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Supervisor’s Foreword

The relaxation of isolated quantum many-body systems is a major unsolved
problem at the interface of statistical and quantum physics. It is of high relevance in
many diverse fields, ranging from electron dynamics in condensed matter, and
decoherence in quantum information and metrology, to the complex dynamics in
high-energy physics and cosmology. Moreover, relaxation processes are intimately
related to the question of if and how the classical world at the macro-scale can
emerge from the unitary quantum evolution at the micro-scale.

The thesis of Tim Langen investigates a series of questions that are highly
contested in this context: how and to which extent does an isolated quantum many
body system relax? To what extent and through which processes is the memory of
an initial state erased during a time-evolution? How does a classical ensemble
description in the sense of statistical physics emerge from the underlying quantum
evolution, even when an actual environment is absent?

Over the last years, ultracold gases have been established as ideal model systems
to study these questions, as there is a large set of methods available to isolate,
manipulate and probe these gases. In particular, one-dimensional (1D) gases allow
probing of their many-body physics in a very controlled setting, as detailed theo-
retical models exist to compare to. Furthermore, these 1D gases show very rich
dynamics because of a large number of conserved quantities, which constraint their
evolution and have a profound effect on the relaxation processes.

In his thesis, Tim Langen prepares, controls and probes such systems using a so-
called atom chip. On this chip micro-fabricated wires allow the precise manipula-
tion of ultracold gases using static, radio and microwave magnetic fields. For
example, splitting a single 1D quantum gas into two parallel 1D halves by intro-
ducing a double-well potential initializes a well-controlled and reproducible non-
equilibrium evolution. The resulting dynamics can be investigated in great detail
through matter-wave interference between the two halves.

When Tim Langen started his thesis one of the key questions was how to extract
information about this non-equilibrium evolution. For his investigations he devel-
oped powerful methods to probe the dynamics of the many-body system through
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full distribution functions of interference contrast, or through measurements of
phase correlation functions to high order. These methods, in conjunction with a
significant progress in the theoretical modeling, allowed him to reveal that the
observed relaxation does not follow a simple path, but exhibits a plethora of
complex phenomena.

For example, the experiments demonstrated the emergence of a so-called pre-
thermalized state. Instead of relaxing directly to thermal equilibrium, the system
stays trapped in this intermediate quasi-steady state, which already shares certain
properties with thermal equilibrium but still differs significantly from it. By a
careful investigation, the different notions of equilibration, thermalization and
prethermalization could be carefully explained. Studying the relaxation process in
further detail revealed that thermal correlations in the system emerge locally in their
final form and then propagate in a light-cone-like evolution with a specific velocity
set by the quasi-particles in the system. This provided a striking visualization of
how information is distributed in quantum many-body systems and represents the
first experimental study of this process in a continuous system. Moreover, while the
thermal equilibrium state can be described by the well-known thermodynamical
ensembles, Tim Langen was able to show that a whole class of prethermalized
states has to be described by generalized ensembles taking into account the many
conserved quantities of the 1D system. In contrast to the single temperature char-
acterizing thermal equilibrium, these ensembles can exhibit many temperatures at
once. The most remarkable conclusion of the latter experiment is that it provides an
explicit connection between the unitary quantum evolution of the system to its
description in terms of statistical mechanics. These results challenge our under-
standing of isolated quantum systems and as such open a new chapter in the study
of relaxation processes.

The thesis of Tim Langen is an significant piece of work. I am convinced that it
will become an important reference and a stepping stone for new experiments
bringing deep insight in the quantum world.

Vienna Prof. Dr. Jorg Schmiedmayer
January 2015



Abstract

Understanding the non-equilibrium dynamics of isolated quantum many-body
systems is an open problem on vastly different energy, length, and time scales.
Examples range from the dynamics of the early universe and heavy-ion collisions to
the subtle coherence and transport properties in condensed matter physics.
However, realizations of such quantum many-body systems, which are both well
isolated from the environment and accessible to experimental study are scarce.

This thesis presents a series of experiments with ultracold one-dimensional Bose
gases. These gases combine a nearly perfect isolation from the environment with
many well-established methods to manipulate and probe their quantum states. This
makes them an ideal model system to explore the physics of quantum many body
systems out of equilibrium.

In the experiments, a well-defined non-equilibrium state is created by splitting a
single one-dimensional gas coherently into two parts. The relaxation of this state is
probed using matter-wave interferometry. The observations reveal the emergence of
a prethermalized steady state which differs strongly from thermal equilibrium. Such
thermal-like states had previously been predicted for a large variety of systems, but
never been observed directly. Studying the relaxation process in further detail
shows that the thermal correlations of the prethermalized state emerge locally in
their final form and propagate through the system in a light-cone-like evolution.
This provides first experimental evidence for the local relaxation conjecture, which
links relaxation processes in quantum many-body systems to the propagation of
correlations. Furthermore, engineering the initial state of the evolution demonstrates
that the prethermalized state is described by a generalized Gibbs ensemble, an
observation which substantiates the importance of this ensemble as an extension of
standard statistical mechanics. Finally, preliminary results of an experiment are
presented, where pairs of gases with an atom number difference appear to have
thermalized, while they still remain in a non-thermal state.

The results presented in this thesis demonstrate both the wide range of phe-
nomena that can occur in non-equilibrium quantum many-body systems, and the
great potential of one-dimensional Bose gases to explore these phenomena. This
paves the way for the further study of a universal framework for non-equilibrium
dynamics.
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Chapter 1
Introduction to One-Dimensional Bose Gases

1.1 From Quantum to Statistical Mechanics

Statistical mechanics has proven to be one of the most comprehensive theories in
physics. From a boiling pot of water to the complex dynamics of quantum many-body
systems it provides a successful connection between the microscopic dynamics of
atoms and molecules to the macroscopic properties of matter [1, 2].

However, despite almost a century of efforts to explain the foundations of sta-
tistical mechanics through the underlying laws of quantum mechanics [3, 4], these
foundations still rely on assumptions rather then exact derivations. Moreover, statisti-
cal mechanics only describes the thermal equilibrium situation of a system, but there
is no general consensus on the framework to describe how equilibrium is reached or
under which circumstances it can be reached at all [5].

In classical mechanics, dynamical processes and thermalization are intimately
connected to chaotic behavior [6, 7]. Entropy grows until its maximum is reached in
the thermal equilibrium state [§—10]. This thermal equilibrium state is the same for
all initial states with a certain energy.

However, the microscopic world is properly described in terms of quantum
mechanics. In principle, all quantum evolution is unitary, and thus isolated quantum
systems should never relax to a universal thermal equilibrium state. Nevertheless,
experience tells us that many quantum systems can be well described by such a state.

Thus, the central question is how the unitary non-equilibrium evolution of an
isolated quantum many-body system can lead to observables which relax to steady,
thermal expectation values [11-19].

The answer to this question is an open one on all energy, length, and time scales,
from the expansion dynamics of the early universe [20-22] and the physics of quark-
gluon plasmas [23-25] to the subtle coherence properties of solid-state materials
[26-29] and future quantum information devices [5]. Thus, a thorough understanding
could not only shed light on the origins of our universe, but might also lead to
important technological advances. Chapter 3 gives a brief introduction into the current
framework of non-equilibrium dynamics.

© Springer International Publishing Switzerland 2015 1
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From an experimentalist’s point of view all these situations have one challenge
in common: their study is difficult, since quantum many-body systems are usually
hard to isolate from the environment. Only recently, the advances in the manipulation
of ultracold atomic clouds have enabled the realization and control of truly isolated
quantum many-body systems [30, 31].

For example, confining atoms in optical lattices allows the realization of sys-
tems where thousands of atoms behave coherently for times that are much longer
than the characteristic time scales of their dynamics [32-37]. To extract information,
these systems can be probed down to the single atom level [38—40]. Moreover, quan-
tum gases with tunable interactions [41, 42] now provide benchmarks for the most
advanced numerical methods to simulate quantum many-body systems [43—-47].

In particular, the realization of low-dimensional quantum gases [48-51] has
enabled the detailed experimental study of textbook examples of statistical physics,
for example, Ising chains [52], Tonks-Girardeau [53-56] and Yang-Yang gases [57],
Luttinger liquids [58, 59], as well as the quantum Sine-Gordon [60], the Hubbard [61]
and the Yang-Gaudin models [62].

In this thesis the non-equilibrium dynamics of isolated quantum many-body sys-
tems are investigated using a one-dimensional (1D) Bose gas of ultracold 8’Rb atoms.
To this end, an experiment was set up to realize such a gas on an atom chip [63—-68].
The experimental setup is discussed in detail in Chap. 2.

The micro-fabricated traps on such atom chips enable a wide range of powerful
techniques to manipulate and probe ultracold atoms [69—72]. In our experiment we
employ matter-wave interferometry as a sensitive probe for fluctuations and many-
body dynamics [73-75]. In addition to these experimental benefits, the 1D Bose
gas has the favorable property that it shows very rich dynamics, but still remains
theoretically tractable [76]. Moreover, the 1D Bose gas is an example of a so-called
integrable system, where the existence of many conserved quantities has a strong
influence on the dynamics [77-79]. In the experiment, these conserved quantities are
realized only approximately, which opens up the possibility of studying relaxation
close to an integrable point.

This unique combination of experimental and theoretical properties enables a
series of experiments which provide comprehensive insights into the dynamics of
isolated quantum many-body systems.

Chapter 4 presents an experiment [59, 80-83], in which a 1D Bose gas is brought
out of equilibrium by rapidly splitting it into two parts. The ensuing evolution reveals
the emergence of an intermediate, prethermalized state which already exhibits some
thermal-like properties, but still contains a strong memory of the initial state. The
theoretical analysis reveals that the appearance of this state is closely connected
to the near-integrability of the 1D Bose gas, which leads to almost non-interacting
quasi-particles [27].

After demonstrating that states with thermal correlations can dynamically emerge
in an isolated quantum system, we study in Chap.5 how these thermal correlations
form during the dynamics. It has been conjectured [84, 85] that thermal states will
emerge locally and spread in a light-cone-like evolution in systems which exhibit
a finite velocity for the propagation of correlations. We observe this local emergence
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of thermal correlations for the first time, by using time-resolved measurements of
the two-point correlation function of the gas [86].

Having established the two-point correlation function as a very sensitive tool to
study the dynamics, it is employed in Chap. 6 to reveal how a variation of the split-
ting process can change the initial conditions of the non-equilibrium evolution. The
preparation of such an alternative initial state demonstrates that the prethermalized
state can be described by a generalized Gibbs ensemble [87], a generalization of the
usual thermodynamical ensembles to integrable systems.

In Chap. 7 the relaxation dynamics of two gases with an atom number imbalance
is studied. The insights of this experiment are twofold: on one hand, imbalancing the
gases exposes one of the subtleties of relaxation in the quantum world: depending
on the measurement, the relaxation can appear vastly different. Under certain cir-
cumstances the system might look completely thermalized, although it is still in a
non-equilibrium state. On the other hand, the two 1D Bose gases show interesting
similarities with 1D spin chains and could therefore serve as a model system to study
spin-charge dynamics within the Luttinger liquid framework [88].

Finally, an outlook on ongoing and future experiments is presented. These exper-
iments include the study of evaporative and sympathetic cooling in 1D, a possi-
ble interferometer with ultracold mixtures, as well as experiments investigating the
coherence dynamics of two tunnel coupled 1D Bose gases. The latter experiments
establish pairs of coupled gases as a promising platform for future investigations, for
example the search for universality away from equilibrium [89], quantum simula-
tions of the early universe [90], or as a tool to engineer states for quantum-enhanced
metrology [91].

In this first chapter, the physics of Bose gases in equilibrium are reviewed with a
particular focus on 1D bosons in a double-well potential. This equilibrium situation
allows the introduction of the tools that will later be used to study 1D Bose gases in
various non-equilibrium situations.

1.2 Thermal Equilibrium

Thermodynamics describes the physics of a quantum system containing a large num-
ber of particles by means of a small number of macroscopic variables. Typical exam-
ples for these variables are temperature, pressure, and entropy. Thermal equilibrium
is defined as the state of the system in which these variables do not change in time.
There is no flow of heat or matter, and in the classical limit all degrees of freedom
contain the same amount of energy [1, 2].

Statistical mechanics connects this macroscopic description to the underlying
microscopic dynamics. In practice, a complete description of the very complex micro-
scopic dynamics is unfeasible. However, this complete description is also unneces-
sary to describe the macroscopic variables of interest. Instead, a statistical approach
is much more useful, where the macroscopic variables are derived from the average
over an ensemble that represents all possible microscopic states.


http://dx.doi.org/10.1007/978-3-319-18564-4_6
http://dx.doi.org/10.1007/978-3-319-18564-4_7

4 1 Introduction to One-Dimensional Bose Gases

The fundamental hypothesis of statistical mechanics is that a system is equally
likely to be found in any of these microscopic states [1]. This hypothesis has no
rigorous justification and has therefore recently been the subject of intense study [14,
92]. Starting from this hypothesis, it is central to observe that many microscopic states
of a system result in the same macroscopic properties. The thermal equilibrium state
then simply follows as the most probable macroscopic state in the ensemble.

Typical examples of statistical ensembles that are appropriate for the description
are the microcanonical, canonical, or grand-canonical ensembles [1]. In the follow-
ing, we describe the grand canonical ensemble formulation, as the statistics of Bose
gases follow from it in a natural way.

To this end, we consider a generic system with a certain volume ) that is in contact
with a bath, with which it can exchange particles and energy. The fact that the system
is connected to a bath has no particular importance in standard statistical mechanics.
The reason for this is that the mean values of all physical observables are identical in
the thermodynamic limit, independent of whether the system is described as being
completely isolated (using the microcanonical ensemble) or coupled to a bath (using
the canonical or the grand canonical ensemble) [1, 2].

The total energy, described by the Hamiltonian H of the system, and the total par-
ticle number, described by the particle number operator N are conserved quantities.
The state of the system can be described by a density matrix

1 A A
p= Eexp(—ﬁ[H—MN]), (1.1)

where (§ and p are parameters to be determined and Z = Tr(exp(—ﬁ[l:l — ,uN 1) is
the grand partition function.

Following the standard knowledge of quantum statistical mechanics, the thermal
equilibrium state of this system is the unique state p,, which maximizes the entropy

S = _kBTr(ﬁeq log ﬁEq)a (1.2)

under the constraints imposed by the conserved quantities. In the maximization of
the entropy, 3 and u play the role of Lagrange multipliers, which are connected to
the conserved quantities Hand N, respectively. One can identify y as the chemical
potential, which governs the exchange of particles with the bath, and 3 = 1/kpT as
the inverse temperature of the system, which governs the exchange of energy. Here,
kp is Boltzmann’s constant and 7T is the temperature. The expectation value of a
generic observable A follows via (A) = Tr(peq A) JTr(Peg).

The density matrix p,, describes a mixed state. How such a mixed state can emerge
from a pure state through a unitary non-equilibrium evolution is subject to an ongoing
debate [13, 15]. Several possible mechanisms will be discussed in Chap. 3. In fact, we
will see later that this entropy maximization scheme can be generalized to describe
also the more complex steady states which emerge in the non-equilibrium dynamics
of systems with many more conserved quantities.
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1.3 Bose Statistics

In quantum mechanics identical particles are indistinguishable and, as a result, exhibit
completely different statistical properties than their distinguishable classical coun-
terparts [93]. This fact was first pointed out by Bose in a derivation of Planck’s law
for photons [94]. As Einstein realized soon thereafter [95], arbitrary particles with an
integer spin, now called bosons [96], will under certain conditions accumulate in the
energetic ground state and form a single coherent object, a Bose-Einstein condensate
(BEC). This BEC is the starting point for the experiments presented in this thesis.

1.3.1 The Ideal Bose Gas

We start by considering a homogeneous, non-interacting gas of bosonic particles.
From the equilibrium density matrix in Eq. 1.1 one derives [1, 97] that for a bosonic
system the occupation of a non-degenerate quantum state with energy E; > 0 is
given by the Bose-Einstein distribution

1

N(Ey) = N = (lexp(Ex/kpT) — 1’

(1.3)

where ( = exp(u/kpT) is the fugacity and k is an index labeling the discrete
energy eigenvalues. As the occupation Ny of a state cannot be negative, the chemical
potential y of the ideal Bose gas always has to remain negative. Consequently, the
fugacity must fulfil 0 < { < 1, where the limit { — 0 corresponds to classical
Boltzmann statistics and ¢ — 1 to the quantum regime.

In a semi-classical approximation, the discrete level structure £} can be approxi-
mated by a continuous spectrum. As the Bose-Einstein distribution is normalized to
the total number of atoms N = >, Ny one finds the equation of state [1]

, 1
n=no+n =”O+/\TQ3/2(O- (1.4)
dB
Here,
s
9.(Q) = ZC— (1.5)
=17

is the Bose function and \gg = +/27h/mkgT denotes the thermal de Broglie wave-
length, with / being Planck’s constant 4 divided by 27 and m the mass of the atoms.
Furthermore, n = N/V is the total density of the atoms, n’ = N'/V is the density
of atoms in the excited states and n9 = No/V is the density of atoms in the ground
state.
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The central aspect of this result is that the Bose function is bounded from above
by g3/2(1) >~ 2.612 for ¢ = 1. For a given temperature, there can thus only be a
limited number of atoms in the excited states. Turning this argument around, for a
system with a certain total number N of particles, there exists a critical temperature 7.
below which the excited states of the system are saturated. All other atoms will have
to collectively accumulate in the ground state. The corresponding critical temperature
is given by

2nh? 1 n \3/2
keTe="(50) " - 1.6
Ble 2612 (1.0
In terms of the density this can be expressed as
n\Jg = 2.612. (1.7)

This condition allows for a very intuitive interpretation, namely that Bose-Einstein
condensation will occur when the de Broglie wavelength Agg becomes on the order
of the mean inter-particle spacing n~!/3.

For alkali atoms, like 37Rb which is used in this work, this condition results in the
need to achieve temperatures in the sub-yK range to reach the quantum degenerate
regime.

In experiments the atoms are confined in a harmonic trapping potential

Vx,v,2) = %mwzxz + %mwgyz + %mwzzzz, (1.8)
where w, , ., are the trap frequencies in the three spatial directions r = (x, y, 2).
As the resulting system is inhomogeneous, not all atoms in the gas will reach the
condensation threshold at the same time. This situation can be captured in the equation
of state (Eq. 1.4) using a local density approximation, where the chemical potential
is replaced by a local chemical potential ;4(r) = o — V (r) in the expression for the
fugacity ¢. The maximum of ¢, and thus of the density, is located in the center of the
trap. Therefore, the condensate will start to form once nO/\gB = 2.612, where ng is
the density in the center of the trap.

In the limit of zero temperature, all N atoms will condense into the ground state.
They can thus be described by the single-particle Gaussian ground state wave function
1p of the harmonic trapping potential. The width of this wave function, and thus the
size of the condensate is given by the harmonic oscillator lengths

h
aho,i = \| —, (1.9)
mwj;

in the respective directions i = {x, y, z}. The total wave function is the product of
these single particle wave functions, resulting in a density profile given by [97]

n(r) = N [¢o(r))?. (1.10)
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1.3.2 The Interacting Bose Gas

As we have just seen, the Bose-Einstein condensation of an ideal bosonic gas is a
purely statistical effect. However, thermal equilibrium, which is assumed in the above
treatment, cannot be reached without interactions. For a realistic description, we thus
have to introduce interactions between the atoms. The many-body Hamiltonian of
such an interacting bosonic gas is of the form [97]

272
H :/d3r\iﬁ(r,t) (—h v + V(r)—,u) U(r, 1)+

2m

1 3 RIVAN A A INATy e/ T
+§ rd’r V' (r, V', U(r — )Y (', H)Wv(r,t). (1.11)

Here, U (r — r') is the effective interatomic interaction potential and the \if(r, 1)
are the time-dependent field operators, which create a particle at position r.

The fact that the gases have to be cooled to extremely low temperatures to achieve
quantum degeneracy reduces the possible collisional processes to simple s-wave
scattering [97, 98]. In this case, the interactions can be described by a single number,
the s-wave scattering length a;. For 87Rb, ag >~ 5.24nm > 0, which makes the inter-
actions repulsive [99]. The effective interaction potential itself can be represented by
a contact potential U (r — r') = gspo(r — r’), where

47 h?

g3p = ag (1.12)

is the 3D interaction constant.

The dynamics of the field operators U (r, t) can be calculated from the many-
body Hamiltonian by approximating them with Ur, 1) = d(r. 1) + 512(r, t), and
replacing CiD(r, t) by its expectation value (<i>(r, t)) = ®(r,t). Here, ®(r,t) is a
macroscopic wave function and the term 61@ describes small fluctuations around
that wave function [100, 101]. In a first approximation these small fluctuations can
be neglected and the gas can be described by ®(r, ¢), which is determined by the
non-linear Schrédinger equation

o) 2
ih—®(r,t) = N V(r)+ gip|P(r, t)|2 O(r,1). (1.13)
ot 2m

In this so-called Gross-Pitaevski equation (GPE) the mean-field term g3p |® (r, 1) |2
describes the interactions between the atoms [97, 102, 103]. A separational ansatz
D(r,t) = O(r) exp(—iut/h) yields the stationary GPE [104]

2
(—;—mV2+V(r)+g3D|<I>(r)|2) Pr)=pd(r). (1.14)
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(@) Vixy) (b) |

No

X X

Fig.1.1 Thomas-Fermi approximation. a If the kinetic energy term in the Gross-Pitaevski equation
(Eq. 1.14) can be neglected compared to the mean-field energy term, an analytic solution for the
atomic density profile can be found (Eq. 1.15). The atoms uniformly fill the potential up to the
chemical potential ;. b In a harmonic trap, this results in an inverted parabola for the atomic
density n, with the peak density given by ng = 11/g3p

For the interacting gas, the chemical potential no longer has to remain negative
and is now given by the solution of the GPE, which can easily be obtained numeri-
cally [105]. Note that, while Bose-Einstein condensation is still statistically favored,
the picture in which the excited states of a trapped gas are saturated is fully valid
only in the limit of no interactions [106].

A very good analytical approximation to the GPE can be found in the limit where
the mean-field term is much stronger than the kinetic energy [107]. This so-called
Thomas-Fermi approximation allows the algebraic solution of the GPE for the atomic
density

nr) = o) = Lmax(u —V(r),0). (1.15)
93D

The atoms fill the trapping potential uniformly up to the chemical potential. In
a harmonic trapping potential this leads to an atomic density profile which has the
form of an inverted parabola (Fig. 1.1). The surface of the atomic cloud is defined
by the condition y# = V(r), which yields the Thomas-Fermi radius Rtr; in each
directioni = {x, y, z}

p= %mwl-zR%Fyi. (1.16)

Due to repulsive interactions, these radii are generally larger than the oscillator
length (Eq. 1.9) characterizing the non-interacting gas.

Excitations can be described as small thermal or quantum fluctuations 61& around
the mean-field ®. This description was developed by Bogoliubov [100] and de
Gennes [108] and will play a central role in the description of 1D gases. In the
homogeneous case, or in local density approximation, one finds for the dispersion
relation of these excitations

€k = Ex(Ex +2u), (1.17)
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with E; = h%k*/2m the dispersion relation of a free particle. At high energies the
dispersion relation can be approximated by ¢, = E} + i and the excitations behave
like free particles. At low energies one finds ¢ = ck, such that the excitations
are phonons with a speed of sound ¢ = +/gspn/m. The crossover energy between
these two regimes is located at the chemical potential. The corresponding excitation
energies in the trapped Thomas-Fermi limit are given in Ref. [109].

The Bose-Einstein condensate is a coherent quantum object. This fact can be
captured using the one-body density matrix of the gas [110]

o r ) = (U@, @, ). (1.18)

The eigenvalues of this matrix describe the number of particles occupying the cor-
responding eigenfunction. The defining feature of a BEC is that this matrix remains
finite for |r — r'| — oo, corresponding to a macroscopic occupation of the ground
state. This property is called off-diagonal long-range order. As the one-body density
matrix is directly related to the two-point correlation function

(Wi, W@, 0)

C(r,r',t) =
St 0be, o)/ te, nbe, )

, (1.19)

it implies that a BEC exhibits long-range phase coherence.

1.4 Degenerate One-Dimensional Bose Gases

Low-dimensional quantum systems show fundamentally different behavior than their
higher-dimensional counterparts. Examples include the transport properties in atomic
or molecular chains [111-114] and carbon nanotubes [115-117], the quantum hall
effect [118-120], high-T7, superconductivity [121, 122], or the unusual electronic
properties of graphene [123]. As we will see in the following, the dimensionality
also has a strong influence on the character of the Bose-Einstein condensation in
low-dimensional quantum gases [124—126].

In experiments, a 1D Bose gas can be realized if the confinement in two directions
is strong enough such that the temperature and the chemical potential of the system
are smaller than the excited energy levels of the trapping potential. This can be

expressed by the condition
kT, p < hwy, (1.20)

where w denotes the trap frequency in the two strongly confining directions. In the
following, we will use the convention that the strongly confining trap directions are
the x-direction and the y-direction, such that w| = wy = wy.



10 1 Introduction to One-Dimensional Bose Gases

1.4.1 The Ideal One-Dimensional Bose Gas

We start by considering an ideal homogeneous 1D Bose gas. In analogy with the 3D
case (Eq. 1.4), the equation of state is given by [127]

1
nip = )\—91/2(0~ (1.21)
dB

Again, quantum effects become important when the de Broglie wavelength Agp
becomes comparable to the particle separation nl_D]. From this condition, one defines
the degeneracy temperature
h*n?

1D

Ty = .
D= Smkg

(1.22)

In contrast to the critical temperature in 3D, the degeneracy temperature does not
mark a phase transition, but only loosely defines a temperature scale for the quantum
regime. The fact that there is no BEC phase transition in 1D can be seen in the
equation of state, where g1,2(z), in contrast to its counterpart g3,2(z) in the 3D case,
does not converge for z — 1. There is thus no saturation of the exited states and the
ideal 1D Bose gas can always be described as a thermal gas.

Even more importantly, we immediately learn that in 1D many momentum modes
are occupied, in contrast to the single momentum state in 3D BECs. These many
momentum modes are the origin of strong density and phase fluctuations in 1D Bose
gases. It has been shown rigorously by Mermin, Wagner and Hohenberg [124, 125]
that because of this enhanced role of fluctuations no off-diagonal long-range order
and thus no BEC can exist in ideal 1D Bose gases, even at zero temperature.

1.4.2 The Interacting One-Dimensional Bose Gas

Similar to the 3D case (Eq.1.11) the interacting 1D Bose gas can be described by
the many-body Hamiltonian

. S B? 0%\ -
H= v —— ¥
dz (z,t)( 2maz2) @+

1 . . .
+ E/dzdz/\v'(z,t)\yT(z/,t)U(z—z/)w(z/,r)wz,t). (1.23)

Here, we have omitted the chemical potential and the zero-point fluctuations of
the two radial directions. The fact that the 1D nature of the gas is achieved by
strongly confining it in two directions of the three-dimensional space is reflected in
the scattering properties of the atoms. These are still 3D for the parameters reached
in our experiments with 1D Bose gases. For temperatures below the degeneracy
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temperature T and sufficiently high density, a mean-field description is applicable to
model these properties. In this case, the 1D dynamics can be described by integrating
out the two strongly confining directions, leading to an effective scattering potential
U(z — 7)) = g6(z — 7). Here,

2ha,
T (1.24)

1 — Cay /"5

is the 1D interaction parameter, with C a constant of order unity and w the trapping
frequency of the transversal confinement [128, 129]. For our typical parameters
as <K ano, 1 , such that Eq. 1.24 can be approximated by

g = 2ha,w,. (1.25)

The homogeneous 1D Bose gas with such delta function interactions is one of the
prime models of mathematical and statistical physics. An exact solution based on
the Bethe Ansatz [130] was found by Girardeau, Lieb and Liniger [77, 131, 132].
Moreover, Yang and Yang used this solution to predict the properties of the 1D Bose
gas at finite temperature [78, 79]. This is an important point in the context of this
thesis, because the exact solution leads to a large number of conserved quantities.
In analogy to classical systems, the existence of these conserved quantities means
that the system is integrable and that thermalization is strongly inhibited in 1D Bose
gases [34, 133]. However, this point is very delicate, as integrability is a concept that
is only well-defined for classical systems. No generally accepted definition exists
in the quantum case [134-136]. We will discuss the important consequences for the
non-equilibrium dynamics of these systems in Chap. 3.

