ f (s, x(n)

s )‖2ds +
∫ t0+β/n

t0
E‖g(s, x(n)

s )‖2ds
}

≤ 3
{
c1 + (

β

n
+ 1)M̃

}
.

Namely, we have

E

[
‖x (n)(t)‖2

]
≤ λ′. (3.7)

whereλ′ = 3
{
c1 + (

β
n + 1)M̃

}
. ByTchebychev’s inequality, one can find, for ε > 0,

γ1(ε) such that

P

{
‖x (n)(t)‖ > γ1(ε)

}
≤

E

[
‖x (n)(t)‖2

]

γ1(ε)2
≤ λ′

γ1(ε)2
= ε

2
.
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Now, for each n, let y(n) denote the restriction of x (n) to [t0, t0 + β]. Then, y(n) is
continuous on [t0, t0 + β], and moreover, for t ∈ [t0, t0 + β], we have

P

{
‖y(n)(t)‖ > γ1(ε)

}
≤ ε

2
, (3.8)

meaning that the sequence {y(n)(t)} is uniformly bounded (a.s.). We also have

y(n)(t1) − y(n)(t2) =
∫ t1

t2

f (s, y(n)
s )ds +

∫ t1

t2

g(s, y(n)
s )dW (s),

so that

E

[∥∥∥y(n)(t1) − y(n)(t2)
∥∥∥2

]
≤ 2

{
E

∥∥∥
∫ t1

t2
f (s, y(n)

s )ds
∥∥∥2 + E

∥∥∥
∫ t1

t2
g(s, y(n)

s ) dW (s)
∥∥∥2

}

≤ 2M2|t1 − t2|(|t1 − t2| + 1) ≤ ε′,

namely

E

[∥∥∥y(n)(t1) − y(n)(t2)
∥∥∥2] ≤ ε′

which implies that, for a positive ε, there exists γ2(ε) such that

P

{
‖y(n)(t1) − y(n)(t2)‖ > γ2(ε)

}
≤ ε

2
, (3.9)

which shows that the sequence {y(n)} is equicontinuous (a.s.).
Combining (3.8) and (3.9) yields

P

{
‖y(n)(t)‖ ≤ γ1(ε) or‖y(n)(t1) − y(n)(t2)‖ ≤ γ2(ε)

}
> 1 − ε,

Set

Kε =
{
y(n) ∈ C([t0, t0 + β],D) | ‖y(n)(t)‖ ≤ γ1(ε)

and ‖y(n)(t1) − y(n)(t2)‖ ≤ γ2(ε)
}
.

The following part of the proof is aimed to prove the convergence of the sequence
in (3.6).1 Since Kε is uniformly bounded and equicontinuous, by Arzela–Ascoli’s
theorem [1], it is a compact subset of C([t0, t0 + β];D). In addition, by Lemma 3.1,
it satisfies P{y(n) ∈ Kε} > 1 − ε. Thus, by Prokhorov’s theorem, the collection of

1This part of the proof is inspired by that of Theorem 4.2.1 in [1] except the dynamics there are
delay-free. We reproduced it here for self-contained proof reading.
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continuous processes {y(n)(t)} is totally D−bounded. Thus, {(y(n)(t),W (n)(t), y(n)
0 )}

is totally bounded, whereW (n)(t) ≡ W (t) and y(n)
0 ≡ φ(0) =: y0. Therefore, one can

findaD-Cauchy subsequence {(y(nr )(t),W (nr )(t), y(nr )
0 )}of {(y(n)(t),W (n)(t), y(n)

0 )}.
By Skorohod’s theorem [1], we can construct a sequence of random functions
{(u(nr )(t), w(nr )(t), u(nr )

0 )} and a random function (u(t), w(t), u0) such that the dis-
tance

D
(
(y(nr )(t), W (nr )(t), y(nr )

0 ), (u(nr )(t), w(nr )(t), u(nr )
0 )

)
= 0, (3.10)

for n1, n2, n3, . . ., and

P

{
(u(nr )(t), w(nr )(t), u(nr )

0 ) → (u(t), w(t), u0)
}

= 1 (3.11)

as r → ∞.

Notation. Denote the superscript nr by the subscript r ; for example, the subsequence
{u(nr )(t)} becomes {ur (t)}.

The subsequence {ur (t)} is a D−Cauchy sequence. By the definition of totally
D−bounded set, one can construct or find (n-indexed) D−Cauchy subsequence
{unr (t)} of {ur (t)} and construct a subsequence {un(t)} of the (restricted) solution
sequence {y(n)} as follows

unr (t) =

⎧⎪⎨
⎪⎩
ur0 , t ∈ (t0, t0 + β/n],
ur0 + ∫ t−β/n

t0
f (s, unrs ) ds

+ ∫ t−β/n
t0

g(s, unrs ) dwr (s), t ∈ (t0 + β/n, t0 + β],

for every r = 1, 2, . . ., and

un(t) =

⎧⎪⎨
⎪⎩
u0, t ∈ (t0, t0 + β/n],
u0 + ∫ t−β/n

t0
f (s, uns ) ds

+ ∫ t−β/n
t0

g(s, uns ) dw(s), t ∈ (t0 + β/n, t0 + β].

Set

Ir (t) =
∫ t

t0

f (s, urs ) ds +
∫ t

t0

g(s, urs ) dwr (s), (3.12a)

I nr (t) =
∫ t−β/n

t0

f (s, unrs ) ds +
∫ t−β/n

t0

g(s, unrs ) dwr (s), (3.12b)

I (t) =
∫ t

t0

f (s, us) ds +
∫ t

t0

g(s, us) dw(s), (3.12c)



66 3 Fundamental Properties of Stochastic Impulsive Systems with Time Delay

I n(t) =
∫ t−β/n

t0

f (s, uns ) ds +
∫ t−β/n

t0

g(s, uns ) dw(s), (3.12d)

I rr (t) =
∫ t−β/r

t0

f (s, urrs ) ds +
∫ t−β/r

t0

g(s, urrs ) dwr (s). (3.12e)

From (3.12a) and (3.12b), we have

I nr (t) − Ir (t) =

l0︷ ︸︸ ︷∫ t−β/n

t0

f (s, unrs ) ds −
∫ t

t0

f (s, urs ) ds

+
∫ t−β/n

t0

g(s, unrs ) dwr (s)

︸ ︷︷ ︸
l1

−
∫ t

t0

g(s, urs ) dwr (s) (3.13)

The stochastic integral l0 and l1 can be written as follows

∫ t

t0

f n(s, unrs ) ds,
∫ t

t0

gn(s, unrs ) dwr (s),

where f n(s, unrs ) and gn(s, unrs ) are sequences of step functions. As for f n and gn ,
the least we expect that they are piecewise continuous functions. Also, since the
functionals f and g are continuous in the second argument and unr (t) is a D−Cauchy
sequence which converges to ur (t), we have

∫ t

t0

‖ f n(s, unrs ) − f (s, urs )‖2 ds → 0

and

∫ t

t0

‖gn(s, unrs ) − g(s, urs )‖2 ds → 0

in probability.2 Therefore, the sequence of the deterministic integrals converges to

∫ t

t0

f (s, urs ) ds

and by the definition of Itô integral, we have

∫ t

t0

g(s, urs ) dwr (s) =
∫ t

t0

gn(s, unrs ) dwr (s)

2In fact, if a subsequence is taken, the convergence holds with probability one.
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in probability. Hence, I nr (t) converges to Ir (t) uniformly in probability as n → ∞;
namely, we have, for any r ∈ N and given ε > 0,

P{‖I nr (t) − Ir (t)‖ > ε} < ε (3.14)

as n → ∞. Similarly, from (3.12c) and (3.12d), we obtain

P{‖I n(t) − I (t)‖ > ε} < ε. (3.15)

From (3.12b) and (3.12d), we get

P{I nr (t) → I n(t)} = 1 (3.16)

as r → ∞, because we have a sequence of stochastic integrals {I nr (t)}∞r=1 which,
by (3.11), converges to the stochastic integral I n(t) as r → ∞. Also, (3.16) implies
that, for any ε > 0, there exists a positive number r such that r ≥ r0 = r0(ε),

‖ f (s, unrs ) − f (s, uns )‖ <

√
ε3

4β2

and

‖g(s, unrs ) − g(s, uns )‖ <

√
ε3

4β
.

Hence

E[‖I nr (t) − Ir (t)‖2] ≤ 2E

[
β

∫ t0+β

t0

‖ f (s, unrs ) − f (s, uns )‖2 ds
]

+ 2E

[ ∫ t0+β

t0

‖g(s, unrs ) − g(s, uns )‖2 ds
]

≤ 4E

[ ∫ t0+β

t0

ε3

4β
ds

]
= ε3

and by Tchebychev’s inequality, we get

P{‖I nr (t) − I n(t)‖ > ε} < ε, r ≥ r0(ε). (3.17)

We want now to show that

u(t) = φ(0) +

=:I (t)︷ ︸︸ ︷∫ t

t0

f (s, us) ds +
∫ t

t0

g(s, us) dW (s)
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holds. Note that

P

{
‖u(t) − φ(0) − I (t)‖ > 6ε

}

= P

{
‖u(t) −

=0︷ ︸︸ ︷
urr (t) + ur0 + I rr (t)−φ(0) − I (t) + I n(t) − I n(t) + I nr (t) − I nr (t)

+ Ir (t) − Ir (t)‖ > 6ε
}

= P

{
‖(u(t) − urr (t)) + (ur0 − φ(0)) − (I (t) − I n(t)) + (I nr (t) − I n(t))

+ (Ir (t) − I nr (t)) + (I rr (t) − Ir (t))‖ > 6ε
}

≤ P

{
‖y(t) − yrr (t)‖ > ε

}
+ P

{
‖ur0 − φ(0)‖ > ε

}
+ P

{
‖I (t) − I n(t)‖ > ε

}

+ P

{
‖I nr (t) − I n(t)‖ > ε

}
+ P

{
‖Ir (t) − I nr (t)‖ > ε

}

+ P

{
‖I rr (t) − Ir (t)‖ > ε

}
< 6ε,

namely

P

{
‖u(t) − φ(0) − I (t)‖ > 6ε

}
< 6ε.

Since ε > 0 is arbitrary, this implies that

u(t) = φ(0) +
∫ t

t0

f (s, us) ds +
∫ t

t0

g(s, us) dW (s), (a.s.).

Hence, y ≡ u. Finally, define

x(t) =
{

φ(t − t0), t ∈ [t0 − r, t0],
y(t), t ∈ (t0, t0 + β]. (3.18)

Thus, x is the required solution of (3.1). In the rest of the proof, we show that,
under the condition in (3.4), the solution x cannot continue along the hypersurface
t = τk(x) after it initially starts on it. Define the random function

g(t) = t − τk(x(t)), (3.19)

for all t ∈ [t0, t0 + β]. Then, g(t0) = t0 − τk(φ(0)) = 0 and g(t) has a derivative in
mean. Differentiating with respect to t , applying Itô formula and taking the mathe-
matical expectation lead to

d

dt
E[g(t)] = 1 − E[L τk(x(t))]. (3.20)
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Clearly, the right-hand side of (3.20) is continuous at least in a small neighborhood
of t0, so that if we let t∗ = t0 and x∗ = φ(0) and apply (3.4), g(t) is either strictly
increasing or strictly decreasing in mean on (t∗, t∗ + δ). Hence, the solution will
depart any hypersurface t = τk(x(t)) in mean for some amount of time after t0 (or
t∗) before it hits another hypersurface. This completes the proof.

3.2 Forward Continuation

Having seen how the solution x evolves between two hypersurfaces, regardless of
where it initially starts, we address now the problem of forward continuation of
solution of (3.1) which, at the same time, does not exhibit the beating phenomenon
upon an impulse hypersurface. These extensions require further conditions on the
impulsive moments τk and function I as stated in the following theorem.

Theorem 3.2 Suppose that the functionals f and g satisfy the conditions in Theo-
rem 3.1, τk ∈ C 2(D; R+), for some k ∈ N, and limk→∞ τk(x) = ∞ uniformly in x.
Assume that

E[L τk(ψ(0))] < 1, (3.21)

for all (t,ψ) ∈ J × PC ([−r, 0];D) and k ∈ N, and the relations

ψ(0) + I (τk(ψ(0)),ψ) ∈ D; and

τk(ψ(0) + I (τk(ψ(0)),ψ)) ≤ τk(ψ(0)) (3.22)

hold almost surely for all ψ ∈ PC ([−r, 0];D) for which ψ(0−) = ψ(0) (a.s.) and
for all k ∈ N. Then, for every continuable solution x of (3.1), there exists a continu-
ation y of x that is noncontinuable. Moreover, any solution x of (3.1) can intersect
each impulse hypersurface at most once.

Proof Let x(t) be any solution of (3.1) that is defined on [t0 − r, t0 + β1) or [t0 −
r, t0 + β1], where 0 < β1 < ∞. Denote by X the set of all solutions x with their
continuations. For any y, z ∈ X , we define the partial ordering ≺ by y ≺ z if, for
almost all ω ∈ �, either y = z or z is a continuation of y. Let S be a totally ordered
subset of X . Now for y ∈ S, we associate β(y) such that β1 ≤ β(y) ≤ ∞ and by
which the solution y is defined on [t0 − r, t0 + β(y)) or [t0 − r, t0 + β(y)].

Define

β2 = sup{β(y) | y ∈ S}.

Clearly, β1 ≤ β2 ≤ ∞ and y is defined on a subset of [t0 − r, t0 + β2] if β2 < ∞
or [t0 − r, t0 + β2) if β2 = ∞. At this stage, one considers two cases. The trivial case
is when β2 < ∞, and there is a solution y defined on [t0 − r, t0 + β2]. Consequently,
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this solution y of (3.1) is an upper bound on S, and at the same time, it is the required
solution continuation. In the other case, wewill show that there is a solution z defined
on [t0 − r, t0 + β2) such that for all y ∈ S, y ≺ z, that is z will be an upper bound
on S. Hence, by Zorn’s lemma, the set X has a maximal element. To show this fact,
for t ∈ [t0 − r, t0 + β2), we define the following function

z(t) = y(t), (a.s.) (3.23)

where y is any solution in S for which t < t0 + β(y). The new function z is well
defined, it is right-continuous (i.e., z(t+) = z(t) (a.s.)) for all t ∈ [t0 − r, t0 + β2),
the left limit z(t−) exits for all t ∈ (t0 − r, t0 + β2) and z(t−) = z(t) (a.s.) for all but
at most finite number of points in (t0 − r, t0). Moreover, if z has a finite number of
simple jump discontinuities in any finite interval of (t0, t0 + β2), then z is a solution
of (3.1) (i.e., z ∈ PC ([t0 − r, t0 + β2);D) and Ft -adapted). To show this is the
only possible case, for β2 < ∞, define

T = {t ∈ (t0, t0 + β2) | t = τk(z(t
−)) for some k}.

Then, except at these points, z(t−) = z(t) (a.s.). At this point,we also consider two
case; the first one is when T is finite. By the assumptions imposed on the functionals
f and g from the last theorem, f (t, zt ) and g(t, zt ) can only have a finite number of
simple jumpdiscontinuities on the interval (t0, t0 + β2), and except at these point or at
the points ofT, the solution z is continuous and has the solution form given in (2.53).
This is because the functionals f (t, zt ) and f (t, yt ) have the same properties. We
conclude that, if y ∈ PC ([t0 − r, t0 + β2);D) and Ft -adapted, so is z. The more
challenging case is when β2 < ∞ and T has an infinite number of discontinuities in
(t0, t0 + β2). In this case,T has an increasing sequence of impulse timesT = {tk}∞k=1,
where t0 < t1 < t2 < · · · < tk < · · · < t0 + β2 and limk→∞ tk = t0 + β2. For k ∈ N,
denote by jk the index of the unique impulse hypersurface τ jk that the solution z
reaches at tk , i.e., tk = τ jk (z(t

−
k )). For some finite integer number N > 0, if jk < N ,

then z can reach only a finite number of impulse hypersurfaces. Since, as assumed,
there is an increasing number of impulse times, the solution z must reach at least
one impulse hypersurface more than once. In other words, jk = jk+m , and hence,
tk = τ jk (z(t

−
k )) and tk+m = τ jk (z(t

−
k+m)) for some positive integers k and m (i.e., the

hypersurface τ jk is being hit at times tk and tk+m). This also implies that if y ∈ S, then
tk = τ jk (y(t

−
k )) and tk+m = τ jk (y(t

−
k+m))where tk+m < t0 + β(y).Wewill show that,

according to our assumptions, this cannot happen for the solution y to reach the same
hypersurface more than once. For this purpose, for i = 0, 1, 2, . . . ,m, we define

hk+i (t) = t − τ jk+i (y(t)), (a.s.) (3.24)

for t ∈ [t0 − r, tk+m]. Note that hk+i (t
−
k+i ) = 0 for all i . Suppose for the sake of

contradiction that, for some 0 ≤ i ≤ m − 1, we have jk+i > jk+i+1 and hence
τ jk+i (ν) > τ jk+i+1(ν) for all ν ∈ D . This implies

hk+i+1(tk+i ) ≥ 0, (a.s.) (3.25)
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On the other hand, differentiating hk+i+1(t) with respect to t , for all t ∈ (tk+i ,

tk+i+1), applying Itô formula and taking the mathematical expectation give

d

dt
E[hk+i+1(t)] = 1 − E[L τ jk+i+1(y(t))], (3.26)

for all t ∈ (tk+i , tk+i+1). By (3.21) and the fact that hk+i (t
−
k+i ) = 0, we conclude

that hk+i+1(tk+i ) < 0 in mean, which contradicts with what we got in (3.25). Thus,
jk+i < jk+i+1 and hence jk < jk+1 < · · · < jk+m , which also contradicts with our
supposition jk = jk+m . Therefore, the solution y and hence z must intersect a given
impulse hypersurface at most once in mean. This completes the proof.

Before developing our global existence result, we would like to address the case
where the solution is noncontinuable in the sense that the solution cannot be entirely
contained in any compact set.

Theorem 3.3 Let x be a solution of (3.1) that is defined for all t ∈ [t0 − r, t0 +
β), where 0 < β < ∞ and [t0, t0 + β] ⊂ J . If x is noncontinuable, then there is
a sequence {sk}∞k=1, with t0 < s1 < s2 < · · · < sk < · · · < t0 + β and limk→∞ sk =
t0 + β (a.s.) such that x(sk) /∈ F, for any compact set F ⊂ D .

Proof Assume, for contradiction, that there is a compact set F1 ⊂ D and β1 > 0 for
which x(t) ∈ F1 for all t ∈ [t0 + β1, t0 + β). Let F2 be the closure of the range of the
solution x when t is restricted to [t0 − r, t0 + β1]. Then, the set F = F1 ∪ F2 ⊂ D
is also compact and x(t) ∈ F for all t ∈ [t0 − r, t0 + β). Now, for any t, t ∈ [t0 +
β1, t0 + β), we have from (2.53)

‖x(t) − x( t )‖ ≤
∥∥∥

∫ t

t
f (s, xs)ds

∥∥∥ +
∥∥∥

∫ t

t
g(s, xs)dW (s)

∥∥∥. (3.27)

Hence

E

[
‖x(t) − x( t )‖2

]
≤ 2

{
E

∥∥∥
∫ t

t
f (s, xs)ds

∥∥∥2 + E

∥∥∥
∫ t

t
g(s, xs)dW (s)

∥∥∥2}

≤ 2
{
[t − t ]

∫ t

t
E‖ f (s, xs)‖2ds +

∫ t

t
E‖g(s, xs)‖2ds

}

≤ 2M̃2|t − t |{|t − t | + 1} < ε, (3.28)

for some arbitrary positive ε > 0 and M̃ > 0, which is guaranteed by Theorem 3.1.
Then, by Tchebychev’s inequality, we obtain

P

{
‖x(t) − x(t)‖ > η

}
≤ ε

η2
,
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for some η > 0. Also, by Cauchy criterion, the limit limt→(t0+β) x(t) exits with prob-
ability one and its limit point, say ζ, is in F . That is, the solution x can be continued
by defining x(t0 + β) = ζ. But this contradicts with our supposition that x is non-
continuable. Thus, the conclusion of the theorem follows.

3.3 Global Existence

Having shown the evolution of a local solution of (3.1), we address the problem of
the global existence of the solution. This demands imposing further assumptions on
the functionals f and g.

Theorem 3.4 Let J = R+,D = R
n be an open set containingφ(0) and the function-

als f ∈ Lad(�; L[t0, t0 + α]) and g ∈ Lad(�; L2[t0, t0 + α]), where α > 0 and
[t0, t0 + α] ⊂ J are continuous in their second argument, say ψ. Assume further
that there are two measurable functions h1, h2 (or h1, h2 ∈ PC (R+; R+)) and a
continuous increasing concave function κ : R+ → R+ such that

‖ f (t,ψ)‖2 ∨ ‖g(t,ψ)‖2 ≤ h21(t) + h22(t)κ(‖ψ‖2r )

for all (t,ψ) ∈ R+ × L 2
F t

([−r, 0]; R
n) (i.e., ψ is an Ft -adapted and E[‖ψ‖2r ] <

∞). Then, for each (t,φ) ∈ R+ × L 2
F 0

([−r, 0]; R
n), there exists a localFt -adapted

solution x = x(t; t0, φ(0)) for (3.1) that can be continued to [t0 − r,∞).

Proof For all (t,φ) ∈ R+ × L 2
F 0

([−r, 0]; R
n), let x(t) = x(t; t0,φ(0)) be a local

solution of (3.1) that is guaranteed by Theorem 3.2. Suppose that, for contradiction,
for a finite β the solution x is noncontinuable in the sense of Theorem 3.3. We will
show that based on the theorem assumptions this supposition would be impossible.

Let a = E[‖φ(0)‖2] + E

[(∑
{k:tk∈(t0,t]}

∥∥∥I (tk, xt−k )

∥∥∥
)2

]
, b = (β + 1)β�

2, where

� = sup{h1(t) | ∀t ∈ [t0, t0 + β]} and c = E[‖φ‖2r ].
Then, for all t ∈ (t0, t0 + β),

E[‖x(t)‖2] ≤ 4
{
E[‖φ(0)‖2] + E

[( ∑
{k:tk∈(t0,t]}

∥∥∥I (tk , xt−k )

∥∥∥
)2] + β

∫ t

t0
E‖ f (s, xs)‖2ds

+
∫ t

t0
E‖g(s, xs)‖2ds

}

≤ 4
{
a + b + (β + 1)

∫ t

t0
h22(s)κ(E[‖xs‖2r ])ds

}
(3.29)
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which implies that

E[‖xt‖2r ] ≤ c + 4(a + b) + 4(β + 1)
∫ t

t0

h22(s)κ(E[‖xs‖2r ]) ds

= B + 4(β + 1)
∫ t

t0

h22(s)κ(E[‖xs‖2r ]) ds,

where B = c + 4(a + b). Using Bihari’s Lemma yields

E[‖xt‖2r ] ≤ G−1
(
G(B) + 4(β + 1)

∫ t

t0

h22(s)ds
)
,

where

G(u) =
∫ u

0+

ds

κ(s)
, u > 0

and G(B) + 4(β + 1)
∫ t
t0
h22(s)ds ∈ Dom(G−1). If B → 0, then G(B) → −∞ and,

hence,G−1 → 0. That is to say, if B → 0, thenE[‖xt‖2r ] ≤ 0 < ∞. Thus,E[‖x(t)‖2]
< ∞. This contradicts with that x is noncontinuable. Therefore, the solution must
be bounded when t → (t0 + β)− and the global existence result follows.

3.4 Uniqueness of Solution

Having established the local/global existence result for impulsive system (3.1), we
are in a position to prove the uniqueness of the solution.

Theorem 3.5 Suppose that the assumptions of Theorem 3.4 hold and that the func-
tionals f (t,ψ) and g(t,ψ) are locally Lipschitz in ψ for all t ∈ J . Then, sys-
tem (3.1) has a unique solution defined on [t0 − r, t0 + β), where 0 < β ≤ ∞ and
[t0, t0 + β) ⊂ J = R+.

Proof For all t ∈ [t0 − r, t0 + β) with 0 < β ≤ ∞ and [t0, t0 + β) ⊂ J , let x =
x(t; t0,φ(0)) and y = y(t; t0,φ(0)) be two solutions of (3.1). So that, x(t) = y(t) =
φ(t − t0) for all t ∈ [t − t0, t0]. For contradiction, assume that x �≡ y (a.s.) (i.e.,
x(t) �= y(t) (a.s.) for all t ∈ J ). Then, there would be some t ∈ (t0, t0 + β) such
that x(t) �= y(t) (a.s.). Define the stopping time t1 = inf{t ∈ (t0, t0 + β) | x(t) �=
y(t)}. If t1 is not an impulsive time (i.e., t1 �= τk(x(t

−
1 )) or equivalently t1 �=

τk(y(t
−
1 )) for all k), then x(t1) = x(t−1 ) = y(t−1 ) = y(t1) (a.s.); otherwise, x(t1) =

x(t−1 ) + I (t1, xt−1 ) = y(t−1 ) + I (t1, yt−1 ) = y(t1). Hence, in both cases, we have
x(t1) = y(t1) (a.s.). Let ε > 0 be sufficiently small such that t1 + ε < t0 + β and
the solutions x and y do not reach any hypersurface over (t1, t1 + ε]. Let δ > 0
be a sufficiently small number such that δ < ε and δ(δ + 1)L2 ≤ 1

4 , where L > 0,
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such that ‖ f (t,ψ1) − f (t,ψ2)‖ ∨ ‖g(t,ψ1) − g(t,ψ2)‖ ≤ L‖ψ1 − ψ2‖r , for all t ∈
[t0, t1 + ε] and all ψ1, ψ2 in some compact set F ⊂ D withD being an open subset
of R

n , where the last inequality is guaranteed as f and g are locally Lipschitz in
ψ. Then, for all t ∈ [t1, t1 + δ] (where x and y do not intersect with any impulsive
hypersurface), we have from (2.53)

E[‖x(t) − y(t)‖2] = 2
{
E

∥∥∥
∫ t

t1

( f (s, xs) − f (s, ys)) ds
∥∥∥2

+ E

∥∥∥
∫ t

t1

(g(s, xs) − g(s, ys)) dW (s)
∥∥∥2}

≤ 2
{
δ

∫ t

t1

E‖ f (s, xs) − f (s, ys))‖2 ds

+
∫ t

t1

E‖g(s, xs) − g(s, ys))‖2 ds
}

≤ 2(δ + 1)
∫ t

t1

E[L2‖xs − ys‖2r ] ds

≤ 2(δ + 1)L2
∫ t

t1

sup
u∈[t1,s]

E‖x(u) − y(u)‖2ds

≤ 2(δ + 1)L2
∫ t1+δ

t1

sup
u∈[t1,t1+δ]

E‖x(u) − y(u)‖2ds

≤ 2(δ + 1)L2δ sup
u∈[t1,t1+δ]

E‖x(u) − y(u)‖2

≤ 1

2
sup

u∈[t1,t1+δ]
E‖x(u) − y(u)‖2

for all t ∈ [t1, t1 + δ]. The last inequality implies that sup[t1,t1+δ] E[‖x(t) − y(t)‖2] =
0. Since x and y are continuous functions for all t ∈ [t1, t1 + δ], then

P

(
sup

[t1,t1+δ]
‖x(t) − y(t)‖ > 0

)
= 0, (3.30)

which implies that x(t) = y(t) (a.s.) for all t ∈ [t1, t1 + δ] [2]. But this contradicts
with our supposition that x �≡ y (a.s.). Thus, it must be true that (3.1) has a unique
solution.

3.5 Notes and Comments

In this chapter, we have considered a general nonlinear stochastic system with time
delay and impulsive effects occurring at state-dependent variable times.We have first
addressed a local existence result for the systemover a space of piecewise continuous,
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Ft -adapted functions. The material of this chapter is taken from [3]. Also, if the
stochastic diffusion process is completely set to zero (i.e., g ≡ 0), then system (3.1)
reduces to impulsive system (2.31). So that, one may refer to [4, 5] to further study
the fundamental properties system (2.31). We should mention that, in proving the
equi-continuity property of the solution sequence, one may get the same result by
following another, but lengthy, approach and then employing Kolmogorov’s theorem
for continuity. As mentioned earlier, the proof of the convergence of sequence of
SIEs is inspired by that of Theorem 4.2.1 in [1]; instead, one can obtain the same
convergence property if the functionals satisfy the Lipschitz condition. We have also
shown that, by imposing further restriction on the impulsive hypersurface, solutions
leave this surface in mean. Due to some technical difficulties in backward extending
a given solution of an impulsive system with or without time delay, we have focused
on forward continuation, which meets our interest in this book when studying the
qualitative properties of the stochastic delay systemwith fixed impulses. Later, under
further conditions on the impulse function and impulses, solutions evolve without
exhibiting rhythmical beating upon a hypersurface. Supposing that the drift and
diffusion coefficients (i.e., f and g) are bounded by some nonlinear estimate in their
delayed-state argument, a global result has been achieved. In fact, one can reach the
same finding if the coefficients are assumed to grow linearly; however, the result will
be analyzed differently. Finally, a unique solution is guaranteed if f and g be locally
Lipschitz.
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Chapter 4
Stability of Stochastic Impulsive Systems
with Time Delay

In this chapter, we consider nonlinear stochastic impulsive systems with time delay.
Particularly, the time delay here is finite; the stochastic noise is represented by a
Wiener process, and the impulses are state-independent and are of types diminishing
and unbounded in total. Namely, we consider the following system

dx(t) = f (t, xt )dt + g(t, xt ) dW (t), t �= τk, (4.1a)

�x = I (t, xt−), t = τk, (4.1b)

xt0 = φ(s), s ∈ [−r, 0] (4.1c)

The main interest here is to address the problem of mean square (m.s.) global
asymptotic stability and the problem of stabilization by impulsive controller. Pre-
cisely, we developLyapunov-like sufficient conditions to ensure the stability property
using the classical Lyapunov-based approach and the comparison method.

Similar to those stated in Chap. 2, while investigating the stability properties of
impulsive systems, we make for convenient reading two assumptions, taking into
account the random noise affecting the system in Assumption A1.

Assumption A1 There exist 0 ≤ �1 ≤ � such that, for all τk ∈ R+ and x defined on
PC ([−r, 0];D), for some open set D ∈ R

n , if

E[‖x(τ−
k )‖2] < �1, then E[‖x(τk)‖2] < �.

Assumption A2 For any k ∈ N, we have

τsup = sup{τk − τk−1} < ∞ and τinf = inf{τk − τk−1} > 0.

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
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Definition 4.1 The trivial solution of system (4.1) is said to be

(i) stable in the m.s., if for every ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0
such that

E[‖φ‖2r ] ≤ δ implies E[‖x(t)‖2] < ε, ∀t ≥ t0,

where x(t) = x(t; t0,φ) is any solution of (4.1), with x ∈ PC ([t0 − r, t0 +
α];D) for some α > 0 and φ ∈ L 2

F 0
([−r, 0];D);

(ii) uniformly stable in the m.s. if δ in (i) is independent of t0;
(iii) asymptotically stable in the m.s. if it is stable and for any t0 ∈ R+, there exists

η = η(t0) > 0 such that

E[‖φ‖2r ] ≤ η implies lim
t→∞E[‖x(t)‖2] = 0;

(iv) uniformly asymptotically stable in the m.s. if it is uniformly stable in the m.s.
and there exists some η > 0 such that, for every γ > 0, there exists a constant
T = T (η, γ) > 0 for which

E[‖φ‖2r ] ≤ η implies E[‖x(t)‖2] < γ, ∀t ≥ t0 + T ;

(v) uniformly attractive in the m.s. if, for any η > 0, there exists a δ0 = δ0(η) and
T = T (η) > 0 for which E[‖x(t)‖2] < η, for all t ≥ T , whenever E[‖φ‖2] <

δ0. It is said to be uniformly asymptotically stable if it is uniformly attractive
and (ii) holds simultaneously.;

(vi) exponentially stable in the m.s. if there exist positive constants K and λ such
that

E[‖x(t)‖2] ≤ KE[‖φ‖2r ]e−λ(t−t0), ∀ t ≥ t0;

(vii) unstable in m.s. if (i) fails to hold.

4.1 Stability Analysis by Classical Lyapunov Technique

In this section, we address the m.s. stability properties of (4.1) using Lyapunov-
based theorems together with Razumikhin technique. Particularly, in Theorem 4.1,
the underlying continuous system is assumed to have unstable trivial solution that
is stabilized by the action of impulsive effects, which are not necessarily bounded.
Later in Corollary 4.1, the underlying continuous systems is assumed to be stable
that is perturbed by impulses. To maintain the stability property, the impulses are
treated as perturbation to the continuous system.
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Theorem 4.1 Assume that Assumptions A1 and A2 are satisfied and there exist func-
tions a, c ∈ Kc, b ∈ Kv and p ∈ PC (R+;R+). Let V ∈ C 1,2([−r,∞) × R

n;R+)

such that the following conditions hold:

(i) for all (t,ψ(0)) ∈ [−r,∞) × S(�),

b(‖ψ(0)‖2) ≤ V (t,ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.);

(ii) for all t �= τk ∈ R+ and ψ ∈ PC ([−r,∞); S(�)),

L V (t,ψ) ≤ p(t)c(V (t,ψ(0))), (a.s.)

provided that ḡ(V (t + s,ψ(s))) ≤ V (t,ψ(0)) for some s ∈ [−r, 0], where ḡ ∈
K3;

(iii) at any impulsive moment τk ∈ T and ψ ∈ PC ([−r,∞); S(�)),

V (τk,ψ(0) + I (τk,ψ(τ−
k ))) ≤ ḡ(V (τ−

k ,ψ(0))), (a.s.)

with ψ(0−) = ψ(0), where (τk,ψ(τ−
k )) ∈ R+ × PC ([−r, 0]; S(�1));

(iv) M1 = supt≥0

∫ t+τ

t p(s)ds < ∞, with τ = supk∈N{τk − τk−1} < ∞ and M2 =
infq>0

∫ q
ḡ(q)

ds/c(s) > M1.

Then, the trivial solution x ≡ 0 of (4.1) is uniformly asymptotically stable in the m.s.

Proof From condition (i), we have for s ∈ [0, �], b(s) ≤ a(s), so that we can find two
functions b̂ ∈ Kv and â ∈ Kc such that b̂(s) ≤ b(s) ≤ a(s) ≤ â(s) for all s ∈ [0, �].
This implies

b̂(‖ψ(0)‖2) ≤ V (t,ψ(0)) ≤ â(‖ψ(0)‖2), (a.s.),

for all t ∈ R+ and ψ ∈ PC
([−r, 0]; S(�)

)
.

We first prove uniform stability in the m.s. Let 0 < ε < ρ1 and x(t) = x(t; t0,φ)

be a solution of (4.1) with its maximal interval of existence [t0, t0 + β). Choose
δ = δ(ε) such that δ < â−1(ḡ(b̂(ε))). Since, by the definition of M2, 0 < ḡ(q) < q,
we have 0 < δ < ε.

Claim 1 Let φ be the initial function such that E[‖φ‖2r ] ≤ δ. Then, x ≡ 0 is uni-
formly stable in the m.s.

Proof of Claim 1. If our claim were not true, there would be some t ∈ [t0, t0 +
β) for whichE[‖x(t)‖2] > ε. Then, define t̂ = inf{t ∈ [t0, t0 + β)

∣
∣E[‖x(t)‖2] > ε}.

Clearly that E[‖x(t)‖2] ≤ E[‖φ‖2r ] ≤ δ < ε for all t ∈ [t0 − r, t0], and particularly,
E[‖x(t0)‖2] < ε. Therefore, t̂ ∈ (t0, t0 + β), E[x(t)] ≤ ε ≤ �1 for all t ∈ [t0 − r, t̂)
which is guaranteed byAssumptionA1 and eitherE[‖x(t)‖2] = ε orE[‖x(t)‖2] > ε
at t̂ = τk for some k. Therefore, V (t, x(t)) is defined for all t ∈ [t0, t̂]. Thus, define
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m(t) = E[V (t, x(t))]. With the aid of Itô formula and the property of the function
c, we get, after taking the mathematical expectation,

m(t) ≤ m(s) + E

∫ t

s
L V (u, xu)du, ∀ t0 ≤ s ≤ t ≤ t̂

≤ m(s) + p(t)c(m(t)),

which implies that the Dini derivative of m is given by

D+m(t) = lim
h→0+

sup
1

h
[m(t + h) − m(t)] ≤ p(t)c(m(t)), (4.2)

for all t �= τk in (t0, t̂], provided that m(t) ≥ ḡ(‖m(t)‖r ) and, at the impulsive
moments, we have

m(τk) ≤ ḡ(m(τ−
k )), (4.3)

for all τk ∈ (t0, t̂]. Let t∗ = inf{t ∈ [t0, t̂]
∣
∣m(t) ≥ b̂(ε)}. Since m(t0) ≤ â(‖φ‖2r ) ≤

b̂(δ) ≤ ḡ(b̂(ε)) ≤ b̂(ε) and m(t̂) ≥ b̂(ε), which is guaranteed by b̂(E[‖x(t)‖2]) ≤
m(t) ≤ â(E[‖x(t)‖2]), we conclude that t∗ ∈ (t0, t̂]. Furthermore, m(t) < b̂(ε) for
all t ∈ [t0 − r, t∗). This is because, as seen above,m(t) ≤ b̂(ε) for all t ∈ [t0 − r, t0],
m(t̂) ≥ b̂(ε) and the definition of t∗. Before finishing the proof of Claim 1, we need
to prove the following result.

Claim 2 For τk ∈ (t0, t̂] (for any k), m(t∗) = b̂(ε) and t∗ �= τk .

Proof of Claim 2. Note that, from the definition of t∗, m(t∗) ≥ b̂(ε) > 0. Now, if
t∗ = τk for some k, then

0 < b̂(ε) ≤ m(t∗) ≤ ḡ(m(t∗−)) ≤ m(t∗−) < b̂(ε)

which is impossible. Thus, t∗ �= τk for any k. This also implies that m(t∗) = b̂(ε)
because m(t) is continuous at t∗. This completes the proof of Claim 2.

To pursue the proof of Claim 1, consider that τl−1 ≤ t0 < t∗ < τl . Let t̄ =
sup{t ∈ [t0, t∗]

∣
∣m(t) ≤ ḡ(b̂(ε))}. We have seen m(t0) ≤ ḡ(b̂(ε)), m(t∗) = b̂(ε) >

ḡ(b̂(ε)) and m(t) is continuous on [t0, t∗]. Then, t̄ ∈ (t0, t∗), m(t̄) = ḡ(b̂(ε)) and
m(t) ≥ ḡ(b̂(ε)) for all t ∈ [t̄, t∗]. Hence, for t ∈ [t̄, t∗] and s ∈ [−r, 0], we have
ḡ(m(t + s)) ≤ ḡ(b̂(ε)) ≤ m(t). Thus, the inequality

D+m(t) ≤ p(t)c(m(t))
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holds for all t ∈ (t̄, t∗]. Integrating this differential inequality yields

∫ m(t∗)

m(t̄)

ds

c(s)
≤

∫ t∗

t̄
p(s)ds ≤

∫ t̄+τ

t̄
p(s)ds ≤ sup

∫ t̄+τ

t̄
p(s)ds = M1. (4.4)

On the other hand, we have

∫ m(t∗)

m(t̄)

ds

c(s)
=

∫ b̂(ε)

ḡ(b̂(ε))

ds

c(s)
≥ M2, (4.5)

which contradicts with the assumption M2 > M1.
Next, we consider the case where τk < t∗ < τk+1 for some k ≥ l. Then, we have

m(τk) ≤ ḡ(m(τ−
k )) ≤ ḡ(b̂(ε)),

where the second inequality is guaranteed because m(t−k ) ≤ b̂(ε) and ḡ is a nonde-
creasing function. Define t̄ = sup{t ∈ [τk, t∗]

∣
∣m(t) ≤ ḡ(b̂(ε))}. Then, as achieved in

the previous analysis, we get t̄ ∈ [τk, t∗),m(t̄) = ḡ(b̂(ε)) andm(t) ≥ ḡ(b̂(ε)) for all
t ∈ [t̄, t∗). Following the same argument applied to the differential inequality over
the interval [t̄, t∗], we reach the same contradiction. Thus, we conclude that the trivial
solution x ≡ 0 is uniformly stable in the m.s. This completes the Proof of Claim 1.

Now, we are aiming to prove that x ≡ 0 is uniformly asymptotically stable in the
m.s. Since it is uniformly stable in the m.s., there exists η > 0 such thatE[‖φ‖2r ] ≤ η
implies E[‖x(t)‖2] ≤ �1 for all t ≥ t0 − r . We also have that, with the aid of (i),
E[V (t, x(t))] ≤ â(E[‖x(t)‖2]) ≤ â(�1) for all t ≥ t0 − r . Let 0 < γ < �1 anddefine

0 < M = M(γ) = sup
{ 1

c(s)

∣
∣s ∈ [ḡ(b̂(γ)), â(�1)]

}
.

For b̂(γ) ≤ q ≤ â(�1), we have ḡ(b̂(γ)) ≤ ḡ(q) ≤ q ≤ â(�1) and so that

M2 ≤
∫ q

ḡ(q)

ds

c(s)
≤ M[q − ḡ(q)],

from which q − ḡ(q) ≥ M2/M or ḡ(q) ≤ q − M2
M < q − d, where d = d(γ) is cho-

sen so that d < (M2 − M)/M < M2/M .
Let N = N (γ) be the smallest positive integer for which â(�1) ≤ b̂(γ) + Nd

and define T = T (γ) = τ + (r + τ )(N − 1). For the given γ, choose η such that
E[‖φ‖2r ] ≤ η implies E[‖x(t)‖2] ≤ γ for any solution x(t) = x(t, t0,φ) of (12.4),
t0 ∈ [τl−1, τl ] and t ≥ t0 + T . From the previous analysis,wehave shown thatm(t) ≤
â(�1) for all t ≥ t0 − r . Given, 0 < A < â(�1) and j ≥ l, we will show that

(1) if m(t) ≤ A for t ∈ [τ j − r, τ j ), then m(t) ≤ A for all t ≥ τ j ; and
(2) if, in addition, b̂(γ) ≤ A, then m(t) ≤ A − d for all t ≥ τ j .
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To prove (1), suppose for contradiction that there exists some t ≥ τ j such that
m(t) > A. Define t∗ = inf{t ≥ τ j

∣
∣m(t) > A}. Then, t∗ ∈ [τk, τk+1) for some k ≥

j . Because m(τk) ≤ ḡ(m(τ−
k )) ≤ ḡ(A) < A (i.e., m(τk) < A), then t∗ ∈ (τk, τk+1).

Moreover, m(t∗) = A and, by the definition of t∗, m(t) ≤ A for all t ∈ [τ j − r, t∗].
Define t̄ = sup{t ∈ [τk, t∗]

∣
∣m(t) ≤ ḡ(A)}. Note that t̄ �= t∗ (i.e., t̄ ∈ [τk, t∗)) because

m(τk) ≤ ḡ(A) < A = m(t∗).We can also see thatm(t̄) = ḡ(A), andm(t) ≥ ḡ(A) for
all t ∈ [t̄, t∗]. Thus, for t ∈ [t̄, t∗] and s ∈ [−r, 0], we have ḡ(m(t + s)) ≤ ḡ(A) ≤
m(t), where we have used the fact m(t) ≤ A for all t ∈ [τ j − r, t∗]. Hence, the
differential inequality

D+m(t) ≤ p(t)c(m(t))

holds for all t ∈ (t̄, t∗], and by integration over the last interval, we obtain

∫ m(t∗)

m(t̄)

ds

c(s)
≤

∫ t∗

t̄
p(s)ds ≤

∫ t̄+τ

t̄
p(s)ds ≤ M1.

On the other hand, we have

∫ m(t∗)

m(t̄)

ds

c(s)
=

∫ A

ḡ(A)

ds

c(s)
≥ M2,

which contradicts with the assumption M2 > M1. This provesm(t)≤A for all t≥ τ j .
The proof of (2) can be carried over similarly. Assume there is some t ≥ τ j such

that m(t) > A − d. Define t∗ = inf{t ≥ τ j

∣
∣m(t) > A − d} and let k ≥ j be chosen

so that t∗ ∈ [τk, τk+1). Note that t∗ �= τk (or t ∈ (τk, τk+1)). This is because ḡ(A) <

A − d, the fact that b̂(γ) ≤ A ≤ â(�1) and m(τk) ≤ ḡ(m(τ−
k )) ≤ ḡ(A) < A − d.

