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Preface

This book is aimed at presenting some recent results on global wellposedness of
nonlinear evolutionary fluid equations.

Most of the material of this book is based on the research carried out by
the authors and their collaborators in recent years. Some of the material has
been previously published only in original papers, while some of it has never been
published until now.

There are 8 chapters in this book. Chapter 1 concerns the global existence
and asymptotic behavior of solutions to a 1D magnetohydrodynamics (MHD) fluid
system. Chapter 2 concerns the global existence and exponential stability of so-
lutions to a 1D compressible and radiative MHD flow model. In Chapter 3 we
study the global existence and exponential stability of solutions to a 1D thermally
radiative MHD with self-gravitation. Chapter 4 investigates the global existence
of solutions for a 1D self-gravitating viscous radiative and reactive gas model.
Chapter 5 deals with the global existence and exponential stability of solutions to
a compressible viscous micropolar fluid model. Chapter 6 will deal with the global
existence and exponential stability of solutions to a compressible viscous microp-
olar fluid model. In Chapter 7 we establish the global existence and exponential
stability of solutions to a full non-Newtonian fluid model (p > 2), which is very
different from those Newtonian fluid models (p = 2) discussed in Chapters 3-5 in
Qin and Huang [102]. Moreover, Chapter 5 in Qin and Huang [102] mainly deals
with a model of Newtonian radiative fluids where the radiative effect is accounted
for with different constitutive relations from those in Chapter 7 in this book, where
only the non-Newtonian fluid without radiative effect is considered. To deal with
such a non-Newtonian model, we need to design more delicate and more compli-
cated estimates than those for the Newtonian model in Chapters 3-5 in Qin and
Huang [102]. Chapter 8 is a continuation of Chapter 1 in Qin and Huang [102],
in which the global existence of solutions in H* (i = 1,2,4) has been obtained. In
this chapter, we further establish the exponential stability of spherically symmet-
ric solutions for nonlinear non-autonomous compressible Navier-Stokes equations
based on the uniform estimates derived in Chapter 1 of Qin and Huang [102].

We sincerely hope that the reader will become familiar with the main ideas
and essence of the basic theories and methods for establishing the global well-
posedness and the asymptotic behavior of solutions for the models considered in
this book. We also hope that the reader can be stimulated by some ideas from

ix
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this book and undertake further study and research after having read the related
references and bibliographic comments in this book.
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Chapter 1

Global Existence and Asymptotic
Behavior of Solutions to the Cauchy

Problem for the 1D Compressible
Magnetohydrodynamic Fluid System

1.1 Main Results

In this chapter, we shall study the global existence and large-time behavior of
H'-global solutions (i = 1, 2, 4) to the 1D MHD compressible system. The MHD
system describes the interaction between intense magnetic fields and fluid conduc-
tors of electricity (see, e.g., [70]). The appearance of the electrically conducting
fields grants this system with physically theoretic background of astrophysics,
plasma physics, etc. In Lagrangian coordinates, the system can be written

Nt = Vg, (1.1.1)

vy = <A”I —pP- 1|lo|2> , (1.1.2)
n 2 m

Wy = <“W””) 1 b,, (1.1.3)
n /.
b

(nb); = (”n ) + W, (1.1.4)

oS 2 2 2
n /), U

where for (x,t) € R x Ry = (—00,400) X [0,400) is the Lagrangian mass co-
ordinate. The unknown quantities n, v, w € R%, b € R?, and e are the specific
volume, the longitudinal velocity, the transverse velocity, the transverse magnetic

© Springer Basel 2015 1
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2 Chapter 1. 1D Compressible Magnetohydrodynamic Fluid System

field and the internal energy, respectively. Moreover, the absolute temperature 6
appears as a variable in the pressure function P = P(n,6) and e = e(n, 0).
We consider (1.1.1)—(1.1.5) subject to the initial condition

(n(z,0),v(x,0),w(z,0),b(x,0),0(x,0))

= (no(z), vo(z), wo(x), bo(x),00(x)), Vo € R. (1.1.6)

Also, %(z,t) is the heat conductivity and A, p, v, etc., are also physical con-
stants, representing the various viscosity coefficients. In this chapter, we also ar-
range H' = W2 (i = 1,2,4), || - || and C**(R) to denote the norm in L?(R), and
the space of functions whose derivatives are Holder continuous with exponent «
and order of differentials from 0 to k, respectively.

Generally the Stefan-Bolzmann law (the radiative gas model) holds as follows:

P(n,0) = RO/n+ab*/3, e(n,0) = Cyo+ and*, (1.1.7)

where R, a and Cy are physical constants.

We also assume the physical constant Cy = 1, that &(x,t) is a positive
constant & for simplicity and that for ¢ = 1, 2, 3, 4 the positive constants C; are
dependent respectively on generic constants and the initial data’s H* norms, but
independent of time ¢t > 0.

We now state our main results in this chapter.

Theorem 1.1.1. Assume that no — 1, vo, Wo, bg — b, 0y — 0 € HYR) with
no(x), Oo(xz) > 0 on R. Define

€2 = Imo — nll3 + / (1+22)* [0 ) = m)? + 03(2) + [wo ()
R
+ [bo(x) — |2 + [bo(x) — b|* + (Bo(x) — 6)? + vi ()| da

where o > % is an arbitrary, but fized parameter. Then if eg < eg, where e € (0, 1],
the problem (1.1.1)~(1.1.7) has a unique H'-global solution (n(t), v(t), w(t), b(t),
0(t)) € L=(R4, H(R)) and the following estimates hold:

0<Cyt<nt,r) <Crt on RxRy,
0<Crt<O(t,x) <C;t on RxRy, (1.1.9)
() =0l 7 + @ +10) = 017 + [[w(®)I7: + [b(t) — bl

t
+/0 [HUCEHQ + ”Uﬂa”2 + Hgav”2 + HW1H2 + wa”2 + ”UMH2 + HGMH2
1 Waall® + [baall® + llvell? + 161 + [[we > + ||bt||2} (s)ds < Ci. (1.1.10)

Moreover, as t — +00,

1(n =n, v, w, b=b, 0 =0)(t)|[ L + [|(112; Ve, Wa, s, 02)(8)]] = 0. (1.1.11)



1.1. Main Results 3

Theorem 1.1.2. Assume that n9 — 1, v, Wo, bo — b, 8 — 6 € H*(R) and no(z) >
0,00(z) > 0 on R and other assumptions, same as those of Theorem 1.1.1, hold.
Then for any t > 0, the Cauchy problem (1.1.1)~(1.1.7) has a unique H?-global
solution (n(t), v(t), w(t), b(t), 0(t)) € L=(R, H*(R)) and the following estimate
holds:
() = nllzr + () = 1llFee + 0O + [l0©) 12 + [o@)]f -

v + w7 + [w(O)[F0 + [We@)]* + [b(t) = blff.

+1b(t) = b2 + [[be(t)[| + 10() — Ol|72 + 110(t) — Ol[F1. + [16:(2)]]

t
+/0 [Ilnml\%n F e ll7oe + el Fr + lvallFre + 1oz llfree + loell7n + [1Welle
I wallfree + wellFn + bl Fe + 1ballFe + [bellFn + 110217
SRR A ||9t|\;{p} (s)ds < Cs. (1.1.12)

Moreover, as t — +00,

e (@l er =+ [l (B[ oo + (o] + [we (@O + [ (B[] + [16:(£)]] — 0,
(1.1.13)

[(n=mn,v, w,b=Db, 8 —0)()|lwt e + [|(Nz, Vo, Wz, b, 0) ()] z2 — 0.
(1.1.14)

Theorem 1.1.3. Assume that 1o — 1o, vo, Wo, bg — b, 0o — 0 € H*(R) and no(z) >
0,6p(x) > 0 on R and that the other assumptions of Theorem 1.1.2 hold. Then for
any t > 0, the Cauchy problem (1.1.1)~(1.1.7) admits a unique H*-global solution
(n(t), v(t), w(t), b(t), 0(t)) € L= (R, HX(R)) and the following estimates hold:
In(8) = nll7s + () = 0llfys.ce + 0@ + lee ()70 + [10(E) 7
Fo®) s + loe®2 + loa @1 + WO s + [1WE) s + Iwe(®)]Ze
+ W (@®)” + [b(t) = bllFs + [b(t) = bl[fys.e + [be(t)ll72 + [bee(t)]]?
+116(2) — Oll37a + 116(2) — Ollys.00 + 10:(E) |72 + 1162 () |* < Cis, (1.1.15)

t
/0 [Hml\?{s A+ lmellFrs + el ez + Imeee|® + 02 e + vzl Fs + llvel 7
+ llveellZ + loallfvsce + Iwallzs + Iwellzs + IwellZn + Iwellfs
+ [IballFs + bellza + [beellFrs + balfyace + [16ull7a + 1617
+ [10eell 7 + Hozl\ﬁw,m} (s)ds < Cy. (1.1.16)
Moreover, as t — +00,

(M5 vas Way by 02) ()12 + Ine(®)][ s + [0 () Iz,
+ lve@®ll 2 + lloe() [wree + [We@) || 2 + [Wet) [
+ el a2 + [[be(®)llwroe + 10t 12 + [16:(E) [ wr.e — 0, (1.1.17)



4 Chapter 1. 1D Compressible Magnetohydrodynamic Fluid System

1eell e 4 vee ()] + [Wee ()] + e ()] + [10(2) ]
+ (N Vay Way by, 02) (&) |lw2.e — 0. (1.1.18)

Corollary 1.1.1 The H*-global solution (n(t), v(t), w(t), b(t), (¢
Theorem 1.1.3 is actually a classical solution. Precisely, (n(t), v(

0(t)) € C*2(R) and, as t — 400,
112 (2), 02 (2), W (8), Do (8), O ()] 2 + 06Dl 2.8
+ (e (t), Wi (), be(t), OO g + [l (Bl o3 = 0

)) obtained in
t

), w(t), b(),

(1.1.19)

1.2 Global Existence and Asymptotic Behavior in H'(R)

In this section, we shall establish global H! estimates for solutions (1, v, w, b, )
to the system. Here C' and C will stand for some generic constants (> 1) which
might depend on systematic constants such as R, etc., for the most.

At first, we suppose that

[0, 1) — 1l + [b(z, 1) — b| + 6(6)0(z,8) — 6] < min{, bl, 0}/2,  (1.2.1)
for all (z,t) € Rx Ry, where ¢(t) = min{t, 1}. It is obvious that |b(z,¢) —b| < C.
Lemma 1.2.1. For allt > 0,

1 1
2/v2d:c+2/|w|2dac+ / n|b| d:v+9/< log—l) dx (1.2.2)
R
)\ b 2 2
+R77/( ~log —1>d:c+// 0wl vl dzds < C.
R \ 7] U] On 779

Proof. Multiplying equations (1.1.1) to (1.1.5) by R(1 — /), v, w, b, 1 — 0/
respectively, integrating the results on R x R} and summing them together, we
get (1.2.2) directly. O

We then estimate the L2 norms of v, w, n—n, b—b, 8 — 0, using a weighted
L2-norm as ||+ |lw = (5 (1+22)%|-|?dz)/?, which is basic for H'-global estimates.
Let us introduce

1
@)= (1+a%)" (a> )
as a weight function.

Lemma 1.2.2. Under the hypotheses of Theorem 1.1.1 except, for the moment, for
the condition eg, we have the following estimate for all t > 0:

[0 + ln(e) = >+ (DI + [B(®) ~ b + 6(2) 6]
t
[ (ol el 5 ol 6o P has < €, 1.2.3)
0

where eg < 1/(2C).
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Proof. Multiplying (1.1.2) by #(x)v and integrating over R we can see, using
integration by parts that

10 B Vg RO |b|?
2at/R1/Jv2dx_ 7/]R n(q/)v)xdx/R< ; + 5 )w(djv)dx

_ [ v } N\ (R@R@) } \d
| @t wodat [ (=) oo+ vuo
1
+y [ bl vude b [ (b= b)uo-+ v

Next, using the inequality [¢,| < C[tp| with (1.2.1) and the mean value theorem
for the function f(n,0) = RO/n — RO/7, and then integrating this equation over
(0,t), t € [0,1] and employing Young’s inequality, we get

t
2(z,t)d 2 dad 1.2.4
[ e [ [ oo doas (1.2.4)
t
gCngrC/ / [w((nfn)2+vz+|b7b|4+|bfb|2+ (0 — 0)%)|dxds,
0 R

for all ¢ € [0,1]. Multiplying (1.1.1) by ¢¥(x)(n — n) and integrating in the same
way, we can see that

[ vln= ety
t
gceg+c//w((n—n)2+v2+(9—9)2)dxds, vt e [0,1].  (1.2.5)
0 R
Adding (1.2.4) to (1.2.5) gives
t
— )% +0?) (z,t)d 2 dxd 1.2.6
[etn=n?+) @i+ [ [ oo doas (1.26)
t
CeZ+C —n)2 40>+ |b—b|*+ |b—b|?>+ (0 —0)?)dzd
<+ [ [u(tn=nP+2 4 b =blt+ b+ (007 dods,

for all t € [0, 1]. In the same way, we dot-multiply (1.1.3) and (1.1.4) by the vectors
Y(z)w and 9(x)(b — b), respectively, and use (1.2.6) to obtain

[ ol ode + / t [ wiwilasds

t
< Ced + C/ / Y(|lw|* + |b — b|?)dxds, (1.2.7)
0 JR
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¢
/1/)77|b7b|2(x,t)d:17+/ /1/)|bx|2d:17ds
R o Jr

t
gce§+c/ /w[(n—n)2+v2+|w|2+|b—b|4
0 R
+ |b—b|2+(9—e)2}dxds, vt € [0, 1]. (1.2.8)

Using (1.2.1), we also derive from (1.1.2), (1.1.4) and (1.1.5) for ¢ € [0,1] and
sufficiently small § > 0 that

/Rw#(x,t)dqu/t/wv%idzds (1.2.9)
<Cel+ (C—i—gzg);/zﬂﬁdw)/ / v +(n—n)?

+|b—bl2+[b—b[*+ (6 0)? }dxds,

t
/wn|b—b|4(;v,t)d:c+/ /w|bm|2|b—b|2d:cds
R 0 JR

t
gceg+/ /1/1(|vz||bfb|4+|vx||b—b|3+|wx||bfb|3)d:cds
0 R

¢ ¢
SCe%—i—é/ /vidwds—i—é/ /widwds (1.2.10)
o Jr o Jr

t
+C/ /1/1[1}2+(?7*?7)2+|W|2+|b—b|2+|b—b|4+(979)2}dxds,

/1/)9 6)? + ot xtdx+//1/)92+vv Ydxds

< Ced + <C+ m%X] / ) dx) / / v +(n—n)?+|w? (1.2.11)
s€(0,t
+b-b+[b—b|*+ (0 - 9)2]dxds + C/w(e — 9)%@/ max(f — 0)%ds
R 0

Set
h(t) = sup /w v +(0—-0) :|(,T s)dzx. (1.2.12)

s€[0,t]

Now using the interpolation inequality maxg (6 — )% < C||0 — 0||/|0.| in (1.2.11),
summing (1.2.6)—(1.2.11) together and applying the generalized Gronwall inequal-
ity we have that, for all ¢ € [0, 1],

/ 1/)((?7 )2+ 0—-0)>2+vP+0* +|w>+|b—b]>+|b— b|4)(:17,t)d3:
R
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+ /Ot/Rd;(e;ﬁ + 02 + 0202 + [wy|? + [bs|? + |bs|*b — b|2)d:cd3
< C(ed + h3(t)) exp(h(t)). (1.2.13)
By the definition of A(t), h(t) > 0 and exp(h(t)) > 1. Assuming
h(t) < min{log(4/3), 1/(2VC)},

we derive 1/ exp(h(t)) — Ch?(t) > 1/2, we have h(t) < 2Ce3, and so h(t) < e if
eo < 1/(2C). As a result, (1.2.13) can be improved under ey < 1/(2C) to

4
h(t) < min {1og . 1/2VC, Oeg} < Cel, for telo,1]. (1.2.14)
Repeating what we have done in (1.2.13), we arrive at
/W” — )2+ (0= 0)2 + 2 +v' + [wf? + |b— b[? + |b — b|*) (2, 1)dx
R

t
+ / / ¢(9;§ 02 + 0202 + [wal? + [bal? + |bu|?[b — b|2)d:cds
0o Jr
< Cel, tel0,+00), (1.2.15)
provided that e < 1/(2C), i.e., (1.2.3). This completes the proof. O

We shall now obtain the global H! estimates for (n, v, w, b, §). We define

H(t) = sup {lln=nllfw + 62 [lloal + [
0<s<t

+ b2 + (b = b)bu ] + 6162} (s) + / [0l + 66,2
+ ozl + @2 [[we|* + @2 [[bel|* + ¢[by - (b — b)llﬂ (s)ds. (1.2.16)
Lemma 1.2.3. Under the hypotheses of Lemma 1.2.2, we have the estimate
H(t) < eo, (1.2.17)

where eg < min{1/(2C), 1/(2¢)}, and ¢ > 1 depends on some physical constants.

Proof. Multiplying (1.1.2) by ¢?v; and integrating the result over R x R, , we
arrive at

t t 2 2 t 9
/ /¢2vt2d:1:ds+/ / (“b “w> da:ds:f/ / (R > O2v; deds
o JR 0o JR n t o JrR\ T/,
t t 2 2 t 2,3
_/ /¢2b.bmvt dwds—l—/ / 0Pt - vz dwds—/ / Y drds.
o JR o JR n o JrR 7
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From the definition of ¢(t), we derive that |¢| < 1, |¢¢| < 1. If we now use (1.2.1)
and (1.2.15) and apply Young’s inequality, we obtain

t t
¢2/vgdx+/ /¢2vt2d:vd3§Ce(2)+C/ /¢4v§dxds+CH2(t), t>0.
R 0o Jr 0o Jr

(1.2.18)
Thanks to (1.2.1), we see

¢ ¢
/ /¢4v§ dzds < C’/ o {maxvg / v2 dx} ds
o JR 0 R R

t . 0 6 |p2\’
§062—|—C/ ¢4max<v -R +R —| |> /v2d:10 ds
0 x
0 R n n n R

2

t
§C€3+C/O ¢*(lvell + lln = nll* + 116 = 1> + I'b = blI* + v |*)[|ve | *ds

+ C/t * vz ||ds
< C(ed i H2(t)), (1.2.19)
whence
qs?(t)/Rvg dx+/0t/R¢%§ dxds < C(eg + H?(t)), Vt>0. (1.2.20)
Similarly, we can get from (1.1.3) by multiplying (1.2.15) with ¢?w,, that
0" (1) [w= ()] + /Ot ¢*(s)llw(s)||*ds < Cef + CH?(t), Vt>0.  (1.2.21)

In an analogous manner we infer from (1.1.4), that

t
/¢277|b$|2d:c+/ /¢2|bt|2d:cds
R 0 R

t t
<y / / &by *[b — b|2dzds + / & (Ibell? + [[oal® + [wall?) [ba]?ds
0JR 0
< Ced +CH*(t), Vt>0, (1.2.22)
and

t
/¢2|bz|2|b—b|2d:z:+/ /¢2|bt|2|b7b|2dzds§063+CH2(t), vt > 0.
R 0 JR

(1.2.23)
Further, it follows from (1.1.5) that

¢4(t)ll9x(t>|2+/0 16:(5)[1*¢" (s)ds



1.2. Global Existence and Asymptotic Behavior in H*(R) 9

t 1 t
gcﬁ+g//¢%ﬁ+mﬁ+mﬁ+mm@mm+ //ﬁwwms
0 JR 2 0 JR
t 1 t
SCe%—l—CH%t)—i—C/ [¢8 maxvi/@% d:vds] + / /¢46‘f dxds
0 R R 2Jo Jr

1 t
< Cel +CH*(t) + 2/ / ¢*0? dzds, Yt >0,
0 JR

i.e.,
¢
¢t ()10 (1)1 +/ 16:(s)[1*¢" (s)ds < Cef + CH?(2), (1.2.24)
0
for allt > 0.
We now estimate the bounds for n — 7. Using (1.1.1), we rewrite (1.1.2) as
0 0 b — b2
(logn)wt—thrR(nn) + P 5 | +b~(bb)] . (1.2.25)

Integrating (1.2.25) over (—oo,z) X (0,t) (t € [0,1]) and then taking the absolute
value and using (1.2.1), (1.2.15) and the weight o > 1/2, we obtain

ln —n| < C|logn/n|

Sﬂ%fm+0/

— 0o

x

t
(M+ﬁmwy+0/ﬂnfm+wfﬂws
0
t t
+C/ﬁb7bﬁm+c/ﬁb7m@
0 0

t t
< Cea+ Cllwiol [v 3+ C [ ln—nlds+C [ o~ 0lmds
0 0

¢ t 2
+C/Hb—m%h+0</nb—mzda
0 0
t t 2
< C’eo+C’/ |7777|ds+C</ |90|§{1d5)
0 0

1
t t 2
+C/Hbm%m+c</nbm§@9
0 0

t
< Cep+ C/ In —mnlds, Vtelo,1]. (1.2.26)
0
Applying the Gronwall inequality to (1.2.26), we get
[n(x,t) —n| < Cey, z€R, Vtel0,1]. (1.2.27)

When ¢ > 1, we denote F := (v,/n) — R(n/6) + R(n/0). Obviously [1/n —
1/n)t + RO/n - [1/n —1/n] = —F/n — R(6 — 6)/n. Multiplying this equality by
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1/n — 1/n, using (1.2.1), (1.1.2), (1.2.15), and the interpolation inequality, we
obtain

1 112 .11 17
[_ }+clh—n]gch@m+w—m%)

< C(||F7n + 10— 0]131)
< 0+ C||(ve, vi, by, 0)]12, VE>1,

which, combined with (1.2.15) and (1.2.18), yields for x € R, t > 1,

In(a,t) — 2 t (1.2.28)
SC%+@M@U*W+C/H%ﬁ%mﬁmmﬁﬁﬁa%+H%»
1

Combining the definition of H(t), (1.2.20)—(1.2.24), (1.2.27) and (1.2.28), we ob-
tain H(t) < ¢led + H2(t)] for t € [0,+00), where ¢ > 1 depends on C and
other physical constants. Similarly to the estimate for h(t), we still assume H ()
so small that 1 — ¢H(t) > 1/2, and then H(t) < 2ée3 < eo provided that
eo < min{1/(2C), 1/(2¢)}. The proof is complete. O

Proof of Theorem 1.1.1. From Lemmas 1.2.2-1.2.3, we derive immediately that for
zeR, t>0,

n(z,t) — 0l + [b(t) — b + ¢(£)[0(x, ) — 0|
< H'2(t) + Cllb — bl|"2|[bu||'/2 + Cl16 — 6] /2 |62

- 1 _
< HY2(t) + Ceg HYA(t) < V2Eeo(1 4 Cy/eg) < o min{7, [b], ). (1.2.29)

Actually, we assume that ey is small enough to ensure that 1+ C’\/eo < 4/3, and
then ey < 1/(4v/2). So we set eg < min{1/(6v&), 1/(3C)2, 1/(2¢), 1/(20)} := e,
under the hypotheses discussed in Lemmas 1.2.2-1.2.3.

We can see that the upper bound of |n — 7| + [b — b| + ¢(¢)|0 — 0] in the
verification is strictly smaller than that in condition (1.2.1). We conclude that

17 = nllZoe + llvall* + wall* + [bo]|* + (16

t (1.2.30)
[ (ol 10002 + i + ) s)s < f < €.

Further, from (1.2.29) with arguments similar to those used in [112], we can
get (1.1.12) and (1.1.13). From (n — %, v, w, b — b, § — §) € H*(R), we rewrite
(1.2.25) again as

2
(77””) :Ut+<R9) +<|b b| +b-b) , (1.2.31)
TI t 77 x 2 x
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multiply it by 7, /7, integrate the result over R x [0,¢] and use (1.1.13) to get

12 ()]1% + //andxds (1.2.32)
t
<Ci+ //9n§dxds+c/ (Hvt||2+||9m||2+||b—b|\2)ds§01.
2J)o Jr 0

Using again from (1.1.13), we get

(D1 + / l12(5)]%ds < Ch. (1.2.33)

We can rewrite (1.1.2) as

L L
n n n n

then we infer that

lowe @2 < Cr (0@ + ol + 101 + @1 + b2 (1)),

and conclude immediately from (1.1.13), Lemmas 1.2.2-1.2.3 and the interpolation
inequalities that

t
/ [vaa(s)[Pds < C1, - Jvza()]] < Crlloe(®)] + C1.
0

Similarly, one can also verify that

t
/0 (IWaall? + b |2 4 18212 ) (5)ds < €,

[Wae (B < Crllw:(B)]] + C,
bz ()| < Crl[bi (B[] + C1,
1622 (D] < C1l|6:(®)]| + Ch-

Combining with (1.2.30), (1.1.12) and (1.1.13), we complete the proof of (1.1.14)
of Theorem 1.1.1.

Integrating by parts, we have

1d
2dt/v d;v—/vmvmtdac (1.2.34)

2dt/|wx| d:zz—/wgC Wy d, (1.2.35)
2dt/|b | da:—/b - by dz, (1.2.36)
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2
= 1.2.
2dt/9 dx = /9 0.+ du, (1.2.37)
and then (1.1.1) and (1.1.15) yield

/ ‘dt(” Ny Vs Wa, ba, 0] ) )dt< Ch. (1.2.38)

Combining this with (1.2.34)—(1.2.38), we immediately conclude that
Nz, Vo, Wa, by, 05)(E)]] — 0, ast — +oo. (1.2.39)
Finally, employing the interpolation inequality, we also arrive at
l(m—mn,v,w,b—b, 0—0)(t)|r~ —0, ast — +oo. (1.2.40)

This completes the proof of Theorem 1.1.1. O

1.3 Global Existence and Asymptotic Behavior in H?(R)

In this section, we shall complete the proof of Theorem 1.1.2. We begin with the
following lemma to summarize the estimates in H!(R).

Lemma 1.3.1. If the assumptions of Theorem 1.1.1 are valid, then the H'-general-
ized global solution (n(t), v(t), w(t), b(t), 6(t)) to the Cauchy problem (1.1.1)-
(1.1.7) wverifies (1.1.12)~(1.1.15) for any t > 0,

In®) = s + O+ WO+ IO+ 160) = 83 + (1))
t
[ (ol + el + el + 10205 + el + ol
w2 4 bl + 16017 ) (s)ds < €, (13.1)
In(®) = nllf< + 0@ 3~ + w3 + b~ + [6(2) - b1l
L/'(Hnﬁup-+nvaLm-+H“aHLm-+nb 3 + 110213 ) (8)ds < €. (1.32)

Proof. Estimate (1.3.1) is just (1.1.10). By interpolation theory, we get

o)z < Cllo@)|lar, [w(®)llL~ < Cllw ()|l (1.3.3)
)= < Clb®)[[mr,  10(t) =0l < Cl6(t) — O] a1, (1.3.4)
[ve(®)llzee < Clloa(@)llmr,  [Walt)l[Lee < Cllwa(t)]|ar, (1.3.5)
el < Clba®llm,  10:@lle < ClO@lin- (1.3.6)

Also yields (1.1.1),
me (@) = llva ()] - (1.3.7)

Thus estimate (1.3.2) follows from Theorem 1.1.1, (1.3.1) and (1.3.3)—(1.3.7). The
proof is complete. O
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Lemma 1.3.2. Under the assumptions of Theorem 1.1.2, the following estimates
hold for any t > 0:

101 + lloe (@)1 + [[we ()] + [ ()]
t
+/0 (lvaell® + Twael* + [bael|* + [162:]%) (s)ds < Ca, (1.3.8)

[va (@)1 Fo + [vza @I + [Wa )T + [1Waw (6] + o (t)[
+ [baa(®)? + [102(8)]| 3 + |00(t)]|* < Ca, (1.3.9)
[o@)l[32 + W (®)I72 + )32 + 16(2) = 0172 + ()7 < Co. (1.3.10)
Proof. Differentiating (1.1.2) with respect to ¢, then multiplying the resulting

equation by v; in L?(R) and using Lemma 1.3.1, we get

d _
o + O o (02

IN

s 10O+ ol e ] + 18P + )17 + L)1)
< o T+ Coll 1P + 18,01 + I + @) (131)
which in turn yields

e+ [ oas)2ds < o O [ (ol + 100 + [0l + e ) (51
< Cs. (1.3.12)

Hence, by (1.1.2), Lemma 1.3.1, the interpolation inequalities and Young’s in-
equality, we have

[0z ()] < Ch (Hvt(t)ll + o= + 2 (@O + b2 ()]] + ||vz(t)||1/2||vzz(t)ll)
< ;Ilvm(t)ll + C1 ([loe (D1 + lva (O] + (b2 (D) + 72 (1))

which combined with (1.3.12), (1.3.1) and (1.3.2) leads to

[v22(®) < Co (Joe(O + [[va (O] + b + l[n=@)]]) < C2, VE>0, (1.3.13)
lva ()2 < Chllve ()]l [[v2(t)] < C2, ¥t > 0. (1.3.14)

Similarly, we derive from (1.1.3) the bound

d _ 1
IO+ O w2 < o W (0] +Co (Joa ()] + b)) (1:3.15)

which, combined with Lemma 1.3.1, gives

t
llwe(t)]|? Jr/o [Wei(s)||?ds < Oy, Vit > 0. (1.3.16)
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Further, from (1.1.3), the interpolation inequalities and Young’s inequality yield
[wae ()] < Cr (W) + [[wa (Ol |72(0)]] + b (B)]])
whence

[Weo(t)|| < Ca, V>0, (1.3.17)
[wa(t)llLe < Crllwa()|l|Wea(t)]| < Ca,  VE> 0. (1.3.18)

Similarly, (1.1.4) yields

d _
SIPO) + O ban(t)]?

1
<0, b2 (8)]1? + Ca ([loa (81> + b (01> + lwe(£)]|?) (1.3.19)
whence .
||bt(t)|\2 Jr/ ||bxt(s)|\2ds <y, Vt>0, (1.3.20)
0
and also
[[boe(t)|| + [[ba(t)|| e < Cay VE> 0. (1.3.21)
Finally from (1.1.5) it follows that
d _ 1
gt 16:(D[I* + C1 10, (8)]* < 20, 1626 (117 + Co (11620 1* + loa (DI + 16 (£)]|*
+ o (02 + [ wae ()11 + o (8)]17), (1.3.22)

which, combined with Lemma 1.3.1, gives

t
||9t(t)|\2+/0 16,:(s)|%ds < Ca, Wt >0, (1.3.23)

and
102z ()] + 102 ()| L < Ca. (1.3.24)

Thus estimates (1.3.8)—(1.3.10) follow from (1.1.1), (1.3.12)—(1.3.14), (1.3.16)—
(1.3.18), (1.3.20)—(1.3.21), (1.3.23)—(1.3.24) and Lemma 1.3.1. The proof is com-
plete. O

Lemma 1.3.3. Under the assumptions of Theorem 1.1.2, the following estimates
hold for any t > 0

t
1122 (0117 + 112 (£) |7 +/0 (22 ]l* + [Inall7<) (s)ds < Ca, (1.3.25)

t
/0 (”UIMH2 + HmeH2 + waww”2 + Hemwl|2) (s)ds < Cs. (1-3-26)
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Proof. Differentiating (1.1.2) with respect to z and using equation (1.1.1), we get

ot ( " > 2 = Vg + + 772
2RO — 2uv, )n?
4 e Mo b2 b by, (1327)

Multiplying (1.3.27) by 7../n in L*(R), and using Lemmas 1.3.1-1.3.2, we deduce
that

1

2
CTl mea(D|? <
gt + C1 22 (B) |

1
<90, 1722 ()1 + C2(l6a ()1 + [In. (£)]

F [vaa O + 18221 + v (1)1
+ e ()| 7o e (1)1 + [1baw (B)II7)  (1.3.28)

Nz
; (t)

which, together with Lemma 1.3.2; implies that, for any ¢ > 0,

t
Inea (]2 + / Iaa(s)|%ds < Co, (1320

122 < Cline@ 122 ()l < Co, (1.3.30)

/ 10(5)]2 (8)ds < © / (e ()12 + [ (8)[1?) (s)ds < Co. (1.3.31)
0 0

Differentiating (1.1.2), (1.1.3), (1.1.4) and (1.1.5) with respect to z and using
Lemmas 1.3.1-1.3.2, we deduce that, for any ¢ > 0,

[02aa (D) < Co(llve O + ([0 (O] + vz (DI + 1722 (O] + lv2 @]
+ 102z O + 10O + 7 (O] + b ()] + [Daa(®)]]),  (1.3.32)

[Weza ()] < Coll[Wea (D] + 922 ()] + D2z ()]]), (1.3.33)
[beaa(t)|l < Collbea (B[ + e (B + 722 ()] + [[Waa (B)]), (1.3.34)
10222 (8[| < Co(ll0: (O] + 10| + 1|62z + (1122 ()] + [[02a (D]

F 1102 ()] + [Waa ()] + D2z (®)]])- (1.3.35)

Thus estimates (1.3.25)—(1.3.26) follow from (1.3.29)—(1.3.35) and Lemmas 1.3.1-
1.3.2. |

In order to obtain the asymptotic behavior of global solutions, we will need
the following lemma:

Lemma 1.3.4. (The Shen-Zheng Inequality) Suppose y and h are nonnegative func-
tions on [0,+00),y’ is locally integrable, and y, h satisfy

VE>0: 9 (t) < AvyP(t) + Ay + h(t),
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T T
vT'>0: / y(s)ds < Ag,/ h(s)ds < Ay,
0 0

with Ay, As, As, Ay being positive constants independent of t and T. Then for any
r>0

VE>0: ylt+r) < <A3 +A2T+A4) eA14z
r

Moreover,
Proof. See, e.g., [120] and also [101], p. 21, Theorem 1.2.4. O

Lemma 1.3.5. Under the assumptions of Theorem 1.1.2, the H?-generalized global
solution (n(t), v(t), w(t), b(t), 6(t)) obtained in Lemmas 1.3.1-1.3.3 to the Cauchy
problem (1.1.1)~(1.1.7) satisfies (1.1.18) and (1.1.19).

Proof. We start arguing as in Lemma 1.3.1, by differentiating the equations
(1.1.2)—(1.1.5) with respect to ¢, then multiplying the results with v, wy, by,
0, respectively, resulting in

jtllvt(t)HZ’ +2C1) v (O < Co (loa O lvze 0N+ [10:() 1P+ be(£)]12) ,
(1.3.36)

CZIIWt(t)IIQ +2C) w1 < Co (a1 + e ()[17) (1.3.37)

;tllbt(t)llz +(201) 7 b ()17 < C2 (I (O + oo (1) [P+ [[we (D)), (1.3.38)
5t||9t(t)||2 +2C) T 0@ < C2 (o1 + 1021 + 6.1 + o ()1
+ [[wea (8) 1% + [[bea (1)) (1.3.39)

From (1.3.28), we also derive

2

jt ‘ 77;1 O] + 200 MInea @I < Co (16O + 12O+ [vaa )1+ 1020 ()]
+ vt (D24 o ()] + [[baw (8)]1%). (1.3.40)
Meanwhile,
[va2 (D) < C1 ([oe@)] + lva (O] + 17 @) + b2 ()]]) < Co, (1.3.41)
[Waa (0| < Co (W) + 12 + o2 (D)]]) < Co, (1.3.42)
[bea ()] < Cr (IIoe(B)[ + l1m2 (O] + [Iwa()]]) < C2, (1.3.43)
1022 ()1 < C1ll0u(B)I] + 162 (0)]] + [z (D)

+Iwa ()] + bz (O] + [vza()]]) < Co, (1.3.44)
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[ve(®)ll7 < Cloa®] [vza(O)] < Ca,  IWa(®)[[1 < Cllwa(®)] ||Wm(t)||(§ Cs,
1.3.45

b2()[[Z <Clba(®) [baw(®)] < Cay 02 < Cll02 (1) 1]022(t)]] ? Ca, |
1.3.46

172l 2o < Clina (O] 122 (t)]] < Co. (1.3.47)

Applying Lemma 1.3.4 to (1.3.36)—(1.3.40) and using Lemmas 1.3.1-1.3.3, we ob-
tain that, as t — 400,

[o: (@ = 0, [[we ()] =0, [[be(t)| = 0, [0:(&)]| = O, [Inea(®)| =0 (1.3.48)
which together with (1.1.1), (1.1.9) and (1.3.41)—(1.3.47) implies that, as t — 400,

[v2a (O] + [[Waz (D) + [z (O] + 1022 O + [17:(8) | 10 = 0, (1.3.49)

e ()| oo + [1(12(8); vz (E), War(t), ba(t), 02 (2))][ L = 0. (1.3.50)

Thus (1.1.13)—(1.1.14) follows from (1.1.1) and (1.3.48)—(1.3.50). The proof is com-
plete. O

Proof of Theorem 1.1.2. Combining Lemmas 1.3.1-1.3.3 with Lemma 1.3.5, we
can complete the proof of Theorem 1.1.2. O

1.4 Global Existence and Asymptotic Behavior in H*(R)
In this section, we shall derive estimates in H*(R) and complete the proof of
Theorem 1.1.3.

Lemma 1.4.1. Under the assumptions of Theorem 1.1.3, the following estimates
hold for any t > 0:

lvta (z,0) || + [[Wea (2, 0)[| + [|bra(2, 0)[| + [|0rz (,0)| < Cs, (1.4.1)
lvee (0, 0) || + (|02 (2, 0)|| + [[Wee (2, 0) + |[bye(z, 0)[| + [[veaa (2, O)|
+ [|0t2z (2, 0)|| + [Wiza (2, 0)|| + [[btaz(z, 0)|| < Cu, (1.4.2)

feato)l+ | s 5) s < Oy + 4 / (uall® + [braal?) (5)ds,  (1.4.3)
(ol + [ e (9)]%ds < Ca 4 C / * bgas(s)]%ds, (1.4.4)
utol + [ e (s)]1%ds < Ca+ € / i wina ) 2ds, (1.45)
10 + / )2

t
<Cy+ C4/ (Hetww”2 + ||Utm||2 + ”Wtwsz + ”btwwH2) (s)ds (1-4-6)
0
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Proof. We easily infer from (1.1.2) and Lemmas 1.3.1-1.3.3 that

loIl < Collvs ) lan + Ina(®)]| + 1601 + [ba (D). (14.7)

Differentiating (1.1.2) with respect to z and employing Lemmas 1.3.1-1.2.3, we
have

vtz (B)]] < C2 ([loa ()| + [vawa (O + 1020 [z + 02Ol + P2 (t)] 1)
(1.4.8)

[Vaae (O] < Co (l[vz (I + (112 (Ol + (102 + vt ()] + D2 20) -
(1.4.9)

Differentiating (1.1.2) with respect to = twice and using Lemmas 1.3.1-1.3.3 and
the interpolation inequalities, we have

[vtza (DI < Co (102 ()l 2 + o2 (@l s + [102(8) |2 + b2 ()] 122) (1.4.10)
0222z ()] < Co (102 (Ol 52 + 1oz (@)l 2 + 1022 + (V2 ()] + (o2 ()] 22) -
(1.4.11)
In the same manner, we deduce from (1.1.3) and (1.1.4) that
[wi(@)] < Ca (= + [[w(®)l| a2 + b2 (D)) (1.4.12)
[Wia(®)] < Co (0Ol + [[We ()l 12 + Do (@)l m1) (1.4.13)
b < Co (lne ()l + [b()l| a2 + [[wa(D)]]) (1.4.14)
b (W < Co (02O + (b (D)l 12 + [|We (D) 111) (1.4.15)
10:)] < C2 (102l m2 + o2 + ll12(D)]
+ w2 @) + b= (0)]]), (1.4.16)
10t ()] < C2(102() | 112 + lva ()l + 722 (D)
+ [we (@)l + o)1), (1.4.17)
Wz ()] < Co ([[Wea (O] + 17Ol 51 + P2 1) (1.4.18)
bz (t)]] < Co (Hbm( I ln2 @)l + [[wa ()l ) (1.4.19)
10220 ()]l < Co([10a() ]2 + lva()llt + 0a ()]
10 O+ o)l + (B2l (1.4.20)
and
IWiaa)| < Co (IWaaaa Ol + 172 (O) 12 + [bal®) ), (1421
[btaa ()] < C2 (I[bazaa (W)l + 112 ()| 2 + [Wa ()] 12) , (1.4.22)
10tz ()] < Co(llne ()]l 2 + vz ()]l 72 + 102(8) | 72
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+wa (8) 12 + b (8)]122), (1.4.23)
[Waane @) < Co (IWeaa (Ol + InaOll 2 + 2 (0) 1 12) (1.4.24)
el < Co (braa (]l + Ime (1)1 12 + W (8) [ 42) (1.4.25)
1Bz < Co(llna ()12 + 00 (8) 12 + 160 2

- Brae (O + o (Ol 2 + B2 (8) [ 42)- (1.4.26)

Differentiating (1.1.2) with respect to ¢, and using Lemmas 1.3.1-1.3.3 and (1.1.1),
we deduce that

loee @ < Co (162 ()] + 12 ()] + 022 (B)I] + Ve ()] 222
+ 10l 2 + e (8)] ) (1.4.27)

which, together with (1.4.8), (1.4.10), (1.4.13), (1.4.15) and (1.4.17), implies

o] < Ca (1102(8)]| 2 + [[v2 ()| s + 0Ol 52 + [We (@) 2> + b2 (8)]| 2) -

(1.4.28)
Analogously, we derive from (1.1.3)—(1.1.5) that
[wie ()] < Co (1Wiaa ()| + lve (@)l 2> + 1021 + 02 (8)]| 2) (1.4.29)
b ()] < Co (I[braz (W) + lve (W)l 222 + 02O + W (D) 122) , (1.4.30)
10Ol < C2(10taa ()l + vz ()l 712 + [I72(8) ] 72
+ W@l + [ba(®)ll12), (1.4.31)
[wie (O[] < C2 (W)l s + v (Ol 2 + 102 + b ()] g2),  (1.4.32)

| <
[bee(t)]] < Co (IIba(t)| s + lJve (@) 2 + [0 ()] + [[Wa ()]l 2),  (1.4.33)
| < Co(l10-()lms + ve@) a2 + 1102 (0) | 22

+ [[wa ()l 2 + b2 ()| 12)- (1.4.34)

Thus estimates (1.4.1)—(1.4.2) follow from (1.4.8), (1.4.10), (1.4.13), (1.4.15),
(1.4.17), (1.4.21)~(1.4.23) and (1.4.28)~(1.4.34).

Now differentiating (1.1.2) with respect to t twice, multiplying the resulting
equation by vy in L?(R), and using (1.1.1) and Lemmas 1.3.1-1.3.3, we deduce

1d
2dt

~—

loee (B)II* < =(2C1) " vua NI + C2 (100 (07 + [lvew (1)1
101 + [lva (W1 + [Ioe (B)][7 + e ()]1?)

which, along with (1.4.33)—(1.4.34), implies

d _
dt|\vtt(f)|\2+ (2C1) " Hlveea (1)
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< Co (102 (D1 + 1022 (W) + 1620 (8) 17 + [|va (8) 171
+ v @ + 1001 + I (O + [be(O) 1 Fr + [braa(®)[|?).  (1.4.35)

Thus estimate (1.4.3) follows from Lemmas 1.3.1-1.3.3 and (1.4.2).
Analogously, we obtain from (1.1.3) that

t
[we I + 2C1)~ / et (s)|2ds
t O
<CitCy / (o ()I? + [wes ()2 + [[wal® + [besa(s)]?)ds.  (1.4.36)
Hence,
t t
W] + (2C1)~ / [Weta(s)2ds < Ca + Cy / Ibras(s)|ds,  (1.4.37)
0 0

which gives (1.4.4). In the same way, we obtain from (1.1.4) that

t t
||btt(t)|\2+(2Cl)‘1/ |\bm(s)|\2dsgc4+c4/ |Wiwe(s)||?ds, (1.4.38)
0 0

and from (1.1.5), upon combining with (1.4.32), (1.4.34) and (1.4.35) that

t
6@+ 20" [ 161aa(o)]ds
¢ 0
<Cy+ C4/ (Hvtzznz + ||9tzzH2 + Hth||2 + ||btzzH2) (5>d5- (1~4-39)
0

Therefore, estimates (1.4.5)—(1.4.6) follow from (1.4.35)—(1.4.36). The proof is
complete. O

Lemma 1.4.2. Under the assumptions of Theorem 1.1.3, the following estimates
hold for any t > 0:

v (8)]1 + /Ot [0tz (5)[|*ds < Cs, (1.4.40)
a1 + [ 1wiaets) a5 < € (1L441)
[bea (8] + /Ot [braa(s)]|?ds < Cs, (1.4.42)
100+ [ a2 < s, (1443

106 (£)117 + l[vee (N1 + llwee (£)]I2 + [|wee (2)]|2

t
+/ (loseall + Wt l|* + [beea|® + [16ee2][?) (s)ds < Car (1.4.44)
0
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Proof. Differentiating (1.1.2) with respect to = and ¢, multiplying the resulting
equation by vy, in L?(R), and integrating by parts, we deduce that

1d

U2
o gl @I < *Cfl/ % dx + O [[via (W) (II0e (0) |1 + 10 (O] + [[0e (1)
+ 101l + IIUN( )+ 10201 + lIna (£)11)
= (2C1) a7 + Co(Ioea ()1 + 1002 (D)1 + v (8)]*
)

10O + a1 + 1001 + [Ina (B)]1) (1.4.45)

IN

which, combined with Lemmas 1.3.1-1.3.3 and (1.4.2), gives estimate (1.4.40).
In the same way, we infer from (1.1.3) that for any 6 > 0,

Hllve (W17 + [We®)ll7 + [Iwa (O + na(D)117),  (1.4.46)

which leads to (1.4.41).

