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Supervisor’s Foreword

At its 100th anniversary, Einstein’s theory of general relativity (GR) still encap-
sulates our best understanding of space, time, and gravitation. Early tests of the
framework included the perihelium precession of Mercury, the deflection of star-
light by the Sun, and Shapiro time delay. Although excellent agreement with theory
was obtained, these checks only probed the effect on the motion of test masses of
low-order general-relativistic corrections to the gravitational field. The situation
improved dramatically with the discovery of the Hulse-Taylor binary neutron star in
1974, which confirmed the existence of gravitational radiation at leading-order
(quadrupole) level. Subsequently, more relativistic binary systems were discovered,
allowing for impressive new tests of GR. Nevertheless, if one is interested in further
probing the dissipative dynamics of binaries, and especially the dynamics of
spacetime itself, what matters is the orbital compactness GM/(c2R) (with M the total
mass and R the separation), as well as the orbital velocity v=c. Even the recently
discovered neutron star-white dwarf system only has GM/(c2R) *2 × 10−6, and
v=c) *4 × 10−3.

By contrast, binaries consisting of neutron stars and/or black holes on the
verge of merger will have GM/(c2R) > 0.2 and v=c > 0.4, with copious gravitational
wave (GW) emission. The ability to observe the orbital motion of such systems
would give us access to the genuinely strong-field, relativistic regime of gravity.
Most importantly, we would like to probe the dynamical self-interaction of
spacetime itself, such as the scattering of gravitational waves off the spacetime
curvature generated by the binary as a whole. The only way to gain empirical access
to such phenomena is through the direct detection of gravitational waves.
A network of advanced interferometric gravitational wave detectors is currently
under construction, including the Advanced LIGO in the US, Advanced Virgo in
Italy, and KAGRA in Japan; GEO-HF in Germany is already active, and an
Advanced LIGO interferometer may be placed in India. Towards the end of the
decade, these observatories may find tens of GW signals per year from coalescing
compact binaries.
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There is a considerable body of literature on (families of) alternative theories of
gravity: models with an anomalous dispersion relation for the “graviton”,
scalar-tensor theories, parity-violating theories, models with higher curvature cor-
rections, and more. Using GW signals from coalescing binaries to look for evidence
for each of these separately might be impractical; moreover, if a GR violation is
present then it may well be of a kind that has not yet been envisaged. For that
reason, it is important to test GR in a model-independent way, by developing a
method that is capable of uncovering the effects of a very wide range of ways in
which GR might break down. Moreover, in order to be useful in the immediate
future, the method should be able to deal with the relative quiet coalescence signals
that we expect to see with the GW observatories currently under construction.
Ideally, it would also allow for combining information from multiple detections in
order to arrive at a statement about the validity of GR (or lack thereof) that is as
strong as possible.

Such a framework is introduced in this book. This Bayesian model selection
scheme satisfies the desiderata listed above, and has since been shown to be robust
against a number of nuisance effects of a fundamental, astrophysical, and instru-
mental nature, at least in the case of coalescing binary neutron stars; extending it to
GW events involving black holes is currently in progress. Thus, the method pre-
sented here is poised to become a standard tool for empirical study of the
strong-field dynamics of spacetime.

Another field that will greatly benefit from the direct detection of GW signals
from coalescing binaries is cosmology. This is because coalescence events are
“standard sirens”, similar to the electromagnetic (EM) “standard candles” such as
Type Ia supernovae. However, an important difference between EM and GW
cosmic distance markers is that the latter are self-calibrating: the luminosity dis-
tance to binary coalescences can be inferred from the GW signals alone, without
having to compare with any other kind of source, thus obviating the need for a
cosmic distance ladder and avoiding the systematic errors that may be associated
with it. Precision measurement of the Hubble constant will already be possible with
the upcoming advanced gravitational wave detectors. Meanwhile, a conceptual
design study has been performed for a third-generation observatory called Einstein
Telescope, which will be capable of seeing about three orders of magnitude more
coalescence events per year, out to high redshifts. As shown in this book, it will be
possible to use the Einstein Telescope to measure the densities of matter and dark
energy, as well as the dark energy equation of state and its possible time depen-
dence, with accuracies comparable to those of future EM surveys, but in a com-
pletely independent way.

The subject matter of this book is at the forefront of the nascent fields of
observational gravitational wave physics and cosmology. At the same time the
discussion is to a large degree self-contained, including an accessible introduction
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to the theory behind gravitational wave emission and waveform modelling, as well
as state-of-the-art data analysis methods. As such it will be an invaluable resource
for young researchers as we enter an exciting new era in the study of gravitation.

Amsterdam, The Netherlands Dr. Chris F.F. Van Den Broeck
April 2015
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Preface

Humans have been watching the sky for thousands of years. In early times, humans
tracked the motion of the Sun and the Moon to make calendars and to associate it
with earthly events such as tides and seasons. By tracking the motion of celestial
objects, the early notion of the orbit of the Sun, the Moon, and the planets started to
form. Isaac Newton (1642–1727) showed that all objects “pull” on each other
through gravitational force, and the strength of this force is determined by the
masses of the two objects.

In 1915, Albert Einstein (1879–1955) refined Newton’s law of universal grav-
itation by introducing the general theory of relativity or general relativity for short.
General relativity describes how mass distorts spacetime and, in turn, how space-
time dictates how masses flow through it. Moreover, general relativity predicts that
gravity is mediated by a new type of radiation: gravitational radiation.
Gravitational waves that compose gravitational radiation are ripples in the fabric of
spacetime, which periodically lengthen and shorten space, and speed up and slow
down time.

However, it was not until 1974 that the effects of gravitational radiation were
first measured, albeit indirectly, by Hulse and Taylor. The changes in the orbital
motion of two pulsars were remarkably consistent with the emission of gravitational
radiation. Despite this tremendous discovery, which was awarded the 1993 Nobel
Prize in physics, we have yet to directly detect minor distortions of spacetime
caused by passing gravitational waves.

Large-scale physics experiments such as the United States-based Laser
Interferometer Gravitational Wave Observatory (LIGO) and the Italy-based Virgo
aim to, for the first time in the history of mankind, detect the influences of gravi-
tational waves directly. These detectors are set up to measure tiny changes in
distances of about one thousandth the diameter of a proton. In 2010, both LIGO and
Virgo were decommissioned to make way for significantly improved versions
of these detectors, the so-called Advanced LIGO and Advanced Virgo. The
Advanced detectors are scheduled to be completed in 2015, and scientists are
optimistic that the first direct detection of gravitational waves is imminent.
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But the prospects of the first direct detection of gravitational waves extend much
beyond the confirmation of Einstein’s predictions. In fact, the first direct detection
of gravitational waves promises to usher in a new era of astrophysics and astron-
omy. In particular, measurements of gravitational waves directly probe gravity, the
interaction experienced by all known forms of matter, even those that do not emit
electromagnetic radiation. Therefore, measurements of gravitational waves could
not only supplement our existing knowledge, they could also reveal yet unknown
astrophysical phenomena that could radically change our view of the Universe.
Indeed, direct measurement of gravitational waves promises to open a new window
into the Universe.

For example, one can use gravitational-wave measurements to test general rel-
ativity. History has taught us that our laws of physics need continual refinement to
describe Nature to ever-increasing accuracy, and no exception should be made for
Einstein’s general theory of relativity. In fact, Einstein’s theory has never been
tested in the vicinity of extremely dense objects such as neutron stars and black
holes. The gravitational-wave sources that Advanced LIGO and Virgo are expected
to see will give us access to the behaviour of gravity in these extreme environments,
and allow us to test general relativity with unprecedented accuracy.

Moreover, gravitational-wave measurements provides a way to map distance and
motion of celestial objects and study their large-scale behaviour. Existing mea-
surements suggest that the Universe is undergoing an accelerated expansion. This
can be described by general relativity, but at the expense of introducing dark matter
and dark energy, which combined makes up more than 90 % of the content of the
Universe. Gravitational-wave measurements allow us to test this paradigm inde-
pendently and possibly probe these unknown entities that appear to dominate our
Universe.

Indeed, it is quintessential to look beyond the detection of gravitational waves,
and to think about how one can utilise gravitational-wave measurements to study
the nature of gravity and the astrophysical processes it governs. To achieve this, the
gravitational-wave community needs to develop increasingly accurate models of the
sources of gravitational waves, to prepare the data-analysis tools to extract relevant
information, and finally to use the newly acquired insight to complement or to alter
our current state of knowledge. The author hopes that the work described in this
book will be a step in the right direction.

This book is divided into three parts. Part I serves as a general introduction to the
field of gravitational-wave data analysis. Part II introduces the Test Infrastructure
for GEneral Relativity (TIGER), a data-analysis pipeline designed to test general
relativity without the need for knowledge of a specific alternative. Finally, Part III
focusses on inferring the large-scale structure of the Universe from
gravitational-wave signals emitted by merging neutron stars.
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Lastly, the author wishes to thank his colleagues at Nikhef, the California
Institute of Technology, the LIGO Scientific Collaboration, and the Virgo
Collaboration for embarking on the mission of measuring gravitational waves with
him. Moreover, the author wants to express gratitude to his parents, brother, and Ivy
for their continual support.

Pasadena, USA Dr. Tjonnie G.F. Li
April 2015
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describing flat spacetime in the usual (t, x, y, z) coordinates, is given by

ημ” ¼ diagð�1; 1; 1; 1Þ: ð3Þ
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Introduction to Gravitational-Wave

Data Analysis



Chapter 1
Gravitational Waves in the Linearised
Theory of General Relativity

1.1 Brief Overview of General Relativity

The theory of general relativity (GR) states that gravity can be considered as curvature
of spacetime [1]. This relationship is made explicit by the Einstein field equations
(EFE),

Gμν ≡ Rμν − 1

2
gμν R = 8πT μν, (1.1)

which form a set of ten coupled differential equations. On the left hand side (LHS),
we have defined the Einstein tensor Gμν , which only depends on terms describing
the geometry of spacetime. On the right hand side (RHS), one has the stress-energy
tensor, which describes the density and flux of energy and momentum. From the
second Bianchi identity,

Rαβμν;λ + Rαβλμ;ν + Rαβνλ;μ = 0, (1.2)

it follows that

Gμν ;μ = 0. (1.3)

Consequently, the stress-energy tensor satisfies

T μν ;μ = 0, (1.4)

so that the energy and momentum are covariantly conserved quantities in GR.

© Springer International Publishing Switzerland 2015
T.G.F. Li, Extracting Physics from Gravitational Waves,
Springer Theses, DOI 10.1007/978-3-319-19273-4_1
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4 1 Gravitational Waves in the Linearised Theory …

1.1.1 Geodesics

As a generalisation of Newton’s first law, i.e. objects move on a straight line in
absence of external forces, GR states that objects move along geodesics in absence
of external forces. Geodesics are the curved-space equivalents of straight lines, which
can be found by parallel transporting the tangent vector of a curve. Therefore, the
equations of motion within GR are given by the geodesic equation

d2xμ

dτ2
+ �μ

νρ
dxν

dτ

dxρ

dτ
= 0 for m �= 0,

d2xμ

dλ2 + �μ
νρ

dxν

dλ

dxρ

dλ
= 0 for m = 0.

(1.5)

wherem is themass of the object, τ represents the proper time given by dτ2 = −ds2,
and λ is some affine parameter on the geodesic.

In a flat spacetime, two straight lines that are initially parallel to each other will
remain parallel. In a curved spacetime, geodesics do not satisfy this property. Instead,
two nearby geodesics, separated by ζμ, follow the geodesic deviation equation

D2ζμ

Dτ2
= −Rμ

νρσζρ dxν

dτ

dxσ

dτ
, (1.6)

where D/Dτ is defined as

DV μ

Dτ
≡ dV μ

dτ
+ �μ

νρV ν dxρ

dτ
, (1.7)

and denotes the covariant derivative along a curve that is parameterised by τ . The geo-
desic deviation equation describes the change in separation ζμ between two nearby
geodesics. As the Riemann tensor describes the tidal forces caused by a gravitational
field, Eq. (1.6) shows that these tidal forces can be considered as deviations of nearby
geodesics.

1.2 Linearised Theory of General Relativity

To study the properties of gravitational waves (GWs), it is instructive to first study
them in situations where the gravitational fields are weak. In the so-called weak-
field approximation, one can view the metric as the Minkowski metric with a small
perturbation. In this chapter, we will discuss the properties of GWs in the linearised
theory of GR, which only considers the lowest order perturbation. In particular,
we will look into the propagation of GWs on the flat background spacetime, their
interaction with test masses, the energy and momentum carried by GWs, and the
generation of gravitational waves GWs.
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1.2.1 Weak-Field Metric

In GR, the EFE are covariant under general coordinate transformations

xμ → xμ′
(x), (1.8)

so that the metric transforms as

gμν → gμ′ν ′ = xρ
,μ′ xσ

,ν ′gρσ. (1.9)

This means that one is free to choose a convenient coordinate systemwithout altering
the physical predictions of the EFE. In the weak-field regime, where spacetime is
nearly flat, it is convenient to choose the coordinates such that themetric is composed
of the flat spacetime metric with a small perturbation, i.e.

gμν = ημν + hμν, for
∣
∣hμν

∣
∣ � 1. (1.10)

However, by choosing the coordinates such that Eq. (1.10) holds, the general coor-
dinate invariance of general relativity GR is broken. Instead, one has a smaller set of
transformations that does preserve Eq. (1.10). We will discuss these in turn.
Gauge Transformations
Firstly, consider gauge transformations of the form

xμ → xμ′ = ημ′
ν(xν + ξν) (1.11)

where we demand that

∣
∣ξμ,ν

∣
∣ �

∣
∣hμν

∣
∣ . (1.12)

Consequently, the metric in Eq. (1.10) transforms as

gμν → gμ′ν ′ = xρ
,μ′ xσ

,ν ′gρσ

= ημν + hμν − ξμ,ν − ξν,μ + · · · , (1.13)

where ημν lowers and ημν raises indices in the linearised theory. Keeping the terms
linear in hμν or ξμ,ν , we observe that hμν transforms as

hμν → hμ′ν ′ = hμν − ξμ,ν − ξν,μ. (1.14)

Therefore, provided Eq. (1.12) holds, the form of the metric as shown in Eq. (1.10)
is preserved.
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Lorentz Transformations
Secondly, consider Lorentz transformations of the form

xμ → xμ′ = �μ′
νxν , (1.15)

where �μ′
ν is the Lorentz transformation from special relativity that transforms the

flat spacetime metric as

�
μ
ρ′�ν

σ′ημν = ηρ′σ′ . (1.16)

The full metric then transforms as

gμν → gμ′ν ′ = �ρ
μ′�σ

ν ′gρσ

= ημ′ν ′ + �ρ
μ′�σ

ν ′hρσ, (1.17)

and therefore

hμν → hμ′ν ′ = �ρ
μ′�σ

ν ′hρσ. (1.18)

Note that hμν is a pseudotensor, as it only behaves as a tensor under a Lorentz
transformation. However, since a boost can spoil the condition

∣
∣hμν

∣
∣ � 1, one is

limited to boosts that do not violate this condition.
Similar to the use of the general coordinate freedom to simplify the EFE, we will

use both the freedom to perform a gauge transformation shown in Eq. (1.11) and a
Lorentz transformation shown in Eq. (1.15) to simplify equations in the linearised
theory of GR.

1.2.2 Linearising the Einstein Field Equations

Next, our aim is to derive the Einstein field equations EFE in the linearised theory.
To leading order in hμν , the Christoffel symbol, Riemann tensor, Ricci tensor and
Ricci scalar are given by

�μ
αβ = 1

2

(

hα
μ

,β + hβ
μ

,α − hαβ
,μ

)

, (1.19)

Rμναβ = 1

2

(

hμβ,να + hνα,μβ − hνβ,μα − hμα,νβ

)

, (1.20)

Rμν = 1

2

(

hμ
α

,να + hν
α

,μα − hμν,α
α − hα

α
,μν

)

, (1.21)

R = 1

2

(

hαβ
,αβ − hα

α
,β

β
)

. (1.22)
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From Eq. (1.20) it follows that the Riemann tensor is invariant under the gauge
transformation of Eq. (1.11). Next, EFE can be written as

8πTμν = Rμν − 1

2
Rgμν

= 1

2

[

hμα,ν
α + hνα,μ

α − hμν,α
α − hα

α
,μν − ημν

(

hαβ
,αβ − hα

α
,β

β
)]

.

(1.23)

One can write Eq. (1.23) in a more compact form by introducing the trace h given by

h ≡ ηαβhαβ, (1.24)

and the trace-reversed h̄μν given by

h̄μν ≡ hμν − 1

2
ημνh, (1.25)

so that Eq. (1.23) becomes

16πTμν = h̄μα
,α

ν + h̄να
,α

μ − h̄μν,α
α − ημν h̄αβ

,αβ . (1.26)

Eq. (1.26) can be further simplified by using the gauge freedom of Eq. (1.11) to
choose the harmonic gauge

h̄μν,
ν = 0. (1.27)

As we will see later, by imposing the harmonic gauge one has chosen the coordinates
in such away that for a single planewave (or a superposition of planewaveswith their
wave vectors pointing in the same direction), the GW polarisations are perpendicular
to the direction of propagation.

It turns out the harmonic gauge does not fix the gauge completely. To make this
explicit, consider the gauge transform in Eq. (1.11) of h̄μν , i.e.

h̄μν → h̄μ′ν ′ = h̄μν − ξμ,ν − ξν,μ + ημνξ
ρ
,ρ. (1.28)

Applying the harmonic gauge condition to Eq. (1.28), one has

h̄μ′ν ′,
ν ′ = h̄μν,

ν − ξμ,ν
ν . (1.29)

Therefore, if the harmonic gauge holds in the old frame, the condition

ξμ,ν
ν = 0 (1.30)
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does not spoil the harmonic gauge and allows an additional gauge specification. We
will use this property when we look for a specific form of the plane wave represen-
tation of GWs.

Finally, in the harmonic gauge, the EFE can be written in the simple form

−h̄μν,α
α = 16πTμν . (1.31)

This equation forms the backbone of the linearised theory of GR and we will use it
to study some of the properties of GWs.

How many degrees of freedom do we expect to be present in the linearised EFE?
The symmetric metric tensor gμν has ten independent components. By imposing
the harmonic gauge, we have introduced four constraints. Further specifying the
gauge by using gauge transformations that satisfy Eq. (1.30) introduces an additional
four constraints, leaving the metric tensor with two independent degrees of freedom.
Indeed, these eight constraints are in line with the set of transformations that pre-
serve the form of the metric in Eq. (1.10), namely the gauge transformation (four
constraints) and the Lorentz transformation (four constraints).

1.3 Propagation of Gravitational Waves in Vacuum

To gain insight into the propagation of GWs in the linearised theory, we consider the
linearised EFE in vacuo,

h̄μν,α
α = 0. (1.32)

The solution to Eq. (1.32) can be written in the form of plane waves

h̄μν = �
[

Aμνeıkαxα
]

, (1.33)

where � denotes the real part of a quantity. The linearised Ei EFE then yield

kαkα = 0, (1.34)

so that the wave vector kα is a null vector and the wave travels on the light cone of the
flat background metric. Furthermore, the harmonic gauge in Eq. (1.27) also imposes
the condition

Aμνkν = 0, (1.35)

showing that the direction propagation, kα, is orthogonal to the wave polarization,
Aμν . In other words, the wave is transverse to the direction of propagation.
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1.3.1 Transverse-Traceless Gauge

One can now use the residual gauge freedom within the harmonic gauge class, as
shown in Eq. (1.30), to further specify Aμν . Suppose one specifies a fixed 4-velocity
uμ throughout all of spacetime (from a special-relativity perspective). In other words,
one defines a family of observers, one on each point in spacetime, that all have a
4-velocity uμ. A choice of coordinates is then made by imposing

Aμνuν = 0. (1.36)

This condition gives three constraints as one of them can be identified with
kμ

(

Aμνuν
) = 0. As the fourth constraint, one can use the residual gauge freedom

to set

Aμ
μ = 0. (1.37)

One can now use a Lorentz transformation to make the explicit choice that the
conditions in Eqs. (1.36) and (1.37) hold in a frame where u0 = 1 and u j = 0.
With this choice, one has specified all the free components. The metric perturbation
satisfies

h̄μ0 = 0 (only spatial components),

h̄ j
j = 0 (traceless in the spatial part), (1.38)

h̄i j,
j = 0 (spatial part is divergence free).

The conditions in Eq. (1.38) define the transverse-traceless (TT) gauge. In the TT
gauge, one has h = −h̄ = −h̄μ

μ = −h̄ j
j = 0, so that hμν is the same as h̄μν .

Finally, quantities in this gauge are denoted by the superscript TT, e.g. hTT
μν .

Next, consider a single planewavewithwave vector kμ = (ω, ki ), whereω = ∣
∣ki

∣
∣.

Without loss of generality, one can set the direction of propagation to be the z-
direction. Under these conditions, hTT

μν can be written as

hTT
μν =

⎛

⎜
⎜
⎝

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞

⎟
⎟
⎠
cos [ω(t − z)] , (1.39)

where h+ and h× are the two degrees of freedom in the linearised theory of GR,
corresponding to two polarisations of a GW. This nomenclature will be clarified in
Sect. 1.4. The line element in the TT frame is given by

ds2 = − dt2 + dz2 + {1 + h+ cos [ω(t − z)]} dx2 + 2h× cos [ω(t − z)] dxdy

+ {1 − h+ cos [ω(t − z)]} dy2. (1.40)
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1.4 Interaction with Test Masses

Next, we study the effect of GWs on test masses (mirrors in the case of the inter-
ferometric detectors, see Fig. 3.1), by using the geodesic equation and the geodesic
deviation equation, shown in Eqs. (1.5) and (1.6) respectively.

1.4.1 Transverse-Traceless Gauge

Consider a test mass initially at rest at τ = 0. From Eq. (1.5) it follows that

d2xi

dτ2
= −

[

�i
νρ

dxν

dτ

dxρ

dτ

]

τ=0

= −
[

�i
00

(
dx0

dτ

)2
]

τ=0

. (1.41)

Evaluating Eq. (1.19) in the TT gauge, one has

�i
00 = 1

2

(

2h0
i
,0 − h00,

i
)

= 0, (1.42)

where the TT superscript is dropped for convenience. Hence, a test mass initially at
rest will remain at rest as viewed in the TT frame. Similarly, consider a coordinate
separation ζ i between two test masses that are initially at rest with respect to each
other at τ = 0. The geodesic deviation equation in Eq. (1.6) gives us

d2ζ i

dτ2

∣
∣
∣
∣
τ=0

= −
[

2�i
0 j

dζ j

dτ

]

τ=0

= 0. (1.43)

This shows that if two test masses are initially separated by a coordinate separation
of ζ i and are at rest with respect to each other, they will remain at this separation.
Overall, it seems that a GW has no influence on the geodesic or on the deviation of
geodesics. As we will see next, this is merely a feature of the TT coordinate system,
as we have explicitly chosen u0 = 1 and u j = 0 to hold throughout spacetime.

Consider two events in the TT frame at (t, x1, 0, 0) and (t, x2, 0, 0). These two
events are separated by the coordinate distance x2 − x1 = L , where L is a constant
with respect to the coordinate time t . However, physical effects are encoded in the
proper distance, given by

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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s =
∫

ds

=
∫ x2

x1
dx

√

1 + h+ cosωt

≈ L

(

1 + 1

2
h+ cosωt

)

. (1.44)

In general directions, the proper distance is given by

s =
√

L2 + hi j (t)Li L j , (1.45)

where Li denotes the spatial separation between two test masses and L the associated
coordinate distance. Therefore, the proper distance expands and shrinks periodically.
Because the time that light travels between the two test masses is related to the proper
distance, GWs leave an imprint on the time it takes for a photon to make a round trip.
Consequently, interferometers can potentially measure these imprints by measuring
the length difference between their arms (see Chap. 3 for more information about
detecting GWs by using interferometers).

1.4.2 Proper Detector Frame

Alternatively, consider a detector capable of measuring changes in the proper dis-
tance, e.g. an interferometer, with a characteristic size that is much smaller than the
characteristic wavelength of the GW. In this case, one can approximate the entire
detector to be in a near local Lorentz frame LLF (freely falling frame), even in the
presence of GWs. The metric in the near local Lorentz frame LLF can be written as

ds2 ≈ −dt2 + δi j dxi dx j + O
(

xi x j

L2
B

)

, (1.46)

where L B denotes the typical variation scale of the metric. Consider two test masses
in free fall separated by ζ i . We want to know the influence of GWs on these two
test masses. It is instructive to then rewrite the geodesic deviation equation given by
Eq. (1.6) as

d2ζμ

dτ2
+ 2�μ

νρ
dxν

dτ

dxρ

dτ
+ ζσ�μ

νρ,σ
dxν

dτ

dxρ

dτ
= 0. (1.47)

Next, assume that the two test masses are moving non-relativistically so that dxi/dτ
can be neglected compared to dx0/dτ . Furthermore, the term proportional to �μ

νρ

is negligible compared to the other terms in a near LLF. Consequently, one has

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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d2ζ i

dτ2
+ ζσ�i

00,σ

(
dx0

dτ

)2

= 0. (1.48)

One can further simplify ζσ�i
00,σ ≈ ζ j�i

00, j and thus write

d2ζ i

dτ2
+ ζ j�i

00, j

(
dx0

dτ

)2

= 0. (1.49)

But in the LLF, Ri
0 j0 = �i

00, j − �i
0 j,0 = �i

00, j and therefore

d2ζ i

dτ2
+ Ri

0 j0ζ
j
(

dx0

dτ

)2

= 0. (1.50)

Because dx0/dτ ≈ 1, one can approximate τ ≈ t . This allows us to write

ζ̈ j = −Ri
0 j0ζ

j , (1.51)

where an overdot denotes a derivative with respect to the coordinate time t . Finally,
instead of evaluating the Riemann tensor in this frame, we use the fact that the
Riemann tensor is invariant under the gauge transformation in Eq. (1.11). Therefore,
we can evaluate Eq. (1.20) in the TT gauge and write

Ri
0 j0 = Ri0 j0 = −1

2
ḧTT

i j . (1.52)

Inserting Eq. (1.52) into Eq. (1.51), the geodesic deviation equation in the proper
detector frame takes the form

ζ̈ i = 1

2
ḧTT

i j ζ j . (1.53)

Remarkably, the influence of a GW in a near LLF resembles a Newtonian force,
allowing us to think about it in terms of classical mechanics.

Caution must be taken with the use of the geodesic deviation equation and the
result in Eq. (1.53) that follows from it. The geodesic deviation equation in Eq. (1.6)
is only valid if ζ is small compared to the typical variation scale of the metric. When
the variation of the metric is caused by GWs, the scale at which the metric varies is
the reduced wavelength of the GW, λ = λ/(2π). Therefore, the result in Eq. (1.53)
is only valid if

L � λ, (1.54)

where L denotes the typical length scale of the GW detector. For LIGO or Virgo
(λ ≈ 105 m and L ≈ 103 m), the geodesic deviation equation is valid. For LISA



1.4 Interaction with Test Masses 13

(λ ≈ 1010 m and L ≈ 109 m), the geodesic deviation equation is no longer valid and
a full GR treatment is needed to study the influence of GWs on test masses.

1.4.3 Ring of Test Masses

Consider a ring of test masses in the (x, y) plane centred at z = 0 and aGW travelling
in the z-direction. Because hTT

i j is transverse to the propagation direction, theGWwill
only have influence in the plane of the test masses and we can restrict our attention
to the (x, y) plane alone. Furthermore, as the two polarisations of Eq. (1.39) are
independent, one can consider them separately. For example, the plus polarisation is
given by

hTT
ab = h+ cosωt

(

1 0
0 −1

)

. (1.55)

Consider a proper detector frame where the location of a test mass is denoted by
ζa(t) = (x0 + δx(t), y0 + δy(t)), and where (x0, y0) is the location of the unper-
turbed test mass and (δx, δy) is the perturbation due to the GW. The evolution of
ζa(t) caused by the plus polarisation is then given by Eq. (1.53)

(

δ̈x
δ̈y

)

+
= −h+

2

(

1 0
0 −1

) (

x0 + δx
y0 + δy

)

ω2 cosωt

≈ −h+
2

(

x0
−y0

)

ω2 cosωt, (1.56)

where one assumes that the perturbations are O(h), and thus small compared to the
unperturbed locations. Solving Eq. (1.56), the deviations caused by the plus polari-
sations are given by

(

δx
δy

)

+
= h+

2

(

x0
−y0

)

cosωt. (1.57)

Similarly, the influence of the cross polarisation on a ring of test masses can be
described by

(

δx
δy

)

×
= h×

2

(

y0
x0

)

cosωt. (1.58)

These deformations can be visualised by considering a ring of test masses as shown
in Fig. 1.1. The labels “plus” and “cross” originate from the directions of the motion
of such a ring of test masses.
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h+

ωt = 0

h×

ωt = π/2 ωt = π ωt = 3π/2 ωt = 2π

Fig. 1.1 Deformations of a ring of test masses caused by the plus (+) or cross (×) polarisations of
a GW for various values of the phase

1.5 Energy and Momentum of Gravitational Waves

From themotion of testmasses, one has a clue thatGWs carry energy andmomentum.
However, the formalism in Sects. 1.2–1.4 only describes the propagation of GWs on
a flat spacetime, and does not describe the energy andmomentum associated to GWs.
Indeed, enforcing a flat background metric, as shown in Eq. (1.10), does not allow
GWs to curve the background metric.

1.5.1 Non-linear Corrections

To study the energy and momentum carried by GWs, one must extend the approxi-
mation from Eq. (1.10) to

gμν = g(B)
μν + h(1)

μν + h(2)
μν , (1.59)

where g
(B)
μν is the background metric that is now allowed to be curved, and h(1)

μν

and h(2)
μν are the first and second order perturbations describing the GW. Within this

approximation, the Ricci tensor can be written as

Rμν = R(B)
μν + R(1)

μν

[

h(1)
μν

]

+ R(2)
μν

[

h(1)
μν

]

+ R(1)
μν

[

h(2)
μν

]

, (1.60)

where R(B)
μν is theRicci tensor for the backgroundmetricg

(B)
μν . The linear andquadratic

corrections to the Ricci tensor are given by R(1)
μν and R(2)

μν respectively. For example,

R(2)
μν

[

h(1)
μν

]

represents those terms in the Ricci tensor that are of second order with

respect to the first order perturbation of the background metric, given by h(1)
μν .
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1.5.2 Short-Wave Approximation

Although it is valid to approximate the metric as Eq. (1.59), one runs into the prob-
lem of distinguishing the perturbation from the background. In fact, there is no
generally unambiguous way of distinguishing a perturbation from the background.
Consequently, the notion of local energy density associated to GWs does not exist.

Nevertheless, a distinction in terms of the characteristic lengths can be made for
detection of GWs on Earth. We introduce two length scales: λ denotes the scale on
which hμν varies, whereas R denotes the scale on which g

(B)
μν varies. We assume

that the GWs measured on Earth have much smaller characteristic length scales than
the background metric, i.e. λ � R. This is often called the short-wave approxima-
tion. Within the short-wave approximation, one can introduce a scheme to separate
the background (smooth) from the perturbation (fluctuating). Such a split can be
accomplished by introducing a length scale l such that λ � l � R.

We can now introduce the average over a spatial volume with sides of length l,
denoted by 〈· · · 〉l . The effect of such an averaging scheme is that terms that vary
on the scale of λ average to zero, whereas terms that vary on the scale of R remain
constant. For example, the part of R(2)

μν that varies on the scale ofR can be written as
〈

R(2)
μν

〉

l
. On the other hand, the part that fluctuates on the scale of λ can be identified

as the remainder, R(2)
μν −

〈

R(2)
μν

〉

l
. Similarly, the Ricci tensor can thus be split into

two parts: a smooth (associated toR) and a fluctuating part (associated to λ). Up to
second order contributions in hμν , the Ricci tensor can be split into

R(smooth)
μν = R(B)

μν +
〈

R(2)
μν

[

h(1)
μν

]〉

l
, (1.61)

R(fluc)
μν = R(1)

μν

[

h(1)
μν + h(2)

μν

]

+ R(2)
μν

[

h(1)
μν

]

−
〈

R(2)
μν

[

h(1)
μν

]〉

l
. (1.62)

1.5.3 Stress-Energy Tensor of Gravitational Waves

Next, we want to investigate how GWs impact the background metric. To make such
a relationship explicit, consider the smooth part of the Einstein field equations EFE
in vacuo by only using the smooth part of the Ricci tensor given by Eq. (1.61). One
can rewrite the vacuum EFE as

8πT (GW)
μν = R(B)

μν − 1

2
R(B)g(B)

μν , (1.63)

where the stress-energy tensor of GWs is defined as

T (GW)
μν ≡ − 1

8π

〈

R(2)
μν − 1

2
g(B)
μν R(2)

〉

l
, (1.64)
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and the quadratic order correction to the Ricci tensor is given by

R(2)
μν

[

hμν

] ≡1

2

[
1

2
hαβ;μhαβ ;ν + hν

α;β (

hαμ;β − hβμ;α
)

+ hαβ
(

hαβ;μν + hμν;αβ − hαμ;νβ − hαν;μβ

)

−
(

hαβ ;β − 1

2
h;α

)
(

hαμ;ν + hαν;μ − hμν;α
)
]

. (1.65)

One can thus see that the energy associated to GWs is only defined as an average over
several periods of the characteristic wavelength. One can further simplify Eq. (1.64)
by noting/assuming the following:

• Assume that the background is close to flat so that one can write A;μ ≈ A,μ, where
A can be a vector or a tensor.

• Boundary terms can be ignored in the integration by parts because λ � l.
• Time and space derivatives can be interchanged, as solutions of h̄μν,α

α = 0 depend
on the retarded time t − z.

• Use the field equation h̄μν,α
α = 0, and the gauge conditions h̄μν,

ν = 0 and h̄ = 0.

With these approximations, the stress-energy tensor takes the simple form

T (GW)
μν = 1

32π

〈

h̄αβ,μh̄αβ
,ν

〉

l
. (1.66)

In this form, T (GW)
μν can be shown to be invariant under Eq. (1.11) and conservedwhen

observed far away from the source. Under these conditions and explicitly choosing
the TT gauge, the energy and momentum radiated per unit time through a sphere of
radius r are given by

d E(GW)

dt
= r2

32π

∫

d�
〈

ḣTT
i j ḣTT

i j

〉

l
, (1.67)

d Pk
(GW)

dt
= − r2

32π

∫

d�
〈

ḣTT
i j ∂khTT

i j

〉

l
. (1.68)

1.6 Generation of Gravitational Waves

Recall that the linearised EFE in the harmonic gauge can be written as

h̄μν,α
α = −16πTμν . (1.69)

The solution to this equation can be found by using a Green’s function with the
appropriate boundary conditions. When considering the generation of radiation, the
appropriate condition boundary is to impose that there is no incoming radiation.
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The solution can then be written as a function of the retarded time and the spatial
position

h̄μν (t, �x) = 4
∫

d3 �y Tμν (t − |�x − �y|, �y)

|�x − �y| , (1.70)

where �y is restricted to the inside of the source. This solution can be projected onto
the TT frame by introducing the projecting operator

�i jkl ≡ Pik Pjl − 1

2
Pi j Pkl , (1.71)

where Pi j is defined as

Pi j ≡ δi j − ni n j , (1.72)

and ni is the direction of propagation of the GW. Provided that the perturbation is in
the harmonic gauge, the components in the TT gauge can be obtained by

hTT
i j (t, �x) = �i jkl h̄kl

= 4�i jkl

∫

d3 �y Tkl (t − |�x − �y|, �y)

|�x − �y| . (1.73)

1.6.1 Multipole Expansion

One can further simplify the stress-energy tensor by imposing that the typical velocity
v of the source is non-relativistic, i.e.

λ ∼ c

v
d 
 d, (1.74)

where λ = λ/2π and d represent the reduced wavelength of the GW and the charac-
teristic size of the source respectively. In this low velocity regime, one can expand
the source as

Tkl (t − r + �y · �n, �y) ≈ Tkl (t − r, �y) + yi ni Tkl,0 (t − r, �y)

+ 1

2
yi y j ni n j Tkl,00 (t − r, �y) + · · · , (1.75)

and introduce the moments of the stress tensor

Si j (t) =
∫

d3 �y T i j (t, �y) , (1.76)
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Si jk(t) =
∫

d3 �y T i j (t, �y) yk, (1.77)

Si jkl(t) =
∫

d3 �y T i j (t, �y) yk yl . (1.78)

Inserting these expressions into Eq. (1.73), one obtains

hTT
i j (t, �x) = 4�i jkl

r

[

Skl + nm Ṡklm + 1

2
nmn p S̈klmp + · · ·

]

ret
. (1.79)

where the expression inside [· · · ]ret is evaluated at the retarded time u = t − r .
As yk ∼ O(d) and the time derivative is O(ω), where ω is some typical internal
frequency of the source, each successive order in Eq. (1.79) has an order of v/c more
compared to the previous order. In other words, one has effectively performed an
expansion in orders of v/c.

Recall that in the linearised theory, energy and momentum conservation is given
by Tμν,

ν = 0. Therefore, one can use the moments of the energy density (M) and
linear momentum (P)

M =
∫

d3 �y T 00 (t, �y) , Pi =
∫

d3 �y T 0i (t, �y) ,

Mi =
∫

d3 �y T 00 (t, �y) yi , Pi j =
∫

d3 �y T 0i (t, �y) y j ,

Mi j =
∫

d3 �y T 00 (t, �y) yi y j , Pi jk =
∫

d3 �y T 0i (t, �y) y j yk,

(1.80)

to rewrite the moments of the stress tensor. For the lowest two orders, one can write

Si j = 1

2
M̈i j , (1.81)

Ṡi jk = 1

6

...
M

i jk + 1

3

(

P̈i jk + P̈ j ik − 2 P̈ki j
)

. (1.82)

1.6.2 Mass Quadrupole

We conclude this section by looking at the leading order of the multipole expansion
in more detail. Starting from Eqs. (1.79) and (1.81), we write the metric perturbation
as

[

hTT
i j (t, �x)

]

quad
= 2

r
�i jkl M̈kl(u), (1.83)
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where �i jkl is the projection operator defined in Eq. (1.71), and u = t − r is
the retarded time. This leading order is commonly referred to as mass quadrupole
radiation. One can express Eq. (1.83) in terms of the reduced quadrupole moment

Qi j ≡ Mi j − 1

3
δi j Mkk, (1.84)

so that the metric perturbation can be written as

[

hTT
i j (t, �x)

]

quad
= 2

r
�i jkl Q̈kl(u),

≡ 2

r
Q̈TT

i j (u), (1.85)

where we have made use of the fact that �i jkl M̈kl = �i jkl Q̈kl , as the second term
in Eq. (1.84) vanishes under the �i jkl operator.

One can now construct expressions for h+ and h×. First, we set up a Cartesian
coordinate system such that ni coincides with the z-axis. Evaluating Eq. (1.85) and
comparing this to Eq. (1.39), we can conclude that

h+ = M̈11 − M̈22

r
, (1.86)

h× = 2M̈12

r
. (1.87)

Finally, the energy and momentum radiated can be found by inserting Eq. (1.85) into
Eqs. (1.67) and (1.68)

d E

dt
= 1

8π

∫

d�
...
Q

TT
i j

...
Q

TT
i j , (1.88)

d Pk

dt
= − 1

8π

∫

d�
...
Q

TT
i j ∂k Q̈TT

i j . (1.89)

Quadrupole Radiation from Binary Systems
Finally, we will look at the leading order GW emission by binary systems in the
linearised theory. Binary systems are the focus of this book and are considered one
of the prime candidates for the first direct detection of GWs (see Chap. 3).

Consider two masses, m1 and m2, in a circular orbit with an angular velocity of ω
around their common centre of mass. The distance between the two objects and the
distance between the binary and the observer are denoted by R and r respectively.
We set up a Cartesian coordinate system in such a way that the observer is in the
direction of the z-axis, the orbital plane intersects the x-axis and the origin coincides
with the centre of mass. The angle between the normal to the plane of the two masses
and the observer is denoted by ι. A schematic overview is shown in Fig. 1.2.

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Fig. 1.2 Schematic
overview of a binary system
with component masses m1
and m2, separation between
the masses R, and an orbital
frequency ω. The direction
of the observer coincides
with the z-axis. The angle
between the normal of the
binary plane and the
observer is denoted by ι

In this coordinate system, the location of the masses are given by

�y1(t) = μ

m1
Rê(t), (1.90)

�y2(t) = − μ

m2
Rê(t), (1.91)

where μ = m1m2/(m1 + m2) and ê(t) = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)).
For simplicity, we will only consider the radiation from the mass quadrupole

Mi j (t) =
∫

d3 �y T 00 (t, �y) yi y j

≈
∫

d3 �y [

m1δ (�y − �y1) + m2δ (�y − �y2)
]

yi y j

≈ μR2
(

cos2 ωt cos ι cosωt sinωt
cos ι cosωt sinωt cos2 ι sin2 ωt

)

. (1.92)

Inserting this into Eqs. (1.86) and (1.87), one obtains

h+ = 4μR2ω2

r

1 + cos2 ι

2
cos(2ωtret), (1.93)

h× = 4μR2ω2

r
cos ι sin(2ωtret). (1.94)

Finally, we assume that the two masses are sufficiently far apart and use the New-
tonian centripetal force to write R in terms of ω, m1 and m2. For m1, one has
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m1(Rμ/m1)
2ω2

Rμ/m1
= m1m2

R2 , (1.95)

and a similar expression for m2 exists. Solving for R and defining the so-called chirp
mass

Mc = (m1m2)
3/5

(m1 + m2)1/5
, (1.96)

one can rewrite Eqs. (1.93) and (1.94) as

h+ = 4M5/3
c ω2/3

r

1 + cos2 ι

2
cos(2ωt), (1.97)

h× = 4M5/3
c ω2/3

r
cos ι sin(2ωt). (1.98)

We can see that the radiation is monochromatic with a constant amplitude. Further-
more, the source radiates at twice the orbital frequency. This can be explained by
observing that the quadrupole moment in Eq. (1.92) is invariant under yi → −yi .
However, this result is only true for the dominant quadrupole radiation. Once higher
order correction are included, as shown in Eq. (1.82), harmonics can appear in the
form ωn = nω, n = 1, 2, 3, . . .

In reality, the masses do not keep moving on a circular orbit. As orbital energy is
radiated away through the emission of GWs, the separation between the two masses
shrinks. Consequently, the angular velocity increases causing the system radiate with
a larger amplitude and a higher frequency. This behaviour is often referred to as a
chirp and gives the name to the mass combination in Eq. (1.96).

So far, we have mainly looked at the properties of GWs in the setting of the lin-
earised theory of general relativity GR. However, the full theory of GR is much more
complicated compared with this simple, albeit insightful, description. For exam-
ple, we have ignored how GWs propagates through a curved background, which is
described to quadratic order by Eq. (1.62). Furthermore, we have not encountered
non-linear aspects of GR such as the scattering of GWs off the background metric.
To encounter these non-linear effects, a description of GWs from the full EFE is
necessary. In Chap.2, we will discuss a particular framework that is often used to
study GWs in the full theory of GR.
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Chapter 2
Gravitational Waves in the Post-Newtonian
Formalism

We now turn our attention to GWs in the full theory of GR. Solutions to the EFE
can only be found analytically in special cases. Instead, approximation methods are
commonly used to obtain analytical insight into the full theory of GR.

An example of such an approximation method is the linearised theory described
in Chap.1, where the spacetime metric was assumed to be a flat spacetime metric
with some small perturbation and where the source of GWs is modelled through a
multipole expansion (or equivalently, an expansion in v/c). However, the linearised
theory assumes that the flat background spacetime and the velocity of the sources are
somehow independent. For self-gravitating systems, one can no longer assume that
the background metric is independent of the velocity of the source. For example, the
strength of the gravitational field for a binary system, by equating the gravitational
potential to the kinetic energy, is of the order RS/R ∼ (v/c)2, where RS and R denote
the Schwarzschild radius associated to the total mass and the distance between the
two masses respectively. Therefore, the aim is to systematically include corrections
to linearised theory.

We will give an overview of the post-Newtonian (PN) formalism as developed by
Blanchet, Damour, Iyer and co-workers, also known as the BDI formalism. There is a
parallel effort byWill,Wiseman andPati, termed theDirect Integration of theRelaxed
Einstein (DIRE) formalism, which can be shown to be completely equivalent to the
BDI formalism [1]. For reasons of space, we will only discuss the BDI formalism.
Unless explicitly referenced, proofs and more detail can be found in Ref. [2] and
references therein.

2.1 Relaxed Einstein Field Equations

To study GWs beyond the linearised theory, it is convenient to first recast the EFE.
We define a gravitational field amplitude

hαβ ≡ √−g gαβ − ηαβ, (2.1)

© Springer International Publishing Switzerland 2015
T.G.F. Li, Extracting Physics from Gravitational Waves,
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where gαβ , g ≡ det(gμν) and ηαβ denote the metric, its determinant and the
Minkowski metric respectively. Similar to Eq.1.27, we again use the harmonic gauge

hαβ
,β = 0. (2.2)

This newly introduced field amplitude can be, up to a minus sign, shown to reduce
to the metric perturbation defined in Eq. (1.25) for small hαβ . Suppose one can write
the metric as gαβ ≈ ηαβ + hαβ . The gravitational field amplitude in Eq. (2.1) can
then be evaluated as

−hαβ ≈ ηαβ − √
1 + h

(

ηαβ − hαβ
)

≈ hαβ − 1

2
ηαβh

= h̄αβ . (2.3)

In the harmonic gauge, one can rewrite the full EFE in Eq. (1.1) as

�hαβ = 16πταβ, (2.4)

where � ≡ ημν∂μ∂ν is the flat-space d’Alembertian and

ταβ ≡ (−g)Tαβ + 1

16π
�αβ, (2.5)

�αβ ≡ hαν
,μhβμ

,ν − hμνhαβ
,μν + 1

2
gαβgμνhμτ

,λhνλ
,τ

− gαμgντ hβτ
,λhνλ

,μ − gβμgντ hατ
,λhνλ

,μ + gλτ gμνhαμ
,λhβν

,τ

+ 1

8

(

2gαμgβν − gαβgμν
) (

2gλτ gσρ − gτσgλρ

)

hλρ
,μhτσ

,ν . (2.6)

The term ταβ can be regarded as the total stress-energy pseudotensor (ταβ is a tensor
under Lorentz transformations) that is composed of the matter field, described by
Tαβ , and the gravitational field, described by �αβ .

Although Eq. (2.4) bears resemblance to the EFE obtained by using the harmonic
gauge in the linearised theory given by Eq. (1.31), it should be stressed that Eq. (2.4)
contains no approximations and describes the full theory of GR.