In the exact solutions [77, 78, 132], the strength of the interactions is parametrized
by the Lieb-Liniger parameter v which is defined as

79 1.26

7= s (1.26)

The 1D Bose gas thus becomes more strongly interacting for lower density. For

v >> 1 the system is in the strongly correlated Tonks-Girardeau regime, for v < 1
it is in the weakly-interacting regime.

Similarly to the interaction parameter -y, one defines a reduced temperature 7 =

T /Tp to characterize the system at finite temperature. For 7 > 1 the gas behaves

in a manner similar to a classical ideal gas. For 7 < 1 quantum effects become

important. In contrast to the 3D case, different regimes of quantum degeneracy exist

at finite temperature and weak interactions [137]. At high temperatures (7 > ,/7)

both phase and density fluctuations can play an important role, leading to a decoherent

quantum regime. For lower temperatures, the gas is a quasi-condensate characterized

by suppressed density fluctuations. The phase, on the other hand, strongly fluctuates.
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Fig. 1.2 Finite temperature diagram of states for the interacting 1D Bose gas. Several regimes
exist as a function of the Lieb-Liniger parameter ¥ = mg/h*n1p and the rescaled temperature
7 = T/Tp [137]. These regimes are separated by smooth crossovers. The shaded area indicates
the range of parameters covered in the experiments that are presented in this thesis

The corresponding finite-temperature diagram of states is presented in Fig. 1.2.
For the typical parameters of the experiments presented in this thesis, -y is on the order
of 1072 — 1073 and 7 is approximately 10~2. The gas is thus a weakly-interacting
quasi-condensate.

The phase-fluctuating nature of the quasi-condensate plays a central role for the
non-equilibrium experiments presented in this thesis. In equilibrium, the phase cor-
relations are characterized by an exponentially decaying two-point phase correlation
function (see Eq. 1.19)

L (VTR )
C(z,7) = ——— = —z/A ). 1.27
@) == g =ew (<) (1.27)

This function measures the correlations between two arbitrary points z and 7’ in
the gas, with z = z — 7’ their distance and

(s) _ 277,211 1D

= 1.28
r kaT ( )

the thermal coherence length of a single 1D Bose gas.

In experiment, the phase fluctuations of a quasi-condensate can be observed in
two different ways. First, two quasi-condensates can be made to interfere, revealing a
fluctuating relative phase in their interference pattern. This situation will be discussed
in detail in Sect. 1.5. Second, in an expanding single 1D Bose gas, the varying phase
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¢(z) corresponds to a velocity field v = V¢(z) for the atoms. In time-of-flight
expansion the phase fluctuations will thus turn into density fluctuations, similar to
an optical speckle pattern [138, 139]. In this thesis, measurements of the correlation
properties of these density ripples are the standard method to measure the temperature
of the gas. This is made possible by the fact that the interactions between the atoms
can be neglected in the expansion. As a consequence, the correlation properties of
the density ripples can directly be related to the correlation properties of the in situ
phase fluctuations, and thus to the temperature (see Eq. 1.28).

1.4.3 Luttinger Liquid Theory

While the existence of an exact solution gives valuable insights about the 1D Bose gas,
it is not very convenient to make predictions about its dynamics. For a quantitative
analysis it is more practical to use effective models, which capture the complex
many-body problem using its low-energy excitations. While it is well understood
why this is possible in equilibrium, the non-equilibrium case is not obvious, as, in
principle, high-energy eigenstates might be populated in the dynamics. As we will
see later, the experimental results suggest that this low-energy approach also works
very well for dynamical problems.

The origins of such effective models lie in the description of electrons. In 3D
it is well known that many-body interactions of electrons can be reduced to quasi-
particles. This is the principle of Landau’s Fermi liquid approach [140]. Instead of
dealing with the whole many-body interactions in a solid, the problem is recast as a
set of quasi-particles which behave almost like free fermions. Surprisingly, the only
effect of the many-body interactions is to dress these particles, giving them a new,
effective mass.

Intuition tells us that this approach is problematic to describe electrons in 1D,
because particles can only move along one direction: perturbing one of them, will
immediately affect also all the other particles. One thus needs a more collective
description of the dynamics, which is provided by the Luttinger liquid formal-
ism [141-145]. This formalism can be generalized to describe a large class of 1D
systems, both bosonic or fermionic, with a gapless, linear dispersion relation. It
describes the excitations of the system as non-interacting bosonic particles. As the
excitations can be identified with collective low-energy phonons this approach is also
called the harmonic fluid approach.

Beyond cold atoms, experimental evidence for Luttinger liquid behavior was
found in 1D quantum wires formed by GaAs/AlGaAs heterostructures [113, 146]
and SrCuO, compounds [147], self-assembled atomic chains on surfaces [111], 1D
crystals [148], or carbon nanotubes [117, 149] (for a review see Ref. [145]). The
Luttinger liquid thus has high technological relevance as a description for electronic
conductors in the atomic limit.
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In the case of 1D Bose gases, a derivation of the Luttinger description is possible
using the previously introduced Bogoliubov theory [76, 150-152]. To this end one
writes the field operators in a phase-density representation as

¥ = exp(id)V, (1.29)
with 7 and cz; describing density and phase fluctuations in the 1D Bose gas. These

operators are conjugate variables [71(z), czAS(z/ )] = id(z — Z'). With this definition, the
Hamiltonian for a 1D Bose gas can be written as

L/2 2, A
A= / [h 1D (v¢>(z))2 + g (ﬁ(z))z] (1.30)

L2

with £ the length of the system. In general, the properties of a Luttinger liquid are
described by the Luttinger parameter K and the speed of sound ¢, which contain the
specific properties of the system under study. For a 1D Bose gas, the exact solutions
make it possible to obtain the analytic expressions

c= [P kO g MR g1, (1.31)
m mg

which are valid in the limit of v < 1. Inserting this in Eq. 1.30 results in the general
form of the Luttinger liquid Hamiltonian

~  he [E? T .o K® (8~ \*
H = n — . 1.32
> 75/261’2 |:K(S)n (2) + - (az¢(z)) (1.32)

The operators qg(z) and 71(z) describing density and phase fluctuations are coarse-
grained in the sense that they represent the physics in the long-wavelength limit
beyond a cutoff [88]. For 1D bosons the typical cutoff is defined by the inverse of
the healing length &, = h/mc. We develop these operators in plain waves

in 1 ikz ) N 1 ikz
- z , - z i 1.33
?(2) NG k e"“or, n(r) N7 k Nk (1.33)

with k = n x 27w /L (n # 0 integer), and the expansion coefficients

Ay = /””;S" (b (t)—i—ka(t)) (1.34)
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and

~

b = be(t) = BL,). (1.35)

N 4

Here BZ and by, are the creation and annihilation operators for an excitation with
momentum hk. The expansion coefficients fulfill [¢A>,: ] = [¢A>_k, Al = —i.
The structure factor in the phononic regime is given by Sy = hlk|/2mc =
|k|K(‘*)/27rn1D. It is related to the usual Bogoliubov coefficients (uy, vx) via /Sy =
(ug — vr) "L [151, 153]. Here, we neglect the k = 0 mode, as the spatial correlations

in 1D are determined by the modes with k # 0. In the new basis, the Hamiltonian
takes the form

N K® . At
H=— = (Tk ¢k¢k + K(S) I’lknk) = ;m}kbkbk' (136)

In the Luttinger liquid approximation the complex interacting system can thus be
identified with uncoupled harmonic oscillators. Their excitations are sound waves
which travel with the speed of sound ¢ = /gnip/m.

Solving the Heisenberg equations of motion for the phase yields its variance

22

(16 (D) hz”;z <|nk<0)|>sin2<wkt>+<|¢3k<0>|2>cos2<wkt>. (1.37)

The phase correlation function (Eq. 1.27) can be calculated using the approxima-
tion for the field operators in Eq. 1.29. This results in

C(z. 7 1) ~ (9@N=i0E 0y — ,=3(16E@N=6EDF) (1.38)
which is translation invariant and can be rewritten as

C(z,t) =exp |:—/0 % (|$k(t)|2)(l — €oS kZ)] . (1.39)

where 7 =z — 7.
In thermal equilibrium the fluctuations of density and phase are given by [151]

kaT kB nip

(16x(0)[) = (1A% (0)]%) = 7 (1.40)

" niph?k?’
Inserting this into Eq. 1.39 and using the identity foo ‘ff kaz [1—cos(kz)] = %a |zl,
we find exactly the time-independent, exponentially decaying thermal correlation
function Eq.1.27, with the correlation length )\gf). In Chap.4, we will use these
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expressions to describe various non-equilibrium settings, where the initial values
(|6x(0)]?) and (A% (0)|?) deviate from their equilibrium values.

1.4.4 Luttinger Liquid in a Trap

Similar regimes of quantum degeneracy as in the homogeneous case can be found
when the longitudinal confinement of the trap is taken into account [126, 154]. In
particular, the longitudinal density profile in the quasi-condensate regime is well
described by a Thomas-Fermi parabola (Eq.1.15). In contrast to the exact Bethe
Ansatz solutions, the low-energy approximation for the trapped 1D Bose gas is still
integrable. The general procedure for the solution is the same as in the homogeneous
case, as outlined below.

Assuming harmonic trapping in the longitudinal direction the Luttinger Hamil-
tonian (Eq. 1.32) takes the form [154]

A

h A
" / dz[un @) (i) + v () (@:H)]. (1.41)

In the local density approximation, the generalized velocities vy and vy can be
written as

@ _ 9
W=y = (1.42)
mh
vy(2) = c(2)K(z2) = ﬁn(z)- (1.43)

These velocities fulfill the relation vyv; = ¢(z)2, where ¢(z) denotes the local
speed of sound, K (z) is the local Luttinger parameter and n(z) = no[l — (z/ Rtr)?]
is the local density in the longitudinal direction. To diagonalize this Hamiltonian we
expand the phase and density operators as

1/2
A _ TUN ) ~
Pz, 1) = —i ; (2@/ RTF) fi(@bj+Hec., (1.44)
R 2mn(z)%vn \ ? .

where b and b ;j denote operators that create or destroy a bosonic excitation in the
Jjtheigenmode. The eigenmodes f;(z) are proportional to the Legendre polynomials



1.4 Degenerate One-Dimensional Bose Gases 17

P;(z/RtF) [155]. Explicitly, they are given by

1
i)y =4j+ 5 Pj(z/RtF), (1.46)

with Rtp the Thomas-Fermi radius of the cloud. The corresponding eigenenergies

are given by
€ =hwj=hw,/j(j+1)/2, (1.47)

resulting in the Hamiltonian

b;, (1.48)

which again describes a simple set of independent harmonic oscillators.
From these results one obtains the phase variance as

Abo (1) = ([d(z, 1) — ¢, D]

_ oy = [Li@ = @)
_2RTFZ .

(142N)). (1.49)
j=1 J

where N; = (l;jl; i) = lexp(e;/kpT) — 177! is the thermal occupation number for
the excitations, and 1 +2N; ~ 2kpT /hw;. Here, we have neglected the factor of 1,
which corresponds to shot noise and can be accounted for separately, if necessary.
Inserting this into the expression for the phase correlation function, one closely
recovers the exponential decay of Eq. 1.27. Generally, finite size effects only play
a role close to the edge of the cloud. However, one important consequence is that
the coherence length can now become larger than the system size, leading to the
formation of a true BEC with off-diagonal long-range order. The corresponding
characteristic temperature is given by

hw,
Ty =Tp x —. (1.50)
I
For typical parameters (1 ~ 100 fw;) this corresponds to a temperature well
below the ones reached in experiments.
1.4.5 Trapped Quasi-condensates in the 1D/3D Crossover

In some of the experiments performed in this thesis the system is not strictly 1D
but the temperature or the chemical potential are comparable to the transverse level
spacing. In both cases, the 1D criterion introduced in Eq. 1.20 is not strictly fulfilled



18 1 Introduction to One-Dimensional Bose Gases

anymore and the transverse excited states can be populated. The gas is in a crossover
regime between 1D and 3D physics.

This problem has been theoretically studied in a mean-field treatment in Refs.
[156-158]. It was found that the chemical potential relative to the ground state of the
trap can be approximated by

= hw) (,/1+4asn— 1). (1.51)

Using the local density approximation, the density profile is given by [159]

@ 22 7
n(z) = T6a, (1 — F) |:oz (1 - ﬁ) +4i| , (1.52)

where the radius of the gas is R = aﬁ 0.2/ ho, 14/, with o determined from the

equation a3(a+5)? = (15N asQho, | /afw 2)2. For our usual parameters this density
profile is very close to the normal Thomas-Fermi parabola. A comparison between
the two is presented in Fig. 1.3.

The thermal equilibrium situation of a Bose gas in the 1D/3D crossover has
recently been studied experimentally with the conclusion that 1D effects persist far
into the crossover [160]. We will see in Sect. 4.5 that the same is also true away from
equilibrium.

1.4.6 Description by a Stochastic Process

To compare the experiment with theory it is often necessary to simulate single real-
izations of the experiment and to take into account technical aspects, such as the
expansion of the gases or the limited resolution of the imaging system. Also, as the
number of times the experiment can be repeated is limited, it is desirable to be able to
predict how this finite statistics affects the results. To this end, a powerful simulation
technique was developed that models the in situ fluctuations of a quasi-condensate
using a stochastic process [159, 161, 162]. For a single gas this stochastic process is a
simple diffusion process. Thanks to an exact updating formula [163] this approach is
numerically very efficient. It can also take the trap into account using the local density
approximation. After the simulation of the in situ gas, a numerical time-propagation
of the wave function allows the modeling of the time-of-flight expansion and the
imaging process [105, 159, 164]. In the following, we present the basic concepts of
the modeling [159]. Alternative possibilities to simulate single realizations in equi-
librium are the stochastic sampling of excitations [153, 165], stochastic versions of
the Gross-Pitaevskii equation [166] or Metropolis sampling algorithms [167].
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Fig. 1.3 The trapped 1D Bose gas. a A trapped Bose gas behaves one-dimensional, if kg7, 1 <
hw) . Consequently, all atoms are radially in the ground state of the trapping potential. Longitudi-
nally, many modes are occupied. b Longitudinal density profile, calculated in the Thomas-Fermi
approximation (dashed line) and using Eq. 1.52 (solid line) for N = 5000, w; = 27 x 2kHz and
w; = 2m x 10 Hz. The results of the two calculations closely resemble each other. For lower atom
numbers they become identical

As the statistical properties of the phase fluctuations in a quasi-condensate are
Gaussian, the spatial variation of the phase can be described by a Gaussian diffusion
process

d
d—qb(z) = f(2). (1.53)
Z

The basic idea is to model the stochastic force f (z) in such a way that it reproduces
the correct exponentially decaying correlation properties of Eq. 1.27. To this end we
define f(z) such that it fulfills (f(z)f(z/)> =20(z — z’)/)\g‘f) and (f(z)) = 0. Given
the phase at a certain position z in the gas, the phase at another position z’ can then
be found using the exact updating formula [163]

o) = d(2) + /% x N (1.54)
T
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where N is a random number drawn from a Gaussian distribution with zero mean
and unit standard deviation. Using this updating formula, it is possible to simulate
a single phase profile on a discrete grid, by randomly choosing a starting phase at
one end of the cloud and generating the rest of the phase profile pixel by pixel. To
take the trapping potential into account, the thermal phase correlation length can be
changed in each step, following a local density approximation approach. Finally, all
correlation properties can be calculated by averaging over many realizations of the
stochastic process.

1.5 Bose Gases in a Double-Well Potential

Interference is one of the hallmark features all wave theories. From the first experi-
ments demonstrating the wave-like nature of light [168, 169] to the ground-breaking
achievements of matter-wave interferometry with electrons [170], neutrons [171],
atoms [172] and even large molecules [173], interference has led to new insights
into the laws of nature and served as a sensitive tool for metrology. In the context of
Bose-Einstein condensates, interference was demonstrated in one of the first exper-
iments, providing a striking demonstration of the macroscopic phase coherence of
the wave function [174].

In this thesis we use the interference of two 1D Bose gases to learn about their
dynamics. Each gas is trapped in one well of a double-well potential. A first simple
picture is obtained by describing the two Bose gases as spatially separate wave
packets.

The situation is depicted in Fig. 1.4a. After a time of free expansion 7 that is large
enough to neglect the initial size and the initial separation d of the wave packets,
their wave functions can be written as [97, 175]

2
1,2

PED (1) ~exp (i Q15 (r £4d/2)) exp(—%g—mt)expawzb, (1.55)

where ¢(:2) denotes the initial phases of the two wave packets and Q 12 =m(r £
d/2)/ht the momenta of atoms that are released from one of the condensates and
detected at a point r. The resulting interference signal is given by

= ‘1/}(1) +¢(2)‘2 = ‘w(l)(r, t)‘2 + ‘¢(2)(r’ t)‘z

+2Re [w(l)(r, NP*(r, r)] . (1.56)
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Fig. 1.4 Matter-wave interference. a Double-slit experiment with two atomic wave packets in
a double well. After releasing the wave packets from the trap, they expand, overlap and form an
interference pattern. The fringe spacing of this interference pattern is related to the initial separation
of the two wave packets via A\p = ht/md, where t is the expansion time and m is the mass of the
atoms. The position of the interference fringes with respect to the center of the interference pattern
(dashed line) is set by the relative phase 8 = ¢(1) — @ of the two wave packets. b The interference
of two phase-fluctuating 1D Bose gases can be understood in exactly the same terms. The two gases
expand and form a locally displaced interference pattern. The local position of the interference
fringes at every point z is determined by the local relative phase 6(z) at this point. The interference
pattern thus directly reflects the in situ distribution of the relative phase between the interfering 1D
Bose gases. In both pictures, g denotes the direction of gravity

It is thus proportional to the oscillating function
md
S~cos|— 0], 1.57
(% +0) (1.57)

with the relative phase # = ¢) — ¢, This function exhibits periodic maxima
separated by a distance

Ar =ht/md =1/10; — Q,l. (1.58)

In the following, these maxima will be referred to as the interference fringes.
Their position relative to the center of the cloud is defined by the relative phase
0. This is directly analogous to Young’s double-slit experiment with light [168,
169]. By measuring the position of the interference fringes it is thus possible to
infer the relative phase between the original wave packets. Note however, that phase
coherence between the two gases is not a necessary requirement for the observation
of high-contrast interference in a single-shot measurement. Interference can also
appear for completely independent sources, where a relative phase is spontaneously
and randomly fixed during the measurement [97, 176, 177]. Averaging over many
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such independent-source measurements therefore washes out the interference [73].
however, the fluctuations of the phase contain important information about the sys-
tem, as we shall see below.

1.5.1 Matter-Wave Interference of One-Dimensional
Bose Gases

Similar to the simple interference of the two Gaussian wave packets, 1D Bose gases
in a double well can be studied using matter-wave interferometry. This approach
has previously been used to characterize their equilibrium states [162, 178]. In the
following, we review typical techniques and observables in equilibrium and then
extend the approach to non-equilibrium states.

The situation we want to study are pairs of 1D Bose gases in a double well. In
this case, each gas can be described by an individual Luttinger Hamiltonian

A=8Y4+ 7 (1.59)
. L/2 hzn(l) R ) )

M — “"ip M) 9 (5D
o _/;ﬂﬁ[2m Wm@ )+2@@)) (1.60)
R L/2 h2n(2) n 2 2

@ _ “ b @) N PYANG))
A _/_L/Zdz|: - (v¢>(z) ) +2(n(z) ) .6l

where the superscript labels the gases. Usually, this situation is studied using sym-
metric and anti-symmetric superpositions of the individual fluctuations, i.e.

v(2) =AY @) —a?@)1/2, (1.62)
7P ) =1V @) + 1P @)1/2, (1.63)

for the density fluctuations and

0z) =16V (2) — 6P (21, (1.64)
01 (2) = 16V (2) + 0P (2)1, (1.65)

for the phase fluctuations. In the most general case this leads to

H=H +HD + Hpi. (1.66)
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with
Z (Ra0 @) 2 g
/ %(vo(z)) +§(V(z)) (1.67)
L/2 hz(”ﬂ)) + ”%) A(+) 5
0= [0 TR () S (@) | e
R L/2 20,0 _ @) R ~
Hiix =/ dz M (V9(+)(Z)V9(Z)):|. (1.69)
—L/2 L 4m

There are thus two cases to study. If the mean densities nﬁ)’z) of the two gases

are different Hipix # 0, leading to mixing between symmetric and anti-symmetric
degrees of freedom. This case is studied in Chap. 7. If the mean densities of the two
gases are identical Humix = 0, and symmetric and anti-symmetric degrees of freedom
decouple. This case will be discussed in the following.

If H-) and H® decouple, they can be diagonalized independently, using the
same procedure as in the case of a single gas in Sect. 1.4.3. Expanding 0 (z) and D(z)
into plain waves we obtain

=30 o= n’ (1.70)
= k—, ) = K ——, .
- VL VL

5 bi—bLy ”IDSk At
b= ik = e +b" ), (1.71)
V2n1pSk .

where 13;2 and by, are again creation and annihilation operators for an elementary
excitation with the momentum 7k. Note that the Luttinger parameter for the relative
degrees of freedom is defined as

h
K =% /"D (1.72)
2V mg

For the corresponding Hamiltonian one finds

hre
il >—th|k|bTbk+ ﬁf o (1.73)
k0
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Here we have included the contribution of the £ = 0 mode, as it can be identified
with the phase diffusion discussed in the coherence properties of 3D BECs in double
wells [73, 179-181]. The resulting phase variance is given by

2.2

A dm=c R . N
(10 ()% = mumonz) sin?(wet) + (10 (0)[%) cos® (wit). (1.74)

For the trapped gas we find
A0y = (16,0 — 0, 0P

N2
= ﬂzsinz(wj;)M(HzNj). (1.75)

2RTE 4 wj

j=1

In a typical experimental sequence the gases are released from the trap and allowed
to expand freely under gravity. After a certain time of flight they will form an inter-
ference pattern, just as the wave packets in the simple example. However, now the
gases are extended in the z-direction and the relative phase 6(z) fluctuates along their
length. For every point in the interference pattern the local position of the fringes
is thus different, as determined by 6(z). In a simple picture, every point along the
length of the gas acts like an independent interference experiment. In every individ-
ual experiment, the position of the fringes is determined by the local relative phase of
the matter waves emitted from the two wells. Stacking all these experiments together
results in the observed interference pattern, as shown in Fig. 1.4b. This simple view
neglects the effects of the expansion, but remains accurate for typical experimental
parameters.

More formally, in analogy with the simple interference experiment discussed
above, we can write the interference signal of two 1D Bose gases as

(80 + q,m)* (80 + &)
= (WOP) + (9PP) + $ DTGP 4 §OTGO, (1.76)

Here, W(r,z) = \iﬂl)(Z)ein(r+d/2)—iQ?t/2hm + 9@ (Z)ein(r—d/z)—iggz/zhm
denotes the field operator after expansion [182]. Again, the cross terms are respon-

sible for the interference. To formally describe the interference pattern we introduce
the operator [175, 182]

R L2 R
A(L) =/ dz VDT, 0Pz, 1), (1.77)
—L)2

where L denotes a length scale over which the interference pattern is integrated
in the z-direction. The complex phase of this operator can be identified with the



1.5 Bose Gases in a Double-Well Potential 25

integrated phase 6(L) of the interference pattern, its magnitude |A| is connected to
the contrast. For independent gases the expectation value of this operator vanishes,
as the total phase is different in each individual realization. However, one can still
observe high-contrast interference in these individual realizations. Consequently, the
variance

. L/2 pLJ2
(1AL / / dzd? \110) YD ()P DT(HYPP (7 )> (1.78)
L/2J—-L)2

is finite.

The operator (|A(L) 12) is directly related to the mean squared contrast observed
in experiment via (CZ(L)) = (|A(L) |2)/n%DL2, where nip = (|W;(z)|?) is the mean
density in the two gases.

The argument of the integral in Eq.1.78 can be identified with the two-point
correlation function of the relative phase

(FOT ()W D () B DT () I (7))
(WD) (w®()?)

Ciz,7) = (1.79)

The mean squared contrast is thus the double integral over the two-point correla-
tion function. Neglecting the typically weak density fluctuations by using W12 =
YD exp(oh?), the phase correlation function can be rewritten as

Cz.7) = (ei?)(z)—i@’(Z’))’ (1.80)

with é(z) = qg(l)(z) — &(2) (z) denoting the local relative phase. In experiment, the
relative phase profile is directly inferred from the interference pattern. Therefore,
Eq. 1.80 can be used to calculate the experimental phase correlation function. To
calculate the corresponding theoretical correlation function, we make use of the fact
that the fluctuations of é(z) are Gaussian, leading to [159]

- 31—}

Ciz,?)=e (1.81)

The argument of the exponential function is the phase variance Aéfz, = [é(z) -

é(z/)]z). This enables the calculation of the phase correlation function using the
results obtained in Egs. 1.74 and 1.75.

Further information about the system beyond the two-point correlation func-
tion can be obtained from the shot-to-shot fluctuations of the contrast. Such noise
measurements have a long and rich history in the characterization of quantum sys-
tems [63]. Examples range from the Hanbury Brown-Twiss effect in light [183, 184]
and matter-waves [185, 186] to the study of current fluctuations in quantum-Hall
systems [187] and the coherence properties of atomic systems [188—190].
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The shot-to-shot fluctuations of the contrast can be characterized by the moments
of the full distribution function (FDF) P («) of fringe contrast [178, 191]

(LA™
(|A2)m

= (") = /Oo P(a)ada, (1.82)
0

where P (o)d o measures the probability to observe a contrast in the interval between
a and o 4 da. The normalized moments on the left hand side are each connected
to a correlation function (|A|2’") of order 2m, which is the reason why the FDF,
in general, contains more information about the many-body state than the mean
contrast. To calculate the full distribution function one has to calculate all moments,
or equivalently, all even correlation functions. For the equilibrium situation powerful
insights were obtained by mapping this problem onto a quantum impurity problem
and to a generalized Coulomb gas model [192]. Experimentally, the FDFs have
successfully been used before to study 1D gases in thermal equilibrium [178], as
well as the dynamics of an unstable quantum pendulum [193].

1.5.2 Equilibrium States

For the anti-symmetric degrees of freedom of a balanced pair of 1D gases in thermal
equilibrium the initial conditions are given by [151, 153]

. kgT 2mkgT

{16k (0)]?) = = (1.83)
nip 722:12 nthsz
kT n

(10OF) = 25 =2, (1.84)

where n1p denotes the mean density in each of the gases. Inserting these expressions
into Eq. 1.74 results in the correlation function

C(z,2) = exp(—z — Z'| /A7), (1.85)

where Ay = h?np /mkpT is the thermal correlation length. Note the missing factor
of two in the definition, compared to the thermal coherence length )\g‘f) of a single gas
(Eq. 1.39). This factor arises because we now deal with a two-body density matrix,
instead of the one-body density matrix for a single gas.

In the trapped case

(1.86)

C(z,7) =exp Z [f/(z) fiz )] 2kgT

thTF wj hwj
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Fig. 1.5 Relative two-point phase correlation functions in equilibrium. Parameters are 4000 atoms
per well, T = 100nK (red), T = 30nK (blue) and T = 5nK (green). Dashed lines represent
the full trapped theory (Eq. 1.86), points the result of an Ornstein-Uhlenbeck simulation averaging
over 200 realizations. The solid lines correspond to the homogeneous theory (Eq.1.85) with a
density corresponding to the peak density of the trapped simulation. Finite size effects are generally
small and only play a significant role at very low temperature or close to the edge of the cloud
(RTF ~ 50 p1m)

A comparison of different results is shown in Fig. 1.5, revealing that trap effects
are usually weak and only play a role close to the edge of the system.

The result for the equilibrium correlation function (Eq.1.85) also allows the
derivation of the mean contrast as a function of integration length, which yields

1 L/2
w%msﬁ// dz1dzC(z1, 22)
—L)2

a[E- () (e (5] o

Here, R = ¢ /4K ~ 1 is a reduction of the interference contrast due to the
contributions of high-energy excitations [88].

