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Foreword

Our crowded bookshelves all contain just a few ‘essential’ books — the ones we tend
to reach for as the most authoritative source on whatever the subject is. This book is
destined to become the essential text on the Discrete Element Method (DEM).

It is well known that the majority of products of the chemistry-using industries
are either sold as, or pass through, a particulate or dispersed form. Modelling of
these dispersed multiphase systems is therefore of economic importance. But that is
not the author’s main motivation. What he sets out to do is to understand the often
unexpected emergent behaviour of these systems — whether useful or not — by
building up models from the fundamental physics of their interparticle interactions.

DEM is deceptively easy. All that is apparently necessary is a framework for
building up a set of particles (or some other dispersed form such as bubbles or fibres
or people), some laws of interaction between them, and a means of stepping through
their developing behaviour, keeping track of forces and the resulting movement of
the particles at each step. However, each part of the process can be accomplished
superficially or thoroughly. Arguably, the real value of DEM lies not in prediction
of the outcome of equipment design variations, for example, but in ‘numerical
thought experiments’ where investigators can ask ‘what if” questions just as in real
experiments. But for such ‘experiments’ to be useful, the fundamental physics
behind the DEM simulation must be correct. Rigour in understanding the contact
behaviour between particles has been one of the author’s major contributions to the
subject, and it is extremely welcome that he has assembled the work of a research
lifetime on this subject here in one place. Contact behaviour includes all the
complex variety of surface physics, including adhesion, friction, elasticity and
plasticity, usually all interacting at once in a complex geometrical arrangement.
The author has battled over decades with these problems and includes here every
permutation which is found in current DEM practice.

DEM is not just about setting up appropriate contact equations and operating a
calculation framework with ‘good housekeeping’. It is also about making the most
out of the results which are obtained and drawing appropriate conclusions from
them. Since the volume of data is so much more than in most real experiments, the
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post-experimental analysis presents far more choices for the researcher. Here again,
the author has spent decades thinking about how best to go about these choices and
how to present the results in the most revealing way. This book gives us the benefit
of that experience.

It is always helpful for a foreword to give a glimpse of the personality behind the
author. Colin Thornton trained as a civil engineer, including site work in all
weathers. He therefore came to particle technology through interest in soils,
perhaps the most complicated of particulate systems. He realised that the theories
for behaviour of such systems were at best semi-empirical and wanted to do better.
The advent of DEM, through the work of Cundall and Strack, gave him the
opportunity he needed to develop a more fundamental understanding of what was
going on, and he has been relentless in pursuing this direction ever since.

Colin is above all a persistent man who (if I can put it this way) doesn’t suffer
fools or foolish explanations gladly. In other words, he doesn’t accept easy answers
or ‘received wisdom’. Like all the best scientists, he works things through for
himself and is reluctant to take shortcuts. I have had the pleasure first of being
external examiner to some of his PhD students when he worked at the University of
Aston and then of working with him as a colleague at the University of Birming-
ham. In particular, we worked together on some aspects of fluidisation, which was a
new area for Colin. As a reasonably experienced researcher in fluidisation, I was
able to explain quite a lot of the accepted theory and practice to him. Nevertheless,
the work went slowly because he insisted on questioning every point! He wanted, as
ever, to build his own thorough understanding of what was going on, from the
ground upwards. I felt challenged, in the best scientific sense. The reader will be
able to see some of the results of that work in the present volume. I am sure that
everyone Colin has worked with will have considered themselves similarly chal-
lenged, and their work has been the better for it.

Guildford, UK Jonathan Seville
17th May 2015



Preface

This book is about the author’s personal obsession with the complex behaviour of
particle systems. It is not intended as a textbook or a manual on how to do DEM
simulations. It is merely a collection of the author’s contributions to particle system
simulations. As such it should be of interest to other DEM researchers, but it is also
hoped that it will be informative to others working in particle technology/process
engineering and geomechanics, both experimentalists and theoreticians, in acade-
mia and in industry.

My initial inspiration for studying granular media at the particle scale was during
my PhD studies when I was introduced to the papers of Prof. Peter Rowe on ‘stress
dilatancy theory’. However, it wasn’t long before I realised that, in the context of
sand, this was no more than an empirical correlation that was applicable under
certain limited experimental conditions. This led me to consider regular arrays of
spheres and here I was inspired by the papers of Mindlin and coworkers, which
included analytical solutions for the contact interactions of elastic spheres, and the
paper by Rennie (1959), who considered rigid spheres.

The next logical step was to consider random arrays of polydisperse systems of
spheres, and in this area I am indebted to the late Prof. Gerard de Josselin de Jong
who explained to me how one could calculate stress and strain for particle systems
and the late Prof. Touran Onat who taught me everything I know about microstruc-
tural anisotropy, i.e. fabric. However, I am most indebted to Dr. Peter Cundall who,
in late 1979, gave me a copy of his 2D DEM code BALL and, in 1987, gave me a
copy of his 3D code TRUBAL on which all the results of the simulations presented
in this book are based. Without Peter’s generosity this book would not exist.

The book, in effect, tells the story of the author’s personal experience of DEM
simulations. Although trained as a civil engineer, in the mid-1980s the author
experienced difficulties in obtaining funding in soil mechanics. One referee to a
research proposal even suggested that this (DEM) was not fundamental research!
Fortunately the author discovered particle technology where it was deemed that the
most important research need was to know the nature and magnitude of the forces at
the contacts between particles.

vii
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Acknowledgments are due to all the PhD students and post-docs that I have
supervised who, of course, were the ones who actually did the hard work. I also
thank many other fellow researchers with whom I have had detailed research
discussions over many years, especially Prof. Mike Adams. However, most impor-
tantly, I need to recognise the contributions of Dr. David Kafui who, as my senior
post-doctoral fellow for 18 years, funded by 3-year contracts, was the corner stone
of my research group. David provided the initial training and subsequent day to day
advice and assistance to all my research workers, and, without him, the
all-important progressive continuity of the research group could not have been
accomplished.

Finally, I would like to thank my family, especially my wife Margaret, who
persuaded me, at the age of 25, to go to university and who financially supported me
during my undergraduate and postgraduate studies and, ever since, has always been
there for me.

Birmingham, UK Colin Thornton
31st March 2015
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Chapter 1
Introduction

Abstract Particle systems comprising assemblies of individual grains or agglomer-
ates are widespread in nature and in industry. When examined at the macroscale, they
may appear to behave like a solid, a liquid or a gas depending on such factors as the
phase volume of the particles and the flow characteristics of the superficial gas.
Experimental research has normally been limited to measurements at the macroscale
and attempts to provide a rational explanation of the macroscopic phenomena
observed have relied on intuition. In order to better understand the behaviour of
particle systems numerical modelling techniques have also been used. Traditionally,
continuum modelling has treated particle systems as complex pseudo-solids or
complex pseudo-liquids with different highly complicated constitutive equations/
closure relationships depending on the state of the system. However, with continually
increasing computer power it is possible to treat particle systems as discontinua,
recognising that sands, powders and grains are composed of discrete particles that
interact with each other at the microscale. This discontinuum approach is now widely
used in many areas of science and engineering and is commonly referred to as the
Discrete Element Method (DEM). This chapter discusses the origins of particle
system simulations and presents some early applications of DEM.

Particle systems comprising assemblies of individual grains or agglomerates are
widespread in nature and in industry. When examined at the macroscale, they may
appear to behave like a solid, a liquid or a gas depending on such factors as the
phase volume of the particles and the flow characteristics of the superficial gas.
Experimental research has normally been limited to measurements at the macro-
scale and attempts to provide a rational explanation of the macroscopic phenomena
observed have relied on intuition. In order to better understand the behaviour of
particle systems numerical modelling techniques have also been used. Tradition-
ally, continuum modelling has treated particle systems as complex pseudo-solids or
complex pseudo-liquids with different highly complicated constitutive equations/
closure relationships depending on the state of the system. However, with contin-
ually increasing computer power it is possible to treat particle systems as
discontinua, recognising that sands, powders and grains are composed of discrete
particles that interact with each other at the microscale. This discontinuum
approach is now widely used in many areas of science and engineering and is
commonly referred to as the Discrete Element Method (DEM).

© Springer International Publishing Switzerland 2015 1
C. Thornton, Granular Dynamics, Contact Mechanics and Particle System
Simulations, Particle Technology Series 24, DOI 10.1007/978-3-319-18711-2_1



2 1 Introduction

The Discrete Element Method (DEM) is a numerical simulation technique
appropriate to systems of particles in which the interactions between contiguous
particles are modelled as a dynamic process and the time evolution of the system is
advanced by applying a simple explicit finite difference scheme to obtain new
particle positions and velocities. The technique can be used both for dispersed
systems in which the particle-particle interactions are collisional and compact
systems of particles with multiple enduring contacts. Consequently, although
particle systems may have the superficial appearance of behaving like a gas, a
liquid or a solid when observed at the macroscopic scale, all these different states
can be investigated using DEM. In principle, DEM can be used to (i) examine data
that is normally inaccessible (ii) perform rigorous parametric studies (iii) explore
technical innovation prior to prototype testing. DEM results can be used to develop
new continuum models that link the information at the micro-, meso- and macro-
scales (the academic holy grail); directly relate the macroscopic performance to the
intrinsic properties that define the particle specifications; provide detailed informa-
tion about what happens inside particle systems (which may include new informa-
tion — discoveries) and thereby provide a rational framework for decision making
that can impact upon our everyday thinking.

1.1 Origins

It could be argued that particle system simulations started with the publication of
the paper by Metropolis et al. (1953) in which two dimensional systems of hard
discs were examined using a Monte Carlo approach to study systems in thermody-
namic equilibrium. This led to the development of Molecular Dynamics (MD) in
which individual particle trajectories were calculated as they interacted with their
neighbours, Alder and Wainwright (1959). In MD calculations the forces between
particles are simply a function of the distance between them and the particles are
frictionless and consequently do not rotate. For larger particles, i.e. micron-sized
and above, more complex interactions are necessary and this led to the application
of Granular Dynamics (GD) to rapid granular flows in the early 1980s (Walton
1983, 1984; Campbell and Brennen 1983, 1985). In GD simulations the particles
are considered to be rigid and collisions are instantaneous. Energy is dissipated
during collisions due to surface friction and coefficients of restitution. Simulations
of rigid spheres are ‘event driven’ in that the time step used to advance the
simulation is the time to the next collision. This varies during a simulation and at
the limit when there are simultaneous or continuous contacts, as in dense compact
systems, the time step goes to zero and the GD approach is no longer applicable.
Hence, the GD technique is generally restricted to relatively dispersed systems
subject to rapid granular flows. For more details of the GD approach the reader is
referred to the book by Pdschel and Schwager (2005). An alternative rigid body
approach that can be applied to quasi-static deformation of compact systems with
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enduring contacts was developed by J.J. Moreau and is known as the Contact
Dynamics (CD) method; see Chapter 2 in Radjai and Dubois (2011).

An alternative approach to simulating particle systems, sometimes referred to as
the ‘soft sphere’ approach, originated with the work of Cundall (1971). In their
seminal paper, Cundall and Strack (1979) describe the technique as the distinct
element method but it is now more commonly referred to as the Discrete Element
Method (DEM). In the DEM approach collisions occur over a finite time during
which the contact forces evolve as the relative approach of the two particle
centroids varies during compression and restitution. In the original paper, Cundall
and Strack (1979), the particles were allowed to overlap each other at the contacts to
represent the local deformation of the individual particles which were considered to
be connected by linear springs in the normal and tangential directions. The normal
and tangential contact forces were calculated incrementally as the product of the
spring stiffnesses and the relative surface displacement increments of the two
contacting particles. As a consequence, the computational technique is applicable
to quasi-static deformation of compact systems with multiple enduring contacts,
rapid granular flows that may be dominated by collisions and heterogeneous flows
in which both collisions and enduring contacts coexist.

1.2 Early Work

Cundall (1971) presented two computer codes (i) the BLOCK code for applications
to rock mechanics and masonry walls and (ii) the BALL code for applications to
soil mechanics and particle technology. Figures 1.1 and 1.2 illustrate the first
applications of these two codes. Figure 1.1 shows a configuration of square blocks
that represent a blocky rock system. The shaded blocks are fixed with the remainder
free to move in any direction. With an interface friction angle set to a low value of
1° the blocks were allowed to settle until an equilibrium state was approached. The
interface friction angle was then set to 20° and seven of the fixed (shaded) blocks
were removed. As can be seen from the figure, the result was failure by toppling.
Figure 1.2 shows a triangular pile of close packed discs that is initially allowed to
consolidate under gravity using a high interface friction. Then, the interface friction
angle was reduced to 10° and, as shown in the figure, the pile collapsed.
Following the publication of Cundall and Strack (1979) two conference papers
were published Cundall et al. (1982), Cundall and Strack (1983). For the benefit of
soil mechanics readers it is worth quoting the following observations on the
micromechanics of granular material during quasi-static deformation: “Contact
forces are concentrated in stiff chains of particles.” “Slip almost never occurs in
the stiff chains, but in the relatively unloaded regions between chains.” “Observed
macroscopic velocity discontinuities do not consist of contiguous lines of slipping
contacts, but often correspond to ‘hinge’ regions, involving coherent particle
rotations (spins).” “Particle spins contribute largely to deformation in an assembly;
the stiff columns collapse in a ‘buckling” mode that involves spins of alternating
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sign.” “During deviatoric loading, contacts with normal near the minor principal
direction are broken preferentially, and are not fully recovered on unloading.”
“After a sample undergoes some sequence of loading and unloading, ‘locked-in’
shear forces persist at contacts even though the boundary deviatoric stress is zero.”

In the 1980s DEM simulations were normally run on mainframe computers in a
time-sharing environment. This was extremely tedious and time consuming. For
example, Thornton and Barnes (1986) reported quasi-static shearing of a polydis-
perse assembly of 1000 discs. The simulations were performed on a CDC7600
‘state-of-the-art’ computer at the University of Manchester. During the shear stage
it took 15 months to achieve a deviator strain of 7 %. Research was mainly
motivated by soil mechanics involving 2D quasi-static simulations of discs with
linear springs. However, a notable exception was Walton (1983, 1984) whose
motivation was granular flow problems. An example is illustrated in Fig. 1.3
which shows the transfer of material from one inclined surface to another sloping
in the opposite direction. The figure is in fact a snapshot taken from a computer
generated movie showing the particles on the left and the corresponding particle
velocities on the right. It is notable that the particles are not discs but irregular
polygons.

Fig. 1.3 Flow of crushed oil shale rubble (Walton 1984, Fig. 1)
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Fig. 1.4 Gravity flow
through a fixed array of
horizontal cylinders
(Walton et al. 1988, Fig. 2)

In 1987, at a meeting in Sendai, Walton et al. (1988) presented the first 3D
simulations of particle flow, as illustrated in Fig. 1.4. The figure shows, for two
different particle concentrations, spheres falling under gravity through a regular
array of horizontal cylinders. Note that the vertical boundaries are periodic and
therefore a white circle indicates a sphere that is partially over the boundary and the
other part of the sphere can be seen at the opposite boundary. At the same meeting,
Cundall (1988) presented the first 3D simulations of quasi-static deformation using
the TRUBAL code, as shown in Fig. 1.5. The figure shows a polydisperse system of
432 spheres in a periodic cell and the effect of the number of spheres used on the
evolution of deviator stress and volumetric strain subjected to axisymmetric
compression.

In the 1990s research activity became focussed on particle technology. There
was an increasing number of 3D simulations with more complex contact force
models, see Chaps. 3 and 4, and computer generated videos became popular. This
became feasible as a result of the availability of dedicated workstations, which
encouraged a significant increase in the number of researchers active in DEM
simulations. The increasing number of DEM researchers was also a consequence
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Fig. 1.5 First application of the TRUBAL code (Cundall 1988, Fig. 1)

Fig. 1.6 2D DEM-CFD simulations of a gas-fluidised bed (Tsuji et al. 1993, Fig. 6d)

of the availability of commercial codes. More researchers started to consider
non-spherical particle shapes. Most significant, perhaps, was the pioneering work
of Tsuji et al. (1993) who combined Discrete Element Method (DEM) modelling of
the particle phase with Computational Fluid Dynamics (CFD) modelling of the
fluid phase to simulate gas fluidised beds, see Fig. 1.6. More details and discussion
of DEM-CFD simulations will be provided in Chap. 7.