In the same manner, we can prove (4.42)—(4.43). Inserting (1.4.40)—(1.4.43)
into (1.4.3)—(1.4.6) yields estimate (1.4.44). The proof is now complete. O

Lemma 1.4.3. Under the assumptions of Theorem 1.1.3, the following estimates
hold for any t > 0:

t
||77mx(t)||§11 + anz(t)H%/Vl,w JF/ (”Wﬂcmniﬂ + ”WMH%/Vlw) (S)dS < Cy, (1~4-47)
0

”Uﬂaww(t)H?{l + ”Uﬂaw(t)H%/Vlm + ”Wwww(t)”%ﬂ + HWM(t)H%/VLOO + ”bmw(t)H%{l
+ Hbzz(wHIz/Vlwoo + ||9mx(t>”§{1 + ”9%(15)”%/[/100 + Hntmx(t)”2 + Hvtzz(t)w

t
+ [[Wiza (E)]1* + [braz” + |0raa ()| +/0 (llvgel? + [lweel|® + [oee]|* + 1|62

+ vall%/vzm + ”WMH%/VZ“D + Hbzzle/Vloo + HezzHI%V?voo + ||vtxoc||§{1
+ Hwtmniﬂ + ”btzzH.%{l + ||9tzz|‘§{1 + Hotx”!zzvlm + HwtxH\Q/Vl)oo
+ [brallfre + [vrallfroe + 1Meazallin) (s)ds < Cu, (1.4.48)

t
/0 (”UMMH?{I + mewﬂclﬁﬁll + wawwwlﬁﬁll + Hgmmniﬂ) (S)ds < Cy. (1-4-49)

Proof. Differentiating (1.3.29) with respect to x, using (1.1.1), we arrive at

ol 772 = By (z,t) (1.4.50)
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with
VezaNe + NeaVse  2MaNaaVz OcNze 2RO Me
Ey(x,t) = 2 - 3 - 2 3
n n n n
ROyw  20Vpene — 2RO,m,  2RONZ — 201>
Bla.t) = L 2] e 2ROn; T

U n? n?
An easy calculation with Lemmas 1.3.1-1.3.3 and Lemmas 1.4.1-1.4.2 gives

[EA(@)] < Co (=@l + l[oa (@)l 2 + 102 2 + [0 ()] 51 + Hbz(t)(”H?)

and .
/ [ E1(s)[[*ds < Cu. (1.4.52)
0

Now multiplying (1.4.50) by 7zzs/1 in L?(R), we derive

2

d ‘ (1.4.53)

2
Nezz 1
t
at | n ()H +C

Nexax
; O] < CillBv(t)

which, combined with (1.4.52), Lemmas 1.3.1-1.3.3 and Lemmas 1.4.1-1.4.2,
yields, for any t > 0,

t
||77mx(t>|‘2 JF/O ||77mx(3>”2d5 < Cy. (1.4.54)

In view of (1.4.9), (1.4.11), (1.4.18)—(1.4.20), (1.4.24)—(1.4.26), Lemmas 1.3.1-
1.3.3, and Lemmas 1.4.1-1.4.2, we get that for any ¢ > 0,

[oaaa (DN + [Waaa(O]* + [ (0)1* + [|0a ()| (1.4.55)
t
+/0 (H'Uacmc”?ql + ||Wmcac||?ql + ||bxxm||§{1 + ||9xxac||?ql)(5)d5 < Yy,
t
[ asl e+ Pl + sl + 16l ) s)ds < Ca
Differentiating (1.1.2) with respect to ¢, we infer that for any ¢ > 0,

[veza ()] < Cullvae @) + Co(ne (Ol + [v2a (W) + via (B)]] + (162 (®)]]
H10: O + 1022 (O] + [bra()]]) < Ca, (1.4.57)

which, together with (1.4.11), gives

t
Hvxmx(t)|‘2 JF/ (||vtm||2 + H'UxxxxH2) (5>d5 < Cy. (1~4-58)
0



1.4. Global Existence and Asymptotic Behavior in H*(R) 23
Similarly, we can infer from (1.4.21)—(1.4.26) and (1.4.55)—(1.4.56) that

[Weaa(B)” + | Wazaa (8) [ + /Ot (IWezall® + [Wozeal?) (s)ds < Cy, (1.4.59)

ezs ()17 + [basaa(t)]* + /Ot (Ibeasl® + bawaal|?) (s)ds < Ca,  (1.4.60)

¢
182z (DI + 16zzaa (t)]|* +/0 (l|9twwH2 + Hemmw) (s)ds < Cy,  (1.4.61)

which, combined with (1.4.55), (1.4.56) and (4.59)—(4.61), implies
vaw(t)H%m + mew(t)H%O@ + Hbmw(t)”%m + Hemav(t)”%m

t
+/0 (HUMCE”QLOO + ”WMCEH%“’ + ”bwww”QLw + Heme%W)(S)dS <Cy. (1‘4-62)

Differentiating (1.4.50) with respect to x, we see that

— Eo(x.t 1.4.63
o (7o) e — g (1.4.63)
with
Eg(l',t) = |: 2 - 3 :| + 3 - 2
n n n n
+3|bgs|? +4b, - brgy + b -buges + Eig(z, ). (1.4.64)

Using Lemmas 1.3.1-1.3.3 and Lemmas 1.4.1-1.4.2, we can deduce that

[ Ewa ()] < 04(”9 ()| s =+ 102 (8) | 2 + va(t)||H3), (1.4.65)
[1E12()]] < Calllve ()l + 12 (@)l 2 + [[vea (8)] 12
+ 11020l s + b ()| 113), (1.4.66)
[E2(t)]] < Calllva)las + 1n2()] 2 + Jvew ()] 2
+ 1102l s + b ()| 13- (1.4.67)

On the other hand, differentiating (1.1.2) with respect to ¢ and x, we infer that

[vtaea (O] < Cillveea ()l + Co([vaallar + 102l + 17 (8)]| 211
10 (Ol + 10 + v (@)l + [braz(B)]])- (1.4.68)

Similarly, we have

[Wizwa ()] < CrllWita (B[] + Co ([[Wea ()| + [Braa (O] + [[ve (@)l m2) , (1.4.69)
btaea ()| < Crl[bua(B)ll + Co (bra(®) |y + [Wiaa (B + v ()] 52) ,  (1.4.70)
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10tz20 (W) < CullOrea ()] + Co(llne O + [lva (B)l 2 + 102 (@)l 2 + 1022 (t) | 210
10O+ lvee (Ol + IWea ()2 + [Dea(t)] 1) (1.4.71)

Thus it follows from Lemmas 1.3.1-1.3.3, Lemmas 1.4.1-1.4.2 and (1.4.69)—(1.4.72)
that

t
/ (HvtzzzH2 + Hwtmx”2 + ||btzzzH2 + Hotmx”2) (5>d5 < Oy, Vt > 0. (1~4-72)
0

Then we have

t
/ | Ea(s)||?ds < Cy, Vt > 0. (1.4.73)
0
Multiplying (1.4.63) by Nzzze/n in L2(R), we get
d|in ? n ?
R’ coH )| < CullEx () 1.4.74
i) et || < cusn (14.74)
which, combined with (1.4.73), implies
t
1 Nezae(t)] +/ |Mezee(s)||?ds < Cy, YVt > 0. (1.4.75)
0

From (1.4.28)—(1.4.34), Lemmas 1.3.1-1.3.3, Lemmas 1.4.1-1.4.2 and (1.4.55)—
(1.4.61), we derive

t
/ (HvttH2 + ||th||2 + HbttH2 + ||9tt||2) (S)dS S C4, Vt > 0. (1476)
0

Differentiating (1.1.2) with respect to = three times, we deduce

vzzzzz (O] < Crllvezza (t)]]
+ Co([lne (Ol s + v ()]l s + [162(O)| s + b ()| ars). (1.4.77)

Thus we conclude from (1.1.1), (1.4.58)—(1.4.61), and Lemmas 1.3.1-1.3.2 and
Lemmas 1.4.1-1.4.2 that

t
/ (vamxﬂz + HntmxH%{l) (s)ds < Cy, ¥Vt > 0. (1.4.78)
0
Similarly, we can deduce that, for any ¢ > 0,

t

t
/ (”vzzH%/V?w + ”WMH%/V?,OO + ||bm||12/[/2,oo + HQIIH%WDO) (s)ds < Cy. (1.4.80)
0

Thus employing (1.1.1), (1.4.54)—(1.4.62), (1.4.73), (1.4.76), (1.4.77), (1.4.79)—
(1.4.81) and the interpolation inequality, we derive the desired estimates (1.4.47)—
(1.4.49). The proof is complete. O
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Lemma 1.4.4. Under the assumptions of Theorem 1.1.3, the following estimates
hold for any t > 0:

In(t) = 03 + Ine@®)llFs + Imee (O + 0@ + Nlve®) |72 + ve )]
+ W) IFs + Iwe(®)l1F2 + [[wee (01 + (D) 774 + e ()72 + [[bee(£)]|
t
+116(2) — O3 + 16: (0|72 + [10e(8)]? +/O (I1mellZs + lvallzrs + llvel s
+ lvallFn + 1wallFs + 1wellzs + [weell B + ballZs 4 [bellZs + el 3
+ 102 l1Fs + 110372 + 1102l 31 (s)ds < Cu, (1.4.81)
t
/ (1mell s + Nmeell 3 + Imeeell®) (s)ds < Ci. (1.4.82)
0

Proof. These estimates follow from (1.1.1), Lemmas 1.3.1-1.3.3 and Lemmas 1.4.1-
1.4.3. ]

We now prove the large-time behavior of the H*-global solution
(n(), v(t), w(t), b(t), 6(t)).

Lemma 1.4.5. Under the assumptions in Theorem 1.1.3, the H*-global solution
(n(t), v(t), w(t), b(t), 0(t)) obtained in Lemmas 1.4.1-1.4.4 to the Cauchy problem
(1.1.1)~(1.1.7) satisfies (1.1.22)—(1.1.23).

Proof. Similarly to the reasoning in Lemmas 1.4.1 and 1.4.2, we derive

eI + 200 [orea (1)
< a1 (I + 10 (8) s + () + a1 + 160(6)
£ eI + 1be(6) 32), (14.8)
@ IO + (200) e (1)
< s (e (P + W OI? + I DI + Do (0)]?), (1.4.84)
w0 + (20)~ e (1)
< O (o (I + DO + s (0] + [weea (0)]%). (1.4.85)
SOOI + (2C0) [01se (1)
< Ol (I + o (@) + T + 18O + otan ()
10O+ IOl + Mora ()3 + o (I + e (D), (1.4.86)
o) + 200 e DI
< o100 (I + a0 + 10 + e DI + 1020
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I+ Mo ()1P), (1487
I (I + (200w (1)
< oI (I + eas + el Bys + eI + I0)), (1.4.89)
b0+ (201) e (1)
< Oa(Iwee (I + e B + oot B + Moo DI + Ie(0)?),  (1.489)

d _
0 ()2 + (201) ™ B0 (1)
< O (|18 (D)% + 1022 + N0za (O] + 12 (01 + [[vra ()|

+ W (82 + [braa (D)), (1.4.90)

d Nexe 2 —1 || Nz 2 2
< 4.

| @l +eonT ") < alE @, (1.4.91)
o Kt 2+<2c I A 0) 2<c||E ()] (1.4.92)
dt 77 1 77 >~ 1 2 -E.

where, by (1.1.20), (1.4.52) and (1.4.74),
t
/ (IEL| + | Eoll?) (s)ds < Ca, Ve > 0. (1.4.93)
0
Applying Lemma 1.3.4 to (1.4.84)—(1.4.93) and using estimates (1.1.20) and
(1.4.94), we infer that as t — +o0,

o)l =0, (W (@) =0, [beu(t)| =0, [0u(t)]| =0,  (1.4.94)
[vea (O] =0,  NwWe(®)]| = 0, [[be(t)| =0, [[0(t)| =0,  (1.4.95)
[Meze(®)l = 0,  |[Nzzze(t)]| = 0. (1.4.96)

In the same manner as for (1.4.8), (1.4.10), (1.4.55) and using the interpolation
inequality, we deduce that

[vaza ()l < Co(lva @ + lIne @l + 02Ol + [0 (®)]]

+ [[ba ()l ), (1.4.97)
vtz ()] < Cillva ] + Co ([vaa Ol + llua (O] + v )] + 162 ()]]
+10:E) ]| + [10ea ]| + e (B)]]) (1.4.98)
[vzzaa ()] < Co([loa®)ll a2 + 1120 52 + 102 ()] 12 + [veea ()]
+ [baw ()] 1), (1.4.99)
[0 ()17 < Cllvea@[viaa @, Noe@®l1 7 < Cllve@ v (Bl (1.4.100)

”Uﬂaw(t)H%m < Cllvee ()| [|vzza ()]s ”Uﬂaww(t)H%m < Cllvaae () |[vzzzz ()]s
(1.4.101)
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Hnﬂcw(t)H%% < Clmea () mzaa ()], ”nmav(t)”QLm < Clnwaz O 10222z ()]
(1.4.102)

Thus, it follows from (1.1.1), (1.4.98)—(1.4.103) and Lemma 1.3.5 that, as t — +o00,

[(02(8), v2 () 15 + Nloe(E) [ 12 + [0 @)= + [l (8[| w20
+ 176t )| 1+ | (72(8), v (8)) [ w200 — 0. (1.4.103)

In the same manner, we can conclude as t — 400

Iwalls + Wil + [we@llwre + [wa®)waee -0, (14.104)
Iba ()]s + [be(t) 112 + [be(®) w1 + [ba(B)lwze =0, (1.4.105)
102 (8)1 155 + 18:C8) L2 + 16:8) [y + 102 () lw2e — 0, (1.4.106)

which, together with Lemma 1.3.5 and (1.4.104), imply (1.1.22)—(1.1.23). The
proof is complete. O

Proof of Theorem 1.1.3. Lemmas 1.4.1-1.4.5 establish the global existence of H*-
solutions to problem (1.1.1)—(1.1.7). O

Proof of Corollary 1.1.1. Employing the Sobolev embedding theorem together
with the estimates (1.1.17)—(1.1.18) yield the desired conclusion immediately. O

1.5 Bibliographic Comments

Assuming the dependencies P = P(n, 0) and e = e(n, 0), the ideal gas with
P = RO/n and e = Cy0 was treated earlier, with many good results on global
solutions and their exponential stability for various problems (see, e.g., [1, 8, 9, 43,
53-55, 93, 96, 98, 138, 140]). If the Stefan-Bolzmann law, i.e., (1.1.7) is considered,
the radiative gas model, of a more general type, was derived and related results
were obtained, e.g., in [22, 30, 105, 129]. Ducomet and Zlotnik [30] studied a
selfgravitating gas with the mass force g involving only the space variable x in
(1.1.2). The subtle introduction of the entropy S = Rlogn + Cy log 8 + 4an6*/3
leads to the energy-type Lyapunov functional, which is crucial for establishing
the global existence and exponential stability of the solutions. Moreover, they
employed the technique for estimating © := supg<4<, [|0(s)| = for other H! norms
of the unknown variables in [96, 98]. For the MHD models, this case has been
studied in [10, 11, 25, 58, 132] and [145]. Specifically, in Kawashima and Okada [58],
assuming b is an arbitrary but fixed two-dimensional vector and letting S denote
the entropy, the energy type E = e—e+ P(1/n—1/1)—0(S—S)+v?/2+|w|?/2+
|[b — b|?/2, where the steady-state expressions N = N(n,0), N = e, P or S are
used, plays an important role in the estimates for |b —b|’s certain uniform spatial
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norms. In Zhang and Xie [145], another kind of gravitational force is presented as
U, /n? where the relation of ¥ and 7 is governed by Poisson’s equation:

I (1.5.1)

n

in which G > 0 is the Newtonian gravitational constant. However, the estimates of
the lower and upper bounds of 1 are not uniform in the whole time interval (0, +00)
and no large-time behavior was obtained when the self-gravitation is present. On
the other hand, when the domain is unbounded and the Poincaré inequality is
not available, the properties of the initial data for the unknown variables must be
specified via some appropriate stationary state data like g — 7, etc., understood
as small initial data in [45, 54, 56].

Under the small initial data hypothesis, the global existence and large-time
behavior of smooth solutions have been obtained for the Cauchy problem, including
the two- or three-dimensional case (see, e.g., [46, 53-55, 58, 74-77, 93]). Although
these results are based on the same assumption namely, small initial data, the
specifics are quite different. In [54], the small data hypothesis in the 1D case
appears in weighted form,

co := [l =117 +/(1 +a®)" {(no =) + 05 + (o — 0)* + v} do <€, (15.2)
R

where (1 + 22)7 (y > é) is a weight function and € is a sufficiently small positive
constant. In contrast, in Okada and Kawashima [93], the hypothesis takes on the
form

EOE1 S €, (153)

where
E; = || (log(no/n),log(vo), log(60/0)) || ;; (i =0,1). (1.5.4)

As another example, Kawashima and Okada [58] use a simpler condition:
||(1/’I70 — 1/7’]0, Vo, Wo, bo — b, 90 — 9)” S €. (155)

In Qin et al.’s work [110, 112], the former two cases (1.1.9)—(1.1.11) have been
summarized together for higher regularity of H? and H* global solutions. This
chapter is ti employ the basic ideas in [54, 110] to obtain the global solutions in
H! for a 1D ideal gas MHD system (1.1.1)—(1.1.6) similar to that of [58] and then
obtain the regularity and asymptotic behavior of H? and H* global solutions.



Chapter 2

Global Existence and Exponential
Stability of 1D Compressible

and Radiative
Magnetohydrodynamic Flows

2.1 Main Results

In this chapter, we shall study the global existence and exponential stability of
solutions to the one-dimensional thermally-radiative magnetohydrodynamic equa-
tions.

Magnetohydrodynamics (MHD) is concerned with the study of the interac-
tion between magnetic fields and fluid conductors of electricity. The applications
of magnetohydrodynamics covers a very wide range of physical areas, from liquid
metals to cosmic plasmas, for example, the intensely heated and ionized fluids in
an electromagnetic field in astrophysics, geophysics, high-speed aerodynamics and
plasma physics. In addition to these situations, we also take into account effect
of the radiation field. The flows mentioned above are described by the following
equations in the Lagrangian coordinate system:

T — gy =0, (2.1.1)
1 Aty

u + <p+ |b|2) < “ > : (2.1.2)
2 T

W, — “WI) (2.1.3)

T

Mty + puw - Wy + vb - by + k0, ) (215
T xT

=
(7h); — Wy = <”':I> (2.1.4)
() )~

© Springer Basel 2015 29
Y. Qin et al., Global Existence and Uniqueness of Nonlinear Evolutionary Fluid Equations,
Frontiers in Mathematics, DOI 10.1007/978-3-0348-0594-0 2



30 Chapter 2. 1D Compressible and Radiative MHD Flows

Here m = ,1) denotes the specific volume, u € R the longitudinal velocity, w € R? the
transverse velocity, b € R? the transverse magnetic field, and @ the temperature,
p = p(7,0) the pressure, and e = e(7,6) the internal energy; A and p are the
bulk and the shear viscosity coeflicients, respectively, v is the magnetic diffusivity
acting as a magnetic diffusion coefficient of the magnetic field, k = k(7,0) is the
heat conductivity, and F is given by
1 1
E=c+ _(u*+|w]*)+ _7|b]%
2 2
For the constitutive relations, we consider (see, e.g., [22]) the Stefan-Boltz-
mann model, i.e., the pressure p(r,0), internal energy e(7,6) and the thermo-
radiative flux Q(r,0) take the following respective forms,
RO «a
,0) =
p(r.0) ="+,
where R > 0 is the ideal gas constant, C,, > 0 is the specific heat at constant

volume, a > 0 is a constant and the heat conductivity x(7,6) > 0 is a function of
7 and f. As initial and boundary conditions, we consider

(1,u,w,b,0)|:=0 = (70, w0, Wo,bo,0)(z), xe€Q=][0,1], (2.1.7)
(u,W,b,91)|aQ =0. (2.1.8)

04, e(r,0) = Cob+art®, Q(1,0) = Qr+Qr = —rb,, (2.1.6)

In this chapter we shall establish the global existence and exponential stabil-
ity of solutions in the spaces H% (i = 1,2,4) (see below for their definitions) to
problem (2.1.1)—(2.1.8). The main difficulty arises from the higher-order nonlinear
dependence on the temperature 6 of p(7,0), e(r,0) and x(7,8), which makes the
upper bound for § become more complicated. In order to overcome this difficulty,
we make use of Corollaries 2.2.1-2.2.2 and interpolation techniques to reduce the
higher-order dependence on 6. The estimate fol 70*dr < Cy in (2.2.3) plays an
important part. This will be done by a careful analysis. Another difficulty is that
we have to establish uniform estimates independent of time in order to study the
large-time behavior.

We define three function classes as follows:

H! = {(T,U,W,b,@) € (H'[0,1))7: 7(z) > 0,0(z) > 0,2 € [0, 1],
u(0) = u(1) = 0,w(0) = w(1) = b(0) = b(1) = 0},
H = {(T,u,w,b,e) € (H[0,1))7 : 7(z) > 0,0(z) > 0,z € [0, 1],
u(0) = u(1) = 0,w(0) = w(1) = b(0) = b(1) =0,
0(0) = 0'(1) = o}, i=24.

In this chapter we will use the following notations:

LP, 1 < p < 400, W™, m € N, H' = W2 H} = W,? denote the
usual (Sobolev) spaces on [0,1]. In addition, || - || g denotes the norm in the space
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B; we also put || - || = || - [|£2[0,1- Constants C; (i = 1,2,3,4) are generic con-
stants depending only on the H' norm of the initial data (79, u0, o, bo,0o), but
independent of time.

Now we are in a position to state our main results.
Theorem 2.1.1. Assume that the initial data (19, uwo, Wo, bo, 00) € H}r and compat-

ibility conditions are satisfied. Assume also that the heat conductivity k is a C?
function on 0 < 7 < 400 and 0 < 0 < 400 and satisfies the growth condition

k(1 +07) < k(r,0) < ka(1+09),  |kr| + |forr| < ka(1+69), ¢>2, (2.1.9)

with positive constants k1 < ko, and there exists a constant €9 > 0 such that

T = fol 7o dx < g¢9. Then the problem (2.1.1)—(2.1.8) admits a unique global solution
(T,u,w,b,0) € Hy verifying

0<Cit<r(x,t) <Cy, 0<Cyt<O(x,t) <Cy, V(z,t) €0,1] x [0, +00)

(2.1.10)
and for any t > 0,
I7() = 7l + lu®lFn + W@l + IO + 10) — 017
t
+/O (HT = 7ll3 A+ lullZe + IwliZe + bl + 16— 017
Hlluell + well + [[bel|* + H9t|\2)(5)ds <Cn, (2.1.11)

where T = fol Tdr = fol To dz and the constant 6 > 0 is determined by

e(7.0) = Ey = /01 G(ug T [wol? + rolbol?) + 6(70,90)> dz.
Moreover, there are constants C1 > 0 and y1 = v1(C1) > 0 such that, for
any fived v € (0,71], the following estimate holds for any t > 0:
e (Ilr(t) = 7ll7n + lu@)lzn + w7 + @7 + 10() = 0l171)
t
+/O 675(HT = 7ll3 + el + w3 + bl + 16— 017
+ el * + [[wel|* + [[be]* + H9t|\2)(5)d5 < Ch. (2.1.12)

Theorem 2.1.2. Assume that the initial data (19, uo, Wo, bo, 0p) € H_%_ and compat-
ibility conditions are satisfied. Assume also that the heat conductivity r is a C3
function satisfying (2.1.13) on 0 < 7 < 400 and 0 < 0 < +o00, and there exists
a constant €g > 0 such that T = fol Todx < 9. Then the problem (2.1.1)—(2.1.8)
admits a unique global solution (7,u,w,b,0) € H_%_ verifying that, for any t > 0,

I17() = 7l7= + 7= + 1w 12 + DO Z + 10(2) — 0172
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t
+ @)1 + [lwe (O + o (O] + 101 + /0 (IIT =77
+ ullfs + Wiz + [1blFs + 110 = Oll7s + uew|* + 1wz |
e 2 4 16002 (5)ds < C. (2.1.13)

Moreover, there are constants Cy > 0 and y2 = v2(C2) > 0 such that, for
any fized v € (0,72], the following estimate holds for any t > 0:

67’E(IIT(@ = 7lZe + [u@®)ze + W@l + O]z + 10() — 61l

t

@I + Ol + I + 16:017) + [ (I = el

+ l[ullFs + Wil + [bllFs + 116 = 8117 + luee | + [Iwee |12

+ i 2 + 160212 (5)ds < C. (2.1.14)
Theorem 2.1.3. Assume that the initial data (79, ug, Wo, bo, 0p) € Hj*r and compati-

bility conditions are satisfied. Assume that the heat conductivity  is a C° function
satisfying (2.1.13) on 0 < 7 < 400 and 0 < 0 < +o0, and there exists a constant

g0 > 0 such that T = fol Todx < g9. Then the problem (2.1.1)~(2.1.8) admits a
unique global solution (T,u,w,b,0) € Hi verifying that, for any t > 0,

|17() = 7lZs 4wz + W) + DO + 10C) = Ol + lluee(t)]]*
+ W (O + e (W + lue ()72 + [lwe Ol Zr2 + e Z + 1001172

t
+ 16 ()11 +/0 (Il = 7l + lale + 1w 1s + Il + 116 = 61
+ lluellFrs + wellFs + el Fs + 10ell3s + el + weell 7

+ el + 16l ) (s)ds < Cu. (2.1.15)

Moreover, there are constants Cy > 0 and v4 = v4(Cyq) > 0 such that, for
any fized v € (0,74], the following estimate holds for any t > 0:

e (Il7(8) = 7ll3zs + @)z + 1wz + b + 16GE) = 0113
o a1 + wee I + [Bea (02 + e (8) e + Iwe®) e + Do)
t
WMM%H%®H+AWwwﬂ%+M%+W%+W%

110 = 01175 + luelFs + [WellZzs + IbellFrs + 101z + llueellFrr + [Wee 7

+ w3 + 180l ) (s)ds < Ca. (2.1.16)
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Corollary 2.1.1. The global solution in Theorem 2.1.3 is in fact a classical solution
(r,u,w,b,0) € (03+1/2(Q))7 that obeys for any v € (0,74] the estimate

< 04677)5.

H (T(t) — 7, u(t), w(t),b(t),0(t) — 9)

H(CS+1/2(Q))7

2.2 Global Existence and Exponential Stability in H*!

In this section, we shall study the global existence and exponential stability of
problem solutions to (2.1.1)—(2.1.8) in H! under the assumptions of Theorem
2.1.1. We begin with the following lemmas.

Lemma 2.2.1. Under the assumptions of Theorem 2.1.1, the following relations
and estimates hold for any t > 0,

/o 7(z,t)de = /o To(x)dx, (2.2.1)
1 1
/ E(x,t)dx :/ E(z,0)dz = Ey, (2.2.2)
0 0
/ (0 + 76* + u* + |w]* + 7[b|?) (2, t)dx < C, (2.2.3)
0
B(t) + /tV(s)ds <a, (2.2.4)
0

where
B(t) = /O1 [CU(H —logf—1)+ R(r — log T — 1)} (. t)dx,

1 2 2 2 2
KOE  Aui + plwe]® + v|by]
Vi(t) = 4T t)d

(*) /0 762 70 (@,t)dz,

1 1
o (W + [wl?) + | 7[bf?

1 1
C,0 + atd* + 0 (u® + |w|?) + 2T|b|2.

Proof. By (2.1.1) and (2.1.8), we get (2.2.1). Integrating (2.1.5) over @; := (0,1) x
(0,t) and using (2.1.8), we get (2.2.2), the conservation law of total energy. Esti-
mate (2.2.3) follows directly from (2.2.2) and (2.1.6).

Equation (2.1.5) can be rewritten as

K0, M2 + plwy|? + v|by|?
eri-pum:( T) + ° ul 7_| | |, (2.2.5)
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ie.,

C,0; + 4at0>0, +

ROm 4 0, A 2|2 + by ?
[ an94_<“ ) 4 Aa + et vibal® g g 6

3

T

Multiplying (2.2.6) by #~! and integrating the resulting equation over Q;, we get
(2.2.4). |

Lemma 2.2.2. For any t > 0, there exists a point x1 = x1(t) € [0,1] such that
specific volume T(x,t) in problem (2.1.1)—(2.1.8) can be expressed for any § > 0 as

(z,t) = D(z, 1) Z(t) {1 Al /Ot DYz, $)Z Y (s)7(z, 5) [al (z,5) — 5} ds} ,

(2.2.7)
where

D(z,t) = 1o(x) exp {)\—1 (/m(t) u(y, t)dy

—/O uo(y)dy + 7o~ /70/ uodydac>}
Z(t)—exp{ (A10)~ // u —|—T01)dyd5—|-)\}

1
o1 =p+ |b|2, TOZ/ Todx.
2 0
Proof. For any § > 0, we can rewrite (2.1.1) as

1 1
T = Uy = /\(64—0)7'—!- /\(01 — o),

ie.,
1 1
- /\(5 +o)r= /\(01 — )T, (2.2.8)
Ay

where o = " — 0.

Multiplying (2.2.8) by exp {f}\ fot (o + 5)ds}, we obtain the expression

s =exn (! [l vous) (s ] [rion-srom (=] [lo ) ).

(2.2.9)
Let . .
h(z,t) = / o(x,s)ds +/ uo(y)dy.
0 0
Then from (2.1.2) it follows that h(x,t) satisfies
Aty
he =u, hi=o= "7 _g. (2.2.10)
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Hence, we have
1
(Th)y = Teh 4 Thy = (uh)s — u* + My — 7 (p +, |b|2> : (2.2.11)

Integrating (2.2.11) over @, we get

1 1 t ol 1
/ Thdr = / Toho dx — / / <u2 +7(p+ |b|2)) dxds
0 0 o Jo 2
1 T t 1
= / 70 (/ U dy) dx — / / (u? + 101)deds =T(t). (2.2.12)
0 0 o Jo

Then for any ¢ > 0, there exists a point z1 = z1(t) € [0, 1] such that

1 1
F(t):/o Thd:v:/() rdz - by (0),1) = 70 - h(z1 (1), 1),

ie.,

h(zi(t),8) = ~ T(b). (2.2.13)

To

Thus from (2.2.10)—(2.2.13) we deduce that

1

xl(t)
F(t)—/ updy. (2.2.14)
ToO 0

t z1(t)
/0 o(z1(t),s)ds = h(x1(t),t) — /0 ugdy =

Integrating (2.1.2) over [x1(t), x] x [0,¢], we get

t t x

/ o(x,s)ds = / o(z1(t),s)ds + / (u — ug)dy. (2.2.15)

0 0 I1(t)

Then we infer from (2.2.14) and (2.2.15) that
t 1 z1(t) z
/ o(xz,s)ds = ~T(t) — / uo dy —|—/ (u — uo)dy
0 To 0 z1(t)

1 x xT
= e - / wody + / uly, t)dy,
0 x

70 1(t)
which, together with (2.2.9), gives (2.2.7). The proof is complete. O

Lemma 2.2.3. Under the assumptions of Theorem 2.1.1, the following estimate
holds:

0<Cyt <7(x,t) <Cy, Y(x,t) €[0,1] x [0, +00). (2.2.16)
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Proof. Tt follows from (2.2.4) and the convexity of the function —logy that

1 1 1
/Gd:rflog/ 9dx71§/ (0 —log 6 — 1)dx < C1/C,,
0 0 0

which implies that there exist a point b(t) € [0, 1] and two positive constants r1, 7o
such that

1
0<r1§/ Odx = 0(b(t),t) < ro,
0

with 71, ro being the two positive roots of the equation y —logy — 1 = C41/C,,. It
follows that

1 1
/ Tpdx < max(R,a/3) / (0 + 70%)dx
0 0

1
< maX(R,a/S)/ edy < max(R, a/3)E0
0

min(Cy, a) min(Cy, a)

and .
/ (u2 + T|b|2) dz < 2B,

0 2

whence
I Lo
0<a; < u”+7(p+ _|b|*) ) (z,s)dz < as (2.2.17)
)\7—0 0 2

with

_ Rny 1 max(R, a/3)
@ = Mo’ 42 = ATo {er + <2+ min(C,, a) Eo|-

By Lemmas 2.2.1 and 2.2.2, we derive
0<Cyt < D(a,t) < Cy, Y(x,t) €[0,1] x [0, +00). (2.2.18)

On the other hand, for 0 < m < (¢ +4)/2, we infer from Lemma 2.2.1 that
/ ™10, dy
b(t)
1 02 2 1 g2m :
o[ 5 ([
0 70 0 KR

1 3
<V ()2 (/ (1 +9)2m-qdy>
0
< CLV(b)>.

|07 (, 8) — 0™ (b(t), 1) < C1
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Thus,

2& —CL V() <0 (x,t) <22 + OV (1), 0<m< . (2.2.19)
Obviously, from Lemmas 2.2.1-2.2.2 and (2.2.17), for § > 0 and 0 < s < ¢,
we get

e (a2=0/N)(t—s) < Z(t)Z_l(s) <e (@=/Nlt=9) <5<t 0<a;<as.
(2.2.20)
Noting that 017 = 7p + 7 |b|]> = R0 + §70* + 7 |b|> > R6, we use (2.2.17)-
(2.2.20) to derive that there exists a large time ¢y > 0 such that as ¢t > to > 0, for
0 =0 in Lemma 2.2.2,

T(xz,t) > /\71/ D(x,t)Z(t) D™ (2, 8)Z 7 (s)o1 (, 8)7(x, s)ds

>Cr / O(z,s)e” 2= ds > O / ( - ClV(S)> e~ 22(t=5) s

_ —agt C / —a2(t S)ds

Y

20,201(
T (2.2.21)
~ 4asCh ’ o

where we have used the fact that, as t = +o0,
¢ 400 t
/ Vi(s)e 2= ds < efa2t/2/ V(s)ds +/ V(s)ds — 0.
0 0 :

On the other hand, we can also derive from Lemma 2.2.2 with 6 = 0 and
(2.2.20) that for any ¢ € [0, ¢o],

D(z,t)
Z(t)

which, together with (2.2.21), gives

Z Cl—lefazt Z Cl—lefaqtg > 07

7(z,t) >

m(x,t) > C7t >0, V(x,t)€0,1] x [0, +00). (2.2.22)

Now let us prove that 7(z,t) < Cy. If we choose 0 < gy < 3RT1 , then as
7o < €0, We get
Rry S Rry _ arj S a@‘f.
To €0 3 — 3
Thanks to (2.2.23), we can pick § > 0 such that

(2.2.23)

RT‘1>RT1>6>

4 4
ar ab
> 2>
T0 €0 3 3
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which gives

o ) . 1 . 1 RT‘l
(=a — 5= /\[)\al —0] = N { - 5} > 0, (2.2.24)
3 4 3 4
h= 07%—-1> r;%0—1=46>0. (2.2.25)
a a

Noting that for any €, c¢1, ca > 0, ¢ € R, we have, by the Young inequality,
that cica < ec? + ¢3/(2¢) and also inequality ¢* — 1 —¢ < (¢ — 1)?(1 +&71), we
derive from (2.2.24)—(2.2.25) that

s — T2 apa
o1 —8) = RO+ _ b +T(39 5), (2.2.26)

and

oy N _Gpu (s 3,4
7(39 5)_3917 (9 "0, 5)

g@‘fﬁ' max[0* — 1 — 6y, 0]

IN

IN

39‘117 max[0* — 1 — &, 0]

IN

geilT(é? —1)2(1+55Y)
Ci7 (0% — 1), (2.2.27)

IN

where
0 =0(x,t)/61, 6, =06(b),t)= / O(z, t)dx € [ry,s].
0

Noting that 6(b(t),t) and using the Poincaré inequality, we have

1 1
0? —1)? < </ 2|ééz|da:> <O (/ |991|d17>
0 0
1 02 1 04
<0 (/ ’;egda:> </ Tﬁ dx)
0 0

<OV (t) /1 (1 + 6% de < CLV (). (2.2.28)
0

2 2

By Lemma 2.2.1, we get

1 1 2 1
b2 < ( / |bm|d:c) gcl( ! d:v) ( / Tedx)
0 o T 0

<CGiV(t) /01 (14 6% dx < C1V (t),

2
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which, together with (2.2.26)—(2.2.28), yields
+oo
7(o1 — ) < RO+ C1V ()T, / Ib(t)||2<dt < Cy. (2.2.29)
0
Thus it follows from Lemma 2.2.2 that
t
T(x,t) < C1+ Cy / [14V(s)+ 7V (s)]exp[—C(t — s)]ds
0

<cit0 /0 ~V(s) expl—C(t — 8)]ds,

i.e.

M(t) < Crexp(Ct) + 01/0 V(s)M(s)ds, (2.2.30)

with M(t) = e max,eo,1) 7(x,t) = eS* M, (t). Thus, by Gronwall’s inequality,

t
M(t) < C1 exp(Ct) exp [C’l/ V(s)ds] < C1 exp((t),
0
i.e.
M‘r(t) < 017
which, together with (2.2.22), gives (2.2.16). O

Corollary 2.2.1. Under the assumptions of Theorem 2.1.1, the following estimate
holds:

q+4

Oy —CiV(t) < 0*™(z,t) < C1+C1V (), 0 <m < 0

Yz, 1) € [0,1]x]0, +00).
(2.2.31)

Lemma 2.2.4. Under the assumptions in Theorem 2.1.1, the following estimate
holds for any t > 0:

¢
(o) + )+ [ (1wl + b P

+ [[well* + [be|* + bl 2 + IIWH%w)(S)dS < Ch. (2.2.32)

Proof. Multiplying (2.1.3) by w, w; and (2.1.4) by b, by, respectively, and then

adding the resulting equalities, integrating over @), and using Lemmas 2.2.1-2.2.3,
we get

t
Il + DO+ C [ (Il -+ b+ e+ [l ) ()

t 1
gcl/ / ‘(w~b)x+wz~bt+bx~wt+ (b.bﬁbt.bﬁb.bm)u)(x,s)d:cds
0 0
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O t
< (Il o e+ o) (5)ds
0

t 1
01 [l | [ (b b+ b+ b o] ds
0 0

C, [t
4 /0 (||W1H2 + ||bmH2 + HW,5||2 4 ||th2> (s)ds

t 1
01 [ ut)a | [ (b-ba b bo—bb,) e
0 0

O
- 2

t 1
—l—Cl/ lu(s)] Lo / b-b,dz
0 0

c, [t
< / (w2 4 a2 + f1well? + [1be][2) () ds

t
/0 (w22 4 D12 + f1well? + [1be]|2) (s)ds

ds

-2
t
+0) / ()< (lIwil3s + b1 ) (s)ds,

ie.,

t
I+ 0+ [ (Il 1 + w4 ) ()

t
scl+cl/0 ()3~ (13 + Bl ) (s)ds. (2.2.33)

Applying the Gronwall inequality to (2.2.33) and using (2.2.29) and the Poincaré
inequality, we get (2.2.32). O

Lemma 2.2.5. Under the assumptions of Theorem 2.1.1, the following estimate
holds for any t > 0:

t 1
I (1)1 +/0 /0 (72 + 072) (2, s)deds < Cy + CLA®, (2.2.34)

with A= sup ||0(s)||L~ and go = max(4 — ¢,0).
0<s<t

Proof. Equation (2.1.2) can be rewritten as

(u AT ) = R; _ B Ay bob,. (2.2.35)
. T 3

T T

Multiplying (2.2.35) by u — A:z, and integrating the resulting equation over

Q:, we have
2 t rl 2
0T 1
-l-R/\/O /0 3 (x,s)dzds = N

2
ATy

0

)\7—01
ug —
T0

u(t) (2.2.36)

2
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//{ oo [<f+43“93>9xb.b4 (u/\?)}(x,s)dxd&

which gives

172 (8)||* + //97' (x, s)dzds

<Ci+ Cl/ / 0T u| + |uby| + [020,u] + |0o70| + (030,72
0 0
+ |b-byu| + |b-bm|] (, 8)dzds. (2.2.37)

Using Lemmas 2.2.1-2.2.4, we easily derive that for any € > 0,

t t 1 t 1
/ / |07, u|dzds < 5/ / 072 dads + C4 (8)/ llu(s)]|% (/ 9d:v> ds
0 Jo 0 Jo 0 0

t 1
< Ci(e) +e¢ / / 072 dxds, (2.2.38)
0 JO

/ / 10,u|dzds < </ / Tegd wds ); </Ot/01 THZUdedsy
<c (/0 ()2 (/017(1 +9)2qu) ds) < (2.2.39)

t ol _p8, 2 2
/ / 10260, u|dzds < (/ / gdxds) (/ / T dxds)
70 0 0 K

<Oy + A%, (2.2.40)

/Ot/01|9m|dxdsg</ ) <// 7923d ds)é
([ [ o)

t 1
<e / / 072 dads + Cy(g) + Oy (e) Am*1=a0) (2.9 47)
0

t el t el t el
/ / |(6% — 62)00,7,|dxds < C’l/ / |991|d:17d5/ / |00, 7, |dxds
o Jo o Jo o Jo

<y sup

0<s<t|| K
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1 1
1 p4 2 042 2 t
< C; sup [(/ i dx) </ T e dx) / V(s)ds
0<s<t o K o K 0

<Civer s [( [ arotyra) % (|7 @nt~timts )]

<& sup ma(s)]|? + CL(e) + Ci(e) A%, (2.2.42)
0<s<t

which gives

t 1 t 1 t 1
// |939x7'x|d:cd3§// |(9279%)991Tz}d$d8+// |9%9917'z|d:17d5
o Jo o Jo
1
94 2 2
< e sup ||T$()||2+Cl+ClAq°+Cl</ ) (// 4 xdd)
0<s<t 0
2 t pl é
) </ / 97'3da:d5>
L= \Jo Jo

< e sup ||ng(5)||2 + C1 + C1A® + Cy sup

0<s<t 0<s<t K
t 1
< e sup ||7(s)|]* + Ci(e) + Ci(e) AP + 5/ / 072 dads, (2.2.43)
0<s<t 0

t el ¢ 1
/ / |b - byu|dzds < / [l ()| Lo </ b - bz|d:17> ds
0o Jo 0 0

t ol
<Ci+ Ol/ / |b|?|b,|*dzds
o Jo

t
<C 4+ 01/ [b(5)[|7 bz (s)[|?ds < C4, (2.2.44)

/ / [b-b,7,|dxds < Ci(e) + 6/ / 72 dxds. (2.2.45)

Inserting (2.2.38)—(2.2.45) into (2.2.37), we easily obtain (2.2.34). O

Lemma 2.2.6. Under the assumptions of Theorem 2.1.1, the following estimates
hold for any t > 0:

t 1
/ / (1+0)2m72 deds < Oy + C1 A%, (2.2.46)
0
t 1
/ / (14 60)*"u?drds < Cy, (2.2.47)
0 JO
t 1
/ / (1407 ((Wal? + b ) dwds < C, (2.2.48)
0 JO

where 0 < m < qJ2r4.
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Proof. Tt follows from (2.2.33) and Lemma 2.2.5 that

t el ¢ ¢
/ / (14+0)?™72 dads < 01/ ||Tz(s)|\2d5+C1/ V(s)||72(s)||?ds < C1+CLA%.
o Jo 0 0

The proof of (2.2.47) and (2.2.48) is similar to that of (2.2.46). O

Lemma 2.2.7. Under the assumptions of Theorem 2.1.1, the following estimates
hold for any t > 0:

t
/ l[ug(s)|2ds < Cy + Cy A%, (2.2.49)
0
t
s + [ Jur()lds < €+ Crar, (2.2.50)
0
t
/ e (5)]|2ds < Cy + CLAZ, (2.2.51)
0

where q1 = maX(S -4, 0)7 q2 = ma’X(?’qu ql)

Proof. Multiplying (2.1.2) by w, ug, Us., respectively, and then integrating the
result over )y and using Lemmas 2.2.1-2.2.6, we get

t t pl
||u(t)||2+/0 s (5)|2ds < C1 + Cy /0/0 (7200 -+ (14 0%)0,u + b - b ) deds

t t 1 31202, 2
1+ 63)%0
§C1+01/ V(S)dSJrC’l// [9u2+97'x2+7.( +07) 0% +b'bzu] dxds
0 0J0 K

< Cy + C1 A%,

t t 1
nuz<w|24j€ |ut@»|2ds:s<91j€ jg (Ipote] + [b - byue]) dads

t t 1
< ;/ Hut(5)||2d3+01/ / [(1+6%)262 + 6272 + [b|*|b, |*] dds
0 0 0

IN

1 t
2 / |ue(s)||?ds + C1 + CLAT + CLA®
0

IN

1 t
y | o) Pds +-c1 o+ coam,
0

which gives

t
|mwwaémmsta+ama

Ium(t)||2+/0 |tz (5)]|2ds
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t 1
<Ci / / (J(1+ 02)0ptpe| + |0Tetee| + [UeTotizs] + |b - by Usz|) dzds
0 Jo

t
< Ci(e) + 5/ ltze(s)||?ds + Cy(e) AT 4 Cy () AT
0

woan ([ ||uz<s>|2ds>é (f |“m(s>'2ds)é

t
< Ci(e) + 5/ |l tze(s)]|?ds + Cy(e) AT + Oy (g) A3

<cCi(e / s (3)[2ds + C1 () A%,

i.e., for ¢ small enough,
t
uslF + [ Juse(o)ds < €1+ Cra 0
0

Corollary 2.2.2. Under the assumptions of Theorem 2.1.1, the following estimate
holds:

q+4

t 1
//(1+92’” 2dxds < Ci(1+ A, Vt>0, 0<m< (2.2.52)

Proof. We easily derive from (2.2.33), (2.2.49) and (2.2.50) that

t 1
//(1+92m 2dxds<01//udacds+01// udwds
o Jo

< Cy+ C1AT + C1AT < Cy + C1 AT

which gives (2.2.52). O

Lemma 2.2.8. Under the assumptions of Theorem 2.1.1, the following estimates
hold for any t > 0:

t
/ (95l + b 2) (5)ds < €y + A (2.2.53)
0

Proof. Multiplying (2.1.3), (2.1.4) by Wa., by, respectively, and then integrating
the results over @); and using Lemmas 2.2.1-2.2.7, we get for any € > 0

w1 + 0o )1 + [ (sl + B ) ()

t 1
0 JO
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t t
<Cute [ (el Ibusl?) shds + Cate) [ (Iwall + b2 5)ds
0 0
t
+61(0) [ (Irawall + bl + usb?) (5)ds
0
t
<Crte [ (ol + bus]?) s)ds
0
t
+Cie) / ([Iwal + IDallf | 72l + DI« s 12) (5)ds
t
<Cute [ (Iwal? + el ) (s + Ca(e)420
0
t
+GE1+47) [ bl (s)ds
0
t
=Gt 5/ (Iwaall? + Ibes ) (s)ds + C1 () A%® + C1() A™
0

t
<Cite [ (Iwaal® + ousl?) (s)ds + Ca(e) ™.
0

Therefore, for € > 0 small enough,

t
/ (Il + 327 (s)ds < O + €y A% 0
0

Lemma 2.2.9. Under the assumptions of Theorem 2.1.1, the following estimate
holds for any t > 0:

t 1
16 + 6% +/ / (14 0)7302dzds < Cy + Cy A%, (2.2.54)
0 0

where g4 = max (g3, 2qo, q1) and gz = max(7 — 2¢,0).