In a more general case, we can also allow for tunnel coupling between the two
gases. This leads to a large variety of effects and has strong analogies with the
quantum Sine-Gordon model (see Outlook). For the phase correlation function one
finds [153]

ly e
N — _ _ lz=2"1/1y
Cs(z,7) —exp[ pw (1 e ):| (1.88)
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where Ar is again the thermal coherence length. It characterizes the thermal fluctu-
ations which lead to a randomization of the phase along the longitudinal direction
of the system. The new length scale [; = /h/4mJ is related to the tunnel coupling
J , which counteracts the randomization of the relative phase [153, 162]. In the limit
of vanishing tunnel coupling /; — oo, and the exponential decay of Eq.1.85 is
recovered.

As in the previous chapter the system can also be described using a stochastic
process. If we include coupling, the stochastic force is not sufficient anymore to
describe the fluctuations and an additional friction force is needed. In the case of the
relative phase, the simple stochastic diffusion process thus has to be replaced by a
full Ornstein-Uhlenbeck process, which is defined via

d 1
d—9(z) = f(2) — —0(2). (1.89)
Z l]

Here, we have assumed a vanishing mean of the phase (#(z)) = 0. The correct
correlation properties of the stochastic force f(z) are given by ( f@f (z’)) = %
0(z—z')and { f (z)) = 0. The differential equation Eq. 1.89 has a simple interpretation
in terms of the two stochastic forces. While temperature randomizes the phase profile
as characterized by Ar, the coupling acts as a restoring force characterized by /;.
The corresponding updating formula is given by

Mﬂ)zﬁe&)+J§LU—wﬁ)xN: (1.90)
T

with [ = exp(— |z -7 | /17). For the numerical simulation of the experiment it is,
however, necessary to simulate not only the relative phase, but also the two individual
phase profiles. It can be shown that these single phase fields cannot be simulated
using the updating formula given by Eq. 1.90 if the gases are coupled. However, the
common phase 67 (z) = ¢ (z) + P (z) can be simulated using the updating

formula
2z — 7/
mwa:mewi%ﬂxM (1.91)
T

As the phase profiles of the individual gases are given by

0 (2) £ 0(2)

612 (0) = —=

(1.92)
they can be obtained from the combination of two stochastic processes, one for the
relative phase and one for the common phase. The remaining treatment of expansion
and imaging follows in exactly the same way as for a single gas. Repeating the
procedure described by Eq. 1.91 many times allows the reproduction of all correlation
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Fig. 1.6 Simulation of realistic interference between two 1D Bose gases. The images reveal the
effect of time-of-flight expansion and limited imaging resolution on phase and density profiles. a
The phase fluctuates both in situ and in time-of-flight. For very long times of flight, fluctuations
get washed out. Consequently, we limit the time of flight to approximately 15 ms in experiment.
Similarly, the limited resolution of the imaging system strongly reduces the amount of visible
fluctuations and thus has to be taken into account. In the theoretical analysis this is accomplished
by convolving the phase profile with the point spread function of the imaging system. b The in situ
density profile is smooth, as fluctuations are strongly suppressed in the quasi-condensate regime.
However, the phase gradient leads to a velocity field for the atoms, resulting in increasing density
fluctuations in time-of-flight. This effect can be observed both for a single gas or for two gases and
can be used for thermometry. Similar to the phase profile, the density fluctuations are reduced due
to the limited imaging resolution. Figure adapted from [63]

properties of the system, including the two-point correlation function (see Fig. 1.5)
or the FDFs.

Typical results are presented in Fig. 1.6. One observes that the longitudinal relative
phase after time-of-flight closely reflects the in situ relative phase. The reason for this
is the typically low trapping frequency in the longitudinal direction, which results
in a negligible expansion in this direction. The strongest effect of the expansion is
a loss in effective resolution with increasing time of flight. In the experiments we
therefore image the gases after relatively short times of flight of ~ 15 ms.
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In equilibrium, the resulting density profile after time-of-flight expansion is the
incoherent sum of the two gases. As in the case of a single gas, this density profile
shows pronounced density ripples as a result of the in situ phase fluctuations, enabling
thermometry of a pair of gases in equilibrium [162].
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Chapter 2
Experimental Realization
of One-Dimensional Bose Gases

In this chapter we review the basic concepts necessary for the realization of a degener-
ate 1D Bose gas, as well as the actual experimental implementation of these concepts.

2.1 Magnetic Trapping of Ultracold Atoms

In order to achieve a 1D system of ultracold atoms, it is necessary to confine atoms
very strongly in two directions. To date, two well-established techniques exist to
realize such a strong confinement: optical lattices [1-3] and micro-traps [4, 5]. As
discussed in the previous chapter, we aim to study single realizations of 1D Bose gases
to have direct access to their intrinsic fluctuations. While optical lattices typically
allow the realization of many slightly different copies in parallel, micro-traps are
ideally suited to prepare and manipulate single realizations. In the following, we
theoretically introduce the basic working principles of magnetic micro-traps that are
realized using an atom chip. We then present the experimental apparatus to realize
1D Bose gases.

2.1.1 Magnetic Trapping

An atom with angular momentum F exhibits a magnetic moment pp = —grupF,
where gF is the Landé g-Factor, p p is the Bohr magneton. If a weak magnetic field B
is present, the Zeeman effect causes a linear shift of the atomic energy levels, which
is given by

V(r)=—p-B(r)=mprgrppgB(r). 2.1)
If the magnitude B = | B| of the field varies slowly enough such that d B/dt <

wr, B is fulfilled, the atoms will adiabatically follow the shift of the Zeeman levels.
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Here, w; = mpgrupB/h is the Larmor frequency of the atoms. Depending on the
value of the magnetic quantum number m ¢ and the g-factor gr of the atomic state,
this will either lead to an attraction of the atom towards regions of lower magnetic
field or to an attraction towards regions of higher magnetic field. Correspondingly,
atomic states where grmp > 0, are called low-field seeking states and states where
grmp < 0 are called high-field seeking states. As Maxwell’s equations forbid local
maxima for static magnetic fields, only low-field seeking states can be trapped in a
purely magnetic trap [6].

The most basic form of a magnetic trapping potential can be created by using a
3D quadrupole field. In the center of the quadrupole configuration the magnetic field
vanishes, forming a trap for atoms in low-field seeking states. This field configuration
can, for example, be realized using a pair of coils in anti-Helmholtz configuration.
While this method is very efficient for the trapping of hot atoms, problems arise when
the atoms are cooled down. The reason for this is that when the atoms get colder, the
probability to find them at the position of zero magnetic field in the center of the trap
increases drastically [7]. If the magnetic field vanishes, the adiabatic approximation
introduced above is not valid anymore, the spin of the atoms can flip and they end up
in an untrapped state. These so-called Majorana losses make it impossible to obtain
a Bose-Einstein condensate of alkali atoms in a pure quadrupole trap [8].

The magnetic field zero in the center of the trap can be removed by adding an addi-
tional homogeneous bias field. The most common implementation of this enhanced
trap is the loffe trap, where the quadrupole is created by four bars and the homoge-
neous offset field is created by two coils perpendicular to these bars. This realizes a
trap with approximately harmonic confinement in all three spatial directions [6, 9].

2.1.2 Atom Chips

In typical experiments, macroscopic conductors are employed to create the fields that
are used to trap the atoms. This has the disadvantage that the atoms usually have to
be trapped far from these structures. As the magnetic field of a conductor decreases
with distance, high currents are needed to create sizable field strengths. This makes
experimental setups complex and difficult to handle. An alternative approach are
magnetic micro-traps, where the atoms are intentionally trapped close to microscopic,
current carrying structures. Micro-fabrication allows the routine creation of such
structures on substrates, reaching nanometer sizes. In analogy to computer chips
these devices are called atom chips. The scale reduction that is achieved by trapping
the atoms close to the surface of such chips, facilitates the creation of very tight
and robust traps with moderate currents. This enables the realization of compact and
flexible setups, which allow for a large range of complex trap geometries [10-14],
with applications ranging from atom interferometry [15, 16] and the study of gases
in reduced dimensions [5, 17, 18] to quantum information processing [19-21].
The most simple of such traps, the so-called wire guide, can be formed by using a
single wire and a perpendicular bias field. This situation is depicted in Fig.2.1a. The
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Fig. 2.1 Different geometries to trap atoms using wires. The trapping volume is indicated in
blue. a A wire guide, formed using a single straight wire and a perpendicular magnetic field. This
results in a 2D quadrupole potential above the wire, as detailed in Fig.2.2. b A U-trap, realizing
a 3D quadrupole potential above the central segment of the wire. ¢ The Z-trap combines the 2D
quadrupole confinement of the wire guide with longitudinal confinement that is created using the
bend segments of the wire. d Independently tunable longitudinal confinement can be realized by
adding more wires

wire bias—field combined field

3

,,,,,

y—direction (pm)
(Mw) repuejod

5

0 0 ] .0
x—direction (um) x—direction (um) x—direction (um)

Fig. 2.2 Magnetic field of a wire guide. A current flowing through a wire (in z-direction) creates
a circular magnetic field around the wire. A homogeneous bias field is added perpendicular to the
wire. At a distance rp from the wire, the two fields cancel, creating a zero in the magnetic field
which can be used to trap atoms in low-field seeking states. Figure adapted from [22]

corresponding field configuration is shown in Fig.2.2. The bias field Bgi,s = Boéx
in x-direction exactly cancels the circular magnetic field B = gl /(27r)é, of the
wire at a distance

_ o I 2.2)

ro =
0 271 Bo

from the wire. The superposition of these fields forms a two-dimensional quadrupole
field around the point of vanishing magnetic field. Here, I is the current flowing
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through the wire and ji9 = 47 x 107 Vs/(Am) denotes the vacuum permeability. é,
and é, denote unit vectors in the radial and x-direction, respectively.

The quadrupole field results in a force that confines the atoms in the plane perpen-
dicular to the wire. To confine the atoms also in the third direction the trapping wire
can be bend in a U-shape (Fig. 2.1b). This approximately realizes a three-dimensional
quadrupole potential located above the central wire segment, which can be further
optimized by flattening this part of the wire [23]. This trap configuration, in com-
bination with appropriate laser light, is well-suited to create a magneto-optical trap
close to the wires [14].

Bending the wire in a Z-shape closes the trap also in the direction along the wire
(Fig.2.1c). This realizes a trapping potential which is equivalent to that of a Ioffe-
Pritchard trap [9]. An additional homogeneous bias field B, in the z-direction allows
the tuning of the field minimum to avoid Majorana losses. In the center, this trap can
be very well approximated by an harmonic confinement in all three spatial directions.

More flexible trap shapes can be created by combining the single wire waveguide
with additional wires. Adding wires perpendicular to the main trapping wire, as
depicted in Fig.2.1d, leads to a trap that is similar to the Z-trap. It has the advantage
that the longitudinal confinement can be tuned with very little influence on the radial
confinement. An equivalent configuration that avoids the necessity of wires to cross,
is realized by sets of U-shaped wires next to the main trapping wire.

Our experiment includes a variety of wire arrangements to realize these differ-
ent trapping configurations. In the experimental setup both macroscopic wire struc-
tures and micro-fabricated wires on an atom chip are employed. The setup will be
presented in detail in Sect.2.3. Note that in the simple examples discussed in this
section, we have assumed infinitely thin wires. However, for the experiments pre-
sented in this thesis, a precise knowledge of the trapping potential created by realistic,
extended wires is necessary. This situation and its detailed simulation are discussed in
Appendix A.

2.2 Theory of Radio-Frequency Dressed-State Potentials

One particular advantage of atom chips is that they enable the creation of trapping
potentials that go beyond what is possible with simple static magnetic fields. For
example, a wide range of potentials can be created using near-field radio-frequency
(RF) fields [24—-26]. These potentials are based on the dressed-state formalism which
is well known from cavity QED, where it describes the interaction of atoms with a
light-field. Analyzing the interaction of the atoms with the RF radiation in a similar
way, one finds new dressed eigenstates, which are superpositions of the original
Zeeman levels [27-29]. If the RF radiation is turned on adiabatically, the atoms
follow these new eigenstates of the system. As the dressed level structure is widely
tunable via the properties of the radiation, this leads to a great flexibility in the design
of the trapping geometry.
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2.2.1 A Double-Well Potential for Ultracold Atoms

To calculate the effect of the RF dressing, we start with the semi-classical Hamiltonian
of an atom in a time-dependent magnetic field

2
H=2 4 grsF Br.o). 2.3)
2m

The magnetic field B(r, t) can be separated into a part B s(r) which realizes the
static trap for the atoms, and additional, rapidly oscillating terms BRrg(r, )

B(r,1) = Bs(r) + Bre(r, 1)
= Bs(r) + D Bre.a(r) cos(wrrt — 6), 24)

n

with §, denoting the phase offsets between the oscillating fields. Note that we assume
the same frequency wgrp for all RF fields. To diagonalize this Hamiltonian, one
transfers the problem into a local coordinate system where the static field Bg(r)
defines the quantization direction at every point r. Subsequently, one applies the
rotating-wave approximation (RWA) [26, 30], resulting in the Hamiltonian

2

HRWA final = ;)—m + gr BT - Begr (1) (2.5)
p’ p’

= —— + grupBesr (0) | F; = —— + Vaa (). (2.6)
2m 2m

Equation2.6 describes the motion of a particle in an effective magnetic field
given by

T
Beir(r) = (12520, 0, By — o) 2.7)

Here, Brr, 1 (r, t) is the component of the RF fields that is perpendicular to the
static field. This field is not a real magnetic field and thus does not have to fulfill
Maxwell’s equations. For this reason, it enables the creation of trapping potentials
that are not possible using static fields alone. In general, the effective field is the
sum of the single RF fields projected onto some direction in the xy-plane. For the
nth field, this direction is defined by the angle v, = —grd,/|gr|. This dependence
of the effective field on the sign of the g-factor makes the potentials state- and also
species-selective [26].
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The resulting adiabatic potential in Eq.2.6 is given by

Vaa(r) = mpgrppy Ar)? + Q(r, §)?

B hw 2 B 2
= mFgFuB/ (|Bs<r>| - i) + ( R“) : (2.8)
welgr| 2

with m r being defined along the local magnetic field component Befr,,. The new
atomic states m g are superpositions of the bare m g states. If the RF radiation is
switched on slowly, the atoms adiabatically follow the new dressed states, such that
atoms in a state with quantum number m r are transferred into the corresponding
state with the quantum number m r.

The detuning A(r) in Eq.2.8 is the difference between the absolute value of the
local static field and the RF frequency. The Rabi-frequency or coupling strength
2 (r) defines the local coupling between the different m f levels. If A vanishes, it is
responsible for a level repulsion and thus an avoided crossing of the levels. In this
situation it acts also as an effective loffe field preventing Majorana losses. The fact
that the coupling term defines the minima of the potential is an essential feature of
the RF potentials, because by shaping its spatial dependence many different trapping
geometries can be realized.

With Eq. 2.8, the calculation of the RF potentials reduces to the calculation of
the perpendicular part Brr, of the RF fields. Details of this calculation in various
trapping geometries can be found in Refs. [24, 26, 29-31]. For example, using a
single linear polarized RF field, as it can be realized using the near-field radiation
of a single wire, two terms contribute to the adiabatic potential. Neglecting longitu-
dinal confinement and assuming a static quadrupole field in the radial direction, the
contribution from the detuning vanishes along the ring where the dressing frequency
exactly corresponds to the (radially symmetric) absolute value of the static field.
Along this minimum, the only contribution to the effective potential is the coupling
term 2 ~ BRrpi. As |Brri| ~ |Bs x BRrr|, the coupling term becomes minimal
when Brr and Bg are parallel or anti-parallel. The result is a double well, where
the potential minima are located opposite to each other on the ring. This situation is
depicted in Fig.2.3.

For the case of negative detuning A there will always be a double well. For the
case of positive detuning, which is the one usually encountered in our experiments,
there will be a splitting once a critical field amplitude B, = 2/B; A is reached, with
B the Ioffe field of the static trap. The reason behind this are the different gradients
of the detuning and the coupling term. This is the second way to make the potentials
state- and species-selective. For example, the RF transitions in “°K and 8’Rb have
different frequencies, thus for a given RF frequency they will experience a different
detuning. If the frequency is chosen in the correct way, only one species is split while
the other remains unsplit.

More flexibility can be achieved using two linearly polarized RF fields. To obtain
the resulting total RF field, the two individual fields have to be added vectorially.
For example, with the appropriate phase offset, the sum of the two fields can be
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Fig. 2.3 Creation of a horizontal double-well potential. The static trapping fields form a quadrupole
potential in the xy-plane. Arrows indicate the local direction of the field. The RF field is linearly
polarized along the y-direction. As shown in the inset, this polarization can, for example, be achieved
by combining the RF fields of two wires with a 7 phase shift. The resulting dressed-state potential
exhibits two minima at the positions where the static and the RF field are parallel. Rotating the
linear polarization of the RF field leads to a rotation of the double well

made linearly polarized in the horizontal or in the vertical direction, which changes
the orientation of the double well accordingly. In our setup with two RF wires, we
employ currents with a phase shift of = 7 to realize the vertical polarization that
forms a horizontal double well. Rotating the double well in arbitrary directions is
possible by using different amplitudes for the two RF fields.

Further trapping geometries can be realized using circular or elliptical polariza-
tions. For example, circular polarization (§ = 7/2) leads to a ring shaped trap,
where the atoms explore a 2D surface with periodic boundary condition. Elliptical
polarization, on the other hand is well-suited to create state- and species-dependent
potentials [31].

2.2.2 Beyond the Rotating-Wave Approximation

For 87Rb in the F = 2 state, the dressing within the RWA turns five bare m  states
into five dressed mF states. However, in a diagonalization of the full Hamiltonian
(Eq.2.3), many more of these manifolds, each containing five 7y states appear (see
Appendix A and Refs. [29, 32, 33]). A quantum mechanical analysis reveals that
every manifold can be associated with a fixed, but large number of photons in the
RF field. Adjacent manifolds are therefore separated by the energy fuwgrr of a single
RF photon. This is in complete analogy to the analysis of dressed states in cavity
QED [27].

The full diagonalization shows that the rotating-wave approximation provides a
good approximation of the dressed-state level structure as long as

QAL w. 2.9
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Fig. 2.4 Typical trapping potentials. Simulated trapping potentials for the static fields as well as
the RF fields in a rotating-wave approximation (RWA) calculation and a beyond RWA calculation.
a The RF dressing shifts the static level up in energy, forming the dressed double well. b Zoom into
the double-well potential, revealing the differences between RWA and beyond RWA calculation.
Parameters of the double well, such as barrier height or the distance between the two wells can
be tuned using the applied RF radiation. Here, the RF current is [rr = 20 mA and the detuning
from the mp =2 — mp = 1 transition is 30 kHz. The static trap is located 100 wm from the chip
surface. For details on the choice of parameters, see Chap.4

Here, w is the atomic transition frequency between the bare m r states. This condition
can be understood from the fact that the dressed m  states in each manifold are
separated by an energy i = ha/ A2 4 Q2, whichremains smaller than the separation
of different manifolds as long as Eq.2.9 is fulfilled. If this is not the case, different
manifolds overlap and it is not possible to analyze them separately anymore.

The atom chip easily enables couplings €2 which are much larger than w, violating
the condition in Eq. 2.9. Moreover, the detuning can locally become on the order of w.
To obtain a precise description of the potentials in these cases therefore requires the
diagonalization of the full Hamiltonian. Exemplary results are presented in Fig. 2.4.


http://dx.doi.org/10.1007/978-3-319-18564-4_4

2.2 Theory of Radio-Frequency Dressed-State Potentials 47

Labeling the m manifolds with the index &, off-resonant contributions from
the overlap of the different manifolds lead to many possible transitions between the
dressed states. These transitions can be summarized by the resonance condition

Wres = AKWRE + Amp @, (2.10)

Here, wrr is the frequency of the RF radiation and /& denotes the energy difference
between the m p states of a single manifold. The selection rules for these transitions
are given by Ax = 0, 1, £2, ... and Amp = 1.

2.3 Experimental Setup and Cooling Sequence

This chapter describes the experimental realization of a 1D quantum gas of bosonic
87Rb atoms on an atom chip.

The setup consists of two vacuum chambers, a design widely used in many cold
atom experiments. In principle, the fast cooling cycles on an atom chip also allow
for single chamber designs. The two chamber setup was chosen to allow also for
multi-species experiments with fermionic “°K or bosonic 3°K . The first chamber is
used as an efficient source for cold atoms, which are then transferred to the second
science chamber where the actual experiments take place. Details of the design are
described in [31, 34, 35]. An overview is depicted in Fig.2.5.

(a) (b)

atom chip

science

ion pump \ chamber  transv. ‘ -. —
bias coils r probs |
diff. | probe
pumping \
ion pump —. /./

source MOT

vertical probe \ atom loading

Fig. 2.5 Experimental setup. a Source-MOT and science chamber with the vacuum system [34].
The two chambers are connected by a differential pumping stage. A resonant push beam is used to
transfer the atoms from a 3D source-MOT in the lower chamber to a mirror-MOT in the science
chamber. The setup is designed such that it allows for good optical access to the science chamber
from all directions. b Close-up of the science chamber with the atom chip mounted upside down in
the center [37]. Large windows enable absorption imaging in all three spatial directions
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In the course of this thesis, the first degenerate Bose gases of 3’Rb were realized
in the new machine. In the following we present a short summary of the typical
experimental procedure. Details can be found in Refs. [22, 36].

2.3.1 Atom Source and Precooling

The experimental cycle starts with a source of cold atoms. The source consists of
a 3D magneto-optical (3DMOT) trap that is created in a stainless steel chamber
with six CF40 and eight CF16 flanges. The chamber houses commercial rubidium
dispensers' which are continuously operated at a current of 7.5 A to achieve a high
Rb background pressure. One CF40 flange is connected to an ion pump,? resulting in
a typical pressure of 10~® mBar. The 3DMOT uses a six-beam configuration, where
the lasers are detuned by 22 Mhz from the F = 2 — F’ = 3 transition of the ¥’Rb D,
line (Apy ~ 780 nm). The laser power of 15 mW per beam is derived from a single
cooling laser,> which also provides most of the other light used in the experiment.
Additional repumping light on the F = 1 — F = 2 transition is derived from a
home-built diode laser system. During the operation of the source-MOT a resonant
pushbeam is used to continuously transfer atoms into the science chamber through
a differential pumping stage.

2.3.2 Science Chamber and Mirror Magneto-optical Trap

The science chamber has a size of 25 x 16 x 9cm and is produced from a sin-
gle block of stainless steel (Fig.2.5b). It is pumped by an ion pump,* resulting
in a typical pressure of 10~1°-10~!! mBar. Additional pumping can be provided
using a titanium sublimation pump. The main feature of the science chamber are
two 100 mm diameter windows which allow for good optical access in what later
will be the transversal direction of the 1D gases. Further view ports on all other
sides of the chamber allow for additional optical access in all other directions. The
chamber is surrounded by large bias coils in all three spatial directions. The micro-
fabricated atom chip is mounted upside down in the center of the chamber. Sev-
eral macroscopic copper structures are located behind the actual atom chip and are
used for additional trapping and cooling. The first of these is a U-shaped structure
which, together with an external magnetic bias field, creates a quadrupole field that
is centered less than 1 cm away from the chip surface. This quadrupole field and
four laser beams are used to create a second MOT. To this end, two of the laser

ISEAS Geter, Inc.

2Varian 201/s Star-Cell.

3Coherent MBR 110 Ti:Sa laser, pumped by a Coherent Verdi V18, output 1.2 W @ 780 nm.
#Varian 150 /s Star-Cell.
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beams are reflected from the atom chip’s highly reflective surface under an angle of
45°. This represents a mirror-MOT which is equivalent to the usual six-beam MOT
configuration [14, 23]. Typical powers per beam are 20 mW. The light for the cool-
ing, as well as for additional repumping is derived from the same lasers as for the
source-MOT. The mirror-MOT is continuously loaded for 10 s using the push beam
from the lower chamber.

2.3.3 Wire Traps and Evaporative Cooling

In the next step, the atoms are transferred to a first magnetic trap formed by two
Z-shaped copper structures with cross-sections of (1 x 1) mm? and (2 x 1) mm?2,
which are located behind the chip. To this end, we first compress the mirror-MOT by
increasing the bias fields. This prepares the MOT for a good mode-matching with the
magnetic trap. Subsequently, all magnetic fields are turned off and a 8 ms long stage
of sub-Doppler cooling in an optical molassis is used to decrease the temperature of
the atoms. This yields 10% atoms at temperatures around 50 K. The optical molassis
is followed by a 1 ms pulse of o+ light on the F = 2 — F’ = 2 transition to optically
pump the atoms into the trappable F' = 2, mp = 2 state. We then ramp up a current
of (60—70) A in both copper structures to form a trap that has a depth of approximately
1.6 mK and estimated trap frequencies of w, = 27 x 17Hz and w; = 27 x S0 Hz.
At this point, 7 x 107 atoms are trapped, corresponding to a transfer efficiency of
about 70 % from the MOT. This number depends critically on the efficiency of the
optical pumping. The current in the larger Z-structure is subsequently ramped down
within 350 ms, followed by a 2's compression of the Z-trap. This results in a trap
which is characterized by w, ~ 27 x 24 Hz and w; ~ 27 x 800 Hz. Subsequently,
evaporative cooling is initiated by applying RF radiation via the U-shaped structure.
The radiation is created using an arbitrary wave-form generator.” Typical coupling
strengths of the RF are (2-6) kHz. Starting from a frequency of around 15 MHz, we
decrease the frequency of the RF radiation roughly exponentially to 0.75 MHz within
6.1s. This increases the phase space density close to unity, with a temperature of
about 10 wK and 10° atoms.

2.3.4 The Atom Chip

Typically the cold cloud in the macroscopic trap is not cooled further to quantum
degeneracy, but transferred to the microscopic traps on the atom chip. To this end we
linearly ramp up the current in the chip structures within 500 ms, while in the mean
time decreasing the current in the macroscopic Z-structure. This allows for a nearly

STabor Electronics WW1071.
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Fig. 2.6 Layout of the atom chip. The atom chip consists of approximately 1.2 pm thick, single
layer gold structures that have been evaporated on a 35.7 x 0.525 x 29.7 mm sized silicon substrate
by means of photo lithography. Six wires of different widths are available to realize variable trapping
geometries for the atoms. For the experiments presented this thesis, we use a 100 um wire together
with external bias fields to create the static trapping potential. Tunable longitudinal confinement is
realized using 4 of the 6 100 pum wide U-shaped wires. Two parallel 30 pm wide wires adjacent to
the main trapping wire are used to apply radio frequency fields. A detailed description of the design
and the fabrication process can be found in [31]

loss-less transfer of the atoms to the chip, much better than what could be achieved
by loading the chip directly from the large volume mirror-MOT.

The atom chip employed is a single layer gold chip fabricated on a silicon sub-
strate.® The wire layout is shown in Fig.2.6. It allows for a large variety of traps,
formed using 100 or 30 pm wide main trapping wires, in conjunction with external
bias fields. Each of the trapping wires is combined with two additional smaller par-
allel wires, which are used for RF manipulation of the atoms. Flexible longitudinal
trapping is created using 6 U-shaped wire structures.

After transferring the atoms to the chip, further evaporative cooling is per-
formed. For the experiments presented in this thesis, we typically employ a trap
formed using the 100 um wide main trapping wire and two neighboring pairs of
U-structures. Typical currents are 810 mA in the 100 wm wire and 295 mA in each
of the U-structures. To minimize fluctuations, the chip currents are supplied by car
batteries. A bias field in x-direction is used to set the properties of the trap. It ranges
from 12 to 16G, realizing a trap located between 120 and 90 pm below the chip
surface, with radial trapping frequencies of w; = 27 x (1.4-2.5)kHz. The longitu-
dinal trapping freqency is w, = 27 x (7-12) Hz. Further evaporative cooling in this
trap leads to degenerate gases with temperatures in the range of (20-200)nK, and
containing 103-10* atoms. This realizes a single 1D Bose gas that can be further
manipulated in the experiments.