In the context of particle technology, after 1995, DEM became widely used to
investigate hopper flow, rotating drums, mixers and other particle handling prob-
lems. Some examples are shown below (Figs. 1.7, 1.8, 1.9 and 1.10).


http://dx.doi.org/10.1007/978-3-319-18711-2_7
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Fig. 1.7 Hopper discharge
(Thornton 1991)
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Fig. 1.8 Drag line bucket excavator (adapted from Cleary 1998, Fig. 7)
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Fig. 1.9 V-mixer — N is the number of complete rotations (Moakher et al. 2000, Fig. 8)

Fig. 1.10 Ball mill — experiment (/eft) simulation (right) (Rajamani et al. 2000, Fig. 4)

1.3 Outline of the Book

Following this introductory chapter, the second chapter provides the theoretical
background to 3D DEM simulations dealing with particle kinematics and contact
force calculations in general terms.' Chapter 3 deals with the detailed calculation of
contact forces assuming that the particles are elastic, elastic-plastic or adhesive
spheres. Other particle-particle interaction laws are often used by DEM researchers
and these are discussed in Chap. 4. Chapters 5, 6, 7 and 8 provide details of various

! Throughout the book, the Einstein tensor subscript notation is used including the Kroneker delta:
6;=1ifi=jand §;;=0if i # j. Also, the soil mechanics convention that compression is positive is
adopted and, hence, anticlockwise rotations are positive.


http://dx.doi.org/10.1007/978-3-319-18711-2_3
http://dx.doi.org/10.1007/978-3-319-18711-2_4
http://dx.doi.org/10.1007/978-3-319-18711-2_5
http://dx.doi.org/10.1007/978-3-319-18711-2_6
http://dx.doi.org/10.1007/978-3-319-18711-2_7
http://dx.doi.org/10.1007/978-3-319-18711-2_8
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applications of DEM published by the Author. Chapter 5 deals with single particle
impact and agglomerate impact simulations are presented in Chap. 6. Chapter 7
reports recent work on fluidised bed simulations. Finally in Chap. 8, simulations of
quasi-static deformation of compact, polydisperse systems of spheres, the Author’s
original area of interest, are presented. The book is not intended to be a textbook or
a manual on how to do DEM simulations. For that, the reader is referred to
O’Sullivan (2011).
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Chapter 2
Theoretical Background

Abstract This chapter deals with the theoretical background of granular dynamics
and assembly mechanics. The complete set of equations required to perform three-
dimensional DEM simulations are provided, dealing with particle kinematics,
contact forces, timestep and damping. The chapter then considers various charac-
teristics of compact particle systems with enduring contacts and provides deriva-
tions of the coordination number, fabric tensor, stress tensor and assembly modulus.

2.1 Granular Dynamics

2.1.1 Particle Kinematics

In a large system of particles, the components (i =1, 3) of the translational and
rotational accelerations of each particle are given by the equations

dV,‘ Z F

Wi L9, 2.1
& p- + & (2.1)
do; Y _FuR 22)
d 1 '

in which F. are the contact forces acting on the particle and F,R are the moments
due to the tangential components of the contact forces, g is the acceleration due to
any gravity field, v and w are the linear velocity and angular velocity of the particle
respectively and / is the moment of inertia. For a solid sphere, I = %mRz.

By numerically integrating (2.1) and (2.2), using an explicit central finite
difference scheme, new velocities and positions of the particles are obtained from
the following equations.

dv; dw;
: 1d w 1d
v =y 4 —dtl At and @ =0 + —dz‘l At (2.3)
X1 = 0L IAr and 01 = 09 4+ Y Ar (2.4)

where x; and 6; are the coordinates and components of angular rotation of the
particle, Atz is the small timestep used to advance the simulation. From the new
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positions and velocities of the particles new contact forces can be calculated. There
is then a need to check for new contacts and contacts that have been broken. For two
spheres A and B, contact exists if the distance between their centres is less than the
sum of the two radii, i.e.

a=Ry+Rp—D (2.5)

where « is the relative approach in the normal direction and D is the distance
between the sphere centres.
If the translational and rotational velocities of the two spheres are v‘;‘a)‘;‘ and
v#, w? then the relative normal displacement increment at the contact is
Aa = (v} —v])nAt (2.6)
where 7 is the unit vector normal to the contact plane and directed from sphere A to

sphere B. The timestep At will be discussed later.
The relative tangential surface displacement increment is obtained from

A5 = (vE —Bvl.A)At —A(;n,- — (@0l niv2 — 0 ni ) RaAL (27)
W Niy2 — a)l-+2ni+1)RBAt

in which the subscripts i, i + 1, i + 2 are rotated between the limits 1 to 3,i.e.if i =2,

i+2=4-3=1.

2.1.2 Contact Forces

Having obtained the relative incremental displacements at a contact, the new
contact reactions can be calculated. The normal force can be updated incrementally
using

F' = Fo + k,Aa (2.8)

However, it is better to use the functional form, e.g. F, = k,a, using double
precision arithmetic, if the contact force model permits it, see Chap. 3 for details.
The tangential force is much more complicated and, necessarily, has to be updated
incrementally, as explained below.

During particle-particle interactions the contact plane continuously rotates and it
is, therefore, necessary to reorientate the current tangential force and tangential
displacement directions to be orthogonal to the new contact normal direction before
the tangential forces and displacements are updated. The rotation of the contact
plane is given by


http://dx.doi.org/10.1007/978-3-319-18711-2_3
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Q= ((vliz - vﬁz)At - Aan,ﬁ)% - ((VEH - vﬁj)At - Aoen,url)ni.ﬁ+2 (2.9)

where D is the distance between the centres of the two spheres. The directions of the
tangential force and displacement are adjusted using

Fi = Qu1F iy — Qo) and & = Qi 87, — Qi) (2.10)

where F? and 59 are the components of the tangential force and tangential
displacement before rotation of the contact plane and the adjusted tangential
force and displacement are obtained from

F,=(F;F)'? and 6= (65)" (2.11)

Having accounted for the rotation of the contact normal vector, a further
complication arises in 3D simulations. Generally, the direction of the tangential
displacement increment, defined by Eq. (2.7), is not coaxial with the direction of the
old tangential displacement, defined by Eq. (2.10), as shown in Fig. 2.1a. The new
tangential displacement is obtained by vector summation, i.e.

8 = M + A5 (2.12)

However, in almost all codes, the new tangential force is calculated as ;" = F/*
~+k,Aé and this is not exactly correct. (This can be demonstrated by considering a
constant normal force, i.e. the contact area does not change. In this case, it will be
found that, due to the non-coaxiality, the tangential force reaches the limiting value
of F, = uF, at the wrong value of 6.)

For clarity, in Fig. 2.1, the magnitude of the tangential displacement increment
has been grossly exaggerated relative to the magnitude of the old tangential

/

A5r = §new _ §old

e

gold

5old '

Fig. 2.1 Non-coaxiality on the contact plane considering (a) Cartesian and (b) cylindrical local
coordinates
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displacement. From Fig. 2.1a, it is tempting to consider that A has two compo-
nents, one that is coaxial with & ° and one that is orthogonal to the direction of & *'“.
If this was the case it would raise the question as to what is the reaction to this
orthogonal component of Aé.

The correct solution is obtained by considering cylindrical coordinates, as shown
in Fig. 2.1b. There is a normal displacement that creates a normal reaction force, a
radial tangential displacement that creates a tangential reaction force and a rota-
tional displacement (a twist) that is reacted to by a contact moment. Consequently,
the tangential force is updated using

F' = F* 4 kA5, (2.13)
using the scalar product
A5,A _ 5)1(44/ _ 5010[ (214)

and the tangential force components are calculated from

new
new 51’

t ‘67!6\4’ |

new __
Flev — F

(2.15)

The updated resultant tangential force is compared with the sliding criterion. If the
sliding criterion is exceeded then the tangential force is reset to the limiting value
F, = uF,.

Figure 2.1b also shows that, as a consequence of the non-coaxiality, there is a
rotational displacement increment indicated by the angle AB. However, due to the
small contact area, the resultant contact moment is generally ignored.

In the above, the contact stiffnesses k,, and k, are the current stiffnesses and
depend on the contact force model used, which will be discussed in Chaps. 3 and 4.

2.1.3 Timestep

During its movement, a particle may collide with neighbouring particles or walls.
However, the particle movement is also affected by particles far beyond its local
neighbourhood through the propagation of disturbance waves. This problem is
solved by selecting a suitably small value for the timestep such that, during a single
timestep, a disturbance can only propagate from a particle to other particles in
contact with it. For the case when linear springs are used to model the contact
stiffnesses the critical timestep is related to the ratio of the contact spring stiffness
to the particle density. For non-linear springs (e.g. a Hertzian spring) the critical
timestep cannot be calculated a priori. However, it was shown by Miller and Pursey
(1955) that the Rayleigh waves account for 67 % of the radiated energy in
comparison with the dilational (7 %) and distortional (26 %) waves. In the
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Birmingham DEM code, it is assumed that all of the energy is transferred by
Rayleigh waves. This is a good approximation since the difference between the
Rayleigh wave speed and the distortional wave speed is very small and the energy
transferred by the dilational wave is negligible. In addition, the average time of
arrival of the Rayleigh wave at any contact is the same irrespective of the location
of the contact point. Consequently, the critical timestep is based on the minimum
particle size and a fraction of the critical timestep is used in the simulations. The
critical timestep is given by the following equation.

ﬂRmin o ”Rmin ﬁ (2 16)

At = =
e =0 1 VG

where R,,;, is the minimum particle radius, p is the particle density, G is the particle
shear modulus, vy is the Rayleigh wave speed and A can be obtained from

1—-2v
2- 2 =16(1-2) |1 -2 2.17
-2y =16 -2) [1-2 (52 217
which can be approximated by

A =0.8766 + 0.1631v (2.18)

where v is the Poisson’s ratio of the particle.

2.1.4 Damping

Unlike most other DEM codes, the Birmingham code does not include a dashpot
force as part of the contact force. There are, however, dashpots that are used to
dissipate a small amount of energy due to elastic wave propagation through a solid
particle. The dashpot forces are not considered to be part of the actual contact forces
but they are added to the normal and tangential contact forces to provide the
contribution to the out-of-balance force and moment acting on the particle from
that contact, used in Egs. (2.1) and (2.2). The dashpot forces are given by

Fua = 2p\/m*kyAa/At and  Fog = 2p+/m* kA8, /At (2.19)
11

with — =—+— (2.20)
m my Mg

where m, and mg are the masses of the two particles and the value of f in Eq. (2.19)
is in the range 0.01-0.03.
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2.2 Assembly Mechanics

When considering compact systems of particles with enduring contacts there is a
need to define certain characteristics such as stability, microstructure and the state
of stress for the system.

2.2.1 Stability Considerations

The structural stability of a system of particles is related to the average number of
contacts per particle, i.e. the coordination number Z=2C/N where C is the number
of contacts, N is the number of particles and the 2 accounts for the fact that each
contact is shared by two particles.

Consider a 3D system of particles with y = oo, i.e. no sliding occurs at any
contact. The number of degrees of freedom of a single particle is 6 (3 rotations and
3 translations) and the total number of degrees of freedom in the system is 6 N. The
number of constraints (unknown reactions) at a single contact is 3 (a normal force, a
radial tangential force and a contact moment) and the total number of constraints in
the system is 3C. If the total number of constraints equals the total number of
degrees of freedom, i.e. 3C =6N, the system is statically determinate (isostatic)
and we can define a critical coordination number Z. = 4. If Z > Z,. then the system is
indeterminate (hypostatic) which means that there are more contacts than necessary
to ensure stability; it is a redundant system. If Z < Z_ then equilibrium cannot be
satisfied since there are fewer contacts than necessary to keep the system stable and
the system becomes a mechanism (hyperstatic).

Defining the coordination number as Z=2C/N is not necessarily appropriate
since this is the apparent coordination number and includes particles with no
contacts. We can define a geometrical coordination number

2C

LN

(2.21)

where N, is the number of particles with no contacts. This geometrical coordination
number can be useful to characterise clusters or agglomerates. However, this
definition includes particles with only one contact and these do not contribute to
the stability of the system. Therefore, in order to examine stability, we define a
mechanical coordination number

(2€—N))

Zn'I:i
(N—N;—No)

(2.22)

where N, is the number of particles with only one contact. Consequently we define a
system to be isostatic when Z,, =4.



2.2 Assembly Mechanics 19

The above is a limiting case. The other limiting case is when g = 0. In this case
there are no particle rotations and the only constraint at a contact is the normal
force. Therefore, for 4 =0, the isostatic state corresponds to Z,, = 6. Both in reality
and in simulations the interparticle friction is finite and, consequently, the critical
value of Z,, depends on the percentage of sliding contacts and it is difficult to
ascertain exactly what the value should be, but Z,,=4 can be taken as a lower
bound.

An alternative is to define a redundancy index I that is a function of the fraction
of contacts that are sliding. The redundancy index is defined as the ratio of the
number of constraints (allowing for the reduced number of constraints where
sliding occurs) to the number of degrees of freedom in the system. Therefore in
3D, if the contact moment referred to in Sect. 2.1.2 is ignored, then we can write

Ig = 1%(3 _62f> (2.23)

where fis the fraction of sliding contacts, e.g. 0.10. If Iz = 1 the system is isostatic,
hypostatic if Iz > 1 and hyperstatic if Iz < 1. If the particles with no contacts are
ignored and the number of particles with only one contact is negligibly small then

Eq. (2.23) can be rewritten as
3=2f
Ig =27, —— 2.24
R m ( 12 ) ( )

2.2.2 Microstructure

It is universally recognised that the mechanical behaviour of granular material is
strongly influenced by the closeness of the packing of the individual particles.
Consequently, it is common practice to characterise granular material by a scalar
parameter, e.g. void ratio, porosity or solid fraction. However, it is now well known
that the microstructure of granular materials is anisotropic and this requires a
tensorial description. Satake (1982) suggested that, for disc or sphere systems, the
structural anisotropy is defined by the orientational distribution of contact normals
n; that can be characterised by a second order fabric tensor ¢;;

2C

1
¢ij = %Z nin; :<ninj> (225)

1

where C is the total number of contacts, which are counted twice since each contact
belongs to two particles. For discs and sphere assemblies, the direction cosines of a
unit contact normal vector are given by
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A B A B
ni= (x* —x)/(R* + R®) (2.26)
where x;* and x/® are the positions of the centres of the two contacting particles of
radii R* and R®. Although higher order fabric tensors such as ¢, = (ninnn)
may also be considered DEM simulations have shown that a second order repre-
sentation, as given by (2.25), is satisfactory

If we consider a continuous distribution of contact normal vectors we can also
write

bi;= J E(n)nn ;jds2 (2.27)
' Q
which satisfies the conditions
J E(n)d2=1 and E(n)=E(—n) (2.28)
Q

where E(n) is the probability density function of contact normals and E(n)dS2 gives
the estimated rate of n whose directions are within a small solid angle d€2. The
probability density function can be expressed as a Fourier series which, in tensorial
form, can be written as

E(n) = Eo + Eijf;; (2.29)
where
O
f,-j:n,vnj—?j (230)

The Fourier coefficients are given by

1 1
15 15 15 0ij
g Ft =g (1) =g, (4.7 ) 232

These coefficients are traceless, completely symmetric and transform as tensors
under rigid body rotations. In 2D systems we can write

2n
bij= JE(H) nin ;do (2.33)
0

where 6 is the inclination angle of » with respect to the reference axis and
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E(0) = Eo + Eijf (2.34)
| 2r ] 227[ 5
with Ey = ZJ E©0)d0 =5 and E; = ;J E(0)f,;d6 = ;<f,-j> (2.35)
0 0

Alternatively E(f)can be expressed as
E(6) = ap + az cos (20) + b, sin (20) (2.36)
with

1 2 2 1 2 2
dp =55 2 = ;<f11> = ﬂ<¢11 _2> by = ;<f12> = ;4712 (2.37)

2r

It is of interest to note that if we assume a second order Fourier series represen-
tation then this implies limits on the degree of anisotropy that in 2D can be defined
by the deviator fabric (d)l — 4)2). If the principal axes of anisotropy coincide with the
reference axes then

E(6) = 21—77 + as cos (26) (2.38)

Since E(€) cannot be negative we take E(6) =0 at = r/2 to be the limit condition
and, using Eq. 2.37, we obtain ¢; =0.75 and ¢, =0.25. Consequently, the maxi-
mum possible deviator fabric is 0.5. A similar exercise in 3D yields a corresponding
maximum possible deviator fabric of 0.25, in the case of axisymmetric
compression.