Proof. Multiplying (2.2.5) by e and integrating the resulting equation over Q, we
have

t 1
6+ 6% +/ / (1+0)362dxds
0 JO
t 1
< 01/ / |(pe)au + (uz + [Wo|* + [ba|*)e| dads (2.2.55)
0 JO

t 1
< [ [ {0l (4 O mul 4 (6 [+ o [0,f?]  dads,
0 JO

By Lemmas 2.2.1-2.2.8 and Corollaries 2.2.1-2.2.2, it holds that for any € > 0,

t 1
/ / (1 +607)|0,u|dxds
0 Jo
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t 1 t 1
< e/ / (1+60)9362 dads + C4 (a)/ / (1+60)'' " 2dxds
0 0 0 0

t 1
< 5/ / (1+0)77302 dzds + Cy () + C1(e) A%, (2.2.56)
0 JO

t el
//(1+98)|Txu|da:ds
0

0
t 1 t 1
§C1/ / (1+9)ST§dwds+C1/ / (1+ 60)%u>dxds
o Jo o Jo

t 1 t 1
< Ch A% / / (1+0)772 deds 4+ Cy A% / / (1+ 0)1 *u?dads
0 JO 0 JO

< Cy 4 C A (2.2.57)
t 1
//(1+94)‘u§+|Wm|2+|bw|2]d:cds
0 0
t 1 t 1
g/ / (1+9>4u§dm3+/ / (14 0)* (|wal? + by ?) dads
0 0 0 0

<Oy + CLAT, (2.2.58)

Substituting the estimates (2.2.56) to (2.2.58) into (2.2.55), we get (2.2.54). O

Lemma 2.2.10. Under the assumptions of Theorem 2.1.1, the following estimates
hold for any t > 0:

t 1 1
/ / (1 +60)77302 deds + / (1460)%10% dx < Oy + CL A2, (2.2.59)
0 JO 0

where

g5 = max(3¢ — 1,0), ¢s = max(3 —gq,0),
qr = max(q - 37 0)5 q9 = max(q - 25 0)7

qs Zmax{q0+ SQ7;q4 + q0+2jl+Q2,

g + 3q72+q4 + qo;ql,QqO+3Q7+(J4+(J6},
qio Zmax{m,qg-f— q0+2gl+Q2,qg+Q1}»
m zmaX{q7+ qo+2;h+q2wh+q1},

G2+qs+qg5 qga+qs q1+3q

9 ) + 7Q8,(J10,(J11}-

= 1
Q12 maX{Q1+7 9 4
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Proof. Let

7, 5)

6
H(x,t) = H(r,0) = /0 wT8) g

Then it is easy to verify that

T

0)0
Ht = H‘,—ux + H(I’, ) t,
-
0)0,
th = |:H(:E, ) :| + H‘ruzz + H‘r‘rusz + (H) Txotv
T t T/ T
|H, |+ |H,r| < C1(1+6)7H (2.2.60)
We rewrite (2.1.5) as
eo0; + Opouy, = (“ > L e plwa " 4 vbe (2.2.61)
T /) T

Multiplying (2.2.61) by H; and integrating the resulting equation over @,

we obtain
t 1 t 1 1439
//(699t+0p9ux)thxds+// ( x>thd:cd3
o Jo o Jo T

t ol 2 2 b..|2
_ / / <Aux+ulw9cl + vbs| )thxds. (2.2.62)
0 0

T

Now we estimate each term in (2.2.62) by using Lemmas 2.2.1-2.2.9.
First we have, for any € > 0, that

t 1 t 1
/ / eql H uzdrds < 01/ / (14 0)7*|0,u, |dxds
o Jo o Jo

t t 1
< 5/ / (1+0)7302dxds + Oy / / (1 +0)7Pu2dxds
0 Jo 0 Jo

t 1
< e/ / (1 +0)77207dxds + Oy () + C1(e) AT (2.2.63)
0 JO

t 1 0 t 1
/ / epb: "t drds > CO/ / (1+6)1307dxds, (2.2.64)
o Jo T o Jo

t o1 t o1
/ / Opous H uzdrds < Cl/ / (1+0)15u2dxds
0o Jo o Jo

< Cy+ CLA% T (2.2.65)

t 1 9 t 1
/ / Opgus " duds < Cl/ / (1 + 0)70,u, |dxds (2.2.66)
0 Jo T 0 Jo
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1
Se/ﬁ/<1+9V”%¢ws+cma+cu@Am“,
t ol 1 2

// K0, <n9x> da:ds:lf </~@91) g

oJo T T/t 2 Jo T 0
t 1 Iiet t 1
/ / H ugpdrds < Cy / / (1 + 0)%7 0,1y |drds
oJo T o Jo

t el 2 t 1 2

< (/ / (1+9)q+36‘§d:vds> (/ / (1+6)37 142 dxds)

0o Jo

q2 +q4+qg,

<Cy+CiA , (2268)

t ol t ol
// HQIHTTuszd:chSgCl//(1+9)2‘I+1|0xuz7'z|d:17d5
oJo T 0
t el
<C (//(1+9)q+39§dxds> (// (1+6)37 1y 2d:cds)
Q4+QS
<A Hum A RE

q4+as + 3qo +a2

<CiA = 1, (2.2.69)

t

1
> 0;1/ (1+60)%90%dx — C4,
0
(2.2.67)

t
/|( )nw<a/ummﬂ|m%WﬂM+mm+mm6@
<01/ / [(1+60)°07 + (14 0)%u? + uj + |wa|* + |by|!] duds
t 1
§01(1+A)3“1/ / (1+9)q+39§d;cds+(1+A)qo/ / (1+60)"u2dxds
0 0 0 0
t t
+AWMﬂmwamw+A|m@ﬁwm@ws
t
+Anm®ﬁwm@ws

t 1
<Cy(1+ A)ts / / (1+ 9)q+39t2d:cds +C1(1+ A)Pota
o Jo

q0+2q1+492
2

+Ci(1+4)

bt kb, t pl
/ / K (I{) Txetdxds S Ol/ / (1 + 9>2q|919t7'z|d:[‘d5
oJo T T/ T o Jo

+C (14 A), (2.2.70)
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1 3q—3
<g// 1+9q+392d:vd3+01// +9 (“9> r2dwds
T

2
<5// (14 60)17302dwds + Cy (1 + A)T /

[[72(s)I|”ds
<5/ / (1+ 0)7H302dwds + C1(1 + A) qo+tI7/ H</~;9 ) ()
< g/ / (1+60)17307dxds + Cy (1 4+ A)©+ar ( ds)

t mﬁm 2 ;
(L1 @l
t 1
SE/ / (1+ 0)7302dwds + Cy (1 + A)®o+'s (// 1+0q+392dm3>
0 0
e >\
(L1 @l

<a// (1+0)1302dxds + C, + CLAPT

k0,

el

ds

3q7 +q4 + 90 +2q1+4q2
4

3q7 +q4 49 +ao
2

+ C’lAq°+ ClA2¢Z0+3Q7+Q4+QG

< 6/ / (14 60)"207 dwds + C(e) + C1 A%, (2.2.71)

t 1 2 2 2
A xT bx
/ / U+ Wl + vibs| H,uydxds

T

t el 2 2 2
A T bm
SCl/ / (1+9)q+1 g ug + plwe|? + vlby| duds
o Jo T

t 1
§01/ / (1+0)1 *u2drds
0 0

t 1
+Ch / / (14 6)172 (\uj + plwy|* + v|w,|?) deds
o Jo

+2q1+
qo+ 0TI T2

<Ci(1+ AT +C1(1+ A4) O (14 A)ptn
< G+ Gl + A", (2.2.72)

/t /1 M2 4 plw,|? + v|b,|? k6, drds
0 0 T T

t 1
< 5/ / (14 0)107dxds
0 Jo
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t 1
+01/ / (14 60)7% (M + plwa|* + vibe|*) dads
0 JO

q0+2q1+42
+ 2

1
< 8/ / (14 0)1T302dxds + Oy (1 + A)T7 + Oy (14 A)artn

t ol
<: / / (14 0)7362dads + Cy () + Cy () (1 + A)D1. (2.2.73)
o Jo
Therefore estimate (2.2.59) follows from (2.2.62)—(2.2.73) for € > 0 small enough.

O

Lemma 2.2.11. Under the assumptions of Theorem 2.1.1, the following estimate
holds for any t > 0:

[0()]| L < C1. (2.2.74)
Proof. By Lemmas 2.2.1-2.2.10,

1
ge+3 — g9t < ¢ / 109720, |da
0

1 2 1 2
< (/ |92qe§|dx> (/ |64|d:v>
0 0

<Ci(1+A4)%,

which gives

A <O+ 1A
It is easy to verify that 12 < 2q + 6 if ¢ > 2. Therefore, by the Young inequality,
we obtain A < C1, i.e., ||0(t)||L~ < C. O

Lemma 2.2.12. Under the assumptions of Theorem 2.1.1, the following estimates
hold for any t > 0:

IO < & (I + s 0]?). (2275)
eI < (180 + e (I + 16G6) oD + DI + e 0)]P)

(2.2.76)
Cwe I < (IO + e + wea (D), (2.2.77)
a0 < (IO + [wa)” + [bea (D). (2.2.78)

d 1
0O + [ a0,

0
< (18O + e DI + [wae O + [aa (D). (2279)
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Proof. Differentiating (2.1.1) with respect to z and multiplying the resulting equa-
tion by 7, we obtain (2.2.75).
Similarly, multiplying (2.1.2)—(2.1.4) by tgs, Waz, bss, respectively, and then
integrating the resulting equation over [0, 1], we get estimates (2.2.76)—(2.2.78).
Multiplying (2.2.61) by e, ', and integrating the resulting equation on
[0, 1], we deduce

d ' k2
0:()]* +2 "
O 2 [ "

7/ <0pgux CAug Kby n 60pTol0ps Wy wa) 0. d
0

€ TE TE T2€9 TEy TEy

< ellfae @I + C1&) (Jlue DI + luallLe + 102 (1) 14 + Iwa(6) L4
+ o ()L + 17:02(1)]2)

< 26020 (8)]2 + C1&) (Jlus DI + e B2 + 10011
W ()] + b (1)),

which, by taking e > 0 small enough, gives (2.2.79). O

Lemma 2.2.13. Under the assumptions of Theorem 2.1.1, the following estimates
hold as t — +o0:

[7(t) = 7l — 0, [u@®)[ =0, [lu(t)z= —0, ( )
(WOl =0, [[w(t)lee =0, [bE)]| =0, [b)|re—0, ( )
10(t) = Ol — 0, [[0(8)] =0, [0(t) = 0l|L= — O, (2.2.82)
0<Cyt<O(x,t) <Ch, V(z,t) €0,1] x [0, +00). ( )

Proof. By using Lemmas 2.2.1-2.2.12, we have
t
/0 (lall® + [[wall* + b |* + 1721 + 162]1%) (s)ds < Ca (2.2.84)

and

t
d 2 d 2 d 2 d 2 d 2
(11wl gy o241 241 0211 ) < €

(2.2.85)
which yield (2.2.80)~(2.2.82).

We derive from (2.2.82) that there exists a large time ¢y > 0 such that

0(z,1) > ée S0, V> to. (2.2.86)
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On the other hand, if we put w := j, (2.2.61) becomes

KWy 2 2kw? w2 Aw? 2
eowr = (") T | (w4 b )+ (= )
T Ja 4\ TW T T 2 \w

which, along with (2.2.16) and (2.2.74), implies that there exists a positive constant
C1 such that

Wt

1 (ﬁwm
r

) o

ey
Defining &(z, t) := C1t+max(g 1 HU%I) —w(z,t) and introducing the parabolic

operator L := *gt + 619 Baz (f Bax)’ we have a system

Lw<0, on Qr= [O, 1] X [O,to + 1],
W|t=0 > 0, on [0,1],
ajz|x:0,l = 07 on [Oa tO + 1]

The standard comparison argument implies

min  @(z,t) >0
(z,t)€Qp

which gives for any (z,t) € Qr,

O(z,t) > <Clt+ max @)1.

z€[0,1] O
Thus,
1 \!
O(x,t) > <Clt0 +zré1[%§] 90(:10)) >0t 0<t<t
which together with (2.2.86) and (2.2.74) gives (2.2.83). O

In what follows we shall prove the exponential stability of the solution in H i
If we now introduce the flow density p = i, then we easily get that the specific
entropy

4
n=n(r,0) =1(p,0) = Rlog ™ + 3“793 10, logh, (2.2.87)
satisfies
o _ _po O _eq
dp p2’ 00 0’
with p = Rpf + ‘594 and e = C,0 + a24.
We consider the transform

(2.2.88)

A:Dyo={(p,0):p>0,0>0} = AD, 4, (p,0)+— (1,7),
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where 7 = 1/p and n = n(1/p,0). Since the Jacobian

a(t,n) € 1 -1 12
= — = — 4
o) =~ % = 2 (cve +dap~10 ) <0,

there is a unique inverse function (7,7) — (p, ). Thus e and p can be regarded as
the smooth functions of (7,7). We denote by

e=e(r,n) = e(r,0(r,m) = e(p™",0),

p =p(7,7) = p(7,0(1,n)) = p(p~",0).
Let

€ = o0+ W 7Ib) o+ elrn) = elram) — o7 (ron)(r = 7) = 0 (r)n = )

(2.2.89)
where 7 = fol 7o dx and 6 > 0 is determined by

L1
e(r,0) =e(r,n) = / (2(U(2J + |wol? + 70|bo|?) + €(Toa9o)> dx = Ep, (2.2.90)
0

and

n=n(r,0).
Lemma 2.2.14. Under the assumptions of Theorem 2.1.1, the following estimate
holds:

1
9 (w? + |w* +7[b]*) + CT (|7 — 7 + [ = 0f*) < E(r,u, w, b, 0)

1
< 5 (u® + |w|? + 7[b|?) + C1 (|7 — 7|* + |n — nl?). (2.2.91)
Proof. By the mean value theorem, there exists a point (7,7) between (7,7) and
(7,m) such that

E(ryuwb,0) = (2 + w7+ [ L i =2 + L — 2
T? b) b) b - 2 T 2 827_ T?n T T 82?7 T?n n n
+ T e —nm—n) (2292)
87_8?77,777 V(n—mn)|, 2.
where 7 = \g7 + (1 —/\0)7', n=Xon+ (1 —)\0)’[7, 0< )\ <1
It follows from Lemmas 2.2.1-2.2.13 that
82e~~2 (’“)2e~~2 82€~~2
2, (To11) ‘87877 (7,7) 82n(ﬂn) < (. (2.2.93)
Thus, by (2.2.92), (2.2.93) and the Cauchy inequality, we get
1
E(1,u,w,b,0) < _(u? + |w|> + 7[b]>) + C1 (|7 — 7> + [n — n|?). (2.2.94)

-2
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On the other hand, from (2.1.6) it follows that

Op? Ope 0
Crr = —Pr = Pzpp + 97 €rn = —Pn = 0, = ,  Epp = 977 = ,
() €9 €o

which implies that the Hessian of e(r,6) is positive definite for any 7 > 0 and
6 > 0. Thus we infer from (2.2.93) that

1
E(ru,w,b,0) > ) (u? + [w]* + 7[b*) + Oy (|7 = 7/ + [ — ),
which together with (2.2.94) gives (2.2.91). O

The next lemma is crucial in proving the exponential stability of solutions in
HY (i=1,2,4).

Lemma 2.2.15. Under assumptions of Theorem 2.1.1, there are positive constants
C1 > 0 and v{ = v1(C1) < /2 such that, for any fized v € (0,7], there holds
for any t >0,

(|7 () = 71”4 [ful@) 12+ WO + [Ib() |1 +110() = 011> + |7 () 1> + [l o2 (1))
t
+/0 & (10w lI? + ||+ (1w |1 4 b |2+ 1021+ 721 (5)ds < C.
(2.2.95)

Proof. Using equations (2.1.1)—(2.1.5), it is easy to verify that the following rela-
tions:

1
(e + 2(u2 + |w|? + T|b|2))

t

1
= <)\puuz + ppw-wy +vpb-b, +w-b—u <p+ 2|b|2)> , (2.2.96)
0 0 Apu? [ b,|?
nt_<“’; ) +l-€p<9> + p“””+“p|wa| G (2.2.97)

Since 7 = 0, 0; = 0, we infer from (2.2.96) and (2.2.97) that
0
Ect ) oz + pplwal® + vplba|* + rp07 /6] (2.2.98)
0 1,
= [Apuug + ppw - wi +vpb-by + K 1—9 p91+w'b7u(p—p)72|b| ,

X2 (pa)® LA wl T b2 AP2Dp
2 \p P 2 2 .

+ +(w-b),
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7 APy P02 B Apz b by n 1

) ) 2uz|b|2. (2.2.99)

Let

A2p2 Apgu w27
_ ot x % _ 2
Gt)=e [S(t) +ﬂ( 2 T, 5 ~ olPl )} :

Multiplying (2.2.98) and (2.2.99) by €7 and Bet, respectively, and adding
the results, we get

9 0
GO+ €7 | G+ ot + vl 2+ gt )
+/3< P _ Apu? — puplwal? — vplb 2+ = L ubp
p p 2 p
)\2 2 A .
— et [5+ v ( P fwf? —T|b|2> | Prup }
2\ p p

# e[ B+ ppw s v )

+ K (1 - 2) PO — u(p —p) — ;|b|2 +(1—B)w- b} : (2.2.100)

x

For the boundary conditions (2.1.8), integrating (2.1.5) over (0,1), we have
! 1
| [etmor+ g+ i+ 7o) o
0
1
Lo o 2 2 _
= [ [eo(r0.00) + , (uf + [wol* + 7o[bo[*) | do := e(r. ),
0

which, together with the Poincaré inequality and the mean value theorem, implies

[u()[* + [w®)I* + IvV7b®)]?

lle(r,8) —e(7,0)]| <|le(r,0) /O e(r, O)dx| + 9

< Ci(llex @) + Nuz (@) + [[wa (O + bz (£)1])
< Cr(l02(O)1 + llua (B + [wa (O] + [1ba (O] + Loz (E)]])- (2.2.101)

On the other hand, by (2.1.1), Lemmas 2.2.1-2.2.14, the mean value theorem
and the Poincaré inequality, we have

() — 7l < Cullm= ()],
16(8) = 0]l < Ca(lle(7, 0) — e(7, O)[| + [I7(t) — 7)),



56 Chapter 2. 1D Compressible and Radiative MHD Flows

< Ci(lle(r,0) — e(r, )] + [l (D)D),
which combined with (2.2.101) gives
[16() =0 < C1([|02(E)]|+[[wa () lI+[Wa ()| 4D ()] 4+ | p2 (O] + |72 (D)) (22.102)
By the mean value theorem, Lemmas 2.2.1-2.2.14 and (2.2.102), we get

[n(t) = nll = Cilln(r,0) = n(r, 0)|| < Cr([[7(t) — 7l + [[6(2) - 0])
< Ci(16(8) = 01l + lIm=(®)1)
< Cr(l[02 (O + llua (O + Iwe (O] + b2 (O] + Loz (O + I7(B)]])- (2.2.103)

Integrating (2.2.100) over Q: and using Lemmas 2.2.1-2.2.14, the Cauchy
and Poincaré inequalities and (2.2.102), we deduce that for small 8 > 0 and for
any v > 0,

/ o + / / { (A2 + uplwo |2 + vplb, 2 + 5p62/0) | (. 5)dads

Apzp
s / / ( P A2 — pplw ? — vplb, ?

Apopals Apzb - by
L Apop pp )

1
- / G(0)dz
0
! 22
+ Cl'y/ / evs <5+ b </\ gz — |w|* - T|b|2> + 6)\UPI) (z, s)dxds
o Jo 2 p p

t
<Ci+ Cw/ e“(IIT =7l + Il = nl* + lull® + lw]|* + [[b]* + I\pzl\Q)(S)dS
0

2um|b|2 + dxds

t
<Cr+Cry / & (Jluall? + w2 + b 2 + 6112 + 1ol + 172112 (5)ds
(2.2.104)

Using Lemmas 2.2.1-2.2.14 we easily infer that the following estimate holds
for small 8 > 0:

/0 G(t)dx > 6”{Cfl(llf(t> =7+ In®) = nll* + a1 + [w(®)I* + [Ib(E)]*)

YN pe 2 Apzu
+6/o (2 <p> T )dx}

> TN (e) = 71 + n@) = nll> + (@) + [w ()2 + b))
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+ 80T pa(B)2 = C1Bllu(t)]?}
> O e (r(t) = 72 + () — nll® + ()

+ w1 + [Ib)1* + ﬁllpx(t)|\2)- (2.2.105)
Finally, the Young inequality gives

Apopaba _ 1 A0IP,

b, 27y — 162 (2.2.106)

with p, = Rf > 0. It follows from (2.2.104)—(2.2.106) that there exists a constant
~v1 =71 (C1) > 0 such that for any fixed v € (0,71], (2.2.95) holds. O

Lemma 2.2.16. There exists a positive constant v3 = v1(Cy) < 1 such that for
any fived v € (0,v1], the following estimate holds for any t > 0:
t
(O + O + IO + 10:(01) + [ € (el + e
0
il 102+ el + w2+ o2+ 16,12 (9)ds < Co. (2:2:107)

Proof. By (2.1.2)—(2.1.5), Lemmas 2.2.1-2.2.15 and the Poincaré inequality, we
have

[ue (@) < Crllme (@O + [0z (O] + 162 (O] + luaa(B));  Nua(O] < Crlluae ()],
(2.2.108)
)

[w: (D < Crll7e @O + [ O] + [Waz (D), [Wa (B < Crl[Waa(B)]], (2:2.109
b (B < Crlllme @O + [IWa ()] + [baz(@)[]),  [[ba(®)]] < Crlbaa()], (2.2.110)

16: ()] < CrIWaa (B[] + [bae (0] + 1022 (0| + [[uaz(@)]]), [[6=@)] < C1l|02a(t)]]-
(2.2.111)

Multiplying (2.1.2) by —eu,,, integrating the result over (0, 1), using Young’s
inequality, the embedding theorem, Lemmas 2.2.1-2.2.15, we deduce for any € > 0,

1d 1U 2
vyt zt 2 A’Yt wwd
g gt @ eI +27 [1 a

! 1 )\u T. vy
— et 2 zTx vt 2
e /0 [<p+2|b| )z—i— 2 ]ummd:ﬂ—i—?e [lus(t)]]
v
< 0 @ + e a2 + Ca (@)™ (I (B2 + 16012 + [B(E) - o ()]
+ el o (8)l1 )

< 0 @I + e a2 + Ca(e)e™ (I (B2 + 16012 + [1B(E) - o ()]
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o |2 (27 (D)

< Crye g (1)]|* + 1 (E)SW(HM(UII2 + 101 + (1) - ba (1)]]* + Hux(t)IIQ),
(2.2.112)

i.e., for v > 0 small enough,

1d 1
~yt zt 2 ~yt xxt 2
g gp @ MO + o, s )]

< Cry e (IO + 10211 + [b(t) - ba (W) + [Jua (D)) (2.2.113)

Similarly, we can get

1d 1
vt 2 vt 2
(7w )I?) + g, e )]

< Oy (lm @I + [ba (01 + [Iwa ()12, (2:2.114)

1d 1
vyt bwt 2 yt bmmt 2
g gt (@ IeO17) + o ¥ beat)]

< Coy e (Im I + b (01 + wa (1)), (2.2.115)

1d 1
vyt ozt 2 vyt exact 2
g gt (FN00) + o 1022 (0)]

<3 (182 + W O + [baa ) + e (). (2:2116)

Adding the relations (2.2.113) through(2.2.116), integrating the result with
respect to t and using Lemma 2.2.15, we obtain (2.2.107) for v € (0,~1] small
enough. O

Thus now we have completed the proof of Theorem 2.1.1. O

2.3 Global Existence and Exponential Stability in H?

In this section, we shall study the global existence and exponential stability of
solutions to problem (2.1.1)-(2.1.8) in H7. We begin with the following lemma.

Lemma 2.3.1. Under the assumptions of Theorem 2.1.2, the following estimate
holds for any t > 0:

eI + [[we ()1 + e + 116 (2]

t
[ (el Il o+ 10017 (s < o (231)
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Proof. Differentiating (2.1.2) with respect to ¢, multiplying the result by u;, and
integrating over (0, 1), we infer that

d
(O + e (1))
1
<, lua @l + G (Iluz(t)|\2 D@L e (07 + 11+ 0%)0: (1)1 + ||uz(t)|\i4)
1
<, lua @l + 02(||um(t)|\2 10N + 7 (O + [lwa (0)1* + Hbzz(t)llz),
which, together with Theorem 2.1.1, gives

|M@V+AMM®W@§@. (2.32)

Analogously, we have

ool + [ 16a(o)2ds <o (233)
O + [ Twea(o)ds < 234
@+ [ Ib)lds < (235)
Thus (2.3.1) follows from (2.3.2)(2.3.5). 0

Lemma 2.3.2. Under the assumptions of Theorem 2.1.2, the following estimate
holds for any t > 0:
[tz (O + [Waw (0 + 1bzw (81 + (1622 (1)1
+Jus (@7 + Iwa ()2 + [ba (|7~ + [102(8)]1 7~

t
+AQMMRWMWWHMMWHmmﬂ@wS@.@&@

Proof. Equation (2.1.2) can be rewritten as

1 Alg
o) < (7)
2 x T x

ROT, — Mugty  Auge — RO,
= +

, —b-b,. (2.3.7)

T T

Using (2.3.7), Theorem 2.1.1, Lemma 2.3.1, the Sobolev embedding theorem and
Young’s inequality, we have

[tas ()] < Co(lue@) + 102 )] + |72 (O] + [b(E) - ba(t)]
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+ 7@ + 72 (t)us (t)]])
1 1
< Co([lur(@)[| + 102 @)1 + 172 ()] + [Ib2 () + [|ua ()] luza(t)]]2)

1
< g laa (@)l + Colllu ()] + 1), (2.3.8)
t t
/ |tz (s)||?ds < Cy + Cg/ |l uie(s)|?ds < Cs, (2.3.9)
0 0

which leads to
uza (@] < C2,  [Jua(t)||Le < Co.

Similarly, we have

t
/ (”szzH2 + bemc”2 =+ ||9mcx||2) (s)ds < Oy, (2.3.10)
0
[Waa ()| 4 (D (8) || + (|02 () |
< Co[|we(@)]| + [be(®)]] + 16:()|| + 1) < Ca, (2.3.11)
[Wa ()L + [[ba(t)||Loe + [[02(t)][ L < Co. (2.3.12)
Thus (2.3.6) follows from (2.3.8)—(2.3.12). O

Lemma 2.3.3. Under the assumptions of Theorem 2.1.2, the following estimate
holds for any t > 0:

t
Iree®l + [ Iraalo)|Pds < Co. (23.13)
0
Proof. Differentiating (2.1.2) with respect to x, we obtain
A

d [ Tew RO 74,
()~

gt = Uy + E(x,1), (2.3.14)

T T T

where

4 _ ——
B(a,t) = (R N 3a 93> 0. _ m(mg2 Mgy N 272(RO — Muy)
T

T 73

+4a6%0, +b - by, + by

Multiplying (2.3.14) by "™ and using the Young inequality and Theorem
2.1.1, we conclude that, for any € > 0,

2 2
Tow (t)H + Oy \ Tow (t)H < a‘
-

. =

T 2
)+ o (a1 + 102012

T

d
i
+[Ibe ()78 + 102 (O) 125 + I (®)l|zs + lua ()72 (O] + ||9(t>T§(t)II2)

<& 0] + ) (ROl + 1w O + s O + 1))
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which, combined with Lemma 2.3.1 and Theorem 2.1.1 gives, for ¢ > 0 small
enough,

t
|mmW+Aum@WwS@. (2.3.15)

Thus (2.3.13) follows from Theorem 2.1.1 and (2.3.15). O

Lemma 2.3.4. Under assumptions of Theorem 2.1.2, for any (7o, uo, 0o, Wo,bg) €
H?, there exists a positive constant v5 = v4(C2) < y1 such that, for any fized
~v € (0,74], the following estimate holds for any t > 0:

e (eI + w12 + e (E) 2 + 100 (E) 2 + vz (8)?
W2 (82 + [baa ()12 + 1620(1)]2)

t
+/ erys(Hutw”2 + Hwth2 + Hbtm”2 + ||9tz”2> (S)dS < 02. (2316)
0

Proof. Differentiating (2.1.2) with respect to ¢, multiplying the result by use? and
integrating the resulting equation, we conclude that

Uty

¢#%r“

t 2
Uty
< Cy+ ;/ /0 e’? <|ut|2 + H \/tT > (S)dT

t
0o [0 (JualP + 1007 + Ioul? + ol + sl ) )

1 t
aww@W+A/e“
2 0

t 2
Y Utz
< v
_C2+(C'27+2)/0 e \/T(S)H ds
t
#C [ (0 + o+ bl + usel?) (s, (2207

Integrating (2.3.17) over (0,¢) and using Lemmas 2.3.1-2.3.3 and (2.3.2),
we get

DI + a1 + [ lualPas <0 0. (2819
Analogously, we have
7 (1w ()12 I ()12 [0 )1 [ ()1 + 10O + 112012

+ /Ot e (Wea2 + [bral2 + [0ra]2)ds < Co, ¥t > 0. (2.3.19)

By (2.3.18) and (2.3.19), we get (2.3.16). O
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Lemma 2.3.5. There exists a positive constant v = v2(Ca) < 4 such that, for
any fized v € (0,72], the following estimate holds:
l7(t) — 7|2 < Coe™ 7, WVt > 0. (2.3.20)

Proof. Multiplying (2.1.1) by e!/2¢1| choosing 7 so small that v < ~5(Cs), and
using Lemma 2.3.4, we have

[ 7ee ()]|? < Cae™/2C1 4 Che™t < Cre™ (2.3.21)
which, together with Lemmas 2.1.14 and 2.1.15, gives (2.3.20). 0
Thus we have completed the proof of Theorem 2.1.2. O

2.4 Global Existence and Exponential Stability in H*

In this section, we shall study the global existence and exponential stability of
solutions to problem (2.1.1)—(2.1.8) in H}. We begin with the following lemma.

Lemma 2.4.1. Under the assumptions of Theorem 2.1.3, the following estimates
hold:

([wra (2, 0)| + [[Wea (2, 0)| + [tz (, 0) | + (|0 (, 0)| < C, (2.4.1)
[[wse (2, O + [lwee (2, 0)[ + [[bee (2, O] + |6 (2, )]
+ Jttza (@, 0)[| + [[Weza (2, 0)|| + [Ibraa (2, 0)]| + [[fraa(z, 0)[| < Cs. (2.4.2)

Proof. We easily infer from (2.1.2) and Theorems 2.1.1-2.1.2 that
[ur (@) SC3(HTm(t)ll+H9z(t)||+|\um(t)|\ + llua () o< |7 ()] + ||b(t)||L°°||bz(t)||)

<y (1714110 (Ol + 1 0)] + D ()]

Differentiating (2.1.2) with respect to z and using Theorems 2.1.1-2.1.2
we get

@Il < Cs (Il + 10Ol + (B2 + Ba®)llar ), (2:43)
and

ltzaa () < Co (I (820 + 10203+ 1) 12+ B (1) 11+ e (1)) (2:4.4)

Differentiating (2.1.2) with respect to x twice, using the embedding theorem
and Theorems 2.1.1-2.1.2, we conclude that

[tz (D) < O3(||Tz(t)||H2 102 > + e (@)l s + Ibe(t)HHz), (2.4.5)
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and

etz < Cs (17 (®)llm2 + 182z + u(®) |0 + IOl 22 + (D))

(2.4.6)
Similarly, we have
Iwe (Il < Ca(llwa®)lar + b2 + 70 ),
Iwia (8)] < Cs (Iwa @)l + [Ba Ol + 17 ()]0 ), (2.4.7)
IWaza (D)) < Cs(Iwal®)lm + Do (Ol + IOl + W@}, (2:4:8)
IWeaa ()11 < Cs (1w (®)lz5 + Do (8) 122 + 172 (8)] 122, (2.4.9)
IWaza ()] < Cs (W @llzz + IOz + 7 (@)1= + WD), (2:4.10)
Be@ll < Cs(Iballan + Iwa(B)] + 7))
IBea ()] < Cs (b2 (0) 12 + Iwa (Dl s + 17 (E) 1) (2.4.11)
Baae (@l < Ca(Iba(®) i + [wa®) i + 7l + [Bea®)]]),  (2412)
B0 ()] < Cs (Il (O3 + wa (8) 122 + 172 (8)] 122, (2.4.13)
Bazaa(®)]] < Ca(Iba(®)llrz + W Olliz + 7 Oll + Bea®l]),  (24.19)
10:8)11 < Cs (Ilua @l + I ()l + 1822 (@] + e (D)l o (1)
I (Ol 92 (8)] + b (8)]l22 b (O] + 162 (8)] 12 16 (8)])
< Cs (102 (O] + 1tz (B + IWaa (D] + b ()] (2.4.15)
18Ol < Cs (10O + 182®) 122 + 7t i + e (B)] 1
+ wa () + Do)l ), (2.4.16)
102a®)] < Cs (1162 (E) 1+ Ima @l + (Ol + 192 ()l
+ bl + 180 (2.4.17)

[0z (£)]] < C3(H91(f)l\m + I @Ol + e @l a2 + Iwe ()] 22 + Hbm(t)IIHz)»
(2.4.18)

102222 (£)]] < C3(H9 Oz + 7Ol a2 + [lua ()] g2 + [[We (t)]]

+ o ()l + Bz (D] )- (2.4.19)
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Differentiating (2.1.2) with respect to ¢, and using Theorems 2.1.1-2.1.2 and
relations (2.4.3), (2.4.5), (2.4.11)—(2.4.12) and (2.4.16), we derive that

[Juse (B)[] < Cs(lm(t)llfp + e (@l a3 + [1be (D)l 2 + [|Wa (8)][ 21 + H9z(t)IIH2)-

(2.4.20)

Similarly, we obtain
Iwee () < Cs (117 (®)llmz + Ibu(B)ll = + W (B)llo + ea (B ), (24.21)
el < Cs (Il + Mo (®)llzs + Iwa (@)l + e @), (24.22)

[0 ()] < Cs(lm(ﬂl\m + [[ua ()l 2 + 1ba ()| 2 + [[Wa ()] 22 + ||0I(t)||H3)-
(2.4.23)

Thus (2.4.1) and (2.4.2) follow from (2.4.3), (2.4.7), (2.4.11), (2.4.16) and from
(2.4.5), (2.4.9), (2.4.13), (2.4.18) and (2.4.20)—(2.4.23), respectively. O

Lemma 2.4.2. Under the assumptions of Theorem 2.1.3, the following estimates
hold for any t > 0 and ¢ > 0O:

t t
lure(8)] + / lueea ()] 2ds < Cs + Cs / (bras? + [Bras|?)(s)ds,  (2.4.24)
0 0

t t
W) + [ Iwaa (9)ds < Ca+ Ca [ [buas(5) s, (2425
0 0
t t
bee(8)]2 + / Ibea(s)|2ds < Cs + Cs / [ Weaa(s) | 2ds, (2.4.26)
0 0
t t
[160(£) )1 +/ sz (5)]|2ds < C3 + 025_1/ |0s00(5)]|2ds (2.4.27)
0 0

t
+ 016/ (I\Utmll2 + luseal* + [ Weaal* + | Weta||* + [Ibeaa |* + ||bm||2) (s)ds.
0

Proof. Differentiating (2.1.2) with respect to t twice, multiplying the resulting
equation by us, performing an integration by parts, and using Theorems 2.1.1—
2.1.2 and Lemma 2.4.1, we have

1d ', ! 1 u
doe=— | |- b|? v 2d
2dt/0Utt$ /0{(17+2||>+ 7_Ltutt T

< O Hlura ()1 + 02(||9tt(t)|\2 + e (O + [lue ()] + Hbt(t)||4)

+ G ([l (O + e (8)]2)- (2.4.28)
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Thus, using Theorems 2.1.1-2.1.2 and Lemma 2.4.1, we get

t t
Jun®I? + [ s (9)Pds < Cat o [ (Ibisal? + 6100l ()
0 0

Analogously, we can obtain (2.4.25)—(2.4.27). The proof is now complete. |

Lemma 2.4.3. Under the assumptions of Theorem 2.1.3, the following estimates
hold for any t > 0 and ¢ > 0O:

t
)17 + [ )
t
g035-6+c2g2/ (Wbeaall? + 10t 2 + e |2) (s)ds, (2.4.29)
0
t
i+ [ e (5
t
< Cye O 4 Cpe? / (1w 1 + 1 ) (5)ds, (2.4.30)
0
t
s ()12 + [ bl
t
< Co+.Ca [ (Ibusal + wiaa ) 51, (2.431)
0
t
00O + [ 10rea (5
t
< Cae™ 4 Cae® [ (Iesal + ftsael® + Wi
0

+ (102 ]|* + ||9xm||||9tz||)(5)d5~ (2.4.32)

Proof. Differentiating (2.1.2) with respect to = and ¢, multiplying the resulting
equation by u,;, and integrating by parts, we arrive at

1d

o gt Itz = Bo(w, 1) + Bu(t), (2.4.33)

where

=1 1
Bo(JT, t) = OtzxUtx 07 Bl (t) = */ Utzutxacd-r~
= 0

Using Theorems 2.1.1 and 2.1.2, the interpolation inequality and Poincaré’s
inequality, we obtain

By<Cy [(Iluz(ﬂl\m F10: ()] o ) (172 ()| oo + 1102 () ][ oo ) + [be (8) | oo [[ba (8) | 2
+ [bew (D)l oo ()| oo + 1020 ()| Lo +110(E) ]| oo |72 ()| oo
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+ [ (8| oo [t (8) | e + 1tz ()| Lo |7 (8) | +||um<t>|\mo} [t (£)]] e
< C5(Bor + Bot) || ()| 2 [[usea (t)]| 2 (2.4.34)

where

Bor = [Jua ()] 2 + [10:(0)]| + ([0 )] + e ()] + [[bee (D],
1 1 1 1
Bog = (|02 ()] 2 [|0r22 (0|2 + |tz (O)|2 | utaea (B2 + [[urea ()]
1 1 1 1
+ uta (O 2 ez (B2 + [[bea ()] [braz ()] 2

Now, using the Young inequality several times, we see that, for any ¢ > 0,

) . 1\ ( Boxllue ()] 2
C3Bot||ute ()| 2 [utza (t)||2 < Cs (21/451/2||utm(t)” 2) < 21/4¢1/2

2

£ _2 4 _2
2||Utm(t)|\2+035 5 Boy® [Juea (t)[| 73

2
19 _2
2 [uta()1* + Cae™2 (B + lluea(t)]1?)
82 _2
5 [utea(t)]® + Cae™2 (Hum@m? + e ()72 + 16:(0)]1?

IN

IN

IN

+ 162 ()12 + B (D11 + bea (9)12) (2.4.35)
and
Cs ozl (1)) [z ()]
52
< % Muttaa @) + &2 (Jtaaa (O + [Braa(®)] + 18102 (6)])
+ Cae™ (luaa (O + 102 (D2 + [bea (1)), (2.4.36)
Thus we infer from (2.4.34)—(2.4.36) that
Bo < & (Jutaas ()1 + 12 (O + [braa (D] + 16122 (1)]2)
o+ Gz (JJuea ()2 + 1000 ()12 + [bea (1)) + (1))
+ e (8)3: + Ibe(8)]1),

which, together with Theorems 2.1.1-2.1.2 and Lemmas 2.4.1-2.4.2, yields

t t
/ Byds < 2 / (Il e 2+ e |2 4+ 1B ?) (8)ds + Coe=0. (2.4.3)
0 0
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Similarly, by Theorems 2.1.1-2.1.2, Lemmas 2.4.1-2.4.2 and the embedding
theorem, we have

By < (2C3) ™ Y| ugas (1) ||? (2.4.38)
+ Cs(l\ﬂm(t>|\2 + ez ()17 + [16: (Ol + lua(®)]” + Hux(t)llfm),

which, combined with (2.4.33), (2.4.37), (2.4.38), Theorems 2.1.1-2.1.2 and Lem-
mas 2.4.1-2.4.2; gives that for £ € (0,1) small enough,

t t

Juts®IP+ [ urza()]ds < Caz®+Coc? [ (Ibtaall*+16uaa |+ o) (5)ds.
0 0

(2.4.39)

On the other hand, differentiating (2.1.2) with respect to z and ¢t and using
again Theorems 2.1.1-2.1.2 and Lemmas 2.4.1-2.4.2, we have

[ttzze ()] < Crllusa (£)]] + Cz(l\um(t)l\?{z + 102 ()17 + I ()70
+ [Iba (Ol + 1081772 + Hbt(t)llfqz)- (2.4.40)

Thus inserting (2.4.40) into (2.4.39) yields estimate (2.4.29).
Analogously, we can obtain estimates (2.4.30)—(2.4.32). O

Lemma 2.4.4. Under the assumptions of Theorem 2.1.3, the following estimates
hold for any t > 0:

e (D)1 + Nuea (O + [wee O + [[Wew (0] + e (E)]* + [bew ()1 + 102:(8) |
t
+ 10 (t)1” + /0 (Huttx||2 + lutael? + [Weeal* + [[Wiae |* + el
+ brae||* + 1052 )1* + ||9m|\2) (s)ds < Cu, (2.4.41)
t
2 2 2 2

Teaa ()3 + e (O + / (IFewalldes + 17ealfin ) (s)ds < G, (24.42)
HUJEM(t)”%{l + Huww(t)H%/Vloo + ”mew(t)H%l + ”WM(t)HIz/VLOO + ”bmw(t)”%ﬂ

+ ”bzz(t)HI%Vl,w + ”9%96(15)”?{1 + Hozz(le%Vl’w + ”Ttmx(t)”2 + ||Utm(t)||2

t
+ 1Weaa (O + [braa ()1 + [01za ()] +/0 (Huftl\z +lwee® + [[bee |

+ ||9ttH2 + HUMH%/WOO + ”szHI%V?’w + HbMHI%V?’w + HozzHI%V?’w + HotMH%H

+ ”utmniﬂ + ||th||§p + ”btwwH?{l + Hetw”%/[/lm + Huth%/VLoo + Hwth%/VLOO

+ bea s + 7eaz s ) (s)ds < Co, (2.4.43)

t
/ (HUMMH.%JI + HWMMH.%JI + ”bmmniﬂ + H91111||%1)(8)d8 <Cy (24.44)
0
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Proof. Adding up (2.4.29) through(2.4.32), taking ¢ € (0,1) enough small, and
using Lemmas 2.4.1-2.4.3 and Gronwall’s inequality, we get

Jata (1)1 + w0 ()12 + [bea (D1 + 1000 (2)
t
+ / (Nuzaal? + IWezall? + Mbeaall? + 161212 ()ds
t
< Caz 0 Cac® [ (o + el + |
0

o+ 8utall® + 100 Bzl ) (), (2.4.45)

which, combined with (2.4.24)—(2.4.27), yields (2.4.41).
Differentiating (2.1.2) with respect to x, and using Tz = Ugzzs, We have

o /T RO T,
A “) T e + Bz, 1), 9.4.46
ot ( T + T T Ut + B(@,1) ( )
where
4 2R7,0, 272R6
E(x,t) = R Aag O — Rruba | 2T R + 4ab?602 + b - by, + [by|?
T 3 T2 73
2Ty U 2/\7'3ux
72 3

Differentiating equation (2.4.46) with respect to x, we obtain

N 0 (me) RO Ty

20T, Toa 0 Ton A (TxTxx)
ot t

r - = Utgz + Em ({E, t) + 3 - 72 T2

= By (2, 1). (2.4.47)

T

Obviously, we can infer from Lemmas 2.4.1-2.4.3 that

[Ex(@)] < Cz(llﬂm@)l\ + 0= 2 + [lue (O 2 + [be (D) 22 + ”Tz(t)”Hl)a

(2.4.48)
whence .
/ 1 (s)|[2ds < Cu. (2.4.49)
0
Multiplying (2.4.47) by ===, we get
S| et o < almol (2.4.50)

Combining this with (2.4.49) and using Lemmas 2.4.1-2.4.3, we have

t
| 7wz (£)]| +/0 | 7wz (8)]|?ds < Cy. (2.4.51)
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Using (2.4.4), (2.4.6), (2.4.8), (2.4.10), (2.4.12), (2.4.14), (2.4.17), (2.4.19),
(2.4.41), (2.4.51), Lemmas 2.4.1-2.4.3, and the embedding theorem, we have

Humx(tmz + ”Uzz(t)”%w + ”szz(t>|‘2 + ”WM(t)”%oo + ||bzzz(t>”2 + ”bzz(tm%w
1
+ Hemw(t)w + ||9m(t)||2L°° +/0 (HUM||12/V1°° + ”WMH%/VLDO + ”bMH%Vl’DO

+ HQMH%/VLOO + ”9mw|@{1 + ”uwmniﬂ + ”WMJEH.%P + wamniﬂ)(s)ds < Cy.
(2.4.52)

Differentiating equations (2.1.2)—(2.1.5) with respect to t and using (2.4.41)
and Lemmas 2.4.1-2.4.3, we get

[ttoa (B < Crlluge(B)]] + Cr([[uea ()] + [bea ()] + [0e2(t)]]) < Cay  (2.4.53)
[Wezo ()] < Crllwee ()| + C1[[Wew ()| + [[bea(8)]]) < Ci, (2.4.54)
[braa ()| < Cilbe (8)]| + Cr(l[Wea ()| + b (B)]]) < Ca, (2.4.55)
10222 ()] < C|0eell + Cr(llutall + [Wew (O] + e (B[] + 1022 (1)]]) < Cu,
2.4.56)

which, combined with (2.4.6), (2.4.10), (2.4.14) and (2.4.19), implies
[tazae (@) + [Wazze (D] + [brzae (D] + [|0zzez @)
t
[ ol 11+ Dbt + e
+ [tazzall® + [Wazael® + Ibosew® + [0zaaal*)(s)ds < Ca. - (24.57)
Next, using (2.4.52), (2.4.57) and the embedding theorem, we obtain
[taza(®)llLoo + [[Waza (8| + [Daza ()] Lo + [|0rza ()] Lo

t
+/0 (”ummm”%m + ([ Waaa|F 0o + [Paal|F o + HOJCMH%OO) (s)ds < Cy. (2.4.58)
Further, differentiating equation (2.4.47) with respect to 2 we obtain

A

TrxrxT 9 Trxrx
0 (P B Tozaa _ o3 p) (2.4.59)

ot T T T

where

Ez(!E,t) = Elm(,’E,t) + )\815

72 T3 T T

0 (TaTaza ROT» Toza RO\  Taga
( ) + - .

Using the embedding theorem and Lemmas 2.4.1-2.4.3, we conclude that

[E2(t)]| < C2 ([utawa (Ol + 102 (@) s + l[ua ()l a2 + b () lms + [|72(E)] 12) -
(2.4.60)



70 Chapter 2. 1D Compressible and Radiative MHD Flows
We infer from (2.4.20)—(2.4.23) that
/Ot (Neell® + [lweell® + [[bec]|* + [16:]1%) (s)ds < Cu, (2.4.61)
which, together with Lemma 2.4.3 and (2.4.41), gives
/Ot (lttzaze|® + [Wezze |* + [brose|* + |0reae||?) (s)ds < Cu. (2.4.62)
Thus it follows from (2.4.41), (2.4.60) (2.4.62) and Lemmas 2.4.1-2.4.3 that
/Ot 1 Ea(s)|2ds < Cu. (2.4.63)

Multiplying (2.4.59) by ™*#*=  we get

T )

(SOl RN Mt O] A PO (2.4.64)
a7 T
and so, by (2.4.63),
t
T (]2 +/ | awaa(s)||%ds < Cu. (2.4.65)
0

Differentiating (2.1.2) with respect to = three times and using Lemmas 2.4.1—
2.4.3 and the Poincaré inequality, we have

[uzzzza ()] < Csllutwea(t)]]
+ Cs (I (®)llms + lua(®ll s + 102(8) 215 + I (D)l s ). (24.66)

Thus we conclude from (2.1.1), (2.4.57), (2.4.62), (2.4.65) and (2.4.66) that
¢
/ (ltzmssel® + I7esealZps) (5)ds < C. (2.4.67)
0
Similarly, we can deduce from (2.1.3)—(2.1.5) that
t
/; (”bzzzzz”2 + ”szzzz”2 + ||9mcmcx”2) (5>d5 < Cy, (2~4-68)
which together with (2.4.52) and (2.4.67) gives
¢
/0 (HUMH%/WOO + HWMH%/V?m + Hbmn%/[/?m + ||9m||12/[/2°0) (s)ds < Cy. (2.4.69)

Finally, using (2.1.1), (2.4.51)—(2.4.57), (2.4.65), (2.4.67)—(2.4.69) and Sobolev’s
interpolation inequality, we get the desired estimates (2.4.42)—(2.4.44). O
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Lemma 2.4.5. Under assumptions of Theorem 2.1.3, for any (7o, uo, Wo, bo,6p) €
HZ, there exists a positive constant 'yil) = 7&”(6’4) < v2(C3) such that, for any

fized vy € (O,vil)], the following estimates hold for any t > 0 and € € (0,1) small
enough:

t
un®)? + [ el
0
t
§@+@/€WMMW+MMW@w (2.4.70)
0
t
i)+ [ i (s) s
0
t
<C3+ 03/ €7 ||braa (s)||2ds, (2.4.71)
0
t
T bu®l + [ s (5)]ds
0
t
<Cs+ Cg/ &7 ||Wiaz || (5)ds, (2.4.72)
0
t
SN0 + [ 61 (5) s
0
t t
< Cot Co™t [ Bunalids + Crz [ (Juaasl® + e
0 0
+ Wizl + [Weta |2 + [beaal|? + buse|?) (s)ds.  (24.73)
Proof. The proofs of estimates (2.4.70)—(2.4.73) are basically same as those of
(2.4.24)—(2.4.27). The difference here is that one estimates (2.4.70)—(2.4.73) with

the exponential weight function e7*. Multiplying (2.4.28) by e and using (2.4.20)
and Theorem 2.1.2, we have

1

5@ lun @)l (2.4.74)
t t

<Ci— (€7 = Cry) [ lunalo)ds +Ca [ (bl + 16l?) (5)ds

0 0

t t
<G (07t =) [ O fuun9)lPs+ Ca [ € (bl + 18 ) (51

which gives (2.4.70) if we take v > 0 so small that 0 < v < min LéQ ,72(02)} .
1
Similarly, we can get (2.4.71)—(2.4.73). The proof is now complete. O

Lemma 2.4.6. Under assumptions of Theorem 2.1.3, for any (7o, uo, Wo, bo,6p) €
Hi, there exists a positive constant 'yf) < 'yil) such that, for any fized vy € (0, 'yf)],
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the following estimates hold for any t > 0 and € € (0,1) small enough:
t
s (@ + [ aas (9]
0
t
< 035—6+0252/ e (IIeaall® + 10200l + lurec|?) (s)ds,  (2:4.75)
0
t
i + [ a5 ds
0
t
< O3 4 Oye? / evs(nwmnz + |\bm|\2)(s)ds, (2.4.76)
0
t
b+ [ o) s
0
t
< O3e76 + (e / evs(ubmw + meH?)(s)ds, (2.4.77)
0
t
O + [ 61 s) s
0
t
< Cas® 4 Cae® [ (bl + s + [t
0

+ 10a|1* + H9mllll9tz|\)(8)d~9- (2.4.78)

Proof. Multiplying (2.4.33) by €7! and using (2.4.34), (2.4.38) and Theorem 2.1.2,
we infer that for any € € (0,1) small enough,

t
s () < Cae~ = [(200) 1 =22 = Cr| [ @ uenalo)|Pds
0

t
+¥/a%me+WMW+wmAﬂ@w, (2.4.79)
0

which, combined with (2.4.40), gives (2.4.75) if we take v > 0 and ¢ € (0,1) so
small that 0 < e < min[1,1/(8C)] and 0 < v < min[yil), 1/(8C3)] = vf). In the
same manner, we easily derive (2.4.76)—(2.4.78). O

Lemma 2.4.7. Under assumptions of Theorem 2.1.3, for any (7o, uo, Wo, bo,6p) €

Hi, there exists a positive constant v4 < 'yf) such that, for any fized v € (0, 4],

the following estimates hold for any t > 0:
67’f(llwt(t)HQ e (0N + [Wee (O + [[wea (1 + [bee ()1 + [[be (£) |
t
10O + Wi ®IF) + [ (el + el + [ weaa | + [
0

+beta|* + [Ibeaall* + [121al* + ||9m|\2) (s)ds < Cu, (2.4.80)
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t
e’yt(”Tzzz(t)H?{l =+ ”Tzz(tml%vlw) JF/; e’ (HTM%H%I =+ ”TMHI%V“O) (s)ds < Cy,
(2.4.81)

" (et 3s + () By + [ Wara ) + e ) + [brae (B3
s (Ol + 1Bz + WO + Wiz DI + aza (8
Wi ()17 + Iouas (O + s O1) + [ "l + el + s
10ull? + tallByae + W e + [DrallByace + [Oaeliyae + 61l

+ el + [Wezall i + [Ibealin + 10lfvsce + el + 1Wealfr.