6Produced by M. Trinker at Zentrum fiir Mikro- und Nanostrukturen (ZMNS) of TU Wien.
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Fig. 2.7 Imaging setup for a
single 1D Bose gas. A cloud f/l\
of phase fluctuating 1D y

bosons is prepared below the
atom chip. Upon its release it
falls under gravity and integrated
expands in time-of-flight profile
(TOF). The cloud can be
illuminated transversally to
obtain an image of the
density ripples that form in
expansion, or longitudinally,
to obtain an integrated image
of the atomic density profile.
Figure adapted from [22]
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2.3.5 Imaging Systems

Independent of the particular experiment that is performed, information is always
extracted using standard absorption imaging [9]. After rapidly turning off all trapping
potentials, the atoms fall under gravity and expand for a variable time-of-flight. The
observation is performed using three different imaging systems, each pointing along
one spatial direction. For all imaging systems, we use the F = 2 — F’ = 3 transition
of the D, line of 3’Rb with an intensity corresponding to about 10 % of the saturation
intensity. The finite resolution of the imaging process can be described by a radially
symmetric Gaussian point spread function [22, 38]

fr) = 2.11)

1 ( r2 )
——exp| 5|
\/ ZFUI%SF 20pgp

where opsF is the width of the point spread function.

An overview of the imaging process for a single 1D Bose gas is shown in Fig.2.7.
The corresponding procedure for two gases in a double well is presented in Fig.2.8.
A detailed description of the absorption signal for each imaging system can be found
in Ref. [22].

Longitudinal Imaging System

The longitudinal imaging records the integrated atomic density distribution along
the y-direction using a standard CCD camera.” It uses a two-lens setup, resulting in
a field of view of 2.5 x 1.67 mm and a pixelsize of 2.45 pm. As the optical access is
shared with the MOT beams, the optical setup limits the numerical aperture of this

7 Andor DV435-BV-958, serial number CCD5302.



52 2 Experimental Realization of One-Dimensional Bose Gases

f/l\z
y

density

integrated ripples

interference

' longitudinal probe
vertical probe

transversal probe

interference

Fig. 2.8 Imaging setup for two interfering 1D Bose gases. After turning off all trapping potentials,
the clouds expand and form a matter-wave interference pattern. This pattern can be imaged using the
vertical imaging, or by integration of the cloud along its longitudinal axis. As the line of sight of the
vertical imaging is blocked by the atom chip, the imaging beam is reflected before passing the atoms.
The transversal imaging system records the sum of the density ripples in both gases. Alternatively,
the double-well trap can be turned off before the static trap (see text for details). After time-of-flight
expansion (TOF), this leads to two well-separated clouds which can be individually resolved using
the longitudinal imaging system. This procedure can thus be used to count the number balance of
atoms in the left or right gas. Figure adapted from [22]

imaging system to approximately 0.096 [36]. The imaging system is used to record
integrated pictures of interfering 1D gases. It is also used to measure the number
balance of atoms trapped in a double well. Focusing is accomplished using a detuned
imaging beam, which results in characteristic near-field diffraction effects [22, 39].
For example, imaging an interference pattern will result in a constant interference
contrast as a function of detuning only if the imaging is focused. If it is defocused,
a linear variation of the contrast with detuning can be observed.

Transversal Imaging System

The second imaging system is used to study the atoms along their transversal direc-
tion. To benefit from the large optical access in this direction, the imaging system
uses a high-resolution objective with a numerical aperture of 0.26 [40, 41]. It images
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the atoms onto a standard CCD camera,’ and has a field of view of 0.7 x 1 mm
and a pixel size of 1.05 pm [22]. The system is optimized for high-resolution in
situ imaging, but can also be used to image the density ripple patterns that form
after time-of-flight expansion of a phase-fluctuating 1D Bose gas. Examples of tem-
perature measurements based on these patterns are presented in Sect.2.3.6. Coarse
focusing is accomplished by detuning the imaging beam, fine tuning using the den-
sity ripple spectrum [42, 43]. From this density ripple spectrum, the resolution can
be determined to be opsp = (2.55 = 0.10) pm.

Additionally, this imaging system can be used for a high-resolution optical pump-
ing scheme, which spatially selects subsections of clouds for the longitudinal imag-
ing system [37, 44]. In this scheme atoms are illuminated by a beam resonant to the
F = 2 — F’ = 1 transition. After scattering on average only 1-2 photons they
decay into the F' = 1 state, which renders them invisible to further imaging light
on the F = 2 — F’ = 3 transition. By imaging a target with variable size onto
the atoms through the high-resolution objective, parts of the cloud can be protected
from this state change. This scheme is used together with the longitudinal imaging
to perform matter-wave interference experiments with variable integration length in
Chap. 4.

Moreover, this imaging system can be easily replaced by an overview imaging
system using a flip mirror. The overview imaging system has a field of view of
4 x 5.3mm, a pixel size of 3.84 um and uses a Pixelfly CCD camera. Due to the
large field of view it is particularly useful for the calibration of the molassis and the
optical pumping, where the atomic clouds are too large to be observed with the other
imaging systems.

Vertical Imaging System

The third imaging system records the atomic density distribution from below. This
is of particular importance for the experiments presented in this thesis, as it enables
the direct imaging of the local interference pattern of two 1D Bose gases. While
imaging this interference pattern is, in principal, also possible using the optical
pumping scheme presented above, the vertical imaging directly provides the full
spatial information including all integration lengths at once and down to the resolution
limit. It is this feature which enables the measurement of phase correlation functions,
which is central to Chaps. 5 and 6.

A conventional absorption imaging setup in this direction is rendered impossible
by the atom chip, which directly blocks the line of sight. This problem can be cir-
cumvented by using the chip as a mirror, before collecting the light on a electron
multiplying CCD (EMCCD) camera’ which is currently used without the amplifi-
cation stage. The EMCCD camera was chosen to prepare this imaging system for
future single-atom sensitive fluorescence imaging [45].

Special care has to be taken as the structures on the chip can severely degrade the
image quality through diffraction of the light beam. Therefore, the imaging beam

8 Andor DV435-BV-958, serial number CCD5303.
° Andor iXon DV887.
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is focused such that only the central trapping wire is illuminated. The focus of the
beam is positioned close to the atoms such that they are only illuminated once by
the beam, after it has been reflected from the atom chip surface. This results in a
circular field of view with a radius of about 100 wm. The pixel size is 2.02 pm. As
for the longitudinal imaging, focusing is achieved by imaging an interference pattern
with a detuned imaging beam. Note that due to the imaging beam focusing, the focal
position of this imaging system is fixed and corresponds to a time-of-flight of 15.7 ms.
The resolution can be determined using measurements of phase correlation functions
(see Sect.2.4) and corresponds to opsp = (3.6 = 0.1) pm.

2.3.6 Making and Probing Degenerate Gases

The emergence of a quasi-condensate is shown in Fig. 2.9. The transversal images
reveal strong density fluctuations, which become less pronounced with decreasing
temperature. These density fluctuations are a direct consequence of the in situ phase
fluctuations of the quasi-condensate and were first observed in elongated 3D con-
densates [46]. In low-dimensional gases, interactions during the expansion are negli-
gible and thus the spectrum and the correlation properties of the density fluctuations
after expansion can be calculated [47]. Interestingly, the scaling laws governing the

Fig. 2.9 Emergence of a quasi-condensate. Absorption images after 12 ms time-of-flight. From
left to right the final RF evaporation frequency decreases from 450 to 410 kHz in steps of 10 kHz.
a Images using the longitudinal imaging system reveal the transition from a Gaussian thermal
cloud to a strongly peaked quantum degenerate gas. b Images using the transversal imaging system
show how density ripples slowly emerge withing the thermal background, signaling the emergence
of the quasi-condensate. Decreasing the RF frequency the thermal background vanishes and the
quasi-condensate grows. As temperature decreases the density ripples become less pronounced
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Fig. 2.10 Thermometry using density fluctuations in expansion. a In situ phase fluctuations lead
to density fluctuations of a quasi-condensate in time-of-flight expansion. b The density-density-
correlation function of these fluctuations can be used for thermometry [47, 50]. If the temperature
is high, phase fluctuations are strong, leading to strong density fluctuations in time-of-flight. If the
temperature is low, phase fluctuations are reduced

spectrain 1D and 2D Bose gases have been predicted to be identical, a topic which is
currently under intense study [42, 48, 49]. In our experiment we use the correlation
properties of the density ripples to measure the temperature of the gas.

To this end the experiment is repeated approximately 100 times to extract the
density-density correlation function [36, 42, 47, 50]. The result is compared to
Ornstein-Uhlenbeck simulations for quasi-condensates of different temperatures to
fit the temperature of the gas. Examples are presented in Fig.2.10.

It is well known that the proximity of the atoms to the wires makes the trapping
potentials on atom chips very sensitive to imperfections of the wire structures [51].
Information about the trapping potential can be obtained by using the atoms as a probe
for these corrugations. To this end, cold but still thermal clouds are imaged after a
short time of flight. Averaging over many realizations, structures in the density profile
directly reveal deviations from a smooth trapping potential. Examples are presented
in Fig. 2.11a. The overall potential closely follows a harmonic potential. In the center,
small deviations can be observed which are the result of wire corrugations. These
corrugations become more pronounced the closer the atoms are located to the wires.
To minimize this effect we exclusively use traps which are formed at least 100 pm
from the chip.

The harmonic confinement of the trap can be further characterized using trap
frequency measurements. A short step in the current of the trapping wires dis-
places the trap and induces collective oscillations of the atoms. Fitting position and
width of the cloud after time-of-flight expansion for varying evolution times after
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Fig.2.11 Characterization of the trapping potential. Wire corrugations can lead to a deformation of
the potential. The effect can be probed using the density profile of thermal atoms. a At a distance of
100 pwm from the chip, the integrated profile is almost smooth, corresponding to a smooth trapping
potential. b Moving the atoms closer to the chip wire corrugations are revealed. To minimize
the effect of these corrugations all experiments presented in this thesis have been performed at
distances around 100 wm from the chip. ¢ The (approximately) harmonic confinement of the trap
in (a) is characterized using trap frequency measurements. For the trap in this example, we find
frequencies of wp = w,; = 27 x (10.94 & 0.14) Hz for the collective dipole oscillations (fop) and
wp = 2w x (17.67 + 0.26) Hz for the collective breathing oscillations (bottom) of the atoms. The
ratio wp /wp = 1.6140.03 is close to the predicted value of v/3 [52]. Similarly, the radial trapping
frequency can be measured. Typical values are w] = 2wx (2-2.1)kHz

the displacement, we obtain the frequencies of dipole and breathing oscillations,
respectively. As expected for a trapped 1D Bose gas, we find a ratio close to
wp/wp ~ /3 [52, 53]. Exemplary results are shown in Fig.2.11b.

2.4 Experiments with Atoms in a Tunable Double-Well
Potential

Having produced and characterized a single harmonically trapped 1D Bose gas pro-
vides a solid starting ground for experiments in a double-well potential. In this
chapter, this double-well potential is characterized. Subsequently, we introduce the
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tools to probe the equilibrium state of 1D bosons in this potential via matter-wave
interference.

2.4.1 Characterization of the Radio-Frequency Dressing

To create the dressed-state potentials we use two parallel 30 wm wide wires adjacent
to the main trapping wire. The RF radiation is provided by a two-channel arbitrary
wave-form generator'? which allows the individual control of both phase and ampli-
tude in each of the wires. Typical RF currents for the creation of a double well located
100 wm below the chip surface are Irp =(20-25)mA per wire. To characterize the
applied RF fields we first monitor the 5-level Rabi oscillations in the bare state basis
by mapping the populations of the different m r states using a Stern-Gerlach exper-
iment. To this end, we turn on the RF for a fixed time at a variable frequency. Then
the trapping potentials are switched off and a field gradient is applied via one of the
macroscopic Z-wires during the ensuing time-of-flight expansion. As the different
mr states have different magnetic moments they are spatially separated and can be
imaged individually using the longitudinal imaging system. To fit the results, we
solve the 5-level Rabi problem and find typical coupling strengths on the order of
several hundred kHz.

To precisely study the dressed-state level structure we perform spectroscopy with
an additional weak RF field [29]. This RF field is applied via the U-wire, as in the
normal evaporative cooling sequence. It couples the different dressed states, just as it
would with the bare states, leading to pronounced loss features in the atom number.
The results of this RF spectroscopy are shown in Fig. 2.12. We use the position of the
resonances to calibrate our simulation of the potentials (see Appendix B). Another
benchmark for the simulation can be obtained by measuring the distance between
the wells as a function of RF current.

The trap frequencies in the double well are characterized in the same way as in
the static trap. Typically, both longitudinal and radial trap frequency are about 30 %
lower than in the static trap. The exact value depends on the applied RF current and
can be very well estimated using the simulation of the potentials.

2.4.2 Turning Off the Double Well

When loading the double well the RF can be ramped up slowly, thus transferring the
atoms adiabatically from the bare states to the dressed states. This is not possible
when the atoms are released from the trap, as all potentials have to be switched off
immediately. The rapid change of the quantization axis leads to a decomposition of the
atoms into the various bare states. This has significant implications for interference

10Tabor Electronics WW5062.
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Fig. 2.12 RF spectroscopy of the dressed states. a A weak additional RF field is used to outcouple
atoms from the dressed trap. Resonances appear whenever the RF field is resonant with a transition
between the different dressed states. b Simulation of the level structure in the dressed trap, which
enables the identification of the transitions (/) Ak = +1, Amp = —1,(2) Ak = 42, Amp = —1,
3) Ak = 40, Amp = —1,(4) Ak = +3, Amp = —1, and (5) Ak = —1, Amp = —1. Gray
dashed lines indicate the sub levels of the Ax = 0 manifold. The green line indicates transition
(3), which is typically used for RF cooling in the experiments. Note that resonances (2) and (4) to
states with higher energy are shifted by approximately 25 kHz because of the high temperature of
the atoms used in this measurement

experiments as the different m r states have different magnetic moments. Any small
residual field during expansion will displace the different m r states with respect to
each other, leading to a decrease in interference contrast. Note that this does not
change the dynamics that are observed, it just reduces the experimental sensitivity to
small changes in contrast. The decomposition can be optimized by properly choosing
the phase of the RF field. Typical observations are shown in Fig.2.13. From these
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results we extract the best value for the phase, where most of the atoms are transferred
into the mr = 2 bare state, resulting in the highest contrast.

2.4.3 Equilibrium States: Cooling into the Double Well

To prepare a pair of gases in equilibrium we change the experimental sequence
and let the evaporative cooling in the static chip trap end at a frequency which is
significantly higher than the one needed to create a degenerate gas. We then ramp
up the RF potentials in 10 ms. As the trapping frequency is reduced during the
splitting process, special care is taken not to cool the gas to degeneracy by adiabatic
expansion [9]. Subsequently, the RF cooling is resumed using one of the resonances
identified in the RF spectroscopy. Typically, the Ax = 0, Amr = —1 resonance at
approximately 520 kHzis used for 300 ms of further cooling, creating two degenerate
gases in the individual double wells, which, by definition, are completely independent
of each other. This is the thermal equilibrium situation of two gases in a double well.
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For example, symmetric and anti-symmetric degrees of freedom exhibit the same
temperatures and are thus in equilibrium.

At this point we can perform two complimentary measurements. First, to access
the atom number imbalance between the two gases, the RF amplitude is ramped down
over 40 periods, corresponding to a time scale of 0.1 ms. This transfers the atoms
back into the bare states, while the static trapping potential is still present. As the
ramp-down is fast compared to the radial trapping frequency (w; ~ 27 x 2 kHz),
the resulting two clouds are displaced from the energy minimum of the static trap.
Similar to classical balls they will thus roll down the potential. Turning off the trap at
the time when they reach the potential minimum prepares two clouds with opposite
momenta. These momenta are large enough to separate the two clouds spatially after
time-of-flight, enabling the measurement of the respective atom numbers using the
longitudinal imaging system. Examples are shown in Fig.2.14. Controllable atom
number imbalances can be prepared by using a small asymmetry in the two RF
currents that are used to create the double well.

Second, information about the relative coherence of the gases is obtained by
matter-wave interference (Fig.2.15). To this end, all potentials are turned off at the
same time. The atoms drop and form an interference pattern after a time-of-flight
expansion. As discussed in Sect. 1.5, the location of the fringes in this interference
pattern is a direct measure for the relative phase between the two gases. Due to the
low trapping frequency in the longitudinal direction, the expansion of the gases in this
direction is negligible and the local displacement of the interference fringes indeed
reflects the in situ phase distribution.

To extract the interference contrast C (L) the absorption image is summed over a
length L and fitted with the cosine-modulated Gaussian function [54]

—? _
fl) =A ~exp(—(x};0)) : [1 +C(L)cos (M +9(L))], (2.12)
20 AR
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Fig. 2.15 Matter-wave interference of two 1D Bose gases. a Emergence of the interference pattern
in time-of-flight as seen from the longitudinal imaging system. b Imaging of the local fluctuations of
the interference pattern using the vertical imaging system after 15.7 ms time-of-flight. The limited
field of view results from the focusing of the imaging beam onto the trapping wire. The beam path
is shown in the inset [44]. ¢ Zoom into the image shown in (b). Fitting the local interference pattern
allows the determination of the relative phase 6(z) and the contrast C (L), where L is the integration
length

<C%(L)>

02 @ g
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Fig. 2.16 Decay of the mean contrast squared. Points represent experimental data for (C 2(L)),

normalized to (C 26 urn)). Lines are the theory prediction (Eq. 1.87). Parameters are n1p = 35/um,
T = (27 &+ 7) nK (red dashed line) and njp = 45/pum, T = (117 &£ 7) nK (blue dashed line). A
bootstrapped fit of the experimental data [36, 55] is used to extract the values A\y = (7.02 £+
2.45) wm (red solid line) and Ay = (2.99 +0.7) wm, in good agreement with the expected 7.2 and
2 um

where o is the rms radius of the Gaussian profile, x is its center of mass, and Ar is
the fringe spacing. The results are shown in Fig.2.16. To extract the relative phase
profile 6(z), the integration length L is set to the size of one pixel.

To extract the FDFs, we repeat the experiment many times with the same con-
ditions and measure the different outcomes of the contrast. Examples of measured
FDFs in equilibrium are shown in Fig. 2.17. Note that this procedure is fundamentally
different to the averaging performed in a 2D optical lattice. There, typically many
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Fig. 2.17 A pair of 1D Bose gases in thermal equilibrium. a Two-point phase correlation functions
C(0,7)) for nip = 35/um, T = (27 & 7)nK (red) and for n1p = 45/um, T = (117 £ 7)nK
(blue). Solid lines denote the theory predictions (Eq. 1.85), including the optical resolution. Points
are the experimental results, averaged over approximately 100 realizations. The temperatures used
for the theory lines have been independently determined using density ripples, demonstrating that
the gases are in equilibrium. For the hotter dataset, the correlation function is completely determined
by the optical resolution. Such high-temperature datasets thus enable an independent determination
of the point spread function width opsr (Eq. 2.11). The insets show the corresponding full two-point
correlation functions C(z, z"), with the dashed lines indicating the C(0, z) lines. b The corresponding
FDFs are exponentially decaying on all length scales for hot temperatures and show a crossover from
exponentially decaying to Gumbel-like for lower temperatures [56], both in very good agreement
with theory [57, 58]. Figure (b) adapted from [44]

1D gases are realized and probed in parallel which means that only ensemble aver-
ages are available. Due to the central limit theorem the statistics of such averages
is approximately Gaussian, meaning that the information contained in the higher
moments of the FDFs is not accessible in this way.

Asinthe case of asingle 1D Bose gas, we can further image the atoms transversally
to extract information using the resulting density fluctuations in time-of-flight. As
the two gases are completely independent, the resulting density ripple pattern is
an incoherent superposition of two single density ripple patterns. We simulate this
situation using the Ornstein-Uhlenbeck process technique and use it to extract a
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temperature (see Sect. 1.4.6). As expected for thermal equilibrium, we find exactly
the same temperature as for the anti-symmetric mode.
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Chapter 3
Isolated Quantum Systems Out
of Equilibrium

In this chapter we present a brief summary of the current framework of non-
equilibrium dynamics in isolated quantum many-body systems, focusing, in par-
ticular, on the aspects that are of relevance to the dynamics of 1D Bose gases.

3.1 Dynamics Following a Quench

The term non-equilibrium dynamics encompasses many different protocols and phe-
nomena. Topics that are studied range from dynamical phase transitions and the
exact time-evolution, to the emergence of a thermodynamical description in this
time-evolution [1-8]. In the context of this thesis, we focus on the response of a sys-
tem to a sudden perturbation as the conceptually most simple approach to an isolated
system’s non-equilibrium dynamics.

The general scheme of such a so-called quantum quench is depicted in Fig.3.1.
We start with a system that is described by a Hamiltonian H. The initial state of
the system can be a pure or a thermal state. The evolution is initialized by rapidly
changing the Hamiltonian

H— H, (3.1)

for example by varying an external field or, as in our case, by deforming the trapping
potential. If the new state [i)g) of the system after the quench is not an Eigenstate of
the new Hamiltonian H’, the quench will lead to a dynamical evolution of the system.
For the expectation value of a generic observable A this evolution is given by

(A) = (W) A @) (3.2)

where
[P (1)) = exp (——H l) |7%0) - (3.3)
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Fig. 3.1 Dynamics following a quench. a The generic protocol of a quench. After the preparation of
an initial state, the Hamiltonian of the system is rapidly changed, creating a non-equilibrium state.
This induces a dynamical evolution. The question under study is whether a steady state emerges
and if so, what kind of steady state is established. Figure adapted from [9]. b Several scenarios
are conceivable for the dynamics. Following the strictly unitary evolution of quantum mechanics,
thermal equilibrium can never be reached. However, alternative scenarios have been put forward,
where the expectation values of observables might come arbitrarily close to their thermal values. The
corresponding relaxation could happen on a single timescale, but also be more complex with one
or more intermediate states that already share certain properties with the thermal equilibrium state

Based on this time evolution, a series of seemingly simple, yet very fundamental
questions can be asked [10]:
1. Will the system relax?

2. If it relaxes, what are the properties of the steady state? Can the steady state be
thermal?

3. Ifitis thermal, how are these thermal properties established? In other words, how
is the memory of the initial state erased?

For a general Hamiltonian the time evolution (Eq. 3.3) is a very hard problem to solve.
Thus, so far, no general answers to these questions exist [10]. From the theoretical
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Fig. 3.2 A sketch of classical ergodicity. Thermal equilibrium is independent of the initial state of
a non-equilibrium evolution. After a sufficiently long time, both initial trajectories come arbitrarily
close to any point in the position-momentum (x-p) phase space. This leads to the law of equal a
priori probabilities for all microscopic states within a certain energy window. In the process, all
memory of the initial state is dynamically erased

side, several scenarios are conceivable for the dynamics, which will be outlined in
the following.

3.1.1 Scenario I: No Relaxation

In many cases, a classical isolated system that is perturbed will relax to a unique
thermal state that is defined by the system’s energy. The most notable exception are
integrable systems, which we will discuss separately in Sect.3.2.

The microscopic mechanism responsible for the relaxation is the dynamical chaos
that is present in the classical equations of motion. It results in dynamics, in which
the system ergodically explores the whole phase space. The system is thus equally
likely to be found at any point in phase space (see Fig.3.2). This leads to a state that
is independent of the initial conditions and can be described by the usual ensembles
of statistical mechanics.

From a very purist point of view any evolution in the quantum world is unitary
and reversible. The absence of chaos in the Schrodinger equation thus prevents ther-
malization in the classical sense. Consequently, as complicated as the time-evolution
may be when many particles are involved, it should never lead to a unique thermal
state that is independent of the initial state. In particular, if the system is in a pure
state in the beginning of the evolution, it should never reach the mixed thermal state
discussed in Chap. 1.

In a more mathematical formulation, thermalization corresponds to a situation
where the time-average of a quantum evolution of an observable A coincides with
the expectation values of the thermodynamical ensembles [11]

A = lim l/dT/(zp(T’)M |¢(T’)); Tr(peqA) (3.4)

T T Tr([)eq) .
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Expanding the states [¢)(7)) = D ¢, |n) in the Eigenstates of the new Hamiltonian
H'|n) = E, |n), with ¢;, = (¢)p|n), one finds that

Ay =" cheme ErEMIR (] A |m) . (3.5)

n,m

For non-degenerate Eigenstates the time average of this expression is given by the
diagonal ensemble [6]

Tr (peq A)

3.6
Tr(Peq) 3.5

A= Z|cn|2 (nl Aln) # — ==

This result is markedly different from the prediction of any of the thermodynam-
ical ensembles and, in particular, depends on the initial state for all times via the
coefficients ¢, . It thus seems to contradict the very essence of thermalization, as the
thermal expectation value must be the same for any initial state. In the next scenario,
we will see how this apparent contradiction can be resolved.

3.1.2 Scenario II: Relaxation with One Timescale

Despite this contradiction, many quantum many-body systems relax to states where at
least some observables are well described by thermal equilibrium. It was suggested
that the relaxation can be understood by the fact that the Hilbert space of a large
number of interacting atoms quickly becomes untraceably large and complex, leading
to an apparent relaxation. In a single run, the total system evolves in a unitary way,
but when calculating observables, their expectation values might become arbitrarily
close to a thermal value. The key is to find observables that reach thermal steady
states in a way that is robust with respect to the initial conditions.

Ideas how to grasp this intuition more formally have been around for a long
time, for example in the form of a quantum ergodic theorem [12]. A particular well
studied scenario is the Eigenstate thermalization hypothesis (ETH) [5, 6, 13]. To
resolve the contradiction in Eq. 3.6, the ETH conjectures that the initial state of a non-
equilibrium evolution already has thermal properties on the level of individual many-
body Eigenstates. In other words, (n| A |n) coincides with the thermal expectation
value for any Eigenstate |n). In terms of the density matrix this means that the diagonal
elements contain the thermal properties while the off-diagonal terms correspond to
the non-equilibrium physics. As described in Eq. 3.5, the off-diagonal terms vanish
over time because of dephasing. Consequently, only a thermal state remains in the
end. The range of applicability of the ETH is a topic of ongoing research. Numerical
results in some systems (in particular ones with a chaotic classical limit) indicate that
the ETH is fulfilled for generic few-body observables, i.e. observables that only act on
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a small subsystem of the total system [6, 11]. An intuitive picture for this observation
is that the isolated total system acts as a bath for its few-body subsystems [14].

3.1.3 Scenario III: (Partial) Relaxation with More Timescales

Another possibility is that the relaxation might be more complex. For example, there
might be partial relaxation only, where instead of a complete loss of memory, the sys-
tem only partially forgets the initial conditions. Also, there might be different stages
of relaxation connected to different time scales. The properties of these different
relaxation stages are believed to contain important information about the properties
of the system [15].

In general, the question to answer is what properties a system needs to be qualified
as thermal. This question was first put forward by Berges and coworkers to describe
the collision products observed in heavy-ion collisions [16, 17]. It was shown that
some thermal aspects of a quantum many-body system might already form very early
in the evolution, long before the system has actually reached thermal equilibrium.
How this relaxation looks like in detail, depends on the observable under study.

Relaxation with different time scale has been predicted to occur in many sys-
tems [15, 16, 18-23]. It is important to note that this is different from the dynamics
in systems which simply relax on different time scales because of the presence of
different energy scales, like it is the case, for example, in an ensemble composed of
electron and nuclear spins.

3.2 The Role of Integrability

A special role in the context of non-equilibrium dynamics is played by the class of
integrable systems.

The discovery and study of integrability and its consequences played an impor-
tant role in the understanding of thermalization in classical mechanics. In one of
the first numerical experiments, Fermi, Pasta, and Ulam studied the evolution of a
chain of harmonic oscillators with non-linear couplings without observing any signs
of thermalization [24]. This surprising result ultimately led to the development of
chaos theory, which now forms the basis for the understanding of classical thermal-
ization [25].

In classical systems the notion of integrability is well-defined by the existence
of a full set of conserved quantities, which restricts the system to a sub-part of the
total phase space. This precludes any chaotic behavior and thus makes thermalization
impossible.