2.2.3 Stress

Particle systems sometimes behave like a solid and sometimes like a liquid. In
general, the state of stress is defined by the following equation.

N
IAK ~~ 1
6ij = pdi; + ﬁz M+ VJ oldv (2.39)
where V' is the volume of the system containing N, particles, m is the mass of a
particle with a fluctuating velocity ¥ = x — (x) and JZ is the average state of stress
inside a particle.

The first term on the right hand side is due to the fluid pressure p which
contributes to the isotropic component of the stress tensor. The second term is the
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fluctuating kinetic energy density, or Reynolds stress, which is related to the
so-called ‘granular temperature’ and is, in general, anisotropic. The third term is
the Cauchy stress due to the particle-particle interactions, either collisional or
enduring.

The fluctuating velocities arise from the particle collision forces and the drag
forces, lift forces, etc., or anything else that causes the particles to deviate from the
fluid streamlines. In quasi-static deformation of compact systems, when particle
interactions are enduring, the second term is negligibly small and we can define,
what is known in soil mechanics as, the effective stress, 6;]-

! ]
Gij =0jj — [)5,']' = VJ Gil; av (240)

The average stress tensor for a single particle may be written as

p 1
ij = yp

Q

Jal,dV (2.41)

where V? is the volume occupied by a single particle. (Note that the volume
occupied by the particle V” is not the solid volume of the particle but also includes
the portion of the void volume that is more close to the particle than to any other
particle.) The volume integral can be replaced by a surface integral, using the
Divergence Theorem, to give

1
6~p~ = WJX,‘deS (242)

By considering the tractions f; to consist of discrete forces F; acting at point
contacts defined by the coordinates x; the integral in Eq. (2.42) may be replaced by a
summation over the n contacts of particle p. Thus

] n
ol = WZ xiF | (2.43)
1

Since the effective stress is not continuously distributed over the system (o; ;=0
in the voids) Eq. (2.40) may be rewritten as a summation

Np n

- _Z o/VP = _Z inF i (2.44)

noting that for each particle the coordinates x; are referenced to the particle centre
and, for systems of discs or spheres, x; =Rn;. Also, the contact force F may be
partitioned into the normal and tangential components, F,, and F,, so that F,,; = F ,n;
and F,; =Ft;, where n; define the contact normal vector and ¢ is orthogonal to ;.
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For polydisperse systems of spheres (or discs) the summation is simply carried out
over the C contacts in the system to give

CIg I

or, in terms of statistical averages, we may write
 C C
0= V<Dan,-nj> + V<D F,n,tj> (246)

where D = R® + R® is the distance between the centres of the two contacting
spheres.

2.2.4 Assembly Modulus

Following Walton (1987) we may construct an equation relating a small change in
the ensemble average stress to small changes in the interparticle contact forces.
Then, by making a simplifying assumption about the applied strain increment field
we may obtain the current effective modulus/compliance of an assembly of parti-
cles. In other words, we wish to establish the following relationships

. -1
ddl‘j = S,:,'kldﬁ‘k[ or d&‘,’j = C,‘jk[ddk] with Czj/'k[ = (Stjkl) (247)

Taking the pore fluid pressure to be zero, Eq. (2.46) may be written as

C
(7,'_,' = v<D}’l,F1> (248)
or, in incremental form
C
do;; = v(Dn,- dF ;) (2.49)

If k,, and k, are the current normal and tangential contact stiffnesses then
dF; = kynida + k.dé,; (2.50)

where da is the increment in the relative approach of the two particles and d§, is the
relative radial tangential displacement increment at the contact. It follows that
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doi; = S [(Dkudann;) + (Dhdbn,)] (2.51)

To proceed further, we assume that the incremental displacement du; of the sphere
centres is consistent with an applied uniform strain increment field, i.e.

du,— = dEinj (252)

where X; defines the coordinates of a sphere and dg;; is the applied strain increment
tensor.

In a polydisperse system of spheres the individual sphere rotations significantly
affect the relative tangential displacement increment at the contact, see Eq. (2.7), in
arandom way and are independent of the applied strain increment tensor. They are
therefore difficult to incorporate into the macroscopic stress-strain description.
Consequently if, for simplicity, we assume no particle rotations then dé,,= do;
and the normal and tangential relative incremental displacements at the contact are

ds; = (du® — du) — dan; (2.54)

However
(? — ) = deyy(X] =X} ) = dessDn, 239

Therefore
da = Ddé‘,‘jﬂjl’l,‘ (256)
dé; = Dde;jn j — Ddeyninn; (2.57)

which may be substituted into Eq. 2.51 to give

C
dG,'j = §[<k,1D2d£k,-n,njmnk> + <k,D2d8jkn,~nk> (258)

_ <ktD2d8k]ninlnknf>]

Noting that the second term is not necessarily symmetric we write

doj; = %[<k,,D2d8k1nkn1ninj> — <k,D2d£k1nkn,ninj>

(2.59)
+0.5((k;D*degmin ;) + (k,D*de ynen;)) |

Using dej = deydy and d&'_,‘k = d8k15ﬂ we obtain do’,'j = S,:,‘k[dé‘kl with
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C

Sifkl = v[<knD2nin_,-nkn1> — <ktD2ninjnknl>
+ 0-25(<krD2”_/711<>5i1 + </<1D2n,~nk>5_,~1 (2.60)
+ <k;D2njn,->5,-k + <k1D2ninl>5jk)]

An example of the use of Eq. (2.60) will be provided in Chap. 8.
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Chapter 3
Contact Mechanics

Abstract As a result of the relative displacements between contiguous particles,
forces are generated at the interparticle contacts. The contact force-displacement
behaviour depends on the material properties of the particles, the sizes of the two
particles in contact and the surface conditions. In this chapter we consider contact
force models that are based on theoretical contact mechanics. Equations are derived
for both the normal and tangential contact forces between two spheres in contact for
elastic and elastic-plastic interactions, with and without adhesion.

The application of external strain fields to granular materials causes relative
movement between the constitutive particles. As a result of the relative displace-
ments between contiguous particles, forces are generated at the interparticle con-
tacts and the macroscopic state of stress is a function of the distribution of contact
forces within the material. The contact force-displacement behaviour depends on
the material properties of the particles, the sizes of the two particles in contact and
the surface conditions. In this chapter we restrict our consideration to spheres
although the theories can be generalised to other shapes provided that the surfaces
are non-conforming and the curvature of the two contacting particles at the point of
contact is known (Johnson 1985).

3.1 Elastic Interactions

The normal and tangential force-displacement relationships for elastic spheres with
friction are provided by the theories of Hertz (1881), Mindlin (1949), and Mindlin
and Deresiewicz (1953). The normal and tangential contact forces are obtained by
integrating the respective normal and tangential traction distributions over the
contact area.
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3.1.1 Normal Interaction

For two contacting elastic spheres of radii R; (i =1, 2), the theory of Hertz (1881)
predicts a semi-ellipsoidal normal pressure distribution acting over the small
circular contact area of radius a, and expressed as

1/2

o) = |1 - ()] G.1)

which leads to normal displacements over the contact area as illustrated in the
cross-section shown in Fig. 3.1 and given by

zpo(l—vf 2 2
u; (r) :%j')@a —r) (3.2)

where E; and v; are the Young’s modulus and Poisson’s ratio for the respective
sphere and Eq. (3.2) satisfies the following boundary condition for the surface of the
contact area

o

7N

[25)

Fig. 3.1 Geometry of the local deformation at the contact between two dissimilar, unequal sized
elastic spheres subjected to an applied normal force (vertical scale exaggerated)
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2
u(r)+u(r)y=a— (W) (3.3)
with the relative curvature of the surface defined as
1 1 1
—_ =t — 4
R* R, + R (3:4)

and a = a; + a, is the relative approach of the centroids of the two spheres in
contact. Substitution of Eq. (3.2) into Eq. (3.3) for i =1, 2 leads to

2

(G2 e =) = (5e) o)

where the relative contact compliance is

L _(U-v) (-9
T E + E (3.6)

Substituting » =0 into Eq. (3.5), the relative approach is

T pya

and the radius of the contact area is obtained from Egs. (3.5) and (3.7) with r=a to
give

4= (3.3)
The total normal force is defined as
a 2 ,
F,=|p(r)2zardr= §p0na (3.9)
0
which may be substituted into Eqs. (3.7) and (3.8) to give
3F,R*
3 _ n
a = T (3.10)
and
9F?
d n (3.11)

o =——
16R*E*?
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noting also that
@ =R*a (3.12)

Rearranging Eq. (3.11)
4k [k 1/2
Fy=3E (R*a) (3.13)

from which the normal contact stiffness is defined as

_dF,
" da

ke = 2E*(R*a)'? = 2E*a (3.14)

3.1.2 Tangential Interaction

Although it is only strictly valid for two spheres with the same elastic properties, for
simplicity, we assume that the tangential interaction does not affect the normal
interaction. Mindlin (1949) demonstrated that, for a constant normal force F,,, the
effect of applying a tangential force F, < uF, is to cause a small relative tangential
motion, termed ‘slip’, over part of the contact area. Over the remaining part no such
relative movement occurs and the surfaces are said to ‘adhere’ or ‘stick’. The
application of a tangential force initiates the formation of an annulus of slip at the
perimeter of the contact area which, for a monotonically increasing tangential force,
progresses radially inwards until, when F, = uF,, the ‘stick’ area is zero and sliding
occurs with the tangential traction ¢(r) = up(r) for all r < a.

The tangential force results in shear deformation adjacent to the contact surface
as illustrated in Fig. 3.2, which shows the rigid displacements of the sphere centres
d;, the tangential elastic displacements at the contact surface u; and the slip
displacements s;. The resultant slip displacement

§ =85 — 8§ = (Ll] - 51) — (Ltz —52) = (Li] — Mz) — ((S] —52) (315)
In the ‘stick’ region s =0 therefore
M]—M2=5]—52=5 (316)

For the limiting condition F; = uF,, the distribution of the tangential traction is
given by

3 SUFR\ 2 12 .
q(r) = (27u13> (@@ —r7) for 0<r<a (3.17)

For F, < uF,, the corresponding traction distribution is obtained by superimposing
a negative traction over the stick region of radius » < a
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Fig. 3.2 Shear deformation adjacent to the contact due to an applied tangential force

3uF, 2 2\1/2 .
q(r) :_(2na3> (b —r) for 0<r<b (3.18)

Hence, the distribution of the tangential traction over the total contact area, shown
in Fig. 3.3, is given as

2rna’

o) = (3an) [(az AP - ,,2)’/2} for 0<r<b  (3.19)

3uF,\ , 5 o\1)2
q(r) = <2ﬂ-a3> (a —-r ) fOV b<r<a (319b)

Mindlin (1949) showed that the relative tangential displacement of the two spheres

1S
s (SN (Y (3.20)
— \U6G*a a? '

where

S + (3.21)
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A\ 4

Fig. 3.3 Tangential traction distributions during loading and during unloading

The magnitude of the tangential force is defined, using Eq. (3.19), as
»
F, = ZﬂJ qrdr = uF, <] — ?> (3.22)

Rearranging Eq. (3.22) and substituting in Eq. (3.20) we obtain the tangential force-

displacement law as
3uF F\
5= <16"G*"a) I- (1 —”F’> (3.23)

To obtain the tangential stiffness it is convenient to differentiate Eq. (3.23) to obtain
the compliance and then invert. Thus

dF, F A"’
k=2 —8G*al 1 - 3.24
=5 86 “( MF,,) (3:24)

The development of the slip annulus during loading involves a dissipative
process and hence the slip annulus does not simply recede during unloading. If
the tangential displacement is reversed then slip in the opposite direction
(counterslip) spreads radially inwards from the perimeter of the contact area. The
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energy required to produce the annulus of counter slip is twice that needed to form
the original slip annulus since the counterslip has to cancel the original slip and
progress the slip in the opposite direction.

The distribution of the tangential traction at the start of unloading is given by
Eq. (3.19a, b). To obtain the traction distribution during unloading, a negative
traction is superimposed of the form

1= 2L [ A @A) g osrse pas)

X SUFw\ 5 a\1)2 .
q(r) = -2 (27;(13) (a —7 ) for ¢<r<a (3.25Db)

where ¢ < r < a defines the annulus of counterslip. The resultant traction distribu-
tion is obtained by adding Egs. (3.19a, b) and (3.25a, b) to give

q(r) = —(3”F"> {(a2 S A Y () Ly o rz)’/z} for 0<r<b

2na’
(3.26a)
_ (3K 2 2\1/2 2 _ 212 . -
q(r)=— 3ol (a fr) 72(6 7)) for b<r<c (3.26b)
ra
qlr) = @ﬁis) (@—r)" for e<r<a (3.26¢)

which is illustrated in Fig. 3.3.
Integrating Eq. (3.26a, b, c) over the contact area to obtain the tangential force

v I
from which
Fr—F )"
c=all 7M (3.28)
2uF,

where F;* is the tangential force from which unloading commenced and is given by
Eq. (3.22). The relative displacement of the two spheres is given by

F 2 2
5= (2N (pE 0y
16G*a a a
3uF, «_p Y\ 2/ N\ 2/3
:< il ) 2(1—(F2’FF’)) ~ (-5 -1
]6G a MLy 24

(3.29)
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Fig. 3.4 Tangential contact A )
force-displacement A
relationship
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Differentiating Eq. (3.29) to obtain the compliance and then inverting provides the
tangential stiffness

1/3

dF, * (Fz*_Ff)
by =—5=8G a{ o (3.30)

The force-displacement curve for a reversal of the tangential displacement is
shown in Fig. 3.4. If unloading commenced from the point A on the loading curve
OA", then the tangential force decreases along ABC. The distribution of the
tangential traction at point B, when F;=0, is defined by Eq. (3.26a, b, c) and
illustrated in Fig. 3.3. Counterslip continues to spread radially inwards until point C
is reached when F, = —F," and ¢ = b. Further decreases in F, follow the inverse
loading curve OCC” in Fig. 3.4.

Following the sequence of loading and unloading, it is possible that a further
reversal in the relative tangential displacement of the two spheres will occur which
will result in a reloading situation. Consider that the initial tangential loading
produced slip over the annulus b < r < a, as shown in Fig. 3.3. Subsequent
unloading produced a counterslip annulus ¢ < r < a and a resultant traction
distribution, defined by Eq. (3.26a, b, ¢), when the tangential force was zero.
Reloading from this point will initiate slip at the perimeter of the contact area in
the same sense as that produced by the initial loading. This ‘reslip’ will spread
radially inwards over an annulus d < r < a with increasing tangential force and to
obtain the distribution of tangential traction during reloading a positive traction of
the form
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o =2(FN[@ - - @A e

q(r)y=2 (j’f;;) (a® — 1‘2)1/2 (3.31b)

is superimposed on the traction distribution at the start of reloading given by
Eq. (3.26a, b, c). Integrating the resulting traction distribution over the contact
area leads to

b’ S &
F, = uF, (1 _a5> — 2uF, <] _aj’) + 2uF, (1 _a5'> (3.32)
from which
(F —F")
d a{ 24F, (3.33)

where F;** is the tangential force from which reloading commenced. The relative
tangential displacement is given by

( 3uF, ool &
0= (mg*a) (1 2Tl

F, x\ 2/3 . 2/3 e\ 23
_ SuF, (] _F +2]_(F, ) _5 ]_(FIF,)
16G*a HEn 2uF, 24F,
(3.34)
which leads to the tangential stiffness during reloading
dF F,—Fr)'?
k; Zd—({ZSG*“[I —(’ZﬂiF’)] (3.35)

The tangential force is also dependent on the magnitude of the normal force and
hence there exists an infinite set of geometrically similar force-displacement
curves, each corresponding to a different value of normal force. Figure 3.5a
shows two such curves for the case of tangential loading. A theoretical analysis
of the behaviour of elastic spheres in contact under varying oblique forces was
presented by Mindlin and Deresiewicz (1953). Solutions were given in the form of
instantaneous compliances which, due to the dependence on both the current state
and the previous loading history, could not be integrated a priori. However, several
loading sequences involving variations of both normal and tangential forces were
examined from which general procedural rules were identified. Adopting an incre-
mental approach, the procedure is to update the normal force and contact area
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radius, using Eqgs. (3.13) and (3.10), followed by calculating AF, using the new
values of F,, and a.