+ el + Ieasall 3 ) (s)ds < Ca, (2.4.82)

t
/0 e’? (”ummniﬂ + ”Wmmnill + ”bwwwwH.%{l + Hemmlﬁll) (s)ds < Cy.
(2.4.83)

Proof. Multiplying (2.4.70) through (2.4.73) by e, e, ¢ and £%/2, respectively,
adding the resulting inequalities, and then taking € > 0 small enough, we can
obtain the desired estimate (2.4.80).

Next, multiplying (2.4.50) by €7*, using (2.4.48), (2.4.80) and Theorem 2.1.2,

and choosing v > 0 so small that 0 < v < 4 = min[l/(2Cl),'y£2)], we conclude
that for any ¢ > 0,

T, 2 1 ¢
TTT ¢ Vs
T ( >H + 201 ‘/0 €

whence

et

T

2 t
T ()| as < 5 + cl/ 7| B (s)||2ds < Ci,
0

t
M| rma ()12 + / €7 [ Tana(5)|[2ds < Cu. (2.4.84)
0

Similarly to (2.4.52), (2.4.57)(2.4.58), (2.4.61)~(2.4.62), using (2.4.80), (2.4.84)
and Theorem 2.1.2, we have that for any fixed v € (0,74] and for any ¢ > 0,

evt(”umw(t)”%{l + Huww(t)”%/Vlm + mew(t)H%{l + ”me(t)HIz/Vlvoo + ”bwww(t)H%l
+ bow ()i + 10eaa(®) 7 + 1022 (015100 + [tttz (O] + [Weae ()12

t

HbesalO12) + [ € (lialvne + [ WalBiae + s lBrne + sl
0

+ HotMH%H + ”Utmm{l + ”Wtzz”%{l + ”thH%H + Hotx”%/vl,oo + HutzHI%Vl’w

1w B + e [y ) (s)ds < C (2.4.85)



74 Chapter 2. 1D Compressible and Radiative MHD Flows

and
t
/ 675(”“%”2 + [[weel|* + [beel|® + 16e]|® + |0sca]|?
0
[tz + [Wea | + iz |?) (5)ds < Co. (2.4.86)

Multiplying (2.4.64) by €% and using (2.4.60), (2.4.80), (2.4.84)—(2.4.86) and
Theorem 2.1.2, we get that, for any fixed v € (0, 74],

. 2 1 ¢
TTTT ¢ H + / es
T ( ) 20{1 0

that is,

et

2 t
e )| s < c4+cl/ 7| Ba(s)||2ds < Ci,
T 0

t
g (8)]2 + / O [ Trags (3)2ds < Ca, ¥t > 0. (2.4.87)

0
Similarly to (2.4.67)—(2.4.69), we easily derive that for any fixed v € (0, 4],

t
0
+luaelfyze + 10222 + [Waallfy2.o + IIbzzH%w,w)(S)ds <Ci Vt>0.

Finally, we combine estimates (2.4.80), (2.4.84)—(2.4.88) with the interpola-
tion inequality to derive the required estimates (2.4.81)—(2.4.83). The proof is now
complete. O

Thus we have completed the proof of Theorem 2.1.3. O

2.5 Bibliographic Comments

Let us mention a number of previous works in this direction. For the one-dimen-
sional ideal gas, i.e.,

e = C,0, Uz—RH—l—uum, Q:—ﬁaw, w=b=0, (2.5.1)

T T T

with suitable positive constants C,,, R, Kazhikhov [60, 61], Kazhikhov and She-
lukhin [63], and Kawashima and Nishida [57] established the existence of global
smooth solutions. Zheng and Qin [150] proved the existence of maximal attractors
in H' (i = 1,2). However, for very high temperatures and densities, the constitu-
tive relations (2.5.1) become inadequate. Thus a more realistic model would be a
linearly viscous gas (or Newtonian fluid) with

o(1,0,uz) = —p(7,0) + uir,9) Uy, (2.5.2)

T
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satisfying Fourier’s law of heat flux

k(7,0)

T

Q(T7 97 91}) - — 9;37 (253)
whose internal energy e and pressure p are coupled by the standard thermody-
namical relation

er(1,0) = —p(7,0) + Opy(7,0). (2.5.4)

In this case, Kawohl [59] and Jiang [50] obtained the existence of global solutions
to 1D viscous heat-conductive real gas under different growth assumptions on the
pressure p, internal energy e and heat conductivity « in terms of temperature. Qin
[97, 99-101] established the regularity and asymptotic behavior of global solutions
under more general growth assumptions on p, e, x than those in [50, 59].

For the radiative and reactive gas, Ducomet [22] established the global ex-
istence and exponential decay in H' of smooth solutions, and Qin et al. [105]
extended the results in [22], further establishing the global existence and expo-
nential stability of solutions in H? (i = 1,2,4). Umehara and Tani [129], Qin et al.
[103] and Qin, Hu and Wang [104] proved the global existence of smooth solutions
for a self-gravitating radiative and reactive gas.

For non-radiative MHD flows (i.e., a = 0 in (2.1.6)), there have been a
number of studies by several authors, under various conditions (see, e.g., [10, 11],
[33, 34, 47], [131, 132]). The existence and uniqueness of local smooth solutions
were first obtained in [131], and the existence of global smooth solutions with small
smooth initial data was shown in [125]. Under the technical condition that x(p, )
satisfies

0<C Y1407 < k(p,0) <C(1+ 67

for ¢ > 2, Chen and Wang [10] proved the existence and continuous dependence
of global strong solutions with large initial data satisfying

0 < inf pg < po(x) < suppo < +00, po, o, Wo, bo, o € H(Q), Op(x) > 0.

Chen and Wang [11] also investigated a free boundary problem with general large
initial data. Wang [132] established the existence of large solutions to the initial-
boundary value problem for planar magnetohydrodynamics. Under a technical
condition upon x(p), namely

w(p,6) = n(p) > ©,
p
Fan, Jiang and Nakamura [33] investigated the uniqueness of the weak solutions
of MHD with initial data in Lebesgue spaces. Fan, Jiang and Nakamura [34] also
considered one-dimensional plane MHD compressible flows, and proved that as
the shear viscosity goes to zero, global weak solutions converge to a solution of
the original equations with zero shear viscosity. The uniqueness and continuous
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dependence of weak solutions for the Cauchy problem have been proved by Hoff
and Tsyganov [47].

For compressible and radiative MHD flows (i.e., a > 0 in (2.1.6)) with self-
gravitation, Ducomet and Feireisl [25] proved the existence of global-in-time solu-
tions with arbitrarily large initial data and conservative boundary conditions on a
bounded spatial domain in R?. Under the technical condition that x(p, §) satisfies

kl(l + 9q> < H(pae)a |HP(p7 9)| < k2(1 + 911)7

for some ¢ > g, Zhang and Xie [145] investigated the existence of global smooth
solutions to problem (2.1.1)—(2.1.8). In this chapter, we established the global
existence and exponential stability of solutions in H® (i = 1,2,4) to problem
(2.1.1)—(2.1.8). However, the large-time behavior is still open even for the non-
self-gravitating case, i.e., (2.1.1)—(2.1.8).



Chapter 3

Global Smooth Solutions
for 1D Thermally Radiative
Magnetohydrodynamics
with Self-gravitation

3.1 Introduction

In this chapter, we shall consider the one-dimensional motion of a compressible,
thermally radiative fluid with magnetic diffusion. This motion is described in the
Euler coordinates by the following equations, corresponding to the conservation
laws of mass, momentum and energy:

pt + (pu)z =0, (3.1.1)
(pu)e + (Pu2 +p+ ;|b|2) = (Mug)s + pz, (3.1.2)
(ow)e + (puw — ) = (w,).. (3.1.3)
b, + (ub — W)y = (vby)a, (3.1.4)
&+ (u (5+p+ ;|b|2> —w-b)z + Qu

= (Mg + pw - Wy +vb - by, + ptu (3.1.5)

where p is the density, u € R the longitudinal velocity, w = (w;,ws) € R? the
transverse velocity, b = (by,by) € R? the transverse magnetic field, and 6 the
temperature, p = p(p, ) the total pressure and e = e(p,d) the internal energy.
Further, pi, represents the gravitational force, where the function 1 is determined

© Springer Basel 2015 77
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by the boundary value problem

— e = Gp, ,t) € Q x (0,T),
Voo = Gp, (2,0) €0 (0.7) .
1/}|(9Q = Oa
where 2 C R is a bounded domain. The total energy £ is given by
Loy 2 Lo
E=p e+2(u + [wl|?) +2|b|, (3.1.7)

where p(u? + |w|?)/2 is the kinetic energy and |b|?/2 is the magnetic energy. The
heat flux @ takes the form

Q=QrF +Qr = —kb,, (3.1.8)

where k = k(p, 0) is the heat conductivity coefficient, Qr is given by the Fourier’s
law, and Q) is the radiation heat flux.

In agreement with the classical Boyle’s law that applies in the non-degenerate
area of high temperatures and low densities, we may assume that p(p, 6) and e(p, )
take the forms

p(p,0) = Rpd + ;94, e(p,0) = Cyb+ 294, (3.1.9)

and the heat conductivity k = k(p, 0) satisfies the growth condition

r1(1+07) < k(p,0), kp(p, 0)| < K2(1+07) for any ¢ > (2 +v/211)/9
(3.1.10)
where R > 0 is the perfect gas constant and Cy > 0 is the specific heat at constant
volume, respectively.
We shall consider the initial-boundary value problem (3.1.1)—(3.1.6) in a
bounded spatial domain Q = (0,1) subject to the following initial and bound-
ary conditions:

b,0)|;—o = bg, 0
{(pauvwv ) >|t—0 (p05u0;W05 0> 0)(:17)’ (3111)

(u, W, b, 63)|a=0 = (u, W, b, 03)|2=1 =0,

where the initial data satisfy certain compatibility conditions as usual. Note that
the boundary conditions in (3.1.11)s imply that the boundary is non-slip, imper-
meable, and thermally insulated.

In this chapter, we shall consider problems (3.1.1)—(3.1.11), which is similar
to a model in ideal MHD considered for specially physical interests by Ojha and
Singh [92], where the effects of radiation and magnetic fields were discussed in the
cases of plane, cylindrical and spherical flows.

We shall prove the global existence of a unique classical solution of system
(3.1.1)~(3.1.6) with initial-boundary conditions (3.1.11) for ¢ > (2 + v/211)/9,
improving the result in [145] for ¢ > 5.
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For the sake of simplicity, we assume that the viscosity coefficients A, u
and the magnetic diffusivity v are constants, and assume the heat conductivity
k = k(p,0) is strictly positive and continuously differentiable on Ry x Ry, Ry =
[0, +00).

Our main result in this chapter is as follows.

Theorem 3.1.1. Assume that the total pressure p = p(p, 0), the internal energy e =
e(p,0) and the heat conductivity k = k(p,0) satisfy (3.1.9) and (3.1.10). Assume
also that the initial data (po, w0, Wo, bo, 00) satisfy the compatibility conditions and,
for some ac € (0,1),

(PO»UO»WO»bO»HO) € CI+Q(Q) X (02+Q(Q))67
and there exists a constant Cy > 0 such that, for any x € (0,1),
0<Cyt < po(z) < Cy, 0<Cyt < () < Co.

Then there exists a unique classical solution (p,u,w,b,0) of the initial-boundary
value problem (3.1.1)—(3.1.11) such that, for any T >0,

plx,t) >0 and O(z,t) >0 forany (x,t) € Qpr =0 x(0,T), (3.1.12)
3 6
(prpasp) € (CX2@) s (wwb0) € (G2 (Qr)) . (3.113)

and 1 > 0 satisfying that V., € Ci:lt-a,1+a/2(QT) is determined by the boundary
value problem (3.1.6).

The existence of global-in-time solutions will be proved by continuing the
local solutions with respect to time based on global a priori estimates. The exis-
tence and uniqueness of the local solution to the initial-boundary value problem
(3.1.1)—(3.1.10) can be proved by the standard method based on the Banach fixed-
point theorem. We omit the details of the proof of local existence here. Note that
1 can be solved from (3.1.6) in terms of p. To prove the global existence, it is
thus sufficient to establish global a priori estimates for the solutions. The main
difficulty is caused by the high-temperature radiation terms appearing in (3.1.2)
and (3.1.5), which makes the upper bound for 6 more complicated than that in
the works mentioned above. This will be done by proper inequalities to reduce the
higher order of 6 in the equations (3.1.1)—(3.1.5).

Throughout this chapter we denote by C™+(Q) and C?™+®m+e/2(Qr) with
m € Z4,0 < a < 1, the standard Holder spaces, and by W™P(Q) (W%P(Q) =
LP(Q),W™2(Q) = H™(Q)) with 1 < p € R, m € Z the usual Sobolev space. For
simplicity, we also use the following abbreviations:

-l =1 e, - llee =1 e, - lemsamy = 11 Loz 9)-

Moreover, the same letter C' denotes various generic positive constants appearing
in the estimates, which may depend on T'.
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3.2 A Priori Estimates

In order to establish the global existence of solutions, we need some a priori es-
timates for the solution and its derivatives on (0,1) x (0,7 for any fixed T > 0,
which will be derived by detailed analysis of the equations. As was mentioned
above, the main difficulty, caused by the effect of high-temperature radiation in
momentum and energy equations, lies in obtaining a global uniform upper bound
for € which then plays an important role in the derivation of a priori estimates on
the second derivatives of the quantities (u,w,b,8).

To prove Theorem 3.1.1, we shall establish several lemmas concerning esti-
mates of the solution and its derivatives. Our methods are mainly based on the
techniques in Qin [101, 103-105], that is, we carefully estimate the solution and
its higher derivatives in terms of functions A, X,Y and Z (see their definitions
below) and resort to delicate interpolation techniques.

Lemma 3.2.1. For any t € [0,T], it holds that

1 1
m(t) :=/0 plx,t)dx :/0 po(x)dx = my, (3.2.1)

sup / V2 (z,t)dx < C, (3.2.2)
t€(0,T)
0 < ¢(x,t) <C, V(z,t) € Qr, (3.2.3)
[¢2all72 < C, [¢el7 < C,
1
/0w+ﬁ+mm+¢+w%@ﬁmgc, (3.2.5)
0

/ p(lnp+ |Ind|)(x,t)dx

2 2 2 2
/ / (Ii@ /\um + M|WZ| + v|by| ) dzds < C, (3.2.6)
0<C' < pla,t) <C, V(i) €[0,1] x [0,T), (3.2.7)
T
| mengta <. (3.23)
T
| 0=+ bl + 1) de < c. (3.2.9)
T 1
/ / (u2 4 [we|* + |b)?) (2, t)dxdt < C, (3.2.10)
0 0

1 t 1
/ p2dx —|—/ / 0p2drds < C, (3.2.11)
0 0 Jo
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1
sup / (jw|* + [b|")(z, t)dz

te(0,T) JO

T 1
+/ / ([WPIwa|? + [b[2[ba ?)dadt < C, (3.2.12)
sup / [(Wz,by)] d:z:+/ / |(W¢, Weu, be, byg)|?dads < C. (3.2.13)

te(0,T)
Proof. See, e.g., [145]. |

Now we define the following functions:

|u|(0) = sup J|u(x,t)], A=At) = sup 10(3)]| ()
(z,t)€EQT 0<s<
t 1
X = X(t) ::/ / (14 07302drds, Y =Y (T):= max / (1+ 6% dx,
te(0,7] Jo
Z = Z(T) := max ||uz(t)|*.

te[0,T]

From these definitions, we can obtain the following estimates.

Lemma 3.2.2. For any t € [0,T], it holds that

A< 0] < C+CY 2t (3.2.14)

max HuwH <C+CZ>, (3.2.15)
telo

|ux|(0) <C+CZ:. (3.2.16)

Proof. Firstly, from (3.2.5) and (3.2.7), we have

1 1
/ u?(z,t)dr < C, / O(z,t)dx < C. (3.2.17)
0 0

By using the mean value theorem, we find that, for each ¢ € [0, 7] there exists a
point &*(¢) € [0, 1] such that

1
B¢ 1) = / 0(¢.t)de < C,

which, combined with (3.2.5), yields that for any = € [0, 1], and for any ¢ > 0,

02140 (2, t) = 62707, 1) + (2q + 6) / 027420, (n, t)dn

*

1
<cc [ e
0
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1 2 1 2
gc+c</ﬁ1+¥%@mﬁ </(1+m%“%m>
0 0

1 1
SC+5/X1+@M“WM+C@x/(L+W%%M
0 0

2q+6 1 1
<Cre ()" /e%mumj/u+¥ﬂ@m
0 0
2q+6
§C+Lk0m@)q rov. (3.2.18)

Taking ¢ > 0 sufficiently small and taking the supremum over Qr of the
left-hand of inequality (3.2.18), we obtain

2946
(W@)q <C+cy,
which implies
A< 0|9 < C+CY2ate,

Secondly, using (3.2.17) and the Gagliardo-Nirenberg interpolation inequality, we
get

luallZs < llualfee < CllullLzlluesllzz + Clull.
< Cllugallr2 + C,

from which we can derive the inequality (3.2.14).
Finally, by (3.2.14) and the Gagliardo-Nirenberg interpolation inequality, we also
get

1 1
lluzllpoe < Cllugl;zlluaellfs + Clluzl L
g(czi+c)czé+czi+a
which implies

ug|Le < C+ CZ5,
that is,
lua| @ < C + 02z,

This completes the proof of Lemma 3.2.2. g
Lemma 3.2.3. For any t € (0,T), the following inequalities hold:

1 t el
/ u'dz +/ / u*uldeds < C + CAM™, (3.2.19)
0 o Jo

1 t 1
/ udr + / / (u? +u2,)dxds < C 4+ CA”?, (3.2.20)
0 0 Jo

where 1 = max(0,4 — ¢), and y2 = max(0,8 — q).
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Proof. Multiplying (3.1.2) by 4u?® and integrating by parts over (0,1) x (0,t), we
get

1 t 1
/ putdr + 12)\/ / w?uidzds (3.2.21)
0 0 Jo

1 t ol t el
1
:/ pouédx+12// <p+ |b|2) u2uzda:ds+4/ / pYudrds
0 o Jo 2 o Jo

which implies

1 t 1
/ putdx + 12)\/ / u*u2dxrds
0 0 Jo

t 1
1
SC—%—C’/ / (p+2|b|2)u2uwdxds +C
0 Jo

t 1
/ / pguldrds
o Jo

where the terms on the right-hand side are estimated as follows.

Firstly, by Lemmas 3.2.1 and 3.2.2 and the Gagliardo-Nirenberg interpolation

inequality, we get
t el t el t 1
/ / pzudrds / / udrds| < C’/ ||| Lo </ u2dx) ds
0o Jo o Jo 0 0
¢ ¢
< C/ |lul|L=ds < C’/ luz||32ds + C
0 0

<C.

<C

On the other hand, since [|(b,8)||(,r;r4y < C, recalling the definition of the
total pressure p and using Lemmas 3.2.1 and 3.2.2 again, we find that, for any

e >0,
/ / (p-i— |b|2> u2dzds

0 Jo 2
t pl t pl 1 2

< 5/ / u2uid:cds+0(5)/ / <p+ |b|2) u?dxds
o Jo 0 Jo 2
t 1 t 1 1

< 5/ / uzuid:cderC’(E)/ (||p+ |b|2||2Loo) (/ u2d:1:> ds
o Jo 0 2 0
t 1 t 1

< 5/ / uzuid:cds + C’(e)/ (HpqL |b|2||2Loo) ds
o Jo 0 2

t 1 t 1
§5/ / u2u§d;cds+c(e)+0(e>/ <||1+9||8Loo +|2|b|2||2Loo) ds
0 Jo 0

t 1 t
§5/ / u2u§dxds+0(s)+0(e>/ (I + 645 11+ 0137 ds
0 Jo 0
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t el
§€//u2u§d:cd3+0(€)+C(1+A71)
0

t el
< 5/ / uw*udxds + C(e) + CA™.
o Jo

Thus we obtain the inequality (3.2.19) by taking & > 0 sufficiently small.

Noting that the total pressure is given by p(p,6) = Rpf + ‘;’94, we infer from
(3.1.2) that

A2 4 2
pui+ " ud, = 2Nty = p ! (puum + Rpall + Rpby + 5a6°0, +b by, — pwz) :
P

which, together with Lemmas 3.2.1 and 3.2.2, leads to

1 t 1 A2
)\/ uidaﬁL/ / (pu?qL ufm) dxds
P

<C+C// w?u? + p20% + p?02 + 062 + |b|?|b.|* + p*?)dxds

1
<C+CA™ + C/ 16(5)]12 (/ pidw) ds
0
+C max H6‘ / / dwds—i—C max H6‘ / / JEal:zcds

§C+C’A71 +CA’72
<C+CA™,

here 79 = max(0,2 — ¢).
The proof of Lemma 3.2.3 is complete. O

Lemma 3.2.4. For q > 1, there exists a constant 0 € [0,1) such that

X+Y<Cc+0Z7°. (3.2.22)

Proof. In view of the equations of state (3.1.9), equation (3.1.5) can be rewritten
as

pegly + puegby + Opouy = (Kb )w + M + plwe|* + v|by|?, (3.2.23)

which, multiplied by k6; and integrated over (0,1) x (0,¢), yields

t 1 t 1
/ / pegn@fd:cds + / / KO, (k0p) dxds
o Jo o Jo

¢ 1
- / / (/\ui + p|we|? +v|be|? — puegh, — Gpgum) kB:dxds. (3.2.24)
o Jo
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Note that (3.1.1) also implies

(Ii@t)m = (,%91),5 + F@met — Iitew
= (K02)t + Kppabl — KppiOs
= (K0z)t + Kppzbi + Kp0z (pzu + puz),

and so we can rewrite (3.2.24) as

t 1 1 1 1
/ pegrkb?dads + / (kO,)*dx — / (kO,)?*dx
0 2 Jo 2Jo

t=0

t el
= / / (M2 + plwe|® + v|be|* — pueghy — Opous )xb;dxds
0o Jo
t o1 5
— / / Kpklz(pabt + pugly + upyby)deds = ZLi‘ (3.2.25)
o Jo i=1

As for the terms on the left-hand side, recalling that C—1 < ey (p, 8)/(1+0)3 <
C' (because of (3.1.9) and Lemma 3.2.2) and using Lemma 3.2.2 and (3.1.11), we

have
t 1 1t 1t
//pfie.gﬁfdxds—i— /(H@I)de— /(H@I)de
o Jo 2 Jo 2 Jo t=0

1 t 1

> o ( [axomeas [ o+ 9>q+363dwd8) -C
0 0 0

>0 NX+Y)-C.

To bound the right-hand side of (3.2.25), we firstly use the Cauchy-Schwarz
inequality and Lemma 3.2.3 to deduce that, for 1 < ¢ < 8 and for any ¢ > 0,

t el
|L1| := ‘/ / (M2 + plwe)? + v|b,|?) kb, dxds
0o Jo

t 1
<C / / (M2 + plwy|? + v|bg|?) (1 + 0)70,dxds
0 0

t 1 t 1
ga/ / (1+9)q+39§dzds+c/ / (1+0)73 (u + [we|* + |by|*)dxds
0 0 0 0
t 1
ggX+C(1+A%)/ / (u + [wa 4 + [ba|4)dzds
0 0

t 1
§5X+C’(1+A73)|u§|(0)/ / uldzds 4+ C
0 JO

<eX+C(L+AB)C+CZi)+C
<eX+C+CA® +CABZE+0Z54
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<e(X+Y)+C+0Z%.

3. q+3
2" 2¢+6—r3°

T 1 T 1
/0 /0 (W, by)] d:cdtSC’(lJr/O |(wgg,bm)(t)||Loo/0 [(Wy, b))l dzdt)

T
<C (1 +/ |(wm,bm)(t)|§2dt> <C
0

Here v3 = max(0,q — 3), 61 = and we have used the following facts

and, since 3 < 2¢ + 6, by Lemma 3.2.1,
1 1
CA™ < Y +C and CA® 7% < L&Y +CZ%

For ¢ > 8, we have and for any € > 0,

t 1
|Li| < eX + C/ / (14 0)13(ud + |we|* + [by|")dxds
0 0

<eX+CA+ AT+ 0O
<e(X+Y)+C,

where we used the facts that ¢ — 3 < 2¢q + 6, and
CAT™3 <eY 4 C.

Secondly, using the Cauchy-Schwarz inequality and the Gagliardo-Nirenberg
interpolation inequality, we can easily deduce from Lemmas 3.2.1-3.2.3 that, for
q > 1, and for any € > 0,

t 1
|La| := ‘/ / (puepl, + Opouy)kbidads
o Jo

t 1
< C/ / |(pu9$ + ouz)(l + 9)q+39t|d;pd3
0 JO
t 1 t 1
< 5/ / (1 +0)7302dxds + C/ / (1 +0)7"3(p*u?02 + 6%u?)dxds
0 JO 0 JO
t 1 t 1
<eX+ C/ / (1 +0)73u?02dxds + C’/ / (1+60)Tu2drds
0 JO 0 JO
5y [ " k6] +5
<eX+C(1+A )/O llull L2 |lws | L2 </0 92%13:) ds + C(1+ A7)
bl ke?
<eX +C1 + A% |u,|© / / 9; dzds 4+ C(1 4+ ATTP)
0 JO

<eX +C(1+ A%)(C+CZ3)+C + CAITS
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<e(X+Y)+CZ%,

3. gt3

where d2 = | - gl

< 1 and here we know that, since 5 < 2¢ + 6,

1 1
CA5 < L&Y +C. and CASZ: < 25Y+CZ52.

Thirdly, in view of Lemma 3.2.2, by the Hélder and the Cauchy-Schwarz inequal-
ities we have that, for any € > 0,

t el
/ / KOz k0 pedads
0 Jo

t el
< C/ / |k05(1 + 0)10,p,| dzds
o Jo

|Ls| =

t

<C [ max ((1+9)"?“|ﬁ9m|) /01‘(1+9)"§39tpm

o z€(0,1)

dzxds

t

1 3 1 2
<C [ max ((1+9)"5‘ |ﬁaw|) (/ (1+9)q+39§d:c> (/ pidw) ds
0 2€(0,1) 0 0

t

t 1
< 5/ / (1+0)1302dxds + C max_((1+60)?%|k0,|?) ds
o Jo o z€(0,1)

t

<eX+C max_((1+ 6)77%|k6,|%) ds.
o z€(0,1)

In a similar manner, by Lemmas 3.2.1-3.2.3, we find that, for 1 < ¢ < 8, and for
any € > 0,

t el
|Ly| := )/ / pr k02U drds
0o Jo

t 1
< C’/ / |k02(1 + 0)%uy | dxds
0 Jo

t s 1

<C 1+6)"2 ko,

<c [ mu (ae0s ) ||
t

1 > 1 2
<C max ((1 +6)": |f$9$|> (/ (1+ 9)q+36‘325dx) (/ uidw) ds
0 =€(0,1) 0 0

t

1 2
< C max |ug| Lz max ((1 +6)"2 |/<;9m|) (/ (1+ 9)q+39gdx) ds
0

te(0,T) o z€(0,1)

0,(1+0)"2 u,

dw} ds

t t 1
g(c+czi>[ max_((1+60)7%(k0,[*) ds+/ / (1+9)q+39§d:cds}
o z€(0,1) 0 Jo
t
<(C+CZi)C+CA®) +(C+CZ1) max (1 +6)73|K0,[?) ds
o z€(0,
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t

<C+CZi+CAZ1 +CA5 + (C+CZ4) max (1 4 6)73|K6,[?) ds
o z€(0,

t
<EY +CZY s 4 (C+CZY) max (14 6)773| k0, %) ds
o z€(0,
t

<eY +CZ22/3 4 (C+CZ%) max ((1+0)7%|K0,|%) ds
0 xEe 3

while for ¢ > 8, and for any € > 0, it holds that

t

1 >
|Ly) < C max ||ug| 2 max ((1 +6)" |f$9$|> (/ 1+ 9)q+36‘§dx) ds
t

€(0,T) o0 =€(0,1) 0

t

1 5
<C [ max ((1+9)"5‘ |ﬁ9m|) (/ (1+9)q+39§d:c> ds
0

0 16(0,1)
t

<eY+C+C max_((1+6)77%|k0,[%) ds
o z€(0,1)

Finally, by virtue of Lemmas 3.2.1-3.2.3 and the Gagliardo-Nirenberg inter-
polation inequality, we derive, for any € > 0, the estimates

/ / KpupgkO2drds <C’/ / ’ (1+90) qupxnﬁzldxds

< C max |ulp~ [ max ((1+9) 2 |/£9x|) (/ (140" p.0, dx)d
0

te(0,T) o z€(0,1)
t

<C  nax ||| o max_((1+6)77%(xb,|)
( ,T) 0 16(0,1)

1 1
2 1 2
X </ 1+ 9)q+39§dx) </ pidx) ds
0 0

1
t 2
<C . 1+ 6)73|k6,]%) d
s fullz (0 Jmax ((1+0)7°|x6.%) 8)

X (/ / (1+9)q+36‘§dxds)
o Jo

t 1
< C max HuH%oo/ / (1+6)7"202dxds
te(0,T) o Jo

t

+C 14 0)973|k0,|?) d
s, (0 o) ds

|Ls| :=

t
<C el 2 2(C' 4+ CA® C 14 60)973|k6,]%) d
< tg(lg%l\u [L2llullL2(C + CA%) + e (L +0)777|k0,%) ds
t
<(C+CZ1)(C+CA)+C nl(%ﬁ)((1+9)q’3|119x|2)d5
o z€(0,
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t

<C+CZi+CAZs +CA® +C max (1 +6)73|K0,[?) ds
o z€(0,

t

<EY +CZrdt 4 C+C max (14 6)773| k0, %) ds
o z€(0,

t

<eY + CZ252/3 +C+C rn(%}i) ((1 + 9)q_3|[§9w|2) ds
0 TE )

By the estimates of L, (i = 1,2,3,4,5), and choosing e appropriately small, we
conclude that for any ¢ € (0,7, for 1 < ¢ <8,

t
X+Y <CH+CZ%"+CZ%+(C+CZ4) ma ((1+6)73|K0,[?) ds, (3.2.26)
o z€(0,1

and for g > 8,
t

X+Y<C+Cz%+C max, (14 0)772|k0,]?) ds. (3.2.27)
o z€(0,

It is clear from (3.2.26) and (3.2.27) that we still need to deal with the term
(14 6)973|k6|?. To this end, we observe from (3.2.23) that

|(k02)]? = (peoby + puegby + Opgus — Aui — plwo|* — V|bx|2)2 . (3.2.28)

Multiplying (3.2.28) by (1 + 6)4=3 and integrating the resulting equation over
(0,1) x (0,t), we deduce that

// (14 0)73|(kby)o|* dads

// (14 0)? pegﬁt—l—puegG + Opouy — M2 — p|lwe|? — vib, |) dxds
<C / / [(L+0)73(02 4+ 6202) + (1 + 0)+5u2]
o Jo

t 1
+C/ / (1+0)173(ut + [wy|* + |by|*)dads. (3.2.29)

By the Sobolev inequality and Lemmas 3.2.1-3.2.3, we can easily see that,
for any € > 0,

t 1 t 1 92 KJ92
1+ 0)9302u2dads < ul|? 14037 T drds
( x L
0 0 0 0 k 92

t 1 k6> t 1 k6>
SC’/ HUHL2||U1HL2/ (14 6% ;dzdsSC/ ||quLz/ (14 6% 5 drds
0 0 0 0 0 0

t 1 2

K0 1

<C sup ||uw|\L2(1+A5)// 92””dxds§(C+CZ4)(1+A5)
te(0,T) 0 Jo

<Y 4 C+CZ2 55 <Y +C+CZ%,



90 Chapter 3. Solutions for 1D Thermally Radiative Magnetohydrodynamics

t el t el
/ / (1+0)7uldeds < (C + C’Aq+5)/ / uZdrds
0 Jo 0 Jo
< C+CATT™ <eY +C,

and from the derivation of the estimate for Lq, we also find that for 1 < ¢ <8,
t 1
/ / (1+0)173(ut + [wa|* + |bp[*)dads < (X +Y) 4+ CZ% 4 C,
o Jo

and for g > 8,

t 1

/ / (14 0)73(ud + [wol* + [bu|*)dads < e(X + V) +C.
o Jo

Hence, inserting these estimates into (3.2.29), we get for 1 < ¢ < 8,

t 1
/ / (140)73|(kb,).|* dzds
0 Jo

t 1
< C/ / (1+0)130%dzds + C + (X +Y) +CZ% +CZ%, (3.2.30)
0 JO

and for g > 8,
t 1
/ / (14 0)73 | (50,)|? dads
0 JO
t 1
< c/ / (14 60)7"30%dxds + C +e(X +Y) + CZ°%. (3.2.31)
0 JO

Multiplying (3.2.26) and (3.2.27) by C'+1 and adding to (3.2.30) and (3.2.31),
we conclude that for 1 < g < 8,

t 1
X+Y+ / / (14 0)772|(kb,).|* dzds (3.2.32)
0 JO
t
<C+CZ% +CZ% + (C+CZ4) max, (1 +0)7%[K0, ) ds,
0 TE 3

and for g > 8,

t 1
X+Y+/ / (14 0)975 |(k0,)a|? dads
0 0
t

<C++CZ% 4 C max, (1 +60)7?|K0,]?) ds. (3.2.33)
o z€(0,

On the other hand, since

1
max |kf,[* < C’/ |k05||(KOy) g |da
IE(O,I) 0
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the last term on the right-hand side of (3.2.32) and (3.2.33) can be bounded as
follows, using the Cauchy-Schwarz inequality and Lemmas 3.2.1-3.2.3, for 1 < ¢ <
8, and for any € > 0:

t t 1
max (14 0)73|x0,[?) ds §0(1+A”3)/ / k0] |(K0z): | dads
o »€(0,1) o Jo

t 1 t 1
gs/ / (1—1—9)‘1_3|(f$9m)w|2d:vds+05_1(1+A273)/ / (14 0)7362dzds
0 0 0 0

k62

¢l w
: 6/ / (14 0)17% |56z )2 |* dads + Ce™ (1 + AP2)(1 + A5)/ / 9296 dxds
0 Jo N
t 1
< 5/ / (1 + 9)‘1*3 |(f€9m)m|2 dxds + 0571(1 4 A273+5)_
0 JO
If we set here e =, (C + CZ1)~", we get

t
C+Czi 14 6)773 |k0,*) d
(©+07%) | max ((1+0)7 w0, ") ds

1 tt 1
<, / / (1+0)73 |(k0y,)o|* dads + C(1 + Z3)(1 + A23+5), (3.2.34)
0 JO

and for ¢ > 8, and for any € > 0,
t

C 14 0)973|k0,|%) d
s, (0l ds

t 1
<C(1+ A)q—3/ / |0, | (KOs )| dads
0 JO

t 1 t 1
< ;/ / (1+9>‘1’3I(n9z>ml2dzds+c(1+A2q*6)/ / (14 0)1+302dxds
0 0 0 0
1 t 1 9
< 2/ / (1+0)173|(k0,),|° dvds + C + C A7}
0 0
1 t 1 )
< 2/ / (14 60)772|(k0,),|” dzds + €Y + C. (3.2.35)
0 0

Inserting the inequalities (3.2.34) and (3.2.35) into (3.2.32) and (3.2.33), we can
deduce that, for 1 < g < 8,
t 1
X+Y+/ / (14 0)7=2 |(k0,). |? dads
0 JO

< CHCZ% +0Z% 4 (C+ CZ4)(1 4 AD9H5)

<C+CZ% +CZ% 4 CZ1 AP L 0724 4 074

<Y 4+ O+ CZE +CZ +CZ% 4 CZ% 22
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and for g > 8,

t 1
X+Y+/ / (1+60)173|(kb,).|” dxds < C + CZ%.
0 JO

Hence, we can easily get that, for 1 < ¢ <8,
X+Y <C+CZ°,

where § = max (01, da, 411, ; . 2q_f1+_32% ), and for ¢ > 8,

X+Y<Cc+07°,

where § = §5.
Thus the proof of Lemma 3.2.4 is complete.

Applying the previous lemmas, we can get the boundedness of Z.

Lemma 3.2.5. For q > (2 ++/211)/9, we have
zZ < C.

Proof. Since

2

A 4
puf + uiz — 2ty = p * (puuw + Rp.0 + Rpb,, + 3@936‘1 +b-b, —
p

we derive
)\2
ul
P

Integrating the equality (3.2.39) on (0,1) with respect to x, we get

4
o = 2AUUgy — pui er_l (puux + Rp,0 + Rpb,, + 3a9391 +b-b, —

(3.2.36)

(3.2.37)

(3.2.38)

2
pwm) )

2

p¢z)
(3.2.39)

1 1 1
/ u? dr < C/ (uu? + p26% + 62 4 0962 + b|*|b,|* + ¥2)dx + C/ uide
0 0 0

<SCHCZi+CA2+CZ0 + CA™ + CAZ0 + Clluy 2.

Here we have used the inequalities
1 1 s
/ uw?uldr < |u§|(0)/ wlde < Clu2|V <C+CZz1,
0 0

1 1
/‘£9Mx§6%2/‘@drgCA{
0 0

1
/ 02dx < C+CZ°,
0

(3.2.40)
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1 1
/ 050%dx < A / 0%40%dx < (C + CZ%) A" < CAY + CAZ°,
0 0

where 74 = max(6 — 2¢,0), and
1
/ vydz < C,
0
1 1 1
/ Ib[2[b. 2z < ||b||2Lm/ b, [2dz < c/ b, [2dz < C. (3.2.41)
0 0 0
By (3.1.2), we can derive
1
puy + pugu + (p + 5 |b|2) = Mgy + ptz. (3.2.42)
Differentiating (3.2.42) with respect to ¢, we deduce
1
pu — (pu)putty + putigy + (p + 5 |b|2) = Migat + (02 )1 (3.2.43)

xt

Multiplying (3.2.43) by 2u; and integrating with respect to x,¢ on (0,1) x (0,¢),
we arrive at

1 t el
/ pufdw+2)\/ / u?,dxds
0 o Jo
t 1 t 1 1
:—2/ / pu(uuzut)xd:rdsqLQ/ / <p+ |b|2) Ugidrds
0o Jo 0o Jo 2 t

t 1 t 1
+ 2/ / pu(Yzug) drds + 2/ / PUzrurdrds. (3.2.44)
o Jo o Jo

Using the Young inequality and the Gagliardo-Nirenberg interpolation inequality,
we can obtain the following estimates for any ¢ > 0:

t el t el
/ / pu(uugu)deds = / / (puuiut + pu2umut + pu2uwumt) dxds,
0 Jo 0o Jo

(3.2.45)
t pl t 1 t ol
/ / puuzdds Sa/ / pufd:z:dsqLC/ / uzuid:cds
0 Jo o Jo 0o Jo
t 1 t 1
Ss/ / pufdwds+C|ui|(0)/ / u?udxds
o Jo o Jo

t 1
ga/ / pudzds + (C + CZ1)(C + CA™)
0 JO

t 1
< a/ / puldzds + C + CAM + CAMZE +CZ1, (3.2.46)
0 JO
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t el e [tofl t el
// pu2umutd:17ds§ // uixd:cderC’/ / u4ufd:17ds
0 Jo T Jo Jo

<eZ+C sup HuHLm/ / puidxds
te(0,7)

t
<ez+4C s [ult ol [ /f pududs
0

t€(0,T)

t
<eZ+C sup HuIH%z/ / puZdrds
te(0,T) 0

t
<eZ+(C+ CAW)/ / putdads, (3.2.47)
0

t 1 t 1 t 1
//pu2umumtdxds§5/ / uitdacds—i—C/ / utu?drds
o Jo o Jo
t 1
<5/ / u?,dxds + C sup HuHLm/ / u?dzds
t€(0,T) 0o Jo

<o [ [ ans o il

te(0,T)
Ss// u?,dxds + C sup HU:EHL?
0 Jo te(0,
t pl
§a/ / uZ,dxds + C + CA™. (3.2.48)
o Jo

Inserting the inequalities (3.2.46)—(3.2.48) into (3.2.45), we deduce that for any
e >0,

t 1 t 1 t 1
/ / pu(uuzu)deds < 5/ / u?,drds + (C + CA'”)/ / puidads
0 Jo 0 Jo 0 Jo

L CAZ L CAM + CANZE +CZ4% +eZ + C.
(3.2.49)

Similarly, we can also show that, for any ¢ > 0,

t 1 t 1
/ / pu(puy) o drds =/ / Pu(Vzgtis + Pptipr)drds
0 JO
t
< a/ / putdzds+5/ / u?,dxds
0
+0/ 22 d:cds+C’/ / u*p2drds
0 0
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t ol t el ¢ 1
< a/ / puidrds + 5/ / u?,dxds + C/ [|]|2 oo / Y2, dxds + C
o Jo o Jo 0 0
t el t el ¢
< a/ / pU?dedS+€/ / uitd:cderC/ |u||3ds + C
o Jo o Jo 0
t ol t el ¢
< 5/ / pufdwds—i—a/ / uitdxds—i—C/ |tz |32ds + C
o Jo o Jo 0

t el t el
< a/ / puidads + 5/ / u?,drds + C, (3.2.50)
o Jo o Jo

nd
t el t opl t el
//m/)ztutd:cdsga/ / pufd:cderC’/ / z/;itdxds. (3.2.51)
o Jo 0o Jo o Jo

By (3.1.6), we know that

a;

gy = /O Gpde — o, 1)

,oand =Yg = —Gpu — Yu(z, 1)

=0 =0

By the Sobolev inequality, we have that, for any € > 0,
1 1 1
/ Yida < C/ (GPU)QdiU'f‘C/ Vit =0 dz
0 0 0
1
< c/ Putde + Ol
0
1
<C [ Putdo + Cllwutlalsatl oo
0

1
< ellvbatlliz + Cllvaatl|z: + C/ pPude
0
< ellvatl 72 + Clltbzar| 72 + C, (3.2.52)

a.

nd
1 1 1
/ Y2 yde = / (~Gp)2da = / G2 (pu)?da
0 0 0

1 1 1
<c [+ p)ao < Clulls [ oo [
0 0 0

1
< C/ wldr+C < CZ2 +C. (3.2.53)
0

Inserting (3.2.53) into (3.2.52), we get

1
/ W2 de < CZ2 +C. (3.2.54)
0
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Next, combining (3.2.51) and (3.2.54), the inequality (3.2.51) can be estimated,
for any € > 0, by

t 1 t el
/ / PYgrurdads < 5/ / putdxds + CZ» +C. (3.2.55)
0 Jo 0 Jo

By the Young inequality, we have for any ¢ > 0,

t rl 1 t rl t rl 1 2
/ / (p + |b|2) ugrdads| < 5/ / u?,drds + C/ / (p + |b|2) dxds
o Jo 2 ¢ o Jo o Jo 2 t

t 1 t 1
< 5/ / u?,drds + C/ / (pi0 + pb; + 6°0; +b - by) dads
0 Jo 0 Jo

t 1
<e / / u?,drds + C + CA? + CZ° + CAY 4 CA» Z°
0 JO
+ CZ% 2y 4 075 2t s (3.2.56)

where 75 = max(3 — ¢,0), and we used the following facts:

t
/ / (pe0 + pb; + 030, + |b - by|) dads
0 Jo

t 1
50/ / (076° + p*07 + 0°07 + |bJ*[by|*)dds,
0 0

t 1 t 1
/ / P20 drds = / / (pu)20*dxds
0 Jo o Jo

t 1 t 1
< C/ / (p§u292 + p2u§92) drds < CA2/ / (piuz i p2u§) drds
0 JO 0 JO

t 1 t el
SCAQ/O ||u||2Loo/0 pid:z:dsqLCAQ/O /0 puZdzrds

t
< CA? + CA2/ ul| wds + C < CA% + C,
0

t 1 t 1
/ / p?0%drds < C/ / 02dxds < C +CZ°,
0 JO 0 JO

t 1 t 1
/ / 050%dxds = / / 0907302073 1dxds
o Jo o Jo

t 1
< (C+CA™) / / 09302 dxds
0 0
< (C+CA")(C+CZ°%)
< (C+CA»)(C+CZ°%)
<CHCA® +CA»Z + 020,
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t el t el
/ / |b|?|b;|2dzds < sup ||b||% / / b |2dxds
0o Jo t€(0,T) o Jo

<C sup |b||i~ <C sup |byfi~ < C.
t€(0,T) t€(0,T)

Inserting the estimates (3.2.49), (3.2.50), (3.2.55) and (3.2.56) into (3.2.44), we
get, for any € > 0,

and

/ puldx + 2/\/ / u?,drds < (C + CA?) /Ot/ puidzds + CA? + CA™
FCANZE 4+ CZY +eZ + 02 0 s 4
(3.2.57)
where 72 < 2g + 6,71 < 2q + 6. Further,
CA™ <CZ°+C, CA"<CZ°+C. (3.2.58)
Inserting (3.2.58) into (3.2.57), we get

/putd:b—i—// u?,dxds

< (C+C20) //putd:cds+C+CZ6+C’Z4 2046 7
Y OZE v eZ 4 020 s

2q+6
< (C+C2°) / / puldads + C + CZ % 25 4 cZ + 07 20¥0 s
0

By the Gronwall inequality, we conclude from the above inequality that, for
any t € (0,7),

1
/ putd:v+/ / w2, dods < C+eZ + CZ 1 2o m + 70255 5 (3.2.59)
0

Combining (3.2.59) and (3.2.40), we obtain
ltpe|22 < C + CZ3 4+ CZ0 + CZ% 2ass 4 CZY 2o 4 7% 2o s 12,
whence
5. 2a+6 5. 2a+6 5. 2a+6
Z < CHCZ 2a0t6-va 4 CZ7 2046-75 4 C'Z" 2a+6-71, (3.2.60)
In order to get the estimate Z < C, we must require that

. 2q+6
0<d 2 +6—p < 1,

0< - ,240 <1, (3.2.61)

. 2q+6
0<9 2q+6—7s <1
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that is,
2+4+/211
q>""9",

q> 2,
q>‘/§1

which implies
q> (2+V211)/9.