In quantum mechanics the definition is less clear. Different definitions that have
been used include the existence of a complete set of linearly or algebraically
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independent operators, the existence of either a Bethe Ansatz or in any other way
exact solution, or the occurrence of non-diffractive scattering processes [26-28].
Despite this lack of a clear definition, it is generally accepted that also in the
quantum case, conserved quantities will strongly inhibit thermalization.'
Despite the absence of thermalization, relaxation and the emergence of thermal
properties are still possible. It has been suggested that the relaxed state of such an
integrable evolution can be described by the density matrix of a generalized Gibbs

ensemble (GGE) [30]
N A
p= Z exp (— mg )\mIm) (3.7)

where {fm} denotes a full set of conserved quantities, Z = Tr[exp(—>_,, )\mfm)] is
the partition function and m is a positive integer. The numbers ), are Lagrange mul-
tipliers associated with the conserved quantities. They are obtained by maximization
of the entropy, under the condition that the expectation values of the conserved quan-
tities are fixed to their initial values [31, 32]. The GGE is a direct generalization of the
well-known thermodynamical ensembles. For example, in the case where only the
total energy and the particle number are conserved, it reduces to the grand-canonical
ensemble, where temperature and chemical potential play the role of the respective
Lagrange multipliers (see Sect. 1.2 and Ref.[33]). If only the total energy is con-
served, we recover the canonical or Gibbs ensemble. The reason why non-integrable
systems, in contrast to integrable systems, can successfully be described by such a
small number of conserved quantities so far remains unknown.

The generalized Gibbs ensemble is believed to be the final state of relaxation
for an integrable system. However, a natural follow-up question is what happens
if certain quantities are only approximately conserved. It has been conjectured that
in this case the system will first relax to a meta-stable state described by a GGE.
Subsequently, evolution towards thermal equilibrium will happen on a much slower
time-scale [23, 34]. However, it is completely unclear in which way and how far the
integrability has to be perturbed.

The question is of large theoretical interest, as this problem is very well studied
in classical mechanics. In that case, the famous Kolmogorow-Arnold-Moser (KAM)
theorem quantifies the effect of a weak non-integrability on the dynamics [10, 35].
No such theorem exists in the quantum case.

Experiments are ideally suited to study this issue, as the trapping potential
that is used to confine the atoms automatically makes the systems slightly non-
integrable [35-38]. One thus expects the interplay of thermalization and integrability
to have a strong effect on the dynamics.

!An interesting counterexample that illustrates the difficulty of the definition is given by the in-
tegrable Gross-Pitaevskii equation with periodic boundary conditions, which has such involved
conserved quantities that thermalization can be observed in its phononic modes [29].
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Chapter 4
Relaxation and Prethermalization
in One-Dimensional Bose Gases

The study of relaxation processes remains a challenge despite considerable
theoretical and experimental efforts [1]. Their difficulty is exacerbated by the scarcity
of experimental tools for characterizing complex transient states. In this context,
ultracold atoms provide unique opportunities to understand non-equilibrium phe-
nomena because of the large set of available methods to probe and manipulate these
systems.

As outlined in Chap.3, the trapped 1D Bose gas is a particularly interesting
system to study in experiments, because one expects a strong influence of its
near-integrability on the non-equilibrium dynamics. Indeed the total absence of ther-
malization was observed in a landmark experiment by Kinoshita et al. [2]. In that
experiment an array of 1D Bose gases in an optical lattice was taken out of equilib-
rium by transferring momentum to the atoms via a short Bragg pulse. Following this
quench, the momentum distribution of the gases remained non-thermal even after
thousands of collisions. It was later conjectured that this system had relaxed to a gen-
eralized Gibbs ensemble [3]. In contrast to that, without the presence of the lattice the
system was three-dimensional, non-integrable and thus immediately thermalized.

Here, we make use of an atom chip to produce a 1D Bose gas. This has the
advantage that a single system can be realized, which allows direct access to the
intrinsic fluctuations of the 1D Bose gas.

The system is quenched by coherently splitting it into two parts. Matter-wave
interferometry between the two parts is used to extract information about the dynam-
ics. Measuring the full probability distributions of interference contrast reveals the
prethermalization of the system to a non-thermal steady state, which can be charac-
terized by an effective temperature.

© Springer International Publishing Switzerland 2015 75
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This chapter is based on and also uses parts of Refs. [4-8]. Further information
on this experiment can be found in the theses of Michael Gring and Maximilian
Kuhnert [9, 10].

e M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl,
I. Mazets, D. Adu Smith, E. Demler, and J. Schmiedmayer
Relaxation and Prethermalization in an Isolated Quantum System
Science 337, 1318 (2012)

e T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, D. Adu Smith,
I. Mazets, and J. Schmiedmayer
Prethermalization in one-dimensional Bose gases: description by
a stochastic Ornstein-Uhlenbeck process
Eur. Phys. J. Special Topics 217, 43 (2013)

e D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer, R. Geiger,
T. Kitagawa, I. Mazets, E. Demler, and J. Schmiedmayer
Prethermalization Revealed by the Relaxation Dynamics
of Full Distribution Functions
New J. Phys. 15, 075011 (2013)

e T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, [. Mazets,

D. Adu Smith, T. Kitagawa, E. Demler and J. Schmiedmayer
Studying Non-Equilibrium Many-Body Dynamics Using 1D Bose Gases
AIP Conf. Proc. 1633, 11 (2014)

4.1 Coherent Splitting as a Quench

A prerequisite for non-equilibrium experiments is the ability to precisely prepare and
characterize both the initial non-equilibrium state and the expected thermal equilib-
rium state of the system under study. It is one of the key advantages of coherently
split 1D Bose gases that both these states can be prepared and described with high
precision.

In Chap.3 we introduced a quench as the rapid change of a system’s Hamil-
tonian. Using our atom chip this rapid change is realized by transforming the initial
harmonic trapping potential of the gas into a double-well potential. The change of
the potential splits an initial single 1D Bose gas coherently into two uncoupled parts
with almost identical longitudinal phase profiles. The situation is depicted in Fig.4.1.
While the two resulting gases contain all the thermal fluctuations of the initial gas
in their symmetric degrees of freedom, the anti-symmetric or relative degrees of
freedom are influenced only by very weak fluctuations which result from the halving
of the atom number during the splitting. As the different degrees of freedom are
populated according to completely different energy scales, the system is intuitively
expected to relax, eventually leading to a randomization of the relative phase profile
[11-13]. The question we address here, is how far this randomization proceeds.
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Fig.4.1 Experimental scheme. a A single phase-fluctuating 1D Bose gas is coherently split into two
uncoupled parts with almost identical phase distributions qﬁ(l) (z) and qﬁ(z) (z) (phases represented
by the black solid lines). These evolve for a variable time 7. b At t = Oms, fluctuations in the
local phase difference 6(z) between the two gases are very small, but start to randomize during
the evolution. The question we study is if, and if yes, how this randomization leads to the thermal
equilibrium situation of completely uncorrelated gases. ¢ shows typical experimental matter-wave
interference patterns obtained by overlapping the two gases in time-of-flight (TOF). Differences in
the local relative phase lead to a locally displaced interference pattern. Integrated over a length L,
the contrast C(L) in these interference patterns is a direct measure of the strength of the relative
phase fluctuations and thus enables the investigation of the dynamics. Figure taken from Ref. [8]

In other words: do the two gases completely forget their initial correlations as
commonly associated with the approach to thermal equilibrium, or not? A com-
parison of the thermal equilibrium and the initial non-equilibrium state is presented
in Fig.4.2. It is interesting to note that thermalization in this system shows similar-
ities with the emergence of a classical description. The splitting process initializes
the atoms in a coherent superposition of being in either one of the gases. In thermal
equilibrium they can only be located in a single gas. If the two gases thermalize, they
thus dynamically emerge as two completely separate entities.

The experiment starts with a single 1D Bose gas that is prepared using our standard
procedure which was described in Sect.2.3.6. We typically prepare degenerate gases
containing (2 — 10) x 10% atoms, corresponding to a peak linear density of nip =
(20-80) atoms/pm and a chemical potential u/h = 27 x (0.3 — 1) kHz. The trap
frequencies are typically w; = 27 x (2.0 & 0.1) kHz in the radial direction and
w; = 27 x (10£0.5) Hz in the longitudinal direction, respectively. The temperatures
determined from density ripple measurements are in the range of 7, = (20—120) nK.
Thus the 1D condition kg Ty, 1 < fw is typically well fulfilled.
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Fig. 4.2 Initial and thermal equilibrium state. Comparison of the initial non-equilibrium state
prepared by the coherent splitting process and the thermal equilibrium state of two independent
quasi-condensates. The system can be described by a combination of anti-symmetric degrees of
freedom (a) and symmetric degrees of freedom (b). After the coherent splitting, the symmetric
degrees of freedom contain all the thermal energy £ ~ kpT of the system, whereas the anti-
symmetric degrees of freedom contain only the quantum noise resulting from the splitting process.
In thermal equilibrium, all degrees of freedom contain the same amount of thermal energy and are
thus characterized by the same temperature. Figure adapted from [5]

To realize the coherent splitting process, the static harmonic trap of the atoms is
deformed into a fully controllable double-well potential by applying radio-frequency
(RF) radiation via additional wires on the atom chip. Specifically, the RF current is
linearly increased to an amplitude of 24 mA in 17 ms (Fig.4.3). This creates a double
well which is characterized by w; = 27 x (1.4 £0.1) kHz and w, = 27 x (7.5 =
0.5) Hz in the longitudinal direction.

‘We characterize the evolution of the tunnel coupling between the two gases during
the RF ramp using measurements of the relative phase correlation function of an
equilibrium system of two coupled condensates, following the method presented in
Ref. [14]. The equilibrium systems are prepared by splitting and subsequent cooling
of a thermal gas using various double-well configurations, identical to the ones that
are realized during the non-equilibrium splitting ramp. This enables an estimation
of the tunnel coupling J as a function of RF current. These experiments indicate
that the tunnel coupling decreases rapidly during the ramp and that the decoupling
of the two gases happens on a timescale of less than 500 s, about (2.5 4= 0.5) ms
before the end of the RF current ramp. This measurement is in good agreement with a
simulation of the trapping potential (see Appendix B). The decoupling is thus faster
than the characteristic timescale of the dynamics (~10ms) and therefore realizes
a quench [15].
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Fig.4.3 Splitting process. Aninitial single gas is split into two parts by increasing the RF amplitude
linearly to 24 mA. For low RF amplitudes, the radial harmonic confinement is deformed into a quartic
potential. For higher RF amplitudes, a double well emerges. Initially, the two parts of the system
are coupled with a tunnel coupling J. Increasing the RF amplitude further, this tunnel coupling
rapidly decreases until the two parts are uncoupled at = 0. To make the experiment robust again
small changes in the double-well parameters, the RF amplitude is increased slightly further, before
the gases are left to evolve. Note that many more splitting protocols can be achieved by tuning the
RF ramp, e.g. a realization of the Unruh effect [16]

4.2 Observation of a Non-thermal Steady State

Similar to the equilibrium situation presented in Chap. 2, the dynamics of this sys-
tem can be probed using matter-wave interferometry [17, 18]. In the following, we
demonstrate that this allows for a comprehensive characterization of the transient
states that are reached during the evolution.

After the splitting, the atoms are let to evolve in the double-well potential for a
variable time. To study the resulting matter-wave interference pattern between the
two parts of the system, all trapping potentials are turned off and the two gases
expand and overlap in time-of-flight. The resulting interference pattern is imaged via
absorption imaging after 15.7 ms.

For the data presented in this chapter, both the integrated imaging along the
gases and the direct imaging of the interference pattern were used (see Sect.2.3.5).
As they give equivalent results, we restrict the discussion to the direct imaging
in the following. Further details about the integrated imaging can be found in
Refs. [5, 6, 9].

To study the dynamics we extract the mean interference contrast C (L) as a function
of integration length L and evolution time 7. The observations are summarized in
Fig.4.4. The mean contrast shows a rapid decay over a timescale of approximately
10 ms, before settling to a steady state. The decay depends strongly on integration
length, which suggests that the dynamics are caused by an interplay of the many
momentum modes that are occupied in 1D Bose gases. A detailed study of this
length-scale dependent decay is presented in Refs. [10, 15].
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The observations demonstrate that the relative phase does indeed randomize and
that the system relaxes to a steady state. However, the mere decay of the mean contrast
does not provide any information about the nature of the steady state or about the
processes that are responsible for the relaxation.

To extract more information, we thus go beyond simple mean values and measure
the full quantum mechanical probability distribution function P (C?) of the mean
squared contrast (C(L)?). This is accomplished by repeating the experiment many
times with identical initial conditions. As outlined in Sect. 1.5.1, the mean contrast is
related to the two-point phase correlation function of the system. The FDFs contain
also information about all even higher-order correlation functions and consequently
allow the characterization of the many-body states in much more detail.

The results of this procedure are shown in Fig.4.5. At = 0, we find peaked
contrast distributions on all length scales, directly reflecting the coherence of the
initial state. The distributions develop markedly different forms for different L during
the evolution. For an integration over the whole length of the cloud (L = 110 pum)
they quickly develop an exponential shape. This exponential shape is characteristic
for a state where the correlation length is much shorter than L [9]. On long length
scales, the interferometer thus seems to have lost all its initial correlations. On the
other hand, on short length scales (L = 22 pum) the distributions remain peaked for
all times probed although L is still significantly larger than the thermal coherence
length. This shows that some of the high correlations that were prepared with the
initial state did remain in the system. Intermediate length scales interpolate between
these two extrema. Similar to the mean contrast, the FDFs change strongly during
the first 10 ms of the evolution, but then reach a steady state.

The FDFs can be used to directly demonstrate that the emerging steady state is
not the thermal equilibrium state. For a system of two uncoupled quasi-condensates
the thermal equilibrium state is characterized by the fact that both gases are com-
pletely independent. In this case, anti-symmetric and symmetric degrees of free-
dom have identical temperatures, as expected for a thermal equilibrium state. As
demonstrated in Sect.2.4, we can prepare this situation in experiment by splitting
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Fig. 4.5 Time evolution of the full distribution functions. Comparison of distributions of the nor-
malized squared contrast C2/(C?) obtained in experiment to the theoretical description based on
the homogeneous Luttinger liquid formalism [11]. The experimental data are plotted using his-
tograms and the theoretical simulations using solid red lines. The light red shaded areas denote
the errors resulting from the uncertainty of the experimentally measured theory input parame-
ters. These input parameters were the experimentally measured values of the density in a single
well njp = (32 &£ 4) /um, the atom number imbalance AN = (0.1 £ 0.7)%, the temperature
Tin = (78 £ 10) nK of the unsplit system, and the uncertainty of +0.5 ms for the point in time
where ¢ = 0. The significantly different behavior on short and long length scales directly visualizes
the multimode nature of 1D Bose gases [15]. After a rapid evolution the FDFs settle to a steady
state which is markedly different from a thermal equilibrium state at a temperature comparable to
Tin. The relaxed state can thus not be thermal equilibrium. Figure adapted from [5]

a thermal, non-condensed gas using the same double-well potential as the one used
in the non-equilibrium experiment. Subsequently, we perform evaporative cooling
of the two thermal gases in the double well. This produces two completely indepen-
dent quasi-condensates which have no mutual knowledge of each other. Mapping
the FDFs in this situation, we find the characteristic exponential decay on all length
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scales probed (see Fig.4.5), as expected for a situation where the thermal coherence
length A7 is much smaller than any of the investigated length scales L. This behavior
in thermal equilibrium differs strongly from the observations for the steady-state of
the non-equilibrium evolution. We thus conclude, without the need to refer to any
theoretical model that the observed state is not the thermal equilibrium state of the
system.

4.3 Theoretical Discussion and Interpretation

It is one of the advantages of 1D Bose gases that their physics can be described using
simple, yet powerful tools. In the following, we use the Luttinger liquid formalism
that was introduced in Sect. 1.4.3, to model the non-equilibrium evolution of the
system.

In the experiment, the splitting is performed fast in comparison to the timescale
set by the inverse chemical potential fgpiic < h/p0 = &n/c. Here § = h/mc denotes
the healing length and ¢ = /gnip/m is the speed of sound. Thus, there is no time
for the atoms to correlate along the length of the gases and the longitudinal density
fluctuations are completely random. For each of the N atoms the decision of going to
either one of the gases is therefore random and uncorrelated. This leads to a binomial
distribution of atom number fluctuations in each small segment of the 1D system, as
illustrated in Fig. 4.6. In detail, the probability of finding N (1) atoms in one gas, and
N@ in the other one, is given by [9]

NO 4+ NP M @
WD, NP = ( VO )plN (1 —=p", (4.1)
(a) B e (b)

R A T e S
NN~
N, [¥loel™ Teel% |
N, - N,

2

Fig. 4.6 Local number fluctuations. The splitting distributes atoms into the two parts of the system.
The probability of finding an atom in either one of the two parts is given by a binomial distribution.
For a fixed atom number N in each small segment of the initial gas (a) the relative fluctuations after
the split (b) are given by (|(N(1) — N(z))/2|2) = N/4 (see text and Ref. [9]). These fluctuations are
introduced into the system in addition to the thermal fluctuations which are already present. This
brings the system out of equilibrium
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where p; is the probability of an atom to go to one particular well. For a balanced
splitting this probability is given by p; = 1/2. The probability for a certain atom
number difference AN = (NV — N@) /2 between the two gases can thus be found
from

W(N/2— AN,N/2+ AN) :( N ) N/2—AN

1— N/2+AN. 4.2
Nyt A= 42)

The variance of this distribution is (|AN|*) = N /4. As the number of atoms in a
segment of length L is given by N = 2npL, one finds

(0(2)0()) = ”%5@ —7) 4.3)

for the density fluctuations 2(z) created in the splitting process. In the Luttinger
liquid description (see Sect. 1.5.1) these fluctuations can be associated to the phonon
modes in momentum space. This yields

A nip

(D) = T5k,—ku (4.4)
which means that no correlations between modes with different momenta are present
in the initial state. Consequently, all phonon modes are populated with the same
amount of energy. Because of the linear dispersion relation, this leads to a 1/k
dependence of their occupation numbers.

The relative phase profile é(z) is almost zero after the splitting. Its fluctuations

follow via the minimum uncertainty relation [é};, npl = [czAS_k, ng] = —idg . and
are given by
P 1
(OcOk) = Ok, —k'- (4.5)
1D

The initial conditions for phase and density fluctuations can be used to calculate
the evolution of the relative phase. A comparison with Eq. 1.74 reveals the non-
equilibrium dynamics of the system [11]

- Am?c? nip .
(10k17) = s 2 sin(wgt) + T cos(wit)
2 2 2
m  sin“(c|k|t) + Sj cos“(c|k|t)
= k £ 0), 4.6
KK 5, (k # 0) (4.6)

A 1 crmt 2n]D
6ol?) = — ) —=— k=0, 4.7
10o?) 2n1D+(1<) D k=0 47

where Sy = kK /mn1p is the structure factor. For the density fluctuations, one finds
the same result, just with different initial conditions. In other words, at t = 0 we have
a squeezed state: the relative phase fluctuations are suppressed with respect to their
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Fig. 4.7 Multimode nature of 1D Bose gases: Oscillations. At early times, the energy stored in the
density fluctuations is transferred to the phase fluctuations, leading to a rapid increase of (|0x|?) for
all k = 27/L x n, where L is the system size and n # 0 is an integer. In the plot, different colors
depict the different values of k. Later, the dynamics of the system is characterized by oscillations
of fluctuations between phase and density. As all excitations oscillate with different frequencies
wr = ck, they dephase over time. Maximum dephasing and thus the establishment of a steady
state is achieved on a time scale given by the quarter of an oscillation period 7" = L/4c of the
n = 1 mode (/). In this simplified homogeneous model, the periodic boundary conditions result
in a perfect rephasing of all modes after 27". This leads to a perfect revival of the initial state (2).
In experiment, these revivals are not observed, as the trap makes the spectrum more complex than
assumed in this simple model [20]. The parameters in this plot are ¢ = 1.4mm/s, £ = 100 pm.
Figure adapted from [9]

equilibrium value. On the contrary, there is a huge excess of noise in the relative
density fluctuations.

Over time, density fluctuations oscillate into phase fluctuations and vice versa.
Similar oscillations have recently been observed in a 2D Bose gas after an interaction
quench [19]. As the oscillations have different characteristic frequencies wy corre-
sponding to their momenta k, they dephase over time. The resulting time evolution
of the phase variance (|¢|?) is illustrated in Fig.4.7.

For a single realization of the relative phase profile one finds

1 A
0 s i) = —= 37 {106 e sinche + ), (4.8)
k

where A\, and \g; are random variables which are used in the numerical simulation
of the dynamics [11].

This expression describes the superposition of many sinusoidal waves, which
modulate the phase profile on a length scale ~2m/k. Experimentally probing the
system on different length scales therefore corresponds to a filtering of the effects of
different modes. This is illustrated in Fig. 4.8. The observation of a length dependent
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Fig. 4.8 Multimode nature of 1D Bose gases: Interference. The phase profile is a superposition of
many sinusoidal oscillations corresponding to the eigenmodes wy = ck of the system. Integrating
the interference pattern over a certain length L acts as a filter for these oscillations. The figure
shows two artificial interference patterns in which only one mode with a momentum k = 27 /A
is populated. If L < A the phase only varies slowly within L, resulting in a high contrast of the
integrated line profile. The only consequence is a shift of the mean relative phase §(L). If, however,
L > ), phase fluctuations within L lead to a decrease in the integrated contrast. Figure from [5, 9]

decay of contrast thus is a direct visualization of the multimode nature of 1D Bose
gases [10, 15].

The individual sinusoidal waves are populated with a certain amplitude, which is
given by the phase variance (|ék ()|%). Over time, the dephasing of the excitations
leads to an increase (decrease) of the amplitude of the phase (density) fluctuations.
This results in a progressive randomization of the relative phase field 6(z). Eventu-
ally, the energy associated with the phase fluctuations equilibrates with the energy
associated with the density fluctuations and the system reaches a steady state.

The phase variance is of utmost importance for the understanding of the dynam-
ics, as it allows the direct calculation of the two-point phase correlation function
using Eq. 1.81. We find that the state resulting after a dephasing of all modes has
exponentially decaying correlations

C(z,7) = exp(— |z — 2|/ Xetp), 4.9

resembling the thermal equilibrium state. However, it decays with an effective coher-
ence length \egr = hznlD /mkpTesr instead of the thermal coherence length. This
effective coherence length is connected to an effective temperature

8n1D

kB Tetr = B

(4.10)

This effective temperature is determined by the initial conditions of the splitting. It
corresponds to the energy (I:I @ =0) = %%(luk (0)|2) which is initially stored
in each mode via the density fluctuations (Eq.4.4). Note that this initial energy is
independent of k, which means the splitting equally distributes energy among the
excitations [7, 11]. Together with the dephasing this emulates thermal statistics in
the steady state.
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Fig. 4.9 Scaling laws for the effective temperature. a Measuring the effective temperature for a
large set of densities we verify that Tif = gnip/2. b Independence of the effective temperature
from the temperature of the initial gas. Figure adapted from [4, 5]

The two-point correlation function as well as all higher-order correlation functions
are contained in the full distribution function (FDF) of the phase # and the contrast
C[11]

dX
P(C, 9)_]_[/ d/\ki i " e

. L2
x d (C(L)e’9<L> —nip / dre’o(r'{/\k’\"k})) : 4.11)
—L)2

where L denotes the integration length over which the system is probed.

A detailed discussion of the functional form of the FDF can be found in Ref. [9].
The distribution of the phase is investigated in Refs. [10, 15]. Here, we study the
distribution of the mean contrast squared P (C?). As shown in Fig. 4.5, the description
of Eq.4.11 is in very good agreement with the experimental data for all times and
length scales that were investigated. As the two-point correlation function, the FDFs
approach a thermal form with an effective temperature, once the excitations have
dephased [18, 21].

Although it is not the thermal equilibrium state, the quasi-steady state still shows
thermal properties in all even correlation functions. This can be further elaborated
by fitting the experimental data with the theoretically expected shape for a thermal
equilibrium state of a certain temperature. For the experimentally prepared thermal
equilibrium state this procedure yields, as expected, a temperature which corresponds
to the temperature measured independently using the density ripples. In contrast
to this, the quasi-steady state reveals thermal FDFs corresponding to the effective
temperature Tefr, which can be significantly lower than the temperature of the system.
For the data presented in Fig. 4.5, we find Teif = 14 nK, almost an order of magnitude
lower than the temperature of the initial gas 7;;, = 100 nK. Repeating the experiment
for different initial densities and temperatures allows the confirmation of the scaling
properties of the effective temperature (Eq.4.10) for a wide range of parameters. The
results are shown in Fig. 4.9 and provide further evidence for our theoretical analysis
of the dynamics.
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To summarize: the system relaxes to a non-thermal steady state. This non-thermal
steady state already exhibits pronounced thermal features. The mechanism leading
to this state is a simple dephasing of the non-interacting excitations of the system.

Such thermal-like non-equilibrium states are called prethermalized states. They
have first been predicted to explain the unexpected results in heavy-ion collision
experiments, where the reaction products appear to be in equilibrium long before
this is physically possible [22, 23]. It has further been suggested that they play a role
in the description of the early, inflationary phase of the universe [24-26] and in many
solid-state systems [27-30]. The experiments with ultracold atoms presented in this
thesis and in Refs. [4-6, 9, 10] are the first direct observation of such a state. The
similarities of prethermalized states in different types of systems might play a central
role in the establishment of a general framework for non-equilibrium dynamics.

A direct connection can also be made to the relaxation dynamics of integrable
systems. As discussed in Chap. 3, such systems are predicted to relax to a generalized
Gibbs ensemble (GGE). In contrast to the thermal equilibrium state, where only one
temperature is needed to describe the system, integrable systems should exhibit more
temperatures. These additional temperatures are directly connected to the conserved
quantities of the integrable system. Our observation of different temperatures for
the anti-symmetric modes and symmetric modes thus leads us to conjecture that the
observed state can be described by a GGE. A detailed investigation of this subject is
presented in Chap. 6.

4.4 Approximate Description Using an Ornstein-Uhlenbeck
Process

The derivation of the analytical result for the FDFs (Eq.4.11) is mathematically
demanding as, in principle, an infinite number of even correlation functions has
to be calculated [21]. However, a simple approximate description can be found by
identifying analogies with tunnel coupled gases in equilibrium. This complemen-
tary approach was developed by Igor Mazets and is based on an effective classical
field model [6]. It provides valuable insights into the correlation properties of the
non-equilibrium states, is numerically very efficient, and enables a simple mod-
eling of the technical aspects of the experimental setup. It is directly based on the
Ornstein-Uhlenbeck description that was introduced in Sects. 1.4.6 and 1.5.2 to study
equilibrium properties of 1D gases [31-33], providing a straightforward link between
equilibrium and non-equilibrium dynamics.

In this model, the operators 7 and O describing density and phase fluctuations,
respectively, are approximated using classical fields v and 6. The equations of
motion for these fields describe two coupled harmonic oscillators [34, 35]

hik? : 1 (B3
Uy = nip (%) Ok, Op = — (— + chz) Vk. 4.12)
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Neglecting the small initial phase fluctuations, their solution yields

21,2 2
bu(r) = _ K/ Cm) A 2me” o o), (4.13)
niphwg

where the eigenfrequency of a mode with momentum k is given by

hk? hk?  2mc?
g, — 2 ~
, \/(2_111) (Z_m + h ) =cky/1+ fhk2/4 ~ ck. (4.14)

Here, &, denotes the healing length and we have used the long-wavelength approxi-
mation k < fh_l in the last step. This yields an expression for the phase variance that
is identical to the result obtained in Eq.4.6. As already described above, the initial
high density fluctuations periodically turn into phase fluctuations and dephase, which
leads to the observed decrease in interference contrast. For the time-evolution of the
phase correlation function we find

&' sin?
C(Z,t):exp’ —2/h dkm[l—cos(ld)]]
0

Tnipéik?
2mc?t 1 z 1=
= — =22 t o)
exp[ nK |: ( th )+ et (fh 2)
s A e — ey - i 2 s qeer 126
2 2t | h 2 2ct| h ’
(4.15)

where K®) = 7nipé&, is the Luttinger liquid parameter for a single gas, E(x) =
(cosx — 1)/x + Si(x) and Si(x) = f(f dy y_1 sin(y) is the sine integral.

If we are not interested in details of the correlation function behavior on the exper-
imentally unresolved length scale Z < &, we can simultaneously assume & let > 1,

Z§h_1 > 1, and |2ct — Z|§h_1 > 1. In this limit we obtain

exp[—7z/RQK9&)], 0<Z <2ct

exp[—mmc?t /(hK ®))], 7> 2ct. (4.16)

Cz, 1) = [

We see from Eq. 4.16 that the phase correlations first decrease exponentially and then
stabilize at a certain level. The crossover between exponential decrease and constant
values of C(Z, t) are time-dependent.

