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Foreword

Superstring/M-theory is the leading candidate to unify all forces and matter. It
provides a framework for elementary particle physics at the deepest level. Verifi-
cation of String/M-theory would impact the scientific world as nothing has before,
self-consistently joining quantum mechanics and general relativity. Nevertheless,
realization of String/M-theory as the underlying Theory of Everything awaits a
profoundly deeper understanding of the String “Landscape.” Prior to 1994—1996,
the string community generally expected the number of distinct string models
to (only) be around 100 trillion. However, the supplanting of string theory by
M-theory increased the estimate to on the order of 10°%°. Thus, the focus of
string phenomenology necessarily shifted from investigating individual models to
better understanding statistically the phenomenological aspects of the collection of
possible universes forming (regions of) the Landscape.

The Early Universe Cosmology and Strings (EUCOS) research group in the
Physics Department at Baylor University has been conducting the first fully
systematic large-scale investigations of the phenomenology of the weakly cou-
pled free fermionic heterotic string (WCFFHS) region of the Landscape. Prior
research groups investigating WCFFHS statistics used either random sampling of
input parameters or the parameter spaces surveyed were very limited. A serious
difficulty of random sampling is floating correlations, which reflect the fact that
not all physically distinct string models are equally likely to be sampled in any
random search of a model class. Some models can be expressed in multiply more
physically equivalent ways than others. This results in statistical correlations of
phenomenological properties of models that “float” as a function of sample size.
To avoid random sampling problems, EUCOS developed a computer algorithm that
provides an efficient solution for systematic generation and analysis of WCFFHS
models.

While previous studies were essentially limited to only Z, (periodic or anti-
periodic) twisted boundary conditions, with at most a single additional Z3 or Zq4
twist, EUCOS investigations cover the complete range of twists from Z, to Zs,.
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viii Foreword

EUCOS investigations open up a new and vastly larger range of models to
systematic statistical studies. The related algorithm used is also several orders of
magnitude more efficient than earlier brute-force methods.

During his years as a graduate research student, Douglas Moore played a
significant role in EUCOS. His research leading to the dissertation, The Landscape
of Free Fermionic Gauge Models, was a major contribution to the EUCOS effort.
This dissertation presents the results of systematic investigations believed to offer
complete classification of the parameter space of WCFFHS models with maximal
supersymmetry for 4—10 large spacetime dimensions. A metaheuristic algorithm for
focused searches for WCFFHS models with specified phenomenological properties
is also presented.

Both Baylor’s Department of Physics and Baylor University as a whole rec-
ognized the quality and significance of Doug Moore’s dissertation. It was voted
the Best Physics Dissertation of the Year by the Physics Faculty and the Best
Baylor University STEM Dissertation of the Year by the STEM Graduate Program
Directors.

Waco, TX, USA Gerald B. Cleaver
June 2015



Preface

I’ve never really understood the point of a preface, so when I decided to write one
I had to guess as to what the point should be. After looking the word up in the
dictionary (a real, hardcopy version, made of paper and everything), I decided to
deliver this preface in a more relaxed prose. Given that I don’t remember having
ever read a preface, I am not even sure that this will be taken in by too many people.
Subsequent chapters are written more formally, so if you do not like this style, just
skip ahead.

As an undergraduate student, I did a bit of trivial work in the field of string model
building, specifically for intersecting D-brane models in Type II-A strings. I began
my work at Baylor University toward the end of my second semester, building off
of that of Matthew Robinson and a collection of REU' students that preceded me. I
was tasked with rewriting a small piece of code to construct what Dr. Cleaver, my
esteemed advisor, was calling gauge models. The hodgepodge of source code, all
crammed into a single file, was impenetrable. This is not a shot at the work of Dr.
Robinson or the REU students; even Texas summers are not long enough, and I don’t
think any of them planned for the project to live for long. Well, after about a week
of swimming in a sea of painfully written if-statements and for-loops, I decided to
rewrite the entire thing from scratch. After all, it couldn’t take more than a month
Or S0.

Just over a year later, I finally finished version v0.5 of what had become the
Gauge Framework. It consisted of roughly 15 classes spread across just as many
files. It was relatively slow (~100 models/s), bug-laden, and it only built models
in four dimensions. While it did have some parallel capabilities, facilitated by the
POSIX thread library, it was just barely able to complete the layer one survey
discussed in Sect. 4.1. In fact, it couldn’t build order 24 in any reasonable amount of
time! Oh, and there was an infuriating bug that caused it to die intermittently after
several hours of running; I’ve never identified what the source was.

Research experiences for undergraduates.
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X Preface

We needed a new framework if we were going to pursue higher layer surveys.
After 18 months or so, the first full version of the Gauge Framework, v1.0, was
functional. It ran significantly faster, ~1,000 models/s, and had few known bugs.
We’d switched to MPI from POSIX threads, and most of the strange bugs had
disappeared. We could now do any survey we wanted, within reason.

All along, as I've worked on the framework, I’ve been inescapably intrigued by
the massive amounts of redundancy in the free fermionic formalism. Understanding
the nature of that redundancy has been the most difficult problem I’ve worked on,
and one I have yet to crack. I try to discuss the embarrassingly little that I know
about that redundancy herein. Largely, this work is an exposition of the surveys and
searches that I've worked on with the Gauge Framework. It is my hope that more
will be done with it, but it seems unlikely.

Around 2011, I became very interested in machine learning, neural networks,
and evolutionary algorithms; I have a problem in that I am easily distracted and like
to distract those around me with my diversion. Dr. Tim Renner, though he hadn’t
defended yet, was my unsuspecting victim. We’d discuss the little projects on which
I’d work, and he even started doing the same. One day at lunch, he and I were
discussing genetic algorithms when he proposed an idea that I found irresistible.
Could we apply an evolutionary algorithm to string landscape surveys? To my
knowledge he never really followed up, but Chap. 5 has grown out of that discussion
as well as several others that he and I have had. It turns out that, if we can apply those
algorithms, it isn’t a trivial task in the slightest.

It seems appropriate here to mention a few of the projects that didn’t make it into
this work due to time and my reluctance to write a dissertation that exceeds 100
pages of real work.

First, I've looked into the way models change with compactification. In partic-
ular, given a model in D dimension, into what models can it transform in D — 1
dimensions? It is a very different approach to the exploration of the string landscape,
and to my knowledge is the only one of its kind. It turns out that certain progressions
are significantly more likely, and the most prevalent suggests that standard model-
like groups are more likely in lower dimensions. That said, I don’t believe that the
theory has been developed well enough yet to present here.

Second, there are two frameworks that I’ve tinkered with in my spare time; each
of which is designed to construct free fermionic models, but the algorithms are
different from those used in the Gauge Framework. The first project is designed
to make the most of C++’s compile time capabilities. Why calculate the length of
a basis vector at run time when you can do it at compile time? We can also take
advantage of many of the new C++11 features like the std: :array type (like
a C array, but C++’y). This makes writing end-user programs more difficult, but
they seem to run marginally faster. The second project discards the integer encoded
arrays and simply uses floats. The idea is that there are several fantastic libraries,
OpenBLAS and Lapack in particular, that handle linear algebra very efficiently.
Why not use them to do all of the heavy lifting? There are a few difficulties, but I



Preface xi

won’t get into them here. Suffice it to say that, while it is faster, it is less reliable at
higher order. I have a few ideas to improve the situation, but I find it advisable to
invest my time in writing my dissertation instead.

With that, I want to thank you for reading and hope that you enjoy the topic as
much as I have over the years.

Dallas, TX, USA Douglas G. Moore
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Chapter 1
Introduction

Abstract This chapter provides a high-level overview of the history of string theory
from the Veneziano amplitude, through the first and second string revolutions,
to the recognition of the “landscape” of string vacua. From this perspective,
we discuss the prospect of systematic surveys of the string landscape for vacua
with phenomenology in agreement with observation. Finally, we conclude with a
description of the types of problems and questions subsequent chapters intend to
address.

Keywords History of the landscape of string vacua

1.1 Historical Context

String theory began, more or less, in 1968 with a proposition made by Gabriele
Veneziano. In attempting to describe the high energy behavior of hadrons he
suggested that the Euler beta function might have desirable properties as a quantum
amplitude. It was noticed that such an amplitude would treat the Mandelstam s- and
t-channels symmetrically resulting in nice high energy behavior. Additionally, it
was seen in experiments that the mesons followed straight line Regge trajectories,
and Veneziano’s amplitude modeled that as well. Initially, the Veneziano amplitude
was just a heuristic attempt to match experimental data. The choice of amplitude
was not however based on any particular physical interpretation, it simply aimed to
model the data. Around 1970, efforts to find such an interpretation paid off when
several physicists showed that the Veneziano amplitude could arise as the result of
an infinite number of quantum harmonic oscillators, e.g. a quantum string.

As it was proposed, string theory aimed to be a description of the strong nuclear
interactions, but that feather went to quantum chromodynamics. String theory only
matched experiment in certain limited regimes, so it rightfully lost favor. However
before all interest was lost, the discovery was made that the first excited state in
the closed string sector gives rise to a massless spin-2 state, a state identified with
the graviton. String theory soon took center stage as the dominant contestant as a
quantum theory of gravity. Without this realization, string theory certainly would
have died away. It was also realized at the time that the open string sector gives
rise to a massless bosonic state, in this case spin-1 and identified with the photon.

© Springer International Publishing Switzerland 2016 1
D.G. Moore, The Landscape of Free Fermionic Gauge Models, Springer Theses,
DOI 10.1007/978-3-319-24618-5_1



2 1 Introduction

In fact, there was more. Both sectors actually produce an infinite tower of massive
excitations on top of their massless, first excited modes. All of these excitations are
bosonic, hence the theory’s common description as “bosonic string theory.”

Bosonic string theory gave hope of a unified theory of physics as it had the
ability to combine gravity with other forces. It even had a beautifully elegant
feature: it required a particular number of spacetime dimensions in order to maintain
consistency and a reasonable amount of symmetry—26. Of course this result is
nonsensical. We clearly live in 4 dimensions, right? It turns out that we can deal with
this by “rolling up” or compactifying the extra dimensions. If those compactified
dimensions are very, very small, then the low energy experiments we do would not
be able to notice them. Unfortunately it had two pathologies. First, it only had the
capacity to produce bosonic states. No fermions were allowed, i.e. no matter. That
is clearly a deal breaker since we obviously have matter; I wouldn’t be writing
this and you wouldn’t be reading it if that weren’t the case! Second, the ground
state of the theory was tachyonic.! This implied that the theory was unstable and
would decay into something else. Nevertheless, it was promising to see a single
theory producing the gravitational and a non-gravitational force simultaneously and
concurrently giving a justification for the number of spacetime dimensions (even if
that number was apparently incorrect).

By the mid-1980s a solution to most of these problems was developed. The idea
was simple: just add some fermions! To do this consistently, a symmetry was
proposed that allowed for the transformation of a bosonic degree of freedom into
a fermionic degree of freedom (and vice versa). This symmetry, soon dubbed
supersymmetry, has had unbelievable implications for physics. Its effects have been
far reaching, well beyond string theory, and hundreds of books have been written
on its subject. By adding this symmetry to the theory we necessarily introduce
fermions, this gives string theory the potential to produce matter. Surprisingly,
the added fermionic degrees of freedom also reduce the number of spacetime
dimensions required to keep the necessary symmetries; we only need 10 now!
What’s more, the requirements of supersymmetry effectively kill the tachyonic
ground state. Altogether, this made string theory a serious contender for the title
of “theory of everything.”

Around the mid-1980s the field saw a burst of work. In 1984, the work of Michael
Green and John Schwarz showed that the anomaly? in what is referred to as Type I
theory could easily be canceled by the addition of a Chern—Simons term in action.
This was a simple mechanism for dealing with anomalies and is just one example of
the way that string theory seems to “just work.” In 1985 it was realized that strings
didn’t have to come in either bosonic or supersymmetric flavors, they could be both.
Basically, if you have a closed string, you can have the waves that travel clockwise

IFor the casual reader, tachyonic means m? < 0.

2An anomaly occurs when a symmetry of the classical theory is not a symmetry of the quantum
theory. The standard wisdom is that anomalies are something to be avoided.
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be purely bosonic, but require that the counterclockwise waves be supersymmetric.
This is referred to as heterosis and gives rise to “heterotic string theory.”

By the close of the 1980s, string theory found itself in a peculiar situation. Five
classes of string theories had arisen: Type I, Type Ila, Type IIb, Heterotic SOs,,
and Heterotic Eg x Eg. Each class was composed of a growing collection of
vacua deriving from strings with particular properties, each vacuum representing
a potential “universe” with a particular body of physics and different compactified
topologies. The difficulty was that there was no moral reason to select any one of
the classes over another, and each vacuum in a class was on an equal footing as any
other. In fact, this is a problem we still have today and is in many ways the topic of
this work.

The arena changed in 1994 when Edward Witten showed that the five string
theories, as well as eleven-dimensional supergravity, were manifestations of a single
theory and added another leg, now referred to as M-Theory. This was done by
showing that each of the theories was connected by dualities. For example, a given
geometry in Type Ila theory may be transformed into a geometry described in
Type IIb theory (and vice versa) via T-duality—a duality which, in its simplest form,
replaces circles of radius R with circles of radius 1/R. Other dualities have been
shown to exist and, when carried out it is seen that all of the string theories are really
one and the same. This realization sparked the “second superstring revolution.”
However, this only replaced the broad classes of string theory; it did nothing to
eliminate the individual vacua. In fact, the problem of too many apparently distinct
vacua worsened. Rather than having a few handfuls of vacua, we now had a better
understanding that there is in fact a continuum of solutions.

1.2 The String Landscape

We now know that this solution space is at least partially parameterized by
dynamical moduli which represent such physical properties as the shape parameters
of any compactified dimensions of the theory. For example, if two of the ten
dimensions are compactified into a torus, one of the moduli would be the ratio of the
radii of the torus. As we move around in this moduli space, we vary the properties of
the compactified manifold, growing shrinking and reshaping it and thus producing
all new physical manifestations.

Interestingly, we can actually think of moduli as fields, ®, with an associated
potential, V(®). We know from standard mechanics that extrema of a poten-
tial are important. In a state-space formalism, the minima correspond to stable
configurations of the state parameters. In this case, we refer to these stable
configurations as vacua. These vacua correspond to bodies of physics with their
associated symmetries, particle spectra and forces. In essence, a vacuum is a
possible universe with its own physics. Really though, each solution has this same
property. The primary difference is stability. If a vacuum occurs as a local minimum,
we think of it as metastable, and stable if it is an absolute minimum. All other
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solutions are unstable and decay into at least a metastable state. Metastable vacua
are sometimes referred to as false vacua because, given a sufficient “push,” they
would decay into a more stable state. This is similar to the way we think of bosonic
string theory decaying as a result of its tachyonic vacuum state. This continuum of
solutions, punctuated by stable and metastable vacua, is referred to as the “string
landscape” [1].

What we are most interested in when dealing with the landscape are the vacua.
Why concern yourself with unstable bodies of physics when you have enough
trouble with the apparently stable ones? As we begin to pursue constructions of
vacua we start to realize something daunting: there is a /ot of them! It is natural to
wonder how many vacua there are.

Starting around 2000 efforts were made to get a good estimate of the number of
string vacua. This task is highly non-trivial. It isn’t as simple as solving V'(®) = 0.
For one thing, our understanding of V(®) is nebulous at best. What’s more, the
potential V(®) is a largely classical interpretation of something highly non-classical.
We can’t really be sure that it is even a reasonable way to approach the problem,
so for now the only option is to make a solid educated guess. This was carried
out in 2003 using “ensembles” of vacua and estimating their density in moduli
space, [2, 3]. The result is a number around 10°%, as it is typically quoted. This
enumeration is disheartening to say the least. With so many vacua, searching for our
particular vacuum seems hopeless.

1.3 The Prospect of Landscape Surveys

In 2006, Denef and Douglas published a paper showing that if the landscape is more
or less a random distribution of vacua, that there is no “organizing principle” to their
distribution, then the problem of searching for a given set of vacua, e.g. those that
are conducive to our low energy physics, is at best NP-complete [4]. In particular,
they showed that performing such a search assuming the Bousso—Polchinski model
of the landscape is isomorphic to the subset sum problem.® For those unfamiliar
with complexity theory, this roughly means that verifying that the set of vacua has
the required property is easy, but actually finding such a set is very difficult.

Given this realization and the shear enormity of the landscape, the problem is
clearly intractable. So where do we go from here? One possibility is to just give up.
It is completely reasonable to entertain the possibility that the landscape is just too
big and disorganized. In fact, that is the standpoint of most of the critics of string
theory. But there are other possibilities.

Around the time it was realized that there is not just one vacuum, many came
to believe that there might exist something of a “vacuum selection” principle, a
governing dynamic that makes it much more likely for certain vacua to be realized

3Given a set of integers, is there a subset whose sum is zero?
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than other. In other words, maybe the vacua are not in fact all on the same footing.
Is it possible that, at the birth of a universe it could evolve into any one of the given
vacua, but the probability for some is significantly higher than for others? Of course
it is conceivable, but unfortunately there has been little headway in this direction,
and the prospects are looking grim. It is easy to fall into philosophical discussions
when pursuing such lines of thought, see [2] for one such example. To avoid this,
let us quickly change the subject.

Beyond searching for a selection principle to guide us, maybe there is something
else. Denef’s and Douglas’s result that landscape surveys are largely intractable was
built upon the assumption that the landscape has no real underlying structure, that
the vacua are more or less randomly distributed. In some sense this is probably
a safe assumption, especially since we don’t yet see any such structure. If there is
structure, but we don’t use it, then it might just as well not be there.* It is the author’s
belief that before just giving up we should at least invest some effort into looking
for organizing principles for the landscape.

Before proceeding, we want to be very clear. We are not talking about a selection
principle, per se. It may be entirely possible that every vacuum is the same in terms
of its acceptability as a solution in string/M-theory. Here what we are interested in,
in some sense, is more how the vacua of the landscape are distributed. Are vacua
with particular properties clustered? Suppose we find a vacuum with some property
like “having three generations of matter.” Is it possible to find similar models near
by’ or are similar models scattered? Either way, that information could be useful in
driving a survey.

1.4 Statistical Landscape Surveys

This work is largely an effort to further our exploration of the string landscape.
We are not interested in finding our vacuum so much as understanding how
the vacua are arranged. After all, the odds of finding ours (if it exists at all)
are incomprehensibly small. A better use of our time and computational resources
is to better understand the landscape and use the information we glean to guide
our surveys in the future. To that end, we are interested not in individual vacua but
statistics of vacua. For example, given a region of moduli space, how many models
have the Standard Model gauge group as a factor?® These landscape statistics
can drive our understanding and move us toward systematic investigations of the
landscape.

“That is in terms of computationally surveying the landscape. Physically speaking, if there is a
structure then it is obviously important.

3Of course the meaning of “near by” extremely vague. It could mean having similar moduli (near
by in moduli space), or it could mean something as yet unexplored.

In most cases, the gauge groups of string models, especially in the free fermionic formalism used
in this work, are large. In the case of vacua with six compact directions and no rank reductions, the
gauge group will be of rank 22.
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The first step in performing these statistical surveys is to select a formalism
with which to construct string models. At its coarsest level, this amounts to
choosing which of the five string theories (or M-theory) within which to work. It is
unreasonable to assume that you will not be able to explore any one of these theories
in its entirety. So, for example, you might limit yourself to intersecting D-brane
models in Type II theory, or free fermionic models in the heterotic theories. As
we’ve already mentioned, our understanding of the landscape is very limited. The
best we can do for now is look at the small patches of the landscape that correspond
to any one of these formalisms. As we learn more about the landscape and the
construction of vacua, we may be able to expand our spotlights to include larger
and larger swaths of the landscape. For this work we have chosen to use the free
fermionic formalism. The reason for this stems from two facts. First, model building
and phenomenology within heterotic strings has been very fruitful. For example,
the first string-derived MSSM model was built using heterotic strings. Second,
the formalism is very clean and highly conducive to automated surveys. This will
hopefully be better justified in Chap. 3.

In addition to limiting ourselves to free fermionic heterotic strings, we choose
to focus only on a particular class of such models: gauge models. The biggest
reason for this is their simplicity. These gauge models exhibit the maximum number
of spacetime supersymmetries’ meaning that matter spectrum is entirely specified
in terms of their gauge content. This means that when we set out to construct
the content of a model, we need only deal with the gauge group. This makes
model construction particularly fast and efficient. Furthermore, gauge models are
something of building blocks. We can think of them as the barest models possible
and with minimal effort they can be extended to other, more generic models. This
being said, the last point is not really addressed fully herein. If you’d like, you can
think of this patch of the landscape as a playground within which to test ideas. How
might we go about effectively performing landscape surveys? What tricks might we
employ to make more generic surveys realistic?

One such toy idea is explored in Chap.5 wherein we entertain the possibility
that landscape surveys might benefit from metaheuristic algorithms, algorithms that
use lower-level heuristics to find near optimal solutions to optimization problems.
If the landscape does have some organizing structure, then we may be able to
reformulate our questions in terms of optimization problems. Algorithms such as
these could then be deployed to almost blindly trickle through the landscape in
search of “optimal” vacua with desired properties. Whether or not this approach
is truly realistic is something that is yet undetermined, but within the landscape of
gauge models we can quickly explore ideas such as these.