This completes the proof of Lemma 3.2.5. O
Applying the previous lemmas, we can further obtain estimates on (u, w,b).

Lemma 3.2.6. For anyt € (0,T"), we have

O(x,t) > C, for any (z,t) € (0,1) x (0,7T), (3.2.62)
1
[ (1w B0 s Wi b))
0
o (3.2.63)
[ st b dade < .
sup / (02, +67) dw—i—/ / 62,dxds < C. (3.2.64)
te(0,7) J0o
Proof. See, e.g., [130]. O

By using the global a priori estimates established in Lemmas 3.2.1-3.2.6, we
can prove the main theorem in a standard way. Indeed, by Lemmas 3.2.5-3.2.6,

(u,w,b,0) € (C*°(Qr))° .

To show that (u,w,b,0) € (Cl’l/Q(QT))G, that (4, Wy, by, 0,) € (01/2*1/4(QT))6

and that (p,v,) € (01/2*1/4(QT))2, we can refer to [130]. By applying the clas-
sical theory on parabolic equations in [69] and the results in [68], we obtain the
desired Holder continuity of the solutions asserted in Theorem 3.1.1, and thus, the
existence of classical solutions to problem (3.1.1)—(3.1.5), (3.1.12) and (3.1.13) is
proved. The uniqueness and stability of the solution in the class in Theorem 3.1.1
can be established in a quite standard way. This completes the proof of Theorem
3.1.1.

3.3 Bibliographic Comments

One-dimensional problems for compressible fluids have been extensively studied
under various conditions by a number of authors(see, e.g., [8, 16, 50, 59, 63, 87,
103-105, 119, 124, 129, 130, 145]). Qin [103, 104] and Umehara and Tani [129, 130]



3.3. Bibliographic Comments 99

proved the global existence of a unique classical solution to the following free-
boundary problem for governing the flows of the one-dimensional system for self-
gravitating viscous radiative and reactive gases (see also Chapter 4):

Ve = g, (3.3.1)
ut—(er,Lle)z)xG(x;), (3.3.2)
e = (—p + uif) g + (n%)z + 2oz, (3.3.3)
s =d (i;)x — 2 (3.3.4)

in  x (0, +00), with Q = (0, 1). Here the specific volume v = v(z, t), the velocity
u = u(z,t), the absolute temperature § = 6(z, t) and mass fraction of the reactant
z = z(z,t) are the unknown quantities, and the positive constants u, G,d and A
are the bulk viscosity, the Newtonian gravitational constant, the species diffusion
coefficient and the difference in heat between the reactant and the product, re-
spectively. The pressure p and the internal energy per unit mass e are defined by
(3.1.9), and the thermal conductivity x = (v, 8) takes the form

k(v,0) = K1 + Kavl?, (3.3.5)

with positive constants k1, k2 and ¢. Furthermore, the reaction rate function ¢ =
¢(0) is defined, from the Arrhenius law, by

P(0) = KOPe A/, (3.3.6)

where the positive constants K and A are the coefficient of rate of the reactant
and the activation energy, respectively, and 3 is a non-negative real number.

In [129], Umehara and Tani proved the global existence of a unique classical
solutions to (3.3.1)—(3.1.6) with the same state equations (3.1.9) when 4 < ¢ <
16,0 < B8 < 13/2. In [130], in the case when ¢ > 3 and 0 < 8 < ¢ + 9, they
also proved the existence of global smooth solutions, which improved the results
in [129]. Qin et al. [103, 104] improved the results of Umehara and Tani [129, 130],
that is, when Z <qg<3,0<B8<qg+9, Qin et al. [103] proved the existence of
global solutions, and later on, Qin [104] also proved the existence of global smooth
solutions when ¢ > 2, 0 < < 2¢+60or g >3, 0 < < ¢+9. Chen and Wang [10]
and Wang [132] considered a 1D model problem for plane magnetohydrodynamics
flows, where the effect of self-gravitation and the influence of high temperature
radiation were not taken into account (i.e., G = a =0 in (3.1.1)—(3.1.9)). In [10],
they established the existence, uniqueness, and regularity of global solutions with
large initial data in H', and also established an existence theorem of global solu-
tions with large discontinuous initial data under certain assumptions on e, p and
K, in the case where r € [0, 1], ¢ > 2+2r. Recently, Zhang and Xie [145] considered
an initial-boundary value problem for nonlinear planar magnetohydrodynamics in
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the case where the effect of self-gravitation and the influence of radiation on the
dynamics at high temperature regimes are taken into account, i.e., when ¢ > g,
and proved the global existence of a unique classical solution with large initial
data to the problem under quite general assumptions on the heat and conductiv-
ity. Ducomet and Feireisl [25] considered a three-dimensional mathematical model
derived from the classical principles of continuum mechanics and electrodynamics,
and proved the existence of global-in-time solutions of considered the correspond-

ing problem.



Chapter 4

Global Smooth Solutions to a
1D Self-gravitating Viscous
Radiative and Reactive Gas

4.1 Introduction

In this chapter we are concerned with the free-boundary problem describing the
motion of a compressible, viscous and heat-conducting gas which is self-gravitating,
radiative and chemically reactive. The motion of such a gas, especially in the case
of unimolecular reactions with first-order kinetics, is described in Lagrangian mass
coordinates by the following equations:

Ve = Uy, (4.1.1)
Ugs 1
ut:(—p—i—ﬂv)x—G(w—z), (4.1.2)
Uy 0,
e = (—p—i—ﬂv )um+(nv>z+/\¢z, (4.1.3)
Zp
zt:d(v2>x—¢z, (4.1.4)

in © x (0, +00), with Q = (0, 1). Here the specific volume v = v(z, t), the velocity
u = u(z,t), the absolute temperature 6 = 6(z,t) and mass fraction of the reac-
tant z = z(x,t) are the unknown quantities, and the positive constants u, G,d
and A\ are the bulk viscosity, the Newtonian gravitational constant, the species
diffusion coefficient and the difference in heat between the reactant and the prod-
uct, respectively. The pressure p and the internal energy per unit mass of e are
defined by

p=7p(v,0) = 1o + 304, e =e(v,0) = cy0 + avd* (4.1.5)

(%
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where the positive constants R, cy and a are the perfect gas constant, the specific
heat capacity at constant volume and the radiation-density constant, respectively.
The second terms on the right-hand side of both relations in (4.1.5) stand for
the effect of radiation phenomena, whose forms are given by the famous Stefan-
Boltzmann law. In the radiating regime, we naturally take into account the heat
flux from the radiative contribution, and not only the one from the heat-conductive
contribution. To simplify (see, e.g., [22, 129, 130]), we assume here that the thermal
conductivity k = k(v, 0) takes the form

k(v,0) = K1 + Kovl? (4.1.6)

with positive constants k1, k2 and g. Furthermore, we assume that the reaction
rate function ¢ = ¢(0) is defined, from the Arrhenius law, by

P(0) = KoPe A9, (4.1.7)

where the positive constants K and A are the coefficient of rate of the reactant
and the activation energy, respectively, and (3 is a non-negative real number.
We consider (4.1.1)—(4.1.4) subject to the following boundary condition

(0’, Qm,zw) |m:0,1: (—PG,0,0), t>0, (418)

with the stress 0 = —p + p%* and the external pressure Pe (a positive constant),
and the initial condition

(v,u,0, 2) |t=0= (vo(x),uo(x),00(x), z0(x)), = €]0,1]. (4.1.9)

Without loss of generality, we may assume that (see, e.g., [129, 130])

/1 ug(x)dz = 0. (4.1.10)
0

The notation in this chapter will be as follows:

Let m be a non-negative integer and 0 < o, @’ < 1. By C™%%(Q) we denote
the spaces of functions v = u(x) which have bounded derivatives up to order
m and d™u/dz™ is uniformly Holder continuous with exponent a. Let T be a
positive constant and Qr =  x (0,7). For a function u defined on Qr, we say

that u € ;’ta/(QT) if

u|© = ( %po lu(z,t)] < 400 (4.1.11)
z,t)eEQT

and u is uniformly Holder continuous in z and ¢ with exponents o and o', respec-
tively. Its norm is denoted by |- |4.o’. We also say that u € Cija’1+a/2(QT) ifuis

2
bounded, has bounded derivative u,, and (ug,, ut) € (C'O"a/2 (QT)) . Its norm is

x,t
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denoted by | - o1a11a/a- LP,1 < p < 400, WP, m € N,H' = Wh2 H} = W,
denote the usual (Sobolev) spaces on [0,1]. In addition, || - || denotes the norm
in the space B; we also put || - || = || - [|z2(0,1)- We use Cp to denote the generic
positive constant depending on the initial data, but independent of ¢. Constant
C > 0 stands for the generic positive constant depending only on the initial data
and T > 0. Without danger of confusion, we shall use the same symbol to de-
note the state functions as well as their values along a dynamic process, e. g.,
p(v,0),p(v(z,t),0(x,t)) and p(x,t).
Let E = E; U E3 be a set in the (g, 3)-plane in R?, where

9
ElZ{(q,ﬁ)eRQ: 4<q<3, 0§6<2q+6},
Ey={(¢,8) €R®: 3<¢q, 0< B <q+9}.

Our results read as follows:

Theorem 4.1.1. Let (¢,08) € E and o € (0,1). Assume that the initial data
(vo, ug, 0o, 20) € CTT¥(Q) x (C*T*(Q))? (4.1.12)

satisfies the compatibility conditions, (4.1.10) and vo(xz) > 0,60(x) > 0,0 <
zo(z) < 1 for any x € [0,1]. Then there exists a unique solution (v,u,6,z) of
the initial boundary value problem (4.1.1)—(4.1.4), (4.1.8)—(4.1.9) such that for
any T > 0,

(w(0) 02 (0 0:(0) € (CT72(@n)) . (w(1).00), 2(1)) € (G2 /2(Qr))’
(4.1.13)
Moreover, for any (z,t) € Qr,

v(x,t) >0, O(z,t) >0, 0< z(x,t) <1 (4.1.14)

The aim of this chapter is to further improve upon those results in [129, 130]
by providing a larger range of (¢, 3) € E = E1 U E5 than those in [129, 130]. This
means that our results have improved those in [105, 127].

The main mathematical difficulty arises from the higher-order nonlinear de-
pendence on the temperature 6 of p(v, 8), e(v,0) and k(v,0) in (4.1.5) and (4.1.6).
To overcome this one, we shall first use delicate interpolation techniques to reduce
the order in 6, then bound the norms of (v(t), u(t),8(t), z(t)) and their derivatives
in terms of expression of the from

A
AN = ( sup ||9(s)||Loo) (4.1.15)
0<s<t
with A being a positive constant depending only on ¢ and (.
The local existence of solutions can be established by the standard method
(see, e.g., [126, 127]). Therefore to prove our results, it suffices to continue the
local solutions based on the following a priori estimates.
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Theorem 4.1.2. Let T' > 0 be an arbitrarily given constant. Under assumptions
of Theorem 4.1.1, assume that problem (4.1.1)—~(4.1.4), (4.1.8)—(4.1.9) possesses a
global smooth solution (v(t),u(t),0(t), z(t)) such that

3 3
(v, va(t),ve0) € (C7(@Qn) s (), 000), 2(0) € (C2E* (@)
(4.1.16)
Then there exists a positive constant C' depending on the initial data and T > 0,
such that

|(U5Uwvvt)|a,a/2 + |(ua 91 Z)|2+a,l+a/2 < C (4117)
and for any (x,t) € Qr,
v(z,t),0(z,t) > C~ 1 >0, 0< 2(z,t) < 1. (4.1.18)

4.2 Proof of the Main Results

In this section, we shall finish the proof of Theorem 4.1.1. We begin with the
following lemma.

Lemma 4.2.1. Under the assumptions of Theorem 4.1.1, the following estimates
hold for any t € [0,T]:
'
/ {2u2+e+/\z+f(:17)v} dx = Fy, (4.2.1)
0

Ut) + /t V(s)ds < Co, (4.2.2)

/01 z(z,t) dz + /Ot/ol ¢z drds = /01 2z0(z) du, (4.2.3)

1 1 t 1 d 1 1
/ 2% (x,t) dx + / / < 9 22+ ¢z2) dxds = / 28 da, (4.2.4)
2 Jo 0o Jo \Y 2.Jo

t
/ (max@(x,s))vdsga for 0<~y<q+4 q>0, (4.2.5)
0 e
t
l|luz(s)]|? ds < C, (4.2.6)
0
t 1
l|lvg (1)]1 +/ / (002 +v2)(z, 8)dxds < O, for q>2, (4.2.7)
o Jo
t
/0 ||uz(5)||3L3(071)d5 <C, for q>4, (4.2.8)

and, for any (z,t) € Qr,

0<z(z,t)<1, 0<C ' <w(xt)<C, (4.2.9)
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where
'
E0:/ {2ug+eo+)\zo+f(x)vo} dz,
0
1
U(t) :/ [R(v —logv — 1) + ey (0 — logf — 1)] du,
0
1 2 2
B puy KO oz
V(t)—/0 (1;0 +092+/\0)d
and

eo = cyl+ av09§, f(z) = Pe+ ;Gx(l — ).

Proof. See, e.g., [129, 130].
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(4.2.10)
(4.2.11)

(4.2.12)

(4.2.13)

O

Now we begin to derive higher-order estimates. To this end, we define

t 1
X :/ / (1+ 07702 dxds,
0 Jo

1
Y = max / (1+6%9)602dx,
te[0,T]

7 = max ||um|\
te[0,T7]

Then by Lemma 4.2.1 and standard interpolation techniques, we can derive

the following result.
Lemma 4.2.2. For any t € [0,T], we have

A<9|© < ¢+ oyl/(2at6)

max ||ug|? < C +CZ/?,
te[0,T]

lug| @ < €+ CZ%3,

where A = sup |6(s)||po-
0<s<t

Proof. See, e.g., [130].
Lemma 4.2.3. For (q,8) € E, we have
X+Y<C+CZ®+Cz%,

where 6o = & = 3p’ € (0,

1),(q —3)
3<qg<4, and50—3/4f07’2§ <3o0r4<gq.

(4.2.14)
(4.2.15)

(4.2.16)

(4.2.17)

3p/(2¢ +6) < 1 with 1 < p,p’ < +oo for
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Proof. Let

%
H(a:,t)_H(v,H)_/O d

Then it is easy to verify that

H, = Hou, + k(v, 9)9,57

(%

v

0.

Hmt = |:K :| + H’uu;ﬂ;ﬂ + vavmum + (FL) ’Uwet’
vy v

|H,| + [Hyo| < C6.

Multiplying (4.1.3) by H; and integrating the resulting equation over Q; =
(0,1) x (0,t), we obtain

t o1 2 t el
/ / <699t+9p9um—uum)th:vds+/ / K(U’H)OIHM dzds
o Jo v 0 Jo v
t el
:/ / Az H, dxzds. (4.2.18)
o Jo

Now let us estimate each term in (4.2.19) by using Lemmas 4.2.1 and 4.2.2.
We have first

torl epf2k(v, 0
/ / ot (0:9) fds > Ox, (4.2.19)
o Jo v

t 1
/ / o <K9w> dxds > CY — O, (4.2.20)
0 0 v v t

with kg = k1 + K2vo0¢, and for any € > 0,

t pl
‘ / / e H,u, drds
0 Jo

t 1
<X+ CENAO [ o7 [ (14 6)tdads
0 0

t 1
<eX + C(a)/ / (1+60)°" 942 dads
0 JO

<eX 4 Ce)(1 4 z%/4), (4.2.21)

t 1
/ / " 0 ot dxd.s) <eX 4+ 01+ 23/, (4.2.22)
o Jo Y

t el
/ / & 0, H,,v:u, drds
oJo V¥

t 1 t
// Opous " 0 drds §5X+C(a)|1+9q+5|<0>/ l|uz|? ds
o Jo v 0

<eY +C(e)(1 4 Z3/%), (4.2.23)
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<X +Y)+Ce),

t el
/ / Opou, Hyuy drds
0 Jo

<eY + C(e),

t
<L+ 67 [l s
0

ol t
/ / T Hyuy d:vds‘ < Clug|® max |ug|? max 6 ds
oJo U t€[0,T] o z€[0,1]
<C(1+ 2%,

t 1 t 1
/ / Aoz H,u, dzds| < C|Ou,|© / / ¢z dxds
0 JO 0 JO

<eY +C(e)(1 4 Z3/%).

The next estimate improves the one in [130]: for any € > 0,

t el
0z
‘// & (K)vvzﬁtd:zrds
oJo vV U

<ex e roe ([ 1m1a) ([ 100 )

Further, we can estimate

b KO
seX+00) | I, limllvallds + C(e)

1/2

t 0x t
/ IIKU [2ds < C(1+ A)™+? / Vi(s)ds
0 0
< C(1 4 Y02/ (2a+6))

1 k62
= [y bg% dx, and

(),

with Vi (t)

[

2 t
ds <C [ (leadul? + 16pova | + 2P + 6] ds
0
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(4.2.24)

(4.2.25)

(4.2.26)

(4.2.27)

(4.2.28)

(4.2.29)

t 1
< C/ / [(1 + 6562 + (14 6%)u? +ut + ze%} dds
0 0

t 1
§0(1+A)q1X+C/ |u§|<0>(1+||9|\m>4/ (14 60)* dzds
0 0

t t 1
+c/ |uz|(0)|\ux||2ds+C’A5/ / 2¢ dxds
0 0 JO

<CX +0yn/Citb x 4 04 0734 4 oy P/ (2a+6),

which, together with (4.2.30) and (4.2.31), implies that, for any € > 0,

t 1
0.
)// & (H)Uvthd:cds
oJo Vv v
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<eX +0E)1+ y(q/2+1>/<2q+6>){X1/2 Ly a/22a+6)] x1/2 4 q
4+ 73/8 4 yﬂ/(2q+6)}

<2X + C(€>{1 + Y(a/2+1+a1/2)/(24+6) x'1/2 | y(a/2+1)/(2¢+6) 73/8
4+ 73/8 4 y(ﬂ/2+q/2+l)/(2q+6)}

< 3eX +eY + C(e) + O(e) z3a+d)/2(a+ 1] (4.2.30)

if 2<gand 0<g<3q+10.
Moreover, by Lemmas 4.2.1 and 4.2.2, we easily deduce that, for any ¢ > 0,

t 1 t 1

6

‘/ / )\¢2I€ " dxds SEX—I—C(E)(l+Y)(qz+6)/(2q+6)/ / $22 dxds
0 Jo v 0 Jo

<e(X+Y)+C(e) (4.2.31)

for2<¢g<3and0< g <2g+60r3 <gand0 < 8 < ¢g+9 with g = max(g—3,0),
which is an improved estimate;

t 1 2 9 t 1
)/ / Hla B0 grds| < eX + C(s)/ / (14 0)7 Dt dads
oJo v U 0 Jo

t
<eX o C(a>|u§|<0>/ a2 ds
0
<eX +C(e)(1 4 2% (4.2.32)

for 2 < ¢ <3,

t 1 2
‘ / / i K6y dxds
0 0 v v

<eX +C(e) (1 1y (a=3)/(20+6) | y(a=3)/(2a+6) z3/4 Z3/4)

t
<eX +C()|(1 +9)q_3I(O)IU§I(O)/ [z |? ds
0

<e(X+Y)+C(e)1+ 2% (4.2.33)

for 3 < g <4withé = 3p' €(0,1), (g—3)p/(2¢+6) <Lpl4+p1=11<
p,p’ < +0o0;

t 1 2 0 t
[ dads| < e 4 €N+ 0Tl [ s s oy ds
oJo UV U 0
<eX +Ce) (1 + Y (a=3)/(24+6) | y(a=3)/(2¢+6) 73/8 | Z3/8>
<e(X 4+Y)+Ce)(1 + 234
for 4 < g, which, together with (4.2.34) and (4.2.35), gives, for any € > 0,

t ol 2
‘ / / ps, 1y dxds

<e(X +Y)+C(e)(1 + Z%). (4.2.34)
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Therefore it follows from (4.2.19)—(4.2.36) that
X4Y <Ce(X+Y)+Ce) (278 4 2%) (4.2.35)

which gives (4.2.18) by choosing £ > 0 small enough. O
Lemma 4.2.4. If (¢,8) € E, then for any t € [0, T, there holds that

t
||(UzauzzaUtaexaeacxvotazxvzzzazt)”2+/ H(uxtaextvzzt)||2ds S 07 (4236)
0

| | + |u] @ + 16| < C, (4.2.37)
O(z,t) > C 1 >0 forany (x,t) € Qr. (4.2.38)

Proof. Differentiating (4.1.2) with respect to ¢, multiplying the result by u;, and
then integrating with respect to x, we arrive at

1d L ! 2.
HUtH2+/ Wi dx:/ (ptum+“”;2“ t> dz. (4.2.39)
0 0

Noting that p, = (f/ + éa@s) 0; — Rﬁ;“ and using Lemmas 4.2.1-4.2.3, we deduce
from (4.2.41) that

t t 1
||m||2+/ |Uxt|2d8§0{1+/ / (P2 + ul] dzds}
0 0 JO

< 0{1 F(1+A)DX ¢ 23/4} < 0{1 X+ Xya/2ato) | Z3/4}, (4.2.40)

with ¢; = max(3 — ¢,0).
Noting that p, = (% + 3a6°)0, — v+ and using (4.1.2) and Lemma 4.2.3,
we conclude from (4.2.42) that, for any t € [0,T] and for (¢q,3) € E,

1 1
ol < {1+ [ 0002+ [0 a2y as
0 0

< C{1+ el + (1 + AP Y + (42 + [u2 )| }
< C{1+X+Xy2q1/(2q+6) +Z3/4+Y+yq1/(q+3)+1}
C

IN

{1 278 4 7z 4 (14 Z7/8 4 Zdoyn/(2a+6)+1
+(1+ 278+ Z‘SU)‘II/@”)“}

< {14 Z7@+a+3)/Ba+3)] 4 Z5U[Q1/(Q+3)+1]}

which, by the Young inequality, gives
zZ<C (4.2.41)
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if g >9/4 (ie., 7(q1 + ¢+ 3)/[8(¢+ 3)] <1, and do[q1/(q + 3) + 1] < 1 is satisfied
automatically). Hence from (4.2.37), we have

X+Y<C (4.2.42)

The other quantities in (4.2.38)—(4.2.40) can be estimated in the same way as in
[129, 130]. The Holder estimates can be also derived from the classical Schauder
estimates by using Lemmas 4.2.1-4.2.4. We omit here the details (see, e.g., [129]
for details). The proofs of Theorem 4.1.2 and Theorem 4.1.1 are complete. O

4.3 Bibliographic Comments

Radiation hydrodynamics [78, 95, 134] describes the propagation of thermal radi-
ation through a fluid or gas. Similarly to ordinary fluid mechanics, the equations
of motion are derived from conservation laws for macroscopic quantities. However,
when radiation is present, the classical “material” flow has to be coupled with
the radiation, which is an assembly of photons and needs a priori a relativistic
treatment (the photons are massless particles travelling at the speed of light).
The whole problem under consideration when the matter is in local thermody-
namical equilibrium is thus a coupling between standard hydrodynamics for the
matter and a radiative transfer equation for the photon distribution. Through a
suitable description, like in plasma when the radiation is in local thermodynam-
ical equilibrium with matter and velocities are not too large, a non-relativistic
one LTE temperature description is possible [78, 134]. Moreover, if the matter
is extremely radiatively opaque, so that the matter free-path of photons is much
smaller than the typical length of the flow, we obtain a simplified description (radi-
ation hydrodynamics in the diffusion limit), which amounts to solving a standard
hydrodynamical (compressible Navier-Stokes) system with additional correction
terms in the pressure, the internal energy and the thermal conduction. To describe
richer physical processes, for simplicity we may consider the fluid as reactive and
couple the dynamics with the first-order chemical kinetics of combustion type,
namely the first-order Arrhenius kinetics. Although it is simplified, this model
can be proved to describe correctly some astrophysical situations of interest, such
as stellar evolution or interstellar medium dynamics (see, e.g., [21]). In recent
years, the heat-conducting radiative viscous gas system has drawn attention of
mathematicians (see, e.g., [19, 21-30, 115, 118, 129, 130]). For the compressible
viscous and heat-conducting model in one space dimension, the global existence
and large-time behavior of smooth (strong, weak) solutions have been established
by many authors. Among them, Antontsev, Kazhikhov and Monakhov [1], Chen
[8], Kazhikhov and Shelukhin [63], Ducomet [21], and Ducomet and Zlotnik [29, 30]
studied one-dimensional gaseous models similar to ours, i.e., radiative and reactive
models with free boundary in an external force field. However, in a series of papers
[21, 29, 30], they adopted a special form of self-gravitation that does not depend
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on the time variable explicitly in Lagrangian mass coordinate system, not the ex-
act form (see (1.8) in [130]) these are called “pancakes model” and are relevant to
some large-scale structure of the universe (see, e.g., [118]). Qin [101] established
the global existence, exponential stability and the existence of global attractors for
a 1D viscous heat-conducting real gas. Moreover, we note that the global existence
of solutions to some initial-boundary value problem (4.1.1)—(4.1.4) without pure
free-boundary case (4.1.8), but with partially Dirichlet boundary conditions. For
q > 4,8 > 0, Ducomet [22] proved the global existence and exponential decay in
H*' of solutions to (4.1.1)—(4.1.4) with the boundary conditions

(u,@x,zx) |z:0,1: 0. (431)

However, there exists some defects in the proofs of the main results in [22]. Re-
cently, Qin et al. [105] corrected these defects and established the global existence
and exponential stability of solutions in H® (i = 1,2,4) to (4.1.1)—(4.1.4) with
boundary condition (4.1.15), which has improved the range of (g, ) considered
n [22]. For our problem, Umehara and Tani [129] proved the global solvability
of smooth solutions for 4 < ¢ < 16 and 0 < S < 13/2. Later on, they further
improved their results in [130] with the larger range of (¢, 8) € E2 compared with
that in [129)].



Chapter 5

The Cauchy Problem for a
1D Compressible Viscous
Micropolar Fluid Model

5.1 Main Results

In this chapter, we shall study the global existence and large-time behavior of
H'-global solutions (i = 1, 2, 4) to a kind of Navier-Stokes equations for a one-
dimensional compressible viscous heat-conducting micropolar fluid, which is as-
sumed to be thermodynamically perfect and polytropic. In Lagrangian coordi-
nates, the system studied her can be written as follows:

Nt = Vg, (5.1.1)
Ut = Oy,

wy = A <u7)71> — Anw, (5.1.3)
e = Ty + ovg + 77”” + nuw?, (5.1.4)

where (z,t) € R x Ry are the Lagrangian mass and time coordinates and

x Aex R9
o="" P x="""" Pwey="", em6) =0  (5.15)
n n n
denote stress, heat flux, pressure and internal energy, respectively.

We consider (5.1.1)—(5.1.5) subject to the initial condition

(n(z,0),v(z,0),w(x,0),0(x,0)) = (no(x), vo(x),wo(x),bp(x)), forall =xecR.
(5.1.6)
The unknown quantities 7, v, w, € denote the specific volume, the velocity,
the microrotation velocity and the absolute temperature, respectively. Finally,

© Springer Basel 2015 113
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R(x,t) is the heat conductivity; however, in this chapter, the heat conductivity is
simply assumed to be a positive constant x. Moreover, the total mass of the fluid
is taken equal to 1 in our article. The residual ones like v, R, etc., are also physical
constants, representing the viscosity and the Boltzmann constants, etc. and we
take v = 1 in this chapter.

In this chapter, we shall adopt the notation in Chapter 1.

Based on the method in [54] and [112], we can establish the global exis-
tence in H' (i = 1, 2, 4) and large-time behavior in H' (i = 1, 2, 4). Correspond-
ingly, C; (1 = 1, 2, 3, 4) denote universal constants depending on mingcg 1o(),
ming g Op(z), the HY(R) (i = 1, 2, 3, 4) norm of (ny — 1, vo, wo, 6p — 1) and the
number €y, which is defined in Theorem 5.1.1.

We now state our main results in this chapter.

Theorem 5.1.1. Assume that no — 1, vo, wo, 6p — 1 € H*(R) with no(x), Op(x) > 0
on R. Define

=l =13~ + [ 1+ a3 [(m(o) — 02+ of(a)
+wj(x) + (Bo(w) — 1) + vj () | da

with o > ! being an arbitrary but fized parameter. Then if eg < o where e € (0, 1],
the problem (5.1.1)~(5.1.6) has a unique H'-global solution (n(t), v(t), w(t), 6(t))
and the following inequalities hold:

0<C <77(tx)§C’1_ on Rx Ry,
0<Cyt <ot z) <C7' on RxRy,
() = Uz + llo@lF +100) = 1 + (w3
t
[ [l el 1007 + e P+ el el (5.19)
+ lJwaa |+ [vel® + 161 + [lwe|* | (s)ds < Ch.
Moreover, as t — +00,
ln =1, v, w, 8 —1)(@t)||re + | (N2, vz, W, 0)(#)|| — 0. (5.1.10)

Theorem 5.1.2. Assume that 19 — 1, vo, wo, 0o — 1 € H?(R) and no(x) > 0,
Oo(xz) > 0 on R, and that the other conditions of Theorem 5.1.1 hold. Then for
any t > 0, the Cauchy problem (5.1.1)~(5.1.6) has a unique H?-global solution
(n(t), v(t), w(t), 6(t)) and the following estimate holds:

() = Uz + 1n() = Uyroe + Im@OlFn + 0@ + lo@) Iy + o @)
+llw®) Iz + lw®)fe + w1 + 100) = Lze + 106 = 1~
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t

+ [16:(1)]12 +/O {Hmll?p el + el Frz + lvallFre + v llfe

+ loell7r + lwellFe + llwe e + llwellF + 16217

102 s+ 1000 ] (5)ds < Co. (5.1.11)
Moreover, as t — +00,

e @[z + (@)l 2o + [[ve@] + lwe ()] + [16:() ]| = 0, (5.1.12)
=1, v, w, 0 — 1))l = + || (e Vay e, 02) ()] 112 — 0. (5.1.13)

Theorem 5.1.3. Assume that ng — 1, vg, wo, 0o — 1 € H*R) and no(xr) > 0,

Oo(x) > 0 on R, and that the other conditions of Theorem 5.1.2 hold. Then for

any t > 0, the Cauchy problem (5.1.1)~(5.1.6) admits a unique H*-global solution

(n(t), v(t), w(t), 6(t)) and the following estimates hold:

() = 1l + In(t) = Ulys.oe + @)z + lnee O + @7 + (O Fys.
H oz + v + lwElFs + lw@)lvs.e + lwe )72 + llwe ()]
F1000) — 1B+ 100) — 1o + 100 + 100 < Coy  (5.1.14)

t
/0 [Hml\%s + 1nellFrs + ImeellFre + Imeeell® + a2 + lvallzrs + llvel|Fs
+ llollin + Nlvallfysce + lwallFa + lwellds + llweel 3+ lwell3ys.
+ 10l 12ra + 110611375 + [10e |22 + [|02]/Eys. | (8)ds < Cy. (5.1.15)

Moreover, as t — +o0,

12 Vs wa, 02) ()| s + lI0e ()] s + |7 () 2.0
+ vl a2 + los@llwree + lwe (@)l + [lwe(@)llwroe +116:(2)] 222

+ [16:(t) [l — 0, (5.1.16)
[meell 1 =+ |loee (O] + [lwee ()] + 102 (2|
+ (12, Vas Wa, B2)(t) 2o — 0. (5.1.17)

Corollary 5.1.1. The H*-global solution (n(t), v(t), w(t), 0(t)) obtained in Theorem
5.1.3 is actually classical one. Precisely, (n(t), v(t), w(t), (t)) € C32(R) and as
t — +oo:

12 (£), 02 (), wa (£), O2(E)l 2.1 + M (O] 2.1 + l(ve(t), we(t), Be(0))] .3
+ @l 3 — 0. (5.1.18)

Finally, we combine a result of Mujakovié¢ [82] together with our present
results to obtain a more general statement.
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We assume that there exist constants m, M € R, such that
m <mo(x) <M, m<0(zx) <M, z€eR, (5.1.19)

and also constants Iy, Is, I3, Iy, My € Ry, M; > 1, such that

1 1
[[vol|* + Hwo||2+R/(n0flogn0f1>dx
2 2A &

(5.1.20)
+/(90 — 10g90 — 1)d$ = Il,
R
L l|voz || + L llwoz || + |00z]|? | := I (5.1.21)
2 x A e e . ) b
1 Moz 2
+ [ o lognodz < I3, (5.1.22)
21 o R
sup Oo(x) < M, (5.1.23)
|#| <400
R I3
I, =2 1, L1+ M 5.1.24
4 max{zk,}1<+ 1+Il), ( )
I\ 12
Iy = < ;{4> : (5.1.25)
According to [82], we can find real numbers £ and £, £ < 0 < £ such that
0 3
/ \/e£—1—§d§=/ Vet —1—¢de = I, (5.1.26)
3 0

and u = exp&, u = exp. We combine our results with [82] as follows.

Theorem 5.1.4. Assume that g — 1, vo, wo, o — 1 € HY(R) (i =1,2,4).

Case I. Assume that ng > 0, 8y > 0 and ey < €y, where ey, €9 are as in Theorem
5.1.1.

Case I1. Assume that (5.1.22) is valid and the following conditions are satisfied:

~ 2
9 ku
Ii[Jvoe ||” < (24u> : (5.1.27)
fu\ 2
I Al|wo ||? 1.2
Al < (1) (5.1.28)

u 2

+ I Miu? 1—|—3AI1 u+u2 + I p < min R i R :
. R \u 2 124u) >\ 24u)

2
I R2M? 3M
2]1{48142M1[1 (Z) (8+9My) + 2RM I, + ' . ! <u + 1>
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( lMl Vs—1 10g5d5>2, (/01 Vs—1 10gsds>2 } (5.1.29)

Then in Case I and Case II, for i = 1, the estimates (5.1.7)—(5.1.10) hold; for
i = 2, the estimates (5.1.11)—~(5.1.13) hold and for i = 4, the estimates (5.1.14)—
(5.1.17) hold.

In fact, from o — 1, vg, wo, 6p — 1 € H(R) (i = 1,2,4) and no(z), 6o(z) > 0
we can derive (5.1.19) using the embedding of H*(R) into C'(R).

5.2 Global Existence and Asymptotic Behavior in H'(R)

In this section, we shall follow Jiang’s subtle idea in [54] to establish global H!
estimates for solutions (1, v, w, 6) to our system. In what follows C and C stand
for some generic constants (> 1) which might depend on physical constants such
as R, etc.

At first, we suppose that

[n(x,t) — 1| + ¢(¢)|0(z,t) — 1] < ;, (5.2.1)

for all (z,t) € R x Ry where ¢(t) = min{¢t, 1}.
Lemma 5.2.1. For all t > 0, there holds

1/ v?da + / 2dx+/(9—1og9—1)d:v+R/(n—log17—1)d:v

2 2
nw 0z
/ / ( 0 + R 7792> dzds = Ey, (5.2.2)
where

1 1
Ey = /’Ugdqu /w%da:Jr/(00flogt?o—l)d:rJrR/(??O*lOgno—l)dz.
2 Jr 24 Jr R R
(5.2.3)
Also, as |z] — 400 and t > 0,

O(z,t) =1, n(z,t)— 1. (5.2.4)

Moreover,

1/ 2d:17+2{4/ 2d:1:+/(9710g9—1)dz+R/(n—logn—1)d:z:
R R
2 2
nw 0z
//( 0 + R 02>dxd.9—E1
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< C/ {vz +w?+(n—1)*+ (0 - 1)2}(90, 1)dz, fort > 1, (5.2.5)
R
where,

E, = 1/v2(x,1)d:1:+ L /wQ(x,l)dqu/(Hflong1)(:1:,1)dx
2 Ju 24 [y

R

+R/R(77710g777 1)(x,1)dx. (5.2.6)

Proof. Estimate (5.2.2) can be borrowed directly from Lemma 3.1 of [82] and
(5.2.4) can be derived from (5.6.2)—(5.6.3). Similarly as for (5.2.2) and applying
the mean value theorem to the functions 6 —log 6, n — logn, we can immediately
get (5.2.5). The proof is complete. ]

Now let us estimate the L? norms of v, w, n — 1, § — 1 by using a weighted
1/2
L?mnorm given by || - [lw = (fR(l +2%)*| - |2dx) , which is basic for H!-global

estimates. Here we use the weight function ¢ (z) = (1 + 2?)* (a > }) known as a
weighted function.

Lemma 5.2.2. Under the assumptions of Theorem 5.1.1 except, for the moment,
the condition on eg, the following estimate holds, for any t > 0:

o1 + lln() = 117 + [[wl® + [l6() - 1]
+/ [II%(S)H2 + [lwa (8)* + lw(s)|I* + 102(5)|* | ds < Cej (5.2.7)
0

where eg < 1/(2C).

Proof. Multiplying (5.1.2) by 9 (x)v, integrating over R, and using integration by
parts we get

19 . RO
2 ot /Rwﬂdx N 7/11& 1;7 ($0)ads +/R < no 1) Wo)ade

= 74 1;71 (djzv‘i’djvx)dx‘i’é <1370 - 1) (1/)11) +'l/)vz)d:c'

Then, using |¢;| < C|¢| with (5.2.1) and the mean value theorem for the function
f(n,0) = RO/n— R, we arrive, after integrating over (0,t), ¢t € [0, 1] and employing
Young’s inequality, at the inequality

/R Yv*(z, t)dx + /O t /R Yoiduds

< Cek + C/ot/R [1/1((77 — 12+ 0>+ (0 —1)?)|dxds, Vte[0,1]. (5.2.8)
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Multiplying (5.1.1) by ¢ (x)(n — 1) and integrating in the same way, we can see
that

/ Y(n—1)*(z,t)dr < Ce%—i—C/t/ Y ((n—1)*+v*+ (0 — 1)) dads, Vt e [0,1].
R 0 Jr

(5.2.9)
Adding (5.2.9) to (5.2.8) gives
t
/ ¥ ((n—1)*+0%) (2, t)dx +/ / Yvidrds
R R
< Ced + C/ / ¥ (( 2+ 0%+ (0 — 1)°) dads, (5.2.10)
for all t € [0,1].
In the same way, we multiply (5.1.3) by ¥ (z)w to get
2
Ld /ww2da:+A/1/)nw2dx: —A/ d)w””dfo/ W g
2dr Jg R R 7N R 7N
whence
t
/ Yw?(z,t)dx +/ / ¥ (w? +w?) deds < Cej,  Vt € [0,1]. (5.2.11)
R 0 JR

Let us introduce h(t) = sup,c(o q Jp ¥(@)[v* + (0 — 1)*](z, s)dz. We derive
from (5.1.2) and (5.1.4) immediately that

2dt/¢ :rtda:+/1/)/% * duds
- / by (6 —1)dw+/R<1: - }379) vgp(0 — 1)dx
/ / ( +w >¢(9 — 1)dads, (5.2.12)

2 2 3 3

/wv d:v—i—/ 32y i :/ <3R9v YUp U0y n ROv 1%) iz,
4dt n R n n n

(5.2.13)

for all ¢ € [0,1]. Adding (5.2.12) to (5.2.13), integrating with respect to ¢ over
(0,t), and employing (5.2.1) and (5.2.11), we obtain

- 2 ’1}4 x X t 2 U2U2 ras
/Rzp((e 1)+ v*) (2, t)d +/0/R¢(61+ 2) dad
gceg+c/0 /R1/1[(9—1)4+(9—1)2v2] dxds
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t t t
+C/ /1/)U4d:cds+0/ /vgd:cdHc/ /1/)((97 1)% 4+ v?) dads
0 JR 0 JR 0 JR

t t
< Ce%—i—Ch(t)/ mﬂgx(@—l)z(-,s)ds—i—C/ /w((9—1)2+v4+v2) deds
0 0 R
t
§C’e%+0h3(t)+1/ /L/Jﬁid:cds
2 0 JR
t
+C/ /w((9—1)2+v4+v2)dxds, vt € [0,1]. (5.2.14)
0 R

To get (5.2.14) we have used the estimate

x

max (6 —1)? §max/ 2|0 — 1||0,|dx
R z€R

<c [ 1o 16l
R

and then employed Young’s inequality to the term Ch(t) f(f maxg (0 — 1)%ds and
the definition of h(t).
From (5.2.10)—(5.2.14), we find that for all ¢ € [0, 1]

/ V(=12 +(0—-1)%+0* + 0" +w?) (z,t)dz
R
t
+ / / Y (602 + 02 4+ v*02 + wi +w®) deds < Cleg + h*(1)). (5.2.15)
o Jr

With the definition of h(t), we derive that h(t) < C(ed + h3(t)) for t € [0,1].
Actually, we can assume 1 — Ch2(t) > 1/2 and get at once h(t) < 2Ce%, then
h(t) <egifeg < 1/(2C). As aresult, (5.2.15) can be improved under the condition
eo <1/(2C) to

/ ¥ ((n—=1%+(0— 1)+ v° + 0" +w?) (z,t)dz
R
t
+/ / V(02 + 02+ 0°0) + w2 +w®)dads < Ced, Vte[0,1. (5.2.16)
o Jr

Repeating what we have done when ¢ € [0,1] using (5.2.1), we can derive from
(5.2.16) and (5.2.5) that

t
/ (=1 + (0 —1)* + 0> + w?) (z,t)dx +/ / (02 4+ v2 + w2 + w?) duds
R o JR
< Ces, Vtel0,+00), (5.2.17)

provided that e < 1/(2C), i.e., (5.2.7). This completes the proof. O
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Next let us obtain a global H! estimate for (1, v, w, §). We define here

H(t) = sup {ln =1 + 6ol + 6wl + 6% lw]” + 616 |

[ 1t S ol 4 6l + ] ). 5219

Lemma 5.2.3. Under the assumptions of Lemma 5.2.2, we have the estimate
H(t) < eq, (5.2.19)
where eg < min{1/(2C), 1/(2¢)}, and ¢ > 1 depends on some physical constants.

Proof. Multiplying (5.1.2) by ¢?v;, and integrating over R x R, we arrive at

t t 2,2
/ /¢2vfdxds+/ / (gb vz) dxds
0 JR 0 JR n t
t 9 t L 9% - 2 t 2,3
:7/ / (R > ¢2vtd:cds+/ / 0P vzd:cdsf/ / YT duds.
o JR\ T /g 0 JR n o Jr 7

From the definition of ¢(t), we derive that |¢| < 1, |¢¢] < 1, and then utilizing
(5.2.1) and (5.2.15) and applying Young’s inequality, we obtain

t
¢2(t)/v3dx+/ /¢2vt2d:cds
R o Jr
t t 1
gCeg—i—C/ /¢2|vm|3d:vds+0)/ /¢2 [( )6‘} vtdxds’
0 JR o JRr n—1 z
t
gCeg—i—C/ /(b%id:vds
0o Jr
1 t 1
—|—‘—/ nt 9¢2vwd:t+/(1—n)90¢2v0wdx+/ /2(;5@( —1) Ov,
R 7 R 0 JR n
+¢? [(1 - 1) 9] vpdxds
n t
t t
gCeg—i—C/ /(b%idacds—l—C/ In — 1|¢|v|dx
0o Jr 0
t t 1
—|—C/ /¢|n—1|6‘|vw|dwd5 —I—C/ /¢2 [( —1> 9] Vg
0o JR 0 JR n ¢

t t 1
< Cek + C/ / p*v?deds + C/ / In — 1|¢p*0?dads + 2¢2 / v2d,
0o Jr 0o Jr R

dxds

i.e.

t t
¢2/v§dx+/ /¢2v§d:cdsgceg+c/ /¢4v§d:cds+H2(t), vt > 0.
R 0 JR 0 JR
(5.2.20)
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Actually the term fg Jg ¢*vidads in (5.2.20) can be estimated with (5.2.1),
(5.2.17), and by applying the interpolation inequality || - ||[L~ < C|| - ||z to the
function v, /n — RO/n+ R and the mean value theorem to the function Rf/n— R:

t t
/ /¢4v325d:cds§C/ ¢4maxvi/vidzds
o Jr 0 R R
¢ v 0 2
SCB%+C/ ¢4max< “—R +R> </v§d:z:>ds
0 R n n R
t
<cei+C [ otllo + RIE+ o Pl Pds
0

t
< Cej + C/O & (lvall* + lln = 1% + 116 = 11 + [[vel|*) v |*ds

< C(ed + HA(t)). (5.2.21)

Combining (5.2.20) and (5.2.21), we infer that

t
¢2(t)/ v2dx +/ / ¢*vidrds < C(eg + H?(t)), Vt>0. (5.2.22)
R 0 JR
Similarly, we can get from (5.1.3), upon multiplying (5.2.17) with ¢?w;, that

¢* () |wa (O] + ¢* () w (B[ +/0 ¢ (s)[[we(s)l*ds < Cleg + H*(1)), vt >0.

(5.2.23)
Also analogously, we infer from (5.1.4), upon multiplying with ¢*6;, that

4 2 i 8248
¢@wmm+ﬁnmn¢d

t 1 t
<Cel+C / / (¢*vE + ¢*|v.|02)dwds + / / ¢*07dxds + CH?(t)
0o Jr 2Jo Jr
t t
§C’e%+C’H2(t)+C/ gbgmaxvi/ﬁid:cder 1/ /¢49,52d:cds
0 R R 2Jo Jr

1 t
< Cel+ CH*(t) + 2/ /¢493dms, vt >0,
0 JR

i.e.

¢
¢t ()10 (1)1 +/ 16:(s)[1*¢ds < Cef + CH?(2), (5.2.24)
0
for allt > 0.
Now let us estimate 7 — 1. Rewrite (5.1.2) using (5.1.1) as

(logn),, = ve + R (2 - 1) . (5.2.25)
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Integrating (5.2.25) over (—oo,z) x (0,t) (Vt € [0,1]), taking the absolute value
and using (5.2.1), (5.2.16)—(5.2.17) and the weight o > 1/2, we obtain

x

911 < Cllogal < Cly -1/ +.C [

— 00

t
(M+ﬁMMy+o/un7u+w7umS
0

t t
sc%+ow%ww*n+q/mfu@+c/Ww7wm@
0 0

1
t t 2
§CBO+C’/ |771|ds+0</ |91|§{1ds>
0 0

t
< Cey + C’/ |n —1lds, ¥t e[0,1]. (5.2.26)
0

Applying the Gronwall inequality to (5.2.26), we get
[n(x,t) — 1| < Cey, z€R, te]0,1]. (5.2.27)

For t > 1, we denote F := (v,/n) — R(n/0) + R. Obviously, [1/n — 1]; +
(R9/n)-[1/n—1] = —=F/n— R(#—1)/n. Multiplying this equality by 1/n—1, using
(5.2.1), (5.1.2), (5.2.15) and the interpolation inequality, we obtain

1 2 1 2
{ q +C*[ q < CUIF 2 + 16— 1))
n + n

< C(IFllzp + 110 = 1ll7p)
S Ceg + C”(v17 vta 91)”25 Vt 2 17

which, combined with (5.2.17) and (5.2.22), yields for x € R, t > 1,

t
In(z,t) —1)? < 06(2)+C|77($,t) —12 —l—C/ | (Ve ve, 02)(8)||Pds < C(eg + H()).
1

(5.2.28)
Combining the definition of H(t), (5.2.22)—(5.2.24), (5.2.27) and (5.2.28), we ob-
tain H(t) < ¢led + H?(t)] for t € [0,+00), where ¢ > 1 depends on C and
other systematic constants. Hence similar to the estimate for h(t), we still as-
sume H(t) so small that 1 — ¢H(¢) > 1/2, and then H(t) < 2éed < eg provided
that eg < min{1/2C, 1/2¢}. The proof is complete. O

Proof of Theorem 5.1.1. From Lemmas 5.2.2 and 5.2.3, we immediately derive
that

In(z,t) — 1] + ¢(1)[0(x, ) — 1] < AV2(t) + C||6 — 1]|*/?(|6,]|/?
< AY2(t) + Ceg AYA(t) (5.2.29)

. 1
< V26 (1—1—0\/60) <y zER t>0.
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Actually, we assume that e; is small enough to assure that 1 + C'\/eo < 4/3, and
then e < 1/(4v/2). So we set eg < min{1/(6v&), 1/(3C)?, 1/(2¢), 1/(20)} := e,
with the hypothesis discussed in Lemmas 5.2.2 and 5.2.3.