The essence of the approach is to compare Eq.4.16 to its counterpart C;(Z)
(Eq. 1.88) in the stationary regime of two tunnel-coupled quasi-condensates at finite
temperature 7 [36]. This comparison leads to the conclusion that the time-dependent
correlation function C(z, t) during the dephasing emulates that of a coupled equi-
librium system with the effective temperature and effective time-dependent phase-
locking length
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Tet = —. 157 (1) = 2et. 4.17)
2kg

A quasi-steady state is reached on a timescale ¢ > 7, where the typical evolution
time is[12]

K® RK®) 2
P K6 PKTT_ minG 4.18)
C

e mmc

For the parameters of the dataset shown in Fig.4.10 we find 7 ~ Sms, in good
agreement with our experimental observations that the steady state is reached for
t = 10ms. The effective length scale is directly related to an effective coupling
Jegs(t) = h/4m ljﬁ(t)z. In the limit # > 7 the effective coupling vanishes and
we recover the prethermalized state studied in the previous section. Although the
system is still far from equilibrium, it appears thermal-like and can be characterized
by an effective temperature 7T¢r, which is independent of the initial temperature of
the gas. In particular, symmetric and anti-symmetric degrees of freedom have not
yet equilibrated, but all dynamics can be attributed to dephasing within the relative
degrees of freedom [4].

In the approach to the prethermalized state, liff plays the role of a characteristic
length scale over which the system forgets the initial correlations for a given evolution
time. The scaling of ‘jff is that of a light cone [7, 37-40], reflecting that correlations
in this many-body quantum system spread with a finite velocity given by the speed of
sound. In Chap. 5 the first direct experimental observation of such a light-cone-like
emergence of thermal correlations is presented.

The typical correlation length reached in the prethermalized state is

2K(S)§h

Aeff = 2¢7 = = A7 (Tefr).- (4.19)

For our typical parameters Aefr >> A7, which corresponds to much higher correlations
than expected in thermal equilibrium [15]. This can be interpreted as a signature for
the strong memory of the initial state that is present in the prethermalized state.

The effective model enables the simulation of the FDFs for any evolution time ¢
and any sampling length greater then the healing length using an Ornstein-Uhlenbeck
stochastic process that develops in space, along the major axis of the trap (see also
Sect. 1.4.6). In our case, the ratio Tefr/n1p defines the diffusion, and the effective
inter-well coupling provides the restoring force. To construct the FDFs, we use the
exact updating formula Eq. 1.90 to simulate individual phase profiles [41]. Proper-
ties of the experimental setup, such as finite imaging resolution, trapping potential
and time-of-flight expansion are directly taken into account in this procedure [14].
A statistical analysis yields the FDFs. The method is computationally fast and effi-
cient, and especially suited for finite-size atomic clouds. In Fig.4.10 we compare
the results of the Ornstein-Uhlenbeck simulation to our experimental data. We find
very good agreement for all length scales and evolution times probed, both for the
non-equilibrium and the equilibrium cases.
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Fig. 4.10 Time evolution of the full distribution functions compared to the classical field model. a
The experimental full distribution functions (FDFs) of squared contrast C (L)? / (C2) (bars) are well
described by the effective Ohrnstein-Uhlenbeck model described in the text (solid line). Compared
to the Luttinger liquid calculation presented in Fig. 4.5, this model allows for a more simple approx-
imate description of the dynamics. Shaded areas denote the statistical uncertainty corresponding to
the 170 samples used in the experimental data. b Typical equilibrium FDFs measured by splitting
a thermal gas and creating two completely independent quasi-condensates. The strong difference
in shape of the thermal FDFs and the observed non-equilibrium steady state directly demonstrates
that this steady state is not thermal equilibrium. Figure from [6]

4.5 Dynamics Beyond Prethermalization

In classical mechanics the question of near-integrability is well-defined by the
Kolmogorow-Arnold-Moser (KAM) theorem. This theorem states that an integrable
system will be restricted to a region of phase space which is defined by its conserved
quantities, even if these conserved quantities are only approximately realized. In
contrast to that, in quantum mechanics, neither the definition of integrability, nor the
relaxation of generic integrable systems are properly understood (see Chap.3). To
gain a deeper understanding, it is thus insightful to study quantum systems where the


http://dx.doi.org/10.1007/978-3-319-18564-4_3

4.5 Dynamics Beyond Prethermalization 91

conserved quantities are perturbed. The general belief is that the resulting dynamics
will strongly depend on the type of perturbation.

In Sect. 4.3 we have demonstrated that the 1D Bose gases realized in experiment
do not relax to thermal equilibrium. The behavior is very closely connected to the
integrability of the Lieb-Liniger gas or, equivalently, the integrability of the Luttinger
liquid as the low-energy limit of the Lieb-Liniger gas. However, the 1D Bose gas
realized in our experiments is only nearly-integrable, most notably, because radial
trapping states can affect the 1D dynamics.

Ithas been conjectured that in this case the observed prethermalized state is only an
intermediate steady state on the way to thermal equilibrium, its lifetime being directly
related to the degree of integrability breaking [42, 43]. Alternatively, also the opposite
have been suggested, namely that the quasi-particles of the experimentally realized
1D Bose gas could be unaffected by the radial states [44]. Thus, a natural question
to study is how long the prethermalized state will persist. A detailed discussion of
the measurements that are presented in the following can be found in the thesis of
Maximilian Kuhnert [10].

To study this situation, we follow the same experimental procedure as before but
let the system evolve for longer evolution times in the double-well trap. The coherent
splitting process initializes the system with different energies in the symmetric and
anti-symmetric modes. Thermalization requires an equilibration of symmetric and
anti-symmetric modes, which would manifest in a rise of the initially very small
effective temperature of the prethermalized state. Microscopically, this corresponds
to the relaxation of the momentum distribution to a Bose-Einstein distribution.

The dynamical values of T, () are extracted by fitting the mean squared contrast
(C%(L)) with the prediction of Eq. 1.87 [15]. From the result of this fit, a correlation
length and thus a temperature can be obtained. Similar results can be found by
studying the corresponding FDFs.

Before studying the raise of Tefr(¢), it is essential to characterize technical heat-
ing that is caused by fluctuations of the experimental setup. This is possible using
measurements with equilibrium gases. In the double-well trap we find this heating
to be negligible for the time scales of the experiments [10]. The maximum evolution
times ¢ ~ (200-300) ms are determined by a constant loss of atoms, which is caused
by background gas collisions and three-body losses [10]. We note that previous mea-
surements presented in Ref. [4] detected a slow heating of the equilibrium gases with
time. These experiments were affected by a higher technical noise in the experiment,
as well as a clock offset between the RF source and the control computer. This caused
the ideal global phase for the switch-off (see Fig. 2.13) to change with evolution time,
leading to a loss of contrast with time, which mimicked heating.

In Fig.4.11 we present the evolution of T¢¢r (¢) following the splitting of the initial
gas. For cold initial temperatures we find almost no change of the effective tempera-
ture. From this, we conclude that the integrability breaking mechanisms play a minor
role for the dynamics and that the prethermalized state is very stable. Notably, we do
not observe any rephasing of the excitations, which is predicted in the homogeneous
theory due to the periodic boundary conditions (see Fig.4.7). The reason for this is
that the spectrum in the trapped system is much more complex, leading to rephasing
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Fig. 4.11 Long-time behavior of the effective temperature. Evolution of the effective temperature
Tets (¢) of the anti-symmetric degrees of freedom (squares) for various initial temperatures 7i, =
(43+6) nK (a), (69£11) nK(b), (1154+20) nK (¢), and (320+50) nK (d). The radial trap frequency
corresponds to ~70nK. The data reveals a relaxation to a final temperature Tg, ~ [Tin + Tefr (0)]/2.
Solid lines represent fits. Figure adapted from [10]

that is only incomplete and happens at much longer evolution times than predicted
from the simplified homogeneous model [20].

The observations change drastically when the temperature of the initial gas is
increased above the radial trapping frequency kpTin, > hw] . As a consequence, a
significant increase of T (¢) with time can be observed. This eventually leads to a
second steady state which appears to be characterized by the temperature

~ Tin + Tesr (0)
Tﬁn ~ f.

(4.20)
This temperature describes a situation where the initially different energies of the
symmetric and anti-symmetric degrees of freedom have equilibrated [10]. It thus cor-
responds to the value that is expected in thermal equilibrium. A possible explanation
for the system’s thermalization is provided by the rate with which T4, is reached.
For the data presented in Fig.4.11, one possible explanation for the increase in
temperature is the scattering of phonons with highly-energetic particles from the
radially excited states [45]. In contrast to the simple head-on collisions that are usu-
ally associated with two-body scattering processes in 1D, these collisions can lead
to a mixing of the momentum distribution. They become important as soon as the
thermal energy is high enough to populate radially excited states. For temperatures
below the radial trapping frequency they are exponentially suppressed. However,
another possible explanation for the observations are nonlinear processes which go
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beyond the Luttinger description, but still remain integrable [46]. We note that other
predicted integrability breaking processes are either excluded by the data [44, 47],
or are negligible for our parameters [48, 49].

Assuming two completely independent gases once the system has relaxed, we can
also use density ripples to measure the temperature of the system. As for the relative
degrees of freedom we find a temperature 7§, demonstrating complete equilibration
of the system. However, more detailed studies, both theoretically and experimentally,
are needed to reveal the detailed dynamics of the relaxation process. Importantly,
the emergence of thermal equilibrium can only indirectly be concluded from the
observed equilibration. While it appears obvious that the new scattering channels or
nonlinear processes lead to a change in the momentum distribution of the particles,
and thus to relaxation to thermal equilibrium, we will show in Chap.7 how also
integrable dephasing of the two gases can lead to an equilibrated state without any
change in the momentum distribution.
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Chapter 5
Local Emergence of Thermal Correlations

Despite important theoretical effort [ 1], no generic framework exists yet to understand
when and how an isolated quantum system relaxes to a steady state. Regarding the
question of how, it has been conjectured [2, 3] that equilibration must occur on a
local scale in systems where correlations between distant points can only establish
at a finite speed. In this chapter, we provide the first experimental observation of this
local equilibration hypothesis. As in the previous chapter, we quench a 1D Bose gas
by coherently splitting it into two parts. By monitoring the phase coherence between
the two parts we observe that the thermal correlations of the prethermalized state [4,
5] emerge locally in their final form and propagate through the system in a light-
cone-like evolution. Our results underline the close link between the propagation of
correlations [2, 3, 6, 7] and relaxation processes in quantum many-body systems.

This chapter is based on and also uses parts of Refs. [8, 9].

e T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J. Schmiedmayer
Local emergence of thermal correlations in an isolated
quantum many-body system
Nature Phys. 9, 640-643 (2013), arXiv:1305.3708

e R. Geiger, T. Langen, I. Mazets, and J. Schmiedmayer
Local relaxation and light-cone-like propagation of correlations
in a trapped 1D Bose gas
New J. Phys. 16, 053034 (2014), arXiv:1312.7568

5.1 The Local Relaxation Conjecture

As outlined in Chap. 3, it has been theoretically suggested that the relaxation in
generic isolated quantum many-body systems proceeds through the dephasing of
the quantum states populated at the onset of the non-equilibrium evolution [10, 11].
It is generally believed that this dynamically leads to relaxed states which can be
well described either by the usual thermodynamical ensembles or by generalized
© Springer International Publishing Switzerland 2015 97
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Gibbs ensembles which take into account dynamical constraints [12]. However, it
remains an open question how these relaxed states form dynamically, and in partic-
ular, whether they emerge gradually on a global scale, or appear locally and then
spread in space and time [3].

5.2 Experimental Results

The experimental procedure closely follows the one presented in Chap.4. We start
with a single 1D degenerate gas of 4000—12,000 atoms. The trap frequencies are
w) =21 x (2.1 £0.1)kHz and w, = 27 x (11 &£ 0.5) Hz. The realized range of
atom numbers thus corresponds to peak densities of n1p = 50-110 atoms/pm and
chemical potentials of p/h ~ 27 x (1.1 —2.5) kHz. The temperature T of the initial
gas is estimated using measurements of density fluctuations in time-of-flight [13,
14] and typically lies between 30 and 110 nK.

By applying RF fields via the two main RF wires on the chip, we rapidly transform
the initial harmonic trapping potential into a double well. This realizes the matter-
wave analogue of a coherent beam splitter [15]. To minimize longitudinal excitations
of the gas during the splitting, we either carry out the final evaporative cooling of
the atoms in a slightly dressed trap (Irr = 8 mA) or perform the first part of the
splitting ramp very slowly (ramp to Igr = 8 mA within 30 ms). An RF current
of Irr = 8mA produces a slightly anharmonic trap in the radial direction and a
harmonic longitudinal confinement of w, = 27 x (7£0.5) Hz, close to that of the final
double-well. Once in this trap, we linearly ramp up the RF current to /gy = 24 mA
within 12 ms to create the double-well. This procedure has the advantage that the
longitudinal trap frequency is not modified during the splitting. We observe this
to reduce spurious longitudinal excitations. The excitation of a breathing mode is
intrinsic to this splitting procedure, due to the halving of the atom number [16]. It
can be neglected on the timescale of the experiments presented in this chapter. A
more detailed investigation of the splitting process and its effect on the initial state
is described in Chap. 6.

The system is let to evolve in the double well for a variable time ¢, before the gases
are released by switching off the trapping potential. They expand and interfere after
a time-of-flight of 15.7 ms. The resulting interference pattern allows the extraction
of the relative phase 0(z,t) = oW (z, 1) — P (z, 1) for every pixel of the image,
along the length of the system (see Fig.5.1). Here ¢V (z, r) and $¥ (z, 1) are the
phase profiles of the two individual gases. Repeating this procedure many times for
each value of 7, we determine the two-point relative phase correlation function

CE=1z—27,1) =Re (fE@N-I0E 0y, 6D

This function measures the degree of correlation between the phases at two arbitrary
points z and 7/, separated by a distance z (Refs. [17, 18]). In contrast to the integrated
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Fig. 5.1 Characterizing the dynamics of correlations in a coherently split 1D Bose gas. a The
splitting process creates two 1D gases with almost identical longitudinal phase profiles ¢V (z) and
¢@ (z), corresponding to long-range phase coherence in the relative phase field 6(z) = ¢ (z) —
»? (z). The degree of relative phase correlations between two arbitrary points z and z’ along the
length of the system is characterized by the two-point correlation function C(z, ¢). Initially, it is close
to unity for any distance 7 = z — z’ between the points. Over time, this strongly phase-correlated
state relaxes towards a prethermalized state, characterized by thermal (exponentially decaying)
correlations. The aim of this study is to investigate how the thermal correlations locally emerge in
time. In the experiment, the relative phase field is probed via matter-wave interferometry between
the two gases. b, ¢ Show example interference pictures in the initial and in the prethermalized state,
respectively. In these pictures, the relative phase 6(z) is directly extracted from the local position
of the interference fringes. The phase correlation function is then calculated from an average over
~150 pictures

visibility of the interference pattern, which was used in the previous chapter to
identify the prethermalized state [5], the phase correlation function provides a local
and much more sensitive probe for the dynamics, and therefore is ideally suited to
study the propagation of correlations.

To calculate the phase correlation function from the fitted list of relative phases
0(z1), 0(z2), ..., we start at the center pixel with index / and compare it to the pixel
[+ 1 for a distance of 7 = opx. Here, opx denotes the size of a pixel. We then continue
to compare pixel / + 1 with pixel / — 1 for a distance of z = 2 x opx and so on:

CZ=o0p) = <ei9(zl)*i9(21+1)>
C(Z = 20px) = <ei0<zz+1)—ie(zl,l)>

C(z =30px) = <ei«9(z1_1)—i0(z1+2)> (5.2)
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This symmetric evaluation of the phase correlation function allows the study of larger
distances z by reducing noise and finite size effects that appear close to the edge of the
clouds. As the density changes very little in the center of the cloud, this procedure also
ensures that the shape of the phase correlation function typically changes weakly in
comparison to the one of an homogeneous system. Note that the trap still has a subtle
influence on the characteristic velocity with which the long-range phase coherence
decays in the system, as it changes the dispersion relation of the excitations compared
to the homogeneous case.

In 1D quantum systems fluctuations play an essential role. Consequently, a large
set of experimental runs is needed to evaluate the correlation function. In the exper-
iments, we typically perform 150 measurements for each value of 7. To estimate
the influence of the finite number of experimental realizations on the uncertainty of
the phase correlation function, we simulate single realizations using an Ornstein-
Uhlenbeck stochastic process with time-dependent effective parameters as intro-
duced in Sect.4.4. The results are presented in Fig.5.2, showing how the statistical
uncertainty on C(z) becomes more relevant as phase fluctuations develop in time.
We therefore neglect large evolution times ¢ >> 8 ms in the analysis of the dynamics.

Typical experimental data is presented in Fig.5.3a. Directly after the quench,
the phase correlation function C(z, ¢) is close to unity for any distance z. This is
a direct manifestation of the long-range phase coherence produced by the splitting
process. After a given evolution time 7, the phase correlation function decays expo-
nentially up to a characteristic distance z. and stays nearly constant afterwards:
C(z > Z¢,t) = C(Z¢, t). This means that beyond the distance z,. long-range phase
coherence is retained across the system. With longer evolution time, the position
of z. shifts to larger distances and the value of C(z > z, ) gradually decreases.

correlation function C(z)

0 1 1 1 1
0 20 4o 60 80 100
relative distance z=z-z" (um)

Fig. 5.2 Estimation of the influence of finite statistics. Evolution times increase from 0 to 10 ms in
steps of 1 ms from top to bottom. To calculate the phase correlation functions, 150 realizations are
used per evolution time. The statistical model is based on a stochastic process (see Sect. 4.4). Shaded
areas denote plus/minus one standard deviation. We observe that for evolution times above ~8 ms,
the statistical noise becomes comparable to the distance between the plateaus. Consequently, longer
evolution times are not taken into account in the analysis
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Fig. 5.3 Local emergence of thermal correlations. a Experimental phase correlation functions
C(z,t) (filled circles) compared to theoretical calculations (solid lines). From top to bottom, the
evolution time ¢ increases from 1 to 9 ms in steps of 1 ms. The bottom (green) line is the theoretical
correlation function of the prethermalized state. For each ¢, the constant values of C(z, t) at large
Z can be used to determine the crossover distance Z.(¢) up to which the system forgets the initial
long-range phase coherence (see Fig.5.4). b Position of the crossover distance z. as a function of
evolution time ¢, revealing the light-cone-like decay of correlations. The solid line is a linear fit,
the slope of which corresponds to twice the characteristic velocity of correlations. Inset schematic
visualization of the dynamics. The decay of correlations is characterized by a front moving with
a finite velocity: for a given time ¢, C(Z, t) is exponential (thermal) only up to the characteristic
distance Zz.(t). Beyond this horizon, long-range phase coherence is retained. In the experimental
data shown in (a), these sharp transitions are smeared out by the experimental imaging resolution.
Note that there is a finite uncertainty for the decoupling point where ¢t = 0 (see Sect.4.1). We find
best agreement between experiment and theory for a splitting point located 3.3 ms before the end
of the ramp. Note that the choice of this particular decoupling point does not affect the extracted
value for the characteristic velocity
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This evolution continues until the system reaches a quasi-steady state, where the
correlations decay exponentially throughout the entire system [19]. This prethermal-
ized state corresponds to the relaxed state of the 1D system [5, 12]. Our observation
that the exponentially decreasing parts of the dynamical phase correlation functions
match the exponential decay of the relaxed, prethermalized state for 7 < z., allows
us to conclude that equilibration occurs locally in our system.

Due to the limited resolution of the imaging system, the location of the correlation
front . = 2ct, which corresponds to a well-defined point in C(Z) in theory (see inset
of Fig.5.3), cannot be read off directly from the measured phase correlation functions.
Instead, we use the knowledge of the correlation function in the prethermalized state,
in conjunction with the observed level of long-range phase coherence remaining at
long distances, to determine the position of z.(¢). Figure 5.4 illustrates the details of
the extrapolation procedure.

The results are presented in Fig.5.3. We observe a clear linear scaling of the
position . = 2ct, characterizing the local decay of correlations with time. This
observation reveals that an arbitrary point in the gas loses its correlations with other
points up to a certain separation z., while long-range phase coherence persists outside
this horizon.

The experimental data thus show that the prethermalized state locally emerges in
a light-cone-like evolution, where ¢ plays the role of a characteristic velocity for the
propagation of correlations in the quantum many-body system. For the data presented
in Fig.5.3b, a linear fit yields a velocity of ¢ = 1.16 &£ 0.09 mm/s.

5.3 Theoretical Discussion

Light-cone-like effects in quantum many-body dynamics have been previously pre-
dicted using results from conformal field theory [2] and for 2D superfluids [20].
Similarly, it is known that some quantum spin models exhibit an intrinsic maximum
velocity [6] which limits the propagation of correlations and entanglement to an
effective light-cone [7, 21, 22]. It has been conjectured that this leads to a local
establishment of thermal properties [3].

The light-cone like emergence of thermal correlations which we observe in our
system, can be understood using a homogeneous Luttinger Liquid (LL) model that
effectively describes the interacting many-body system in terms of low-energy exci-
tations [23]. Within the LL model, these excitations are superpositions of phase and
density fluctuations, as described in Sect. 1.5.1 and Chap.4. They are characterized
by a linear dispersion relation wy = cglk|, with k being the momentum of the exci-
tation and cq the speed of sound, the latter defining the characteristic velocity in the
homogeneous system. For a given evolution time 7, the dephasing of the excitations
with different wavelengths A = 27/ k randomizes the relative phase field only up to
a characteristic distance z. = 2c¢pt. In a more mathematical formulation, the phase
correlation function can be writtenas C(z, 7, t) = exp(— % (AD, (t)z)). In the homo-
geneous limit, the local phase variance is given by (see Sect. 1.5.1 and Refs. [24-26])
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Fig. 5.4 Extraction of the light-cone-like evolution and estimation of the characteristic velocity.
a Due to the finite optical resolution the critical distance is extracted by an extrapolation method.
For each evolution time #, we consider the region where the correlation function is constant (hori-
zontal blue to red solid lines) and compute its average value (horizontal gray solid lines). We then
extrapolate this average value to smaller Z to obtain the intersection point z. with the fitted prether-
malized correlation function (exponentially decaying green solid line). To show the robustness of
this method against the particular choice of z values used in the averaging of the constant region, we
repeat this procedure for different shifts Zgpif; of the smallest point Zmin = 2cot + Zshife considered
for the averaging. The exact value for the speed of sound co used a priori for the starting points
does not have an influence on the results. b Resulting characteristic velocity for different Zgpif. As
soon as Zghife 1S large enough to neglect the effects of the finite imaging resolution, the result for ¢
settles to a constant value. The solid horizontal line denotes the deduced result for c, the shaded
area denotes its standard deviation

sm(wkt) _
(AB..(1)%) £K2 % — cos(kz)), (5.3)

with £ being the length of the system, k = 27n/L the momentum of the excitations
(n # Ointeger) and K the Luttinger parameter. The emergence of the sharp light-cone
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Fig. 5.5 Visualization of the light-cone condition. The relative phase of the system is randomized
by a superposition of many modes (solid lines). Initially, the contribution of all these modes grows
in amplitude (arrows), leading to a linear increase in the variance of the phase (bottom plot). For the
correlation function, this corresponds to the establishment of thermal correlations up to z.. Beyond
Ze = 2cot, modes with a wavelength larger than z, would be needed for a further randomization
of the phase. However, while these long-wavelength modes grow in amplitude for z > Z., modes
with shorter wavelength start to decrease again in amplitude. Overall, this leads to a constant phase
variance beyond z.. Parameters are ¢ = 1 mm/s and t = S ms.

condition can intuitively be understood as a consequence of the superposition of many
modes in the sum of Eq. 5.3. The situation is illustrated in Fig.5.5. For a given time ¢
and speed cp, short wavelength modes will grow in amplitude and linearly increase
the phase variance up to a distance z, = 2c¢of. Beyond that point the growth in
amplitude of longer wavelength modes with A > z. and the decrease in amplitude
of the shorter wavelength modes with A < Zz. exactly compensates, leading to a
constant phase variance.

The first term of the sum in Eq. 5.3 represents the growth and subsequent oscilla-
tions in the amplitude of the phase fluctuations as they get converted from the initial
density fluctuations. The factor 1/k? in the amplitude reflects the 1/k scaling of the
excitation occupation numbers associated with the equipartition of energy induced
by the fast splitting. The second term in the sum corresponds to the spatial fluctu-
ations. Equation 5.3 is the Fourier decomposition of a trapezoid with a siding edge
at z. = 2c¢ot, which explains the two step feature of the phase correlation function.
More rigorously, computing the derivative of the phase variance with respect to the
position z, we find

I(Ab(1)?)

< ~ O®Q2cot — 7), (5.4
0z
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where O (x) is the Heaviside step function. The phase thus randomizes as a function
of z with a constant rate, up to the point where 7 = 2¢y¢. Beyond that point, long-
range phase coherence is retained. The full time evolution of the phase variance and
its derivative is shown in Fig.5.6.

Alternatively, the excitations in the LL model can also be identified as pairs of
quasi-particles, which propagate in opposite directions with momenta k and —k,
respectively [2, 7]. This interpretation naturally leads to the light-cone condition,
as two points separated by z can establish thermal correlations if quasi-particles
originating from these points meet after a time t = z/2c¢.

In Fig.5.3a we compare the results of the LL calculation to our measured data,
taking into account the finite resolution of the imaging system. We find good agree-
ment, using independently measured experimental parameters as the input for the
theory. This quantitative agreement validates our interpretation of the observations
as the local emergence of thermal correlations.
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5.4 The Characteristic Velocity

When increasing the number of particles in our quantum many-body system, we
expect interaction effects to play a more important role, leading to a faster local
relaxation. In the homogeneous limit, this is captured by the scaling of the speed
of sound ¢p ~ /nip with the 1D density nip of each gas [27]. To investigate the
scaling of the characteristic velocity, we repeat the experiment for a varying number
of atoms N in the system. We observe the light-cone-like emergence of the thermal
correlations over the whole range of probed atom numbers (N ~ 4000-12,000). In
Fig.5.7 we show the corresponding evolution of the crossover distance z. for the
different datasets, from which we extract the respective characteristic velocities.

In the experimentally realized trapped system, the density varies along the length
of the gases, resulting in a spatially dependent speed of sound. Nevertheless, the
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Fig. 5.7 Evolution of the crossover distance z. for different densities. The light-cone-like emer-
gence of thermal correlations is observed over a large range of densities, revealing a clear scaling
of the characteristic velocity with density. This scaling is plotted in Fig.5.8
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Fig. 5.8 Scaling of the total atomnumber
characteristic velocity with 4000 8000 12000
particle number. The solid ' ’
red (dashed gray) line is the
calculated velocity of
correlations for a trapped
(homogeneous) system. The
peak densities are given for
each gas. Shaded areas
correspond to the uncertainty
on the measured trap
frequencies. Error bars
denote one standard
deviation

NG
N N
L) L)
Il Il

-
0
T

T

characteristic velocity (mm/s)
(2]

-
N
T

+

30 40 50 60 70 80
peak density (atoms/um)

-

superposition of many excitations still leads to a single characteristic velocity for
the dynamics, which is slightly reduced with respect to the homogeneous case. In
detail, we find that the time evolution of the relative phase variance can be well
approximated by [9] (see Eq. 1.75)

nog > s1n(wjt)

(800 (0) = 12

[f](z) - fj(Z )] (5.5)

j=1 J

The structure and interpretation of this expression is exactly the same as in the
homogeneous case (Eq.5.3), but the velocity characterizing the motion of the front
of correlations slightly differs. Numerically summing the terms of Eq. 5.5 we find
a velocity varying from 0.84 x cq to 0.90 x ¢ for the atom numbers probed in the
experiment. This velocity results from the interplay of many eigenstates, yielding a
non-trivial dependence on the atom number [9]. In Fig.5.8 we show the measured
characteristic velocities. A Luttinger liquid calculation including the trapping poten-
tial describes the experimental data within the experimental error, whereas a purely
homogeneous calculation clearly overestimates the characteristic velocity.