So far, we have rewritten the EFE into two relations Eq. (2.2) and Eq. (2.4). There-
fore, just solving for Eq. (2.4) does not yield solutions that also satisfy the EFE.
Instead, solutions to the EFE can be obtained by first solving for Eq. (2.4) and then
requiring that the condition in Eq. (2.2) holds. Therefore, Eq. (2.4) is referred to as
the relaxed EFE. Requiring the harmonic gauge condition implies a conservation law
for ταβ , given by

ταβ
,β = 0, (2.7)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
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which turns out to be equivalent to the conservation law given by Eq. (1.4).
It might seem that one can solve Eq. (2.4), similar to what is done in Sect. (1.6),

by imposing the no-incoming-radiation boundary condition and write

hαβ(t, �x) = −4
∫

d3�y ταβ
(

t − |�x − �y|, �y; hαβ
)

|�x − �y| . (2.8)

However, ταβ is a functional with respect to hαβ and a solution to Eq. (2.8) cannot
be found trivially. Therefore, approximation methods must be employed in order
to gain further insight. Furthermore, since the term hαβ is present on the RHS of
Eq. (2.8), the resultant GWs will themselves be the source of GWs, a consequence
of the non-linear aspect of GR.

2.2 Regions of Interest

Before we continue to explore the relaxed EFE, it is useful to introduce different
regions of space in which the gravitational field exhibits different characteristics.
This is analogous to the introduction of the near field, far field and the transition
region for the electromagnetic field. The PN formalism introduces the near zone,
which is given by

r � λ, (2.9)

where λ is the reduced wavelength of the GW. In the near zone, retardation effects
are negligible. The far zone is given by

r � λ. (2.10)

In contrast to the near zone, retardation effects are important in the far zone. There-
fore, different treatments are required for these two regions.

2.2.1 Near Zone

A natural starting point to extend the linearised theory is to look for an expansion of
the equations of motion in orders of v/c, a so-called PN expansion. For low velocity
sources, one has ∂0 = O(v/c)∂i. Therefore, the d’Alembertian goes as

−∂2
0 + ∇2 =

[

1 + O
(

v2

c2

)]

∇2. (2.11)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
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This means that the retardation effects, which are due to the time component of the
d’Alembertian, are subdominant and potentials can be viewed as near static. In other
words, one tries to expand some quantity F(t − r) for small retardation times, i.e.
t � r. Explicitly, this means that one is looking for an expansion in the form of

F(t − r) = F(t) − rḞ(t) + 1

2
r2F̈(t) + · · · (2.12)

Since each derivative carries with it an order of ω = 1/λ, which is the typical
GW frequency, the PN expansion can be viewed as an expansion in orders of r/λ.
Therefore, the PN expansion can only be used in the near zone defined in Eq. (2.9).
Indeed, we will explore the use of the PN expansion to describe the near zone in
Sect. 2.4.

2.2.2 Far Zone

In the far zone at some distance r, one assumes that the gravitational field is weak
and that to some lowest order, spacetime can be described by the Minkowski metric.
Corrections to the Minkowski metric will then be given in orders of RS/r, where
again RS denotes the Schwarzschild radius associated to the total mass of the system.
It is convenient to denote the order of the expansion in terms of Newton’s constant
G, since RS ∝ G. Specifically, we write the expansion of the metric as

√−ggαβ = ηαβ + Ghαβ
1 + G2hαβ

2 + · · · (2.13)

Such an expansion is referred to as the post-Minkowskian (PM) expansion, and is
the subject of Sect. 2.3.

2.2.3 Overlap Zone

So far, we have seen that the near zone, for non-relativistic sources (λ � d), extends
up to some radius R � d, where d is the typical size of the system (e.g. orbital
radius of a binary). In this near zone, one can use the PN expansion to calculate
the gravitational field. The far zone, instead, is taken to be r � λ. Consider a
weak gravitational field inside the object of interest (e.g. a binary system with a
large radius). In this case, outside the typical size of the system d, the stress-energy
tensor associated to the matter fields vanishes and only the weak gravitational field
contributes. As a consequence, the far zone is given by the region d < r < ∞.
Therefore, there exist, for weakly self-gravitating and non-relativistic sources, a
region given by
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r =

near zone (PN)

r = d

far zone (PM)
overlap zone (PN/PM

)

r = ∞

Fig. 2.1 Schematic overview of the different regions and the appropriate expansion considered in
the Post-Newtonian formalism for non-relativistic and weakly self-gravitating sources. The near
zone corresponds to a region where retardation effects are small, and is given by 0 < r < R, where
R� d is the boundary of the near zone and d the typical size of the source. In the near zone, one
can use the Post-Newtonian expansion described in Sect. 2.4. The far zone corresponds to the region
where the gravitational fields are weak and is given by d < r < ∞. In the far zone, one can use the
Post-Newtonian expansion described in Sect. 2.3. For non-relativistic and weakly self-gravitating,
an overlap zone exist (d < r < ∞) where both PN and PM expansions are valid, as described in
Sect. 2.5

d < r < R, (2.14)

where both the PN and the PM expansions are valid. This region is referred to as the
overlap zone and will prove to be important in connecting the sources of GWs to the
GWs observed as r → ∞. A schematic overview of the different regions and their
corresponding expansion method is shown in Fig. 2.1.

2.3 Post-Minkowski Expansion in the Far Zone

As discussed in Sect. 2.2.2, the far zone can be described in the PM expansion. In the
PM expansion, one expands the field amplitude as a series in powers of RS/r ∝ G,
as shown in Eq. (2.13). Therefore, we can write

hαβ =
∞
∑

n=1

Gnhαβ
n . (2.15)

Furthermore, we restrict the region of validity to be outside the source so that

ταβ = 1

16π
�αβ . (2.16)

Subsequently, the EFE in Eq. (2.4) becomes

�hαβ = �αβ . (2.17)
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The term �αβ depends on the metric gαβ and has therefore all possible powers of
G, starting from G2. Inserting Eq. (2.15) into Eq. (2.4) and equating the terms of the
same order in G, one obtains an infinite set of equations

�hαβ
n =

{

0 for n = 1

�
αβ
n

[

hαβ
1 , hαβ

2 , . . . , hαβ
n−1

]

for n ≥ 2,
(2.18)

where �
αβ
n is a functional of {hαβ

1 , hαβ
2 , . . . , hαβ

n−1}. One can now iteratively obtain

the solution for hαβ
n by solving for h1 first, and then successively compute higher

order terms by using Eq. (2.18) for n ≥ 2. To retain the correspondence to the full
EFE, the solutions must also satisfy the gauge conditions

hαβ
n ,β = 0. (2.19)

2.3.1 Linearised Vacuum Solution

The first step in the PM formalism is to solve the equations for hαβ
1 . These are the

so-called linearised vacuum equations

�hαβ
1 = 0, (2.20)

hαβ
1 ,β = 0. (2.21)

The most general solution to Eq. (2.20) for r > d, can be expressed in terms of sym-
metric trace-free (STF) tensors (see Appendix A). For STF tensors, it is convenient
to use a multi-index notation due to Blanchet and Damour.

A tensor F with l (spatial) indices i1, i2, . . . , il will be compactly written by using
L = i1i2 . . . il, i.e.

FL ≡ Fi1i2...il . (2.22)

Similarly, FL−1 = Fi1i2...il−1 and GiL = Gii1i2...il . Derivative operators can also be
compactly written as ∂L = ∂i1∂i2 . . . ∂il . Also, we write the product of vectors as

xL ≡ xi1xi2 . . . xil , (2.23)

and reserve ni = xi/r as the unit vector in the radial direction. Repeated upper case
indices imply the summation over all l indices, i.e.

FLGL =
∑

i1...il

Fi1...il Gi1...il . (2.24)
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Also, superscripted integers n surrounded by round brackets denote the nth derivative
with respect to the retarded time u, i.e.

f (n)(u) ≡ dnf /dun. (2.25)

Round brackets around indices denote the symmetrisation with respect to the
enclosed indices, e.g.

A(ij) = 1

2
(Aij + Aji). (2.26)

The STF part of a tensor is denoted by either a hat, or by angle brackets surrounding
indices, i.e.

ÂL = A〈

L
〉. (2.27)

The use of STF tensors will prove to be useful when one matches the PN expansion
to the PM expansion in the overlap zone.

Using the multi-index notation, we most general solution to Eq. (2.20) can be
written as

hαβ
1 =

∞
∑

l=0

∂L

(

Kαβ
L (u)

r

)

, (2.28)

where r = |�x| and u ≡ t − r. If one also imposes Eq. (2.21), the solution can be
written as

hαβ
1 = kαβ

1 + ϕ
β,α
1 + ϕ

α,β
1 − ηαβϕ

μ
1 ,μ, (2.29)

where kαβ
1 is given by

k001 = −4
∑

l≥0

(−1)l

l! ∂L

(
IL(u)

r

)

, (2.30)

k0i
1 = 4

∑

l≥1

(−1)l

l! ∂L−1

[

I(1)
iL−1(u)

r
+ l

l + 1
εiab∂a

(
JbL−1(u)

r

)]

, (2.31)

kij
1 = −4

∑

l≥2

(−1)l

l! ∂L−2

⎡

⎣
I(2)
ijL−2(u)

r
+ 2l

l + 1
∂a

⎛

⎝
εab(iJ

(1)
j)bL−2(u)

r

⎞

⎠

⎤

⎦ . (2.32)

The tensor kαβ
1 depends on two STF tensors, IL(u) and JL(u). From the gauge condi-

tion in Eq. (2.21) it follows that I , I(1)
i and Ji are time-independent. This expresses the
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conservation of total mass, M ≡ I = const, total linear momentum, Pi ≡ I(1)
i = 0,

and total angular momentum, Si ≡ Ji = const. The two multipole moments IL(u)

and JL(u) encode the physical properties of the source at the linearised level, similar
to the multipole moments shown in Eq. (1.80), and are referred to as the mass-type
and current-type multipoles.

The remaining terms in Eq. (2.29) depend on ϕ
μ
1 , which is given by

ϕ0
1 = 4

∑

l≥0

(−1)l

l! ∂L

[
WL(u)

r

]

, (2.33)

ϕi
1 = −4

∑

l≥0

(−1)l

l! ∂iL

[
XL(u)

r

]

− 4
∑

l≥1

(−1)l

l! ∂L−1

[
YiL−1(u)

r
+ l

l + 1
εiab∂a

(
ZbL−1(u)

r

)]

. (2.34)

These terms originate from the fact that Eq. (2.20) is invariant under linear gauge
transformations, xα → x′α = xα + ϕα

1 , cf. Eq. (1.11). One might be inclined to
simply use the residual gauge freedom to transform away ϕ

μ
1 and recover the results

from the linearised theory. However, this cannot be done as hαβ
1 is used to con-

struct subsequent corrections in hαβ . Therefore, the set {IL, JL, WL, XL, YL, ZL} is
not related to {IL, JL, 0, 0, 0, 0} through a gauge transformation in the full theory
of GR. Instead, one can find a reduced set {ML, SL, 0, 0, 0, 0} that is related to
{IL, JL, WL, XL, YL, ZL} through a gauge transformation. The multipoles ML and SL

encode the physical properties of the source in the full theory, and differ from IL and
JL by non-linear corrections.

So far, the set of multipole moments is not characterised in terms of the source
Tαβ . In fact, this is not possible in the PM regime, as it is intrinsically defined for
the region outside the source. However, the source will be characterised in the near
zone and the matching procedure will fix the exact expressions for these multipole
moments. Before the PN expansion is explored, we first show how to obtain the
higher order corrections to hαβ

1 .

2.3.2 Non-linear Iterative Solutions

Once the linearised vacuum solution hαβ
1 has been found, the next step is to solve

�hαβ
n = �αβ

n

[

hαβ
1 , hαβ

2 , . . . , hαβ
n−1

]

, (2.35)

hαβ
n ,β = 0, (2.36)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
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to obtain the higher order corrections. Since the wave equation in Eq. (2.35) is only
valid for r > d, the retarded integral solution such as Eq. (2.8) is not a solution any
more. In fact, the multipole expansion shown in Eqs. (2.30)–(2.34) is singular for
r = 0.

This problem can be circumvented by realising that one is ultimately interested in
the radiation field up to a finite order in the expansion scheme. Consequently, only
a finite number of multipoles are assumed to contribute. Therefore, one can find a
complex number B, provided the real part of B is large enough, such that rB�

αβ
n is

well behaved as r → 0. In other words, one is able to construct

Iαβ
n (B) = �−1

ret

(

rB�αβ
n

)

, (2.37)

where �−1
ret denotes the convolution with the retarded Green’s function, given by

(�−1
ret f )(t, �x) ≡ − 1

4π

∫

d3�y f (t − |�x − �y|, �y)
|�x − �y| . (2.38)

It can be proven that Iαβ
n (B) admits a unique analytical continuation to all values of

B in the complex plane, except for some integers values. When taking B → 0, one
can expand Iαβ

n (B) as a Laurent series involving multiple poles

Iαβ
n =

∞
∑

p=p0

ιαβ
np (t, �x)Bp for p ∈ Z, (2.39)

where |p0| is somemaximumorder of the poles that depends on n. EquatingEq. (2.37)
to Eq. (2.39), applying the d’Alembertian to both sides and expanding rB = eB log r

in terms of B, one can equate the relevant powers of p and obtain

�ιαβ
np =

{

0 for p0 ≤ p ≤ −1,
(ln r)p

p! �
αβ
n for p ≥ 0.

(2.40)

For the case p = 0, one has

�ι
αβ
n0 = �αβ

n , (2.41)

so that ι
αβ
n0 , which is called the finite part at B = 0 of the retarded integral, turns

out to be the particular solution to Eq. (2.35). By defining uαβ
n ≡ ι

αβ
n0 and denoting

the finite part at B = 0 of the retarded integral as FP , one can write the particular
solution as

uαβ
n = FP

{

�−1
ret

[

�αβ
n

]}

. (2.42)
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So far we have only found the particular solution. To obtain the general solution, one
must add the solution to the homogeneous equation, vαβ

n . However, the homogeneous
solution is simply the solution to the linearised vacuum equation, which is given by
Eqs. (2.29)–(2.34). Finally, one can choose v

αβ
n such that vαβ

n ,β = −uαβ
n ,β and obtain

the general solution to Eqs. (2.35) and (2.36).

2.4 Post-Newtonian Expansion for the Near Zone

So far, we have considered the gravitational fields outside the source by using the PM
expansion. However, we have yet to find a way to compute the multipole moments
in terms of the stress-energy tensor. Inside the source and within the near field, one
can make use of the PN expansion, which is an expansion in powers of v/c.

Similar to the procedure in Sect. 2.3, we start by looking for contributions in
successive orders of v/c. Using 1/cn to keep track of the small parameter, the GW
field can be written as

hμν =
∞
∑

n=2

1

cn
hμν

n . (2.43)

Similarly, one can write the total stress-energy tensor as

τμν =
∞
∑

n=−2

1

cn
τμν

n . (2.44)

Inserting this into the relaxed EFE described in Eq. (2.4) and collecting the relevant
powers of v/c, one obtains a set of recursive Poisson-like equations

∇2hμν
n = 16πτ

μν
n−4 + ∂2

t hμν
n−2. (2.45)

However, these equations cannot be solved by using Green’s functions with the
boundary condition that there is no incoming radiation.Asdiscussed inSect. 2.2.1, the
PN expansion is essentially an expansion of the retardation effects, which becomes
singular as r → ∞.

Nevertheless, one can use a procedure similar to that described in Eqs. (2.37)–
(2.42). Instead of having a sufficiently large and positive real part of B, one takes the
real part ofB to be sufficiently large and negative. Taking the sum over n of both sides
of Eq. (2.45) and using the finite part procedure, one finds the particular solution to
be

uμν = 16πFP
{

�−1
ret

[

τμν
]}

. (2.46)
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Similar to the PM expansion, one assumes that both uμν and τμν are truncated to a
finite order, corresponding to a predetermined accuracy.

Finally, one must add the solution to the homogeneous equation, with the require-
ment that the solution is regular for r → 0. The homogeneous solution can be shown
to have the form

vμν = 16π
∞
∑

l=0

(−1)l

l! ∂L

[Rμν
L (t − r) − Rμν

L (t + r)

2r

]

, (2.47)

where Rμν
L (t − r) and Rμν

L (t + r) are arbitrary functions of t − r and t + r
respectively. This follows again from �

[

f (t − r)/r
] = 0 and � [g(t + r)/r] = 0

for arbitrary functions f (t − r) and g(t + r). The functions Rμν
L will be used later

when one matches the PN expansion to the PM expansions in the overlap zone.

2.5 Matching of the Post-Minkowski and Post-Newtonian
Expansions

We can now take stock of what has been done so far. In Sect. 2.3 we introduced the
PM expansion which is valid in the domain d < r < ∞. This PM expansion is
supplemented with the multipolar expansion from Sect. 2.3 and Appendix A. The
most general solution in the PM expansion is characterised by the set of multipole
moments {IL, JL, WL, XL, YL, ZL}. However, the problem is that this set of multipole
moments is unspecified.

Next, we introduced the PN expansion in Sect. 2.4. This expansion is only valid
in the near-zone regime 0 < r < R, whereR � λ. In the PN expansion, we obtain
the GW field as a function of the stress-energy tensor of the source.

Provided that source is non-relativistic and weakly self-gravitating, one can
deduce that an overlap zone d < r < R exist where both the multipolar PM and the
PN expansion hold. Suppose we denote the multipolar expansion of h with M(h)

and the PN expansion withN (h). Then, within the overlap zone, one can write down
the so-called matching condition

N (M(h)) = M(N (h)). (2.48)

In other words, one can re-expand the multipolar PM expansion as a PN expansion
and relate that to the re-expansion of the PN expansion in terms of amultipolar expan-
sion. With the matching condition, one can express the set of multipole moments
{IL, JL, WL, XL, YL, ZL} in Eqs. (2.30)–(2.34) for the PM expansion in terms of the
total stress-energy tensor τμν in Eq. (2.46) for the PN expansion. Specifically, the
multipole moments can written as
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IL(u) = FP
∫

d3�y
∫ 1

−1
dz

{

δl ŷL� − 4(2l + 1)δl+1

(l + 1)(2l + 3)
ŷiL�

(1)
i

+ 2(2l + 1)δl+2

(l + 1)(l + 2)(2l + 5)
ŷijL�

(2)
ij

}

(u + z|�y|, �y), (2.49)

JL(u) = FP
∫

d3�y
∫ 1

−1
dz εab〈il

{

δl ŷ L−1〉a�b

− (2l + 1)δl+1

(l + 2)(2l + 3)
ŷ L−1〉ac�

(1)
bc

}

(u + z|�y|, �y), (2.50)

WL(u) = FP
∫

d3�y
∫ 1

−1
dz

{
(2l + 1)δl+1

(l + 1)(2l + 3)
ŷiL�i

− (2l + 1)δl+2

2(l + 1)(l + 2)(2l + 5)
ŷijL�

(1)
ij

}

(u + z|�y|, �y), (2.51)

XL(u) = FP
∫

d3�y
∫ 1

−1
dz

{
(2l + 1)δl+2

2(l + 1)(l + 2)(2l + 5)
ŷijL�ij

}

(u + z|�y|, �y),
(2.52)

YL(u) = FP
∫

d3�y
∫ 1

−1
dz

{

−δl ŷL�ii + 3(2l + 1)δl+1

(l + 1)(2l + 3)
ŷiL�

(1)
i

− 2(2l + 1)δl+2

(l + 1)(l + 2)(2l + 5)
ŷijL�

(2)
ij

}

(u + z|�y|, �y), (2.53)

ZL(u) = FP
∫

d3�y
∫ 1

−1
dz εab〈il

{

− (2l + 1)δl+1

(l + 2)(2l + 3)
ŷ L−1〉bc�ac

}

(u + z|�y|, �y),
(2.54)

where �, �i and �ij are given by

� = τ00 + τ ii, �i = τ0i, �ij = τ ij. (2.55)

These multipole moments are to be complemented with the functionsRμν
L appearing

in the homogeneous solution in Eq. (2.47). These functions are chosen such that the
matching condition in Eq. (2.48) is satisfied. Specifically, the result of this choice is
given by

Rμν
L (u) = 1

2π
FP

∫

d3�y ŷL

∫ ∞

1
dz δlM

(

τμν
)

(u − z|�y|, �y). (2.56)

2.6 Waveforms for Binary Systems

With the PN formalism described in Sects. 2.1–2.5, one can model GWs emitted by
various sources. In this work, we will mainly consider GWs emitted by binary sys-
tems (see Fig. 1.2), for which it will be useful to define the dimensionless frequency
variable

http://dx.doi.org/10.1007/978-3-319-19273-4_1
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x ≡
(

GMω

c3

)2/3

, (2.57)

where M = m1 + m2 is the total mass and ω = 2πf is the angular velocity. This
variable can be shown to be x ∼ O(1/c2) and is useful to keep track of the relevant
orders in the expansion. Furthermore, we adopt the nomenclature of the nPNorder for
termsproportional to xn. For example, the 3.5PNorder refers to the termsproportional
to x7/2 ∼ O(1/c7). For clarity, we will reinstate the factors of c and G. Furthermore,
we define the so-called symmetric mass ratio

η ≡ μ

M
= m1m2

(m1 + m2)2
, (2.58)

where μ = m1m2/M is the reduced mass. The post-Newtonian parameter, which is
useful to keep track of successive PN corrections, is defined as

γ ≡ GM

Rc2
= O

(
1

c2

)

, (2.59)

where R is the separation between the two masses. Finally, we introduce a dimen-
sionless time variable

� ≡ ηc3

5GM
(tc − t), (2.60)

where tc represents the time at which the two objects coalesce.

2.6.1 Equations of Motion

The equations of motion are obtained from the geodesic equation given by Eq. (1.5)
together with the metric obtained from the PN formalism. We denote the relative
separation between the two masses in the centre of mass frame by yi = yi

1 − yi
2,

where yi
1 and yi

2 are the positions of masses 1 and 2. The relative velocity is given by
vi = vi

1 − vi
2, where vi

1 = dyi
1/dt is the velocity of mass 1 (and similar for mass 2).

The equations of motion are given by

dvi

dt
= −GM

R2

{[

1 + A(R, η, M, vi)
]

ni + B(R, η, M, vi)vi
}

+ O
(
1

c8

)

, (2.61)

where ni = yi/R denotes the unit direction between the two masses. The coefficients
A and B are complicated expressions of R, η, M and vi. This expression can be
simplified by noting that the radiation reaction tends to circularise the orbit and that
by the time such signals are detectable by Earth-based detectors, a circular orbit is

http://dx.doi.org/10.1007/978-3-319-19273-4_1
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an adequate representation. For circular orbits, Eq. (2.61) simplifies to

dvi

dt
= −ω2yi − 32

5

G3M3η

c5R4
vi + O

(
1

c7

)

. (2.62)

The orbital frequency is given by the generalised version of Kepler’s third law

ω2 = GM

r3

{

1 + (−3 + η)γ +
(

6 + 41

4
η + η2

)

γ2 +
(

− 10

+
[

−75707

840
− 41

64
π2 + 22 ln

(
R

R′
0

)]

η + 19

2
η2 + η3

)

γ3
}

+ O
(
1

c8

)

,

(2.63)

where the length scale R′
0 is a gauge-related constant. In fact, R is the separation

between the two masses in the harmonic-gauge coordinates, and is therefore not
invariant under a coordinate transformation. However GR requires that all physical
observables are invariant under a coordinate transformation, and we will see that
within the PN formalism this is still the case.

From Eq. (2.61), one can deduce that the orbital energy of the circular orbit is
given by

E = − μc2γ

2

{

1 +
(

−7

4
+ 1

4
η

)

γ +
(

−7

8
+ 49

8
η + 1

8
η2

)

γ2 +
[

−235

64

+
(
46031

2240
− 123

64
π2 + 22

3
ln

(
R

R′
0

))

η + 27

32
η2 + 5

64
η3

]

γ3
}

+ O
(
1

c8

)

.

(2.64)

This expression still seems to have terms that depend on the specific coordinate
system through γ and R′

0. However, one can rewrite this expression in terms of x
fromEq. (2.57) by solving Eq. (2.63) for γ as a function of x. The resulting expression
is given by

E = − μc2x

2

{

1 +
(

−3

4
− 1

12
η

)

x +
(

−27

8
+ 19

8
η − 1

24
η2

)

x2

+
[

−675

64
+

(
34445

576
− 205

96
π2

)

η − 155

96
η2 − 35

5184
η3

]

x3
}

+ O
(
1

c8

)

,

(2.65)

from which we see that all the coordinate dependence has indeed cancelled out.
Finally, the energy of a circular orbit is calculated to 3.5PN order. This is the highest
order to which the energy of a binary system is known. The expressions for the full
non-circular binary system can be found in Ref. [2].
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2.6.2 Energy Flux

The computation of the equations of motion in the near zone is only one part of the
output of the PN formalism. The other part is the computation of the waveform as
r → ∞. From this waveform, one can determine the energy flux as r → ∞. In
particular, the total flux from GWs is obtained from the binary’s multipole moments,
similar to Eq. (1.88), and is given by

L = 32c5

5G
η2x5

{

1 +
(

−1247

336
− 35

12
η

)

x + 4πx3/2 +
(

−44711

9072
+ 9271

504
η + 65

18
η2

)

x2

+
(

−8191

672
− 583

24
η

)

πx5/2 +
[
6643739519

69854400
+ 16

3
π2 − 1712

105
C − 856

105
ln(16x)

+
(

−134543

7776
+ 41

48
π2

)

η − 94403

3024
η2 − 775

324
η3

]

x3

+
(

−16285

504
+ 214745

1728
η + 193385

3024
η2

)

πx7/2 + O
(

1

c8

)}

, (2.66)

where C = 0.577 . . . is the Euler-Mascheroni constant.

2.6.3 Waveform

Orbital Phase
One can now relate the orbital energy given by Eq. (2.65) to the flux described by
Eq. (2.66) through the relationship

dE

dt
= −L. (2.67)

Although this relationship seems to be physically intuitive, no proof from first prin-
ciples of GR exist for this relationship at 3PN accuracy. However, this equation has
been checked up to 1.5PN, which does include non-linear contributions. Neverthe-
less, we will assume the validity of Eq. (2.67) to arbitrary PN orders and use it to
obtain the temporal evolution of the orbital frequency, i.e.

x = 1

4
�−1/4

{

1 +
(

743

4032
+ 11

48
η

)

�−1/4 − 1

5
π�−3/8 +

(
19583

254016
+ 24401

193536
η

+ 31

288
η2

)

�−1/2 +
(

−11891

53760
+ 109

1920
η

)

π�−5/8 +
[

−10052469856691

6008596070400
+ 1

6
π2 + 107

420
C

− 107

3360
ln

(
�

256

)

+
(
3147553127

780337152
− 451

3072
π2

)

η − 15211

442368
η2 + 25565

331776
η3

]

�−3/4

+
(

−113868647

433520640
− 31821

143360
η + 294941

3870720
η2

)

π�−7/8 + O
(

1

c8

)}

. (2.68)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
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The accumulated orbital phase can be found by integrating the orbital frequency

φ(t) =
∫ t

t0
dt′ω(t′). (2.69)

After performing the integration, the orbital phase as a function of � is given by

φ = − 1

η
�5/8

{

1 +
(
3715

8064
+ 55

96
η

)

�−1/4 − 3

4
π�−3/8 +

(
9275495

14450688
+ 284875

258048
η

+1855

2048
η2

)

�−1/2 +
(

− 38645

172032
+ 65

2048
η

)

π�−5/8 ln

(
�

�0

)

+
[
831032450749357

57682522275840
− 53

40
π2 − 107

56
C + 107

448
ln

(
�

256

)

+
(

−126510089885

4161798144
+ 2255

2048
π2

)

η + 154565

1835008
η2 − 1179625

1769472
η3

]

�−3/4

+
(
188516689

173408256
+ 488825

516096
η − 141769

516096
η2

)

π�−7/8 + O
(
1

c8

)}

, (2.70)

where �0 is a constant of integration that can be fixed by the initial conditions, e.g.
when the GW frequency enters the detector’s bandwidth. Finally, the phase can also
be written as a function of x

φ = − x−5/2

32η

{

1 +
(
3715

1008
+ 55

12
η

)

x − 10πx3/2 +
(
15293365

1016064
+ 27145

1008
η + 3085

144
η2

)

x2

+
(
38645

1344
− 65

16
η

)

πx5/2 ln

(
x

x0

)

+
[
12348611926451

18776862720
− 160

3
π2 − 1712

21
C

− 856

21
ln(16 x) +

(

−15737765635

12192768
+ 2255

48
π2

)

η + 76055

6912
η2 − 127825

5184
η3

]

x3

+
(
77096675

2032128
+ 378515

12096
η − 74045

6048
η2

)

πx7/2 + O
(

1

c8

)}

, (2.71)

where x0 is an integration constant similar to �0.

Full Waveform

The full waveform is currently known up to 3PN order [3]. With the same labelling
and coordinate system as Sect. 1.6.2, the two polarisations can be written as

h+,× = 2Gμx

c2r

{

H(0)
+,× + x1/2H(1/2)

+,× + xH(1)
+,× + O

(
1

c3

)}

. (2.72)

The leading terms of H+,× are given by

H(0)
+ = −(1 + c2i ) cos 2ψ, (2.73)

H(0)
× = −2ci sin 2ψ, (2.74)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
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H(1/2)
+ = − si

8

δm

m

[

(5 + c2i ) cosψ − 9(1 + c2i ) cos 3ψ
]

, (2.75)

H(1/2)
× = −3

4
sici

δm

m
[sinψ − 3 sin 3ψ] , (2.76)

H(1)
+ = 1

6

[

19 + 9c2i − 2c4i − η(19 − 11c2i − 6c4i )
]

cos 2ψ

− 4

3
s2i (1 + c2i )(1 − 3η) cos 4ψ, (2.77)

H(1)
× = ci

3

[

17 − 4c2i − η(13 − 12c2i )
]

sin 2ψ − 8

3
(1 − 3η)cis

2
i sin 4ψ, (2.78)

where ci = cos ι, si = sin ι and δm = m1 − m2. The auxiliary phase is defined as

ψ = φ − 2GMω

c3
ln

(
ω

ω0

)

, (2.79)

where ω0 is the frequency at which the signal enters the sensitive region of the
detector. Remarkably, to leading order in amplitude, one recovers the form obtained
from the linear theory given by Eq. (1.93) and Eq. (1.94),1 only differing by the
definition of the phase. Furthermore, the inclusion of higher order multipoles indeed
leads to harmonics at nψ, where n = 1, 2, 3, . . ..

2.6.4 Additional Contributions

In the calculations of the waveform, we have assumed that the components making
up the binary are non-spinning and point-like. Furthermore, we have assumed that
the orbit of the binary is quasi-circular. In this section, we will look into some of the
modifications required to relax these assumptions.

Spin

Astrophysical observations have suggested that black holes can be spinning signif-
icantly [4–6]. To introducing spin into the model, one requires the inclusion of the
spin-orbit and spin-spin coupling. In other words, to model these additional inter-
actions requires a modification to the equation of motion shown in Eq. (2.61) and
therefore the orbital energy shown in Eq. (2.65) (see Ref. [7] and references therein).

The result is that the waveform of a binary is augmented with spin-orbit terms
starting from the 1.5PN order, and with spin-spin terms starting from the 2PN order.
The spin couplings introduce rich dynamics resulting in the modulation of the ampli-
tude and the frequency of the waveform. However, the inclusion of spin couplings
requires an additional six parameters to describe the waveform. This in turn will add
complexity to data-analysis tasks such as testing the strong field dynamics of GR.

1Assuming Kepler’s third law for circular orbits, i.e. R3 = GM/ω2.

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
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Extended Bodies

So far, we have been treating the objects in binaries as point-like objects with a certain
mass. Such an approximation is valid when the objects are far away from each other.
However, as the two objects more closer together due to the loss of energy caused by
the emission of GWs, the internal structure of the bodies start to have an influence
on the waveform.

Tidal Deformability Consider a star with mass m that experiences the quadrupolar
tidal field Eij of its companion. This quadrupolar tidal field will then induce a quadru-
pole moment Qij in the star [8]. To lowest order in Eij, one can relate the induced
quadrupolar field to the external tidal field through

Qij = −λ(m)Eij. (2.80)

The function λ(m) is called the tidal deformability and depends on the internal char-
acteristics of the star (for black holes, λ = 0). It turns out that the corrections related
to the star’s tidal deformability start from the 5PN order. However, the prefactor asso-
ciated with these terms is of such magnitude that the measurement of these terms are
in fact plausible and can provide us with information about the internal structure of
the object [9].

Oblateness Caused by Rotating Stars In addition to the distortion caused by an
external tidal field, extended objects can also acquire further distortion through the
rotation of the star itself. This process will introduce a quadrupole term in the grav-
itational potential and modify the equations of motion. The waveform modification
starts from the 2PN order and depends on the spin, and the internal structure through
the quadrupolemoment scalarQ(m) (not to be confusedwith the quadrupolemoment
in Eq. (2.80)) [10]. Similar to the tidal deformability, this spin-induced quadrupolar
moment also depends on the internal structure of the object.

I-Love-Q Relationship It was recently suggested that there might be a phenomeno-
logical relationship between the tidal deformability λ and the spin-induced quadru-
pole moment scalar Q [11–13]. Such a relationship will be useful to connect the tidal
deformability to the spin-induced quadrupole moment scalar and provide additional
information about the internal structure of the object.

Eccentricity

Most binary systems are born in bound systems. As a consequence, the system has
enough time to circularise the orbit due to the emission of GWs [14, 15], before the
GW signal becomes detectable by Earth-based detectors. Therefore, most binaries
are considered to be in quasi-circular orbits when their signal reaches the sensitive
region of the detector. However, in dense stellar regions such as the cores of galaxies
or globular clusters, stars can become gravitationally bound to a companion if their
trajectories are close enough [16–18]. In this case, the orbit cannot be assumed to be
quasi-circular, and one has to model GWs from binaries in eccentric orbits.
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The effect of eccentric orbits on the waveform is an interplay of many effects.
For example, eccentric binaries will cause additional bursts of GW emission near
the periastron passage and also a shift in the frequency of the dominant harmonic
(frequency increases as the eccentricity increases) [19]. However, the bursts of GW
emission near periastron passage will cause the circularisation of the orbit and there-
fore weakening the effects of eccentric orbits over time.

Merger and Ringdown

So far, we have considered the PN formalism from which follows that the waveform
for binary systems can be written as an expansion in v/c. However, as the binary
loses energy and angular momentum through the emission of GWs, the orbital radius
shrinks and the frequency (hence the typical velocity) of the binary goes up. There-
fore, there will be a point where the PN formalism breaks down.

The break-down of the PN roughly coincideswith the situation that the two objects
are sufficiently close together so that they start to merge into a single object. During
this stage of the binary evolution, the system is highly relativistic and self-gravitating.
No method has yet to be found to model this stage analytically, and one has to resort
to solving the EFE numerically instead.

Once the two objects have merged and formed a single object, it will further emit
GWs as the object tries to reach a quiescent state. The GWs emitted during this phase
can be described by a superposition of damped sinusoids, also referred to as quasi-
normal modes. As a consequence of the no-hair theorem, the oscillation frequencies
and the associated damping times of these quasi-normal modes are a function of the
mass and the spin only.

2.6.5 Validity of the Post-Newtonian Formalism

Since the PN formalism is merely an approximation method, it is natural to wonder
how accurate such a scheme is in describing the GWs emitted by binary systems.
This question is difficult to answer for several reasons. Firstly, by the nature of any
approximation method, it is difficult to quantify the higher orders that have yet to
be calculated. Secondly, the development of approximation methods is necessary as
numerical methods are computationally expensive and challenging. Modern com-
puters still cannot simulate the evolution of the binary over a few tens, or produce the
high number of waveforms necessary to systematically asses the validity of approx-
imation methods such as the PN formalism.

A clue to the accuracy of the PN formalism is the determination of the innermost
circular orbit, which is defined as the minimum of the energy given by Eq. (2.64)
or Eq. (2.65). It was shown that the PN formalism up to the 3PN order estimates
the frequency and the energy at the innermost circular orbit to within a fractional
accuracy of about 1% [20].

Furthermore, comparisons between waveforms from numerical simulations and
the PN formalism show that close to the merger of the two objects, assuming an
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equal starting point, the difference is only a few percent over a time-span of six
cycles [21]. The disagreements between these two methods are thought to be caused
by the truncation of the expansion series in the PN formalism.

It is common in the literature to assume the validity of the PN formalism up to the
point of the last stable orbit (LSO) indexlast stable orbit, which in the test particle
limit occurs at separation of R = 6M and has v/c = 1/

√
6. In some cases, the

frequency evolution stops being monotonic before LSO indexlast stable orbit, which
is another indicator that the PN formalism breaks down and the waveform should
no longer be trusted. The actual truncation of the waveform depends the specific
implementation.

2.6.6 Stationary Phase Approximation

For data-analysis purposes, aswewill see in Sect. 3.2, it is important to use the Fourier
transform of the time-domain waveform shown in Eq. (2.72). However, the Fourier
transform is difficult to compute analytically. Instead, one could perform the Fourier
transform numerically. Since the waveform has to be calculated many times over
for different values of the associated parameters, performing the Fourier transform
numerically proves to be computationally expensive. Luckily, one can use the SPA
to get an approximation of the Fourier transform of a time-domain waveform.

Consider a waveform at the 0PN order in amplitude. The plus and cross polarisa-
tion of the GW can be written in a generic time domain form given by

h+,×(t) = A+,×(t) cos�+,×(t). (2.81)

The goal is then to compute the Fourier transform of Eq. (2.81), given by

h̃+,×(f ) =
∫ ∞

−∞
dt A+,×(t) cos�+,×(t)e2πı ft

= 1

2

∫ ∞

−∞
dt A+,×(t)

(

eı(2πft+�+,×(t)) + eı(2πft−�+,×(t))
)

. (2.82)

The idea of the SPA is to evaluate the integral in Eq. (2.82) only around the point
where one expects the biggest contribution. Explicitly, this means that one neglects
the first term of Eq. (2.82) because it always oscillates rapidly and averages to zero.
The second term also approximately averages to zero, except around the point t∗,
where

2πf = �̇+,×(t∗) = πfGW(t∗). (2.83)

Next, we can expand the phase up to (t − t∗)2, and make an additional approximation
that the amplitude also varies slowly around t∗, allowing us to take the amplitude out
of the integral. The GW field can then be written as

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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h̃+,× = 1

2
A+,×(t∗)eı(2πft∗−�+,×(t∗))

√

2

�̈+,×(t∗)

∫ ∞

−∞
dx e−ıx2 , (2.84)

where x = √

�+,×(t∗)/2. The remaining integral can be evaluated [22] as

∫ ∞

−∞
dx e−ıx2 = √

πe−ıπ/4. (2.85)

Therefore, Eq. (2.84) becomes

h̃+,× = 1

2
A+,×(t∗)

√

2π

�̈+,×(t∗)
e−ı�+,× , (2.86)

where the phase �+,× is given by

�+,× = 2πft∗ − �+,×(t∗) − π

4
. (2.87)

Finally, one can invert the expression in Eq. (2.68) to eliminate t∗ in favour of f .
The phase in the SPA has been calculated up to the 3.5PN order [23–25], and is

given by

�+,×(f ) = 2πftc − φc − π

4
+

7
∑

j=0

[

ψj + ψ(l)
j ln f

]

f (j−5)/3, (2.88)

where tc and φc are the time and phase of coalescence. The phase coefficients ψj and

ψ(l)
j are given by

ψj = 3

128 η
(πM)(j−5)/3αj and ψ

(l)
j = 3

128 η
(πM)(j−5)/3α

(l)
j , (2.89)

and the αj coefficients are given by

α0 = 1, (2.90)

α1 = 0, (2.91)

α2 = 3715

756
+ 55

9
η, (2.92)

α3 = −16π, (2.93)

α4 = 15293365

508032
+ 27145

504
η + 3085

72
η2, (2.94)

α5 = π

(
38645

756
− 65

9
η

)[

1 + ln
(

2 63/2πM
)]

, (2.95)
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α6 = 11583231236531

4694215680
− 640

3
π2 − 6848

21
C +

(

−15737765635

3048192
+ 2255

12
π2

)

η

+ 76055

1728
η2 − 127825

1296
η3 − 6848

63
ln (128πM) , (2.96)

α7 = π

(
77096675

254016
+ 378515

1512
η − 74045

756
η2

)

, (2.97)

α
(l)
j = 0, for j = 0, 1, 2, 3, 4, 7, (2.98)

α(l)
5 = π

(
38645

756
− 65

9
η

)

, (2.99)

α
(l)
6 = −6848

63
. (2.100)

The amplitude to the 0PN order is determined by A(t∗) and �̈(t∗). The expression
from A(t∗) is obtained from Eq. (2.73) and the inversion of Eq. (2.68) to eliminate
t∗ in favour of f . Following Eq. (2.83), one can write �̈(t∗) = πḟGW(t∗), where ḟGW
can be evaluated as

ḟGW(t) = dfGW
dt

= dfGW
dx

dx

dE

dE

dt

= 3

2

x

πM

−L(x)

E′(x)
. (2.101)

The prime denotes a derivative with respect to x. The SPA of the waveform at the
0PN order in amplitude is referred to as the TaylorF2 waveform in the literature (e.g.
[26]).

Accuracy of the Stationary Phase Approximation

A recent study has compared the SPA to time-domain waveforms from the PN for-
malism [26]. It was shown that the SPA agrees with time-domain waveforms with
an accuracy between a fraction of a percent to a few percent depending on the total
mass of the system (the SPA becomes less accurate compared to the time-domain
waveform as the total mass goes up).

2.6.7 Concluding Remarks

The waveform emitted by binary systems depends intricately on the intrinsic para-
meters such as the masses and the spin, as well as the extrinsic parameters such as
the distance and the orbital orientation. Measuring GWs emitted by binary system
(see Chap.3) means that one can infer these parameters (see Chaps. 4 and 5) and
possibly obtain some answers to astrophysical problems.

http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_4
http://dx.doi.org/10.1007/978-3-319-19273-4_5
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Two of such problems will be the focus of this book. Firstly, the functional depen-
dence of the phase coefficients in Eq. (2.100) on the component masses is set by
GR. As will be shown in part II, these phase coefficients can be used to construct
a generic test of GR. Secondly, as shown in Eq. (2.72), the amplitude of the wave-
form is proportional to 1/r, where r is the distance between the observer and the
source. This distance can be related to the luminosity distance. Therefore, one can
use GWs emitted by binary systems to measure the luminosity distance directly, and
subsequently obtain cosmological information. This will be the topic of Part III.
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Chapter 3
Gravitational Waves: Detection and Sources

3.1 Gravitational Wave Detectors

In Sect. 1.4, we have shown that a GW causes the stretching and shrinking of the
proper distance between test particles. Therefore,GWs can be observed bymeasuring
these changes in the proper distance. The focus of this work will be on the use
of interferometers to measure the influences of GWs. These interferometers are
configured to show destructive interferencewhen no distortions are present, as shown
Fig. 3.1a.When aGWpasses such a detector, the configurationwill no longer support
the destructive interference and a bright spot can be seen, as shown in Fig. 3.1b. By
measuring the intensity of this spot as well as its temporal variation, one will be able
to observe the footprints of a GW.

3.1.1 Beam Pattern Functions

Interferometers are sensitive to the relative difference between two distances, the
so-called strain. Suppose we have an interferometer with its arms pointing along the
unit vectors ui and vi . One can show [2] that the strain, h(t), is given by

h(t) = 1

2
(hi j u

i u j − hi jv
iv j )

= Di j hi j (t), (3.1)

where Di j is referred to as the detector tensor and is given by

Di j = 1

2

(

ui u j − viv j
)

. (3.2)
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Fig. 3.1 Schematic overview of an interferometric detector [1]. Without a GW present, the inter-
ferometer is kept at a destructive interference configuration. A GWwill change the relative distance
between the arms and cause the interferometer output to deviate from the destructive interference.
The intensity of the light and its temporal evolution encode the footprints of GWs. a NoGWpresent,
b GW present

Furthermore, as Eq. (3.1) is linear in h+ and h×, we can also write

h(t) = F+h+(t) + F×h×(t), (3.3)

where F+,× are called the beam pattern functions.
Suppose we have a detector with arms that are perpendicular to each other, one

pointing in the x-direction and the other in the y-direction in a Cartesian coordinate
system. This detector frame, denoted by (x, y, z), is generally different from the
GW coordinate system, denoted by (x ′, y′, z′), where the source is conveniently
described. To account for such a difference, we first note that when the plus and
cross polarisations are not equal in strength, we can rotate the coordinate system by
an angle ψ around the z′ axis so that the x ′ and y′ axes coincide with the mayor and
minor axis of the associated ellipse. In going from the GW frame to the detector
frame, we can rotate the GW frame by an angle θ around the x ′ axis and an angle φ
around the z′ axis, where the angles (θ,φ) denote the direction of propagation of the
GW in the detector frame. Applying these three rotations, the beam pattern functions
for a detector with perpendicular arms are given by

F (90◦)
+ = 1

2

(

1 + cos2 θ
)

cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ, (3.4)

F (90◦)
× = 1

2

(

1 + cos2 θ
)

cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ. (3.5)

The beam pattern functions are shown in Fig. 3.2. Suppose that the arms of the
detector are at a 60◦ angle instead of a 90◦ angle. In this case, the beam pattern
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Fig. 3.2 Beam pattern functions F+(θ,φ,ψ) (left) and F×(θ,φ,ψ) (right) for an interferometric
detector with arms at a 90◦ angle

functions are given by

F (60◦)
+ =

√
3

2

[
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

]

, (3.6)

F (60◦)
× =

√
3

2

[
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ

]

. (3.7)

Compared to a detector with arms at a 90◦ angle, a detector with a 60◦ opening angle
is less sensitive to GWs. However, with a 60◦ opening angle, one is able to fit three
detectors forming an equilateral triangle in the same location. Especially when the
detectors are to be underground, this will significantly save on costs for e.g. digging
tunnels.

3.1.2 Ground-Based Detectors

At the moment, there are several ground-based interferometric gravitational waves
detectors, either operational or in an upgrade phase. Only GEO (600m arms) in
Germany [3] is currently taking data. However, the biggest of these detectors, LIGO
(two interferometers, 4km arm length) in the US [4] and Virgo (3km arm length)
in Italy [5] are currently being upgraded from the initial/enhanced configurations
(collectively referred to as 1st generation) to the so-called advanced configuration
(2nd generation). An aerial view of the LIGO detector is shown in Fig. 3.3. This
round of major upgrades is expected to complete in 2014 and will increase their
sensitivity significantly. A Japanese detector named KAGRA [6] is currently under
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Fig. 3.3 Aerial view of the LIGO detector in Hanford. Photo courtesy of the LIGO Laboratory

construction, and is expected to be operational in 2018. Finally, India aims to have
an advanced detector named LIGO-India running by 2020 [7].

Plans are also made for detectors beyond the 2nd generation. The most advanced
proposal is the so-called Einstein Telescope (ET), a European initiative for a 3rd
generation detector. A conceptual design study has been published proposing three
co-located, underground detectors, each with 10km arms with a 60◦ opening angle
[1]. Such a design admits even better sensitivity compared to 2nd generation detec-
tors, up to a factor of ten (see Fig. 3.4).