We can see thus that |n— 1|+ ¢(¢)]6 — 1| can be smaller than in the hypothesis
(5.2.1). As a result, we find

t
HWJMWHMW+MMWW&W+A(MW+ww+wwwws%scL

(5.2.30)
Also from (5.2.29) with arguments similar to those used in [112], we can
get (5.1.10) and (5.1.11). Under the assumption (n — 1, v, w, § — 1) € H*(R), we

rewrite (5.2.25) again as
TN Ro
—ut (5.2.31)
U n
multiply it by 7, /7, and integrate over R x [0, t] to get, using (5.1.11), the estimate

t 1t t

||77;E||2+/ /9775dwd5§01+2/ /Hnid:vds—i—C/ (Hvt||2—|—||9w||2)ds§01.
o Jr o Jr 0

(5.2.32)

From (5.1.11), it follows that

Hme+Au%@sta. (5.2.33)

Upon rewriting (5.1.2) as

Vow _ Vol _ ROz ROM

Ve =
n n? n n?

we infer that
sl < Gy (feel® + a3 + 16112 + Inel1?),

and conclude immediately from (5.1.11), Lemmas 5.2.2-5.2.3 and the interpolation
inequalities that

t
/ lvaa ()l7ds < C1, - [lvze]l < Cillue]l + Ci.
0
Similarly, we get

t
[ (oael? £ 102017 s < €3,

[wae|l < Crlfwe]| + Ch,
[02z]l < C1|0:]] + Ch. (5.2.34)
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Combining with (5.2.30), (5.1.10) and (5.1.11), we complete the proof of (5.1.12)
of Theorem 5.1.1.

By integrating by parts, we can conclude further that

1d
2dt/Rv§da::/szvztdz, (5.2.35)
1d/ 24 / d (5.2.36)
widr = [ wywyidz, 2.
2dt Jp ° & ¢
1d [,
Oidx = [ 0,0,dx, (5.2.37)

and then using (5.1.1) and (5.1.12) we get

/;OO ‘;zlzs(”(”w’ Vgy W, HI)II)(S)‘ds <Oy, (5.2.38)

Combining this with (5.2.35)—(5.2.38), we can immediately derive that
| (Mas Ve Was 02) ()] = 0, ast — +o0. (5.2.39)
Finally, employing the interpolation inequality, we can also see that
[(n—1, v, w, 0 —1)(t)|]|pee — 0, ast — +oo. (5.2.40)

This ends the proof of Theorem 5.1.1. |

5.3 Global Existence and Asymptotic Behavior in H?(R)

In this section, we shall complete the proof of Theorem 5.1.2. We begin with the
following lemma on the estimates in H!(R) obtained just now.

Lemma 5.3.1. Under the assumptions of Theorem 5.1.1, the H*-generalized global
solution (n(t), v(t), w(t), 6(t)) to the Cauchy problem (5.1.1)~(5.1.6) wverifying
(5.1.7)=(5.1.9) obeys for any t > 0 the bounds

In®) = 13 + N3 + lw®) + 102) = U3 + e(t))?
t
b (el + s+ 1021+ il + ol + el + 61]2) (5)ds
0

< Oy, (5.3.1)
() = 1[Zoe + l0®)I7 + [w@)[7~ + [16(t) — 8] 7

t
+ / (mell3es + oallF e + leall e + 100]13 ) (s)ds < Cr. (5.3.2)
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Proof. Estimate (5.3.1) is just (5.1.9). Next, by Theorem 5.1.1, we get
[o@ = < Cllo@lar,  [w®)]ze < Cllw@)]ar,
10(8) = [z < CO() = 1|1, (5.3.3)
[oz(®)llee < Clloz @)y 102l < Cll02(8)] a1 (5.3.4)
Moreover, (5.1.1) yields

()l = o (®) (5.3.5)
Thus estimate (5.3.2) follows from (5.3.1) and (5.3.3)—(5.3.5). The proof is com-
plete. O

Lemma 5.3.2. Under the assumptions of Theorem 5.1.2, the following estimates
hold for any t > 0:

t
10O + lloe (@)1 + [lwe (B)]” +/O (lvaell® + lwaell® + 162]|*)(s)ds < Ca,

(5.3.6)
[0z (D170 + [[ea @I + [we ()2 + [wea I + [62(E)[ 20 + [622()]* < Co,
(5.3.7)
[0 32 + lw®)F= + 10() = UFz + @) F < Co. (5.3.8)

Proof. Differentiating (5.1.2) with respect to ¢, then multiplying the resulting
equation by v; in L?(R) and using Lemma 5.3.1, we get

d

@2 + O o (0]

IN

1 2 2 2
a0, V=l + Co(lva ()P [[vaa ()] + 10 )17 + [[v2()]1*)

IN

1
20, ozt ()17 + Callua (N7 + [10: (D)% + [vea (£)]1?) (5.3.9)
whence

t
[Joe(8)]|? +/ [0zt (s)[|?ds < Ca + 01/ (lvall® + 10:01 + lvazl*) (s)ds < Ca.
0

t
0
(5.3.10)
Hence, by (5.1.2), Lemma 5.3.1, the interpolation inequalities and Young’s in-
equality, we have

lvae (D] < Crlllve @) + [loa Ol + llua (O]l + oz @1 [[vza ()11
1

< g lvze @I+ Cr(llve (@] + llva ()] + ua()1])

which, combined with (5.3.10), (5.3.1) and (5.3.2), leads to

[0z @] < Crlllo @O + [0 + [ua (D)) < Cay VE> 0, (5.3.11)
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lvz() |70 < Ctl|ve(®)||||vez ()] < Oz, ¥t > 0. (5.3.12)
Similarly, we derive from (5.1.3) that

d _ _
) + O e O + 5 e ()]

< 2é1 (lwae )1 + we (B)I?) + Calllva ()1 + [vaa(t)]1?) (5.3.13)

which, combined with Lemma 5.3.1, gives
t
e ()] +/ ([wael” + lwel*)(s)ds < Ca, ¥ > 0. (5.3.14)
0

Next, from (5.1.3), the interpolation inequalities and Young’s inequality it follows
that

e ()] < Cr (el + Neo®)ll + e O 1 D) + ) e (D]

whence

lwaw(t)] < Co, ¥t >0, (5.3.15)
lwe ()1 < Crllws(O)|[waa(®)] < Ca,  VE> 0. (5.3.16)

Similarly, from (5.1.4) and (5.3.12) it follows that
T 16.0)2 + O a0
SR + 02000

1
<90, 162¢(0)1I* + Ca([162 (D)1 + vz (O] + 101 + v ()]

+ [z ()1 200 10117 + 1w ()12 lwa (01 + [w()[[ 2o ()]
+ [Jwze (0)]12), (5.3.17)

which, combined with Lemma 5.3.1, gives
t
ICAGIE —|—/ 02¢(s)||?ds < Co, V¥t > 0. (5.3.18)
0

Similarly to (5.3.11), equation (5.1.4), Lemma 5.3.1, (5.3.16) and the interpolation
inequalities yield

1022 ()] < Ch (H9t(f)l\ + 1102121020 (12l (B)] + 0w (NP2 022 (£)]1/2
+ [[va (Ol + llwa (D12 [[wee (8)]) 2 e @)1 + [lwae (D] + [[w(t)]

0@ e ()1 e ()] )
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< CL (1001 + 1801 + l0a(®)] + 02 D]
@+ el + e ®]) + 5 e )]

whence

1022 ()| < CoL([0: ()] + 102N + lva (O] + l[vaz (O] + [[w(®)]]
+ lwe ()| + Jwez (B)]]) < Co, (5.3.19)
10:(D)I7~ < Cill02(®)[1822(t)]] < Ca. (5.3.20)
Thus estimates (5.3.6)—(5.3.8) follow from (5.1.1), (5.3.10)—(5.3.12), (5.3.14)—
(5.3.16), (5.3.18)—(5.3.20) and Lemma 3.5.1. The proof is complete. O

Lemma 5.3.3. Under the assumptions of Theorem 5.1.2, the following estimates
hold for any t > 0:

t
1752 (B + [l (8|7 +/0 (Ineall® + Iz lZ ) (s)ds < Ca, (5.3.21)

t
/O ([omeall? + [wae 2 + [fans]2) (s)ds < Co. (5.3.22)

Proof. Differentiating (5.1.2) with respect to z and using equation (5.1.1), we get

0 {( Nex RO ROy 2042me — 2ROm, (2RO — 2uv,)n?
(1) e T, e st

— 3.2
ot \ n ' n? 7 (5.3.23)

Next, multiplying (5.3.23) by 74,/n in L?(R), and using Lemmas 5.3.1-5.3.2, we
deduce that

d

Nz _
™ O + O a0 (5.3.21)

< 2(171 1122 (D11 + Co (10 (I + 112 (O + [vza O + 16aa (O + v ()]*)

which, together with Lemma 5.3.2, implies that for any ¢ > 0,

t
ea (D)2 + / 1aa(s)[|2ds < Co, (5.3.25)
el < Cline ()| Ines ()] < Cos (5.3.26)
t t
/0 1e(8)]3eds < C / (UInell? + nee2) ()ds < Co. (5.3.27)

Differentiating (5.1.2), (5.1.3) and (5.1.4) with respect to # and using Lemmas
5.3.1-5.3.2 and (5.3.26), we deduce that for any ¢ > 0,

[vaza (O] < Co (o + [[ve (O]l + [[vza (O] + 122 Ol + 02 (@] + 022 (®)]]
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+ 10O+ l[ne (D11, (5.3.28)
[wewa ()] < 02(Hwtx|| + [ wae | + 122l + ”wa)v
[10z2e(®)]| < C2([10:@)]] + 110t )] + |0z ()] + [t ()] + [[vae ()] + [|02(2)]]

+ [ () || + [Jwz (2)]]).- (5.3.29)
Thus estimates (5.3.21)—(5.3.22) follow from (5.3.25)—(5.3.29) and Lemmas 5.3.1-
5.3.2. 0

Lemma 5.3.4. Under the assumptions of Theorem 5.1.2, the H?-generalized global
solution (n(t), v(t), w(t), 0(t)) obtained in Lemmas 5.3.1-5.3.3 to the Cauchy
problem (5.1.1)~(5.1.6) satisfies the estimates (5.1.12)—(5.1.13).

Proof. We start from Lemma 5.3.1 and repeat the same reasoning as in the de-
rivation of (5.3.9), (5.3.11)—(5.3.12), (5.3.13), (5.3.15)—(5.3.16), (5.3.17), (5.3.19)—
(5.3.20), (5.3.24) and (5.3.26)—(5.3.27) in Lemmas 5.3.2-5.3.3 to obtain

jtl\vt(t)ll2 +20) oI < Callloa @O + [vaa (DI + 10:(1)[1%),  (5.3.30)

il\wt(t)IIZ + (2C1) T Hlwea (O] + (2C1) ™ we (B < Calllwa ()] + [lw(®)[I),
(5.3.31)

thot(sz +2C) T 0P < Calllva @I + 10O + 101 + l[vea ()]

+ lwe ()1 + wea (D)% + [Jwa (£)]1%), (5.3.32)
jt ‘ n;z @) + QO e O < Co(l0: (O + 1m0 + [vaa ()]

+ 1020 (O + llow (O1?), (5.3.33)
[0z (O < Cr(lloe@®)] + [loa(®)] + luz()]]) < Ca, (5.3.34)
[waa ()] < Crllwe (@) + [w®)]| + [wa ()]]) < Co, (5.3.35)
10221 < C1lBe@)] + 10O + [va O] + [[vaa(®)]]) < Co, (5.3.36)

[0 ()17 < Cllow @) vea®)]] < Coy [lwe ()70 < Cllwe (t)][[[wee ()] < Co,
(5.3.37)
162 ()20 < Cll02()[[[1622 ()] < Co, (5.3.38)
112 ()17 < Cline (®)[l|722 (8[| < Co (5.3.39)

Applying Lemma 5.3.4 to (5.3.30)—(5.3.33) and using Lemmas 5.3.1-5.3.3, we ob-
tain that, as t — 400,

oI =0, Nwe(®)| =0, N0:(B)| =0, [In2a(B)l] =0 (5.3.40)
which, together with (5.1.1), (5.1.7) and (5.3.34)—(5.3.39), implies that as t — 400,
1022 ()| + [[wae O + (|02 ()] + (17 (E) | 2 = O, (5.3.41)
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e ()| oo + [ (1 (8), w2 (2), we(E), O (t))[[ e = 0. (5.3.42)
Thus (5.1.12)—(5.1.13) follows from (5.1.1) and (5.3.40)—(5.3.42). The proof is com-
plete. O

Proof of Theorem 5.1.2. The theorem is an immediate consequence of Lemmas
5.3.1-5.3.4 and Lemma 5.3.5. O

5.4 Global Existence and Asymptotic Behavior in H*(R)

In this section, we derive estimates in H*(R) and complete the proof of Theorem
5.1.3. The following several lemmas concern the estimates in H*(R).

Lemma 5.4.1. Under the assumptions of Theorem 5.1.3, the following estimates
hold for any t > 0:

[0tz (2, 0) || + llwea (@, 0)[| + [|622 (2, 0)]] < Cs, (5.4.1)
[oee (2, 0)|| + (|02 (2, 0)| + [lwee (=, O)
+ [[vtaa (2, 0)[| + [[weaa (2, 0)|| + [|0tzz (2, 0)|| < C4, (5.4.2)
t t
o+ [ oss)ds < Ca+ Ca [ 6raats) s, (5.4.3)
0 0
t
[[wee (£)]12 +/ (lwera||* + [Jwee ) (s)ds < Cu, (5.4.4)
0

t
0
+ lwae || [ weae ) (s)ds. (5.4.5)

t
100 + [ 105 < Cat Ca [ (1010l + o

Here C3 > 0 is a constant depending on C1, Cy and the H® norm of the initial
data (no(x), vo(x), wo(x), fo(z)).

Proof. We easily infer from (5.1.2) and Lemmas 5.3.1-5.3.3 that
lo: (DI < Collvz @)zt + l[n2@O + 16=()])- (5.4.6)

Differentiating (5.1.2) with respect to z and using Lemmas 5.3.1-5.3.2, we have

[vea ()] < Co2(lvaO + [vwa @O + 162l 2 + 72O |72 (5.4.7)
and

10222 ()] < Co[lva O + 12Ol a1 + 102l 1 + [0t @)]])- (5.4.8)

Next, differentiating (5.1.2) with respect to z twice and using Lemmas 5.3.1-5.3.3
and the interpolation inequalities, we have

[0tz (O] < Colllne ()l g2 + llve ()]s + [102(8)]|a2) (5.4.9)
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[02zaa (D] < Collne ()l 2 + [ve (@)l a2 + 1020 52 + [[vra@)]).  (5.4.10)

In the same manner, we deduce from (5.1.3) and (5.1.4) that

lwe ()] < Collne (O + lw(t)] =), (5.4.11)
[wea @) < Co(lIn2 (@)l + [Jwe (8)] 72), (5.4.12)
10:()]| < Co(|0z(O)l rr + v + (O] + Nlw(E)] 2r2), (5.4.13)
[0tz (0| < Co(l102 ()2 + lve (@)l + [Mea (O] + lwe ()] m1) (5.4.14)
[weae (O] < Co(llwea @) + [0 () g + [lwe ()] ), (5.4.15)

[0aza (Bl < Co(l0z()l|m + el + 02O + 10 (O] + lwe ()] m1)
(5.4.16)

and

[weaa ()] < Collwaaaa (N + 112 ()] 2 + lwa (8] 12), (5.4.17)
[0tz (D) < Colllne ()l 2 + lva ()2 + 16| s + [[wa (8)] £r2) (5.4.18)

[wazaa ()] < Colllwraa O + 0Ol 52 + w52 + we (D)l 52),  (5.4.19)

[0zzza (] < Co(ne®)ll = + ve@®)ll 2 + 102 a2 + 10tz O] + 1w ()] m2)-
(5.4.20)

Now differentiating (5.1.2) with respect to ¢, and using Lemmas 5.3.1-5.3.3 and
(5.1.1), we have

lvee )] < Co (102 + Ina (O + [[vza ()] + Ve (©)] 2
+ 162 )] + 110:(8) || + |we (¢) || 1r2) (5.4.21)

which, together with (5.4.7), (5.4.9) and (5.4.12), implies
o (DI < Co(10= O 22 + [[02(O) s + 02Ol 52 + w2 () ]|52). (5-4.22)
Analogously, we derive from (5.1.3), (5.1.4) and Lemmas 5.3.1-5.3.3 that

[wit ()] < Collwiae (D] + [wae ()] + waz @) + wa ()] + [[v2z (D)

+ =@ + [loz ()], (5.4.23)
162 ()] < Co(10: ()] + 102D + 122 ()| 111 + [|0ra ()] + [[02 ()]
+ var (I + lwa (8)[|2) (5.4.24)

which, combined with (5.4.11)—(5.4.14), (5.4.17), (5.4.18) and (5.4.7), gives

[wit ()] < Collwe (@)l a3 + va (Ol + [[72]]), (5.4.25)
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100 < Co([102 ()| s + va (D)l 2 + 2]l 72 + [[wa (8)] 222)- (5.4.26)

Thus estimates (5.4.1)—(5.4.2) follow from (5.4.7), (5.4.9), (5.4.12), (5.4.14),
(5.4.17), (5.4.18), (5.4.22), (5.4.25) and (5.4.26).

Further, differentiating (5.1.2) with respect to ¢ twice, multiplying the re-
sulting equation by vy in L*(R), and using (5.1.1) and Lemmas 5.3.1-5.3.3, we
deduce that

1d v
||’Utt(t)||2 = — / attvtmda@ — / ttx d(E
2dt R R 7

+ Col|vita ()| ([[62: (D] + lvea (O] + 110 (O] + vz @)1])
— 2C1) Hlvua ()]
+ Ca(l0ee ()1 + o (D1 + 10:0)]1* + [lva (D))

IN

which, along with (5.4.24), implies

d _
g 1@+ CMvae 017 < Coll0a (DI + 11022 O + 100 (01 + [[va ()17
+ v (B + 10:O17 + lIma (£)]])- (5.4.27)

Thus estimate (5.4.3) follows from Lemmas 5.3.1-5.3.3, (5.4.2) and (5.4.27).
Analogously, we obtain from (5.1.3) that

1d

2
||wtt(t)|\2 = —A/ Witz dx — A/ wftndx - A/(wtvxwtt + W wy )d,
2dt R 7 R R

(5.4.28)
which, integrated over (0,t), t > 0, implies

t t
lwa(@®)]? + C; ! / e (8)]2ds + CF ! / i (5)2ds

t t
<Ca+ 207" [ wuo)lPds +C1 [ (Il + o)) ds.
0 0

Hence .
@I + [ (lwraa P+ ) ()ds < Ca (5.4.29)
0

which gives (5.4.4). In the same way, we obtain from (5.1.4)

1d

9 dt||9tt(t)||2 < - /R9t2mdl’ + C2||0ct () | (10 (D) + vea (O] + [Jvz()]|
+ C2 |0 () | (loee ] + loe () || |vea ()| Lo + [[veea (E)]])
+ Co(|0s]|® + Nlweea I” + lwael| T + [lwee?

+ [[wie|* + [[vat]|?) + Ca. (5.4.30)
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By Lemmas 5.3.1-5.3.3 and the interpolation inequality, we derive

ot (Ol < Co(llvea () + [[0:@) | + [Jvz (@)1, (5.4.31)

low®) < Col[vaa O + [0 + lvia @O + [0 + [lva@)1]),  (5.4.32)

[0 (D20 < Cllvea ()| veaa (O], (5.4.33)
and

[wea () 1s < llweee ()| [[wes (8)]1*. (5.4.34)

By virtue of (5.4.31)—(5.4.34), we infer from (5.4.30) that

d _
18I + Cr s (1)

< Co+ Co[10a O + llva (1 + o O + 1001 + [veea (8] + 10 ()[1)
+ Coll0s ()| (lvea (O + 10 (O] + vz O (lvea (] + [[vtz2])
+ Collweel* + l[wea|* + vt l® + [lwae |l wees ), (5.4.35)

which, together with (5.4.2)—(5.4.3), (5.4.24) and Lemmas 5.3.1-5.3.3, yields

t
nm4m2+crﬂénmm@m%s

t
<Cot Cy [ (10ul? + el ) 5)ds
0
! 1/2
+ Oy [/0 (10212 (Jvew]|® + 1|10c]1* + |Um|2)(s)ds)]

1/2

| [ ol + e 615
#0 [ o) a5

1+([wmwwwfﬂ

t
sa+@/n%wWw+@mmwmw
0 0<s<t

t
+@/mm@wwm@ws
0

1 t
<, suwp [[0u(s)|* + Ca+ 04/ (lvtaell* + [0tz ) (s)ds
0<s<t 0

t
+Ca [ wars)|Pwrsas) s (5.4.36)
0

Hence, taking the supremum on the right-hand side of (5.4.36) gives the required
estimate (5.4.5). The proof is complete. O
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Lemma 5.4.2. Under the assumptions of Theorem 5.1.3, the following estimates
hold for any t > 0:

IO+ [ Toeaa(o)ds < 5, (5437

lJwea (8)]|* + /Ot(|w,gm|2 + Jwez |*) (5)ds < Cs, (5.4.38)

0O + [ 10l s < €, (5.4.30)

0+ lo17 + [ (sl + 10l 51 < (5.4.40)

Proof. Differentiating (5.1.2) with respect to = and ¢, multiplying the resulting
equation by vy, in L?(R), and integrating by parts, we deduce that

1d

’1}2
g gl O < = [ 52 ot ol 1000 0] + 0] + 048]
+ ora Ol + 1020 + 12 (6)])
— (200 orae (2 + CallBra () + o ()] + 6:(0)

+ [lvae ()17 + 1021 + [l (£)]1%) (5.4.41)

IN

which, combined with Lemmas 5.3.1-5.3.3 and (5.4.2), gives estimate (5.4.37).
In the same way, we infer from (5.1.3) that

2
1
[wea (81> < — 01_1/ Ve g Cfl/nwfmder [weae (B)]1* (5.4.42)
R 7N R 2C,
+ Co|[wan ()7 + [ (0)1* + [[wa (B[ + Ve (D)1 + [we(®)]?),

which leads to (5.4.38).
Analogously, from (5.1.4) and (5.4.38) we obtain

1d

1 HQM
2dt||9m(t)|\2 < - / 2% g + Co |01 (8) | (102 (0| + 11022 ()| + [ ()
R 7

Cy
+vaa (W)I1) + C2ll0ta (0| (I[wae () wea (B)] + weza ()] + [[wia (t)]]
+llwe @) + wee (O]l + lwe (Ol Za ey + lwe @l + l[vza]l)
< = 2C) MOeaa(O* + C2 (02O + 1020 (D)* + [[vaa ()]
+ O + [wezall® + llwea|® + [|wl|?) (5.4.43)
which, combined with Lemmas 5.3.1-5.3.3 and (5.4.38), implies estimate (5.4.39).

Inserting (5.4.37)—(5.4.39) into (5.4.3) and (5.4.5) yields estimate (5.4.40). The
proof is now complete. g
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Lemma 5.4.3. Under the assumptions of Theorem 5.1.3, the following estimates
hold for any t > 0:

t
”nmmm(t)”%ﬂ + ”nmw(t)HIz/Vlvoo +/0 (”nmmw”%ﬂ + HnmmHIz/VleO)(S)dS < Cy, (5‘4'44)

”vzzz(t)H%{l + ”vzz(tml%vl,w + ”wxm(t)”%{l + szz(t)HIz/Vl’w + ”9%96(15)”%{1
+ HHM(t)”‘Q/VLOO + H77tmw(t)||2 + Hvtww(t)H2 + ”wtww(t)H2 + ||9tm(t)|‘2

t
+/ (lveell® + llweel* + 101 + [vza [z + [waallfy2.co + 100z llfy2.
0

+ ||vtxoc||§11 + Hwtxx”%ﬂ + Hotmniﬂ + ||9tzH%/Vl’°° + ||wtz||12/vl)°°
+ [[veallfyr0e + MtaaallFn) (s)ds < Cu, (5.4.45)

t
/0 (”UMMH?{I + memm{l + Hewmw”%ﬂ)('s)ds < Cy. (5.4.46)

Proof. Differentiating (5.3.23) with respect to z and using (5.1.1) we arrive at

— Ey(x.t 5.4.47
o (") e — e (5.4.47)
with
Vezale FNeaVer  2NaNeaVe | O2Nze  2RONNa
E1($,t):|: ?72 - ?73 :|— 772 + ?73 +Utmm+Em(xat)
ROyy  2pvpane —2RO.ms  2RON? — 2u,m>
Blat)= . L2 77?72 e, mg?73 Mo

An easy calculation based on Lemmas 5.3.1-5.3.3 and Lemmas 5.4.1-5.4.2 gives

IEx()I < Collne ()l g + l[ve (Ol 2 + 02Ol 2 + [vew(®)llgr)  (5.4.48)

and

t
/ |1 E1(s)||%ds < Cu. (5.4.49)
0

Now multiplying (5.4.47) by zzs/n in L?(R), we derive

2
< B ) (5.4.50)

2
| ot

d
dt

Nexax
(t)
n

which, combined with (5.4.49) and Lemmas 5.3.1-5.3.3 and Lemmas 5.4.1-5.4.2,
yields, for ¢t > 0,

t
||77mx(t>|‘2 JF/O ||77mx(5>”2d5 < Cy. (5.4.51)
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In view of (5.4.8), (5.4.10), (5.4.16), (5.4.20) and Lemmas 5.3.1-5.3.3 and Lemmas
5.4.1-5.4.2, we get that, for any ¢ > 0,

||vzzz(t>”2 + ||wxrx(t)||2 + Hozzz(t)HQ
+meMpH%m%H%M%WWS@, (5.4.52)
[vz0 (|70 + [wea (@)1 2 + 102012
b el + e e + 10l )Mlo <0 (5459
Differentiating (5.1.2) with respect to ¢, we infer that for any ¢ > 0,

lotae ()] < Cllowe Il + Colllma ()]l + lloaall + [vea(8)] + 160
+8:8)]) + 18 (1)) < Cu, (5.4.54)

which, together with (5.4.10), gives
[Vzzaa (81 + /Ot(llvtmll2 + [[veaaal®) (s)ds < Ci. (5.4.55)
Similarly, (5.4.17)—(5.4.20) and (5.4.52)—(5.4.53) yield
[wesa (O + l[wosas ()] + /Ot(llwtmll2 + [ wewzal®)(s)ds < Cay (5.4.56)

t
Hetww(t)”2 + Heﬂcmw(t)”2 +/0 (Hetww”2 + ||9mm||2)(5)d5 < Cy, (5.4.57)

which, combined with (5.4.52) and (5.4.55)—(5.4.56), implies
||vzzz(t)||%°° + ”wxM(t)”%oo + ||9mcx(t)||%°°

t
+/0 (”Umw”%m + waMH%OO + Hemaﬂ”%m)(s)ds < Cy. (5.4.58)

Differentiating (5.4.47) with respect to x, we see that

=F t 5.4.59
o () T e (5.4.50)
with

Bo(x,t) = " ?72’7 _ ?73’7 n 7?77377 - UZ + Eip(z,t).

Using Lemmas 5.3.1-5.3.3 and Lemmas 5.4.1-5.4.2, we can deduce that

[Eza(®)|] < Call02(O)ll s + [0 () ]| 22 + ve ()]l 222), (5.4.60)
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[Ew®)] < Callva@lgs + 102 52 + v (@l 52 + 1020l m3),  (5.4.61)
1E2 (DI < Calllva@)llas + 10Ol a2 + [[vi (@)l a2 + (102 ][ 5).  (5:4.62)

On the other hand, differentiating (5.1.2) with respect to ¢t and x, we infer

[vtzze (D] < Crl[vrea O + Co(llvaallmr + 102 + 72 ()] a1
10t @Ol + 10O + [[ve (E) ]| a0)- (5.4.63)

Similarly, we have

[wWizza (B < Cullwite (DI + Colwee (D)l 1 + lwa |

+ 1ozl =+ 12 ()l ), (5.4.64)
61222 ()] < CollOsa (W) + Co(llne O + [[vae [l + 110222 + (|02 ()] 111
10O+ Nvea (Ol + weellar + wall 7). (5.4.65)

Thus it follows from Lemmas 5.3.1-5.3.3, Lemmas 5.4.1-5.4.2 and (5.4.63)—(5.4.65)
that

/ (ltmae |2 + l[trmas |2 + [Brmme|2)(s)ds < Ca, ¥t > 0. (5.4.66)
0

By virtue of (5.4.51), (5.4.55)—(5.4.57), (5.4.62)—(5.4.63), Lemmas 5.3.1-5.3.3 and
Lemmas 5.4.1-5.4.2, we have

t
/ | Ea(s)||?ds < Cy, Vt > 0. (5.4.67)
0

Next, multiplying (5.4.59) by Nzzsz/n in L?(R), we get

W ‘ Tre gl ot " O] e T IOl (5.4.68)
which, combined with (5.4.67), implies
t
|Mezzz(t)]] +/ |Mezzz(8)]|2ds < Cy, Vt > 0. (5.4.69)
0

From (5.4.21)—(5.4.26), Lemmas 5.3.1-5.3.3, Lemmas 5.4.1-5.4.2 and (5.4.51)—
(5.4.58), we obtain

t
/ (lveell® + lwee* + 1162 1*) (s)ds < Ca, VE > 0. (5.4.70)
0

Differentiating (5.1.2) with respect to x three times and using the following esti-
mates

low (@) < Colllvaa (O + 102 @) + 7 (D)),
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lowa (O]l < Ca([loz(®)ll 2 + 102 51 + 02051,
oaa(O < Colllve (@)l s + 1022 + l02(8)]|2),

we deduce that

[vzzzzz ()] < Crllvizza ()] + C2([1n: (@)l gs + lva(@)|lgs + 10:#) || gs).  (5.4.71)

Thus we conclude from (5.1.1), (5.4.55), (5.4.57), (5.4.66), (5.4.69), (5.4.71), Lem-
mas 5.3.1-5.3.2 and Lemmas 5.4.1-5.4.2 that

t
[ esasall + iasal ) 5)ds < € vt >0, (5.4.72)
0

Similarly, we can deduce that for any t > 0,

t
/ Wamana(5)[2ds < Ci, (5.4.73)

0

t
/ 1022zee(s)]|?ds < Cy, (5.4.74)

0

t

/0 (HUMH%/W“J + mesz/woo + HGMH%/V?“J)(S)dS < Cy. (5.4.75)

Thus employing (5.1.1), (5.4.51)—(5.4.58), (5.4.66), (5.4.69)—(5.4.70), (5.4.73)—
(5.4.74) and the interpolation inequality, we can derive the desired estimates
(5.4.44)—(5.4.46). The proof is complete. O

Lemma 5.4.4. Under the assumptions of Theorem 5.1.3, the following estimates
hold for any t > 0:

() = Uggs + e @15 + IO + N0 @z + 10Oz + loa @)
+lw®)ls + w72 + w1 + 10() — 17 + 10O 12 + 10 ()]

+ /Ot (H??zll?{s HllvallFzs + lvell s + ol + lwalFs + lwells + lwel Z
+ 11027 + 1017 + ||9tt|\f{1)(5)ds < Cy, (5.4.76)
/Ot(|77t|§{4 + el 72 + [Imeeel|*) (s)ds < Cu. (5.4.77)
Proof. Using (5.1.1), Lemmas 5.3.1-5.3.3 and Lemmas 5.4.1-5.4.3, we can derive
estimates (5.4.76)—(5.4.77). The proof is complete. O

We now prove the large-time behavior of H*-global solution (n(t), v(t), w(t), 6(t)).

Lemma 5.4.5. Under the assumptions of Theorem 5.1.3, the H*-global solution
(n(t), v(t), w(t), 6(t)) obtained in Lemmas 5.4.1-5.4.4 to the Cauchy problem
(5.1.1)~(5.1.6) satisfies the relations (5.1.19) and (5.1.20).
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Proof. Similarly to (5.4.27)~(5.4.28), (5.4.35), (5.4.41)~(5.4.43), (5.4.50), (5.4.68)
and using (5.1.18), we obtain

jtl\vtt(t)HQ +(20) v 7 < Co(10za (DN + 11002 ()17 + lve (8)] 7
+llve (O + 100117 + [Ina(0)]%), (5.4.78)

d _ _
g e @1 + CrH wna @11 + 201D lwa (O < Calllval® + llwe(B)][*),
(5.4.79)

d _
g 10 @1 + CM 10w (01 < CalllOaBII + v (Ol + 02O + lvea (8)]*

10O + veea O + 1001 + [lwea (O + l[wewa (B)]]
+ lwa (O] + loa (01 + [lwe (®)]%), (5.4.80)

jtl\vtz(t)llz + O oo (O < Coll0 N + llve ()] + 116:()]1?
+llvaa (O + 10201 + ll72(D)11%), (5.4.81)

d _ _
g 1@ + O [wie (O]l + O wie|* < Collwiae (O + [lwe (5)]

+ [ ()12 + [[vaa (@)1 + [lwe()][?), (5.4.82)
d _
10O + CTH 000 ®)1* < Co(l0 ()1 + 02 (DI + l[vaa () + [17: (1) |2

+ lwia ()11 + lwiae O + [wax (0| + [[vaa(®)]|* + we ()]

+ w82 + ws ()12, (5.4.83)
d 77111 — nILIJLE
il O + Y| ., )] < CLl|EL(1)])?, (5.4.84)
d 1= )12 + o7t T )12 < G|l Ba ()2 (5.4.85)
dt n n

where, by (5.1.18), (5.4.49) and (5.4.67),
t
/ (B2 + | Ba|2)(s)ds < Cu, ¥t > 0. (5.4.86)
0
Applying Lemma 5.3.4 to (5.4.78)—(5.4.89) and using estimates (5.1.15) and

(5.4.86), we infer that, as t — +oo,

lou@ =0, Jwu@ =0, 0u®)] =0, v =0,  (5.4.87)
[wie @ =0, ([0 =0, lnzaa®)ll =0, |N2wea(®)| = 0. (5.4.88)

In the same manner as for (5.4.8), (5.4.10), (5.4.54) and using the interpolation
inequality, we obtain

022z ()] < Co[lva O + 172l g + 10Ol + [0z (E)]]), (5.4.89)
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[0tz (D < Crllva (@) + Collvee (O] + [Jua (O] + v (O + (102 )]

10N + 18 (0], (5.4.90)
[vazaa (O] < Co(llva ()2 + [lua ()2 + |62 ()| 72 + [V @)]),  (5.4.91)
[vee ()12 < Cllvea(O[[veaa O], le@)|7 < Clloa@lllvea@)l, — (5.4.92)
”Uﬂaw(t)H%m < Cllvga () vzza (D), vaw(t)H%O@ < Ollvgas () vzzza (),
(5.4.93)
HUM(t)H%w < Clluga (O |uzza (B, Humx(tm%w < Cllugas ()| |uzzz(t)]]-
(5.4.94)

Thus it follows from (5.1.1), (5.4.87)—(5.4.94) and Lemma 5.3.5 that, as ¢t — +o0,

1022 (8); 02 (@)l 15 + [[oe() [ 2 + 106 (O) s + (1726 (8) 2,00
e @Ol + 1 (12(), va ()l w200 = 0. (5.4.95)

Analogously, we can show that, as t — +oo,

lwa ()| s + lwe ()2 + [[we(®)lwroe + [Jwa () w2 =0, (5.4.96)
1025 + 10: ()| 22 + 102D [wr.o + [102(E) w2, =0, (5.4.97)

which, together with Lemma 5.3.5 and (5.4.95), implies estimates (5.1.16) and
(5.1.17). The proof is complete. O

Proof of Theorem 5.1.3. Lemmas 5.4.1-5.4.5 establish the global existence of the
H*-solution to problem (5.1.1)—(5.1.6). O

Proof of Corollary 5.1.1. Employing the Sobolev embedding theorem with the es-
timates (5.1.16) and (5.1.17), we can get the desired conclusion immediately. O

Proof of Theorem 5.1.4.
Case 1. The proof proceeds as in the verification of Theorems 5.1.1-5.1.3.

Case II. The proof of global the existence and asymptotic behavior of H' solutions
to the problem (5.1.1)—(5.1.6) can be found in [82] and the proof for H (i = 2,4)
is actually the same as Theorems 5.1.2 and 5.1.3. |

5.5 Bibliographic Comments

The 1D compressible Navier-Stokes system has attracted the interest of physicists
and mathematicians for a relatively long time. A crucial observation in the research
of this field is that in the 1D case treated in Lagrangian coordinates, the specific
volume 7 can be expressed in terms of other unknown variable, and so positive
upper and lower bounds can be obtained. This fact was used in significant manner,
in particular, in the results by Kazhikhov and Shelukhin [61, 63]. For initial-
boundary value problems, there are numerous works concerning global existence,
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regularity and asymptotic behavior of solutions, etc., in various cases (see, e.g.,
[1, 8, 9, 30, 43, 100, 101, 105, 138, 140, 149, 152]). Recently, Feireisl [37, 38]
has studied the stabilizability of weak solutions besides global energy of viscous,
compressible, and heat conducting fluid in the 3D case, which is more general
than the 1D case. Concerning the Cauchy problem, Kazhikhov and Shelukhin
[62, 63] also proved that given 107, o, and 6pf with some positive constants 7, 6
and initial data 79, 6y > 0, there exist a there exists a unique global H! solution
(n(t),v(t),0(t)) on [0,T) (T > 0). Actually, in their work the domain is unbounded
and hence the Poincaré inequality is not available, and consequently the properties
of the initial data (1o, o, o) must be given with the help of some stationary state
data like ny — 7, etc., which is known as the small initial data proposed in Kanel’s
paper [56].

Under the small initial data hypothesis, the global existence and large-time
behavior of smooth solutions have been obtained for the Cauchy problem, includ-
ing the 2D- or 3D-dimensional cases (see, e.g., [1, 46, 53-55, 74-77, 93, 150]).
Although these results are based on the same assumption, namely, small initial
data, the specific hypotheses are quite different. For instance, in [54] the small
data hypothesis in the 1D case is expressed in the weighted form weighted

et = ln —noll 7~ +/(1 +a)" {(no —7)* + 155 + (60— 0)° + 5} dr < e
R

where (1 + )Y (y > 1/2) is a weight function, ¢ is a sufficiently small positive
constant. In another work, by Okada et al. [93], the corresponding condition takes
on the form EyE; < ¢, where E; := ||(log(no/7),log(v0), log(60/0) || (i = 0,1).
Then, in Qin et al.’s work [112], the two cases have been treated together to
establish further regularity properties. Moreover, Mujakovic recently considered
the Cauchy problem in the latter case for micropolar fluid dynamics (see, e.g.,
[80-83]). In the present chapter we only begin to utilize Jiang’s approach to prove
the existence of global solutions in H! for the 1D micropolar fluid system (5.1.1)—
(5.1.6) and then obtain the regularity of H? and H* global solutions. Since we are
dealing with a system that has one extra equation compared to that considered in
[54], we need more precise estimates to treat the more complex terms. Interpolation
inequalities are our powerful tools for establishing the desired estimates. In [80, 81]
it was shown that, for any length of time T > 0, the solution 7, v, w, 8) enjoys the
following properties:

1/n—1€ L0, T; H'(R)) N HY(R x (0,7)), (5.5.1)
v,w,0 —1€ L*((0,T); H'(R)) N HY(R x (0,7)) N L*(0, T; H*(R)),

and
1/n, 0 > 0. (5.5.3)



Chapter 6

Global Existence and Exponential
Stability for a 1D Compressible
Viscous Micropolar Fluid Model

6.1 Introduction

In this chapter, we shall study the global existence and exponential stability of
H'-global solutions (i = 1, 2, 4) to a classical kind of Navier-Stokes equations
describing the motion of a one-dimensional compressible viscous heat-conducting
micropolar fluids, which belong to a class of fluids with nonsymmetric stress tensor
called polar fluids (see, e.g., [32], [73]). Precisely, in Lagrangian coordinates, such
a system can be represented as follows:

T]t = vzv (611)

Ut = Oy,

wy = A <u7)71> — Anw, (6.1.3)

e =7y +ovp +  ° +nuw?, (6.1.4)
n

where (z,t) € [0,1] x Ry are the Lagrangian mass and time coordinates and

x Aex R9
o="""_p a="""" Pmo)="", e@n0) =0 (6.1.5)
n n n
denote stress, heat flux, pressure and internal energy, respectively, and A > 0 is a
constant. In addition,
1
p= (6.1.6)
n
denotes the density of the fluid.
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Here we consider (6.1.1)—(6.1.5) subject to the initial conditions

(n(x,0),v(z,0),w(z,0),0(x,0)) = (no(z), vo(x), wo(x),0o(x)), forall =ze]l0,1],
(6.1.7)
and the boundary conditions
v(0,t) =v(1,t) =0, w(0,t) =w(1,t) =0, 6,(0,t)=46,(1,¢t)=0, Vt>O0,
(6.1.8)
v(0,t) =v(1,¢) =0, w(0,¢) =w(l,t)=0, 6(0,t)=6(1,¢)=1, Vt>0.
(6.1.9)

The unknown quantities 7, v, w, 8 denote the specific volume, velocity, an-
gular momentum and absolute temperature, respectively. The function &(x,t) is
the heat conductivity, satisfying the Fourier law for heat flux —=

_k(n,0)

_7-‘—(777 97 91) = n

0. (6.1.10)
For simplicity, in the present chapter, the heat conductivity is assumed to be as a
positive constant k and the total mass of the fluid is taken to be 1. The remaining
symbols like v, R, etc., denote physical constants, representing the viscosity and
the Boltzmann constants, etc., with v simplified as ¥ = 1 in this chapter as in
[110].

In this chapter, Q = (0,1), Ry = [0, +00), H* = W42 (i = 1,2,4) and we use
|- || and C**(Q) to denote the norm in L?(Q), and the space of functions whose
derivatives are Holder continuous with exponent « and order of differentiability
from 0 to k, respectively. C; (i = 1, 2, 3, 4) denote universal constants depend-
ing on mingeq no(z), mingeq o(x), the H(Q) (i = 1,2, 3, 4) spatial norms of
(no, vo, wo, Bp), but independent of time T > 0. To facilitate our analysis, we also
define three function classes:

H} = {(77, v, w, 0) € (HI(Q))4 :n(x) >0, 6(x) >0,

zeQ, v(0) =ov(l) =0, w(0) = w(l) =0, 6(0) = 6(1) = 1 for (6.1.9)},
and
H' = {(77, v, w, 0) € (Hl(Q))4 :n(z) >0, 6(x) >0,
x € Q,v(0)=v(1) =0,w(0) =w(l) =0,
0'(0) = 0'(1) = 0 for (6.1.8), or 0(0) =6(1) =1 for (6.1.9)}, i=24.
The Cauchy problem for (6.1.1)—(6.1.6) was considered in Chapter 5. In this

chapter, we shall consider the initial-boundary value problem (6.1.1)—(6.1.9).
We now state our main results in this chapter.
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Theorem 6.1.1. Assume that (1o, vo, wo, o) € HY. Then the problem (6.1.1)-
(6.1.8) or the problem (6.1.1)~(6.1.7), (6.1.9) have a unique H*-global solution
(n(t), v(t), w(t), 6(t)) and the following inequalities hold:

0<Crt <nt,x) < on Q xRy, (6.1.11)
0<Cyt <O(t,z) < 0 1 on O xRy, (6.1.12)
[o@)[1* + 10(t)]|* + [Jw(t )II2 + 12l + [l (D11 + 162 ()12

+ [lwz (81 + /O [Hml\2 + vz l? + 1102]% + lwa 1 + lvze || + 10222
+ wasl? + lvel® + 1612 + ||wt||2} (s)ds < Cy, Vit >0. (6.1.13)

Moreover, there exists a positive constant y1 = ~v1(C1) such that, for any fized
constant v € (0,71], the following estimate holds for any t > 0:

[ (att) =, wt0), wie), o) - 0)

+

< Cre M, (6.1.14)

where

n= / no(z)dx, 6 =1 for (6.1.9), (6.1.15)
Q

or, for (6.1.8), 8 > 0 is uniquely determined by the energy form

e(n, 0) ::/Q (”23 + ;"j + 90> (x)dz. (6.1.16)

Theorem 6.1.2. Assume that (no,vo, wo, 6o) € HI. Then the problem (6.1.1)-
(6.1.8) or the problem (6.1.1)—(6.1.7), (6.1.9) has a unique H?-global solution
(n(t), v(t), w(t), 0(t)) € H2 for any t > 0, and the following estimates hold:

In(®1Z: + In@ + lne @7 + lvO1Z: + lo@F~ + el
t
+lw®) e + o @1 + 10O F2 + 10 [Fy1. + [16:()]* +/0 [Hmllip

HnellZoe + Imellze + lvallzre + lvallfyree + llvellzn + lwellZe + llwellf.

el + 100032 + 102 Bse + 100013 ] (5)ds < €. (6.1.17)

Moreover, there exists a positive constant yo = v2(Ca) < v1(C1) such that, for any
fized v € (0,72], the following estimate holds for any t > 0:

H (’7“) —n, v(t), w(t), O(t) — 9))

L < Che (6.1.18)

Hi
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Theorem 6.1.3. Assume that (g, vo, wo, Oo) € Hi. Then the problem (6.1.1)—
(6.1.8) or the problem (6.1.1)~(6.1.7), (6.1.9) admits a unique H*-global solution
(n(t), v(t), w(t), 6(t)) € HE for any t > 0 and the following estimates hold:

IOz + IO lvs.e + e @)llzs + Il + @ + [0®)Fys.

@)l + lw®) s + lwe®)lz + lwa@OF + lw®)lz: + llwe @)
+100t) = LZrs + 10() = Ulyse + 10:(0)][72 + 102(B)]|* < Ci, (6.1.19)

t
Tl e+ s+l + ol + e + el
HllveellF + loallfysce + llwallFs + lwellFa + llweellzn + lwellfs
+10all7s + 116el 7 + 162170 + ||9x||%/v3m} (s)ds < Cy. (6.1.20)
Moreover, there exists a positive constant y4 = v4(Cy) < v2(Ca) such that, for any

fized v € (0,~4], the following estimate holds for any t > 0,:

2

H (n(t) —n, v(t), w(t), 6(t) — 9)}

-t
, S Che™ ™ (6.1.21)

HY

Corollary 6.1.1. The H*-global solution (n(t), v(t), w(t), 6(t)) obtained in Theo-
rem 6.1.3 is actually a classical one when the compatibility conditions hold. Pre-
cisely, (n(t), v(t), w(t), 0(t)) € C*2(Q). Moreover, for any t > 0,

2
< Cge 6.1.22
o3k © = 4€ ) ( )

[ (10 = 9. v(0). wit), 60— 0)|

for any v € (0, v4].