From the figure,

A5 = A5, + A6, (3.36)
where
AF, AF, — uAF,
48, =12 and A, ==K (3.37)
ko1 k2
with
F,+uAF,\'"?
kot =8G*a and kyy = 8G*a<1 — t++> (3.38)
WF,
Hence
AF, — uAF
5= jaF, 4 —AF = HAE) (3.39)

uEy

T 8G*a (1 B F,+yAF,,)1/3
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By reanalysing all the loading cases considered by Mindlin and Deresiewicz
(1953), it was shown by Thornton and Randall (1988) that the tangential incremen-
tal displacement may be expressed as

1 AF, F puAF,
Ad = ——| LudF, + —— 3.40
except when
HAF,
AF, >0 and |AS] < 84 (3.41)
Rearrangement of Eq. (3.40) defines the tangential stiffness as
AF,
k, = 8G*a + u(1 — ) (3.42)
Ad
where
F AF, .
¢ =1- L]ff) AS > 0 (loading) (3.43a)
Uy
F* — F, + 2uAF,
g L oFr2ub) o (unloading) (3.43b)
2uFy,
F, — F** 4+ 2uAF,
o1 o HAFN) 450 (reloading) (3.43¢)
ML n

and the negative sign in Eq. (3.42) is only invoked during unloading. The param-
eters F* and F;** define the load reversal points, as shown in Fig. 3.5b, and need to
be continuously updated

F* = F 4+ uAF, and F** = F** — JAF, (3.44)

to allow for the effect of varying normal force.

For a current state given by point 1 in Fig. 3.5b, during loading, unloading or
reloading, a tangential incremental displacement equal to the right hand side of
Eq. (3.41) will result in a new state given by point 2 on the curve corresponding to
the new value of F,, Larger values of Ao will result in a state farther along the curve
such as point 3. A problem occurs if the conditions given in Eq. (3.41) are true,
since point 2 is not reached and the new state does not lie on the curve
corresponding to the new value of F,. However, by adopting an incremental
approach, a satisfactory solution to the problem is obtained by setting =1 in
Eq. (3.42) until the following condition is satisfied

> AR > p) AF, (3.45)

Note that this problem does not exist for AF, < 0.
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3.1.3 Contact Moment

As explained in Sect. 2.1.2, in addition to the normal and tangential force reactions
there is also a moment reaction to the twist (rotation about the contact normal
vector). An exact solution to this problem was provided by Lubkin (1951) for
monotonic loading. The solution is illustrated in Fig. 3.6. Unfortunately the solution
is very complex, involving both the definite and indefinite elliptic integrals of the
first and second kind; which is not useful to DEM researchers.

By making a small simplifying assumption, Deresiewicz (1954) obtained tangi-
ble analytical solutions for both the loading and unloading cases. Figure 3.7a shows
the hysteretic moment-rotation curves and Fig. 3.7b shows how the traction distri-
bution changes during unloading. It should be recognized that the moment-rotation
problem has all the same complexities as the tangential force-displacement problem
defined by Mindlin and Deresiewicz (1953), as described in the previous
subsection.

If we define a rotational ‘stiffness’ k, then, from Deresiewicz (1954), during

loading
* 3 -1/2 -
k=106 a (S M .y (3.46)
3 3uF,a
and during unloading
* 3 * _ -1/2 -1
k. = ]6(;461 201 _’iu —] (3.47)
3 2 2uF,a

These equations are for a constant normal force. For a varying normal force there
are an infinite number of moment-rotation curves and, for an increase in the normal
force, there is a problem if AM < uAF,a which has to be solved like the case of

a b
1.4 0.6 7
L— |
1.2 L
/
04
2 aztze 0.8 / M, /
3P, 0.6 Pa
04 \ 0.2
0.2
/
0 0
0 02 0.4 0.6 0.8 1.0 0 0.1 0.2 0.3 0.4 0.5
a Ga*p/tP,

Fig. 3.6 Lubkin’s (1951) solution (a) torsional traction distribution (b) relationship between the
twisting moment M and the angle of twist f (Lubkin 1951, Figs. 2 and 3)
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Fig. 3.7 Deresiewicz’s (1954) solution (a) hysteretic moment-rotation curves (b) traction distri-
butions during loading and unloading (Deresiewicz 1954, Figs. 3 and 1)

AF, < puAF, in the Mindlin and Deresiewicz model, see Sect. 3.1.2. However, to the
author’s knowledge, the contact moment-rotation model has never been
implemented in a DEM code.

3.2 Elastic-Plastic Interactions

With increase in compression between two spheres, ignoring the possibility of
fracture or crushing, the material behaviour becomes more complex as it passes
through a series of phases, namely elastic, elastoplastic, perfectly plastic and finite
plastic deformation (Mesarovic and Fleck 1999). Consequently, for implementation
in particle system simulations, some simplifying approximations are inevitable. In
this section we ignore the elastoplastic and finite plastic deformation phases and
consider that the material stress-strain behaviour is simply linear elastic followed
by perfectly plastic, i.e. the stress-strain curve is bilinear.

3.2.1 Normal Interaction

The initial normal interaction is elastic with the normal force, the normal stiffness
and the radius of the contact area defined by the theory of Hertz (1881), see
Egs. (3.12), (3.13) and (3.14). Thornton (1997) suggested that the normal interac-
tion becomes plastic when a ‘limiting contact pressure’ p, is reached at the centre of



40 3 Contact Mechanics

3 T T T T T

\V]
T
.
1

Contact pressure p(r)/Y
- 6]

2ns 5ns 10ns i

0.5

1 1.5 2 2.5 3
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the contact area. This idea originates from Hardy et al. (1971) who reported results
of a finite element analysis of a rigid sphere indenting an elastic-perfectly plastic
half-space, see Johnson (1985) Fig. 6.11. They showed that the Hertzian pressure
distribution is valid until the pressure at the centre of the contact area is equal to 1.6
times the yield stress o, of the material, at which point yield occurs below the
surface at the centre of the contact area. Further compression results in a spreading
of the plastic deformation zone below the surface and a slight modification of the
shape of the contact pressure distribution as the maximum contact pressure
increases further. When the pressure at the centre of the contact area reaches
about 2.4 times the yield stress, the plastic deformation zone in the substrate reaches
the contact surface at the perimeter of the contact area. Beyond this point, further
compression results in a significant change in the form of the pressure distribution.
Over an increasing central portion of the contact area the contact pressure becomes
almost constant with only a slight increase in the pressure at the centre of the
contact area. This is also illustrated in Fig. 3.8, which shows the evolution of the
normal contact pressure distribution for the impact of an elastic sphere against an
elastic-perfectly plastic half-space, obtained from finite element analysis by Wu
et al. (2003).

Thornton (1997) proposed that the evolution of the contact pressure distribution,
described above and illustrated in Fig. 3.8, could be approximated by an ‘elastic’
stage during which the pressure distribution is Hertzian followed by a ‘plastic’ stage
during which the pressure distribution is described by a truncated Hertzian
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distribution by defining the limiting contact pressure p, ~ 2.56,, as shown in

Fig. 3.9a. The consequence of this approximation is that the plastic loading curve is

given by a straight line tangent to the Hertzian curve at (F,,, a,) where F,,, and a, are

the normal contact force and relative approach when the pressure at the centre of the

contact area first becomes equal to the specified value of p,, as shown in Fig. 3.9b.
The limiting contact pressure p,, is specified and defined by

_ 3Fyy
- 2
Zﬂay

P, (3.48)

The corresponding relative approach a,, is obtained by substituting Egs. (3.12) and
(3.13) into Eq. (3.48) and rearranging to give

ay = (;jiffR* (3.49)

The corresponding normal force is

4
Fpy = §E*R*1/2aj/2 (3.50)

It is assumed that for a < a, the response is elastic and Hertzian theory is used to
calculate the normal force and contact radius. It is also assumed that further
compression results in plastic deformation. Therefore, for a > a,, the normal
force is given by

dl,

F,=F" —271J [p(r) — p,|rdr (3.51)
0
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where F!! is the equivalent Hertzian force, given by Eq. (3.10), that would result in
the same total contact area and q,, is the radius of the contact area over which a
uniform pressure p, is assumed, as indicated in Fig. 3.9a. Integrating Eq. (3.51) we
obtain

3/2
Fp=ndp, +F1 |1 (‘L")Z / (3.52)
ply n a

The limiting contact pressure p, is defined by Eq. (3.48) or, according to Fig. 3.9a,
by

j’FfI an2]?
=2y (—”> .
Py = ona [ a } (3.53)
The contact radius is obtained from
3R*FH
3 _ n
@ = (3.54)
By combining Egs. (3.48), (3.53) and (3.54) we find that
a,\? ay\?
)R e e (355
Substituting Eqgs. (3.54) and (3.55) into Eq. (3.52) we obtain
Fy=F,+ap, (a2 — ai) (3.56)

Substituting Eq. (3.12), the force-displacement relationship during plastic loading
is given as

Fy=Fuy+aR"p,(a—ay) (3.57)

which is linear, as shown in Fig. 3.9b.
According to Thornton (1997), the normal force during unloading can be
approximated by

4 .
Fo= 3R} (@~ a,)"” (3.58)

where R’; > R* due to contact flattening and is calculated using

3/2
4E* (2F* + F
R¥ = [Tz~ 2 3.59

4 3F;'<< 27 py > (3.59)

and F¥ is the maximum normal force from which unloading commenced.
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The parameter a;, in Eq. (3.58) is the relative approach at which the normal force
becomes zero, i.e. a, is the plastic (irrecoverable) displacement. It needs to be
calculated before Eq. (3.58) can be used. This is achieved by rearranging Eq. (3.58)

to give
2/3
3F*
.k
p

where @ is the maximum relative approach at the point of unloading. During
unloading the contact radius is calculated from

*
3R
4E*

(3.61)

An attraction of this model is that in the context of particle impacts it leads to an
analytical solution for the normal coefficient of restitution, see Chap. 5. However,
the unloading stage is not strictly correct. Unloading is elastic but not Hertzian as
implied by Eq. (3.58). The pressure distribution during unloading for elastic- plastic
interactions was analysed by Mesarovic and Johnson (2000). By using rigid punch
decomposition, they derived the following equation for the normal pressure distri-
bution during unloading.

2py . P 1/2
p=—_"sin (a*z _"2> (3.62)
where @ is the contact radius at the start of unloading. The normal pressure
distribution during unloading is illustrated in Fig. 3.10 which shows the analytical
solution given by Eq. (3.62) and results of finite element analysis by Wu
et al. (2003).

The corresponding normal force relationship, given by Mesarovic and Johnson
(2000) is

F, = Zi: { sin (%) - ;*[1 — (;)2} 1/2} (3.63)

The relative approach during unloading isa = a" — a, where a,, is the recovered
deformation during unloading. Martin (2003) derived the following equation for a,,.

Zpya* an? 1/2
a, == {1 - (;) } (3.64)
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Fig. 3.10 Evolution of the normal pressure distribution during unloading

Substituting Eq. (3.64) into Eq. (3.63) the normal force displacement relationship
can be expressed as

F, = 25" [sin /(1= 22)"" = a(1 = 22)""] (3.65)
where
E* * _
A= M (3.66)
2pya

If Thornton’s (1997) model is used for the loading stage (any change in R” during
plastic loading is ignored) then

o 2F, +F, . [(2F +F,
o =t g g = <#> (3.67)

can be used. Figure 3.11 shows a comparison between the unloading prediction
using Eq. (3.65) and the assumed Hertzian unloading of Thornton (1997). The
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Fig. 3.11 Comparison between the Hertzian and non-Hertzian unloading models

non-Hertzian unloading curve exhibits slightly less elastic recovery but the differ-
ence is very small.

3.2.2 Tangential Interaction and Contact Moment

It was originally assumed that the tangential interaction is the same as for elastic
interactions, i.e. Mindlin and Deresiewicz (1953), but that the tangential stiffness
would be higher since, for a given normal force the contact area would be larger.
This assumption has been demonstrated to be correct using finite element analysis
of the tangential interaction between a rigid sphere and elastic and plastic substrates
with the normal force held constant, C-Y Wu (2009, personal communication)
unpublished work, as shown in Fig. 3.12. Figure 3.12a clearly shows that the plastic
tangential interaction is much stiffer. A further consequence is that sliding occurs at
a much smaller value of tangential displacement.

According to Mindlin and Deresiewicz (1953) the tangential force-displacement
relationship for a constant normal force may be written as

5\
F, = uF, |1 — (1 - —> (3.68)
O

where 9, is the tangential displacement at which sliding commences and, for the
interaction between a rigid sphere and a planar surface, can be expressed as
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3 +0)(2 )
by= g (3.69)

The data shown in Fig. 3.12a is re-plotted in Fig. 3.12b with Eq. (3.68)
superimposed, which confirms the applicability of Mindlin and Deresiewicz
(1953) solutions to elastic-plastic tangential interactions.

In a similar way, it is expected that the Deresiewicz (1954) solution for the
contact moment will also apply to elastic-plastic interactions, although verification
of this is still awaited.

3.3 Adhesive, Elastic Interactions

Particles may adhere together in a number of different ways depending on the type
of bond formed. For relatively strong bonds the bond may be solid, cemented or
glued by a viscous liquid. Weaker bonds may be provided by pendular liquid
bridges, van der Waals forces, electrostatics or electro-magnetic fields. The type
of bond dictates the contact interaction law required. However, in this section we
only consider autoadhesive particles that result from van der Waals forces.

For particle sizes less than say 50 pm, van der Waals forces become significant
and particles tend to stick to each other. Two theoretical models for the
autoadhesion of spheres were developed over 40 years ago (a) the JKR model
(Johnson et al. 1971) and (b) the DMT model (Derjaguin et al. 1975). The two
models were initially thought to be competitive but subsequently shown to be limits
to a range of solutions that are governed by the non-dimensional parameter

)= (ﬂ)/ (370)

*2_3
E~“z
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where z; is the equilibrium separation in the Lennard-Jones potential, I" is the work
of adhesion and I = y; + ¥, — y;» where y,; and y, are the surface energies of the
two solids and y, is the interface energy, i.e. I’ =2y for like spheres. The general
consensus is that JKR theory applies for 4 > 5 and DMT theory applies for y < 0.1.
For intermediate values of u a complicated solution has been provided by
Maugis (1992).

The maximum tensile force required to break the contact, the so-called ‘pull-off’
force, is

Fo = 1.52T'R" (3.71)
for the JKR model, and
F. =2al'R" (3.72)
for the DMT model.
It may be noted that the DMT curve is simply the Hertzian curve displaced by a
constant amount given by Eq. (3.72). In other words, according to DMT theory, the

adhesion does not modify the elastic interaction and the contact breaks when a = 0.
The JKR theory is more complex.

3.3.1 Normal Interaction

Johnson (1976) provided the following relationship between the normal contact
force F,, and the relative approach a., which is shown in Fig. 3.13.

12
o 3(E)+2+2(1+5)
a_ : A (3.73)
4F 23l F )21
$h 24 2(1+£2)
where
352, 1/3

is the relative approach (negative) at which the contact breaks, point D in Fig. 3.13.

When the two surfaces come into contact the normal force between the two
spheres immediately drops to a value of F,, = —8F,,./9 (point A in Fig. 3.13) due to
van der Waals attractive forces. If the two spheres are compressed until the contact
force reaches a maximum (say point B in Fig. 3.13) and then decompressed until
a=0 then all the work done during the loading stage has been recovered when
point A is reached during unloading. At this point, when @ =0, the contact area is
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Fig. 3.13 Normal force- F,
displacement curve (JKR B
theory)

_Fnc

not zero, the spheres remain adhered together, and further work is required to break
the contact and create ‘new’ surface area. If the system is load controlled then the
situation becomes unstable at point C when F, = —F,., a = —ay /32/ 7 and the
contact breaks. However, particle system simulations are always displacement
driven in which case separation occurs at point D when a=-—a; and
F,=—5F,./9.

It was shown by Johnson et al. (1971) that in the presence of adhesion the contact
radius ¢ may be defined from

a = (3R"J4E")F" (3.75)

in which

1/2

F!' = F, + 2F,c + (4F,F,c +4F2) (3.76)

where F! is the apparent Hertzian force required to create the same contact area,

which is larger than the actual applied normal force F,.
The normal contact pressure distribution can be written (Johnson 1985) as

o= (E-01 -G -7 em

or

o= (Gl @ - ()07 em

where F/' — F, = (8zE'T'd’ )1/ ?is the force due to the adhesion traction. Therefore
the applied normal contact force is given by



3.3 Adhesive, Elastic Interactions 49

4E*d’ .
Fo="2_ (8zE'Ta’)'"” (3.79)
3R
and the corresponding relative approach by
2 2zl 1/2
a=2_ <ﬂ) (3.80)
R E

By differentiating both Egs. (3.79) and (3.80) with respect to a and then combining
to obtain dF,/da the normal contact stiffness can be defined by

anN3/2
. |3 —3(%
k,=2E"a —()m] (3.81)
3= (%)
or
3\ FT —3\/F,.
ky =2E*a| Y—-—— (3.82)
3\ FT — \JF,.