In order to actually carry out this work it was necessary to build an entire
software framework dedicated to the construction of gauge models. The Gauge
Framework has proven quite invaluable to our research group’s general efforts

7 Actually, we do relax this requirement a bit, but for the purposes of this discussion we will assume
maximal supersymmetry.
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toward landscape surveys. Most importantly though, it has driven several other lines
of inquiry that sadly never made it into this work.

We are now ready to move on to the meat of our discussion. In Chap.2 we
will review superstrings in just enough detail that the reader should be comfortable
progressing to discussions of heterotic strings in Chap.3 and model building and
landscape statistics in Chap. 4. Finally, we wrap up with discussions of our meta-
heuristic approach to landscape searches in Chap. 5. Two appendices are provided.
Appendix A is a brief overview of the structure of the Gauge Framework and
its use, while Appendix B catalogues the various landscape statistics discussed
in Chap. 4.

References

1. L. Susskind, The anthropic landscape of string theory, In Carr, Bernard (ed.): Universe or
multiverse?, 247-266 (2003)

2. M.R. Douglas, The statistics of string/m theory vacua. J. High Energy Phys. 0305, 046 (2003)

3. S. Ashok, M. Douglas, Counting flux vacua. J. High Energy Phys. 01, 060 (2004)

4. F. Denef, M.R. Douglas, Computational complexity of the landscape. I. Ann. Phys. 322,
1096-1142 (2007)



Chapter 2
Introduction to Superstrings

Abstract This chapter introduces the technical details of the quantization of
the closed superstring, prerequisite for subsequent chapters. Beginning with the
closed superstring action, discussion quickly progresses to conformal invariance
and nonzero conformal anomaly. It is then shown that, upon gauge fixing and the
associated introduction of ghost fields, we can eliminate the anomaly if spacetime
is 10 dimensional. Once the conformal anomaly is dealt with, modular invariance
and BRST quantization are addressed. We conclude with discussion of the GSO
projection, the mechanism that projects out the tachyonic ground state in the NS
sector of the theory.

Keywords Closed superstrings conformal anomaly gauge fixing BRST quantiza-
tion GSO projection

2.1 Introduction

In this chapter I discuss the basic construction of closed superstrings. I begin in
Sect.2.2 with a review of the superstring action, equations of motion and the
Virasoro mode decomposition of the stress-energy tensor. In Sect.2.3 we look at
how the Virasoro algebra, and thus the stress-energy tensor, generates the conformal
symmetry on the worldsheet. I also briefly touch upon operator product expansions.
I move on then to gauge fix the action in Sect. 2.4. As the gauge-fixing is local, we
turn to the question of global properties of the string. In particular, we introduce the
modular group in Sect.2.5. Finally, in Sects. 2.6 and 2.7 we cover the mechanisms
with which we prune our state space down to only the physical states, namely BRST
quantization and the GSO projection.

Remember that this topic has been explored and expounded on extensively by
people much more adept than I. For this reason, I only outline the details necessary
for subsequent chapters and direct the reader to any of the standard texts [1-5] for a
more complete treatment.

© Springer International Publishing Switzerland 2016 9
D.G. Moore, The Landscape of Free Fermionic Gauge Models, Springer Theses,
DOI 10.1007/978-3-319-24618-5_2



10 2 Introduction to Superstrings
2.2 Superstring Action

The problem of expressing an action for the supersymmetric string can be
approached in several ways. Historically it began with the Nambu—Goto action and
subsequently evolved into the Polyakov action, each of which describes bosonic
strings.! The Ramond-Neveu—-Schwarz (RNS) and Green-Schwarz actions were
then constructed to incorporate supersymmetry. As our interest is in the RNS
action, since it readily adapts to the heterosis to follow, we will not deal with the
Green—Schwarz action herein; see [1, 5] for details.

The RNS action amounts to adding N/ = 1 worldsheet supersymmetry to the
Polyakov action. In what follows X* will represent worldsheet scalars while ¥# are
Majorana spinors. Here p represents some internal index, and we require that X*
and y* transform as vectors under SO(D — 1, 1) for some natural D. The value and
interpretation of D will be addressed in Sect.2.4.3. In general the action takes the
form

1 _
S=—5- / d’oN~h [h“ﬁaaX“aﬁXM + U 0Dy,
@2.1)

= o 1 - = o
—2ejap’p Y ogX, — Eel/f,LW‘xap”p Xﬂ:| )

where ¥ = iy p°, hyp is the two-dimensional worldsheet metric, p* are the two-
dimensional Dirac matrices,

o (0-1 . (01
- d o' = 2.2
p (1 o) mdoe=(,): (2.2)

e is the “zweibein” (two-dimensional analog of the familiar vierbein of general
relativity) and D, is the worldsheet covariant spin derivative,

Do = do X + wuphy + Tlghy. (2.3)
Throughout this work «, 8,... = 0, 1 are worldsheet indices, A,B,... = 0,1 are
spinor indices, and pu,v,... = 0,1,...,D — 1 represent some internal indexing

which will ultimately be related to the number of spacetime dimensions.

This action is overwhelmed by local symmetries that allow us to make particular
gauge choices. Reparameterization invariance allows us to gauge fix our worldsheet
metric to

hap — € Nap, (2.4)

!Strings with bosonic worldsheet fields only.
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local supersymmetry transformations allow us to set
Xa = 0 (25)

and Weyl symmetry lets us drop the conformal scaling, ¢?. In this conformal gauge
we have

1 _
§=-- / d*o (0P 3 X"0p X, + UH 0" 0a V) - (2.6)
T

The process of gauge fixing the worldsheet metric and the gravitino will be
approached more systematically in Sect.2.4. Until then, we will assume the
conformal gauge.

Now, our next steps are to carry out two changes of coordinates. The first is a
Wick rotation, 6 — —ic¥. This euclideanizes the worldsheet so that

Nap — Sup- 2.7)

By convention, the action also undergoes a sign change. This Wick rotation will
make our path integrals better behaved because the exponential of our action will
be damped as opposed to oscillatory. After Wick rotating, we move to complex
coordinates
0y -1 - 0_;-1

7= ) and 7= 0, (2.8)
This is a judicious choice as we could have taken z = 0% + io!, the choice in
many standard texts [1, 3]; however, since they are clearly related by a conformal
transformation, and the former handles the closed string boundary conditions more
intuitively, we prefer it. The action now takes the form

1 L .
S= - / dzdz (48ZX“85XM P+ W‘az%) : 2.9)

v
=(Y). 2.10
v (W) (2.10)

At this point we can vary our action to produce the equations of motion:

where

0,0:X" = 0, (2.11)
for our bosonic fields, and

.y* =0 and Yt =0 (2.12)
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for our fermionic fields. From (2.12) we see that the spinor components of ,
namely 1} and 1, are holomorphic and anti-holomorphic, respectively. Taking
note of the form of (2.11), we see that d,X* and d;X" are also holomorphic/anti-
holomorphic. Consequently we can split our bosonic fields into holomorphic and
anti-holomorphic pieces as well,

X*(z,2) = X*(2) + X*(2). (2.13)

Henceforth, we will refer to our holomorphic components, X and 1// as our left-
movers, and our anti-holomorphic components, X and 1// as right-movers.

This brings us now to considerations of the boundary conditions on our world-
sheet fields. There are, in fact, many admissible sets of boundary conditions.
Because we are interested in closed strings, we need to consider how X*(z,z) and
YH(z,7) will change as (z,7) — (¢*™iz, e~>"7). Upon inspection of the boundary
terms of the variation of our action (2.9), we note that all boundary terms vanish if

Xt ) = XM(e7), XM@) = XM(e7) (2.14)
and
Yh ) = £PH(M2), PR = 2Pt (e ). (2.15)

In this complex coordinate system we see that z — €*z amounts to traversing
the closed string a distance « in the o' direction. Given that ¢! has a periodicity
of 2w, we have that the conditions above amount to either periodic or anti-
periodic boundary conditions on the worldsheet fields. One thing to note is that
the periodicity of the bosonic fields is not strictly required; anti-periodicity will also
cause our surface terms to vanish. This possibility is important for the orbifold and
spin construction formalism, and thus the anti-periodicity will be allowed in later
analysis.

The most important detail is that the closed string boundary conditions do not mix
left- and right-moving modes: a left-moving mode will never reflect and become a
right-moving mode (nor vice versa). This prompts the question as to whether or
not the supersymmetry transformations do the same. They do, in fact, preserve this
distinction which can be seen by inspection of the supersymmetry transformations

§XH = gy, (2.16a)
SYH = p®d X e. (2.16b)

Here ¢ is a global infinitesimal Majorana spinor of the form

e = ( ) (2.17)

M M
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Working in this conformal gauge with complex coordinates we can observe the
transformations for the holomorphic and anti-holomorphic components of X*
and y*:

SXM =&yt XM = —&yt, (2.18a)
Syt = —20:X1E, Syt = 20.XME. (2.18b)

As we see, the transformations leave left- and right-moving modes invariant. That is,
left-moving (right-moving) degrees of freedom of one flavor (bosonic or fermionic)
are transformed into left-moving (right-moving) degrees of freedom of the other
flavor.

Altogether this means that we have the freedom to introduce left-moving modes
that have an internal worldsheet supersymmetry, but right-moving modes that do
not. This is the spike of the heterotic string which we will detail in Chap. 3.

Our next topic is solving the equations of motion (2.11) and (2.12). It is
straightforward to see that (2.11) is satisfied by

i

1
> > - (ahz ™ +arz ™), (2.19)

_ i _
XM(z,7) = xM — EP“ In(zz) +
n#0

so that X* splits into the holomorphic and anti-holomorphic components

. 1 i i1,
Xit(@) = o = 2p" In@) + 5 3 ~@ia ", (2.20a)
n#0
X4 = 23— Lpt ) + > Lguzn, (2.20b)
27 4 2"

We can do the same for 1, but this time we have a few choices regarding our
boundary conditions. Because we admit the anti-periodic boundary conditions we
have two possible sectors: the periodic Ramond sector (R) and the anti-periodic
Naveu—Schwarz sector (NS). The Ramond sector expansions are

. 2 .

Y = %— o di (2.21a)

- 2 = .

Y = g Y (2.21b)
n=—00

while the Naveu—Schwarz sector expansions go as

IR SN
V= 2 b 7Y (2.222)

n=—0o0
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- 2 & .
W:_{ PSR AERGED (2.22b)
2
n=—00

Of course a closed string has two directions that are independent, each of which
can be either the R or NS sector. Thus the spectrum of the closed string has four
contributing sectors: R-R, NS-NS, R-NS, and NS-R.

In a manner analogous to the construction of the states of the quantum harmonic
oscillator, we can construct the states of our theory using the quantum operators
arising from the modes of the field expansions above. To do this, we impose the
canonical (anti-)commutation relations on the oscillator fields:

[, 0] = (6, @] = mSugun®
{be. b)) = {b" B} = 8,y ™ (2.23)

[, 2] = (@ d2) = By

These are applied, in all admissible combinations, to the ground state of the
respective sector. In this way the spectrum of the theory is constructed up to the
constraints imposed by superconformal invariance. One last thing that will be of use
in subsequent sections is the mass operators. These operators are defined per sector

for the holomorphic and anti-holomorphic modes separately.

o

. I, > rb_,-b,—1 (NS
EMZ =Y Gt (2.24)
m=1 3 nd_y - d,. (R)
n=1

The additional % contribution to the NS sector mass operator arises as a result of
normal ordering. Consistency requires that this normal ordering constant be %

Note that above we only presented the holomorphic operator M?. The anti-
holomorphic version can be expressed simply by replacing the holomorphic modes,
@, etc., with the corresponding anti-holomorphic modes, &, etc. For brevity, we will
omit the anti-holomorphic modes for the remainder of this section as the expressions
will become rather redundant if we do not.

Recall that the left- and right-moving modes of the closed string are independent
so they require the application of different mass operators. It makes little sense for
the mass of the left-moving modes to be different from the mass of the right-movers.
If that were the case, what would be the mass of the string? So, we require that
their masses be equal so the mass of the string is then obvious. This results in the
loosening of the level-matching condition that the left- and right-movers must have
the same number of mode excitations. In the R-R and NS-NS sectors, the level-
matching requirement survives, while in the R-NS and NS-R sectors we can have
differing number of mode excitations for holomorphic and anti-holomorphic modes
due to the normal ordering constant in the NS sector.
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Using Noether’s theorem we can calculate the stress-energy tensor which is of
course conserved, as it should be. In the context of the superstring we get two
contributions. The first is the standard bosonic contribution

o o o 1 o o
Tp = —2:0.X"0.X, : —3 VLRV (2.25)
while the second is the fermionic contribution
Tr = 2iy"9.X, (2.26)

It is a standard step to mode expand the stress-energy tensor. In doing so we have

o0
Tp= Y Lz " (2.27)
n=—00
for the bosonic component and
oo -
Z an—(n+3/2)’ (NS)

Tr= "% (2.28)
Z FnZ—(n-i-Z)’ (R)

for the fermionic components. From the oscillator expansions of X* and y* we find

Ly=LY + 1Y mez (2.292)
1 1
G =- 00—y by, el + — 2.29b
5 ij O brni mEL+ (2.29b)
1
Fn =3 Y iy dugnr. meL (2.29¢)
nez
with
1
LY = 3 D ot (2.30a)
nez
1
=33 (r n %) by -bpsri  (NS) (2.30D)
rez+1/2
1 m
" _ L my .. :
LY =3 % (n n 2) S d_y - o s R) (2.30¢)

These modes form an algebra in each sector, dubbed the super-Virasoro algebra.
In the Naveu-Schwarz sector we have
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D
(L, Ll = (m = m)Lien + m(m® = D, (2.31a)
m
LG = (5 =) G (2.31b)
D 1
{Gry Gv} = 2Lr+x5 (’~2 - Z) 8r+S’ (2.31¢)

while in the Ramond sector we have

D
[Lyn, La] = (m — n)Lyyn + §m3<<>’,,,+n, (2.32a)
[Lms Fn] = (% - I’l) Funtn, (2.32b)
D 2
{Fma Fn} = 2Lm+n§m 8m+n‘ (2.32¢)

These algebras are the symmetry algebras of superconformal invariance. The details
of this symmetry are a bit long-winded for this work, so in the next section we will
focus solely on conformal invariance, the algebra of which is simply the Virasoro
subalgebra,

D
L, 1P = (m—nL",, + Em(m2 — D mtns (2.33)

where L is the contribution to the bosonic stress-energy tensor due solely to the
bosonic worldsheet fields.

This symmetry has far-reaching implications on the state space of the theory. In
particular, we require that physical states be superconformally invariant, i.e. a state
must be annihilated by the super-Virasoro generators, L, G, and F,,,.

2.3 Conformal Invariance and Operator Product
Expansions

Here we turn our attention to conformal field theory, in particular conformal
invariance. As we have chosen the conformal gauge and the classical theory is
conformally invariant, we hope that this invariance will survive in the quantum
theory. However, as is often the case when quantizing a theory with an infinite-
dimensional symmetry algebra, the (super-)Virasoro algebra picks up an anomaly
term. This anomaly will be dealt with in Sect. 2.4. Before we get to that, however,
it is important that we relate the conformal symmetry of the theory back to
the Virasoro algebra. In this way, it is the stress-energy tensor that generates
the conformal transformations. We will then round out this section with a brief
discussion of the conformal dimension and operator product expansions.
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2.3.1 Conformal GroupinD =2

Let us start with a generic conformal transformation
z—f(z) and Z—f(2). (2.34)

Taking an infinitesimal transformation

+1

77— and 7—>7z—¢&7""! (2.35)

we can read off the infinitesimal generators in the standard way
l, =—2"19, and 1, = —7""9:. (2.36)
It is simple to check that these generators satisfy the algebra
bl = (= Wby, [l = (n =)y, and [y, 1] = 0. (2.37)

This should look familiar as it is the algebra (2.33) without the central charge term,
i.e. it is the classical Virasoro algebra. This can readily be verified using the results
from Sect. 2.2, but skipping the quantization and thus omitting the normal ordering
on the stress-energy tensor.

2.3.2 Conformal Dimension

It is convenient in conformal field theory to distinguish fields in terms of their
conformal dimension, (h,h). The components of this pair are referred to as the
holomorphic and anti-holomorphic conformal dimension, respectively. Effectively
this is a generalization of the tensor type of the field in the conformal field theory:

h h
D(z,2) = (%—j) (%—;}) D(w, w). (2.38)

Just as for an action to be a Lorentz scalar it must have tensor type (0,0),
the action must have conformal dimension (0,0) to be conformally invariant.
Thus, to form conformally invariant actions we must keep track of our conformal
dimensions. Note that when a field is (anti-)holomorphic we simply drop the
“(anti-)holomorphic” qualification. Thus, to restate the above, the action must have
conformal dimension 0.
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2.3.3 Operator Product Expansions

In the sections to follow we will be dealing with path integral expectation values
(AlX]) = / DX exp(—S) A[X], (2.39)

where A[X] is a functional of the field variable X. We could, of course, ask for the
expectation value of a product of local operators, i.e.

(Al(Zl,Zl) . .An(Zn, Zn)) = /DX exp(—S)Al(zl, Zl) . .An(Zn, Zn) (2.40)

What would happen as any two operators A; and A, approach coincidence? The
tool with which we explore this question is the operator product expansion (OPE):
a product of two local operators can be expressed as the sum of local operators

AiAI) =) = nAD). (2.41)

k

k

Taking the expectation value, as ¢;; is independent of the field variable X,

(@A) =D chlx =) (A)) (2.42)
k

with cz. depending only on the separation x—y and operators A;, A;, and A;. Typically
the OPE is expressed with the most singular terms in the expansion first and the
nonsingular terms denoted with “...”.
One OPE that is of particular interest to us is the 77 OPE:
c 2 1
T()T(0) = - + 3T(0) + —03.7(0). (2.43)
27 Z b4
From this expression we can see that T is not a tensor since the anomaly term
interferes with the proper transformation laws. In order to recover T as a tensor
we must ensure, in some way, that the conformal anomaly c is zero. It is this venture
that the next section addresses.

2.4 Gauge Fixing and the Conformal Anomaly

In this section we will outline the process of gauge fixing in the path integral context.
In particular we will introduce Faddeev—Papov ghosts to handle the excessive gauge
redundancies. We start with the path integral
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7 = / Dh Dy DX Dy ¢ S-1:X9) (2.44)

where S(h, X, V) is the euclideanized action with & the worldsheet metric, X the
bosonic degrees of freedom, and ¥ the fermionic degrees of freedom. The process
of gauge-fixing amounts to separating the path integral into the product of an
integral over the gauge group with an integral over the dynamic fields along a gauge
slice, and dividing out by the volume of the gauge group. Now, in the case of the
supersymmetric string, it is somewhat complicated by the internal supersymmetry.
However, one possible interpretation of the superstring is that the worldsheet is
actually the two-dimensional commuting subspace of a superspace in which the
additional directions are anti-commuting Grassmann numbers. From this point of
view we see that the supersymmetry is on the same footing as the (Weyl x diff)
invariance of the metric. It is clear that supersymmetry must also be considered in
our gauge-fixing.

The full details of this process are elaborate, and have prompted entire disser-
tations on their own. Because of this, we only provide what we need, and eschew
expounding on all but the most trivial details in favor of brevity. Further we only
address the local properties of the theory; global aspects are not discussed until
Sect. 2.5. The interested reader can see any of the standard string theory textbooks
for a much more thorough treatment.

We will start first with the reparameterization ghosts in Sect.2.4.1, move on to
the supersymmetric ghosts in Sect. 2.4.2, and finally use the result to determine the
number of worldsheet bosonic and fermionic fields that our theory may admit in
Sect.2.4.3.

2.4.1 Reparameterization Ghosts

We begin by fixing our metric, h, which in turn specifies a gauge orbit: the set of
all metrics that can be obtained from our particular metric of choice under action
of the gauge group. Let g be a gauge transformation with g : & — h%. We can then
consider what happens when we integrate over the volume of the gauge group in
question, in our case (Weyl x diff). This will ultimately result in the introduction of
several fields that encode these motions in the gauge space.

We need a measure, A(h), along one of these orbits in order to truly perform the
integration. This measure is referred to as the Faddeev—Popov measure. Postponing
the precise specification of A(%), we will use the identity

1= A(h) / Dg §(h—h®). (2.45)
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Inserting this into our path integral (2.44) gives us
Z[h] = / Dg Dh Dy DX Dy A(h)§(h — h®) ¢ SthxXv1, (2.46)
Of course we can now carry out the integration over & leaving us with
Zh] = / Dg Dy DX Dy A(h®) ¢Sl 2:Xv], (2.47)

Based on the form of (2.45) we can see A(h) is gauge invariant and since
S[h, x, X, ¥] is as well

Z[h] = / Dg Dy DX Dy A(h) e SxXV1, (2.48)

Since no part of the integrand depends on an element of the gauge group we can
separate out the integral over the group. This contributes an infinite multiplicative
factor equivalent to the volume of the gauge group (Weyl x diff), and so we simply
drop it (or divide by it if you prefer).