3.2 Detection of Gravitational Waves

So far we have only considered the effect of a GW on a ring of test particles. In an
actual detector, we will not only see the effect of GWs on the test masses (mirrors
in case of an interferometer), but also noise contributions such as human traffic. If
we denote the noise contribution as n(t) and the gravitational wave induced strain
as h(t), then the total output of the detector is given by

s(t) = n(t) + h(t). (3.8)

Therefore, not onlywill we have to understand the effects of GWs, it is also important
to understand the noise in order to find the GW footprint in the detector output. We
will consider each of these contributions in turn.
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Fig. 3.4 Detector sensitivity for various detectors in terms of the strain sensitivity,
√

Sn( f ). The
solid curves represent the strain sensitivity of LIGO in Hanford (LHO, blue), LIGO in Livingston
(LLO, green) and Virgo in Pisa (red) on their last joint science run, before the upgrade to their
advanced configurations. The dashed curves show the design sensitivity for the second generation
detectors. Advanced LIGO (blue), Advanced Virgo (red), KAGRA (magenta). The dashed-dotted
curve shows the design sensitivity labelled ET-D for the third generation detector Einstein Telescope
(black)

3.2.1 Characterising the Noise

Suppose we can describe the noise n(t) by a Gaussian stochastic process [8]. A
Gaussian stochastic process is uniquely characterised by its average value and its
auto-correlation. Without loss of generality, we can set the average value to be

〈

n(t)
〉 = 0, (3.9)

where the brackets denote the ensemble average. In practice, one only has access to
a single realisation of the detector. Therefore, we assume ergodicity and replace the
ensemble average with the time average. The auto-correlation, defined as

R(τ ) ≡ 〈

n(t + τ )n(t)
〉

, (3.10)

typically decays to zero when |τ | → ∞, i.e. the knowledge of the noise at time t
reveals little information about the noise at a time t + τ . We can now define the
one-sided power spectral density as

1

2
Sn( f ) ≡

∫ ∞

−∞
dτ R(τ )eı2π f τ . (3.11)
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The reality of R(τ ) implies that Sn(− f ) = S∗
n ( f ), while the invariance under time

translation implies that Sn( f ) is real. Therefore, one has Sn(− f ) = Sn( f ). With Eq.
(3.10) and the inversion of Eq. (3.11), we can write

R(0) = 〈

n2(t)
〉

=
∫ ∞

0
d f Sn( f ). (3.12)

This shows that the integrated power spectral density is equal to the variance of the
noise. The relation in Eq. (3.12) also allows us to introduce an alternative form of
the power spectral density, i.e.

〈

ñ∗( f )ñ( f ′)
〉 = δ( f − f ′)1

2
Sn( f ), (3.13)

where a tilde denotes the Fourier transform and a star the complex conjugate. The
(expected) power spectral densities for various detectors are shown in Fig. 3.4.

3.2.2 Matched Filtering

In the last subsection, we looked at characterising the noise. Naively, one might
expect that the signal h(t) can only be detected if |n(t)| < |h(t)|. However, for
ground-based GW detectors, we are in the regime where |n(t)| 	 |h(t)|. It turns out
that, provided one has information on h(t), we can still find the GW within the data
even if the noise amplitude is bigger than the GW amplitude.

Suppose we know the shape of h(t). One can compute the average of the product
of s(t) with h(t) over a period of T

1

T

∫ T

0
dt s(t)h(t) = 1

T

∫ T

0
dt h2(t) + 1

T

∫ T

0
dt n(t)h(t). (3.14)

The integral in the first term on the RHS is positive definite and thus grows as T . In
terms of the order of magnitude, we have

1

T

∫ T

0
dt h2(t) ∼ h2

0, (3.15)

where h0 is the characteristic amplitude of the oscillating function h(t). On the other
hand, in the integral in the second term on the RHS, n(t) and h(t) are uncorrelated
and the integral thus grows like T 1/2, similar to a random walk. Therefore, we have

1

T

∫ T

0
dt n(t)h(t) ∼

√

τ0

T
n0h0, (3.16)
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where n0 is the characteristic amplitude of the noise n(t) and τ0 is a characteristic
timescale, e.g. the period of h(t). Therefore, it is not necessary to have |n(t)| < |h(t)|.
Instead, it suffices to have

h0 >

√
τ0

T
n0. (3.17)

Thus, if we integrate the signal over long period compared to τ0, we can average
the noise to zero and detect the signal even when |n(t)| > |h(t)|. To exemplify, a
binary system has a characteristic frequency of f ∼ 100Hz, or τ0 ∼ 10−2 s when it
is detectable by ground-based detectors. Such signals can be observed in the order
of minutes, say T ∼ 100 s. Therefore, we have

√
τ0/T ∼ 10−2, meaning that the

signal can still be detected if the signal amplitude is factor of 100 smaller than the
noise amplitude. For a continuous signal, such as a millisecond pulsar, this factor
can be even larger. Suppose we have τ0 ∼ 10−3 s, but we can observe the signal
for a period of a year, T ∼ 107 s. Using these numbers, we have

√
τ0/T ∼ 10−5,

meaning we are sensitive to signals with an amplitude of a factor of 100,000 smaller
than the noise amplitude.

We can optimise the above by the application of a technique called matched
filtering. We define

ŝ =
∫ ∞

−∞
dt s(t)K (t), (3.18)

where K (t) is called a filter. Furthermore, we define a signal-to-noise ratio (SNR),
ρ = S/N , where S is the expectation value of ŝ if a GW signal is present and N
is the root mean square value of ŝ when no GW signal is present. The idea behind
matched filtering is to find the filter that maximises the SNR. Since

〈

n(t)
〉 = 0, we

have

S =
∫ ∞

−∞
dt

〈

s(t)
〉

K (t)

=
∫ ∞

−∞
dt h(t)K (t)

=
∫ ∞

−∞
d f h̃( f )K̃ ∗( f ). (3.19)

Furthermore, for h(t) = 0 we have

N 2 = 〈

ŝ2
〉 − 〈

ŝ
〉2

= 〈

ŝ2
〉
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=
∫ ∞

−∞

∫ ∞

−∞
dt dt ′ K (t)K (t ′)

〈

n(t)n(t ′)
〉

= 1

2

∫ ∞

−∞
d f Sn( f )

∣
∣K̃ ( f )

∣
∣2, (3.20)

where we have used the definition of the power spectral density in Eq. (3.11). Sub-
sequently, the SNR is given by

ρ =
∫ ∞
−∞ d f h̃( f )K̃ ∗( f )

√
∫ ∞
−∞ d f 1

2 Sn( f )
∣
∣
∣K̃ ( f )

∣
∣
∣

2
. (3.21)

This expression can be simplified by introducing an inner product between a(t) and
b(t)

(a|b) = �
∫ ∞

−∞
d f

ã∗( f )b̃( f )
1
2 Sn( f )

. (3.22)

With this definition, we can rewrite Eq. (3.21) as

ρ = (u|h)√
(u|u) , (3.23)

where ũ( f ) is given by

ũ( f ) = 1

2
Sn( f )K̃ ( f ). (3.24)

From this geometrical representation, we can deduce that ρ is maximised when u
points in the same direction as h. The optimal filter is therefore given by the so-called
Wiener filter

K̃ ( f ) ∝ h̃( f )

Sn( f )
. (3.25)

Furthermore, the SNR for the Wiener filter, also referred to as the optimal SNR, is
given by

ρ = √

(h|h). (3.26)

From the above results, we can conclude that the optimal filter depends on the signal
searched for, and the properties of the noise. It is therefore critical to gain a good
understanding of both aspects.
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Assuming that the noise is uncorrelated between detectors, we can also define the
optimal SNR for a network of detectors by adding the SNR of individual detectors
in quadrature. In other words, the network SNR is given by

ρ2net =
∑

i

ρ2i , (3.27)

where the index i runs over individual detectors.
In the derivation of the matched filtering, we have assumed that the shape of

the true signal and the characteristics of the noise are known. For GW analyses,
however, several issues are present. Firstly, the characterisation of the noise is not
trivial. For example, the noise might not be stationary and Gaussian. Moreover,
there is an inherent ambiguity whether a GW signal is being included in the noise
characterisation. Secondly, one rarely has access to the exact same GW signal in the
filter. For example, for most realistic GW sources, the waveform is only known in
the form of an approximation (cf. the PN formalism in Chap. 2). Furthermore, as the
GW signal depends on many parameters, the discretisation of the collection of filters
used can cause an SNR lower than the SNR given by the exact Wiener filter. We will
further discuss the issues concerning the interpretation of GW signals in Chap. 4.

3.3 Sources of Gravitational Waves

Although every accelerating non-symmetric systememitsGWs, only the ones that are
able to perturb the metric enough can be detected with current technology. Naturally,
we are looking for those systems that are massive, compact and/or violent enough
to induce a sufficiently strong gravitational field. It turns out that such sources are
only of astrophysical origin, such as black holes (BHs) and neutron stars (NSs) or
violent events like supernovae and gamma-ray bursts. In this section, we will look
at some of the most promising sources for detection by ground-based detectors. The
study of the sources of GWs is an extensive field and citing only a few references will
not do justice to the large body of work performed by numerous authors. Therefore,
unless explicitly stated, references and/or proofs to relevant statements can be found
in Ref. [2] and references therein.

3.3.1 Compact Binary Coalescences

Compact binary coalescence (CBC) is a class of sources in which two compact
objects, either a NS or a BH, orbit around each other. CBC sources are further
subdivided into binary neutron stars (BNS), black hole neutron star binary (BHNS)
and binary black hole (BBH). The emission of GWs carries energy and angular
momentum away from the system, causing the two objects to spiral towards each
other. The most famous CBC system is perhaps the Hulse-Taylor binary pulsar [9].

http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_4
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The orbital evolution of the Hulse-Taylor binary pulsar provided the first indirect
evidence of the emission of GWs. GWs from CBC sources can be divided into three
stages, the inspiral, the merger and the ringdown phase.

The inspiral phase is when the two object are spiralling towards each other,
while the system loses orbital energy and angular momentum. As a result, the GW
amplitude and frequency slowly increase as a function of time, the so-called chirp.
Sources can remain in the inspiral phase for hundreds of millions of years, but they
can only be observed by ground-based detectors towards the end of the inspiral phase.
During the inspiral phase, the gravitational fields and velocities are still relatively
weak and the GWs emitted can be found through approximation methods such as
the PN formalism in Chap. 2.

The merger phase is a short-lived phase that follows the inspiral phase and occurs
when the two objects are so close to each other that they start to merge into a single
object. The gravitational fields are now very strong and the GW emission can only
be computed by considering the full EFE numerically. As it turns out, the merger
phase can cause a GW luminosity that exceeds the electromagnetic luminosity of the
entire Universe.

Once the two objects have merged, they enter the ringdown phase. During this
phase, the newly formed object tries to reach a quiescent state by radiating away its
deformations from the merger phase. The GWs in the ringdown phase can be com-
puted by means of perturbation theory. The resulting GWs consist of superpositions
of damped sinusoids, known as quasi-normal modes.

3.3.2 Continuous Wave Sources

Continuous wave (CW) sources are those that emit GWs with roughly constant
frequency and amplitude compared to the observation time. The prime candidates
to emit such signals are rapidly rotating, non-axisymmetric NSs. Such deformations
can arise due to, for example, strain build-up in the crust or in the core, or accretion
of matter.

The GW signal fromCW sources is relatively simple due to their slow variation of
amplitude and frequency. Although the GWamplitude is generally weaker compared
to CBC sources, a longer integration time means that CW sources may also achieve
detectable SNRs. Finally, the analysis of such sources can be simplified if some of
its characteristics can be determined through means other than GWs, e.g. rotational
frequency of a NS through the observation of a pulsar.

3.3.3 Burst Sources

Burst sources are associated with astronomical transient phenomena, such as super-
novae, gamma-ray bursts or instabilities in NSs. Supernovae occur when massive
objects collapse under the influence of gravity. In the process that follows, NSs or

http://dx.doi.org/10.1007/978-3-319-19273-4_2
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BHs are formed, and GWs are emitted through dynamical processes. On the other
hand, GRBs are flashes of gamma rays, for which the progenitors are still uncertain.
Possible progenitors are supernova-like events (causing long duration soft spectrum
GRBs, also called long soft GRBs) as well as the merger of compact objects (causing
short hard GRBs).

These sources are generally difficult to model because of the complicated physics
associated with such phenomena. Therefore, the search for GWs from such sources
often happens with unmodelled filters, where unmodelled means that there is no
astrophysical model associated to the GW. An example of such a filter is a sine-
Gaussian signal.

3.3.4 Stochastic Background

The stochastic background comes from the superposition of numerous unresolved
GW sources. The stochastic background is divided into two classes: the primordial
background and the astrophysical background. The primordial background consists
of radiation originating from the early Universe, such as the Big Bang. The astro-
physical background comes from the GWGW radiation from astrophysical sources
such as CBC systems or cosmic-string cusps and kinks.

The detection of a stochastic background is somewhat different compared to the
sources described above. Since random radiation is indistinguishable from instru-
mental noise, at least for short observation times, it cannot be detected with a single
detector. Instead, the output of several detectors are combined to calculate the cross-
correlation between detectors. An excess in the cross-correlation can then be an
indication of a stochastic background.
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Chapter 4
Bayesian Inference

In this chapter, we introduce the field of Bayesian inference. Named after Reverend
Bayes, Bayesian inference aims to give a consistent mathematical framework to
inductive logic. Inductive logic, also referred to as plausible reasoning, is a subfield
of formal logic that tries to evaluate logically certain statements. This should be
viewed in contrast to deductive logic, which attempts to draw conclusions from
logically certain statements.

After introducing some elementary concepts of inductive logic, we will show
how Bayesian inference provides a mathematically consistent framework to two
commonly required tasks within data analysis: parameter estimation and hypothesis
testing.

4.1 Concepts of Inductive Logic

4.1.1 Definitions and Notations of Logic

Propositions
The central concept in the field of formal logic is a proposition. A proposition is
defined as

a statement in which a subject and a predicate are combined to assert its (un)truth.

Thus, a proposition can be the statement “hypothesis H is correct” or “quantity x
has a value of 3”. Proposition are usually denoted by an upper case roman letter, e.g.
A and B.

Boolean Algebra
Operations on, or combinations of propositions canbe convenientlywritten according
to the rules of Boolean algebra. These operations or combinations are the following.

Conjunction The conjunction, also called the logical product, of A and B is
denoted by

© Springer International Publishing Switzerland 2015
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AB or A ∧ B, (4.1)

and is associated to the proposition “both A and B are true”. The conjunction operator
is commutative.

Disjunction The disjunction, sometimes referred to as the logical sum, of A and B
is denoted by

A + B or A ∨ B, (4.2)

and is associated to the proposition “at least one of A and B is true”. Similarly to the
conjunction, the disjunction is commutative.

Denial The denial, or negation, of a proposition A states that “A is false” and is
denoted by

Ā or ¬A. (4.3)

We can further assert that the denial of the denial of A equals A again.

Implication The implication relates two propositions conditionally. The implication
of A and B is defined to be “if A is true then B is true” and is written as

A → B or A ⇒ B. (4.4)

Bi-Implication An even stronger relational statement between two propositions can
be made in the form of a bi-implication. The bi-implication of A and B represents
the proposition “B is true if and only if A is true” and is denoted by

A ↔ B or A ⇔ B. (4.5)

In the language of Boolean algebra, when two propositions are related by a bi-
implication they have the same truth value. From a logical point of view, they are
hence considered to be equivalent propositions and the bi-implication can thus also
be written as

A = B. (4.6)

Similarly, we also have the “equal by definition”, denoted by

A ≡ B. (4.7)
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4.1.2 Foundations of Inductive Logic

The study of inductive logic is in an extension of the Aristotelian logic. Instead of
assigning either true or false to a proposition, one assigns a degree of certainty to
a proposition. This degree of certainty, also referred to as plausibility, is always
dependent on what we consider to be known. For example, if we know that the
sky is cloudy, the plausibility of rain to come soon is higher compared to a sunny
sky. Therefore, we expand the notation of Boolean algebra with the conditional
plausibility “A is true given that B is true” or simply “A given B”. The conditional
plausibility is denoted by

A|B. (4.8)

Cox’ Postulates and Axioms
In search of mathematical rules for plausible reasoning, Cox wrote down a set of
postulates which such a theory should obey. Following Jaynes [1], these can be
stated as a set of desiderata:

• Desideratum 1 Plausibilities are represented by real numbers.
• Desideratum 2The theory should have a qualitative correspondencewith common
sense.

• Desideratum 3 The theory should be consistent. If a conclusion can be reasoned
out in more than one way, then every possible way must lead to the same result.

However, these desiderata lack the mathematical rigor from which the rules of plau-
sible reasoning can be derived. Instead, the desiderata can be augmented with mathe-
matical axioms to produce the necessary proofs. Let the plausibility of a proposition
A be denoted by w(A). Cox’ axioms can then be stated as [2]

• Axiom 1 Degree of belief can be ordered; ifw(A) is greater than w(B), and w(B)

is greater than w(C), then w(A) is greater than w(C). Consequently, plausibility
can be mapped onto real numbers.

• Axiom 2 The plausibility of A and its negation Ā are related, i.e. there is a function
f such that

w(A) = f
[

w( Ā)
]

. (4.9)

• Axiom 3 The plausibility of a conjunction AB is related to the plausibility of the
conditional proposition A|B and the plausibility of B alone, i.e. there is a function
g such that

w(AB) = g [w(A|B), w(B)] . (4.10)
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4.1.3 Quantitative Rules for Plausible Reasoning

Cox showed that under these axioms, consistent mathematical rules exist to describe
the field of inductive logic. Firstly, the plausibilityw can bemapped onto probabilities
p, if one assumes that w ranges from 0 for impossibility to 1 for certainty (another
choice is to havew range from 1 for certainty to infinity for impossibility). Therefore,
we will use the terms plausibility and probability interchangeably. It turns out that
the rules of plausible reasoning coincide with the laws of probability, given by the
sum rule,

p(A|I ) + p( Ā|I ) = 1, (4.11)

and the product rule,

p(A, B|I ) = p(A|B, I )P(B|I ), (4.12)

where the proposition I represents all the relevant background information that one
is aware of before the assignment of plausibilities. Many other results can be derived
from these two rules. Amongst the most useful ones for data analysis are Bayes’
theorem,

p(A|B, I ) = p(B|A, I )p(A|I )
p(B|I ) , (4.13)

and the marginalisation rule,

p(A|I ) = p(A, B|I ) + p(A, B̄|I ). (4.14)

The marginalisation rule can be generalised in several ways. Firstly, assume we have
a set of propositions {Bk} that form a mutually exclusive,

p(Bk |Bl , I ) = p(Bk |I ) for k 	= l, (4.15)

and exhaustive set of propositions,

∑

k

p(Bk |I ) = 1. (4.16)

In this case, the marginalisation rule can be written as

p(A|I ) =
∑

k

p(A, Bk |I ). (4.17)
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We can go a step further and generalise the marginalisation rule to the continuum
limit. But before we can do so, we need to explain what is meant by the continuum
limit of a proposition. Take a proposition of the form “a continuous variable x has a
value of α”. We can write the probability of this proposition in the form p(x = α).
However, since within the limits of a continuous variable there exist an arbitrary
large number of propositions, we fail to assign a useful meaning to the probability
of x = α. So instead, we can only define the probability associated to a continuous
variable in a finite interval, i.e.

p(x1 ≤ x ≤ x2|I ) =
∫ x2

x1
pdf(x)dx, (4.18)

where pdf represents the probability density function. For a continuous variable, the
property of exhaustiveness is written as

∫ xmax

xmin

pdf(x)dx = 1, (4.19)

where the integration limits include all possible values of x . The marginalisation rule
for continuous variables becomes

p(A) =
∫ xmax

xmin

pdf(A, x)dx . (4.20)

At this point, it should be noted that the probability p(B) is dimensionless, whereas
the probability density function pdf(x) has the inverse dimension of x . However, in
the literature, the symbols p or P are used for both the probability and the probability
density. The reader is expected to distil the meaning from the context.

4.2 Parameter Estimation

We can now use the rules in Sect. 4.1.3 to infer the value of a parameter given the
observed data, commonly referred to as parameter estimation. Examples of para-
meter estimation include the inference of the mass of a black hole through the mea-
surement of its gravitational waves, or the measurement of the Hubble constant by
observing a set of standard candles.

Consider a model H that provides a description of the data d provided the para-
meter θ is known. In this case, model H is referred to as generative. The plausibility
of the data d is then governed by the likelihood p(d|θ, H, I ), where I represents the
state of knowledge prior to the experiment. In most experiments, we have enough
knowledge about the model H to assign the likelihood function. For example, given
that we know we are flipping a biased coin that gives, on average, 7 heads out of
every 10 flips, we can assign the likelihood of observing m heads from n throws.
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However, in most experiments we are only exposed to the data d and are interested
in the so-called posterior probability of the parameter θ, p(θ|d, H, I ). The aim of
this section is to show how to go from the likelihood to the posterior, whilst being
consistent with the rules of plausible reasoning.

4.2.1 From Bayes’ Theorem

Suppose we have a generative model H , and can therefore assign the likelihood
of the data d. The posterior is related to the likelihood through Bayes’ theorem in
Eq. (4.13)

p(θ|d, H, I ) = p(d|θ, H, I )p(θ|H, I )

p(d|H, I )
. (4.21)

Two factors in this equation have yet to be given a name. Firstly, we have the prior
p(θ|H, I ) which represent the state of knowledge of the parameter θ before the
experiment is conducted. This could be the interval inwhich the parameter is expected
or the distribution of values it is expected to have. Secondly, we have the evidence
p(d|H, I ). This quantity, as it does not depend on the parameter of interest θ, will
be ignored for the time being and Eq. (4.21) will be turned into the proportional
statement

p(θ|d, H, I ) ∝ p(d|θ, H, I )p(θ|H, I ). (4.22)

Wewill revisit the evidence in Sect. 4.3 where we show that this factor plays a crucial
role in the case that the generative model is the object of interest.

Equation (4.22) shows that the inference on the posterior is given by the likeli-
hood weighted by the prior. This seems to be in line with desideratum 3, set out in
Sect. 4.1.2, as common sense would dictate that one forms its conclusions based on
the information that one has before the experiment and the experimental data that
one obtains.

4.2.2 Characterising the Posterior

Oncewe have calculated the posterior, we have acquired all the information about the
variables given the observed data. Suppose we are only interested in a single variable.
We can plot the posterior as a function of this variable. From this plot, we can infer
the values that are more likely than others, simply by looking at the height of the plot.
However, this might not always be the desired representation. For example, plots in
dimensions higher than three are difficult to interpret. Furthermore, one might want
to summarise the posterior with only a few numbers, instead of a plot.
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Marginalisation
Suppose we have performed an experiment governed by N parameters θi where
i = 1, 2, . . . , N , which we try to infer. Using Bayes’ theorem, we obtain the so-
called joint posterior

p(θ1, . . . , θN |d, H, I ). (4.23)

But suppose that we only want to show the posterior for variable θ1, given by
p(θ1|d, H, I ). We can achieve this through the marginalisation rule given by Eq.
(4.20). Thus, we can obtain the desired posterior through

p(θ1|d, H, I ) =
∫ θmax

2

θmin
2

. . .

∫ θmax
N

θmin
N

p(θ1, . . . , θN |d, H, I ) dθ2 . . . dθN . (4.24)

Therefore, one way to present a multidimensional posterior is to draw one or two
dimensional marginalised posterior functions.

Mean, Standard Deviation
Sometimes it can be more convenient to summarise the (joint) posterior with a few
numbers. For example, instead of plotting the full posterior, we want to convey the
expected value and the associated uncertainty. In case of a one dimensional posterior,
we can calculate the expectation value, also known as the mean, through

μ = E [θ]

=
∫ θmax

θmin
θ p(θ|d, H, I ) dθ. (4.25)

A measure of the uncertainty can be represented by the second central moment, also
referred to as the variance, which is given by

σ2 = E
[

(θ − μ)2
]

=
∫ θmax

θmin
(θ − μ)2 p(θ|d, H, I ) dθ. (4.26)

The multi-dimensional equivalents of the mean and the variance can also be defined.
Suppose an experiment has N variables, θi where i = 1, 2, . . . , N . The means of
these variables are then given by

μi = E [θi ]

=
∫ θmax

1

θmin
1

. . .

∫ θmax
N

θmin
N

θi p(θ1, . . . , θN |d, H, I ) dθ1 . . . dθN . (4.27)
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Similarly, a higher dimensional variance-like object called the covariance matrix can
be defined as

�i j ≡ E
[

(θi − μi )
(

θ j − μ j
)]

=
∫ θmax

1

θmin
1

. . .

∫ θmax
N

θmin
N

(θi − μi )
(

θ j − μ j
)

p(θ1, . . . , θN |d, H, I ) dθ1 . . . dθN .

(4.28)

The diagonal elements give the variances of the variables, whereas the off-diagonal
elements represent the correlations between the variables.

Confidence Interval
The variance is a good measure of the uncertainty if the posterior is symmetric.
However, if the posterior is asymmetric, then the variance fails to report the direction
towhich the posterior is skewed.Of course, one can provide the skewness (3rd central
moment) alongside the mean and the variance. In this case, a better representation of
the posterior is given by the confidence interval. The confidence interval is defined
to be the smallest limits within which a fraction γ of the posterior is contained.
Formally, this is given by

γ =
∫ θhi

θlo
p(θ|d, H, I )dθ, (4.29)

where the distance between θhiand θlo is minimised. In most literature, γ is either
chosen to be 0.68 or 0.95, which are the fractions of the total probabilities given by
the 1 and 2 standard deviation intervals in a Gaussian distribution, which follows
from the central limit theorem [2].

The multidimensional confidence interval can also be defined as an area in two
dimensions, volume in three dimensions and hypervolume in even higher dimensions.
However, the information quickly becomes difficult to summarise, something we set
out to do by defining the confidence interval. More useful would be to show the
confidence interval of the marginalised posteriors. For θ1, this is given by

γθ1 =
∫ θhi1

θlo1

p(θ1|d, H, I )dθ1

=
∫ θhi1

θlo1

∫ θmax
2

θmin
2

. . .

∫ θmax
N

θmin
N

p(θ1, . . . , θN |d, H, I )dθ1 . . . dθN . (4.30)

Multimodality
In the case of multimodal posteriors, providing a summary in just a few numerical
values can be troublesome. The mean value could occur in a location with low
probability. The variance and the confidence interval can span multiple modes, thus
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suggesting that the data are expected with a larger spread than actually is expected
by looking at the individual modes.

Unfortunately, there is no generic way of summarising multimodal distributions.
In cases where there are only a few modes, one could try to characterise each single
mode through the mean, standard deviation or confidence interval. However, if the
posterior exhibits more complicated structures, the most honest thing to do is to show
the full or marginalised posterior where possible.

The practice of estimating parameters is intimately connected to all aspects of exper-
imental science. GWs from CBC systems possess the unique property of carrying
information about the distance from the source to the observer. Being able to infer
this distance allows us to map the dynamics and the content of the Universe. In
part III, we will use the concepts of parameter estimation to investigate the power of
using GW sources to infer the cosmological parameters that dictate the large scale
properties of our Universe.

4.3 Hypothesis Testing

Estimating parameters is useful when the generative model is known, but this not
always the case in an experiment. For example, suppose we measure a process of
whichwedonot knowwhether its output follows a normal distribution or aLorentzian
distribution. If we want to compare generative models to each other, we have to
perform hypothesis testing, also known as model comparison or model selection.
In order to compare hypothesis X to hypothesis Y , we must calculate the posterior
probabilities p(X |d, I ) and p(Y |d, I ) and compare the two.

4.3.1 From Bayes’ Theorem

Just as with parameter estimation, we want to calculate the posterior probability
through quantities that are easier to compute. To do this, we again turn to Bayes’
theorem and write

p(X |d, I ) = p(d|X, I )p(X |I )
p(d|I ) . (4.31)

In order to compare model X with model Y , we take the ratio of the posterior
probabilities and compute the so-called odds ratio,
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O X
Y ≡ p(X |d, I )

p(Y |d, I )

= p(d|X, I )

p(d|Y, I )

p(X |I )
p(Y |I ) , (4.32)

where the factors of p(d|I ) have cancelled out. The factor p(X |I )/p(Y |I ) is called
the prior odds and expresses our relative initial belief in the hypotheses. The factor
p(d|X, I )/p(d|Y, I ) is the ratio of evidences, commonly known as the Bayes factor,

B X
Y = p(d|X, I )

p(d|Y, I )
. (4.33)

Thus, in order to do hypothesis testing, one needs to calculate the evidence for
propositions X and Y , and assign the prior odds between the same propositions.

We have seen the evidence before in Eq. (4.21). We can rewrite Bayes’ theorem
in Eq. (4.21) as

p(θ|d, H, I )p(d|H, I ) = p(d|θ, H, I )p(θ|H, I ), (4.34)

and marginalise both sides over θ, i.e.

∫

p(θ|d, H, I )p(d|H, I )dθ =
∫

p(d|θ, H, I )p(θ|H, I )dθ. (4.35)

But as p(d|H, I ) does not depend on θ and the posterior is normalised by definition,
we can evaluate the LHS to be

∫

p(θ|d, H, I )p(d|H, I )dθ = p(d|H, I )
∫

p(θ|d, H, I )dθ

= p(d|H, I ). (4.36)

Therefore, the evidence is given by

p(d|H, I ) =
∫

p(d|θ, H, I )p(θ|H, I )dθ, (4.37)

and can be interpreted as the fully marginalised, prior weighted likelihood, also
referred to as themarginal likelihood. Aswe expect fromcommon sense, the evidence
does not depend on the value of θ.

The odds ratio thus tells us which of the propositions is favoured compared to
another. If O X

Y > 1, the data tell us that proposition X is more likely, if O X
Y = 1

the propositions are equally likely, and if O X
Y < 1, proposition Y is favoured over

X . But the odds ratio also tells us how much a proposition is favoured over another
through the magnitude of the odds ratio. If O X

Y = 5, proposition is 5 times more
likely compared to Y .
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Up to now, we have shown how to compare two propositions. Can we calculate
the absolute probability of a single proposition from Eq. (4.31)? We have seen that
the evidence and the prior can be assigned. But what about the factor p(d|I )? Canwe
assign the probability of the data given the background information? The probability
of the data can be written as

p(d|I ) = p(d, X |I ) + p(d, X̄ |I )
= p(d|X, I )p(X |I ) + p(d|X̄ , I )p(X̄ |I ) (4.38)

Although the prior probabilities can be related through

p(X |I ) + p(X̄ |I ) = 1, (4.39)

assigning an evidence to X̄ is, in most cases, impossible, as one needs a generative
model instead of the denial of a single proposition. To illustrate this point, we can
predict the signal of a GW assuming GR is correct, but we cannot predict the signal
of a GW when we only know that GR is incorrect. Therefore, in order to perform
inference on generativemodels, we need to compare one generativemodel to another.

4.3.2 Occam’s Razor

Does the model which fits the data best always give the highest evidence? If that
is the case, one expects that the generative model with the most freedom to have a
higher evidence compared to a more restrictive model. However, we will show that
this is not generally true within Bayesian inference.

The fit of the data with model X is represented by the evidence p(d|X, I ). How-
ever, from Eq. (4.32), we see that the Bayes’ factor is altered by the prior odds to
give the odds ratio. Thus, a model needs to be particularly favoured by the data if
prior belief in this model is lower compared to the other model. Therefore, important
to hypothesis testing is the assignment of the background information, i.e. what is
known prior to the experiment.

But that is not all. From common sense, it seems to be unfair if the more complex
model is always favoured compared to a more restrictive model. Suppose the gener-
ative model is described by a linear relationship. One would hope that a consistent
analysis of the data shows that the generative model was indeed the linear relation-
ship instead of a general polynomial that can describe the data equally well through
the appropriate choice of parameters. We can show how Bayesian inference works
under such conditions by an example.

Suppose we have a generative model X , which has no free parameter, and gen-
erative model Y , which does have a free parameter λ. Will the more complicated
model, Y , be automatically favoured compared to X? To answer this question, we
turn to the odds ratio
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O X
Y = p(d|X, I )

p(d|Y, I )

p(X |I )
p(Y |I ) . (4.40)

The assignment of the evidence for X is straightforward, but the evidence of Y
depends on λ through

p(d|Y, I ) =
∫

p(d,λ|Y, I )dλ

=
∫

p(d|λ, Y, I )p(λ|Y, I )dλ. (4.41)

To aid our understanding, we make some simplifying assumptions on the two factors
in the integral. Suppose we have no prior information on λ and that our model does
not favour any value of λ. In this case, the prior on λ is constant within the range
λ ∈ [λmin,λmax], i.e.

p(λ|Y, I ) = 1

λmax − λmin
, for λmin ≤ λ ≤ λmax. (4.42)

Furthermore, we assume the likelihood to be a Gaussian centred around the maxi-
mum lilkelihood λ0 with a standard deviation given by σλ. Therefore, the likelihood
p(d|λ, Y, I ) is of the form

p(d|λ, Y, I ) = p(d|λ0, Y, I ) exp

[

− (λ − λ0)
2

2σ2
λ

]

. (4.43)

The evidence is consequently given by

p(d|Y, I ) =
∫

p(d|λ, Y, I )p(λ|Y, I )dλ

=
∫

1

λmax − λmin
p(d|λ0, Y, I ) exp

[

− (λ − λ0)
2

2σ2
λ

]

dλ

= p(d|λ0, Y, I )

λmax − λmin

∫

exp

[

− (λ − λ0)
2

2σ2
λ

]

dλ

= p(d|λ0, Y, I )
σλ

√
2π

λmax − λmin
. (4.44)

Finally, the odds ratio can be written as

O X
Y = p(X |I )

p(Y |I )
p(d|X, I )

p(d|λ0, Y, I )

λmax − λmin

σλ

√
2π

. (4.45)
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The factor p(X |I )/p(Y |I ) represents the prior odds of the models. We assume that
there is nothing in the background information that favours either X or Y , so that the
prior odds equals unity. The factor p(d|X, I )/p(d|λ0, Y, I ) compares the best fits of
the two models. In the case that Y is a more complicated model compared to X , this
factor is usually smaller than unity. If the goodness-of-fit was the only contribution,
we would indeed get that the more complicated model is preferred.

However, there is a third contributing factor, given by (λmax − λmin)/(σλ

√
2π).

This factor is big if the prior range for λ is large compared to the width of the like-
lihood, and conversely small if the width of the likelihood is much smaller than the
prior range. If the extra parameter λ is extraneously added such that the width of
the likelihood σλ is much smaller than the prior range λmax − λmin, the third factor
penalises model Y . Therefore, one is not at liberty to add arbitrary complexity to
the model without being penalised within the formalism of hypothesis testing. This
aspect of hypothesis testing is in line with Occam’s razor, i.e. “it is vain to do with
more what can be done with less”.

The concepts of hypothesis testing are pivotal when we wish to develop a test for
a specific physical theory. For example, it should be clear by now that simply mea-
suring a parameter or comparing best fits cannot constitute a test of the validity of a
theory. Furthermore, it should be clear that a test of GR should always compare two
generative models. In part II, we show that a generic test of GR can be constructed
by considering the GW phase coefficients from a CBC signal, given by Eq. (2.89),
and associate propositions to the correctness of these coefficients.
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Chapter 5
Computational Methods

Both parameter estimation and hypothesis testing follow the simple relations Eqs.
(4.21) and (4.31), respectively. However, the computation of the posterior and the
odds ratio can turn out to be difficult in practice. Suppose we have a problem with N
parameters in the model and we want to sample each parameter with an accuracy of
1 part in R. One would need to RN computations in order to evaluate the posterior
and even more to perform the evidence integral. For problems with limited number
of parameters, these calculations can be done through brute-force uniform sampling.
For problems in higher dimensions, brute-force methods are simply too inefficient
to be practically useful. Instead, a range of specialised algorithms are available to
alleviate the problems of computation.

In Sect. 5.1, we will introduce the Levenberg-Marquardt algorithm. The
Levenberg-Marquardt algorithm aims to find the stationary points of a given func-
tion. In Chap.12, we will use the Levenberg-Marquardt algorithm to find maxima of
posterior density functions associated to the cosmological parameters that describe
the large scale properties of the Universe.

Furthermore, we will introduce the Fisher information matrix in Sect. 5.2. The
Fisher information matrix is used to estimate the accuracy with which parameters in
a given model can be measured. The technique is often used in GW data-analysis
to obtain a quick estimate of the error associated to a given parameter. In Chap. 12,
we will use the Fisher information matrix to estimate the accuracy of the distance
measurement by the Einstein Telescope. The accuracy of the distance measurement
will then be used to construct likelihood functions for the cosmological parameters.

Finally, in Sects. 5.3 and 5.4 we will look into methods that can approximate the
full posterior density function given by Eq. (4.21) and the associated evidence given
by Eq. (4.37). Both Markov chain Monte Carlo methods (see Sect. 5.3) and Nested
Sampling (see Sect. 5.4) can be used to approximate the posterior density function
and the evidence. In Chap.8, we use these techniques to construct a data-analysis
pipeline that aims to test GR through the calculation of the odds ratio given by
Eq. (4.32).
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5.1 Levenberg-Marquardt Algorithm

Suppose we want to find the maximum of the posterior, because we are interested
in the most likely values of the parameters. One way to tackle this problem is to
evaluate the posterior on a grid and find the entry with the highest probability. This
method proves to be prohibitive if the dimensionality is more than a few. Instead, we
can use our knowledge of the posterior to find the maximum more efficiently.

The stationary points of a function f (x) can be found through the condition
d f/dx |x 0 = 0. Similarly, if the posterior depends on a set of N parameters θ , we
can find the stationary points through the simultaneous equations

∂θi p(θ |d, H, I )
∣
∣
θ0

= 0, (5.1)

where H denotes the generative model and d represents the data. The stationary
point is a maximum if the eigenvalues of the Hessian ∂θi ∂θ j p(θ |d, H, I )

∣
∣
θ0

are all

negative. Furthermore, if we are largely ignorant about the parameters before the
experiment, we can assign a flat prior distribution to the prior p(θ |I ) and write

p(θ |d, H, I ) ∝ p(d|θ , H, I ). (5.2)

Therefore, the maximum posterior coincides with the maximum lilkelihood.
Suppose we perform M independent measurements, yielding dk for k = 1,

2, . . . , M . The combined likelihood is subsequently given by

p({dk}|θ, H, I ) =
M
∏

k=1

p(dk |θ, H, I ). (5.3)

Similar to Sect. 3.2.1, we assume that the experimental noise is governed by a
Gaussian stochastic process with zero mean. This means that the probability dis-
tribution of the noise nk is given by

p(nk |I ) = 1

σk
√
2π

exp

{

− n2
k

2σ 2
k

}

, (5.4)

whereσk is the standard deviation associated to the characteristics of the experimental
noise. We can turn this into a probability distribution for dk by assuming that dk =
nk + fk , where the function f relates the parameters θ to the expectation value of
the data, i.e. fk(θ) = f (θ , k). The expression in Eq. (5.4) can then be rewritten as

p(dk |θ, H, I ) = 1

σk
√
2π

exp

{

− [dk − fk(θ)]2

2σ 2
k

}

, (5.5)

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Finally, the combined likelihood can be written as

p({dk}|θ, H, I ) ∝ exp

[

−χ2

2

]

, (5.6)

where we have defined the variable χ2 as

χ2 ≡
N

∑

k=1

[
dk − fk(θ)

σk

]2

. (5.7)

Therefore, theminimisation ofχ2 is equivalent to themaximisation of the likelihood.

5.1.1 Gauss’ Method

One way to minimise χ2 is through Gauss’ method. In this method, one expands the
generative function f to linear order around θ , i.e.

f (θ + δθ , k) ≈ f (θ , k) + ∂ fk

∂θ j
δθ j , (5.8)

where we assume that repeated indices are summed over. Then, Eq. (5.7) can be
rewritten as

χ2 =
[

dk − fk − Jk jδθ j

σk

]2

, (5.9)

where Ji j is called the Jacobian and is given by

Ji j = ∂ fi

∂θ j
. (5.10)

We can simplify the notation by dividing all variables by σk and denoting themwith a
hat, i.e. d̂k ≡ dk/σk . To find the minimum, we then solve for the set of simultaneous
equations

∂δθi χ
2 = Ĵki

[

d̂k − f̂k − Ĵk jδθ j

]

= 0. (5.11)

Rearranging this equation, we obtain the so-called normal equation

Ĵki Ĵk jδθ j = Ĵki

(

d̂k − f̂k

)

. (5.12)
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Starting from an initial guess θ1, Eq. (5.12) can be solved for δθ1 and the estimate
updated through θ2 = θ1 + δθ1. The algorithm will thus find the minimum through
successive iterations until the Jacobian yields the desired minimisation condition.

Gauss’ method has a rapid convergence near the optimal solution. However, solv-
ing the normal equation does not guarantee that the updated estimate resides in a
location where the approximation Eq. (5.8) is valid. It is therefore not uncommon
that Gauss’ method fails to converge.

5.1.2 Gradient Method

Another method to find the minimum of a function f is to traverse in the negative
direction of the gradient ∇ f . Thus, in order to get reach the minimum, we obtain the
update on the current state through the gradient of the χ2 in Eq. (5.7):

δθi = −κ
(

∇θχ
2
)

i

= κ Ĵki

(

d̂k − f̂k

)

, (5.13)

where κ ≥ 0 is a parameter to be adapted throughout the algorithm. Just as Gauss’
method, the gradient method finds minima through iteratively updating the initial
guess with δθ from Eq. (5.13) until the conditions of a minimum are met.

5.1.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method combines Eqs. (5.12) and (5.13) into the so-called
augmented normal equation,

(

Ĵki Ĵk j − λIi j

)

δθ j = Ĵki

(

d̂k − f̂k

)

, (5.14)

where Ii j is the unit matrix and λ ≥ 0 is again a parameter to be tuned throughout
the course of the algorithm. Depending on the value of λ, the algorithm behaves
either like Gauss’ method or the gradient method. For large λ, the augmented normal
equation becomes similar to Eq. (5.13) and thus the gradient method. Conversely,
for small λ, the augmented normal equation becomes similar to Eq. (5.12) and thus
Gauss’ method.

The algorithm decides on the value of λ according to several principles. Firstly,
the value of χ2 should decrease, i.e.

χ2 (θ i+1) < χ2 (θ i ) . (5.15)

Secondly, the value of λ should be kept small enough to make sure that the linear
expansion in Eq. (5.8) is sufficient to validate the normal equation in Eq. (5.12).
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5.2 Fisher Information Matrix

Suppose we have an experiment with a generative model H , the corresponding set
of N parameters θ , the observed data d and the background information I . We can
then express the posterior of θ by using Bayes’ theorem

p(θ |d, H, I ) = p(d|θ , H, I )p(θ |H, I )

p(d|H, I )
. (5.16)

The only factor on the RHS that depends on the data d and involves the parameters
θ is the likelihood p(d|θ , H, I ). It is therefore evident that

within the context of the specified model, the likelihood function p(d|θ , H, I ) contains all
the information about the set of parameters θ that is present in the data d.

This statement is often referred to as the likelihood principle. Using the likelihood
principle, we can argue that in order to assess the ability of an experiment to mea-
sure θ , we only need to focus on the likelihood.

5.2.1 Resolving Power of an Experiment

Suppose that the data d consist of a set of M independent measurements

d = {x1, x2, . . . , xM } . (5.17)

The logarithm of the likelihood function is then given by

1

M
ln p(d|θ , H, I ) = 1

M

M
∑

i=1

ln p(xi |θ, H, I ). (5.18)

In the limit of M → ∞, we assume that the relative frequency of the values of xi is
the same as if the values were drawn from the sampling distribution p(x |θT , H, I ),
where θT is the true value of θ . Therefore, we can assert that

lim
M→∞

1

M
ln p(d|θ , H, I ) =

∫

p(x |θT , H, I ) ln p(x |θ , H, I )dx

= E [ln p(x |θ , H, I )]x . (5.19)

Wemake the assumption that the true value of θT coincides with the maximum lilke-
lihood value θ0. Next, we can expand the likelihood function around the maximum
value θ0
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ln p(x |θ , H, I ) ≈ ln p(x |θ0, H, I ) + 1

2

N
∑

i, j=1

∂2 ln p(x |θ , H, I )

∂θi∂θ j

∣
∣
∣
∣
θ0

δθiδθ j ,

(5.20)

where we have used the fact that the linear terms in this expansion disappear at the
maximum lilkelihood. Taking expectation values,we obtain the following expression

E [ln p(x |θ , H, I )]x ≈ E [ln p(x |θ0, H, I )]x + 1

2

N
∑

i, j=1

E

[

∂2 ln p(x |θ , H, I )

∂θi∂θ j

∣
∣
∣
∣
θ0

]

x

δθi δθ j .

(5.21)

Rearranging this expression and using Eq. (5.19) we can write

lim
M→∞

1

M
ln

[
p(d|θ , H, I )

p(d|θ0, H, I )

]

= −1

2

N
∑

i, j=1

Ii jδθiδθ j , (5.22)

where the Fisher information matrix Ii j is defined as

Ii j ≡ −E

[

∂2 ln p(x |θ , H, I )

∂θi∂θ j

∣
∣
∣
∣
θ0

]

x

= −
∫

p(x |θ0, H, I )
∂2 ln p(x |θ , H, I )

∂θi∂θ j

∣
∣
∣
∣
θ0

dx . (5.23)

Equation (5.22) already gives us a hint that the Fisher information matrix is a mea-
sure of an experiment’s resolving power for the parameters θ . Formally, the Fisher
information matrix can be shown to follow the Cramer-Rao bound [1, 2]

σ 2(θi ) ≥
(

I−1
)

i i
, (5.24)

i.e. the diagonal elements of the inverse Fisher matrix give a lower bound on the
variances expected from an experiment.