Moreover, as achieved before,m(t∗) = A − d andm(t) ≤ A − d for all t ∈ [τk, t∗].
Define t̄ = sup{t ≥ τk

∣
∣m(t) ≤ ḡ(A − d) ≤ ḡ(A)}. Since m(t∗) = A − d > ḡ(A) ≥

m(τk), then t̄ ∈ [τk, t∗), m(t̄) = ḡ(A) and m(t) ≥ ḡ(A) for all t ∈ [t̄, t∗]. By the
same manner, we obtain

∫ m(t∗)

m(t̄)

ds

c(s)
≤ M1

and

∫ m(t∗)

m(t̄)

ds

c(s)
=

∫ A−d

ḡ(A)

ds

c(s)
=

∫ A

ḡ(A)

ds

c(s)
−

∫ A

A−d

ds

c(s)
≥ M2 −

∫ A

A−d

ds

c(s)
.

Let M = sup{ 1
c(s)

∣
∣s ∈ [A − d, A]}. Then

∫ m(t∗)

m(t̄)

ds

c(s)
≥ M2 − Md > M2 + M(M1 − M2)/M = M1.
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Thus, we have arrived a contradictionwhich completes the proof ofm(t) ≤ A − d
for all t ≥ τ j .

Finally, define the indices k(i) for i = 1, 2, . . . , N as follows. For i = 1, k(1) = τl
and for the rest of i , we have τk(i)−1 < τk(i−1) + r ≤ τk(i) , which implicitly implies that
τk(i) − τk(i−1) ≥ r and τk(i)−1 − τk(i−1) < r . Then, for i = 1, we have τk(1) = τl ≤ t0 + τ
and, for i = 2, 3, . . . , N , we have τk(i) ≤ τk(i)−1 + τ ≤ τk(i−1) + r + τ . In general, one
may get, after combining the two inequalities, τk(N ) ≤ t0 + τ + (r + τ )(N − 1) =
t0 + T . Now, we claim that, for i = 2, 3, . . . , N and t ≥ τk(i) , m(t) ≤ A − id. To
justify our claim, note that, for t ∈ [t0 − r, τk(1) ), we have m(t) ≤ â(�1). For t ≥
τk(1) , we have shown m(t) ≤ â(�1) − d, where we have set A = â(ρ1). Assume the
inequality is true for t ≥ τk( j) for some 1 ≤ j ≤ N − 1; i.e.,m(t) ≤ â(�1) − jd. Let
A = â(�1) − jd. From the definition of τk(i) for i ≥ 2,we get τk( j) ≤ τk( j+1) − r . Then,
m(t) ≤ A for t ∈ [τk( j+1) − r, τk( j+1) ) and m(t) ≤ A − d for all t ≥ τk( j+1) = â(�1) −
Nd. Thus, we have proved our claim by induction. In particular, we have m(t) ≤
(b̂(γ) + Nd) − Nd = b̂(γ) for all t ≥ t0 + T ≥ τk(N ) . To conclude the proof, we use
assumption (i) to get b̂(E[‖x(t)‖2]) ≤ m(t) ≤ b̂(γ), which implies thatE[‖x(t)‖2] ≤
γ, for all t ≥ t0 + T . This shows that x ≡ 0 is uniformly asymptotically stable in the
m.s. This completes the proof of Theorem 4.1.

Remark 4.1 The importance of Theorem 4.1 is its applicability to unstable con-
tinuous systems that can be stabilized by impulsive effects. In condition (iv), the
requirement M2 > M1 is made to ensure that any possible growth in V between
impulses is reduced by V at the impulses. Furthermore, the definition of M1 can be
weakened by redefining M1 as follows

M1 = sup
k∈N

∫ τk

τk−1

p(s)ds.

Moreover, if we were interested in establishing only m.s. uniform stability, we
could drop the requirement τ < ∞. Another interesting finding in this theorem
is that the condition in (iii) is independent of the time delay. Furthermore, the
proof of Theorem 4.1 can be use to establish the pth moment stability of the triv-
ial solution. This requires modifying the inequalities in Theorem 4.1(i) as follows:
b(‖ψ(0)‖p) ≤ V (t,ψ(0)) ≤ a(‖ψ(0)‖p), (a.s.). Furthermore, as a special result of
Theorem 4.1 is exponential stability in the m.s. or pth moment. In this case, the non-
linear classKc andKv functions reduce to linear functions as follows: b(‖ψ(0)‖p) =
b‖ψ(0)‖p, a(‖ψ(0)‖p) = a‖ψ(0)‖p, and c(V (t,ψ(0))) = cV (t,ψ(0)) for some
positive constants a, b and c, where for the m.s result, p = 2.

In the following corollary,we only state the sufficient conditions that guarantee the
stability property for system (4.1), where the proof can be obtained from Theorems
4.1 and 3.2 in [1].

Corollary 4.1 Assume that AssumptionsA1 andA2are satisfied and there exist func-
tions a ∈ Kc, b, c ∈ Kv and p ∈ PC (R+;R+). Let V ∈ C 1,2([−r,∞) × R

n;R+)

such that the following conditions hold:
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(i) assumption (i) of Theorem 4.1;
(ii) for all t �= τk ∈ R+ and ψ ∈ PC ([−r,∞); S(�)),

L V (t,ψ) ≤ −p(t)c(V (t,ψ(0))), (a.s.)

provided that V (t + s,ψ(s)) ≤ ḡ(V (t,ψ(0))) for some s ∈ [−r, 0], where ḡ ∈
K3;

(iii) at any impulsive moment τk ∈ T and ψ ∈ PC ([−r,∞); S(�)),

V (τk,ψ(0) + I (τk,ψ(τ−
k ))) ≤ ĝ(V (τ−

k ,ψ(0))), (a.s.)

with ψ(0−) = ψ(0), where (τk,ψ(τ−
k )) ∈ R+ × PC ([−r, 0]; S(�1)) and ĝ ∈

K3;
(iv) M2 = supq≥0

∫ ḡ(q)

q
ds
c(s) < ∞ and M1 = inf t>0

∫ t+μ

t p(s)ds > M2, with μ =
inf{τk − τk−1} > 0.

Then, the trivial solution x ≡ 0 of (4.1) is uniformly asymptotically stable in the m.s.

Example 4.1 Consider the following impulsive system

dx = ( − ax + bx(t − 1)e−x2
)
dt + 1/2x(t − 1)dW, t �= τk,

�x(t) = −0.8x(t−), t = τk,

where b > (2a − 1/2λ)/(1 + λ) for some positive constants a and 0 < λ < 1.
Defining V (x) = x2 implies that L V (x) ≤ pc(x) where p = (−2a + (1 + λ)b +
1/2λ)/2 > 0, c(s) = s and ḡ(s) = λs. From (iv), we get M1 = pτ , M2 = − ln(λ)

and the condition M2 > M1 implies that τ < − 1
p ln(λ). Choosing a = 1/2 and

λ = 0.8 leads to b > 0.33, so that if b = 1, the τ < 0.3719 which represents the
upper bound on the time between impulses. Figure 4.1 shows the stabilization of the
trivial solution, where the time between impulses is taken τ = 0.2.

Fig. 4.1 Mean square
asymptotic stability of x ≡ 0
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4.2 Stability Analysis by Comparison Method

We continue to address the stability problem for system (4.1) by using the Lyapuno–
Razumikhim technique. In this section, we use the comparison method to estab-
lish some m.s. stability properties for this system. As stated earlier, the comparison
method enables one to compare multivariable systems with an auxiliary scalar sys-
tem, and hence, the features of the latter system imply the corresponding features of
the compared systems.

Theorem 4.2 Assume that Assumptions A1 and A2 are satisfied and there exists a
function a ∈ K2. Let V ∈ C 1,2

([−r,∞) × R
n;R+

)
such that the following assump-

tions hold:

(i) V (t,ψ(0)) ≤ a(‖ψ(0)‖2) ≤ a(‖ψ‖2r ), (a.s.), ∀(t,ψ(0)) ∈ [−r,∞) × S(�);

(ii) L V (t,ψ(t)) ≤ h(t, V (t,ψ(0))), (a.s.), ∀t �= τk andψ ∈ PC
([−r, 0]; S(�)

)

provided that V (t + s,ψ(s)) ≤ q(V (t,ψ(0))) for all s ∈ [−r, 0], with q ∈ K3,
where h : R+ × R+ → R is continuous on [τk−1, τk), h(t, z) is concave in z
for any t ∈ R+, and, for each x ∈ R

n and k ≥ 1,

lim
(t,y)→(τ−

k ,x)
h(t, y) = h(τ−

k , x)

exists;
(iii) ∀ τk ∈ T and ψ ∈ PC

([t0 − r,∞); S(�)
)
,

V (τk,ψ(0) + I (τk,ψ(τ−
k ))) ≤ αk(V (τ−

k ,ψ(0−))), (a.s.)

whereψ(0−) = ψ(0), (τk,ψ(τ−
k )) ∈ R+ × PC

([−r, 0]; S(�1)
)
(with�1 < �),

and αk : R+ → R+ is a non-decreasing, concave function;
(iv) the auxiliary scalar impulsive system

⎧
⎨

⎩

D+v(t) = h(t, v(t)), t �= τk,
v(t) = αk(v(t−)), t = τk,
v(t0) = v0 ≥ 0

(4.6)

has a maximal solution r(t) = r(t, t0, v0).

Then, E[V (t0, x0)] < v0 implies E[V (t, x(t))] < r(t) for all t ≥ t0.

Proof Let x(t) = x(t; t0,φ) be any solution of system (4.1). From (i), we have
E[V (t, x(t))] < ∞. Also, by Itô formula and condition (ii), we have, for all t ∈
[τk−1, τk),

E[V (t, x(t))] ≤ E[V (τk−1, x(τk−1)] +
∫ t

τk−1

h(s,E[V (s, x(s))])ds,
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from which we get

D+m(t) ≤ h(t,m(t)), t �= τk,

where m(t) = E[V (t, x(t))] for all t ∈ [τk−1, τk). At the impulsive moments, we
have from condition (iii), m(τk) ≤ αk(m(τ−

k )). In summary, we have

⎧
⎨

⎩

D+m(t) ≤ h(t,m(t)), t �= τk,
m(t) ≤ αk(m(t−)), t = τk,
m(t0) = E[V (t0, x0)].

Therefore, comparing with (4.6) leads to (see Theorem 1.6.1 in [2])

m(t) = E[V (t, x(t))] < r(t) = v(t), ∀t ≥ t0.

This completes the proof.
In this following, we make use of this comparison result to show how the stability

properties of the auxiliary scalar impulsive system (4.6) imply those of (4.1).

Theorem 4.3 Assume that Assumptions A1 and A2 hold, and there exist functions
a ∈ Kc and b ∈ Kv . Assume further that V ∈ C 1,2

([−r,∞) × R
n;R+

)
such that

the following hold:

(i) for all (t,ψ(0)) ∈ [−r,∞) × S(�),

b(‖ψ(0)‖2) ≤ V (t,ψ(0)) ≤ a(‖ψ(0)‖2), (a.s.);

(ii) for all t �= τk and ψ ∈ PC
([−r, 0]; S(�)

)
,

L V (t,ψ(t)) ≤ h(t, V (t,ψ(0))), (a.s.)

provided that V (t + s,ψ(s)) ≤ q(V (t,ψ(0)))with s ∈ [−r, 0], where q ∈ K3,
h : R+ × R+ → R is continuous in its variables, h(t, 0) = 0 and h(t, z) is
concave in z for any t ∈ R+, and, for each x ∈ R

n and k ≥ 1,

lim
(t,y)→(τ−

k ,x)
h(t, y) = h(τ−

k , x)

exists;
(iii) ∀ τk ∈ T and ψ ∈ PC

([−r, 0]; S(�)
)
,

V (τk,ψ(0) + Ik(τk,ψ(τ−))) ≤ αk(V (τ−
k ,ψ(0−))), (a.s.)

whereψ(0−) = ψ(0), (τk,ψ(τ−
k )) ∈ R+ × PC

([−r, 0]; S(�1)
)
, andαk ∈ K3.
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Then, the stability properties of the trivial solution of auxiliary scalar impulsive
system (4.6) imply the corresponding stability properties of the trivial solution of
system (4.1).

Proof Let 0 < ε < �1 < � and t0 ∈ R+. Assume that the auxiliary scalar comparison
system is stable. Then, for given b(ε) > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0
such that

v0 < δ implies v(t; t0, v0) < b(ε), ∀t ≥ t0,

where v(t; t0, v0) is any solution of the comparison system.

Choose v0 = a(‖φ‖2r ) and δ1 = δ1(ε) > 0 for which a(δ1) < b(ε). Define δ̂ =
min{δ, δ1}. We claim that, if E[‖φ‖2r ] ≤ δ̂, then

E[‖x(t)‖2] < ε, ∀t ≥ t0.

If our claim were not true, there would be a t̄ ∈ [τk, τk+1) for some k such that

ε ≤ E[‖x(t̄)‖2]

and

E[‖x(t)‖2] < ε, ∀ t ∈ [τk, t̄).

By Assumption A1 (i.e., if E[‖x(τ−
k )‖2] < ε < �1, then E[‖x(τk)‖2] = E[‖

x(τ−
k ) + I (τk, xτ−

k
)‖2] < �), there exists a t such that τk < t ≤ t̄ satisfying

ε ≤ E[‖x(t)‖2] < �.

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t]. By Theorem 4.2, we get

m(t) < r(t; t0, a(E[‖φ‖2r ])), ∀ t ∈ [t0, t],

where r(t; t0, a(E[‖φ‖2r ])) is the maximal solution of the auxiliary comparison sys-
tem.

Finally, by condition (i), we obtain

b(ε) ≤ m(t) < r(t; t0, a(E[‖φ‖2r ])) ≤ r(t; t0, a(δ)) < b(ε),

which contradicts with our supposition. Therefore, it must be true that

E[‖x(t)‖2] < ε, ∀ t ≥ t0.

As for the uniform property, it suffices to choose δ independent of t0.
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To prove the uniform attractivity, we choose 0 < η < �1 < �. Assume that the
comparison system is uniformly attractive; i.e., for a given b(η) > 0, there exist
δ > 0 and a constant T = T (η) > 0 such that

v0 ≤ δ implies v(t; t0, v0) < b(η), ∀ t ≥ t0 + T .

Following the argument used in proving the stability property, we obtain

b(E[‖x(t)‖2]) ≤ v(t; t0, v0) < b(η), ∀ t ≥ t0 + T,

i.e., the system (4.1) is uniformly attractive in the m.s., which leads to the m.s.
uniformly asymptotic stability property of x ≡ 0. This completes the proof of
Theorem 4.3.

Corollary 4.2 In Theorem 4.3, assume that, for any (t,ψ(0)) ∈ R+ × PC ([t −
r,∞); S(�)),

αk(V (τ−
k ,ψ(0−))) = α(dk)V (τ−

k ,ψ(0−)), (4.7)

where dk is a nonnegative constant such that d = ∑∞
k=1 dk < ∞ and α(dk) > 1 for

all k. If

(i) h(t, V (t,ψ(0))) = 0, (a.s.) provided that V (t + s,ψ(s)) ≤ q(V (t,ψ(0))) for
some s ∈ [−r, 0] and q ∈ K3, then trivial solution x ≡ 0 of (4.1) is uniformly
stable in the m.s.;

(ii) h(t, V (t,ψ(0))) = −c(V (t,ψ(0))), (a.s.), where q is defined in (i), then the
trivial solution x ≡ 0 of (4.1) is asymptotically stable in the m.s.

Proof (i). Let x(t) = x(t; t0,φ) be the unique solution of system (4.1) and 0 < ε ≤
�1. Define d = ∏∞

k=1 α(dk). Then, 1 ≤ d < ∞ because d < ∞. Choose δ = δ(ε) so
that δ < â−1

(
b̂(ε)/d

)
and clearly 0 < δ < ε, where â and b̂ are defined in the proof

of Theorem 4.1.
Let t0 ∈ [τl−1, τl) for some positive integer l and φ for which E[‖φ‖2r ] ≤ δ. We

claim that the trivial solution is uniformly stable in the m.s. If our claim were not
true, there would exist a t∗ such that, for all t ∈ [t0 − r, t∗), we have

E[‖x(t)‖2] < ε < �1

and either

E[‖x(t∗)‖2] = ε,

which implies that

E[‖x(t∗)‖2] = E[‖xt∗‖2r ] = ε
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or

ε < E[‖x(t∗)‖2], where t∗ = τk for some k

and, by Assumption A1,

ε < E[‖x(t∗)‖2] < �

since E[‖xt∗− ‖2] ≤ ε < �1. Thus, in either case, V (t, x(t)) is defined for t ∈ [t0, t∗].
Moreover, from (i), we have

L V (t, xt ) ≤ 0.

Applying the Itô formula to process V (t, x(t)) for t ∈ [t0, t∗] and taking the
mathematical expectation yield

E[V (t, x(t))] ≤ E[V (s, x(s))] + E

∫ t

s
L V (u, xu)du ∀ t0 ≤ s ≤ t ≤ t∗

≤ E[V (s, x(s))].

Define m(t) = E[V (t, x(t))] for all t ∈ [t0, t∗]. Then, from the last inequality,

D+m(t) ≤ 0

provided that m(t + s) ≤ q(m(t)); that is, the function m(t) is nonincreasing for all
t ∈ (t0, t∗] between the impulse moments. Furthermore, from (4.7), we have

m(τk) ≤ α(dk)m(τ−
k ), ∀ t ∈ (t0, t

∗].

Consider the following comparison impulsive system

⎧
⎨

⎩

D+v(t) = 0 t �= τk
v(t) = α(dk)v(t−) t = τk
v(t0) = v0 > m0 = E[V (t0 x0)].

This implies that

v(t) ≤ v0 < δ < ε, t ∈ [t0, t∗)

for the same δ and, by Theorem 4.3, one can easily see that E[‖x(t∗)‖2] < ε.
On the other hand, let t∗ ∈ [τk, τk+1) for some k ≥ l. In this case, we have

v(t∗) ≤ v(τk), because v is nonincreasing ∀ t ≤ t∗, (4.8)

v(τ−
k ) ≤ v(t0) < â(δ), (4.9)
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v(τ−
i ) ≤ v(τi−1), i = l + 1, l + 2, . . . k (4.10)

v(τi ) ≤ α(di )v(τ−
i ) i = l l + 1 l + 2 . . . , k. (4.11)

By (4.11), we have

v(τi ) ≤ α(di )v(τ−
i )

≤ α(di )v(τi−1) by (4.10)

≤ α(di )α(di−1)v(τ−
i−1) by(4.11)

...

≤
l∏

i=1

α(di )v(t0)

v(τi ) ≤ d v(t0) ≤ d â(δ). by (4.8)

Namely, v(τi ) ≤ d â(δ) which implies that

v(t∗) ≤ v(τi ) ≤ d â(δ),

where the first inequality is from (4.8). With the aid of Theorem 4.3, we have

b̂(ε) < b̂(E‖x(t∗)‖2) ≤ m(t∗) ≤ v(t∗) < d â(δ) < b̂(ε).

This is a contradiction. It turns out that x ≡ 0 is uniformly stable in m.s. This
completes the proof of (i).

(ii) The assertion of this part can be proved easily; thus, it is left here as an exercise.

Remark 4.2 Assumptions (i) (or (ii)) in Corollary 4.2 is made to ensure that the
Lyapunov function V is nonincreasing (or strictly decreasing) in main, which in
turn implies that the continuous system is m.s. uniformly stable (or asymptotically
stable). To guarantee that the overall behavior of V decreases for all time (including
the impulsemoments), we assume that V is nonincreasing at thesemoments, because,
otherwise, the reduction of V may not compensate the jump increases. This condition
is summarized in (4.7).

Remark 4.3 Using the efficient comparison method, Theorem 4.3 does not impose
any restriction on the stability of continuous system. This fact will be further seen
in Corollary 4.3, where the impulsive effects can have a stabilizing role even when
the underlying continuous system is unstable. The requirement in this circumstance
is that the impulses be small enough to reduce the growth of the continuous part and
be applied to the system more frequently.

Corollary 4.3 In Theorem 4.3, assume that

(i) there exist a function p ∈ PC (R+;R+) and c ∈ Kc such that, for any
(t,ψ(0)) ∈ R+ × PC ([t − r,∞); S(�)),
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h(t, V (t,ψ(0))) = p(t)c(V (t,ψ(0))); (4.12)

(ii) there exist γk ≥ 0 and �0 > 0 such that, for all z ∈ (0, �0) and any k ∈ N,

∫ τk

τk−1

p(s)ds +
∫ αk (z)

z

ds

c(s)
≤ −γk . (4.13)

Then, the trivial solution x ≡ 0 of (4.1) is uniformly stable in the m.s. If, moreover,∑∞
k=1 γk = ∞, then x ≡ 0 is asymptotically stable in the m.s.

Proof In the light of Theorem 4.2, definingm(t) = E[V (t, x(t))] for all t ≥ t0 leads
to the comparison system

⎧
⎨

⎩

D+m(t) ≤ p(t)c(m(t)), t �= τk,
m(t) ≤ αk(m(t−)), t = τk,
m(t0) = m0 = E[V (t0, x0)].

(4.14)

Consider the auxiliary scalar impulsive comparison system

⎧
⎨

⎩

D+v(t) = p(t)c(v(t)), t �= τk,
v(t) = αk(v(t−)), t = τk,
v(t0) = v0 > m0.

(4.15)

Now, we are aiming to prove the stability properties of the comparison system
(4.15), which, by Theorem 4.3, imply the corresponding properties of (4.1).

Let 0 < ε < �0 and t0 ∈ [τ1, τ2). Choose δ > 0 for which δ < min{ε,αk(ε)} and
0 ≤ v0 < δ. We claim that v(t) < ε for all t ∈ [t0, τ2), where v is any solution of
(4.15). If our claim were not true, then there would exist a t∗ ∈ [t0, τ2) such that
v(t∗) ≥ ε. Integrating the differential inequality in (4.14) over (t0, t∗) gives

∫ v(t∗)

v(t0)

ds

c(s)
≤

∫ t∗

t0

p(s)ds, (4.16)

where a variable substitution is performed. By our choice of t0 and t∗ and the posi-
tiveness of p, we have

∫ t∗

t0

p(s)ds ≤
∫ τ2

τ1

p(s)ds

and, by the early analysis,

∫ v(t∗)

v(t0)

ds

c(s)
>

∫ ε

α1(ε)

ds

c(s)
.



92 4 Stability of Stochastic Impulsive Systems with Time Delay

Therefore, (4.16) becomes
∫ τ2

τ1

p(s)ds +
∫ α1(ε)

ε

ds

c(s)
> 0,

which contradicts with (4.13). Thus, it must be true that v(t) < ε for all t ∈ [t0, τ2)
or t ∈ [τ1, τ2).

Suppose that, for all t ∈ [t0, τk) (or generally t ∈ [τk−1, τk)), v(t) < ε. Then, it
follows from (4.14) that, for all t ∈ [τk, τk+1),

∫ v(t)

v(τk )

ds

c(s)
≤

∫ t

τk

p(s)ds ≤
∫ τk+1

τk

p(s)ds. (4.17)

Noting that v(τk) = αk(v(τ−
k )), the last inequality becomes

∫ v(t)

v(τ−
k )

ds

c(s)
≤

∫ τk+1

τk

p(s)ds +
∫ α(v(τ−

k ))

v(τ−
k )

ds

c(s)
≤ −γk . (4.18)

Thus, v(t) ≤ v(τ−
k ) < ε for all t ∈ [τk, τk+1) and, by induction, v(t) < ε for all

t ≥ t0; that is, the trivial solution v ≡ 0 is uniformly stable.
To prove asymptotic stability of v ≡ 0, let ε = �0 and choose δ0 = δ0(�) > 0

such that v0 < δ0 implies that v(t) < �0 for all t ≥ t0. We will prove under the given
assumption and obtained result that limk→∞ v(τk) = 0. If this were not the case,
there would exist an η > 0 such that limk→∞ v(τk) = η. From (4.18), we get

∫ v(τk+1)

v(τk )

ds

c(s)
= v(τk+1) − v(τk)

c(η)
≤ −γk,

where

1

c(η)
= sup

{
1

c(s)

∣
∣∀ s ∈ [v(τk), v(τk+1)]

}

,

which also implies, by consecutive induction, that

v(τk) ≤ v(τk−1) − c(η)

k∑

i=1

γk .

Letting k go to infinity leads to a contradiction. Therefore, it must be true that
η = 0, which proves the asymptotic stability of v ≡ 0. Finally, applying Theorem
4.3 implies that x ≡ 0 is asymptotically stable in the m.s. This completes the proof
of Corollary 4.3.

Remark 4.4 Asimilar result can be obtained if p(t) in (4.12) is replaced by−p(t) for
all t or, particularly, p(t) = ±p and the impulsive condition (iii) of Theorem 4.3 is
replaced byαk V (τ−

k ,ψ(0)). In the latter case, the inequality in (4.13) is simplified to
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± p(τk − τk−1) + lnαk ≤ −γk, ∀k ∈ N. (4.19)

Example 4.2 Consider the following impulsive system

dx = ( − 4x + x(t − 1)e−|x |)dt − 0.1 sin x(t − 1)dW, t �= τk,

�x(t) = 1

k2
xt− , t = τk .

Define V (x) = x2 as a Lyapunov function candidate. Then, one can easily show
that L V (x) ≤ −c(x) < 0 with q = 2, where c(s) = 3s2. At t = τk , we have

|x(τk)| = |x(τ−
k ) + 1

k2
xτ−

k
| ≤ |x(τ−

k )| +
√
2

k2
|x(τ−

k )| ≤ (1 +
√
2

k2
)|x(τ−

k )|,

from which we have V (x(τk)) ≤ α(dk)V (x(τ−
k )), where α(dk)=(1 + √

2dk)2 and
dk= 1

k2 . We also have �1 < �/(1 + √
2dk). Choose a(s) = b(s) = s2. Thus, the

assumptions of Corollaries 4.2 and 4.3 are satisfied; i.e., the trivial solution x ≡
0 is asymptotically stable in the m.s. The simulation result of this example is
shown in Fig. 4.2.

Example 4.3 Consider the following impulsive system

dx =
(

− 7x − 0.5y(t − 1)e−x2
)
dt, t �= τk, k ∈ N

dy =
(

− 5y + sin x(t − 1)
)
dt +

(
− 0.1x(t − 1)

1 + y2
)
)
dW2, t �= τk

�x(τk) = −2x(τ−
k ),

�y(τk) = 0.2y(τ−
k − 1).

Fig. 4.2 First moment
asymptotic stability of x ≡ 0
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Fig. 4.3 Mean square
asymptotic stability of
(x y)T = (0 0)
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Fig. 4.4 First moment
asymptotic stability of x ≡ 0

Define V (x, y) = 1
2 (x

2 + y2) as a Lyapunov function candidate. Then, after
cumbersome calculation, we get L V (x, y) ≤ −6.98V (x, y), where q = 2, and, at
t = τk , we get V (x(τk), y(τk)) ≤ αkV (x(τ−

k ), y(τ−
k )), where αk = 6. By (4.19), we

find the upper bound on the time between impulses to be τk − τk−1 < 0.6 for all k.
Thus, the trivial solution is asymptotically stable in the m.s. Figure4.3 shows the
simulation result.

Example 4.4 Consider the following impulsive system

dx =
(
4x − x2(t − 1)

)
dt + 0.1x dW, t �= τk

�x(t) = −k + 2

k + 1
x(t−) t = τk k ∈ N.

Considering the Lyapunov function V (x) = 1
2 x

2 leads toL V (x) ≤ 5.55x2; i.e.,
the underlying continuous system has an unstable trivial solution. At the impulsive
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effects t = τk , V (x(τk)) ≤ 1
(k+1)2 V (x(τ−

k )), i.e., αk = 1
(k+1)2 < 1. From (4.19), we

get τk − τk−1 ≤ 0.2 for all k. The simulation result is shown in Fig. 4.4, which shows
the stabilizing effects of impulses.

4.3 Notes and Comments

Throughout this chapter, the focus has been on establishing m.s. uniform stability
and uniform asymptotic stability for impulsive stochastic differential equations with
time delay, where we have used two different approaches, the classical Lyapunov
method (Sect. 4.1) and comparison method (Sect. 4.2). The material of this chapter
is taken from [3]. Also, the stability theory of the nonlinear deterministic impulsive
systems with time delay can be read, for instance, in [1, 4]. In both sections, the
method of Lyapunov–Razumikhim in which we use Lyapunov function is efficient
to examine qualitative properties of delay systems, because it provides results that
are independent of time delay. In contrast, one may use Lyapunov functionals to
address the same qualitative properties; however, the obtained result in this case will
be delay dependent.

Particularly, in Sect. 4.1, the underlying continuous systems are stable or unstable
that are perturbed by impulsive actions, which are not necessarily bounded. It has
been shown that the stable continuous system can preserve its stability property if
the impulses are relatively small and infrequently applied to the system and, if the
continuous system is unstable, the impulses have to be applied frequently in order to
reduce the growth of continuous states. In Sect. 4.2, it has been shown that systems can
maintain their stability properties even if they are disturbed by unbounded impulses
(Corollary 4.2). Moreover, it is evident that impulses can help in stabilizing systems
which are originally unstable (Corollary 4.3).
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Chapter 5
Large-Scale Stochastic Impulsive
Systems with Time Delay

In this chapter, we consider large-scale nonlinear stochastic systems with time delay
and subject to impulsive effects. The random noise is described by Wiener process,
the time delay is finite and the impulsive actions are applied at fixed times. The focus
is on establishing uniform asymptotic stability property of the system in the mean
square. In fact, stability property of large-scale systems can be achieved in different
ways. As presented in Sect. 2.11, an efficient approach to deal with such a complex
system is to decompose the composite (or interconnected) systems into simpler, more
manageable isolated (also called uncoupled or unperturbed) subsystems at different
hierarchical levels. Analyze each individual subsystem by initially ignoring the inter-
connection between the subsystems, then combine the available results together with
interconnection, which is usually regarded as a perturbation, to draw a conclusion
on the qualitative property of the composite system.

We use Razumikhin technique and comparison method to develop Lyapunov-
like sufficient conditions. We also consider two cases of continuous systems. In the
first case, the isolated subsystems are assumed to be stable in the m.s. and the rest
(i.e., the interconnection) will be viewed as perturbation, which is required to have
magnitude be smaller than the degree of stability of each isolated subsystem. This
type of relation between isolated subsystems and their interconnection is usually
represented in a special type of matrices called test matrices. In the second case, the
isolated continuous subsystems are assumed to be unstable and are stabilized to be
impulsive effects, which also help to stabilize the entire composite system.

5.1 Problem Formulation

Typically, an interconnected or composite system with decomposition Di may have
the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
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Di :

⎧
⎪⎪⎨

⎪⎪⎩

dwi (t) = fi (t, wi
t )dt + gi (t, w1

t , w
2
t , . . . , w

l
t )dt

+∑l
j=1 σi j (t, w

j
t )dWj (t), t �= τk,

�wi (t) = Ii (t, wi
t−), t = τk,

wi
t0 = φi (s), s ∈ [−r, 0],

(5.1)

where k ∈ N and i = 1, 2, . . . l for some l ∈ N. Here, we have wi (or wi
t ) ∈ R

ni ,
which is an ni -dimensional vector state (or delayed state, respectively) and n =∑l

i ni
for some ni ∈ N. fi : R+ × R

ni → R
ni , gi : R+ × R

n → R
ni , σi j : R+ × R

n j →
R

ni×m j ,m =∑l
i mi for somemi ∈ N,φi : [−r, 0] → R

ni ,Ii : T × R
ni → R

ni with
T = {τk | k ∈ N} where τk represents constant impulsive moments and satisfies
0 < τ1 < τ2 < · · · and limk→∞ τk = ∞.

Define the isolated subsystems Si as follows

Si :
⎧
⎨

⎩

dwi (t) = fi (t, wi
t )dt + σi i (t, wi

t )dWi (t), t �= τk,
�wi (t) = Ii (t, wi

t−), t = τk,
wi

t0 = φi (s), s ∈ [−r, 0].
(5.2)

For x ∈ R
n , let xT=[(w1)T (w2)T · · · (wl)T ] and xTt = [(w1

t )
T (w2

t )
T · · · (wl

t )
T ]

denote the composite system state and delayed state, respectively. Define the com-
posite system vector field f : R+ × R

n → R
n by

f T (t, xt ) = [ f T1 (t, w1
t ) f T2 (t, w2

t ) · · · f Tl (t, wl
t )],

the interconnection g : R+ × R
n → R

n by

gT (t, xt ) = [gT1 (t, xt ) gT2 (t, xt ) · · · gTl (t, xt )]
= [gT1 (t, w1

t , w
2
t , . . . , w

l
t ) gT2 (t, w1

t , w
2
t , . . . , w

l
t ) · · · gTl (t, w1

t , w
2
t , . . . , w

l
t )],

the diffusion matrix function σ : R+ × R
n → R

n×m by

σ(t, xt ) = [σi j (t, w
j
t )],

with σi j : R+ × R
n → R

ni×ni being representing the noise function perturbing the
i th isolated subsystem, and Wiener process vector W : R+ → R

m by

WT = [WT
1 WT

2 · · · WT
l ],

where, for any i = 1, 2, . . . , l, Wi : R+ → R
mi . We also define the impulsive func-

tional vector of the composite system I : T × R
n → R

n by

I T (t, xt−) = [I T
1 (t, w1

t−) I T
2 (t, w2

t−) · · · I T
l (t, wl

t−)]



5.1 Problem Formulation 99

and the initial vector state of the composite system � : [−r, 0] → R
n by

�T = [φT
1 φT

2 · · · φT
l ].

By adopting these notations, the impulsive composite system with decomposition
Di can be written in the form S

S :
⎧
⎨

⎩

dx(t) = F(t, xt )dt + σ(t, xt )dW (t), t �= τk,
�x(t) = I (t, xt−), t = τk,
xt0 = �(s), s ∈ [−r, 0],

(5.3)

where F(t, xt ) = f (t, xt ) + g(t, xt ) is an Lad
(
�; L[t0, t0 + α]) function for some

α > 0, σ ∈ Lad
(
�; L2[t0, t0 + α]) and the initial function of the composite system

� ∈ L 2
F 0

([−r, 0];Rn).
Integrating the differential equation and making use of the initial condition yield

x(t) = �(0) +
∫ t

t0

F(s, xs)ds +
∫ t

t0

σ(s, xs) dW (s) +
∑

{k | τk∈(t0,t]}
I (t, xτ−

k
),

for t �= τk , where the first integral is a Riemann integral almost surely (a.s.) and the
second one is an Itô integral satisfying

E

[∫ t

t0
σ(s, xs) dW (s)

]

= 0, and E

[∥
∥
∥
∥

∫ t

t0
σ(s, xs) dW (s)

∥
∥
∥
∥

2
]

=
∫ t

t0
E‖σ(s, xs)‖2 ds.

Definition 5.1 The trivial solution x ≡ 0 of (5.3) is said to be

(i) stable in the m.s. if for every ε > 0 and t0 ∈ R+, there exists a δ = δ(t0, ε) > 0
such that

E[‖�‖2r ] ≤ δ implies E[‖x(t)‖2] < ε, ∀t ≥ t0,

where x(t) = x(t; t0,�) is any solution of (5.3), with x ∈ PC ([t0 − r, t0 +
α];D) for some α > 0 and � ∈ L 2

F 0
([−r, 0],D);

(ii) uniformly stable in the m.s. if δ in (i) is independent of t0;
(iii) asymptotically stable in the m.s. if it is stable and for any t0 ∈ R+, there exists

η = η(t0) > 0 such that

E[‖�‖2r ] ≤ η implies lim
t→∞ x(t) = 0;

(iv) uniformly asymptotically stable in them.s. if it is uniformly stable in them.s. and
there exists some η > 0 such that, for every γ > 0, there exists T = T (η, γ) >

0 for which
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E[‖�‖2r ] ≤ η implies E[‖x(t)‖2] < γ, ∀t ≥ t0 + T ;

(v) exponentially stable in the m.s. if there exist positive constants K and λ such
that

‖x(t)‖ ≤ KE[‖�‖2r ]e−λ(t−t0), ∀ t ≥ t0;

(vi) unstable in m.s. if (i) fails to hold.

For convenient presentation, the following properties (or definitions) will be used in
the theorem statements of this chapter.

Definition 5.2 For i = 1, 2, . . . , l, the isolated subsystem Si in (5.2) is said to pos-
sess Property A if Assumptions A1 and A2 are satisfied, there exist functions
ai ∈ Kc, bi , ci ∈ Kv , a constant σi < 0 and V i ∈ C 1,2

([−r,∞) × S(�)
);R+

)
such

that the following hold:

(i) for all (t,ψi (0)) ∈ [−r,∞) × S(�),

bi (‖ψi (0)‖2) ≤ V i (t,ψi (0)) ≤ ai (‖ψi (0)‖2), (a.s.);

(ii) for all t �= τk ∈ R+ and ψi ∈ PC ([−r,∞); S(ρ)),

Li V
i (t,ψ) ≤ σi ci (V

i (t,ψi (0))), (a.s.)

provided that V i (t + s,ψi (s)) ≤ gi (V i (t,ψi (0))) for some s ∈ [−r, 0], where
gi ∈ K3;

(iii) at any impulsive moment τk ∈ T and ψi ∈ PC ([−r,∞); S(ρ)),

V i (τk,ψ
i (0) + I i (τk,ψ

i (τ−
k ))) ≤ gi (V i (τ−

k ,ψi (0))), (a.s.)

with ψi (0−) = ψi (0), where (τk,ψ
i (τ−

k )) ∈ R+ × PC ([−r, 0]; S(ρ1)) and
gi ∈ K3; and

(iv) Mi
1= supq≥0

∫ gi (q)

q
ds
ci (s)

<∞ and −σiμ > Mi
1, with μ= infk∈N{τk − τk−1} > 0.

Definition 5.3 For i = 1, 2, . . . , l, the isolated subsystem Si in (5.2) is said to pos-
sess Property B if Assumptions A1 and A2 are satisfied, there exist functions
ai , ci ∈ Kc, bi ∈ Kv , σi > 0 and V i ∈ C 1,2([−r,∞) × S(ρ);R+) such that the fol-
lowing hold:

(i) condition (i) in Definition5.2 is satisfied;
(ii) for all t �= τk ∈ R+ and ψi ∈ PC ([−r,∞); S(ρ)),

Li V
i (t,ψi ) ≤ σi ci (V (t,ψi (0))), (a.s.),

provided that gi (V i (t + s,ψi (s))) ≤ V i (t,ψi (0)) for some s ∈ [−r, 0], where
gi ∈ K3;
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(iii) at any impulsive moment τk ∈ T and ψi ∈ PC ([−r,∞); S(ρ)),

V i (τk,ψ
i (0) + I i (τk,ψ

i (τ−
k ))) ≤ gi (V i (τ−

k ,ψi (0))), (a.s.)

with ψi (0−) = ψi (0), where (τk,ψ
i (τ−

k )) ∈ R+ × PC ([−r, 0]; S(ρ1)); and
(iv) infq>0

∫ q
gi (q)

ds/ci (s) > τσi with τ = supk∈N{τk − τk−1} < ∞.

Remark 5.1 Properties A and B, which are, respectively, extracted from Theorem
4.1 and Corollary 4.1, state that every isolated subsystem Si (for i = 1, 2, . . . l)
is uniformly asymptotically stable in the m.s. Also, as can be seen, we assume
that all states of isolated subsystems have impulsive jump discontinuity occurring
simultaneously.

Throughout this chapter, we prove some m.s. stability properties of (5.3) using
the classical Lyapunov theorems and comparison method. Also, in both cases, we
use Razumikhin methodology in which we define a Lyapunov function V (t,ψ(0))
for all t ≥ 0, but not functional V (s,ψ(s)) for all s ∈ [−r, 0].

5.2 Analysis by Lyapunov Method

The focus here is on the classical Lyapunov technique to write some sufficient con-
ditions to guarantee m.s. asymptotic stability of trivial solution, x ≡ 0, of composite
SISD (5.3). We should also remark that impulses applied to the systems do not have
to be bounded or vanishing. In Theorem5.1, the impulsive effects are considered to
be a perturbation to a stable system.While in Theorem5.2, the underlying continuous
system is unstable that is stabilized by an impulsive controller.

Theorem 5.1 Suppose that composite system (5.3) satisfies the following condi-
tions:

(i) for i = 1, 2, . . . l, the isolated subsystem Si possesses Property A;
(ii) for i, j = 1, 2, . . . , l, there exists a positive constant bi j such that

gT
i (t,ψi )V i

ψi (0)(t,ψ
i (0)) ≤ c1/2i (‖ψi (0)‖2)

l∑

j=1

q̄bi j c
1/2
j (‖ψ j (0)‖2),

where q̄ ≥ 1 and ci is defined in (i) in Definition5.1;
(iii) for i = 1, 2, . . . , l, there exists ei > 0 such that

(yi )T V i
ψi (0)ψi (0)(t,ψ

i (0))yi ≤ q̄ei‖yi (0)‖2,

where yi = σi j (t,ψ
j
t ), i.e., the i th row of matrix σ;
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(iv) for any σi j (t,ψ
j
t ), i, j = 1, 2, . . . , l, there exists di j ≥ 0 such that

‖σi j (t,ψ
j )‖2 ≤ q̄di j ci (‖ψ j (0)‖2);

(v) matrix S = [si j ]l×l is negative definite where

si j =
{

αi (σi + q̄bii ) + 1
2

∑
k=1,k �=i q̄αkekdki , i = j,

1
2 q̄(αi bi j + α j b ji ), i �= j,

for some positive constant αi for any i; and
(vi) there exist functions g ∈ K3, c ∈ Kc and a constant σ < 0 such that

supq>0

∫ g(q)

q ds/c(s) < −σμ where μ is defined in Definition5.1.

Then, the trivial solution x ≡ 0 of composite system (5.3) is uniformly asymptotically
stable in the m.s.

Proof For all t ≥ t0 with t0 ∈ R+, let x = x(t; t0,�) be the solution of the composite
system (5.3). Define the composite Lyapunov function candidate

V (t, x) =
l∑

i=1

αi V
i (t, wi ),

where V i is the Lyapunov function related to the i th isolated subsystem and αi > 0.
This also implies that

L V (t, x) =
l∑

i=1

αi

{
Li V

i (t, wi ) + gT
i (t, xt )V

i
wi (t, wi )

+ 1

2

l∑

j=1,i �= j

tr
[
σT
i j (t, w

j
t )V

i
wiwi (t, wi )σi j (t, w

j
t )
]}

≤
l∑

i=1

αi

{
σi ci (‖wi‖2) + c1/2i (‖wi‖2)

l∑

j=1

q̄bi j c
1/2
j (‖w j‖2)

+ 1

2

l∑

j=1,i �= j

q̄ei‖σi j (t, w
j
t )‖2

}

≤
l∑

i=1

αi

{
σi ci (‖wi‖2)

+ c1/2i (‖wi‖2)
l∑

j=1

q̄bi j c
1/2
j (‖w j‖2) + 1

2

l∑

j=1,i �= j

q̄ei di j ci (‖w j‖2)
}

= zT Sz,
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where zT = (c1/21 (‖w1‖2) c1/22 (‖w2‖2) · · · c1/2l (‖wl‖2)) ∈ R
l and S is the l × l

negative-definite matrix defined in (v). It follows that the eigenvalues of S are strictly
negative (i.e., λM(S) < 0). Therefore,

L V (t, x) ≤ λM(S)

l∑

i=1

ci (‖wi‖2),

i.e.,L V (t, x) is negative definite, which implies that

L V (t, x) ≤ σc(‖x(t)‖2),

where σ < 0 and c ∈ Kc satisfying the condition in (vi). Finally, at the impulsive
moments t = τk , we have

V (τk, x(τk)) =
l∑

i=1

αi V
i (τk, w

i (τk))

and, from the isolated subsystems,

V i (τk,ψ
i (0) + I i (τk,ψ

i (τ−
k ))) ≤ gi (V i (τ−

k ,ψi (0))).