Z[h] = / Dy DX Dy A(h) e SB0Xv] (2.49)

To proceed we need to work out the form of A(h). To do this we consider how
h transforms under infinitesimal coordinate transformations. Generally, as 0% —
0% + £%, the metric varies as

Shop = Vaks + Vka (2.50)

with £ infinitesimal and V, the worldsheet covariant derivative. Using (2.45) and
8h = h — h8 with g near the identity,

Ah)~! = /Dga (Vabp + Vgta) . (2.51)
We can then use the identity
S(x) = /Dp exp |:27ri/d20«/—h 12 'x):| , (2.52)

with - representing the contraction of any indices in p and x required to make the
integrand a worldsheet scalar, to remove the delta function:

A~ = / DwDE exp [zm / d*ov—h o (V&5 + vﬂga)] (2.53)
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Here w is symmetric and traceless. The inverse determinant then takes the final form
A~ = / DwDE exp [4ni / d*0 v —h 0V, gﬁ} ) (2.54)

Following the standard prescription for inverting the path integral we introduce
two anti-commuting “ghost” fields, § — ¢ and w — b. Making the substitution,
twiddling a few indices, and selecting a nice normalization, we have our Faddeev—
Popov determinant

1
A(h) = / Db Dc exp (—2— / dzax/—hbaﬁvo‘cﬂ)
T
(2.55)
= /Dche_S[h’b’C].

Our next stop along the road to gauge fixing is to substitute our determinant
into (2.49). We are left with

Z[h] = / Dy DX Dy Db Dc ¢ =575, (2.56)

where

1 -
S+ Spe = Toa / d*oN~h [haﬂaaxuaﬁxu + W‘p"DaW
b4
(2.57)
- o 1 o = o o
—27ap” p* Y 95X, — EI/qu‘xapﬂp X + bapV c”]

We are finally in the position to actually fix our gauge. We choose the complex
conformal gauge presented in Sect.2.2. Unfortunately, by doing so our action
becomes rather unruly and horrendous in appearance. Because we have already
presented the bosonic and leading fermionic terms of the action in (2.9), and since

the remaining ghost-free terms will simply be discarded in the next section by a
judicious gauge choice, we only express the ghost components here:

1 _
Spe = Z / dzdz (bzzf)gcz + b;;azcz) . (2.58)

Varying this action with respect to b and ¢ we are left with the classical equations
of motion

azcz = agbzz =0 (2.593)
9.¢° = 9.b= = 0. (2.59b)
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We come to the same conclusion we did for the fields X* and ¥#: our ghosts break
up into holomorphic and anti-holomorphic components. Adopting our previous
notation for left- and right-moving fields the ghost action takes the form

1 (v maa
Spe = > / dzdz (b 9z¢ + bazc). (2.60)

The conformal dimensions of b and ¢ are easily readtobe A = 2 and (1 — 1) =
—1, respectively. That is, the conformal dimension of ¢ is (—1, 0) while that for ¢ is
(0, —1), etc. In this way, we know that they contribute to the stress energy tensor as

T=-2:b3,¢:4:00.b: (2.61a)
T=-2:03,0:+:¢0,b:. (2.61b)
Using the OPEs
. 1 - 1
b(z)c(w) = —— + ... and b(Rcw) = ——+ ...
—Ww —Ww

and the generic form of the 7T OPEs presented in (2.43), we can see that
the contribution of the » and ¢ ghosts to the left- and right-moving conformal
anomalies are

t=0¢=-321—1)>+1=-26. (2.62)
This magical number will be used in Sect.2.4.3 when we finally discuss the

conformal anomaly cancellation. Until then we are done with our reparameterization
ghosts and will now turn to the supersymmetric ghost fields, 8 and y.

2.4.2 Superghosts

Having already outlined the process of gauge fixing in Sect.2.4.1, we can gauge fix
the worldsheet gravitino y quite rapidly. We first note that the local supersymmetry
transformations go as

SXH = gy, (2.63a)
SYH = pe(duX" — Y Xa), (2.63b)
et = igp™ yu, (2.63¢)

Sxa = Vge. (2.63d)



2.4 Gauge Fixing and the Conformal Anomaly 23

This is not, in fact, all of the symmetry under which the action is invariant. There is
an additional bosonic symmetry arising from Weyl invariance (after all e is directly
associated with the metric), and a fermionic symmetry that transforms y as

X = Pal, (2.64)

where ¢ is an arbitrary Majorana spinor. These additional symmetries, while
important in general, are not strong enough to allow us to gauge fix any more than
our one gauge field, y.

Restricting to our variation (2.63d) we expect that our partition function should
look like

Zh, y] = / DX Dy Db De A(y) e =575, (2.65)
Following the procedure outlined in Sect.2.4.1, we have
A = [ Des (Ve
(2.66)
= /DSDg exp |:2m'/d"«/—h g“Va£i| .

Inverting this by replacing ¢ — y and ¢ — B, and substituting into our path integral
we have

Z[h, y] = / DX Dy Db De DB Dy e{=5=Sk=Sp») 2.67)
with
S+ Spe + Spy = —% / d*oN/~h |:h“’38aX"8,3XM + UF 0Dy,
—27up” 0" Y X, — %%w“iapﬂp“xﬁ (2.68)
+ bap VP + ﬁavay].

As before, B and y are ghost fields; however, now they are commuting fields.
Additionally, because they are replacing a fermi field they carry an internal spinor
index and thus have half-integer conformal dimensions. Specifically 8 and y have
conformal dimensions A = % and (1 — 1) = —%, respectively.
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Gauge fixing our action so that we are in the complex conformal gauge and
exploiting the residual gauge symmetry just described to force the worldsheet
gravitino to vanish gives us our fully gauge-fixed action:

1 .. ..
S= o / dedz (48ZX“83XM O, + VO,

(2.69)
+bho:t+boc+ foy + B 8&).
We have the equations of motion giving us left- and right-moving modes
97 = =0 (2.70a)
3,7 = 3,8 =0, (2.70b)
and the contribution of 8 and y to the stress-energy tensor goes as
v 3 - 1 ..«
Tg=—=:80,y :—= :y0.8: (2.71a)
2 2
. 3
Tp=-2:by:+:c0.f:+=:poc: (2.71b)

2

with similar contributions to the anti-holomorphic components. Note that there
is both a bosonic and a fermionic contribution once we have introduced the
supersymmetry ghosts. Of course we can now use our OPEs for the 8 and y ghosts,

faym=——+..  ad O =+
to determine their contribution to the conformal anomaly. In particular we have
c=¢=321-1)>%—-1=11. (2.72)
This concludes our somewhat superficial treatment of the Faddeev—Popov ghosts.

We now move on to considerations of the conformal anomaly which culminates in
the conclusion that the number of worldsheet fields is strongly constrained.

2.4.3 The Conformal Anomaly

One of the most astonishing features of the quantum theory of strings is that it
specifies the number of spacetime dimensions in which it exists. That is, it sets
strong constraints on the number of bosonic and fermionic worldsheet fields the
theory can consistently handle through conformal anomaly cancellation. As we
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associate the number of bosonic fields with the number of spacetime dimensions, we
are left with the conclusion that bosonic strings require 26 and superstrings require
10 spacetime dimensions.

To see this, consider the free bosonic string

1
Sp=—5- / d° N =h h*P 3, X" 9pX,,. (2.73)

In this case the only ghosts that enter the action via gauge-fixing are the reparame-
terization ghosts, b and c. The gauge-fixed action is then

1
S+ Spe = =5 / d° b (3,X"9pX,, + by, Vg ') (2.74)

with h the fixed metric. Through the processes outlined in the previous sections we
know that the bosonic fields X* each contributes +1 to each of the left- and right-
moving central charges, and the b and ¢ ghosts contribute —26 to each. In this way,
we see that the central charge only vanishes if

¢=c=D-26=0 = D=26. (2.75)

We can perform the same process with the gauge-fixed supersymmetric action,
(2.68). Recall that each spinorial component of a Majorana fermion contributes % to
the conformal anomaly, and there are D such Majorana fermions as aresult of N = 1
worldsheet supersymmetry. Now, the 8 and y supersymmetry ghosts contribute +11

to the central charge, so we are left with
D
E:E:D+E+ll—26:O = D=10. (2.76)

Interpreting each of bosonic fields traditionally as a unique direction in space-
time, we see that bosonic strings require D = 26 and supersymmetric strings require
D = 10 in order to be free of the conformal anomaly! A string theory in which
the conformal anomaly is canceled entirely by the presence of worldsheet fields is
referred to as critical. Most research has been devoted to these critical string theories
as they appear to be the most natural. This type of result is what has driven interest
in string theory for years and proves to be one of the most fantastic results in modern
theoretical physics.

Another option, one that has proven to be phenomenologically fruitful, is the
possibility that the left- and right-moving conformal anomaly may be canceled by
differing numbers of ghost fields. This possibility is detailed in Chap. 3.

2.5 Modular Invariance and the Worldsheet

We would be remiss to move on to the physical state selection process, Sect. 2.6,
without pointing out a subtlety in the analysis of Sect.2.4. In particular we have
only locally gauge fixed; the properties of the topology of the worldsheet have yet
to be addressed.
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Since we are only dealing with closed strings, the euclidean worldsheet can-
not have a boundary; since we are dealing with orientable strings, the worldsheet
cannot have any “twists.” This leaves only the number of “handles” the surface has
to distinguish between topologies. In this way we see that our worldsheets must
be homeomorphic to a sphere or the connected sum of n tori. The worldsheet is a
sphere, or a torus, or a double torus, etc. The number of handles the surface has, n,
is referred to as the genus.

Due to the Atiyah—Singer index theorem, we know that the metric of the genus 0
worldsheet, i.e. the sphere, can be gauge fixed globally. In a sense, even beyond just
the topological structure, we can consider all genus O worldsheets to be equivalent!
This is not generally the case for genus n > 0. It is, in fact, the Weyl parameter o,

ds* = e 2dx - dx, 2.77)

that presents the obstruction. Fortunately, if our worldsheet admits a flat metric, we
can always globally gauge choose w. The choice of w is referred to as the complex
structure of the manifold in question. Two Riemannian manifolds (of the same
genus, etc.) with the same complex structure are conformally equivalent. It is clear
that the conformally equivalent manifolds are grouped into conformal equivalence
classes. In calculating our partition functions we must integrate over all of the
conformally inequivalent manifolds, i.e. over the conformal equivalence classes.
How do we perform such an integration? Since the space of equivalence classes
is parameterized by a moduli space, we can “change parameters” and integrate over
the moduli space instead. It is then important to know all of the inequivalent moduli
of a particular genus manifold.

Let us look at the (genus 1) torus, 72. Choosing two distinct complex numbers
A1 and A, we can identify points in the complex plane by

X~ X+ mAi + nky, m,n € 7. (2.78)
This specifies the torus
T* = C/(~) = C/{h1. da)z. (2.79)
where
(A1, A2)z = {mAy + ndy | m,n € Z3. (2.80)
Defining the modular parameter

_A’l

T

2.81)

we can always ensure that Im(t) > 0, though that may require us to swap A; and A,.
The complex structure of the torus is specified by t. Two tori with the same t
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(modulo some isometry of the complex plane) are conformally equivalent, so in our
partition functions we must integrate over all inequivalent values of 7. We now set
out to find the region of the upper half-plane, H, of inequivalent complex structures,
dubbed the fundamental domain F.

A lattice, as described in (2.80), is invariant under the action of the group
SL(2, 7). To see this, note that a general element of SL(2, Z) is of the form

ab
A= (C d) (2.82)

with a, b, c,d € Z and det(A) = 1, and define

Al ab\ (M
= . 2.83
The lattice (A}, A})z is isomorphic to (A1, ;)7 since any given point (m,n) €
(A1, A2)z defines a point (m', n’) € (A}, 1)z by

(m,n) — (md — nc,na — mb) (2.84)

and vice versa. Thus two tori are equivalent if there exists an SL(2, Z) transforma-
tion that relates their complex structures:

(2.85)

One final thing to note is that, under this action of SL(2, Z), A and —A are equivalent
transformations, i.e. they map t to the same t’. Removing this redundancy gives us
the modular group, PSL(2,7) = SL(2,Z)/Z,.

Identifying elements that are equivalent under PSL(2,Z) gives us our moduli
space for the 2-tori

My = H/PSL(2. 7). (2.86)

While any choice of fundamental domain, the set of representatives from elements
of M2, will work, the standard choice is

1
Re(r)] = 7. Im(»)>0. [r|=1.

This region is depicted below (Fig. 2.1).

When computing the one-loop partition functions in our theory we must ensure
that they are invariant under the modular transformations PSL(2, Z). To understand
why, consider a generic one-loop amplitude
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Fig. 2.1 The Fundamental Im(2)
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where (...) represents the path integration over the field variables of the theory.
If our integrand were not PSL(2, Z) invariant, it would result in a miscounting of
distinct tori. We refer to this PSL(2, Z) invariance as modular invariance and it has
profound and far-reaching effects on our model building in subsequent chapters.

Though to show this is far beyond the scope of this work, we only need to ensure
modular invariance up to two-loop order in the context of free fermionic heterotic
strings. This is because, provided one-loop and two-loop modular invariance, one
can prove the modular invariance is held to all orders in perturbation theory.

This concludes our current treatment of modular invariance, however it is
important to note that the above discussion is wholly inadequate as we have made
no mention of any fermionic moduli nor have we even acknowledged the existence
of choices of spin structure. These will be addressed in Chap. 3 where we can deal
with them more fully. We now move on to selecting out the physical states from our
excessively large state space.

2.6 BRST Quantization

At this point there are two problems? with the state space of the theory, both relating
to the fact that is much too large. First, we have not ensured that the states are in fact
conformally invariant. A state that is not conformally invariant is thus unphysical
and should be discarded. Within the canonical quantization formalism this is done
by requiring that the states be annihilated by the Virasoro operators. In principle we

2Well, there are really three problems with the state space, but we will deal with the issue of the
GSO projection in the next section.
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could do that here, but this would do nothing for our second problem: our states
may have unphysical spin-statistics. When we expanded our Fock space of states
by including the ghost field excitations, we introduced the possibility that a state
could have the unphysical spin-statistics associated with the ghost fields. It turns
out that there is an elegant mechanism for dealing with both of these problems
simultaneously: the Bacchic-Route-Store-Teuton (BRST) quantization.

To carry out this procedure we must begin by introducing an operator that counts
the number of ghost excitations of a state. This is analogous to the standard number
operator of quantum harmonic oscillator fame:

r 1 v -
b= dz(.cb.+.y,3.) (2.87a)
T 1 = ~7 . .~ A
b= dz(.cb.+.y,3.) (2.87b)

which count the net ghost contributions to left- and right-movers, respectively.
Recalling from Sect. 2.4, ¢ and y each has ghost number +1 while b and 8 have
ghost number —1, i.e. ¢ and y are ghosts and b and § are anti-ghosts. In this way
our space of states can be separated into disjoint components, C*), in which each
state in C*) has left-moving ghost number k and right-moving ghost number /:

Up=ko and Ugp = lgp, & ¢ e ckD, (2.88)

Using this mechanism for counting our ghost excitations, we can easily pick out
which states have no net ghost contribution!

So, how do we go about handling the conformal invariance? Well, recall that
the stress-energy tensor generates the conformal symmetries (Sect. 2.3). Could we
construct an operator from 7 that not only allows us to pick out the states that are
conformally invariant, but also interacts well with the cochain structure just defined?
As it happens, we can: the BRST charge operator.

2.6.1 BRST Charge Operator and Cohomology Classes

In this subsection we outline the basic BRST charge construction and explain how
it relates to choosing admissibly physical states. To do this we will work with a
generic lie algebra G with generators 7; so that

[T:. T;] = £ T (2.89)

We then introduce ghost field ¢ and anti-ghost field b which canonically anti-
commute. An important property of these fields is that the anti-ghost must transform
under the adjoint representation of G while the ghost transforms under the dual
adjoint representation.
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Using the ghost fields, ¢ and b, and the symmetry generators, 7;, we can construct
an operator

0=¢ (T,- - %ﬁfc’bk) (2.90)

which is dubbed the BRST charge operator. Notice first that it has ghost charge +1.
Thus, the application of Q to a state in C* will produce a state in C**!. Further still,
with a good bit of work, we can show that

0’ =0. 2.91)

In this way Q forms a cohomology operator. The interesting question is what do the
cohomology classes under Q represent? The answer: physical states!
Suppose that g is a state of C*. We say that the state is BRST-invariant if

Qp =0. (2.92)

Unapologetically stealing terminology from the de Rahm cohomology of differ-
ential forms on a manifold, we could draw a parallel and say that ¢ is “closed.”
Going further we could consider states of the form ¢ = Q¢ which might be termed
“exact.” Because Q is nilpotent, i.e. (2.91), all exact forms are trivially closed. The
interesting states are the states that are closed but not exact. We can then form the
cohomology classes using the equivalence relation on states

0~ X & o—x=0¢ (2.93)

with ¢, y € C* and some ¢ € C*~!. These equivalence classes of C* under Q form
the kth cohomology class of G.

What happens when we act on a state of zero ghost charge with the BRST
operator? Since the b modes will annihilate the state, the structure constant term
does not contribute to the result:

. 1, .
Qp =c' (Ti - Efiikclbk) ¢ = c'Tip. (2.94)

Thus the ghost-zero states that are BRST invariant are precisely those states that are
ghost-zero and G-invariant. That is, a state is admissible if and only if it is BRST
invariant and has ghost number zero.? In this way we see that the physical states are
the k = 0 cohomology classes!

We can generalize this a bit to the closed string by introducing two BRST
operators, 0 and Q which act independently on the left- and right-moving modes

3This final point relies on the fact that there are no ghost number —1 states.
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of the string. Since each above condition must be applied to the left- and right-
movers separately, this construction amounts to a tensor product of two independent
systems. We will make this explicit throughout for completeness.

We can now carry out this prescription on the super-Virasoro algebra, though
there are subtleties as the above discussion is purely classical. When we quantize,
and thus impose normal ordering, Q may no longer be nilpotent and U will pick up a
normal ordering constant. The first point is not a problem as long as we are working
in the critical dimension with the proper normal ordering constants on our Virasoro
generators. The latter point simply means that we will no longer be interested in the
k = 0 cohomology classes, but rather the k = —%.

We now introduce our left- and right-moving BRST charge operators in terms
of the stress-energy tensor. Recall that the super-Virasoro generators are just the
Laurent modes of the stress tensor, so we are not doing anything particularly
interesting in making this change. Also, we will adopt a “current” representation
of O as it is pleasing to the eye and has a better physical interpretation (we are
interested in symmetries, after all):

. 1 . . R N T
~ 1 . . R T O
0= oy cTp + yTr + bcozc — Ecyag — Ecﬁagy —by (2.95b)

with TB, TF, TB, and TF as in Sect. 2.2. The less-than-obvious coefficients and mixed
ghost terms arise within this current representation due to the form of the ghost
stress-energy tensors (2.61) and (2.71).

You can check, after an exhausting computation, that each Q and Q is nilpotent
by using the identity Q% = %{Q, Q} and the super-Virasoro algebra. For brevity,
we leave that to the adventurous reader. Note that it is through the super-Virasoro
algebra that the potential anomaly arises. It is straightforward to see that if there is
no such anomaly in the super-Virasoro algebra, then there will be no anomaly here
and hence: Q7 is nilpotent in critical string theories (with proper normal ordering
constants).

Unfortunately the ghost number operators (2.87) introduce non-trivialities. Let us
focus now only on the left-moving ghost number operator as the analysis is entirely
symmetric. Consider the operator mode expansion form

o 1. oo | 5 o
U= E(Cobo — boco) + E(VO,BO — BoYo)
% (2.96)
+ Z(é—nbn - b—nz‘n + )7—n,3n - ,B—n?n)-

n=1

The difficulty arises from the zero-modes. The reparameterization ghosts commute
with the Hamiltonian. As a result, the ground state must be doubly degenerate.
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Let us denote the degenerate states as | 1) and || ) and take

cold) =11). boll) =11). and co[1) = bo|{) = 0. (2.97)

Now, since ¢ “raises” the state and adds +1 to the ghost number we know that
unt)y=Ull)+ 1. (2.98)

This of course is not enough to specify the ghost number of both states; in the end,
we have some freedom to choose a nice convention in the form of a normal ordering
constant. Choosing ghost numbers that are symmetric about 0 makes for cleaner
results down the line. So, we take

1 1
Ult)=+5 and Ull)=—. (2.99)

We should then be able to force the ghost wave function of a given physical state
into one of the two ground states | |) or | 1) by applying the similarity relation
(2.93) which defined the cohomology classes, i.e. some state in the cohomology
class will have a ghost wave function in one of these ground states. This then means
that our physical states must carry a ghost charge of either :i:%. To see which, we
simply need to apply Q to two states, one with each possible ghost charge. When
we do that we see that in the case of +%, the constraint that the zero-mode of the
stress-energy tensor vanish for physical states is not required; however, it is for —%.

Thus we see that the physical states of our theory should have reparameterization
ghost number of —%. What about the supersymmetry ghosts? The answer is that in
the NS sector, the ground state is doubly degenerate just as in the preceding dis-
cussion. However, the complication comes from the Ramond sector: it contributes
an infinite degeneracy. This is not really a problem, it just introduces much more
freedom into the construction of states. The supersymmetric ghost zero-mode Fock
space introduces infinitely many different pictures of the same physical state. We
can move around in this Fock space using picture changing operators which are
a bit beyond the topic here. This process of picture changing is important in the
construction of superpotential terms and as such is necessary for considering the
detailed phenomenology of the theory.

2.7 The GSO Projection

In this final section we address the issue of a tachyonic ground state in the NS sector
of our strings. To see that this is in fact the case requires simply that we “measure”
the mass of our NS ground state using the mass operator defined in (2.24).
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The ground state in the NS sector satisfies
al|0;k) = bL|0;k) =0, m,r>0 (2.100)
and
b |0; k) = k*|0; k). (2.101)

Applying our NS mass operator we see that the mass-squared of our ground state is

M?|0; k)

o0 o0
2N Y +2 Y b, b —1]10:k)
2 n;;z (2.102)

n=—1

_IO;k)v

i.e. it is tachyonic! Ironically, this is exactly one of the pathologies of the bosonic
string that made it inviable. However, upon adding worldsheet fermions we have
introduced a mechanism that will allow us to discard “half” of our states, one of
which will be the tachyon. This has the further advantage of allowing us to form
a gauge lattice. Without this mechanism the state space would be too large and
there would not, in general, be a Weyl symmetry between the roots of our gauge
groups [6]; that is, there would be no gauge group!.