5.2.2 Fisher Matrix in Gravitational-Wave Data Analysis

Suppose that the detector output is given by

s(t) = h(t, θ) + n(t), (5.25)
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where n(t) is the noise described by aGaussian stochastic process, cf. Sect. 3.2.1, and
h(t, θ) denotes the GWwhich depends on the set of N parameters θ . The probability
distribution of the detector output is given by

p(s|θ) ∝ exp

{

−1

2

∫

dt1dt2 n(t1)
(t1, t2)n(t2)

}

∝ exp

{

−1

2

∫

dt1dt2 [s(t1) − h(t1; θ)]
(t1, t2) [s(t2) − h(t2; θ)]

}

,

(5.26)

where we have replaced the auto-correlation function R from Eq. (3.10) with


(t1, t2) ≡ R−1(t1, t2). (5.27)

Consequently, the Fisher matrix is given by

Ii j ≡ −E

[

∂2 ln p(s|θ, H, I )

∂θi∂θ j

∣
∣
∣
∣
θ0

]

s

= −
∫

Dsdt1dt2 p(s|θ0, H, I )

{
∂2h

∂θi∂θ j
(t1; θ0)
(t1, t2) [s(t2) − h(t2; θ0)]

− ∂h

∂θi
(t1; θ0)
(t1, t2)

∂h

∂θ j
(t2; θ0)

}

, (5.28)

where
∫

. . .Ds denotes the functional integral over all possible data realisations.
Next, we assume that the SNR is high and that first term on the RHS can be neglected
compared to the second term. We can thus write

Ii j ≈
∫

dt1dt2

{
∂h

∂θi
(t1; θ0)
(t1, t2)

∂h

∂θ j
(t2; θ0)

} ∫

Ds p(s|θ0, H, I )

≈
∫

dt1dt2

{
∂h

∂θi
(t1; θ0)
(t1, t2)

∂h

∂θ j
(t2; θ0)

}

≈
∫

d f1d f2

{

∂̃h

∂θi
( f1; θ0)
̃(− f1,− f2)

∂̃h

∂θ j
( f2; θ0)

}

. (5.29)

From Eqs. (3.11) and (5.27), we can verify that


̃( f1, f2) = δ( f1 + f2)
1
2 Sn( f1)

. (5.30)

http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Inserting Eq. (5.30) into Eq. (5.29), we have

Ii j ≈
∫

d f1d f2

{

∂̃h

∂θi
( f1; θ0)

δ(− f1 − f2)
1
2 Sn(− f1)

∂̃h

∂θ j
( f2; θ0)

}

≈
∫

d f2

{

∂̃h

∂θi
(− f2; θ0)

1
1
2 Sn( f2)

∂̃h

∂θ j
( f2; θ0)

}

≈
∫

d f2

{ ˜∂h

∂θi

∗
( f2; θ0)

1
1
2 Sn( f2)

∂̃h

∂θ j
( f2; θ0)

}

, (5.31)

where we have used the fact that h(t) is real. Finally, with the definition of the inner
product in Eq. (3.22), we can write

Ii j =
(

∂h

∂θi

∣
∣
∣
∣

∂h

∂θ j

)∣
∣
∣
∣
θ0

. (5.32)

Therefore, the ability for GW detectors to measure parameters can be estimated by
the knowledge of the waveform and the power spectral density.

5.3 Monte Carlo Methods

What we have seen so far are methods to obtain specific pieces of information from
a target distribution, e.g. Levenberg-Marquardt algorithm to find the maximum and
the Fisher information matrix for the variance. To get a complete picture, one would
like to obtain the full probability (density) function, P(x). However, it is often the
case that one only has access to a function P̃(x), where

P(x) = P̃(x)

Z
, (5.33)

i.e. one does not have access to the normalisation constant Z . Furthermore, even if one
has access to Z , evaluating P(x) in a high-dimensional space can be cumbersome,
even for modern computers.

To alleviate this problem, one can resort to the use ofMonte Carlomethods.Monte
Carlo algorithms are computational techniques that use random numbers to generate
samples from a desired probability distribution P(x). The goal is thus to generate a
set of samples

{

x (r)
}

from P̃(x).

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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5.3.1 Markov Chain Monte Carlo Methods

MCMC methods form a subclass of Monte Carlo methods that sample the desired
distribution P(x) by using an object that transitions from one location of the para-
meter space to another. An MCMCmethod is characterised by an initial distribution
p(0)(x) and a transition probability T (x ′, x). The probability distribution of the state
at the t + 1th iteration of the Markov chain is given by

p(t+1)(x ′) =
∫

dx T (x ′, x)p(t)(x). (5.34)

The Markov chain must posses two properties [3]. Firstly the desired distribution
P(x) is an invariant distribution of the chain. The invariance of a distribution π(x)

under the transformation T (x ′, x) is given by

π(x ′) =
∫

dx T (x ′, x)π(x). (5.35)

Alternatively, the chain must satisfy detailed balance, i.e.

T (xa, xb)P(xb) = T (xb, xa)P(xa). (5.36)

Secondly, the chain must be ergodic, i.e. tend to an invariant distribution �(x) under
the transformation T (x ′, x). This can be written as

p(t)(x) → �(x) as t → ∞ for any p(0)(x). (5.37)

5.3.2 Metropolis-Hasting Sampling

The Metropolis-Hastings algorithm is an MCMCmethod that aims to sample from a
target distribution that is inherently difficult to sample by using a different distribution
from which we do know how to sample.

The Metropolis-Hastings algorithm works as follows. A new sample x (t+1) is
generated from the proposal distribution Q(x; x (t)). The transition from x (t) to x (t+1)

depends on the acceptance a, where

a = P(x ′)
P(x (t))

Q(x (t); x ′)
Q(x ′; x (t))

. (5.38)

If the proposal distribution is symmetric, such as for a Gaussian distribution, the
acceptance simply becomes

a = P(x ′)
P(x (t))

. (5.39)
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Subsequently, the new sample x (t+1) is chosen according to

if a ≥ 1 :
x (t+1) = x ′

else:

x (t+1) =
{

x ′ with probability a

x (t) with probability1 − a.
(5.40)

The disadvantage of the Metropolis-Hastings algorithm is that it produces correlated
samples. Hence, samples should only be kept for every n iterations, such that n steps
in the proposal distribution are larger than the auto-correlation length of the proposal
distribution. As an advantage, the proposal distribution does not need to match the
target distribution in order for the Metropolis-Hastings algorithm to be practically
useful. Therefore, theMetropolis-Hastings algorithm is a generically useful approach
to sample distributions such as the posterior or the prior.

5.4 Nested Sampling

We now turn to the calculation of the evidence

p(d|H, I ) =
∫

d N θ p(d|θ, H, I )p(θ |H, I )

=
∫

d N θ L(θ)π(θ), (5.41)

where L(θ) represents the likelihood and π(θ) represents the prior. The calculation
of the evidence is crucial in performing hypothesis testing, cf. Sect. (4.3). In this
section, we describe Nested Sampling, which is an algorithm aimed at efficiently
computing the evidence integral Eq. (5.41), even if the parameter space is large or
has a high dimensionality. As an optional by-product, Nested Sampling also outputs
the posterior distribution at minimal extra computational cost.

5.4.1 Basic Idea

Nested Sampling computes the evidence by rewriting the functions in Eq. (5.41) that
depend on the set of N parameters θ in terms of a single scalar variable called the
prior mass X . This prior mass is defined as “the fraction of the prior volume with
likelihood greater than λ”. Mathematically, the prior mass is defined as

http://dx.doi.org/10.1007/978-3-319-19273-4_4
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Fig. 5.1 Schematic example of the transformation of the evidence integral fromamulti-dimensional
integral into a single dimensional one. The top left panel shows the equal likelihood contours in the
(θ1, θ2) plane of the parameter space �. The black lines represent the contours for equal-likelihood
and the area inside represents the prior probability subject to the likelihood constraint L > Li , the
prior mass. The top right panel shows the likelihood as a function of the prior mass L̃(X). The
bottom left panel shows that the evidence is simply given by the area under the L̃(X) curve. The
bottom right panel is a depiction of posterior samples obtained by sampling the L̃(X) curve

X (λ) ≡
∫ ∫

· · ·
∫

L(θ)>λ

π(θ)d N θ . (5.42)

In other words, the prior mass corresponds to the prior integrated over the hypervol-
ume in the N -dimensional parameter space � which is bounded by the hypersurface
characterised by L = λ, as show in the top left panel of Fig. 5.1. The element of the
prior mass is given by

d X = π(θ)d N θ . (5.43)

Since the prior probability density function π(θ) is normalised with respect to θ , the
prior mass has a range of X ∈ [0, 1]. The lower bound X = 0 corresponds to the
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surface within which there is no higher likelihood, thus associated to λ = Lmax. The
upper bound X = 1 corresponds to the surface where all the points inside have a
higher likelihood, and is associated to λ = Lmin.

We can now transform the factors in Eq. (5.41) to functions depending on the prior
mass. Firstly, the likelihood function can be expressed as

L̃(X (λ)) ≡ λ. (5.44)

where L̃(X) is a monotonically decreasing function. An example of L̃(X) is shown
in the top right panel of Fig. 5.1. Secondly, we can rewrite the evidence integral to be

Z =
∫ ∫

· · ·
∫

L(θ)π(θ)d N θ

=
∫

L̃(X)d X. (5.45)

The evidence is thus the area under the L̃(X) curve as shown in the bottom left panel
of Fig. 5.1. Lastly, the posterior P(θ) is given by

P̃(X) = L̃(X)

Z
. (5.46)

This posterior is obtained by sampling the curve L̃(X) as shown in the bottom right
panel of Fig. 5.1.

The idea behind Nested Sampling is thus to construct the function L̃(X). This is
done by progressively finding locations in the parameter space with higher likelihood
and assigning a progressively smaller prior mass to these locations (as L̃(X) is a
monotonically decreasing function). Once L̃(X) has been mapped, the assignment
of the evidence and the posterior can be done with Eqs. (5.45) and (5.46). Before we
explain the Nested Sampling algorithm further, we can elucidate the concepts thus
far with two examples from Skilling [4].

Example 1
Suppose we have a two dimensional parameter space and the corresponding likeli-
hood function, represented by a 4 × 4 grid

L =

⎡

⎢
⎢
⎣

0 8 15 3
11 24 22 10
19 30 26 16
9 23 18 6

⎤

⎥
⎥
⎦

. (5.47)

To each cell of the 16 cells, we assign an equal prior mass element of 
X = 1/16.
The idea of Nested Sampling is to sort the likelihood elements starting with the
lowest value of the likelihood, which in this case is given by
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L = (0, 3, 6, 8, 9, 10, 11, 15, 16, 18, 19, 22, 23, 24, 26, 30). (5.48)

To get the evidence, one approximates the integral in Eq. (5.45) by

Z =
∫

L̃(X)d X

≈
∑

i

L̃ i
Xi , (5.49)

and evaluates the evidence to be

Z = 0 + 3 + 6 + 8 + 9 + 10 + 11 + 15 + 16 + 18 + 19 + 22 + 23 + 24 + 26 + 30

16
= 5.

(5.50)

Having sorted the two dimensional likelihood into a one dimensional array, we can
now approximate the likelihood for X = 1/5 by the fourth item (roughly a fifth of the
sixteen items) counting from the right, from the sorted list. The associated likelihood
is thus L̃(X = 1/5) ≈ 23 (remember that X = 1/5 confines a fifth of the total prior
volume in which the likelihood is greater than the likelihood of the boundary). The
corresponding area in parameter space is shown in grey

(5.51)L

0 8 15 3
11 24 22 10
19 30 26 16
9 23 18 6

.

Example 2

In the second example,we donot assume that the likelihood has already beenmapped.
Suppose we first drop 3 so-called live points uniform with respect to the prior. On the
left panel of Fig. 5.2 these points are denoted by the numbers 1, 3, 4. Their associated
prior mass Xi is shown in the right panel of Fig. 5.2. Point 1 has the lowest likelihood
L1 and the highest prior mass X1. We assume for the moment that we know how to
assign the prior mass according to a given likelihood. Finally, we store its location
in the parameter space θ1, its prior mass X1 and its likelihood L1.

Next, we discard the point with the lowest likelihood (point 1) from our set of
live points and sample a new point from the prior, but now with the constraint that
L > L1. This new point is denoted by point 2. Note that the remaining live points
(points 3 and 4) automatically satisfy the condition L > L1. Again, we find the live
point with the smallest likelihood, which turns out to be point 2 (note that it is not
necessary that the newly drawn point has the lowest likelihood value; it only has to
obey the condition L > L1). Since L2 > L1, we know that the prior mass for point 2
must satisfy X2 < X1. As with X1, the parameters of point 2 are stored and the point
is subsequently discarded from the set of live points in favour of again a new point,
but now subject to the adjusted likelihood condition L > L2. After 5 iterations, we
have collected 5 sorted points (1, 2, 3, 4, 5) from the L̃(X) curve, which allows us
the perform the integral in Eq. (5.45) and obtain an estimation of the evidence.
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Fig. 5.2 Schematic overview of the Nested Sampling algorithm with 3 so-called live points and 5
iterations. The left panel shows the locations in the parameter space which either of the three live
points have explored. The right panel shows these same locations, but now in terms of the prior
mass

5.4.2 Algorithm

Probabilistic Estimation of the Prior Mass
Although there is a correspondence between the parameter space � and the prior
mass X , the mapping might not be trivially done through brute-force computation if
the parameter space is large or if the dimensionality is high. Instead, Nested Sampling
seeks to assign the prior mass statistically.

Suppose we have two points in the parameter space θ0, θ1, their corresponding
likelihoods L0, L1 and prior masses X0, X1, respectively. If L1 > L0, then, from
the definition of the prior mass in Eq. (5.42), we can assert that

X0 > X1 for L0 < L1. (5.52)

Furthermore, from Eq. (5.43), we know that the density of states of the prior mass
is equal to the density of states of the prior in the parameter space. Therefore, if we
sample the prior in the parameter space subject to the constraint L > L∗, we know
we are sampling the prior mass uniformly between 0 < X < X∗, where X∗ is the
prior mass corresponding the likelihood value L∗. With this in mind, we can now
statistically assign a prior mass corresponding to the exploration of our parameter
space.
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Suppose we drop M samples across the entire parameter space, labelled by an
index i , according to the prior probability distribution. Each of these samples has
a likelihood associated with it through its location in the parameter space. Thus,
we know that each of these samples is associated to a surface within which the
likelihood is higher than at the boundary. Equivalently, we know that these samples
are uniformly sampled in the entire prior mass region (between 0 and 1). Therefore,
each sample in prior mass can be considered to be drawn from

X ∈ U (0, 1), (5.53)

where U (0, 1) represents the uniform distribution in the interval [0, 1). The proba-
bility that the prior mass is drawn with a value less than some X is given by

P(X) =
∫ X

0
d X ′ (5.54)

= X.

If we define the X∗ to be the highest prior mass, then we know this surface has
a corresponding likelihood L∗ that is the smallest of the set of M likelihoods. The
probability that the surface with the highest prior mass is at X = χ is therefore given
by the joint probability that none of the samples have a prior mass greater than χ .
This joint probability distribution is thus

P({Xi } < χ) =
M
∏

i

∫ χ

0
d Xi (5.55)

=
M
∏

i

χ

= χ M .

The probability density that the highest of M samples has a prior mass of χ is
subsequently given by

P(χ, M) = ∂ P(Xi < χ)

∂χ
(5.56)

= Mχ M−1.

Similarly, if we sample M points from the prior within the region 0 < X < X∗,
we can define the shrinkage ratio t ≡ X

X∗ . The shrinkage ratio follows the same
distribution as χ in Eq. (5.56)

P(t, M) = Mt M−1, (5.57)
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and the prior mass X can then be obtained by X = t X∗.

Sampling the Constrained Prior
Themain difficulty of Nested Sampling is sampling the prior subject to the constraint
L > L∗. For most problems, the prior cannot be straightforwardly sampled and one
has to resort to Monte Carlo methods.

The specificdetails of sampling the constrainedprior are unimportant to theNested
Sampling algorithm, as long as one is able to obtain (approximately) independent
samples. It therefore suffices to use aMonteCarlomethod.A commonmethod used in
conjunction with Nested Sampling is the Metropolis-Hastings algorithm, explained
in Sect. 5.3.

Termination Condition
The steps described above can, in principle, be repeated ad infinitum and can be used
to acquire an increasingly better estimate of the evidence. In practice, one would like
to have a termination condition that ensures a good evidence estimation in the least
amount of time.

Although there is no obvious termination condition associated to Nested Sam-
pling, several practical guidelines can be applied. Firstly, one can estimate the infor-
mation as a function of the evidence and the likelihood

H =
∫

P(X) ln (P(X)) d X (5.58)

≈
∑

k

Lk

Z
ln

Lk

Z

Xk,

where P(X) is the posterior density as a function of the prior mass. As most of the
evidence is found within X = e−H, one can terminate the algorithm when most of
the information is acquired [3].

Secondly, one can estimate the amount of evidence yet to be accumulated and
compare that to the evidence already accumulated.The algorithmcanbe stopped if the
remaining evidence is a user-specified fraction of the evidence already accumulated.
For example, we can assume that all the remaining points have a likelihood equal to
the maximum lilkelihood in the set of live points Lmax. The termination condition
then becomes

LmaxXcur < αZcur, (5.59)

where α is a user-specified constant.
Ultimately, the termination conditionwill depend on the specifics of the likelihood

and the prior. Therefore, a termination condition is usually found through trial and
error, satisfying the required accuracy as well as optimising for the computation time.
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Computing the Posteriors
Although Nested Sampling is mainly aimed at producing the evidence, it can also
estimate the posterior as a by-product. Recall that Nested Sampling stores a set
of locations {θk} in the parameter space, the associated likelihoods {Lk} and prior
masses {Xk}. Each of the samples θi obtained from the Nested Sampling algorithm
occupies a fraction of the posterior distribution given by the associated fraction of
prior volume and the likelihood value at θi ,

wi = L(θi )
Xi

Z
. (5.60)

This fraction of the posterior wi is then the weight given to each sample in order to
construct the posterior distribution.

Nested Sampling in Pseudo-code
We can summarise the Nested Sampling algorithm in terms of pseudo-code. We
assume the algorithm to run with M live points and that the sampling of the prior
with a likelihood constraint does not pose computational problems.

1. Sample M points θ1, . . . , θM from prior π(θ).
2. While not termination condition

(a) record live point i with lowest Li as Lk ,
(b) assign Xk = tk Xk−1 where tk from P(tk) = Mt M−1

k ,
(c) replace point i with sample from π(θ) subject to Li > Lk .

3. Estimate Z by integrating {Lk, Xk}.

5.4.3 Accuracy of Nested Sampling

There are several uncertainties that can be associated to the probabilistic nature of the
Nested Sampling algorithm. Firstly, the probabilistic determination of the prior mass
introduces an uncertainty that is linked to the spread of the distribution in Eq. (5.57).

Suppose we use a series of shrinkage factors denoted by t . One can quantify the
statistical properties of the evidence and the posterior by evaluating its j th moment

E
[

Z j
]

t
=

∫

[Z(t)] j P(t)Dt, (5.61)

E
[

(P(θk))
j
]

t
=

∫

(P(θk, t)) j P(t)Dt. (5.62)

Computationally, we can achieve this by generating the series of shrinkage factors
a number of times with a different state of the random number generator. With a
collection of series of shrinkage factors, we can obtain a collection of evidences
from which we can obtain the statistical properties. Note that this does not require
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us to rerun the algorithm as the likelihood values are obtained independent of the
values of the prior mass.

As it turns out, this contribution to the uncertainty decreases with the number of
live points used. This can be seen by evaluating the variance of Eq. (5.57), given by

σ 2
t = M

(M + 1)2 (M + 2)
. (5.63)

We see that the uncertainty goes to zero in the limit of large M . Therefore, providing
a sufficient number of live points reduces the uncertainty in the distribution of t .

Secondly, the imperfect sampling of the prior is a source of uncertainty. This kind
of uncertainty affects the set of likelihoods from our live points and ultimately affects
the assignment of the prior mass. However, this uncertainty depends on the details
of the method used to sample the prior. A quantification of this source of uncertainty
can be obtained by running the algorithm a number of times with a different state of
the random number generator.

The accuracy of Nested Sampling will ultimately depend on the problem at hand.
The choice for the number of live points and the method used to sample the prior
depends largely on the shape and dimensionality of the likelihood and prior.

5.4.4 Nested Sampling in Gravitational-Wave Data Analysis

Consider a data stream s that represents the strain output of the interferometer. The
data stream can consist of noise, n, and the GW signal, h. We can compute the
evidence for the following two hypotheses.

1. HN is the noise-only model. It assumes that the detector strain only results from
noise sources, i.e.

s = n. (5.64)

This model has no free parameters, as it is only a function of the noise.
2. HS is the signal model. This model assumes that the detector response consists

of the true GW signal embedded in noise, i.e.

s = n + hS . (5.65)

This hypothesis does depend on the signal parameters θS through hS .

To obtain the desired odds ratio, one needs to compute the evidences P(s|Hi , I) for
each of the two aforementioned hypotheses [cf. Eq. (4.32)]. Assuming that the noise
is governed by a Gaussian stochastic process [see Eq. (5.4)], the evidence for the
noise-only hypothesis HN is given by

http://dx.doi.org/10.1007/978-3-319-19273-4_4
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P(s|HN , I) ∝ e−(s|s)/2, (5.66)

For the signal hypothesis HS , the evidence is given by

P(s|HS, I) ∝
∫

d N θ e−[s−h(θ)|s−h(θ)]/2π(θ), (5.67)

where the model waveform h can be different from the signal waveform hS . For
example, a real GW will be different from a waveform obtained by using the PN
formalism. In simulations, such differences can be introduced by using different
approximations of the waveform. The evidence integral can be computed with the
Nested Sampling algorithm. However, one still needs to choose the appropriate prior
probability function for the GW parameters. The choice of priors are left to be dis-
cussed when the method parameters are chosen for the simulations (see Sect. 8.1.2).

Finally, the joint likelihood for the coherent analysis of the output from multiple
detectors is simply the product of the individual likelihoods

P(scoh|Hi , I) =
∏

j

P(s j |Hi , I), (5.68)

where the index j runs over the individual detectors considered, and theHi is either
the noise or signal hypothesis.
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Chapter 6
Introduction

6.1 Classic Tests

Einstein’s theory of GR is known for its mathematical elegance, but the theory also
acquired great success through its agreement with experiments. Three tests of GR are
considered to be the classic tests. The first classic test was the correct explanation of
the anomalous perihelion advance of Mercury. Despite careful analyses, Newton’s
laws could not account for an excess of 43 arc seconds per century in the perihelion
shift, discovered as early as 1845 by Le Verrier [1]. In 1915, Einstein showed that
his theory of GR could explain this anomalous shift, without the need of an ad hoc
solution such as an extra planet [2].

The second classic test was the measurement of the deflection of light by the Sun.
As light grazes the surface of the Sun it is deflected by the mass of the Sun. Based on
Newtonian arguments, this deflection was calculated to be 0.88 arc seconds, whereas
GR predicted this to be 1.75 arc seconds. Two teams led by Eddington measured
the positions of stars before and during the solar eclipse of 1919. The measurements
of the angular displacement by the two groups confirmed the prediction by GR
[3]. However, these results were later met with skepticism over systematic errors.
Nevertheless, upon the announcement of the results, Einstein and his theory of GR
became world famous.

The third test, the measurement of the gravitational redshift, was already hypoth-
esised by Einstein in 1907. It was not until 1960 that Pound and Rebka measured the
redshift associated to the non-uniformity of the gravitational field [4]. In this exper-
iment, photons were sent down the 74 ft tower of the Jefferson Physical Laboratory
(Harvard University) and their frequency was measured at the ground. The resulting
shift in frequency was consistent, up to a few percent in accuracy, with Einstein’s
prediction that photons gain energy, i.e. are measured with a higher frequency, as
they go down the Earth’s gravitational potential. Similarly, photons were found to
lose energy when they were sent upwards. This experiment confirmed the influence
of amassive object on spacetime itself. Themeasurement of the gravitational redshift
sparked a period of precision tests of GR.

© Springer International Publishing Switzerland 2015
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6.2 Precision Tests

As technology improved over the years, new tests of GR were devised in order to
put Einstein’s theory under scrutiny. Most of these tests could not be performed in a
regular laboratory, as the distances were too short and objects not massive enough.
Instead, the solar system and beyond became the test bed for GR.

The sheer volume of different precision tests that were performedmakes it impos-
sible to review them all. However, below is a list of a few notable tests.

• Shapiro time delay: As radar signals graze amassive object, they experience a time
delay in a round-trip due to the gravitational potential [5]. The most accurate test
on this phenomenon was done by the Cassini-Huygens spacecraft and its result is
in accordance with the predictions made by GR to less than 2 × 10−3 % [6].

• Gravitational lensing: Similar to the deflection of light by the Sun, gravitational
lensing occurs through the deflection of light by massive objects. Such massive
objects, e.g. galaxies or galaxy clusters, act like a lens for light, magnifying and
distorting the images observed here on Earth [7]. Measurements of the deflection
of radio waves by the solar gravitational field using a technique called very-long
baseline interferometry (VLBI) constrain GR to ∼1 × 10−2 %. [8].

• Nordtvedt effect: If the Earth and the Moon were to have different fractional
contributions from self-gravitation to the mass, i.e. the equivalence principle is
violated, they would each behave differently under the Sun’s gravitational field,
causing a shift of the orbit between the Earth and theMoon [9]. Themost up to date
measurement of this effect is done through laser observation on the Earth-Moon
system [10]. The so-called Nordtvedt parameter is found to be η = (−0.6±5.2)×
10−4, where η = 0 corresponds to GR.

• Lense-Thirring effect: GR predicts the existence of a relativistic correction to the
precession of a gyroscope near a large rotating mass, called the Lense-Thirring
effect [11]. Gravity Probe B reported a geodetic drift rate and a frame-dragging
drift rate that are consistent with the predictions by GR up to ∼6 × 10−2 % and
∼5% in accuracy, respectively [12].

6.3 Binary Pulsars

As impressive as the solar system tests of GR have been on the technological side,
the regime in which GR was tested does not compare with the fully dynamical and
non-linear aspects that are predicted by GR. The measurements of GWs could be the
primary means through which experiments will have access to these aspects of GR.

A first realisation of such measurements, albeit indirect, came from the discovery
of the binary pulsar system PSR B1913 + 16 by Hulse and Taylor [13]. This binary
system consists of a pulsar and a companion NS, spiralling around each other. As
the two objects go through their orbital motion around their common centre of mass,
the orbital separation decreases as GWs carry away energy and angular momentum.



6.3 Binary Pulsars 97

Through precise measurements on the pulsar, one can infer the system’s characteris-
tics, and in particular, the change in the orbital period. As it turns out, this change is
in close agreement with the quadrupole emission of GWs, described in Sect. 1.6.2,
and leaves little room to doubt the quadrupole formula for the emission of GWs.

In order to gauge the regime in which tests of GR reside, it is instructive to look
at two dimensionless quantities, the speed and the compactness. The dimensionless
speed, v/c, gives us an insight into how significant relativistic effects are on the
system. The compactness, G M

c2R
, where M denotes the total mass of the system and

R the orbital separation, shows the strength of the gravitational potential relative to
the rest energy of a test particle.

Even the most relativistic binary pulsar, PSR J0737-3039 [14, 15], is still in
the relatively slowly varying, weak-field regime from a GR point of view, with a
compactness of G M/(c2R) � 4.4 × 10−6, and a typical speed of v/c � 2 × 10−3.
As a reference, the compactness at the Sun’s surface is of the order of 10−6 and
the typical speed of Mercury is of the order of 10−4. It is thus evident that even the
binary pulsar systems, which are currently providing the most stringent tests of GR,
are still mildly relativistic in nature.

6.4 Gravitational Waves

The direct detection of GWs with interferometric detectors such as LIGO and Virgo
will provide more stringent tests of GR than binary pulsar measurements. As a
comparison, forCBCsystems, in the limit of a test particle around a non-spinningBH,
the last stable orbit [16] occurs at a separation of R = 6G M/c2, whereG M/(c2R) =
1/6 and v/c = 1/

√
6. This constitutes the genuine strong-field, dynamical regime

of GR, which, in the foreseeable future, will only be directly accessible by means of
GW detectors.

6.4.1 Literature Overview

Indeed, an important goal of direct detections of GWs is the confirmation or falsi-
fication of GR in the truly strong-field and dynamical regime. Even as much as a
single detection of GWs can make countless experiments that were in accordance
with GR redundant. There exists a rich literature in which a number of tests were
proposed that can be performed on the direct detection of GWs. What follows is a
brief overview of these tests.

6.4.1.1 Gravitational-Wave Properties

One way to test GR is to look at the properties of GWs. For example, GWs propagate
at the speed of light. If a GW event is measured with an associated electromagnetic

http://dx.doi.org/10.1007/978-3-319-19273-4_1
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event, one can compare their arrival times. If the source distance is large enough,
even a small fractional difference in the speed at which these two types of waves
propagate, could lead to a measurable mismatch in their arrival times. Theories such
as the Rosen bi-metric theory [17], where GWs follow geodesics of a flat metric and
light follows geodesics of a curved metric, and massive graviton theories [18, 19]
would both predict such a difference in the arrival times between light and GWs.

Another property of GWs in GR is that they can be described by only two polar-
isations, as shown in Sect. 1.3. In alternative theories, this is not necessarily true.
For example, the Brans-Dicke theory [20] predicts a monopole polarisation, which
manifests itself as a so-called breathing mode [21–25]. When a wave arrives perpen-
dicular to the plane of circularly aligned test masses, such a mode would cause the
entire ring of test particles to expand uniformly and is therefore invisible to a single
interferometric detector, cf. Sects. 1.4.3 and 3.1.1. However, a network of detectors
does provide the opportunity to measure such a polarisation [26, 27]. A single mea-
surement of the monopole polarisation would also provide evidence that GR may
not be the correct theory.

Additionally, one can test the objects that GR predicts. Most notable of such
objects are BHs. As the interaction of non-charged BHs is a pure spacetime phe-
nomenon, this provides an excellent way to study the predictions made by GR.
Measurements of the BH properties, such as its mass and spin, can empirically test,
for example, Penrose’s cosmic censorship conjecture [28, 29] and the BH uniqueness
theorem [29–35].

6.4.1.2 Direct Search for an Alternative Theory

Besides the searches for unpredicted phenomena, studies have targeted the evolution
of binary systems. These tests have focussed on modelling the expected GWs from
alternative theories, and the ability to measure the difference between these and the
predictions made by GR.

Possible deviations from GR that have been considered in the context of CBC
systems include scalar-tensor theories [36–41], a varying Newton constant [42],
modified dispersion relation theories, usually referred to in literature as ‘massive
graviton’ models1 [40, 41, 44–49], and parity violating theories [50–53]. The (rather
few) specific alternative theories of gravity that have been considered in the context
of ground-based GW detectors—essentially scalar-tensor and ‘massive graviton’
theories—happen to be hard to constrain much further with GW observations. How-
ever, GR may be violated in some other manner, including a way that is yet to be

1The designations ‘massive gravity’ and ‘massive graviton’ originate fromBlanchet et al. [43]where
only the effect of a modified dispersion relation, or a wavelength dependent propagation speed has
been taken into account. While it is attractive to ascribe such a modification to a graviton mass, a
modification of the dispersion relation can be a more general effect, and moreover, endowing the
gravitonwith amass introduces additional deviations fromGR than ameremodified dispersion rela-
tion. See e.g. the original work byVanDamandVeltman [18] and the recentwork byRham et al. [19]
for a thorough discussion of the issues related to massive gravity models.

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_3
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envisaged. This makes it imperative to develop methods that can search for generic
deviations from GR.

6.4.1.3 Generic Searches

Recently, more generic tests of GR through the measurement of GWs have been
proposed. One of such tests is due to Arun et al. and exploits the fact that, at least for
binaries where neither component has spin, all coefficients ψi in the PN expansion
of the inspiral phase, given by Eq. (2.89), depend only on the component masses. In
that case, only two of the ψi are independent. A consistency test of GR can then be
constructed by measuring these phase coefficients as extra independent parameters
and by comparing any three of them [54–56]. Such a method would be very general,
in that one does not have to look for any particular way inwhich gravitymight deviate
from GR. Instead, it allows generic failures of GR to be searched for. However, so
far its viability was only explored by means of Fisher matrix calculations. Recently,
the same philosophy of a consistency check was applied to the quasi-normal modes,
and constitute a test of the BH uniqueness theorem [29].

Another proposal is due to Yunes and Pretorius and has been named the PPE
formalism [57]. The PPE waveform extends the GR predicted waveforms in the fre-
quency domain with extra amplitude and phase terms. The coefficient and the power
of the frequency of the extra terms are left as free parameters. Popular alternative
theories are then, up to leading order, cast into the PPE waveform and assigned
appropriate values for the PPE parameters [42, 53, 57–63]. A real measurement of
the PPE parameters could then reveal the nature of the alternative theory.

In Chap. 3, it was already mentioned that parameter estimation is not the correct
framework to test physical theories. Even if the method by Arun et al. or the PPE
formalism measures a value of a parameter that conflicts with GR, it does not mean
that an alternative theory is more plausible than GR. To answer that question, one
needs the framework of model selection. For that, one needs to define two competing
hypotheses. One of the hypotheses is the GR hypothesis, which simply states that
the observed signal is as predicted by GR. However, the definition for the other
hypothesis, in the case of a generic search for GR, is a more challenging task.

6.5 Test Infrastructure for GEneral Relativity (TIGER)

As with any test of a physical law, each of the proposed tests will inevitably have its
problems and limitations. For instance, targeted searches will be limited in their test-
ing power as one has to choose the alternative a priori.With the variety of alternatives
available, this will prove to be a daunting task.

Generic searches, such as the consistency test by Arun et al., will indeed be a very
generic test of the validity of GR, but has limited power to discriminate between
different alternatives. Furthermore, the measurement of multiple extra parameters

http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_3
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will inevitably diminish one’s ability to infer parameters such as the component
masses. Especially in the Advanced detector era, where SNRs are expected to be low,
poor parameter estimation could be a severe problem.Moreover, it is not immediately
clear how one combines information from multiple sources in the case of generic
searches such as the consistency test by Arun et al.. To illustrate, suppose we find
that for five out of a hundred signal, the signals are inconsistent with GR. Would we
assign a five percent probability that GR is violated? What if the five signals show
large deviations from GR? Indeed, in the way these generic searches are set up, it is
not possible to combine information from multiple sources.

In a search for alternative theories through the measurement of free parameters,
one can also be led to an erroneous conclusion if the form of the extension does
not exactly model the deviation. This is sometimes referred to as the fundamental
bias [57]. Unfortunately, no certainty can be obtained unless all functional forms of
the extension are tested and compared to one and another. Even if one were to have
modelled the deviation in an exact manner, the issue of poor parameter estimation,
as explained above, can severely limit the confidence one can assign to a specific
alternative theory.

What is called for is a new inference framework which avoids the aforementioned
problems, while still being exhaustive in its use of the deviations allowed by the
model waveforms. Such a framework should comply to the following.

• Be able to test the validity of GR in a generic way.
• Based on hypothesis testing instead of parameter estimation.
• Usable with any waveform approximation or parameterisation of the waveform.
• Avoid explicit and simultaneous estimation of a large set of free parameters, i.e.
suitable in the low SNR regime.

• Coherently analyse information from multiple sources.

Inwhat follows,wepresentTIGER, a framework that incorporates all these restric-
tions. The method is loosely based on the proposal by Arun et al., in the sense that the
framework asks whether coefficients predicted by GR are consistent with the data.
However, we start with the application of Bayesian hypothesis testing, in which we
try to compare the hypothesis that GR is correct with the hypothesis that GR is
incorrect.

In Chap. 7, we will introduce the theoretical framework behind TIGER, and
show how one can construct a generic test of GR using Bayesian hypothesis testing.
In Chap. 8, we will put the theoretical framework of TIGER to the test through
comprehensive simulations of Advanced LIGO/Virgo data. These simulations give
insight into the efficiency of TIGER to detect arbitrary deviations fromGR. Finally, in
Chap. 9, we discuss the results and compare them to existing results in the literature.

http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_8
http://dx.doi.org/10.1007/978-3-319-19273-4_9
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Chapter 7
Test Infrastructure for GEneral Relativity
(TIGER)

We will now proceed to introduce TIGER. As was mentioned before, TIGER seeks
to test GR by finding the answer to the question “is the measured waveform consis-
tent with GR?”. In Chap. 4, we have seen that we need to apply the framework of
hypothesis testing in order to answer this question.

As the GW phase is predominantly given by twice the orbital phase of the binary,
cf. Sects. 1.6 and 2.6, it is particularly sensitive to the underlying laws that govern
the dynamics of binary systems. This suggests that if GR were to be incorrect,
imprints of the alternative theory can be found in the phase of the GW. As it turns
out, the advanced detectors are not sensitive to the subdominant contributions to the
amplitude [1, 2]. Without loss of generality, we will therefore consider the phase
to be the only possible location of a deviation. However, it is important to bear in
mind that TIGER can be applied to any parameterisable part of the waveform e.g.
the amplitude in Eq. (2.72), the orbital energy in Eq. (2.65) or luminosity Eq. (2.66).
Indeed, an exhaustive test ought to consider deviations in all measurable aspects of
the GW.

7.1 Defining the Odds Ratio

The central quantity in hypothesis testing is the odds ratio, given by Eq. (4.32). In
order to evaluate the odds ratio, we need to define the hypotheses that are to be
compared. The two hypotheses we would like to consider are “the waveform has a
functional dependence as predicted by GR”, denoted by HGR, and “the waveform
does not have a functional dependence as predicted by GR”, denoted by HmodGR.
The relevant odds ratio is then given by

OmodGR
GR ≡ P(HmodGR|d, I)

P(HGR|d, I) . (7.1)
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To compare these hypotheses, it will be sufficient to look for a limited set of
possible deviations. The set of deviationswill dependon thewaveformapproximation
being applied to the method. For this work, we consider the waveforms of the PN
approximation in Sect. 2.6 and in particular, the TaylorF2waveform, described in
Sect. 2.6.6. This waveform is used because of its computational speed as well as its
agreement with time domain waveforms for BNS systems [3]. Therefore, we take the
set of deviations only to be within the known phase coefficients {ψ0,ψ1, . . . ,ψN },
given by Eq. (2.89). If the set of phase coefficients has N members, there are 2N − 1
ways in which the deviation can occur, corresponding to all possible subsets of the
set of phase coefficients.

Before we define and describe the hypothesesHGR andHmodGR, it is instructive
to first define the so-called sub-hypotheses, denoted by Hi1i2...ik , which are related
to the possible deviations in the phase coefficients {ψ0,ψ1, . . . ,ψN }, to be

Hi1i2...ik is the hypothesis that the phasing coefficientsψi1 , . . . ,ψik do not have the functional
dependence on the system parameters as predicted by GR, but all other coefficients ψ j ,
j /∈ {i1, i2, . . . , ik} do have the dependence as predicted by GR.

Thus, for example, H12 is the hypothesis that ψ1 and ψ2 do not have the func-
tional dependence on the system parameters as predicted by GR, but all other coef-
ficients do. As spins are considered to be negligible for NSs [4], we consider the
non-spinning TaylorF2 waveform, for which the phase coefficients depend only
on the two mass parameters. It is also important to note that, by definition of the
sub-hypotheses Hi1i2...ik , they are mutually, logically disjoint, i.e. Hi1i2...ik ∧ Hj1 j2... jl
is always false for {i1, i2, . . . , ik} �= { j1, j2, . . . , jl}. For example, H1∧ H2 is always
false, as H1 assumes that ψ2 is in accordance with GR, whereas H2 assumes that
it is not. This will prove to be useful when the main hypotheses are split up into
sub-hypotheses.

7.1.1 Defining the GR Hypothesis

Because the two body problem has no analytical solution in GR, GWs can only be
computed in an approximate fashion. The approximation can be in the form of a
perturbative series or the approximation can be in the finite step size when solving
the differential equations numerically. A true test of GR would therefore be difficult
to implement in practice. However, one can still test GR to the precision (the PN
order in this case) that is currently known. With this restriction in mind, the GR
hypothesis, HGR, can be defined as

HGR is the hypothesis that the GW has a functional form and coefficients that are exactly as
predicted by the chosen approximation to GR.

It should be noted that this definition of HGR is only valid within the scope of
a specific waveform approximation. In the case of the PN formalism, HGR is the
hypothesis that the waveform has the functional form as described in e.g. Eq. (2.86).

http://dx.doi.org/10.1007/978-3-319-19273-4_2
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For BNS systems, we do not expect such a truncation to have a significant effect, as
the TaylorF2 waveform family (known up to the 3.5PN order in phase) is known
to be in good agreement with numerical simulations [3].

7.1.2 Defining the modGR Hypothesis

Because deviations from GR can be parameterised in an infinite number of ways,
testing a hypothesis of all possible deviations is not feasible. Instead, we ask the
question whether or not a GW signal adheres to the hypothesisHGR, defined above.
With this in mind, we define the hypothesis HmodGR to be

HmodGR is the hypothesis that one or more of the phase coefficients {ψ0,ψ1, . . . ,ψN } in the
waveform do not agree with the prediction made by GR.

However, the hypothesis HmodGR stated in this form cannot be tested because it is
not a generative model. In other words, we do not know how to generate a wave-
form for which we do not know in which of the phase coefficients the deviations
are located. Instead, we can express the hypothesis HmodGR in terms of the sub-
hypotheses Hi1i2...ik , defined on p. 106, and write

HmodGR =
∨

i1<i2<...<ik ;k≤N

Hi1i2...ik . (7.2)

Therefore, for a signal to be inconsistent with GR, we require that one or more phase
coefficients deviate from GR. In terms of hypotheses, we are thus interested in the
disjunction of the sub-hypotheses Hi1i2...ik .

To date, the TaylorF2 phase has ten known phase coefficients, namely ψ0, . . . ,

ψ7 and two additional coefficients ψ
(l)
5 and ψ

(l)
6 , associated with logarithmic contri-

butions [see Eq. (2.89)]. In this book, we will not use ψ0 as a variable coefficient,
since it has been tested by binary pulsars measurements (see Lorimer [5] for an
overview). Even so, if one were to consider all the subsets of the set of remaining
coefficients, one would have to take into account the 29 − 1 = 511 ways in which
a deviation can occur. Apart from this being computationally demanding, we do not
expect advanced detectors to be sensitive to the highest-order coefficients. Therefore,
it makes sense to limit oneself to all the subsets of the testing coefficients

{

ψ1,ψ2, . . . ,ψNT

}

, (7.3)

where NT is the number of these testing coefficients one chooses to consider. We
thus allow one or more of the coefficients in the set {ψ1,ψ2 . . . ,ψNT } to vary freely,
instead of following the functional dependence on the componentmasses as predicted
by GR. The choice of NT will in part be influenced by the required generality of the
test, measurability of phase coefficients and computational limitations.

http://dx.doi.org/10.1007/978-3-319-19273-4_2
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7.1.3 Odds Ratio for a Single Source: A 2 Testing
Coefficient Example

Suppose that only two coefficients, ψ1 and ψ2, are chosen to be our testing coeffi-
cients. Then, the hypothesisHmodGR in Eq. (7.2) can be written as

HmodGR = H1 ∨ H2 ∨ H12. (7.4)

In this example, the odds ratio of interest, which is defined in Eq. (7.1), can be
written as

(2)OmodGR
GR = P(H1 ∨ H2 ∨ H12|d, I)

P(HGR|d, I) , (7.5)

where the superscript (2) reminds us that only two of the phase coefficients are being
used as testing coefficients.

An important observation is that the sub-hypotheses H1, H2, H12 are mutually,
logically disjoint, i.e. the conjunction of any two of them is always false. Indeed, in
H1, ψ2 takes the value predicted by GR, but in H2 it differs from the GR value, as
it does in H12. Similarly, in H2, ψ1 takes the GR value, but in H1 it differs from the
GR value, and the same in H12. This means that the odds ratio is simply given by

(2)OmodGR
GR = P(H1|d, I)

P(HGR|d, I) + P(H2|d, I)
P(HGR|d, I) + P(H12|d, I)

P(HGR|d, I) . (7.6)

Using Bayes’ theorem in Eq. (4.31), this can be written as

(2)OmodGR
GR = P(H1|I)

P(HGR|I) B1
GR + P(H2|I)

P(HGR|I) B2
GR + P(H12|I)

P(HGR|I) B12
GR. (7.7)

Here, B1
GR, B2

GR, B12
GR are the Bayes factors of the sub-hypotheses against GR

[cf. Eq. (4.33)], given by

B1
GR = P(d|H1, I)

P(d|HGR, I)
, B2

GR = P(d|H2, I)

P(d|HGR, I)
, B12

GR = P(d|H12, I)

P(d|HGR, I)
, (7.8)

and P(H1|I)/P(HGR|I), P(H2|I)/P(HGR|I) and P(H12|I)/P(HGR|I) are ratios of
prior odds.

Now, upon calculating the Bayes factors for each sub-hypothesis, wewould like to
combine these measurements into an overall odds ratio between the GR hypothesis
and any of the competing hypotheses in Eq. (7.7). In order to do this, we must
specify the prior odds for each sub-hypothesis against GR, i.e. P(H1|I)/P(HGR|I),
P(H2|I)/P(HGR|I) and P(H12|I)/P(HGR|I). Here one might want to let oneself
be guided by, for example, the expectation that a violation of GR will likely occur
at higher PN order, and give more weight to H2 and H12. Or, if one expects a

http://dx.doi.org/10.1007/978-3-319-19273-4_4
http://dx.doi.org/10.1007/978-3-319-19273-4_4
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deviation to happen only in a particular phase coefficient (such as ψ2 in the case of
‘massive gravity’), one may want to downweigh the most inclusive sub-hypothesis,
in this example H12. In reality, we will not know beforehand what form a violation
will take. In particular, it could affect all the PN coefficients. For the purposes of
this analysis, we invoke the principle of indifference among all sub-hypotheses, i.e.
taking no one to be preferable to any other. This imposes the condition that the prior
odds of each against GR are equal. When combining the Bayes factors into the odds
ratio, we therefore assume

P(H1|I)
P(HGR|I) = P(H2|I)

P(HGR|I) = P(H12|I)
P(HGR|I) . (7.9)

By invoking the principle of indifference, we can factorise out the prior odds ratios.
However,we are still left to specify the values for these prior odds ratios. Equivalently,
we can do this by assigning a value to the overall prior odds ratio, given by

P(HmodGR|I)
P(HGR|I) = P(H1 ∨ H2 ∨ H12|I)

P(HGR|I) = α, (7.10)

where we do not yet specify the value for α. As it turns out, it will end up being
an overall scaling of the odds ratio. This, together with Eq. (7.9) and the logical
disjointness of the sub-hypotheses H1, H2 and H12 implies that

P(H1|I)
P(HGR|I) = P(H2|I)

P(HGR|I) = P(H12|I)
P(HGR|I) = α

3
. (7.11)

The final expression for the odds ratio for a modification of GR versus GR, in the
case where two phase coefficients are used as our testing coefficients, is given by

(2)OmodGR
GR = α

3

[

B1
GR + B2

GR + B12
GR

]

. (7.12)

Therefore, up to the overall scaling factor α, the odds ratio is simply the average of
the Bayes factors.