Which degenerates to the Hertzian solution (k,, = 2E"a) when there is no adhesion
(Fre=0).

3.3.2 Tangential Interaction

Savkoor and Briggs (1977) extended the JKR analysis to account for the effect of
oblique loading in the presence of adhesion. It was suggested that the tangential
traction distribution over the contact area would be prescribed by the ‘no-slip’
solution of Mindlin (1949) given by

—1)2

q(r) = 2:;2 [1 - (;)1 (3.83)

with the relationship between the tangential contact force and the tangential dis-
placement at the contact given by

F, = 8G"aé (3.84)
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It was also suggested that the application of a tangential force reduces the potential
energy by an amount F,6/2 leading to the following expression for the radius of the
contact area, see Thornton and Yin (1991).

3R"
(l3 = ——

4E

FZE* 1/2
‘ > (3.85)

Fp+2F, + <4FnFnc+4Fic_ 4G*

Equation (3.85) indicates a reduction in the contact radius under increasing tan-
gential force. Savkoor and Briggs (1977) suggested that this corresponds to a
‘peeling’ mechanism that continues in a stable manner until a critical value F,. is
reached when the square root in Eq. (3.85) becomes zero. Hence,

Fie = 4[(FyFpe + F2)G" JE"]"? (3.86)

It was argued by Savkoor and Briggs (1977) that when F, = F,. the contact area
would collapse to the Hertzian value. However, at F, = F,. Eq. (3.85) reduces to

®

3R
3

a =—7=F,+2F, 3.87

s ) (387)

and it was suggested by Thornton (1991) that, following peeling the micro-slip

model of Mindlin and Deresiewicz (1953) could apply, see Sect. 3.1.2, by replacing

F,by (F, + 2F,) and using Eq. (3.87) to define the contact radius. It then follows
that the sliding condition becomes

Fi = u(Fy + 2Fy) (3.88)

However, although experimental evidence of peeling has been provided for
rubber (Savkoor and Briggs 1977) results obtained by Homola et al. (1990) for
mica indicated that no peeling occurred. Consequently, we might conclude that the
effect of a tangential force in the presence of adhesion is not yet fully understood
and may be dependent of the type of material used.

Until this problem is resolved an alternative and simpler model, which might be
appropriate for hard materials, is to assume that no peeling process occurs. In this
case, the tangential stiffness is

k. =8G*a (3.89)
where the contact radius a is obtained from Eq. (3.75) and the sliding criterion is
F, = ur" (3.90)

in which F/ is defined by Eq. (3.76).
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3.4 Adhesive, Elastic-Plastic Interactions

Two contact mechanics based approaches to the modelling of adhesive, elastic-
plastic particle interactions have been reported in the literature by Martin (2003)
and by Thornton and Ning (1998).

3.4.1 Normal Interaction

Martin (2003) neglected any adhesion effects during loading and modelled the
loading stage as elastic-plastic in a manner very similar to that of Thornton (1997)
except that the plastic loading stiffness was higher. During unloading, the repulsive
force is given by Eq. (3.65) to which is added the negative adhesion force to obtain

F, = 2L {sin*’ (1-2)"—a(1 - ﬂ?)]/z} — ($arE*’)'”? (3.91)

T

where

_E*(a*—a)_ a\? 12
Y {1 - (—) ] (3.92)
Hence

@ =a*(1-2)" (3.93)

and

*

F,= 25:" [sin*J (1-2)" — a0 7/12)1/2}

— [sarEra* (1 - 2)"] " (3.94)

This model was used to simulate powder compacts for which the major concerns
are the control of dimensions due to springback during unloading and the strength
of the resulting green compact. In this context, the model is satisfactory but, due to
the neglect of adhesion during loading, it is not appropriate for general problems.
For example, the model cannot be used to simulate agglomeration in which
particles stick together when they collide with each other.

A more comprehensive model was presented by Thornton and Ning (1998). In
order to model elastic-plastic spheres with adhesion, as in the case of non-adhesive
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Fig. 3.14 Normal pressure distribution for adhesive, elastic-plastic spheres

elastic-plastic spheres, they again assumed a limiting contact pressure p,, as shown
in Fig. 3.14.
The applied force during plastic deformation, F,,, is obtained from

ap

Fop=F,— ZJTJ [p(r) — p,|rdr (3.95)
0

which leads to

3/2
4E* 45 dzp
Fup =Fn = e |1~ <f‘az

(3.96)
1/2
+ (82 E*a’)'"? [1 - (1 - ﬁ) } +1d,p,

a?

with F,, defined by Eq. (3.79). Using Eq. (3.77), the limiting contact pressure is
given by

(3.97)

2E*a, (2FE*\'"
Pr="2r% "\ ra,

ay
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Unfortunately, for the case of adhesive spheres, Eq. (3.55) is not exactly correct but
we nevertheless assume it to be a reasonable approximation in order to simplify
Eq. (3.96) and obtain

4E* a3
Fup :T*y—0zy(8ﬂFE>'<“)1/2—|—7rpy(a2 —ai) (3.98)
Differentiating Egs. (3.98) and (3.80),
1/2
dF 2zl E*a?
Wn" =2zp,a— (T} (3.99)
da 2a ar \'?

By combining Egs. (3.99) and (3.100), and substituting Egs. (3.66) and (3.70), it
can be shown that the contact stiffness during plastic loading is given by

dF,, 3TR*p, FI —2E*a,\/F,.
da 3 F,I,i - VFnc

(3.101)

Note that, for non-adhesive elastic-plastic spheres, 7R* Py = 2E*ay in which case
Eq. (3.101) would lead todF,, Jda = aR* Dy However, for adhesive elastic-plastic
spheres

R*p,  3\JFl =3V
Py _
2E%ay 3 JFH _ JF,.

(3.102)

During elastic unloading, by analogy with Eq. (3.82), the unloading stiffness is
defined by

3 FZ _SVFmrr
cij,, =2F*q| +—-—— (3.103)
¢ 3\/F,[,_,[~_\/Fm,‘r
where
4E* &3
Fll =" (3.104)
3Rp

and
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normal force ( u N )

o 50 100 150 200 250
normal displacement ( nm )

Fig. 3.15 Force-displacement curves

Fror = 1.5nFRﬁ (3.105)
with

R*FI*
F + \[4F . FiI*

Where F* and F"* are the applied load and the equivalent Hertzian force from
which unloading commenced. The corresponding force-displacement behaviour for
adhesive elastic-plastic interactions is illustrated in Fig. 3.15. The figure demon-
strates that the plastic loading curve is linear and that, with increase in initial
compression, the unloading stiffness increases and the pull-off force required to
overcome adhesion increases due to the decreased radius of curvature caused by
plastic flattening during loading.

R = (3.106)

3.4.2 Tangential Interaction

There is no detailed experimental information about the tangential interaction for
adhesive, elastic-plastic spheres. However, for non-adhesive, elastic-plastic
spheres, in Sect. 3.2.2 it was demonstrated, Fig. 3.12, that the elastic theory of
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Mindlin and Deresiwicz (1953) also applies to elastic-plastic interactions but with a
higher stiffness due to the larger contact area. Consequently, in the case of adhesive,
elastic-plastic spheres, a strategy that would be expected to produce reasonable
results is to apply the theory described in Sect. 3.3.2 for adhesive elastic spheres.
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Chapter 4
Other Contact Force Models

Abstract Implementation of the contact force models described in the previous
chapter into particle system simulation codes involve complex algorithms and require
load reversal points to be stored in memory. Consequently, many researchers elect to
use simpler contact force models in order to reduce computer time requirements. A
selection of the most common simpler contact force models are described in this
chapter, including linear springs and non-linear springs, with and without dashpots,
partially latching springs and adhesive piecewise linear models.

Implementation of the contact force models described in the previous chapter into
particle system simulation codes involve complex algorithms and require load rever-
sal points to be stored in memory. Consequently, many researchers elect to use simpler
contact force models in order to reduce computer time requirements. A selection of the
most common simpler contact force models are described in this chapter.

4.1 Linear Spring Models

The simplest elastic contact force model is to assume that, during contact, two
interacting bodies are connected, both normally and tangentially, by linear springs.
Hence, the normal and tangential contact forces can be calculated from the follow-
ing equations

F, = kpa (4.1)
F' = F 4 k,A5 except if F'™" > uF, then F'" = uF, (4.2)

where k, and k, are the normal and tangential spring stiffnesses, a is the relative
normal approach and AJ is the relative tangential surface displacement increment at
the contact. Note that the tangential contact force is calculated incrementally in
Eq. (4.2) In all contact force models, the tangential interaction has to be calculated
incrementally because sliding may have previously occurred and & is no longer
simply the extension of the spring. However, the exception to this rule is the linear
spring model. Tsuji et al. (1992) calculated the tangential force using F, = k,6 and
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suggested that, when sliding occurred, not only should the tangential force be reset
to the Coulomb limit F, = uF,, but also the tangential displacement should be reset
to 5 = pF,/k, The same suggestion was made by Brendel and Dippel (1998).
Although the method is correct for a linear spring model, Eq. (4.2) is simpler. For
non-linear spring models an incremental approach is essential, see discussion
provided by Thornton et al. (2011).

In the context of particle impact, the linear spring model predicts the contact
duration 7. to be

N7
te = ;z("]z> (4.3)

with

= — 4.4
m* m1+m2 (44)

where m; and m, are the masses of the two interaction spheres. Unrealistically, the
contact duration is independent of the impact velocity. However, it was shown by
Thornton et al. (2011) that, if the normal spring stiffness is calibrated by equating
Eq. (4.3) to the corresponding contact duration for a Hertzian spring, see Eq. (5.5),
very accurate predictions of the rebound characteristics for oblique impacts can be
obtained provided that a realistic value is used for the ratio of the normal and
tangential contact stiffnesses. As will be explained in the next section, the range of
realistic values is 1 > k;/k, > 2/3.

In the context of quasi-static deformation of compact particle systems with
enduring contacts it is not possible to reliably calibrate the spring stiffness. This
may be possible for a given stress level, i.e. shearing with the mean stress held
constant, but if a range of stress levels are examined then the resultant stress strain
curves can become unrealistic.

The most common contact force model, used for both normal and tangential
interactions, is the linear spring-dashpot model introduced by Walton (1983). This
model is widely used to artificially dissipate energy through viscous means without
implying that the particles are actually viscoelastic. In the linear spring-dashpot
model the normal force is calculated using

F, =k,a+ Zy\/m*—knvn (4.5)
where v, is the relative normal velocity. The tangential force is obtained from
Fl,=F,' + kA5 (4.6)
and

F,=F| +2y/m*ky, exceptifF, > uF, then F, = uF, (4.7)
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where, for a given timestep 7, F'!, is the elastic component of the tangential force and
v, is the relative tangential surface velocity. In Egs. (4.5) and (4.7) the value of the
damping coefficient y is dependent on the desired value of the normal coefficient of
restitution e,, which is defined by

e, = exp (—1/22*;@) (4.8)

where ¢. is the contact time during an impact. For the linear spring dashpot model a
widely used equation is

—Ine,
r= et (49)

V2 4+ 1n’e,

However, the equation is incorrect since it is based on the assumption that the
contact time 7. ends when the displacement « first returns to zero. At this point the
normal force is tensile which is not acceptable in simulations of non-adhesive
particles. For non-adhesive spheres, the appropriate value of #. to be substituted
into Eq. (4.8) is the time when the normal contact force first returns to zero. The
correct solution for the linear spring model was provided by Schwager and Poschel
(2007). Their solutions, given by Eq. (23) in their paper, can be rewritten as

271 —y? 1
Ine, = |z~ arctan % for y<— (4.10a)
VI1-7p? 2y> =1 V2

2y+/1 —y? 1
Ine, = S S —— (u> for 1>y>— (4.10b)

VI —y? 2pr -1 V2

N
Ine, = ——— In VY for y>1 (4.10¢)
I—y \r—vr-1

It is worth noting that for y <0.707 the coefficient of restitution e, >0.21 and
hence, in particle system simulations, only Eq. (4.10a) is relevant. Using an
elaborate curve fitting technique for Eq. (4.10a, b and c), an expression for y as a
function of e, was provided by Thornton et al. (2013).

Many researchers mistakenly attribute the linear spring-dashpot model to
Cundall and Strack (1979). Although dashpots were used by Cundall and Strack
(1979) they did not contribute to the contact forces. The contact forces were simply
the forces in the springs. However, the dashpot forces were added to the spring
forces to provide the contribution to the particle out-of-balance force to be used
when calculating the particle accelerations. The original purpose of the dashpots
was to suppress ‘rattling’ at contacts during 2D quasi-static simulations. However,
the use of dashpots in the sense as used by Cundall and Strack has a physical
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justification since they are used to dissipate a small amount of energy due to elastic
wave propagation through a solid particle, as explained in Sect. 2.1. When two
adhesive spheres collide at small enough relative impact velocities that they stick
together then, without these dashpots, the normal and tangential contact forces
oscillate ad infinitum and never reach equilibrium.

4.2 Non-linear Spring Models

In order to avoid the complexity of the hysteretic tangential force model of Mindlin
and Deresiewicz (1953) a number of researchers choose to use the ‘no-slip” model
of Mindlin (1949) which, when combined with Hertzian theory for the normal force
provides a non-linear spring model; to which non-linear dashpots may be added in
order to dissipate energy. Considering the combined non-linear spring-dashpot
model the normal and tangential contact forces at the ith timestep are obtained from

4
Fn= §E*\/R*a3 + 27/ m* kv, (4.11)
Fie=F;' + ka5 for AF,>0 (4.12)
S ,
F, = F;;’ (k’:'> +k/AS for AF, <0 (4.13)
t

F,=FL +2y/m*ky, exceptif F,>uF, then F,=uF, (4.14)
in which the variable stiffnesses are
k, =2E*VR*a and k =8G*VR*a (4.15)

and the damping coefficient y can be obtained as a function of the desired value of
restitution coefficient using Eq. (B6) provided by Thornton et al. (2013)

As indicated by Eqs. (4.12) and (4.13), the elastic component of the tangential
force Fi, depends on whether the normal force is increasing or decreasing. If the
normal force decreases the contact area decreases. Associated with the reduced
contact area is a reduced stiffness and for that stiffness the current magnitude of the
relative surface displacement is insufficient to generate the magnitude of the elastic
component of the previous tangential force F i;l which needs to be rescaled
according to Eq. (4.13). Elata and Berryman (1996) demonstrated that if the old
tangential force is not rescaled then spurious energy can be created.

Using Egs. (3.6) and (3.21) and the relationship E = 2(/ + v)G, the contact
stiffness ratio k can be written as
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k; Gz(]—vj)—l—G](]—I/z)

k=—=2 4.16

k,, GQ(Z—D])+G](2—V2) ( )
Note that if v; = v, = v, Eq. (4.16) reduces to
2(1 —v)

=2y =/ 4.17

K (2 _ l/) ( )

evenif G; # G,. Also, since 0 < v < /2 the range of realistic values of « for elastic
interactions is / > k > 2/3; and this constraint also applies to the linear spring
model discussed in Sect. 4.1.