This mechanism, first introduced by Gliozzi et al. [7, 8], is called the GSO
projection. It amounts to the specification of an operator to truncate the spectrum.
This operator, called the G-parity operator, is defined differently in each of the two
sectors. In the NS sector we have

o0
G=(D F= > bb (2.103)
r=1/2
while in the R sector
o0
G=Tn=n"""  F=) d. d. (2.104)
n=1
where I';, i = 1,...,10 are the typical ten-dimensional Dirac matrices with the

definition I';; = I'iI»... .

We can now use our G-parity operator to project out our states. Since the tachyon
in the NS sector has negative G-parity, we will always project the negative G-parity
states out of the NS sector. However, we have no particular reason to choose positive
or negative G-parity for the R sector. In the closed string theory we have distinct left-
and right-movers, so we could choose one of two possibilities for the R-R sectors
of the closed string: same parity or opposite parity for the left- and right-movers.
The choice is more than arbitrary as in the former case we are left with the Type
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IIB theory while the second leads to Type IIA. Neither of these theories are in our
scope, but they are interesting in their own right. In particular they admit a more
non-perturbative approach with the introduction of D-branes.

The GSO projection plays a leading role in the model building to come and has a
resounding impact, as does the modular invariance of Sect. 2.5, on the spectrum of
the model.

2.8 Summary

By now we have discussed many of the grand points of superstring theory from
the generic action, conformal gauge, and classical equations of motions (Sect. 2.2),
through conformal invariance (Sect.2.3), gauge fixing (Sect.2.4) and modular
invariance (Sect.2.5), and finally to BRST quantization (Sect.2.6) and the GSO
projection (Sect.2.7). As has been pointed out several times, this is far from a
complete treatment and should be taken with a grain of salt; many of the proofs
and conclusions drawn here are hand-wavy at best simply for the sake of brevity.
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Chapter 3
Heterotic Strings and the Free Fermionic
Construction

Abstract This brief chapter introduces the heterotic string theories in the free
fermionic (FF) formalism. The problem of ensuring modular invariance of the
partition function is considered and reduced to expressions on the FF basis vectors
and partition coefficients. We conclude the chapter by describing the procedure
for explicitly constructing the massless particle spectrum of models within this
formalism, and discuss the realization of spacetime supersymmetry.

3.1 Introduction

The heterotic string, first introduced in [1] and developed in [2, 3], has proven to
be a fertile arena for the construction of realistic and semi-realistic low-energy
field theories, particularly via the free fermionic (FF) construction scheme [4-38].
My hope for this chapter is to loosely outline the theory of heterotic strings, and the
construction of models within the FF formalism.

This chapter is deliberately different from most of the resources I have had
the pleasure of finding. Specifically, I do not delve too deeply into the ten-
dimensional heterotic string, nor do I treat the four-dimensional construction as the
compactification of the ten-dimensional case. The reason for this is that the term
“compactification” has a naturally geometric connotation while the generic models
we will be considering may or may not. That is, within the FF formalism the six
extra dimensions may be viewed as compactified in the topological/geometric sense,
but often this interpretation is not well justified, e.g. in the case of left-right paired
complex fermions. In this case, the “extra” worldsheet fields are seen simply as
internal degrees of freedom. The geometric viewpoint is preferred in many contexts
within string model building, e.g. in orbifold, Calabi—Yau and flux compactification
models, and typically in the FF regime as well. In fact, many or most models
constructed via free fermions can also be realized in the setting of asymmetric
orbifolds [39, 40]. It is the author’s earnest belief that models that accommodate
a geometric interpretation are more natural.

In this chapter, we begin by working out the form of the FF heterotic action
(Sect.3.2), and outline the procedure of heterotic model building (Sect.3.5).
We work out the modular invariance constraints on the worldsheet fermion boundary

© Springer International Publishing Switzerland 2016 35
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conditions (Sect. 3.3.1) and on the GSO projection coefficients (Sect. 3.3.2). Finally,
we touch upon the introduction of spacetime supersymmetry (SUSY) into our
models in Sect. 3.6.

3.2 The Free Fermionic Heterotic Action

As we recall from Chap. 2, conformal invariance requires that the central charge
of the worldsheet fields vanish. In the case of closed strings, the left- and right-
moving fields are independent, and, what’s more, so are the left- and right-moving
central charges. This alludes to the possibility of introducing left- and right-movers
of different types, e.g. supersymmetric left-movers and bosonic right-movers. This
is referred to as heterosis. However, the differing number of left- and right-moving
bosonic fields introduces an interesting question in that the number of such fields
is usually associated with the number of spacetime dimensions. Recalling the
conformal anomalies for all of the worldsheet fields,' we note that there must be 10
bosonic left-moving fields and 26 bosonic right-moving fields. We can consider the
extra 16 right-moving fields as internal degrees of freedom, and they are ultimately
responsible for providing the gauge content of our theory. We can distinguish these
internal degrees of freedom as just that, internal, by fermionizing them using the
Mandelstam operators

A= emiaX and A =: e : (3.1)

Then A is a Majorana—Weyl worldsheet fermion. In this way our action (2.9) can be
reexpressed as

1 B o . - .
s=o / dadz (40X 9:X,, + Y 0c + 110.A) (3.2)

where 4 = 0,...,9and I = 1,...,32. As we have replaced each of the 16
right-moving bosons with two right-moving fermions the central charges still cancel
entirely.

We can now make another generalization; namely, we could perform this same
process on both our left- and right-movers. This decreases the number of large
spacetime dimensions down to something more physically realistic, e.g. D = 4, and
as long as we exchange a boson for two fermions, the left- and right-moving central
charges will still vanish. In particular, if D is the number of spacetime dimensions,
and d and d are the number of left- and right-moving internal fermionic degrees of
freedom, respectively, we have the central charges

'Such fields are the bosonic, fermionic, reparameterization ghost and supersymmetry ghost fields.
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D d
D+E+§+H_ 6=0

~ (3.3)

c D—}-d 26=0

CcC = _—— =
2

Solving for d and d, we have
d = 3(10 — D),
(3.4)

d=2(26-D)

From this we see that we have D + d + d worldsheet fermions and 2D worldsheet
bosons, for a total of 3D 4 d + d worldsheet fields. Moving to spacetime 1ight-cone
gauge, which mixes the X° and XP~! coordinates so that X* = X° 4 XP~! allows
us to eliminate two bosonic fields (X*) and two fermionic fields (wi) SO that the
final count is D — 2 4 d + d worldsheet fermions. In particular, with D = 4 we must
consider 64 worldsheet fermions and 4 worldsheet bosons. The bosonic fields will
give rise to the graviton and gravitino modes, but nothing else. Consequently, we
neglect them and only worry about counting the gravitino states as is necessary; see
Sect. 3.6

Generically, if we have D spacetime dimensions, then we require d internal
left-movers and d internal right-movers, as determined by (3.4), so that the action
becomes

1 o o o o ~ ~
S = o / dzdz (4azxﬂazxu + Yoz, + AaA + A BZAJ) : (3.5)
T

withpy =0,...,.D—-1,1 = O,...,Zl—l,and] = O,...,Ei—l.Thisistheheterotic
string action in the complex conformal gauge with fermionic internal degrees of
freedom.

3.3 Modular Invariance of the Partition Function

We could continue our discussion now by solving for equations of motion, etc., but
a much more useful approach is to go directly to the partition function. It can be
proven, though for the sake of brevity we will not do so, that the one-loop partition
function is sufficient to describe all of the physical states of our theory. What’s more,
one- and two-loop modular invariance is sufficient to ensure modular invariance to
all orders [41-43]. For this reason it is actually easier to handle the partition function
than to worry too much about the action (3.5).

Recall from Sect. 2.5 that the one-loop partition function is an integration over
all of the inequivalent tori that our closed string worldsheet could trace out. We then
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have not just one direction, ¢!, for which boundary conditions must be specified,
but rather two. The ¢ direction is also compact, so we must also consider boundary
conditions in this “time” direction as well. To be explicit, the jth worldsheet fermion,
¥;, will pick up a phase, V/, so that

Y — —e_"”vff Yj (3.6)

for the ith boundary condition around ¢° or o!.> We only need to consider what
happens to our D — 2 + d + d free fermions since our spacetime bosonic fields
must have periodic boundary conditions. In this way we can express the phases as
a (D —2 + d + d)-vector with components V/ representing the phase of the jth
fermion. These phase vectors are referred to as the sectors of the theory, and form
a group under addition (modulo 2). This group is typically denoted as &, and as a
finite Abelian group can be decomposed into a direct sum of finite cyclic groups

E=7ZnN D... 8 Zy,. 3.7
We can thus choose a linearly independent basis, {«;, ..., a.}, for E, i.e.
L
Vi= myo; =0, 0<my<N (3.8)
j=1

if and only if m;; = 0 for all 1 < j < L. These basis vectors «; are sufficient for
reconstructing our sectors, so to specify a model we need only describe the basis.

One important observation is that, as our worldsheet fermions arise from
either the fermionization of our bosonic “compact” directions or the left-moving
worldsheet SUSY, we require that all of the fermions be “pairable.”* This means
that every phase occurs at least twice, and we can pair two real fermions with the
same phase into a complex fermion. This pairing process is restricted to left—left
and right-right pairings whenever possible; however, some models actually require
left-right pairings. When this occurs it results in a “rank-cut,” the removal of a U,
charge from the gauge lattice, thus reducing the rank of the resulting gauge group
by one.

Returning to the one-loop partition function, we must consider all combinations
of phases on our fermions; thus, the one-loop partition function can be expressed as

’In general, we can admit boundary conditions that allow the jth fermion to transform into the kth
fermion, but this is beyond the scope of this work. In the cases we consider, we assume a similarity
transformation has rotated the boundary conditions into the eigenphases of a set of complex and/or
real eigenstate fermions.

3This is not, in fact, a requirement. Relaxing it gives rise to chiral Ising models, but these present
additional hurdles that we do not address herein.
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21:ZC[V‘;}Z[V‘;} (3.9)

v.w

with V and W the “space” and “time” boundary conditions. We could, in general,
consider the n-loop partition function

Vioo. Va Vi ...V,
Zn = ¢ z : 3.10
Szpin: [Wl Wni| [Wl Wn:| ( )

structures

where a spin structure is a choice of 2n phase vectors

Vi... Vy

Requiring modular invariance on scattering amplitudes is equivalent to requiring
modular invariance on the partition function. Thus, there must be constraints on the

sets of admissible spin structures, read sectors, so as to ensure that Z I:V‘V/]l ;n ] is
Wy

modular invariant. Note that modular invariance of Z [v‘vl: &”
o W

ensure modular invariance of the Z,; there are also constraints on the coefficients

] is not enough to

Wi oo Wy
parallel, [41, 43], and are presented below as they play a crucial role in the
construction of models to come.

C [ Vi Vi ] These constraints were originally worked out by two groups in

3.3.1 Modular Invariance of Basis Vectors

It turns out that modular invariance of the spin structures can be reduced to modular
invariance on the basis. This is not particularly surprising, so we will not prove it
here. In fact, for brevity all of the following results on modular invariance will be
presented, but not proven. We refer the reader to either of the original works for a
more complete and enlightening treatment.

To begin, let A = {o; | 1 < i < L} be the basis for our model. As each element
of the basis vector «; must represent the phase of a fermion under parallel transport,
we expect that it must be either 0 or 1. However, since we require that all of the
fermions of our theory be combined into complex pairs, we can admit arbitrary
rational phases. We can, without loss of generality, restrict the elements of «; to
the range (—1, 1]. What’s more, since all of the values are rational, we can find a
common denominator N; for each «; such that

Niod} € 27 (3.12)
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with otf the jth element of o; and 1 < i < L. We refer to this common denominator
as the order of the basis vector.

As it was proven in [41, 43], modular invariance of the theory requires that the
following be met

N;ia;-o; =0 (mod 8) (N; even) (3.13a)
and
Njja;-o; =0 (mod 4) (3.13b)

with N = LCM(N;, N;). Here “-” represents the Lorentzian dot product, defined as
a- B = ag- Br —ar - Br, with traditional dot products on the right-hand side. The
above constraints ensure one-loop modular invariance. Additionally, we require that
each model includes the all-periodic sector, 1, i.e.

D—-2 d d
e e | e e . -
1=(1...11...1[|1...1)= (1072 19) e A.

This is necessary to ensure that we have a well-defined spin structure. Finally, as a
necessary condition for modular invariance to arbitrary order in perturbation theory,
we require that for any three basis vectors, the number of simultaneous, real periodic
modes is even. In general this requirement is still too weak; in the case of chiral
Ising models, models with unpaired real fermions, any set of four basis vectors must
have an even number of simultaneous, real periodic modes. However, because our
fermions are all complex, if any three have an even number of simultaneous, real
periodic modes, then any four will as well.

Together these four requirements ensure that the individual terms in the partition
function, Z [%i - X}“n
modular invariance of the complete partition function. For that, we must ensure
that the coefficients C [%i N B

W,
the next subsection.

], are modular invariant. This, of course, does not ensure

] are modular invariant as well. This is the topic of

3.3.2 Modular Invariance of Partition Coefficients

One of the most important requirements for all-order modular invariance is that the

nth order coefficient C [V‘V/l e Vi

W ] can be decomposable into a product of first-order

coefficients:

C[vl...vn}zc[vl}c[w],,c[v"] (3.14)
W ... W, W, W) W
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We need only enforce modular invariance on the one-loop coefficients because of
this.
Following the convention set in [43], we reexpress our partition coefficients as

Vi 14yl }
C [Vi| = (—1)(V’ +V1) exp (m mje my (kg — oty - Oll)),
J

where m;; are the coefficients in the basis expansion of the sector V;. Provided the
newly introduced coefficients, k;;, satisfy the constraints

Njk; € 27 (3.15a)

with N; the order of the jth basis vector, and

1
ki + ki = 2% + o (mod 2), (3.15b)

1
kij + kji = EO[,' - Q (mod 2), (315C)

our one-loop coefficients C [“f‘] will be modular invariant. We refer to the coef-
J

ficients, k;;, as the GSO projection coefficients of the model as they arise in the
application of the GSO projection as discussed in Sect. 2.7, and detailed in Sect. 3.5.
These constraints on k;;, together with those discussed in Sect. 3.3.1, ensure that
our partition functions, and hence our models, are modular invariant to all order in
perturbation theory.

3.4 Worldsheet Supersymmetry

Before we continue on to construct full models, we must recall that our left-moving
modes have worldsheet SUSY. This requirement reduced the critical dimension of
the theory down to at most ten, so we must ensure that we haven’t lost this manifest
symmetry after choosing a set of basis vectors. The supercharge for the worldsheet
SUSY is given by

J = YR X* + fxx'xxK, (3.16)

where fix are the structure constants of some semi-simple Lie group and x' are real,
internal, left-moving fermion modes [44]. The dimension of this Lie group must
then be d.
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The traditional choice for this group, and the one assumed herein, is (SU»)%/3.#
The major consequence of this is that the phases of our left-moving fermions must

be either periodic or anti-periodic, i.e. the order of our left-movers is 2 and thus our
basis vectors have even order.

3.5 Free Fermionic Model Building

We now turn our attention to the construction of FF models. The process begins
with the selection of a modular invariant, linearly independent basis vector set

A={a|1<i<L} (3.17)

We refer to |A| = L as the layer of the model. Upon selection of a set A, we can
proceed to choose some modular invariant GSO projection coefficients, k;;. These
coefficients form a square matrix

k=] : - (3.18)

of which the lower triangle is free to be specified. Upon choosing this lower triangle,
modular invariance will uniquely determine the upper-triangle and diagonal, with
the exception of k;;. Fortunately, this element in no way affects the final model, and
is thus arbitrary within the requirement (3.15a). Together, the choice {A, k} specifies
the model, up to vacuum expectation values.

Given our selection of A, we can construct the sectors of the model,

s:{vizzmijaj|o§mi,<1v, : (3.19)
J

Provided that our choice of A is modular invariant, the elements of & will be as
well. Each element, V; € E, generates a Hilbert space Hy,. Abusing notation, the
phases of a state O € Hy are expressed as

1
Q= Vi+F. (3.20)

4 All other choices have been shown to prohibit A~ = 1 SUSY [44, 45]. Since A = 1 is the most
“natural” form of SUSY we’d like to admit it.
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where F € {—1,0, 1}P=2+@+d_Applying every possible F to 3V; constructs Hy,.
Upon doing so for each sector, we build the full Hilbert spaces H as

H=Ep Hv. (3.21)
VeR
This Hilbert space is, of course, much too large. As it stands, most of the states
are massive. Since we are only interested in the low-energy effective field theory
(LEEFT), we select only the massless states, i.e. the states that satisfy
Q) 1

;=0 = Q) =1 (3.22a)

M} =

(Or)?
2

where Q; and Qy are the left- and right-moving phases of the state Q, and a> = a - a.
Referring to this reduced Hilbert space as, Hmassiesss, We still have the problem
described in Sect.2.7. In fact, until we apply the GSO projection the gauge states
have no Weyl symmetry [46], and hence do not form a gauge lattice. The matter
states will not have a gauge symmetry, and so the model is ill-defined.

We now apply our GSO projection to bring our Hilbert space down to the
massless, physical states only. In the FF construction the GSO projection is
represented as follows:

M3 = —1=0 = (Qr)’=2, (3.22b)

L
-0 =al + Zkikmjk (mod 2), (3.23)
k=1
where mj, are the coefficients defining the sector Vi from which Q is con-
structed (3.20). If the state Q satisfies the above expression, it survives the
projection, and is thus an element of the physical Hilbert space H physical-

Upon applying our GSO projection, we can then begin classifying the states of
Hphysical according to their spacetime spin statistics (i.e., whether they fit into the
matter or gauge sectors), collecting them into supermultiplets, and determine the
number of spacetime supersymmetries, etc. Further consideration of this is left to
the next chapter, in which we can restrict our attention to a very particular type of
model.

3.6 Spacetime Supersymmetry

A main feature of most modern theories of grand unification is the presence of
spacetime SUSY. Consequently, we need to be able to introduce the symmetry into
the spacetime theory. To do this we first require that our basis vector set, A, includes
the SUSY sector

S = (1°72(100)%3 || 0%). (3.24)
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This particular choice is compatible with our choice of worldsheet SUSY, as
discussed in Sect. 3.4. Explicit inclusion of S is not always required. In particular,
when we can express any of the basis vectors as S 4+ « with « of the form

a= (0" || ap) (3.25)

with Ng odd, S is a generated sector, i.e. S = Ng(S + «).

The existence of S in E is not sufficient to ensure that the model has spacetime
SUSY: the GSO projection can break the symmetry. Particular choices of GSO
coefficients will either keep or project out the gravitino states, and hence all
superpartners, from the spectrum. More consideration of this is given in Sect. 1.3.

To determine the number of spacetime supersymmetries, we simply count the
number of gravitinos in the spectrum. In FF models, gravitinos are of the form

D—2 d/3 ~
= (P72 (L 00)” | 09). (3.26)

How “strongly” the elements of A overlap with S determines the number of
gravitinos that can survive. Tailoring the basis vector set can break the number
of supersymmtries down to zero or a power of two bounded above by 2%°. For
example, in D = 4 we can have A/ = 0, 1,2 or 4, whilein D = 10 only ' = O or 1
are admissible. We will denote the maximum number of spacetime supersymmetries
allowed for a given dimension by Npyax.

At present, little work has been done to understand what happens to the number
of supersymmetries when d /6 is non-integral, i.e. when D is odd. It is because of
this that we do not detail the scenario too deeply. However, we do touch upon this
possibility again in the next chapter.

3.7 Summary

We have outlined how to construct a free fermionic heterotic string model up to vac-
uum expectation values. In Sect. 3.2 we heuristically constructed the heterotic string
action using free worldsheet fermions. Section 3.3 dealt with modular invariance of
the theory in terms of modular invariance of the partition function. We dealt with the
additional constraints imposed by worldsheet supersymmetry in Sect. 3.4 and finally
outlined the free fermionic construction process, Sect.3.5. We then concluded the
chapter with a brief discussion of SUSY.

This concludes our general introductory material. Subsequent chapters will
present the original work done by the author, preceded by a brief introduction to
the topic of gauge models.
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Chapter 4
Surveys of Gauge Models

Abstract The definition of free fermionic heterotic string (FFHS) gauge models is
presented. These represent the simplest conceivable models from the perspective
of string model building, but while they may be descriptions of our observable
universe they do provide a firm foundation for exploration of the string landscape.
This chapter discusses the uniqueness and redundancies of gauge models in
terms of FFHS basis vectors. We then proceed to the results of the first two
systematic surveys of layer one gauge models with four large spacetime dimensions.
These results include model redundancies, gauge group distribution statistics, and
observed group combinations. The surveys are then extended to include models in
D =5,...,10 large spacetime dimensions. The final sections discuss the results of
initial higher layer surveys as well as the concept of a generalized gauge model.