6.2 Global Existence and Exponential Stability in H i

In this section, we mainly follow Mujako¢’s basic idea in [84] to establish global
H? estimates for (1, v, w, §) and Qin’s method to obtain the exponential stability
of solutions in [99].

Lemma 6.2.1. For allt > 0,
1 1
/ n(z)dx :/ mo(z)dz =1, (6.2.1)
0 0

1t 1t 1 1
/ v?dx + / w2da:+/ (0 —log6 — 1)da:+R/ (n—logn —1)dz
2.Jo 24 Jo 0 0

t ol 2 2 2 2
Vg Wy, nw Aez
k drds .= F 6.2.2
+/0/0<9n+9n+9+n92>x5 1, (6.2.2)
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1
0<a< / O(z)dx < B, (6.2.3)
0

where o and 8 are constants, and

1
1
0

Proof. See, e.g., [84], Lemmas 3.1-3.2. |

Now we borrow the related results for the upper and lower bounds of i from
[101]; the version we use here is just a simpler case of [101]. In fact, these results
are the improved ones of [63].

Lemma 6.2.2. There holds that

0<Cyt <z, t) < Cy, forall (z,t) € 0,1] x Ry, (6.2.5)
0 <Oyt < pla,t) < Cy, forall (x,t) € [0,1] x Ry. (6.2.6)
Proof. See, e.g., [101], pp. 53-55, Lemma 2.1.5. |

As it stands in [84] combined with Lemmas 6.2.1-6.2.2, we can immediately
obtain (6.1.11)—(6.1.13). O

Now let us establish the verification of the exponential stability of the solution
(n(t), v(t), w(t), O(t)). We introduce some thermodynamic quantities and describe
their properties. First, the entropy S(p, 6) satisfies

as P, as
_ e =, (6.2.7)
Op p2 00 0
Now we take n and S as the basic independent variables and make the coordinate
transformation

T (p,0)eDp0={(p,0): p,0>0}3(p, 0)— (n,5) €TD, 4. (6.2.8)

Since the Jacobian |9(n, S)/d(p, 8)] = —egn*/6 < 0 on D, g, the transfor-
mation ¥ has a unique inverse and there exist = 6(n, S), e(n, S) and P(n, S)
which are smooth functions of (n, S). Note that e = e(n, S) := e(n, 0(n, S)) =
e(n, 0), P =P(n, S):= P(n, 6(n, 5)) = P(n, §), and

2
ey = —P, es—0, Pn:_<P§+9P9>’ PSZG’PQ7 917:_6‘P97 0 = 9.
n €9 €g e
(6.2.9)
We define the energy form
v w? Oe Oe
€, v, w, §) =, +, , +e, S)—e(, 5) 877(77, S)n=m) = 5 (0, S)(S=5),
(6.2.10)

where S = S(n, 6).
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Lemma 6.2.3. The following estimate holds for any t > 0:

2

! +“’2+c—1(| - |2+|575|2)<@( S) (6.2.11)
2 2A 1 n n = n, v, w, Rk
2 U)2
< —n? —S)%).
<+ oy + (Il +1S - sP2)

Proof. By the mean value theorem, there exists a point (&, ¢) between (n, S) and
(n, S) such that

2 2 62 62
€0 v, 0. 5) =y + s+ 5 [ 26 Q=P +2,) (6 Ol =n)(S =)
?%e
+ e & O =97, (6:2.12)

where £ = An+ (1= XA)n, ¢ = AS+ (1 —)N)S, withaconstant A € [0,1]. (6.2.5) and
(6.1.12) yield

gj; (&, C)‘ + ‘3?;65(& C)‘ + ‘g;i (3 C)) <y, (6.2.13)

which, combined with (6.2.12), gives
v w? 2 2
€, v, w, 5) <, +2A+Cl[(n—n) +(S—-9) } (6.2.14)

On the other hand, it follows from (6.2.9) that

—0P 0
’ €ns = ’ €ss = ’
€9 €9 €9

P, 6 P?
(R’

(&
nm 2
n

and so the Hessian of e is positive definite for n, 8§ > 0. Therefore,

v w? ~1 2 2
€, v, w, 8) > o+, + O (=)’ + (S - 9) ] (6.2.15)
Combining with (6.2.14)—(6.2.15), we arrive at (6.2.11). O

Lemma 6.2.4. There exists a positive constant %1) = 7:{1)(01) > 0 such that, for

any fized v € (0, 'yil)], the following estimate holds for any t > 0:

67'5(||77(t) = ll* + @ + w®)* + 6(t) - 0]* + ||77x(t)|\2)

t
+/ e”s(l\mall2 + o + [lwe||* + HemH?)(s)dS <. (6.2.16)
0
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Proof. We can see from (6.1.1)—(6.1.4) that

<v2+w2+ ) [ +“91} +w”2”+<w””) (6.2.17)
el = |ov w, 2.
2 24 , nl, n ).

0 1/6,\° 2 w? nw?
S, = —Pypn?+ g, = (" v z  Wa . (6.2.18
4 epm+9t 0 I+H77 0 +n9+779+ 0 ( )

Since n, =0, 6; = 0, we infer from (6.2.20), (6.2.21), (6.1.1) and (6.1.2) that

6‘ 2 2 92
€ (n, v, w, S) + ( ) [”x + " 4+ " }
o) [ n n no

= [”;‘;x + (1 - Z) f;” — (P - Py, S))v} Ly (wx>mw, (6.2.19)

z n
1(ps\?
h(p)ﬁmwn
Multiplying (6.2.19) and (6.2.20) by €% and de?, integrating over [0,1] x [0,]

(Vt > 0), and using the Young inequality and the Poincaré inequality, we derive
that for small 6§ > 0,

v (6.2.20)

VU
+ Ppp2n = —Pppy0.m — ( . ) +
t x

e In(®) = 2+ o (®)]12 + (@) 12 + Ina (1)1
t
+AwmmﬁﬂwﬁﬂmW+wPﬂ%H@msa. (6.2.21)

By virtue of (6.1.8) and the Poincaré inequality,

ne—mumsnA 6,y )y~ < ()] (6.2.22)
19®) = il < Cullne ()], o)) < Cullo®)l, @)l < Cullwa(®)].
By (6.1.9),
1 ’1)2 ’U}2
/0 (2 + 2A+e(77, 9)) dz = e(n, 6),
whence

et 0) = e(n. O)] < . 0) = [ e(n. 0)dal] + yloI + ., (O

< Cilllna O + vz @1 + lwa (I + [[62()]])-

By the mean value theorem, we get

10 =01 < Ci(lle(n, 0) — e(n, O)I| + [In(t) —nll)
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< Ci(lne @I + vz (1] + lwa (1] + [102()]])- (6.2.23)
As a result, (6.2.22) and (6.2.23) lead to
e0(t) - 0]12 < Cr.
This completes the proof of (6.2.16). O

Lemma 6.2.5. There is a positive constant y1 = v1(C1) < 7:{1) such that, for any

fixed v € (0,71], the following estimate holds for any t > 0:
& (Ile= I + o1 + 16:(6)1) (6.2.24)
t
+Awwmw+WMWW%W+MWHMWHWW@wsa

Proof. Multiplying (6.1.2) by —eYtv,,, integrating over [0,1] x [0,¢] for any ¢ > 0
and using the Poincaré inequality, the interpolation inequalities, the Young in-
equality and Lemma 6.2.4, we derive that

t t
" lva (8)]1? +/O € |[vze(5)]|2ds < C1 + 01/0 e (Ina]1* + lloall* + 116211%)(5)ds
<, (6.2.25)

which, combined with (6.1.2), gives

t

t
/ 7 o (s)|Pds < Cy + cl/ ¢ vaa(5)|2ds < Ci. (6.2.26)
0 0

Similarly to (6.1.3) and (6.1.4), we can derive (6.2.24). O

Proof of Theorem 6.1.1. The global existence and the exponential stability of so-
lution (n(t), v(t), w(t), 6(¢)) asserted in Theorem 6.1.1 follow from the preceding
lemmas. g

6.3 Global Existence and Exponential Stability in H 3_

In this section, we shall complete the proof of Theorem 6.1.2. We begin to prove

the global existence of H? solutions with the following lemma on estimates in
HY(Q).

Lemma 6.3.1. Under the assumptions of Theorem 6.1.1, the H' global solution
(n(t), v(t), w(t), B(t)) to the problem (6.1.1)—(6.1.8) or problem (6.1.1)—(6.1.7),
(6.1.9) exists, and, for anyt >0,

In(t) = nllz + lo@1F + lw@lF + 100) = 0l + @)



6.3. Global Existence and Exponential Stability in H} 151

t
[ (ol W+ 18 s e o2+ el + )2 5

<y, (6.3.1)
() = nllZoe + lo@)I7 + lw®)lZe + 10() — 07
t
- / (s + Noallfe + sl + 6]l ) (s)ds < C. (6.3.2)
Proof. The proof is identical to that of Lemma 5.3.1. ]

Lemma 6.3.2. Under the assumptions of Theorem 6.1.2, the following estimates
hold for any t > 0:

t
10O + l[oe (@)1 + [lwe(B)]” +/O (lvaell® + lwaell® + 162 ]|*)(s)ds < Ca,

(6.3.3)
[0 ()7 + [[v2e (O + lwe (D)7 + waa (O + 10207 + [022()]|* < Co,
(6.3.4)
lo@)lIF2 + [lw(®) 7= + 10(8) = 0llF2 + [me()]7n < Coa (6.3.5)
Proof. The proof is identical to that of Lemma 5.3.2. O

Lemma 6.3.3. Under the assumptions of Theorem 6.1.2, the following estimates
hold for any t > 0:

t
s O + e Ol + [ (el + Il )(e)s < Co (636)
t
/; (”vzzsz + szzzH2 + Hozzzw)(‘s)ds < Cy. (6.3.7)
Proof. The proof is identical to that of Lemma 5.3.3. O

Next, we shall deal with the exponential stability of the global H? solution.
In fact, the argument is similar to that for the global existence, with the difference
that the weight function exp(vt) accompanies in the estimates.

Lemma 6.3.4. There exists a positive constant 751) = 'yél)(02> such that, for any
(

fized v € (0, 721)], the following estimate holds for any t > 0:
e (lo@®)l72 + llw(®) 7= + 110(t) — 0lI72) (6.3.8)
t
JF/OB’YS(HUMH2 + ”vtm”2 + ”wmx”2 + Hwtx||2 + Hozzznz + Hotx”Q) (5>d5 < (.

Proof. By Lemma 3.5 in [99], one can show that

t
o)l +/ 7 ([Vaaall® + [lvael|*) (s)ds < Co.
0
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Similarly, multiplying (6.1.3) and (6.1.4) by w:e?® and 6.e??, respectively, then
integrating the results over [0, 1] x [0, ¢], one can obtain the remaining estimates.
This completes the proof. O

Lemma 6.3.5. There exists a positive constant vo = v2(Ca) < 751)(02) such that,
for any fixed v € (0,72], the following estimate holds for any t > 0:

t
nft) =l + [ lnas(o)ds < Co (6:39)
0

Proof. See, e.g., Lemma 3.6 in [99)]. O

Proof of Theorem 6.1.2. Combining with Lemmas 6.3.1-6.3.5, we complete the
proof of Theorem 6.1.2 with no difficulty. g

6.4 Global Existence and Exponential Stability in H j_

Proof of Theorem 6.1.3. Similarly to [112] and similarly to the proof of Theorem
2.1.3, we differentiate the system of equations more than twice to get the result of
Theorem 6.1.3. g

Proof of Corollary 6.1.1. Employing the Sobolev embedding theorem, the desired
conclusion follows immediately. O

6.5 Bibliographic Comments

The mathematical research of the 1D compressible Navier-Stokes system has made
great steps since the original breakthrough work by Kazhikhov et al. [1, 61, 63].
A crucial specific feature in this research is that in the 1D case, treated in La-
grangian coordinates, the specific volume can be expressed in terms of other un-
known variables, and positive upper and lower bounds can be derived in the re-
spective initial-boundary value problems. Moreover, this feature was exploited
and improved further, with slight differences, in [30, 43], etc. For the Cauchy
problem, since one is dealing with an unbounded domain, the Poincaré inequality
is not available. To overcome this we consider the problem in the case of small
initial data, as advocated in [56, 93] and done in [112]. A similar situation for
the micropolar model has been studied in recent years (see, e.g., [82, 110]). For
initial-boundary value problems, there are numerous works concerning global ex-
istence, regularity and asymptotic behavior, etc., in various cases, etc. (see, e.g.,
[1, 8,9, 15, 16, 30, 43, 54, 55, 84, 86-89, 96, 97, 99, 100, 113, 138, 140]) and many
cases are rigorously investigated under various conditions on the pressure P and
the heat conductivity ¥ (see, e.g., [53, 54]). Actually Okada’s work [93] provides us
with the main significant ideas for attacking the problem. On the contrary, in the
case of the Cauchy problem, considering a bounded underlying domain enables the
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application of Poincaré’s inequality and consequently exponential decay rates can
be obtained, which differ considerably from those on the unbounded domain. Qin
[99] has flexibly modified Okada’s subtle method and obtained a series of prop-
erties concerning global existence, regularity, exponential stability and existence
of attractors. Recently, in the case of micropolar fluids, Mujakovi¢ has extended
the study to case of non-homogeneous boundary value problems (see, e.g., [85]).
Earlier also in [84] and [79], she derived similar results, including results on the
large-time behavior of solutions. However, exponential stability has not been es-
tablished (see, e.g., [79]) till the results in the present chapter. In fact, here we
improve such results and in particular establish the exponential stability under
less restrictive boundary conditions.

Note that in Chapter 5 we have proved the global existence and large-time
behavior of solutions in H® (i = 1,2,4) for the Cauchy problem corresponding to
problem (6.1.1)—(6.1.8) (or problem (6.1.1)—(6.1.7), (6.1.9)).



Chapter 7

Global Existence and Exponential
Stability of Solutions to the Equations
of 1D Full Non-Newtonian Fluids

7.1 Introduction

In this chapter, we shall prove the global existence and exponential stability of
solutions to the following full non-Newtonian fluid model:

Pt + (pu)I = 07
1 1 _
(po + 2pu2> + |:<p9 + 2pu2> + (Rp@)u — ’U/U,Z:| — [(92 + HO)PQZQZ =0.
t z T

(7.1.3)

Here subscripts indicate partial differentiations, p, u and 6 denote the un-
known density, velocity and absolute temperature, respectively. R, p > 2, pg >0
are given constants. The initial and boundary conditions are given by

(p’u’9)|t:0 = (pOaUOaGO)a (714)
(u’ 0$)|$:0 = (ua 013)|LIJ:1 = 0.

This full non-Newtonian fluid model (p > 2) is more complicated than the models
considered in Chapters 3-5 in Qin and Huang [102], which are Newtonian fluid
models (p = 2). Therefore, we need to more delicate estimates to deal with this
non-Newtonian model. For convenience, we introduce the Lagrangian coordinates
(y,t), defined by

y = /0 plE,1)de.

© Springer Basel 2015 155
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By (7.1.1) and (7.1.5), we get

/O e t)de = / ' po(a)de,

and without loss of generality we assume fol po(z)dx = 1.
Thus problem (7.1.1)—(7.1.5) in Euler coordinates (x,t) is transformed into
the following problem in Lagrangian coordinates (y,t) for y € Q = [0,1], ¢ > 0:

v —uy =0, (7.1.6)

ug — oy =0,

u?
<e+ 2) —(ou)y +Qy =0 (7.1.8)
t
with initial and boundary data

(v, u,0)|t=0 = (vo, u0,00)(y), y €, (7.1.9)
(u,0y)loe =0, t>0, (7.1.10)

where v = 1/p is the specific volume, P, e, o and @ are the pressure, internal
energy, stress and heat flux, respectively, which have the following expressions

—2

2 "
P:Re, 629, U:—P-ﬁ-uy’ Q:—<(9U) —|—/j,0> ey
v v

In this chapter, we study the non-Newtonian models (7.1.6)—(7.1.10) to es-
tablish the global existence and exponential stability of solutions in H? (i = 1,2, 4)
for one-dimensional full compressible non-Newtonian fluids with large initial data,
which were not studied in [3-5, 20, 44, 90, 94, 114, 122, 133, 141, 142, 146, 147].

We define three function classes as follows:
HY = {(v,u,0) € (H'[0,1])* : v(y) > 0,0(y) > 0,y € [0,1],
uly=0 = uly=1 = 0,0yly=0 = Oyly=1 = O},
H = {(v,u,0) € (H0,1))* : o(y) > 0,0(y) > 0, € [0,1],
uly=0 = uly=1 = 0,0yly—0 = Oyly=1 = 0}»1' =2,4.

We will use the following notations:

L, 1 < p < 400, W™ m € N, H' = W'2 H} = W, denote
the usual (Sobolev) spaces on [0,1]. In addition, || - ||z denotes the norm in

1 *
the space B, we also put || - || = | - [|z2j0,1)- f(t) = fo fly,t)dy, f*(y,t) =
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fly.t) = f(@t), (f(y,t),9 fo y,t)dy. Letters C; (i = 1,2,3,4) will
denote universal constants not dependmg on t, but possibly on the norm of the
initial data in H® (i = 1,2,3,4).

Now we can state our main result.

Theorem 7.1.1. Assume that the initial data (vo,ug,0) € H}_ and compatibility
conditions are satisfied. Then the problem (7.1.6)—(7.1.10) admits a unique global
solution (v(t),u(t),0(t)) € HY verifying

0<Cyt<w(x,t)<C, 0<Cyt <O(x,t) <Ch, Y(x,t) €[0,1] x [0,400)
(7.1.11)
and

l(t) = vllzn + lu@lF + 10) = 0l + 10,017

t
[ (o= ol + 10,ONE, + Ll + 16 = 6 + el + 16417 ()
t
4 [ 106075 40,8, (5)1%ds < €, e >0, (7.1.12)
0

where v = fol vdy = fo vody and 6 > 0 is determined by e(v,0) fo
e(vo, 6o))dy.

Moreover, there are constants C1 > 0 and v1 = v1(C1) > 0 such that, for
any fized v € (0,71], the following estimate holds for any t > 0:

e ([o() = vllFn + ()7 + 102) = Ol + 116y (OIE,)

t
+ / e (o = vl + 110y (I + lulFe + 10 = 01132 + lfuall® + 16:]12) (s)ds
t
[0+ 0,)0,05) s < . (7.1.13)
0

Theorem 7.1.2. Assume that the initial data (vo,ug,0) € H_Q‘_ and compatibility
conditions are satisfied. Then the problem (7.1.6)—(7.1.10) admits a unique global
solution (v(t),u(t),0(t)) € H3 verifying

lo(t) = vllF2 + [lu®) 72 + 1008) = 017 + lue(®)? + [16:() — 0] (7.1.14)

t
b [ (1o = oles + s+ 18 = Bl + e[ + 1617 (5)ds < Ca 92 >0
0

Moreover, there are constants Cy > 0 and y2 = ¥2(C2) > 0 such that, for
any fized v € (0,72], the following estimate holds for any t > 0:

' (lo(t) = vl + lu®)liZ + 10(t) = 01l + [lue@)]* + [16:(t) — 6]*) (7.1.15)

t
+ / e (Il = vz + l[ulldrs + 10 = Ol + ey I + 182517 (5)ds < Co
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Theorem 7.1.3. Assume that the initial data (vo,ug,6p) € Hi and compatibility
conditions are satisfied. Then the problem (7.1.6)—(7.1.10) admits a unique global
solution (v(t),u(t),0(t)) € HY verifying

l(t) = vllFs + [lu) s + 1008) = OllZrs + lve ()l + llvee 17 + lue ()l
t
+ 100132 + w1 + (106 ()] +/O (Hv = 0llFs + llulls + 116 — 01l

+lluell s + 10135 + lvellzs + el + Hvtttlliﬁ)(S)dS <Cy VE>0.
(7.1.16)

Moreover, there are constants Cy > 0 and v4 = v1(Cyq) > 0 such that, for
any fized v € (0,74], the following estimate holds for any t > 0:

e (lo(t) = vllzzs + () Zs + 10() = 013 + [loe() s + lva Ol + lue(®)1Zo
¢
0B + e O + 100 (1)) + /O Bvs(llv — vl + lullzs + 10 = 017
+ lluellzs + 10 + el s + lveelF2 + ||Uttt|\?{4)(8)d8 < Cy. (7.1.17)
Remark 7.1.1. If we replace (7.1.10) by the conditions
w(y, Hly=0 = u(y,t)ly=1 =0, 0y, t)ly=0 =0(y,t)ly=1 =To,  t>0

with Ty = const. > 0, then estimates (7.1.11)—(7.1.17) also hold with 6 = Tj.

Corollary 7.1.1. The H*-global solution (v(t),u(t),0(t)) € H} obtained in The-
orem 7.1.3 is actually a classical solution (v(t),u(t),0(t)) € C*/2(0,1) and as
t — 400,

18, 8, (Ol g 3 0y + ()l 3 1, (7.1.18)

e 8), O ey + o3, = O

7.2 Proof of Theorem 7.1.1

In this section, we shall give the proof of Theorem 7.1.1. We assume throughout
that its hypotheses hold.

Lemma 7.2.1. The following estimates hold:
6y,t) >0, V(y.1) € [0,1] x [0, +00), (7.2.1)

1 1
/ v(y, t)dy = / vo(y)dy = vg, ¥Vt >0, (7.2.2)
0 0
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/01 (6 T u;) (y,t)dy = /01 (60 + uj) (y)dy = Eo, ¥t >0, (7.2.3)

1
/0 [(9 —logf—1) + (v —logv — 1)} (y,t)dy

+/t/1 u§+ 6,17 +05
o Jo |v8  wP=162  vB?

Proof. Equation (7.1.8) can be rewritten as

(y,t)dyds < Cy, Vt>0. (7.2.4)

2 2 *3°
g, — Ry _ | ((a,) +MO) Ou (7.2.5)
v v v v
v

Applying the compatibility conditions, the positivity of 6y and a generalized
maximum principle to (7.2.5), we can get (7.2.1). Estimate (7.2.2) is a direct
consequence of (7.1.6) and (7.1.10).

Integrating (7.1.8) over @ := [0, 1] x[0, t] and noting (7.1.10), we have (7.2.3),
the conservation law of total energy.

Multiplying (7.2.5) by 0!, and integrating the resulting equation over Q,
we can get

1 tori 2 9292 4 L
/ (10g9+10gv)(y,t)dy+/ / [Z; 4 BG4 po) ] (y,s)dyds < Ci,
0 0 Jo

02

which, along with (7.2.2) and (7.2.3), gives (7.2.4). O

Lemma 7.2.2. For any t > 0, there exist a point y1 = y1(t) € [0,1] such that the
specific volume v(y,t) in problem (7.1.6)—(7.1.10) can be expressed as

v(y,t) = D(y,t)Z(t) [1 Jr/o D™y, s)Z7 (s)v(y, s)P(y, s)ds] ; (7.2.6)

where

D(y,t) = voly) exp [ / it) . t)ds — [ o)z + v / " wolw) / ’ uodxdw] |

Z(t) = exp [— vlo /Ot /01(u2 + vP)dyds} .

Proof. The proof is identical to that of Lemma 2.1.3 in Qin [101], pp. 51-52. O
Lemma 7.2.3. It holds that

0<Crt <oy, t) <Ci, V(y,t) €0,1] x [0, +00). (7.2.7)
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Proof. The proof is identical to that of Lemma 2.1.5 in Qin [101], pp. 53-54. O
Corollary 7.2.1. It holds that for any (y,t) € [0,1] x [0, +00),

Ot — OV () < 60*™(y,t) <CL+CLV (1) (7.2.8)

2
with 0 <2m <1 and V(t) = fol Ueeyz dy satisfying f0+oo V(s)ds < +o0.

Lemma 7.2.4. The following estimates hold for any t > 0:

t
| s < . (7.2.9)

0

t 1
/ / (14 0)2™u2(y, s)dyds < Ci, (7.2.10)
0 0
t 1
vy (£)1 +/ / vy (y, s)dyds < C1 + C1 A (7.2.11)
0 0

with A(t) = supg<s<; [|0(s)l| Lo -
Proof. The proof is the same as that of Lemma 2.1.6 in Qin [101], pp. 56-57. O
Corollary 7.2.2. It holds that, for any t > 0,

t
/ / (1+6)*™ v (y, s)dyds < Cy + C1 A. (7.2.12)
0 Jo

with 0 < 2m < 1.

Lemma 7.2.5. The following estimates hold for any t > 0:

t
[ luolas < o1+ coat, (7.2.13)
0
t
O + [ anls)|Pds < €1+ 012, (7.2.14)
t
/ [ty ()] 2ds < Cy + C1 A2, (7.2.15)
0

Proof. Multiplying (7.1.7) by w, u;, and u,,, respectively, and then integrating
the results over ), using Lemmas 7.2.3-7.2.4 and Corollary 7.2.2, we get, for any
e > 0, that

t 1u2
P+ [ s

t 1
/ / (vy0 + 0y)udyds
o Jo

<G +Gy
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t 1 2 t ol 2
<Ci+Ch </ / vi@dyds) </ / u29dyd5)
o Jo 0 Jo

1 1

t 192 2 t 1 2
+C (/ / ydyds) </ / u292dyds>
92
o Jo o Jo

< Cy+Cr Az, (7.2.16)

U 2 tuts2s
luy®)] +/0 Jue(s)]2d

t el
/ / (vy8 + 0y)urdyds
0o Jo

t t 1
<Ci+ 015/ llue(s)]|2ds + C1A/ / 0v§dyds
0 o Jo

+ C A2 t 19§dds
1 . 092y

t
<Ci+C A%+ 05/ e (5) ]| 2dls, (7.2.17)
0

<Ci+Cy

t
(8] + / gy () 2
t t 1
< C’1+C'1€/ Huyy(s)H2d5+C’1/ / (v§u§+v§92+9§)dyds
0 0 0
t t 1
§C1+C18/ Huyy(s)H2dS—|—ClA2+Cl/ ||uy|\%oo/ v2dyds
0 0 0
t t
<yt CA% 4 Cre / gy () 2ds + C1 A / iy (3)]2 s
0 0

t
<O+ CiA2 4 O / iy (5)]2ds
0

L oA (/Ot ||uy(s)||2d8>§ (/Ot Iuyy(8)|2d8) ;

t t
< Cl+01A2+Clg/ Huyy(s)||2ds+ClA2/ Iy (5)|2ds
0 0

t
< Cy+ C1A? + 015/ [ty (5)]|%ds. (7.2.18)
0

Now (7.2.13) follows from (7.2.16), and (7.2.14)—(7.2.15) from (7.2.17)—(7.2.18) for
€ > 0 small enough. g
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Corollary 7.2.3. It holds that, for any t > 0,

t 1
/ / (1+0)>"u2(y, s)dyds < Cy + C1A® (7.2.19)
0 Jo

with 0 < 2m < 1.

Lemma 7.2.6. It holds that, for any t > 0,

t 1
/ / (10, [P + 62)(y, s)dyds < C1 + C1 A% (7.2.20)
0 JO

Proof. Multiplying (7.2.5) by 0, integrating the resulting equation over @, and
using (7.1.10) and Lemmas 7.2.1-7.2.5, we derive that

t 1
1011 + / / (02 + 10,17 (y, 5)dyds

t 1
<C;+C; / / (ui@ + vy92u + 60,u)(y, s)dyds
o Jo

¢ 1 t pl 2 t el 3
<Ci+ 01/ ||uy|\%m/ Odyds + C1 (// ngdyds) (// 93u2dyds>
0 0 0J0 ‘ 0J0
t 1 92 é t 1 ;
+ C4 / / 912/ dyds </ / u294dyds>
o Jo 0o Jo
\ ¢ 3 t 3
<Ci1+Ci1A2 +C (/ ||uy|2d5) (/ ||uyy|2d5)
0 0
\ ¢ 1 3
+ C1 A2 (/ ||u||2Lm/ 9dyds>
0 0

§01+01Ag O

Lemma 7.2.7. It holds that, for any t > 0,
¢ 5
16y ()11 + 1165 (1170 +/ 16:(s)[Pds < C1 + CrA=. (7.2.21)
0

Proof. Multiplying (7.2.5) by 6; and integrating the resulting equation over @,
we derive that

165 (D11 + 116y (D17 +/0 16:(s)]|*ds

t 1
<Cy+ 01/ / (Ju2 0| + [Ouybe]) (y, s)dyds. (7.2.22)
0 Jo
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Using Lemmas 7.2.5-7.2.6, we get for any € > 0,

| [ ot sivas < [y () g s)l0n(s) s
0 JO 0

¢ 2 ¢ 2
<Oy sup [luy(s)llz ( / ||uy<s>||2ds) ( / ||9t<s>|2ds)
0<s<t 0 0

t é t
< O A (/ ||9t(s)||2ds) §01A3+cs/ 16,()||2ds, (7.2.23)
0 0
t 1 t
| [ ououtysidyas < 4 [ uys)lens)las
0 0 0
¢ 3 t 3
<a( [mirs) ([ oeirs)
0 0
t
< C1A3 +015/ 116 (s)||2ds. (7.2.24)
0

Taking £ > 0 small enough and inserting (7.2.23)—(7.2.24) into (7.2.22), we obtain
(7.2.21). O

Lemma 7.2.8. It holds that, for any t > 0,

10() ]|z < C1, (7.2.25)
1 t 1
/0 (95 + v, + uj)dy +/0 /O (v;j +ul 4 up +ul, + 607 + ej)dyds < Cy.
(7.2.26)

Proof. By the Nirenberg interpolation inequality, we have
2 1 2

[0@) L < Cully (D) [10@) 122 + CNO@) || < Cr + CullOy (D)5, (7.2.27)

From (7.2.21), (7.2.27) and Young’s inequality, we derive that, for any £ > 0,
t
10, )11 + 1165 (D)7 +/0 16:(s)[|ds < C1 + Crell6, (1)1,
i.e., for € > 0 small enough,
t
10,017 + 10,1 + [ 10u(s)Pds < €. (7.228)

Estimate (7.2.25) follows from (7.2.27)—(7.2.28), and estimate (7.2.26) from
(7.2.25) and Lemmas 7.2.1-7.2.7. O



164 Chapter 7. 1D Full Non-Newtonian Fluids

Lemma 7.2.9. It holds that, for any t > 0,

t
A(WﬁW+HHWxﬁh§Ch Wt >0, (7.2.29)
d .
dtHP 17 < CL(lue@®)]? + 10:()]1* + 1), vt > 0, (7.2.30)
d,. .
dtHU @17 < CL(flue@®)]? + [10:®)]1> + 1), ¥t > 0. (7.2.31)

Proof. The proof is the same as that of Lemma 2.1.12 in Qin [101], pp. 66-68. O
Lemma 7.2.10. It holds that for any t > 0,

d

dtl\vy(t)||2 < O ([lugy D7 + vy (®)]12) , VE >0, (7.2.32)

d ! _

dtHHy(t)HQ +/0 (|9y|P 460+ 1)9§ydy < C1 (Jluyy®)[*+1), vt >0, (7.2.33)
t 1

16, (1|2 +/ / (|9y|P—2 + 602+ 1)9§ydyds < Oy, V> 0. (7.2.34)
0 JO

Proof. The proof is the same as that of Lemma 2.1.13 in Qin [101], pp. 68-69. O

Lemma 7.2.11. Ast — 400, we have

[o(t) = vollFn = 0, [lvy(B)[I> = 0, (7.2.35)
lu(®)|3: — 0, (7.2.36)
[P*)* =0, [lo*@®)]* =0, [6,(t)]* =0, (7.2.37)
10(t) — 0|3 — 0, [0(t) — 0|7 — O. (7.2.38)

Proof. The proof is identical to that of Lemma 2.1.14 in Qin [101], pp. 69-70. O
Lemma 7.2.12. The following estimate holds:

O(y,t) > C7' >0, Y(y,t)€[0,1] x[0,+00). (7.2.39)
Proof. We prove (7.2.39) by contradiction. If (7.2.39) is not true, that is,

inf  0(y.1) =0,
T L L

then there exists a sequence (yn,t,) € [0,1] X [0,400) such that, as n — +o0,

O(yn,tn) — 0. (7.2.40)

If the sequence {t,,} has a subsequence, denoted also by ¢,,, converging to +o0c, then
by the asymptotic behavior results in Lemma 7.2.12, we know that as n — 400,

O(yn,tn) — 0 >0
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which contradicts (7.2.40). If the sequence {t,} is bounded, i.e., there exists a
constant M > 0, independent of n, such that for any n =1,2,..., 0 <t, < M.
Thus there exists a point (y*,¢*) € [0,1] x [0, M] such that (yn,tn) — (y*,t%)
as n — 4o00. On the other hand, by (7.2.40) and the continuity of solutions in
Lemmas 7.2.1-7.2.12, we conclude that 8(yn,t,) — 0(y*,t*) = 0 as n — +o0,
which contradicts (7.2.1). Thus the proof is complete. O

In what follows, we shall establish the exponential stability of the solution in

H'. Let us introduce the flow density p = 11) Then we easily get that the specific
entropy

n=n(v,0) =n(p,0) = Rlogv + log ¥, (7.2.41)

satisfies
o R on 1

dp  p2 80 6

We consider the transform

(7.2.42)

A:€D,p= {(p,@) p>0,0> O} > (p,0)) — (v,n) € AD, 9,
where v = 1/p and n = n(1/p, ). Since the Jacobian

9(v,m)
9(p,0)
there exists a unique inverse function # = 6(v,n), which is a smooth function of

(v,m) € AD, 9. Thus the functions e, p can be regarded as smooth functions of
(v,n). Denote

1
=— <0 on Dy,
p

€= 6(’0, 77) = 6(’0, 9(1), 77)) = e(pila 9>a p= p(va 77) = p(v, 9(”7 77)) = p(pilv 9)

Thus we derive that e, p satisfy
€y = — ’ €n = 97 Pv = s P77 = . (7243)

Let

u? Oe Oe

E(U,u, 77) = ) + 6(“7”) - 6(1}, 77) - v

where v = fol vodz and n = (v, ).

Lemma 7.2.13. The unique generalized global solution (v(t),u(t),0(t)) to problem
(7.1.6)—(7.1.10) satisfies the estimate

2 u2

u _
9 +C v =P+ n—n) < Ew,u,n) < 5 +C1(lv—v*+ |n—n%). (7.2.45)
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Proof. The proof is the same as that of Lemma 2.3.4 in Qin [101], pp. 86-87. O

Lemma 7.2.14. Under the assumptions of Theorem 7.1.1, there are positive con-
stants C1 > 0 and y; = v1(C1) > 0 such that for any fizred v € (0,7;] and for any
t > 0, there holds

" (lu(t) = vll* + llu@®)1* + 10(2) — 011 + [[loylI* + lloy]1?)

t
+/0 e (llpyll* + luyll* + 10,11 + vy %) (s)ds < C1. (7.2.46)

Proof. By equations (7.1.6)—(7.1.8), it is easy to verify the following

2 _
(e + u2 ) = {—Pu + puuy + pby (p°0 + Mo)p;} ) (7.2.47)
t y
(p*02 +u0)p52 POy 910 r—2 (0, 2 pu?
n = + (p°0, + po) > p + 0
0 0 0
y

(7.2.48)

Since vy = 0, 6 = 0, we infer from (7.2.47) and (7.2.48) that

9 =
E(1/p,u,m) + [m@ +(p*02 + o) 2 p9§/9}

6
0 p—2
= [puuy +(1- 0)(p29§ + o) 2 pby —(p— p)u] , (7.2.49)
y
[(Py/P)2/2 + Pyu/PL + R@pi/p = —Rpyby — (puuy)y + Puz- (7.2.50)

Multiplying (7.2.49), (7.2.50) by €7t, Bet, respectively, and adding the re-
sults, we get

0

0
~yt
8tG(t) +e {

0 (pr, + (p%02 + o) "> p9§/9) + B (ROp;/p + Rpyb, — pu;",)]
= e [E(1/p,u,n) + B ((py/0)? /2 + pyu/p)]
p—2 0
+ et {(1 — B)puuy — (p— p)u+ (p*0% + po) 2 (1 - 9) p9y] ., (7.2.51)
Y
where G(t) = e [E(1/p,u,n) + B((py/p)? /2 + pyu/p)].
Next, integrating (7.2.51) over @); and using Lemmas 7.2.1-7.2.12, Cauchy’s

inequality and Poincaré’s inequality, we deduce that for small § > 0 and for any
7 >0,

e [llo(t) = oI + lIn(e) = nll> + w1 + oy )]
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t
+ / e[yl + lluy 1 + 110,12 (s)ds
t
<Gt Cuy [ e [lo= I+ 10— 81+ ull + oyl (s)ds. (7252
0
By Lemmas 7.2.1-7.2.12, the mean value theorem and the Poincaré inequal-
ity, we have

[[o(t) = vl < Cillvy (],
16(2) = 01l < Ci(lle(v,0) — e(v, )| + [[v(t) —vl)),
< Ci(lle(v, 0) = e(v, )| + [lvy (D)),

< Ci[l8y O + [Juy D + Moy ()] (7.2.53)

Similarly, we infer that
Cr () = vl < [Ip(t) — pll < Cillo(?) — o], (7.2.54)
16(2) = 61l < Cr(lin(E) = nll + [lo(t) = vl))- (7.2.55)

It follows from (7.2.53)—(7.2.55) that there exists a constant v{ = v;(Cy) > 0
such that, for any fixed v € (0,+1], (7.2.46) holds. The proof is complete. O

Lemma 7.2.15. There exists a positive constant v1 = v1(C1) < 71 such that for
any t >0 and any fived v € (0,71], the following estimate holds

" (Ihay @1 + 10, DI + 10, DI, )
t
+ / & (Iluyy 12 4+ 10,012 + uell? + 110:]12) ()ds
t 1
+/ / e“(|9y|f’*2+9§)9§ydydsgcl. (7.2.56)
0 JO

Proof. By (7.1.6)—(7.1.8), Lemmas 7.2.1-7.2.12 and the Poincaré inequality, we
have

el < C eyl + 101 + gy ) gl < Cillugyl,— (7:2:57)
—2
1601 < €1 (108,077 + 6, + D8yl + lull) . 1611 < Crlloyyll. (7.258)

Multiplying (7.1.7), (7.1.8) by —e'u,,, —e7'6,,, respectively, integrating
the results over ¢, and adding them, and then using Young’s inequality, the
embedding theorem, Lemmas 7.2.1-7.2.12 and Lemma 7.2.14, we obtain

t 1
T uy OF +10,01%) + [ [ (08,72 + 63+ 162, + 03, ) )
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t
<G+ 01/0 e“{(lwyll + lloy [+ llo g 172 g 1) eyl + (1611 + [y
+ g P72 gy 172) + (16, 17+ 116y ]|7 + ||9yHL°°)||9yyH(5)}d5

t
+G /0 6”5{H9y|\2 + oyl + llug 1 + (1611 + Huy||)||9y|\1/2||9yy|\1/2}(S)ds

t 1
<C+ 1/(20)/ / e“((wyv’*2 +6;+1)67, + ujy) (s)ds, (7.2.59)

0 Jo
which, together with Lemmas 7.2.1-7.2.12 and equations (7.1.6)—(7.1.8), gives
(7.2.56). O
This completes the proof of Theorem 7.1.1. g

7.3 Proof of Theorem 7.1.2
In this section, we shall study the global existence and exponential stability of
solutions to problem (7.1.6)—(7.1.10) in H?. We begin with the following lemmas.

Lemma 7.3.1. Under the assumptions of Theorem 7.1.2, the following estimate
holds:

t
—2
P+ 100+ [ (Ll 116,173 00 + 10,81, 2+ 161, ) (s < Co.
(7.3.1)

Proof. Differentiating (7.1.7) with respect to ¢, multiplying the resulting equation
by u¢, and integrating over (0, 1), we infer that

A

d 2 2 1 2 2 2 4
gt O + ey O < fluey (1 + Cr(lluy (O + 10" + lluy ()] 24)

IN

1
o et O + Colluyy 01 + 16:]),
which, together with Theorem 7.1.1, gives
t
e (t)]1? +/ [ty (s)]*ds < Co. (7.32)
0
Analogously, we have for any € > 0,
d _ —2
SN2+ O (18,1727 80y ()12 + 16,80, ()12 + 162, D112

< (16,172 01y (D112 + 10,01, (8)]1?)

+C (||9t(lﬁ)|\2 + ey (N7 + [[uyy (D17 + 10, ()11 + ||9y(t)||’£p)~ (7.3.3)
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Integrating (7.3.3) over [0,¢] and applying Gronwall’s inequality, we get for e > 0
small enough,

t
-2
|@@V+AOwﬁ2%W+wﬁﬂﬂ|%wywms@

which, together with (7.3.2), gives (7.3.1). O

Lemma 7.3.2. Under the assumptions of Theorem 7.1.2, the following estimate
holds:

t
||Uyy(t>|‘2 =+ ||9yy(t)||2 JF/O (HuyyyH2 + |‘9yyy|‘2) (s)ds < Ca. (7.3.4)

Proof. The proof is identical to that of Lemma 2.3.8 in Qin [101], pp. 90-91. O

Lemma 7.3.3. Under the assumptions of Theorem 7.1.2, the following estimate
holds:

t
Wm@W+Amm@W@sa. (7.35)

Proof. The proof is identical to that of Lemma 2.3.9 in Qin [101], pp. 91-92. O

Lemma 7.3.4. Under the assumptions of Theorem 7.1.2, for any (vo,uo,6y) € Hi,
there exists a positive constant vy = v5(C2) < 1 such that, for any fized v €
(0,74], the following estimate holds for any t > 0:

e ([l ()1 + 10011 + gy (D17 + 1855 (D]1%)

t
+/ € ([luty|* + 10y ]1*) (s)ds < Ca. (7.3.6)
0

Proof. The proof is identical to that of Lemma 2.3.11 in Qin [101], p. 96. O

Lemma 7.3.5. There exists a positive constant v = v2(Ca) < 4 such that, for
any fived v € (0,72], the following estimate holds:

lo(t) —v|| < Cae™ "Vt > 0. (7.3.7)
Proof. The proof is identical to that of Lemma 2.1.12 in Qin [101], pp. 69-70. O

This completes the proof of Theorem 7.1.2. O

7.4 Proof of Theorem 7.1.3

In this section, we shall study the global existence and exponential stability of
solutions to problem (7.1.6)—(7.1.10) in H{. We begin with the following lemmas.
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Lemma 7.4.1. Under the assumptions of Theorem 7.1.3, the following estimates
hold:

[ty (y, 0)]| + [|02y (y, 0)[| < C3, (7.4.1)

[[wee (y, ) + [|0e (v, 0) || + [y (Y, O)|| + [|02yy (y, 0)|| < Ca, (7.4.2)
t t

e (2)]]? +/ [ueey|?(s)ds < Cs + 03/ 02y (s)%ds, (7.4.3)
0 0

t
100 ()] + / 1012, (5)]2ds
t t
<Cs+ 026_1/ 18411 (5)ds + 015/ ([weyy 1 + ey 1) (s)ds.  (7.4.4)
0 0

Proof. The proof is the same as that of Lemma 2.4.1 in Qin [101], pp. 100-104. O

Lemma 7.4.2. Under the assumptions of Theorem 7.1.3, the following estimates
hold for any e > 0:

t t
luy (82 + / ey () 2ds < Cze™® + Cye? / (BeyI? + ey 1) (5)ds,
(7.4.5)

t t
16, (1)]2 + / 161y (3)2ds < Cae6 + Coe? / (RN
+ ||9yyy||2Hetyy||2)(5)d5- (7-4-6)

Proof. The proof is the same as that of Lemma 2.4.2 in Qin [101], pp. 104-107. O

Lemma 7.4.3. Under the assumptions of Theorem 7.1.3, the following estimates
hold:

t
Jte ()1 + ey ()1 + 1102 ()1 + 1102 (8) I +/0 (I\Umsyll2 + gy |I”
161y 12 + 1619y |12) (5)ds < Ca, (7.4.7)
t
[0yyy ()17 + [[0yy ()10 +/0 (lvyyyllFr =+ llvgy i1 ) (s)ds < Ca,  (7.4.8)
||Uyyy(t>”?{1 + ||Uyy(t)||12/[/1°o + Hoyyy(t)H?{l + ||9yy(t)||12/[/1,oo + Hvtyyy(t)”2
1
+ gy ()1 + 10y (8] +/0 (I\Uttll2 H1106el1? + Ny 1200 + 16y 152,00

+ Hotyy”%ﬁ + ||Utyy||§{1 + ||9ty||%/vlv°0 + ||Uty||%/vlv°0 + HvtyyyH%l)(S)dS < Cy,
(7.4.9)

t
/0 (ltyanlZas + [ByslZ) (s)ds < Ca. (7.4.10)
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Proof. The proof is identical to that of Lemma 2.4.3 in Qin [101], pp. 107-110. O

Lemma 7.4.4. Under the assumptions of Theorem 7.1.3, for any (vo,uo, bp) € Hi,

there exists a positive constant 'yil) = 7&1)(04) < ¥2(C3) such that, for any fized

v E€ (0,7&1)], the following estimates hold € € (0,1) small enough:

t t
@ + [y ()Pds < Cat Ca [ Pouy(o)Fds. (T4
0 0

t

t
6”t|\9tt(t)|\2+/ €7 |sy ()| ds S03+02€’1/ €| 0ryy (5)[*ds
0 0
t
+C’15/ 675(||utyy||2+||utty|\2>(s)d5, Vt > 0. (7.4.12)
0

Proof. The proof is identical to that of Lemma 2.4.6 in Qin [101], pp. 119-120. O

Lemma 7.4.5. Under the assumptions of Theorem 7.1.3, for any (vo,uo,6p) € Hf_,

there exists a positive constant 7&2) < 'yil) such that, for any fized v € (0,7&2)],

the following estimates hold € € (0,1) small enough:

t
w%w@W+/eﬂmw@W@
0

t
< O30 4 Coe? / evs(”etyy”? + ||utty|\2>(s)ds, vt > 0, (7.4.13)
0
t
N (O + [ )]s
t
< O30 + Coe? / evs(”utyy”? n ||9tty|\2>(s)ds, vt > 0. (7.4.14)
0

Proof. The proof is the same as that of Lemma 2.4.7 in Qin [101], pp. 120-121. O

Lemma 7.4.6. Under the assumptions of Theorem 7.1.3, for any (vo,uo,6p) € Hjlr,

there exists a positive constant v4 < 'yf) such that, for any fixed v € (0,74], the
following estimates hold for any t > 0:

t
wmwwW+mmw%W%wW+wmwﬁ+Aa%meHmMP
By 2 + 181y 12) (s)ds < Ca, (7.4.15)
t
evt(Hvyyy(t)”%ﬂ + Hvyy(t)H%/V1°°> +/0 e’ (”UUUUH%U + HvyyH%/VleJ) (s)ds < Cu,
(7.4.16)

6”(Huyyy(t)llfp + gy (O + 1055y (D17 + 105y ()10 + lvegyy (0]
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t
e O + 100y OF) + [ (sl + 100l + g By + 1 v~

F 11egyllFre + ey 1 Fn + [0y ll51.2 + ey [fra + ||vtyyy||§p)(8>ds < Cy,
(7.4.17)

¢
/0 e’ (”Uyyyy”%{l + ||9yyyy||%{1) (s)ds < Cy. (7.4.18)

Proof. The proof is identical to that of Lemma 2.4.8 in Qin [101], pp. 121-123. O

This completes the proof of Theorem 7.1.3. O

7.5 Bibliographic Comments

The motion of a viscous, heat-conducting fluid in a domain Q@ C R? can be de-
scribed by the system of equations, in the Newtonian form, known as the Navier-
Stokes equations. These fundamental equations in fluid mechanics have been stud-
ied by many mathematicians and a lot of results have been obtained (the interested
reader is referred to the monographs [35, 36, 71, 91, 101] and the references cited
therein). In the following we only recall results in the literature that are closely
related to ours. For the one-dimensional linearly viscous gas (or Newtonian fluid)
satisfying Fourier’s law of heat flux and standard thermodynamical relations, Ka-
wohl [59] and Jiang [50] obtained the existence of global solutions for 1D viscous
heat-conductive real gas with different growth assumptions on the pressure p, in-
ternal energy e and heat conductivity  in terms of temperature. Qin [97, 99-101]
established the regularity and asymptotic behavior of global solutions under more
general growth assumptions on p, e, k than those in [50, 59].