Hence,

V (τk,ψ(0) + I (τk,ψ(τk))) =
l∑

i=1

αi V
i (τk,ψ

i (0) + I i (τk,ψ
i (τ−

k )))

≤
l∑

i=1

αig
i (V i (τ−

k ,ψi (0)))

=: g(V (τ−
k ,ψ(0))),

where g ∈ K3. Thus, all the conditions of Corollary 4.1 are satisfied; therefore, the
trivial solution, x ≡ 0, of composite system (5.3) is uniformly asymptotically stable
in the m.s. This completes the proof.

In the following theorem, the continuous isolated subsystems and composite sys-
tems are assumed to be unstable and can be stabilized by an impulsive controller.

Theorem 5.2 Suppose that composite system (5.3) satisfies the following condi-
tions:

(i) for i = 1, 2, . . . l, the isolated subsystem Si in (5.2) possesses Property B;
(ii) assumptions (ii)–(iv) of Theorem5.1 are satisfied;
(iii) the matrix S = [si j ]l×l is positive definite, where
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si j =
{

αi (σi + q̄bii ) + 1
2

∑
k=1,k �=i q̄αkekdki , i = j,

1
2 q̄(αi bi j + α j b ji ), i �= j,

for some positive constant αi for any i; and
(iv) there exist functions g ∈ K3, c ∈ Kv anda constantσ > 0 such that infq>0

∫ q
g(q)

ds/c(s) > στ , where τ = infk∈N{τk − τk−1} > 0.

Then, the trivial solution, x ≡ 0, of composite system (5.3) is uniformly asymptoti-
cally stable in the m.s.

Proof For all t ≥ t0 with t0 ∈ R+, let x = x(t; t0,�) be the solution of composite
system (5.3). Define the composite Lyapunov function candidate by

V (t, x) =
l∑

i=1

αi V
i (t, wi ),

where V i is the Lyapunov function related to the i th isolated subsystem and αi > 0.
Then,

L V (t, x) ≤ zT Sz,

where zT = (c1/21 (‖w1‖2) c1/22 (‖w2‖2) · · · c1/2l (‖wl‖2)), and S is the positive-
definite matrix defined in (iii). It follows that the eigenvalues of S are strictly positive
(i.e., λM(S) > 0). Therefore,

L V (t, x) ≤ λM(S)

l∑

i=1

ci (‖wi‖2)

which implies that

L V (t, x) ≤ σc(‖x(t)‖2),

where σ > 0 and c ∈ Kv are defined in (iv). As achieved in Theorem5.1, we have,
at the impulsive moments t = τk ,

V (τk,ψ(0) + I (τk,ψ(τk))) ≤ g(V (τ−
k ,ψ(0))),

for some function g ∈ K3. Thus, all the conditions of Theorem5.1 are satisfied; there-
fore, the trivial solution x ≡ 0 of composite system (5.3) is uniformly asymptotically
stable in the m.s. This completes the proof.

Remark 5.2 In Theorems5.1 and 5.2, we have assumed that the individual isolated
subsystems Si possess Properties A and B, respectively, so as to guarantee their m.s.
uniformly asymptotic stability. Assumptions (ii) (and (iii) and (iv)) in Theorem5.1
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describe the upper bound on the deterministic (and stochastic) interconnections of
the system. While assumption (v) describes the relationship between the degree of
stability of each subsystem and their interconnections magnitude, which is formed
in the test matrix S. The negative definiteness of the matrix, which is required to
guarantee the stability of the composite system, ensures that the stability margin
of each individual is stronger than the interconnection magnitude. In Theorem5.2,
the isolated continuous systems Si are unstable and stabilized by impulsive effects,
which also have the role of stabilizing the entire composite system.

5.3 Comparison Method

In this section, depending on the type of composite Lyapunov function candidate
used, we adopt two approaches to analyze the stability property using the comparison
method. In Sect. 5.3.1, a scalarLyapunov function is considered, while in Sect. 5.3.2,
we use a vector of Lyapunov functions.

5.3.1 Method of Lyapunov Function

In the following theorem, we establish m.s. stability properties of (5.3) after being
compared with an auxiliary scalar comparison system, which enjoys the same sta-
bility properties. In fact, we use Theorem 4.3 in proving the stability properties in
this subsection.

Theorem 5.3 Assume that the assumptions of Theorem5.1 hold except that, when-
ever V i (t + s,ψi (s)) ≤ q̄V (t,ψi (0)) for some q̄ > 1 and s ∈ [−r, 0],

Li V
i (t,ψi ) ≤ h1i (t, V

i (t,ψi (0))), (a.s.)

and

gT
i (t,ψ)V i

ψi (0)(t,ψ
i (0)) + 1

2

∑

j=1,i �= j

tr
[
σT
i j (t,ψ

j )V i
ψi (0)ψi (0)(t,ψ

i (0))σi j (t,ψ
j )
]

< h2i (t, V (t,ψ(0))),

where h̄ ∈ C
([τk−1, τk) × R+;R), h̄(t, u) is concave in u for all t ∈ R+ and

lim
(t,y)→(τ−

k ,x)
h̄(t, y) = h̄(τ−

k , x),
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where h̄ refers to both h1i and h2i . Then, the stability properties of composite system
(5.3) are implied by those of the following auxiliary impulsive comparison system

⎧
⎨

⎩

D+v = h(t, v), t �= τk,
v(t) = α(v(t−)), t = τk,
v(t0) = v0 ≥ 0,

(5.4)

where h is a scalar function defined later and α ∈ K3.

Proof Let xT = ((w1)T (w2)T · · · (wl)T
)
be the solution of composite system (5.3).

Define the composite Lyapunov function candidate by

V (t, x) =
l∑

i=1

αi V
i (t, wi ).

Then, for all t �= τk with k ∈ N, whenever V (t, xt ) ≤ q̄V (t, x),

L V (t, x) =
l∑

i=1

αi

{
Li V

i (t, wi ) + gi (t, xt )
T V i

wi (t, wi )

+ 1

2

l∑

j=1,i �= j

tr
[
σi j (t, w

j
t )V

i
wiwi (t, wi )σi j (t, w

j
t )
]}

≤
l∑

i=1

αi

{
h1i (t, V

i (t, wi )) + h2i (t, V
i (t, wi ))

}

=:h(t, V (t, x)).

It follows that, after applying Itô formula to process V and taking themathematical
expectation,

D+m(t) ≤ h(t,m(t)),

where m(t) = E[V (t, x(t))] for all t �= τk . At the impulsive moments, t = τk , we
have

m(τk) ≤ α(m(τ−
k )).

In summary, we have obtained

⎧
⎨

⎩

D+m ≤ h(t,m(t)), t �= τk,
m(t) ≤ α(m(t−)), t = τk,
m(t0) ≤ v0,
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which is compared with the auxiliary comparison system (5.4). To conclude the
desired result, it suffices to apply Theorem4.3. This completes the proof.

The following corollary is analogous to Corollary 4.4; thus, we state it without a
proof.

Corollary 5.1 In Theorem5.3, let p ∈ PC (R+;R+) and c ∈ Kv such that

h(t, V (t, x)) = p(t)c(V (t, x))

and
∫ τk

τk−1

p(s)ds + lnαM(dk) ≤ −γk, k ∈ N, (5.5)

where αM(dk) = max{αi (dk) | i = 1, 2, . . . , l} with αi (dk) being a constant for
which

V i
(
τk,ψ

i (0−) + I i (τk,ψ
i (τ−

k ))
) ≤ αi (dk)V

i (τ−
k ,ψi (0−))

and satisfying αi (dk) > 1,
∏∞

k=1 αi (dk) < ∞ and
∑∞

k=1 dk < ∞. Then, if γk ≥ 0,
the composite system in (5.3) is uniformly stable in m.s. and, if

∑∞
k=1 γk = +∞, the

system is asymptotically stable in the m.s.

5.3.2 Method of Vector Lyapunov Functions

In this subsection, we continue to use a comparison method to prove the stability
properties for composite large-scale SISD (5.3), where we use a vector of Lyapunov
functions having components which are Lyapunov functions related to the isolated
subsystems and, in this case, the finding of Theorem5.5 will be carried over to every
individual subsystem. In other words, the comparison occurs between a vector of
differential inequalities and a vector of differential equations whose solutions are
known and enjoy some stability properties. As done early in this chapter and for
convenient theorem statement, we define Property C.

Definition 5.4 For i = 1, 2, . . . , l, the isolated subsystem Si in (5.2) is said to pos-
sess Property C if Assumptions A1 and A2 hold, there exist functions ci ∈ Kc,
ai which satisfies the conditions of h̄ in Theorem5.5 and V i ∈ C 1,2

([−r,∞) ×
S(�)

);R+
)
which is decreasing and satisfies

(i) for all (t,ψi (0)) ∈ [−r,∞) × S(ρ),

ci (‖ψi (0)‖2) ≤ V i (t,ψi (0)), (a.s.)

and, for all t �= τk in R+ and ψi ∈ PC
([−r, 0]; S(ρ)

)
,
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Li V
i (t,ψi ) ≤ ai (t, V

i (t,ψi (0))), (a.s.)

provided that V i (t + s,ψi (s)) ≤ q̄V i (t,ψi (0)) for some q̄ > 1 and s ∈ [−r, 0];
and

(ii) for any τk ∈ T and ψi ∈ PC
([t0 − r,∞); S(ρ)

)
,

V i
(
τk,ψ

i (0) + Ii (τk,ψ
i (τ−

k ))
) ≤ αi (dk)V

i (τ−
k ,ψi (0)), (a.s.)

where ψi (0−) = ψi (0) and
∏∞

k=1 αi (dk) < ∞ with αi (dk) > 1 for all k.

Definition 5.5 A function g(t, u) (or g : R+ × R
n → R) is said to be quasi-

monotone nondecreasing in u if, for any u, v ∈ R
n such that 0 ≤ u j < v j for all

i �= j and 0 ≤ ui = vi , we have g(t, u) < g(t, v) for any fixed t in R+.

Theorem 5.4 (Comparison theorem) Assume that the following assumptions hold:

(i) for i = 1, 2, . . . , l, the isolated subsystem Si in (5.2) has Property C;
(ii) for i = 1, 2, . . . , l, there exists a function b̄i (t, u) ∈ C

([τk−1, τk) × R+;R) that
is quasi-monotone nondecreasing in u such that

gT
i (t,ψ)V i

ψi (0)(t,ψ
i (0)) + 1

2

l∑

j=1,i �= j

tr
[
σT
i j (t,ψ

j )V i
ψi (0)ψi (0)(t,ψ

i (0))σi j (t,ψ
j )
]

< b̄i (t, V (t,ψ(0))),

where V T (t, x) = (V 1(t, w1) V 2(t, w2) · · · V l(t, wl)
)
;

(iii) let aT (·) = (a1(·) a2(·) · · · al(·)
) ∈ Lad

(
�, L[t0, t0 + α]) and

b̄T (·) = (b̄1(·) b̄2(·) · · · b̄l(·)
) ∈ Lad

(
�, L2[t0, t0 + α]), where ai (·) and b̄i (·)

are defined in assumptions (i) and (ii), respectively, and assume that the fol-
lowing inequalities hold

|a(t, v′) + b̄(t, v′)|2 ≤ h1(t) + h2(t)κ(‖v′‖2),
|a(t, v′) + b̄(t, v′) − a(t, v′′) − b̄(t, v′′)| ≤ K‖v′ − v′′‖,

for all t ∈ R+, where h1, h2 are Borel measurable functions (orPC (R+;R+)

functions), κ : R+ → R+ is continuous, increasing, concave function, v′, v′′ ∈
R

l+ and K > 0; and
(iv) there exists an adapted function p : Rl × R+ → R such that

sup
V (t,x)≤v

l∑

i, j=1

‖σT
i j (t,ψ

j )Vψi (0)i (t,ψi (0))‖2 ≤ p(t, v),

where

p(t, v) ≤ h1(t) + h2(t)κ(‖v‖2).
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Then, provided that V (t0, x0) < v0, we have V (t, x(t)) < v(t), for all t ≥ t0, where
v = (v1 v2 · · · vl)T (i.e., v ∈ R

l ) is a solution of the vector stochastic impulsive
differential equation

{
dv = (a(t, v) + b̄(t, v)

)
dt + VdW (t), t �= τk,

�v(t) = αM(dk)v(t−), t = τk,
(5.6)

with V = [vi j ]l×l being a matrix random process such that

‖V‖2 ≤ p(t, v),

and αM(·) = max{αi (·) : i = 1, 2, . . . , l}.
Proof For all t ≥ t0 with t0 ∈ R+, let x = x(t; t0,�) be the solution of composite
impulsive system (5.3). Define

V T (t, x(t)) = (V 1(t, w1) V 2(t, w2) · · · V l(t, wl)
)

as the vector Lyapunov function candidate for the composite system with V i being
the Lyapunov function related to the i th isolated subsystem Si . Then, by the vector
form of Itô formula, we have

dV T (t, x(t)) = (dV 1(t, w1) dV 2(t, w2) · · · dV l(t, wl)
)
,

where, for i = 1, 2, . . . , l,

dV i (t, wi ) <
(
ai (t, V

i (t, wi )) + b̄i (t, V
i (t, wi ))

)
dt +

l∑

i, j=1

vi j dWi (t),

with vi j = V iT

wi (t, wi )σi j (t, w
j
t ). It follows that the vector differential inequality is

dV (t, x(t)) <
(
a(t, V (t, x(t))) + b̄(t, V (t, x(t)))

)
dt + VdW (t),

for all t ∈ [τk−1, τk) and k ∈ N.
At the impulsive moments t = τk , we have

V T (τk , x(τk))

= (V 1(τk , w
1(τk)) V

2(t, w2(τk)) · · · V l (t, wl (τk))
)

≤
(
α1(dk)V

1(τ−
k , w1(τ−

k )) α2(dk)V
2(τ−

k , w2(τ−
k )) · · · αl (dk)V

l (τ−
k , wl (τ−

k ))
)

≤ αM (dk)
(
V 1(τ−

k , w1(τ−
k )) V 2(τ−

k , w2(τ−
k )) · · · V l (τ−

k , wl (τ−
k ))
)

= αM (dk)V
T (τ−

k , x(τ−
k )).
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Particularly, for all t ∈ [τ0, τ1) and i = 1, 2, · · · , l, we have V i (t0, wi (t0)) < v0
and

dV i (t, wi ) − dvi <
{
[ai (t, V i (t, wi )) − ai (t, vi )] + [b̄i (t, V (t, x(t))) − b̄i (t, v(t))]

}
dt.

Since the composite system satisfies the existence-uniqueness conditions,
V (t, x(t)) is a continuous process (a.s.) for all [τ0, τ1). Similar conclusion can
be drawn for the process v(t). Therefore, to ensure that, given V (t0, x0) < v0,
V (t, x(t)) < v(t) (a.s.) for all [τ0, τ1), it suffices to show that dV i (t, wi ) − dvi (t) <

0 whenever V i (t, wi ) = yi (t). But this inequality is true because b̄i is quasi-
monotone nondecreasing. Thus, we obtain that V i (t, wi (t)) < vi (t) for all t ∈
[τ0, τ1) and, at the impulsive moment τ1, we have

V i
(
τ1, w

i (τ1)
)− vi (τ1) < αM(dk)

[
V i (τ−

1 , wi (τ−
1 )) − vi (τ

−
1 )
]

< 0,

i.e.,

V i (τ1, w
i (τ1)) < vi (τ1).

Similarly, for k = 2, 3, . . . and t ∈ [τk−1, τk), we get V i (t, wi (t)) < vi (t) and
at t = τk , V i (τk, w

i (τk)) < vi (τk). Therefore, for all t ≥ t0 and i = 1, 2, . . . , l,
Vi (t, wi (t)) < vi (t), from which we get the vector inequality

V (t, x(t)) < v(t), ∀ t ≥ t0.

This completes the proof.

Theorem 5.5 Suppose that the assumptions of Theorem5.4 hold, there exist class-
Kc functions α1 and c, a function h̄ ∈ C

([τk, τk−1) × R
l;R+

)
, z ∈ R

l and U ∈
C 1,2

([τk−1, τk) × R
l;R+

)
which is decreasing, U (t, 0) = 0 and satisfies

(i) for all t ∈ R+ and v ∈ PC (R+;Rl),

α1(‖v‖2) ≤ U (t, v), (a.s.)

zTUvv(t, v)z ≤ h̄(t, v)‖z‖2, (a.s.)

and

Ut (t, v) +Uv(t, v)
[
a(t, v) + b̄(t, v)

]+ 1

2
h(t, v)p(t, v) ≤ −c(‖v‖), (a.s.);

(ii) for any τk ∈ T and v ∈ PC (R+;Rl),

U (τk, v(τk)) = α(dk)U (τ−
k , v(τ−

k )), (a.s.).
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Then, comparison system (5.6) and, hence, composite SISD (5.3) have asymptotically
stable trivial solutions in the m.s.

Proof Let v ≥ 0 be the solution vector of the comparison system (5.6). Apply Itô
formula to process U to get

LU (t, v) ≤ −c(‖v‖),

which shows that, by the previous analysis, (5.6) has the desired stability property.
As for composite system (5.3), we have shown in Theorem5.4 that the vector

inequality V (t, x(t)) < v(t) holds for all t ≥ t0. It follows that

α1(‖x(t)‖2) ≤
[ l∑

i=1

c2i (‖wi‖2)
]1/2 ≤ ‖V (t, x(t))‖ < ‖v(t)‖,

where c ∈ Kc. Taking the mathematical expectation and then applying α−1
1 to both

sides imply the desired result, i.e.,E[‖x(t)‖2] ≤ α−1
1 (E[‖v(t)‖2]) for all t ≥ t0. This

completes the proof.

Corollary 5.2 In Theorem5.5, assume that there exists a positive constant c such
that c(s) = c s for all s > 0 and

βT
(
a(t, v) + b̄(t, v)

) ≤ −c‖v‖,

for some positive vector β ∈ R
l . Then, system (5.6) possesses the same stability

property.

Proof Let U (t, v) = βT v > 0 be a Lyapunov function candidate. Then, Uv = βT

and Uvv = 0 ∈ R
l×l , from which LU (t, v) ≤ −c‖v‖. Applying the impulsive

effects yields the desired result.

5.4 Examples

As an application of the proposed results, we consider an indirect control system in
automatic control, which describes the longitudinal motion of an aircraft.

Example 5.1 Consider the control SISD

⎧
⎨

⎩

dx = Axdt + b f (y)dt + σ11(x(t − 1))dW1 + σ12(y)dW2, t �= τk,
dy = (− ζ y − ξ f (y)

)
dt + aT xdt + σ21(x)dW1

+σ22(y(t − 1))dW2, t �= τk,
(5.7)

where xT = (x1 x2 x3 x4) is the system state, y ∈ R is the controller (i.e., n1 =
4, n2 = 1), A ∈ R

4×4, b ∈ R
4, ζ, ξ ∈ R, f ∈ R is continuous for all y ∈ R, f (y) =
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0 if and only if y = 0, and 0 < y f (y) < k|y|2 for all y �= 0 and k > 0, a ∈ R
4,

σ11 ∈ R
4×4, σ12 ∈ R

1×1, σ21 ∈ R
4×1, σ22 ∈ R

1×1, W1 ∈ R
4 and W2 ∈ R.

The isolated subsystems are

Si :
{
dx = Axdt + σ11(x(t − 1))dW1, t �= τk,
dy = (− ζ y − ξ f (y)

)
dt + σ22(y(t − 1))dW2, t �= τk .

(5.8)

The impulses are given by the following difference equations

{

�x(τk) = I1(τk, x(τ
−
k )) = 1

k2
(− 2x1(τ

−
k ),−2x2(τ

−
k ), 2x3(τ

−
k ), 0

)T
,

�y(τk) = I2(τk, y(τ
−
k )) = − 1

1+k2 y(τ
−
k ).

(5.9)

Let A =

⎛

⎜
⎜
⎝

−5 0 0 0
0 −6 0 0
0 0 −8 0
0 0 0 −10

⎞

⎟
⎟
⎠, σ11 = 0.01

⎛

⎜
⎜
⎜
⎜
⎝

sin x1(t − 1) 0 x2(t−1)
1+x24

0

0 x2(t−1)
1+x21

0 −x23 (t − 1)

0 0 x3(t − 1) 0
0 0 0 −x4(t − 1)

⎞

⎟
⎟
⎟
⎟
⎠
,

bT = (1 1 1 1
)
, aT = (1 1 1 1

)
, ζ = 5, ξ = 2, σ12 = 0.01 y

1+y2 , σT
21 =

0.01(x2 x1 x4 x3) and σ22 = 0.01 sin y(t − 1).

Let V 1(x) = ‖x‖2 and V 2(y) = y2 be the Lyapunov function candidates for
the isolated subsystems in (5.8). After cumbersome calculations, one may get
L1V 1(x) ≤ (−10 + 0.0002q̄)‖x‖2 andL2V 2(y) ≤ (−2ζ + 0.0001q̄)y2 =(−10 +
0.0001q̄)y2 (i.e., σ1 = −10 + 0.0002q̄ and σ2 = −10 + 0.0001q̄). For the sta-
bility of the continuous isolated subsystems, we take q̄ = 2. As for the inter-
connections, we have V 1T

x (x)g1(x, y) = 2xT ξ f (y) ≤ 4k‖x‖ |y| (i.e., b12 = 4k),
V 2
y (y)g2(x, y) = 2yaT x ≤ 4‖x‖ |y| (i.e., b21 = 4). The (noisy) interconnections

are:σT
12(y)V

1
xxσ12(y) = 2‖σ12(y)‖2 ≤ 0.0002y2 andσT

21(x)V
2
yyσ21(x)= 2‖σ21(x)‖2

≤ 0.0002‖x‖2 (i.e., e1 = e2 = 2 and d12 = d21 = 0.0001).
LetV (x, y) = α1V 1(x) + α2V 2(y) = ‖x‖2 + y2 (i.e.,α1 = α2 = 1) be the com-

posite Lyapunov function candidate for composite system (5.7). Then, the matrix

S =
(−9.9997 2k̄ + 2

2k̄ + 2 −7.9997

)

is negative definite if k̄ < 3.9998. Let f (y) = 2y
1+y2 . Clearly, if we choose k̄ = 2, the

required conditions are satisfied. Therefore, the conditionL V (x, y) ≤ zT Sz < 0 is
also satisfied, where zT = (‖x‖ |y|).

At the impulsive moments τk , we have

V (x(τk), y(τk)) = ‖x(τk)‖2 + y2(τk)

≤ (1 + 2

k2
)‖x(τ−

k )‖2 + (1 − 5

1 + k2
)y2(τ−

k )

≤ αM(dk)V (x(τ−
k ), y(τ−

k )),
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Fig. 5.1 Mean square
asymptotic stability of
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where αM(dk) = 1 + 2
k2 . As for the impulsive moments, we have, after choosing

k̄ = 2, μ > 0.04. For i = 1, 2 and s > 0, choose ai (s) = bi (s) = s2 to ensure the
asymptotic stability in the m.s. of isolated subsystems. The eigenvalues of matrix
S are −15.082,−2.917. Choose σ = 2.917 to obtain μ > 0.14. Also, the trivial
solution (x y)T = (0 0) ∈ R

5 (with x ∈ R
4 and y ∈ R) of composite SISD system

given in (5.7)–(5.9) is exponential stable in the m.s. if a(s) = b(s) = s2 and c(s) = s
for all s > 0. The simulation result is shown in Fig. 5.1, wherewe have takenμ = 0.5.

Example 5.2 Consider again the continuous control composite system given in (5.7)
and same compositeLyapunov scalar functionV (x, y) = ‖x‖2 + y2. By the previous
analysis, we have found

V 1
x (x)gT

1 (x, y) ≤ 2k(V 1(x) + V 2(y)) = 2kV (x, y),

V 2
x (y)gT

2 (x, y) ≤ 2(V 1(x) + V 2(y)) = 2V (x, y),

σT
12(y)V

1
xxσ12(y) ≤ 0.0002V 2(y),

σT
21(x)V

2
yyσ21(y) ≤ 0.0002V 1(x),

that ish11(V
1(x)) = σ1V 1(x),h12(V

2(y)) = σ2V 2(y),h21(V
1(x)) = (2k + 2.0001)

V 1(x) and h22(V
2(y)) = (2k + 2.0001)V 2(y). Therefore,

h(V (x, y)) =
l∑

i=1

αi

{
h1i (V

i (t, wi )) + h2i (V
i (t, wi ))

}

= (σ1 + 2k + 2.0001)V 1(x) + (σ2 + 2k + 2.0002)V 2(y)

≤ pV (x, y),
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Fig. 5.2 Mean square
asymptotic stability of
(x y)T ≡ (0 0)
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where p = σ1 + 2k + 2.0001 = −3.9997, from which one has

L V (x, y) ≤ pV (x, y).

Consider now the following impulsive difference equations

{
�x(τk) = − 5

4 x(τ
−
k ),

�y(τk) = − 5
4 y(τ

−
k ).

(5.10)

It follows that V (x(τk), y(τk)) ≤ αkV (x(τ−
k ), y(τ−

k )) where αk = 1
16 . Making

use of condition (5.5), one obtains τk − τk−1 > 0.69 for any k. Therefore, the trivial
solution, x ≡ 0, of the composite SISD given in (5.7) and (5.10) is exponentially
stable in the m.s. The simulation result is shown in Fig. 5.2.

Reconsider the control composite continuous system in (5.7) with unstable state
subsystem where

A =

⎛

⎜
⎜
⎝

5 0 0 0
0 −6 0 0
0 0 −8 0
0 0 0 −10

⎞

⎟
⎟
⎠ .

Following the same analysis, we obtain L1V 1(x) ≤ (10 + 0.0001q̄)V 1(x); that
is, the state of the isolated subsystem is unstable, whileL2V 2(y) ≤ −9.9998V 2(y).
It follows that the composite system is unstable where h(V (x, y), u) =
6.0005V (x, y) > 0. Considering the stabilizing impulsive effects in (5.10) gives
τk − τk−1 ≤ 0.3. Figure5.3 shows the simulation result.

Example 5.3 Consider the composite system in (5.7) and the same Lyapunov func-
tions. We have found L1V 1(x) ≤ σ1V 1(x) and L2V 2(x) ≤ σ2V 2(x), from which
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Fig. 5.3 Mean square
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(x y)T ≡ (0 0)
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we get a(V (x, y))T = (a1(V 1(x)) a2(V 2(y))) = (σ1V 1(x) σ2V 2(y)). From the
interconnection, we have found b̄(V (x, y))T = ((2k + 0.0001)V (x, y) 2.0001V
(x, y)

)
. Clearly, the functions a and b satisfy the conditions in (iii) of Theorem5.4.

As for condition (iv), we have

sup
V≤v

l∑

i, j=1

‖σT
i j (w

i )Vwi (wi )i‖2

= sup
V≤v

[
‖σT

11(x(t − 1))V 1
x (x)‖2 + ‖σT

12(y))V
1
x (x)‖2‖σT

21(x)V
2
y (x)‖2

+ ‖σT
22(y(t − 1)))V 2

y (x)‖2
]

≤ 4 sup
V≤v

[
ξ1(V

1(x))2 + 0.0004V 1(x)V 2(y) + ξ2(V
2(y))2

]

≤ 4 sup
V≤v

[
ξ1v

2
1 + 0.0004v1v2 + ξ2v

2
2

]

≤ 8ξ̄‖v‖2,

i.e., p(v) ≤ 8ξ̄‖v‖2, where ξ̄ = max{ξ1, ξ2}, ξ1=1.0004 and ξ2=1.0002 with q̄=2.
Making use of the impulsive effect given in Example5.1, we get

V T (x(τk), y(τk)) = (V 1x(τk)), V
2(y(τk))

≤ (1 + 1

k2
)(V 1(x(τ−

k )), V 2(y(τ−
k ))) = (1 + 1

k2
)V T (x(τ−

k ), y(τ−
k ))

≤ (1 + 1

k2
)vT (τ−

k ) = vT (τk).
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Thus, by Theorem5.4, V (x(t), y(t)) ≤ v(t), for all t ≥ t0. As for the stability
result, choose U (v) = v1 + v2, i.e., βT = (1 1). It is easy to show that LU (v) ≤
−5.9997U (v), where we have chosen k = 2. Also, U (v(τk)) = αM(dk)U (v(τ−

k )),
where αM(dk) = 1 + 1

k2 . Therefore, the trivial solution of composite system in (5.7)
is asymptotically stable in the m.s.

5.5 Notes and Comments

In this chapter, nonlinear large-scale SISD with fixed impulses has been considered.
The interest has been to demonstrate some qualitative properties by decomposing the
interconnected system into smaller isolated subsystems, and the rest has been treated
as system perturbation. The material of this chapter is taken from [1]. Assuming
that the isolated subsystems have asymptotic stable trivial solutions in the m.s. and
the perturbation, the connection among the subsystems is estimated by an upper
bound, which is smaller than the stability margin of the individual subsystems, and
we have been able to conclude that the interconnected SISD has a trivial solution
that is asymptotically stable in the m.s. Also, it has been shown that if the continuous
system is unstable, helpful impulses can contribute to stabilize such a system. In the
stability analysis, we have used the classical Lyapunov theorems and comparison
method using scalar Lyapunov function and vector Lyapunov functions. In fact, the
stability results obtained by the first two approaches are extension to the results
developed in Chap. 4. Moreover, for further reading about the qualitative notions
analyzed by decomposing the system states of large-scale systems, one may refer
to [2–6]. Finally, to demonstrate the effectiveness of the theoretical results of this
chapter, we have presented the stability and stabilization problems of an automated
indirect control system, which is a modification of Example 4.6.1 in [2], where we
have involved time delay and impulsive effects.
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Chapter 6
Input-to-State Stability for Stochastic
Switched Systems

This chapter ismainly concernedwith the input-to-state stability concept of nonlinear
stochastic switched systems with bounded disturbance input. The primary objective
is to develop Lyapunov-like sufficient conditions guaranteeing the stability property
in the pth moment. To control the switching among the system modes, we adopt two
switching rules, an initial-state-dependent dwell-time switching signal and Marko-
vian switching. We consider systems consisting of a set of all stable modes and a
set of stable and unstable modes. Also, implications of these results are stated with
enhancing examples.

6.1 Problem Formulation

Consider now the following stochastic switched system

dx(t) = fσ(t)
(
t, x(t), u(t)

)
dt + gσ(t)

(
t, x(t), u(t)

)
dW (t), (6.1a)

x(t0) = x0, (6.1b)

where the state vector x ∈ R
n is assumed to be a right-continuous stochastic process,

the input u : [t0,∞) → R
l is an essentially bounded function with ‖u(t)‖∞ ≤ 1,

where ‖u(t)‖∞ := ess. supt≥t0 ‖u(t)‖, and the switching signal σ(t) : [t0,∞) →
S is a piecewise constant function taking values in a finite compact set S =
{1, 2, . . . , N }.

If the switching among the elements of S occurs randomly, we assume that the
switching signal σ(·) is a right-continuousMarkov chain taking values inS with the
generator � = [γi j ]N×N and its evolution is governed by the following probability
transitions

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
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P{σ(t + h) = j
∣
∣σ(t) = i} =

{
γi j h + o(h), if i �= j,
1 + γi i h + o(h), if i = j,

where h > 0, γi j is the transition rate from mode i to mode j with γi j ≥ 0, when
i �= j , andγi i = −∑N

j �=i γi j and o(h) is such that limh→0 o(h)/h = 0. The switching
signal σ(·) is assumed to be independent of W (·).

The switching times {tk}k∈N (with tk ∈ R+) form a strictly increasing sequence
such that limk→∞ tk = ∞. For any i ∈ S and k ∈ N, the functions fi : [tk−1, tk) ×
R

n × R
l → R

n , gi : [tk−1, tk) × R
n × R

l → R
n×m , which belong to Lad(�,

L p[tk−1, tk)) with p = 1 and p = 2, respectively, are assumed to be smooth enough
to guarantee a unique solution, and fi (t, 0, 0) = 0 and gi (t, 0, 0) = 0; that is, sys-
tem (6.1) admits a trivial solution, x ≡ 0. We also assume the initial state x0 to be
F0-measurable with finite pth moment (i.e., E[‖x0‖p] < ∞).

Definition 6.1 (Itô formula) For all t ≥ t0 with t0 ∈ R+, let x(t) be an n-dimensional
continuous adapted process satisfying

dx(t) = f (t, x(t), u(t))dt + g(t, x(t), u(t))dW (t), (a.s.)

where f and g are as defined before. Assume that V ∈ C 1,2
(
R+ × R

n;R+
)
. Then,

V (t, x(t)) is a scalar-valued stochastic process satisfying

dV (t, x(t)) = L V (t, x(t), u(t))dt + Vx (t, x(t))g(t, x(t), u(t))dW (t), (a.s.)

where the infinitesimal operator L , associating x(t) to V (t, x(t)) is defined by

L V (t, x(t), u(t)) =Vt (t, x(t)) + Vx (t, x(t)) f (t, x(t), u(t))

+ 1

2
tr[gT (t, x(t), u(t))Vxx (t, x(t))g(t, x(t), u(t))] (6.2)

with Vx (t, x(t)) and Vxx (t, x(t)) being the gradient and Hessian matrix of process
V (t, x(t)), respectively.

The following lemma ensures the global boundedness of themean value of process
V when the operatorL V (as a single operator) is estimated by a positive bound. The
lemma is also interesting on its own because it guarantees a global unique solution
even if a local Lipschitz condition holds.

Lemma 6.1 Assume that a unique solution x(t) = x(t; t0, x0) of the initial-value
problem

dx(t) = f (t, x(t), u(t))dt + g(t, x(t), u(t))dW (t), x(t0) = x0, (a.s.),

exists for all t ∈ [t0, τ∞) with t0 ∈ R+ and τ∞ being the explosion time. Let V ∈
C 1,2(R+ × R

n;R+) such that it is radially unbounded (i.e., for all (t, x) ∈ R+ × R
n,

the limit lim‖x‖→∞
[
inf t≥t0 V (t, x)

] = ∞) and
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L V (t, x, u) ≤ α(V (t, x)), (a.s.)

where α ∈ Kc. Then

E[V (t, x(t))] = G−1
[
G

(
E[V (t0, x0)]

) + (T − t0)
]

< ∞, ∀T ≥ t0,

where G(s) = ∫ s
1

dt
α(t) , G−1 is the inverse function of G and G

(
E[V (t0, x0)]

) + (T −
t0) ∈ Domain(G−1). Moreover, the solution x(t) is unique and defined for all t ≥ t0.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be a local solution of the
system.We claim that τ∞ = ∞. If our claim were not true, there would exist positive
constants ε and T such that

P{τ∞ ≤ T } > ε.

Define a sequence of stopping times τl (for l ≥ 1) of the process x from the ball
‖x‖ > l, i.e.,

τl = inf{t ≥ t0 | ‖x(t)‖ > l}

such that τl → τ∞ (a.s.). This implies that, for sufficiently large l∗,

P{τl ≤ T } > ε′, for some ε′ < ε, l ≥ l∗.

For all t ∈ [t0, T ] and l ≥ l∗, let τl(t) = min{τl, t}. Apply the generalized Itô
formula for the process V (τl(t), x(τl(t))) and then take themathematical expectation
to get

E[V (τl(t), x(τl(t)))] = E[V (t0, x0)] + E

∫ τl (t)

t0

L V (s, x(s), u(s))ds

≤ E[V (t0, x0)] + E

∫ t

t0

L V (τl(s), x(τl(s)), u(τl(s)))ds

≤ E[V (t0, x0)] +
∫ t

t0

α
(
E[V (τl(s), x(τl(s)))]

)
ds.

By Bihari’s inequality [1, 2], we get

E[V (τl(t), x(τl(t)))] = G−1
[
G

(
E[V (t0, x0)]

) + (t − t0)
]

≤ G−1
[
G

(
E[V (t0, x0)]

) + (T − t0)
]

< ∞,
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where G(s) = ∫ s
1

dt
α(t) , G−1 is the inverse function of G and G

(
E[V (t0, x0)]

) + (T −
t0) ∈ Domain(G−1). From the above inequality, we see E[V (t, x(t)] < ∞ for any
t ∈ [t0, T ].

On the other hand,

E
[
1{τl≤T }V (τl , x(τl))

] ≤ G−1
[
G

(
E[V (t0, x0)]

) + (T − t0)
]
,

where 1A is the indicator function of a set A. Define

ηl = inf{V (t, x) | ‖x‖ ≥ l, t ≥ t0}.

Thus

G−1
[
G

(
E[V (t0, x0)]

) + (T − t0)
]

≥ ηlP{τl ≤ T } ≥ ε′ηl .

Letting l → ∞ implies contradiction because V is radially unbounded; therefore,
it must be true that

P{τl ≥ T } = 1.

The uniqueness follows from the definition of x up to equivalence, i.e., if y is
another solution, then

P{‖x(t) − y(t)‖ = 0, t0 ≤ t ≤ σ∞} = 1.

This completes the proof.

Definition 6.2 System (6.1) is said to be uniformly asymptotically ISS (aISS) in the
pth moment if there exist functions β ∈ K L and γ ∈ K such that, for any u and
p > 1, the solution satisfies

E[‖x(t)‖p] ≤ β
(
E[‖x0‖p], t − t0

) + γ(‖u(t)‖∞), ∀t > t0 with t0 ∈ R+

whereE[‖x0‖p] < ∞ and x(t) = x(t; t0, x0) is any solution of system (6.1). It is said
to be exponentially ISS (eISS) in the pth moment if, in addition, β

(
E[‖x0‖p], t −

t0
) ≤ KE[‖x0‖p]e−λ(t−t0), for some positive constants K and λ.

Remark 6.1 Immediate implications of the above definition are, for instance, if u ≡
0, it reduces to the uniform pth moment asymptotic (or exponential) stability of the
trivial solution of unforced system. If u �≡ 0 and g ≡ 0, it reduces to the standard
definitions of uniform ISS for deterministic systems.
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6.2 Initial-State-Dependent Dwell-Time

In this section,wepresent the stability property of (6.1),whereweuse the initial-state-
dependent dwell-time condition (denoted by τisd) to organize the switching among
the system modes. In Theorem 6.1, the switching occurs among all aISS modes,
while in Theorem 6.2, the switching occurs among stable and unstable modes. In
both cases, we show that the solution converges to a ball of radius depending on the
input magnitude.

Theorem 6.1 Let p ≥ 1. For any i ∈ S , all t ∈ [tk−1, tk) and x ∈ R
n, let Vi ∈

C 1,2
([tk−1, tk) × R

n;R+
)

with Vi (t, 0) = 0 satisfy the following assumptions:

(i) there exist a concave function α1i ∈ K∞ and a convex function α2i ∈ K∞ such
that

α2i (‖x‖p) ≤ Vi (t, x) ≤ α1i (‖x‖p), (a.s.); (6.3)

(ii) there exist α3i ∈ Kv and a function γ ∈ K such that

L Vi (t, x(t), u(t)) ≤ −α3i (‖x‖p), (a.s.) (6.4)

provided that ‖x‖p >
[
α∗−1

3i

(
1
ν
γ(‖u‖∞)

)]
=: ρi (‖u‖∞) (a.s.) where 0 < ν <

1 and α∗
3i
(·) = 1

(1−ν)
α3i (·); and

(iii) for all k ∈ N, the τisd condition

τisd ≥ ln
θ2i

(
ak−1E[‖x0‖p])

θ1i

(
akE[‖x0‖p]) (6.5)

holds, where ak are positive real numbers with a0 = 1, ak < ak−1 and limk→∞
ak = 0, and θi1 and θ2i are some class−K∞ functions.

Then, system (6.1) is pth moment aISS with ISS-gain

ρM(·) = max{ρi (·) = α∗−1

3i

(
γ∗(·)) | i ∈ S },

where γ∗ = 1
ν
γ.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be the solution of (6.1) and,
for all t ∈ [tk−1, tk), let Vi (t, x(t)) be a Lyapunov function candidate related to the
i th mode. By (ii), we can define the time-varying function mi (t) = E[Vi (t, x(t))] for
all t ∈ [tk−1, tk). Applying Itô formula tomi (t), taking themathematical expectation,
and using Fubini’s Theorem and the property of αi function, we get
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mi (t) = mi (tk−1) + E

∫ t

tk−1

L Vi (s, x(s), u(s))ds

≤ mi (tk−1) −
∫ t

tk−1

αi (m(s))ds,

which implies

D+mi (t) ≤ −αi (mi (t)),

where αi (·) = α3i

(
α−1
1i

(·)). Then, by the classical stability result (see e.g. [3]), there
exists a class−K L function β∗

i such that

mi (t) ≤ β∗
i (mi (tk−1), t − tk−1).

Then, there exist class−K∞ functions θ∗
1i
and θ∗

2i
[4, 5] such that, by (i),

E[‖x(t)‖p] ≤ θ−1
1i

[
θ2i (E[‖x(tk−1)‖p])e−(t−tk−1)

]
, (6.6)

where θ1i (·) := θ∗−1

1i
(α2i (·)), θ2i (·) := θ∗

2i
(·).

To show the solution convergence, we run the first mode on [t0, t1), then last
inequality reduces to

E[‖x(t)‖p] ≤ θ−1
11

[
θ21(E[‖x(t0)‖p])e−(t−t0)

]

and, by the τisd condition, we obtain at the switching time t = t1

E[‖x(t1)‖p] ≤ a1E[‖x0‖p],

which also implies after operating the second mode on [t1, t2),

E[‖x(t)‖p] ≤ θ−1
12

[
θ22E[‖x(t1)‖p])e−(t−t1)

]

≤ θ−1
12

[
θ22(a1E[‖x0‖p])e−(t−t1)

]
.

By the same argument, we get

E[‖x(t)‖p] ≤ θ−1
1i

[
θ2i (ak−1E[‖x0‖p])e−(t−tk−1)

]
, t ∈ [tk−1, tk),

whenever ‖x(t)‖ > [ρi (‖u‖∞)]1/p (a.s.) and at the switching time t = tk ,
E[‖x(tk)‖p] ≤ akE[‖x0‖p]. Since limk→∞ ak = 0, the system states will eventually
approach (in the pthmoment) the ultimate bound [ρ(‖u‖∞)]1/p where ρ = maxi {ρi };
that is, the solution of (6.1) is aISS in the pth moment. This completes the proof.
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Remark 6.2 Assumptions (i) and (ii) are made to ensure the aISS property in the pth
moment of each subsystem. In this case, the function Vi satisfying these assumptions
is called stochastic ISS Lyapunov function related to the i th subsystem.

Remark 6.3 The idea behind the dwell-time-based condition, τisd, in (iii) is to gen-
erate a sequence of solution trajectories at the switching times that converges (in
the pth moment) to a limit set with a radius depending on the maximum ISS gain
of the system modes. That is to say, the switching among all stable modes ensures
the stability of the switched system. Furthermore, compared with the existing state-
dependent dwell-time condition which requires the knowledge of the state at the
switching times, the proposed criterion is easier to work with because it depends on
the system initial state only.

Implications of this result are stated in the following corollary whose proofs are
straightforward; thus, they are left here as an exercise.

Corollary 6.1 In Theorem 6.1,

(i) if α1i (r) = α1i r , α2i (r) = α2i r and α∗
3i
(r) = α∗

3i
r for all r > 0, where α1i , α2i

and α∗
3i

are positive constants, then the above aISS properties reduce to eISS,
respectively;

(ii) if u(t) ≡ 0 for all t ∈ R+, then aISS reduces to the pth moment global uniform
asymptotic stability (g.u.a.s.) of the trivial solution of the nonlinear stochastic
switched system

dx(t) = fσ(t)(t, x(t))dt + gσ(t)(t, x(t))dW (t), x(t0) = x0;

(iii) if g (t, x(t), u(t)) ≡ 0 and u(t) �≡ 0 for all t , then the aISS property reduces to
the standard aISS of the nonlinear switched system

ẋ(t) = fσ(t)(t, x(t), u(t)), x(t0) = x0,

whereL V (t, x(t), u(t)) = V̇ (t, x(t)) = Vt (t, x(t)) + Vx f (t, x(t), u(t)); and
(iv) if u(t) ≡ 0 and g(t, x(t)) ≡ 0 for all t , then the aISS property reduces to g.u.a.s.

of the nonlinear switched system

ẋ(t) = fσ(t)(t, x(t)), x(t0) = x0,

where L V (t, x(t)) = V̇ (t, x(t)) = Vt (t, x(t)) + Vx f (t, x(t)).

In the following example, we illustrate these results.