Keywords Gauge models surveys redundancy uniqueness

Recent work puts the number of possible string derived models on the order of
10°% [1, 2]. Consequently, any efforts to explore this landscape of string vacua
require the use of high-performance computing and a choice of construction
method. Each construction method has access to different, overlapping regimes of
the landscape; here, we will focus on the free fermionic heterotic string (FFHS)
construction formalism [3-5]. The FFHS formalism has produced some of the
most phenomenologically viable models to date [6—40] and is ideal for computer
construction. Random examinations of the landscape, using this formalism, have
been performed in the past [41, 42]; however, due to the many-to-one nature of this
construction a random survey of the input parameters has many endemic problems
that are non-trivial to address [43]. One way to deal with these problems is to
systematically survey the valid input parameters.

Two software frameworks, currently under development at Baylor University, are
being designed and used specifically for the purpose of performing such systematic
surveys of the FFHS landscape. One such framework, the Gauge Framework,
focuses on systematically building gauge models in D spacetime dimensions.
A detailed explanation of what is meant by a “gauge model” is provided in Sect. 4.1.
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These surveys serve multiple purposes including aiding in attempts at understanding
and reducing the redundancies inherent to the construction method. Furthermore, we
can use the results of these searches to guide slower, more detailed surveys.

While originally intended for long-term service, it has grown increasingly
apparent that the Gauge Framework has exhaustively surveyed its region of the
FFHS landscape. In its present iteration it can construct just over 1000 models
per second on a single processing core, and this performance scales linearly with
the number of parallel cores. To date, the Gauge Framework has run on up to 120
processing cores at a rate of roughly 120,000 models per second. It can construct
gauge models with any number of layers of any order. To the author’s knowledge,
this makes it the fastest software solution of its kind.

This chapter will focus on the surveys and results generated by the Gauge
Framework to date. In Sect.4.1 we define and describe the characteristics of
gauge models. Section 4.1.2 focuses on the well-known redundancies of the gauge
landscape and addresses methods for removing such redundancies. Section4.2
presents the results of the first layer 1 survey performed by the Gauge Framework in
D = 4 spacetime dimensions [44]. We then present in Sect. 4.3 an extended survey
of layer 1 models in D spacetime dimensions [45]. In Sect. 4.4 we present the results
of several higher layer' surveys and conjecture that the landscape of higher layer
models is wholly redundant with layer one. Finally, we conclude this chapter with
a brief discussion of a possible generalization of gauge models that may prove to
extend the landscape of interest significantly, Sect. 4.5.

4.1 Gauge Model Building

The Gauge Framework focuses on the construction of gauge models. Further
discussion requires a more concrete definition of what a “gauge model” is.

Definition (Gauge Model). A model is a gauge model if it can be built from a set of basis
vectors in which every basis vector beyond the all-periodic and SUSY basis vectors is

bosonic, that is of the form (610 || &), within the free fermionic construction [3-5, 46].

These models are in many ways some of the most simple models that one can
build, and can be thought of as the basis from which more complex models can be
built. This makes them interesting as a starting point for systematic surveys. Using
information gleaned from these surveys, we can guide, improve, and devise further
searches of both the gauge and the generic FFHS landscape. An example of this is
provided in Chap. 5.

Recall that within the free fermionic framework two inputs are required, the
set of basis vectors, A, and the GSO projection coefficient matrix, k. In order to

!By “higher layer” we mean models with more than one additional bosonic sector. For more
information see Sect. 4.1.
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systematically build these models we need to systematically build the input set
{A, k} ensuring that all of the modular invariance constraints are met. This process
is unchanged by restricting ourselves to gauge models. There are, however, a few
useful simplifications that can be made.

First of all, because our additional basis vectors have all anti-periodic2 left-
movers, the left-moving component of our Lorentz dot products must be zero. This
allows us to dispense with that part of the computation; what is the point of explicitly
computing something when you already know the result? This, together with the
factor of two reduction due to moving from a real to a complex basis,’ significantly
reduces the number of floating-point operations required to perform basic vector
operations.

Secondly, by having all anti-periodic left-movers, we ensure that the basis vectors
have a zero dot product with our gravitinos; recall the form of the gravitino
states (3.26). If we then consider the GSO projection operations, (3.23), of 1, S
and «; on the gravitino y,

1.y =kp+1 (mod 2),
S.-x=kp+1 (mod 2), 4.1
a; - x = ki (mod 2)

we see that, given the form of 1 and S, half of the gravitino states are immediately
projected out. The «; projection will then project out either all of the remaining
gravitinos or none of them depending on the choice of k;;. We thus only admit
two types of SUSY in our models: NV = 0 and NV = Npax, with M.y defined in
Sect. 3.6.

Finally, because the left-movers have order one,* the order of the basis vector as
a whole has the same parity as the order of the right-movers, i.e. is even or odd. This
results in no odd-order models with A" = 0, [44]. A proof of this is rather brief:

Proof. Consider a basis vector set with an odd-order bosonic sector ¢;, i > 2. Since
the order of S is Ng = 2, k;» € {0, 1}. The modular invariance constraint, presented
in (4.2), gives us

1
kij + ki = 5 @i - 0 (mod 2),
1
kip + ki = 5 8- (mod 2) 4.2)
= 0 (mOd 2),

ZRecall that periodic and anti-periodic modes are represented by 1 and 0, respectively. This can be
deduced from (3.6).

3Since all fermions must be pairable we can collect the real fermions into complex pairs. In this
way the phase vectors are shortened by a factor of two.

“Recall that the order of the ith basis vector is the smallest integer, N;, such that N,u{ =0 (mod 2).
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so that ky; = k;» (mod 2). However, together with the constraint
N, = 0 (mod 2), (4.3)

the only admissible choice for k; is ki = 0. Thus, we cannot realize A” = 0 in a
modular invariant way.

In these landscape surveys, because the redundancy arises from our represen-
tation of the input space, we should not expect the recurrence of models to be
meaningful. We are only interested in the “unique” models.

4.1.1 Uniqueness

When considering uniqueness of models, both gauge and matter content should be
considered. The nice thing about supersymmetric gauge models is that models with
the same gauge group will always have the same matter spectrum and are thus iden-
tical. However, this is not true for non-SUSY models,’ so to consider uniqueness
in this case we must investigate the matter content of these models. Fortunately,
the exact particle spectrum of these models is not of interest here. We are only
concerned with the gauge content and whether the model is supersymmetric. From
that, we can use additional software to prepend left-movers to our basis vectors and
build models using these gauge models as a starting point. When there is no left—
right pairing, the new models will either keep or break the gauge group of their base
gauge models. So, for our purposes we will define uniqueness as follows:

Definition (Uniqueness). A model is considered unique if no other model has been
previously generated with both the same gauge group and number of space-time super-
symmetries.

As we generate models, any model that has a combination of gauge groups and
number of spacetime supersymmetries that has not yet been created is retained it.
However, any model after that with the same combination of gauge states and SUSY
is discarded.® This has an impact on the statistics of the non-SUSY models which
will be discussed in more detail in Sect. 4.2.

Before we go on, it is interesting to consider the question of exactly how many
gauge models there could possibly be regardless of modular invariance, etc. We
can easily determine the maximum number of unique models that can be built by
considering that only simply laced gauge groups can produce and that there are no
rank cuts [47], thus the total rank must be 22 in D = 4. Determining all of the

SWhile not generally true, recent tests of the FF Framework on gauge models suggest that even the
matter of two non-SUSY gauge models are identical. A future work may expound upon this.

SThis is not strictly true. For some investigations, in particular into redundancies, it is useful to
keep track of models that are not unique as well.
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Table 4.1 Maximum D | # of models
number of unique simply
laced gauge models in D 10 | 5714
spacetime dimensions 9 |4140

8 | 11,988

7 |8576

6 | 24,508

5 117,341

4 148,952

combinations of simply laced gauge groups whose rank sums to 22 and doubling
that, for SUSY and non-SUSY, gives us at most 48,952 unique gauge models. These
calculations have been performed for D = 4 through D = 10 and are provided in
Table 4.1. Of course, it is unlikely that all of these combinations can exist. In fact,
we find that 5714 models have the proper form, but it is well known that only 9
models are realized by the D = 10 heterotic landscape [48], even when considering
full matter content. However, because the D = 4 landscape is much more complex,’
we should expect a higher occurrence of unique models than at D = 10.

Note in Table 4.1 that there are fewer possible models in D + 1 than there are in
D spacetime dimensions, with D even. This is a manifestation of the fact that there
are no N' = 0 models in odd dimensions, Sect. 4.1 (p. 48).

4.1.2 Redundancies

The free fermionic construction formalism has the inherent problem of redundancy;
the mapping from input space to output space is many-to-one. This property is what
condemns random surveys and remains a problem for systematic searches. Reducing
these redundancies will bring systematic surveys within current technological limits.
Both the basis vectors and the GSO projection coefficients present redundancies that
can be accounted for and removed in many cases.

The systematic generation of basis vectors admits redundancy in at least two
ways, permutations and charge conjugacy. Permutations of the elements of a basis
vector leave the mapping invariant as long as the same permutation is applied to
each of the basis vectors in the set, i.e.

(0°11111000%) _ §(0™|1101010%)
(0111001 10%8)( = )(0°|1110100%)

"There are 40 real worldsheet fermions in D = 10 versus 64 in D = 4. This increased number of
fermionic degrees of freedom results in a richer landscape.
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Here the third column of the right-movers was switched with the sixth. These two
sets will generate the same output, given that the same GSO projection matrix is
chosen. A scheme for removing these permutation redundancies was developed in
[47]. Additionally, we can always flip the signs of the charges as long as that change
does not remove modular invariance, i.e.

(1z||%%l§lll 1 IIZ) = (12”§§§l 1111112)
1
(0 ”555 555_5__0) (O ||_§_§_§§§§§0)

This is referred to as charge conjugacy and does not change the gauge group.
Modding out these two redundancies is not sufficient to completely remove the
many-to-one nature of the mapping, and studies are currently under way to find
more sources of basis vector redundancy.

There is also a significant source of redundancy in our selection of GSO
projection matrices, especially in the case of odd-order basis vectors. An account
of how this redundancy presents itself is detailed in [44]. For our purposes it is
sufficient to point out that at layer 1 there are only two unique choices of GSO
projection matrix for even-order and only one for odd-order. In the case of even-
order the choices of k are distinguished by whether or not they admit SUSY.
As for the odd-order sets, modular invariance requires that the GSO projection is
compatible with SUSY (Sect. 4.1). Because the redundancies are multiplicative, the
overall redundancy grows exponentially with the layer.

The result of accounting for these redundancies is a significant improvement in
the volume of models that must be built, which is depicted in Table 4.2. One thing to
note is that each of these affects even- and odd-orders to differing extents. However,
if we account for all of them the result is that the number of models that must be
built (not the number of unique models) at orders 2N and 2N + 1 are of the same
magnitude.

4.2 Layer One Survey

Traditionally, the collection of string derived, low-energy effective field theories
(LEEFTsS) is referred to as the landscape. However, because we are interested less
in the field theories and more in the mapping from the FFHS input space to this
landscape, we can consider only those LEEFTSs that are mapped to by a particular
input sub-space; namely the layer 1, order 2 through 22 gauge input space. We will
refer to this set of inputs as the “layer 1 landscape.” We can then look at the
relationships between the input and output spaces as well as the mapping between
them.

Using the FFHS formalism, we constructed all unique, layer 1 gauge models
from order 2 through 22. This amounted to 68 SUSY and 502 non-SUSY models
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Table 4.2 Number of L = 1 models—For each order we list the most
models possible and number of models after the permutation, charge
conjugacy and GSO projection redundancies are accounted for

N | Initial models | Permutation | Charge conjugacy | GSO projection
2 |8.39x10° 20 20 10

3 |3.14 x 10" 47 7 7

4 |3.76 x 10" 640 152 76

5 1238 x10" 873 55 55

6 |2.63x 107 8292 772 386

7 |3.91x 10" 9352 328 328

8 | 1.48 x 10%° 71,724 3748 1874

9 |9.85x 10% 70,759 1679 1679

10 | 2.00 x 102 463,948 16,172 8,086
11|8.14 x 10? 413,948 7339 7339

12| 1.10 x 10* 2,434,404 | 62,704 31,352
13]3.21 x 10* 2,007,773 28,979 28,979
14|3.28 x 10> | 10,756,336 | 223,020 111,510

15| 7.49 x 10% 8,378,335 | 104,453 104,453

16 16.19 x 10%° | 41,719,604 | 730,020 365,010
These are not necessarily distinct models, in fact the majority are still
redundant

and required a total of 31,863,121 models to be built. Of all of the group
combinations found, 50 had both SUSY and non-SUSY realizations. In this section
we review the statistics for these 570 models as well as how we may use these
results to improve further surveys and what LEEFTs are accessible from these types
of inputs.

4.2.1 Model Generation and Redundancy

Here we look at relationships between model generation, the basis vector order
and redundancy. Strictly speaking, these relationships have no physical meaning;
however, they are important when creating algorithms for the systematic generation
of FFHS models, particularly for studies into how redundancies manifest themselves
in the gauge input space.

In our model building process, all models of a particular order are generated
before progressing to the next. This allows us to ask how the number of unique
models generated is dependent on the order. There is a subtlety to these questions in
that any model can be, in general, generated at other orders. However, because we
have imposed an ordering on the build process this inherently gives preference to
lower orders. This has the advantage of improving the efficiency of the build process
and does not affect statistics beyond the physically meaningless question of “at what
order was this model generated?”
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We know from Sect. 4.1 that there are no odd-order N' = 0 models. This
immediately suggests that there is a difference in the way SUSY and non-SUSY
models are generated at each order. This difference can be seen in Fig. 4.1 where
the number of unique models generated is plotted with respect to order for both
SUSY and non-SUSY data sets. We see that a statistical majority of SUSY models
are generated at low order, from order 2 through 12, while a statistically significant
number of non-SUSY models are generated through 22.

One may also be interested in how higher orders subsume lower orders. That is,
because higher orders admit a significantly higher number of potential models, one
might suspect that higher orders may well contain all of the models generated at
lower orders. To verify this we look at the number of unique models generated
at each order as well as the number of models that were generated at lower orders
but are absent from higher orders, Fig. 4.2.

This information can be used to more efficiently generate models. For example,
even-order SUSY models completely subsume lower orders. This means that we
could simply build SUSY order 22 and we would get everything below it. That
reduces the number of SUSY models that must be built from approximately
1.82 x 107 to 8.4 x 10, roughly half. This is not quite as nice for non-SUSY models
in that we would have to build orders 16 through 22. This amounts to 98.89 %
of the total number of models. Only SUSY would benefit from this approach.
Unfortunately, there is no known way to predict which orders subsume lower
orders.

4.2.2 Group Distribution Statistics

We now focus on specific properties of the LEEFTS, in particular how group
factors of each rank manifest themselves across the layer 1 landscape. We begin
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Fig. 4.2 Number of additional and absent models at each order—At each order we look at the
number of models generated in addition to the models previously created as well as the number of
models that are absent at that order. Note that no non-SUSY models are generated at odd-orders
so, for brevity, those orders are not plotted. (a) Non-SUSY statistics; (b) SUSY statistics
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Fig. 4.3 Number of models with factors of each rank—For each rank and class of gauge group,
the number of models with at least one factor of that type is plotted. The label on each bar is the
total number of models with at least one group of that rank. The plots for the SUSY and non-SUSY
models are provided for comparison. Here the red, green, and blue bars represent the number of A,
D, and E algebras groups, respectively (a) Non-SUSY statistics; (b) SUSY statistics

by considering the number of models with a group factor of a particular rank, M,,,
for each, SUSY and non-SUSY, data set, Fig.4.3. SU, is highly prevalent in both
datasets because it is relatively simple to generate. It amounts to a single, disjoint
charge in our gauge states and consequently occurs often when groups are broken.

For the N/ = 0 models we see that M,, > M,, for all classes of group factor,
SUy, SOy, and Ey. However, this trend only occurs for SUy of odd rank up to
n = 11. Additionally, we can see My,—; > Mj, up to n = 10 for non-SUSY
models.

This does not speak to how the factors are distributed amongst the models. Of the
non-SUSY models, 314 have at least one factor of SU,, but generally we can expect
more than one for a particular model, approximately 1.74 on average. The average
number of factors of each rank, 1\_/1,“ is plotted in Fig. 4.4.
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Fig. 4.4 Average number of factors of non-Abelian groups—For each rank, the average number
of factors for each class of groups is plotted for each set of statistics, (a) Non-SUSY Models and
(b) SUSY Models. Here the red, green, and blue bars represent the number of A, D, and E algebras
groups, respectively

4.2.3 Group Combinations

In this subsection we present statistics for the occurrence of specific group factors in
various combinations across the layer 1 landscape. As well as combinations of two
group factors, we look at combinations of specific compound factors in conjunction
with single and other compound factors. Such compound factors include E¢ ® Eg,
Gps = SU;s ® SU, ® SU, (Pati-Salam), Gigs = SUz Q@ SU, ® SU, (Left—Right
Symmetric), Gsyy = SU3 @ SU; ® U (Standard Model), and Ggsy = SU3 ® SU,
(Reduced Standard Model). We also include FSU; = SUs ® U, though, because
we are not considering matter content, we can only say that the model has the 7 SUs
gauge group; it may not actually be FSUs.

Recall that the modular invariance constraints and redundancies lead to two GSO
projection matrices for even-order models and only one for odd-order models. In
either case, the GSO projection that admits AV = 4 SUSY is consistent, as discussed
in Sect.4.1. The SUSY landscape exhibits 68 unique models. From these, the
percentage of models exhibiting each combination of group factors at least once is
calculated as a straight percentage of the 68 models. The full statistics are provided
in Table B.1 with special GUT® group statistics provided in Table 4.3 below.

While the groups Grrs, Grus, and Gsy do not occur in the SUSY landscape,
this is not true for ' = 0 models; we include their respective columns here for
consistency.

As can be seen from either Table B.1 or Table 4.3, SU; never occurs in tandem
with SU,. This means there is no Standard Model gauge group in the SUSY layer 1
landscape, as defined here. Pati—Salam and FSUs occur in an equal number across

8Remember that throughout this work we are only interested in the gauge group, so when we say
“GUT group” we are literally referring to the group and not the model as a whole.
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Table 4.3 N = 4 GUT group statistics—The percentage of all

unique ' = 4 models with each combination of gauge groups is
tabulated

N=68 |80 |Ec®Es |FSUs |Gps |Grrs | Grsm | Gsu
U, 7.35 | 1.47 588 294 |0 0 0
SU, 735 |0 0 1.47 |0 0 0
SUs 0 0 1.47 |0 0 0 0
SU, 441 | 1.47 0 294 |0 0 0
SUs 0 0 4.41 0 0 0 0
SUy>s 12.24 | 1.47 294 441 |0 0 0
SOy 0 0 0 0 0 0 0
SO 294 |0 0 0 0 0 0
SUy>10 | — 0 0 0 0 0 0
Ey - 1.47 0 1.47 |0 0 0
Es ® Es |- 0 0 0 0 0 0
FSUs - - 4.41 0 0 0 0
Gps - - - 0 0 0 0
Grgs - - - - 0 0 0
Grsm - - - - - 0 0
Total 13.24 |2.94 588 |5.88 |0 0 0

For example, 4.41 % of the 68 unique SUSY models have the combi-
nation FSUs ® SUs at least once

the SUSY landscape but never in the same model. The only compound factor that
occurs more than once in any model is 7 SUs and it does so 75 % of the time, though
this only amounts to 3 models in total.

Turning our attention to A/ = 0 models, we can perform the same statistical
analysis we did above. This time, however, we note that there are 502 unique non-
SUSY models; see Tables B.2 and 4.4.

It is interesting to note that the occurrence of A/ = 0 group combinations is not
simply an extension of the N' = 4. That is, groups that are uncommon in N = 4
models are not necessarily less common in ' = 0. We also find that SU; ® SU,
combinations never occur with SOy nor Ey.

4.2.4 Extended Layer One Survey

The results above were published in 2011 and have since been extended up through
order 32. It was found that the statistics above changed only negligibly as no
new SUSY models were generated and only seven unique non-SUSY models were
produced. What’s more, all seven additional models were constructed at order 24.
Nothing new was found beyond order 24. For the sake of completeness, we provide
the additional models built at order 24 in Table 4.5, and the A" = 0 layer one
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Table 4.4 N = 0 GUT group statistic—The percentage of all unique
N = 0 models with each combination of gauge groups is tabulated

N=502 SOy Es®Es | FSUs |Gps |Girs |Grsy | Gsu

U, 13.35 | 1.39 20.92 |15.54 |8.76 |14.74 | 14.74
SU, 8.17 | 1.00 12.35 9.36 |4.78 8.76 | 8.76
SU; 1.20 |0 10.76 3.78 | 6.57 8.96 | 8.96
SU, 5.98 |0.60 9.56 8.37 |3.78 7.17 | 7.17
SUs 1.00 |0 8.76 | 2.59 |4.38 7.17 | 7.17
SUy>5 10.16 | 0.40 12.35 9.36 | 3.00 7.17 | 7.17
SOg 1.79 |0 0.80 | 239 |0 0 0

SO 2.59 |0.40 1.00 | 239 |0 0 0

SUy>10 |- 0.20 0 040 |0 0 0

Ey - 0.20 0.60 1.59 |0 0 0

Ec®Es |— 0 0 0.20 |0 0 0

FSUs - - 876 | 2.59 |4.38 7.17 | 717
Gps - - - 2.99 |0.80 1.99 | 1.99
Grrs - - - - 1.99 3.78 | 3.78
Grsm - - - - - 6.57 | 6.57
Gsu - - - - - - 6.57
Total 13.94 | 1.39 20.92 |16.33 |8.76 |14.74 | 14.74

Here each value is calculated against the 502 A/ = 0 models, i.e. SOjp ®
SUs occurs in 1.00 % of these 502 models

Table 4.5 Unique order 24
N = 0 models—The unique
non-supersymmetric models
generated at order 24

Unique models

(SU)™ ® (U))®

(SU»)"? @ SU, ® (Uy)’

(SU»)"? ® SO5 ® SO,

(SU2)® ® (SU3)* ® (U™
(SUy)" ® (SU3)* ® (U))°
(SU2)° ® (SU3)* ® SU4 ® (Uy)°
(SU3)° ® (U™

N AR W N =]

statistics in four dimensions in Table B.3. Note that models 2 and 6 contribute to
the Pati—Salam content while models 4—6 contribute potentially standard-model like
content.