7.1.4 Odds Ratio for a Single Source: The General Case

Next, we can generalise the expression of the odds ratio for NT testing coefficients as

(NT )OmodGR
GR = P(HmodGR|d, I)

P(HGR|d, I)
= P(

∨

i1<i2<...<ik ;k≤NT
Hi1i2...ik |d, I)

P(HGR|d, I) . (7.13)
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By using the fact that the sub-hypotheses are mutually, logically disjoint, one can
write

P(
∨

i1<i2<...<ik ;k≤NT

Hi1i2...ik |d, I) =
NT∑

k=1

∑

i1<i2<...<ik

P(Hi1i2...ik |d, I). (7.14)

Similar to Eq. (4.32), we can rewrite the odds ratio as

(NT )OmodGR
GR =

NT∑

k=1

∑

i1<i2<...<ik

P(Hi1i2...ik |I)
P(HGR|I) Bi1i2...ik

GR , (7.15)

where P(Hi1i2...ik |I)/P(HGR|I) denote the prior odds ratios and

Bi1i2...ik
GR = P(d|Hi1i2...ik , I)

P(d|HGR, I)
(7.16)

are the Bayes factors for the sub-hypotheses against GR. At this point, one has to set
the values for the relative prior probabilities, P(Hi1i2...ik |I)/P(HGR|I). Once again,
we invoke the principle of indifference and assign to each an equal weight, i.e.

P(Hi1i2...ik |I)
P(HGR|I) = P(Hj1 j2... jl |I)

P(HGR|I) for any k, l≤NT . (7.17)

We can further specify the prior odds by considering the overall prior odds,

P(HmodGR|I)
P(HGR|I) = P(

∨

i1<i2<...<ik ;k≤NT
Hi1i2...ik |I)

P(HGR|I)

=
NT∑

k=1

∑

i1<i2<...<ik

P(Hi1i2...ik |I)
P(HGR|I) . (7.18)

The overall prior odds describes the relative prior belief betweenHGR andHmodGR,
and can be seen as an overall normalisation factor. As the choice of this quantity
depends in essence on the definition of the background information, we write

P(HmodGR|I)
P(HGR|I) = α, (7.19)

and leave the assignment of the overall prior odds ratio to the reader’s choice. As will
become apparent, the overall relative prior will end up being an overall scaling of
the odds ratio, and is unimportant when one considers the method in light of signals
embedded in noise.

http://dx.doi.org/10.1007/978-3-319-19273-4_4
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The equalities (7.18) and (7.19), together with (7.17), imply

P(Hi1i2...ik |I)
P(HGR|I) = α

2NT − 1
. (7.20)

In terms of the sub-hypotheses Hi1i2...ik , the odds ratio can be written as

(NT )OmodGR
GR = α

2NT − 1

NT∑

k=1

∑

i1<i2<...<ik

Bi1i2...ik
GR . (7.21)

Up to an overall prefactor, the odds ratio is thus a straightforward average of the
Bayes factors from the 2NT − 1 individual sub-hypotheses.

7.1.5 Odds Ratio for Multiple Sources

Although the detection rate for CBC sources is still rather uncertain, we expect
advanced detectors to detect several events per year [6]. It is therefore important to
take advantage of multiple detections to provide tighter constraints on the validity
of GR. Bayesian hypothesis testing provides a natural extension of the odds ratio
from a quantity stemming from a single measurement to a quantity which takes a
catalogue of sources into consideration.

ConsiderN independent data sets, denoted by {d1, d2, . . . , dN }, corresponding to
N independentGWevents.Wedonot assume that deviations fromGRare necessarily
the same between events, but rather that they can vary from source to source. For
example, the deviation from GR could depend on the masses or even on unknown
additional charges in alternative theories. One can write down an odds ratio for a
catalogue of sources as

(NT )OmodGR
GR = P(HmodGR|d1, . . . , dN , I)

P(HGR|d1, . . . , dN , I)

=
∑NT

k=1

∑

i1<i2<...<ik
P(Hi1i2...ik |d1, . . . , dN , I)

P(HGR|d1, . . . , dN , I)

=
NT∑

k=1

∑

i1<i2<...<ik

P(Hi1i2...ik |I)
P(HGR|I)

(cat)Bi1i2...ik
GR , (7.22)

where the catalogue Bayes factors are given by

(cat)Bi1i2...ik
GR = P(d1, . . . , dN |Hi1i2...ik , I)

P(d1, . . . , dN |HGR, I)
. (7.23)
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Assuming that the events d1, . . . , dN are all independent, one has

(cat)Bi1i2...ik
GR = P(d1, . . . , dN |Hi1i2...ik , I)

P(d1, . . . , dN |HGR, I)

= P(d1|Hi1i2...ik , I)

P(d1|HGR, I)

P(d2, . . . , dN |d1, Hi1i2...ik , I)

P(d2, . . . , dN |d1,HGR, I)

= P(d1|Hi1i2...ik , I)

P(d1|HGR, I)

P(d2, . . . , dN |Hi1i2...ik , I)

P(d2, . . . , dN |HGR, I)
...

=
N
∏

A=1

P(dA|Hi1i2...ik , I)

P(dA|HGR, I)

=
N
∏

A=1

(A)Bi1i2...ik
GR , (7.24)

where (A)Bi1i2...ik
GR is the Bayes factor for event A.

To evaluate the combined odds ratio of the catalogue, we choose once again to
invoke indifference [as in Eq. (7.17)] and set the individual prior odds ratios equal
to each other, so that

P(Hi1i2...ik |I)
P(HGR|I) = α

2NT − 1
. (7.25)

Together with Eqs. (7.22) and (7.24), this leads to

(NT )OmodGR
GR = α

2NT − 1

NT∑

k=1

∑

i1<i2<...<ik

N
∏

A=1

(A)Bi1i2...ik
GR , (7.26)

which, up to an overall prefactor, amounts to taking the average of the catalogue
Bayes factors, given in Eq. (7.24).

The expression in Eq. (7.26) shows that the odds ratio for a catalogue of sources
can be constructed as a linear combination of the product of the Bayes factors from
single sources.As a consequence, one can analyse sources individuallywithout losing
the ability to construct the Bayes factor for a catalogue. Furthermore, the odds ratio
can be computed as a parallel process, which greatly decreases the computational
time.

Alternatively, one may prefer not to make any assumptions about the prior odds
ratios P(Hi1i2...ik |I)/P(HGR|I) at all, and focus on the catalogue Bayes factors
(cat)Bi1i2...ik

GR separately and individually. Although only the odds ratio can tell us
whether GR or some alternative is preferred, the Bayes factors can be a powerful
tool in analysing the performance of TIGER.
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It should be pointed out that the seemingly trivial extension of the odds ratio for
a single source to one for a catalogue of sources is cardinal. A careful look at the
components making up the odds ratio reveals that this quantity is solely dependent
on the sub-hypotheses themselves. In other words, the odds ratio has no explicit
dependence on the value of any parameters and depends only on the data and the
background information.

This, however, is not generally true when a test is performed by measuring coeffi-
cients alone. Consider an alternative theory that causes deviations from GR that are
mass dependent. Combining posteriors on the measured parameters is then impos-
sible unless one knows the functional dependence of the deviations on the masses,
a priori. Only in the case in which the deviation from GR is governed by constants
can one combine information from multiple sources. Therefore, a test of GR is more
versatile and robust if it compares hypotheses instead of measuring coefficients. To
make an even stronger statement: an alternative theory ought not to be interpreted as
to be favoured over GR unless the odds ratio shows such indication.

7.2 Quantification of Noisy Measurements

From a theoretical point of view, the data favour the hypothesisHmodGR over to the
hypothesis HGR when OmodGR

GR > 1, cf. Eqs (7.13) and (7.22). The relative degree
of belief in the two hypotheses is encapsulated in the magnitude of the odds ratio.
However, in the case of advanced detectors, the signals will be buried deep inside
the noise. This introduces the problem that the noise itself can mimic the effects of
a deviation from GR that is non-negligible. Hence, we need to develop the tools to
correctly account for the presence of noise in our detectors.

7.2.1 False Alarm Probability (FAP)

To gauge the influence of noise in the detectors on our interpretation of the odds
ratio, one constructs a distribution of odds ratios from simulated signals, collectively
denoted by κ, that are consistent with HGR, but are also embedded within noise.
This is the so-called background distribution, P

(

ln (NT )OmodGR
GR |κ,HGR, I

)

, where
we have used the logarithm of the odds ratio to account for its dynamical range. In
the advanced-detector era, one will only have access to a single catalogue of events

and therefore a single measured odds ratio, denoted by (NT )OmodGR
GR . This measured

odds ratio can be compared to the simulated background distribution to assign a FAP,
denoted by β, given by

β =
∫ ∞

lnOmodGR
GR

P(lnOmodGR
GR |κ,HGR, I) d lnOmodGR

GR . (7.27)
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Conversely, one can also establish a threshold, which the odds ratio of a given
catalogue must overcome in order that a violation of GR becomes credible. Given a
maximum FAPβmax, a threshold for the odds ratio, denoted by lnOβ , can be set as

βmax =
∫ ∞

lnOβ

P(lnOmodGR
GR |κ,HGR, I) d lnOmodGR

GR . (7.28)

A schematic example of the background distribution and FAP is shown in Fig. 7.1.
Shown in dotted and filled areas (blue) is background distribution
P

(

lnOmodGR
GR |κ,HGR, I

)

. The dashed line (red) represents the measured odds

ratio ln (NT )OmodGR
GR or the threshold lnOβ . The region making up the FAP is the

filled region of the background distribution (blue).
Note that the FAP is invariant under the choice of the overall prior odds ratio α,

given by Eq. (7.19). Suppose we rescale the overall prior odds ratio α with a factor
γ, i.e.

α → α′ = γα

lnOmodGR
GR → lnO′modGR

GR = ln γOmodGR
GR

= ln γ + lnOmodGR
GR

d lnO′modGR
GR = d lnOmodGR

GR . (7.29)
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Fig. 7.1 The dotted distribution (blue) depicts the background distribution obtained by analysing
a collection κ of signals that satisfy the hypothesisHGR and are embedded in detector noise, given
by P

(

lnOmodGR
GR |κ,HGR, I

)

. The dashed line (red) and shaded area (blue) of the background

distribution depict the measured odds ratio lnOmodGR
GR and the associated FAPβ, or the threshold

lnOβ for a maximum FAPβmax
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Now let P ′(lnO′modGR
GR |κ,HGR, I) and P(lnOmodGR

GR |κ,HGR, I) be the distributions

of lnO′modGR
GR and lnOmodGR

GR , respectively. These two distributions are related by

P ′(lnOmodGR
GR + ln γ|κ,HGR, I) = P(lnOmodGR

GR |κ,HGR, I). (7.30)

Then, the FAP transforms as

β → β′ =
∫ ∞

lnO′modGR
GR

P ′(lnO′modGR
GR |κ,HGR, I) d lnO′modGR

GR

=
∫ ∞

lnO′modGR
GR −ln γ

P ′(lnOmodGR
GR + ln γ|κ,HGR, I) d lnOmodGR

GR

=
∫ ∞

lnOmodGR
GR

P(lnOmodGR
GR |κ,HGR, I) d lnOmodGR

GR

= β (7.31)

Therefore, the FAP stays invariant under the choice of the overall prior. This is
because both the background and the measured odds ratio are only translated and the
integral in Eq. (7.27) remains unchanged.

7.2.2 Efficiency in Detecting a Particular Deviation

In the absence of readily available signals, a real catalogue cannot yet be analysed
and compared to the background. However, one can still make the assessment of
how likely it will be to get a certain odds ratio for a specific deviation from GR. In
order to do that, one constructs the so-called foreground, P(lnOmodGR

GR |κ′,Halt, I),
by calculating the distribution of odds ratios assuming a collection of signals, denoted
byκ′, for which some specific alternative theory, denoted byHalt , is correct. By direct
comparison of the foreground to the background, one can infer the probability that
a specific alternative theory can cause a deviation that is more significant than the
deviations induced by the noise.

We can quantify the probability that a specific alternative theory will be detected
with a FAP smaller than a given βmax, by means of an efficiency ζ, defined as

ζ =
∫ ∞

lnOβ

P(lnOmodGR
GR |κ′,Halt, I) d lnOmodGR

GR , (7.32)

where lnOβ is the threshold defined in Eq. (7.28). Note that the hypothesis Halt
should not be confused with the hypothesis HmodGR. The hypothesis Halt refers to
a specific alternative theory, e.g. Brans-Dicke theory, which is tested by the calcu-
lation of the foreground. On the other hand, the hypothesis HmodGR is used for the
calculation of the odds ratio in Eq. (7.21) or Eq. (7.26) and refers to the hypothesis
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Fig. 7.2 The blue distribution depicts the background distribution, given by
P

(

lnOmodGR
GR |κ,HGR, I

)

, obtained by analysing a collection κ of signals that satisfy the
HGR hypothesis and are embedded in detector noise. The red distribution is the foreground, given
by P(OmodGR

GR |κ′,Halt, I), obtained by analysing a collection κ′ of signals that follows some
alternative theory Halt . The efficiencyζ, shown as the shaded area (red) of the foreground, is the
fraction of foreground above the threshold lnOβ , depicted by the dashed line (black), from a given
maximum FAPβmax

that at least one of the phase coefficients in Eq. (2.89) does not have the functional
dependence as predicted by GR.

A schematic example of the efficiencyζ is shown in Fig. 7.2. In this figure, the
background is shown as the dotted distribution (blue), the foreground as the dashed
distribution (red), and the threshold lnOβ and efficiencyζ for a given maximum
FAPβmax are depicted as the dashed line (black) and the shaded part (red) of the
foreground, respectively.

Just like the FAP, the efficiency is also invariant under the transformation α →
α′ = γα. Since the FAP stays invariant under this transformation [see Eq. (7.31)],
we can deduce that the threshold transforms as

lnOβ → lnO′
β = lnOβ + ln γ. (7.33)

Therefore, under the transformation given in Eq. (7.29), the efficiency transforms as

ζ → ζ ′ =
∫ ∞

lnO′
β

P ′(lnO′modGR
GR |κ′,Halt, I) d lnO′modGR

GR

=
∫ ∞

lnO′
β−ln γ

P ′(lnOmodGR
GR + ln γ|κ′,Halt, I) d lnOmodGR

GR

http://dx.doi.org/10.1007/978-3-319-19273-4_2
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=
∫ ∞

lnOβ

P(lnOmodGR
GR |κ′,Halt, I) d lnOmodGR

GR

= ζ. (7.34)

It is evident that, under the transformation shown in Eq. (7.29), both the background
and foreground shift by an equal amount, making the value of the overall prior odds
ratio unimportant if one is interested in the plausibility of detecting the deviation from
a specific alternative theory that is more significant than the background distribution.

7.3 Implementation

A few remarks have to be made regarding the implementation of TIGER. Firstly,
we need to explain the implementation of the sub-hypotheses on p. 106. The gener-
ative models Hi1i2...ik state that the phase coefficients ψi1 , . . . ,ψik do not have the
functional dependence on the system parameters as predicted by GR, but all other
phase coefficients ψ j , j /∈ {i1, i2, . . . , ik} do. This is treated by allowing the relevant
phase coefficients to vary from the GR predicted functional form by adding a freely
varying fractional shift. This modification to the phase coefficients ψi can be written
as

ψi = ψGR
i (M, η) [1 + δχi ] , (7.35)

whereψGR
i (M, η) is the functional form ofψi according toGR [given by Eq. (2.89)],

and the dimensionless δχi is a fractional shift in ψi . However, the 0.5PN phase
coefficient, given by ψ1, is identically zero and cannot be implemented in a similar
fashion. Instead, deviations from ψGR

1 are modelled as

ψGR
1 (M, η) = 0 → 3

128η
(πM)−4/3δχ1, (7.36)

and the interpretation of a fractional shift is not adequate. Instead, δχ1 is related to
the magnitude of the deviation itself.

Secondly, in order to construct the odds ratio in Eq. (7.21) or Eq. (7.26), we need
to calculate the evidence associated to the various sub-hypotheses Hi1i2...ik , given by

P(d|Hi1i2...ik , I) =
∫

dθ dδχi1 . . . dδχik P(d|θ, δχi1 , . . . , δχik , Hi1i2...ik , I)

× P(θ|Hi1i2...ik , I)P(δχi1 , . . . , δχik |Hi1i2...ik , I), (7.37)

where θ denotes the regular GWparameters, and we assume that the prior on the GW
parameters θ is independent of the prior on deviations

{

δχi1 . . . δχik

}

. Furthermore,

http://dx.doi.org/10.1007/978-3-319-19273-4_2
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we need to calculate the evidence for the hypothesis HGR, given by

P(d|HGR, I) =
∫

dθ P(d|θ,HGR, I)P(θ|HGR, I). (7.38)

These integrals can be conveniently evaluated by using the Nested Sampling algo-
rithm, described in Sect. 5.4. More specifically, an implementation tailored to
ground-based observations of CBC systems by Veitch and Vecchio [7–9] in the LAL
[10] was used. The Nested Sampling algorithm gives us the Bayes factors for the
various signal hypotheses (either Hi1i2...ik orHGR) against the noise-only hypothesis
HN (cf. Sect. 5.4.4), given by

Bi1i2...ik
N = P(d|Hi1i2 ...ik ,I)

P(d|HN ,I) ,

BGR
N = P(d|HGR,I)

P(d|HN ,I) .
(7.39)

These can be combined to give the Bayes factors of Eq. (7.16) through

Bi1i2...ik
GR = Bi1i2...ik

N

BGR
N

. (7.40)

At this point it is worth commenting on the mutual relationships of the hypothe-
ses Hi1i2...ik among each other, and with HGR. As an example, let us discuss the
relationship between H1 andHGR. Consider the numerator of the Bayes factor B1

GR,
given by

P(d|H1, I) =
∫

dθ dχ1P(d|θ, δχ1, H1, I)P(θ|H1, I)P(δχ1|H1, I). (7.41)

The parameter space {θ} of the GR waveforms has a natural embedding into the
parameter space {θ, δχ1} of the waveforms associated to H1, i.e. it can be identified
with the hypersurface δχ1 = 0. We could have explicitly excluded this hypersurface
from {θ, δχ1} by setting a prior on δχ1 of the form P ′(δχ1|H1, I) = 0 if δχ1 = 0 and
P ′(δχ1|H1, I) = const otherwise. However, this would not have made a difference
in the integral above. Indeed, with respect to the integration measure induced by
the prior probability density on {θ, δχ1}, the surface δχ1 = 0 constitutes a set of
measure zero.

Now look at the denominator in the expression for B1
GR, which is the evidence for

the GR hypothesis, given in Eq. (7.38). Despite the fact that the GR waveforms form
a set of measure zero within the set of waveforms associated to the sub-hypothesis
H1, the above integral is clearly not zero. It is the evidence for a qualitatively dif-
ferent hypothesis, whose parameter space {θ} carries a different integration measure
with respect to which the marginalisation of the likelihood is carried out. Thus, a
sharp distinction should bemade between probability densities on parameter spaces,
and probabilities related to hypotheses. Similarly, although the parameter spaces

http://dx.doi.org/10.1007/978-3-319-19273-4_5
http://dx.doi.org/10.1007/978-3-319-19273-4_5
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associated with sub-hypotheses Hi1i2...ik and Hj1 j2... jl may have parameters in com-
mon, in each of these spaces the common hypersurface has measure zero unless
Hi1i2...ik = Hj1 j2... jl , hence it has no bearing on the calculation of evidences and
Bayes factors.
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Chapter 8
Results

Now that we have defined the details of TIGER, we are in a position to express the
goals in Sect. 6.5 more concretely. The first goal is the ability to test the validity of
GR in a generic fashion. If we look at the definition of the hypotheses HGR and
HmodGR, given on p. 106 and p. 107 respectively, we can deduce that our hypotheses
test whether GR is correct or not. This therefore constitutes a generic test of the
validity of GR. Simulations will have to show the applicability of TIGER.

The second goal is to cast the problem in the form of Bayesian hypothesis testing.
In Sect. 7.1, we showed that through the appropriate definition of the hypotheses,
the problem can be expressed as a hypothesis testing problem. On the practical side,
simulations will have to show that the odds ratio, given in Eq. (7.21) for individual
sources and Eq. (7.26) for catalogues of sources, is an informative quantity in our
search for departures from GR. In Sect. 8.2 we show that the odds ratio is indeed a
powerful discriminator between GR being the correct theory or not.

The third goal is to construct amethod that is not only generic in its ability to detect
possible deviations from GR, but also generic in its use of waveforms and accuracy.
Although we have used the phase as an example in the derivation of TIGER, it
should be stressed that deviations in any parameterizable part of the waveform can
be considered (e.g. amplitude, energy or luminosity). TIGER is also generic in the
sense that the ‘testing coefficients’ are left to the choice of the user. This choice
will be influenced by the kind of precision one seeks, as well as the computational
cost. Parameters which can not be measured in the specific setting (e.g. advanced
detectors) can be left out of the test, without destroying the applicability of TIGER.
The choice of the number of testing coefficients will be discussed in Sect. 8.4.

In dealing with data from the advanced detectors, we expect to mainly see sources
with a low SNR. The fourth goal of TIGER is to avoid a framework which requires
excessive use of free parameters. Not only does the inclusion of extra free parameters
degrade themeasurability of other (correlated) parameters, it will run the risk of being
disfavoured due to Occam’s razor, described in Sect. 4.3.2. By splittingHmodGR into
the sub-hypotheses Hi1i2...ik , we tackle this problem whilst remaining as general as
possible. Most sub-hypotheses only pertain to a small subset of the set of testing
coefficients, making them more sensitive at low SNR. Yet, we combine all the sub-
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hypotheses into a statement which is as general as the number of sub-hypotheses
considered. The pivotal thing to show in the simulations is that the odds constructed
in Eqs. (7.21) and (7.26) has a better performance than the most inclusive sub-
hypothesis, i.e. having all phase coefficients simultaneously free. In other words, the
disjunction of the propositions “the phase coefficient ψi is not as predicted by GR”
should perform better than the more restricted conjunction of these propositions. In
Sect. 8.2, examples are shown that this is indeed the case.

Finally, the last goal is to have a framework that allows one to coherently analyse
information from different sources. Sect. 8.3 shows that increasing the number of
sources in a catalogue does indeed increase our confidence in a deviation, if there is
one to be found.

8.1 Simulation Details

In Sect. 7.3, we have already seen that the odds ratio in Eq. (7.21) or Eq. (7.26)
can be obtained by using the Nested Sampling algorithm (see Sect. 5.4) to calcu-
late the evidence integrals in Eqs. (7.37) and (7.38). The form of the likelihood is
specified in Eq. (5.67). To construct the data s, we must simulate the noise n and
the signal waveform hS [cf. Eq. (5.65)]. Furthermore, we must specify the prior on
the model parameters associated to HGR and Hi1i2...ik , given by P(θ|HGR, I) and
P(θ, δχi1 , . . . , δχik |Hi1i2...ik , I) respectively. Finally, in order to calculate the rele-
vant statistics, i.e. the FAP in Eq. (7.27) and the efficiency in Eq. (7.32), we must
specify the simulation population κ for GR signals and the simulation population κ′
for a specific alternative theory Halt.

8.1.1 Source Distribution

Firstly, we specify the source distribution for the signal parameters θS, associated to
both κ and κ′. As suggested by Fisher matrix calculations, such as those of Mishra
et al. [1], methods based on measuring phase coefficients will be the most accurate
at low total mass. That is why we limit ourselves to BNS sources, for which spin
will be negligible [2], as well as sub-dominant signal harmonics [3, 4]. Since we
will assume a network of advanced detectors, the merger and ringdown signals (see
Sect. 3.3.1) are not in the sensitive region of the detector and therefore will not have
a large impact on our inference [5]. Consequently, we only consider the inspiral part
of the waveform.

The BNS systems are distributed uniformly in volume, with random sky positions
and orientations, and their total number is taken to be on the conservative side of
the ‘realistic’ estimates for the number of detectable sources in a 1-year time span
[6]. We take the individual NS masses to lie uniformly between 1 and 2 M�, in
accordance with the range of the NS mass distribution [7]. The distance interval
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Table 8.1 Summary of the source distribution used to obtain the results in Sects. 8.2–8.4

Variable Form Range Motivation

Mass 1, m1 Const [1, 2] M� Neutron star

Mass 2, m2 Const [1, 2] M� Neutron star

Distance, Dl ∝ D2
l [100, 400] Mpc Uniform in volumea

Orbital inclination, ι ∝ cos ι [0,π] Uniform in orientation

Polarisation, ψ Const [0, 2π] Uniform in orientation

Latitude, θ ∝ cos θ [0,π] Uniform in sky

Longitude, φ Const [0, 2π] Uniform in sky

Coalescence phase, φc Const [0, 2π] Uniform in phase
aDl = 1000Mpc corresponds to z = 0.21. For such redshifts, we approximate space as Euclidean
and therefore the volume scales as ∝ D2

l . For greater redshifts, this relationship breaks down and
a prior distribution proportional the co-moving volume ought to be considered instead

is between 100 and 400 Mpc; the former number being the radius within which
one would expect ∼0.5 BNS signals per year, and 400 Mpc being the approximate
maximum distance that Advanced LIGO/Virgo can probe, given a network SNR
threshold of 8, which corresponds to the detection threshold set by the LIGO-Virgo
collaboration [8]. The corresponding signals are added coherently to simulated noise
(assumed to be stationary and modelled by a Gaussian stochastic process) for the
Advanced Virgo interferometer and the two Advanced LIGOs (see Fig. 3.4 for their
PSDs). A summary of the source distribution is shown in Table8.1.

Furthermore, we impose a lower cut-off of ρnet = 8 on the network SNR given in
Eq. (3.27). This threshold is consistent with the threshold to claim a detection of a
GW, set by the LIGO/Virgo collaboration [9]. The analysis of the surviving signals
is performed with an appropriately modified version of the Nested Sampling code
available in LAL, as described in Sect. 7.3.

Finally, we take the signal waveform to be TaylorF2 with the phase up to only
2PN order. Despite its simplicity, TaylorF2 is known to be in good agreement
with waveforms that in turn closely match numerical simulations (cf. Figs. 3 and 4 in
Buonanno et al. [10]). Future development might include more accurate waveforms
in order to perform a more accurate test of GR. However, due to its good accordance
with numerical relativity for the inspiral part of the waveform, the results shown here
can be viewed as a good indication of the sensitivity to deviations from GR in the
advanced-detector era.

8.1.2 Method Parameters

Similar to the signal waveform, our model waveforms are also chosen to be in the
TaylorF2 family with the phase up to only 2PN order. As an example, we consider
the case of NT = 3 testing coefficients, given byψ1,ψ2 andψ3. TIGER thus requires
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the calculation of 23−1 = 7Bayes factors, i.e. B1
GR, B2

GR, B3
GR, B12

GR, B13
GR, B23

GR, and
B123
GR . These can be combined to form the odds ratio given in Eq. (7.21) or Eq. (7.26).
Next, we need to assign the priors on themodel parameters. For theHGR hypothe-

sis, these are the GW parameters θ, cf. Eqs. (2.72) and (3.1). TheHmodGR hypothesis
(composition of the sub-hypotheses) has, besides the source parameters θ, also the
parameters associated to the permitted deviations, given by δχi .

For the distributions of the GW parameters, we use the same functional forms and
limits as given in Veitch and Vecchio [11], except for the distance being allowed to
vary between 1 and 1000Mpc. Specifically, for the sky location and the orientation
of the orbital plane we choose uniform priors on the corresponding unit spheres. For
the phase at coalescence φc we choose a flat prior with φc ∈ [0, 2π], and the time of
coalescence tc is restricted to a time interval of 100ms, accommodating for the largest
difference between the time of arrival of the GW in different detectors. The prior on η
is flat on the interval [0, 0.25]. For chirpmasswe use an approximation to the Jeffreys
prior which gives p(M|I) ∝ M−11/6 (see Veitch and Vecchio [11] for motivation).
In addition, component masses are restricted to the interval m1, m2 ∈ [1, 34] M�,
which is the mass range which stellar mass BHs are believed to be in [12]. Especially
for BNS, which are the sources we consider in our simulations, this range of the
componentmasses is sufficient. Also, this interval is in accordancewith the definition
of ‘low mass’ in standard CBC search pipelines (see e.g. [13]). For the deviations
δχi , we take the priors to be flat and centred on zero, with a total width of 0.5. This
will be much larger than the deviations we will use for the simulated signals and
hence suffices to illustrate TIGER. For real measurements, one may want to choose
a still wider prior in order to achieve a greater level of generality. The choice of priors
is summarised in Table8.2.

Table 8.2 Summary of the priors for the model waveforms used in all the simulations shown in
this chapter

Variable Form Range Motivation

Chirp mass, M ∝ M−11/6 [0.87, 29.60] a Jeffreys prior

Symmetric mass ratio,
η

Const [0, 0.25] Indifference

Distance, Dl ∝ D2
l [1, 1000] Mpc Uniform in volumeb

Orbital inclination, ι cos ι [0,π] Uniform in orientation

Polarisation, ψ Const [0, 2π] Uniform in orientation

Latitude, θ cos θ [0,π] Uniform in sky

Longitude, φ Const [0, 2π] Uniform in sky

Coalescence phase, φc Const [0, 2π] Indifference

Coalescence time, tc Const [−50, 50] msc Coincidence window

Deviation, δχi Const [−0.25, 0.25] Indifference
aBased on component masses in the range m1, m2 ∈ [1, 34]
bSee footnote on p. 123
cAssuming that the coalescence time is chosen to be tc = 0

http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_3


8.1 Simulation Details 125

As shown in Sects. 7.2.1 and 7.2.2, both the FAP and the efficiency are invariant
under the choice of α. Therefore, for the purpose of presenting the results, the factor
α in Eqs. (7.21) and (7.26) will be set to unity.

8.1.3 Example Deviations

Finally, in order to gauge TIGER’s performance, we must specify some particular
deviation from GR, denoted by the hypothesis Halt. The deviations considered in
this work can be divided into two categories. The first consists of deviations in one
of the phase coefficients characterising the TaylorF2 waveform. The deviations
were inserted in a similar fashion as the deviations allowed by our sub-hypotheses,
i.e. Eqs. (7.35) and (7.36). Examples will be shown with shifts in ψ3 and ψ4. These
correspond to the first order in which the dynamical non-linearities of GR are visible
[14, 15], and the PN order at which the corrections to the phase due to a modified
Einstein-Hilbert action containing terms that are quadratic in the Riemann tensor are
visible [16–18], respectively. The deviation in ψ3 also corresponds to a basic test
in which the deviation is in one of the testing coefficients. This example will give
us the idealised case in which the deviation can be accommodated for by some of
our model waveforms. The deviation in ψ4 is an example in which the deviation
is in a PN order, but one that cannot be accounted for by our model waveforms.
We show that deviations in the phase coefficients, whether they are included in the
testing coefficients or not, can be detected by TIGER, provided the magnitude of the
deviation is sufficiently large.

The second category contains two examples of deviations that cannot be attributed
to a deviation in any of the PN coefficients. In the first example, we insert a deviation
between successive PN orders. The second example is one in which the deviation not
only has a mass dependent coefficient (as with the coefficients of the PN expansion),
but the deviation also has a frequency dependence that is a function of the total mass.
This category exemplifies the potentially very complexway inwhich deviations from
GR may occur and serves to illustrate the true generality of TIGER. We show that
the effects of both of these general examples can be detected, provided that the phase
shift induced is large enough (later on we will quantify what large means in this
context).

A summary of the deviations considered in this work can be seen in Table8.3. This
table shows the deviations, the form of the deviations, corresponding coefficients and
the relevant subsection in which these examples are considered.

http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
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Table 8.3 Summary of the deviations considered, their forms, corresponding coefficients and the
relevant subsections in which these deviations are considered

Class Functional form Coefficient Section

PN term Eq. (7.35) δχ3 = 0.1 8.2.2

δχ3 = 0.025 8.2.3, 8.3, 8.4

δχ4 = 0.2 8.2.4

Non PN term 3
128η δχA(πM f )−5/6 δχA = −2.2 8.2.5
3

128η δχA2(πM f )
−2+ M

(3M�) δχA2 = 1 8.2.6

8.2 Odds Ratios and Bayes Factors

8.2.1 Constructing the Background

Before a specific deviation can be considered, it is necessary to construct the back-
ground distribution by analysing the odds ratios for a collection of sources,κ, that cor-
respond to the GR hypothesis,HGR. Sources were distributed according to Table8.1
and their signals were embedded in the simulated Gaussian and stationary noise,
according to the Advanced LIGO/Virgo noise curves, as shown in Fig. 3.4 . The odds
ratios for both individual sources as well as catalogues of 15 sources are shown in
Fig. 8.1.

For individual sources, as shown in Fig. 8.1a, the distribution has a peak value
at ln OmodGR

GR < 0. This means that for GR signals, the GR hypothesis is indeed
favoured. We also see that the distribution does extend beyond ln OmodGR

GR = 0,
showing that noise can indeed push the odds ratio to favour HmodGR. Therefore, a
proper interpretation of the measured odds ratio will always have to take the back-
ground into account. The distribution of the log odds ratio for the catalogues of 15
sources, shown in Fig. 8.1b, has the same characteristics, albeit that there is more
confidence towards HGR.

Associated with this background and a maximum FAP of βmax = 0.05 is a
threshold for single sources of ln Oβ = 2 and a threshold for a catalogue of 15
sources of lnOβ = 7. The measured odds ratio will therefore have to exceed these
numbers in order for a detection to be claimed with a FAP of at most 5%.

Furthermore, this background will be crucial in assessing the efficiencies, defined
in Eq. (7.32), for the various example deviations in Sects. 8.2.2–8.2.6. The reader
will thus see this background re-appear in most of the sections to come.

http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_7
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Fig. 8.1 Normalised log odds distributions for a collection of sources associated to the GR hypoth-
esis and distributed according to Table. 8.1. These distributions are the so-called ‘background’
distributions and will be used to compare the odds ratio obtained from sources which deviate from
GR. a Log odds ratio distribution for individual sources. For a maximum FAP of βmax = 0.05, the
threshold is ln Oβ = 2. b Log odds ratio distribution for catalogues of 15 sources. For a maximum
FAP of βmax = 0.05, the threshold is lnOβ = 7
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8.2.2 Constant 10 % Shift in ψ3

Having constructed the background in Fig. 8.1, we are in a position to analyse specific
deviations, associated toHalt.We start with signals that have a deviation inψ3, one of
the three testing coefficients, i.e. {ψ1,ψ2,ψ3}, we consider. Fishermatrix calculations
suggest that the error on ψ3 is in the order of a percent (see Fig. 4 of Mishra et al.
[1]). Bearing in mind that a Fisher matrix gives us the lower bound on the error, as
shown in Eq. (5.24), the deviation imparted on the waveforms were chosen to be
δχ3 = 0.1, i.e. a 10% shift in ψ3.

We first compute the odds ratios for individual sources, (NT )OmodGR
GR , according

to Eq. (7.21), with NT = 3. Next we divide these up randomly into catalogues of 15
sources each and compute the combined odds ratios, (NT )OmodGR

GR , as in Eq. (7.26).
Figure8.2 shows normalised distributions (red, dashed) of the log odds ratios, both for
individual sources and for catalogues of 15 sources each. The background distribution
from Fig. 8.1 (dotted, blue) is also shown for comparison.

The efficiencies are found to be ζ = 0.58 and (cat)ζ = 1.0 for single sources
and catalogues of 15 sources respectively. This means that for a single source, the
probability ofGR found to be incorrect with amaximumFAPofβmax = 0.05 is about
∼60%. It is evident that combining the odds ratios for sources within a catalogue
will strongly boost our confidence in a violation of GR if one is present at the given
level. The probability of finding a violation of this magnitude with a catalogue of 15
sources is 100%. Although the measured FAP can be zero due to the discreteness of
the data, the real FAP will always be greater than zero.

Although the results in Fig. 8.2 look promising, it is instructive to have a closer
look at the distribution of odds ratios. To aid our understanding, let us look at the (log)
odds ratios for individual sources, as a function of SNR. This is shown in Fig. 8.3. The
overwhelming majority of signals has an SNR between 8 and 15, which is consistent
with our SNR threshold and the placement of sources uniformly in volume up to 400
Mpc. Even for an SNR as low as ∼12, there is a separation between the GR signal
waveforms and the signal waveforms with a modified ψ3. This is thus an example
that TIGER is indeed sensitive at low SNR. As one would expect, the separation
becomes much clearer with increasing SNR.

Next, we want to investigate the effects of the use of the multiple sub-hypotheses
Hi1i2...ik . It is useful to look at which of the Bayes factors of the sub-hypotheses tend
to give the largest contribution to the odds ratio. In Fig. 8.4, we show the cumulative
frequency that a particular Bi1...ik

noise is the largest, as a function of SNR. The results
shown in Fig. 8.4 are entirely as expected, considering that the injected waveform
has a shift in ψ3 only. The Bayes factor B3

noise, corresponding to the sub-hypothesis
H3, is most often the highest. This signifies that the model H3 is most likely to be
favoured, which is exactly the deviation imposed on the signals. Furthermore, Bayes
factors Bi1...ik

noise corresponding to sub-hypotheses that involve ψ3 being non-GR, i.e.
B3
noise, B13

noise, B23
noise and B123

noise, tend to outperform those that do not. Therefore, sub-
hypotheses that allow for deviations of the same functional form as the deviation in
the signals are favoured over those sub-hypotheses that do not. The model that is

http://dx.doi.org/10.1007/978-3-319-19273-4_5
http://dx.doi.org/10.1007/978-3-319-19273-4_7
http://dx.doi.org/10.1007/978-3-319-19273-4_7
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Fig. 8.2 Normalised distributions of log odds ratios for signal with a 10% shift inψ3 (red, dashed).
This distribution is compared to the background distribution shown in Fig. 8.1 (blue, dotted). a Log
odds ratio distribution for individual sources. The efficiency for individual sources is ζ = 0.58 for
a maximum FAP of βmax = 0.05. b Log odds ratio distribution for catalogues of 15 sources. The
efficiency in this case is (cat)ζ = 1.0 for βmax = 0.05. It is evident that the combination of sources
greatly improves the ability to find a deviation from GR. A deviation of this form and magnitude
can be detected with great confidence if 15 sources are considered
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Fig. 8.3 Log odds ratios for individual sources as a function of the SNR. Blue crosses
represent signals associated with GR waveforms (background), the red circles represent
signals with a constant 10% relative offset in ψ3 (foreground). A separation between
the two is visible already for SNR � 12 and becomes more pronounced as the
SNR increases

ultimately favoured is the model which accounts for the deviations in the signal with
the minimum number of parameters, which is consistent with Occam’s razor (see
Sect. 4.3.2).

Another important point is that most sub-hypotheses perform worse than the
GR hypothesis. These sub-hypotheses have extra parameters that do not describe
the signal waveform better than the GR hypothesis and are therefore penalised by
Occam’s razor. For example, if one were to test only with the sub-hypothesis H2,
as a targeted search for a ‘massive graviton’ would have prescribed, we would have
concluded that GR described the signal waveform better. This goes to show that the
combination of the sub-hypotheses is important when the nature of the deviation is
not known a priori.

We complete the description of this specific deviation from GR by showing two
examples of the build-up ofBayes factors and odds ratiowithin individual catalogues.
Fig. 8.5 shows the cumulative Bayes factor for individual sub-hypotheses and the
odds ratio as sources with increasingly higher SNR are added to the catalogue.

Both examples show the gradual increase of the Bayes factors as sources are added
to the catalogue. This shows that the Bayes factors are not dominated by the most
informative source, but instead are built up as sources are added to the catalogue.
The first example, shown in Fig. 8.5a, has non-informative sources at low SNR, but
as sources with higher SNR are added, the Bayes factors and odds ratio increase.
The second example, shown in Fig. 8.5b, shows a similar behaviour except for two
things. Firstly, at low SNR, the Bayes factors and odds ratio fall below zero. This is
an indication that there are sources for which the GR hypothesis is favoured. This

http://dx.doi.org/10.1007/978-3-319-19273-4_4
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Fig. 8.4 a Curves and left vertical axis For a given SNR, the cumulative frequency that the Bayes
factor against noise for a particular sub-hypothesis is the largest, for signals with δχ3 = 0.1. All
1471 simulated sources are included. As expected, B3

noise dominates, and Bayes factors for sub-
hypotheses that let ψ3 be non-GR, tend to outperform those that do not. The GRmodel outperforms
the sub-hypothesis with the largest number of free parameters. Histogram and right vertical axis
Number of sources per SNR bin. b The same as above, but restricted to sources with SNR < 12.
Similar behaviour as for the full set of 1471 sources is observed. Note that already at SNR close to
threshold, the GR hypothesis is more likely to be disfavoured

behaviour is related to the fact that the GR hypothesis is occasionally the dominant
hypothesis, as shown in Fig. 8.4, and therefore causes negative log Bayes factors and
odds ratio. Secondly, the two highest SNR sources do not contribute significantly to
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Fig. 8.5 Examples of the cumulativeBayes factors againstGR for individual sub-hypotheseswithin
a single catalogue with δχ3 = 0.1. a The Bayes factors and the odds ratio gradually grows as the
sources with increasingly higher SNR are added. The sub-hypothesis H3, which matches the nature
of the specific deviation from GR, is the most informative sub-hypothesis. b Same as panel (a), but
the Bayes factors and odds ratio initially falls below zero. This happens when the GR hypothesis
is favoured, which causes negative log Bayes factors and log odds ratio. Furthermore, the sources
with the highest SNRs do not contribute to the odds ratio. Indeed, a high SNR source only gives,
on average, high Bayes factors and odds ratio
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the Bayes factors. This can be understood by considering odds ratios for individual
sources as a function of SNR, as shown in Fig. 8.3. As the SNR increases, so does the
envelope within which the odds ratio is located. Nevertheless, the SNR is distributed
within this envelope due to the presence of noise, and a high SNR only gives, on
average, a high odds ratio.

Finally, because of the conclusions above, one may be tempted to assign different
prior odds to the various sub-hypotheses instead of setting them all equal to each
other, as was done in Sect. 7.1. For instance one might consider downweighing the
most inclusive sub-hypothesis, H123, by explicitly invokingOccam’s razor. However,
the violation of GR we assume here is of a rather special form. In reality one will
not know beforehand what the nature of the deviation is. In particular, its effect may
not be restricted to a single phase coefficient. It is possible that all coefficients are
affected, in which case one would not want to deprecate H123 a priori. In what is to
follow, examples will be given that argue that the assignment of different priors to
different sub-hypotheses can in fact be detrimental for the outcome of the method.

8.2.3 Constant 2.5 % Shift in ψ3

It is clear that, if signals arriving at the Advanced LIGO/Virgo network would have a
(constant) fractional deviation inψ3 as large as 10%, then, at least under the assump-
tion of Gaussian noise, we would have no trouble in discerning this violation of GR,
even if only 15 events were ever recorded. Under such easily detectable deviations,
TIGER is shown to behave as expected from Bayesian inference. However, such
behaviour might not be present when the deviation is smaller and the violation of
GRnot completely detectable. It is therefore of interest to consider a smaller deviation
in ψ3; say, 2.5%.

In Fig. 8.6 we show normalised distributions of the log odds ratio for individual
sources, and for catalogues with 15 sources each. For individual sources, the distrib-
utions are more or less on top of each other and the efficiency is only ζ = 0.11. The
picture is somewhat different for the catalogues. If a catalogue with δχ3 = 0.025
happens to contain one of the sources with a high log odds ratio, visible in Fig. 8.6,
then it can boost the combined odds ratio for the catalogue. It therefore comes as no
surprise that the efficiency for catalogues of 15 sources is (cat)ζ = 0.27.

We now have an example at hand for which the deviation is not as strong as the
example considered in Sect. 8.2.2. The interesting question is then whether or not
TIGER still works at low SNR, as was the case for δχ3 = 0.1. In Fig. 8.7 we plot
the log odds ratios for individual sources against SNR, both for signals with GR
waveforms and signals with δχ3 = 0.025. This time the two distributions largely
coincide, although there are some sources with a high log odds ratio, which could
boost the combined odds ratio when they are present in a catalogue of sources. How-
ever, for this example, the separation between background and foreground occurs at
SNR ∼ 15, which is somewhat larger than the δχ3 = 0.1 case, for which the sepa-
ration comes in at SNR ∼ 12. We can conclude, as one expects, that as the deviation

http://dx.doi.org/10.1007/978-3-319-19273-4_7
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Fig. 8.6 Normalised distributions of odds ratios for sources with δχ3 = 0.025 (red, dashed) and
sources in accordance with GR (blue, dotted). a Normalised distribution of log odds ratios for
individual sources. The efficiency in this case is ζ = 0.11, and this particular deviation from GR
would be barely detectable. bNormalised distribution of log odds ratios for catalogues of 15 sources
each. The efficiency is (cat)ζ = 0.27, which is an improvement over the efficiency for individual
sources. Nevertheless, this specific deviation remains weakly detectable
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Fig. 8.7 The log odds ratios for individual sources as a function of the SNR. The blue crosses
represent GR signals, the red circles are from signals with a constant 2.5% relative offset in ψ3. A
separation between the two is marginally visible at SNR � 15. Therefore, a deviation of this form
and magnitude will be difficult to observe

becomes more difficult to detect, one needs larger SNRs to increase the confidence
in a deviation. The more the signal is buried inside the noise, the harder it gets to
distinguish small effects.

To gainmore insight, we investigate the behaviour for the various sub-hypotheses.
Once again, we show, in Fig. 8.8, the cumulative frequency that a particular Bi1...ik

noise is
the largest, as a function of SNR, for the case where the signals have δχ3 = 0.025.
Unlike for the δχ3 = 0.1 case in Fig. 8.4, HGR is most often favoured. This means
that deviations of GR will rarely be seen if the deviation is of such a magnitude.
Furthermore, none of the sub-hypotheses has a better performance than another. If the
deviation is weakly detectable, none of the sub-hypotheses perform particularly well,
arguing that all sub-hypotheses are needed in order to achieve the best sensitivity.

To further illustrate the necessity of combining all sub-hypotheses, we show
the build-up of Bayes factors and odds ratio of a representative catalogue with
ln (3)OmodGR

GR > 0. In Fig. 8.9a we show the build-up of the log Bayes factors for the
various sub-hypotheses against GR, aswell as the odds ratio itself. Several interesting
features can be seen in Fig. 8.9a. Firstly, a catalogue consist of informative sources
that increase the odds ratio and the Bayes factors, as well as non-informative sources
that decrease the odds ratio and the Bayes factors. A high SNR is not predetermi-
nate of an informative source in the case where the deviation is weakly detectable.
However, if the source is confidently detectable, we do see from Fig. 8.3 that its
confidence increases with SNR. Another thing to note in Fig. 8.9a is the separation
of Bayes factors above and below lnOmodGR

G R = 0. For example, if one were to test
only with the most inclusive sub-hypothesis, i.e. H123, one would have come to the
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Fig. 8.8 a Curves and left vertical axis For a given SNR, the cumulative frequency that the Bayes
factor against noise for a particular sub-hypothesis is the largest, for signals with δχ3 = 0.025.
All 1296 simulated sources were used. As opposed to the δχ3 = 0.1 case, BGR

noise dominates. None
of the sub-hypotheses outperforms the other, showing that the inclusion of all sub-hypotheses is
crucial in the case where the deviation is only weakly detectable. Histogram and right vertical axis
The number of sources per SNR bin. b The same as above, but restricted to sources with SNR< 12.
Similar behaviour as for the full set of 1296 sources is observed

conclusion that HGR is the favoured model. The same is true if we had only tested
H2, as one would do when specifically looking for a ‘massive graviton’. However,
considering all sub-hypotheses together, the opposite is true. Another feature worth
pointing out is that the sub-hypothesis H3 is not the most favoured one; instead, it is
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H1. Indeed, not knowing beforehand what the precise nature of the GR violation will
be, it can be pivotal to combine all sub-hypotheses instead of considering individual
sub-hypotheses.