The ‘no-slip’ model of Mindlin (1949) can also be combined with the elastic-
plastic normal contact force model of Thornton (1997) to provide energy dissipa-
tion without the need for dashpots. In addition, the calculation of the contact
moment is simplified since the rotational ‘stiffness’ k, given by Eq. (3.46) reduces
to

_16G*d’
- 3

k, (4.18)

4.3 Partially Latching Spring Models

In order to mimic plastic deformation, as observed in experiments, Walton and
Braun (1986) and Walton (1993) introduced a so-called ‘partially latching spring’
model that used different normal spring stiffnesses for loading and unloading. In
this model the normal force is written as

F,=ka (4.19)
during loading, and
Fn = k2 (a — a()) (420)

during unloading, where g is the relative approach when the unloading curve
reaches zero force and

k] 2

A 4.21

L (421)
ap = tpar(1 — ki /k2) = tpar (1 — ei) (4.22)

where e, is the normal coefficient of restitution and o,,,, is the maximum relative
approach from which unloading occurred. A problem with the partially latching
spring model, defined by Eqgs. (4.19), (4.20), (4.21) and (4.22), is that Eq. (4.21) is
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Fig. 4.1 Three possible partially latching spring models for e, = 0.8 (upper figures) and e, =0.5
(lower figures)

ambiguous. There are at least three interpretations which are illustrated in Fig. 4.1
and defined below.
Model A is illustrated by Fig. 4.1a

F, = k;ja = ka during loading (4.23)
k
F, = kz(a — ap) = —(a — ap) during unloading (4.24)
e}’l
i il K .
F/=F "'+ Ke—2A5 exceptif F, > uF, then F,= uF, (4.25)

n

Model B is illustrated in Fig. 4.1b
F, = k;a = e,ka during loading (4.26)

k
F, =k(a— ap) = —(a — ay) during unloading (4.27)

n

. . k
F/ = F;’j + Ke—Aé exceptif F, > uF, then F,=uF, (4.28)
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Model C is illustrated in Fig. 4.1c

F, = k;a = e’ka during loading (4.29)
F, =k(a—ap) = k(@ — ay) during unloading (4.30)
Ff = Ff_' + kkAS exceptif F, > uF, then F, = uF, (4.31)

In all three models, % is the elastic stiffness that would result if ¢, = 1.0.

It was demonstrated by Thornton et al. (2013) that, for oblique impacts, all three
models predict exactly the same rebound kinematics when the tangential spring
stiffness is related to the normal unloading stiffness, as above. The differences are
in the magnitude of the contact forces and the contact duration. Compared to the
model of Thornton (1997), see Sect. 3.2.1, Model A significantly over-predicts the
normal force and under-predicts the contact duration, whereas Model C signifi-
cantly under-predicts the force and over-predicts the duration of contact. It was
found that the force evolution for Model B was quite similar to that of Thornton’s
(1997) model due to the fact that the model captures two significant aspects of the
model of Thornton (1997) in that for a decrease in e, the value of the limiting
contact pressure decreases and therefore the plastic loading stiffness decreases as
indicated by Eq. (3.57) and the unloading stiffness increases since a decrease in p,
leads to an increase in R}k), as indicated by Eq. (3.59).

As indicated by Eq. (4.21), all three above models predict a normal coefficient of
restitution that is independent of impact velocity. Walton and Braun (1986)
suggested a variable latching spring model by making the normal unloading
stiffness, as given in Eq. (4.20), a function of the maximum normal force from
which unloading commenced, i.e.

ky =k; + SFn(max) (432)

where s is an empirical scaling coefficient. Using Eq. (4.32) the normal coefficient
of restitution is given by

o T 1)2
" ki fm* 4 sV,

which exhibits a dependency on the normal impact velocity V,;

(4.33)

4.4 Adhesive Piecewise Linear Models

Luding (2005) purported to extend his previous partly latching spring model
(Luding 1998) to account for adhesive/cohesive contacts. The corresponding
force-displacement law is illustrated in Fig. 4.2a. A more elaborate model was
proposed by Luding (2008), which is illustrated in Fig. 4.2b. It is clear that both
models are physically unrealistic since they imply that all the deformation produced
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Fig. 4.2 Force-displacement laws (a) Luding (2005) (b) Luding (2008)

by plastic loading, a,,,,, can be recovered and that contact ceases when a = 0. The
consequences of this will be illustrated later.

In the Luding (2005) model shown in Fig. 4.2a the force-displacement equations
are

F = k;a for initial loading (4.34a)
F = ko(a — ap) for unloading/reloading (4.34b)
F = —k.a for further unloading (4.34¢)
with
k
ap = <1 - _1> QAmax (435)
k>
and
ky —k
Amin = <ﬁ> Amax (436)

If we consider a normal impact between a sphere and a planar target wall the initial
kinetic energy is given by

1 1
—mVi = 5/qoﬁ (4.37)

2 max

and the rebound kinetic energy is given by
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1 113 1
Eme = 5;;(13”,” - Ekca()amin (438)

where the first term on the RHS is the kinetic energy recovered when a = a, and the
second term is the work done when the contact force becomes tensile. Substituting
Egs. (4.35) and (4.36) we obtain

1, 1K Tke (ky — ki )?
-mVi=-—a,  — 4.
2mVI 2k2 max 2k2 (kz + kc) max ( 39)
Dividing Eq. (4.39) by Eq. (4.37) leads to
b — k)2
ek ke (k= k) (4.40)

¢ T ky kiky (k2 + k)

where e is the coefficient of restitution. If k. =0 and k; =200 N/m, k, =500 N/m
then e =0.6325. For the same values of k; and &, but with k. = 100 N/m the value of
e =0.5. In both cases the coefficient of restitution is independent of impact velocity,
even when V; — 0.

Many experiments have demonstrated that the coefficient of restitution is a
function of the impact velocity. In order to obtain a velocity dependent coefficient
of restitution it was suggested by Walton and Braun (1986) that the unloading
stiffness should be a function of the maximum force, see Eq. (4.32). Since the
loading stiffness is linear this is equivalent to suggesting that k, is a function of
QApay- Luding (2008) suggested the following expression.

ky =k; + (132 — k])azax (441)
‘max

where

k 2R,R
W = o (4.42)
} kg — k] R[ +R2

in which R; are the radii of the two spheres in contact and ¢ was described as the
“dimensionless plasticity depth”. For a sphere impacting a target wall the equation
reduces to
ks
a =——p.d 4.43
max k2 _ k[ ¢ f%r ( )

Luding (2008) suggested that kyisa limiting unloading stiffness that applies for
all @ > ap,, and suggested a value of ¢y=0.05. This is not necessary and,

therefore, we will consider 152, which is arbitrarily selected, to be the unloading
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stiffness when dpmax = @ max and choose k 2 = 500N/m and ¢y= 0.01. Consequently,
we use

k>
Appax = ———— »d 4.44
max kg - k1¢f 14 ( )
and
k, =k; + (/22 — k])gmwi (445)

Rather than consider the Luding (2008) model as a separate issue we can adapt
the Luding (2005) model in order to examine the effects of the various details. In
this sense, we examine three different cases in which the unloading stiffness is
defined by Eq. (4.45). In all cases we take ko =500 N/m.

First, we consider the case of no adhesion, i.e. the contact terminates when o =
ap during unloading. Secondly, we consider the case with ‘adhesion’ in the sense
that there is a tensile force permitted, as illustrated in Fig. 4.2a. In the third case, we
add an initial negative force F, as illustrated in Fig. 4.2b. The results obtained are
shown in Fig. 4.3.

The figure shows that for no adhesion the coefficient of restitution reduces at a
decreasing rate as the impact velocity increases. For the second case, since a tensile
force is admitted the results show that as V; — 0, ¢, — 1 which is counterintuitive.
Furthermore, in this case, the coefficient of restitution reduces until, for V; > 1.8 m/s

1.0

0.8 1 —0O— no adhesion
g —e— with 'adhesion’
:g —o— with interface energy
% 0.6
2
s
|5
S 0.4
‘@
o
o

0.2

0-0 T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

impact velocity (m/s)

Fig. 4.3 Coefficients of restitution for k; as a function of o
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there appears to be sticking. However, at these higher velocities sticking does not
occur. It is simply the fact that, due to the increasing work done by the tensile force
stretching the surfaces back to a =0, there is no energy left for the sphere to
rebound from the target wall. It simply sits on the wall but is not sticking to the
wall. In other words, with this model there is no adhesion. It is concluded that the
results shown in Fig. 4.3 clearly demonstrate that the Luding (2005, 2008) models
are physically unrealistic.

For the non-adhesive case a further problem exists, which also applies to the
partially latching spring model of Walton and Braun (1986). If tensile forces are not

permitted then Eq. (4.40) reduces to
ky
=4/— 4.46
=z (4.46)

If k, is a function of «, as given by Eq. (4.45)

k 1
2 1
e = = = 4.47
k; + (kg—k])% I + Aapay ( )
However,
Umar = + |2V (4.48)
ki

and therefore, for high velocities, e V,_]/ ? contrary to the well-established fact

that for perfect plastic interactions (Johnson 1985; Thornton 1997) e V;I/ ‘

Consequently, it is clear that, in order to obtain e Vfl/ 4, k, should be a function

of \/Qnax» 1.€.

kgzk]-i-(lgz—k]) m (449)

a max

The corresponding results obtained from simulations using Eq. (4.49) are shown in
Fig. 4.4.

Pasha et al. (2014) recognised the physically unrealistic nature of Luding’s
(2008) model and suggested the force-displacement model shown in Fig. 4.5,
which is clearly more realistic than that of Luding (2008). However, the unloading
stiffness is a function of a and hence the velocity dependence is incorrect.
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Fig. 4.5 Force-displacement law (Pasha et al. 2014, Fig. 10)
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Chapter 5
Particle Impact

Abstract Understanding the impact between two particles is of fundamental
importance in numerous engineering applications and scientific studies. A binary
collision may appear to be a very simple problem but, in fact, it is a very complex
event. This is due to the short duration and the high localised stresses generated that,
in most cases, result in both frictional and plastic dissipation. In addition, if rigid
body sliding does not occur throughout the impact, then local elastic deformation of
the two bodies becomes significant. This chapter examines both normal and oblique
impacts of a sphere with a target wall and considers the effects of elasticity, plastic
dissipation, surface energy and initial spin.

Understanding the impact between two particles is of fundamental importance in
numerous engineering applications and scientific studies. A binary collision may
appear to be a very simple problem but, in fact, it is a very complex event. This is
due to the short duration and the high localised stresses generated that, in most
cases, result in both frictional and plastic dissipation. In addition, if rigid body
sliding does not occur throughout the impact, then local elastic deformation of the
two bodies becomes significant. In the powder processing industries and in nature,
the problem is further complicated due to the fact that the particles are
non-spherical and the outcome of an impact event depends on the particle shape
and orientation. For simplicity, in this chapter, only spherical particles will be
considered.

5.1 Normal Impact

The original pioneering work on impact of spheres is due to Hertz (1896). Follow-
ing directly from his theory of elastic contact, Hertz analysed the impact of
frictionless elastic bodies. The assumption made in this quasi-static theory is that
the deformation is restricted to the vicinity of the contact area. The theory also
assumes that the energy loss due to elastic wave propagation can be ignored and the
total mass of each body moves at any instant with the velocity of its centre of mass.
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A particular consequence of the quasi-static nature of the model is that the elastic
energy of the two bodies acquired during the collision is entirely reversible, the
magnitudes of the impact and rebound velocities are identical and the normal
coefficient of restitution e, is unity.

5.1.1 Elastic Impact

From the theory of Hertz we can rewrite Eq. (3.13) as

d? 4
m* d—l? - —gE*R*l/zam (5.1)

Since, for a sphere of mass m and radius R impacting a massive target wall, m" =
mand R* = R. Integrating with respect to a gives

m da\?| 8
—|\VZ— (=) | ==E*R? 2
2[ i <dt> ] I5 (52)

where V; is the velocity of approach at ¢+ = 0. When the displacement reaches the
maximum value there is no relative motion between the two bodies and therefore

2 \2/5
Apax = M (5.3)
16E*R!/?

The duration of the impact .. is given (Raman 1920) by

f = 2.94% (5.4)
i
thus
2 1/5

The validity of the Hertz theory was demonstrated experimentally by Andrews
(1930), who investigated the impact of two equal spheres of soft metal at low impact
velocities and confirmed that#, oc V- I3 and the coefficient of restitution is very close
to unity. Energy loss due to elastic wave propagation during an elastic impact was
analysed by Hunter (1957) who showed that, for a steel ball impacting a large block
of steel or glass, less than one per cent of the initial kinetic energy was converted into
elastic waves. At higher velocities, energy dissipation occurs due to plastic deforma-
tion or fracture. It was shown by Hutchings (1979) that only a few per cent of the
initial kinetic energy is dissipated by stress waves during plastic impacts.


http://dx.doi.org/10.1007/978-3-319-18711-2_3

5.1 Normal Impact 73
5.1.2 Effect of Plastic Dissipation

Consider the normal impact of two elastic-perfectly plastic spheres. If the relative
impact velocity V; is just large enough to initiate yield in one of the spheres then,
using Eqgs. (3.12) and (3.13), we may write

] (Zy
Em*Vi = Jo F,da

8E*a§
~ I5R*?

(5.6)

where V), defined as the yield velocity, is the relative impact velocity below which the
interaction is assumed to be elastic, a, is the contact radius when yield occurs and m is
related to the two particle masses by I /m™* = I /m; + 1 /m;. Rearranging Eq. (5.6),

1SR m*v2\ '
ay = (T) (5.7)

Combining Egs. (3.12), (3.48) and (3.50), the limiting contact pressure p, may be
written as

ZE*ay
Py = IR*

(5.8)

Then, from Egs. (5.7) and (5.8) the yield velocity is given by

1/2
2/8 R*j 1/2 5R>|<3
vy:( r ) ( r ) P =3.194 2 (5.9)

2E* 15m* E**m*

In the case of a sphere of density p impacting a massive plane target wall, R* = R,
m" = m and Eq. (5.9) reduces to

1)2
N2/ 2\ . »
= (=) (= S/2 Y
v, = (35%) (5/)) P =156\ o (5.10)

which was originally obtained by Davies (1949).

Thornton (1997) considered the normal impact of two elastic-perfectly plastic
spheres, see Sect. 3.2.1 for details of the contact mechanics formulation, and
derived the following analytical expression for the normal coefficient of restitution.

() i)

1/4

S IO
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which satisfies the condition e, = /.0 when V; = V| and, at high impact velocities
when (V,/V))* — 0

1/4
1/2 v,

¢, — <6f> . (5.12)
Vy +WVi

Then, taking V; > V, we obtain

(D)) ) ) e

For the case of a sphere impacting a plane surface we may substitute for V, using
Eq. (5.10) to obtain

1/2

5\ /8
e —1324( Py ) v (5.14)
na E*4p i ’

A similar expression was provided by Johnson (1985) except that the prefactor was
1.72 as a result of assuming that the plastic normal stiffness was twice that assumed
by Thornton (1997).

Generally, there are four deformation regimes depending on the impact velocity
or amount of indentation, namely the elastic, elastoplastic, plastic and finite plastic
deformation regimes, Mesarovic and Fleck (1999). The initial deformation is elastic
with the contact force increasing at an increasing rate, as defined by Hertz (Johnson
1985). This is followed by a complex elastoplastic regime.

At the transition from elastic to elastoplastic behaviour the force-displacement
curve deviates from the Hertzian curve and is tangent to the Hertzian curve at the
point when initial yield occurs. Subsequently the contact force increases at an
increasing rate due to strain hardening during which the effective yield stress
increases at a decreasing rate. Li et al. (2002) developed a rather complicated
theoretical model to incorporate strain hardening effects and Kharaz and Gorham
(2000) presented results of normal impact experiments that illustrated the velocity
dependency of the restitution coefficient in this regime.

At sufficiently high impact velocities, the behaviour is perfectly plastic and the
contact stiffness is constant, as assumed by Thornton (1997). This is followed by a
finite plastic deformation regime at very high impact velocities. In this regime the
plastic deformation of the sphere extends beyond the contact area and the conse-
quence is that the contact force increases at a decreasing rate, Mesarovic and Fleck
(1999). From the results of their finite element analyses, Wu et al. (2003) showed
that in this regime the exponent of the power law relationship between the coeffi-
cient of restitution and the impact velocity suddenly changed from —0.25 to —0.5.
Interestingly, the same abrupt change in the velocity exponent was obtained by
Schrapler et al. (2012) from their DEM simulations of agglomerate impact.
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5.1.3 Effect of Surface Energy

For adhesive elastic spheres, as shown in Fig. 3.13, separation occurs at point D
when o = —ay and hence the work required to break the contact W, is given by the
area under the curve for 0 > o > —o. Hence

I_,5R*4 1/3
Neglecting energy losses due to elastic wave propagation we may write
1 1
5m*vf - Em*vf =W, (5.16)

If the rebound velocity V,, = 0 then the impact velocity V; = V, the critical
velocity below which sticking occurs and from Egs. (5.15) and (5.16) we obtain the
sticking criterion

1418\ (PP R\ '/°
vsz( 8) ( ) (5.17)

m* E*Z
For a sphere impacting a flat surface, R" = R and m" = m leading to
1/6
r/ry’]”
ij*Z

V=184 (5.18)

If V; > V, then bounce occurs and we may rewrite Eq. (5.16) as

FORO)

from which the coefficient of restitution is defined by

A%
n— 1— |-
‘ [ (V,-)
For V; > V,, the coefficient of restitution increases at a decreasing rate and, as
shown by Thornton and Ning (1998), when the impact velocity is ten times higher
than the critical sticking velocity the coefficient of restitution is 0.995.
For adhesive, elastic-plastic spheres, Thornton and Ning (1998) assumed that the

work dissipated due to plastic deformation and the work dissipated due to adhesive
rupture are additive, i.e.