4.3 Survey of Layer One in D Dimensions

In 2013 the results of a survey of layer one models in D = 4 through D = 10
spacetime dimensions were published in [45]. The survey constructed all layer
one models from order 2 through 24. This section presents those results with full
statistics in Sect. B.2.
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Table 4.6 Number of unique models—Number of unique N' = Ny, and N = 0
models for each value of D

SUSY D=10 D=9 D=8 D=7 D=6 D=5 |D=4
N = Nmax | 2 9 13 16 18 40 68
N=0 6 32 50 85 73 292 509
Both 1 3 6 8 18 26 50
Also included is the number of models that have both N' = AN and N =0
realizations

In conformation with [49], we find two Npax and six A = 0° models in
D = 10 with one gauge group, SOs;, occurring with both possible SUSYs. The
corresponding results for zero to six compactifications are presented in Table 4.6.

The general trend, an increase in unique models with compactification, is
expected; each compactification adds an addition U; gauge degree of freedom. In the
FFHS formalism, several factors influence how the U, alters the initial gauge group:
it may enhance the initial gauge group, manifest as an additional group factor, or in
more rare cases, result in a splitting of group factors.

Upon construction of all unique models, it is a straightforward matter to consider
the rate of occurrence of various combinations of group factors, which is presented
in the tables in the appendix. Of particular interest is the emergence of GUT groups
with compactification. As most common GUTs require multiple low-rank special
unitary group factors, a notable exception being SUSY SO, they arise significantly
more often in low dimensions. This can be attributed to the enhancement of the
additional U factors produced with compactification. Additionally, the application
of the GSO projection to reduce the number of spacetime supersymmetries has the
tendency of increasing the production of special unitary groups. This leads to N' = 0
models favoring the occurrence of the “unitary GUTSs” while the Np.x models favor
those with special orthogonal groups.

Beyond GUT groups we can examine how individual group factors arise. As
an example, consider SU; whose first occurrence is at D = 7, A/ = 0 and first
manifests with Mp.x at D = 5. In all cases, SU; occurs in conjunction with a
U, factor which gives rise to the MSSM group in any situation where SU, and
SU; arise together. Of particular interest is the manner in which SUjs is produced.
Specifically, each compactification produces a U; gauge charge. If this charge does
not enhance any of the present factors, it may remain external, in which case a
subsequent compactification is likely to provide an enhancement to SU, ® SU,.
A further compactification often yields another enhancement to SUy, suggesting
that the SU3 does not result from the typical enhancement pattern. In fact, it is
believed that the most probable method of producing an SUj is via breaking of

9An additional model can be produced utilizing chiral Isings, however such models are not
considered here.
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Table 4.7 Higher layer D Orders Status
survey status
4 2x2—2x11 Completed
3X3—-5x%x5 Completed

2x2x2—2x7x7 |Inprogress
3x3x3—-3x5x5 |Planned
4x4x4—-2x5x5 |Planned
5-10 |2x2—2x 11 Completed
3x3—10x 10 In progress
2xX2x2—5x%x5x5 | Planned

the SU,4 previously described. This is due to the combination of the additional U,
charge and the application of the GSO projection to reduce the model to A" = 0.

4.4 Higher Layer Surveys

It was the hope of this work to explore a large region of the string landscape, namely
the gauge landscape. However, the results of several long-running higher layer'®
surveys present evidence that there are far fewer gauge models than expected.
Table 4.7 describes the state of the higher layer current projects as of April 2014.

As of this writing, the surveys have found all of the layer one models described
in Sects. 4.2 and 4.3 but nothing new. This is surprising in that the number of input
sets grows exponentially with the layer of the model. Most surveys to date have
focused on increasing the layer rather than the order because of this expectation.'!
This curious observation prompts the following conjecture:

Conjecture (Completeness). All gauge models can be produced by a layer 1 basis vector set
with an appropriate choice of GSO coefficient matrix.

Presently the evidence to support this is “empirical,” however it is the expectation
of the author that a proof exists and will be found in the near future. The remainder
of this section discusses one possible explanation for this result. For the sake of the
author’s imminent carpal tunnel, we will use the shorthand Ny x N, x ... X N; to
represent the layer [ model with order N, ... Nj, e.g. the layer 3 model with orders
2,2, and 5 can be represented as 2 x 2 x 5 throughout the remainder of this chapter.

10By “higher layer” we mean [ > 1.

1 Another reason for this preference toward increasing layer is that order 2 basis sets have several
computational advantages, so only adding order 2 basis vectors is a simpler process than increasing
the order.
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4.4.1 Coprime Orders

Recall that in Sect. 3.3 partition function modular invariance was discussed. One
requirement of modular invariance is that the sectors of the theory form an abelian
group, &, which can thus be decomposed into a direct sum of additive cyclic groups

E=TZn®...0 7Ly, (3.7)

Moving from the generic models discussed in Chap. 3 to gauge models, the cyclic
decomposition of E becomes

E=Z DL, BN D ... D Ly, “4.4)

where the first two Z, factors are generated by the all-periodic and SUSY sectors,
1 and S, while the remaining factors are generated by the additional bosonic
generators o,. . .,0f.

Suppose for simplicity that we have a layer two model such that

E=Z,®7Zr, ® ZNl (&) ZNz- 4.5)
We know that if N; and N, are coprime, i.e. GCD(Ny, N;) = 1, then
Zn, ® Zn, = Zn,n,. (4.6)

This implies that we can replace any pair of basis vectors that have coprime orders
with a single basis vector with an order equal to the product of the orders and still
generate precisely the same model. This redundancy was, to the author’s knowledge,
first noted in [49], and poses a rather advantageous simplification: rather than
building all order 2 x 3 we prefer to build all order 6 models instead. This is a
vast improvement over building everything. The table below shows a few equivalent
layer one and layer two runs and the number of models built in each. Note that in
all cases precisely the same models were generated. The only difference between
the layer one and layer two surveys was the volume and distribution of models
(Table 4.8).

It is simple to see why the equivalence occurs. Consider a layer two model with
bosonic basis vectors o and «;. These sectors generate E, but the sector a; + o,
also generates & if Ny and N, are coprime. As a concrete example the following
basis vector sets produce the same models

(011111 07 0'8)

(0011002 2 )7 o) = HOITT=5 =5 GTO%))
3313

namely SO ® Eg and (SU)* ® SO»4 ® E7, with and without SUSY, respectively.
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Table 4.8 Redundancy of layer 2 models—The total number of SUSY and non-
SUSY models at each layer and order is tabulated

=2 [=1

N # of SUSY #of non-SUSY |N |#of SUSY |# of non-SUSY
2X3 3697 3697 6 181 181

2X5 342,699 342,699 10 3983 3983

2x7 12,032,612 12,032,612 14 | 55,422 55,422

3x4 | 1,018,921 1,026,378 12 | 15,262 15,262

3x5 | 8,377,415 0 15 | 104,391 0

For each row, the unique models generated in the / = 2 survey are precisely the
same as those generated in the [ = 1 survey. We see the significant redundancy
of [ = 2 with [ = 1, e.g. building the 7394 order 2 X 3 models is equivalent to
building the 362 order 6 models. All models were builtin D = 4

Table 4.9 Models generated

Gauge Group N
by B—Two groups, namely
SU1» ® SO19 ® Eg and SU1» ® SOy ® Es 4 and 0
SUjs ® S04, have N = 4 SU16 ® SO14 4and 0
and N/ = 0 realizations from SU1, ® (5010)> ® U, 0

B while the remaining four
groups are produced with

N=0

SU»)? @ SU14 ® SO, ® U,
(SU»)? ® SUs ® SUyp ® SOy ® U,
SU4 ® SU1» ® SO14 ® Uy

AN~ | W[IN| =] FHF

o|lo|o

4.4.2 Generating Sectors

Based on the preceding discussion we can ask whether every redundant, higher layer
model is equivalent to a model that is generated by one of its sectors. This is not the
case, though it is remarkably common. Consider the basis vector set

A= (0%1]/111100000'")

S L(0™][0001 53550
This set produces the gauge groups SOg ® SO36 and SO16 ® SO with N' = 0,
and the groups SO44 and SOy ® Eg with both A/ = 0 and N' = 4. In this case,
each gauge group can be built from a basis set consisting of one sector from E 4, the
sectors generated by A.

A counterexample, however, is the basis set

(0111000110 0%)
= 10
(0®]oo11114170%)

which generates the models listed in Table 4.9. However, in this case one model,
(SU»)? ® SUs @ SU1p ® SO1p ® U; with A/ = 0, cannot be realized in the manner
previously described. All others are produced by one of the individual sectors.
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A survey to ascertain the typicality of this redundancy is presently underway and
results are expected to be submitted for publication within the year.

4.5 Generalized Gauge Models

We finish off this chapter with one possible generalization of gauge models that is
presently of interest. Consider the following gauge basis set

(1111311219
A=1(1(100)3]00'20%)

(00003 1120%)

This is easily verified to be modularly invariant and the basis vectors are linearly
independent. Provided an admissible choice of k, it will produce either SO,y ® SO»4
with A/ = 4 or SUp» ® SO13 ® U; ® Uy with N' = 0. One method of modifying
this basis while ensuring modular invariance is to “move” the periodic right-mover
to the left. For example,

(111 @A1D2[ 12110
A'=13(1(100)(100)>]]020')
(0(010)(000) | £ 01)

Let us refer to the third basis vector as «. This basis is still modularly invariant and
linearly independent; however, now «’s non-trivial left-mover allows a right-mover
that is not modularly invariant on its own and some of the sectors generated by o
will be unable to generate massless states. In particular, only sectors constructed
from an even multiple of « will yield massless states. Because the o and S share no
simultaneously periodic fermions, we can still only generate N’ = 4 and ' = 0.
Ultimately, A" produces SUj; ® SOy ® U; with both N' = 4 and N = 0.

Fortuitously, this particular example provides a prototype of the situation in
which we are interested: models that cannot be generated by gauge models as
presently defined. Adding left-movers that share no periodic modes with S still
results in models of the form in which we are interested, models dominated by
gauge content.

Unfortunately, the Gauge Framework is not capable of constructing such gen-
eralized models in its present incarnation. Two options for further work on these
models exist: either extend the Gauge Framework to build these models as well or
use the FF Framework [50]. It would likely be the case that extending the Gauge
Framework would be both easier and result in more efficient surveys. In its present
form the FF Framework is neither optimized for the construction of gauge models
nor does it have the capacity for parallelism.
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It is the hope of the author that future work can be done to extend the gauge
surveys discussed herein to include the generalized gauge models. One question in
particular is whether the higher layer redundancy will persist upon expanding our
definition.

4.6 Summary

This section has covered the author’s work on systematic investigations of the string
gauge landscape. Gauge models were defined and described in Sect. 4.1, at which
point we discussed several redundancies that plague the surveys as well as what we
mean by “uniqueness.” Sections 4.2 and 4.3 outline the results of several systematic
surveys of layer one gauge models from D = 4 up to D = 10. We then reviewed the
significant redundancy of the multi-layer gauge models and conjectured that they
are all redundant with some layer one model (Sect. 4.4). Finally, we described one
possible approach to extending the gauge landscape to include models that may not
have such redundancies.

This concludes our discussion of large scale systematic surveys. This remainder
of this work will overview a new approach to looking for models in the landscape
with specific properties without building everything along the way.
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Chapter 5
Landscape Surveys Through Metaheuristic
Algorithms

Abstract The use of metaheuristic algorithms is proposed as a general method
for searching the string landscape for string models with user-specified physical
properties. One such algorithm, simulated annealing, is discussed at length and
employed to carry out such surveys. Multiple energy functions are considered and it
is shown that the particular energy function must be chosen wisely in order to drive
the algorithms toward models with desirable properties. It is shown that a simple
random sampling outperforms both simulated annealing and random search, likely
due to the landscapes highly irregular structure. The chapter concludes with a brief
discussion of the application of evolutionary, particularly genetic, algorithms to such
surveys.

Keywords Metaheuristic simulated annealing genetic algorithms targeted surveys

5.1 Introduction

This final chapter is intended to describe a novel approach to landscape surveys
that focuses on finding models with particular properties. Something of a holy
grail of string model building is the ability to pick out vacua from the landscape
that exhibit specified properties, e.g. gauge group, matter representations, number
of supersymmetries, cosmological constant, etc. At present we are forced to build
large swaths of the landscape and hope that a model with the desired properties is
represented. This is somewhat distasteful in that it is computationally intensive and
relatively brute-force. The process can be improved, as was discussed in Chap. 4,
by whittling down the input space into equivalence classes of redundant models,
but the current state of the art is still much too weak to bring larger scale surveys'
within reach. We still have redundancy that is far beyond tractable in general; a new
approach is necessary.

Given that we have at our disposal frameworks for constructing FFHS models,
namely the Gauge and FF Frameworks, we simply need a smarter way of generating
the input sets, {A, Kk}, so that models with particular properties are more likely

'Even an exhaustive survey of layer three is approaching the limits of the Gauge Framework.
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to appear. If we have a way of assigning some value to a given input, e.g. how
well it generates a model with the desired phenomenology, then we can express the
problem as an optimization problem:

Optimization—Let P be the input space and energy : P — R an “energy” function on
the inputs. Find an input {A, k} € P that optimizes energy.

Whether we are minimizing or maximizing energy will depend on the context.
Throughout this chapter we will liberally mix pseudocode with mathematical
language as is demonstrated above.

In this chapter we discuss a metaheuristic algorithm, an algorithm that uses
lower-level heuristics to find a near optimal solution to an optimization problem,
as an approach to targeted landscape searches. It is important to realize that while
the string landscape is exceedingly vast, it is finite. This means that there will be
models that the starry eyed theoretician may dream up that will not exist in the
landscape. For this reason we need algorithms that search for solutions that are close
to those requested; a truly optimal solution may not exist at all! This is the strength
of metaheuristic algorithms.

The remainder of this chapter will describe the simulated annealing algo-
rithm (Sect.5.2). We will describe the algorithmic process, discuss the heuristic
character of each, and finally some of the obstacles of applying these to the problem
domain at hand. One thing to note before proceeding is that this algorithm is by no
means the only metaheuristic that may be applied to these problems; it is simply
the one in which the author grew interested. We will conclude the chapter with
a short discussion of genetic algorithms that may be applicable to this problem
domain (Sect. 5.3).

5.2 Simulated Annealing

Many or most metaheuristic algorithms derive from natural processes. Simulated
annealing is analogous to metallurgical annealing in which a metal is heated to a
high temperature and allowed to slowly cool making the metal softer and more
ductile. As the system cools slowly, phase transformations can occur resulting in
lower energy structure. A similar process can be applied to an optimization problem
in which the energy of a potential solution is minimized as the temperature of the
“system” falls. This metaheuristic algorithm was independently developed in [1, 2]
and can be applied to a very broad class of optimization problems.

5.2.1 Description and Pseudocode

The first step in the process of defining an optimization problem is to choose a
function, energy, to optimize over the input set, P. In the case of simulated
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annealing this function is referred to as the energy function, hence the name, and the
objective is to minimize it. To do this we must heuristically define three constructs:
the cooling schedule, a neighbor function, and a transition function.

The cooling schedule, temp : [0,1] — R*, controls the temperature of the
system. This can be thought of as a function that specifies the temperature based on
how long the system has been running. Throughout this discussion we will represent
the “time” as ¢ € [0, 1] and the temperature as 7 = temp(?). Since we are interested
in cooling, we require that temp be non-increasing with temp(0) = Ty, and
temp(l) = 0. Tmax is a user-specified maximum value for the temperature and
should typically be large in comparison with the scale of the energy. The choice
of cooling schedule is largely problem specific and is highly complex. An effective
cooling schedule must be slow enough for the system to come to equilibrium, and
the time that it takes for the system to come to equilibrium depends on both the
energy function and the temperature.

The next object of interest is the neighbor function, neighbor : P — P
which, given the current solution, selects a neighboring solution, i.e. new trial
solutions. Your choice of neighbor can be either deterministic or probabilistic and
is entirely problem-specific. A standard heuristic for choosing a neighbor function
is to make small changes whenever possible. By “small” we mean that for the
current solution s and the neighbor s = neighbor(s), the difference in energies
lenergy(s) — energy(s’)| << Tmax-

Finally we address the transition probability P(e, ¢/, T) which is a function of the
energies of the current and neighboring solutions, ¢ and ¢/, and the temperature of
the system 7. The only strict requirements on P are that P(e, ¢/, T) > O when ¢’ > e
and T > 0, and that it should tend to zero with 7. The first of these requirements
ensures that the system does not get stuck in a local minimum and the latter ensures
that we make smaller transitions as time progresses. Most implementations use the
standard transition function

1, ife <e
. (5.1)

Ple.e,T) = .
exp( 7 ), otherwise,

first chosen in [1].

We are now in a position to provide a Julia® implementation of the simulated
annealing algorithm (Fig. 5.1).

The process is pretty straightforward. First we generate an initial solution. If time
remains, we generate a neighbor and probabilistically transition to it based on the
temperature and energies of the new and initial solutions. We then step time forward
and continue generating new potential solutions until time runs out.

2Julia is a high-level, high-performance dynamic programming language for technical comput-
ing, with syntax that is familiar to users of other technical computing environments, http://julialang.
org.
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function anneal(energy, neighbor, temp, P, randsol, numsteps)
time, timestep = 0, 1/numsteps
s = randsol()
es = energy(s)
while time < 1
t = neigh(s)
et = energy(t)
if P(es,et,temp(time)) > rand()

s =t
es = et
end
time = time + timestep
end
return s
end

Fig. 5.1 Simulated annealing algorithm—Written in Julia, it traverses the input space in search
of a global minimum energy solution

There is absolutely no guarantee that this process will converge on an optimal
solution; however, if the heuristic components temp, neighbor, and P are well
selected, and a solution actually exists, the algorithm will often converge.

One variation of this algorithm is to keep track of the best solution presently
found. From time to time doing so would be beneficial, but typically the system
arrives at the optimal solution last. Because of this and the added computational
step, we don’t worry about keeping the predecessors of the current solution.

5.2.2 Simulated Annealing as Applied to Gauge Models

We now turn our attention back to our problem: finding models in the landscape with
specified properties. As shamefully little is known about the landscape, the problem
domain is relatively amorphous. This makes explicit algorithms extraordinarily
difficult to devise; however, if we can reexpress our problem in terms of some
optimization, simulated annealing may lend itself nicely to finding a solution, i.e. a
vacuum with the desired properties.

Since gauge models are so simple, we will try to develop such an approach for
these models. Gauge models have only two distinguishing characteristics: the gauge
group and number of spacetime supersymmetries. As a simplifying assumption for
this treatment, let us only deal with maximally supersymmetric models, A" = Npax,
with only one bosonic layer. Recalling from Chap. 4, layer one gauge models admit
at most two distinct GSO projection coefficient matrices; the two choices select
between NV = 0 and N = Npu. In this way we can neglect k as well and always
choose so it to force N' = My, ensuring modular invariance. Additionally, let us
restrict our discussion herein to models in four dimensions. This serves no purpose
other than to make our subsequent discussion simpler and ensure that Np.x = 4.
We now formally state our problem.
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function rand(x::Type{BasisVector}, dim)
# randomly generate a BasisVector of length dim

end

function neighbor(s)
t = rand(BasisVector, 22)
while !'modinv(s,t)
t = rand(BasisVector, 22)
end
s+t
end

Fig. 5.2 Example of neighbor—Randomly generate a basis vector of length 22 and repeat until
it is modularly invariant with the original. Return the sum

function mktemp (tmax,exponent)
@assert (exponent > 0) # temp must decrease with time
t -> tmax*(l-t~exponent) # return the temp function
end

lineartemp(t) = mktemp(1000, 1)  # temp(t) = 1000 * (1 - t)
quadtemp(t) = mktemp(1000, 2) # temp(t) = 1000 * (1 - t~2)
roottemp(t) = mktemp(1000, 0.5) # temp(t) = 1000 * (1 - t~0.5)

Fig. 5.3 Cooling schedules—We define a closure mktemp for creating some basic temp functions
and create linear, quadratic, and square-root cooling schedules, for example, each with a maximum
temperature of 1000

Simulated Annealing—Develop a simulated annealing algorithm, i.e. choose an energy
function, energy, a neighbor function, neighbor, and cooling schedule, temp, that
will survey the D = 4 gauge landscape in search of N' = 4 models with a specified target
gauge group, G. Assume the standard acceptance probability, (5.1).

We now move on to a choice of neighbor function, neighbor (Fig. 5.2). The
chief difficulty in defining neighbor arises from modular invariance. How does
one make a small change to a basis vector without mucking up modular invariance?
This is a question to which the author has no wholly satisfying answer. However,
for the purposes herein, we do have an example algorithm.