Finally, in Fig. 8.9b, we also look at a representative catalogue for which the
GR hypothesis is favoured, i.e. lnOmodGR

GR < 0. In this example, all sources have
a negative log Bayes factors, except for a single source at SNR ∼ 12 that causes
a sudden rise. Although such a signature would be a justification for a follow-up
investigation into this specific source, the reader is reminded that this single source
is inconsistent with the remaining 14 sources in this catalogue. Indeed, the catalogue
odds ratio is a statement from all sources in the catalogue.

8.2.4 Constant 20 % Shift in ψ4

In the two previous examples, the deviations were in one of the testing coefficients.
The ability to discern a deviation from GRmight therefore not surprise the reader, as
a significant subset of the sub-hypotheses have a channel throughwhich the deviation
can be modelled exactly.

In the next example we aim to investigate a case in which the deviation cannot be
modelled exactly by one of the sub-hypotheses. Therefore, we choose the deviation
to be in a higher order coefficient than our testing coefficients allow for. In this
example, we choose the deviation to be in ψ4, which is one PN order beyond the
highest order that is considered in the testing coefficients. In order to be confident
in a detection, we choose the magnitude to be such that the phase shift induced by
the deviation at the most sensitive frequency of the Advanced LIGO/Virgo detectors
( f ∼ 150 Hz, see Fig. 3.4) is comparable to the case in which δχ3 = 0.1. For the
shift in ψ4, this amounts to the relative shift being δχ4 = 0.2. Physically, a deviation
in ψ4 can be an indication of models in which the Einstein-Hilbert action includes
quadratic curvature terms [16–18].

In Fig. 8.10 we show the odds ratio for individual sources and for random cata-
logues with 15 sources each. For individual sources, the efficiency is ζ = 0.45, so
that the separation between the background and the foreground is present. However,
when one assumes random catalogues of 15 sources each, the efficiency increases
to (cat)ζ = 0.97 and the separation becomes very significant. This further illustrates
the importance of combining information from multiple sources.

Figure8.11 shows the odds ratio as a function of the optimal SNR, both for GR
injections and signals with δχ4 = 0.2. Similar to Fig.8.3 for the δχ3 = 0.1 case, the
separation between the background and foreground becomes apparent at SNR ∼ 12.
However, the odds ratio for the δχ4 = 0.2 case only reaches up to ln OmodGR

GR ∼ 60,
whereas for δχ3 = 0.1, it reaches up to ln OmodGR

GR ∼ 350. Clearly, this can be
attributed to the fact that the deviation cannot be modelled exactly by the waveforms
associated to the sub-hypotheses. We therefore conclude that although the efficiency
is an informative quantity, there is also information in themagnitude of the separation
between background and foreground.

http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Fig. 8.9 The build-up of cumulative Bayes factors against GR for individual sub-hypotheses, and
the odds ratio, for a typical catalogue with δχ3 = 0.025. a A catalogue that has lnOmodGR

GR > 0.
Note that on the basis of the Bayes factor against GR of the most inclusive sub-hypothesis, i.e.
H123, alone, one would have concluded that the GR model is in fact the favoured one. Even the log
Bayes factor for H23 ends up being negative. Additionally, the sub-hypothesis with the largest Bayes
factor is not H3 but H1. This illustrates that it is necessary to include as many sub-hypotheses as
possible in the analysis. b A representative catalogue with lnOmodGR

GR < 0. Note the single source at
SNR∼ 12 that causes a sudden rise. Although this source can be singled out as a possible signature
of a deviation, its result is inconsistent with the remaining sources in the catalogue, causing the
catalogue odds ratio to favour the GR hypothesis
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Fig. 8.10 Normalised distributions of odds ratios for sources with δχ4 = 0.2 (red, dashed) and
sources in accordance with GR (blue, dotted). a Normalised distribution of log odds ratios for
individual sources. The efficiency in this case is ζ = 0.45, and already shows good performance
for individual sources. b Normalised distribution of log odds ratios for catalogues of 15 sources
each. The efficiency is (cat)ζ = 0.97, which shows that such a deviation can be detected with near
certainty
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Fig. 8.11 Logodds ratios for individual sources as a function of the SNR.The blue crosses represent
signals from GR, the red circles come from signals with a constant 20% relative offset in ψ4. A
separation between the two is visible for SNR � 12 and becomes more pronounced as the SNR
increases

Now that the deviation cannot be accounted for by one of the sub-hypotheses, it
will be interesting to see which of the sub-hypotheses provides the dominant contri-
bution to the odds ratio. Therefore, we show, in Fig. 8.12, the cumulative frequency
that a given sub-hypothesis has the highest Bayes factor, as a function of the SNR.
Looking at Fig. 8.12, we come across a curious behaviour for the contributions from
the various sub-hypotheses. Up to about SNR ∼ 25, the GR hypothesis is favoured
over all the other sub-hypotheses. But from Fig. 8.11, we can see that the separation
sets in at about SNR ∼ 12. These two pieces of information tell us that although it
is more probable to favour the GR hypothesis for SNR < 25, the odds ratio is more
significant for the limited cases for which HmodGR is favoured.

What does a 20% shift in the ψ4 mean in terms of physical limits? Current
constraints from binary pulsars yield δχ4 < 107 [19]. It is evident from Fig. 8.10 that
if no deviation is to be found in Advanced LIGO/Virgo, a constraint of δχ4 � 10−1

can be placed. Therefore, direct measurement of CBC systems can constrain theories
of this kind to precisions that have not been seen before.

8.2.5 Non-PN Frequency Contribution; Case One

The aim of Sect. 8.2.2–8.2.4 was to get an impression of the sensitivity of TIGER to
deviations in PN coefficients. In order to gauge this, we assumed a constant relative
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Fig. 8.12 a Curves and left vertical axis For a given SNR, the cumulative frequency that the Bayes
factor against noise for a particular sub-hypothesis is the largest, for signals with δχ4 = 0.2. All
1004 simulated sources were used. Histogram and right vertical axis The number of sources per
SNR bin. b The same as above, but restricted to sources with SNR < 12. Similar behaviour as
for the full set of 1004 sources is observed. In terms of frequency, GR is the favoured model until
SNR ∼ 20. However, from Fig. 8.11, we see that in terms of the magnitude of the odds ratio, the
separation already occurs around SNR ∼ 12. It should be stressed that it is the magnitude of the
odds ratio that quantifies our (dis)believe in GR, and not the frequency that a hypothesis is preferred

offset in the physically interesting PN coefficients ψ3 and ψ4. However, we stress
once again that we do not expect a violation of GR to manifest itself as a simple
constant relative shift in one of the PN coefficients.
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Even if modifications are confined to the PN coefficients, the δχi in the signals can
be dependent on (M, η), in addition to whatever charges and coupling constants may
be present in alternative theories of gravity. Moreover, a deviation from GR could
introduce terms in the phase with frequency dependences that do not correspond
to any of the PN contributions. We now show that TIGER can also be sensitive to
violations of that kind, even though the model waveforms we use in our analyses
only have deformations of PN terms. Let us give a heuristic example where the phase
of the simulated signals contains a term with an non-PN frequency dependence in
between that of the 1PN and 1.5PN contributions. Specifically, the shift is assumed
to take the form

3

128η
(πM)−5/6δχA f −5/6. (8.1)

Wenote that the 1PN termgoes like f −1 and the 1.5PN term like f −2/3, and therefore,
the deviation introduced here could be dubbed ‘1.25PN’. However, for the use of
the Nested Sampling algorithm, we will continue to use the same model waveforms
as before, which can only have shifts in the phase coefficients at 0.5PN, 1PN, and
1.5PN. Our aim is to show that they will nevertheless allow us to find a deviation in
the signal of the form shown in Eq. (8.1).

We now need to make a choice for δχA. We aim to show that even if there is
a deviation in the phase that is not represented in any of our model waveforms,
it can be detected provided that, near the most sensitive area of the noise curve
( f ∼ 150 Hz), the amount by which it affects the phase is comparable to a shift in
the 1.5PN coefficient by more than a few percent. For definiteness, let us take δχA to
be constant, and such that at f = 150 Hz and for a system with m1 = m2 = 1.5 M�,
the contribution to the phase given by Eq. (8.1) is equal to the change caused by a
shift in the 1.5PN contribution with δχ3 = 0.1. This yields

(π3 M�)−5/6δχA(150Hz)−5/6 = −16π × (π3 M�)−2/3 × 0.1 × (150Hz)−2/3,

(8.2)

leading to δχA = −2.2. The phase shift at f = 150Hz is ∼5 radians.
Firstly, we show normalised distributions of the log odds ratios, both for individ-

ual sources and for catalogues of 15 sources each in Fig. 8.13. The efficiencies are
ζ = 0.71 and (cat)ζ = 1.0 for individual sources and for catalogues of 15 sources
respectively. As expected, there is an excellent separation for catalogues of sources
between the background and the foreground.

As before, we also show the odds ratios of individual sources as a function of
SNR in Fig. 8.14. We see that even at small SNR, there is already a good separation
between background and the foreground.

In Fig. 8.15, we show the cumulative frequency that the Bayes factor against
noise for a particular sub-hypothesis is the largest, arranged with increasing SNR.
From SNR ∼ 15, the Bayes factor B2

noise starts to dominate, followed by B23
noise

and B3
noise, with the latter two crossing over between SNR ∼ 20 and SNR ∼ 25.
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Fig. 8.13 Normalised distributions of odds ratios for sources with a deviation of the form given
by Eq. (8.1) and a coefficient δχA = −2.2 (red, dashed) and sources in accordance with GR
(blue, dotted). a Normalised distribution of log odds ratios for individual sources. The efficiency
in this case is ζ = 0.71, and already shows good performance for individual sources. b Normalised
distribution of log odds ratios for catalogues of 15 sources each. The efficiency is (cat)ζ = 1.0. It is
evident that TIGER can discern deviations from GR that are not present in one of the PN orders

As the deviation in Eq. (8.1) resides between the PN coefficients ψ2 and ψ3, we
indeed expect the sub-hypotheses that contain these coefficients to perform the best.
Furthermore, already at SNR∼ 9, all of the Bi1i2...ik

noise dominate the Bayes factor BGR
noise
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Fig. 8.14 Logodds ratios for individual sources as a function of the SNR.The blue crosses represent
signals from GR, the red circles come from signals with a deviation of the form given by Eq. (8.1)
and a coefficient δχA = −2.2. A separation between the two is visible for SNR � 12 and becomes
more pronounced as the SNR increases

for the GR hypothesis. However, near the SNR threshold, no single sub-hypothesis
dominates clearly,which again shows that asmany sub-hypotheses as possible should
be included in the analysis.

We can further justify the inclusion of all sub-hypotheses by comparing Fig. 8.15
to the similar plot for the δχ3 = 0.1 case, shown in Fig. 8.4. The main difference
is that for the δχ3 = 0.1 case, where the deviation can be modelled exactly by a
subset of the sub-hypotheses, only a few sub-hypotheses perform better than the
GR hypothesis. On the other hand, when the deviation cannot be modelled exactly,
all sub-hypothesis perform better than the GR hypothesis. Therefore, if one does
not know the alternative theory to GR a priori, it is crucial to include all available
sub-hypotheses.

Especially in this case, it is interesting to look at the growth of cumulative Bayes
factors against GR for individual sub-hypotheses, as well as of the odds ratio, as
sources with increasing SNR are being added within catalogues of 15 sources. This
is shown for two example catalogues in Fig. 8.16.

Together with Fig. 8.15, we can conclude that which sub-hypothesis comes out on
top will vary from one catalogue to another. In the examples of Fig. 8.16, we see that
either H12 or H23 gives the largest contribution. However, examples can be found
where any of the other sub-hypotheses contributes the most. In the catalogue shown
in Fig. 8.16b, if one were to favour particular (subsets of) sub-hypotheses a priori, the
log odds ratio could be lowered by as much as 100. This could have a large effect on
the FAP (cf. Fig. 8.13). These are again arguments for using as many sub-hypotheses
as possible, and giving them equal relative prior odds.
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Fig. 8.15 a Curves and left vertical axis For a given SNR, the cumulative frequency that the Bayes
factor against noise for a particular sub-hypothesis is the largest, for signals with a deviation of the
form given by Eq. (8.1) and a coefficient δχA = −2.2. All 854 simulated sources were used. The
sub-hypotheses allowing for deviations in the PN orders which are the closest to the shift, i.e. 1PN
and 1.5PN, are favoured. Histogram and right vertical axis The number of sources per SNR bin. b
The same as above, but restricted to sources with SNR < 12. Similar behaviour as for the full set
of 854 sources is observed
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Fig. 8.16 Two examples of how cumulativeBayes factors against GR for individual sub-hypotheses
and the odds ratio, grow as sources with increasing SNR are being added within catalogues of 15
sources in total, for a phase shift given in Eq. (8.1) and δχA = −2.2. Note the large differences in
contributions from different sub-hypotheses, and in the ordering of Bayes factors, between these
two catalogues. a A catalogue where H12 is the most informative sub-hypothesis. b A catalogue
where H12 is the least informative sub-hypothesis. In this case, the difference between H12 and the
most informative sub-hypothesis, H23, is significant
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8.2.6 Non-PN Frequency Contribution; Case Two

In our final example, we want to take the generality of the deviation a step further
than was done in Sect. 8.2.5. The signals are given, besides the usual mass dependent
magnitude [e.g. Eq. (8.1)], a deviation in the phase that has a mass dependent fre-
quency power. Assuming that the deviations are determined only by the component
masses, this would constitute the most general case. Specifically, the deviation is of
the form

�GR(M, η; f ) → �GR(M, η; f ) + 3

128η
(πM f )

−2+ M
3M� . (8.3)

We note that, at f = 150 Hz and for a system with component masses in the middle
of our range, i.e. m1 = m2 = 1.5 M�, the change in phase is about the same as
for a 10% shift in ψ3. Furthermore, in the total mass interval considered in these
simulations, the PN order of the deviation ranges effectively from 0.5PN for the least
massive systems to 1.5PN for the most massive systems.

In Fig. 8.17, the odds ratios for both individual sources and for catalogues of 15
sources with a deviation as in Eq. (8.3) are again compared to the background dis-
tribution from Fig. 8.1. The efficiencies are ζ = 0.91 and (cat)ζ = 1.0 for individual
sources and catalogues respectively. Given the examples in Sects. 8.2.2 and 8.2.5, it
should come as no surprise that the deviation can be found with both single sources
and catalogues of 15 sources. We would once again argue that even for the most gen-
eral mass dependent deviations, TIGER can detect deviations as long as the induced
phase shift is comparable to a few percent shift in ψ3 at the most sensitive region of
the advanced detectors ( f ∼ 150 Hz).

Next, we show the distribution of odds ratio as a function of the SNR in Fig. 8.18.
The separation, as expected, becomes pronounced close to the threshold value of the
SNR.

Furthermore, we can study the behaviour of the Bayes factors for individual sub-
hypotheses. Firstly, in Fig. 8.19, we show the cumulative frequency that a particular
sub-hypothesis has the highest Bayes factor, as a function of the SNR. For this
particular deviation, the most inclusive sub-hypothesis H123 is the most informative,
but only for SNR � 17. We can interpret this as a manifestation of Occam’s razor.
When the signal is weak compared to the noise, the sub-hypothesis H123 is penalised
by Occam’s razor because of it has added complexity compared to the other sub-
hypotheses, yet it does not describe the signal significantly better. However, once the
signal is strong enough, the sub-hypothesis H123 can describe the signal, on average,
significantly better than the other sub-hypotheses, and therefore has a higher Bayes
factor despite Occam’s razor.

Finally, we show two examples of the build-up of Bayes factors for the individual
sub-hypotheses and the odds ratio in Fig. 8.20. Both examples show the expected
gradual increase in Bayes factors as more sources are added to the catalogue. In
Fig. 8.20a, we see an example catalogue where a single source separates the Bayes
factors for different sub-hypotheses. This source separates the sub-hypotheses with
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Fig. 8.17 Normalised distributions of odds ratios for sources with a deviation of the form given by
Eq. (8.3) (red, dashed) and sources in accordance with GR (blue, dotted). a Normalised distribution
of log odds ratios for individual sources. The efficiency in this case is ζ = 0.91, and already shows
good performance for individual sources. bNormalised distribution of log odds ratios for catalogues
of 15 sources each. The efficiency is (cat)ζ = 1.0. It is evident that TIGERcan evendiscern deviations
that have a mass dependent frequency power

multiple free coefficients from the sub-hypotheses that only have a single free phase
coefficient. The complex behaviour of the phase shift in Eq. (8.3) cannot be accu-
rately described by a single free phase coefficient, and the relevant sub-hypotheses
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Fig. 8.18 Logodds ratios for individual sources as a function of the SNR.The blue crosses represent
signals from GR, the red circles come from signals with a deviation of the form given by Eq. (8.3).
A separation between the two is visible for SNR � 12 and becomes more pronounced as the SNR
increases

are penalised for this. In Fig. 8.20b, we see an example catalogue where the sub-
hypothesis H123 start off being the least informative sub-hypothesis. But as sources
with increasing SNR are added, the sub-hypothesis H123 becomes more favoured
compared to the other sub-hypotheses. This is to be compared with what is shown
in Fig. 8.19.

8.3 Effect of the Catalogue Size

Consider the example with δχ3 = 0.025, given in Sect. 8.2.3. For a maximum FAP
of βmax = 0.05 and 15 sources per catalogue, we have an efficiency of (cat)ζ = 0.27.
For such an efficiency, we would consider this specific deviation from GR to be
hardly detectable. However, the number of sources per catalogue, 15 in the examples
shown so far, and the chosen maximum FAP, βmax = 0.05, are somewhat arbitrary.
In reality, the size of the catalogue will depend on the number of detected sources,
and the FAP is set according to the required confidence. It is therefore of interest to
investigate the effects of both of these factors. In Fig. 8.21 we show the behaviour of
the efficiency as a function of the catalogue size and the maximum FAP. To account
for the arbitrariness in which the sources are combined to form catalogues, we show
themedian (central curve) and 68%confidence interval (error bars) of the efficiencies
from 5000 different ways in which the sources were ordered into catalogues. Results
are shown for βmax ∈ {0.05, 0.01}.
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Fig. 8.19 a Curves and left vertical axis For a given SNR, the cumulative frequency that the Bayes
factor against noise for a particular sub-hypothesis is the largest, for signals with a deviation of the
form given by Eq. (8.3). All 1376 simulated sources were used. In this case, the most inclusive sub-
hypothesis, H123, is the most informative sub-hypothesis. The GR hypothesis rarely has the highest
Bayes factor, meaning that the deviation is significant in all sub-hypotheses. Histogram and right
vertical axis The number of sources per SNR bin. b The same as above, but restricted to sources
with SNR < 12. For the low SNR sources, the sub-hypothesis H123 is not the best performing
sub-hypothesis. Instead, only for SNR� 17 does H123 become the most informative

As is evident from Fig. 8.21, the efficiency rises as a function of the catalogue size.
This highlights the importance of combining all available sources in the advanced-
detector era, when one looks for deviations from GR. The maximum catalogue size
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Fig. 8.20 Two examples of how cumulativeBayes factors against GR for individual sub-hypotheses
and the odds ratio grow as sources with increasing SNR are being added within catalogues of 15
sources in total, for a phase shift given in Eq. (8.3). a An example catalogue in which the sub-
hypotheses with only one free phase coefficient are less favoured than sub-hypotheses that have
more than one phase coefficients free. Such a catalogue could be an indication that the true nature
of the deviation is not solely within a single phase coefficient. b An example catalogue for which
the sub-hypothesis H123 starts off having a lower Bayes factor than the other sub-hypotheses, due to
Occam’s razor. But as the SNR increases, it turns out that the sub-hypothesis H123 does describe the
data better, and its Bayes factor increases faster than for the other sub-hypotheses. This behaviour
can also be seen in Fig. 8.19
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Fig. 8.21 The efficiency of detecting a GR violation for sources with δχ3 = 0.025, as a function
of catalogue size for maximum FAPs βmax ∈ {0.05, 0.01}. The median and the 68% confidence
interval from 5000 random catalogue orderings are shown as the central curve and the error bars,
respectively. The efficiency increases as a function of catalogue size, once again underscoring the
benefit of combining all available data

shown is comparable to the ‘realistic’ estimates of the number of detections of BNS
inspirals in the span of a year [6].

We see that δχ3 = 0.025 is a borderline case in terms of discernability of a GR
violation. Later on, whenwe showposterior PDFs, it will become evident that indeed,
δχ3 can be measured typically with an accuracy of this order.

8.4 Effect of the Number of Testing Coefficients

Similar to the number of sources per catalogue, the number of sub-hypotheses is also
subject to the user’s choice. It is therefore of interest to seewhatwould have happened
if we had used a smaller number of testing coefficients, for example {ψ1,ψ2}, so
that the sub-hypotheses to be tested are H1, H2, and H12. In the example with
δχ3 = 0.025, the PN order where the deviation occurs, namely 1.5PN, would then
be higher than the PNorders associatedwith our testing coefficients, which are 0.5PN
and 1PN.

In Fig. 8.22, the following two things are shown.

• In the case where only {ψ1,ψ2} are testing coefficients, we compute the thresh-
olds ln (2)Oβ corresponding to maximum FAPs of βmax ∈ {0.05, 0.01}. Next, we
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Fig. 8.22 a The change in FAPs in going from two to three testing coefficients, but keeping the odds
ratio thresholds fixed. b The change in efficiencies when keeping the maximum FAPs fixed. The
plots shown are for the case where the signals have δχ3 = 0.025.We see that increasing the number
of testing coefficients has only a moderate effect on the FAPs, while for fixed maximum FAPs,
the efficiencies do not change appreciably. Note, however, that when the evidence for a deviation
from GR is marginal, the use of as many sub-hypotheses as possible can be pivotal in finding the
violation (see Fig. 8.9, and also Fig. 8.16)

re-calculate the FAPs for the same thresholds, but now for the case where there
are three testing coefficients, {ψ1,ψ2,ψ3}, and show the difference in FAPs in
Fig. 8.22a.
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• On the other hand, one can compare the efficiencies (2)ζ and (3)ζ for the two- and
three-testing-coefficients cases, for fixed maximum FAPs of βmax ∈ {0.05, 0.01}.
This is shown in Fig. 8.22b.

As expected, in the first case (fixed thresholds for the odds ratios), the FAP
increases in going from two to three testing coefficients, but only moderately so.
On the other hand, for fixed maximum FAPs, there is no appreciable change in effi-
ciency. Indeed, the spread in the GR ‘background’ will increase with an increase in
sub-hypotheses to be tested against GR; yet, having more sub-hypotheses does not
really hurt us in terms of our ability to detect a deviation from GR.

Figure8.22 indicates the typical behaviour for catalogues with a specific deviation
from GR, in this case δχ3 = 0.025. It is worth repeating, however, that especially
when there is onlymarginal evidence for aGRviolation, it is important to use asmany
sub-hypotheses as is computationally feasible, cf. Fig. 8.9a. Also, we will obviously
not know beforehand what the nature of the true GR violation is, if any.

Onemay nevertheless wonder how our three-testing-coefficients case would com-
pare to a ‘targeted search’ that only looks for a deviation inψ3, which in this example
happens to be where the deviation actually is. With our choice of α = 1, this cor-
responds to setting OmodGR

GR = (cat)B3
GR. Figure8.23 shows the change in FAPs in

going from testing only H3 to the full test for fixed log odds ratio thresholds, as well
as the change in efficiencies for fixed maximum FAPs. The results are as follows.

• The change in FAPs for fixed log odds ratio thresholds is minor.
• However, especially for a large number of sources per catalogue, the efficiencies
show a clear rise. This can be accounted for by the fact that, for a small violation
of GR, it will not always be the case that the Bayes factor against GR for H3 is the
largest, but TIGER is able to compensate for that.

We conclude that for this particular example, TIGER with NT = 3 testing coeffi-
cients will tend to outperform a ‘targeted search’ that happens to look for the viola-
tion actually present. However, we do not expect this to be true for more complicated
deviations from GR.

8.5 Posteriors

Finally, let us look at some posterior PDFs for the δχi . We stress that unlike Bayes
factors, the PDFs cannot be combined across sources since we should not expect
the δχi to be independent of the component masses; they can differ from source
to source. Even looking at the PDFs for a single source may then be misleading,
because even if the deviation is exactly in one or more of the PN coefficients, a given
source will have values for the δχi that are representative just for the (M, η) of that
source, and possibly also for the values of additional charges that may appear in
an alternative theory of gravity. In a given catalogue, there may be only one source
with sufficient SNR to allow for accurate parameter estimation, in which case the
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Fig. 8.23 a The difference of FAPs, (3)β − (target)β, for fixed log odds ratio thresholds and signals
having δχ3 = 0.025, between our three-testing-coefficients case and a ‘targeted search’ which
only looks for a deviation in ψ3, i.e., only tests the sub-hypothesis H3 against GR. We see that
the difference is minor. b More important is the difference in efficiencies, (3)ζ − (target)ζ, for fixed
maximumFAPs. Especially for a large number of sources per catalogue, our three-testing coefficient
case is actually more efficient than the ‘targeted search’, at least for this particular example. This is
because the Bayes factor against GR for H3 will not be the largest in every catalogue, but TIGER
naturally compensates for that. Of course, we do not expect TIGER to outperform a targeted search
in the case of a more complicated deviation from GR
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posteriors will not tell us much even if they are strongly peaked. More generally, the
deviation from GR may manifest itself by the appearance of terms in the phase that
do not have the frequency dependence of any of the PN contributions. However, in
the event that the log odds ratio and Bayes factors strongly favour the GR hypothesis,
posterior PDFs will allow us to constrain deviations in the PN coefficients, thereby
adding further support that GR is the correct theory. Hence we start with an analysis
of pure GR injections.

8.5.1 GR Injection

Let us first look at a GR source with (M, η, D) = (1.31 M�, 0.243, 131Mpc), and
an Advanced LIGO/Virgo network SNR of 23.0. The Bayes factors for the various
sub-hypotheses against GR are

ln B1
GR = −2, ln B2

GR = −2, ln B3
GR = −2,

ln B12
GR = −3, ln B13

GR = −1, ln B23
GR = −1,

ln B123
GR = −2.

(8.4)

The GR hypothesis is favoured in all cases. We can also look at the Bayes factors for
all of the sub-hypotheses against noise. This yields

ln BGR
noise = 211,

ln B1
noise = 209, ln B2

noise = 209, ln B3
noise = 209,

ln B12
noise = 208, ln B13

noise = 210, ln B23
noise = 210,

ln B123
noise = 209.

(8.5)

Hence the signal is picked up very well by the waveforms of all of the sub-
hypotheses, with the GR waveform doing slightly better.

Let us now look at some posterior PDFs. In Fig. 8.24, we show the PDFs for δχ1,
δχ2, and δχ3, respectively for the waveforms that have free parameters {θ, δχ1},
{θ, δχ2}, and {θ, δχ3}, with θ being the parameters of the GR waveform. We see
that the distributions are all narrowly peaked around the correct value of zero.

8.5.2 Signal with δχ3 = 0.1

We now consider an example with (M, η, D) = (1.18 M�, 0.244, 196Mpc), with
a non-zero relative shift in ψ3 of δχ3 = 0.1, and network SNR of 23.2. The Bayes
factors in this case are
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Fig. 8.24 Posterior PDFs for a GR injection. a δχ1 measured with a waveform that has {θ, δχ1}
as free parameters. b δχ2 measured with a waveform that has {θ, δχ2} free. c δχ3 measured with
a waveform that has {θ, δχ3} free. In each case the distribution is tightly centred on zero, with
standard deviations of 0.014, 0.015, and 0.019, respectively

ln B1
GR = 117, ln B2

GR = 124, ln B3
GR = 124,

ln B12
GR = 123, ln B13

GR = 124, ln B23
GR = 125,

ln B123
GR = 114.

(8.6)

This time the GR hypothesis is very much disfavoured. However, we note that the
Bayes factor for the sub-hypothesis that only ψ3 differs from its GR value is not
the largest. In fact, all the Bayes factors except for B1

GR and B123
GR are rather simi-

lar in magnitude, and no clear conclusions can be drawn from them regarding the
underlying nature of the deviation from GR.

When looking at the Bayes factors against noise, we see that the signal is clearly
detected for all sub-hypotheses. We have

ln BGR
noise = 128,

ln B1
noise = 245, ln B2

noise = 252, ln B3
noise = 252,

ln B12
noise = 251, ln B13

noise = 252, ln B23
noise = 253,

ln B123
noise = 242.

(8.7)
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Fig. 8.25 Posterior PDFs for an injection with δχ3 = 0.1. a δχ1 measured with a waveform that
has {θ, δχ1} as free parameters; b δχ2 measured with a waveform that has {θ, δχ2} free. c δχ3
measured with a waveform that has {θ, δχ3} free. As expected, the PDF in panel (c) is sharply
peaked at the correct value of δχ3 = 0.1, with a standard deviation of 0.012. For panels (a) and (b),
the one test coefficient that is used differs from the coefficient in the signal that has the shift. The
parameters in the waveform will rearrange themselves such as to best accommodate the properties
of the signal. Both δχ1 and δχ2 end up being sharply peaked, but not at the correct value of zero

Now let us consider posterior PDFs. We expect the PDF of δχ3 for the sub-
hypothesis H3, where only {θ, δχ3} are allowed to vary, to be peaked at the injected
value of 0.1, and this is the case with very good accuracy, as is shown in Fig. 8.25c.

In Fig. 8.25a, b, the PDFs of δχ1 for the sub-hypothesis H1, and of δχ2 for the
sub-hypothesis H2 are shown. In these cases, the parameter in the signal that has the
shift is now not represented; in the first case only δχ1 is allowed to vary on top of
the parameters θ of GR, and in the second case only δχ2. In the Nested Sampling
process, the waveform will still try to adapt itself to the deformation in the signal.
The result is that δχ1 and δχ2 are strongly peaked, but away from the correct values
δχ1 = δχ2 = 0. Thus, if one were to study the data only with waveforms from a
specific alternative theory of gravity (e.g. a ‘massive graviton’model with a deviation
inψ2 only), onemight find a violation of GR but it may lead to the wrong conclusions
about the nature of the deviation.

We can also look at the PDFs for the sub-hypothesis H123, where the waveforms
have δχ1, δχ2, δχ3 free, shown in Fig. 8.26. Once again the peaks for δχ1, δχ2 and
δχ3 are more or less at the correct value, but we now have a much larger spread.
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Fig. 8.26 The posterior PDFs of a δχ1, b δχ2 and c δχ3, for an injectionwith δχ3 = 0.1, recovered
with waveforms where {θ, δχ1, δχ2, δχ3} are all free. The peak for δχ3 is near the correct value
of δχ3 = 0.1 (with a median of 0.083), but this time the spread is considerably larger (with a
standard deviation of 0.055), as we are trying to measure more parameters at the same time. Both
δχ1 and δχ2 are also peaked around their correct values of δχ1 = δχ2 = 0, but with larger spreads
compared to the PDFs when only a single parameter is free

This too is as expected, as parameter estimation degrades if one tries to measure too
many parameters at once.

8.5.3 Signal with δχ3 = 0.025

Let us consider an example with (M, η, D) = (1.14 M�, 0.242, 216Mpc), δχ3 =
0.025, and a network SNR of 20.6. As expected, the Bayes factors for the sub-
hypotheses against GR are considerably smaller than in the case of δχ3 = 0.1, but
GR is still disfavoured:

ln B1
GR = 11, ln B2

GR = 12, ln B3
GR = 12,

ln B12
GR = 10, ln B13

GR = 11, ln B23
GR = 11,

ln B123
GR = 11.

(8.8)
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Fig. 8.27 The posterior PDFs for a δχ1, b δχ2, and c δχ3, for an injection with δχ3 = 0.025,
recovered with waveforms where {θ, δχ1}, {θ, δχ2}, and {θ, δχ3} are free, respectively. Again δχ3
is peaked at close to the correct value, with a median of 0.027 and a standard deviation of 0.0092,
but both δχ1 and δχ2 are peaked at incorrect values

Also as expected, the signal is easily found by all of the model waveforms:

ln BGR
noise = 186,

ln B1
noise = 197, ln B2

noise = 198, ln B3
noise = 198,

ln B12
noise = 196, ln B13

noise = 197, ln B23
noise = 197,

ln B123
noise = 197.

(8.9)

As before, we look at the posterior PDF of δχ3 for the sub-hypothesis H3, where
only {θ, δχ3} are allowed to vary, as shown in Fig. 8.27c. The distribution is peaked
near the correct value and stays away from zero; however, one should not expect the
same to happen for lower-SNR sources. Let us also look at the PDF for δχ1 when
{θ, δχ1} are free parameters, and of δχ2 when {θ, δχ2} are free, as shown Fig. 8.27a,
b. As before, δχ1 and δχ2 are not peaked at the right values of δχ1 = δχ2 = 0.
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Fig. 8.28 The posterior PDFs for an injection with a deviation of the form Eq. (8.1), recovered
with waveforms where, respectively, a {θ, δχ1}, b {θ, δχ2} and c {θ, δχ3} are free. The distribution
of δχ3 has its median at 0.11 and a standard deviation of 0.017. Note the remarkable resemblance
with Fig. 8.25, where the signal had δχ3 = 0.1. Also for δχ1 and δχ2, the distributions are very
similar to the ones for a signal with δχ3 = 0.1

8.5.4 Signal with Non-PN Frequency Dependence in the
Phasing

We now look at a signal with a frequency dependence between 1PN and 1.5PN, as in
Eq. (8.1). In the example we use here, we have (M, η, D) = (1.29 M�, 0.250, 208
Mpc), with a network SNR of 22.4. The Bayes factors for the sub-hypotheses against
GR are

ln B1
GR = 91, ln B2

GR = 93, ln B3
GR = 89,

ln B12
GR = 92, ln B13

GR = 91, ln B23
GR = 92,

ln B123
GR = 91.

(8.10)

Thus, also in this case, the GR hypothesis is very much disfavoured, despite the
fact that none of our model waveforms contains the non-PN frequency dependence
which is present in the phase of the signal. We can also look at the Bayes factors
against noise. This yields
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ln BGR
noise = 148,

ln B1
noise = 239, ln B2

noise = 241, ln B3
noise = 237,

ln B12
noise = 240, ln B13

noise = 239, ln B23
noise = 239,

ln B123
noise = 239.

(8.11)

It is interesting to look at the posterior PDF of δχ3 for the case where {θ, δχ3}
are allowed to vary, as shown Fig. 8.28c. The distribution looks uncannily like the
analogous one for a signal with δχ3 = 0.1, shown in Fig. 8.25c. We can also look
at the PDF of δχ1 in the case where {θ, δχ1} are free parameters, and the PDF of
δχ2 when {θ, δχ2} are free, as shown in Fig. 8.28a, b. Here too there is an interesting
resemblance to Fig. 8.25a, b, for an injection with δχ3 = 0.1.

In conclusion, trying to find the specific form of the deviation by looking at
the posterior distributions can ultimately be misleading. Indeed, the posteriors can
‘masquerade’ as deviations in one of the PN coefficients. Now, one could imagine
looking for patterns in the PDFs to see what information can be extracted about the
nature of the deviation. However, this is outside the scope of this work and would
also be somewhat premature. Indeed, the behaviour would not only depend on the
precise nature of the GR violation, but also on the waveform used. In the future,
we may want to use time domain waveforms, e.g. numerically evolved by using a
Hamiltonian, and then construct model waveforms by introducing deviations directly
in that Hamiltonian. Whatever patterns may emerge depending on the GR violation
will then pertain to the associated coefficients, which would be more directly related
to the physics of coalescence than the phasing coefficients. We leave this issue for
future work.

References

1. C.K. Mishra et al., Parametrized tests of post-Newtonian theory using advanced LIGO and
Einstein telescope. Phys. Rev. D 82, 064010 (2010)

2. R. O’Shaughnessy, C. Kim, Pulsar binary birth rates with spin-opening angle correlations.
Astrophys. J. 715, 230–241 (2010)

3. C. Van Den Broeck, A.S. Sengupta, Binary black hole spectroscopy. Class. Quantum Gravity
24(5), 1089 (2007)

4. C. Van Den Broeck, A.S. Sengupta, Phenomenology of amplitude-corrected post-Newtonian
gravitational waveforms for compact binary inspiral: I. Signal-to noise ratios. Class. Quantum
Gravity 24(1), 155 (2007)

5. S. Vitale,M. Zanolin, Parameter estimation from gravitational waves generated by nonspinning
binary black holeswith laser interferometers: beyond thefisher information. Phys.Rev.D82.12,
124065 (2010)

6. J. Abadie et al., Calibration of the LIGO gravitational wave detectors in the fifth science run.
Nucl. Instrum. Methods Phys. Res. A 624, 223–240 (2010)

7. F. Özel et al., On the mass distribution and birth masses of neutron stars. ApJ 757, 55 (2012)
8. J. Abadie et al., Predictions for the rates of compact binary coalescences observable by ground-

based gravitational-wave detectors. Class. Quantum Gravity 27(17), 173001 (2010)
9. C. Cutler et al., The last three minutes—issues in gravitational-wave measurements of coalesc-

ing compact binaries. Phys. Rev. Lett. 70, 2984–2987 (1993)



References 163

10. A. Buonanno et al., Comparison of post-Newtonian templates for compact binary inspiral
signals in gravitational-wave detectors. Phys. Rev. D 80, 084043 (2009)

11. J. Veitch, A. Vecchio, Bayesian coherent analysis of in-spiral gravitational wave signals with
a detector network. Phys. Rev. D 81, 062003 (2010)

12. M. Dominik et al., Double compact objects. I. The significance of the common envelope on
merger rates. ApJ 759, 52 (2012)

13. J. Abadie et al., Search for gravitational waves from compact binary coalescence in LIGO and
Virgo data from S5 and VSR1. Phys. Rev. D 82.10, 102001 (2010)

14. L. Blanchet, B.S. Sathyaprakash, Signal analysis of gravitational wave tails. Class. Quantum
Gravity 11(11), 2807 (1994)

15. L. Blanchet, B.S. Sathyaprakash, Detecting a tail effect in gravitational-wave experiments.
Phys. Rev. Lett. 74, 1067–1070 (1995)

16. L.C. Stein, N. Yunes, Effective gravitational wave stress-energy tensor in alternative theories
of gravity. Phys. Rev. D 83, 064038 (2010)

17. K. Yagi et al., Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity.
Phys. Rev. D 85.6, 064022 (2012)

18. N. Yunes, L.C. Stein, Non-spinning black holes in alternative theories of gravity. Phys. Rev. D
83, 104002 (2011)

19. N. Yunes, S.A. Hughes, Binary pulsar constraints on the parametrized post-Einsteinian frame-
work. Phys. Rev. D 82, 082002 (2010)



Chapter 9
Discussion

We have developed TIGER, a general framework to search for deviations from GR
by using signals fromCBC events. To this end, we constructed an odds ratio OmodGR

GR ,
which is the posterior probability that there is a deviation from GR, versus GR being
correct. This odds ratio can be written as a linear combination of Bayes factors
Bi1i2...ik
GR for sub-hypotheses Hi1i2...ik , in each of which one or more of the phase

parameters ψi is assumed to deviate from the GR value, without actually assuming
any specific dependence on the frequency and/or physical parameters pertinent to a
given theory. Since this includes sub-hypotheses where only a single one of the ψi is
non-GR, ourmethodwill be particularlywell-suited in low-SNR scenarios, whichwe
expect to be relevant for the upcoming advanced-detector network. We also showed
that information from multiple sources can be combined to arrive at an odds ratio
OmodGR

GR for the ‘catalogue’ of all observed events. Furthermore, we showed that an
observed odds ratio can be interpreted through the comparison with a distribution
of the odds ratio originating from simulated GR signals embedded in noise, the so-
called ‘background’ distribution. Ameasured odds ratio can then be assigned a ‘false
alarm probability’, quantifying our confidence in a deviation. Finally, in the absence
of real detections, we show how one can assess the probability of detecting a specific
deviation fromGR. This is done through the construction of the foreground, which is
the distribution of the odds ratio when the signals are given a specific deviation and
are embedded in noise. The quantity ‘efficiency’ is subsequently defined to quantify
the fraction of the foreground above a certain threshold, set by a given false alarm
probability.

In order to gauge the performance of the method, we have analysed two classes of
deviations. The first class involved deviations which are in one of the phase coeffi-
cients. In the second category of deviations, we move away from this restriction and
allow the deviation to manifest itself in arbitrary locations. Although these examples
were heuristic, they allowed us to investigate the performance of the method for
waveforms with deviations from GR that cannot be accounted for by a simple shift
in one of the phase coefficients.
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We first considered signals with a constant fractional deviation in the 1.5PN
coefficient ψ3. This coefficient is of particular interest, since it incorporates the
so-called ‘tail effects’ [1, 2] (as well as spin-orbit coupling [3], although we did
not consider spin here), which are not empirically accessible with binary pulsar
observations and can only be studied through direct detection of gravitational waves.
When considering catalogues of only 15 BNS sources, we saw that a deviation in ψ3
at the 10% level would easily be detectable. In fact, even a deviation at the few per
cent level can be discernible. This is confirmed by posterior PDFs for ψ3 in the case
where this is the only parameter that is assumed to deviate from its GR value.

We further showed results for signals with a shift in the 2PN phase coefficient,
ψ4. Setting δχ4 = 0.2, the induced change in phase at f = 150 Hz is comparable to
a constant shift δχ3 = −0.035 in the 1.5PN coefficient. The choice of a modification
at the 2PN coefficient was inspired by corrections to the phase if one considers a
modified Einstein-Hilbert action containing terms that are quadratic in the Riemann
tensor [4–6]. As we have shown, direct detection of GWs analysed with TIGER can
constrain theories of this kind to precisions that cannot be achieved by binary pulsar
observations.

We also considered a deviation in the phase with a frequency dependence that
does not match any of the PN coefficients, and hence is not present in any of the
model waveforms that we used. More precisely, we looked at signals whose phase
has an additional contribution, which has a frequency dependence in between that of
the 1 and 1.5PN terms (‘1.25PN’). The magnitude of the deviation was chosen such
that near f ∼ 150 Hz, where the detectors are the most sensitive, the change in phase
is roughly the same as the change caused by a 10% shift in the 1.5PN coefficient.
The deviation was clearly detectable in the log odds ratios, the Bayes factors, and the
posterior PDFs.We expect this to be an instance of a more general fact. Namely, even
if there is a deviation in the phase which the model waveforms technically do not
allow for, it will typically be observable, on condition that near the sensitive region
of the detector, it causes a change in the phase that is comparable to the effect of a
shift in the (low order) PN phase coefficients of more than a few per cent.

In the last example, signals were studied that have a deviation in the phase with
a mass dependent power of frequency, effectively ranging from 0.5 to 1.5PN as the
total mass is varied from the lowest to the highest value we consider. The magnitude
of the effect was such that at f = 150 Hz, the change in phase was the same as
that induced by a constant relative shift δχ3 = 0.1. One concludes that even a fully
mass dependent deviation (i.e. in both the magnitude and the frequency dependence)
will be detectable with our method. This strengthens our belief that any deviation,
regardless of its form, can be found through TIGER, as long as the induced phase
shift is of a detectable magnitude.
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9.1 Comparison with Existing Methods

Having seen the results in Chap. 8, it is instructive to compare and contrast our
findings with the tests of GR from the existing literature (see Sect. 6.4).

A direct comparison with the proposal by Arun et al. can only be made at the
level of the posteriors. Before doing so, it should be stressed again that TIGER is
not based on the posteriors but on the odds ratio. Posteriors in Sect. 8.5 are merely
shown as a sanity check and to argue that a method based on posteriors can lead to
a severe misconception about the underlying nature of the deviation from GR.

As shown in Figs. 8.25, 8.26 and 8.27, the precision of themeasurements ofψ3 is in
the order of 10−2. This is in accordance with results from Fisher matrix calculations.
In addition, our results show that, as a by-product, the systematic effects are negligible
compared to the statistical errors. One can thus conclude that the proposal by Arun
et al. can be successfully implemented.

Nevertheless, the method by Arun et al. still suffers from a major drawback. By
looking at posteriors, it is only possible in limited cases to combine information from
multiple sources. Consider a theory thatmodifies some phase coefficient,ψi , but does
this in a non-constant way. A simple example would be that the deviation depends on
the compactness of the system and therefore ultimately depends on the masses of the
system. Measurements of the ψi parameter can then not be combined across sources
with different masses. The exception is when one knows what the dependence of the
shift is in terms of the masses. However, this would go against the generality that
TIGER seeks. Furthermore, one has to compute the predicted functional forms and
analyse the data for each alternative theory.

Further comparison on the parameter estimation side can be done with the work
by Del Pozzo et al. [7]. In this work, the authors considered a direct search in a
Bayesian setting for the massive graviton with a simplified waveform derived by
Will [8]. Del Pozzo et al. showed that the Compton wavelength, λg , can be bounded
to λg > 6 × 1015 m, which is a slight improvement over the λg > 2.8 × 1015 m
derived from solar system tests [8]. Such a bound can be compared to Fig. 8.24,
in which we also analyse the posteriors for the case in which the signal was in
accordance with GR. Assuming the simplified waveform as shown by Will [8], the
measurement of δχ2 can be directly translated into the Compton wavelength, as both
occur as a shift in the 1.0PN phase coefficient. As shown in Fig. 8.24, the limit on the
massive graviton from a single measurement is about δχ2 ∼ 0.05, which translates
into λg > 3 × 1015 m. Although this example only considers a single instance, it
is evident that the resulting posteriors on δχ2 are comparable to the results of Del
Pozzo et al., increasing our confidence in the implementation of TIGER.

A comparison can also be made with work related to PPE [4–6, 9–14]. As the
main goal of PPE is to pinpoint the nature of the deviation from GR through the
inference of extra free parameters, this approach suffers, like any approach that
considers explicit deviations, from severe drawbacks. Firstly, parameter estimation
significantly degrades if one includes many free coefficients. Secondly, the model
waveform needs to be able to account for the deviation exactly, in order to avoid
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beingmisinformedby systematic errors.An example of this can be seenby comparing
Figs. 8.25 to 8.28. In this example, we show that a deviation that cannot be accounted
for by the model waveform can still behave as if it were a deviation that is accounted
for by the model waveform.