Example 6.1 Consider the following switched system

dx = (−ai x + u(t))dt + u(t) sin x dW (t),
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Fig. 6.1 First moment aISS
with u(t) = sin(t)
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where i ∈ S = {1, 2} and ai is a positive real number. Let Vi (x) = 1
4 x4 be a stochas-

tic ISS Lyapunov function candidate related to the i th subsystem. We also choose
α1i (·) = α2i (·) = Vi (·). Then, with little effort, one may get

L Vi (x, u) ≤ −ai x
4 + |x |3|u| + 3

2
x4

≤ −ai x
4 + aiθx4 − aiθx4 + |x |3|u| + 3

2
x4, 0 < θ < 1,

≤ −α3i V (x), provided that |x | ≥ |u|/(aiθ − 3/2),

with aiθ > 3/2, where α3i = 4ai (1 − θ) > 0. Thus, both subsystems are aISS in
the fourth moment. Taking a1 = 4, a2 = 8 and θ = 1/2 gives α31 = 8 and α32 =
14. By Theorem 6.1, we have mi (t) ≤ mi (tk−1)e−α3i (t−tk−1) ≤ e−(t−tk−1). This also
implies that θ1i (r) = θ2i (r) = r and hence E[x4] ≤ E[x4(tk−1)] ≤ e−(t−tk−1). There-
fore, the τisd becomes tk − tk−1 ≥ ln( ak−1

ak
), wherewe choose ak = 1

k+1 , k = 0, 1, . . ..
Figure6.1 shows that the solution is aISS in the first moment where u(t) = sin(t).

The standard aISS property of the deterministic switched system is shown in
Fig. 6.2.

The classical asymptotic stability property of x ≡ 0 of the unforced stochastic
switched system is shown in Fig. 6.3.

In the following theorem, we establish the pth moment aISS property of the
switched system (6.1) with stable and unstable subsystems. For convenience of nota-
tion, we denote bySs = {1, 2, . . . , Ns} (Su = {1, 2, . . . , Nu}), with Ns + Nu = N ,
the index set of stable (unstable, respectively) subsystems and S = Ss ∪ Su .

Theorem 6.2 Consider system (6.1)withS = Ss ∪ Su. Let Vi ∈ C 1,2
([tk−1, tk) ×

R
n;R+

)
with Vi (t, 0) = 0 satisfy the following assumptions:

(i) for each i ∈ S , there exist a concave function α1i ∈ K∞ and convex function
α2i ∈ K∞ such that
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Fig. 6.2 aISS property with
u(t) = sin(t) and
g(t, x(t), u(t)) ≡ 0
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Fig. 6.3 First moment
asymptotic stability of x ≡ 0
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α2i (‖x‖p) ≤ Vi (t, x) ≤ α1i (‖x‖p), (a.s.);

(ii) (1) for each i ∈ Ss , there exist α3i ∈ Kv and ρi ∈ K∞ such that

L Vi (t, x, u) ≤ −α3i (‖x‖p), (a.s.), whenever ‖x‖p > ρi (‖u‖∞);

(ii) (2) for each i ∈ Su, there exist α3i ∈ Kc such that

L Vi (t, x, u) ≤ α3i (‖x‖p), (a.s.);

(iii) the τisd condition satisfies

(1) for each i ∈ Ss = {1, 2, 3, . . . , Ns} and k = 1, 3, 5, . . .
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t1 − t0 ≥ ln
θ21

(
E[‖x0‖p])

θ11
(
a1E[‖x0‖p]) > 0,

t3 − t2 ≥ ln
θ23

(
a1 A1E[‖x0‖p])

θ13
(
a2E[‖x0‖p]) > 0;

· · ·

(2) for each i ∈ Su = {1, 2, 3, . . . , Nu} and k = 2, 4, 6, . . .

0 < t2 − t1 ≤ G2

[
α22

(
a1A1E[‖x0‖p])

]
− G2

[
α12

(
a1E[‖x0‖p])

]
,

0 < t4 − t3 ≤ G4

[
α24

(
a2 A2E[‖x0‖p])

]
− G4

[
α14

(
a2E[‖x0‖p])

]
,

· · · ,

where 0 < ak < ak Ak ≤ ak−1 with a0 = 1, θ1i (·) := θ∗−1

1i

(
α1i (·)

)
and θ2i (·) :=

θ∗
2i
(·) are functions of class K∞, and G2, G4, · · · are functions defined

in Lemma 6.1.

Then, the solution of (6.1) is pth moment aISS stable with the ISS gain ρM(·) :=
maxi∈S ρi (·).
Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be the solution of (6.1).
For all t ∈ [tk−1, tk) and i ∈ S , define Vi (t, x(t)) ∈ C 1,2([tk−1, tk) × R

n;R+) as a
Lyapunov function candidate related to the i th subsystem.

For convenience, we adopt the case where the switching among the stable and
unstable modes occurs alternatively.

For i = 1 and t ∈ [t0, t1), we have by Theorem 6.1

E[‖x(t)‖p] ≤ θ−1
11

[
θ21(E[‖x0‖p])e−(t−t0)

]
,

and, by the stable τisd condition in (ii)(1), we have at the switching time t = t1,

E[‖x(t1)‖p] ≤ a1E[‖x0‖p].

If the system switches to an unstablemode on [t1, t2), then byLemma 6.1, assump-
tion (i) and the last inequality, we have

E[‖x(t)‖p] ≤ α−1
22

{
G−1

2

(
G2(α12(a1E‖x0‖p])) + (t − t1)

)}
,

which implies that, with the aid of the unstable τisd condition in (ii)(2),

E[‖x(t2)‖p] ≤ a1A1E[‖x0‖p].
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By the same manner, one generates a sequence of states at the switching times

E[‖x(tk)‖p] ≤ akE[‖x0‖p] and E[‖x(tk+1)‖p] ≤ ak AkE[‖x0‖p].

Since ak < ak Ak ≤ ak−1, limk→∞ ak = 0 (∀k ∈ N,) and E[‖x0‖p] < ∞, then
limk→∞ E[‖x(tk)‖p] = 0, which means that, when t → ∞, the solution will even-
tually linger on at the ultimate bound of the system input. This completes the proof.

Remark 6.4 As can be seen in the assumptions (ii) and (iii) of Theorem 6.2, if
the system switches between stable and unstable modes, the stable modes have to
dominate over the unstable ones. This in turn implies that dwell times of stablemodes
are larger than the corresponding times of unstable modes.

The following example illustrates this result.

Example 6.2 Consider the switched system with the following

unstable mode

dx = (−ax3 + xu(t))dt + √
2ax2dW (t)

and the stable mode

dx = (−ax3 − bx + u(t))dt + √
2ax2dW (t),

where a and b are positive constants. Here, Su = {1} and Ss = {2}. For any i ∈
S = {1, 2}, define Vi (x) = 1

2 x2 as a Laypunov function candidate related to the
i th subsystem. Then, for i = 1, we have L V1(x, u) = x2, where u(t) = 1 for all
t ∈ [tk−1, tk), i.e., the subsystem is unstable. This also implies that D+

E[V1(x(t))] =
2E[V1(x(t))] and, by Lemma 6.1,

E[V1(x(t))] = E[V1(x(tk−1))]e2(t−tk−1),

i.e., G(r) = ln(r) and G−1(r) = er . If we choose α11(x) = α21(x) = V1(x), we
obtain

E[x2(t)] = E[x2(tk−1)]e2(t−tk−1).

Similarly, for i = 2, we have L V2(x, u) ≤ −α32 V2(x) provided that |x | ≥
|u|/bθ, where α32 = 2b(1 − θ) > 0 and 0 < θ < 1, which implies

E[V2(x)] ≤ E[V2(x(tk−1))]e−α32 (t−tk−1) ≤ E[V2(x(tk−1))]e−2(t−tk−1)

if we choose b = 2 and θ = 1/2 (i.e., θ12(r) = θ22(r) = r ). Choose α12(x) =
α22(x) = V2(x). Then

E[x2(t)] ≤ E[x2(tk−1)]e−(t−tk−1), t ∈ [tk−1, tk).



128 6 Input-to-State Stability for Stochastic Switched Systems

Fig. 6.4 First moment aISS
with u(t) = sin(t)
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As for the dwell time, let us first run a stablemode (i.e., k = 1). Then, from (iii)(1),
if a1 = 1/2, we get t1 − t0 ≥ ln 2 = 0.7 and, for k = 2, we run the unstable mode
with A1 = 1.5 > 1 which gives t2 − t1 ≤ 1

2 ln 1.5 = 0.2. By the same argument, for
k = 3, we get t3 − t2 ≥ ln a1 A1

a2
, where a1A1 > a2 which implies a2 < 3/4; so that,

taking a2 = 1/4 gives t3 − t2 ≥ 1.1. For k = 4, we get 1 < A2 ≤ 2, so that taking
A2 = 1.5 gives t4 − t3 ≤ 0.2. Figure6.4 shows the first moment aISS of the switched
system where u(t) = sin(t).

6.3 Markovian Switching

In this section, we consider a more general approach than the dwell-time condition
called Markovian switching to control the mode switchings. In this case, the switch-
ing signal is represented by a Markov chain which takes values in a finite set. An
interesting issue in adopting this type of switching arises from involving the transi-
tion rates of the Markov chain in the calculation of dwell times. One can recognize
that the stability requirement of individual modes is neither sufficient nor necessary
for guaranteeing a stability-like property of a switched system.

Consider the nonlinear system with Markovian switching

{
dx(t) = f (t, x(t), u(t),σ(t))dt + g(t, x(t), u(t),σ(t))dW (t),
x(t0) = x0, σ(t0) = σ0 ∈ S ,

(6.7)

where, for all t ≥ t0 with to ∈ R+, the switching signal σ(t) is a Markov process
taking values in a finite state space S = {1, 2, . . . , N } and σ0 is an initial state. In
this case, the operator L associating (x(t), i) to V (t, x(t), i) ∈ C 1,2

(
R+ × R

n ×
S ;R+

)
for any i ∈ S , is defined by
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L V (t, x(t), u(t), i) =Vt (t, x(t), i) + Vx (t, x(t), i) f (t, x(t), u(t), i)

+ 1

2
tr[gT (t, x(t), u(t), i)Vxx (t, x(t), i)g(t, x(t), u(t), i)]

+
N∑

j=1

γi j V (t, x(t), j), (6.8)

with γi j being the transition rate defined earlier.
In the following theorem, we state and prove the pth moment eISS of the forced

system (6.7).

Theorem 6.3 For any i ∈ S and all t ∈ [tk−1, tk), assume that the following
assumptions hold:

(i) there exist constants K > 0, αi > 0, ρi ≥ 0, and σi ≥ 0 such that

‖ f (t, x, 0, i)‖ ≤ K‖x‖, ‖xT f (t, x, 0, i)‖ ≤ αi‖x‖2, (a.s.)
‖g(t, x, 0, i)‖ ≤ ρi‖x‖, ‖xT g(t, x, 0, i)‖ ≤ σi‖x‖2, (a.s.);

(ii) there exist positive constants λ, c1, and c2 such that

c1‖x‖p ≤ V (t, x, i) ≤ c2‖x‖p, (a.s.) (6.9)

L V (t, x, u, i) ≤ −λ‖x‖p, (a.s.) (6.10)

whenever ‖x‖ > ρ(‖u‖∞), where V ∈ C 1,2([t0,∞) × R
n × S ;R+) and ρ is

a class-K function; and
(iii) the functions f and g are locally Lipschitz in u, uniformly in t and x, i.e., there

exist positive constants c3 and c4 such that

‖ f (t, x, u, i) − f (t, x, 0, i)‖ ≤ c3‖u‖, (a.s.)

‖g(t, x, u, i) − g(t, x, 0, i)‖ ≤ c4‖u‖, (a.s.).

Then, the solution of (6.7) is pth moment eISS for0 < p < min{2, (3c4 + 4σi )/(c4 +
2σi )} with Lyapunov exponent being not larger than −λ/c2.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be the solution of (6.7). For
any i ∈ S andβi > 0, defineV (t, x(t), i) = βi‖x(t)‖p as a stochastic ISSLyapunov
function candidate related to the i th mode. Then, by (6.8) we have

L V (t, x, u, i) = pβi ‖x‖p−2xT f (t, x, u, i) + 1

2
pβi ‖x‖p−2‖g(t, x, u, i)‖2

− 1

2
p(2 − p)βi ‖x‖p−4‖xT g(t, x, u, i)‖2 +

N∑

j=1

γi j β j ‖x‖p
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= pβi ‖x‖p−2xT
[

f (t, x, u, i) − f (t, x, 0, i) + f (t, x, 0, i)
]

+ 1

2
pβi ‖x‖p−2‖g(t, x, u, i) − g(t, x, 0, i) + g(t, x, 0, i)‖2

− 1

2
p(2 − p)βi ‖x‖p−4‖xT [g(t, x, u, i) − g(t, x, 0, i) + g(t, x, 0, i)]‖2

+
N∑

j=1

γi j βi ‖x‖p

≤ pβi ‖x‖p−2
{
‖xT [ f (t, x, u, i) − f (t, x, 0, i)]‖ + ‖xT f (t, x, 0, i)‖

}

+ 1

2
pβi ‖x‖p−2

{
‖g(t, x, u, i) − g(t, x, 0, i)‖2 + ‖g(t, x, 0, i)‖2

+ 2‖g(t, x, u, i) − g(t, x, 0, i)‖‖g(t, x, 0, i)‖
}

+ 1

2
p(2 − p)βi ‖x‖p−4

{
‖xT [g(t, x, u, i) − g(t, x, 0, i)]‖2 + ‖xT g(t, x, 0, i)‖2

+ 2‖xT [g(t, x, u, i) − g(t, x, 0, i)]‖‖xT g(t, x, 0, i)‖
}

+
N∑

j=1

γi j β j ‖x‖p

≤ pβi ‖x‖p−2‖xT [ f (t, x, u, i) − f (t, x, 0, i)]‖ + pβi ‖x‖p−2‖xT f (t, x, 0, i)‖
+ 1

2
pβi ‖x‖p−2‖g(t, x, u, i) − g(t, x, 0, i)‖2 + 1

2
pβi ‖x‖p−2‖g(t, x, 0, i)‖2

+ 2
1

2
pβi ‖x‖p−2‖g(t, x, u, i) − g(t, x, 0, i)‖‖g(t, x, 0, i)‖

}

+ 1

2
p(2 − p)βi ‖x‖p−4‖xT [g(t, x, u, i) − g(t, x, 0, i)]‖2

+ 1

2
p(2 − p)βi ‖x‖p−4‖xT g(t, x, 0, i)‖2

+ 2
1

2
p(2 − p)βi ‖x‖p−4‖xT [g(t, x, u, i) − g(t, x, 0, i)]‖‖xT g(t, x, 0, i)‖

+
N∑

j=1

γi j β j ‖x‖p

≤ pβi c3‖x‖p−1‖u‖ + pβi |αi |‖x‖p + 1

2
pβi c

2
4‖x‖p−2‖u‖2 + 1

2
pβi ρ

2
i ‖x‖p

+ pβi ρi c4‖x‖p−1‖u‖∞ + 1

2
p(2 − p)βi c

2
4‖x‖p−2‖u‖2∞ + 1

2
p(2 − p)βi σ

2
i ‖x‖p

+ p(2 − p)βi σi c4‖x‖p−2‖u‖∞ +
N∑

j=1

γi j βi ‖x‖p

≤
{

pβi |αi | + 1

2
pβi ρ

2
i + 1

2
p(2 − p)βi σ

2
i +

N∑

j=1

γi j β j

}
‖x‖p

+
{
βi c3‖x‖p−1 + 1

2
pβi c

2
4‖x‖p−2 + pβi ρi c4‖x‖p−1 + 1

2
p(2 − p)βi c

2
4‖x‖p−2

+ p(2 − p)βi σi c4‖x‖p−2
}
‖u‖∞
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=
{

p|αi | + 1

2
pρ2i + 1

2
p(2 − p)σ2

i

}
βi +

N∑

j=1

γi j β j ‖x‖p

+
{[

c3 + pρi c4
]
‖x‖p−1 +

[1
2

pc24 + 1

2
p(2 − p)c24 + p(2 − p)σi c4

]
‖x‖p−2

}
βi ‖u‖∞

=
⎧
⎨

⎩

[
p|αi | + 1

2
pρ2i + 1

2
p(2 − p)σ2

i

]
βi +

N∑

j=1

γi j β j

⎫
⎬

⎭
‖x‖p

+
{[

c3 + pρi c4
]
‖x‖p−1 +

[
− (0.5c4 + σi )p + (1.5c4 + 2σi )

]
c4 p‖x‖p−2

}
βi ‖u‖∞

= −β∗
i ‖x‖p + 2M(‖x‖)‖u‖∞

≤ −λ∗‖x‖p + 2M(‖x‖)‖u‖∞, (6.11)

where λ∗ = min{−β∗
i | i ∈ S } with

β∗
i = −βi

[
p|αi | + 1

2
pρ2i + 1

2
p(2 − p)σ2

i

]
+

N∑

j=1

γi jβ j < 0,

and

M(‖x‖) = max
{
βi

[
c3 + pρi c4

]
‖x‖p−1,

c4 pβi

[
− (0.5c4 + σi )p + (1.5c4 + 2σi )

]
‖x‖p−2

}
.

To use λ∗‖p‖p to dominate 2M(‖x‖)‖u‖∞, we write the last inequality in (6.11)
as follows

L V (t, x, u, i) ≤ −(λ∗ − ν)‖x‖p − ν‖x‖p + 2M(‖x‖)‖u‖∞, 0 < ν < λ∗,
≤ −(λ∗ − ν)‖x‖p = −λ‖x‖p,

where λ := λ∗ − ν > 0 provided that ν‖x‖p > 2M(‖x‖)‖u‖∞ or
⎧
⎨

⎩

‖x‖ > 2βi/ν · [c3 + pρi c4] ‖u‖∞, if M(‖x‖) = βi [c3 + pρi c4] ‖x‖p−1,

‖x‖ > {2βi pc4/ν · [−(0.5c4 + σi )p + (1.5c4 + 2σi )] ‖u‖∞}1/2 , if
M(‖x‖) = c4 pβi [−(0.5c4 + σi ) + (1.5c4 + 2σi )] ‖x‖p−2.

(6.12)

Applying the generalized Itô formula to eλt/c2 V (t, x, i) and taking the mathemat-
ical expectation yield

E[e
λ
c2

t
V (t, x, i)] = E[V (t0, x0,σ0)]e

λ
c2

t0 + E

[ ∫ t

t0
e

λ
c2

s [ λ

c2
V (s, x, i) + L V (s, x, i)]ds

]

≤ E[V (t0, x0, σ0)]e
λ
c2

t0 + E

[ ∫ t

t0
e

λ
c2

s [ λ

c2
V (s, x, i) − λ

c2
V (s, x, i)]ds

]

= E[V (t0, x0,σ0)]e
λ
c2

t0
.
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With the aid of (ii) and, after some algebraic manipulations, one may obtain

E[‖x(t)‖p] ≤ KE[‖x0‖p]e− λ
c2

(t−t0), K = c2/c1, ∀t ≥ t0.

This result shows that system (6.7) is pth moment eISS with the ultimate bound
given in (6.12) and Lyapunov exponent −λ/c2. This completes the proof.

Example 6.3 Consider the switched system in (6.7) with

f (t, x, u, 1) = a

1 + t
(x + u(t)), g(t, x, u, 1) = b(sin x + u(t)),

f (t, x, u, 2) = c(xe−|x | + u(t)), g(t, x, u, 2) = b(x + u(t) ln |1 + x |),

where a, b, c, and d are some constants to be chosen later. The probability transition
matrix is

� =
(−1 1

1 −1

)
.

Clearly, the vector field functions satisfy the conditions in (i) and (ii) of the the-
orem, where K1 = α1 = c31 = |a|, K2 = α2 = c32 = |c| with c ∈ {−1, 1} or ρ1 =
σ1 = c41 = |b|,ρ2 = σ2 = c42 = |d|, c3 = max{|a|, |c|}, and c4 = max{|b|, |d|}. For
i = 1, 2, let V (x, i) = βi |x |p with 0 < p < min{2, ( 32c4 + 2σi )/(

1
2c4 + σi )}. Tak-

ing |a| = |b| = |c| = |d| = p = 1 yields β∗
1 = −3β1 + β2 and β∗

2 = β1 − 3β2 and
by choosing β1 = β2 = 1, we get λ∗ = min{β1,β2} = −2. Therefore, if ν = 1 ≤
−λ∗,L V (x, u, i) ≤ −|x | < 0 provided that |x | > 4|u|. By our choice of the proba-
bility transitionmatrix� = [γi j ]2×2, we get π1 = π2 = 0.5, which represent the time
spent in the first and second modes. Figures6.5 and6.6 illustrate the first moment
aISS property with u(t) = sin(t) and u(t) = e−t , respectively. In both cases, the
switching occurs between two stable and unstable modes.

Fig. 6.5 First moment aISS
with a = c = −1 and
u(t) = sin(t)
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Fig. 6.6 First moment aISS
with a = c = −1 and
u(t) = e−t
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6.4 Notes and Comments

In this chapter, the pth moment ISS property of nonlinear stochastic switched sys-
tems has been presented. The Lyapunov-like sufficient conditions have been written
and switching rules to guarantee the system stability properties has been designed.
The material of this chapter is taken from [6]. In Sect. 6.2, we have used the τisd con-
dition to control the switching among the system modes. Two cases were discussed;
namely, systems with all stable modes, and systems with stable and unstable modes.
The latter case required developing Lemma 6.1, in which Bihari’s lemma, but not
Bellman-Gronwall lemma, plays an important role. We have shown that the result of
Theorem 6.1 has some implications that can be applied to some special cases, such
as deterministic or unforced systems or systems without these types of perturbations.
In fact, one can also derive some analogous implications from Theorems 6.2 and 6.3.

We should remark that, in [7], the pth moment asymptotic ISS was developed
for a stochastic retarded systems using Markovian switching. In Sect. 6.3, we have
discussed the pth moment exponential ISS property, which necessitates the vector
fields to satisfy Lipschitz condition in the input variable and grow linearly for all
time.

We have also showed that in Theorems 6.2 and 6.3, the stability of each individual
subsystem is not necessary to achieve the stability of the switched system. In such
a case, ISS is guaranteed if stable modes are activated longer than unstable ones.
We should also remark that throughout this chapter the switched system is subject
to the same input. Therefore, one may consider a more general case in which each
subsystem is subject to a different input.
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Chapter 7
Reliable Control for Stochastic Switched
Systems with State Delay

In the feedback control design of real systems, an unavoidable, undesirable control
performance may occur due to the failure(s) in control components, such as actua-
tor or/and sensor failures. Therefore, it is necessary to design controllers to achieve
the desired plant performance, not only when the control components are properly
operational, but also in the presence of failures. Control systems that tolerate sen-
sor/actuator outages are called reliable control systems.

This chapter deals with the design problem of a switching reliable control for
a class of stochastic switched systems. The stochastic differential equation is of
Itô type with constant time delay, the nonlinear lumped disturbances have linear
growth bounds and the random noise is approximated by Wiener process. Two sets
of actuators are considered, a set of operational actuators that never fail and a set of
actuators that are susceptible to failure. Primarily, the focus here is to design a state
feedback sub-controller for each system mode such that, for all admissible nonlinear
uncertainties and actuator failures occurring in a pre-specified subset of actuators,
the closed-loop modes are exponential stable in the mean square (m.s.). Moreover, to
maintain the stability property for the closed-loop switched system, the initial state
dwell-time switching rule and the technique of multiple Lyapunov function together
with the Razumikhin methodology are used. This approach leads to solving a set of
algebraic Riccati-like matrix equations.

7.1 Problem Formulation

Consider the following stochastic switched control system with time delay

dx(t) = (
Aκ(t)x + Bκ(t)u + fκ(t)(xt )

)
dt + gκ(t)(xt ) dW (t), (7.1a)

xt0 = φ(s), s ∈ [−r, 0], (7.1b)

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
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where for all t ≥ t0 with t0 ∈ R+, x(t) ∈ R
n is the system state vector and u(t) ∈

R
q is the control system input. κ : [t0,∞) → S where S = {1, 2, · · · , N } (with

N ∈ N) is a piecewise constant function representing the switching signal. For every
i ∈ S , we assume that the functionals fi ∈ R

n and gi ∈ R
n×m , which represent

lumped uncertainties, are bounded above by a linear growth bound and u is a state
feedback controller of the form Ki x , where Ki ∈ R

n×q is a control matrix gain.
φ ∈ R

n is the initial state function which is assumed to be in L 2
F 0

([−r, 0];Rn). Ai

and Bi are real known constant matrices of appropriate dimensions. To guarantee
that (7.1) has a unique regular solution, we assume that fi ∈ Lad(�, L[a, b]) and
gi ∈ Lad(�, L2[a, b]) and they satisfy Lipschitz condition in their argument. We
also assume that fi (0) = 0 ∈ R

n and gi (0) = 0 ∈ R
n×m to ensure that the system

admits a trivial solution, x ≡ 0.
To analyse the reliable stabilization with respect to actuator failures, for every

i ∈ S consider the decomposition of the control matrix Bi = Bi
� + Bi

�̄
where

� ⊆ {1, 2, · · · , q} the set of actuators that are susceptible to failure (i.e., they may
occasionally fail) and the other set of actuators which are assumed to be robust to
failures �̄ ⊆ {1, 2, · · · , q} − � and essential to stabilize the given system. More-
over, Bi

� and Bi
�̄
are the control matrices associated with � and �̄, respectively, and

Bi
� and Bi

�̄
are generated by zeroing out the columns corresponding to �̄ and �,

respectively. The elements of � are redundant in terms of the stabilization, though
they are necessary to improve the system performance. On the other hand, the ele-
ments of �̄ are required to stabilize the system and assumed that they never fail,
i.e., the pair (Ai , Bi

�̄
) is assumed to be stabilizable. For a fixed i ∈ S , let σ ⊆ �

corresponds to some of the actuators that experience failure and assume that the out-
put of faulty actuators is zero, i.e., outage case. Then, the decomposition becomes
Bi = Bi

σ + Bi
σ̄ , where Bi

σ and Bi
σ̄ have the same definition of Bi

� and Bi
�̄
, respec-

tively. We should emphasize that the pre-specified subset σ ∈ � of faulty actuators
of the i th sub-controller may differ from σ ∈ � of the j th sub-controller, for any
i, j ∈ S .

Applying the control input u of the form

u(t) = Ki x(t), ∀i ∈ S and t ∈ [tk, tk+1) (7.2)

to the system plant through the normal actuators and, since we assumed that the
outputs of the faulty actuators are zeros, the closed-loop system of (7.1) becomes

dx(t) = (
(Ai + Bi σ̄ Ki )x + fi (xt )

)
dt + gi (xt ) dW (t), (7.3a)

xt0 = φ(s), s ∈ [−r, 0], (7.3b)

for every i ∈ S and all t ∈ [tk, tk+1).
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7.2 Stability Analysis

In this section, we prove the m.s. global asymptotic stability for the closed-loop
system (7.3), where all actuators are operational (Theorem 7.1). This result will be
carried over in Theorem 7.2 to achieve stabilization property for the system in the
presence of possible actuator failures in all sub-controllers.

Theorem 7.1 For any i ∈ S , let the controller gain Ki be given. Assume there exist
positive constants εi and positive-definite matrix Pi such that the following algebraic
Riccati-like matrix equation

(
Ai + Bi Ki + 1

2
γi I

)T
Pi + Pi

(
Ai + Bi Ki + 1

2
γi I

)

+ 1

εi
P2
i + εi q̄i‖Ui‖2 I + αi Pi = 0,

holds, where αi > 0, q̄i > 1 and γi > 0 such that, for any ψ ∈ C ([−r, 0];Rn),

tr[gTi (ψ)Pi gi (ψ)] ≤ 2γi q̄iψ(0)T Piψ(0)

and Ui is an n × n matrix such that ‖ fi (ψ)‖2 ≤ q̄i‖Ui‖2‖ψ(0)‖2. Suppose further
that, for any k ∈ N and i ∈ S , the following dwell-time-type condition

tk − tk−1 ≥ 1

αi
ln

(aidi−1erαi

bi di

)
> 0 (7.4)

holds,where ai = λmax(Pi ), bi = λmin(Pi )anddi < di−1 < 1 (for i = 2, 3, · · · ) such
that limi→∞ di−1 = 0. Then, the closed-loop modes in (7.3) are m.s. globally expo-
nentially stabilized by the control law given in (7.2) and switched system (7.3) is
asymptotically stable in the m.s.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, φ) be the solution of system
(7.3) and, for any i ∈ S , define Vi (x) = xT Pi x as a Lyapunov function candidate
for the i th mode. Then, from Itô formula we have

L Vi (x) = ((
Ai x + Bi Ki )x + fi (xt )

)T
Pi x + xT Pi

(
Ai + Bi Ki x + fi (xt )

)

+ 1

2
tr
(
gTi (xt )Pi gi (xt )

)

≤xT
(
AT
i Pi + Pi Ai + 2KT

i BT
i Pi

)
x + f Ti (xt )Pi x + xT Pi fi (xt )

+ γi q̄i x
T x .

By the fact that [1]

2xT Pi fi (xt ) ≤ xT
(
εi q̄i‖Ui‖2 I + 1

εi
P2

)
x, (7.5)
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we obtain

L Vi (x) ≤xT
(
(Ai + Bi Ki )

T Pi + Pi (Ai + Bi Ki )

+ εi q̄i‖Ui‖2 I + 1

εi
P2
i + γi q̄i I

)
x

= − αi x
T Pi x = −αi Vi (x) < 0.

Applying the Itô Lemma to process Vi (x) and taking themathematical expectation
yield

D+mi (t) ≤ −αimi (t), ∀i ∈ S and t ∈ [tk, tk+1),

wheremi (t) = E[Vi (x(t))] for any i ∈ S and all t ∈ [tk, tk+1), and D+m is the Dini
derivative of m defined by

D+m(t) = lim
h→0+

sup
1

h
[m(t + h) − m(t)].

It follows that, for any i ∈ S and all t ∈ [tk, tk+1),

E[‖x(t)‖2] ≤ ai
bi
E[‖xtk‖2r ]e−αi (t−tk ),

that is every closed-loop mode in (7.3) is exponential stability in the m.s. Invoking
the dwell-time condition in (7.4) results in

E[‖x(t)‖2] ≤ di E[‖φ‖2r ] (7.6)

and, at the switchingmoments t = tk ,E[‖x(tk)‖2] ≤ di E[‖φ‖2r ]. Since limi→∞ di =
0, limtk→∞ E[‖x(tk)‖2] = 0 asymptotically, which proves the desired result. This
completes the proof.

Remark 7.1 The solvability condition of the algebraic Riccati-like equation is to
guarantee the existence of the positive-definite matrix Pi for any i ∈ S , which in
turn implies that the system modes are exponentially stabilized by the state feedback
control law defined in (7.2).Moreover, the dwell-time-type condition in (7.4) is made
to ensure that the solution of the closed-loop switched system (7.3) converges in m.s.
to the trivial solution by the rate di during the finite time tk − tk−1 for any i ∈ S
and k ∈ N; this is can be easily seen in (7.6). We should mention that the dwell-time
condition in (7.4) is a special case of the initial-state-dependent dwell-time condition
presented in Sect. 6.2. The positive tuning parameter εi (for any i ∈ S ) is presented
to reduce the conservativeness of the matrix inequality (7.5). We should also remark
that the assumptions of Theorem 7.1 do not impose any restriction on the time delay,
which makes the proposed stability approach efficiently applicable to systems with
state delay.
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Having proved the key-role stability theorem, we are in a position to address the
robust reliable control design.

Theorem 7.2 For any i ∈ S , assume that

(i) there exist positive constants εi and ε∗
i , and positive-definite matrix Pi such that

the following algebraic Riccati-like matrix equation

(
Ai + 1

2
γi I

)T
Pi + Pi

(
Ai + 1

2
γi I

)

+ Pi (
1

εi
I − ε∗

i Bσ̄ B
T
σ̄ )Pi + εi q̄i‖Ui‖2 I + αi Pi = 0

holds, where αi > 0, q̄i > 1, γi > 0 and Ui are defined in Theorem 7.1; and
(ii) the dwell-time condition in Theorem 7.1 holds.

Then, system modes in (7.3) are m.s. globally exponentially stabilized by the control
law u = Ki x, where the control gain Ki = − 1

2ε
∗
i B

T
i σ̄ Pi , for any nonlinear uncer-

tainties and actuator failures in the pre-specified set σ ∈ � associated with the i th
mode. Moreover, the entire switched system in (7.3) is globally asymptotically stable
in the m.s.

Proof Since the control input u is applied to the system plant only through the normal
actuators, we have Bi Ki = − 1

2ε
∗
i Bi σ̄ BT

i σ̄ Pi , for all i ∈ S .
For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, φ) be the solution of (7.1) and define

Vi (x) = xT Pi x (for i ∈ S ) as Lyapunov function candidate related to the i th mode.
Then, as achieved in Theorem 7.1, we have

(
Ai + Bi Ki + 1

2
γi I

)T
Pi + Pi

(
Ai + Bi Ki + 1

2
γi

)

+ 1

εi
P2
i + εi q̄i‖Ui‖2 I

≤
(
Ai + 1

2
γi I

)T
Pi + Pi

(
Ai + 1

2
γi I

)

+ Pi (
1

εi
I − ε∗

i Bσ̄ B
T
σ̄ )Pi + εi q̄i‖Ui‖2 I

= −αP < 0,

where we have used the inequality Bi�̄BT
i�̄

≤ Bi σ̄ BT
i σ̄ , which follows from the fact

that Bi�̄BT
i�̄

= Bi σ̄ BT
i σ̄ − Bi�−iσ BT

i�−iσ [2]. That is, the system modes are all m.s.
globally exponentially stabilized by the mentioned feedback control law. Thus, as
achieved in Theorem 7.1, applying the dwell-time condition results in that x ≡ 0 is
m.s. globally asymptotically stabilized. This completes the proof of Theorem 7.2.
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7.3 Numerical Example

In the following example, we consider a system switching between two modes with
two cases, normal and faulty control actuators. InCase 1, the actuators are operational
in both modes and, in Case 2, the first mode experiences a failure in the second actu-
ator and the second mode has a failure in the first actuator. In both cases, the normal
and reliable state feedback controllers guarantee the stabilization requirement.

Example 7.1 Consider system (7.1) where xT = (x1 x2),S = {1, 2}, φ(s) = 1 − s
for all s ∈ [−1, 0] (i.e., the time delay r = 1), εi = 1, ε∗

i = 1, q̄i = 2, di = 1/2,
α1 = 2, α2 = 3, γ1 = 0.01, γ2 = 0.02,

A1 =
[
0.2 0.1
0 −10

]
, B1 =

[
1 −0.2
0 1

]
, K1 =

[−5 0.1
0 1

]
,

f1(x(t − 1)) =
[
0.01x1(t − 1)

−0.02x2(t − 1)

]
, g1(x(t − 1)) = 0.01

[
x1(t − 1) 0

0 x2(t − 1)

]
,

and

A2 =
[−11 0
0.2 0.1

]
, B2 =

[
1 0

00.1 1

]
, K2 =

[
1 0
0.3 −6

]
,

f2(x(t − 1)) =
[
0.01x1(t − 1)
0.1x2(t − 1)

]
, g2(x(t − 1)) =

[
0.01x1(t − 1) 0

0 0.2x2(t − 1)

]
.

Case 1: When all actuators are operational, we have from the algebraic Riccati-like
equations

P1 =
[
0.002 0
0 0.0011

]
and P2 =

[
0.001 0
0 0.0017

]
;

That is, a1 = 0.0021, a2 = 0.0017, b1 = 0.0011 and b2 = 0.001. We also have

found A1 + B1K1 =
[−4.8 0

0 −9

]
and A2 + B2K2 =

[−10 0
0.4 −5.9

]
, which are Hur-

witz matrices. The simulation result is shown in Fig. 7.1, where the dwell times of
the first and second modes are, respectively, tk − tk−1 ≥ 2.01 and tk − tk−1 ≥ 2.17,
for any k ∈ N.

Case 2: When there is a failure in actuator 2 in the first mode and a failure in the first
actuator in the second mode, i.e.,
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Fig. 7.1 Mean square asymptotic stability: normal actuators in both modes

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t

E
[||
xT
||2
]

Fig. 7.2 Mean square asymptotic stability with failures in the actuator components

B1σ̄ =
[
1 0
0 0

]
and B2σ̄ =

[
0 0
0 1

]

we have from the algebraic Riccati-like equations

P1 =
[
0.4815 0.0047
0.0047 0.001

]
and K1 =

[−0.2407 −0.0024
0 0

]
and

P2 =
[
0.001 0.0067
0.0067 0.3734

]
and K2 =

[
0 0

−0.0033 −0.1867

]
,

which give a1 = 0.4815, a2 = 0.3736, b1 = 0.001 and b2 = 0.0009. We also have

found A1 + B1σ̄ K1 =
[−0.0407 0.0976

0 −10

]
and A2 + B2σ̄ K2 =

[ −11 0
0.1967 −0.0867

]
,

which are Hurwitz matrices. The simulation result is shown in Fig. 7.2, where the
dwell times of the first and second modes are, respectively, tk − tk−1 ≥ 4.78 and
tk − tk−1 ≥ 3.24, for any k ∈ N.
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Remark 7.2 As can be seen in Figs. 7.1 and 7.2, the convergence of the system state
to the equilibrium state in systems with operational control actuators is faster than
the convergence in systems with faulty actuators.

7.4 Notes and Comments

The problem of reliable control for stochastic switched systems has been addressed.
The focus was on the design of such a controller to guarantee m.s. global exponential
stability of each mode, not only when all control actuators are operational, but also
when there is a failure in some pre-specified subset of actuators. The material of this
chapter is taken from [3]. This result has led to establish the asymptotic stability of the
switched system under the prescribed dwell-time condition. The outputs of the faulty
actuators are assumed to be zero; therefore, for further investigation, one may extend
this result to consider sensor outages or faulty actuators with nonzero output signals,
which can be viewed a disturbance inputs. The Lyapunov–Razumikhin approach is
efficiently applicable to systems with delayed states, because these results do not
impose any restriction on the time delay. Also, employing Lyapunov functions has
led to solving Riccati-like matrix equations for positive-definite matrices Pi .

In fact, there have been many studies devoted to design different reliable con-
trollers for systems with various levels of complexities; see, for instance, [4–15].
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Chapter 8
Robust Reliable Control for Impulsive
Large-Scale Systems

This chapter deals with the problem of designing a robust reliable decentralized
control for impulsive large-scale systems (ILSS) with admissible uncertainties in
the system states. Then, the same idea is carried over to design reliable observers
to estimate the states of the above systems. The faulty actuator/sensor outputs are
assumed to be zero. The reliability analysis is achieved by using a scalar Lyapunov
function.

8.1 Problem Formulation

Consider the interconnected system

⎧
⎪⎪⎨

⎪⎪⎩

ẇi = (Ai + �Ai )wi + Biui + fi (wi )

+gi (w1, w2, · · · , wi , · · · , wl), t �= tk,
�wi (t) = Ik(w

i (t−)) = Cikw
i (t−), t = tk, k ∈ N,

wi (t0) = wi
0,

(8.1)

where for i = 1, 2, . . . , l, wi ∈ R
ni is the i th subsystem state such that �l

i=1
ni = n, Ai ∈ R

ni×ni is a non-Hurwitz matrix, the impulsive times tk satisfy t0 <

t1 < t2 < · · · < tk < · · · with limk→∞ tk = ∞, �wi (tk) = wi (t+k ) − wi (t−k ) where
w(t+k )(or w(t−k )) is the state just after (or before) the impulse at tk , Ik : Rni → R

ni

is the impulsive function, ui = K iwi ∈ R
q is the control input for the i th subsystem,

where K i ∈ R
q×ni is the control gain matrix, fi : Rni → R

ni , is some nonlinear-
ity and gi : Rn1 × R

n2 × · · · × R
nl → R

n is the interconnection. The functions fi
and gi satisfy Lipschitz condition. Ai , Bi and Cik are known real constant matrices
with proper dimensions, and �Ai is a piecewise continuous function representing
parameter uncertainty with bounded norm.
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System (8.1) can be written in the following form

⎧
⎨

⎩

ẋ = (A + �A)x + Bu + F(x) + G(x), t �= tk,
�x(t) = Ik(x(t−)) = Ckx(t−), t = tk, k ∈ N,

x(t0) = x0,
(8.2)

where xT = (w1T w2T · · · wl T ), ((A + �A)x)T =
((

(A1 + �A1)w1
)T (

(A2

+ �A2)w2
)T · · · (

(Al + �Al)wl
)T

)
, (Bu)T =

(
(B1u1)T (B2u2)T · · · (Blul)T

)
,

(F(x))T =
(
f1(w1)

T
f2(w2)

T · · · fl(wl)
T
)
, (G(x))T =

(
g1(x)

T
g2(x)

T · · ·
gl(x)

T
)
, (Ckx)T =

(
(C1kw

1)T (C2kw
2)T · · · (Clkw

l)T
)
.

From (8.1), the corresponding isolated subsystems are

⎧
⎨

⎩

ẇi = (Ai + �Ai )wi + Biui + fi (wi ), t �= tk,
�wi (t) = Cikw

i (t−), t = tk, k ∈ N,

wi (t0) = wi
0,

(8.3)

where i = 1, 2, . . . , l and the corresponding closed-loop system is

⎧
⎨

⎩

ẇi = (Ai + �Ai + Bi K i )wi + fi (wi ), t �= tk,
�wi (t) = Cikw

i (t−), t = tk, k ∈ N,

wi (t0) = wi
0.

(8.4)

As shown in the last chapter, if we consider the decomposition becomes Bi =
Bi

σ + Bi
σ̄, then closed-loop systems for the faulty case becomes

⎧
⎨

⎩

ẇi = (Ai + �Ai + Bi
σ̄K

i )wi + fi (wi ), t �= tk,
�wi (t) = Cikw

i (t−), t = tk, k ∈ N,

wi (t0) = wi
0.

(8.5)

Definition 8.1 The trivial solution, x ≡ 0, of system (8.2) is said to be robustly
globally exponentially stable if there exist positive constants λ and λ̄ such that

||x || ≤ λ̄||x0||e−λ(t−t0), ∀t ≥ t0

for any solution x(t) = x(t; t0, x0) of (8.2) with t0 ∈ R
+ and x0 ∈ R

n .

Throughout this chapter, the systemuncertainty is assumed to satisfy the following
assumption.

Assumption A For i = 1, 2, . . . , l, the admissible parameter uncertainties are defined
by

�Ai (t) = DiU i (t)Hi , ∀ t ∈ R+
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with Di and Hi being known real matrices with appropriate dimensions that give
the structure of the uncertainty and U i (t) being unknown real time-varying matrix
representing the uncertain parameter and satisfying ||U i (t)|| ≤ 1.

Lemma 8.1 For any arbitrary positive constants ε1, ξ1 and a positive-definite
matrix P, we have

(i) 2xT P(�A)x ≤ xT (ε1PDDT P + 1
ε1
HT H)x; and

(ii) 2xT P f (x) ≤ xT (ξ1P2 + δ I
ξ1

)x such that || f (x)||2 ≤ δ||x ||2 with δ > 0.

8.2 Reliable Control

In this section, we address the problems of stability and stabilization by robust con-
trollers for isolated impulsive subsystems in case of operational actuators (Theorem
8.1) and faulty actuators (Theorem 8.2.) Then, these results will be applied to the
large-scale interconnected system (8.2) as presented by Theorem 8.3 (operational
actuators) and Theorem 8.4 (faulty actuators).