1/2
(5.20)
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(1-)=(1-¢)+(1-¢) (5.21)

where e, is the coefficient of restitution due to plastic deformation given by
Eq. (5.11) and e, is the coefficient of restitution due to adhesive rupture given by
Eq. (5.20). This leads to the following equations.

e, =0 for V;<V; (5.22a)

1/2
e, = |1— Ez /
" Vi

and for V; >V, the coefficient of restitution can be obtained from

(AL | ) e

The solution to the above equations is illustrated in Fig. 5.1 by plotting the
coefficient of restitution against the normalised velocity (V;/V,) for different ratios
of (Vi/V,).

for V,<Vi<V, (5.22b)

1/2
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Fig. 5.1 Dependency of the coefficient of restitution on the yield velocity and the critical sticking
velocity for adhesive elastic-plastic interactions
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5.2 Oblique Impact

In particle system simulations normal impact is a rare event except when particles
collide with wall boundaries. If two spheres collide then only if their velocities are
such that the centres of both spheres would arrive at exactly the same point in space
at exactly the same time will the collision be a normal impact. For simplicity we
focus on oblique impacts of a sphere with a planar target wall.

The problem is illustrated diagrammatically in Fig. 5.2. The sphere approaches
the wall with an initial translational velocity V; at an impact angle ;. After
interaction with the wall, the sphere rebounds at an angle 6, with a rebound
translational velocity V, and a rebound angular velocity w,. Note that V; and V,
are the velocities of the sphere centre. The corresponding tangential components of
the surface velocities at the contact are denoted by v,; and v,, that are related to the
translational velocities by

vi = Vi + Rw; and Ve = Vi + R, (5.23)

Note that, in the figure, Z and X indicate the positive axes and that anti-clockwise
rotation is positive. Also, the sphere approaches the wall without any rotation, there
is no gravity field, and the wall is considered to be massive in comparison with the
sphere. The effect of initial rotation will be discussed later in the chapter.

Results of simulations of an elastic sphere impacting an elastic wall at different
impact angles are shown in Figs. 5.3, 5.4 and 5.5. The contact force model used is

Fig. 5.2 Diagram of the VA
oblique impact of a sphere A
with a plane surface

sl



78 5 Particle Impact
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Fig. 5.3 Evolution of the tangential force for different impact angles

described in Sect. 3.1, i.e. Hertz (normal), Mindlin and Deresiewicz (tangential).
The sphere and the wall had the same elastic properties and the coefficient of
interface friction g =0.1. For all impact angles the impact speed was 5.0 m/s.

Figure 5.3 shows the time evolution of the tangential force for impact angles in
the range 5-45°. For impact angles >30° the tangential force never reverses
direction because in this range the contact is sliding, F, = uF,, throughout the
impact duration. Figure 5.4 shows the corresponding tangential force-displacement
curves from which it can be seen that for very small impact angles, e.g. 5° and 10°,
the displacement is negative at the end of the impact.

In Fig. 5.5 the tangential force is plotted against the normal force. When the
impact angle is 5°, sliding does not occur (F;, < pF,) until the very end of the
impact. This behaviour applies if fanf; < p/k. For @ = 10° and 15°, sliding occurs
from the start of the impact and continues until the decelerating tangential transla-
tional motion of the sphere and the accelerating particle rotation induced by the
tangential force combine to reduce the tangential force increment to AF, < pAF,.
At this point, in the context of the theory of Mindlin and Deresiewicz (1953), Sect.
3.1.2, a stick region starts to grow from the centre of the contact area. Subsequently,
as the resultant force rotates, the tangential force reduces, reverses in direction and
finally, towards the end of the impact, sliding reoccurs. For 8 = 20° and 25°, the
initial sliding condition continues into the restitution stage, when the normal force
is reducing, before the |IAF,| < pAF, condition occurs. This is then followed by
rotation of the resultant force and finally sliding occurs towards the end of the
impact. For 8 > 30°, the sliding condition, F; = uF,, applies throughout the impact
with no reversal of the tangential force direction.
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Of primary importance in particle collisions is to be able to define the rebound
kinematics. At the end of the impact, we need to know the direction and spin of the
rebounding sphere because this will affect the next collision. In other words, we
need to predict the complete rebound kinematics.

The simplest theoretical approach to the oblique impact of a sphere with a target
wall is that of rigid dynamics (Goldsmith 1960; Brach 1991; Stronge 2000).
However, the approach is only valid if the impact angle is sufficiently large that
sliding occurs throughout the impact duration. At smaller impact angles, the theory
predicts that the tangential surface velocity is zero at the end of the impact event.
That this is not the case was demonstrated by Maw et al. (1976, 1981) who showed
that the tangential surface velocity reverses its direction due to the tangential elastic
compliance. Nevertheless, rigid body dynamics does provide appropriate dimen-
sionless groups that characterise the kinematic behaviour of oblique impacts.

5.2.1 Rigid Body Dynamics

In rigid body dynamics, rebound velocities are related to the impact velocities by
empirical coefficients of restitution in the normal and tangential direction, defined
by

_Vnr an d Vtr
ey — —
Vi "V

(5.24)

e, =

where the subscripts n and ¢ indicate the normal and tangential components
respectively. The correlation between the tangential and normal interactions during
an impact, is characterised by an impulse ratio defined as

F.dt
Foti J (5.25)

P JFndz

where P, and P, are the normal and tangential impulses respectively. If sliding
occurs throughout the impact duration then the impulse ratio is equal to the
interface friction coefficient f = y, otherwise f < . According to Newton’s second
law, the normal and tangential impulses can be expressed in terms of the impact and
rebound velocities as

Py=m(V, —Vy) and P, =m(V, — V) (5.26)

where m is the mass of the sphere. Combining Egs. (5.24), (5.25) and (5.26) we
obtain
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Fl+e,)
¢ tan 0; (5:27)

By analogy, we can also define a rotational ‘impulse’
P, =10 — ;) (5.28)

where [ is the moment of inertia of the sphere and w; and w, are the initial and
rebound angular velocities of the sphere. According to the conservation of angular
momentum about the contact point

P, =RP; (5.29)
where R is the radius of the sphere. From Egs. (5.26), (5.28) and (5.29) we obtain

R
W — ;= — ’”T Vi — Vi) (5.30)

For a solid sphere, I = 2mR2/5. Hence,

S5(Vii— V) 5Vi(l —e)
o w = — =— 31
Or @i 2R 2R (5:31)

or, using Eq. (5.27),

jf(] + en)vni

Wy — W = — >R

(5.32)

The tangential component of the rebound surface velocity at the contact patch v,, is
obtained from Egs. (5.23) and (5.32)

5
Vi = V4 + Rwj — Ef(] + )V (5.33)
Combining Egs. (5.24), (5.27) and (5.33) we then obtain
7
Vi — Vi = _Ef(] +e)Vui (5.34)

and, finally, the rebound angle 6, is obtained from

Vir
tan 6, = Vt = “an 0; (5.35)

nr en
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5.2.2 Dimensionless Groups

If sliding occurs throughout the impact duration then f = u and the following three
equations are obtained to define the complete rebound kinematics

7
Vi = Vi — 5(1 + en) UV (5.36)
S5 n
o, = o — % uV (5.37)
Vi u(l +ey)
=—=]-———= 5.38
é Vi tan 6; ( )

Rearranging Eqs. (5.36) and (5.37)

2V, 2vy
= -7 5.39
(1 + en)//lvni (l + en)/’tvm' ( )
2R r — Wi
2R(@, —o)) _ 5 (5.40)
(1 + en)ﬂvni
from which we identify three dimensionless groups, namely
2vy 2vy, 2R(w, — w;
Vi , Vi an M (5.41)
(1 + en)uVy (1 4+ en)uVyi (1 + e,)uVyi
which, in the case of no initial rotational velocity, reduce to
2tan 6; 2vy, 2Rw, (5.42)

s and
(1 + en),u (1 + en)ﬂvni (1 + en),uvni

Maw et al. (1976, 1981) suggested, for elastic impacts between similar bodies,
alternative dimensionless groups to normalise the data that can be written as

Ktan®; KV

and
H ,"tvm'

(5.43)

However, it was demonstrated by Thornton (2009) that, for different values of k, the
data was not normalised, even in the sliding regime.

5.2.3 Effect of Elasticity

The elastic moduli affect the magnitude of the contact forces and the contact
duration. The rebound kinematics, defined in terms of the above dimensionless
groups, are sensitive to the ratio of tangential to normal elastic stiffnesses, «,
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Fig. 5.6 Effect of k on the normalised rebound surface velocity

because this parameter controls the ratio of the frequencies of the tangential and
normal force oscillations. For dissimilar materials x depends on the elastic moduli
and the Poisson’s ratios of the two colliding bodies, see Eq. (4.16), but if the elastic
properties of the two bodies are the same then x only depends on v, see Eq. (4.17).

The rebound kinematics, expressed in terms of the dimensionless groups, are
shown in Figs. 5.6 and 5.7 and the tangential coefficient of restitution e, is shown in
Fig. 5.8, for different values of k. The frequency of the tangential force oscillation is
exactly twice that of the normal force oscillation when x = 1. When x =2/7, the
frequencies of the tangential and normal force oscillations are equal, which is
physically unrealistic since this means that the obliquity of the resultant contact
force is constant throughout the collision with F, = 2/7tan 0;F, or, if sliding occurs
throughout the impact, F, = uF,. As pointed out in Sect. 4.2, see Eq. (4.17),
physically realistic values of « are limited to the range 1 > x > 2/3 since Poisson’s
ratio is limited to the range 0 < v < 0.5. If sliding occurs throughout the impact then
the data points, in Fig. 5.6, lie on the inclined straight line defined by Eq. (5.39) and,
in Fig. 5.7, lie on the horizontal line defined by Eq. (5.40). The figures show that
sliding throughout the impact depends on the value of k. Rigid body dynamics
predicts that sliding occurs throughout the impact if tanf; > 7u. However, for
elastic impacts, sliding occurs throughout the impact duration at smaller impact
angles when the following condition is satisfied.

tan 6;

>7—1/k (5.44)
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Fig. 5.7 Effect of k on the normalised rebound angular velocity

If sliding does not occur throughout the impact then, for no initial spin, the
tangential coefficient of restitution is defined by

_ 5 n 2v,
T 7 7V,

€t

(5.45)

In this case, if x =2/7 then ¢, = 3/7 and rigid body dynamics (v, = 0) predicts ¢, =
5/7. It is also worth noting that, since all the data sets in Fig. 5.6 pass through the
origin, the tangential coefficient of restitution is indeterminate when the impact
angle is zero.

Comparisons of the rebound kinematics obtained using linear and non-linear
spring models (no dashpots) with the results obtained using the Hertz, Mindlin and
Dereseiwicz model are provided by Thornton et al. (2011).

5.2.4 Effect of Plastic Dissipation

In this section we examine the effect of plastic dissipation on the rebound charac-
teristics using the contact force models of Thornton (1997) for the normal interac-
tion and Mindlin and Deresiewicz (1953) for the tangential interaction, see Sect. 3.2
for details. For comparisons with the results of other contact force models the reader
is directed to Thornton et al. (2013).


http://dx.doi.org/10.1007/978-3-319-18711-2_3
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Fig. 5.8 Effect of k on the tangential coefficient of restitution

Consider the oblique impact of a sphere with a target wall, as shown in Fig. 5.2.
For the results presented in this section, the physical properties of the sphere are
radius R =25 mm, density p = 2650 kg/m® and hence a mass m =0.1734 kg. The
elastic properties of both the sphere and the wall are E =70 GPa, v = 0.3, therefore
k = 0.8235, and the interface friction ¢ =0.1. A constant normal component of the
impact speed V,,; =5 m/s, and hence a constant normal coefficient of restitution, is
used for all impact angles. For a selected value of e, the yield velocity V, is obtained
from Eq. (5.11) and substituted into Eq. (5.10) to obtain the required value for the
limiting contact pressure p,.

In Fig. 5.9, the tangential force evolution for different impact angles is shown for
values of the normal coefficient of restitution ¢,, = 1.0, 0.75, 0.5 and 0.25. It can be
seen that the frequencies of the tangential force oscillations change when the
normal coefficient of restitution is changed. The figure shows that, for ¢, =0.5,
there is a second reversal of the tangential force when the impact angle is 5°. For
e, =0.25, this is also true when the impact angle is 10° and when the impact angle is
5° there is a third reversal. Multiple reversals of tangential force have been
observed experimentally by Cross (2002) albeit for a hollow basketball impacting
at an angle of 24°. Becker et al. (2008) showed that, using linear springs, by
arbitrarily increasing the tangential to normal stiffness ratio to values of k¥ >1
they obtained multiple reversals of the relative tangential surface displacement, and
hence the tangential force, for small impact angles. With the Thornton, Mindlin and
Deresiewicz model, ratios of tangential to normal stiffness greater than unity arise
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Fig. 5.9 Evolution of tangential force for different normal coefficients of restitution

due to the decrease in normal loading stiffness and the increase in tangential loading
stiffness when ¢,, is decreased.

Figure 5.9 also shows that the value of ¢, affects the range of impact angles for
which sliding occurs throughout the impact duration and the range of small impact
angles for which sliding does not occur until towards the end of the impact. Sliding
occurs throughout the impact if the following inequality is true

1
tan6; > ’w (7 - %) (5.46)

and sliding only occurs at the end of the impact if

u(l + en)en

tan0; <
'= 2k

(5.47)

The effect of the plastic dissipation on the rebound kinematics is shown in
Figs. 5.10 and 5.11. Figure 5.10 shows that the range of small impact angles for
which the rebound tangential surface velocity is positive increases as the normal
coefficient of restitution reduces to ¢, =0.5 and that there is a reduction in the
maximum negative tangential surface velocity. When e, = 0.25, additional fluctu-
ations appear and as ¢, — 0, v,, — 0, coinciding with the rigid body dynamics
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solution for impacts during which sliding does not occur throughout the impact.
The fluctuations in the rebound tangential surface velocity are due to the way in
which the normal coefficient of restitution changes the frequencies of the tangential
force oscillations, as shown in Fig. 5.9. It was demonstrated by Thornton
et al. (2013) that the sign and magnitude of the rebound tangential surface velocity
corresponds to the slope of the tangential force-time curve that would have occurred
at the end of the impact, if sliding had not occurred.

Because of Eq. (5.45), for impacts during which sliding does not occur through-
out the impact, the fluctuations in the rebound tangential surface velocity shown in
Fig. 5.10 are reflected in oscillations in the tangential coefficient of restitution, as
shown in Fig. 5.11.

5.2.5 Effect of Initial Spin

In this chapter, for simplicity, we have only considered impacts with no initial spin.
This is quite unrealistic since, even in this case, the spin imparted during the
collision will become the initial spin for the next collision. In the previous sub-
sections the normalised rebound kinematics have been plotted against the
normalised impact angle. However, the contact force reactions are functions of
the relative surface velocities.

If there is no initial spin then the tangential surface velocity is v, = V. and the
impact angle is defined by ranf = V,/V,, as shown in Fig. 5.12a. If there is an
initial in-plane spin the tangential surface velocity is v, = V + R, where o, is the
rotational velocity about the z axis, as shown in Fig. 5.12b.

The contact reaction thinks that the sphere is coming in at a different angle
defined by

v  Vi+Ro,
vy VW,

tan6 = (5.48)

where 6 may be referred to as the ‘effective impact angle’, see Thornton (2009). In
this chapter the rebound kinematics have been presented in terms of the dimension-
less groups given by Eq. (5.42). If there is an initial in-plane spin then exactly the
same curves are obtained by using the dimensionless groups defined by Eq. (5.41).