Ladyzhenskaya [66, 67] proposed a new model to study some kinds of non-
Newtonian fluids which is of interest to us. Since then there has been a remarkable
research in the field of non-Newtonian flows, both theoretically and experimentally
(cf. [3-5, 20, 44, 90, 94, 114, 122, 133, 141, 142, 146, 147] and references therein).
Let us briefly recall related results in the literature. Bellout, Bloom and Necas
[4] studied the non-Newtonian fluids for space periodic problems and showed that
there exist Young measure-valued solutions under some conditions. Dong and Li
[20] established the large time behavior for weak solutions for a certain class of
incompressible non-Newtonian fluids in R2. Guo and Zhu [44] investigated the
partial regularity of the generalized solutions (which are called suitable weak so-
lutions) to the modified Navier-Stokes equations which describe the dynamics of
incompressible monopolar non-Newtonian fluids. Neéasovd and Penel [90] proved
the L? decay for weak solution to the equations of non-Newtonian incompressible
fluids in whole space under some assumptions. Zhao and Li [146] studied the long-
time behavior of a non-Newtonian system in two-dimensional unbounded domains
and proved the existence of H?-compact attractor for the system by showing the
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corresponding semigroup is asymptotically compact. Zhao, Zhou and Li [147] con-
structed the trajectory attractor and global attractor for the case of autonomous
two-dimensional non-Newtonian fluid flows. Recently, Yuan and Wang [142] proved
the local existence and uniqueness of strong solutions for (7.1.1)—(7.1.3) in one
space dimension under the boundary conditions

w(0,t) = u(1,t) =0, 6(0,t)=0(1,t) = 0.

Wang and Yuan [133] established the global (in time) existence and uniqueness of
strong solutions under the assumptions 4/3 < p, ¢ < 2 for the following problem:

Pt + (pu)w = 07

(pu)e + (pu2)x - (|ux|q_2uz>x + (Rpf)z = 0,
(P0): + (pub)s — (|91|p7291>x + RpOu, = (ux)2



Chapter 8

Exponential Stability of Spherically
Symmetric Solutions to Nonlinear
Non-autonomous Compressible
Navier-Stokes Equations

8.1 Main Results

This chapter is a continuation of Chapter 1 in Qin and Huang [102]. Here we
establish the exponential stability of spherically symmetric solutions to an initial-
boundary value problem for nonlinear non-autonomous compressible Navier-
Stokes equations with an external force and a heat source in bounded annular
domains G,, = {x € R" : 0 < a < |z| < b} in R™ (1 < n < 3), based on the
uniform estimates obtained in Chapter 1 of Qin and Huang [102]. In Eulerian
coordinates, the equations under consideration read

-1
o+ On(ov) + " ) ) oo =0, (8.1.1)
2 (n—1) (n—1)
Cvp(atv + UaTU) - (/\ + 2:“) 6TU + r aTU - r2 v| + RaT(pv) = f(’f', t)a
(8.1.2)
2 (n—1) (n—1)
Cpp(010 + v0,.0) — KO0 — k 0r0 + Rpb | 0rv + , Y
2

—A [Brv + (n ; 1)1}] —2p(9,v)? — 2 (n; 1)1)2 =g(r,t), (8.1.3)

subject to the initial and boundary conditions

p(r,0) = po(r), wv(r,0) =wvo(r), 6(r,0)=0(r), r€G,, 1<n<3, (8.1.4)

© Springer Basel 2015 175
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v(a,t) =v(b,t) =0, 6.(a,t)=0.(bt)=0,1<n<3. (8.1.5)

When n = 2,3, equations (8.1.1)—(8.1.3) describe the spherically symmetric
motion of a viscous polytropic ideal gas with a non-autonomous external force f
and a heat source g. The unknown functions p,v, 0 are the density, velocity, and
absolute temperature, respectively, A and p are the constant viscosity coefficients,
R,C,, and k are the gas constant, specific heat capacity and thermal conductivity,
respectively, where one assumes constant R, C,,k,u > 0 and 8 = A+ 2u.

It is convenient to rewrite system (8.1.1)—(8.1.3) in Lagrangian coordinates.
The Eulerian coordinates (r,t) are connected to the Lagrangian coordinates (¢, t)

by the relation
t

r(C 1) = rol€) + /0 5(¢,7)dr, (3.1.6)

where

f}(Cat) = U(T(Cat)vt)a TO(C) = 77_1(4)7 77(7") = /dr Sn_1p0(8>d5,
r€Gn, d,=0(n=1), d,=a (n=2,3).

b
Suppose that po(s) > 0,s € G,,. Denote L = / 5" po(s)ds > 0. Using equations

(8.1.1), (8.1.5) and (8.1.6), we obtain

a

r(¢,t)
8t/ s" p(s,t)ds = 5,1v(0,8)p(0,1), &ij =1if i =7, &;=0ifi+#j.
dn

By integration, we derive

r(¢,t) ro(C) t
/ s"p(s,t)ds = / s"Lpo(s)ds + 0p1 | (vp)(0,7)dr
d dn 0
t
== < + 5nl (Up) (07 T)dT'
0

n

Thus under the assumption inf{p(s,t) : s € Gp,,t > 0} > 0, G,, is transformed to
Oy, with Q,, = (0, L), (n = 1,2,3). Moreover, we have
cr(¢,t) = [r(¢, )" p(r(¢, 1), )] 7 (8.1.7)
For a function ¢(r,t), we write @((,t) = o(r(¢,t),t). By virtue of (8.1.6) and
(8.1.7), we have
8@((, t) = at@(ra t) + vaﬁ”w(ra t)v

05, 1) = Drp(r r(C ) =

o(r1) Or(r,t). (8.1.8)
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If we denote (p,,0) still by (p,v,6) and ((,t) by (z,t). We use u := ,1) to denote
the specific volume. Therefore, by (8.1.7)—(8.1.8), equations (8.1.1)—(8.1.5) in the
new variables (z,t) are

ug — ("), = 0, (8.1.9)

vy _pnel (5 (r"—ulv)z . RZ) _ f(r(;v,t),t), (8.1.10)

r2n7291 1 e o
Cpl: — k ( Y )x ~ . (ﬁ(f‘ 11})1 — R6‘) (r 11})1
+2u(n — 1)(r"%0?), = g(r(z,t),1), (8.1.11)
together with

u(z,0) = uo(z), v(x,0)=vo(z), 0(z,0)=06(x), z€Q,, 1<n<3,
(8.1.12)

0(0,¢) = v(L,t) =0, 0,(0,t) =0,(L,t)=0, t>0, 1<n<3 (81.13)

where 8 = A+ 2u. By (8.1.6), we have

1

r(z,t) = ro() +/Otv(x,7')d7', ro(x) = {(dn)” +n/0x uo(y)dy}"

i.e.

re=wv, " lry=u, rlem—o=a, 7v|e=r =0 (8.1.14)

When n = 2,3, for constants A and pu, we assume that
nA+2u > 0. (8.1.15)

The aim of this chapter is, based on the uniform estimates established in
Chapter 1 of [102], to investigate the asymptotic behavior of solutions in H* (i =
1,2,4), including the exponential stability of solutions in H® (i = 1,2,4). Assume
that

up(x) >0, Op(x) >0on [0,L]. (8.1.16)

Assume that f(r,t), g(r,t) satisfy the following conditions which will be used
in various theorems.

f(r,-) € LY(Ry, L>®[a,b]) N L*(R,, L*[a, b]), (8.1.17)
g(r,) € LY(Ry, L>®[a, b)) N L*(Ry, L*[a,b]), g(r,t) >0, (8.1.18)
fr,) € LRy, L2[a, b)), fi(r,-) € L*(Ry, L?[a, b)),
fe(r,) € LA(Ry, L?[a, b)), (8.1.19)
g(r,-) € LRy, L?[a,b]),  gr(r,-) € L*(Ry, L?[a,b]),
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gr,) € LRy, 1%[a, ), (8.1.20)

Srr (P ), frt(7y), fua(r, ), frer () € LP(Ry, LP[a, B]),

Fr(ry-), fo(ry ), frr(r, ) € L (Ry, L2[a, b)), (8.1.21)

Grr(rs ) 9re(7,)s 9et (7, )s Grrr(ry ) € LP (R, L?[a, b)),

9r (), 9e(r, ), grr(r,-) € L (R, L2[a, b)). (8.1.22)
We will use the following notations: ||-|| 5 denotes norm of the space B, ||| =

.|| z2. Cy stands for a generic positive constant depending only on the H! norm
|- 1lz2. C1 g P P g only

of initial data (uo,vo,00), |Ifllzr®y.Loap))s I fllz2@y L2ty 9021y o)
9]l 2Ry ,22[a,b))- Co stands for a generic positive constant depending only on the
H? norm of initial data (ug, vo, o), i.e., on

I fllooery,22[a0])> I frllLo@®y L2tae))y 1fell L2y, L2700
||gHL°°(R+,L2[a,b])a HgTHL2(R+,L2[a,b])a Hgt”L2(R+,L2[a,b])

and the constant C;. Finally, Cy denotes a generic positive constant depending
only on the H* norm of the initial data (uo,vo, 6p), i.e., on

I frrllz2my L2y N frtllzzey p2ia))s IfeellLo@y,c2tae)) 1frrrlloz@y,L2a,))s

HgTTHL2(]R+,L2[a,b])7 ||g7“tHL2(R+,L2[a,b])a Hgtt”L2(R+,L2[a,b])a HgTTT||L2(]R+,L2[a,b])7

and the constants C7, Cs.

The next theorem concerns the asymptotic behavior of global solutions in
H (i =1,2,4).

Theorem 8.1.1.
(1) Assume that (ug,vo,00) € H'[0, L] x H}0, L] x H'[0, L] and (8.1.16)—(8.1.18)
hold. Then the problem (8.1.9)—(8.1.15) admits a unique global solution
(u(t), v(t),0(t)) € C([0, +00), H'[0, L] x Hy[0, L] x H'[0, L])
such that
u(t) = u(x,t) >0, 6(t) =0(x,t) >0 on [0,L] x Ry (8.1.23)
and, as t — +o0,

1((t) = u, v(t),0(t) = )| ot = 0, (8.1.24)

where

I 1 F v
u= L/o ug(x)dz, 0= CUL/O (Cvﬁo—i— 5 ) (x)dz.



8.1. Main Results 179
(2) Assume that (ug,vo,00) € H2[0, L] x H3[0, L] x H?[0, L] and (8.1.16)—(8.1.20)
hold, then the problem (8.1.9)—(8.1.15) admits a unique global solution
(u(t), v(t),6(t)) € C([0,400), H?[0, L] x HF[0,L] x H?[0, L])
such that (8.1.23) holds and, as t — 400,
1(w(t) = u, v(t),0(t) = )l 2 12> = 0. (8.1.25)

(3) Assume that (ug,vo,00) € H*[0, L] x H3[0, L] x H*[0, L] and (8.1.16)—(8.1.22)
hold. Then the problem (8.1.9)—(8.1.15) admits a unique global solution

(u(t),v(t),0(t)) € C([0,+00), H*[0, L] x H;[0, L] x H*[0, L])
such that (8.1.23) holds and, as t — 400,
|(w(t) —u,v(t),0(t) — 0)|| paxgix s — 0. (8.1.26)

The following three theorems concern the exponential stability of global so-
lutions in H® (i = 1,2,4).

Theorem 8.1.2. Under assumptions (1) of Theorem 8.1.1, suppose that there exist
positive constants ay and Cy such that

£ (), ) 20,1y + g (e t), )] 2a0.1; < Coe™ . (8.1.27)

Then there are constants C1 > 0 and 1 = y1(C1) > 0 such that, for any fized
v € (0,7m], the global solution (u(t),v(t),0(t)) obtained in (1) of Theorem 8.1.1
satisfies for any t > 0,

evt(nu(w — a3 + [[o@)|13 +110(E) — 013 + ||ut(t)|\2) (8.1.28)
t
+/O evs(”vufp Fllu—alZ + 10— 013 + w2 + [lvel + H9t||2)(s)ds <.

Theorem 8.1.3. Under assumptions (2) of Theorem 8.1.1, if there exist positive
constants aa and Cy such that

£ (r(z, ), )17 20,y + 1 (r(,8), )7 210,y + Ife(r(z, ), ) 1220,
+lge(r(e,t), )| 7210, + lge(r(, ), )220,y < Coe ™", (8.1.29)

then there are constants Co > 0 and v = v2(C2) > 0 such that for any fized
v € (0,72], the global solution (u(t),v(t),0(t)) obtained in (2) of Theorem 8.1.1
satisfies for all t > 0,

67t(llU(lf) =l + o)l + 10() = 017 + v @)]* + H9t(t)||2) (8.1.30)

t
b [ (IolBis + lu = al + 18 = s + o | + 16107 (s < Co
0
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Theorem 8.1.4. Under assumptions (3) of Theorem 8.1.1, if there exist positive
constants ay and Cy such that

e (r (s 1), O[T 210,y + 1Fe(r (s 8), Ol 210, g + [Lfor (7 (2, 8), )17 210,
1 fre(r(, 1), )1 7210, 1) + I Fee(r (@, 6), ) 20,1 + [ frrr (r (2, 8), D)l T 210, 1)
+ g0 (r(@, 6), )1 2210,y + 9e(r (2, 8), )1 2210,y + g (r (2, 8), )| T 20,1
F lgre(r(a, 6), Ol 221017 + Nlgee (r(2, 1), Ol 20,1
+ lgrer (r(@, ), )17 210,17 < Coe™ ", (8.1.31)

then there are constants Cy > 0 and v4 = v4(C4) > 0 such that, for any fized
€ (0,74], the global solution (u(t),v(t),0(t)) obtained in (3) of Theorem 8.1.1
satisﬁes for any t >0,

& (hut) = @life + w3 + 100) = 01130 + e ()3 + 10(E) 32 + e (8) s
t
)12 + 100(012) + [ (JolFys + e =l + 10 = e + o

+llvellrs + 10l Zrs + oz + ||9tt|\?{z)(5)d5 < Cu. (8.1.32)

8.2 Asymptotic Behavior of Global Solutions
In this section, we shall establish the asymptotic behavior of global solutions in
H' (i =1,2,4). We begin with the following lemma.

Lemma 8.2.1. Assume that (8.1.16)—(8.1.18) hold, if (uo,vo,0) € H'[0,L] x
H}0, L] x H[0, L], then problem (8.1.9)—(8.1.15) admits a unique global solution
(u(t), v(t), 6(1)) € C((0, +o0), HY[0, L] x H[0, L] x H'0, L]) satisfying

0<a<r(z,t)<b V(rt)el0,L]x[0,+00), (8.2.1)
0<Crt <u(x,t) <Oy, Y(x,t) €[0,L] x [0, +00), (8.2.2)
l7(t) = 7ll72 + e + Nult) = ullzp + @170+ 10) = 017 + [lue®)]?

t
+/0 (Iluf ullZ + Nollze + 10 = 017 + lluelF + llvell* + (16112

+lIr = 7l + Irel}e ) (dr < €1, W20, (8.2.3)
where 7 = (a™ 4 nux)/".
Proof. See, e.g., [102] and [111]. O

Lemma 8.2.2. Under assumptions (1) of Theorem 8.1.1, it holds that

dimu(®) = ulln = 0. (8.2.4)
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Proof. Differentiating (8.1.9) with respect to =, multiplying the result by u,, and
then integrating it over [0, L] and applying Young’s inequality, we obtain

1d

9 dt”uwH2 < H(Tn_lU)MH2 + ||u1||2

1
< llual® + Calllowa | + 1),
which, together with Lemmas 1.3.4 and 8.2.1, yields

lim [lug(t)] = 0. (8.2.5)

t——+oo
On the other hand, by the embedding theorem, we can deduce
l[u(t) = ull < Chllusl],

which, together with (8.2.5), gives (8.2.4). O

Lemma 8.2.3. Under assumptions (1) of Theorem 8.1.1, it holds that

lim o)l =0, Tim_[6(t) = 0] =0. (8.2.6)

t——+oo

Proof. Multiplying the result by v,., then integrating it over [0, L], by Young’s
inequality, we can deduce

1d

9 dtHUCEH2 < CIHUMH2 + Oy (HUCEHQ + Hgav”2 + ”f”2 + ”UﬂauwH2)

< Cillva|* + C1 (ol + 1£1% + 1),

which, together with Lemma 1.3.4 and Lemmas 8.2.1 and 8.2.2, yields

tl}IJPoo lvg (&) = 0. (8.2.7)
Similarly, we can obtain the second relation in (8.2.6). O

Proof of Theorem 8.1.1. Combining Lemma 8.2.2 with Lemma 8.2.3, we complete
the proof of (1) of Theorem 8.1.1. Similarly, we can derive (8.1.25)—(8.1.26). Till
now we have completed the proof of Theorem 8.1.1. O

8.3 Exponential Stability of Solutions in H*

Under the assumptions of Theorem 8.1.2, the global existence of solutions was
obtained in [102] and [111], which has been stated in Lemma 8.2.1. In this section,
we shall establish the exponential stability of solutions in H?.
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To this end, we introduce the flow density p = 11), and then we easily get that
the specific entropy

n=n(u,0) =n(p,0) = Rlogu + C, log 0, (8.3.1)
satisfies 5 R o o
To (8.3.2)
Op p 00 0
We consider the transform
A:Dpo=A{(p,0) :p>0,0>0} 5 (p,0) — (u,n) € ADyp,
where u = 1/p and n = n(1/p,0). Since the Jacobian
9(u,n) Cy
=— 0 D
6(p79) p2 < on 0,0
there is a unique inverse function 8 = 6(u,n), which is a smooth function of

(u, ?7) S .ADP_VQ.
Thus the function e, p can be regarded as the smooth functions of (u,n). We
denote by

e=e(u,n) = e(u,0(u,n)) = e(p",0), p=p(u,n) = p(u,d(v,n) =p(p~",0).
Thus we derive that e, p satisfy
2
RO RO+ B0 RO
Cu== e = 0, P,=-— w2 P, = Cou’ (8.3.3)
Let

V2 Oe Oe

g(ua Uﬂ?) = ) + 6(11,,?7) - e(ua 77) - ou (Uﬂ?)(u - u) - (Q)T] (uv 77)(77 - 77)7 (834)

where 1 = n(u, 0).

Lemma 8.3.1. The global solution (v(t),u(t),0(t)) obtained in (1) of Theorem 8.1.1
to problem (8.1.6)—(8.1.10) satisfies the estimate

2 2

v _ v
o H O (= uf =) <E@,um) <+ Callu—ul® +[n —nf*). (8.3.5)

Proof. By the mean value theorem, there exists a point (@,7) between (u,n) and
(u,n) such that

1 1[0% _ _ 0%, .
Ev,um) = Jv* 4 | oy (@) (u = u)® + 8277(%77)(77—77)2
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d%e
+ auan(”’”)(“_“)(”_”) ,

where 4 = Aou+ (1 — Ao)u, 7=Aon+ (1 —Xo)n, 0 < Ao < 1.
It follows from Lemma 8.2.1 that

O<Crt<a<o, i<y

which implies

2 2

%

T wm| +| 2 @
Oudn W

62u(u7 77) < Cl'

2 0% _
+ 6277(“’77)

Thus, by (8.3.6)—(8.3.7) and the Cauchy inequality, we get
1
E(v,u,m) < ,v” + Crlfu—ul” + |n—nf*).
On the other hand, we infer from (8.3.3) that

50+ Ro RO 0

Cuu = Cun = — ey =
u? ’ g Cyu’ meo,’
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(8.3.6)

(8.3.7)

(8.3.8)

which implies that the Hessian of e(u,6) is positive definite for any v > 0 and

6 > 0. It then follows from (8.3.6) that
1 _
g(vvua 77) 2 21)2 + C’1 1(|U - u|2 + |77 - n|2>a

which, together with (8.3.8), gives (8.3.5).

O

Lemma 8.3.2. Under the assumptions of Theorem 8.1.2, there are positive con-
stants C1 > 0 and v1 = v1(C1) > 0 such that, for any fized v € (0,71], i holds for

anyt >0
e (Jlu(t) = ull® + o) I2 + 10(8) = 0112 + s> + 12 2)
+ / 5 (loall + 1ol + 168217 + ) (5)ds < G,
Proof. Using equations (8.1.9)—(8.1.11), it is easy to verify that

2 z

kor?"=20, — 2u(n — 1)(r"‘2v)2 Bp(r—1tv)?
"= 0 Ty

2
(e + Y ) = {T"‘lva + kpr®" 20, — 2u(n — 1)(7“71_2“2)} + fo+g,
¢

(8.3.9)

(8.3.10)
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kr?n=202 g 2u(n—1)r" 2020,
o g s : (8.3.11)

n—1
wherea:prZ, p="A N Ve

Since u; = 0, 8; = 0, we infer from (8.3.10) and (8.3.11) that

+

0

o ) kpr2n=262
et/ + g [t M

= [Bp(r"_lv)(T"_lv)m

+k <1 - Z) prin 202 — (p— p)(r" ) — 2u(n — 1)7""_21)2] , (8.3.12)

[ﬁ2(pm/p)2/2 + pﬂl‘"v/p} +RBO/p=—BRpuby + B " fpu/p

— B (p(r ) (1)) + Br2 2 p(r )2 + B(1 — ) ups /.
(8.3.13)

Multiplying (8.3.12), (8.3.13) by €%, A%, respectively, and then adding the
results up, we get

0

0 _ kpr?n—2p2
vyt n—1,\2 x
0+ [ (oo + )

0
+ A(Rﬁ%i/p + BRp0, — Br* 2" p(r" 1) — B(1 — n)?"”vpz/p)}
=2 [ 1)+ AP a9/ par o)) 4 i (1= ) g2,
+ (1 = X272 Bp(r" o) (1" M), — (p — p)(r"tv) — 2u(n — 1)7“"_21)2]

x

+et [fv +g+ /\ﬁrlf”fpm/p} 7 (8.3.14)

where G(t) = 7" [5(1/@ u,n) + AB((pm/p)zﬂ + pﬂl’”v/p)] :
Integrating (8.3.14) over @, and using Lemmas 8.2.1 and 8.3.1, Cauchy’s

inequality and Poincaré’s inequality, we deduce that for small 8 > 0 and for any
7 >0,

e lp(t) = plI2 + In(t) = nll? + ()12 + o (6)]?]
t
+ / e [llpal + o2 + 18212 + l1wal12] (5)ds

t
<Cit Gy [ @[l ol + 16— 617 + ulP + lpal?] (5)ds
0

t
401 [ 171 + Nl o). (5.3.15)



8.3. Exponential Stability of Solutions in H* 185

By Lemmas 8.2.1 and 8.3.1, the mean value theorem, and the Poincaré in-
equality, we have

l[u(t) = ull < Crlua(B)]],
16(2) = 0]l < Ci(lle(v,0) — e(w, O)] + [lu(t) — ull)
< Ci([le(u, 0) — e(uw, 0)|| + [luz(2)])
< Crll0=@ + lluz (O] + [lv2(B)I])- (8.3.16)

Similarly, we infer that

O Hlu(®) = ull < llp(t) — pll < Cullu(t) - ul, (8.3.17)
10(2) = 61l < Cr(lin(t) = nll + u(t) — ul). (8.3.18)

It follows from (8.1.25), (8.3.15)—(8.3.18) that there exists a constant v, =
7 (C1) > 0 such that, for any fixed v € (0,71], (8.3.9) holds. Then the proof is
complete. O

Lemma 8.3.3. Under the assumptions of Theorem 8.1.2, there are positive con-
stants C1 > 0 and 1 = v1(C1) > 0 such that, for any fized v € (0,71], ¢ holds for
any t >0,

t
amwwﬁﬂ%wﬂ+Awmmﬁﬂmw+WM+wmﬂ@@sa
(8.3.19)

Proof. By (8.1.9)—(8.1.11), Lemma 8.2.1 and the Poincaré inequality, we have

lva (B)II* < Chllvas (8)]I2,

lee®1? < €1 (Iloae I + 101 + a2 + 172)]2), (8.3.20)
162 (1)]12 < Cullbua 2, 16012 < Co (10 (B2 + 0w (DI + gD
(8.3.21)

Multiplying (8.1.10)—(8.1.11) by —e"*v,,, —e70,., respectively, integrating
the results over [0,1] x [0,t], and adding them up, using Young’s inequality, the
embedding theorem, Lemmas 8.2.1 and 8.3.1-8.3.2, we finally deduce that

t
(IO + 18:1) + [ (lewel? + 160 ) 5)ds
0
t
<t C [ € { ool + el + 1611+ ot oo

+ (021 + luaball + 10211 + ||9vx||)||0m||}(5)d5
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<0ty [ (Il + 10l?) 51
t
+C / e (111210, + gl 210,11 ) (5)ds. (8.3.22)

It follows from (8.1.27) that there exists a positive constant 11 = 71 (C1) < aq
such that for any fixed v € (0, v1],

t
/0 e (1 200,01 + 19)3200,11 ) (5)ds < €

which, together with (8.3.22), gives (8.3.19). O

This completes the proof of Theorem 8.1.2. g

8.4 Exponential Stability of Solutions in H?

In this section, we shall establish the exponential stability of solutions in H?2. The
proof of Theorem 8.1.3 can be divided into the following several lemmas.

Lemma 8.4.1. Under the conditions (8.1.16)—(8.1.20), if (uo,vo,00) € H?[0, L] x
HZ[0, L] x H?[0, L], problem (8.1.9)—(8.1.15) admits a unique global solution

(u(t),v(t),0(t)) € C([0,+00), H?[0, L] x Hg[0, L] x H*[0, L))
satisfying (8.1.23) and for any t > 0,
lr(t) = ll3gs + llre ()12 + 1) — wllze + lo@)lF2 + 1) = 0ll7r + lue®)ll7n
t
+ e (@)1 + 116 (2)1I? +/O (Hu = ullirz + el + [ollzs + 116 = 0117
o oellgs + 102030 + i = 7l + lIrele ) (8)ds < Co
Proof. See, e.g., [102] and [111]. O

Lemma 8.4.2. Under the assumptions of Theorem 8.1.3, there are positive con-
stants Cy > 0 and v = ~v5(C3) > 0 such that, for any fixed v € (0,72], it holds
that, for any t > 0,

t
e (o) + loaa(B)]12) + / ¢ [lvra(s)|*ds < Ca, (8.4.1)
0

(1001 + 10 0F) + [ o Pis<Co (342
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Proof. Differentiating (8.1.10) with respect to ¢, we have

n—1
o <5(T Vs R9> s
u u/,, dt

(8.4.3)
Multiplying (8.4.3) by e?'v;, then integrating the result over [0, L], using

vy = (0 — 1>7"n727"t (ﬂ (r"’ulv)x - RZ)

x

d
(8.1.9) and Theorem 8.1.1, and noting that dJ; = frv + fi, we derive

L
1
/ onde = Jet ol = L (" orl?) = e el (8.4.4)
0

L n—1
/ eVt (6 (= 0)a — R9> dx
0 u u tx

L n—1 n—1 0 0
= evt/ v <6 ™ e _ (7 ;’)””ut ~R'+R Q?) dx
0 U U U u )

< =05 " o + Cae>* (Iallfs + 10412 + 1|1

L n—1
/ ev(n — 1)r"2oyu, (6 () RG) dx
0 u u

x

< O e sl + Cac™ (vl + 107 + s ), (5.4.5)

< C2evt (Hvt”2 + ”UﬂauwH2 + ”UMH2 + HewuwH2 + H91H2)
< G (lvell® + [[vazll® + 102117 + (1622 ]1” + [Juzll?) (8.4.6)

L
d
/ et fvtdx

Combining (8.4.3)—(8.4.7) and making use of (8.1.29), we derive that there
exists a positive constant 75 = v4(Cs2) < min(y;,az) such that, for any fixed

v € (0,73),

< Coe " unll? + Coe™ (I l3epo,ny + 1 filldepo,sy) - (8:47)

t
N ®IF + [ (o) Pds < G, (3.4.8)
0
which, together with (8.1.10), gives for any fixed v € (0,~4] that
s (2 < Coe™ (Jue(®)2 + laa (B2 + a3 + 10013 + 1V 200,0))
< Cs. (8.4.9)

Hence (8.4.1) follows from (8.4.8) by using the embedding theorem.
Similarly, differentiating (8.1.11) with respect to t, we get

2n—2 n—1
Cobye = k (T 9w> + (/3 (") _ R9> ("), (8.4.10)
u tx u u t



188 Chapter 8. Exponential Stability of Spherically Symmetric Solutions

dg

n—1 = 0 — B
+ (ﬁ(r u”) _Ru) ("), = 2l = 1) (" 720%) 4+

Multiplying (8.4.10) by 6;, then integrating the result over [0, L], and noting
that

di] = grv + i,
we have
L
C, d c,
/ MC00ude = T L (012) — e o), (8.4.11)
o 2 dt 2

L 2n—29 L 271—29
/ kevtet<7" 9”) dx:fe'yt/ k6, (T ””) dx
0 u tz 0 u t

—Cy [0 | + Coe™* (||uel® + 1162 ]%)
—C3 e Oua® + Coe™ ([lval|* + 11621) (8.4.12)

L n—1
/ et <ﬂ (" 0)a _ R0> (T”flv) Ordx
0 U u/, z

< Coe™ (lurall® + llus 4 + 1661 + 160l + [[02:]1)
< Coe™ (lwrall® + sl + 161 + s ]2) (3.4.13)

<
<

Next, it follows from (8.1.14) and Lemmas 8.2.1 and 8.3.1 that

n—1 . 0
u U || 100
1™ )|l < Co((Joall + vz ll), (8.4.15)
L L4
/ 0;dx| < Cy / (B(T"_lx)w - RO) (r" o),
0 o U
< Csl|vz]] (8.4.16)

which, in conjunction with the Poincaré inequality, gives

L
e ‘/ 0y
0

Thus, from (8.4.14)—(8.4.17) we derive, for € > 0 small enough, that

L n—
/ e’Yt (ﬁ (’I" 11})1 _ RG) (T‘n_lv)tmetdl'
0 u

u
< Coe[(r" ) 1164
< Coe(fvall + llveall) (lvall + [10eell)
< ee”|ra]l* + Coe™ (vall® + [lveall®), (8.4.18)

+ 0|l < Co(llvall + 162 ]l)- (8.4.17)
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L
‘/ —2u(n — 1)(r"2v?) e 0;dx
0

< Coe™ (10612 + luwvel? + ovrs 12)

< Coe™ (0117 + el + veel?)

< Coe™ (110612 + flesa 12), (8.4.19)

L
/ et dg 0:dx

From (8.4.11)—(8.4.20), it follows that, for £ > 0 small enough,

< Co(llgr 210,01 + lgel3ego,cy + 10:12)- (8.4.20)

t
SOOI + [ o) ds
0
t
<ot Ca [ (Ioalm 6112 + iy + Ll 1) (9

Next, by (8.1.29) and the Gronwall inequality there exists a positive constant
~4 < ~4 such that, for any fixed v € (0,~5],

t
ew||9t(t)|\2+/ [0 (5) [2ds < Co. (8.4.21)
0

Finally, from (8.1.11), we get, for any fixed v € (0,~4], that
|00 (1)1
< Coe (J0OIP + 100 s + () + 1) s + 9O 3ag0,11) < Con

which, together with (8.4.21), yields (8.4.2). O

Lemma 8.4.3. Under the assumptions of Theorem 8.1.3, there are positive con-
stants Co > 0 and 74" = ~v4'(Ca) > 0 such that, for any fized v € (0,~4'], it holds
that

t
e uge (t)]? Jr/ €7 ||uze(s)||*ds < Cy, ¥t > 0. (8.4.22)
0

Proof. Differentiating (8.1.10) with respect to x, we have

d [Ugy ROug, n —om (r" =) pp
ﬁdt( )4- 2 =17 4 (1 — n)rt "2 uw, 4+ 28 w2
n—1 2
L
u u u

+ 2R

0 2
U;; — T fou — (1 = n)rt T2 f
U
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=M (8.4.23)
where
(M| < Co([lvea |l + [[vell + Nuall + ozl + 11012 + | frllL2j0,2) + (1| 22(0,2)-

By Theorem 8.1.2, condition (8.1.19), (8.1.29), (8.3.22), (8.4.7) and Lemma
8.4.2, we get, for any fixed v € (0,~%],

t
[ erlareipas < co, >0 (8.4.20)
0

Multiplying (8.4.23) by et um, then integrating the result over [0, L], we
u

arrive at

d

Bdt

Ugq _ Uy Uz
(1) + O ) "= | <9 " 2+ Coe M. (8.425)

Integrating (8.4.25) over [0, t] and using (8.4.24), we conclude that there exists

"

a positive constant 4’ < ~4 such that (8.4.22) holds for any fixed v € (0,74"]. O

Lemma 8.4.4. Under the assumptions of Theorem 8.1.3, there are positive con-
stants Co > 0 and 2 = v2(C2) > 0 such that, for any fized v € (0,72],

t
/ & (Jvmsz|? + [saall?) (5)ds < Ca, ¥t > 0. (8.4.26)
0
Proof. Differentiating (8.1.10) with respect to x, we get

w2 < Co (Norall® + o300 + 30 + 100 + 1 fel3o,r)) -

By (8.1.29), Theorem 8.1.2, and Lemmas 8.4.1 and 8.4.2, we have for any
fixed v € (0,7"],

t
| e loanntolas < o, v >0, (8.4.27)
0

Similarly, we can show that there exists a positive constant v, < ~4” such
that, for any fixed v € (0, 2],

t
/ €| 0pea(s)||?ds < Ca, ¥Vt >0,
0

which, together with (8.4.26), yields (8.4.25). O

Proof of Theorem 8.1.3. Combining Lemmas 8.4.1-8.4.4, we can obtain (8.1.30).
O
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8.5 Exponential Stability of Solutions in H*

In this section, we shall establish the exponential stability of solutions in H*. We
begin with the following lemma.

Lemma 8.5.1. Under conditions (8.1.16)—(8.1.22), if
(uo,v0,00) € H*[0, L] x HS[0, L] x H*[0, L],
problem (8.1.9)—(8.1.15) admits a unique global solution
(u(t), v(t),0(t)) € C([0,+00), H*[0, L] x Hy[0,L] x H*[0, L])
satisfying for any t > 0,
lu(t) = allzs + llue@®zs + lueeO 1 + 0@ + lo®lze + lva @]
+16) = 017« + 110:(®)lI7= + 100 (E)1* < C, (8:5.1)
/Ot {||U = allfa + luellFs + luweelFre + lueeel® + 1ol Fs + lloellFs + lvel 7
10 = B13e + 163 + N0uall3 p(r)dr < Cou. (8.5.2)

Proof. See, e.g., [102] and [111]. O

Lemma 8.5.2. Under the assumptions of Theorem 8.1.4, there are positive con-
stants Cq4 > 0 and 'yf) = 7&2)(04) > 0 such that, for any fived v € (O,vf)], it
holds that for any t > 0,

t

t
e”tl\vtt(t)l\QJr/ 7 [vuea (7)|Pdr < C4+C4/ " ([veaa|* + €llOua|1?) (7)dr,
0 0

(8.5.3)

t
evt|\9tt(t)||2+/ 7|0t (7)[ldT < C4+C4/ T (10zwall® + ellvee|*) (7)dr
0 0

t
+C4/O " (Ilvall + lvra|* + 161 + 16c]1%) 10eel|* (7)dr- (8.5.4)

Proof. Differentiating (8.1.10)—(8.1.11) with respect to ¢, we can get

o] < Call0zll + lluall + llvewall + 10ell e + | frll 20,0 + [1fell 2270, 21):
(8.5.5)
00N < CalllOell 2 + Nlvall + Nlveall + 0]l + [lgrll 210,21 + 19l £200,2))-

(8.5.6)

Next, differentiating (8.1.10) twice with respect to ¢, multiplying the result
by €7tvy, integrating over [0, L], and using Young’s inequality, we obtain

d _
dt (€ loa@®)]?) + (CT = Cry)e” e (1) (8.5.7)
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&2 f 2)

< Cye? <|wa”2 + ||9w||2 + HvttH2 + HvtwwH2 + Hethz + Hetthz + di2

Now let us integrate (8.5.7) with respect to t, noting that

eli

dt? = frrv2 + frtv + frvt + ftt-

Then it follows from (8.1.31) that there exists a positive constant 'yil) = yil) (Cy) <
min (2é2 )2, a4) such that, for any fixed v € (0, 7&1)],
1
t
/0 675(|\fr||2L2[0,L] + | frrll o, + I frell7zgo,n) + HfttH%%o,L])(S)dS <Oy
which, together with (8.5.5) and Theorems 8.1.2-8.1.3, yields (8.5.3).
By the same method, differentiating (8.1.11) twice with respect to ¢, multi-

plying the resultant by e?*0,;, integrating the result over [0, L], and using Young’s
inequality, we have

d
ﬁ&w@mw)s&a{—wmw+ﬂmeW%P+wm2
d?g

2
i) )

+Cae ([val® + veal® + 1017 + 10:]7) 1612 (3.5.8)

10 + o2l + 11611 +

Finally, integrating (8.5.8) with respect to ¢ and noting that

d?g

d2 = grrv2 + 2grtv + grUt + )

we can derive there exists a positive constant 'yf) = 7&2)(04) < 'yil) such that, for

any fixed v € (0, f)],

t
| (U000 + oo B + ol + Nl po.1) () < C

which, together with (8.5.6) and Theorems 8.1.2-8.1.3, gives (8.5.4). O

Lemma 8.5.3. Under the assumptions of Theorem 8.1.4, there are positive con-
stants Cq4 > 0 and 7&4) = 7&4)(04) > 0 such that, for any fived v € (O,vf)], it
holds for any t > 0 that

t

¢
e'ytHvtz(t)H2 Jr/ e'YTHvtm(T)HQdT < Cy+ 045/ e’VTHHtMHQ(T)dT, (8.5.9)
0 0
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t
0, (1)) + / 7B (7|2 (8.5.10)
0
t
<Gt G / & [elfowall? + (el + 1813 + vael®)6ee]?) (7).

Proof. Differentiating (8.1.10) with respect to ¢t and z, multiplying by €”‘vy,, in-
tegrating with respect to x by parts, and using Young’s inequality, we have, for
any € > 0,

d _
(I B12) + (7 = Cry =) eraa (B (8.5.11)
vt 2 2 2 2 2 2 d2f :
<Cie HUMH +H91HH1 +5||Utm|| +||Utw|| +||U1HH2 +5H9tww” + dtde .

Integrating (8.5.11) with respect to ¢ and noting that

A2 f

dtdz = frrurl_nv + frtTl_nu + f’l‘vLE7

it follows from (8.1.31) that there exists a positive constant 'yil) such that, for any

fixed v € (0,75"],

t
/0 e (1132100 + Werll3zto,cy + 1 frel3ap0,01) (5)ds < Ca

which, together with Theorems 8.1.2-8.1.3, yields (8.5.9) if we take ¢ € (0,1) so

small that 0 < £ < min(1,1/(4C})) and 0 < y < min(v”, 1/(4C%)) = +¥. In the

same manner, we can easily show that there exists a positive constant 7§4) < 'yf)

such that for any fixed v € (O,vf)], (8.5.10) holds. O

Lemma 8.5.4. Under the assumptions of Theorem 8.1.4, there are positive con-

stants Cqy > 0 and 7&4) = 7&4)(04) > 0 such that, for any fived v € (O,vf)], it

holds for any t > 0 that
" (o2 + 101 + lora ()] + 0.0 (D]
+ / t 7 ([oeaall® + 1010l + owall® + 10202]2) (T)dr < Co. (85.12)
Proof. Adding (8.5.9) to (8.5.10), we have
(o0 + 0 012) + | O (otaal? + 16102l (r)r
0

t
<Ca+ Co [ O (lulP 4101 + ossl?) B P()r. (8513
0
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Using Gronwall’s inequality and Theorems 8.1.2-8.1.3, we can show that, for
7 € (0,75"),

t
(o O + 10O1F) + [ (owall + [61as) ()i < o (85.19)
0

Multiplying (8.5.3) and (8.5.4) by ¢, and then adding the results to (8.5.14),
we obtain

e (o2 + 10 ()12 + low (02 + 16 (D]
t
b [ (el Wl + ot + 61 ) (7
0

t
<Cot Cale) [ (Juall + sl + 16617 + 16017 60l *(r)ar.~ (8:5.15)
0

Applying Gronwall’s inequality to (8.5.15), and using Theorems 8.1.2-8.1.3,
we get (8.5.12). O

Lemma 8.5.5. Under the assumptions of Theorem 8.1.4, there are positive con-

stants Cy > 0 and 4 < 7&4) such that for any fized v € (0,74], it holds that, for
any t >0,

t

e’yt”Uzzz(t)”%ﬂ +/ e'yT”Uzzz(T)H?{ldT < Cy, (8.5.16)
0

" (oraa ()31 + 102 ()1 + [tz ()2 + [oraa (1)1 + 00 (8)]2)

t
b [ (ol 0l + D61l + ot + oz ) < G,
0
(8.5.17)

t
[ (Ivasaliis + szl ) ()7 < Ca (8.5.18)
0

Proof. Differentiating (8.1.10) with respect to z, and using equation (8.1.9), we
get

R
6dt( U )+ u2
n—1 n—1
— (Tl_n>mcvt + 2(T1_n>xvtz +T1_nvtmc +6{3(T Ulmmmum + 3(T ’Ulmmumm
u u

= ly) ud " 1y) poul 1) p Ut 02z [T
+‘6( 4) xT _'6( 2 xT _'6( )3 1!} +_lz{ __3 )
U u u u u

Oupp ity . 291%26 n 49uwum usf

-3 Y +4 Yo -6 14 }_(frru2+fru1)
u

+ 2

u? u3 u3 u3 u3
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= B(x,1) (8.5.19)

with

IE@] < Ca (Ilvell a2 + Nuallmr + llvallmz + 10cl 2 + | froll 2o, + I frll2210,19) -
It follows from Theorem 8.1.3, Lemma 8.5.4 and conditions (8.1.20) and

(8.1.29) that for any fixed v € (0,7&4)],

t
[ eripmitar <y viso (8.5.20
0

Multiplying (8.5.19) by e* Yere and integrating the result over [0, L] x [0, ¢],
u
we obtain

t t
uzss®IF + [ (€5t = O uaalr)|Pdr < Ca G [ B P
0 0

so if we take 'yf) = min(4é2 , 7&4)) > 0, then for any fixed v € (0, 7&5)], we get
2

t
e"yt||umm(t)||2 +/ ew||umz(7')|\2d7' < Cy. (8.5.21)
0

Differentiating (8.1.10) with respect to x, we can deduce that
[vzea ()]l < Cu ([lveall + 0]l 2 + vl 2 + lull 2 + 1 frllz2po,0) < Ca. (8.5.22)
Next, differentiating (8.1.10) with respect to x twice, we have

[vzawa ()] < Ca (lvewall + 101l ms + Ivllms + llullms + | frell 20,1 + HfT”LZ[O,L]) '
8.5.23

By the same method, differentiating (8.1.11) with respect to  once and twice,
respectively, we get

10z0a (Ol < CalllOcll + vl 2 + 1612 + llullg2 + llgrllz2p0,2]) < Ca,  (8.5.24)
[0zzaa (O] < Ca(l|0taall + |0l s + 0] 52 + [Jull e
+ lgrellz2(0,2) + lgr |l L2(0,17)- (8.5.25)

By Theorem 8.1.3 and (8.5.13), we have for v € (0,7&4)],

t
e'yt(HUmx(t”P + ||9xm(t)||2) +/0 e’r (vafofl =+ ”996%”?{1) (T)dT < Cy.
(8.5.26)
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Differentiating (8.1.10) and (8.1.11) with respect to t and using Theorem
8.1.2 and Lemma 8.4.1, we can show that

[viaa ()| < Ca (veell + 102 | + weall + 1l L200,7 + I fell £200,L7)

<y, (8.5.27)
0120 ()| < Ca (10ull + lvee | + llweall + Nlgrll 200,27 + llgell L210,1))
< Cu. (8.5.28)

By (8.5.23), (8.5.25)—(8.5.28), Theorems 8.1.2-8.1.3 and conditions (8.1.21)—
(8.1.22), we have, for v € (O,vf))],

t
ew(vaz(f)|\2+|I9mm(f)”2)+/ " (Ivaaaol*+10zaes*) (T)dr < Cy. (8.5.29)
0
Further, differentiating (8.5.19) with respect to x, we get

ﬁd (umzm> L R9umm

dt u?
(") srwatle Upaa (M 0)an o Uzzat? | OUszztly  Oplggs
- u2 T u2 -2 u3 +2 w2 + By
= Ei(z,1), (8.5.30)
with
d3f
IE1(t)]] < Ca | Nullzs + [[vllga + 10l za + [|vell s + a3l ) (8.5.31)

It follows from Theorem 8.1.3, Lemma 8.5.4 and conditions (8.1.21) and
(8.1.30) that there exists a positive constant yiﬁ) = 7£6)(C4) < 7§5) such that, for
(6)
any fixed v € (0,7, '],

t
[ erim@itar<ci o (8.5.32)
0

Differentiating (8.1.10) with respect to ¢t and x, we can derive

[Vtzaa (8] < C4(va|\ F 10tall + 1ol 20,21 + I frell 220,21 + L frrll 2270,z

+ lorllar + lfols + 18112 (8.5.33)

Multiplying (8.5.30) by e'Vtumm, integrating the resultant over [0, L] x [0, ¢],
u

and using Theorem 8.1.3, Lemma 8.5.4, (8.5.21), (8.5.29), (8.5.32) and (8.1.21)—
(8.1.22), we obtain, for v € (O,'yf)],

t
Mgz (t)|? +/ | tgrs(T)||2dT < Cy, Yt > 0. (8.5.34)
0
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Differentiating (8.1.10) and (8.1.11) three times with respect to « respectively,
we get

d3f

Jorsnrsll < Ca (olas + olls + 180 + s+ 5,4 ]) . 8539
d3g

[Oawea ] < o (18 + ol + 180 + s+ 4] ) . (8530

Differentiating (8.1.11) with respect to ¢ and x, we get

d2
) < Ca (100l + 180 + 164l + ol + ol + el + | ).
(8.5.37)
By (8.1.9), we obtain
lttzaz(®)| < Callo@®)llms,  thzae(@lar < Callo(®)]l g (8.5.38)

Similarly to (8.4.26), we conclude that there exists a positive constant v4 <
7&6) such that, for any fixed v € (0,74], (8.5.18) holds.

Finally, combining (8.5.5)—(8.5.6), (8.5.29), (8.5.32), (8.5.35)—(8.5.38) and the
embedding theorem, for any fixed v € (0,~4], we obtain (8.5.17). O

This completes the proof of Theorem 8.1.4. g

8.6 Bibliographic Comments

In the case when f = g = 0, Fujita-Yashima and Benabidallah [138, 139] es-
tablished the global existence of solutions to problem (8.1.9)—(8.1.15), Jiang [54]
proved the large-time behavior of global solutions in H', Zheng and Qin [150]
obtained the global existence of universal attractors in H' and H?, and Qin et al.
[108] established the exponential stability of global solutions in H*.

In the case when f # 0, g # 0, Qin and Huang [102], and Qin and Wen [111]
proved the global existence of solutions in H® (i = 1,2,4) to problem (8.1.9)—
(8.1.15), but the asymptotic behavior remained open. In this chapter, we estab-
lished the asymptotic behavior and the exponential stability of solutions to prob-
lem (8.1.9)—(8.1.15).

We also refer the reader to the related results in Cho, Choe and Kim [12],
Qin and Munoz Rivera [109], Xu and Yang [136], Yanagi [137], Zheng [148], Zheng
and Qin [149], and Zimmer [151].
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