Theorem 8.1 Let the control gain K i be given and assume that Assumption A holds.
Then, the trivial solution, wi ≡ 0, of system (8.4) is robustly globally exponentially
stable if the following inequality holds

lnαik − νi (tk − tk−1) ≤ 0, k ∈ N, (8.6)

where αik = λmax[(I+Cik )
T Pi (I+Cik )]

λmin(Pi )
, with Pi being a positive-definite matrix satisfying

the Riccati-like equation

(Ai + Bi K i )T Pi + Pi (Ai + Bi K i ) + ε1i P
i Di Di T Pi + 1

ε1i
H i T Hi + ξ1i P

i 2

+ δi I

ξ1i
− σi P

i = 0, (8.7)

where ε1i and ξ1i are any positive constants, 0 < νi < −σi ,σi < 0 and δi is a positive
constant such that

|| fi (wi )||2 ≤ δi ||wi ||2. (8.8)

Proof For all t ≥ t0 with t0 ∈ R+, let wi (t) = wi (t; t0, wi
0) be the solution of the

i th isolated system in (8.4). For i = 1, 2, . . . , l, define V i (wi ) = wi T Piwi as a
Lyapunov function candidate for the i th subsystem. Then
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V̇ i (wi ) = wi T
[
(Ai + Bi K i )T Pi + Pi (Ai + Bi K i )

]
wi + 2wi T Pi (�Ai )wi

+ 2wi T Pi fi (w
i )

≤ wi T
[
(Ai + Bi K i )T Pi + Pi (Ai + Bi K i ) + ε1i P

i Di Di T Pi

+ 1

ε1i
H i T Hi + ξ1i P

i 2 + δi I

ξ1i

]
wi

= σi V
i (wi ),

where we used (8.8) and Lemma 8.1 in the second bottom line and condition (8.7)
in the last line. Then, for all t ∈ (tk−1, tk] with k ∈ N, one may have

V i (wi (t)) ≤ V i (wi (t+k−1))e
σi (t−tk−1). (8.9)

At t = t+k , we have

V i (wi (t+k )) ≤ λmax(Lik)w
i T (tk)w

i (tk) (8.10)

≤ αikV
i (wi (t−k )), (8.11)

where αik = λmax(Lik )

λmin(Pi )
and Lik = [I + Cik]T Pi [I + Cik]. From (8.9) and (8.10), we

have for t ∈ [t0, t1],
V i (wi (t)) ≤ V i (wi

0)e
σi (t−t0),

and for t ∈ (t1, t2]
V i (wi (t+1 )) ≤ αi1V

i (wi
0)e

σi (t1−t0),

V i (wi (t)) ≤ V i (wi (t+1 ))eσi (t−t1),

which leads to

V i (wi (t)) ≤ αi1V
i (wi

0)e
σi (t1−t0)eσi (t−t1)

= αi1V
i (wi

0)e
σi (t−t0), for t ∈ [t0, t2].

Generally, for t ∈ (tk−1, tk], we have

V i (wi (t)) ≤ V i (wi
0)αi1 αi2 · · · αik e

σi (t−t0)

= V i (wi
0)αi1e

−νi (t1−t0) · · · αike
−νi (tk−tk−1)e(σi+νi )(t−t0)

≤ V i (wi
0)e

(σi+νi )(t−t0), t ≥ t0,

where 0 < νi < −σi and we used condition (8.6) to get the last inequality. The
foregoing inequality implies that

||wi || ≤ γi ||wi
0||e(σi+νi )(t−t0)/2, t ≥ t0,
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where γi =
√

λmax(Pi )

λmin(Pi )
. This completes the proof of global exponential stability of

trivial solution wi ≡ 0.

Remark 8.1 Theorem 8.1 provides sufficient conditions to ensure robust global
exponential stability for each isolated impulsive subsystem (8.4). The time between
impulses has to be bounded. This condition is summarized in (8.6). The nonlinearity
is assumed to be bounded by some linear growth bound. Condition (8.7) guarantees
that the Lyapunov function be decreasing along the trajectory of system (8.4); that
is, the continuous system is stabilized by the feedback controller.

The following theoremgives sufficient conditions to guarantee robust global expo-
nential stability for each isolated impulsive subsystems when some control actuators
experience failure.

Theorem 8.2 The trivial solution,wi ≡ 0, of system (8.5) is robustly globally expo-
nentially stable if Assumption A and condition (8.6) hold with Pi being a positive-
definite matrix satisfying the Riccati-like equation

Ai T Pi + Pi Ai + Pi (ε1i D
i Di T − ε2i B

i
�̄
Bi

�̄

T + ξ1i I )P
i

+ 1

ε1i
H i T Hi + δi I

ξ1i
− σi P

i = 0 (8.12)

where ε1i , ε2i , and ξ1i are positive constants, 0 < νi < −σi with σi < 0, δi is a
positive constant such that condition (8.8) holds and the control gain is given by
K i = − 1

2 ε2i B
i
σ̄
T
Pi .

Proof For all t ≥ t0 with t0 ∈ R+, letwi (t) = wi (t; t0, wi
0) be the solution of system

(8.5). Define V i (wi ) = wi T Piwi as the Lyapunov candidate. Then

V̇ i (wi ) ≤ wi T
[
Ai T Pi + Pi Ai + Pi (ε1i D

i Di T − ε2i B
i
σ̄B

i
σ̄

T + ξ1i I )P
i

+ 1

ε1i
H i T Hi + δi I

ξ1i

]
wi

≤ wi T
[
Ai T Pi + Pi Ai + Pi (ε1i D

i Di T − ε2i B
i
�̄
Bi

�̄

T + ξ1i I )P
i

+ 1

ε1i
H i T Hi + δi I

ξ1i

]
wi

= σi V
i (wi (t)),

where we used the fact that [1] Bi
�̄
Bi

�̄

T ≤ Bi
σ̄(Bi

σ̄)
T in the second last line and

condition (8.12) in the last line. As done in the last theorem, we can show that the
trivial solution,wi ≡ 0, of the closed-loop impulsive system (8.5) is robustly globally
exponentially stable.

Having proved the stabilizability of the isolated subsystem in Theorems 8.1 and
8.2, we consider the same properties for the interconnected systems.
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Definition 8.2 System (8.4) (or (8.5)) is said to possess property A (or B) if it
satisfies the conditions in Theorem 8.1 (or Theorem 8.2).

Remark 8.2 Property A implies that all the impulsive isolated subsystems are
robustly globally exponentially stable in the normal actuators case, while Property
B implies the same result is held in the faulty case.

Theorem 8.3 Assume that system (8.4) possesses property A. Suppose further that,
for any i, j = 1, 2, . . . , l, there exist positive constants bi j such that

2wi T Pigi (w1, w2, · · · , wi , · · · , wl) ≤ ||wi ||�l
j=1bi j ||w j || (8.13)

and the test matrix S = [si j ]l×l is negative definite where

si j =
{

βi (σ
∗
i + bii ), i = j

1
2 (βi bi j + β j b ji ), i �= j

(8.14)

for some constant σ∗
i = σiλmax(Pi ) < 0 and positive constant βi . Then, the trivial

solution of system (8.2) is robustly globally exponentially stable if the following
inequality holds

lnαk − φ(tk − tk−1) ≤ 0, k ∈ N, (8.15)

for 0 < φ < θ where θ = −λmax(S )

λ̄β∗ with λ̄ = min{λmax(Pi ) | i = 1, 2, . . . , l} and
β∗ = min{βi | i = 1, 2, . . . , l}, αk = [

max{λmax[(I + Cik)
T Pi (I + Cik)] | i =

1, 2, . . . , l}]/λ∗ with λ∗ = min{λmin(Pi ) | i = 1, 2, . . . , l} and Pi being a positive-
definite matrix defined in Property A.

Proof For all t ≥ t0 with t0 ∈ R, let x(t) = x(t; t0, x0)be the solution of system (8.2).
Define the composite Lyapunov function V (x(t)) = �l

i=1β
i V i (wi ) as a Lyapunov

function candidate for interconnected system (8.2) where βi is a positive constant
and V i (wi ) is a Lyapunov function for the i th isolated subsystem. Then, along the
trajectory of (8.2), we have

V̇ (x) = �l
i=1β

i V̇ i (wi ) ≤ �l
i=1β

i {σi ||wi ||2 + 2wi T Pigi (w1, w2, · · · , wi , · · · , wl )}
≤ �l

i=1β
i {σi ||wi ||2 + ||wi ||�l

j=1bi j ||w j ||} = zTS z,

where zT = (||w1|| ||w2|| · · · ||wi || · · · ||wl ||) andS is a negative-definite matrix
with the maximum eigenvalue λmax(S ). Then, one can write

V̇ (x) ≤ −θV (x),
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whereθ = −λmax(S )

λ̄β∗ with λ̄ = min{λmax(Pi ) | i = 1, 2, . . . , l} andβ∗ = min{βi | i =
1, 2, . . . , l}. The last inequality implies that, for all t ∈ (tk−1, tk],

V (x(t)) ≤ V (x(t+k−1))e
−θ(t−tk−1) (8.16)

and, at t = t+k ,

V (x(t+k )) = �l
i=1βiw

i T (tk)[(I + Cik)
T Pi (I + Cik)]wi (tk)

≤ L∗∗

λ∗ �l
i=1β

i V i (wi )

= αkV (x(t)), (8.17)

where αk = L∗∗
λ∗ , L∗∗ = max{λmax(Li ) | i = 1, · · · , l} and λ∗ = min{λmin(Pi ) | i =

1, · · · , l}. From (8.16) and (8.17), we have for t ∈ [t0, t1],

V (x(t)) ≤ V (x0)e
−θ(t−t0)

and for t ∈ (t1, t2], we have

V (x(t+1 )) ≤ α1V (x(t1)) ≤ α1V (x0)e
−θ(t1−t0)

and
V (x(t)) ≤ V (x(t+1 ))e−θ(t−t1) ≤ α1V (x0)e

−θ(t1−t0)e−θ(t−t1);

that is
V (x(t)) ≤ α1V (x0)e

−θ(t−t0), t ∈ [t0, t2].

Therefore, for all t ∈ (tk−1, tk],

V (x(t)) ≤V (x0)α1 α2 · · · αk e
−θ(t−t0)

≤ V (x0)α1e
−φ(t1−t0) α2e

−φ(t2−t1) · · · αk e
−φ(tk−tk−1)e−(θ−φ)(t−t0)

≤ V (x0) e
−(θ−φ)(t−t0), t ≥ t0, (8.18)

where 0 < φ < θ. The forgoing inequality together with

C∗||x ||2 ≤ V (x) ≤ C∗∗||x ||2,

where C∗ = λ∗β∗ and C∗∗ = λ∗∗β∗∗ with λ∗∗ = max{λmax(Pi ) | i = 1, · · · , l} and
β∗∗ = max{βi | i = 1, · · · , l} implies that

||x(t)|| ≤ E ||x0|| e−(θ−φ)(t−t0)/2, ∀t ≥ t0,
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where E =
√

C∗∗
C∗ . That is, the trivial solution, x ≡ 0, of the composite system (8.2)

is robustly globally exponentially stable.

Remark 8.3 Theorem8.3 shows that the interconnected systemcan be robustly expo-
nentially stabilized by the sub-controllers of the isolated subsystems in the case
where all the actuators are operational. Condition (8.13) estimates the interconnec-
tion, which is viewed as a perturbation, by an upper bound. The test matrix S is
needed to guarantee that the degree of stability be greater than the interconnection.

The following theorem shows that the proposed reliable controllers are robust
even in the presence of the interconnection effect. The proof is similar to that of
Theorem 8.3; thus, it is left here as an exercise.

Theorem 8.4 Assume that system (8.5) possesses property B and suppose that for
any i, j = 1, 2, . . . , l, there exist positive constants bi j such that the condition in
(8.13) holds, the test matrixS = [si j ]l×l defined in Theorem 8.3 is negative definite

and ε2i is a positive constant such that K i = − 1
2 ε2i B

i
σ̄
T
Pi . Then, the trivial solution,

x ≡ 0, of system (8.2) is robustly globally exponentially stable if (8.15) holds with
Pi being a positive-definite matrix defined in Property B.

Example 8.1 Consider the composite system with l = 2 and the following informa-
tion for the subsystems

A1 =
[

0 1
−11 0

]

, A2 =
[

0 1
−10 0

]

, B1 =
[−5 3

−1 2

]

, B2 =
[

1 −3
0.1 −4

]

,

D1 =
[
1
0

]

, D2 =
[
0
1

]

, H 1 = [
0 1

]
, H 2 = [

1 0
]
,U1 = U2 = sin(t),

f1 = 0.5

[
0

sin(w2)

]

, f2 = 1.5

[
0

sin(w4)

]

,C1k =
[
2 0
0 2

]

,C2k =
[
3 0
0 3

]

,

for all k = 1, 2, . . ., σ1 = −2, σ2 = −2.5, ε11 = 2, ε12 = 0.5, ξ11 = 1, ξ12 = 1,
ε21 = 1, ε22 = 0.7, β1 = 1, β2 = 2, b11 = 0.3, b22 = 1.5, b12 = 0.5, b21 = 0.3
and t0 = 0. From (8.8), one may get δ1 = 0.25 and δ2 = 2.25.

Cases 1 When all the control actuators are operational, we have from Riccati-like
equation,

P1 =
[

0.5427 −0.2419
−0.2419 0.1955

]

and P2 =
[

2.9461 −1.2229
−1.2229 0.7834

]
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with λmin(P1) = 0.0713,λmax(P1) = 0.6669,λmin(P2) = 0.2323 and λmax(P2) =
3.4971, so that λ∗ = 0.0713, λ∗∗ = 3.4971 and the control gain matrices are

K 1 =
[

1.2358 −0.5071
−0.5722 0.1674

]

and K 2 =
[−0.9883 0.4006

1.3814 −0.1873

]

.

Thus, Ai + Bi K i (for i = 1, 2) are Hurwitz, and the time intervals tk − tk−1 ≥
2.3328 for the first subsystem and tk − tk−1 ≥ 2.7421 for the second subsystem. The
test matrix here is given by

S =
[−1.0338 0.55

0.55 −14.4855

]

,

which is negative-definite and tk − tk−1 ≥ 4.4142 for the interconnected system.

Cases 2 When there is a failure in the second actuator in the first subsystem and first

actuator in the second subsystem, i.e., �1 = {2} and B1
�̄

=
[−5 0

−1 0

]

and �2 = {1}

and B2
�̄

=
[
0 −3
0 −4

]

, we have from Riccati-like equation,

P1 =
[

0.5806 −0.2330
−0.2330 0.2008

]

and P2 =
[

3.0616 −1.2448
−1.2448 0.7834

]

,

with λmin(P1) = 0.0901,λmax(P1) = 0.6913,λmin(P2) = 0.2351 and λmax(P2) =
3.6099, so λ∗ = 0.0901, λ∗∗ = 3.6099, and the control gain matrices are

K 1 =
[
1.3351 −0.4820

0 0

]

and K 2 =
[

0 0
1.4719 −0.2103

]

.

Thus, Ai + Bi
σ̄K

i (for i = 1, 2) are Hurwitz and the time intervals tk − tk−1 ≥
2.2286 for the first subsystem and tk − tk−1 ≥ 2.7519 for the second subsystem.

The interconnected system is shown in Figs. 8.1 and8.2 for the operational and
faulty cases, respectively.

If we consider f T1 = 0.5[w1 (w2)
2] and f T2 = 1.5[w3 (w4)

2], one can show that
condition (8.8) is satisfied only inside the regionD = {(w1 w2 w3 w4)

T ∈ R
4 | w1 ∈

R, −2 ≤ w2 ≤ 2, w3 ∈ R, −1.5 ≤ w4 ≤ 1.5}. Thus, x ≡ 0 is locally exponentially
stable. The local stability and instability of the trivial solution are shown in Figs. 8.3
and8.4, respectively.
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Fig. 8.1 Interconnected system: Operational actuators
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Fig. 8.2 Interconnected system: Faulty actuators
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Fig. 8.3 Local stability of the trivial solution
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Fig. 8.4 Instability of the trivial solution
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8.3 State Estimation

In this section, we address the problem of state estimation for the ILSS. Consider
the isolated input–output impulsive subsystem

⎧
⎪⎪⎨

⎪⎪⎩

ẇi = (Ai + �Ai )wi + Biui + fi (wi ), t �= tk, k ∈ N,

�wi (t) = Cikw
i (t−), t = tk,

yi (t) = Ciwi (t),
wi (t0) = wi

0,

(8.19)

where yi ∈ R
ni is the measured output vector. Define the Luenberger observer by

⎧
⎨

⎩

˙̂wi = (Ai + �Ai )ŵi + Biui + fi (ŵi ) + L i (yi − Ci ŵi ), t �= tk, k ∈ N,

�ŵi (t) = Cikŵ
i (t−), t = tk,

ŵi (t0) = ŵi
0,

(8.20)

where L i ∈ R
ni×ni is the observer gain matrix. Define the state estimation error

vector by ei = wi − ŵi . Then, the closed-loop error system becomes

⎧
⎨

⎩

ėi = (Ai + �Ai − L iCi )ei + fi (wi ) − fi (ŵi ), t �= tk, k ∈ N,

�ei (t) = Cikei (t−), t = tk,
ei (t0) = wi

0 − ŵi
0 =: ei0

(8.21)

Definition 8.3 The pair (A, B) is said to be detectable if there exists a matrix F
such that A − FB is Hurwitz.

We will adopt the same stability/stabilization analysis followed in the last section
to establish the observability problem of system (8.19).

Theorem 8.5 Let the observer gain matrix, L i , be given, Assumption A hold and
the matrix pair (Ai ,Ci ) be detectable. Then, the trivial solution of error system
(8.21) is robustly globally exponentially stable if the following inequality holds

lnαik − νi (tk − tk−1) ≤ 0, k ∈ N, (8.22)

where0 < νi < −σi ,σi < 0andαik = λmax[(I+Cik )
T Pi (I+Cik )]

λmin(Pi )
with Pi beingapositive-

definite matrix satisfying the Riccati-like equation

(Ai − L iCi )T Pi + Pi (Ai − L iCi ) + ε1i P
i Di Di T Pi + 1

ε1i
H i T Hi + ai I

− σi P
i = 0, (8.23)
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where ε1i is any positive constants and ai > 0 such that

2ei
T
Pi [ fi (wi ) − fi (ŵ

i )] ≤ ai ||ei ||2. (8.24)

Proof For all t ≥ t0 with t0 ∈ R+, let ei (t) = ei (t; t0, ei0) be the solution of the error
system (8.21). For i = 1, 2, . . . , l, define V i (ei ) = ei

T
Pi ei as theLyapunov function

candidate for the i th subsystem. Then,

V̇ i (ei ) = ei
T [(Ai − L iCi )T Pi + Pi (Ai − L iCi )]ei + 2ei

T
Pi�Ai ei + 2ei

T
Pi fi e

i

≤ ei
T [(Ai − L iCi )T Pi + Pi (Ai − L iCi ) + ε1i P

i Di Di T Pi + 1

ε1i
Hi T Hi

+ ai I ]ei = σi V
i (ei ),

where we used (8.24) and Lemma 8.1 in the second bottom line and (8.23) in the
last line. The last inequality implies that, for all t ∈ (tk−1, tk] with k ∈ N,

V i (ei (t)) ≤ V i (ei (t+k−1))e
σi (t−tk−1) (8.25)

and, at t = tk , we have

V i (ei (t+k )) ≤ αikV
i (ei (t−k )), (8.26)

where αik = λmax(Lik)/λmin(Pi ) with Lik = [I + Cik]T Pi [I + Cik]. From (8.22),
(8.25) and (8.26), we have for t ≥ t0,

V i (ei (t)) ≤ V i (ei0)e
(σi+νi )(t−t0),

where 0 < νi < −σi . The last inequality implies that

||ei || ≤ γi ||ei0||e−(ξi−νi )(t−t0)/2, t ≥ t0,

where γi =
√

λmax(Pi )

λmin(Pi )
. Then, the trivial solution is globally exponentially stable. This

completes the proof.

As done in the analysis of reliable stabilization, for i = 1, 2, . . . , l, consider the
decomposition of the observer matrix Ci = Ci

� + Ci
�̄
where Ci

� and Ci
�̄
are the

observer matrices associated with � and �̄, respectively, and Ci
� and Ci

�̄
are gen-

erated by zeroing out the columns corresponding to �̄ and �, respectively. For any
fixed i ∈ {1, 2, . . . , l}, let ω ⊆ � correspond to some of the sensors that experience
failure and assume that the output of faulty sensors is zero. Then, the decomposi-
tion becomes Ci = Ci

ω + Ci
ω̄ where Ci

ω and Ci
ω̄ have the same definition of Ci

� and
Ci

�̄
, respectively. Then, the closed-loop impulsive error system for the faulty case

becomes
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⎧
⎨

⎩

ėi = (Ai + �Ai − L iCi
ω̄)ei + fi (wi ) − fi (ŵi ), t �= tk, k ∈ N

�ei (t) = Cikei (t−), t = tk,
ei (t0) = wi

0 − ŵi
0 =: ei0

(8.27)

In the following theorem,we state and prove the robust global exponential stability
for all isolated impulsive subsystems when some control components experience
failure.

Theorem 8.6 The trivial solution of system (8.27) is robustly globally exponentially
stable if Assumption A holds, the matrix pair (Ai ,Ci

ω̄) is detectable and condition
(8.22) holds with Pi being a positive-definite matrix satisfying the Riccati-like equa-
tion

Ai T Pi + Pi Ai + Pi
[
ε1i D

i Di T − ε2iC
i
�̄
Ci

�̄

T
]
Pi + 1

ε1i
H i T Hi + ai I − σi P

i = 0,

(8.28)
where ε1i and ε2i are positive constants such that the observer gain matrix L i =
1
2 ε2iC

i
ω̄
T
Pi , 0 < νi < −σi with σi < 0, the matrices Pi and Ci

ω̄ are commutative
and ai > 0 such that (8.24) holds.

Proof For all t ≥ t0 with t0 ∈ R+ and i = 1, 2, . . . , l, let ei (t) = ei (t; t0, ei0) be the
solution of system (8.27). Define V i (ei ) = (ei )T Piei as the Lyapunov function can-
didate for the i th subsystem. Then, one may have

V̇ i (ei ) ≤ ei
T
[
(Ai − L iCi )T Pi + Pi (Ai − L iCi ) + ε1i P

i Di Di T Pi

+ 1

ε1i
H i T Hi + ai I

]
ei

≤ ei
T
[
Ai T Pi + Pi Ai + Pi (ε1i D

i Di T + ε2iC
i
ω̄C

i
ω̄

T
)Pi + 1

ε1i
H i T Hi

+ ai I
]
ei

≤ ei
T
[
Ai T Pi + Pi Ai + Pi (ε1i D

i Di T − ε2iC
i
�̄
Ci

�̄

T
)Pi + 1

ε1i
H i T Hi

+ ai I
]
ei = σi V

i (ei (t)),

where we used the fact that [1] Ci
�̄
(Ci

�̄
)T ≤ Ci

ω̄(Ci
ω̄)T in the second last line and

condition (8.28) in the last line. Finally, following the analysis used in the previous
theorem shows that the trivial solution of the closed-loop impulsive error system in
(8.27) is robustly globally exponentially stable.

Definition 8.4 System (8.21)(or (8.27)) is said to possess property C(or D) if it
satisfies the conditions in Theorem 8.5 (or Theorem 8.6), respectively.

Remark 8.4 Property C implies that all the impulsive error isolated subsystems are
robustly globally exponentially stable in the normal actuators case, while Property
D implies the same result is held in the faulty case.
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Considering the interconnection gi in system (8.19) results in the composite sys-
tem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẇi = (Ai + �Ai )wi + Biui + fi (wi )

+gi (w1, w2, · · · , wl), t �= tk,
�wi (t) = Cikw

i (t−), t = tk, k ∈ N,

yi (t) = Ciwi (t),
wi (t0) = wi

0.

(8.29)

Similarly, we define the response system as follows

⎧
⎪⎪⎨

⎪⎪⎩

˙̂wi = (Ai + �Ai )ŵi + Biui + fi (ŵi )

+gi (ŵ1, ŵ2, · · · , ŵl) + L i (yi − Ci ŵi ), t �= tk,
�ŵi (t) = Cikŵ

i (t−), t = tk, k ∈ N,

ŵi (t0) = ŵi
0.

(8.30)

Then, the closed-loop error system becomes

⎧
⎪⎪⎨

⎪⎪⎩

ėi = (Ai + �Ai − L iCi )ei + fi (wi ) − fi (ŵi )

+gi (w1, w2, · · · , wl) − gi (ŵ1, ŵ2, · · · , ŵl), t �= tk,
�ei (t) = Cikei (t−), t = tk, k ∈ N,

ei (t0) = wi
0 − ŵi

0 =: ei0.
(8.31)

This system can be re-written in the following form

⎧
⎪⎪⎨

⎪⎪⎩

ėc = (A + �A − LC)ec + F(x) − F(x̂)
+G(x) − G(x̂), t �= tk, k ∈ N,

�ec(t) = Ik(ec(t−)) = Ckec(t−), t = tk,
ec(t0) = ec0,

(8.32)

where xT = (w1T w2T · · · wl T ), x̂ T =
(
(ŵ1)T (ŵ2)T · · · (ŵl)T

)
,

eTc = (e1
T
e2

T · · · el T ),

((A + �A − LC)ec)T =
[[

(A1 + �A1 − L 1C1)e1
]T [

(A2 + �A2 − L 2C2)

e2
]T · · · [(Al + �Al − L lCl)el

]T
]
,

(F(x))T = (
f1

T (w1) f2
T (w2) · · · fl

T (wl)
)
,

(F(x̂))T = (
f1

T (ŵ1) f2
T (ŵ2) · · · fl

T (ŵl)
)

(G(x))T =
(
g1

T
(x) g2

T
(x) · · · gl

T
(x)

)
, (G(x̂))T =

(
g1

T
(x̂) g2

T
(x̂) · · · gl

T
(x̂)

)
,

(Ckec)T = (
(C1ke1)T (C2ke2)T · · · (Clkel)T

)
.
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Theorem 8.7 Assume that system (8.21) possesses property C and the observer
gain matrix L is given. Suppose further that for any i, j = 1, 2, . . . , l, there exists
a positive constant bi j such that

2ei
T
Pi [gi (w1, w2, · · · , wl) − gi (ŵ1, ŵ2, · · · , ŵl)] ≤ ||ei ||�l

j=1bi j ||e j || (8.33)

and the test matrix S = [si j ]l×l is negative definite where

si j =
{

βi (σ
∗
i + bii ), i = j

1
2 (βi bi j + β j b ji ), i �= j

, (8.34)

for some constant σ∗
i = σiλmax(Pi ) < 0 and a positive constant βi . Then, the trivial

solution of system (8.32) is robustly globally exponentially stable if the following
inequality holds

lnαk − φ(tk − tk−1) ≤ 0, k ∈ N, (8.35)

for 0 < φ < θ where θ = −λmax(S)

λ̄β∗ with λ̄ = min{λmax(Pi ) | i = 1, 2, . . . , l} and

β∗ = min{βi | i = 1, 2, . . . , l}, αk = [
max{λmax[(I + Cik)

T Pi (I + Cik)] | i
= 1, 2, . . . , l}]/λ∗ withλ∗ = min{λmin(Pi ) | i = 1, 2, . . . , l}and Pi beingapositive-
definite matrix defined in Property C.

Proof For all t ≥ t0 with t0 ∈ R+, let ec(t) = ec(t; t0, ec0) be the solution of sys-
tem (8.32). Define the composite Lyapunov function V (ec(t)) = �l

i=1β
i V i (ei ) with

V i (ei ) being the Lyapunov function related to the i th isolated subsystem and βi > 0.
Then, one may get after using property C and (8.33)

V̇ (ec) ≤ �l
i=1β

i
{
σi ||ei ||2 + 2ei

T
Pi [gi (w1, · · · , wl) − gi (ŵ1, · · · , ŵl)]

}

≤ �l
i=1β

i
{
σi ||ei ||2 + ||ei ||�l

j=1bi j ||e j ||
}

= zTS z,

where zT = (||e1|| ||e2|| · · · ||el ||). Then, V̇ (ec) ≤ −θV (ec) where θ = −λmax(S )

λ̄β∗

with λ̄ = min{λmax(Pi ) | i = 1, 2, . . . , l} and β∗ = min{βi | i = 1, 2, . . . , l}. The
rest of the proof is similar to that of Theorem 8.3; thus, it is left here as an exercise.

In the following theorem, we state that the proposed reliable sensors are also
robust in the presence of the interconnection effect. The proof of this theorem can
be achieved in the same way we proved the analogue stability theorem in the last
section; thus, it is left here as an exercise.

Theorem 8.8 Assume that system (8.27) possesses property D. Suppose further that,
for any i, j = 1, 2, . . . , l, there exist positive constants bi j such that the condition in
(8.33) holds, the test matrix S = [si j ]l×l defined in Theorem 8.7 is negative-definite,
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the observer gain matrix L i = 1
2 ε2iC

i
ω̄
T
Pi where ε2i is a positive constant, and

Pi and Ci
ω̄ are commutative. Then, the trivial solution of system (8.32) is robustly

globally exponentially stable if (8.35) holds with Pi being a positive-definite matrix
defined in Property D.

Example 8.2 Consider the composite system with l = 2, where

A1 =
[−4 0

0 4

]

, A2 =
[
5 0
0 −5

]

,C1 =
[
1.5 0
0 1.5

]

,C2 =
[
3 0
0 3

]

,

D1 =
[
1
0

]

, D2 =
[
0
1

]

, H 1 = [
0 1

]
, H 2 = [

1 0
]
,U1 = U2 = sin(t),

f1 = 0.5

[
0

sin(w2)

]

, f2 = 1.5

[
0

sin(w4)

]

,C1k =
[
2 0
0 2

]

,C2k =
[
3 0
0 3

]

,

for all k ∈ N, σ1 = −2, σ2 = −2.5, ε11 = 2, ε12 = 0.5, ε21 = 1, ε22 = 0.7, β1 =
1, β2 = 2, b11 = 1, b22 = 1.5, b12 = 0.5 and b21 = 0.3. From (8.8), one may get
δ1 = 0.25 and δ2 = 2.25.

Cases 1 When all the control sensors are operational, we have from Riccati-like
equation,

P1 =
[
0.0416 0

0 4.5182

]

and P2 =
[
2.2800 0

0 0.2512

]

with λmin(P1) = 0.0416, λmax(P1) = 4.5182, λmin(P2) = 0.2512 and λmax(P2) =
2.2800; so that, λ∗ = 0.0416, λ∗∗ = 4.5182 and the observer gain matrices are

L 1 =
[
0.0312 0

0 3.3887

]

and L 2 =
[
2.3940 0

0 0.2638

]

.

Thus, Ai − L iCi (for i = 1, 2) are Hurwitz and the time intervals tk − tk−1 ≥
3.6238 for the first subsystem and tk − tk−1 ≥ 2.4891 for the second subsystem. The
test matrix in this case is

S =
[−8.364 0.55

0.55 −8.4

]

.

Cases 2 When there is a failure in the first sensor in the first subsystem and second

sensor in the second subsystem, i.e., �1 = {1} and C1
�̄

=
[
0 0
0 1.5

]

, and �2 = {2}

and C2
�̄

=
[
3 0
0 0

]

, we have from Riccati-like equation,

P1 =
[
0.0411 0

0 4.5182

]

and P2 =
[
2.2800 0

0 0.2942

]



162 8 Robust Reliable Control for Impulsive Large-Scale Systems

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

t

||e
c|
|

Fig. 8.5 Interconnected system: Operational sensors
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Fig. 8.6 Interconnected system: Faulty sensors
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with λmin(P1) = 0.0411, λmax(P1) = 4.5182, λmin(P2) = 0.2942 and λmax(P2) =
2.2800; so that, λ∗ = 0.0411, λ∗∗ = 4.5182 and the observer gain matrices

L 1 =
[
0 0
0 3.3887

]

and L 2 =
[
2.3940 0

0 0

]

.

Thus, Ai + L iCi
ω̄ (for i = 1, 2) are Hurwitz and the time intervals tk − tk−1 ≥

3.6300 and tk − tk−1 ≥ 2.4101 for the first and second subsystems, respectively.
Figures8.5 and8.6 show the interconnected error system, ||ec|| for the operational
and faulty sensors respectively.

8.4 Notes and Comments

This chapter has been devoted to address the problem of designing a robust reliable
controller for the uncertain ILSS with fixed impulses. The material of this chapter is
taken from [2]. The exponential stability property for such a complex systemhas been
analyzed by decomposing the system into lower order, isolated subsystems and the
interconnection was treated as a system perturbation. The isolated subsystems were
assumed to be globally exponentially stabilized by the state feedback controllers
and the interconnection was estimated by an upper bound which is required to be
smaller than the stability degree of the isolated subsystems in order to guarantee
the stability of the interconnected system. The scalar Lyapunov functions have been
used to achieve our purpose, where this approach has led to solving a Riccati-like
equation. In addition, the output of the faulty actuators has been treated as an outage.
So that, one may extend these results by considering nonzero outage, where in this
case it would be viewed as a perturbation. These results have been carried over to
address the problem of state estimation for the input–output ILSS.
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Chapter 9
Switched Singularly Perturbed Systems
with Time Delay

This chapter deals with exponential stability of a switched system consisting sin-
gularly perturbed subsystems with time delay. The multiple Lyapunov functions
technique with the dwell-time approach is used to establish stability properties for
the switched system.

9.1 Problem Formulation

Consider the following switched singularly perturbed systems with time delay

ẋ(t) = fσ(t)(t, x(t), xt , z(t), zt ),

εż(t) = gσ(t, x(t), xt , z(t), zt ), (9.1)

where, for all t ≥ t0 with t0 ∈ R+, x ∈ R
m and z ∈ R

n are, respectively, the slow
and fast system states or variables, 0 < ε � 1 is perturbation parameter and σ :
[t0,∞) → S is the switching signal which is a piecewise constant function taking
values inS = {1, 2, . . . , N }with N ≥ 1. If, for instance, σ = i for any i ∈ S , then
system (9.1) becomes

ẋ(t) = fi (t, x(t), xt , z(t), zt ), t ∈ [tk−1, tk)

εż(t) = gi (t, x(t), xt , z(t), zt ), t ∈ [tk−1, tk). (9.2)

For every i ∈ S , we assume that fi and gi are smooth enough to guaran-
tee the existence of the solution of system (9.2), and fi (t, 0, 0, 0, 0) ≡ 0 and
gi (t, 0, 0, 0, 0) ≡ 0 (for all t) to ensure that system (9.2) has the trivial solution
(x z)T ≡ (0T 0T ). Let xt = x(t + θ) be the delayed state where θ ∈ [−τ , 0] with

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_9
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τ being a positive constant representing the time delay, x(t) = x(t; t0, xt0 , zt0) and
z(t) = z(t; t0, xt0 , zt0) be the solutions of (9.2) with the initial conditions xt0 and zt0 ,
respectively.

Definition 9.1 The trivial solution of system (9.2) is said to be exponentially stable
if there exist positive constants K and λ such that

‖x(t)‖ + ‖z(t)‖ ≤ K
(
‖xt0‖τ + ‖zt0‖τ

)
e−λ(t−t0), t ≥ t0

where x(t) and z(t) are any solution of system (9.2).

9.2 Stability Analysis

In this section, we address the exponential stability of switched systems.We consider
modes representedby linear time-varying and then a special class of nonlinear system.
LetSu = {1, 2, . . . , r} andSs = {r + 1, r + 2, . . . , N } be the sets of indices of the
unstable and stable modes, respectively.

9.2.1 Linear Systems

Consider the following linear time-varying switched singularly perturbed systems
with time delay

ẋ = A11i (t)x + A12i (t)xt + B11i (t)z + B12i (t)zt ,

εż = A21i (t)x + A22i (t)xt + B21i (t)z, t ∈ [tk−1, tk), (9.3)

where for each i ∈ S = Su ∪ Ss , Arsi (t), B1si (t) and B21i (t)(r, s = 1, 2) are con-
tinuous matrices where A1si ∈ R

m×m , B1si ∈ R
m×n , A2si ∈ R

n×m and B21i ∈ R
n×n .

The matrices A22i (t) and B21i (t) are continuously differentiable, B21i (t) is nonsin-
gular and 0 < ε � 1. Here, we deal with the subsystems of (9.3) as interconnected
systems. As said earlier, this system is viewed as a large-scale systemwhen analyzing
its stability properties. So that, we decompose them into small isolated subsystems

ẋ = A11i (t)x

ż = B21i (t)z

and the rest will be considered the interconnection between them. In the following
theorem, we state and prove exponential for the switched system in (9.3).

Theorem 9.1 The trivial solution of system (9.3) is globally exponentially stable if
the following assumptions hold:
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A1. There exist positive constants α and β such that

(i) for any i ∈ Su, Re[λ(A11i (t))] > 0 and Re[λ(B21i (t))] ≤ −α,
(ii) for any i ∈ Ss , Re[λ(A11i (t))] ≤ −α and Re[λ(B21i (t))] ≤ −α,
(iii) for any i ∈ S and t ∈ [tk−1, tk), k ∈ N

max{‖A11i (t)‖, ‖ Ȧ11i (t)‖, ‖B21i (t)‖,
‖Ḃ21i (t)‖, ‖B−1

21i (t)A21i (t)‖, ‖B−1
21i (t)A22i (t)‖} ≤ β;

A2. let hi (t) = −B−1
21i (t)[A21i (t)x + A22i (t)xt ], and P1i (t) and P2i (t) be, respec-

tively, the solutions of the Lyapunov matrix equations

AT
11i (t)P1i (t) + P1i (t)A11i (t) = −Im,

BT
21i (t)P2i (t) + P2i (t)B21i (t) = −In,

with Iq being the identity matrix of dimension q × q. Assume that there exist
bounded functions arsi (t) and brsi (t) (for r, s = 1, 2) satisfying

2xT P1i (t)[A12i (t)xt + B11i (t)z + B12i (t)zt ] + xT Ṗ1i (t)x ≤
a11i (t)‖x‖2 + a12i (t)‖xt‖2τ + b11i (t)‖(z − hi )‖2 + b12i (t)‖(z − hi )t‖2τ ,

−2(z − hi )
T P2i (t)ḣi + (z − hi )

T Ṗ2i (t)(z − hi ) ≤
a21i (t)‖x‖2 + a22i (t)‖xt‖2τ + b21i (t)‖(z − hi )‖2 + b22i (t)‖(z − hi )t‖2τ ;

A3. (i) for any i ∈ Su, let α(t) = λ( ÃT
i (t) + Ãi (t)) and ‖B̃i (t)‖ ≤ β1 where

Ãi (t) =
⎛
⎜⎝

2γ+a11i (t)
λ1m

b11i (t)
λ2m

a21i (t)
λ1m

− 1−εi b21i (t)
εiλ2m

⎞
⎟⎠ , B̃i (t) =

⎛
⎜⎝

a12i (t)
λ1m

b12i (t)
λ2m

a22i (t)
λ1m

b22i (t)
λ2m

⎞
⎟⎠ ,

and γ is a positive constant such that the matrix A11i − γ I has eigenvalues
with negative real parts. Assume that α(t) + ‖B̃i (t)‖ ≤ β2, (β2 > 0);

(ii) for any i ∈ Ss there exist positive constants ε∗
i and η such that − Ãi (t) is

an M−matrix and λ( Ãi (t) + ÃT
i (t)) + 2‖B̃i (t)‖ ≤ −η < 0 where

Ãi (t) =
⎛
⎜⎝

− 1−a11i (t)
λ1M

b11i (t)
λ2m

a21i (t)
λ1m

− 1−ε∗
i b21i (t)

ε∗
i λ2M

⎞
⎟⎠ , B̃i (t) =

⎛
⎜⎝

a12i (t)
λ1m

b12i (t)
λ2m

a22i (t)
λ1m

b22i (t)
λ2m

⎞
⎟⎠

where λrm = min{λmin(Pri ), i ∈ S} and λrM = max{λmax(Pri ), i ∈ S} for
r = 1, 2; and
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A4. let λ+ = max{ξi | ∀i ∈ Su} and λ− = min{ζi | ∀i ∈ Ss} with ξi and ζi being,
respectively, the growth rates of the unstable subsystems and the decay rates of
the stable subsystems, and T+(t0, t) and T−(t0, t) denote the total activation
times of the unstable and stable modes, respectively. Assume that, for any t0 ∈
R+, the switching law guarantees that

inf
t≥t0

T−(t0, t)
T+(t0, t)

≥ λ+ + λ∗

λ− − λ∗ (9.4)

where λ∗ ∈ (0,λ−); furthermore, there exists 0 < ν < λ∗ such that

(i) for i ∈ Su

ln μ − ν(tk − tk−1) ≤ 0, k = 1, 2, . . . , r (9.5)

(ii) for i ∈ Ss

ln μ + ζiτ − ν(tk − tk−1) ≤ 0, k = r + 1, r + 2, . . . , N , (9.6)

where ζi is a unique positive solution of

ζi = λ( ÃT
i + Ãi ) + ‖B̃i‖ + ‖B̃i‖eζi τ .

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, xt0 , zt0) and z(t) = z(t; t0, xt0 ,
zt0) be the solutions of (9.2). For each i ∈ S , define Vi (x(t)) = xT (t)P1i (t)x(t)
and Wi ((z − hi )(t)) = (z − hi )T (t)P2i (t)(z − hi )(t) as the Lyapunov function can-
didate for the i th slow and fast subsystems, respectively. Then, for any i ∈ Su , the
derivative of Vi (t) = Vi (x(t)) along the trajectories of the slow state x is given by

V̇i (x(t)) = ẋ T P1i (t)x + xT P1i (t)ẋ + xT Ṗ1i (t)x

≤ (2γ + a11i (t)

λ1m
)Vi (t) + b11i (t)

λ2m
Wi (t) + a12i (t)

λ1m
‖Vit‖τ

+b12i (t)

λ2m
‖Wit‖τ

where Wi (t) = Wi ((z − hi )(t)). Similarly, for any i ∈ S , the derivative of Wi (t)
along the trajectories of the fast state z is given by

Ẇi ((z − hi )(t)) = (ż − ḣi )
T P2i (t)(z − hi ) + (z − hi )

T P2i (t)(ż − ḣi )

+ (z − hi )
T Ṗ2i (t)(z − hi )

=
(1

ε
(A21i (t)x + A22i (t)xt + B21i (t)z) − ḣi

)T
P2i (t)(z − hi )

+ (z − hi )
T P2i (t) ×

(1
ε
(A21i (t)x + A22i (t)xt + B21i (t)z) − ḣi

)

+ (z − hi )
T Ṗ2i (z − hi )
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≤ a21i (t)

λ1m
Vi (t) − 1 − εi b21i (t)

εiλ2M
Wi (t) + a22i (t)

λ1m
‖Vit‖τ

+ b22i (t)

λ2m
‖Wit‖τ

≤ a21i (t)

λ1m
Vi (t) − 1 − ε∗

i b21i (t)

ε∗
i λ2M

Wi (t) + a22i (t)

λ1m
‖Vit‖τ

+ b22i (t)

λ2m
‖Wit‖τ

where ε∗
i ≥ εi > 0.

Combining V̇ (t) and Ẇ (t) in a vector form yields

(
V̇ (t)

Ẇ (t)

)
≤

⎛
⎝

2γ+a11i (t)
λ1m

b11i (t)
λ2m

a21i (t)
λ1m

− 1−εi b21i (t)
εiλ2m

⎞
⎠

(
V (t)

W (t)

)

+
⎛
⎝

a12i (t)
λ1m

b12i (t)
λ2m

a22i (t)
λ1m

b22i (t)
λ2m

⎞
⎠

( ‖Vit‖τ

‖Wit‖τ

)

Then, by A3(i) and Lemma 2.4, there exists a positive constant ξi such that

Vi (x(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1)

Wi ((z − hi )(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1).

For i ∈ Ss , we have

V̇i (x(t)) ≤ −1 − a11i (t)

λ1M
Vi (t) + b11i (t)

λ2m
Wi (t) + a12i (t)

λ1m
‖Vit‖τ + b12i (t)

λ2m
‖Wit‖τ ,

and

(
V̇ (t)

Ẇ (t)

)
≤

⎛
⎝− 1−a11i (t)

λ1M

b11i (t)
λ2m

a21i (t)
λ1m

− 1−ε∗
i b21i (t)

ε∗
i λ2M

⎞
⎠

(
V (t)

W (t)

)

+
⎛
⎝

a12i (t)
λ1m

b12i (t)
λ2m

a22i (t)
λ1m

b22i (t)
λ2m

⎞
⎠

( ‖Vit‖τ

‖Wit‖τ

)

Then, by A3(ii) and Lemma 2.3, there exists a positive constant ζi such that

Vi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1)

Wi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1).
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Recall that for any i, j ∈ S we have

Vj (t) ≤ μVi (t)

Wj (t) ≤ μWi (t)

where μ = max{μl = λlM
λlm

for l = 1, 2}. Then

VN (x(t)) ≤
r∏

i=1

2μeξi (ti−ti−1) ×
N−r−1∏
j=r+1

2μeζ j τe−ζ j (t j−t j−1)

×(‖V1t0
‖τ + ‖W1t0

‖τ )e
−ζN (t−tN−1)

Making use of Assumption A4, we get

VN (t) ≤ (‖V1t0
‖τ + ‖W1t0

‖τ )e
−(λ∗−ν)(t−t0), t ∈ [t0,∞)

Similarly, we have

WN ((z − hN )(t)) ≤ (‖V1t0
‖τ + ‖W1t0

‖τ )e
−(λ∗−ν)(t−t0), t ∈ [t0,∞).