However, in their recent work, Cornish et al. [15] implemented the PPEwaveform
into a Bayesian analysis. This approach allows for Bayes factors to be calculated and
therefore the PPE hypothesis to be compared to the GR hypothesis. A few words of
caution are in place before we compare their results to ours. Firstly, the calculations
in Cornish et al. were performed in the absence of noise. As can be seen in Fig. 8.1,
noise can indeed produce a non-negligible odds ratio and a proper treatment of
noise ought to be performed along the lines of Sect. 7.2. Furthermore, Cornish et al.
consider sources with an SNR of 20. Such an event would be considered relatively
rare in the advanced-detector era, as most sources are expected to be near threshold
(SNR= 8). Ourwork considers amore realistic (albeit speculative) noise contribution
and the SNR of sources are taken as low as the threshold for a detection claim.
As the specific form of the deviation was not considered in Chap. 8, we instead
compare the odds ratio for a similar shift in magnitude of the phase induced by the
deviation at f = 150 Hz. Despite performing under more challenging circumstances
(including noise and considering sources down to SNR of 8), the results are found
to be comparable. This gives us confidence that TIGER is more efficient than other
generic tests applicable to CBC signals.

9.2 Outlook

Thepreliminary results presented heremotivate the construction of a full data analysis
pipeline for testing or constraining GR. A test of GR on Advanced LIGO/Virgo data
could be implemented along the following lines.

• Starting from particular GR waveforms, introduce parameterised deformations,
leading to disjoint sub-hypotheses like our Hi1i2...ik , which together formHmodGR.

• Use many injections of GR waveforms in real or realistic data, to investigate
the background distribution of the odds ratio, P

(

lnOmodGR
GR |κ,HGR, I

)

. Use the
background together with choices for the maximum false alarm probability to set
thresholds, lnOβ , for the measured odds ratio and Bayes factors to overcome.

• Apply TIGER to the catalogue of sources actually found by the detectors. If the
measured odds ratio OmodGR

GR is below threshold, then there is no real reason to
believe that a deviation from GR is present. The posterior PDFs for the free phase
and amplitude coefficients in the model waveforms, taken from the highest-SNR
sources, could provide (potentially very strong) constraints on these parameters.

• If the measured odds ratio is above threshold, then a violation of GR is likely.
As we have seen, Bayes factors and PDFs can be misleading in trying to find out
what the precise nature of the deviation may be. However, one may be able to
follow up on the violation by again using TIGER, this time with waveforms with

http://dx.doi.org/10.1007/978-3-319-19273-4_8
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more complicated deformations and a larger number of free parameters, inspired
by particular alternative theories of gravity, similar to what is done in PPE [9].

Waveform Approximant
We note that TIGER is not tied to any particular waveform approximant. Moreover,
the deformations need not be in the phase. Indeed, in the future onewould presumably
want to use time domain waveforms, for which it may be more convenient (and
physically more appropriate) to introduce parameterised deformations directly in
coefficients appearing in, e.g., a Hamiltonian used to evolve the inspiral part of the
waveform. Irrespective of the parameterisation, one would still be able to associate
with it an exhaustive set of logically disjoint sub-hypotheses Hi1i2...ik , and calculate
the corresponding odds ratio.

For BNS systems, the TaylorF2 approximation might turn out to be sufficiently
accurate in the inspiral regime to find deviations from GR, as it seems to have a good
match with numerical simulations in the inspiral regime [16]. Although neutron
stars are extended objects and the TaylorF2 waveform is only valid in the point-
object limit, calculations on the corrections from finite-size effects suggest that up to
f = 400 Hz, these contributions can be neglected [17]. Therefore, by only testing
the inspiral regime up to a given frequency, even the finite-size effects can be ignored.
In addition, considering that spin corrections [18] and higher order contributions to
the amplitude [19, 20] can be neglected in the case of BNS systems and advanced
detectors, the analyses shown in this work can be viewed as the forerunner of a future
data analysis pipeline.
Sources
Finally, the theoretical concepts of TIGER are not bound to BNS systems, but can be
applied on amuch broader range of sources, such as BBH systems or BHNS systems.
Indeed, the extension of the present work to include a broader range of sources is
part of an ongoing effort by the author and his collaborators. For these sources,
one will need to use TIGER with more sophisticated GR waveforms compared to
the TaylorF2 waveforms. Such waveforms ought to include as many effects as
possible that GR predicts, such as merger and ringdown, higher harmonics both
in the inspiral and ringdown parts, dynamical spins, and residual eccentricity. The
development of such waveforms, with input from numerical simulations, is currently
a subject of intense investigation [21–31].

One of the challenges of extending TIGER to BHNS and BBH is to include spin.
Although spinning waveforms do exist (e.g.[27, 30, 31]), they are computationally
too expensive to analyse thousands of simulated sources required to construct a
background (see Sects. 7.2 and 8.2.1). Speeding up waveform calculations and com-
putational advances are therefore necessary before TIGER can be applied to BHNS
and BBH sources.

Another challenge is that for BHNS and BBH systems, the merger and ring-
down signals are in the sensitive region of the detector (the last stable orbit occurs
at f ∼ 400Hz for BHNS systems and f ∼ 200Hz for BBH systems). Although
some phenomenological waveforms model the entire inspiral, merger and ringdown
signal (e.g. [21–23, 29]), their correspondence to GR is yet not sufficient to use these

http://dx.doi.org/10.1007/978-3-319-19273-4_7
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waveforms to perform tests of GR. Waveforms that can model the entire evolution
of binary systems are therefore needed before TIGER can be applied to BHNS and
BBH systems.

Finally, although much work remains to be done to ensure readiness at the start of
the advanced-detector era, the work presented in this book shows the skeleton of a
very general method for testing GRwith CBC events to be detected by the upcoming
Advanced LIGO and Advanced Virgo observatories.
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Chapter 10
Introduction

In part II, we used GR to describe the high compactness regime, where the typical
distance is small compared to the total rest mass of the system. Assuming a uniform
distribution of stellar objects, the total restmass scales as r3,where r is somedistance.
Therefore, as r increases, one must reach a point where the compactness G M/c2r
is high again. This high compactness regime is described by the field of cosmology,
i.e. the study of the large scale behaviour of the Universe.

To be a physical description of the large scale behaviour of the Universe, GRmust
be able to explain current cosmological observations. A few of these observations
are key to our understanding of cosmology. In 1964, Penzias and Wilson discovered
a thermal radiation with a near uniform temperature coming from all directions of
the sky, commonly known as the cosmic microwave background (CMB) [1]. This
remarkable uniformity suggests that the Universe is isotropic on large scales, i.e.
uniform in all spatial directions. Subsequent measurements of the CMB have all
confirmed the isotropy of the CMB temperature [2, 3].

Observations of large clusters of stars, known as galaxies or nebulae, and even
large clusters of galaxies suggest that the Universe contains well defined structures.
However, as we observe the galaxy or galaxy cluster distributions on even larger
scales (�150 Mpc), we find that the Universe is remarkably homogeneous, i.e. it has
uniform physical conditions at any position [4].

Finally, both Lemaître in 1927 and Hubble in 1929 found that all galaxies seem
to be moving away from Earth. Moreover, the radial velocity with which galaxies
appear to be receding from us is proportional to the distance to the galaxy [5, 6].
This behaviour is now referred to as Hubble’s law, and suggests that the Universe is
uniformly expanding.
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10.1 Content of the Universe

On a cosmological scale we can view galaxies and galaxy clusters as mere particles
in a gas. We further assume a negligible interaction between the ‘particles’ such that
the content of the Universe can be modelled by a perfect fluid. A perfect fluid can
be described by a 4-velocity uμ (which is the 4-velocity of an observer who sees the
fluid with no mean motion), a total energy density ρtot (the energy density as seen
by an observer with a 4-velocity uμ) and the total pressure ptot (the kinetic pressure
of the ‘particles’ perpendicular to the boundary of the fluid). This 4-velocity is the
same as the mean 4-velocity of the nearby galaxies, and is the 4-velocity necessary
to observe an isotropic CMB. Consequently, the stress-energy tensor describing the
fluid consisting of galaxies, globular clusters, etc.—also known as the “cosmological
fluid”—can be written as

Tμν = (ρtot + ptot) uμuν + ptotgμν, (10.1)

where gμν is the metric tensor. There are several contributions to the total content
of the Universe, each with their own characteristic behaviour. We will list the most
widely accepted contributions.

Matter
In this context, matter refers to particles that have non-relativistic velocities. Matter
therefore has negligible pressure compared to the energy density and can be approx-
imated to have

pM ≈ 0. (10.2)

Matter in this category includes baryonic matter and cold dark matter. The energy
density of matter is denoted by ρM .

Radiation
Radiation comprises all massless (e.g. photons) or relativistic particles (e.g. neutri-
nos). For photons, the stress-energy tensor is given by

T μν = 1

μ0

(

FμαFνα − 1

4
gμν Fαβ Fαβ

)

, (10.3)

where Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic field, Aμ is the electromagnetic
potential, and μ0 is the permeability of free space. From Eq. (10.3), it follows that
the pressure is related to the energy density through

pR = 1

3
ρR, (10.4)

where energy density for radiation is denoted by ρR . The result in Eq. (10.4) holds
for all massless particles, and is approximately true for relativistic particles.
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Dark Energy
Dark energy is a hypothetical energy source which behaves differently than ordinary
matter or radiation does: it has a positive energy density but a negative pressure.
Dark energy is postulated to describe the accelerated expansion of the Universe, as
inferred from type SNIa supernovae observations [7, 8]. As the characteristics of
this hypothetical energy form are unknown, a first attempt is to model it as a perfect
fluid with an equation of state given by

pDE = wρDE . (10.5)

To account for the accelerated expansion of the Universe, the equation of state para-
meter has to be w < 0. As it turns out, dark energy is equivalent to having a cos-
mological constant in the EFE (cf Sect. 10.3) for the value w = −1. In general, the
equation of state parameter can be a function of time, corresponding to an evolving
equation of state.

10.2 Topology of the Universe

Given the observational evidences for isotropy, homogeneity, and uniform expansion,
a natural starting point to describe theUniverse on large scales is to postulate isotropy,
homogeneity and uniform expansion. These postulates are in agreement with the
Copernican principle, i.e. humans are not privileged observers of the Universe.

Before we describe the Universe using GR, we must first clearly define the mean-
ings of homogeneity and isotropy. Homogeneity of the Universe means that through
each event in the Universe there passes a spacelike hypersurface on which the phys-
ical conditions (e.g. energy density, pressure, curvature) are identical. Isotropy of
the Universe means that an observer who moves with the cosmological fluid cannot
distinguish any preferred spatial direction by any local measurements. Therefore,
isotropy guarantees that the world line of any observer that moves with the cosmo-
logical fluid is orthogonal to the hypersurface of homogeneity.

10.2.1 Comoving Coordinate System

Next, we want to write down a generic metric that satisfies all these postulates, by
using a coordinate system that make these properties apparent. Suppose we have
a hypersurface of homogeneity, denoted by SI . On this spacelike hypersurface, we
impose a spatial coordinate system, where each event is assigned the spatial coordi-
nate (x1, x2, x3) and we assign a specific coordinate time, denoted by tI . Then, we
allow this hypersurface of homogeneity to evolve throughout spacetime by letting
each observer on this hypersurface to move with the cosmological fluid. However,
we impose that all events on the world line of a specific observer that intersects the
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surface SI at (x ′1, x ′2, x ′3) remains on the same spatial coordinates (x ′1, x ′2, x ′3).
Therefore, an observer that moves with the cosmological fluid is at rest with respect
to these coordinates, which are commonly referred to as comoving coordinates. The
time coordinate can be defined according to the lapse of proper time between event
Pi on the hypersurface SI and an event Pe on the world line of an observer that moves
with the cosmological fluid, plus the coordinate time associated to the surface SI ,
denoted by tI . In other words, the comoving coordinate time can be defined as

t = tI +
∫ τ (Pe)

τ (Pi )

dτ , (10.6)

where τ is the proper time.
For an event P , the basis vectors ∂/∂xi are tangent to the hypersurface of homo-

geneity that goes through P and that the basis vector ∂/∂t is tangent to the world
line going through P . Therefore, ∂/∂t is orthogonal to ∂/∂xi , i.e.

∂

∂t
· ∂

∂xi
= 0 for i = 1, 2, 3. (10.7)

By noting that the comoving coordinate time also measures the lapse of proper time,
we can write ∂/∂t = u, where u denotes the 4-velocity of the cosmological fluid, so
that

∂/∂t · ∂/∂t = −1. (10.8)

Using Eqs. (10.7) and (10.8), we can therefore write the line element as

ds2 = −dt2 + gi j dxi dx j . (10.9)

10.2.2 Hypersurface of Homogeneity

Next, we take a closer look at the spatial components of the metric, gi j . In particular,
we look at how the 3-metric of hypersurfaces of homogeneity evolve froman arbitrary
initial hypersurface, and at the nature a hypersurface of homogeneity.

Suppose that two adjacent world lines of observers that move along the cosmo-
logical fluid are separated by the proper distance

�σ(tI ) =
√

gi j (tI , xk)�xi�x j , (10.10)

where tI is the initial co-moving time, gi j (tI , xk) the metric at time tI and spatial
position xk , and �xi is the coordinate separation in the i th direction. At some later
time t , the spatial separation is given by �σ(t), so that the fractional change of the
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proper distance between the two world lines is given by the so-called scale factor,

a(t) ≡ �σ(t)

�σ(tI )
. (10.11)

By using the assumption of isotropy and homogeneity, this scale factor can be shown
to be independent of the direction between the twoworld lines and the spatial location
on the hypersurface of homogeneity. Therefore, we can write the line element as

ds2 = −dt2 + a2(t)γi j (xk)dxi dx j . (10.12)

The factor γi j (xk) not only describes the geometry of some initial hypersurface, but
also the geometry of all other hypersurfaces of homogeneity, as the evolution from
one hypersurface to another is completely governed by the scale factor.

Again by assuming isotropy and homogeneity, we can further impose conditions
on the factor γi j (xk). In particular, on surfaces of homogeneity, we can impose an
origin and γi j (xk) must be spherically symmetric around this origin. The factor
γi j (xk) can then be expressed by the most general spherically symmetric form, i.e.

γi j (xk)dxi dx j = e2�(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (10.13)

where r is some radial distance coordinate, and θ and φ are angular coordinates
similar to the azimuth and altitude. The Ricci scalar for such a metric is given by

R = 2

r2
d

dr

[

1 −
(

e−2�
)]

. (10.14)

Homogeneity further imposes that the Ricci scalar should be independent of the
spatial location. Setting R to some constant k, we can integrate Eq. (10.14) to give

γrr = e2�

= 1

1 − 1
6kr2 − A

r

, (10.15)

where A is an integration constant. Demanding local flatness, i.e. γrr (r = 0) = 1,
we have A = 0. Finally, redefining k by absorbing the factor of 1

6 into k, we can
write

γrr = 1

1 − kr2
, (10.16)

which completes our description of the hypersurfaces of homogeneity.
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10.2.3 Friedmann-Lemaître-Robertson-Walker metric
(FLRW)

Plugging Eqs. (10.13) and (10.16) into Eq. (10.12), we arrive at the FLRW metric

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)]

. (10.17)

We can rewrite this metric by defining the coordinate χ(r) such that

dχ2 = dr2

1 − kr2
, (10.18)

so that one can also write the FLRW metric as

ds2 = −dt2 + a2(t)
[

dχ2 + Sk(χ)2
(

dθ2 + sin2 θdφ2
)]

, (10.19)

where Sk(χ) is given by

Sk(χ) ≡
⎧

⎨

⎩

k−1/2 sin(χ
√

k) : k > 0
χ : k = 0

|k|−1/2 sinh(χ
√

k) : k < 0.
(10.20)

The three cases for k represent three different properties of the spatial hypersurfaces
of the Universe. The k = 0 case corresponds to a flat Euclidean space, k > 0
corresponds to space described by a 3-sphere and finally, k < 0 corresponds to space
described by a 3-hyperboloid.

This seemingly simple metric will be sufficient to describe the topology of the
Universe within the assumptions of isotropy, homogeneity and uniform expansion.

10.2.4 Redshift

When a wave is either moving towards or away from an observer, he/she will see the
wavelength to be shorter or longer respectively (Doppler shift). This phenomenon is
either referred to as blueshift (approaching source) or redshift (receding source). As
the Universe is expanding, we will mostly deal with cosmological redshift, which is
defined to be

z ≡ λob − λem

λem
, (10.21)
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where the subscript ‘ob’ refers to the observer and the subscript ‘em’ refers to the
emitter. In the comoving coordinate system, the redshift due to the expansion of the
Universe is given by

z = a(tob) − a(tem)

a(tem)
. (10.22)

Using the FLRW line element in Eq. (10.17), we can relate the redshift to time
between successive wave crests. Consider a source at a comoving distance r from an
observer. The source emits two successive wave crests at tem and tem + δtem radially
to an observer. This observer will see the wave crests arrive at tob and tob + δtob.
Assuming the wave travels at the speed of light, we have ds2 = 0 and therefore

∫ tob

tem

dt

a(t)
=

∫ χob

χem

dχ (first crest), (10.23)

∫ tob+δtob

tem+δtem

dt

a(t)
=

∫ χob

χem

dχ (second crest). (10.24)

Since the comoving distance of the source χ is a constant in the comoving coordinate
system, the LHSs of Eqs. (10.23) and (10.24) are equal. This gives us

∫ tob

tem

dt

a(t)
=

∫ tob+δtob

tem+δtem

dt

a(t)
. (10.25)

To leading order in δtob and δtem, we obtain the relationship

δtob
δtem

= a(tob)

a(tem)

= 1 + z. (10.26)

Therefore, according to an observer, a clock at the source appears to be a factor
(1 + z) slower, i.e.

δtob = δtem (1 + z) . (10.27)

As a consequence the observed frequency of the source is ‘redshifted’ according to

fob = fem
1 + z

, (10.28)

and the energy of the wave, given by E = h f , is redshifted according to

Eob = Eem

1 + z
. (10.29)
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10.3 Standard Model of Cosmology

With both the content and the topology specified, we are now in the position to use
the EFE,

Gμν = 8πTμν, (10.30)

to link the evolution of the Universe to its content. Using the EFE together with
Eqs. (10.19) and (10.1), we can obtain two independent equations relating the scale
factor, a(t), to the Universe’s content. These two equations are called the Friedmann
equations and are given by

H2 ≡
(

ȧ

a

)2

= 8π

3
ρtot + k

a2 , (10.31)

ä

a
= −4π

3
(ρtot + 3ptot) , (10.32)

where the overdot denotes the derivative with respect to the co-moving coordinate
time. These two equations give us the evolution of the scale factor a(t). They can
also be combined to give the ‘fluid equation’,

ρ̇tot = −3
ȧ

a
(ρtot + ptot) , (10.33)

which governs the evolution of the energy density, ρ(t). Before we continue with
the evolution of the scale factor, we can have a closer look at the individual energy
contributions and their relation to the scale factor.

Matter
The matter content is characterised by its negligible pressure compared to the energy
density. The fluid equation for matter then becomes

˙ρM = −3
ȧ

a
ρM . (10.34)

This equation has the solution

ρM = ρm,0a−3, (10.35)

where the subscript 0 denotes the value at the current epoch.

Radiation
For radiation, the pressure is given by pR = 1

3ρR and the fluid equation becomes

ρ̇M = −4
ȧ

a
ρM , (10.36)
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Therefore, the evolution of the energy density of radiation is given by

ρR = ρr,0a−4. (10.37)

Dark Energy
For dark energy, the equation of state is given by pDE = wρDE . The fluid equation
gives

ρ̇DE = −3
ȧ

a
ρDE (1 + w(a)) , (10.38)

where w = w(a) can be a general function of the scale factor. The solution to the
fluid equation is given by

ρDE = ρDE,0E(a, w), (10.39)

where E(a, w) is given by

E(a, w) = e−3
∫ a(tob)

a(tem)
da′
a′ (1+w(a′)) (10.40)

If the equation of state parameter is w = −1, we see that ρDE = ρDE,0 and the
energy density of dark energy is simply a constant throughout the evolution of the
Universe. This would be equivalent to having a cosmological constant in the EFE,

Gμν = 8πTμν − �gμν, (10.41)

with the identification that 8πρDE,0 = � [cf. Eq. (10.1)].
In the absence of knowledge about the time dependence of w(a), one can attempt

to model it with a series expansion. A commonly used approach [9] is to expand
w(a) as a series and terminate the expansion at first order, i.e.

w(a) = w0 + (1 − a) wa + . . .

� w0 + z

1 + z
wa . (10.42)

This expansion has advantages compared to a Taylor expansion around z = 0. Firstly,
for small z, which is the epoch where we expect dark energy to manifest itself most
prominently, this expansion reduces to a Taylor expansion around z = 0. How-
ever, for large z, the behaviour of this expansion is bounded. With the expansion in
Eq. (10.42), we can write E(a, w) as a function of the redshift and two dark energy
parameters, w0 and wa (setting z = 0 at the current epoch), i.e.

E(a, w) ≈ E(z;w0, wa) = (1 + z)3(1+w0+wa) e−3wa z/(1+z). (10.43)
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10.3.1 Cosmological Parameters

The total energy density can now be written in terms of the individual components

ρtot =
∑

i

ρi

= ρM + ρR + ρDE

= ρm,0a−3 + ρr,0a−4 + ρDE,0E(a, w). (10.44)

Inserting this into the first Friedman equation, Eq. (10.31), we get the following
expression for the so-called Hubble parameter,

H2(a) = 8π

3

(

ρm,0a−3 + ρr,0a−4 + ρDE,0E(a, w)
)

+ k

a2 . (10.45)

The Hubble parameter at the current epoch (a(t0) = 1) is thus given by

H2
0 = 8π

3

(

ρm,0 + ρr,0 + ρDE,0
) + k. (10.46)

By defining the fractional energy densities

�M ≡ 8πρM,0

3H2
0

, (10.47)

�R ≡ 8πρR,0

3H2
0

, (10.48)

�DE ≡ 8πρDE,0

3H2
0

, (10.49)

�k ≡ − k

H2
0

, (10.50)

we can write the Hubble parameter as

H2 = H2
0

[

�M a−3 + �Ra−4 + �ka−2 + �DE E(a, w)
]

. (10.51)

Evaluating Eq. (10.51) at the current epoch, we obtain the constraint

�M + �R + �k + �DE = 1. (10.52)
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The Hubble parameter can also be written in terms of the redshift as

H2 = H2
0

[

�M (1 + z)3 + �R (1 + z)4 + �k (1 + z)2

+�DE (1 + z)3(1+w0+wa) e−3wa z/(1+z)
]

. (10.53)

The scale factor and therefore the evolution of the Universe is determined by a set
of cosmological parameters such as {H0,�M ,�R,�k,�DE , w0, wa}.

10.4 Distance and Volume Measures

In Eq. (10.17) we have seen how distances are given as a function of the cosmic scale
factor a(t). Furthermore, we have seen in Eq. (10.51) how this scale factor relates to
the energy content of the Universe via the Hubble parameter H ≡ ȧ

a . It is therefore
evident that distance, area and volume measures carry with them an imprint of the
cosmological parameters. In this section, we aim to make the relationship between
distance measures, redshift and the cosmological parameters explicit.

10.4.1 Comoving Distance

The first useful distance measure to define is the comoving distance. The comoving
distance is the distance between two observers thatmove alongwith the cosmological
fluid, measured along the null geodesic. The comoving distance therefore does not
change due to the expansion of the Universe. The proper distance can be obtained by
multiplying the comoving distance by the scale factor a(t). Two types of comoving
distances commonly used in cosmology are the radial and the transverse comoving
distance.

Radial Comoving Distance
The radial comoving distance, DC , is obtained by setting dθ = dφ = 0, and inte-
grating the remaining distance element dχ, i.e.

DC =
∫ χ

0
dχ′

=
∫ 0

t

dt ′

a(t ′)
(10.54)
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We can change the integration to be over the redshift instead of the comoving time
by noting that from Eq. (10.26), we can write

z(t) = a(t0)

a(t)
− 1, (10.55)

where we have set the observer time to be tob = t0 and the emitter time to be tem = t .
Subsequently, we have

dz = −a(t0)
ȧ

a2 dt. (10.56)

Substituting Eq. (10.56) into Eq. (10.54), we have

DC = −a(t0)
∫ 0

z

a

ȧ
dz′

= a(t0)
∫ z

0

1

H(z′)
dz′. (10.57)

Transverse Comoving Distance
The comoving distance of two objects that are at the same radial comoving distance,
but separated on the sky by an angle δα, is given by DMδα. The transverse comoving
distance is then given by DM .Without loss of generality, we can obtain the transverse
comoving distance by setting dφ = dχ = 0. Then, from Eq. (10.19), the transverse
comoving distance is given by Sk(χ), defined in Eq. (10.20). Filling in the appropriate
factors for χ = DC , k = −�k H2

0 and defining DH ≡ H−1
0 , we arrive at

DM =

⎧

⎪⎪⎨

⎪⎪⎩

DH√
�k

sinh
(

DC
DH

√
�k

)

for �k > 0

DC for �k = 0
DH√|�k | sin

(
DC
DH

√|�k |
)

for �k < 0

(10.58)

10.4.2 Luminosity Distance

The luminosity distance is a widely used distance measure in cosmology, because
it links together two physical quantities, the bolometric flux F and the bolometric
luminosity L . The flux is the measure of the energy received per unit time per unit
area and the luminosity gives the total energy emitted by an object, per unit time.
The two are related through

F = L
4πD2

L

. (10.59)
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This equation can be seen as the definition of the luminosity distance, i.e.

DL ≡
√

L
4πF

. (10.60)

We can now relate the luminosity distance to the comoving distance. Consider the
flux measured by an observer, which is given by

F = d Eob/dtob
A

, (10.61)

where d Eob/dtob is the measured luminosity and A is the proper area of the sphere
for which all points lie at a fixed proper radial distance. This area A can be found
upon inspection of the line element in Eq. (10.19), and is given by

A = a2(tob)D2
M

�
sin θdθdφ

= 4πa2(tob)D2
M . (10.62)

To relate the flux to the intrinsic luminosity, we can use Eqs. (10.27) and (10.29) to
write d Eob

dtob
in terms of the emitter’s coordinates:

d Eob

dtob
= d Eem

dtem

1

(1 + z)2

= L
(1 + z)2

. (10.63)

Finally, the flux can be written as

F = L
4πD2

M (1 + z)2
. (10.64)

Inserting Eq. (10.64) into Eq. (10.60), the luminosity distance is given by

DL = (1 + z) a(tob)DM

= (1 + z) a(tob)

⎧

⎪⎪⎨

⎪⎪⎩

DH√
�k

sin
(

DC
DH

√
�k

)

for �k > 0

DC for �k = 0
DH√|�k | sinh

(
DC
DH

√|�k |
)

for �k < 0.

(10.65)
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10.4.3 Comoving Volume

Finally, we can also define the comoving volume, VC , in which the number density
of objects moving along with the cosmological fluid is constant with respect to the
expanding Universe. By inspection of the line element Eq. (10.19), we see that the
comoving volume element is given by

dVC = Sk(χ)2dχ sin θdθdφ

= D2
M

H(z)
dz sin θdθdφ, (10.66)

where we have performed a transformation from χ to z similar to Sect. 10.4.1. This
volume element can be integrated over the angular coordinates, and out to redshift z
to give the comoving volume [10]

VC =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4πD3
H

2�k

[

DM
DH

√

1 + �k
D2

M
D2

H
− �

−1/2
k arcsinh

(√
�k

DM
DH

)]

for �k > 0

4π
3 D3

M for �k = 0
4πD3

H
2�k

[

DM
DH

√

1 + �k
D2

M
D2

H
− |�k |−1/2 arcsin

(√|�k | DM
DH

)]

for �k < 0.

(10.67)

The distance and volume measures defined above are shown to be functions of
the redshift and the cosmological parameters. Therefore, by obtaining distance and
redshift information from multiple sources, we infer the cosmological parameters,
shown in Sect. 10.3.

Ultimately, we look for the cosmological model that describes the data the best.
This could be a spatially flat de Sitter space (�M = 0,�DE = 1,�k = 0,w0 = −1,
wa = 0), a spatially flat Einstein-de Sitter model (�M = 1, �DE = 1, �k = 0,
w0 = −1, wa = 0), or a model with a dark energy that is not in the form of a
cosmological constant (�M , �DE , �k , w0, wa). Despite any possible theoretical
preferences, it is the data that will inform us what kind of universe we live in. It
is therefore pivotal to have accurate and reliable measurements of the cosmological
parameters, so thatwe can put existing theories in front of empirical tests. InChap.11,
we will discuss the techniques available to infer the cosmological parameters.
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Chapter 11
Cosmography

Distance measurements of stellar objects have always been of interest to astronomers
and astrophysicists. Nowadays, scientists are interested in distances to these objects
because of the potential to inform us about physics on cosmological scales. This was
already hinted at in Sect. 10.4, where we showed that the distance as a function of
redshift is intimately linked to the energy content and the topology of the Universe.
Therefore, measuring the distance and redshift of cosmological object allows one to
infer the large scale characteristics of the Universe, also known as cosmography.

In Sect. 11.1, we will briefly review the methods currently used to determine
distances and redshifts that are based on the measurements of electromagnetic (EM)
waves. In Sect. 11.2,wewill discuss the potential ofGWdetections to shed a new light
on the cosmological paradigm, by measuring distances and redshifts independently.

11.1 Cosmography Using Electromagnetic Waves

11.1.1 Measuring the Luminosity Distance

Cosmic Distance Ladder
If one were to know the intrinsic luminosity of a distant object, and one could mea-
sure its flux here on Earth, one can infer its luminosity distance through Eq. (10.60).
Objects that have a known intrinsic luminosity are called standard candles. Unfortu-
nately, unambiguous standard candles have yet to be observed. Instead, astronomers
use measurements of close-by sources to calibrate the flux of distant objects. This
process is repeated to reach increasingly more distant objects. This technique is
referred to as the cosmic distance ladder, and is the main method to determine dis-
tances to astrophysical objects.Wewill consider a few ‘rungs’ of the cosmic distance
ladder.
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Parallax The oldest method of measuring distance without the aid of some direct
ruler measurement is the use of parallax. Parallax is the apparent displacement of an
object on the sky as the observer moves. As nearby objects have larger parallax, the
distance to an object can be determined.

Astronomers use the concept of parallax to measure distances to nearby stars. In
this case, the star’s position on the sky compared to distant ‘background’ stars is
measured as the Earth orbits the Sun. Then, using (twice) the distance between the
Earth and the Sun, the angle with which the object seems to have moved compared
to background stars can be converted into a distance measurement to the object of
interest.

Despite this simple concept, parallax plays an important role in calibrating the
cosmic distance ladder. Missions such as GAIA are scheduled to collect distance
measures of about a billion stars through the parallax method, providing a sturdy
first rung of the cosmic distance ladder (e.g. Turon et al. [1]). However, because of
the limited distance between Earth and Sun, stellar parallax can only be used up to
hundreds of parsecs.
Main Sequence FittingWhen the intrinsic luminosity of stars is plotted against their
effective temperature, a so-called Hertzsprung-Russell diagram, it is found that most
stars in their hydrogen-burning phase can often be found along a curve called the
main sequence. Therefore, measuring the effective temperature of stars through their
spectral properties allows one to infer its intrinsic luminosity. Pairing this with the
measurement of the flux, one can determine the distance to a star [2–4].

However, in order to construct theHertzsprung-Russell diagram,we need to some-
how know the intrinsic luminosities of a number of stars. One way to do this is to use
an alternative technique, such as parallax, to obtain the distance of a star, and use the
observed flux to infer the intrinsic luminosity. This is an example of how each rung
on the cosmic distance ladder is intertwined with others.
Cepheid Variable Stars Cepheids variables are stars that have a strong relationship
between the intrinsic luminosity and the pulsation period [5]. These pulsations are
argued to arise from ionised helium acting as a valve for a heat engine, as He+
is more transparent compared to He2+ [6]. As the star expands due to outward
radiation pressure, the outer envelope cools down and He2+ gets converted to He+.
This conversion will cause the outer layer to be more transparent, further cooling it
and causing it to contract. But, due to the contraction, the outer layer heats up again,
converting He+ back into He2+, completing the pulsation cycle.

The strong and measurable relationship makes the Cepheid Variables interesting
standard candles, and they are widely used to calibrate other observations [7, 8].
However, the relationship between the pulsation period and the intrinsic luminosity
needs calibration itself and depends on assumptions on stellar physics and envi-
ronmental parameters. The uncertainty in the physics and the phenomenology of
Cepheid Variables is still a significant contribution to the error budget of distance
measurements.
Type Ia Supernovae Type Ia supernovae (SNIa) are among the most accurate stan-
dard candles. They are believed to be produced by a binary system inwhich amassive
star feeds matter onto the accompanying white dwarf [9]. At critical conditions, a
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violent explosion is triggered in the form of a supernova. The physics behind these
events is believed to be roughly independent of the epoch, making them suitable to
be standard candles. Although the intrinsic luminosity is not the same for each super-
nova, there is a phenomenological relationship between the peak luminosity and the
amount of fading after 15days [10]. Exploiting this relationship, SNIameasurements
have shown that the Universe appears to be increasingly accelerating. This discovery
earned Perlmutter [11], Riess [12] and Schmidt [13] the 2011 Nobel prize in physics.

However, the phenomenological nature of the correlation between the peak lumi-
nosity and fading characteristics is a potential seed of errors. For example, as Drell
et al. [14] show, a possible temporal evolution in the supernova physics is highly
degenerate with effects caused by the expansion of the Universe, adding system-
atic and statistical uncertainty to any cosmological information obtained from SNIa
measurements.

11.1.2 Measuring the Redshift

The measurement of the redshift is also an important tool for astrophysicists to
study stellar objects. The emission spectra of stars can provide information about
the composition of stars and the dominant photon emission/absorption schemes.
Furthermore, measurement of the redshift is crucial to link distance measures to
cosmological parameters. The measurement of the redshift is predominantly done
through two independent methods: spectroscopy and photometry.

Spectroscopy
The measurement of the redshift through spectroscopy relies on the identification
of known spectral lines, such as lines from the Balmer series. The emission of such
spectral lines is associated to well understood physical processes and occurs at well
defined frequencies. For example, the Balmer spectral lines are a consequence of the
n ≥ 3 to n = 2 transitions of a hydrogen atoms, where n represents the principal
quantum number. However, the frequencies at which these spectral lines are observed
depend on the Doppler effect. Therefore, by comparing the observed frequency of
specific spectral lines with their theoretical frequency, the recession velocity, and
thus the redshift, can be readily extracted.

As long as the identification of the spectral lines is successful, the redshift can
be obtained to accuracies of about σz ≈ 0.001 (e.g. Cohen et al. [15]). However,
particularly in low signal-to-noise ratios, the absence of clear characteristic spectral
lines can lead to erroneous measurement of the redshift. Nevertheless, spectroscopic
redshift measurements are widely used and trusted, especially for relatively bright
sources.

Photometry
Photometry is an independent way of extracting the redshift by using broad band
spectral energy information. The obtained spectral energy distribution is compared
with (redshifted) model or empirical spectra to obtain their redshift. Clearly, this
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photometry relies heavily on understanding the underlying physical processes such
as population synthesis and distortion by the interstellar medium (e.g. Abrahamse et
al. [16]). The accuracies of suchmethods are therefore less compared to spectroscopic
measurements, σz ∼ 0.1 (e.g. Hogg et al. [17]) on top of the potential systematic
errors from mismodelling the physical processes.

The determination of the redshift from photometry can also serve as a potent
cross-check to spectroscopicmeasurements. Indeed, photometricmeasurements have
found erroneous redshiftmeasurements by spectroscopic techniques (e.g. Fernandez-
Soto et al. [18]). Furthermore, for faint objects without strong spectral features such
as distant galaxies or quasars, photometry might be the only channel through which
one can measure the redshift.

11.1.3 Direct Measurement of the Cosmological Parameters

There are several methods that allow a direct measurement of the cosmological para-
meters. Most of these methods require accurate knowledge of the physical processes
underlying the measured quantities. Nevertheless, some have proven to provide high
quality inference of the cosmological parameters, and others are quickly improving
to achieve comparable bounds. Of these techniques, we will only briefly discuss the
measurement of the acoustic oscillations in the early Universe, mass density contrast
and gravitational lensing.

Acoustic Oscillations in the Early Universe
After the Big Bang, the Universe consisted of hot and dense plasma made up of
interacting photons, electrons and protons. In this plasma of photons and matter,
small density fluctuations existed due to quantum fluctuations. These fluctuations
were subjected to two competing interactions. On one hand, photon pressure drove
the dispersion of these fluctuations, and on the other, the gravitational pull tended to
restore them. The interplay between these interactions is the cause of the formation
of oscillations similar to acoustic oscillations [19, 20].

The most prominent feature of these acoustic oscillations is the so-called fun-
damental mode. This fundamental mode is governed by the distance that a sound
wave had travelled until the epoch when photons decouple from matter (epoch of
decoupling) ceased its propagation, also known as the sound horizon

rs =
∫ td

0
csdt, (11.1)

where cs is the speed of sound in the baryon-photon plasma and td is the epoch of
decoupling. The speed of sound depends only on the baryon and radiation content,
whereas the time element depends on the entire geometry of the Universe. Therefore,
measuring the imprints of these acoustic oscillations can provide us with a direct
measurement of the cosmological parameters. Such imprints can be found in the
CMB and in the galaxy distribution.
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Anisotropies in the Cosmic Microwave Background Acoustic oscillations can be
seen as temperature fluctuations in the CMB, among others, on top of the isotropic
radiation at a temperature of T = 2.728Kand the dipole component due to themotion
of the Earth. The angular distribution of these fluctuations encodes information about
the sound horizon. In particular, acoustic oscillations cause temperature fluctuations
on angular scales corresponding to a half integer number of oscillations within the
sound horizon.

Since these angular scales are both a function of the size of the Universe at the
epoch of decoupling, and the evolution of the angular distance measure between
the epoch of decoupling and the current epoch, cosmological information can be
extracted.
Baryon Acoustic Oscillations in Galaxy Distributions As mass overdensities are
thought to originate from the fluctuations in the baryon-photon plasma, imprints of
the acoustic oscillations are also visible in the galaxy distribution [21–23]. These
imprints are called baryon acoustic oscillations (BAO). By comparing the angular
scales of the galaxy distribution with the sound horizon from the CMB, one can infer
the cosmological parameters.

Mass Density Contrast
Distance measures are not the only observables that can inform us about our cos-
mology. As mentioned above, initial perturbations in the baryon-photon plasma are
likely to be the seeds of large-scale structure formation. Properties such as the prob-
ability for a structure to have a given mass at a given redshift is governed by the
content and the geometry of the Universe. This is because overdense mass regions
tend to increase the densities through gravitational attraction, but the expansion of
the Universe tends to decrease such densities.

To quantify this interplay, one looks at the so-called mass density contrast

δ = �ρM

ρM
(11.2)

where ρM is the backgroundmatter density and�ρM is thematter overdensity around
the background density. Then, in linear perturbation theory of GR, the mass density
contrast in a matter dominated universe follows the relationship (e.g. Peebles [24])

δ̈ + 2H δ̇ = 3�M H2
0

2a3 δ, (11.3)

where an overdot represents the time derivative. It can readily be seen that cosmo-
logical parameters can be inferred by measuring the mass density contrast δ as a
function of the redshift. To probe the mass density contrast, one can measure the
galaxy cluster distribution.
Galaxy Cluster Counting Galaxy cluster counting measures the so-called ‘mass
function’ N (M, z), where M is the mass of the cluster and z is the redshift, which
is the cluster count per unit comoving volume for a given mass and redshift. This
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mass function depends on the mass density contrast δ(z) and the comoving volume
element dV (z), which are both functions of the cosmological parameters.

Gravitational Lensing
When awave passes through the gravitational field of amassive structure (e.g. cluster
of galaxies), the appearance of the source will be different. Thus, the phenomenon
where a massive structure acts as a lens for transient waves is the so-called ‘gravita-
tional lens’ effect [25]. The tidal component of the gravitational field can distort the
shape of the source, whereas the magnification will change the apparent brightness
of the source. A detailed review of gravitational lensing can be found in [26].
Strong Gravitational Lensing If the influence of the gravitational lens is large
enough, multiple ‘images’ can be observed. This is often referred to as “strong
gravitational lensing”. Strong lensing can provide us with a distance measure by
looking at the different arrival times of spectral features of the individual apparent
object [27]. Assuming the mass distribution of the lens is known, this time difference
will provide us with an absolute distance measure. When this is combined with the
redshift of both the source and the lens, the cosmological parameters, mainly H0,
can be measured.

This method depends heavily on one’s ability to map the mass distribution of the
lens system, which in itself can be a daunting task. But progress has been made over
the years, up to a point where studying strongly lensed systems can provide useful
bounds on the Hubble constant (e.g. [28, 29]).
Weak Gravitational Lensing When the lensing effect is weaker and only a single
image is visible, the effect is referred to asweak gravitational lensing.Weak lensing in
the context of cosmology is also called cosmic shear. From the principle of isotropy,
galaxies are intrinsically randomly orientated. However, cosmic shear introduces a
net coherent ellipticity to a sample of observed galaxies. When such an imprint can
be obtained, the mass distribution of the lens can be inferred.

Using this method, one can obtain the mass density distributions as a function of
the redshift, also known as ‘tomography’, and subsequently probe the cosmological
parameters through both themass density contrast and the comoving volume. Indeed,
measurements of weak lensing signatures have placed bounds on the cosmological
parameters [30–32].

Just as strong lensing, weak lensing measurements require an accurate knowledge
of the mass distribution of the lens. In the case of weak lensing, this is obtained
through analysing the coherence of the ellipticity of galaxies. In order to obtain
accurate measurements of the cosmic shear, one needs to correlate and average over
many galaxies. Provided that large surveys will measure large numbers of galaxies,
weak lensing can indeed become a powerful probe of the cosmological parameters.

11.2 Cosmography Using Gravitational Waves

In Sect. 2.6, we hinted that the measurement of CBC signals yields information
about the distance between the source and the observer. However, the distance r
in Eqs. (1.97), (1.98) and (2.72) is the distance in the harmonic gauge coordinates.

http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_2
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Before we discuss the measurement of distances and redshifts through GW detec-
tions, we will first show what happens to the propagation of GWs on cosmological
distances.

11.2.1 Propagation of Gravitational Waves on Cosmological
Distances

In Sect. 1.3, we looked at the propagation of GWs in a flat space-time. For a FLRW
spacetime, Eq. (1.32) no longer describes the propagation of GWs. Instead, we con-
sider the general curved equivalent, given by

�hμν = 0, (11.4)

where � is the curved spacetime d’Alembertian, which in the case of Eq. (11.4) is
given by

� = 1√−g
∂μ

(√−ggμν∂ν

)

. (11.5)

To solve Eq. (11.4) in the FLRW metric, it is instructive to introduce the conformal
time

η =
∫ t

0

dt ′

a(t ′)
or dη = dt

a(t)
. (11.6)

Consequently, we can rewrite Eq. (10.19) as

ds2 = a2(η)
[

−dη2 + dχ2 + S2
k (χ)d�2

]

. (11.7)

Assuming, for simplicity, a flat but expanding spacetime (i.e. k = 0), and replacing
r = χ we can express the line element as

ds2 = a2(η)
[

−dη2 + dr2 + r2d�2
]

. (11.8)

We are interested in the evolution of the spherically symmetric solution of the form

hμν = Aμν(η, r)/r, (11.9)

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_10
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similar to Eqs. (1.97), (1.98) and (2.72). Therefore,

0 = ∂μ

(√−ggμν∂ν

)

hαβ

= ∂r

[

a2r2∂r hαβ

]

− ∂η

[

a2r2∂ηhαβ

]

= ∂2
r Aαβ − ∂2

η Aαβ − 2
∂ηa

a
∂η Aαβ . (11.10)

Anticipating the solution to fall off with physical distance instead of r , we further
look for a solution of the form Aαβ = Bαβ/a, so that

0 = ∂2
r Bαβ − ∂2

η Bαβ + ∂2
ηa

a
Bαβ . (11.11)

As most gravitational wave sources that we can observe with the Advanced LIGO-
Virgo network are expected to originate from the matter dominated era, we see from
Eq. (10.31) that

(
∂2

t a

a

)2

∝ ρM

∝ a−3, (11.12)

and subsequently

a(η) ∝ η2. (11.13)

Therefore, we have ∂2
ηa/a ∼ η−2. Furthermore, we have ∂2

η Bαβ ∼ ω2Bαβ , where
ω2 is the characteristic frequency of the GW. For GWs with wavelengths smaller
than the Hubble length DH , we have ω2Bαβ � η−2Bαβ . Therefore, we can write

0 	 ∂2
r Bαβ − ∂2

η Bαβ . (11.14)

This is approximately a wave equation with the solution Bαβ(r, η) = Bαβ(η − r).
The solution therefore becomes

hαβ(r, η) 	 Bαβ(η − r)

a(η)r
. (11.15)

Compared to the solution of a static universe, the solution in an expanding universe
can therefore be obtained by replacing r with ra(η). We can normalise the conformal
time so that η = t at some time in the present epoch. But as a(η) only varies on
cosmological timescales, we can set the normalised conformal time to be η = t over
the entire time-scale of the GW observation. For the same reason, the scale factor
a(η) can be written as a constant factor a(t0), where t0 is the present epoch. Finally,
we have

http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_10
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hαβ(r, t) 	 Bαβ(t − r)

a(t0)r
. (11.16)

In Sect. 10.2, we have seen various physical quantities being “redshifted” in an
expanding universe. Therefore, it is more natural to express such quantities in the
expressions for GWs in terms of their redshifted form. Firstly, by using Eqs. (10.27)
and (10.28), the orbital phase, given by Eq. (2.69), becomes

∫ tem
dt ′emωem =

∫ tem(1+z) dt ′obs
1 + z

ωobs(1 + z)

=
∫ tobs

dt ′obsωobs, (11.17)

so that the phase does not change when observing the GW in an expanding universe.
Secondly, the polarisation independent factor of the amplitude, which is given to
leading order in Eqs. (1.97) and (1.98), can be expressed as

hc = 4M5/3
c ω

2/3
em

a(t0)r

= 4M5/3
c (1 + z)2/3ω2/3

obs

a(t0)r

= 4M5/3
c (1 + z)5/3ω2/3

obs

a(t0)r(1 + z)

= 4M5/3
c,z ω

2/3
obs

DL
, (11.18)

where we have defined the redshifted chirpmass to be

Mc,z ≡ (1 + z)Mc, (11.19)

and where we have used the definition of the luminosity distance from Sect. (10.4.2).
We can therefore see that for an expanding universe, the expressions keep the same
leading amplitude order form provided we make the substitution r → DL and
Mc → Mc,z . For higher amplitude orders, the same can be achieved by multiplying
all masses by (1+ z) and substituting the distance r by the luminosity distance DL .

11.2.2 Measuring the Luminosity Distance

As early as 1986, Schutz showed that it is possible to determine the Hubble constant
from GW observations, by using the fact that GWs from binary systems encode
absolute distance information [33]. The polarisation independent factor inEq. (11.18)

http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_1
http://dx.doi.org/10.1007/978-3-319-19273-4_10
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depends on the redshifted chirp mass and the luminosity distance. However, the
redshifted chirp mass can be determined through the GW phase (see Eq.2.71). This
is in stark contrast with ‘conventional’ EM distance measurements such as through
type Ia supernovae, which depend heavily on poorly understood physics. As GWs
bear resemblance to audio signals, binary systems are often referred to as standard
sirens, by analogy with EM standard candles.