We first note that if a layer two basis set {«, 8} is modular invariant then
each of its sectors is modular invariant on its own; hence, « + B is modular
invariant. So, as long as we can randomly generate basis vectors that are modular
invariant as pairs, then we can randomly generate neighbors. The definition of
rand (x: : Type{BasisVector}, dim), while simple, is a bit technical and
unenlightening, thus we eschew a description here. Of course this algorithm is by
no means efficient or elegant, but it works as a starting point.

Next we define our cooling schedule, temp. We will actually define several for
testing purposes later. Our choices of cooling schedule are somewhat unsophisti-
cated. It will turn out that because of our trouble defining energy, the nature of
temp is insignificant (Fig. 5.3).



72 5 Landscape Surveys Through Metaheuristic Algorithms

We turn now to the energy function, energy, which is the most difficult.
The functions energy and neighbor are intimately connected. In order for the
algorithm to effectively evolve a solution toward optimal, we need neighbor to
favor states of lower energy; that is, the probability of a neighbor to be generated
should be higher for neighbors that have a lower energy than the present solution.
Our choice of neighbor is not particularly good at this because the requirements
of modular invariance. The energy function is actually the greater trouble. What we
find in defining energy is that it tends to favor features of the target gauge group
rather than the precise group. The implications of this will be seen in Sect.5.2.4.
Here we define two possible energy functions, neither of which will prove to be
sufficient for finding particular gauge groups.

The first trial energy function is based on the “entropy” of a gauge group.
Effectively, we are interested in the number of gauge groups with both the same
number of group factors and non-abelian rank. To this end, we simply count the
number of such groups, referring to each as a microstate, and take the natural
logarithm in line with Boltzmann’s formula

S =logQ. 5.2)

We then define the energy of a solution as the absolute difference between its
entropy and the entropy of the target solution. An implementation is provided
in Fig. 5.4.

The first thing to note about this implementation is that it miscounts the number
of microstates of a given group. Consider the two groups

SU, @ SUs @ SOg @ SO and SU, ® SU5 ® SO19 ® SO»4. (5.3)

These would each have the same entropy since they have the same number of
microstates as defined. This, of course, could be improved by considering the
entropy of each of the classes of groups; e.g. the A-class and D-class entropies
would be (1.099,2.079) and (0.069,2.079), respectively. In this way a better
distinction between the classes is provided and it may improve the effectiveness
of the algorithm. We will not expound upon this course of action herein, but it is
presently under examination.

The second point is that one might expect this algorithm to drive the groups
toward a given non-abelian rank rather than toward a particular group. In particular,
note that the number of microstates is determined by the number of ways the non-
abelian rank can be partitioned into a particular number of factors. In this way the
entropy increases with the non-abelian rank and number of group factors. This will
drive the groups toward a particular set of rank distributions rather than toward a
particular group.

Our second energy algorithm is actually just the absolute difference in the sample
variance of the non-abelian rank of the solution with that of the target (Fig. 5.5). As
one might expect this is actually going to drive the ranks toward homogeneity: all
group factors with the same rank! One might be able to incorporate the mean rank of
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# Number of group factors with each rank
states(r::Int) = (r <4) 272 : (r<6) 22 : (r<9 ?3:2;

# Number of states based on the number of group factors per rank.
states(prt::Array{Int,1}) = mapreduce(states, *, prt)

# partitions is a built in Julia function
# partition(n,m) = ( partitionings of n into m partitions )
# Number of microstate = sum of numstates per partitioning
function microstates(s)
mapreduce (states,+,partitions(narank(s),length(s)))
end

# The entropy of a Group
entropy(g: :Group) = log(microstates(g))

# The entropy of a BasisVector = entropy of its Group
entropy(s: :BasisVector) = entropy(buildgroup(s))

# Closure to return an energy function for target group t
mkentropic(t::Group) = s -> norm(entropy(s) - entropy(t))

# An example energy function for the group SOy
entropicenergy = mkentropic(parsegroup("D22"))

Fig. 5.4 Entropic energy function—Create a closure that takes the group in which the user is
interested and returns an energy function that takes the norm of the difference between the entropies
of the target and the newly generated solution

# var is Julia’s built in sample variance. It requires the sample
# size to be greater than one; it gives NaN if that is not the

# case. We ensure that it gives 0 in that situation.

variance(rs: :Array{Int,N}) = (length(rs) <= 1) 7 0 : var(rs)

variance(g: :Group) = variance(map(naranks,g))
mkvarenergy(t::Group) = s -> norm(variance(s) - variance(t))
varenergy = mkvarenergy (parsegroup("D22"))

Fig. 5.5 Variance energy function—Create a closure that takes the group in which the user is
interested and returns an energy function that takes the norm of the difference between the variance
of the non-abelian ranks of the target and newly generated solution

the non-abelian factors of the group as well, providing a push in the right direction.
Unfortunately, tests are suggesting that this does not work particularly well. We
won’t discuss the details of that here.

5.2.3 Random Sampling and Random Search

We are now in a position to run our simulated annealing algorithm, but before we
do we have to have a method of determining how well the algorithm works. To that
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function randomsample(energy, numloops, randsol)
best = randsol()
bestenergy = energy(best)
if bestenergy ==
return best, bestenergy
end
for i in 1:numloops
s = randsol()
e = energy(s)
if e < bestenergy
best = s
bestenergy = e
end
if bestenergy ==
break
end
end
best, bestenergy
end

nn e

Fig. 5.6 Random sampling—Generate random solutions until you find an optimal one or you run
out of loops. Return the best

end, we choose two algorithms, random sampling and random search, to which we
will compare the simulated annealing algorithm. This subsection will discuss those
algorithms.

The random sampling algorithm is pretty straightforward. Generate a random
solution, determine how will that solutions solve the problem. If the energy of
the solution is zero, we terminate as it is a minimum; otherwise we generate a
new random solution and continue. We repeat this process at most some specified
number of times and return the best after the process has terminated. The Julia
implementation is below.

The random search algorithm is somewhere between random sampling and
simulated annealing. Like random sampling it always keeps a solution if it is at
least as good as the best yet found. However, it generates its random solutions as
neighbors of the present best solution, like simulated annealing. Random search is
almost simulated annealing with a step function for a transition probability

/
pe.e ) =) ¢7¢7=0 (5.4)
0 e—¢ <0.

The major distinction is in the simulated annealing algorithm the neighbor is
taken from the current solution rather than the global best solution. An implemen-
tation of random search follows.

5.2.4 Comparison of Algorithms

We can now determine how effective simulated annealing (SA) actually is. To do
this we will search specifically for groups that we know are in the landscape; after



5.2 Simulated Annealing 75

function randomsearch(energy, numloops, randsol, neighbor)
best = randsol()
bestenergy = energy(best)
if bestenergy ==
return best, bestenergy
end
for i in 1:numloops
s = neighbor(best)
e = energy(s)
if e < bestenergy
best = s
bestenergy = e
end
if bestenergy ==
break
end
end
best, bestenergy
end

Fig. 5.7 Random search—Generate random neighbors of the best solution found until you find an
optimal one or you run out of loops. Return the best

all, we have already built all of the gauge models! This will give us an idea of how
well the algorithm finds groups that are there. We will compare the results to those
for random sampling (RSa) and random search (RSe).

Each algorithm was run on the same target group with each completing a
maximum of 1000 loops. Additionally we ran each algorithm on both the entropic
and variance energy functions discussed in Figs. 5.4 and 5.5, respectively (Figs. 5.6
and 5.7).

We will focus on SOy, SO2 ® SO, (SU)? and E; @ E; ® Eg, as we know
they exist in the gauge landscape. These were chosen to illustrate the way in which
the energy function favors certain features. In each case the four algorithms are
run 100 times and the results collected. Three metrics are collected, the energy of
the generated solution, whether the energy was minimized and whether the gauge
group in question was actually generated. The results are presented in Tables 5.1 and
5.2 for the entropic and variance energies, respectively. In both tables, the energy
represents the average energy of the best solution produced by each algorithm in
1,000 trials. The % Minimized and % Successful columns depict the percentage of
best models produced with the minimal energy and the target group, respectively.

Considering the results of the entropic energy search, we see that simulated
annealing is actually less effective than random sampling in every way. This is likely
a consequence of two causes. First of all, the neighbor function inhibits exploration
of the landscape, evidenced by the fact that both SA and RSe are comparable; the
only thing they have in common is the use of neighbor. Second, we see that our
energy function is not particularly effective at representing an optimal solution. In
the case of SO44, whenever energy is minimized the target is produced. However,
in the case of SO,y ® SO»4 this is only true roughly 50 of the time and is never the
case for the other two groups. We can conclude that, in combination, neighbor
and energy are incompatible.
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Table 5.1 Comparison of algorithms (Entropic energy)—Results for searches
for four gauge groups utilizing three search algorithms are presented

Target Algorithm | Energy % Minimized | % Successful
SO44 SA 3.774 £ 1.566 8 8
RSa 2.162£2.133 | 29 29
RSe 3.79 £ 1.666 11 11
802 ® §SO54 | SA 0.11 £ 0.363 81 15
RSa 0.0 £ 0.0 100 42
RSe 0.196 +£0.492 | 77 13
(SU»)*® SA 7.501 £ 1.921 2 2
RSa 5.771 £2.174 0 0
RSe 7.768 £ 1.431 0 0
E; ® E; ® Eg |SA 0.12 £ 0.591 96 0
RSa 0.0 £ 0.0 100 0
RSe 0.27 £ 0.863 91 0

The algorithms, simulated annealing, random sampling, and random search, are
denoted by SA, RSa, and RSe, respectively. Note that RSa outperformed both SA
and RSe for group and metric

Table 5.2 Comparison of algorithms (Variance energy)—Results for searches
for four gauge groups utilizing three search algorithms are presented

Target Algorithm | Energy % Minimized | % Successful
Nom SA 0.023 £0.085 | 93 6
RSa 0.0£0.0 100 1
RSe 0.053 £0.287 | 94 3
SOy ® SO»4 | SA 0.065 £0.075 | 56 36
RSa 0.0£0.0 100 98
RSe 0.08 £ 0.073 45 35
(SU»)?*? SA 0.017 £0.073 | 95 0
RSa 0.0£0.0 100 0
RSe 0.03 £ 0.096 91 0
E;® E; ® Eg | SA 0.037 £0.105 | 89 0
RSa 0.0£0.0 100 0
RSe 0.077 £0.254 | 85 0

The algorithms, simulated annealing, random sampling, and random search, are
denoted by SA, RSa, and RSe, respectively. Note that RSa outperformed both SA
and RSe for group and metric

The results of the variance energy searches are fairly straightforward: the
variance energy is not effective. For SO,y ® SO,4 the probability that the optimal
solution has been found given that the energy has been minimized is quite high. This
is not the case for the other three groups. In fact, for those three groups the chance
that a minimal energy solution will be found is 85 or higher, but for SO,y ® SO»4
the probability is on the order of 50. In all cases, the SA algorithm is outperformed
by RSa.
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These results give insight into the design of optimization algorithms in this
domain. In particular, the choice of energy function is coupled to the gauge group.
For example, if you are searching for SO,y ® SO,4, the variance energy is a decent
option. The difficulty with this is that one cannot know how to design the energy
function based solely on the group itself. We are left to conclude that this approach
is largely ineffectual unless better neighbor and energy functions are designed.

We do not need to consider the results of searches for models that we know
are absent from the landscape because the searches for models that we know are
present fail. For this reason, and brevity, we do not consider the results here. For
more information, see subsequent publications.

5.3 Genetic Algorithms

Genetic algorithms are some of the more interesting metaheuristic algorithms.
A genetic algorithm (GA) is an algorithm in which the solutions are encoded in
some nice manner, a population of random solutions are generated, and a series of
genetic operators are applied to push the population toward high and higher fitness.
This requires the definition of a fitness function, much like the energy function of
simulated annealing.

GAs are modeled after the evolutionary process, so one might expect genetic
operators representing mutation, selection and crossover. Mutation is a process
that randomly selects an individual and modifies it slightly. The probability of this
occurring is typically chosen to be very small, otherwise the fitness of the population
fluctuates rapidly. Selection is a process of selecting the most fit individuals
of the population for crossover, and crossover is the act of mixing the genetic
representation of the solutions. Selection rates, the percentage of the population that
is select during each cycle, vary based on the form of the crossover. There are many
types of crossover, but it will not be of interest to go into them.

Much as in the case of simulated annealing, modular invariance makes devising
a genetic algorithm for landscape surveys difficult. While in SA modular invariance
only appears in the random generation of neighbors, it interferes in three places:
mutation, crossover, and population generation. Population generation is no more
difficult than that dealt with in SA. Mutation and crossover are not so simple. How
does one randomly mutate a basis vector without breaking modular invariance?
What’s more, how might one mix two basis vectors together in crossover to produce
a single modular invariant basis vector?

The author has no answer to these questions as of this writing, but research into
possibilities is underway.

5.4 Summary

We have found that simulated annealing is not likely to prove a viable landscape
search technique in the immediate future. Obstacles of this approach include the
definition of an effective energy function, energy, and the selection of a neighbor
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function, neighbor, that can produce nearby basis vectors without discarding
modular invariance. In fact, the proposed functions, energy and neighbor,
actually inhibit the computation of a optimal solution.

Genetic algorithms are more severely afflicted as the choice of the mutation
and crossover genetic operators are likely to fail to produce modularly invariant
solutions.

The author’s hope is that this line of inquiry will be further explored in
subsequent publications.
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Appendix A
The Gauge Framework

A.1 Philosophy and Influences

When the Gauge Framework was first written it was entirely object-oriented. This
was the style that I, the author, first learned and what was preferred by the group
at the time. As development progressed I grew more disenchanted by the object-
oriented paradigm. In particular, as the second version was being written I noticed
that by making some of the data members public and removing the associated
accessors we gained a roughly 40 % speed improvement. That amounted to approx-
imately 1000 models/s as opposed to 700 models/s. This, together with my learning
Haskell drove me to use more functional and procedural techniques when it was
appropriate. While all programming paradigms are technically equivalent,' they are
not all equal. Object-oriented design is very good at representing data and data
structures. We have used these features extensively in creating classes found in
the include/Datatypes directory. However, processes and transformations on
that data are often better represented as a functional and thus are more naturally
represented by a procedural or functional paradigm. These also appear from time to
time throughout the project. All of this said, it is important to realize that the project
is still evolving, and there are several places where a class could be replaced by a
collection of functions or even the other way around.

The most important detail for this project is that it is correct. We need to be sure
that the computed statistics are true. Another aspect of this is reliability; we need
to be able to start a program running and return two weeks later to find that it is
still running.? They are both facets of good design. To facilitate the vetting process
I’ve implemented the test-driven design principles: write a test, write the code until

IThere is no program that can be written procedurally that cannot be written in an object-oriented
fashion, and vice versa.

20r has terminated successfully, of course.

© Springer International Publishing Switzerland 2016 79
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the test passes, and repeat. This has a limit; some aspects of model building are
long-running. We cannot reasonably devise tests for the systematic surveys on the
whole, but we can write tests for the smaller parts. This is where functional and
procedural programming shine.

After reliability is speed. This project needs to be as fast as it reasonably can be.
To make this work, we’ve used MPI for parallelism and implemented many of the
performance critical algorithms in low-level C. This seems to have done the trick as
the Gauge Framework can build anywhere from 1000 to 120,000 models per second
on Baylor’s 128-node beowulf cluster.

Finally we want the Gauge Framework to be used. What is the good in
writing software that no one uses? To that end I have tried to make everything as
user friendly as possible while still allowing a developer low-level access to the
framework. You be the judge as to whether I've succeeded here.

A.2 Structure

We now discuss the structure of the Gauge Framework. There are three aspects to
the structure. First is the obvious directory and file structure. Where do the various
files belong and can you tell the purpose of a file based on its location? Next is the
object structure. How does inheritance work for the framework; how interconnected
are the components? Finally there is the aspect that is most important to the user,
the survey structure. How are surveys structured and run?

A.2.1 Directory and File Structure

The Gauge Framework has, by default, four directories in its root: cmd, tests,
include, and src. Additionally, there are two relevant files Doxyfile and
Makefile. We will use this subsection to discuss each of these and their
substructures.

We will start with the cmd directory. This directory contains all of the main
implementation files, i.e. files with main methods that can be compiled into
executable programs. It has any number of subdirectories, each of which contains
at least one file: main. cpp. The name of the subdirectory determines the name of
the executable upon building. For example, the file cmd/layer-one/main. cpp
would compile to a binary file bin/layer-one. Executable binaries are built and
placed in bin which is found in the project root directory.

Next consider tests. Within tests one finds three subdirectories, gtest,
include, and src. The gtest subdirectory contains all of the source for a
version of Google’s testing framework, Google Test. Details regarding Google Test
can be found at http://code.google.com/p/googletest/. This framework is used to
provide testing facilities to the Gauge Framework. The other directories include
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and src contain the actual tests for the framework. When a file of the form
<Name>Test . cpp is created in the tests/src directory, it can be compiled
into an executable. This executable will also be found in tests/src. Header files
for the tests can be placed in tests/include.

The directories include and src go hand in hand; include is for API head-
ers and src is for implementations. Within include one finds four directories.
The first is Datatypes. This subdirectory contains the declarations of the various
datatypes of the framework, e.g. Gauge: : Vector, Gauge::BasisVector,
Gauge: :GSOMatrix, Gauge::Inputs, etc. The next subdirectory of inter-
est is the Interfaces directory. Most objects in the framework have the
capacity to be printed and serialized. Rather than reimplementing all of the features
necessary for each for every class, we abstract the details into interfaces. These
interfaces are foundin include/Interfaces;there is no analogous directory
in src because interfaces are abstract classes. Now, as models are constructed
we must perform various processing activities on them. Since there is no way for
the developers to plan for every such processing pattern, the Gauge Framework
has a processor system. The idea is that the end user can create a processor and
add it to a chain of processors through which models can be passed as they are
built. The public APIs for these processors are found in include/Processor
and the implementation in src/Processor. Finally, the Uti1ity subdirectory
contains various utilities used through the framework. Presently we only have a
single collection of utility functions for creating filesystem directories. This may be
extended in the future.

As mentioned there are two files found in the project root, Doxyfile and
Makefile. The former is a configuration file for Doxygen,® a program that reads
commented source code and generates API documentation in HTML, KTEX, etc.
The Makefile is the recipe used by the build tool make to compile, link, and
archive the Gauge Framework library and its executables. When run, Doxygen
creates a single directory structure, rooted at share, filled will all of the generated
documentation. When the project is built, three directories are created: bin contains
binary executables, obj contains binary object files,* and 1ib contains a static
library, 1ibgauge . a, against which projects may be linked.

A.2.2 Object Structure

The object structure of the Gauge Framework is pretty simple. There is very little
inheritance in general; rather than going through and listing all of the different lines
of inheritance, we will only discuss a few of the major classes and examples.

3http://www.stack.nl/~dimitri/doxygen/.

“For those unfamiliar with the C/C++ build process, object files are the result of compiling a source
file, but not linking it. This means it is not executable.
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namespace Gauge {
struct Vector : public Printable, public Serializable {
int *numerators; // The numerators of the vector
int denominator; // The common denominator
size_t size; // The size of the vector (26 - D)

(other data members)

constructors)
operators)

// Printable Interface
virtual void PrintTo(std::ostream *out) const;

// Serializable Interface
virtual void SerializeWith(Serializer *serializer) const;
virtual void DeserializeWith(Serializer *serializer);

};

(template functions on vectors, e.g. dot products, summation, etc.)

Fig. A.1 Gauge: :Vector—A simplified implementation for the Vector struct. Note that the
basic data members, numerators, denominator, and size are defining characteristics
of all phase vectors. For this reason Gauge::BasisVector, Gauge::Sector and
Gauge: : State each derive from Gauge: :Vector

Let us start with the Vector-family. The Vector datatype, declared in
include/Datatypes/Vector.h, represents the structure of each of the
three main types of phase vectors in the project: BasisVector, Sector, and
State. These are each an array of rational number, so they are all represented
by an array of numerators and a common denominator. A distilled version of the
Gauge: : Vector struct is provided in Fig. A.1.

The Gauge: :Vector class typifies a typical inheritance of the interfaces,
Gauge: :Printable and Gauge: : Serializable. These classes are inher-
ited by all of the Gauge Framework’s datatypes. The former facilitates printing to
screen and the latter provides a mechanism for efficiently converting an object to a
binary encoded string.’ Gauge: : Serializable is also inherited by several of
the working classes, e.g. Gauge: :ModelFactory.

Our final example of inheritance is of the Processor class. To ensure that
end-user processors have the correct machinery to run, at least in principle,
and to ensure that we can them all in a single list, all processors inherit from
Gauge: : Processor. The difficulty with the processor class is the Merge
method. As we construct models in parallel, discussed in Sect. A.2.3, each model
builder will have its own set of processors. Once the building is completed, we
must merge those processors into one for consolidated handling, hence the Merge
method.

3This makes such luxuries as check-pointing and message passing possible.
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Fig. A.2 Serial
topology—Each gray
rectangle represents an
operating system process.
Within each we find at least
one algorithmic object, in
rounded rectangles, and lines
of data flow marked by the
type of the data. For example,
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A.2.3 Survey Structure

Gauge surveys come in two varieties serial and parallel. In both cases a
Gauge: : GeometryFactory object is constructed and used to facilitate the
generation of Gauge: :Geometrys, {A,k}. The geometries are then passed
on to a Gauge::ModelFactory object which constructs the associated
Gauge: :Model. After creating the model it is pushed through a series of
Gauge: : Processors. After all processing has finished the program terminates.
The distinction between serial and parallel amounts to the topology of the processes
involved. In fact, the serial surveys have only one process.