Then, there exists K1 such that

‖x(t)‖ ≤ K1(‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2,

and, by the fact that,

‖z‖ − ‖hi‖ ≤ ‖z − hi‖ ≤ 1√
λ2m

W 1/2
i ,

there exists K2 such that

‖z(t)‖ ≤ K2(‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2.

Hence,

‖x(t)‖ + ‖z(t)‖ ≤ K (‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2.

where K = K1 + K2. This shows that the trivial solution of (9.3) is exponentially
stable. This completes the proof.

Remark 9.1 Assumptions A1[(i),(iii)], A2 and A3(i) are to ensure that, for i ∈ Su ,
the i th mode is unstable, while Assumptions A1[(ii),(iii)] and A3(ii) are to guarantee
that, for i ∈ Ss , the i th mode is exponentially stable. As well known in switched
systems, the exponential stability of each subsystem is insufficient to guarantee expo-
nential stability of the entire switched systems; so that, an additional condition is
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required; namely, the total activation time of stable subsystem is larger than that of
unstable ones as represented in Assumption A4.

The following example shows these results.

Example 9.1 Consider the following switched system with the unstable and stable
modes

ẋ = 0.1x + 0.04z(t − 1)

εż = 0.45x(t − 1) − 0.1z

ẋ = −1.5x − 0.1z(t − 1)

εż = −x(t − 1) − 2z

with the initial condition (xt0 , zt0)
T = (t + 0.3, t + 0.3) for t ∈ [−1, 0]. For the

unstable mode, taking γ = 0.2, ε = 0.3, Q11 = 0.1 and Q21 = 0.07 gives P11 = 0.5,
P21 = 0.35,

Ãu =
(
0.44 0
0 −0.0948

)
and B̃u =

(
0 0.0571

0.315 0

)
. Clearly, Assumption A3(i)

holds which affirms the instability of mode 1; so that, by Lemma 2.4, the growth rates
are ξ = {0.2207, 0.755}, while for the stable mode, taking Q12 = 1.5 and Q22 = 5
gives P12 = 0.5, P22 = 1.25 and μ = 3.5714; from A3(ii), we get ε∗ = 1.5238. Thus

Ãs =
(−2.9 0

0 −2.9297

)
and B̃s =

(
0 0.1429

1.875 0

)
; hence, by Lemma 2.3,

the decay rates are ζ = {0.5927, 0.5791}. Taking λ+ = 0.755, λ− = 0.5791 and
λ∗ = 0.25 gives T− ≥ 3.05T+. Taking ν = 0.2, by A4[(i),(ii)] we get, respectively,
T+ = 9.9 and T− = 29.5. Figure9.1 shows these results where unstable and stable
modes are activated alternatively. In this example, the unstable mode is activated on
subintervals [0,9.9) and [39.4,49.3). This result illustrates the necessity for running
stable modes longer than the unstable ones.

9.2.2 Nonlinear Systems

Consider the following nonlinear switched DSPSs

ẋ = fi (x, xt , z, zt )

εż = B21i z + Bi (x, xt ), t ∈ [tk−1, tk), (9.7)

where fi (x, xt , z, zt ) = A11i x + gi (x, xt , z, zt ) for any i ∈ S . We assume that sys-
tem (9.7) has a unique equilibrium point at the origin and the matrix B21i is nonsin-
gular.

In the following theorem, we state the sufficient conditions to guarantee exponen-
tial stability of system (9.7).
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Fig. 9.1 Linear system with unstable and stable modes

Theorem 9.2 The trivial solution of system (9.7) with S = Su ∪ Ss is globally
exponentially stable if the following assumptions hold:

A1. (i) for any i ∈ Su, Re[λ(A11i )] > 0 and B21i is Hurwitz;
(ii) for any i ∈ Ss , A11i and B21i are Hurwitz;

A2. for any i ∈ S , there exist positive constants arsi and brsi (for r, s = 1, 2) such
that

2xT P1i gi (x, xt , z, zt ) ≤ a11i ‖x‖2 + a12i ‖xt‖2τ + b11i ‖z − hi‖2 + b12i ‖(z − hi )t‖2τ ,
−2(z − hi )

T P2i ḣi ≤ a11i ‖x‖2 + a12i ‖xt‖2τ + b11i ‖z − hi‖2 + b12i ‖(z − hi )t‖2τ ,

where hi = −B−1
21i Bi (x, xt ), and P1i and P2i are positive-definite matrices

satisfying Lyapunov matrix equations

AT
11i P1i + P1i A11i = −Q1i

BT
21i P2i + P2i B21i = −Q2i

with Q1i and Q2i being given positive-definite matrices;
A3. (i) for any i ∈ Su, let γ > 0 be a positive constant such that the matrix A11i −

γ I has eigenvalues with negative real parts and assume that β2i = αi +
β1i > 0 where β1i = ‖B̃i‖, αi = λ( ÃT

i + Ãi ),
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Ãi =
⎛
⎜⎝
2γ + a11i

λ1m

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−εi b21i
εiλ2M

⎞
⎟⎠ and B̃i =

⎛
⎜⎝

a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

⎞
⎟⎠ .

(ii) for any i ∈ Ss , there exist positive constants ε∗
i and η such that − Ãi is an

M−matrix and λ( Ãi + ÃT
i ) + 2‖B̃i‖ ≤ −η < 0 where

Ãi =
(

−λmin(Q1i )−a11i
λ1M

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−ε∗
i b21i

ε∗
i λ2M

)
, B̃i =

(
a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

)
; and

A4. Assumption A4 of Theorem 9.1 holds.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, xt0 , zt0) and z(t) = z(t; t0, xt0 ,
zt0) be the solutions of (9.2). For each i ∈ S , define Vi (x) = xT P1i x and Wi (z −
hi ) = (z − hi )T P2i (z − hi ). Then, for any i ∈ Su , the time derivative of Vi along
the trajectories of the state x is given by

V̇i (t) = ẋ T P1i x + xT P1i ẋ

≤ (2γ + a11i
λ1m

)Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ

and for any i ∈ Ss , we have

V̇i (t) ≤ −λmin(Q1i ) − a11i
λ1M

Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ .

Similarly, the time derivative of Wi along the trajectories of the state z is given
by

Ẇi (t) = (ż − ḣi )
T P2i (z − hi ) + (z − hi )

T P2i (ż − ḣi )

=
[
1

ε
(B21i z + Bi (x, xt )) − ḣi

]T

P2i (z − hi )

+ (z − hi )
T P2i

[
1

ε
(B21i z + Bi (x, xt )) − ḣi

]

≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − ε∗
i b21i

ε∗
i λ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ

where ε∗ ≥ ε > 0. Then, there exists a positive constant ξi such that

Vi (x(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1)

Wi ((z − hi )(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1).
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While for stable modes, there exists a positive constant ζi such that

Vi (x(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1)

Wi ((z − hi )(t)) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1).

The rest of the proof is similar to that of Theorem 9.1.

Example 9.2 Consider the switched system with following unstable and stable
modes

ẋ = 0.1x + sin z(t − 1)

εż = 0.1x − z

and

ẋ = −10x + ln(1 + x2(t − 1)) + z

εż = x − 2z.

For the unstable mode, we take Vu = 0.5x2 and Wu = 0.5(z − h)2 where h =
0.1x . With little effort, one may find V̇u ≤ 1.4Vu + ‖Wut‖τ and Ẇu ≤ (− 2

ε
+

0.12)Wu + 0.01Vu + 0.01‖Vut ‖τ + 0.1‖Wut‖τ , so that Ãu =
(

1.4 0
0.01 − 2

ε
+ 0.12

)
,
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Fig. 9.2 Nonlinear system with unstable and stable modes
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B̃u =
(

0 1
0.01 0.1

)
. When ε = 0.1, the growth rates are ξ = {1.8499, 4.81}. For

the stable mode, taking Vs = 0.5x2 and Ws = 0.5(z − h)2 where h = 0.5x gives
V̇s ≤ −14Vs + Ws + 4‖Vst ‖τ and Ẇs ≤ (− 4

ε∗ + 11.5)Ws + 5.5Vs + 2‖Vst ‖τ ; thus,

Ãs =
(−14 1

5.5 − 4
ε∗ + 11.5

)
, B̃s =

(
4 0
2 0

)
; by A3(ii), we get ε∗ = 0.2341. When

ε = 0.1 ∈ (0, 0.2341], the decay rates are ζ = {1.5279, 2.4432}. Take λ+ = 4.81
and λ− = 1.5279. If we choose λ∗ = 0.52 and ν = 0.5, then we get T− ≥ 5.3T+.
In this example, we have μ = 1, and from A4, T+ = 1.38 and T− = 8. The unstable
mode is run on [0, 1.38) and [9.38, 10.76). These results are illustrated in Fig. 9.2.

9.3 Notes and Comments

Stability of switched systems incorporating unstable, stable singularly perturbed sys-
tems with time delay has been established. The material of this chapter is taken from
[1]. Particularly, linear time-varying and a special class of nonlinear systems are con-
sidered. Multiple Lyapunov functions technique along with a dwell-time switching
signal is used to analyze the stability of these systems. We have shown that, when
stable subsystems are run longer than unstable modes, exponential stability of the
entire switched systems is guaranteed. For further reading about singularly perturbed
system, one may refer to [2–11]. Particularly, [3] is concerned with reviewing sev-
eral control problems including optimal controls of various systems with singular
perturbations.
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Chapter 10
Singularly Perturbed Impulsive-Switched
Systems with Time Delay

This chapter deals with some stability notions for impulsive-switched systems with
time-delayed singularly perturbed subsystems. The technique of multiple Lyapunov
functions and dwell-time switching signal are used to analyze the stability properties.
As will be seen, the impulses can contribute to obtain stability properties even when
the system consists of only unstable subsystems.

10.1 Problem Formulation

Consider the following impulsive-switched delay systems

ẋ = fσ(t)(t, x, xt , z, zt ), t �= tk
εż = gσ(t)(t, x, xt , z, zt ), t �= tk (10.1)

�x = Bkx(t
−), t = tk

�z = Ckz(t
−), t = tk

where x ∈ R
m and z ∈ R

n are, respectively, the slow and fast states of the system,
and ε is a small positive perturbation parameter. For t0 ∈ R+ andS = {1, 2, . . . , N }
with N > 1 being the number of subsystems,σ : [t0,∞) → S , which is represented
by {ik} according to [tk−1, tk) → ik ∈ S , is a piecewise constant function switching
signal.Here, ik (or i for simplicity of notation)means the i th subsystem is activated on
the subinterval [tk−1, tk). The discontinuities of σ form a strictly increasing sequence
of impulsive-switching times {tk}∞k=1 satisfying tk−1 < tk with limk→∞ tk = ∞; that
is, the impulses are here a consequences of the switchings. For any switching signal
σ, we denote by T+(t0, t) and T−(t0, t) the total activation time of unstable and
stable subsystems, respectively, over the time interval [t0, t).
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We assume that x(t+k ) = x(tk) and z(t+k ) = z(tk), meaning that the solution of
(10.1) is right continuous. In the difference equation, �y = y(t) − y(t−), where
y(t−) = lims→t− y(s), represents the state just before and after the impulse action.
The vector field functions, fi and gi , are assumed to be smooth enough to guarantee
that system (10.1) has a unique solution, and fi (t, 0, 0, 0, 0) ≡ 0 and gi (t, 0, 0, 0, 0)
≡ 0; that is, system (10.1) admits a trivial solution, (x z)T ≡ (0T 0T ).

10.2 Stability Analysis

In this section, wewrite some Lyapunov-type sufficient conditions to guarantee some
stability properties of linear and a special class of nonlinear systems. Throughout
this chapter, we denote bySu = {1, 2, . . . , q} andSs = {q + 1, q + 2, . . . , N } the
sets of indices of the unstable and stable subsystems, respectively.

10.2.1 Linear Systems

Consider the following linear impulsive-switched system

ẋ = A11i x + A12i xt + B11i z + B12i zt , t �= tk
εi ż = A21i x + A22i xt + B21i z, t �= tk (10.2)

�x = Bkx(t
−), t = tk

�z = Ckz(t
−), t = tk

where, for any i ∈ S = Su ∪ Ss , A11i , A12i ∈ R
m×m , B11i , B12i ∈ R

m×n ,
A2si , A22i ∈ R

n×m , B21i ∈ R
n×n and B21i is nonsingular and Hurwitz. Let the uncou-

pled slow and fast subsystems of (11.2) be, respectively, given by

ẋ = A11i x and εi ż = B21i z.

Theorem 10.1 The trivial solution of (10.2) is exponentially stable if the following
assumptions hold:

A1. for any i ∈ Su, A11i has eigenvalues with positive real parts and, for any
i ∈ Ss , A11i is Hurwitz;

A2. for any i ∈ S and all t ∈ [tk−1, tk), there exist positive constants a11i , a12i ,
a21i , a22i , b11i , b12i , b21i and b22i such that

2xT P1i [A12i xt + B11i z + B12i zt ] ≤ a11i ‖x‖2 + a12i ‖xt‖2τ + b11i ‖(z − hi )‖2
+ b12i ‖(z − hi )t‖2τ ,

− 2(z − hi )
T P2i ḣi ≤ a21i ‖x‖2 + a22i ‖xt‖2τ + b21i ‖(z − hi )‖2 + b22i ‖(z − hi )t‖2τ ,
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where hi (t) = −B−1
21i [A21i x + A22i xt ] and P1i and P2i are positive-definite

matrices satisfying the Lyapunov matrix equations

AT
11i P1i + P1i A11i = −Q1i ,

BT
21i P2i + P2i B21i = −Q2i ,

for any given positive-definite matrices Q1i and Q2i ;
A3. (i) for any i ∈ Su, assume that λmin(˜AT

i + ˜Ai ) + ‖˜Bi‖ > 0, where

˜Ai =
(

2γ∗ + a11i
λ1m

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−εi b21i
εiλ2m

)

, ˜Bi =
(

a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

)

and γ∗ is a positive constant such that the matrix A11i − γ∗ I is Hurwitz;
(ii) for any i ∈ Ss , there exist positive constants ε∗

i such that −˜Ai is an M-
matrix and λmax(˜Ai + ˜AT

i ) + 2‖˜Bi‖ < 0 where

˜Ai =
(

−λmin(Q1i )−a11i
λ1M

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−ε∗
i b21i

ε∗
i λ2M

)

, ˜Bi =
(

a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

)

,

and Q1i and Q2i are defined in assumption A2;
A4. let λ+ = max{ξi | i ∈ Su},λ− = min{ζi | i ∈ Ss} with ξi and ζi being the

growth and decay rates of unstable and stable subsystems, respectively, and,
for any t0, assume that the switching signal guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥ λ+ + λ∗

λ− − λ∗ , (10.3)

where T+(t0, t) and T−(t0, t) are defined in the previous section and λ∗ ∈
(0,λ−). Furthermore, there exists 0 < ν < ζi such that

(i) for i ∈ Su and k = 1, 2, . . . , l

ln μ(αk + βk + γk + ψk) − ν(tk − tk−1) ≤ 0; (10.4)

(ii) for i ∈ {l + 1, l + 2, . . . , N − 1} and k = l + 1, l + 2, . . . , N − 1

ln μ(αk + βk + γk + ψke
ζi τ ) + ζiτ − ν(tk − tk−1) ≤ 0, (10.5)

where ζi is the unique positive solution of

ζi + λmax(˜A
T
i + ˜Ai ) + ‖˜Bi‖ + ‖˜Bi‖eζi τ = 0,
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αk = μλ2
max([I + Bk]), βk = λ2M

λ1m
(‖Uk‖ + rk + sk)rk ,

γk = μ(‖Uk‖ + rk + sk)‖Uk‖, ψk = λ2M
λ1m

(‖Uk‖ + rk + sk)sk ,
Uk = I + Ck,
rk = max{‖Rik‖ : Rik = [I + Ck]B−1

21i A21i − B−1
21i A21i [I + Bk] ∀i ∈ S },

and
sk = max{‖Sik‖ : Sik = [I + Ck]B−1

21i A22i − B−1
21i A22i [I + Bk] ∀i ∈ S }.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) and z(t) be the solution of (10.2).
Define Vi (t) = Vi (x(t)) = xT (t)P1i x(t) and Wi (t) = Wi ((z − hi )(t)) =
(z − hi )T (t)P2i (z − hi )(t). Then, the time derivative of Vi and Wi along the tra-
jectories of x and z are:

(i) for any i ∈ Su

V̇i (t) ≤ (2γ∗ + a11i
λ1m

)Vi (t) + b11i
λ2m

Wi ((t)) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ ,

Ẇi (t) = (ż − ḣi )
T P2i (z − hi ) + (z − hi )

T P2i (ż − ḣi )

=
(1

ε
(A21i x + A22i xt + B21i z) − ḣi

)T
P2i (z − hi )

+ (z − hi )
T P2i

(1

ε
(A21i x + A22i xt + B21i z) − ḣi

)

≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − εi b21i
εiλ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ ,

(ii) for any i ∈ Ss

V̇i (t) ≤ −λmin(Q1i ) − a11i
λ1M

Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ ,

Ẇi (t) ≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − ε∗
i b21i

ε∗
i λ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ ,

where ε∗
i ≥ εi > 0. Combining V̇ and Ẇ in a vector form yields, for i ∈ Su ,

(

V̇ (t)
Ẇ (t)

)

≤
(

2γ∗ + a11i
λ1m

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−εi b21i
εiλ2M

)

(

V (t)
W (t)

)

+
(

a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

)

( ‖Vit‖τ

‖Wit‖τ

)

and, by A3(i) and Lemma 2.4, there exists ξi > 0 such that

Vi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1)

Wi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1).
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Similarly, for any i ∈ Ss , we get

(

V̇ (t)
Ẇ (t)

)

≤
(

−λmin(Q1i )−a11i
λ1M

b11i
λ2m

a21i
λ1m

−λmin(Q2i )−ε∗
i b21i

ε∗
i λ2M

)

(

V (t)
W (t)

)

+
(

a12i
λ1m

b12i
λ2m

a22i
λ1m

b22i
λ2m

)

( ‖Vit‖τ

‖Wit‖τ

)

and, by A3(ii) and Lemma 2.3, there exists ζi > 0 such that

Vi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1)

Wi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1).

At the impulsive-switching moment, t = tk , we have

Vi (tk) = x(tk)
T P1i x(tk)

≤ λmax

(

[I + Bk]T P1i [I + Bk]
)

xT (t−k )x(t−k )

= αkVi (t
−
k ),

where αk = μλ2
max(I + Bk). We also have at t = tk

Wi (tk) =
(

z(tk) − hi (tk)
)T

P2i

(

z(tk) − hi (tk)
)

=
{

z(tk) + B−1
21i

[A21i x(tk) + A22i xtk ]
}T

P2i

{

z(tk) + B−1
21i

[A21i x(tk) + A22i xtk ]
}

=
{

[I + Ck ]z(t−k ) + B−1
21i

[A21i [I + Bk ]x(t−k ) + A22i [I + Bk ]xt−k ]
}T

P2i

×
{

[I + Ck ]z(t−k ) + B−1
21i

[A21i [I + Bk ]x(t−k ) + A22i [I + Bk ]xt−k ]
}

=
(

z(t−k ) − hi (t
−
k )

)T
UT
k P2i Uk

(

z(t−k ) − hi (t
−
k )

)

+ xT (t−k )RT
ik P2i Rik x(t

−
k )

+ xT
t−k
STik P2i Sik xt−k

− 2
(

z(t−k ) − hi (t
−
k )

)T
UT
k P2i Rik x(t

−
k )

− 2
(

z(t−k ) − hi (t
−
k )

)T
UT
k P2i Sik xt−k

− 2xT (t−k )RT
ik P2i Sik xt−k

≤ ‖Uk‖2‖P2i ‖‖z(t−k ) − hi (t
−
k )‖2 + ‖Rik‖2‖P2i ‖‖x(t−k )‖2

+ ‖Sik‖2‖P2i ‖‖xt−k ‖2τ + ‖Uk‖‖P2i ‖‖Rik‖
(

‖z(t−k ) − hi (t
−
k )‖2 + ‖x(t−k )‖2

)

+ ‖Uk‖‖P2i ‖‖Sik‖
(

‖z(t−k ) − hi (t
−
k )‖2 + ‖xt−k ‖2τ

)

+ ‖Rik‖‖P2i ‖‖Sik‖
(

‖x(t−k )‖2 + ‖xt−k ‖2τ
)
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≤ λmax(P2i )
(

‖Uk‖ + ‖Rik‖ + ‖Sik‖
){ ‖Uk‖

λmin(P2i )
Wi (t

−
k ) + ‖Rik‖

λmin(P1i )
Vi (t

−
k )

+ ‖Sik‖
λmin(P1i )

‖Vit−k
‖τ

}

≤ λ2M

(

‖Uk‖ + rk + sk
){‖Uk‖

λ2m
Wi (t

−
k ) + rk

λ1m
Vi (t

−
k ) + sk

λ1m
‖Vit−k

‖τ

}

= γkWi (t
−
k ) + βkVi (t

−
k ) + ψk‖Vit−k

‖τ ,

whereβk = λ2M

(

‖Uk‖ + rk + sk
)

rk
λ1m

, γk = λ2M

(

‖Uk‖ + rk + sk
)

‖Uk‖
λ2m

,ψk = λ2M
(

‖Uk‖ + rk + sk
)

sk
λ1m

, rk = max{‖Rik‖ | ∀i ∈ S } and sk = max{‖Sik‖ | ∀i ∈ S }.
For instance, if we run an unstable subsystem on the first interval and a stable one

on the second interval, we get, respectively,

V1(t) ≤
(

‖V1t0
‖τ + ‖W1t0

‖τ

)

eξ1(t−t0),

V2(t) ≤
(

‖V2t1
‖τ + ‖W2t1

‖τ

)

e−ζ2(t−t1),

where

‖V2t1
‖τ ≤ α1μ

(

‖V1t0
‖τ + ‖W1t0

‖τ

)

eξ1(t1−t0),

‖W2t1
‖τ ≤ μ(β1 + γ1 + ψ1)

(

‖V1t0
‖τ + ‖W1t0

‖τ

)

eξ1(t1−t0).

Generally, one may have

VN (t) ≤
l

∏

i=1

μ(αi + βi + γi + ψi )e
ξi (ti−ti−1) ×

N−l−1
∏

j=l+1

μ
(

α j + β j + γ j

+ ψ j e
ζ j τ

)

eζ j τe−ζ j (t j−t j−1) ×
(

‖V1t0
‖τ + ‖W1t0

‖τ

)

e−ζN (t−tN−1).

Making use of A4, we have

VN (t) ≤
(

‖V1t0
‖τ + ‖W1t0

‖τ

)

e−(λ∗−ν)(t−t0).

Similarly, we have

WN (t) ≤
(

‖V1t0
‖τ + ‖W1t0

‖τ

)

e−(λ∗−ν)(t−t0).

Then, there exists K1 such that

‖x(t)‖ ≤ K1(‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2
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and by the fact that

‖z‖ − ‖hi‖ ≤ ‖z − hi‖ ≤ 1√
λ2m

W 1/2
i ,

there exists K2 such that

‖z(t)‖ ≤ K2(‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2.

Hence,

‖x(t)‖ + ‖z(t)‖ ≤ K (‖xt0‖τ + ‖zt0‖τ )e
−(λ∗−ν)(t−t0)/2,

where K = K1 + K2. This shows that the trivial solution of (10.2) is exponential
stable.

Example 10.1 Consider the impulsive-switched system (10.2) with the following
unstable and stable subsystems

ẋ = x + 4z(t − 1),

εż = x(t − 1) − z,

and

ẋ = −5x + z(t − 1)

εż = x(t − 1) − z

and, in the difference impulsive equations for any k ∈ N, Bk = −1/2 and Ck =
−1/2. In this example, the switching signal σ takes values in the set {1, 2} alterna-
tively.

For the unstable subsystems, when γ = 3, ε = 0.4, Q11 = 13 and Q21 = 1,
then, from the Lyapunov matrix equations, we get P11 = 3.25 and P21 = 0.5,

˜Au =
(

10 0
0 −6

)

and ˜Bu =
(

0 26
0.31 0

)

. In this case, the condition in A3(i) is sat-

isfied. While for the stable subsystem, when Q12 = 44 and Q22 = 8, then, from
the Lyapunov matrix equations, we get P12 = 4.4 and P22 = 4, and, from condition

in A3(ii), we get ε∗ = 0.15, ˜As =
(−9 0

0 −140

)

and ˜Bs =
(

0 8.8
6.15 0

)

. The dwell

times for the unstable subsystem is 1.5 and for the stable one is 4. Figure10.1 illus-
trates these results where unstable and stable subsystems are run alternatively. The
set of switching or impulsive times is {tk}k=8

k=1 = {1.5, 5.5, 7, 11, 12.5, 16.5, 18, 22}.
For instance, σ(t) = 1 (or 2) for t ∈ [0, 1.5)(or [1.5, 5.5)), respectively.

In the following theorem, we show how impulses can play as a stabilizer in some
linear impulsive systems with unstable subsystems.
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Fig. 10.1 Impulsive-switched system with unstable and stable subsystems

Theorem 10.2 Consider system (10.2) with S = {1, 2, . . . , N }. Assume that the
following assumptions hold:

A1. for any i ∈ S , A11i has eigenvalues with positive real parts;
A2. assumptions A2 and A3(i) of Theorem 10.1 hold;
A3. there exists a constant ϑ ≥ 1 such that

ln
(

ϑμ(αi + βi + γi + ψi )
)

+ ξi (tk+1 − tk) ≤ 0,

where μ, αi , βi , γi , ψi and ξi are defined in Theorem 10.1.

Then, the trivial solution of (10.2) is stable if ϑ = 1 and asymptotically stable if
ϑ > 1.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) and z(t) be the solution of (10.2). Define
Vi (t) = xT P1i x and Wi (t) = (z − hi )T P2i (z − hi ). Then, the time derivative of Vi

and Wi along the trajectories of system (11.2) are

V̇i (t) ≤ (2γ + a11i
λ1m

)Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ

Ẇi (t) ≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − εi b21i
εiλ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ .

Then, there exists a positive constant ξi such that
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Vi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1)

Wi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
ξi (t−tk−1).

From Theorem 10.1, we have at t = tk

Vi (tk) ≤ αkVi (t
−
k )

Wi (tk) ≤ βkVi (t
−
k ) + γkWi (t

−
k ) + ψk‖Vit−k

‖τ .

We also have, for t ∈ [tk, tk+1),

Vi (t) ≤ (‖V1t0
‖τ + ‖W1t0

‖τ )e
ξ1(t1−t0)μ(α1 + β1 + γ1 + ψ1)e

ξ2(t2−t1)

× μ(α2 + β2 + γ2 + ψ2)e
ξ2(t3−t2) · · · μ(αk + βk + γk + ψk)e

ξi (tk+1−tk )

= (‖V1t0
‖τ + ‖W1t0

‖τ )
1

ϑk
eξ1(t1−t0)ϑμ(α1 + β1 + γ1 + ψ1)e

ξ2(t2−t1)

× ϑμ(α2 + β2 + γ2 + ψ2)e
ξ2(t3−t2) · · · ϑμ(αk + βk + γk + ψk)e

ξi (tk+1−tk )

≤ (‖V1t0
‖τ + ‖W1t0

‖τ )
1

ϑk
eξ1(t1−t0).

Similarly,

Wi (t) ≤ (‖V1t0
‖τ + ‖W1t0

‖τ )
1

ϑk
eξ1(t1−t0).

From Theorem 10.1, there exists a positive constant K such that

‖x(t)‖ + ‖z(t)‖ ≤ K√
ϑk

(‖xt0‖τ + ‖zt0‖τ )e
ξ1(t1−t0)/2.

Clearly, if ϑ = 1, then the trivial solution of system (10.2) is stable and, if ϑ > 1
and k → ∞, then the trivial solution of the system is asymptotically stable. This
completes the proof.

Example 10.2 Consider the impulsive-switched system (10.2) with the following
unstable subsystems

ẋ = x + 3z(t − 1),

εż = 2x(t − 1) − 2z, ε = 0.7

and

ẋ = x + 2z(t − 1),

εż = 4x(t − 1) − 2z, ε = 0.7
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Fig. 10.2 Impulsive-switched system with all unstable subsystems

and difference equations are �x = −0.97x(t) and �z = −0.9z(t). The switching
signal σ takes values in {1, 2} alternatively.

When γ = 2, Q11 = 2 and Q21 = 2, then we get P11 = 1 and P21 = 0.5, while, if
Q12 = 3 and Q22 = 1, then we get P12 = 1.5 and P22 = 0.25, so that μ = 2. We also
get, for the first subsystem, λ(˜AT

1 + ˜A1) = {−2.3571, 14} and ‖˜B1‖ = 12, so that
the growth rates are ξ1 = {19, 10.8214}. For the second subsystem, λ(˜AT

2 + ˜A2) =
{−0.9286, 14} and ‖˜B2‖ = 12, so that the growth rates are ξ2 = {19, 11.5357}. The
impulse parameters are, for any k ∈ N, αk = 0.0018, βk = 0, γk = 0.048 and ψk =
0.0672. A simple check shows that A3 holds if ϑ ∈ [1, 4.2735). Taking ϑ = 2 and
ξ1 = 10.8214 gives tk+1 − tk ≤ 0.0702 and ξ2 = 11.5357 gives tk+1 − tk ≤ 0.0658.
Thus, ifwe choose TD = 0.0658, then the switching or impulsive times are {tk}k=30

k=1 =
kTD . Figure10.2 shows the simulation results.

10.2.2 Nonlinear Systems

Consider the following nonlinear impulsive-switched system

ẋ = A11i + gi (x, xt , z, zt ), t �= tk
εż = B21i z + Bi (x, xt ), t �= tk (10.6)

�x = Bkx(t), t = tk
�z = Ckz(t), t = tk

where i ∈ S = Su ∪ Ss , and the n × n matrix B21i is nonsingular and Hurwitz.
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In the following theorem, we state and prove exponential stability of the trivial
solution of system (10.6).

Theorem 10.3 The trivial solution of (10.6) is exponentially stable if the following
assumptions hold:

A1. assumption A1 of Theorem 10.1 holds;
A2. (i) there exist positive constants a11i , a12i , a21i , a22i , b11i , b12i , b21i and b22i

such that

2xT P1i gi (x, xt , z, zt ) ≤ a11i ‖x‖2 + a12i ‖xt‖2τ + b11i ‖z − hi‖2 + b12i ‖(z − hi )t‖2τ ,

−2(z − hi )
T P2i ḣi ≤ a21i ‖x‖2 + a22i ‖xt‖2τ + b21i ‖z − hi‖2 + b22i ‖(z − hi )t‖2τ ,

where hi (t) = −B−1
21i Bi (x(t), xt ), and P1i and P2i are positive-definite

matrices satisfying Lyapunov matrix equations

AT
11i P1i + P1i A11i = −Q1i ,

BT
21i P2i + P2i B21i = −Q2i ,

for any given positive-definite matrices Q1i and Q2i ;
(ii) there exist positive constants a, b and c such that

2
(

z(t−k ) − hi (t
−
k )

)T [I + Ck]T P2i
{

[I + Ck]hi (t−k ) − hi (tk)
}

+
{

[I + Ck]hi (t−k ) − hi (tk)
}T

P2i
{

[I + Ck]hi (t−k ) − hi (tk)
}

≤ a‖z(t−k ) − hi (t
−
k )‖2 + b‖x(t−k )‖2 + c‖xt−k ‖2τ ,

where hi (tk) = −B−1
21i Bi (x(tk), xtk );

A3. assumption A3 of Theorem 10.1 holds; and
A4. assumption A4 of Theorem 10.1 holds where αk = μ1λ

2
max([I + Bk]), βk =

b/λ1m, γk = μ2λ
2
max([I + Ck]) + a and ψk = c/λ1m.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) and z(t) be the solution of (10.6).
Define Vi (t) = xT (t)P1i x(t) and Wi (t) = (z − hi )T (t)P2i (z − hi )(t). Then, the
time derivative of Vi and Wi along the trajectories of x and z are:
(i) for any i ∈ Su ,

V̇i (t) ≤ (2γ + a11i
λ1m

)Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ

Ẇi (t) ≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − εi b21i
εiλ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ ,
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(ii) for any i ∈ Ss ,

V̇i (t) ≤ −λmin(Q1i ) − a11i
λ1M

Vi (t) + b11i
λ2m

Wi (t) + a12i
λ1m

‖Vit‖τ + b12i
λ2m

‖Wit‖τ

Ẇi (t) ≤ a21i
λ1m

Vi (t) − λmin(Q2i ) − ε∗
i b21i

ε∗
i λ2M

Wi (t) + a22i
λ1m

‖Vit‖τ + b22i
λ2m

‖Wit‖τ .

Then, as done before there exists positive constants ξi (for any i ∈ Su) such that

Vi (t) ≤ (‖Vit+k−1
‖τ + ‖Wit+k−1

‖τ )e
ξi (t−tk−1)

Wi (t) ≤ (‖Vit+k−1
‖τ + ‖Wit+k−1

‖τ )e
ξi (t−tk−1)

and ζi (for i ∈ Ss) such that

Vi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1)

Wi (t) ≤ (‖Vitk−1
‖τ + ‖Witk−1

‖τ )e
−ζi (t−tk−1).

At the impulsive-switching moments t = tk , we have

Vi (tk) ≤ αkVi (t
−
k ),

where αk = μλ2
max(I + Bk), and

Wi (tk) =
(

z(tk) − hi (tk)
)T

P2i
(

z(tk) − hi (tk)
)

=
(

z(t−k ) − hi (t
−
k )

)T [I + Ck]T P2i [I + Ck]
(

z(t−k ) − hi (t
−
k )

)

+ 2
(

z(t−k ) − hi (t
−
k )

)T [I + Ck]T P2i
{

[I + Ck]hi (t−k ) − hi (tk)
}

+
{

[I + Ck]hi (t−k ) − hi (tk)
}T

P2i
{

[I + Ck]hi (t−k ) − hi (tk)
}

≤ λmax

(

[I + Ck]T P2i [I + Ck]
)

‖z(t−k ) − hi (t
−
k )‖2 + a‖z(t−k ) − hi (t

−
k )‖2

+ b‖x(t−k )‖2 + c‖xt−k ‖2τ
= βkVi (t

−
k ) + γkWi (t

−
k ) + ψk‖Vit−k

‖τ ,

where βk = b/λ1m , γk = (λ2Mλ2
max[I + Ck] + a)/λ2m and ψk = c/λ1m . The rest of

the proof is similar to that of Theorem 10.1; thus, it is left here as an exercise.
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Example 10.3 Consider impulsive-switched system (10.6) with the following unsta-
ble and stable subsystems

ẋ = 0.1x + sin z(t − 1)

εż = 0.1x − z,

and

ẋ = −10x + ln(1 + x2(t − 1)) + z

εż = x − 2z

and, in the difference equation, Bk = −1/2 and Ck = −1/2.
For the unstable subsystem, define Vu(x) = 0.5x2 andWu(z − h) = 0.5(z − h)2,

where h = 0.1x . Then, one can find V̇u(x) ≤ 1.4Vu + ‖Wut‖τ and Ẇu ≤ (−2/ε +
0.12)Wu + 0.01Vu + 0.01‖Vu‖τ + 0.1‖Wut‖τ , ˜Au =

(

1.4 0
0.01 −2/ε + 0.12

)

and

˜Bu =
(

0 1
0.01 0.1

)

. Taking ε = 0.1, the growth rate are ξ = {1.85, 4.8}. While for

the stable subsystem, defining Vs(x) = 0.5x2, Ws(z − h) = 0.5(z − h)2 where h =
0.5x give V̇s ≤ −14Vs + Ws + 4‖Vst ‖τ and Ẇs ≤ (−4/ε∗ + 11.5)Ws + 5.5Vs +
2‖Vst‖τ ; thus, ˜As =

(−14 1
5.5 −4/ε∗ + 11.5

)

and ˜Bs =
(

4 0
2 0

)

. By A3(i i), we get

ε∗ = 0.2341; if we take ε = 0.1 ∈ (0, 0.2341], the decay rates are ζ =
{1.5279, 2.4432}. The dwell times for the unstable subsystems is 1.1 and the stable
one is 5. Figure10.3 shows these results after running unstable and stable subsystems
alternatively.

In the following theorem, we state sufficient conditions to guarantee stability and
asymptotic stability of systems (10.6) with all unstable subsystems.

Theorem 10.4 Consider the impulsive-switched nonlinear system in (10.6) with
S = {1, 2, . . . , N }. Assume that the following assumptions are satisfied:

A1. for any i ∈ S , A11i has eigenvalues with positive real parts;
A2. assumption A2 of Theorem 10.3 and A3(i) of Theorem 10.1 hold; and
A3. there exists a constant ϑ ≥ 1 such that

ln
(

ϑμ(αi + βi + γi + ψi )
)

+ ξi (tk+1 − tk) ≤ 0,

where μ and ξi are defined in Theorem 10.1 and αi , βi , γi and ψi are defined
in Theorem 10.3.

Then, the trivial solution of system (10.6) is stable ifϑ = 1 and it is asymptotically
stable if ϑ > 1.
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Fig. 10.3 Impulsive-switched system with unstable and stable linear subsystems

The proof of this theorem is a consequence of the previous theorems; thus, it is left
here as an exercise.

10.3 Notes and Comments

Throughout this chapter, an impulsive-switched singularly perturbed system with
time delay has been addressed. Particularly, some stability properties of the system
have been presented. The material of this chapter is taken from [1]. We have shown
that exponential stability of the system that consists of unstable and stable subsystems
is guaranteed if the total activation time of stable subsystems be larger than that
of the unstable ones. We have also explored that impulses do contribute to achieve
stability properties of systems consisting of unstable subsystems.Multiple Lyapunov
functions technique and dwell-time approach are used to analyze the qualitative
properties of the system.
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Chapter 11
Stabilization and State Estimation
via Sliding Mode Control

This chapter deals with designing a nonlinear sliding mode control (SMC) and non-
linear sliding mode observer (SMO) for a class of linear time-invariant (LTI) sin-
gularly perturbed systems (SPS) subject to impulsive effects. As treaded in the last
two chapters, the continuous states of the system are viewed as a large-scale inter-
connected system with two-timescale (slow and fast) subsystems. The impulses are
considered as a perturbation to the system. To analyze the stabilization and state
estimation problems, Lyapunov function technique is used. As will be seen, the goal
is to design a SMC law through the slow reduced order subsystems to achieve closed-
loop stability of the full-order system. This approach in turn results in lessening some
unnecessary sufficient conditions on the fast subsystem. Later, assuming that partial
output measurement of the slow subsystem is available, a similar control design is
adopted to estimate the states of full-order SPS, where a sliding mode modification
of a Luenberger observer is used.

11.1 Problem Formulation

Consider the following impulsive singularly perturbed system with control feedback

ẋ = A11x + A12z + Bu, t �= τk, (11.1a)

εż = A21x + A22z, t �= τk, (11.1b)

x(t) = (I + Ek)x(t
−), t = τk, (11.1c)

z(t) = (I + Fk)z(t
−), t = τk, (11.1d)

x(0) = x0, z(0) = z0, (11.1e)

where x ∈ R
n and z ∈ R

m are, respectively, the slow and fast state vectors of the
system, u ∈ R

r is the system r−dimensional feedback control or input of the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_11
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Kx with K ∈ R
r×n being the control gain matrix, ε is a small positive parameter,

A11 ∈ R
n×n, A12 ∈ R

n×m, A21 ∈ R
m×n, A22 ∈ R

m×m are real constantmatrices, B ∈
R

n×r is the control matrix, and Ek ∈ R
n×n and Fk ∈ R

m×m are the impulsive gain
matrices. For all k ∈ N, τk form a strictly increasing sequence of impulsive moments
{τk}k∈N with τ1 > 0 and limk→∞ τk = ∞. Throughout this chapter, we assume that
the solution is right-continuous (i.e. x(τ+

k ) = x(τk) and z(τ
+
k ) = z(τk) for all k ∈ N)

and the matrix A22 is nonsingular and Hurwitz.
In the following, we state the definitions of exponential stability of impulsive SPS,

where we assume that there is no impulsive action at the initial time.

Definition 11.1 The trivial solution of system (11.1) is said to be globally exponen-
tially stabilized by the feedback control law u if there exist two positive constants K
and λ such that

‖x(t)‖ + ‖z(t)‖ ≤ K
(‖x0‖ + ‖z0‖

)
e−λt , ∀t ≥ t0 and t0 ∈ R+

where (x(t) z(t))T is any solution vector of (11.1). Particularly, if this relation holds
with u ≡ 0, then the trivial solution of (11.1) is said to be globally exponentially
stable.

11.2 Slow Sliding Mode Control Design

In this section, we start with designing the SMC through the slow reduced, nonim-
pulsive subsystem, then it is carried over to stabilize the full-order SPS under the
impulsive effects. Moreover, it is reasonable to assume that the system is impulsive-
free during the reachability stage, because the system states reach the sliding surface
in a finite, short period of time.

Toward our goal, for any t �= τk , setting ε = 0 in (11.1b) yields

ẋ = A11x + A12z + Bu, (11.2a)

0 = A21x + A22z. (11.2b)

From (11.2b), we get

z = h(x) = −A−1
22 A21x (11.3)

and, by substituting z into (11.2a), we obtain the reduced subsystem

ẋs = A0xs + B0us, (11.4)

where A0 = A11 − A12A
−1
22 A21 and B0 = B.
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11.2.1 Sliding Mode Control with Multiple Inputs

Consider the r−dimensional slidingmodehyper-surface definedby the vector-valued
function

Ss(xs) =

⎡

⎢⎢⎢
⎣

s1(xs)
s2(xs)

...

sr (xs)

⎤

⎥⎥⎥
⎦

r×1

=

⎡

⎢⎢⎢
⎣

c1 xs
c2 xs

...

cr xs

⎤

⎥⎥⎥
⎦

r×1

=

⎡

⎢⎢⎢
⎣

c1
c2
...

cr

⎤

⎥⎥⎥
⎦

r×n

xs = Cs xs, (11.5)

where si (xs) is a scalar-valued function which represents the i th sliding mode hyper-
surface and is defined by si (xs) = ci xs with ci ∈ R

1×n (i = 1, 2, . . . r ) and Cs ∈
R

r×n . Then, the time derivative of each si (xs) is given by

ṡi (xs(t)) = (∇si (xs))
T ẋs = ∂si (xs)

∂xs

dxs
dt

= ci ẋs, i = 1, 2, . . . r (11.6)

where ∇si stands for the gradient of si , i.e. ∇si (xs) =
[∂si1(xs)

∂xs1

∂si2(xs)

∂xs2
· · ·

∂sir (xs)

∂xsn

]T
with xs = [xs1 xs2 · · · xsn]T . In a matrix form, (11.6) becomes

Ṡs(xs(t)) =

⎡

⎢⎢⎢
⎣

(∇s1(xs))T

(∇s2(xs))T

...