The use of standard sirens to perform cosmography is limited by several effects.
Firstly, weak gravitational lensing (cf. Sect. 11.1.3) will distort the measurement of
the luminosity distance, obscuring the true loudness of the source. At redshift of
z = 2, the root mean squared magnification fluctuation can be as large as 20%
[34]. Furthermore, the measurement of the luminosity distance is limited by the
detector sensitivity. The largest contribution to the uncertainty in the distance is due
to the limited direction and source orientation sensitivity [35]. As interferometric
detectors are sensitive to the strain in Eq. (3.1), there is a large correlation between
the distance, the sky position and orientation of the binary (cf. Eqs. 2.72 and 3.1),
and consequently, the distance is also measured poorly.

However, a network of detectors, by using triangulation, can provide some direc-
tional guide and therefore allow for a measurement of the luminosity distance with a
reasonable accuracy. Through Fisher matrix calculations for a LIGO/Virgo network,
Cutler and Flanagan showed that the fractional error in the luminosity distance is
about <15% for ∼8% of the sources and <30% for ∼60% of the sources [36]. A
more recent study by Nissanke et al. further showed that the luminosity distance is
strongly correlated with the inclination angle of the binary, decreasing the sensitiv-
ity to both parameters [35]. This luminosity distance-inclination degeneracy can be
broken by, for example, partially disentangling the two GW polarisations through
measurements withmultiple detectors, by using a prior on the inclination angle of the
observed binaries, or by observing some auxiliary channel, such as a simultaneous
detection of a beamed EM signal. The use of a coincident detection of an EM signal
will be further discussed in Sect. 11.2.3.

For a single ET, despite being composed of 3 detectors at a single location,
triangulation does not work because of the negligible distance between individual
detectors. However, as before, the distance-inclination degeneracy might be broken,
if some prior assumptions are made, or if some auxiliary channel is observed.

11.2.3 Measuring the Redshift

Astrophysical systems do not posses the same characteristics to induce clear and
consistent spectral lines in the GW spectrum as they do in the EM spectrum. Con-
sequently, the redshift of an event cannot be obtained through the GW equivalent
of spectroscopy. Instead, other techniques have to be deployed to obtain the redshift
from GW events.

http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Electromagnetic Counterpart
Oneway tomeasure the redshift associated to aGWevent is through the identification
of an accompanying EM signal. For example, the binary merger of a NS with either a
NS or BH is hypothesised to be the progenitor of a short and intense burst of γ-rays,
a so-called SGRB [37]. An EM counterpart like a SGRB could provide the necessary
redshift information if the host galaxy of the event can be pinpointed. The error on
the redshift measurement in this case will be negligible compared to the error on
the distance, so that it is often assumed that the redshift is measured conclusively.
Furthermore, as SGRBs are believed to be strongly beamed phenomena [38–40],
additional information about the inclination angle of the binary can be obtained,
breaking the luminosity distance-inclination degeneracy.

Because of the small error in redshift, and the partial breaking of the luminosity
distance-inclination degeneracy, the assumption of anEMevent accompanying aGW
event is commonly used in studies on standard sirens and their ability to infer the
cosmological parameters. For example, Nissanke et al. [35] used MCMC methods
to show that with a network of advanced detectors and 15 detected standard sirens,
H0 can be constrained to a 5% accuracy.

For the 3rd generation detector ET, Monte Carlo simulations performed by
Sathyaprakash et al. [41] showed that if H0 is assumed to be accurately known, then
�M ,�DE and a constantw can be constrained to about 10–20%, despite weak lens-
ing obscuring the distance measurements. Furthermore, Fisher matrix calculations
done by the author and his collaborators showed that standard sirens can improve
the bounds on the dark energy parameters w0 and wa (cf. Eq. 10.42) obtained by the
combination of future CMB, BAO and SNIa measurements by 6 and 5% percent
respectively [42].

The assumption that BNS or BHNS mergers are progenitors of SGRBs, and the
subsequent use of SGRBs to determine the redshift of a binary merger do suffer
from drawbacks. Firstly, despite our increasing knowledge on SGRBs (e.g. [39,
43]), there is no conclusive evidence that binary mergers are indeed progenitors of
SGRBs. Secondly, by comparing the SGRB rate with evolutionary calculations of
BNS formation, Belczynski et al. [44] found that the fraction of BNS mergers that
have the correct physical characteristics to produce an SGRB, can be as low as 10−2.
Thirdly, SGRBs are found to be strongly beamed phenomena, with an opening angle
of the jet being smaller than ∼20% [45]. Therefore, not all SGRBs are observable
here on Earth, decreasing the probability of observing the SGRB in coincidence with
the GW signal. Finally, it can occur that the host galaxy is not identified correctly.
For an advanced-detector network, the number of galaxies within the sky position-
luminosity distance confidence region can vary between a few (high SNR) to a few
hundreds (threshold SNR) [35, 46]. Nuttal and Sutton showed that in the advanced
detector era, the probability of finding the true host galaxy can range from ∼50 to
∼90%, depending on whether the host-galaxy identification is done with a wide or
narrow field-of-view telescope.

http://dx.doi.org/10.1007/978-3-319-19273-4_10
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Galaxy Catalogue
In his original paper on performing cosmography by using GW observations, Schutz
proposed the use of a galaxy catalogue, instead of a direct coincident observation of
an EM signal [33]. The idea is to identify all the galaxies within the sky position-
luminosity distance confidence region as a potential host. Through the measurement
of multiple standard sirens, potential host galaxies that did not host the event can be
statistically ruled out. The use of a galaxy catalogue to obtain redshift information
has been worked out by Del Pozzo for a network of Advanced detectors and he
shows that even with tens of standard sirens, the Hubble constant can be measured
to accuracies in the order of a few percent.

This technique also has several drawbacks. For example, simulations by Bloom
et al. [47] and Bulik et al. [48] showed that between 15–20% of the binary mergers
are expected to occur outside dwarf galaxies. If a significant portion of the standard
sirens do not originate from within a galaxy, the results could be significantly biased.
Furthermore, this technique relies on having a complete galaxy catalogue. The Sloan
Digital Sky Survey (SDSS) is assumed to have a complete galaxy coverage up to
about z ∼ 0.1, which is suitable for advanced detectors. However, for third genera-
tion detectors, the galaxy catalogues will have to be extended to be complete up to
z ∼ 4. This poses a significant challenge, even for future missions such as the Large
Synoptic Survey Telescope [49]. Furthermore, as GWs can be detected at increas-
ingly larger distance due to technological improvements, the number of potential host
galaxies grows. The computational cost of having an enormous number of potential
host galaxies could prove to be the limiting factor for future GW detectors. Indeed,
as ET is expected to make observations at a rate as high as 107 year−1 for BNS and
BHNS systems, and 108 year−1 for BBH systems, the analysis of each source with
many potential host galaxies can become a daunting task.

Neutron Star Mass Distribution
Next,wediscuss the use of theNSmass distribution to estimate the redshift, originally
proposed by Markovic [50]. In Sect. 11.2.1, it was shown that the mass associated
to the GWs detected here on Earth is the redshifted mass m′ = m(1 + z). Sup-
pose we know the intrinsic mass distribution of NSs, e.g. through observations of
(binary) pulsars. Then, by inferring the redshiftedmass, one can obtain direct redshift
information.

This idea critically depends on the assumption that the distribution of the intrinsic
mass of the NSs in binaries is known. Current observations suggest that the mass for
NSs inBNS systems follows aGaussian distributionwith amean ofμ ≈ 1.35M� and
a standard deviation of σ ≈ 0.05 [51, 52]. However, an analysis of BNS observations
by Schwab, suggest that the mass distribution of NSs in BNS system could be a
bimodal distribution [53]. The two modes in this distribution is hypothesised to be
associated to two distinct NS formation scenarios.

The validity of this technique is explored by e.g. Chernoff and Finn [54], and
Finn [55] for LIGO/Virgo-like detectors, Taylor et al. [56] for an advanced-detector
network, and Taylor and Gair [56] for a network of 3rd generation detectors. For an
advanced-detector network, Taylor et al. show that, under the assumption of a flat
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universe (�k = 0), the Hubble constant H0 can be determined with accuracies of
about ∼10%. For a third generation network, Taylor and Gair showed that the dark
energy parameters w0 and wa can be constrained to about 50% accuracy.

Although the idea is potent, its heavy dependence on a known and fixed NS mass
distribution could severely bias the results. In partiular, we do not know whether our
current understanding of the NSmass distribution is obtained with a biased sample of
(binary) NSs. Examples of possible biases include a bias toward long-lived systems,
and/or a bias towards systems that have an observable EM signature (e.g. pulsars,
x-ray binaries). Furthermore, for events to be suitable, one the objects in the binary
will have to be unambiguously identified as a NS.
Tidal Deformation of Neutron Stars
In a recent paper, Messenger and Read [57] showed that redshift information can
also be obtained directly from the inspiral signal, by considering the influence of
the object’s internal structure on the waveform. Specifically, the corrections to the
GW waveform due to finite size effects are a function of the equation of state of
NS matter and the rest masses. A measurement of these corrections would therefore
yield information about both the redshifted and the rest mass, fromwhich the redshift
can be inferred. Current constraints on the NS equation of state come from the
simultaneous measurement of the mass and the radius of NSs [58–61]. However,
these measurements are prone to systematic errors as they are heavily dependent on
detailed modelling of the radiation mechanisms at the NS surface and absorption in
the interstellar medium.

The necessity of knowledge on the NS equation of state could be a major concern
when using this technique. However, GW measurements can provide an interesting
solution to this problem. Specifically, measurements of the influence of finite size
effects in NSs can also be used to probe the NS equation of state. Flanagan and
Hinderer [62], and Hinderer et al. [63] show that an advanced-detector network
will have difficulties to constrain all but some extreme cases, but ET does have the
potential to constrain the NS equation of state. A scenario can be envisaged that a
subset of the detections will be used to obtain the NS equation of state, whereas a
different subset will be used to obtain redshift information. This technique is yet to
be investigated for its potential in cosmography, but Messenger and Read show that
the error on the redshift measurement can be as low as 10% [57].
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Chapter 12
Electromagnetic Counterpart as Redshift
Measurement

12.1 Introduction

Asmentioned in Sect. 11.2.3, a popular assumption on BNSs and BHNSs is that they
are the progenitors of SGRBs. To start our investigation into standard sirens as a
cosmological tool, we adopt this assumption as well.

The advantage of an EM counterpart in the form of an SGRB is twofold. Firstly,
identifying a SGRB allows for the host galaxy and subsequently its redshift to be
determined. Secondly, SGRBs are likely to be strongly beamed phenomena, which
allows one to constrain the inclination of the compact binary system, breaking the
distance-inclination degeneracy.

For this investigation, we will work with ET (see Sect. 3.1.2) as the 3rd generation
detector of our choice. With its expected rate ofO(103−107)BNS and BHNS detec-
tions per year [1], Einstein Telescope is likely to give enough sources to perform
precision cosmology, even under the assumption of an EM counterpart.

12.2 Implementation

In this investigation, we follow a Monte Carlo approach similar to Sathyaprakash et
al. [2]. In particular, we simulate many GW detections according to the predicted
rates and distributions, and record the values and errors of luminosity distances
and redshifts. Then, the most likely cosmological parameters are inferred through a
maximum likelihood analysis of the catalogue of simulated sources. The distributions
ofmeasured values for the cosmological parameters are obtained by simulatingmany
catalogues of BNS or BHNS systems.

© Springer International Publishing Switzerland 2015
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12.2.1 Simulated Source Distribution

Source parameters
The neutron starmass distributionwas chosen to be uniform in the interval [1, 2] M�,
inspired by the current limits of the neutron star mass [3], and the black hole mass
was chosen to be uniform between [3, 10] M� [4]. The ratio between BNS and
BHNS events is taken to be 0.03, the same as predicted for Advanced LIGO-Virgo
network [5].

Events were placed uniformly on the sky and in comoving volume. Furthermore,
we assume that the sources are distributed according to a local rate function, R(z),
per unit source time and unit co-moving volume. The redshift distribution of the
sources as observed here on Earth then takes the form

P(z) ∝ dVC

dz

R(z)

1 + z

∝ 4πD2
M (z)

H(z)

R(z)

1 + z
, (12.1)

where dVC is given by Eq. (10.66), DM is the transverse comoving distance defined
in Eq. (10.58), H(z) is the Hubble parameter given in e.g. Eq. (10.51) and the factor
of 1 + z is introduced to convert the local rate into the rate observed here on Earth.
For the rate function, R(z), we take

R(z) =

⎧

⎪⎨

⎪⎩

1 + 2z for z < 1
3
4 (5 − z) for 1 < z < 5

0 for z > 5,

(12.2)

which is a piece-wise fit created by Cutler and Holz [6], which is in turn based
on estimates obtained by using population synthesis models and the cosmic star
formation history [7]. The distribution of redshifts z is shown in Fig. 12.1.

By only considering those sources that have an associated SGRB, we can make
further assumptions on the inclination, ι, and the polarisation, ψ, of the binary
with respect to the observer. Since it is expected that SGRB are strongly beamed
[8–10], a coincident observation of the SGRB implies that the binary was orientated
nearly face-on, i.e. ι ≈ 0. Even if the beam is as wide as 40◦ (corresponding to a
maximal inclination of the orbital plane with respect to the line of sight of the binary,
ι = 20◦), the resulting area will only cover 3% of the entire unit sphere, made up by
the inclination and the orientation. Averaging the Fisher matrix over the inclination
ι and the polarisation ψ with the constrain ι < 20◦ will therefore be approximately
the same as taking ι = 0. Therefore, we take ι = 0 and the dependence for ψ sub-
sequently drops out of the expression for the beam pattern function [(cf. Eqs. (3.6)
and (3.7)].

http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_3
http://dx.doi.org/10.1007/978-3-319-19273-4_3
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Fig. 12.1 Simulated redshift distribution for GW events from Eq. (12.1)

Number of detectable Sources
ET is expected to detect O(103−107) binary neutron star coalescences per year
[1]. However, from these, we expect only a small fraction (∼10−3) to satisfy the
constraint that theGWdetection coincideswith an observation of a SGRB.Assuming
a detection rate in the middle of the anticipated range of O(105), we expect to
see O(102) events with an associated SGRB. As this number is subject to great
uncertainty, we will vary the observed number of sources from 50 up to 103 in the
results shown in Sect. 12.3.

Cosmological Model
For the simulations we have to choose our ‘true’ cosmological model. The model
was chosen to consist of the set (H0,�M ,�k,�DE , w0, wa). Because the radiation
content is mainly due to the CMB at T = 2.73K, its energy density is �r ∼ 10−5

and will be ignored for simplicity.
The values of the cosmological parameters will not be essential in our simulation.

What we are interested in is the precisionwithwhich they can bemeasured. However,
for consistency with the current measurements of the cosmological parameters, we
chose the cosmological parameters to be

H0 = 72 km s−1 Mpc−1, �M = 0.27, �k = 0,

�DE = 0.73, w0 = −1, wa = 0. (12.3)

Therefore, the challenge is to recover the values in Eq. (12.3) from a set of mea-
sured luminosity distances and redshifts. Having defined the ‘true’ cosmological
parameters, the luminosity distance is uniquely determined given a redshift. The dis-
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Fig. 12.2 Simulated distribution of luminosity distance given the redshift distribution in Eq. (12.1)
and the cosmological parameters in Eq. (12.3)

tribution of luminosity distance given the redshift distribution in Eq. (12.1) is shown
in Fig. 12.2.

12.2.2 Simulating the Luminosity Distance Measurement

In line with the SNR threshold currently used at LIGO/Virgo analyses, a GW detec-
tion is claimed only when the three ET interferometers have a network SNR of
ρnet > 8.0. We will also assume non-spinning CBC systems, which can be charac-
terised by nine parameters (M, η, tc,�c, θ,φ, ι,ψ, DL ) (cf. Sect. 2.6). For binary
neutron stars, the assumption of non-spinning stars is legitimate [11]. However, there
is evidence that black holes have significant spin [12]. Considering the low fraction
of BHNS systems compared to BNS systems, we will assume spin-less black holes
for simplicity. Furthermore, we will only use the leading order in amplitude (see
Sect. 2.6). The extra structure in the waveform due to the amplitude correction can
improve parameter estimation [13], so we are taking a conservative approach.

With the assumption of associated SGRBs, we can assume the location on the
sky, i.e. (θ,φ), to be pinpointed by observation of the EM counterpart. Furthermore,
in the first ET mock data challenge, Regimbau et al. showed that one can infer the
mass parameters to great accuracies [14]. We assume that the mass parameters are
accurately determined and do not have considerable correlation with other parame-
ters. This leaves the set of parameters (tc,�c, ι,ψ, DL) to be estimated. As can be
seen from the expression of the waveform in Eq. (2.72), tc and �c do not appear
in the expression of the amplitude. Therefore, we assume that these parameters are

http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_2
http://dx.doi.org/10.1007/978-3-319-19273-4_2
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largely uncorrelated with the amplitude parameters. Finally, we are left with the set
of parameters {ι,ψ, DL} that we need to consider in order to gauge the ability of ET
to estimate the luminosity distance.

Instrumental noise
To estimate the instrumental error on the measurement of the luminosity distance,
we turn to the Fisher information matrix (see Sect. 5.2). Suppose that the error on DL

is uncorrelated with the errors on the remaining GW parameters. The Fisher matrix
is block diagonal in that case, and one can obtain the Cramer-Rao bound for DL by
immediate inversion of the Fisher information matrix element, i.e.

σinst
DL

= √

CDL DL

=
√

(

�−1
)

DL DL

�
√

(

�DL DL

)−1

�
√

(
∂h

∂DL

∣
∣
∣
∣

∂h

∂DL

)−1

, (12.4)

where h represents the GW waveform. As h ∝ D−1
L , we have

∂h

∂DL
= − h

DL
. (12.5)

Plugging Eq. (12.5) into Eq. (12.4), the instrumental error of the luminosity distance
is given by

σinst
DL

�
√

D2
L

(h| h)
(12.6)

� DL

ρ
, (12.7)

where ρ denotes the signal-to-noise ratio. The signal to noise ratio is calculated using
the simulated values for GW parameters.

However, we are not in the situation where DL is uncorrelated with other para-
meters. In particular, the expression Eq. (12.7) has ignored the correlation with the
remaining GWparameters, especially the inclination. To account for this correlation,
we note that themaximal effect of the inclination on the SNR is a factor of 2 (between

http://dx.doi.org/10.1007/978-3-319-19273-4_5
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the source being face-on, ι = 0 and edge-on ι = π/2). Therefore, to account for
the correlation between the DL and ι, we double the estimate of the error on the
luminosity distance, i.e.

σinst
DL

� 2DL

ρ
. (12.8)

Weak lensing
Measurements of the luminosity distance are also affected byweak lensing. The dom-
inant effect is the change of the apparent brightness. This effect can either increase or
decrease the apparent brightness, making the inferred luminosity distance to be either
smaller or larger. Quantitatively, the effects of the magnification are given by the root
mean square of the magnification fluctuation [15]. The magnification fluctuation can
be interpreted as an additional error on the measurement of the luminosity distance.
Guided by Bartelmann Bartelmann and Schneider [15], we will approximate the
error due to weak lensing to be

σlens
DL

= 0.09z. (12.9)

Total statistical error on the luminosity distance measurement
With the main sources of errors identified above, we can now write the total error on
the luminosity distance as

σtot
DL

=
√

(

σinst
DL

)2 +
(

σlens
DL

)2

=
√

(
2DL

ρ

)2

+ (0.09z)2. (12.10)

The distribution of luminosity distance errors following the source-parameter distri-
bution given in Sect. 12.2.1 is shown in Fig. 12.3.

Systematic error on the luminosity distance measurement
The final assignment of the measured luminosity distance is done by sampling a
Gaussian distribution where the mean is given by the simulated luminosity distance,
calculated from the simulated redshift (cf. Sect. 12.2.1) and the chosen value of the
cosmological parameters, and the standard deviation is set by Eq. (12.10).

12.2.3 Simulating the Redshift Measurement

To simplify the analysis, the redshift measurement by means of EM observations is
assumed to be free of any error. This approximation is based on the current errors
of spectroscopic redshift determination, which are negligible compared to the errors
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Fig. 12.3 Simulated distribution of luminosity distance errors given the source-parameter distrib-
ution given in Sect. 12.2.1

in the luminosity distance (cf. Sect. 11.1.2). Although photometric redshift measure-
ments are not as accurate as spectroscopic measurements, significant improvement
can be expected by the time ET is operational.

It could also happen that the host-galaxy identification of the EM signal (e.g.
SGRBs) is incorrect. This could happen in several cases. Firstly, it could happen that
the unrelated EM signal occurs at the exact same moment as the GW detection. In
this case, the sky location and the redshift can be completely arbitrary. However,
considering that there about ≈100 SGRBs observed in a year, and the timing resolu-
tion is of the order of 1 ms, we do not expect to that the probability of an unrelated
coincidence detection to be significant. The other case is that the host galaxy of the
SGRB is misidentified. In this case, the sky position is still approximately correct,
but the redshift determination might be off. In a study of 20 SGRBs, Bloom et al.
[16] showed that for most of these SGRBs, the probability of misidentifying the host
galaxy is about 1%. Therefore, we assume that the correct host galaxy is found for
all SGRBs.

12.2.4 Estimating the Cosmological Parameters

The goal of cosmography is to infer the cosmological parameters from a catalogue
of observations. In the case presented here, the set of measurements consists of
the redshifts, the luminosity distances and the error on the luminosity distance
{

zi , DL
i
,σDL

i
}

. An example catalogue is shown in Fig. 12.4.

http://dx.doi.org/10.1007/978-3-319-19273-4_11
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Fig. 12.4 Example catalogueof redshifts, luminosity distances and errors on the luminosity distance

From a set of N observed redshifts, luminosity distances, and the errors on the
luminosity distance, we can estimate the cosmological parameters through least-
square fitting. Note that least-square fitting is equivalent to finding the maximum of a
likelihood that has the shape of a multivariate Gaussian for each of the measurements
(cf. Sect. 5.1). The residual to minimise in this case is given by

χ2 =
N

∑

i

⎡

⎣

DL
i − DL

(

zi ; ��
)

σDL
i

⎤

⎦

2

, (12.11)

where �� represent the set of cosmological parameters. Finally, we use the Levenberg-
Marquardt algorithm (see Sect. 5.1) to minimise the residuals.

However, finding the maximum lilkelihood does not give information on the pre-
cision of the inference of the cosmological parameters. To estimate the distribution
of cosmological parameters, we perform aMonte Carlo simulation of M realisations.
The maximum likelihood for each of these realisations will then give a frequentist
approach to the probability of the cosmological parameters.

Measuring all the cosmological parameters at once is a significant challenge,
even for the most precise observations we have today. Furthermore, different types
of experiments have parameters to which they are more sensitive to, e.g. CMB mea-
surements constrain H0,�M and�k well, but they have poor accuracywhen it comes
to dark energy parameters [17]. Therefore, most experiments restrict the analyses to
a subset of the cosmological parameters. This amounts to having additional prior
information that (strongly) favours specific values for a set of cosmological parame-

http://dx.doi.org/10.1007/978-3-319-19273-4_5
http://dx.doi.org/10.1007/978-3-319-19273-4_5
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ters. In Sect. 12.3 we consider both the cases where some parameters are assumed to
be constrained, and the case where standard sirens alone provide the constraints on
the cosmological parameters.

12.3 Results

12.3.1 Inferring the Hubble Constant

The earliest measurement of the Hubble constant, H0, performed by Hubble in 1929,
was accomplished by comparing the distances of galaxies with their redshift [18].
The value found was 500 km s−1 Mpc−1, which is about ten times bigger than the
estimate we have now. With increasing knowledge and technological advances, the
value for theHubble constant has seen a sharp decrease. Current estimates come from
an array of different experiments. The analyses of SNIa supernovae gives a value of
H0 = 74.2 ± 3.6 km s−1 Mpc−1[19]. The analysis of the CMB anisotropies made
by WMAP gives H0 = 71.0 ± 2.5 km s−1 Mpc−1 [20]. BAO measurements give
H0 = 68.2 ± 2.2 km s−1 Mpc−1 [21].

We calculate themedian (black dots) and the 95% confidence interval (black error
bars) for H0 as a function of the number of sources (in steps of 50) for the set of
free parameters {H0,�M ,�DE }. These results, shown in Fig. 12.5, are compared to
similar results from WMAP, BAO and SNIa combined. From Fig. 12.5 we see that
around 400 GW events are needed to achieve an accuracy comparable to theWMAP,
BAO and SNIa combined results.

12.3.2 Matter Density and Cosmological Constant

Next, we look at the ability of standard sirens tomeasure the energy densities. Despite
tight empirical constraints on the spatial flatness, i.e. −0.0133 < �k < 0.0084 [22],
the great promise of standard sirens is to provide an independent measurement.
Therefore, we will not assume spatial flatness when investigating the ability of stan-
dard sirens to measure the energy densities of the universe. Following the constraint
in Eq. (10.52), we take �k = 1 − �M − �DE .

In Fig. 12.6, we show the 2σ-error ellipses on the (�M ,�DE ) plane (black con-
tours) for the set of free parameters {H0,�M ,�DE }. We show contours for 50, 100,
200, 500 and 1000 GW events. The results are compared with the current constraints
put forward by the combined measurements of WMAP, BAO and SNIa [23].

Although the error ellipses for a 1000 GW events are bigger than the error ellipses
given by the combined measurements of WMAP, BAO and SNIa, Fig. 12.6 shows
that the error ellipses are oriented in different directions. This means that GW mea-

http://dx.doi.org/10.1007/978-3-319-19273-4_10
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Fig. 12.5 95% confidence interval (black lines) and the median (black dots) for H0 for a variable
number of GW events with an EM counterpart. The fiducial value is shown as the red dashed line.
For comparison, the current bound given by WMAP, BAO and SNIa combined for H0 is plotted in
the blue shaded area [22]

surement can cut away some part of the parameter space that has not been constrained
yet. In particular, GW measurements are more sensitive to �M .

12.3.3 Dark Energy

Next we want to study the ability of standard sirens to infer the nature of dark energy.
As the nature of dark energy is still unknown, we adopt the widely used practice of
expanding the equation of state parameter, w(z), as shown in Eq. (10.42). Here, the
dark energy equation of state is written in terms of two constants w0, wa .

We compare the accuracies on dark energy with optimistic1 forecasts for the
methods introduced in Sects. 11.1.1–11.1.3. The forecasts are based on proposed
futuremissions such as theSquareKilometreArray (SKA) [25],WFIRST (previously
known as JDEM) [26] and Euclid [27] which are equipped to study the cosmology
through a variety of methods.

Pivot Point
Although we measure two dark energy equation of state parameters, we are mainly
interested in the ability to measure the function w(z). As the error on w(z) is itself

1For assumptions for the ‘optimistic’ scenarios of experiments mentioned, consult Albrecht et al.
[24].

http://dx.doi.org/10.1007/978-3-319-19273-4_10
http://dx.doi.org/10.1007/978-3-319-19273-4_11
http://dx.doi.org/10.1007/978-3-319-19273-4_11
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Fig. 12.6 2σ error ellipses in the �M − �DE plane (black solid) for a variable number of GW
events considered. These are compared with the current constraints byWMAP, BAO and SNIa (blue
area) [23]

redshift dependent, it is common practice [28, 29] to make the transform

{w0, wa} → {

wp, wa
}

, (12.12)

where wp is defined to be the value of w(a) at the so-called ‘pivot’ scale factor ap,
i.e.

wp = w0 + (1 − ap)wa . (12.13)

The pivot scale factor is the scale factor at which the error on w(a) is minimal.
Following the linearised approximation of w(a), given in Eq. (10.42), the variance
of the function w(a) is given by

σ2
w = σ2

w0
+ (1 − a)2σ2

wa
+ 2(1 − a)corr(w0, wa)σw0σwa , (12.14)

where σw0 and σwa are the standard deviations on w0 and wa , and corr(w0, wa) is
the correlation between w0 and wa . The minimum with respect to the scale factor a
is given by

ap = 1 + corr(w0, wa)σw0

σwa

. (12.15)

This expression can then be turned into the pivot redshift, given by

http://dx.doi.org/10.1007/978-3-319-19273-4_10
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Fig. 12.7 2σ error ellipses on the �DE − wp plane (solid, black). These plots show the potential
for standard sirens to constrain the nature of dark energy. The results are compared to the optimistic
(solid, coloured) and pessimistic (dashed, coloured) forecast for BAO, supernovae (SNIa), cluster
counting (CL) and weak lensing (WL) for the future Square Kilometre Array or a space-based Joint
Dark Energy Mission (JDEM) [24]

z p = −
(

1 + σwa

corr(w0, wa)σw0

)−1

. (12.16)

Besides the equation of state parameters, dark energy is also characterised by
its fractional energy density �DE . To gauge the ability of an experiment to probe
dark energy, it is instructive to visualise the confidence intervals in the �DE − wp

plane. The results for the case where the set {�M ,�DE , w0, wa} is left free are
shown in Fig. 12.7. These results are compared to the optimistic (solid, coloured)
and pessimistic (dashed, coloured) predictions for BAO, cluster counting (CL), weak
lensing (WL) and supernovae (SNIa) measurements [24].

Figure12.7 shows that ET can constrain dark energy comparable to future dark
energy probes. Assuming that Einstein Telescope observes more than 500 sources,
ET even outperforms the optimistic predictions for BAO, supernovae and cluster
counting measurements. Only weak lensing has the potential to outperform Einstein
Telescope in this case. We can therefore conclude that ET can play a key role in
characterising the nature of dark energy.

Dark energy figure of merit
The transformation shown in Eq. (12.12) also has the advantage that the parameters
wp and wa are uncorrelated. This can be shown as follows. As the transformation
in Eq. (12.12) is a linear transformation, the covariance matrix, Ci j , is transformed
according to
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C ′
ab =

∑

i j

∂ pa

∂qi
Ci j

∂ pb

∂q j
. (12.17)

Evaluating the partial derivatives as

∂wp

∂w0
= 1,

∂wp

∂wa
= 1 − ap,

∂wa

∂w0
= 0, (12.18)

we can evaluate the covariance between wp and w0 as

Cwpwa = Cw0wa + (1 − ap)Cwawa ,

= 0, (12.19)

where we have used the expression for ap in Eq. (12.15).
Because the parameters wp and wa are uncorrelated, the area of the error ellipse

is simply proportional to σwa σwp . Furthermore, as the transformation in Eq. (12.12)
is only a change in coordinate bases, the area of the error ellipse in the wp, wa

plane is the same as the area of the error ellipse in the w0, wa plane. In order to
gauge the ability of an experiment to probe the dark energy equation of state, it is
common practice to introduce a figure ofmerit given by the reciprocal of this area, i.e.
(

σwpσwa

)−1. For this figure of merit, the larger this quantity is, the more accurately
we can measure the dark energy equation of state parameters.

The dark energy equation of state figure of merit for ET is shown as a function of
the number of sources for various sets of free parameters in Fig. 12.8. These results
are compared to the predicted range for the individual BAO, WL, CL and SNIa
measurements [24], shown as the shaded area. The upper bound of this shaded area
is set by the optimistic predictions from weak lensing measurements, whereas the
lower limit is set by the pessimistic predictions from cluster counting measurements.
The optimistic and pessimistic predictions for the other methods are between the
upper and lower bound. It is evident from Fig. 12.8 that standard sirens can provide
constraints on dark energy that are comparable to future (∼2020) BAO,WL, CL and
SNIa experiments.

12.4 Discussion

Gravitationalwaves fromcoalescing binaries directly encode the luminosity distance.
However, unlike EMmeasurements, the redshift is not readily measured. One way to
obtain the redshift of a GW event is to observe a coincident EM signal and measure
its redshift. Candidate EM signals are SGRB, that are hypothesised to be aftermaths
of binary systemswith at least one neutron star. An additional advantage of observing
an accompanying EM signal is that it also encodes information about the sky location
of the GW event, making the inference on the other GW parameters more accurate.



220 12 Electromagnetic Counterpart as Redshift Measurement

0 200 400 600 800 1000
Events

10−1

100

101

102

103

σ
w

p
σ

w
1

−1

w0, w1

ΩM, ΩDE, w0, w1

Future performance
BAO, SNIa, CL and WL
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various cases of free parameters. The results are compared future BAO, supernovae (SNIa) and
cluster counting (CL) experiments [24], shown as the shaded area. The upper bound of this shaded
area is set by the optimistic predictions fromweak lensingmeasurements, whereas the lower limit is
set by the pessimistic predictions from cluster counting measurements. Only optimistic predictions
for weak lensing experiments have considerably better performances than standard sirens

We investigated the power of ET to infer cosmological parameters by simulating
binary systems that have accompanying EM signals. We assumed that the redshift
and the sky location are measured without error. We estimated the instrumental error
on the luminosity distance by using a Fisher matrix calculation. We also modelled
the weak lensing errors linearly in redshift and added this in quadrature to the instru-
mental error. The redshift and the luminosity distance from a catalogue of sources
were then used to infer the cosmological parameters through a maximum likelihood
analysis. To obtain statistics on the cosmological parameters, we simulated multiple
catalogues of GW events.

In this study, we considered the accuracies on the Hubble constant, the energy
content of the Universe, and the dark energy equation of state for various combina-
tions of cosmological parameters to be inferred. For the Hubble constant, ET needs
∼400 GWmeasurements to compete with all current experiments combined. Similar
results are obtained for the energy density of matter and dark energy: one needs hun-
dreds of sources to achieve the accuracy of all current methods combined. Finally, we
investigated the power of ET to probe the dark energy equation of state. In particular,
we showed that ET can put constraints on the dark energy and its equation of state
comparable to futureEMmeasurements, provided that theHubble constant is known.
One way to obtain constraints on the Hubble constant is to use an independent set of
close by standard sirens.

The results shown here only consider a single ET, which consist of three co-
located GW detectors. On top of the encouraging nature of the results, it should be
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stressed that it is likely that there will be other 3rd generation detectors by the time
ET will be operational. Using multiple detectors at different locations increases the
ability to infer the luminosity distance drastically, as shown for various advanced
detector network configurations by Veitch et al. [30]. This increased accuracy on
the luminosity distance will heavily impact the ability to infer the cosmological
parameters. Indeed, using standard sirens to probe the cosmological parameters will
provide an independent and complementary alternative to current experiments.

Finally, observing an EM counterpart is not the only option to measure the red-
shift. As discussed in Sect. 11.2.3, the redshift can also be obtained from the mass
distribution of neutron stars, the deformability of neutron stars and galaxy catalogues.
In the realistic scenario, these methods will be used in conjunction to improve the
inference on the cosmological parameters.
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Chapter 13
Concluding Remarks

The themes of this work are the questions: “What physical information can be
extracted from GWs emitted by CBC systems and how can it be extracted?”. To
answer these questions, we showed the theoretical models needed to compute CBC
waveforms and some of the techniques necessary to extract information from GW
detections. We explored two applications in detail: Testing the strong-field dynamics
of GR and inferring the large-scale structure of the Universe.

13.1 Testing the Strong-Field Dynamics
of General Relativity

In part II, we presented a new theoretical framework called TIGER to test the con-
sistency of the GW signal with the prediction made by GR. This framework makes
maximum use of the information provided by applying the concepts of Bayesian
hypothesis testing. The novel aspect is the separation of the hypothesis “is the detec-
tion consistent with GR?” that is inherently difficult to assess (i.e. one does not know
how the signal looks like when GR is not the correct theory), into logically disjoint
subhypotheses that are readily assessed. Such a set-up allows for a test of GRwithout
prior knowledge on the specific way in which GR is violated. In other words, TIGER
is a generic test of GR.

Moreover, we implemented the TIGER framework into a data-analysis pipeline
capable of analysing LIGO/Virgo data. We performed comprehensive simulations
of BNS detections to test the concepts of the TIGER framework. The results seem
to suggest that TIGER can pick up arbitrary deviations from GR, even in the low
SNR regime that is applicable to advanced detectors. A comparison with efforts in
the literature shows that TIGER is more general and has better performance than
existing methods.

For BNS sources, the author and his collaborators are currently expanding
TIGER to include waveforms with spin interactions. Furthermore, efforts are ongo-
ing to quantify the effects of possible detector-calibration errors, and to include an
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upper-frequency cut-off to exclude matter effects such as the NS tidal deformability.
For BHNS and BBH sources, the author and his collaborators are currently inves-
tigating the possibilities to improve the waveform models. In particular, efforts are
ongoing to perform numerical simulations of BHNS and BBH systems by using the
Tier 1 grid facility at Nikhef.

13.2 Inferring the Large-Scale Structure of the Universe

GWs emitted by CBC systems directly encode the luminosity distance between the
source and the observer. The redshift of the source can be inferred from several meth-
ods such as using an EM counterpart, a galaxy catalogue, the NS mass distribution,
or the NS tidal deformability. With the luminosity distance and redshift determined,
one has enough information to use the luminosity distance-redshift relationship to
infer the parameters associated with the standard model of cosmology.

In part III, we investigated the ability of ET to infer the cosmological parameters.
We considered thoseCBC sources that can be associatedwith a redshift measurement
fromEMcounterparts such asSGRBs. For these sources,we calculated the accuracies
with which ET can measure the cosmological parameters, and compared them to
current and future accuracies from various (purely) EM methods such as the CMB
and BAOmeasurements. Finally, we showed that several hundred sources are needed
to achieve accuracies that are similar to EM methods. Since the expected rate for
BNS or BHNS detections is O(103 − 107) per year, measuring several hundreds
of CBC systems that have an associated EM counterpart can be assumed realistic.
Therefore, we concluded that future GWobservatories such as ET can independently
verify the current cosmological paradigm to comparable accuracies as EMmethods.

In this book, we have only considered the use of an EM counterpart to provide
redshift information. The author and his collaborators are currently investigating
the use of the NS tidal deformability to provide redshift information. Preliminary
results show that constraints on the cosmological parameters can be set using this
method. Ongoing simulations will soon give us an indication of the accuracy with
which the cosmological parameters can be measured. Ultimately, all methods of
inferring the redshift (EM counterpart, galaxy catalogue, NS mass distribution and
NS tidal deformability) should be brought together under a common data-analysis
effort. Such a unified data-analysis tool is currently under construction by the author
and his collaborators.

13.3 A New Window into the Universe

The two topics presented in this work aremerely the tip of the iceberg of what physics
can be extracted from direct detections of GWs. For instance, GW measurements
yield information about the masses and the spins of BHs and NSs. These can be
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used to study the stellar, galaxy and BH evolution models. Moreover, CBC and CW
signals can shed light on the physical processes that govern the interior of NSs.
Bursts of GWs emitted during a supernova can be used to probe its core dynamics.
The detection of GWs could lead to observations of speculative compact objects such
as cosmic strings, boson stars or sub-solar mass BHs. Furthermore, the association
of GWs with an EM transient could inform us about the origin of the transient. For
example, the observation of a CBC signal prior to a SGRB will inform us about the
physical processes underlying SGRBs.

Although the list of possible physics that can be extracted from GW detections
seems to vary across many topics, the procedure to extract the information is remark-
ably similar. Firstly, one needs to model the expected GWs, similar to what was done
in Chaps. 1 and 2 for CBC systems. The difficulty of this stage depends on the system
considered. Systems such as CBCs are mostly governed by GR, whereas supernovae
require interactions from all corners of physics. Next, these models are used as filters
in a detection procedure such as matched filtering (see Chap.3), where the signal
is extracted from the noise. Alternatively, one can use generic filters such as sine-
Gaussian filters. In either case, the result is the identification of a GW detection.
Finally, once a detection has been made, we can analyse the signal to extract the
targeted information. The extraction process can be done with the framework and
algorithms associated with Bayesian statistics (see Chaps. 4 and 5). Therefore, the
topics covered in this book give insight into the intricate nature of how one arrives
at physical statements starting from the raw detector output.

The GW community is entering a critical phase as the upgrades to Advanced
LIGO andAdvancedVirgo are soon to be completed. If the advanced detectors do not
make any detections, serious doubt about progenitor modelling or even the validity
of GR might arise. However, if detections are made by the advanced detectors, the
possibilities of GW astronomy could be endless. Indeed, the direct detection of GWs
could invoke a revolution in astronomy, similar to the one that was driven by the
advances of telescopes in the 20th century.
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Appendix A
Systematic Multipole Expansion

It is convenient to systematically decompose the multipole expansion of Eq. (1.79)
into irreducible representations of the rotation group SO(3). In particular, we will
look into a multipolar expansion by using the so-called STF harmonics [1, 2]. Before
doing this, it is useful to introduce some notation that will be used throughout the
rest of this and next chapter.

A.1 Notation

A tensor F with l (spatial) indices i1, i2, . . . , il will be compactly written by using
L = i1i2 . . . il , i.e.

FL ≡ Fi1i2...il . (A.1)

Similarly, FL−1 = Fi1i2...il−1 and Gi L = Gii1i2...il . Derivative operators can also
be compactly written as ∂L = ∂i1∂i2 . . . ∂il . Furthermore, we write the product of
vectors as

xL ≡ xi1xi2 . . . xil , (A.2)

and reserve ni = xi/r as the unit vector in the radial direction. Repeated upper case
indices imply the summation over all l indices, i.e.

FL GL =
∑

i1...il

Fi1...il Gi1...il . (A.3)

Also, superscripted integers n surrounded by round brackets denote the nth derivative
with respect to the retarded time u, i.e.

f (n)(u) ≡ dn f/dun . (A.4)
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One can obtain the STF part of a general tensor A in two steps. Firstly, one constructs
the symmetric part through

A(L) = 1

l!
∑

π

Aπ{k1...kl }, (A.5)

where the summation is over all permutations π of the indices k1 . . . kl and the round
brackets surrounding a capitalised index denote the symmetrisation in the included
indices. Secondly, one removes all traces from the symmetrised tensor SL = A(L) by

ÂL =
[l/2]∑

n=0

(−1)n l!(2l − 2n − 1)!!
(l − 2n)!(2l − 1)!!(2n)!!δ(k1k2 . . . δk2n−1k2n Sk2n+1...kl ) j1 j1... jn jn

= A〈L〉, (A.6)

where a hat denotes the STFpart of a tensor and is equivalent towriting angle brackets
surrounding indices. Also, [l/2] denotes the largest integer less than or equal to l/2.
An STF tensor with l indices has 2l + 1 independent components and is therefore a
representation of dimension 2l +1 of the special rotation group SO(3). Furthermore,
it can be shown that the set of all STF tensors gives a complete set of representations
of SO(3) [3].

A.2 Scalar Fields

Before we look into a systematic multipole expansion for gravitational fields, it is
instructive to consider a scalar field φ that satisfies the wave equation

�φ = −4πρ (t, �x) , (A.7)

where the source is localised within some distance d. Outside the source, the general
solution to the wave equation is given by

φ(t, �x) =
∞∑

l=0

(−1)l

l! ∂L

[
FL(u)

r

]
, (A.8)

where FL is an arbitrary function of the retarded time u = t − r . This follows from

�
[

f (u)

r

]
= 0, (A.9)
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for an arbitrary function f (u). Therefore, each term in the sum of Eq. (A.8) is a
solution to the wave equation. The solution in Eq. (A.8) turns out to be the most
general solution to Eq. (A.7) [3].

The wave equation can also be solved by using Green’s function. The solution
can be written as

φ(t, �x) =
∫

d3 �y ρ(t − |�x − �y|, �y)
|�x − �y| , (A.10)

which holds both inside and outside the source. By comparing Eqs. (A.8) to (A.10),
one can obtain an expression for the multipole moments FL in terms of the source
ρ(t, �x) [4]

FL(u) =
∫

d3 �y ŷL

∫ 1

−1
dz δl(z)ρ(u + z|�y|, �y), (A.11)

where the hat denotes the STF part shown in Eq. (A.6), and where δl(z) is defined as

δl(z) ≡ (2l + 1)!!
2l+1l! (1 − z2)l . (A.12)

The integration over z can be expressed as

∫ 1

−1
dz δl(z) f (u + z|�y|, �y) =

∞∑

k=0

(2l + 1)!!
2kk!(2l + 2k + 1)!!

(
|�y| ∂

∂u

)2k

f (u, �y),
(A.13)

fromwhichwe can see that the integration over z takes the infinite series of derivatives
into account.

A.3 Gravitational Fields

One can treat each component of the gravitational field as a scalar and therefore write
the general solution to Eq. (1.31) outside the source as

h̄00(t, �x) = 4
∞∑

l=0

(−1)l

l! ∂L

[
FL(u)

r

]
, (A.14)

h̄0i (t, �x) = 4
∞∑

l=0

(−1)l

l! ∂L

[
Gi L(u)

r

]
, (A.15)

h̄i j (t, �x) = 4
∞∑

l=0

(−1)l

l! ∂L

[
Hi j L(u)

r

]
. (A.16)
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However, in this form, Eqs. (A.15) and (A.16) are not STF under the exchange of i
with one of the indices in L . Therefore, one must further decompose Gi L and Hi j L

into complete STF tensors by using the steps in Eqs. (A.5) and (A.6). Ultimately, one
can write the gravitational field components as

h̄00(t, �x) = 4
∞∑

l=0

(−1)l

l! ∂L

[
ML(u)

r

]
, (A.17)

h̄0i (t, �x) = −4
∞∑

l=1

(−1)l

l! ∂L−1

[
M (1)

i L−1(u)

r
+ l

l + 1
εiab∂a

(
SbL−1(u)

r

)]
,

(A.18)

h̄i j (t, �x) = 4
∞∑

l=2

(−1)l

l! ∂L−2

⎡

⎣ M (2)
i j L−2(u)

r
+ 2l

l + 1
∂a

⎛

⎝εab(i S(1)
j)bL−2(u)

r

⎞

⎠

⎤

⎦ .

(A.19)

Similar to Eq. (1.79), one again has two families of moments, ML and SL , describing
the gravitational fields. Their explicit forms in terms of the stress-energy tensor are
given by

ML(u) =
∫

d3 �y
∫ 1

−1
dz

{
δl(z)ŷLσ − 4(2l + 1)δl+1(z)

(l + 1)(2l + 3)
ŷi Lσ

(1)
i

+ 2(2l + 1)δl+2(z)

(l + 1)(l + 2)(2l + 5)
ŷi j Lσ

(2)
i j

}
(u + z|�y|, �y), (A.20)

SL(u) =
∫

d3 �y
∫ 1

−1
dz εab〈il

{
δl(z)ŷL−1〉aσb − (2l + 1)δl+1(z)

(l + 2)(2l + 3)
ŷL−1〉acσ

(1)
bc

}

(u + z|�y|, �y), (A.21)

where we have defined

σ ≡
(

T 00 + T ii
)
, σi ≡ T 0i , σi j ≡ T i j . (A.22)

We will return to the use of the STF multipole expansion when we consider GWs in
the full, non-linear theory of GR.
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