5.5 Conclusion

In our experiment, thermal correlations emerge locally in their final prethermal-
ized form. This supports the local relaxation hypothesis [3] and indicates a general
pathway for the emergence of classical properties in isolated quantum many-body
systems. In our system, interactions manifest themselves in excitations with a lin-
ear dispersion relation (in the homogeneous limit), resulting in a decay of quantum
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coherence which takes the form of an effective light cone. Whether this scenario holds
also for systems with non-linear dispersion relations, long-range interactions [28, 29]
or systems that are subject to disorder [30] remains a topic of intense study.
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Chapter 6

Experimental Observation of a Generalized
Gibbs Ensemble

The connection between the non-equilibrium dynamics of isolated quantum many-
body systems and the foundations of statistical mechanics is a fundamental open
question. A central role in the answer to this question is played by integrable systems
where conserved quantities strongly inhibit thermalization. Instead of relaxing to the
thermal equilibrium state that is described by the usual thermodynamical ensembles,
it has been conjectured that integrable systems relax to states that are described by
generalized Gibbs ensembles. Here, we tune the non-equilibrium state of an ultracold
one-dimensional Bose gas to demonstrate that the system indeed relaxes to such an
ensemble. This is verified through a detailed study of correlation functions up to 20th
order. The applicability of the generalized ensemble description for isolated quantum
many-body systems points to a natural emergence of classical statistical properties
from the microscopic unitary quantum evolution.
This chapter is based on and also uses parts of [1].

e T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert,
W. Rohringer, I.LE. Mazets, T. Gasenzer, and J. Schmiedmayer
Experimental observation of a generalized Gibbs ensemble
Science 348, 207 (2015), arXiv:1411.7185

6.1 The Generalized Gibbs Ensemble

The Lieb-Liniger gas of 1D bosons is one of the prototypical examples of an
integrable system in the quantum world. The existence of an exact Bethe Ansatz
solution [2, 3] leads to an infinite number of conserved quantities, which make it
impossible for a gas to forget the initial state of a non-equilibrium evolution. This
renders relaxation to thermal equilibrium, as it is described by the thermodynamical
ensembles of statistical mechanics, impossible [4]. As outlined in Chap. 3, it has been
suggested that the relaxed state of an integrable system can instead be described by
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a generalized Gibbs ensemble (GGE) [5]. The density matrix of this ensemble is

given by
.1 A
p= Eexp(—ZAan) (6.1)

m

where Z = Tr[exp(— 2, )\mim)] is the partition function, {fm} denotes a full set of
conserved quantities and the numbers )\, are Lagrange multipliers associated with
these conserved quantities (see also Eq.3.7). Here, m > 1 is an integer. In analogy
with the well-established procedures of statistical physics (see Sect. 1.2), the values of
the Lagrange multipliers are obtained by maximization of the system’s entropy under
the condition that the expectation values of the conserved quantities are fixed to their
initial values [6-9]. It is important to note that the emergence of such a maximum-
entropy state is not in contradiction to a unitary evolution according to quantum
mechanics. It rather reflects that the true quantum state is indistinguishable from the
maximum-entropy ensemble with respect to a set of measurable observables [4].

Recent experiments have shown that also the nearly-integrable 1D Bose gases that
are realized by confining clouds of ultracold atoms to strong optical [10] or magnetic
trapping potentials [11, 12] behave integrable for very long time scales, enabling
the detailed experimental investigation of integrable dynamics [13—16]. From the
theoretical side, the 1D Bose gas further has the favorable property that it remains
tractable away from equilibrium [17]. Here, we combine these benefits to investigate
the relaxation of a coherently split 1D Bose gas. To demonstrate the emergence of a
GGE, we prepare the system in different initial non-equilibrium states and observe
how they each relax to steady states that maximize entropy according to the initial
values of the conserved quantities.

6.2 Experimental Results

Our experiments start with a phase fluctuating 1D Bose gas which is prepared
and trapped using our standard procedure (see Sect.2.3.6). We initialize the non-
equilibrium dynamics by splitting this single gas coherently into two halves.
Information about the system is extracted using matter-wave interferometry
[14, 15, 18, 19]. This enables the time-resolved measurement of individual two-
point and higher-order N-point phase correlation functions

C(z1,22,.--,2N)
~ (W1 @)W @)Y (22)Wa(22) - W) (2n) W2 lzw))
~ <ei0(zl)—ie(zz)-l—-"—iﬁ(ZN))’ (62)
where z1, 22, ..., Zy are N coordinates along the length of the system, and 6(z) the

relative phase between the two halves. As we show in the following, these correlation
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Fig. 6.1 Relaxation dynamics of a coherently split 1D Bose gas with equal mode populations. Two-
point phase correlation functions C(z, z) for increasing evolution time, showing a characteristic
maximum on the diagonal and a light-cone-like decay of correlations away from the diagonal. The
center of the system is located at z = z' = 0. Color marks the amount of correlations between
0 and 1. The experimental observations (fop row) are in very good agreement with the theoretical
model assuming equal mode populations (bottom row). This demonstrates that the system can be
described by a single temperature

functions reveal detailed information about the dynamics and the steady states of
the system, as for example the relaxation of the system to a prethermalized state
[14, 20-22].

We start with the two-point correlation function C(z,z’) ~ (656(2)_i0(2/)). In
Chap. 5, this correlation function was studied in regimes where the system is approx-
imately translationally invariant [15, 23]. Here, more information about generic
many-body states is obtained by mapping the two-point phase correlation function
C(z, 7’) for any combination of z and z" along the length of the gas.

The time-evolution of the system is shown in Fig. 6.1. As every point in the system
is perfectly correlated with itself, the correlation functions exhibit a maximum on the
diagonal z; = z» for all times. Away from the diagonal, the system shows a light-
cone-like decay of correlations [15] leading to a steady state. From a theoretical point
of view, the emergence of this steady state is due to prethermalization [14, 21, 22,
24-26], which in the present case can be described as the dephasing of phononic
excitations [22, 26-28]. The occupation numbers l;,t,l;m of these excitations being
the conserved quantities Iy of the integrable model (see Sect. 1.5.1 for the theoretical
description).

Given these conserved quantities, we can directly calculate the Lagrange multi-
pliers for the GGE describing the prethermalized state. In the basis formed by the
Fock states of the excitations, the partition function of the GGE takes the form

z=[]> e =1] - i_Am : (6.3)
m

m n,>0
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Inverting the expression for the average occupation, Z,, = —Z 10 \n Z,the Lagrange
multipliers can be found from

Ay = In (1 +I,;1) . (6.4)

In terms of the excitation energies €,,, the \,, can be written as \,, = ;€. This
defines effective temperatures 3, for every excitation mode. In the relevant long-
wavelength limit of small m, we find the proportionality factor 3,,, & Gefr = 1/kp et
for the prethermalized state. This is independent of m and thus describes a state which,
while being a GGE in principle, is formally equivalent to the usual Gibbs ensemble
with a single temperature Teff.

To obtain direct experimental signatures that a GGE emerges, we modify the
splitting process such that the initial state exhibits different temperatures for different
excitation modes. The details of this procedure are as follows (see also Fig.4.3).
For the single-temperature data presented in Fig. 6.1, we linearly increased the RF
amplitude to 8 mA over a time of #{ = 30 ms. This was followed by a faster increase
to 25 mA in 12 ms. The excitation of a breathing mode is intrinsic to this splitting
procedure, due to the halving of the atom number. It can be neglected on the timescale
of the experiments presented in this chapter. For the data presented in the following,
the RF amplitude is increased linearly to the final 25 mA within a single 17 ms long
ramp (corresponding to 11 = 5 ms). For both RF ramp protocols the rapid decoupling
of the two gases happens approximately 3 ms before the end of the RF amplitude
ramp and within a period of less than 500 ps. After the splitting, the tunnel coupling
between the two gases is negligible.

The results of the modified splitting process are shown in Fig.6.2. In addition
to the maximum of correlations on the diagonal, we observe a pronounced second

3ms 5ms 7 ms (8 10ms!GGE\

20 0 20 20 0 20 -20 0 20 20 0 20
2' (um) z' (um)

S —

Fig. 6.2 Relaxation dynamics of a coherently split 1D Bose gas with different populations for
different modes. Two-point correlation functions C(z, z’) for increasing evolution time, showing
maxima on the diagonal and the anti-diagonal. The experimental observations (fop row) are in very
good agreement with the theoretical model (bottom row) assuming different occupation numbers
for the different modes. The occupation numbers used in this plot were obtained from a fit to the
steady state, their values are shown in Fig. 6.4. While they result in a reduced x? close to 1, the best
single-temperature model leads to a reduced x? ~ 25 and thus clearly fails to describe the data
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maximum on the anti-diagonal. This corresponds to enhanced correlations of the
points z; = —z3, which are located symmetrically around the center of the system.
Interestingly, investigating the correlation function for a fixed value of z reveals that
we have imprinted correlations outside of the relaxation light-cone which persist
during the dynamics.

Note that only the phase correlation function, but not the integrated interference
contrast as studied in the previous chapters, is sensitive enough to reveal the subtle
differences between the two splitting protocols. The reason for this is that the effect
of the two different temperatures on the contrast is only a small offset, which is
negligible for the given experimental precision. Studying the contrast one is thus not
able to observe the differences in the splitting process.

The enhanced correlations on the anti-diagonal are a direct consequence of an
increased (decreased) population of quasi-particle modes that are even (odd) under
a mirror-reflection with respect to the longitudinal trap center. Consequently, the
observations can be described, to a first approximation, by the above theoretical model
but with different temperatures, i.e. with 8, = 1/[kp(Tesr + AT)] for the even and
Bom—1 = 1/[kp(Tegr — AT)] for the odd modes, respectively. Fitting the experimental
data of the steady state with this model we find kg Tt = (0.64 £ 0.01) x p, AT =
(0.48 +0.01) x e and a reduced y2 ~ 6.

We observe that these properties of the GGE can be tuned by varying the speed
of the splitting ramp. In Fig. 6.3 we present the corresponding measurements of the

splitting time t, (ms)

Fig. 6.3 Temperatures of the relaxed states. To split the initial 1D Bose gas into two halves, the
amplitude of the dressing RF is increased in a two step ramp (see Inset). The longitudinal trap
frequency w; is rapidly changed from 27 x 11 Hz to 27 x 7.5 Hz during the first ramp segment,
while the radial trapping potential still is close to the initial harmonic one. Changing the length
t; of this segment modifies the populations of even and odd modes. This leads to temperatures
Bom = 1/lkp(Tegs + AT)] for the even modes and Bp,,—1 = 1/[kp(Tesr — AT)] for the odd modes,
where Tt is the temperature of the prethermalized state in the equally populated case. A fit to the
relaxed state after (10 £ 0.5) ms of evolution, allows the determination of the temperatures for even
and odd modes. For longer times #1, more complex states are created that cannot be described using
the simple two-temperature model anymore. The solid line is a guide to the eye
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temperatures for even and odd excitation modes as a function of the time scale #; of
the first ramp segment. In detail, an increasing ramp duration leads to a decreasing
imbalance between even and odd modes. In the limit of a very slow splitting we
recover the balanced situation studied in Fig.6.1.

Unraveling the exact microscopic mechanism of this preparation requires a
detailed simulation of the splitting process, including all details of the realistic chip
trap. It is currently under investigation by several theory groups. In the most simple
picture an infinitely fast splitting process can be understood as a binomial distri-
bution of the atoms into the two halves of the system, as described by Sect.4.3.
This simple picture leads to the emergence of a single temperature. However, it has
previously been shown that complex non-linearities can appear in realistic splitting
protocols [29]. They result in the creation of squeezed states where the binomial
atom number fluctuations predicted by the simple model are strongly reduced [30].
Our observation of multiple temperatures could be explained along these lines using
locally reduced atom number fluctuations at the edges of the cloud.

Due to the non-linearities in the splitting process, the resulting local atom num-
ber fluctuations have to be determined numerically. In this context, the splitting
process has previously been simulated using classical field methods or (Multi-Layer)
Multiconfigurational Time-Dependent Hartree for Bosons (MCTDHB) [29, 31, 32].
However, a full theoretical model including the longitudinal degree of freedom has so
far remained elusive. While classical fields can only account for thermal fluctuations
using stochastic methods, MCTDHB has been used to study the creation of squeezing
during the splitting of gases containing up to @(100) particles in zero dimensions.
A modeling of the experimental splitting process involving the 1D direction and
thousands of particles is far beyond reach of current computational resources. Con-
sequently, we understand our measurements as an important benchmark for future
simulations. Moreover, the observed tunability suggests that such a detailed model-
ing could in the future be used to find splitting protocols which prepare well-defined
initial states.

More detailed insights and a more accurate description of the experimental data are
found by fitting the steady state with the individual occupations of the lowest modes
as free parameters. We observe that including the first 9 modes in the fit and using one
common occupation number for all higher modes leads to a very good description
of the experimental data, with the reduced x? close to 1 (see Fig.6.2). The fact that
9 4+ 1 modes are needed is in good agreement with the decreasing contribution of
higher modes and the effect of the optical resolution on the phase variance (Eq.5.5).
As expected from our intuitive two-temperature model, the fitting confirms that the
occupation of even modes is strongly enhanced, whereas the occupation of odd modes
is reduced (see Fig. 6.4). Given these occupation numbers extracted from the steady
state, our theoretical model also describes the complete dynamics very well. This
clearly demonstrates that the different populations of the modes were imprinted onto
the system by the splitting quench and are conserved during the dynamics. Most
importantly, it provides a visualization of the fact that the conflicting descriptions in
terms of quantum mechanics (for the dynamics) and in terms of statistical physics
(for the steady state) can be reconciled. In contrast to that, a usual Gibbs ensemble
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mode occupations

1 2 3 4 5 6 7 8 9 m>9
mode index m

Fig. 6.4 Result of the fitting procedure. Occupation numbers 7, (in units of €,,/x) of the quasi-
particle modes with index m for a fit to the data from Fig. 6.2. The fitincludes the occupation numbers
of individual modes up to m = 9, while all higher modes are fit with one common occupation
number. The plot clearly reveals how the occupation of the lowest even (odd) modes are increased
(decreased) as compared to the single-temperature state from Fig.6.1, where n,, = 0.5 x p/ep,
(dashed line)

with just one temperature for all modes clearly fails to describe the data (best fit:
Tetr = (0.38 £ 0.01) x u, reduced X2 ~ 25).

Notably, our fitting results for the GGE exhibit strong correlations between the
different even modes and the different odd modes, respectively. This demonstrates
the difficulty in fully and independently determining the parameters of such com-
plex many-body states. In fact, any full tomography of all parameters would require
exponentially many measurements. The results thus clearly show the presence of a
GGE with at least two, but most likely many more temperatures.

Non-thermal properties of a relaxed quantum many-body system are in general
expected to be characterized by higher-order correlation functions. Also, the con-
served operators T entering the GGE description (6.1) of an integrable interacting
system will in general involve higher-order operator products [33, 34]. For the relaxed
states found in our system, the jm are assumed to be given, to a good approxima-
tion, by the quadratic quasi-particle number operators that describe the occupation
numbers of the excitations. Hence, the density operator is Gaussian, and any higher-
order correlation function is expected to separate into one- and two-point functions.
To provide further evidence for our theoretical description and the presence of a
Gaussian GGE, we show in Fig. 6.5 examples of the measured four-point, six-point,
ten-point and twenty-point correlation functions (see also Eq. 1.80). As the two-point
correlation functions, they are in very good agreement with the theoretical model.
In the future, such higher-order correlation functions could be used for a detailed
tomography of the dynamical quantum many-body states [35, 36].
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Fig. 6.5 Examples of higher-order correlation functions. a Four-point correlation functions
C(z,—2,-14,7), C(z,6,6,7'), and C(z,12,14,7). We compare the experimental corre-
lation function (EXP) with a correlation function calculated from experimental two-point
correlation functions (SEP) and our theoretical model (THEO), finding very good agreement.
b, ¢ Same for the six-point and ten-point correlation functions C(z, —10, 12,7, =2, —12),
C(z,-10,12,7/,6,6), C(z,—10,12,7,6,6), C(z,—12,2,7/,—12,—16,—12,7,—16, —14),
C(z,14,20,7,2,7',—12,-8,20,6) and C(z,—8,—10,2,7,2, —12,0, —4, —14). All coordi-
nates are given in pm and were randomly chosen to illustrate the high-dimensional data. First
deviations become visible only in even higher correlation functions, such as the twenty-point
correlation functions shown in (d). However, an Ornstein-Uhlenbeck simulation suggests that these
deviations can be very well explained by the finite statistics of the experimental data, which become
more important the higher the order of the correlation function (see also Fig. 5.2). In agreement with
this statement, the twenty-point correlation functions constructed from the lower-noise two-point
functions (SEP) still show very good agreement with theory
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We further experimentally confirm the separation

Ca(z1, 22,23, 24) = C12CzCaaCra
e C13Co4
C12€23C34C45C56C14C25C36C 16
C 9 b b b 9 - 6.5
6(21, 22, 23, 24, 25, 26) C1C23CasCaeC1sCos (6.5)

of the four-point, six-point and higher-order correlation functions into two-point cor-
relation functions. Here, we have used the notation C;; = C(z;, z;) for the two-point
correlation functions. This demonstrates the Gaussian nature of the fluctuations. Any
deviations from this separation could in the future be used to reveal and characterize
interactions between quasi-particles.

6.3 Conclusion

Our work raises the interesting question how many Lagrange multipliers are needed
to describe the relaxed state of a realistic integrable quantum system. Similar as
in classical mechanics, where N conserved quantities exist for a generic integrable
system with N degrees of freedom, integrability in quantum many-body systems
has been proposed to be characterized by the fact that the number of independent
local conserved quantities scales with the number of particles. Here, we conjecture
that far less Lagrange multipliers are needed to describe a quantum state to a given
precision [37]. This would have the appeal of a strong similarity to thermodynamics,
where also only few parameters are needed to describe the properties of a system
on macroscopic scales. In our specific case, given our observables and the optical
resolution of the experiment, already 9 4 1 parameters are sufficient to describe the
experimental data.

Addressing even more fundamental issues, the observed near-Gaussian GGE state
bears similarity to the approach of a Gaussian fixed point, i.e., a nearly scale-invariant
and at the same time non-interacting state of an equilibrium system. While for
the relaxed system higher-order terms beyond the Luttinger description vanish, we
observe a state at finite effective temperatures. This advocates universality of prether-
malized quantum many-body systems. Provided that the final equilibrium state which
the system will in principle reach at much greater times (see Sect. 4.5), is described
by a non-Gaussian GGE, the prethermalized Gaussian fixed point needs to be at least
partially repulsive.

In conclusion, we have observed direct experimental signatures for the
emergence of a generalized Gibbs state. This substantiates the importance of the
maximum entropy principle and strikingly visualizes the emergence of statistical
mechanics from a microscopic unitary quantum evolution. Moreover, the observed
tunability of the non-equilibrium states holds important prospects for precision
interferometry [29, 30].


http://dx.doi.org/10.1007/978-3-319-18564-4_4

120 6 Experimental Observation of a Generalized Gibbs Ensemble

References

1. T.Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I.E. Mazets,
T. Gasenzer, J. Schmiedmayer, Experimental observation of a generalized Gibbs ensemble.
Science 348, 207 (2015)

2. E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and
the ground state. Phys. Rev. 130, 1605-1616 (1963)

3. V.E. Korepin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge
University Press, Cambridge, 1997)

4. A.Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics
of closed interacting quantum systems. Rev. Mod. Phys. 83, 863-883 (2011)

5. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-
body quantum system: an ab initio study of the dynamics of the highly excited states of 1D
lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

6. R.Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics
(Springer, New York, 2007)

7. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (The University of
Illinois Press, Urbana, 1949)

8. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620-630 (1957)

9. E.T. Jaynes, Information theory and statistical mechanics. II. Phys. Rev. 108, 171-190 (1957)

10. M. Greiner, I. Bloch, O. Mandel, T.W. Hénsch, T. Esslinger, Exploring phase coherence in a
2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 8716, 160405 (2001)

11. J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Observations
of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. Phys.
Rev. Lett. 96, 130403 (2006)

12. P. Kriiger, S. Hofferberth, L.LE. Mazets, I. Lesanovsky, J. Schmiedmayer, Weakly interacting
Bose gas in the one-dimensional limit. Phys. Rev. Lett. 105, 265302 (2010)

13. T. Kinoshita, T. Wenger, D. Weiss, A quantum Newton’s cradle. Nature 440, 900-903 (2006)

14. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.LE. Mazets, D. Adu
Smith, E. Demler, J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum
system. Science 337, 1318-1322 (2012)

15. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Local emergence of thermal
correlations in an isolated quantum many-body system. Nat. Phys. 9, 640-643 (2013)

16. J.P.Ronzheimer, M. Schreiber, S. Braun, S.S. Hodgman, S. Langer, I.P. McCulloch, F. Heidrich-
Meisner, 1. Bloch, U. Schneider, Expansion dynamics of interacting bosons in homogeneous
lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013)

17. ML.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, One dimensional bosons: from
condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405-1466 (2011)

18. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph,
J. Schmiedmayer, P. Kruger, Matter-wave interferometry in a double well on an atom chip.
Nat. Phys. 1, 57-62 (2005)

19. M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith,
J. Schmiedmayer, Multimode dynamics and emergence of a characteristic length scale in a
one-dimensional quantum system. Phys. Rev. Lett. 110, 090405 (2013)

20. J. Berges, Sz. Borsanyi, C. Wetterich, Prethermalization. Phys. Rev. Lett. 93, 142002 (2004)

21. M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard
model. Phys. Rev. Lett. 103, 056403 (2009)

22. T.Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, The dynamics and prethermalization
of one-dimensional quantum systems probed through the full distributions of quantum noise.
New. J. Phys. 13, 073018 (2011)

23. T. Betz, S. Manz, R. Biicker, T. Berrada, C. Koller, G. Kazakov, I.E. Mazets, H.-P. Stimming,
A. Perrin, T. Schumm, J. Schmiedmayer, Two-point phase correlations of a one-dimensional
bosonic Josephson junction. Phys. Rev. Lett. 106, 020407 (2011)



References 121

24
25

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J. Berges, S. Borsanyi, C. Wetterich, Prethermalization. Phys. Rev. Lett. 93, 142002 (2004)
T. Gasenzer, J. Berges, M.G. Schmidt, M. Seco, Non-perturbative dynamical many-body theory
of a Bose-Einstein condensate. Phys. Rev. A 72, 063604 (2005)

J. Berges, T. Gasenzer, Quantum versus classical statistical dynamics of an ultracold Bose gas.
Phys. Rev. A 76, 033604 (2007)

R. Bistritzer, E. Altman, Intrinsic dephasing in one-dimensional ultracold atom interferometers.
Proc. Natl. Acad. Sci. 104, 9955 (2007)

T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Ramsey
interference in one-dimensional systems: the full distribution function of fringe contrast as a
probe of many-body dynamics. Phys. Rev. Lett. 104, 255302 (2010)

J. Grond, J. Schmiedmayer, U. Hohenester, Optimizing number squeezing when splitting a
mesoscopic condensate. Phys. Rev. A 79, 021603 (2009)

T. Berrada, S. Van Frank, R. Biicker, T. Schumm, J.-F. Schaff, J. Schmiedmayer, Integrated
Mach-Zehnder interferometer for Bose-Einstein condensates. Nat. Commun. 2077 (2013)
H.-D. Meyer, U. Manthe, L.S. Cederbaum, The multi-configurational time-dependent Hartree
approach. Chem. Phys. Lett. 165, 73-78 (1990)

0. Alon, A. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method
for bosons: many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

M. Kollar, M. Eckstein, Relaxation of a one-dimensional Mott insulator after an interaction
quench. Phys. Rev. A 78, 013626 (2008)

D.M. Gangardt, M. Pustilnik, Correlations in an expanding gas of hard-core bosons. Phys. Rev.
A 77, 041604 (2008)

R. Hiibener, A. Mari, J. Eisert, Wick’s theorem for matrix product states. Phys. Rev. Lett. 110,
040401 (2013)

A. Steffens, M. Friesdorf, T. Langen, B. Rauer, T. Schweigler, R. Hiibener, J. Schmiedmayer,
C.A. Riofrio, J. Eisert, Towards experimental quantum field tomography with ultracold atoms.
arXiv:1406.3632 (2014)

J.-S. Caux, FH.L. Essler, Time evolution of local observables after quenching to an integrable
model. Phys. Rev. Lett. 110, 257203 (2013)


http://arxiv.org/abs/1406.3632

Chapter 7
Relaxation Dynamics in an Imbalanced Pair
of One-Dimensional Bose Gases

We study the relaxation dynamics in a quenched pair of 1D Bose gases with atom
number imbalance. As demonstrated in the previous chapters, 1D Bose gases fol-
low completely integrable dynamics via dephasing of their many-body eigenstates.
This leads to equilibration, i.e. time-independence of the observables, and to states
which can be described by generalized Gibbs ensembles. For the imbalanced pair, we
observe that this relaxation strongly depends on the choice of observable. In particu-
lar, we find that the dephasing can mimic thermalization if suitable initial conditions
are imposed on the system. Furthermore, we explore the potential of imbalanced
1D Bose gases as a model system for the study of spin-charge dynamics within the
Luttinger liquid framework.

7.1 Quenching an Imbalanced Pair of One-Dimensional
Bose Gases

Non-equilibrium dynamics of isolated quantum systems play a central role in many
fields of physics [1]. An important question in this context is whether the unitary
evolution of an isolated quantum systems can lead to the emergence of thermal
properties [2, 3]. For example, the eigenstate thermalization hypothesis (ETH) con-
jectures that dephasing can lead to thermalization in systems with a chaotic classical
limit [4-6]. On the other hand, as we have seen in the previous chapters, so-called
integrable systems are expected not to thermalize at all [7]. However, this distinction
has to be taken with caution, as the notion of integrability is not clearly defined in
the quantum case so far [8].

Recently, cold atom experiments have enabled precise studies of such non-
equilibrium dynamics [9-14]. Here, we investigate the dynamics in a pair of
slightly atom number imbalanced 1D Bose gases. The 1D Bose gas is known as

© Springer International Publishing Switzerland 2015 123
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a prime example of an integrable system with strongly suppressed thermalization

[7, 9, 11, 15]. Nevertheless, we demonstrate that dephasing leads to a state that
closely resembles the thermal equilibrium state.

7.2 Experimental Results

Our experiment starts with a single phase-fluctuating 1D Bose gas that is prepared
on an atom chip. The gas contains approximately 3000—10,000 atoms at tunable tem-
peratures below 120 nK. The principle of the experiment is depicted in Fig.7.1. A
quench is realized by coherently splitting the initial gas into two uncoupled parts by
deforming the initial harmonic trapping potential into a tunable double-well potential.
Tilting the double-well potential slightly during the splitting, enables the realization
of a variable mean atom number imbalance AN /N = (NV — N@) /(N1 + N@)
between the two gases (see Fig.2.14). As the splitting process is coherent, the two
gases are created with almost perfectly correlated phase profiles. Over time, inter-
actions in the gas lead to a relaxation of these initial correlations. The dynamics
of this relaxation can be directly probed using matter-wave interferometry between

balanced imbalanced
W || Y
¢,(2) (2
B Ak e =
NI~ N —~——
¢,(2) ¢,
(a) . quantum fluctuations quantum fluctuations
relative phase
68(z)=¢(z)-¢(z !
(2) “1” ¢'z” coupling coupimg
negligible through A,
(b)

common phase

6'l2) = [8,(2) + 8,202

WA

thermal fluctuations thermal fluctuations

N N —

Fig. 7.1 Principle of the experiment. A single 1D Bose gas is coherently split into two parts. In the
experiment, the system is probed in terms of anti-symmetric (b) and symmetric (b) superpositions
of the eigenmodes in the individual parts. If the two parts have the same mean atom number, anti-
symmetric and symmetric degrees of freedom are almost perfectly decoupled, as demonstrated in
the previous chapters. If, however, the two parts have different mean atom numbers, the Hamiltonian
Hinix mixes the anti-symmetric and symmetric degrees of freedom, leading to an equilibration of
the two. Here, we investigate the relaxation dynamics under the influence of this mixing
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Fig.7.2 Dynamics of an imbalanced pair of 1D Bose gases. a Decay of the mean contrast squared for
L = 20, 30, 40, 60, 110 pm (points from fop to bottom) with a high mean imbalance AN /N = 8 %
and Ti, = (114 £ 23) nK. The experimental values have been corrected for the contrast reduction
that is due to imperfections of the imaging system (see Appendix and Refs. [22, 23]). After a very
rapid decay to the prethermalized state the system slowly relaxes further to a second steady state.
The relaxation is in good agreement with our theoretical model (solid lines, see text). Dashed lines
indicate the expected values for (|C |2(L)) without imbalance [22]. b Evolution of T (¢). For low
imbalance (blue, AN/N = 3%, Ty, = (30 & 3) nK) the system remains prethermalized for very
long evolution times ¢. For high imbalance (red, data from a) the system first prethermalizes and
then relaxes to a second steady-state. As shown in the theoretical analysis (see Sect.7.3), the system
is only approximately thermal before reaching this final steady state, and can thus only be assigned
an approximate effective temperature. The shaded areas describe an estimate for this approximate
effective temperature based on our theoretical model

the gases. The temperature of the initial gas is small enough such that thermalising
two-body collision [16] and other predicted thermalization mechanisms [17-20] can
be neglected during this relaxation (see Sect.4.5).