(∇sr (xs))T

⎤

⎥⎥⎥
⎦

r×n

ẋs = Cs ẋs(t). (11.7)

Thus, along the trajectories of (11.4), we have

Ṡs(xs) = Cs A0xs + Cs B0us = 0 (11.8)

which leads to the r− dimensional equivalent control

ueqs = −(Cs B0)
−1Cs A0xs, (11.9)

where B0 ∈ R
n×r and (Cs B0)

−1 is the inverse matrix of Cs B0 ∈ R
r×r . Substituting

ueqs into (11.4) leads to the corresponding closed-loop equivalent reduced system.
The n × n matrix Aeq is stable as it has n − r eigenvalues in the left half of the
complex plane, and r zero eigenvalues to endure the system’s motion on the sliding
surface.
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11.2.2 Reachability Analysis

To analyze the motion of the reduced slow system with multiple inputs outside the
sliding surface (i.e. Ss(xs) �= 0), we define

V
(
Ss(xs)

) = 1

2
STs (xs)Ss(xs) (11.10)

and require that the time derivative

V̇ (Ss(xs)) = ∂V

∂Ss(xs)

dSs(xs)

dt
= STs (xs)Ṡs(xs) = STs (xs)

(
Cs A0xs + Cs B0us

)
< 0

which is guaranteed if the r−dimensional control is given by

us(t) = ueqs (t) − (Cs B0)
−1diag(η)Sgn(Ss(xs)), (11.11)

where diag(η) is an r × r diagonal matrix with diagonal elements being equal to pos-
itive constant numbers ηi (for i = 1, 2, . . . , r ) and Sgn refers to the r−dimensional
signum vector function defined as follows:

Sgn(Ss(xs)) =

⎡

⎢⎢
⎢
⎣

sgn(s1(xs))
sgn(s2(xs))

...

sgn(sr (xs))

⎤

⎥⎥
⎥
⎦
where sgn(si (xs)) =

⎧
⎨

⎩

1, if si (xs) > 0
0, if si (xs) = 0
−1, if si (xs) < 0.

(11.12)

Therefore, the continuous closed-loop full system outside the sliding surface is
given by

ẋs = A11xs + A12z + Bus(t), t �= τk, (11.13a)

εż = A21xs + A22z, t �= τk, (11.13b)

xs(0) = xs0, z(0) = z0. (11.13c)

Clearly, on the sliding surface S(xs) = 0, we have Sgn(Ss(xs)) = 0 which leads
to us(t) = ueqs (t) and, hence, the continuous closed-loop system during the sliding
motion is given by

ẋs = A11xs + A12z + Bueqs (t), t �= τk, (11.14a)

εż = A21xs + A22z, t �= τk, (11.14b)

xs(0) = xs0, z(0) = z0. (11.14c)
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We now aim to apply the designed control law with multiple inputs of the reduced
slow system in (11.11) to establish the stability property of the closed-loop system
of the full-order impulsive SPS.

Theorem 11.1 Assume that the following assumptions hold:

(i) the reduced slow subsystem (or the matrix pair (A0, B0)) is stabilizable and
A22 is Hurwitz;

(ii) for all t �= τk , there exist positive constants a21 and a22 such that

−2
(
z − h(x)

)T
Pḣ(x) ≤ a21x

T x + a22
(
z − h(x)

)T (
z − h(x)

)
,

where P is an m × m positive-definite matrix satisfying the Lyapunov matrix

equation AT
22P + PA22 = −I and ḣ(x) = ∂h(x)

∂x
ẋ with

∂h(x)

∂x
being the m ×

n Jacobian matrix;
(iii) there exists a positive constant ε∗ such that − Ã is an M-matrix, where

Ã =
[

1
α2

max{Re[λ( Ã11)]} 1
2γ1β1

a21
α1

−(
1

β2ε∗ − a22
β1

)

]

,

where α1,α2,β1 and β2 are positive constants that will be defined later,
Ã11 = A11 + γ1

2 A12AT
12 − A12A

−1
22 A21 − B1(CB0)

−1CA0 with γ1 being a pos-

itive constant and max{Re[λ( Ã11)]} is the maximum of real parts of the eigen-
values of Ã11; and

(iv) for any i = 1, 2, . . . , k, the time between impulses satisfy

ti − ti−1 >
1

ϑ
ln(α1i + α2i + β2i ),

with ϑ,α1i ,α2i and β2i being positive constants such thatα1i + α2i + β2i > 1.

Then, the SMC law (11.11) guarantees that the closed-loop of the full-order impulsive
system be globally exponentially stable for ε ∈ (0, ε∗].
Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0, z0) and z(t) = z(t; t0, x0, z0)
be the solution of (11.1). Define V (x) = 1

2 x
T x and W (z − h(x)) = (z − h(x))T

P(z − h(x)) as Lyapunov function candidates for the slow and fast subsystems,
respectively. Then, there exist positive constants α1 ≤ 1

2 ,α2 ≥ 1
2 ,β1 ≤ λmin(P) and

β2 ≥ λmax(P) such that

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2, (11.15)

β1‖(z − h(x))‖2 ≤ W (z − h(x)) ≤ β2‖(z − h(x))‖2. (11.16)
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The time derivative of V along the continuous trajectories of x during the sliding
motion (Ss = 0) is given by

V̇ (x) = xT
(
A11x + A12(z − h(x)) + A12h(x) − B1(CB0)

−1CA0x
)

≤ xT
(
A11 + γ1

2
A12A

T
12 − A12A

−1
22 A21 − B1(CB0)

−1CA0

)
x

+ 1

2γ1
(z − h(x))T (z − h(x))

≤ 1

α2
max{Re[λ( Ã11)]}V (x) + 1

2γ1β1
W (z − h(x)), (11.17)

where we have used assumption (ii), the fact that 2xT A12(z − h(x)) ≤ γ1xT A12AT
12

x + 1
γ1

(z − h(x))T (z − h(x)), right inequality in (11.15), and left inequality in
(11.16).

Likewise, the time derivative Ẇ along the trajectories of z during the sliding
motion is given by

Ẇ (z − h(x)) =
(1

ε
(A21x + A22z) − ḣ(x)

)T
P(z − h(x))

+ (z − h(x))T P
(1

ε
(A21x + A22z) − ḣ(x)

)

= 1

ε

(
A22z − A22h(x)

)T
P(z − h(x)) − ḣT (x)P(z − h(x))

+ 1

ε
(z − h(x))T P

(
A22z − A22h(x)

) − (z − h(x))T Pḣ(x)

= 1

ε
(z − h(x))T

(
AT
22P + PA22

)
(z − h(x)) − 2(z − h(x))T Pḣ(x)

≤ −(
1

β2ε
− a22

β1
)W (z − h(x)) + a21

α1
V (x), (11.18)

wherewe have used the second inequality in assumption (ii), left inequality in (11.15)
and right inequality in (11.16).

Combining the last inequalities in (11.17) and (11.18) yields the matrix inequality

[
V̇ (x)

Ẇ (z − h(x))

]
≤ Ã

[
V (x)

W (z − h(x))

]

where − Ã is an M-matrix for a positive constant ε∗, as defined in assumption (iii).
Then, there exists a positive constant ξ such that, for all t ∈ [τk, τk+1),

V (x(t)) ≤ (‖V (τk)‖ + ‖W (τk)‖
)
e−ξ(t−τk ), (11.19)

W ((z − h(x))(t)) ≤ (‖V (τk)‖ + ‖W (τk)‖
)
e−ξ(t−τk ), (11.20)
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where V (τk) = V (x(τk)) and W (τk) = W
(
(z − h(x))(τk)

)
. At the impulsive

moments t = τk , we have

V (x(τk)) ≤ α1kV (x(τ−
k )), (11.21)

where α1k = λ2
max(I + Ek) and

W ((z − h(x))(τk)) =
(
z(τk) +

=: Ā
︷ ︸︸ ︷
A−1
22

(
A21 − B2(Cs B0)

−1Cs A0
)
x(τk)

)T
P

×
(
z(τk) + A−1

22

(
A21 − B2(Cs B0)

−1Cs A0
)
x(τk)

)

=
(
(I + Fk)z(τ

−
k ) + Ā(I + Ek)x(τ

−
k )

)T
P

(
(I + Fk)z(τ

−
k )

+ Ā(I + Ek)x(τ
−
k )

)

=
(
(

=:F̄k︷ ︸︸ ︷
I + Fk)(z − h(x))(τ−

k ) + (
=: Āk︷ ︸︸ ︷

Ā(I + Ek) − (I + Fk) Ā
)
x(τ−

k )
)T

× P
(
(I + Fk)(z − h(x))(τ−

k ) + (
Ā(I + Ek) − (I + Fk) Ā

)
x(τ−

k )
)

=
(
F̄k(z − h(x))(τ−

k ) + Āk x(τ
−
k )

)T
P

(
F̄k(z − h(x))(τ−

k ) + Āk x(τ
−
k )

)

= (
z − h(x)

)T
(τ−

k )F̄T
k P F̄k

(
z − h(x)

)
(τ−

k ) + x(τ−
k )T ĀT

k P Āk x(τ
−
k )

+ 2
(
z − h(x)

)
(τ−

k )F̄T
k P Āk

≤ (
z − h(x)

)T
(τ−

k )
(

=:�k︷ ︸︸ ︷
F̄T
k P F̄k + γ3(F̄

T
k P Āk)(F̄

T
k P Āk)

T
)

× (
z − h(x)

)
(τ−

k ) + x(τ−
k )T

(

=:�k︷ ︸︸ ︷

ĀT
k P Āk + 1

γk
I
)
x(τ−

k )

≤ β2kW ((z − h(x))(τ−
k )) + α2kV (x(τ−

k )), (11.22)

where we have used h(x(τ−
k )) = −A−1

22

(
A21 − B2(Cs B0)

−1Cs A0
)
x(τ−

k ) =
− Āx(τ−

k ), α2k = ‖�k‖/α1 > 0 and β2k = ‖�k‖/β1 > 0.
For instance, for t ∈ [τ0, τ1) with t0 = τ0, we have

V (x(t)) ≤ (‖V (t0)‖ + ‖W (t0)‖
)
e−ξ(t−t0),

W ((z − h(x))(t)) ≤ (‖V (t0)‖ + ‖W (t0)‖
)
e−ξ(t−t0),

and for t ∈ [τ1, τ2), we have

V (x(t)) ≤ (‖V (τ1)‖ + ‖W (τ1)‖
)
e−ξ(t−τ1),

W ((z − h(x))(t)) ≤ (‖V (τ1)‖ + ‖W (τ1)‖
)
e−ξ(t−τ1).
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Using (11.21) and (11.22) with k = 1 yields, for t ∈ [t0, τ2),

V (x(t)) ≤ (α11 + α21 + β21)
(‖V (t0)‖ + ‖W (t0)‖

)
e−ξ(t−t0),

W ((z − h(x))(t)) ≤ (α11 + α21 + β21)
(‖V (t0)‖ + ‖W (t0)‖

)
e−ξ(t−t0).

By the mathematical induction, one may get, for t ∈ [t0, τk),

V (x(t)) ≤
k∏

i=1

(α1i + α2i + β2i )
(‖V (t0)‖ + ‖W (t0)‖

)
e−ξ(t−t0),

W ((z − h(x))(t)) ≤
k∏

i=1

(α1i + α2i + β2i )
(‖V (t0)‖ + ‖W (t0)‖

)
e−ξ(t−t0).

Choose 0 < v < ξ and provoke the impulsive effects (i.e. assumption (iv)) to
obtain, for all t ≥ t0,

V (x(t)) ≤ (‖V (t0)‖ + ‖W (t0)‖
)
e−(ξ−v)(t−t0),

W ((z − h(x))(t)) ≤ (‖V (t0)‖ + ‖W (t0)‖
)
e−(ξ−v)(t−t0).

As proceeded in Chap.9, there exists K > 0 such that

‖x(t)‖ + ‖z(t)‖ ≤ K
(‖x(t0)‖ + ‖z(t0)‖

)
e−(ξ−v)(t−t0)/2, ∀t ≥ t0.

This completes the proof of exponential stability of the full-order, closed-loop impul-
sive SPS.

Remark 11.1

(i) To guarantee the exponential stability of the continuous composite SPS, it is
required that the degree of stability for the uncoupled slow and fast subsystems be
larger than the strength of the interconnection which is treaded as a perturbation
to the isolated slow and fast subsystems. This requirement is represented by
assumption (iii).

(ii) In the Lyapunov function W related to the fast system, we have considered the
vector (z − h(x))(t) = z(t) − h(x(t)), but not z(t), to shift the equilibrium state
z to the origin [1].

11.3 Sliding Mode Luenberger Observer

In this section, we carry over the control design adopted in the last section to design
a sliding mode observer (SMO) to estimate the states of the full-order system.

Consider again the impulsive system in (11.1) and measured outputs y ∈ R
l of

the slow system y = Dx for some matrix D ∈ R
l×n . As presented in the last section,
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the interest here is to design an SMO through the reduced slow system to observe the
states of the full-order impulsive system in (11.1). To that goal, we define the state
estimate impulsive SPS by

˙̂x = A11 x̂ + A12 ẑ + Bu + Lv(ŷ − y), t �= τk, (11.23a)

ε ˙̂z = A21 x̂ + A22 ẑ, t �= τk, (11.23b)

x̂(t) = (I + Ek)x̂(t
−), t = τk, (11.23c)

ẑ(t) = (I + Fk)ẑ(t
−), t = τk, (11.23d)

x̂(0) = x̂0, ẑ(0) = ẑ0, (11.23e)

where x̂ ∈ R
n and ẑ ∈ R

m are, respectively, the slow and fast state vectors of the esti-
mate system, A22 ∈ R

m×m is a nonsingluar, Huwritz matrix L ∈ R
n×r is the observer

gain matrix which plays a similar role as in the traditional linear Luenberger observer
and v is a nonlinear vector function of the error between estimated state ŷ = Dx̂ and
the available measured output y and satisfies v(0) = 0. Here, v is considered the
r−dimensional observer (or control law) to be designed.

Defining the error states ex = x̂ − x and ez = ẑ − z leads to the corresponding
impulsive error system

ėx = A11ex + A12ez + L v̄(ex ), t �= τk, (11.24a)

εėz = A21ex + A22ez, t �= τk, (11.24b)

ex (t) = (I + Ek)ex (t
−), t = τk, (11.24c)

ez(t) = (I + Fk)ez(t
−), t = τk, (11.24d)

ex (0) = ex0 , ez(0) = ez0 , (11.24e)

where v̄(ex ) = v(Dex ). As proceeded earlier, setting ε = 0 results in the reduced
error subsystem

ėxs = Aeexs + Ls v̄(exs ), (11.25)

where ez = h(ex ) = −A−1
22 A21ex , Ae = A11 − A12A

−1
22 A21 and Ls has the definition

of L . Define the sliding mode error surface by

Se(exs ) = Ceexs , (11.26)

for somematrixCe ∈ R
r×n . Then, in the slidingmode the equivalent control becomes

v̄eq(exs ) = −(CeLs)
−1CeAeexs

and the corresponding equivalent reduced system is given by

ėxs = (
I − Ls(CeLs)

−1Ce
)
Aeexs =: Aeq

e exs .
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As for the reachability condition, define V (Se(ex )) = 1

2
STe (exs )Se(exs ). Then, as

done in the last section, along the sliding surface V̇ (Se) = Se(exs )Ṡe(exs ) < 0 is
guaranteed if

v̄(exs ) = v̄eq(exs ) + v̄∗ (11.27)

with

v̄∗ = −(CeLs)
−1diag(η)Sgn

(
Se(exs )

)

where the r × r matrix diag(η) and r−dimensional vector Sgn
(
Se(exs )

)
are as defined

in the last subsection.
In the following theorem, we prove that the impulsive error system (11.24) is

globally exponentially stabilized by the designed SMC in (11.27).

Theorem 11.2 Assume that the following assumptions hold:

(i) the reduced slow and fast subsystems are observable;
(ii) there exists a positive constant ε∗ such that thematrix− Ã is an M-matrix where

Ã =
[
a11 a12
a21 −( 1

ε∗ − a22)

]
,

with a11, a12, a21 and a22 being some constants defined later;
(iii) for any i = 1, 2, . . . , k,

ti − ti−1 >
1

ϑ
ln(α1i + α2i + β2i ),

for some positive constants ϑ,α1i ,α2i and β2i such that α1i + α2i + β2i > 1.

Then, the sliding mode control law in (11.27) guarantees that the closed-loop
full-order error system (11.24) is globally exponentially stable for ε ∈ (0, ε∗].
Proof For all t ≥ t0 with t0 ∈ R+, let ex (t) = ex (t; t0, ex0 , ez0) and ez(t) = ez(t; t0,
ex0 , ez0) be the solution of (11.24). To analyze the exponential stabilization of
the full order of the impulsive error system in (11.24) during the sliding mode,
define V (ex ) = 1

2e
T
x ex and W (ez − h(ex )) = (ez − h(ex ))T P(ez − h(ex )) as Lya-

punov function candidates, where the subscript s of state x is dropped for simplicity
of notation. Then,

V̇ (ex ) ≤ eTx
(

=:G
︷ ︸︸ ︷
A11 + γ1A12A

T
12 + A12A

−1
22 A12 − Ls(CeLs)

−1(CeAe)
)
ex

+ 1

γ1
(ez − h(ex ))

T (ez − h(ex ))

≤ a11V (ex ) + a12W (ez − h(ex )) (11.28)
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where a11 = 1
α2

max{Re[λ(G)]}, a12 = 1
γ1β1

and the fact that 2eTx A12(ez − h(ex )) ≤
γ1eTx A12AT

12ex + 1
γ1

(ez − h(ex ))T (ez − h(ex )). Similarly,

Ẇ (ez − h(ex )) = 1

ε
(ez − h(ex ))

T
(
AT
22P + PA22

)
(ez − h(ex ))

− 2(ez − h(ex ))
T Pḣ(ex )

≤ −1

ε
(ez − h(ex ))

T (ez − h(ex )) + 2

γ2
eTx ex

+ a22(ez − h(ex ))
T (ez − h(ex ))

≤ −(
1

ε
− a22)W (ez − h(ex )) + a21V (ex ), (11.29)

where a21 = 2
α1γ2

, and a22 = 2‖P Ā1 ĀT
1 P + P Ā2‖ with Ā = A11 − A12A

−1
22 A21 −

Ls(CeLs)
−1CeAe, Ā1 = A−1

22 A21 Ā and Ā2 = A−1
22 A21A12.

Combining the inequalities in (11.28) and (11.29) in a matrix inequality yields

[
V̇ (ex )

Ẇ (ez − h(ex ))

]
≤ Ã

[
V (ex )

W (ez − h(ex ))

]
,

where Ã is defined in assumption (ii) with − Ã being assumed to be an M−matrix
for some positive number ε∗. Then, there exists ξ > 0 such that, for all t �= τk ,

V (ex(t)) ≤ (‖V (tk)‖ + ‖W (tk)‖
)
e−ξ(t−τk ), (11.30)

W ((ez − h(ex ))(t)) ≤ (‖V (tk)‖ + ‖W (tk)‖
)
e−ξ(t−τk ), (11.31)

where V (τk) = V (ex(τk )) and W (τk) = W
(
(ez − h(ex ))(τk)

)
. As achieved in Theo-

rem 11.1, at the impulsive moments t = τk , we have

V (ex(τk )) ≤ α1kV (ex(τ−
k )), (11.32)

W
(
(ez − h(ex ))(τk)

) ≤ β2kW ((ez − h(ex ))(τ
−
k )) + α2kV (ex(τ−

k )), (11.33)

whereα1k = λ2
max(I + Ek),α2k = ‖C∗

k + 1
γ3
I‖/α1, andβ2k = ‖B∗

k1 + B∗
k2‖/β1,with

C∗
k = (A∗

k1 − A∗
k2)

T (A∗
k1 − A∗

k2), B∗
k1 = (I + Fk)

T P(I + Fk), B∗
k2 =

(
(I + Fk)

T

P(A∗
k1 − A∗

k2)
)T(

(I + Fk)
T P(A∗

k1 − A∗
k2)

)
, A∗

k1 = A−1
22 A21(I + Ek) and A∗

k2 =
(I + Ek)A

−1
22 A21.

Considering the impulsive effects in (11.24c) and (11.24d) results in that the full-
order impulsive error system (11.24) is globally exponentially stabilized by the SMC
in (11.27). This completes the proof.
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11.4 Numerical Examples

We present some numerical examples to illustrate the developed results.

Example 11.1 Consider the impulsive SPS in (11.1) where

A11 =
[−1 0
1 1

]
, A12 =

[−0.08
0

]
, B =

[
0
0.2

]
, Ek = − 1

2.5k
I2×2,

A21 = [
0.1 1

]
, A22 = −0.1, Fk = − 1

2.5k
I2×2,

where k ∈ N. Setting ε = 0 gives z = h(x) = 0.025x1 + 0.5x2. Then, the reduced
slow system becomes

ẋs =
[−1.9975 0.5
0.1025 0.15

]
xs +

[
2
0.5

]
u,

where xT = (x1 x2). Choosing Cs = [−1 −0.1
]
, the equivalent control is

ueqs = Kxs = [
0.758 −0.08

]
xs,

the corresponding equivalent system is

ẋs = Aeq xs =
[−0.4815 −0.11
0.4815 0.11

]
xs,

which is only stable, where λ(Aeq) = −0.3715, 0. Thus, the feedback control law is
given by

us(t) = ueqs (t) − 4 diag(η)Sgn(Ss(xs)),

where η = diag(8, 5, 0.2). Define V (x) = 0.5xT x and W (z − h(x)) = 0.05(z −
h(x))T (z − h(x)). Then, one can show that

− Ã = −
[−0.212 4

1 −( 2
ε

− 0.062)

]

is an M-matrix if ε ∈ (0, 0.1057], i.e. ε∗ = 0.1057 where we have taken α1 = α2 =
0.5,β1 = 0.125,β2 = 0.5, γ1 = 1, γ2 = 2 and γ3 = 5.We also found, from assump-
tion (iv), τk+1 − τk > 0.975. The simulation results of this system are shown in
Fig. 11.1.

Example 11.2 Consider the impulsive SPS in (11.24) where A11, A12, A21, A22 and
B are given in Example 11.1 and the impulsive state estimate system is as defined



11.4 Numerical Examples 203

Fig. 11.1 Impulsive system states, x1, x2, and z

in (11.23) with D = I2×2. The corresponding impulsive error system is defined in
(11.24).

Let LT = [
0.02 −0.026

]
. Then, the equivalent control system is v̄

eq
s (exs ) =[

315.8333 −33.3333
]
exs and the corresponding equivalent reduced system is

ėxs = Aeq
e exs =

[−8.3142 0.7167
8.3142 −0.7167

]
exs ,

which is a stable system with the eigenvalues being −9.0308 and 0. The control law
is given by

v̄s(exs ) = v̄eq
s (exs ) − 1.6667 × 10−3diag(η)Sgn(Se(exs )).

Adopting the same Lyapunov functions, one can show that

− Ã = −
[−0.3328 −2.0

−2.0 −16.3213

]
,

with ε∗ = 0.0505,wherewe have takenα1 = α2 = 0.5,β1 = 0.125,β2 = 0.5, γ1 =
1, γ2 = 2 and γ3 = 5.We have also found that, from assumption (iv), the τk+1 − τk >

4.5348. Clearly, the time between impulses is larger than that in Example 11.2 due to
the small decay rate of the interconnected full-order system. The simulation results of
the error SPS states are shown in Fig. 11.2, and control inputs are shown in Figs. 11.3
and 11.4.
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Fig. 11.2 Impulsive error system states, ex1 , ex2 , and ez

Fig. 11.3 Control input v(ex1 )
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Fig. 11.4 Control input v(ex2 )

11.5 Notes and Comments

The state feedback law represented by an SMC is an efficient designing tool for stabi-
lizing closed-loop variable structure systems undergoing matched uncertainties and
external input disturbances. That is, SMC provides robust stabilization for systems
with uncertainties because of its fast response, good transient performance and its
tolerance to model uncertainty and perturbations. Throughout this chapter, we have
addressed the problems of stabilization and state estimation for impulsive singularly
perturbed systems via a sliding mode control. The material of this chapter is adapted
from [2]. The continuous SPS has been viewed as a large-scale interconnected system
for which state feedback control laws are synthesized. In this chapter, however, the
controller has been designed through the dominating reduced order subsystem to sta-
bilize the full-order system. This approach has lessened some unnecessary sufficient
conditions imposed on the fast subsystem. Along this line of design, one can also
see [3]. The impulsive effects of fixed types were considered as a perturbation to the
system. This results in that the time between impulses is bounded below. In analyzing
the stabilization and state estimation, the classical Lyapunov function technique has
been used. The general theory and design of SMC have been addressed in several
works, readers may refer to [4–9] and many references therein. The modified Luen-
berger observer, which is an efficient estimator to provide output approximation, can
be read, for instance, in [10]. Due to the system complexity, the stabilization prob-
lem of these systems by such a state feedback control law is actively researched; see
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[11–13]. A part of this literature focused on designing decentralized controllers for
the slow and fast subsystems [11, 13].
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Chapter 12
Comparison Method and Stability
of EPCA

This chapter deals with systems of nonlinear differential equations with piecewise
constant arguments (EPCAs). We start by developing a comparison principle for
this system. Then, this result will be used later to establish some stability properties
of the system. As will be seen, the piecewise (constant) arguments can play as a
stabilizing role in some cases where the underlying systems are unstable. A class
of linear retarded EPCA is also considered in this chapter. Numerical examples and
an application to a single-species logistic growth model with density-dependence
harvesting are presented to show the effectiveness of the theoretical results.

12.1 Introduction

By EPCA, we mean differential equations with piecewise constant arguments over
certain intervals. The arguments can be delay, advanced, or a mix of these two types.
The dynamics of these differential equations generally depend on both continuous
and discrete arguments. Hence, such equations can form a special class of hybrid
systems. From the functional differential equation theory perspective, EPCA is spe-
cial equations where the state history is given at certain individual points, rather than
on intervals. Typically, nonlinear EPCA has the form

ẋ(t) = f (t, x(t), x(γ(t))), (12.1)

where the argument γ is a piecewise constant function defined on intervals with a
certain length, and it may be defined by γ(t) = [t], [t − n], t − n[t], [t + 1], for all
t and a positive integer n, where [·] is the greatest integer function [1–3].

These differential equations have a similar structure to those seen in some
“sequential-continuous” disease models treated by Busenberg and Cooke [4]. Also,
the system of differential equations having the form

© Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing 2018
M. S. Alwan and X. Liu, Theory of Hybrid Systems: Deterministic and Stochastic,
Nonlinear Physical Science, https://doi.org/10.1007/978-981-10-8046-3_12
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ẋ(t) = f
(
t, x(t),λk(xk))

)
, t ∈ [tk, tk+1]

was considered in [5] where, for some nonnegative integer number k, xk = x(tk) and
λk are some continuous functions. The system state experiences impulsive effects
due to the switching in the arguments λk and xk .

In this chapter, the system of nonlinear EPCA is being viewed as a hybrid, partic-
ularly switched, system, which allows us to apply the theory of continuous ordinary
differential equations to each individual subsystem. This approachmotivates concept
of dwell time.

12.2 Problem Formulation

Let {tk}∞k=0 and {ξk}∞k=0 be sequences of nonnegative real numbers such that limk→∞
tk = ∞. Generally, ξk is defined such that tk−1 < ξk ≤ tk for any k ∈ Nwith ξ0 = t0.

Consider the EPCA of the form

ẋ(t) = f
(
t, x(t),λ�(t)(x(γ(t)))

)
, (12.2a)

where x ∈ R
n is the system state, and for all t ≥ t0 with t0 ∈ R+, �(t) and γ(t) are

functions taking values in {k}∞k=0 and {ξk}∞k=0, respectively. More specifically, for
t ∈ [tk, tk+1], we define �(t) = k and γ(t) = ξk . These piecewise constant functions,
� and γ, represent the switching signals whose roles of switching between the vector
field function arguments λk and the values of its state argument x , respectively.
Obviously, if, for any k,λk is an identity function, the EPCA (12.2a) reduces to (12.1).
Also, when k = 0, then we have ξ0 = t0, t ∈ [t0, t1] and the differential equation in
(12.2a) is an ordinary one. Thus, for k > 0 and t ∈ [tk, tk+1], the system state is
allowed to be fed back with some historic data evaluated at individual moments
ξk ∈ (tk−1, tk]. In addition, since the solution depends on the past history through an
individual point, the initial state, in contrast to the functional differential equation
case, is given at a specific time rather than over an interval, i.e.,

x(t0) = x0, (12.2b)

for some x0 ∈ R
n .

In the following definition, we state the solution of the initial-value problem (IVP)
given in (12.2).

Definition 12.1 A function x : (α, β) → R is said to be a solution of (12.2) if the
following conditions hold:
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(i) x(t) is continuous for all t ∈ (α,β);
(ii) the derivative of x(t) exists and is continuous for all t ∈ (α,β) except at t �= ξk

(k ∈ N), where at t = ξk the one-sided derivative exists;
(iii) the derivative of x(t), wherever exists, satisfies the EPCA in (12.2a); and
(iv) x(t) satisfies the initial condition in (12.2b) at t = t0.

System (12.2) may be rewritten in the form

ẋ(t) = f
(
t, x(t),λk(xξk )

)
, t ∈ [tk, tk+1), k = 0, 1, 2, . . . (12.3a)

x(t0) = x0, (12.3b)

where xξk = x(ξk) andλk(xξk ) = λk(x(ξk))being constants. Throughout this chapter,
we assume that the function f (t, x, y) is continuous in its variables, i.e., f ∈ C (R+ ×
R

n × R
m;Rn), and is globally Lipschitz in x and y.

In fact, the dependence of the solution, x , of the IVP (12.2) or (12.3) on the initial
state at t = t0 allows us to employ the theory of ordinary differential equations. For
instance, for k = 0, and t ∈ [t0, t1), the IVP

ẋ(t) = f (t, x(t),λ0(xξ0)),

x(t0) = x0, with ξ0 = t0

has a unique solution, say x0(t), for all t ∈ [t0, t1) and limt→t−1 x0(t) = x0(t
−
1 ) ∈ R

n .
Similarly, for k = 1 and t ∈ [t1, t2), we have the IVP1

ẋ(t) = f (t, x(t),λ1(xξ1)),

x(t1) = x0(t
−
1 ),

which has a unique solution, say x1(t), for all t ∈ [t1, t2) and limt→t−2 x1(t) = x1(t
−
2 ).

By induction, for any k and all t ∈ [tk, tk+1), xk(t) is a unique solution and
limt→t−k+1

xk(t) exists. Define the solution x by

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0, t = t0
x0(t, t0, x0), t ∈ [t0, t1)
x1(t, t1, x1), t ∈ [t1, t2), where x1 = x0(t

−
1 , t0, x0)· · ·

xk(t, tk, xk), t ∈ [tk, tk+1), where xk = xk−1(t
−
k , tk−1, xk−1)

· · · .

Since limt→t−k+1
x(t) exists for any k, the solution x must exist over a right-maximal

interval [t0,∞). These solution steps represent the proof of the following proposition.

1We should remark that, in the unified notation of the solution x , the initial condition x(t1) = x0(t
−
1 )

becomes x(t1) = x(t−1 ), by our definition of x .
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Proposition 12.1 For all k = 0, 1, . . ., let � : [tk, tk+1) → {k}∞k=0 and γ : [tk, tk+1)

→ {ξk}∞k=0, where ξk is as defined earlier. Assume that f ∈ C (R+ × R
n × R

m;Rn)

and f (t, x, y) is globally Lipschitz in x and y for all t . Then, the IVP (12.2) or (12.3)
has a unique solution x defined over the right-maximal interval [t0,∞).

The auxiliary scalar initial-value problem can be defined analogously:

u̇(t) = g(t, u(t),σk(uξk )), (12.4a)

u(t0) = u0, (12.4b)

where u ∈ R+, uξk = u(ξk), σk ∈ C (R+;R) and g ∈ C (R2+ × R;R).
Moreover, assume that f (t, 0,λk(0)) = 0 and g(t, 0,σk(0)) = 0 for all t ∈ R+,

and then systems (12.3) and (12.4) admit trivial solutions x ≡ 0 and u ≡ 0, respec-
tively.

Definition 12.2 Let x, y ∈ R
n and t ∈ [tk, tk+1), for k = 0, 1, 2, . . .. Then, if V ∈

C ([tk, tk+1) × R
n;R+), the upper right-hand (Dini) derivative of V is defined by

D+V (t, x, y) = lim
h→0+

sup
1

h

[
V (t, x + h f (t, x,λk(y))) − V (t, x)

]
.

Moreover, if V ∈ C 1([tk, tk+1) × R
n;R+), then

D+V (t, x, y) = ∂V (t, x)

∂t
+ ∇V (t, x) · f (t, x,λk(y)).

12.3 Comparison Method

We develop a comparison principle for nonlinear EPCA. Then, we consider some
special case of EPCA and EPCAG.

Theorem 12.1 Assume that the following conditions hold:

(i) for k = 0, 1, 2, . . ., V ∈ C ([tk, tk+1) × R
n;R+), V (t, x) is locally Lipschitz in

x and

D+V (t, x, Vξk ) ≤ g(t, V (t, x),σk(Vξk ))), t ∈ (tk, tk+1),

where Vξk = V (ξk, x(ξk)); and
(ii) the maximal solution ϑ(t; t0, u0) of the auxiliary scalar EPCA (12.4) exists on

[t0,∞).

Then, V (t0, x0) ≤ u0 implies V (t, x(t)) ≤ ϑ(t, t0, u0) for t ≥ t0.

Proof For all t ≥ t0 with t0 ∈ R+, let x(t) = x(t; t0, x0) be the solution of (12.3).
Define m(t) = V (t, x(t)) on [t0,∞). Then, we have
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D+m(t) ≤ g(t,m(t),σk(mξk )), t ∈ (tk, tk+1)

where mξk = m(ξk).
At t = t0, we have ξ0 = t0 and m0 = m(ξ0) = m(t0) = V (t0, x0) and, at t = t1,

we have

m(t1) = V (t1, x(t1)) = V (t1, x1(t1; t1, x1)) = V (t1, x1(t1; t1, x0(t−1 ; t0, x0))).

Thus, particularly, for t ∈ [t0, t1], the ongoing differential inequality implies that,
with aid of the classical comparison principle [6],

m(t) ≤ ϑ0(t; t0, u0), t ∈ [t0, t1]

where ϑ0(t; t0, u0) is the maximal solution of auxiliary scalar IVP

u̇(t) = g(t, u(t),σ0(uξ0)),

u(t0) = u0.

Likewise, for t ∈ [t1, t2], we have

m(t) ≤ ϑ1(t; t1, u1) = ϑ1(t; t1,ϑ0(t1; t0, u0)), u1 = u(t1) = ϑ0(t1; t0, u0)

where ϑ1(t; t1, u1) is the maximal solution of the IVP

u̇(t) = g(t, u(t),σ1(uξ1)),

u(t1) = u1.

Generally, for t ∈ [tk, tk+1], one gets

m(t) ≤ ϑk(t; tk, uk),

where ϑk(t; tk, uk) is the maximal solution of the IVP

u̇(t) = g(t, u(t),σk(uξk )),

u(tk) = uk .

Define u(t) by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0, t = t0
ϑ0(t, t0, u0), t ∈ (t0, t1]
ϑ1(t, t1, u1), t ∈ (t1, t2], where u1 = ϑ0(t1; t0, u0)
· · ·
ϑk(t, tk , uk), t ∈ (tk , tk+1], where uk = ϑk−1(tk; tk−1, uk−1)

· · · .
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Then, for t ≥ t0, we get

m(t) ≤ u(t).

Since ϑ(t; t0, u0) is the maximal solution of the scalar EPCA (12.4), then for all
t ≥ t0, we reach

m(t) ≤ ϑ(t; t0, u0).

This completes the proof.

In the following corollary and example, we address some special cases of EPCA
and EPCAG.

Corollary 12.1 Suppose that the conditions in Theorem 12.1 hold. Let
k = 0, 1, 2, . . . and t ∈ [tk, tk+1]. If we choose that
(i) g(t, u,σk(uξk )) = βkuξk , with βk being a constant for all k, then

(1) for ξk = tk , we have

V (t, x(t)) ≤

⎧⎪⎪⎨
⎪⎪⎩

[
1 + β0(t − t0)

]
V (t0, x0), k = 0, t ∈ (t0, t1][

1 + βk(t − tk)
] ∏k

j=1

[
1 + β j−1(t j − t j−1)

]
V (t0, x0),

k ∈ N, t ∈ (tk, tk+1],

where tk < tk+1 if βk > 0 and tk+1 < tk − 1
βk

if βk < 0;
(2) for tk−1 < ξk ≤ tk where k ∈ N and ξ0 = t0, we have

V (t, x(t)) = V0(t, x(t)) ≤
[
1 + β0(t − t0)

]
V0(t0, x0)

for any t ∈ [t0, t1) such that t1 − t0 < − 1
β0

and

V (t, x(t)) = Vk(t, x(t)) ≤ Vk−1(tk, x(tk)) + βk(t − tk)Vk−1(ξk, x(ξk))

for any t ∈ [tk, tk+1) such that, for any k ∈ N, tk+1 − tk < − Ck
βkCξk

where

Ck = Vk−1(tk−1, x(tk−1)) and Cξk = Vk−1(ξk, x(ξk));

(ii) g(t, u,σk(uξk )) = αu(t) + βkuξk , with α and βk being constants for any k, then

(1) for ξk = tk , we have
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V (t, x(t)) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
(1 + β0

α
)eα(t−t0) − β0

α

]
V (t0, x0), k = 0, t ∈ (t0, t1][

(1 + βk

α
)eα(t−tk ) − βk

α

]

×∏k
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
V (t0, x0),

k ∈ N, t ∈ (tk, tk+1],

provided that, for k = 0, 1, 2, . . ., tk+1 > tk when α > 0 and βk > 0, or

when α < 0 and βk > 0 with α > −βk > 0, and tk+1 < tk + 1
α
ln

[
βk

α

(
1 +

βk

α

)−1]
when α > 0 and βk < 0 with βk

α

(
1 + βk

α

)−1
> 1;

(2) for tk−1 < ξk ≤ tk where k ∈ N and ξ0 = t0,

V (t, x(t)) = V0(t, x(t)) ≤
[
eα(t−t0) + β0

α

(
eα(t−t0) − 1

)]
V0(t0, x0),

for t ∈ [t0, t1) and
V (t, x(t)) = Vk(t, x(t)) ≤ eα(t−tk )Vk−1(tk , x(tk))

+ βk
α

[
eα(t−tk ) − 1

]
Vk−1(ξk , x(ξk)), t ∈ [tk , tk−1)

provided that, for k = 0, 1, 2, . . ., tk+1 > tk + 1
α
ln Tk when α > 0 and

βk > 0, orwhenα < 0andβk > 0with Vk−1(tk, x(tk)) + βk

α
Vk−1(ξk, x(ξk))

< 0, and tk+1 < tk + 1
α
ln Tk whenα > 0andβk < 0with Vk−1(tk, x(tk)) +

βk

α
Vk−1(ξk, x(ξk)) < 0, where Tk = βk

α
Vk−1(ξk, x(ξk))

(
Vk−1(tk, x(tk))

+ βk

α
Vk−1(ξk, x(ξk))

)−1
> 1; and

(iii) g(t, u,σk(uξk )) = αu(t) + h(t, u,σk(uξk )) with α ∈ R h ∈ C (R+ × R
2;R+),

and h(t, u, v) is globally Lipschitz in u and v, then

V (t, x(t)) ≤ eα(t−t0)V (x0) +
k∑
j=1

∫ t j

t j−1

eα(t−s)h(s, V (s, x(s)),σk(Vξ j−1))ds

+
∫ t

tk

eα(t−s)h(s, V (s, x(s)),σk(Vξk ))ds.

Proof (i)(1) For t ∈ [tk, tk+1], since uξk = utk , the solution of the differential equation
u̇(t) = βkuξk is given by

u(t) =
[
1 + βk(t − tk)

]
uk .

Particularly, for k = 0 and t ∈ [t0, t1], we have
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u(t) =
[
1 + β0(t − t0)

]
u0

and, for k = 1 and t ∈ [t1, t2], we have

u(t) =
[
1 + β1(t − t1)

][
1 + β0(t1 − t0)

]
u0.

Thus, by induction, we reach

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 + β0(t − t0)

]
u0, k = 0, t ∈ (t0, t1][

1 + βk(t − tk)
] ∏k

j=1

[
1 + β j−1(t j − t j−1)

]
u0,

k ∈ N, t ∈ (tk, tk+1],

To complete the proof, we use comparison result developed in Theorem 12.1.

Proof (i)(2) For any k and t ∈ [tk, tk+1), we have

u(t) = u(tk) + βk(t − tk)u(ξk).

Particularly, for k = 0, we have ξ0 = t0 and

u(t) =
[
1 + β0(t − t0)

]
u0 =: u0(t),

where the right-hand side is positive if t < t0 − 1/β0; so that, for k = 1 and t ∈
[t1, t2), we get

u(t) = u0(t1) + β1(t − t1)u0(ξ1) =: u1(t).

Thus, by induction, we reach

u(t) = uk(t) = uk−1(tk) + βk(t − tk)uk−1(ξk), t ∈ [tk, tk+1), k ∈ N

which implies the general form given in (i)(2).

Proof (ii)(1) For t ∈ (tk, tk+1], we have the differential equation

u̇(t) = αu(t) + βkuξk

and its solution is given by

u(t) =
[
eα(t−tk ) + βk

α

(
eα(t−tk ) − 1

)]
uk, (12.5)

from which we obtain
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u(t) =

⎧⎪⎪⎨
⎪⎪⎩

[
(1 + β0

α
)eα(t−t0) − β0

α

]
u0, k = 0, t ∈ (t0, t1][

(1 + βk

α
)eα(t−tk ) − βk

α

] ∏k
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
u0,

k ∈ N, t ∈ (tk, tk+1],

where α and βk are defined in (ii). Applying the comparison principle leads us to the
required result. The proof of (ii)(2) can be obtained in a similar way used in (i)(2);
thus, it is left here as an exercise.

Proof (iii) For k = 0, 1, 2, . . . and t ∈ [tk, tk+1], we have the differential equation

u̇(t) = αu(t) + h(t, u(t),σk(uξk ))

and its solution is given by

u(t) = eα(t−tk )uk +
∫ t

tk

eα(t−s)h(s, u(s),σk(uξk )) ds.

For instance, for t ∈ [t0, t1], we have

u(t) = eα(t−t0)u0 +
∫ t

t0

eα(t−s)h(s, u(s),σ0(uξ0)) ds

and, at t = t1,

u1 = eα(t1−t0)u0 +
∫ t1

t0

eα(t1−s)h(s, u(s),σ0(uξ0)) ds.

For t ∈ [t1, t2], we have

u(t) = eα(t−t1)u1 +
∫ t

t1
eα(t−s)h(s, u(s),σ1(uξ1)) ds

= eα(t−t1)
{
eα(t1−t0)u0 +

∫ t1

t0
eα(t1−s)h(s, u(s),σ0(uξ0 )) ds

}

+
∫ t

t1
eα(t−s)h(s, u(s),σ1(uξ1)) ds

= eα(t−t0)u0 +
∫ t1

t0
eα(t−s)h(s, u(s),σ0(uξ0 )) ds +

∫ t

t1
eα(t−s)h(s, u(s),σ1(uξ1)) ds.

For t ∈ [t2, t3], we have
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u(t) = eα(t−t0)u0 +
∫ t1

t0
eα(t−s)h(s, u(s),σ0(uξ0 )) ds +

∫ t2

t1
eα(t−s)h(s, u(s),σ1(uξ1)) ds

+
∫ t

t2
eα(t−s)h(s, u(s),σ2(uξ2 )) ds.

By induction for t ∈ [tk, tk+1]

u(t) = eα(t−t0)u0 +
k∑
j=1

∫ t j

t j−1

eα(t−s)h(s, u(s),σ j−1(uξ j−1)) ds

+
∫ t

tk

eα(t−s)h(s, u(s),σk(uξk )) ds

and for t ≥ t0, we have

u(t) = eα(t−t0)u0 +
∞∑
j=1

∫ t j

t j−1

eα(t−s)h(s, u(s),σ j−1(uξ j−1)) ds.

Using the comparison result gives

V (t, x(t)) ≤ eα(t−t0)V (t0, x0) +
∞∑
j=1

∫ t j

t j−1

eα(t−s)h(s, V (s, x(s)),σ j−1(Vξ j−1)) ds.

The proof completes the proof.

12.4 Stability Analysis

Having established the comparison results in Theorem 12.1, we prove some stability
notions for the nonlinear EPCA.

Theorem 12.2 In addition to the conditions in Theorem 12.1, assume further that
there exist class−K function a and b such that

b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) (12.6)

hold. Then, the stability properties of the trivial solution u ≡ 0 of the auxiliary scalar
system of EPCA in (12.4) imply the corresponding stability properties of the trivial
solution x ≡ 0 of system (12.3).