Serial surveys follow the above description. Throughout its life cycle, only a
single computing process exists. Control is passed from object to object as the
algorithm progresses. Figure A.2 depicts the serial process.

On the other hand, a parallel survey will have many concurrently running
algorithms (Fig. A.3). Each of which typically has at least one algorithmic object
and the processes themselves exchange data via the standard Message Passing
Interface (MPI). Because the Gauge: :GeometryFactory can construct the
Gauge: : Geometry objects much more quickly, approximately 10° times faster,
we need only run one and distribute the outputs to each of the slave processes.
The slaves then construct the model and process it. Once the GeometryFactory
has terminated, the root process requests that each of the slaves send their
Gauge: : Processors to back to the root. Once received, the processors are
merged together and finalized. Output is then issued from the root process, and the
job terminates.
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Fig. A.3 Parallel topology—Each gray rectangle represents an operating system process. Within
each we find at least one algorithmic objects, in rounded rectangles, and lines of data flow marked
by the type of the data

Now that we know the basic structure of the framework, let us give a brief
presentation of how to run a survey.

A.3 Usage

The Gauge Framework has abstracted much away from the user. In order to run a
standard survey, say “construct all models from orders 2 x 2 to 5 x 5,” we need only
make a function call! It does not matter whether one is running in series or parallel,
the process is basically the same; the main difference is the function that is executed.
Below are two example implementations, Figs. A.4 and A.5, which run a survey in
serial and parallel, respectively.
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#include <Processor/ByGroup.h>
#include <Survey.h>
#include <Utility.h>

using namespace std;

int main(int argc, char **argv) {
const int D = 4, L = 2;
const int lower[] = {2,2}, upper[] = {5,5};
auto susytype = Gauge::Input: :kSUSY;

const string root = "results/L=" + to_string(L) + "/";

const string output = root + "D=" + to_string(D) + "/";
const string log_file = root + "D=" + to_string(D) + ".log";
Utility::Dir::Create(root_dir);

Gauge: :Survey: :Serial(
// Processors
{ new Gauge: :Process: :ByGroup(output, false) },

// Geometry Factory
Gauge: :GeometryFactory: :SystematicFactory(),

// Input Factory
new Gauge::InputFactory::Range(lower, upper, L, D, susytype),

// Log File
log_file
);

return O;

}

Fig. A4 Serial survey—An example demonstrating how to run a gauge survey in serial
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#include <Processor/ByGroup.h>
#include <Survey.h>
#include <Utility.h>

using namespace std;

int main(int argc, char **argv) {
const int D = 4, L = 2;
const int lower[] = {2,2}, upper[] = {5,5};
auto susytype = Gauge::Input::kSUSY;

const string root = "results/L=" + to_string(L) + "/";

const string output = root + "D=" + to_string(D) + "/";
const string log_file = root + "D=" + to_string(D) + ".log";
Utility::Dir::Create(root_dir);

Gauge: :Survey: :Parallel(
// Required for MPI
argc, argv,

// Processors
{ new Gauge: :Process: :ByGroup(output, false) I},

// Geometry Factory,
Gauge: : GeometryFactory: : SystematicFactory(),

// Input Factory
new Gauge: :InputFactory: :Range(lower, upper, L, D, susytype),

// Log File
log_file
);

return O;

Fig. A.5 Parallel survey—An example demonstrating how to run a gauge survey in parallel



Appendix B
Layer One Statistics

B.1 Layer One Statistics in Four Dimensions

See Tables B.1, B.2, and B.3.

B.2 Layer One Statistics in D Dimensions

Herein we present statistics for occurrence of specific group factors in various
combinations across the layer 1 landscape. As well as combinations of two group
factors, we look at combinations of specific compound factors in conjunction with
single and other compound factors. Following [ 1] we include such compound factors
as Eg ® Eg, Gps = SU4 ® SU, ® SU, (Pati-Salam), Grs = SU; ® SU, ® SU,
(Left-Right Symmetric), and Gy = SU; ® SU, ® U, (Standard Model). We also
include FSU5 = SUs ® Uj, though, because we are not considering matter content,
we can only say that the model has the 7 SUs gauge group; it may not actually be
FSUs.

The percentage of all unique Npyax and ¥ = 0 models in D = 10 through D = 4
with each combination of gauge groups is tabulated. As an example, 11.76 % of the
68 unique N = 4 models, Table B.3, have the combination SU; ® U, at least once.
Note that since the D = 4 results have already been presented, Tables B.1 and B.3.

B.2.1 Maximally Supersymmetric Models

See Tables B.4, B.5, B.6, B.7, B.§, and B.9.
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Table B.4 Statistics of
D=10,N =1

models—The percentage of
all unique A" = 1 models
with each combination of
gauge groups is tabulated

91
N=2 |SUy>10 |En
SUy>10 | O 0
Ey - 50.00
Total 50.00 50.00

Here each value is calculated
against the 2 V' = 1 models

Table B.5 Statistics of D = 9, N' = Npax models—The percentage of
all unique ' = A/ux models with each combination of gauge groups is

tabulated
N=9 |U SU, |SUs | SUyss |SO10 | SUns10 | En
U, 0 0 0 0 0 22.22 11.11
SU, - 11.11 0 11.11 0 0 0
SU, - - 0 0 0 0 11.11
SUyn>5 | — - - 0 0 0 11.11
N - - - - 0 11.11 0
SUn>10 | — - - - - 11.11 11.11
Ey _ _ _ _ _ _ 222
Total 33.33 | 11.11 |11.11 |22.22 11.11 |55.56 44.44

Here each value is calculated against the 9 N = AN, models, i.e. SU,®
SU, occurs in 0.98 % of these 9 models

Table B.6 Statistics of D = 8, N' = 1 models—The percentage
of all unique N' = Ax models with each combination of gauge
groups is tabulated

N=13 |U; |SU, |SUs |SUy>s5 |SOg |SUns10 |En

U, 0 0 0 7.69 |0 0 7.69
SU, - 23.08 |0 7.69 |0 23.08 15.38
SU, - - 0 7.69 |0 0 0

SUpy>5 - - - 769 |0 0 7.69
SOg - - - - 0 0 7.69
SUn>10 | — - - - - 23.08 15.38
Ey - - - - - - 15.38
Total 7.69 | 3846 |7.69 |30.77 |7.69 |53.85 38.46

Here each value is calculated against the 13 A/ = Np.x models, i.e.
38.46 % of these 13 models have at least one Ey factor
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Table B.7 Statistics of D = 7, N' = Nmax Models—The percentage of all unique N =
Nmax models with each combination of gauge groups is tabulated

N =16 U1 SU2 SU4 SUN>5 SOg S010 SUN>10 EN Es ® E6
U, 0 1250 | 0 18.75 |0 0 18.75 12.50 |6.25
SU, — 6.25 |0 1250 |0 0 6.25 12.50 |0
SU,4 — — 0 0 0 0 12.50 6.25 |0
SUn>s - - - 1250 625 | 6.25 | 6.25 6.25 |0
SOg - - - - 0 0 0 0 0
SO1o - - - - - 0 0 6.25 |0
SUy>10 |- — - - - — 18.75 12.50 |0
Eyn — — - - - — — 18.75 16.25
EsQEs |- - - - - |- - - 0
Total 37.50 |18.75 |18.75 |37.50 |6.25 |12.50 |50.00 37.50 |6.25

Here each value is calculated against the 16 NV = Np,x models, i.e. SU, ® U, appears in
12.50 % of these 16 models

Table B.8 Statistics of D = 6, N' = 2 models—The percentage of all unique N = 2
models with each combination of gauge groups is tabulated

N=18 U, SU, SUy | SUy>5 | SOg SO0 | SUy>10 | En E¢ @ E¢
U, 11.11 0 0 11.11 0 5.56 | 5.56 5.56 |5.56
SU, - 2222 |0 11.11 0 0 11.11 5.56 |0
SU, - - 0 5.56 0 0 0 5.56 |0
SUy>s5 - - - 16.67 0 11.11 5.56 5.56 |0
SOg - - - - 556 | 0O 11.11 5.56 |0
NN - - - - - 0 0 0 0
SUn>10 |- - - - - - 16.67 16.67 |0
Eyn - - - - - - - 16.67 |5.56
Ee® Eg |- - |- - - - - 0
Total 16.67 |22.22 |5.56 |38.89 |22.22 |11.11 |50.00 33.33 |5.56

Here each value is calculated against the 18 N/ = 2 models, i.e. SO3 ® SOg appears in
5.56 % of these 18 models

B.2.2 N = 0 Supersymmetric Models

See Tables B.10, B.11, B.12, B.13, B.14, and B.15.
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Table B.10 Statistics of
D=10,N =0
models—The percentage of
all unique A" = 0 models
with each combination of
gauge groups is tabulated

B Layer One Statistics

N = 6 U1 SUZ SUN>5 SOg SUN>10 EN
U, 0 0 16.67 0 0 0
SU, - 16.67 | 0 0 0 16.67
SUn>s5 | — - 0 0 0 0
SOg - - - 0 16.67 0
SO |- - - - 0 0
SUn>10 |- - - - 16.67 | 16.67
Ey - - - - - 16.67
Total 16.67 | 16.67 |16.67 |16.67 | 66.67 33.33

Here each value is calculated against the 6 A/ = 0 models, i.e.
SU, @ SU, appears in 16.67 % of these 6 models

Table B.11 Statistics of D = 9, N' = 0 models—The percentage of all unique N' = 0
models with each combination of gauge groups is tabulated

N=32 U |SU, SU, |SUy-s|SOs |SO1 |SUy-10 Ey | Ee® Eg|Gps
Uy 21.88 | 28.13 | 12.50 |40.63 |12.50 | 6.25/25.00 |15.633.13  |3.13
SU, — 1343812501563 | 0 | 0 1875 1563 3.13 (3.3
SU, - |- 0 |1250 | 0 3.13] 938 | 625/0 0
SUyss | — |- |- 1250 | 3.13| 625 3.13 | 3.130 3.13
504 - |- 1- - 625 6251250 | 3.13]0 0
SO |- |- |- |- - 0 | 625 | 313]0 0
SUys10 | =  |— |- |- - |- 1250 | 12.50 0 6.25
Ey - - - - - |- 1- 6.25/0 0
Es®Es — |- |- |- - |- - - 0 0
Gps - |- 1- - - |- - - |- 0
Total | 71.8840.63|21.88|40.63 |21.88 15.63|50.00 2500 3.13 |9.38

Here each value is calculated against the 32 A" = 0 models, i.e. SO,y ® SU, appears in
3.13 % of these 32 models
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Table B.12 Statistics of D = 8, N' = 0 models—The percentage of all unique N/ = 0 models
with each combination of gauge groups is tabulated

N =50 U1 SUZ SU4 SUN>5 SOS S010 SUN>10 EN Ee ® E6 Gps
U, 32.00 |24.00 |20.00 |44.00 0 8.00 | 2.00 8.00 |2.00 2.00
SU, - 46.00 | 6.00 [24.00 |16.00 |2.00 |32.00 16.00 |0 0
SU, - - 4.00 | 18.00 0 200 | O 4.00 |2.00 0
SUn>s - - - 22.00 0 8.00 2.00 6.00 |0 2.00
SOg - - - - 8.00 |0 18.00 6.00 |0 0
SO0 - - - - - 0 0 0 0 0
SUy>10 |- - — — — — 18.00 12.00 |0 0
Ey - - — — — — — 8.00 |0 0
Es®Es | — - - - - - - - 0 0
Gps - - - - - - - - - 0
Total 46.00 |64.00 |20.00 |44.00 |24.00 |8.00 |46.00 26.00 |2.00 2.00

Here each value is calculated against the 50 A/ = 0 models, i.e. SU; ® SU4 appears in 4.00 % of

these 50 models

Table B.13 Statistics of D = 7, N' = 0 models—The percentage of all unique A" = 0 models
with each combination of gauge groups is tabulated

N=285|U, |SU, |SU;|SUs |SUs|SUy=10/ SOs | SO0 | SON=10| Ex | Es ® Es| FSUS| Gps
U, 45.88 38.82 4.71/20.00 3.53/ 51.76 | 12.94 12.94 18.82 | 17.652.35 |3.53 |4.71
su, |- |36470 10590 [28.24 | 5.88 9411882 |14.12/0 0 |47
suy; |- - 1180 [235 3530 |0 |0 0 |o 235 |0
su, |- |- |- | 8240 |17.65 | 7.06 3.53 9.41 | 4710 0 1.18
SUs |- |- |- |- |235 2350 |0 |0 o |o 235 0
SUyss | — |= 1= |- |- [2588 | 5.88 941 7.06 | 7.060 235 471
sos |- |- - |- |- |- 471 0 | 941 | 471118 |0 o
SOw |- |- |- |- |- |- - 235 353 | 353118 |0 1.18
SOys10 | — |- |- = |- |- - |- 1176 10590 0 235
Ey - - |- [- |- |- - - ]- 5.88/0 0 (353
EsQE|- |- |- |- |- |- N - o 0o |o
FSus |- |- - |- |- |- N I - |- 235 |0
Gps - - - - - - - - - - - - 0
Total | 75.29 48.24 4.71/30.59 3.53/55.29 | 21.18 17.65 37.65 |24.71/2.35 |3.53 |8.24

Here each value is calculated against the 85 N = 0 models, i.e. SO;p ® SU, appears in 3.53 % of

these 85 models



B Layer One Statistics

96

S[opow ¢/, 359} JO 9, [ [ ul steadde $)§ @ €15 91 ‘S[epout ) = J\ £/ 93 IsureSe Paje[nod[ed SI on[eA yoed 910

| 8r'S YL'C| €0'9C 88°C¢| OL'C€l| €09C| SOCS| 8¥'G| C6'1C| S89| 1TSY| 068 [BI0L
LE'T - - - - - - - - - - - - R49)
0| wLC - - - - - - - - - - - ‘nNSL
0 0 0 - - - - - - - - - - A®°%"
0 0 LET| TT'8 - - - - - - - - - Ny
0 0 0| 9601 65°6 - - - - - - - —| O=Npg
0 0 LET| vLC 0 | ¥LC - - - - - - - os
0 0 0| 8¥'¢ 96°01 0 $8'9 - - - - - - 808
89| VLT 0| <89 8y'S | TT8 $89| 99YC - - - - —-|  sTNps
0| wLC 0 0 0 0 0| vL'C | ¥LC - - - - ns
Iy 0 0| ¥LC LET | 11Y Iy | I8LI 0| 9601 - - - 'ns
0 Iy 0 0 0 0 o II'v | IV 0 | ¥LC - - ns
8¥'S 0 0| 9601 LOST | vLC 656 991C 0| 656 0| OI'ly - wns
wy | 8r'S YL'T| 9601 689 | €eCl| CC8| ITSy| 8y'G| SS0C| S89| 6C¢C| ITSY 'n
9| NS4 A ®°%F Ng | O<Npg | Oos | Sos| TNas| *ns| *ns| tns| w«s 'n| €L=N

pare[nqges st sdnoi3 oFned
JO UOTIRUTIqUIOD [OBA [IIM S[opour () =\ anbrun [ Jo afejuadrad ay—sjapow 0 = N ‘9 = @ Jo sousuvis $1°q dqeL



97

B Layer One Statistics

S[OpOU 76T 98y} JO 9 €6 ut sxeadde 1) ® S @ €18 *9'1 ‘S[OpOW () = N 76T 9Y3 IsureSe paje[nofed st onfeA yoed o10H

€L Sy'y| 8LOL| SLSI ILT| SI'81 IL9C| CU'LT| SS°0T| LOSY9| SL'ST| SL'OV| LOST| 6LVS| L9'L8 [e10L
YL'C - - - - - - - - - - - - - - s
YL — — — — — — — — — — — — — — EMMQ
€01 | €0l - - - - - - - - - - - - - )
Y0 | ¥€0| vLT - - - - - - - - - - - - RiY)
vLc| SOT| IL'T 1$°9 - - - - - - - - - - - ‘NSL
0 0 0 0 0 - - - - - - - - - - A®%

0 0| 890 | ¥€0 veo| II'v - - - - - - - - - Ng

0 0| vLC 0 €0 | $8°9 S8'9 - - - - - - - - 0I=Npg

0 0] ILT 89°0 89°0| vL'C wre | ov'e - - - - - - - oos

0 0| LL'€ | 890 0| ¢re Q.S | ovT | 11Y - - - - - - 80§
6Ly | ILT| 068 | TY0L Y€0| TC'8 LTOI| 656 | 656 6L'6C - - - - - S<NAS
vLC| SOT| IL'T 1S9 0| ¥€0 0 | 890 | 890 2901 | 1S9 - - - - ‘ns
el S0T| 6I°L 1S9 0| Sy 6l'L | vI'S | €C°L €09 | 1S9 | ¥¥9l - - - ns
Sv'v| vLC| SOC | T8C 0| €01 0 | LET | €01 LTOT| C8S | 6LV | ST6 - - ns
Sv'v| €0'1| ST6 ¢8'9 89°0| 068 9¢€l | 88°'L | 656 669¢| S89 | S6'CC| €SL | 8L’V - Qs
€S°L| Sv'y| OL'E€l| SLSI IL'T| ¥0'v1 SI'8I| OL'E€L| OI'91 | 9¢€9| SLCI| 96°SC| LOST| 09°Ly | SI'89 'n
nSp | S¥lg | Sdn | NS | Y @ °F Ng | Ot<Npg | Olos | Sos| SNas| cas| 'ns| fns| w«s 'n| tet=N
pare[nqe)
st sdnoi3 a8nes jo uoneuIquIod Yors Yim s[ppowr () = J\ anbiun [ jo 98ejusorad oy —sjopow ( = N ‘G = ( fo sousyvis SI'd dqRL



98 B Layer One Statistics

Reference

1. D. Moore, J. Greenwald, T. Renner, M. Robinson, C. Buescher et al., Systematic investigations
of the free fermionic heterotic string gauge group statistics: layer 1 results. Mod. Phys. Lett.
A26, 24112426 (2011)



Curriculum Vitae

Douglas Moore, Ph.D.

5641 Southwestern Medical Avenue o Dallas, TX 75235 e 682.231.1879 e
douglas.moore@utsouthwestern.edu

Education

Ph.D., Physics, Baylor University, August 2009 — May 2014
Dissertation: The Landscape of Free Fermionic Gauge Models
Advisor: Gerald Cleaver, Ph.D.

B.S., Physics, Sam Houston State University, August 2006 — May 2009
Thesis: 7°/(Z, x Z,) Intersecting D-Brane Phenomenology
Advisor: Joel Walker, Ph.D.

Selected Positions Held

Postdoctoral Researcher, UT Southwestern Medical Center, 2014 — Present
Adjunct Faculty, McLennan Community College, 2012 - 2014

Teaching Assistant, Baylor University, 2009 — 2014

Laboratory Instructor, Sam Houston State University, 2006 — 2009

© Springer International Publishing Switzerland 2016 99
D.G. Moore, The Landscape of Free Fermionic Gauge Models, Springer Theses,
DOI 10.1007/978-3-319-24618-5



100 Curriculum Vitae
Research and Professional Experience

UT Southwestern Medical Center, Motion Management Group, 2014 — Present

* Developed a multi-platform, real-time multileaf collimator (MLC) motion man-
agement solution.

» Designed and developed algorithms for MLC aperture adaptation.

* Engineered an ensemble-based approach to real-time motion prediction.

* Collaborated with research groups at the University of Sydney, NSW, Australia.
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Framework.

* Oversaw summer research projects for the Research Experience for Undergrad-
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* Aided in the development of software, written in Julia to compute flat
directions of WCFFHS models.

» Applied metaheuristic algorithms to the investigation of the WCFFHS landscape.

» Investigated sources of redundancy of the string-derived models in the WCFFHS
formalism.

Sam Houston State University, String Model Building, 2008 — 2009

 Developed software for the systematic construction of T7°/(Z, x Z,) intersecting
D-brane models in Type-IIA.
* Analyzed the phenomenology of related models.
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Conference Participation

57% Annual Meeting and Exhibition of the AAPM, July 2015, Aneheim, CA
Fast, deterministic leaf-fitting with explicit underdose/overdose constraints for
real-time MLC tracking
Real-time error estimation for real-time motion prediction
Joint Meeting of the Texas Section of APS, April 2013, Tarleton State Univer-
sity
D-Dimensional Gauge Models
Functional Programming in Scientific Computing
Symposium on Particles, Strings and Cosmology, June 2012, Instituto de Fisica,
UNAM
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Joint Meeting of the Texas Section of APS, October 2011, Texas A&M,
Commerce

The Systematic Construction of FFHS Gauge Models
String Vacuum Project Fall Workshop, November 2010, The Ohio State
University

A Systematic, Statistical Search of Gauge Content in Free Fermionic Heterotic
String Models

Awards and Honors

Outstanding Dissertation Award, 2013-2014

The Landscape of Free Fermionic Gauge Models
Honorable Mention, Gravity Research Foundation Awards for Essays on
Gravitation, 2013

The Fate of Lorentz Frame in the Vicinity of Black Hole Singularity, arXiv:
1305:7221

Technical Skills and Experience

¢ Extensive programming experience in C and C++14 with OpenMPL

» Experience with development for high-performance compute clusters.

* Moderate proficiency in Java, Haskell and Julia.

» Extensive experience with Unix/Linux systems.

» Extensive familiarity with the TgX, IXIEX and ConTXt typesetting systems.
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