Preliminary results for the observed evolution of the mean interference contrast
squared (C?(L)) are plotted in Fig. 7.2a. They reveal two distinct time scales of relax-
ation. Initially, the contrast rapidly decreases in the approach to the prethermalized
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state. This is followed by a much slower decay to a second steady state. The effect
of the small difference in atom number between the two gases is thus not negligible,
but instead leads to completely new dynamics [21].

Due to the similarity of the observations with the behavior of the gas in the 1D/3D
crossover (see Sect.4.5), we characterize the dynamics by extracting an effective
temperature T (¢) of the dynamical states. To this end, the mean contrast squared
<C 2(L)) is fitted as a function of integration length L for various evolution times
up to 200 ms [22]. The results are presented in Fig. 7.2b.

For low atom number imbalance we observe the relaxation to a prethermalized
steady state. The stability of this state is revealed by a constant effective temper-
ature. However, for high atom number imbalance, the effective temperature rises
significantly before reaching a second steady state. In Fig. 7.3, we present the effec-
tive temperature of this final state for a set of measurements with varying initial
temperatures and densities. For a wide range of parameters we find

~ Tin + Tefr (0)

Tin )

(7.1)

This temperature corresponds exactly to the temperature that is expected in ther-
mal equilibrium. Here, Tj, is the temperature of the initial gas before splitting, Tetr (0)
is the temperature characterizing the additional amount of energy that is added to the
system by the coherent splitting process. From this measurement it thus seems as if
the system had thermalized.

120 Ll Ll Ll Ll
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Fig. 7.3 Final temperature of the relaxation. For a given initial temperature 7, and a given initial
effective temperature Tt (0), the measured final temperature of the anti-symmetric modes (red
points) reaches Tqn = [Tin + Tetr (0)]/2. This value coincides with the value expected in thermal
equilibrium (solid line). The shaded area is an estimate of the uncertainty for the theory prediction,
based on the experimental resolution, statistics and fitting precision [23]
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7.3 Theoretical Discussion and Interpretation

The dynamics of the system can be described by a low-energy Luttinger liquid
description. As the tilt of the potential to achieve the atom number imbalance is
much smaller than the chemical potential, we neglect it in the following and assume
two identical wells. As discussed in detail in Sect. 1.5.1, each of the two gases can in
this case be described by a Luttinger Hamiltonian H ), which contains the individual
density fluctuations 7A@ (z) and phase fluctuations é(i) (z). Here,i = 1, 2 denotes the
two gases. The total Hamiltonian is thus of the form

H=H"Y +H?. (7.2)

In the previous chapters, this situation was studied by transferring into symmetric
and anti-symmetric superpositions of the low-energy eigenstates of the individual
gases (Eq. 1.63). The reason for this is that the anti-symmetric degrees of freedom
can directly be studied in terms of the relative phase 6 (z) = ¢! —¢? and the matter-
wave interference contrast C'(L). The splitting initializes the symmetric degrees of
freedom with a high amount of energy, while the anti-symmetric degrees of freedom
are only populated by a small amount of energy. In this situation, thermalization is
revealed by an equilibration of symmetric and anti-symmetric degrees of freedom to
the temperature T, (see Sect.4.5).

The change of basis leads to the new Hamiltonian (see Eq. 1.66)

I:I = I:I(i) + I:I(Jr) + I:Imin (7~3)

where H™® describes the symmetric and anti-symmetric degrees of freedom, respec-
tively. The new term Hinix describes mixing between symmetric and anti-symmetric
degrees of freedom. Its explicit form is discussed in Sect. 1.5.1.

If the mean atom number in both gases is the same, I—AlmiX vanishes and only
processes beyond the Luttinger description can lead to equilibration, as studied in
Sect.4.5. However, in the presence of an atom number imbalance, anti-symmetric
and symmetric degrees of freedom are no longer an eigenbasis of the full Hamiltonian
and will mix under the influence of I:Imix. This mixing depends on the atom number
imbalance as well as on temperature.

To describe this situation we diagonalize H and H® independently [24].
The results of this diagonalization can then be transferred into the symmetric/anti-
symmetric basis to compare them with the experiment.

While halving the atom number, the splitting creates an almost identical copy of the
initial phase profile. As the thermal correlation length A7 is proportional to the ratio
of n1p/T this means that each part of the system contains thermal fluctuations that
are equivalent to a temperature 7j, /2. Following the classical field model introduced
in Sect. 4.4, the phase fluctuations in the gas i = 1, 2 take the form
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(16 (1)) = lu 0))?) sin?(cWkt)
n2k2n (1)2
<|¢(’)(0)| ) cos?(ckt), (7.4)

where n% denotes the densities in the individual gases.
With ng (0) = nro and ¢ (0) = ¢ro, the relative phase fluctuations are given by

(161 = (" — 921

m2cH2 W o s 0
=—m, sin?(cDke)(Ing ) 12) + Uy 12) cos? (¢ Vkr)
h#k“n 3
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m*c
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heksnip
2,02
m=c ) . - -
hk“n pnp
— cos(e k) cose@kn) (167505 + @i7 017 (7.5)

Assuming only a small difference in atom number between the two gases, we make
the following approximation

m2c(1)2 mzc(z)2 m2cM @ m2c?

1 ~ 2 ~ 1 (2 ~ 2
e e ey

; (7.6)

with 2n1p = ”(1}3) + n(z) and ¢ = [¢D + c(z)]/Z.

The initial cond1t10ns for the density fluctuations in the two gases are given by
(see Egs. 1.84 and 4.4)

kpT/2 nip
(ngg 12 ~ (lngg 12) ~ ——=nmip + — (7.7)
mc 2
«(1) (2) *), () kpT/2 nip
= np - —. 7.8
(”ko nk0> (ny, ) me2 np ) (7.8)

In these equations, the first term describes the thermal fluctuations originating
from the initial gas, while the second term describes the atomic shot noise thatis added
to the system in the splitting process. The minus sign in the second equation arises
from the anti-correlations of the shot noise (see Fig.4.6). The shot noise is directly
related to the effective temperature of the prethermalized state via kpTer(0) =
kpTefr = gnip/2.
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Similarly, we find for the phase fluctuations

(o) 12 ~ (162 1%)

kpT/2
~ 1 @D\ @ M\ _*B
~ois o) ~ (0P8l ) >~ (7.9)
4nip——
1D 45,
This yields
2 MkBT o o,
(16k1%) ~m2 sin“(c'kt)
+ MRBTS i (ckr) cos? (k)] 7.10)
m simm-(c COS (C ) s ( .

where ¢ = [¢(1 — ¢@]/2. This expression can be used to calculate the two-point
phase correlation function (see Eq.1.81). The result is presented in Fig.7.4, and
reveals two light-cones. With the integral

©dak1 ., 1
— i (ckt)[1 — cos(kz)] = 7 |z, (7.11)
0

which is valid for all z < 2c¢t within the light-cones, we can identify the respective
steady states of the system. Note that this integral gives the same result when the
sin?(ckt) term is replaced by cos?(ckt). Comparing the form of the steady states
with the phase correlation function in equilibrium (Eq. 1.85), one clearly observes
two thermal-like steady states. The first steady state is the prethermalized one, which
is characterized by the coherence length A7,;, = hnip /mkp Tt and the temperature
Tetr. It is reached with a fast light-cone characterized by the velocity c. The second
thermal state is reached on a timescale set by the much slower velocity ¢’. Its temper-
ature is given by T§,. Similar to the two-point correlation function, all higher-order
correlation functions relax to these steady states.

In the experiment, the finite optical resolution makes this second light-cone less
pronounced. Consequently, the correlation function can be approximated by an expo-
nential decay. This explains why the system appears thermal already during the sec-
ond stage of relaxation, although it is still relaxing. The corresponding approximate
temperature is in good agreement with the experimental observations (Fig.7.2b).
Moreover, Eq.1.78 can be used to calculate the mean contrast squared, which we
find to be in good agreement with our data, as demonstrated in Fig.7.2a.

Similar dynamics are obtained for the symmetric mode. Again, there is a rapid
phase of prethermalization, followed by a slow relaxation with the characteristic
velocity ¢’. Finally, this leads to a state with a temperature

T + Tt

(+)
Tﬁn = 2

(7.12)
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Fig. 7.4 Dynamics of the two-point phase correlation function in the theoretical model. a The
two-point phase correlation function reveals a fast light-cone-like decay to the prethermalized state
(red line), followed by a much slower second light-cone-like decay to the final relaxed state (green
line). Evolution times increase in steps of 1 ms from fop to bottom until the prethermalized state is
reached, followed by steps of 50 ms in the approach to the final state (blue lines). Parameters are
nip = 50/pum, AN/N = 2.5% and Ti, = 100 nK. While the characteristic velocity for the first
light-cone is given by the mean speed of sound ¢ = (c(V) 4-¢?®) /2 of the excitations in the individual
gases, the second light-cone is governed by their difference ¢’ = (¢ — ¢®)/2. Experimentally,
the first light-cone was probed in Chap. 5. Probing the second light-cone directly is precluded by the
finite statistics of the experiment (see Fig.5.2). Instead we calculate the mean contrast squared and
compare it to the data in Fig.7.2. b Taking the resolution of the imaging system into account, the
second light-cone becomes close to a exponential decay for all times. When probing the evolution
of the mean squared contrast as in Fig.7.2b, the system thus appears to be thermal at any point in
time during this second light-cone
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Thus, all degrees of freedom are described by the same temperature.
Calculating the phase correlation functions of the individual gases, one finds from
Eq.7.4

()2 mkpT mkpTert\ . o
= kt
(I "17) <2h2k2n1D 12K sin“(ckt)
MRl o2 (ckn) (7.13)
—F = COS™ (C .
2R2k2n1p

which describes a fast relaxation towards a temperature

T + Tegr

0 _
Tﬁn - 2

(7.14)

Thus, each gas relaxes to the temperature that is expected in thermal equilibrium.
However, only dephasing and no true thermalization has taken place. The time scale
for this equilibration of the individual gases is identical to the one for the prether-
malization of the symmetric and anti-symmetric degrees of freedom. This can be
understood from the fact that we add number fluctuations to each gas, bringing it
out of equilibrium. The time scale for the dephasing of these number fluctuations
corresponds exactly to the time scale for the prethermalization. While the individual
gases have already equilibrated, the total system evolves further, because the two
gases continue to dephase with respect to each other.

Finally, we note that this system can be interpreted as a tunable quantum simu-
lator for spin-charge physics within the Luttinger liquid framework [25, 26]. In this
case, the symmetric degrees of freedom can be identified with the charge degrees
of freedom H© of a fermionic spin chain, while the anti-symmetric degrees of
freedom play the role of the spin H® . If the two gases are prepared with identi-
cal mean atom numbers, spin and charge degrees of freedom are separated. In the
imbalanced case, the mixing term can be identified as a coupling between spin and
charge. In the system of two spatially separate 1D Bose gases the characteristic
velocities ¢5 = /gs.cn1p/m of spin and charge degrees of freedom are identical,
as gs = g. = g. Different velocities for spin and charge can be achieved by replacing
the two wells employed in this thesis by two internal atomic states |1) and |2) with
different interaction constants g1, g22 and g1» [27-30]. This situation would lead
to gs.c = 911 + 922 F 2g12 and thus different velocities for spin and charge. These
velocities could be studied experimentally by probing the propagation of the in situ
density fluctuations after a quench of the radial confinement [31, 32].

7.4 Conclusion

We have observed that the dephasing of an imbalanced pair of 1D Bose gases can
result in states which are, for all practical purposes, indistinguishable from thermal
equilibrium. However, this observation of an apparent thermalization relies on the
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thermal-like initial conditions that were imposed on the system by the coherent
splitting process. The system always retains a strong memory of the initial conditions
and thus has not truly reached thermal equilibrium. For example, if the system was
initialized with other initial conditions, such as the ones studied in Chap. 6, it would
equilibrate, but never appear thermal in its correlation functions [33]. This theoretical
interpretation is supported by our preliminary experimental observations and we
expect it to be insightful to experimentally study this effect and its competition with
true thermalization in systematic detail.

Interestingly, the observed dynamics depends strongly on the measurement. In
the experiment, fluctuations of the anti-symmetric degrees of freedom are probed.
These degrees of freedom exhibit a rapid relaxation with a single time scale if there
is no imbalance, and a relaxation with two distinct time scales if there is imbalance.
The same timescales govern the relaxation of the symmetric degrees of freedom. In
contrast to that, if the properties of a single gas were accessible in experiment, they
would already look completely relaxed after the first, rapid time scale. Whether there
is a general connection between the choice of measurement basis and the observed
relaxation dynamics will be an interesting topic for future research.
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Chapter 8
Conclusion and Outlook

The experiments that are presented in this thesis span a wide range of topics at the
very heart of the field of non-equilibrium dynamics.

The results demonstrate for the first time several characteristic aspects of these
dynamics, including the existence of a stable, thermal-like prethermalized state and
its dynamical, light-cone-like emergence. Furthermore, the connection of the prether-
malized state with generalized statistical ensembles and the subtle difference between
thermalization and equilibration are highlighted.

The possibility to manipulate isolated quantum systems in ways as the ones pre-
sented here, has sparked a strong theoretical interest in non-equilibrium phenomena.
This is further intensified by the striking similarities between the emergence of a
statistical description and the emergence of classicality. An interesting future lies
ahead, from possible applications of special non-equilibrium states to a profound
understanding of the nature of non-equilibrium dynamics.

Our results enable many promising possibilities to further investigate the non-
equilibrium dynamics of quantum many-body systems. Some of these possibilities
will be briefly presented in the following.

8.1 Cooling, Thermalization and Ultracold Mixtures in 1D

The experiments performed so far, indicate that the initial gas before the splitting is
thermal. On the other hand, we have shown that, at least for low temperatures, normal
thermalization mechanisms are strongly suppressed. A detailed study of the cooling
process and the nature of the resulting state is thus crucial. In 1D this cooling process
must proceed notably different than in 3D, not only because of the suppression of
thermalization, but also because of the important role played by the discrete level
structure of the trap [1, 2]. Several theoretical models have been put forward [3-5]
and are currently under experimental investigation.

A natural extension of this process, which could be investigated in our setup,
is the sympathetic cooling of 8’Rb together with bosonic 3°K or fermionic *°K.
© Springer International Publishing Switzerland 2015 135
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This is particularly interesting as the different masses and the different statistical
properties of bosons and fermions would strongly perturb the integrability of the
system. Furthermore, as discussed in Sect.2.2, the RF double-well potentials are
state- and species-selective, allowing for experiments where one species is split while
the other one is not [6]. Thus, it is possible to realize a non-equilibrium interferometer
with one species, which is coupled to a controllable bath realized by the other species.
This would create the opportunity to study the dynamics of open quantum systems.

8.2 Using Prethermalized States for Precision
Interferometry

The matter-wave interferometer presented in this thesis is also suitable for precision
interferometry. A key requirement for this application is a precise control of the
relative phase between the two arms of the interferometer. In a general interferometer,
interactions lead to a randomization of this relative phase, severely limiting the
measurement times and thus its sensitivity. Recent studies indicate that interactions in
low-dimensional quantum gases are favorable to achieve long measurement times [7].

However, as we have seen in this thesis, the multimode dynamics of a 1D gas gen-
erally lead to an additional loss of coherence. On the other hand, the prethermalized
state shows very robust coherence for very long times. This suggests that it could be
used as a resource for interferometry, greatly enhancing the possible measurement
times. On top of that, the interactions during the splitting process can be used to
introduce strong number squeezing, which could significantly improve the sensitive
of the interferometer [8—10]. The combination of both effects has been demonstrated
in the recent realization of an integrated Mach-Zehnder interferometer on an atom
chip [11].

The prerequisite to further exploit these effects is a thorough understanding of the
splitting process. A first step, the experimental modification of the initial state after
splitting, was already presented in Chap. 6. Further studies, both experimentally and
theoretically, are currently in progress.

8.3 From the Coherence Dynamics of Coupled 1D
Superfluids to Universality Away from Equilibrium

During the splitting the dynamics of the system is affected by a varying tunnel
coupling between the two gases. To understand the splitting, it is thus important
to understand the dynamics of tunnel-coupled gases. This situation, however, has
implications which go far beyond the understanding of the splitting process.

As we have seen in Chap. 2, symmetric and anti-symmetric modes remain decou-
pled for very long times during the dynamics. In the case of coupling between the
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two gases, the anti-symmetric modes can therefore be described by the quantum
Sine-Gordon Hamiltonian [12—14]

R h L2 A K O A 2 L]2 R
Hsg = ne dz | = 2+ — (—9(2)) —2n1DJ/ dz cos[v/26(z)).
2 J_zp K ™ \ 0z L2

The first part of this Hamiltonian is identical to the Luttinger Hamiltonian (Eq. 1.32).
The second part leads to a large range of new phenomena, with applications in
many different fields of physics [15-17]. In general, the relaxation mechanism and
the nature of the steady states in more complicated field theories are still largely
unknown [18]. As the Sine-Gordon model is arguably the simplest model with a
gapped spectrum there is thus a large interest in studying its properties [12, 14,
19-21]. New tools, like the higher-order correlation functions introduced in Chap. 6
could facilitate important insights into these properties.

For the parameters realized in our experiments a semi-classical approximation is
often applicable, where the cosine term is approximated by its first order expansion.
The corresponding excitation spectrum has a gapped and an ungapped branch, which
are degenerate for vanishing tunnel coupling [20]. Changing the tunnel coupling in
experiments thus allows the realization of various different quenches.

First, an experiment similar to the splitting of the gas in Chap.4 is performed,
but keeping a finite tunnel coupling at the end of the splitting process. This results
in initial conditions which are equivalent to the ones studied in the uncoupled case.
The ensuing dynamics, however, strongly depends on the value of the coupling, as
shown in Fig.8.1. In terms of the dispersion relation this corresponds to a quench
from an infinite gap to a finite one.

In a second experiment, an equilibrium situation in a double well with tunnel cou-
pling is prepared, before the tunnel coupling is turned off by splitting the equilibrium
gases further. This situation has the interesting property that two length scales exist
in the initial state, one given by the length scale of the tunnel coupling and one by
the thermal coherence length. In this procedure the quench connects a situation with
finite gap to one with zero gap, with the initial conditions corresponding to a thermal
state. Preliminary results are presented in Fig. 8.2.

Finally, two equilibrium gases are combined, realizing a quench from no gap
to finite gap. This experiment is particularly interesting, as the cosine term cannot
be expanded anymore, making the theoretical description very challenging. As the
relative coherence between the initial thermal gases is low because of thermal fluctu-
ations, combining them leads to a growth of the coherence with time. This experiment
holds the prospect for novel insights into one of the most fundamental question of
non-equilibrium dynamics: is there universality away from equilibrium? To under-
stand what this concept means and why it is so fundamental, we need to ask how
much can be learned from our experiments about other complex non-equilibrium
systems? While it is clearly most interesting to study non-equilibrium dynamics at
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such a clean and controllable level as in the experiments presented in this thesis, it is
as clear that experiments with a cold gas containing several 10 atoms can never sim-
ulate the whole complexity of the expanding early universe [22]. In equilibrium, such
quantum simulations of complex quantum many-body systems are possible [23-25].
The key to this is universality, which is rooted in the independence of the physical
laws from the microscopic details of a particular system. Such independence can
emerge when classical and quantum corrections are successively included across a
range of scales. Universality is well understood in thermal equilibrium, where its
mathematical foundations are given by the renormalization group [26]. For example,
at a continuous phase transition, characteristic scaling properties of microscopically
very different systems can be characterized in terms of a few universality classes
relating to common symmetry properties of the systems. No such understanding
exists away from equilibrium.

Universal behavior has been predicted for the build-up of coherence between the
two gases in the experiment described above. In the given case, the existence of
a universal function was conjectured, which, if measured at early evolution times
would allow the prediction of the dynamics for any point in time. The emergent
energy scale governing the dynamics in this system is predicted to be given by the
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Fig. 8.2 Dynamics of tunnel (a)
coupled quasi-condensates. 1
a Quench of a pair of gases
with small tunnel coupling J
in equilibrium to a situation
where J = 0. The dynamics
changes the low-coherence . 0.6
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b The same experiment for o
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gap A = (4J )", where n &~ 1/2 plays the role of a dynamical critical exponent for
the quantum Sine-Gordon model.

Observing such universality away from equilibrium would provide fundamentally
new insights into the properties of quantum many-body systems.
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Appendices

Appendix A: Simulation of Realistic Wire Traps

The idealized formulas introduced in Chap. 2 give a qualitative feeling for the differ-
ent trapping geometries that can be created using atom chips. To describe our specific
implementation, we employ a numerical calculation that includes the precise position
of each wire into the description. The resulting magnetic fields are used to calculate
the static, RWA and beyond RWA potentials.

Magnetic Fields of Extended Wires

To make this simulation an accurate description of the experiment it is essential
to take the finite size of the trapping wires into account. The magnetic field of a
rectangular wire of width W, height H and length L can be calculated from the
Biot-Savart law [1]

w/2 H/2 L/2 —
B(r):/ / / g0 J X @ 3r)’ )
—wp2J-upJ-Lp " ax lr —r'|
where j = I /(W H)e, denotes the current density and pq is the vacuum permeability.
The resulting field in the different spatial directions is given by [2]

© Springer International Publishing Switzerland 2015 141
T. Langen, Non-equilibrium Dynamics of One-Dimensional Bose Gases,
Springer Theses, DOI 10.1007/978-3-319-18564-4


http://dx.doi.org/10.1007/978-3-319-18564-4_2

142 Appendices

By = [~ f(L.H. W)+ f(~L. H.W) (A.2)
I
; :4:}‘;W [f(L,H, W)~ f(~L,H, W) (A.3)
+f(=L,—H, W) — f(L,—H, W)]
B, =0, (A.4)

with

f(L, W, H) = y4 arccoth G S x_ arccoth Shnks
,/x%-l—y_z,_—l—zg,_ x_,/xz—l—y_%_—l—zz_

— y_ arccoth % ) 4+ x_arccoth s
Jr2 i+ xoyJx2 +y3 4%
y— — /32 +y* -I-Z%r
+z+1In 5 > =
AETERVE Sl i

(AS5)

Here, x4 =x+W/2,yy =yt H/2andzy =zt L/2.

Floquet Formalism

To calculate the RF dressed state potentials beyond the rotating-wave approximation,
we use the Floquet formalism [3]. The principle of this formalism is to use a time-
independent Hamiltonian with infinite dimension, to describe the evolution under a
time-dependent Hamiltonian with finite dimension.

More specifically, one aims to solve a Schrodinger equation with the Hamiltonian

A = jiggr | Bs(r) F: + Bre cos(oret + 8) . | (A6)

describing the interaction of the atoms with a time-dependent RF field (see Eq.2.3).
Here, F, and F; are x and z direction of the total angular momentum operator F [4].
This Hamiltonian is periodic, H ) = H (t+T), with the period T = 27 /wgrF given
by the frequency of the RF radiation.

Similar to the Bloch theorem for the spatially periodic Hamiltonian of a crystal
lattice [5], the solution can be written as a superposition of functions @4 (7, 1) =
@, (r, t 4+ T) that are periodic in time. Here, mp = —2, ..., +2 labels the bare
atomic Zeeman levels. These functions are the eigenfunctions of the block-diagonal
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Floquet Hamiltonian HpF, the matrix elements of which are given by

(mp,n| [:IF |m/F’ m) —gnm +nhw8mF’m/F8n,m. (A7)

mp,my

Here H r]:z - denotes the kth Fourier component of the respective matrix element

F
of the time-dependent Hamiltonian. These Fourier components are given by

(BSFZ)mF,m/F k :O
Hr’;va,F ~ 1 (BREFO) o, €Xp(ik8) k = £1 (A.8)
0, k>1

In a fully quantized treatment [3], n and m can be identified with the definite, but
very large number of photons in the RF field, i.e. with the dressed-state manifolds
introduced in the main text. In practice, transitions between separated manifolds
quickly become negligible for increasing difference in photon number. The matrix
of the time-independent, infinite Hamiltonian béi r can thus be truncated at an order
around n — m = 10, which can easily be diagonalized numerically. This directly
yields the dressed state energy spectrum.

Our numerical implementation of this procedure, including the realistic wires
described above, is based on work by Aurélien Perrin. Exemplary results are shown
in Figs.2.4 and 2.12 of the main text.

Appendix B: Estimation of the Tunnel Coupling

For the coherent splitting process, as well as for the experiments with tunnel coupled
gases presented in the outlook, it is important to estimate the tunnel coupling between
the gases for a given double-well potential.

A first estimate can be obtained from a generic result for the tunneling fre-

quency [6, 7]
d? ( & )
wp Xwi—expl —— |, (A.9)
4aj, 4aj,

where d is the distance between the two wells, w is the trap frequency in a single
well and ap, = /h/mw] is the corresponding ground-state size. This frequency is
related to the tunnel coupling via J = ha)f, /4u [8].

For a more realistic description it is necessary to numerically calculate the eigen-
functions of the simulated double-well potential. However, the single mode solution
of the GPE is no longer a good description of the two gases in the double well. In-
stead, at least two modes are necessary. To construct these two modes one determines
the ground state of the Schrodinger equation in each single well [8]. The two lowest
states of the double-well system can be approximated by the symmetric and anti-
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symmetric superpositions of these eigenstates. To further refine them, they can be
used as starting values for an imaginary time-propagation using the Gross-Pitaevskii
equation. The two eigenstates are separated by a gap A, which directly corresponds
to the tunneling frequency. This two-mode approximation can be further improved by
including a nonlinear interaction term in the tunnel coupling energy [9] as described
and implemented in [8].

Comparing with the results in Chap. 2 and in Ref. [10], shows that this calculation
is very useful as an estimate of the tunnel coupling. For precise values, however, the
two-mode approximation is not accurate enough and the tunnel coupling has to be
obtained experimentally using measurements of phase correlation functions or using
Josephson oscillations.

Appendix C: Comparison of the Measured Mean Contrast
with Theory

The contrast observed in experiment is affected by the properties of the vertical imag-
ing system. To compare our results to theory, we model the imaging process using a
simulation of the imaging system that includes the measured point spread function,
diffraction effects from the chip surface, the finite size of the cloud in time-of-flight
and the photon shot noise [11-13]. The resulting maximum measurable contrast is
shown in Fig. A.1. These result are in qualitative agreement with an estimate based on
the modulation transfer function of the imaging system [12]. For the data presented
in Fig.7.2 we rescaled the data by the corresponding factor. Note that the position
of the fringes is independent of the maximal measurable contrast. Consequently, no
such rescaling is necessary for measurements of the local relative phase 6(z).

Fig. A.1 Maximum 100
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Appendix D: ¥Rb Data

Table A.1 Properties of 87Rb [14]

145

Natural isotopic abundance 27.83 %
Nuclear spin 1 3/2

Mass m 86.9902 u

D -transition wavelength in AD1 794.979 nm
vacuum

D;-transition wavelength in AD2 780.241 nm
vacuum

D -transition linewidth I'py 27 x 5.58 MHz
D;-transition linewidth I'po 27 x 6.01 MHz
D -transition strength /o1 0.3421
D;-transition strength Jo2 0.6956

doppler limit Tp = Al'/2kp Tp 146 pK

F =2, mp = 2 s-wave ag 98.99(2)ag ~ 5.238 nm
scattering length
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