Proof Let t0 ∈ R+ and ε > 0 be given. Suppose that u ≡ 0 is stable. Then, for given
b(ε) > 0, there is a δ1 = δ1(t0, ε) > 0 such that
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0 ≤ u0 ≤ δ1 implies u(t; t0, u0) ≤ b(ε), ∀t ≥ t0

where u(t; t0, u0) is any solution of (12.4). Choose δ2 = δ2(ε) such thata(δ2) < b(ε).
Define δ = min{δ1, δ2}. We claim that the trivial solution x ≡ 0 is stable; that is, if
‖x0‖ < δ, then ‖x(t)‖ < ε, for t ≥ t0, where x(t) = x(t; t0, x0) is any solution of
(12.3). If our claim were not true, then there would exist a t∗ > t0 and tk < t∗ ≤ tk+1

for which ‖x0‖ < δ and

‖x(t)‖ < ε for t0 ≤ t ≤ tk (12.7)

‖x(t)‖ ≥ ε for tk ≤ t∗ ≤ tk+1.

From (12.7), we have ‖x(tk)‖ < ε. Hence, we can find a t̃ such that tk < t̃ ≤ t∗
and at which

ε ≤ ‖x (̃t)‖.

Let u0 = a(‖x0‖) < δ1, and define m(t) = V (t, x(t)) for t0 < t ≤ t̃ . Then, by
Theorem 12.1, we have

V (t, x(t)) ≤ ϑ(t; t0, a(‖x0‖)), t0 ≤ t ≤ t̃

where ϑ(t; t0, a(‖x0‖)) is the maximal solution of auxiliary scalar system (12.4).
Then, we obtain with the aid of the left inequality in (12.6)

b(ε) ≤ b(‖x (̃t)‖) ≤ V (̃t, x (̃t)) ≤ ϑ(̃t, t0, a(‖x0‖)) < b(ε)

which is a contradiction. This shows x ≡ 0 is stable. If, moreover, δ is independent
of t0, then x ≡ 0 is uniformly stable.

To prove asymptotic stability of x ≡ 0, it suffices to show attractivity of this
solution. Suppose that u ≡ 0 is asymptotically stable. Then, it implies that x ≡ 0 is
stable; that is, for each ε > 0, there is a δ = δ(t0, ε) such that

‖x0‖ < δ implies ‖x(t)‖ < ε, ∀t ≥ t0.

Since u ≡ 0 is attractive, given b(ε) > 0 and t0 ∈ R+, there is a δ∗
0 = δ∗

0(t0) > 0
and T = T (t0, ε) > 0 such that

0 ≤ u0 ≤ δ∗
0 implies u(t, t0, u0) < b(ε), ∀t ≥ t0 + T .

Choose a δ̃ such that a(̃δ) < δ∗
0 . Define ρ = min{δ∗

0 , δ̃}, and let ‖x0‖ < ρ. Then,
as we did in proving the stability of x ≡ 0, we can get

b(‖x(t)‖) ≤ V (t, x(t)) ≤ ϑ(t, t0, a(‖x0‖)) < b(ε).
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This implies that ‖x(t)‖ < ε for all t ≥ t0 + T ; i.e., x ≡ 0 is attractive. Hence,
x ≡ 0 is asymptotically stable. If T is independent of t0, then x ≡ 0 is uniformly
asymptotically stable. This completes the proof.

Corollary 12.2 In Theorem 12.2, let g(t, u(t),σk(uξk )) = βkuξk with βk being a
constant for all k.

(i) In the case ξk = tk ,

(1) if βk > 0 for any k and the infinite series

∞∑
j=1

β j−1(t j − t j−1) (12.8a)

converges, then x ≡ 0 is uniformly stable;
(2) while if βk < 0 for any k and in addition to assumption in (i)(1), for any j ,

the following inequality holds

0 < t j − t j−1 < − 1

β j−1
, (12.8b)

then x ≡ 0 is uniformly asymptotically stable.

(ii) In the case βk < 0 and tk−1 < ξk ≤ tk for any k = 0, 1, 2, . . . with ξ0 = t0, if
uk(t) ≤ L for some positive constant L, where uk(t) is defined in Corollary 12.1
for any k and t ∈ [tk, tk+1), thenu ≡ 0 is uniformly stable; if, in addition, uk(t) ≤
Lk for any k and t ∈ [tk, tk+1) and

∑∞
k=0 Lk < ∞, then the trivial solution

u ≡ 0 and, hence, x ≡ 0 is uniformly asymptotically stable. Particularly, one
may define L = sup{Lk | k = 0, 1, 2, . . .}.

Proof (i)(1) The solution of the auxiliary scalar EPCA

u̇(t) = βkuξk , t ∈ [tk, tk+1], k = 0, 1, 2, . . .

u(t0) = u0

is given by

u(t) =
(
1 + βk(t − tk)

) k∏
j=1

[
1 + β j−1(t j − t j−1)

]
u0.

By (12.8a), the product
∏∞

j=1

[
1 + β j−1(t j − t j−1)

]
converges. So that, defining

M = ∏∞
j=1

[
1 + β j−1(t j − t j−1)

]
< ∞ yields

u(t, t0, u0) = Mu0 < Mσ, for someσ > 0 such that u0 < σ,
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meaning that the trivial solution u ≡ 0 is uniformly stable which implies, by The-
orem 12.2, the uniform stability of the trivial solution x ≡ 0. In particular, for
k = 0, 1, 2, . . ., one may choose that βk = 1

2k , tk+1 − tk < δ for some δ > 0.

Proof (i)(2) The assumption (12.8b) is equivalent to 0 < 1 + β j−1(t j − t j−1) < 1.
So that, if we choose 1 + β j−1(t j − t j−1) = 1

e , then M approaches zero; this proves
the uniform asymptotic stability of u ≡ 0 and x ≡ 0.

Proof (ii) The proof is straightforward; thus, it is left here as an exercise.

Remark 12.2 It is worth noting that, for any k and t ∈ [tk, tk+1), the assumption
0 < uk(t) ≤ Lk is equivalent to

Lk − Ck

βkCξk

< t − tk <
−Ck

βkCξk

,

where Ck and Cξk are defined in Corollary 12.1.

Corollary 12.3 In Theorem 12.2, let g(t, u(t),σk(uξk )) = αu(t) + βkuξk , where
α > 0, βk < 0 and ξk = tk for k ∈ N. Then, the trivial solution x ≡ 0 is uniformly
stable if infinite series

∞∑
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
(12.9)

converges. Furthermore, if, in addition, the terms in corresponding infinite product
are all less than unity, then x ≡ 0 is uniformly asymptotically stable.

Proof Since the infinite series in (12.9) converges, so does the infinite product

∞∏
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
.

So that, let

M =
∞∏
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
.

Then, we have

u(t) < Mσ,

for some positive σ for which u0 < σ; that is, u ≡ 0 is uniform stability. Employing
our comparison result, the uniform stability of x ≡ 0 will be a subsequence of this
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stability property. Finally, by our assumption, if, for instance, every term in the infinite
product is less than or equal 1/e, then

u(t) =
∞∏
j=1

[
(1 + β j−1

α
)eα(t j−t j−1) − β j−1

α

]
u0 → 0.

That is, u ≡ 0 and, hence, x ≡ 0 is uniformly asymptotically stable.

Remark 12.3

(i) The interesting finding of Corollary 12.3 is that the system has unstable ordi-
nary part which is stabilized by negative piecewise constants evaluated at an
individual point in each subinterval.

(ii) Assuming that the product terms equal or less than some positive constant c less
than unity results in, for ξk = tk ,

tk+1 − tk >
1

α
ln

[(
c + βk

α

)(
1 + βk

α

)−1]
,

where
(
c + βk

α

)(
1 + βk

α

)−1
> 1 so long as

(
1 + βk

α

)
< 0 and c < 1.

Corollary 12.4 In Theorem 12.2, let g(t, u(t),σk(uξk )) = −ω(u) + βkuξk with ω ∈
K , βk ≥ 0 and ξk = tk for all k. Then, x ≡ 0 is uniformly asymptotically stable
provided that the series

∑∞
j=1 β j (t j − t j−1) converges.

Proof Since D+V (x, Vξk ) ≤ −ω(V (x)) + βkVξk implies

D+V (x, Vξk ) ≤ βkVξk ,

then it follows from Corollary 12.3 that u ≡ 0 of the auxiliary scalar EPCA

u̇(t) = −ω(u(x)) + βkuξk (12.10a)

u(t0) = u0 (12.10b)

is uniformly stable. Thus, for a fixed ρ > 0, there is a σ = σ(ρ) > 0 such that

0 ≤ u0 ≤ σ implies u(t; t0, u0) < ρ, t ≥ t0 (12.11)

for any solution of (12.10). Let ε ∈ (0, ρ) be given and δ = δ(ε). In the rest of the
proof, we need to show that u ≡ 0 is attractive; it suffices to show that there exists a
T = T (ε) > 0 such that

u(t∗; t0, u0) < δ = δ(ε), (12.12)
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for any t∗ ∈ [t0, t0 + T ] and any solution of u(t; t0, u0) of (12.10) that satisfies
(12.11).

Since
∑∞

j=1 β j (t j − t j−1) converges, define

M =
∞∑
j=1

β j (t j − t j−1) < ∞.

Choose T1 = T1(ε) > 0 such that

T1 > 2ρM[ω(δ)]−1. (12.13)

Define

T = max
{
T1,

2(σ + 1)

ω(δ)

}
. (12.14)

We claim that (12.12) is true for T given in (12.14). If this were not true, suppose,
for contradiction, that there would be a solution u(t) = u(t; t0, u0) of (12.10) with
u0 < σ such that

u(t) ≥ δ, t ∈ [t0, t0 + T ]. (12.15)

Integrating (12.10) from t0 to t0 + T yields

0 ≤ u(t0 + T ) = u0 −
∫ t0+T

t0

ω(u(s)) ds

+
k∑
j=1

β j−1uξ j−1(t j − t j−1) + βkuξk (t0 + T − tk)

≤ σ − Tω(δ) + ρM

= σ − Tω(δ)

2
− Tω(δ)

2
+ ρM

≤ σ − Tω(δ)

2
< −1 < 0,

which is a contradiction. Thus, (12.12) must be true; that is,

u(t∗; t0, u0) < δ,

for any solution of u(t; t0, u0) of (12.10) with u0 < σ. Hence, u ≡ 0 is uniformly
attractive and consequently uniformly asymptotically stable which in turn implies
that x ≡ 0 is uniformly asymptotically stable.
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Corollary 12.5 Let g(t, u(t),σk(uξk )) = αu(t) + h(t, u(t),σk(uξk )) with α < 0.
Then, x ≡ 0 is uniformly asymptotically stable provided that the sum

∞∑
j=1

∫ t j

t j−1

eα(t−s)h(s, u(s),σ j−1(uξ j−1)) ds

converges. In particular, h(t, u(t),σk(uξk )) = 0 when k (or t) → ∞.

Proof The proof is straightforward since, from the solution

u(t) = eα(t−t0)u0 +
∞∑
j=1

∫ t j

t j−1

eα(t−s)h(s, u(s),σ j−1(uξ j−1)) ds,

we get limt→∞ u(t) = 0.

12.5 Numerical Examples

To illustrate these results, we take some examples.

Example 12.1 Consider the nonlinear EPCA

{
ẋ = 2x + 2βkey

2
yξk , t ∈ [tk, tk+1], k = 0, 1, 2, . . .

ẏ = y + βk(1 + x2)xξk ,
(12.16)

whereβk = −3.5 for all k. Clearly, the ordinary part is unstable. LetV (x, y) = x + y
for x > 0 and y > 0. Then, one may get

V̇ ≤ αV + βkVξk ,

where α = 2. The solution of the differential inequality is given in Corollary 12.1(ii)
and, by Corollary 12.3, the trivial solution x ≡ 0 of (12.16) is uniformly asymptot-
ically stable. If ξk = tk , then tk+1 ∈ (0.15, 0.34), where c = 0.6. Figure12.1 shows
the simulation result in the case ξk = tk for all k.

Example 12.2 Consider the nonlinear EPCA

{
ẋ = y − x[1 + θ(x2 + y2)], t ∈ [tk, tk+1], k = 0, 1, 2, . . .

ẏ = −x − y[1 + θ(x2 + y2)] + 2yξk
2k ,

(12.17)

where 0 < θ 
 1. Let V (x, y) = 1
2 (x

2 + y2). Then
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Fig. 12.1 Simulation result of Example 12.1

Fig. 12.2 Simulation result of Example 12.2

V̇ (x, y) = xy − x2[1 + θ(x2 + y2)] − xy − y2[1 + θ(x2 + y2)] + 2yyξk

2k

≤ −(x2 + y2) − θ(x2 + y2)2 + 1

2k
(x2 + y2) + 1

2k
(x2ξk + y2ξk )

= −θV 2(x, y) + βkV (xξk , yξk )
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Fig. 12.3 Simulation result of Example 12.3

Let ω(u) = θu2. Then, by Corollary 12.4, the trivial solution of (12.17) is uniformly
asymptotically stable. Simulation result is shown in Fig. 12.2, where θ = 0.01, ξk =
tk and tk+1 − tk = 1 for all k = 0, 1, 2, . . ..

Example 12.3 Consider the nonlinear EPCA

{
ẋ = −x, t ∈ [tk, tk+1], k = 0, 1, 2, . . .

ẏ = −2y + xξk sin yξk
1+x2 ye−t .

(12.18)

Let V (x, y) = 1
2 (x

2 + y2). Then, one can get

V̇ (x, y) = −x2 − 2y2 + xξk sin yξk

1 + x2
y2e−t

≤ −(x2 + y2) + 1

2
(y4 + x2ξk )e

−t

= −2V (x, y) +
(
2V 2(x, y) + V (xξk , yξk )

)
e−t

= αV + h(t, V, Vξk ),

where α = −2 and h(t, V, Vξk ) = (2V 2 + Vξk )e
−t . By Corollary 12.5, the trivial

solution of (12.18) is uniformly asymptotically stable. Figure12.3 shows the asymp-
totic stability of the trivial solution of (12.18).
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12.6 Application

Consider the logistic population growth model undergoing density-dependence har-
vesting whose dynamics are given by

Ṅ (t) = r N (t)
(
1 − aN (t) − bN (γ(t))

)
, t > 0, (12.19)

The system, here, is viewed as a switched system in which γ(t) represents the
switching signal for all t ∈ [tk−1, tk) with k ∈ N and takes values in {ξk}∞k=0 with
ξk = tk for all k. Clearly, the system has two equilibria, N1 = 0 and N2 = 1

a+b > 0.
To analyze the stability properties of N2, we use comparison method of this chapter.

For convenience, we transfer the desired equilibrium solution to the origin by
applying the change of variable x = b(N − N2) to obtain

ẋ(t) = −r
(
x(t) + 1

1 + α

)(
αx(t) + x(ξk)

)
,

where α > 1. Define V (x) = x as the Lyapunov function candidate. Then, one may
get

V̇
(
x, x(ξk)

) ≤ −λV (x) − μV (x(ξk)),

where λ = rα
1+α

and μ = r
1+α

. Consider the comparison system

u̇(t) = −λu(t) − μu(ξk), t ∈ [tk−1, tk), k ∈ N,

u(t0) = u0 > 0.

One can easily show that

u(t) =
[(
1 − μ

λ

)
e−λ(t−tk ) − μ

λ

] k∏
j=1

[(
1 − μ

λ

)
e−λ(t j−t j−1) − μ

λ

]
u0.

As illustrated in Corollary 12.3, assume that infinite series

∞∑
j=1

[
(1 − μ

λ
)e−λ(t j−t j−1) − μ

λ

]

converges. Furthermore, if, in addition, the terms in corresponding infinite product
are all less than unity, say c < 1, then x ≡ 0 is uniformly asymptotically stable. This
implies that, for ξk = tk ,

tk+1 − tk >
1

−λ
ln

(cλ + μ

λ − μ

)
,
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Fig. 12.4 Simulation result of the logistic growth model

which represent the dwell times, where cλ+μ
λ−μ

< 1 so long as λ > μ and c < 1. For the
simulation purposes, we take r = 1, a = 2 and b = 1 to get from the last inequality
tk − tk−1 > 0.6 for any k ∈ N. Figure12.4 shows the asymptotic stability of the pos-
itive equilibrium point N2 = 1

a+b = 0.33, where tk+1 − tk = 1 for all k = 0, 1, . . ..

12.7 Notes and Comments

In this chapter, systems of nonlinear EPCA have been viewed as a switched system.
We also presented a comparison method (Theorem 12.1) for the systems which has
been later used to prove some stability properties by the classical Lyapunov method.
We have also shown that piecewise constant arguments do contribute to stabilize
unstable systems of ordinary differential equations (Corollary 12.3). Finally, the
stability result has been applied to address the asymptotic stability of a population
growth model. The material of this chapter is taken from [7].

Initially, the theory of EPCA was developed in [1]. Later, it was well discussed
in the survey paper [2] and book [3]. A general type of EPCA (EPCAG) in which
the piecewise constant real function γ takes values over discrete subintervals instead
of at the most left endpoint of each subinterval, has appeared in some works [8, 9].
In those works, the solutions of linear and quasi-linear EPCAG are determined by a
unique initial datum at an initial moment t0, rather than by a countable set of initial
data defining at discrete moments n for nonnegative integers n or, as in the case of
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functional differential equations, by an initial function defining on some interval from
the past history. In either case, EPCA or EPCAG, functional differential equations
reduce to ordinary ones. Consequently, one can use the theory of ordinary differential
equations.

The logistic population growth model had been studied in [10], where γ(t) = [t]
for all t ∈ [n, n + 1)with n = 0, 1, 2, . . .. It was shown that the positive equilibrium
solution is globally asymptotically stable if α = a/b ≥ 1 and, whenever N (n) > 0,
N (t) > 0 for all t ∈ [n, n + 1), n = 0, 1, 2, . . .. Later, differential equation (12.19)
in which γ(t) = [t] for all t > 0 was considered in [11], where stability results were
established by using Lyapunov–Razumikhin method.
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Chapter 13
Existence, Uniqueness and Stability
of Stochastic EPCA

In this chapter, we consider systems of stochastic EPCA (or SEPCA). We start
with the problem of existence and uniqueness of solutions. Then, we address the
comparison method and the stability notion of the solution.

Consider the nonlinear systems with SEPCA of the form

dx(t) = f (t, x(t),λ�(t)(x(γ(t))))dt + g(t, x(t),λ�(t)(x(γ(t))))dW (t), (13.1a)

x(t0) = x0, (13.1b)

where x ∈ R
n is the system state and, for all t ≥ t0 with t0 ∈ R+, �(t) and γ(t) are

piecewise constant functions taking values in the sets K = {k}∞k=0 and � = {ξk}∞k=0,
respectively, where tk ≤ ξk < tk−1 for any k = 0, 1, 2, . . .. As stated in the previous
chapter, these functions represent the switching signals of the system switching
between the piecewise constant argument λk and the values of its state argument x .

Accordingly, one may define system (13.1) as follows: for all t ∈ [tk, tk+1),

dx(t) = f (t, x(t),λk(x(ξk)))dt + g(t, x(t),λk(x(ξk)))dW (t), (13.2a)

x(t0) = x0 (13.2b)

or, equivalently,

x(t) = x0 +
∫ t

t0

f (s, x(s),λk(x(ξk)))ds +
∫ t

t0

g(s, x(s),λk(x(ξk)))dW (s).

(13.3)

The following definitions will be needed in this chapter.

Definition 13.1 For any α, β ∈ R, an R
n−valued stochastic process x : (α,β) →

R is said to be a solution of (13.1) if the following hold:
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(i) x(t) is continuous andFt−adapted for all t ∈ (α,β);
(ii) f (t, x(t),λk(x(ξk))) ∈ Lad(�, L1(α,β)) and

g(t, x(t),λk(x(ξk))) ∈ Lad(�, L2(α,β)); and
(iii) the stochastic integral equation (13.3) holds w.p.1.

Definition 13.2 For all t ∈ [a, b], an R
n−valued Ft−adapted process f (t) with∫ b

a ‖ f (t)‖pdt < ∞ (a.s.) (i.e., f ∈ Lad(�; L p[a, b])) is said to be inM p([a, b];Rn)

if E
[ ∫ b

a ‖ f (t)‖pdt
]

< ∞.

Definition 13.3 An Rn−valuedFt−adapted integrable process X (t) is said to be a
martingale with respect to the filtration {Ft }t≥0 if

E[X (t)|Fs] = X (s), (a.s.), for all 0 ≤ s < t < ∞,

whereE[X (t)|Fs] stands for the conditional expectation of process X (t)with respect
to the filtrationFs .

Doob’s martingale inequality. For all t ≥ 0, let X (t) be an R
n-valued martingale

and [a, b] be a bounded interval of R. If p > 1 and X (t) ∈ L p(�;Rn), then

E

[
sup
a≤t≤b

‖X (t)‖p
]

≤
( p

p − 1

)p
E[‖X (b)‖p].

Borel–Cantelli’s lemma. If {Ak}∞k=1 ⊂ F and
∑∞

k=1 P(Ak) < ∞, then

P(lim sup
k→∞

Ak) = 0.

13.1 Existence and Uniqueness of Solutions

In this section, we address the problem of existence of a unique solution of SEPCA
given in (13.1) or (13.2). As will be seen, the technique followed here is to generate a
convergent Cauchy sequence of solutions. For this purpose, we assume that the sys-
tem vector fields are bounded by a linear growth estimate and satisfy the Lipschitz
condition. The first condition is to avoid a finite escape time that a solution may have
when time evolves. The second condition is made to be used in proving the conver-
gence of the generated sequence of the solution and to guarantee the uniqueness of
the solution.

Before we prove this theorem, the following lemma is needed.

Lemma 13.1 For any k = 0, 1, 2, . . ., assume that the linear growth condition
holds. Then, solution x cannot grow faster than the following exponential estimate

E

(
sup

tk≤t≤tk+1

‖x(t)‖2
)

≤ (1 + ck)e
3L1(tk+1−tk+4)(tk+1−tk ),
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where ck = 3E[‖x0‖2] + 3L1(tk+1 − tk + 4)(tk+1 − tk)E[‖λk(xξk )‖2] < ∞. In other
words, x ∈ M 2([tk, tk+1);Rn) with 0 < tk+1 − tk ≤ θ < ∞ for any k.

Proof Choose k arbitrarily and, for any l ≥ 1, define a sequence of stopping times

τl = tk+1 ∧ inf{t ∈ [tk, tk+1) | ‖x(t)‖ ≥ l},

where liml→∞ τl = tk+1 (a.s.). For simplicity of notation, we set xl(t) = x(t ∧ τl)
for all t ∈ [tk, tk+1). Then, from system (13.1), we get

xl(t) = xk +
∫ t

tk

f (s, xl(s),λk(xξk ))1[tk ,τl ]ds +
∫ t

tk

g(s, xl(s),λk(xξk ))1[tk ,τl ]dW (s),

where 1A is the indicator function of a set A. In virtue of (i) and using Doob’s
martingale inequality to the stochastic Itô integral, one may get

E

(
sup
tk≤t≤t

‖xl(t)‖2
)

≤ 3E[‖xk‖2] + 3L1(tk+1 − tk)
∫ t

tk

(1 + E[‖xl(s)‖2] + E[‖λk(xξk )‖2])ds

+ 12L1

∫ t

tk

(1 + E[‖xl(s)‖2] + E[‖λk(xξk )‖2])ds

≤ 3E[‖xk‖2] + 3L1(tk+1 − tk + 4)
∫ t

tk

(1 + E[‖xl(s)‖2])ds
+ 3L1(tk+1 − tk + 4)(tk+1 − tk)E[‖λk(xξk )‖2],

which implies that

1 + E

(
sup
tk≤t≤t

‖xl(t)‖2
)

≤ 1 + ck + 3L1(tk+1 − tk + 4)
∫ t

tk

(1 + E[‖xl(s)‖2])ds

≤ 1 + ck + 3L1(tk+1 − tk + 4)
∫ t

tk

(1 + E[ sup
tk≤t≤τl

‖xl(s)‖2])ds.

By the Gronwall inequality, we get

E

(
sup
tk≤t≤t

‖xl(t)‖2
)

≤ (1 + ck)e
3L1(tk+1−tk+4)(tk+1−tk ).

The desired result is implied by letting l → ∞. This completes the proof.
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Theorem 13.1 Assume the following assumptions hold:

(i) the vector fields functions f and g satisfy the linear growth condition; i.e., there
exists a positive L1 such that

‖ f (t, x, y)‖2 + ‖g(t, x, y)‖2 ≤ L1(1 + ‖x‖2 + ‖y‖2), (a.s.),

for all (t, x, y) ∈ [tk, tk+1) × R
n × R

n;
(ii) f and g satisfy a global Lipschitz condition; i.e., there exists a positive constant

L2 such that

‖ f (t, x1, y1 − f (t, x2, y2))‖2 + ‖g(t, x1, y1) − g(t, x2, y2))‖2
≤ L2‖x1 − x2‖2 + ‖y1 − y2‖2, (a.s.),

for all (t, x, y) ∈ [tk, tk+1) × R
n × R

n.

Then, system (13.1) or (13.2) has a unique solution, x(t), defined for all t ≥ t0.

Proof The proof is given here for all t ∈ [t0, t1) since the rest will be similar. Define
the sequence xn with the initial state, x0, by the following iteration

xn(t) = x0 +
∫ t

t0
f (s, xn−1(s),λk(xn−1ξ0

))ds +
∫ t

t0
g(s, xn−1(s),λk(xn−1ξ0

))dW (s),

(13.4)

where x jξ0
= x j (ξ0) = x j (t0). By Lemma 13.1, x0 ∈ M 2([tk, tk+1);Rn), and by the

mathematical induction, we can see that xn(t) ∈ M 2([tk, tk+1);Rn) as follows:

E[‖xn(t)‖2] ≤ C1 + 3L1(t + t1)
∫ t

t0

E[‖xn−1(s)‖2]ds,

where C1 = 3E[‖x0‖2] + 3L1t1(1 + t1)
(
1 + E[‖λk(xn−1ξ0

)‖2]) < ∞, where we
used the fact t1 − t0 < t1. This also implies that, for an arbitrary j ,

max
1≤n≤ j

E[‖xn(t)‖2] ≤ C1 + 3L1(t + t1)
∫ t

t0

max
1≤n≤ j

E[‖xn−1(s)‖2]ds

≤ C1 + 3L1(t + t1)
∫ t

t0

(
E[‖x0‖2] + max

1≤n≤ j
E[‖xn(s)‖2]

)
ds

= C2 + 3L1(t + t1)
∫ t

t0

max
1≤n≤ j

E[‖xn(s)‖2]ds,

where C2 = C1 + 3L1t1(1 + t1)E[‖x0‖2]. By the Gronwall inequality

max
1≤n≤ j

E[‖xn(t)‖2] ≤ C2e
3L1t1(1+t1).
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Since j is arbitrary, we get

E[‖xn(t)‖2] ≤ C2e
3L1t1(1+t1), (13.5)

i.e., for all n, xn ∈ M 2([tk, tk+1);Rn); that is, xn(t) is bounded over [t0, t1).
Now, we want to prove that this sequence is convergent. Note that

‖x1(t) − x0(t)‖2 = ‖x1(t) − x0‖2

≤ 2
∥∥∥

∫ t

t0
f (s, x0,λk(x0ξ0

))ds
∥∥∥2 + 2

∥∥∥
∫ t

t0
g(s, x0, λk(x0ξ0

))dW (s)
∥∥∥2,

which implies, after taking the mathematical expectation,

E[‖x1(t) − x0(t)‖2]
≤ 2L1 [(t1 − t0)(1 + (t1 − t0))]

(
1 + E[‖x0‖2] + E[‖λk(xξ0)‖2]

) = C,

i.e., E[‖x1(t) − x0(t)‖2] ≤ C , where

C = 2L1 [(t1 − t0)(1 + (t1 − t0))]
(
1 + E[‖x0(t)‖2] + E[‖λk(xξ0)‖2]

)
.

We will show by mathematical induction that, for any n ≥ 0 and t ∈ [t0, t1),

E[‖xn+1(t) − xn(t)‖2] ≤ C[M(t − t0)]n
n! (13.6)

with M = 2L2(t1 − t0 + 1). Obviously, the relation is true for n = 0, 1. Assume that
it is also true for some n ≥ 0. As for the case of n + 1, we have

‖xn+2(t) − xn+1(t)‖2

≤ 2
∥∥∥

∫ t

t0

(
f (s, xn+1(s),λk(xn+1ξ0

)) − f (s, xn(s),λk(xnξ0
))

)
ds

∥∥∥2

+ 2
∥∥∥

∫ t

t0

(
g(s, xn+1(s),λk(xn+1ξ0

)) − g(s, xn(s),λk(xnξ0
))

)
dW (s)

∥∥∥2.

Taking the mathematical expectation and using the Lipschitz condition give

E[‖xn+2(t) − xn+1(t)‖2] ≤ 2L2(t − t0 + 1)E
∫ t

t0

(
‖xn+1(s) − xn(s)‖2

+ ‖λk(xn+1ξ0
) − λk(xnξ0

)‖2
)
ds

= M
∫ t

t0

E[‖xn+1(s) − xn(s)‖2]ds

≤ M
∫ t

t0

C[M(s − t0)]n
n! ds = C[M(t − t0)]n+1

(n + 1)!
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because λk(xn+1ξ0
) − λk(xnξ0

) = 0 for any n ≥ 0; for instance, for n = 0, we have

λk(x1ξ0
) − λk(x0ξ0

) = λk(x1(t0)) − λk(x0(t0)) = 0 (a.s.).

This is because x0(t) = x0 for all t , and by the solution sequence (13.4), we have
x1(t0) = x0(t0) = x0. Thus, the relation is true for n + 1.

To prove that xn is a Cauchy sequence, replace n by n − 1 and consider

sup
t0≤t≤t1

‖xn+1(t) − xn(t)‖2

≤ 2 sup
t0≤t≤t1

∥∥∥
∫ t

t0

[ f (s, xn(s),λk(xnξ0
)) − f (s, xn−1(s),λk(xn−1ξ0

))]ds
∥∥∥2

+ 2 sup
t0≤t≤t1

∥∥∥
∫ t

t0

[g(s, xn(s),λk(xnξ0
)) − g(s, xn−1(s),λk(xn−1ξ0

))]dW (s)
∥∥∥2

,

which implies, after taking the mathematical expectations and using the Doob’s
martingale inequality

E

(
sup

t0≤t≤t1
‖xn+1(t) − xn(t)‖2

)

≤ 2L2(t1 − t0 + 4)
∫ t1

t0

E
[‖xn(s) − xn−1(s)‖2 + ‖λk(xnξ0

) − λk(xn−1ξ0
)‖2] ds

= 2L2(t1 − t0 + 4)
∫ t1

t0

E
[‖xn(s) − xn−1(s)‖2

]
ds (13.7)

because λk(xnξ0
) − λk(xn−1ξ0

) = 0 for any n ≥ 1. For instance, for n = 1, we have

λk(x1ξ0
) − λk(x0ξ0

) = λk(x1(t0)) − λk(x0(t0)) = 0 (a.s.).

This is because x0(t) = x0 for all t , and by the solution sequence (13.4), we have
x1(t0) = x0(t0) = x0. Therefore, from (13.7), it follows that

E

(
sup

t0≤t≤t1
‖xn+1(t) − xn(t)‖2

)
≤ 4M

∫ t1

t0

4C[M(s − t0)]n−1

(n − 1)! ds

= 4C[M(t1 − t0)]n
n! ,

from which, we get

P

{
sup

t0≤t≤t1
‖xn+1(t) − xn(t)‖2 >

1

2n

}
≤ 4C[M(t1 − t0)]n

n! .



13.1 Existence and Uniqueness of Solutions 235

Since series
∑∞

n=0
4C[M(t1−t0)]n

n! is convergent, by the Borel–Cantelli’s lemma, we
have

sup
t0≤t≤t1

‖xn+1(t) − xn(t)‖2 ≤ 1

2n
.

It follows that, w.p.1, the partial sums

xn(t) = x0(t) +
n−1∑
j=0

(x j+1(t) − x j (t))

are convergent over [t0, t1]. Therefore, we conclude that sequence xn is Cauchy; i.e.,
there exists a limit point x such that limn→∞ xn(t) = x(t), which implies that, for
all t ∈ [t0, t1),

x(t) = x0 +
∫ t

t0

f (s, x(s),λk(xξ0))ds +
∫ t

t0

g(s, x(s),λk(xξ0))dW (s). (13.8)

Similarly, one can show this relation holds for any t ∈ [tk, tk+1). We should men-
tion that the inequality in (13.8) is still true for any k because, by defining the general
form of the solution sequence for any t ∈ [tk, tk+1), we have

xn(t) = x0(tk) +
∫ t

tk

f (s, xn−1(s),λk(xn−1ξk
))ds

+
∫ t

tk

g(s, xn−1(s),λk(xn−1ξk
))dW (s), (13.9)

where x jξk
= x j (ξk) = x j (tk); for instance, if n = 2, we obtain

λk(x2ξk
)) − λk(x1ξk

)) = λk(x2(tk)) − λk(x1(tk))

= λk(x0(tk)) − λk(x0(tk))

= 0,

w.p.1. Due to the continuity of solution x , limt→t−k+1
x(t) = x(tk+1). Thus, the

constructed solution is continuous and Ft−adapted for all t ≥ t0. Furthermore,
from (13.6), for all t ≥ t0, sequence xn(t) is Cauchy in L2, which implies that
limn→∞ xn(t) = x(t) in L2. It follows that, by letting n → ∞ in (13.5),

E[‖x(t)‖2] ≤ C2e
3L1t1(1+t1), for all t ≥ t0,

i.e., x ∈ M 2(R+;Rn). Next, we will show that x satisfies the stochastic integral
equation in (13.3), for all t ∈ [tk, tk+1] and every k, as follows:
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E

∥∥∥
∫ t

t0

f (s, xn(s),λk(xnξk
))ds − f (s, x(s),λk(xξk ))ds

∥∥∥2

+ E

∥∥∥
∫ t

t0

g(s, xn(s),λk(xnξk
))dW (s) − g(s, x(s),λk(xξk ))dW (s)

∥∥∥2

≤ L2(tk+1 − t0 + 1)
∫ tk+1

t0

E‖xn(s) − x(s)‖2ds → 0, as n → ∞.

Therefore, by letting n → ∞ in (13.4), we get the required result. Finally, to prove
the uniqueness, assume that there is another solution, say y(t). Then,

x(t) − y(t) =
∫ t

t0

(
f (s, x(s),λk(xξk )) − f (s, y(s),λk(yξk ))

)
ds

+
∫ t

t0

(
f (s, x(s),λk(xξk )) − f (s, y(s),λk(yξk ))

)
dW (s),

which implies that, after applying Hölder’s inequality, Doob’s martingale inequality
and Lipschitz condition,

E

[
sup

t0≤s≤t
‖x(s) − y(s)‖2

]
≤ 2L2(tk+1 + 4)

∫ t

t0

E[ sup
t0≤u≤s

‖x(u) − y(u)‖2]ds.

By the Gronwall inequality, we obtain

E

[
sup

t0≤s≤t
‖x(s) − y(s)‖2

]
= 0.

Thus, processes x and y are indistinguishable for all t . Hence, system (13.1) has
a unique solution x(t) for all t ≥ t0. This completes the proof.

13.2 Comparison Method

Having established the existence of a unique solution, in this section we deal with the
comparison method and stability properties of the trivial solution of system (13.1).

Theorem 13.2 Assume that the following assumptions hold:

(i) for any k = 0, 1, 2 . . ., V ∈ C 1,2([tk, tk+1) × R
n;R+), V is bounded below and

satisfies

L V (t, x, y) ≤ h(t, x,σk(y)), (a.s.), t ∈ [tk, tk+1),

where the function h is concave and nondecreasing in x and σk with σk being a
concave function; and
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(ii) the auxiliary scalar comparison system

u̇(t) = h(t, u(t),σk(uξk )), t ∈ [tk, tk+1), (13.10)

u(t0) = u0

has a maximal solution ν(t; t0, u0) for all t ≥ t0.

Then,E[V (t0, x0)] ≤ u0 impliesE[V (t, x)] ≤ ν(t; t0, u0) for any solution x of (13.1)
for all t ≥ t0.

Proof For any k = 0, 1, 2 . . . and all t ∈ [tk, tk+1), let x(t) be the solution of system
(13.1) that is guaranteed by Theorem 13.1. Let τkl or, for simplicity τl (for l ≥ 1), be
the first exit time of the process from the ball

Bl(x) = {x ∈ R
n | ‖x‖ ≤ l},

i.e., τl = inf{t ∈ [tk, tk+1) | ‖x(t)‖ > l}.

Define τl(t) = min{τl, t}. Then, by the Itô formula, we have, for all t ∈ [tk, τl(t)],

E[V (τl(t), x(τl(t)))] = E[V (tk, x(tk))] + E

∫ τl (t)

tk

L V (s, x(s),σk(Vξk ))ds

≤ E[V (tk, x(tk))] + E

∫ τl (t)

tk

h(s, V (s, x(s)),σk(Vξk ))ds,

where Vξk = V (ξk, x(ξk)). Definem(t) = E[V (s, x(s))] for all tk ≤ s ≤ τl(t). Thus,
by the properties of h and σk , the last inequality becomes

m(t) ≤ m(tk) +
∫ s

tk

h(r,m(r),σk(mξk ))dr, tk ≤ r ≤ s ≤ τl(t),

where mξk = m(ξk) = E[V (ξk, x(ξk))].
By Theorem 12.1, we obtain

m(t) ≤ νk(t; tk,mξk ), t ∈ [tk, τl(t)]

and by letting l → ∞, we obtain, for all t ∈ [tk, tk+1), m(t) ≤ νk(t; tk,mξk ). Partic-
ularly, for t ∈ [t0, t1), we have

m(t) ≤ ν0(t; t0,mξ0) = ν0(t; t0,m(t0)) ≤ ν0(t; t0, u0) =: ν(t; t0, u0),

whereν0(t; t0, u0) is themaximal solutionof the auxiliary comparison system (13.10)
for t ∈ [t0, t1) with m(t0) = E[V (t0, x(t0))] ≤ u0, as given initially.
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For t ∈ [t1, t2), we have

m(t) ≤ ν1(t; t1,mξ1) = ν1(t; t1,m(t1)) = ν1(t; t1, ν1(t1; t0, u0))
=: ν(t; t0, u0),

or

m(t) ≤ ν(t; t0, u0), t ∈ [t0, t2).

In general, one obtains

m(t) = E[V (t, x(t))] ≤ ν(t; t0, u0), t ≥ t0,

where ν(t; t0, u0) is the maximal solution of the comparison system (13.10) for all
t ≥ t0. This completes the proof.

13.3 Stability Analysis

In the following theorem, we prove some stability properties of the trivial solution
of (13.1).

Theorem 13.3 Assume that the conditions of Theorem 13.2 hold. Suppose also that
there exist two functions b ∈ K1 and a ∈ K2 such that

b(‖x‖2) ≤ V (t, x) ≤ a(‖x‖2), (a.s.). (13.11)

Then, the stability properties of the trivial solution u ≡ 0 of system (13.10) imply the
stability properties (in the m.s.) of the trivial solution x ≡ 0 of system (13.1).

Proof Assume that the trivial solution u ≡ 0 of comparison system (13.10) is stable.
Then, for every ε > 0, there exists δ = δ(t0, ε) > 0 for which

ν(t, t0, u0) < b(ε), whenever u0 ≤ δ, ∀ t ≥ t0 ≥ 0, (13.12)

where ν(t, t0, u0) is the maximal solution of comparison system (13.10).
To investigate the stability at t0, we choose δ = δ(t0, ε) ≤ δ1 (for the same ε) with

a(δ1) < b(ε) and let u0 = a(E[‖x0‖2]) ≤ δ1. Now, let E[‖x0‖2] ≤ δ. Then, from
(13.11), we obtain

b(E[‖x(t0)‖2]) ≤ E[V (t0, x0)] ≤ a(E[‖x0‖2]) ≤ a(δ) ≤ b(ε),

i.e., E[‖x0‖2] ≤ ε, whenever E[‖x0‖2] ≤ δ.
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Under the given assumptions, we claim that the trivial solution x ≡ 0 of SEPCA
(13.1) is stable in the m.s. for all t > t0; i.e., for the assigned ε and δ, the following
statement

E[‖x0‖2] ≤ δ implies E[‖x(t)‖2] < ε, ∀ t > t0

holds. If our claim were not true, there would be a t∗ > tk > t0, specifically tk <

t∗ ≤ tk+1, such that E[‖x0‖2] ≤ δ and

E[‖x(t)‖2] < ε, tk ≤ t < t∗, (13.13)

E[‖x(t∗)‖2] = ε. (13.14)

Recall that, by Theorem 13.2, we have shown E[V (t, x(t))] ≤ ν(t; t0, u0) for all
t ≥ t0. This, together with (13.12), implies

E[V (t∗, x(t∗))] ≤ ν(t∗; t0, u0) = ν(t∗; t0, a(E[‖x0‖p])) < b(ε).

We also have, by (13.11) and (13.14),

b(ε) = b(E[‖x(t∗)‖2]) ≤ E[V (t∗, x(t∗))].

Combining the last two inequality results in a contradiction. Therefore, our claim
must be true; i.e., the trivial solution x ≡ 0 is stable in the m.s. for all t ≥ t0. As for
the uniformity property, it suffices to choose δ independently of t0.

To prove them.s. asymptotic stability property of x ≡ 0, we need only to establish
attractivity of this solution. Assume that u ≡ 0 is asymptotic stable, which implies
the existence of δ2 = δ(t0) and T = T (t0, ε) > 0, for any given ε, such that

u0 ≤ δ2 implies ν(t, t0, u0) < b(ε), ∀ t ≥ t0 + T .

Following the same argument of the first part, we choose u0 = a(E[‖x0‖2]) ≤ δ2
and δ3 < δ2 such that E[‖x0‖2] ≤ δ3. Then,

b(E[‖x(t)‖2]) ≤ E[V (t, x(t))] ≤ ν(t, t0, a(E[‖x0‖2])) ≤ b(ε),

i.e., E[‖x(t)‖2] ≤ ε for all t ≥ t0 + T . We have proved that x ≡ 0 is asymptotic
stability in them.s. Furthermore, choosing T = T (ε) leads to the uniformity property.
In the following, we illustrate our theoretical result through a numerical examplewith
simulation.
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Fig. 13.1 First moment asymptotic stability of (x y)T = (0 0)

Example 13.1 Consider the following SEPCA

dx = ( − x[λ + θ(x2 + y2) + βk xξk ]
)
dt + axdW1,

dy = bydt − x2dW1 + γξk yξk e
−x2dW2. (13.15)

Taking V (x, y) = 1
2 (x

2 + y2) as a Lyapunov function candidate implies

L V ≤ −(λ + β2
k

2
+ a2

2
)x2 + by2 + β2

k

2
x2ξk + γ2

k

2
y2ξk

≤ θ∗

2
(x2 + y2) + 1

2
ξk(x

2
ζk

+ y2ξk )

= θ∗V (x, y) + ζkVξk ,

where θ∗ = 2min{−(λ + β2
k
2 + a2

2 ), b} < 0 and ζk = max{β2
k , γ

2
k } > 0. Choose λ =

2, θ = 1, a = 1, b = −1, βk = γk = 1/2k and a = b = V = 1
2‖(x, y)‖2. Clearly,

the trivial solution of the comparison system is asymptotically stable. This conclusion
can be checked with Corollary 12.5, where w(s) = s > 0, βk = ζk and tk − tk−1 =
1 for any k. We deduce that (x, y)T = (0, 0) is asymptotically stable in the m.s.
Figures13.1 and 13.2 show the simulation results of themean andm.s. of the solution.
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Fig. 13.2 Mean square asymptotic stability of (x y)T = (0 0)

13.4 Notes and Comments

In this chapter, we have considered systems with SEPCA, which have been treated
as switched systems. The material of this chapter is adapted from [1]. Particularly,
we have addressed the problems of existence and uniqueness of solutions. Then, we
demonstrated some stability properties of the system. As for the existence result,
the vector fields have been assumed to be bounded above by some linear growth
estimation. Therefore, one can extend this result by considering a nonlinear growth
bound. The second part of this chapter has dealt with developing stability results,
where we have used the comparison method and Lyapunov function criteria. We
should mention that Definitions 13.2 and 13.2, and Borel–Cantelli’s lemma and
Doob’s martingale inequality are taken from [2].
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