Fig. 5.12 Impact with a
horizontal wall (a) no initial
spin (b) with initial spin

b
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If there is an additional out-of-plane initial spin component about the x-direction
then the resultant direction of the tangential surface velocity v is inclined to the
x-direction by an angle B as shown in Fig. 5.13a. If we consider that the tangential
surface velocity components shown in Fig. 5.13a are the initial values at the start of
the impact then, since v, = —Rw,, v, = V, + Rw, and v, /v, = tanp, the ratio of the
components of the tangential force T at the end of the first time step is T, /T, = tanf3
since T = AT = k;vAt.

a b

A
Rw, Rw,
A 3
V, V,
Av,

Z

\\
\ ~
‘ '\Rw

Fig. 5.13 Tangential surface velocities for out-of plane spin
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The tangential force will then decelerate both the translational and rotational
velocities of the sphere and will create new velocity increments given by

AV, = (T./m)At and AV, = (T/m)At (5.49)
Aw. = (ST./2m)At and Aw, = (5T./2m)At (5.50)

from which AV,/AV, = ARw,/AR, = T./T, and hence Av./Av, = T./T, = tanp.

The incremental velocity components are shown in Fig. 5.13b. The resultant
velocity increments AV and AR® are relocated in Fig. 5.13c to show the new
velocity vectors, in red, which indicate that during the impact the trajectory of the
sphere centre changes direction and the direction of the plane of spin rotates. This is
also evident in Fig. 5.13d which shows the old and new surface velocity compo-
nents as dashed arrows and solid arrows respectively. However, the plane of spin
remains orthogonal to the wall. It is important to note that the direction of the total
surface velocity and the direction of the tangential force do not change during the
impact. Consequently, if the initial tangential surface velocity v shown in Fig. 5.13a
is used to define the ‘effective impact angle’ then, exactly the same normalised
rebound surface velocities will be obtained. Predictions of the change in angular
velocity and tangential coefficient of restitution are more complex and have not
been fully examined.

The general impact case is when the initial plane of spin is not orthogonal to the
wall. In this case, there is a component of rotation about the contact normal
direction, wy, and this will create an additional reaction, i.e. a contact moment, as
discussed in Sect. 3.1.3.

5.2.6 Effect of Surface Energy

There has been very little research on oblique impacts of adhesive particles. For
non-adhesive elastic spheres, Thornton and Yin (1991) showed that for very small
impact angles sliding did not occur until the end of the impact. For adhesive elastic
spheres they found that, for the same range of small impact angles, the sphere
rebounded back along the initial impact direction without any imparted spin, i.e. the
tangential coefficient of restitution ¢, = —1. For larger impact angles the rebound
kinematics were very similar but not exactly the same as obtained for non-adhesive
elastic spheres.
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Chapter 6
Agglomerate Impacts

Abstract The storage, transport, handling and processing of particulate materials
constitutes a significant part of the operations in most chemical, pharmaceutical and
allied industries. These particulate materials are frequently in the form of powders
which are, themselves, agglomerations of much smaller sized primary particles. A
common problem inherent in the handling of powders is the degradation resulting
from attrition and/or fragmentation of the agglomerates as they collide with each other
and with the process equipment. In this chapter we focus on agglomerate breakage. It
is shown that, for spherical agglomerates, dense systems fracture or shatter depending
on the impact velocity. In contrast, loose systems disintegrate to a degree that depends
on the impact velocity. Non-spherical agglomerates are also considered and, finally,
the following question is addressed — ‘How do agglomerates fracture?’.

Due to the short duration of an impact event, information from physical exper-
iments is normally restricted to post-impact examinations of the fragments and
debris produced. Explanations tend to rely on inferences that are based on solid
mechanics concepts of brittle or semi-brittle fracture. However, it is not clear to
what extent such solid mechanics ideas are applicable to particle systems such as
agglomerates. Numerical simulations of systems of discrete particles are not
restricted by small time or length scales and the micro-examination of short
duration events such as fragmentation is ideally suited to DEM modelling.

The storage, transport, handling and processing of particulate materials constitutes a
significant part of the operations in most chemical, pharmaceutical and allied industries.
These particulate materials are frequently in the form of powders which are, themselves,
agglomerations of much smaller sized primary particles. A common problem inherent in
the handling of powders is the degradation resulting from attrition and/or fragmentation
of the agglomerates as they collide with each other and with the process equipment.
Due to the short duration of an impact event, information from physical exper-
iments is normally restricted to post-impact examinations of the fragments and
debris produced. Explanations tend to rely on inferences that are based on solid
mechanics concepts of brittle or semi-brittle fracture. However, it is not clear to
what extent such solid mechanics ideas are applicable to particle systems such as
agglomerates. Numerical simulations of systems of discrete particles are not
restricted by small time or length scales and the micro-examination of short
duration events such as fragmentation is ideally suited to DEM modelling.
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In all the simulations reported in this chapter the normal particle-particle inter-
actions were modelled by JKR theory, see Sect. 3.3.1, and the tangential interaction
model has been described in Sect. 3.3.2.

6.1 Agglomerate-Wall Impacts

6.1.1 2D Simulations

The first simulations of agglomerate impact fracture were performed by Yin (1992)
and reported by Thornton et al. (1996). Due to computing limitations at the time, a
2D monodisperse, circular agglomerate consisting of 1000 primary particles was
used. The particles were attributed with surface energy and the particle interactions
were modelled by the adhesive-elastic contact force model described in Sect. 3.3.

The primary particles were initially randomly generated as a granular gas within a
prescribed circular region and a centripetal gravity field was then imposed to bring
the particles together. When the particles were satisfactorily packed together, surface
energy was introduced and increased incrementally to the desired value. The cen-
tripetal gravity field was then slowly reduced and readjusted to provide a vertical
gravity field with g = —9.81 m/s”. The preparation stage was somewhat tedious and
required continuous monitoring in order to ensure a satisfactory dense agglomerate.
All particle velocities were then zeroed and the agglomerate was allowed to equili-
brate. A wall was then created in a suitable location and then, by specifying a wall
velocity for an appropriate number of timesteps, the wall was brought into a position
within one timestep of contact with the agglomerate and its velocity was set to zero.

The radius and density of the primary particles was 100 pm and 2650 kg/m’
respectively. The elastic properties of both the primary particles and the wall were
E =70 GPa and v =0.3. The coefficient of interface friction was set at 0.35 and the
surface energy was 3.0 J/m?. The initial state of the agglomerate before impact is
shown in Fig. 6.1.

The initial particle configuration, Fig. 6.1a, would appear to have a regular
structure. The actual microstructure is more clearly illustrated by the equivalent
space lattice, Fig. 6.1b, which is formed by connecting the centres of particles in
contact by solid lines. The figure confirms the overall crystalline structure and
highlights the structural defects. The space lattice is replotted to show the contacts
subjected to compressive forces in Fig. 6.1c and the contacts at which the force is
tensile in Fig. 6.1d. The compressive forces are of similar magnitude as the tensile
forces and it is clear that both distributions are random.

To simulate the normal impact of the agglomerate with the wall, the desired
impact velocity was then specified and all primary particles were attributed this
initial value. At relatively high impact velocities, the interaction with the wall
results in a compressive wave which propagates from the point of contact through
the agglomerate. Behind the wavefront contacts are broken, contact sliding occurs
and all but a few contacts are in compression. From an examination of the locations
of sliding contacts and contacts that have been broken, the agglomerate appears to


http://dx.doi.org/10.1007/978-3-319-18711-2_3
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Fig. 6.1 Monodisperse 2D agglomerate — initial state (a) particle configuration (b) equivalent
space lattice (¢) compressive forces (d) tensile forces

deform plastically rather than exhibiting fracture. This plastic deformation process
is illustrated in Fig. 6.2.

For an impact velocity of 1.0 m/s, Fig. 6.2 shows the space lattice after 6.5 ps
when the wall force was still increasing. Figures 6.2a, b show the distributions of
contacts carrying compressive and tensile forces respectively, which can be com-
pared with Figs. 6.1c, d to reveal the changes that have occurred. As described
above, behind the wavefront most of the contacts are in compression and the
relatively few contacts carrying tensile forces are orientated in one of two direc-
tions. Figure 6.2 also shows the distributions of all surviving contacts at that time
and the ones that have been broken.

The plastic deformation zone spreads throughout the agglomerate at high impact
velocities and this results in a depleted structure with a coordination number of four.
Then, as the tale-end of the compression wave travels through the agglomerate,
more contacts are broken due to tensile separation. This results in shattering of the
previously created plastic deformation zone. Once the contact force with the wall
has reduced to zero the maximum number of contacts has been broken and the
initial damage caused by the impact is complete.

If the impact velocity is reduced by an order of magnitude to 0.1 m/s then the
behaviour is very different from that described above. Initially, a compression wave
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Fig. 6.2 Space lattice after 6.5 ps (max. wall force occurred at 10 ps) for V=1.0 m/s (a)
compressive forces (b) tensile forces (¢) existing contacts (d) deleted contacts

propagates from the wall producing sliding and contact breaking associated with
plastic deformation. However, since the force generated at the wall is much smaller
the effect is less extensive. Due to attenuation of the stress wave, the plastic
deformation zone is restricted to a small localised region near the point of impact.
This is followed by the initiation of cracks at the perimeter of the plastic deforma-
tion zone which propagate outwards towards the agglomerate surface. By the time
that the force on the wall has reduced to zero, the initial damage is complete and the
crack pattern is established. There is then a relatively long period of crack opening
inwards from the agglomerate surface.

At sufficiently low impact velocities no crack formation occurs and the agglom-
erate rebounds. Damage, however, may be produced as a result of localised plastic
deformation adjacent to the wall contact. Also, due to the centre of mass of the
agglomerate not being exactly vertically above the point of impact with the wall, a
rotation was imparted to the agglomerate as it rebounded from the wall. Therefore,
at sufficiently low impact velocities, the agglomerate behaved similar to that of a
single, almost elastic, sphere or disc.
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semi-brittle fracture shattering failure

Fig. 6.3 Damage patterns

The agglomerate damage pattern (involving plastic deformation, shattering or
crack initiation and propagation) is completed at the time when the wall force
becomes zero. This is followed by a long period during which the established cracks
open and would be visible to the conventional observer. The initial damage pattern
defines the damage caused by the impact with the wall and is best illustrated by the
equivalent space lattice. Figure 6.3 shows the equivalent space lattice for different
impact velocities after an elapsed time of 100 ps. For an impact velocity of 1.0 m/s,
most of the contacts are broken as a result of the extensive plastic deformation zone
and the agglomerate, as a consequence, is shattered. The extent of the plastic
deformation zone reduces with decreasing impact velocity. At an impact velocity
of 0.1 m/s, the plastic deformation zone is contained to a small region near to the
point of impact. From the perimeter of the plastic zone, cracks propagate to the
surface of the agglomerate leading to a semi-brittle fracture mechanism. It can be
seen in the figure that, for semi-brittle behaviour, the extent of fracture damage is
very sensitive to small changes in impact velocity. At an impact velocity of 0.04 m/
s, no cracks are observed but a small amount of internal damage has occurred due to
localised plastic deformation.

In Fig. 6.3 the elapsed time when the wall force reduced to zero was 53 ps for an
impact velocity of 0.1 m/s and 17 ps when the impact velocity was 1.0 m/s. For both
cases the particle configuration is shown in Fig. 6.4 at a time of 1.3 ms. The figure
clearly illustrates the difference between semi-brittle fracture and failure due to
shattering.

Of practical interest is the size distribution of the daughter fragments resulting
from a collision. It is conventional to show the cumulative percentage mass of
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semi-brittle fracture shattering failure

Fig. 6.4 Particle configurations for (a) V=0.1 m/s (b) V=1.0 m/s
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Fig. 6.5 Effect of specific energy input on (a) the number of singlets produced and (b) the size of
the largest surviving fragment

material undersize plotted against size. However, in comparison with the 3D
situation, large 2D arrays are ‘small’ in terms of their mass. As a consequence,
the particle size distribution curves obtained from the simulations, when
represented on a double-logarithmic plot, do not exhibit the bilinear characteristics
which distinguish between the ‘residue’ of the larger fragments and the ‘comple-
ment’ made up of the smaller debris, as found experimentally by Arbiter
et al. (1969) for impact velocities that produced semi-brittle fracture. We may,
however, examine the extremes of the distribution, namely the percentage of
singlets produced and the size of the largest fragment.

If we normalise the number of singlets produced, by dividing by the total number
of constituent particles in the agglomerate prior to impact, and define the specific
energy input as the initial kinetic energy per unit mass then, as shown in Fig. 6.5a, it
is found that the percentage of singlets is a power law function of the specific
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energy with an exponent of 5/8. Deviations from this relationship are only observed
at very high velocities that produce more than 90 % of singlets and for an impact
velocity of 0.06 m/s, which produced one singlet only. The simulation data satisfies
the above relationship over a range of impact velocities that include both semi-
brittle fracture and shattering.

In order to examine the maximum cluster size (largest fragment), two definitions
are used. The first is simply to count the number of primary particles in a fragmen-
tation cluster and divide by the number of primary particles in the original agglom-
erate. Such a cluster may include a string of particles that remains attached to the
main body of the cluster by a single bond and, in terms of survival, this definition is
optimistic. Data obtained using this definition is represented in Fig. 6.5b by open
circles.

An alternative is to consider the rigidity of such clusters. If three spheres are
connected by bonds to form a triangular arrangement then they form a rigid
structure that cannot be deformed, ignoring any elastic deformation, without break-
ing a bond. Therefore an alternative definition is to define a rigid cluster by the
number of continuously connected triangles formed by the particles as represented
by the equivalent space lattice. Only triangles connected by a common side are
accepted. If two triangles are connected at their common apex then they are
considered to belong to different clusters. The size of the cluster so defined is
normalised by dividing by the number of the underlying rigid cluster of the original
agglomerate. In Fig. 6.5b the solid circles represent data obtained using this
alternative definition of cluster size.

Figure 6.5b illustrates the relationship between the normalised maximum cluster
size and the specific energy. This representation has been used in asteroid physics
by Takagi et al. (1984) who examined the impact fragmentation of centimetre-sized
rock particles and obtained a power law relationship similar to that in Fig. 6.5. It can
be seen from the figure that the results are not significantly affected by the size
definition except at very high velocities when the maximum cluster consists of less
than ten primary particles, which are not necessarily compact. Therefore, only the
results based on the size of rigid clusters, i.e. the solid circles, will be considered
further. The data is best described by two straight lines that indicate that the
maximum cluster size is inversely proportional to the specific energy. As the
maximum cluster size approaches 10 % of the size of the initial agglomerate
there is a transition from one line to the other. This transition regime corresponds
to a range of impact velocities between 0.15 and 0.40 m/s and an examination of
Fig. 6.3 confirms that the transition between the semi-brittle and shattering regimes
occurs over this narrow velocity range.

6.1.2 3D Simulations

In this subsection agglomerate breakage is illustrated by computer generated
images of the configuration of the primary particles, in which the particles are
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colour coded to indicate the size of the fragment to which they belong. Fracture
planes are more clearly identified by representing an agglomerate by the equivalent
space lattice formed by connecting the centres of particles in contact by solid lines.
However, in order to visualise the evolution of bond breakage leading to fracture, it
is more appropriate to use solid lines to connect the centres of particles that were
initially in contact but which have broken contact during the impact.

6.1.2.1 Impact of a Crystalline Agglomerate

Kafui and Thornton (2000) reported the results of 3D simulations of a crystalline
(face-centred cubic) agglomerate impacting normal to a horizontal elastic target
wall. The agglomerate consisted of 7912 spheres of diameter d,, = 20 ym and had an
overall diameter d,=0.461 mm with an average coordination number Z=11.1
after preparation; Z < 12 due to the finite size of the agglomerate. The elastic
properties of both the primary particles and the wall were E=70 GPa and
v=0.35. The solid density of the primary particles p = 2650 kg/m? and the inter-
face friction coefficient 4 =0.3. Five values of interface energy I'=0.2, 0.4, 1.0,
2.0 and 4.0 J/m? were used and impact was carried out at velocities in the range
0.05-20 m/s.

Having a face-centred cubic microstructure, impact fracture depends on the
microstructural orientation of the packing. For the results shown in this subsection
the orientation of the face-centred cubic packing was such that the square-packed
planes were vertical.

The evolution of bond breakage during the impact is illustrated in Fig. 6.6 by the
space lattice showing only the broken bonds. Two orthogonal views (an elevation
and a view from above) are shown for each elapsed time. During loading, bonds are
broken along four vertical planes that form a diamond shaped pattern when viewed
from above. The four planes coincide with the perimeter of the agglomerate-wall
interface and are the consequence of relative shear motion between adjacent load-
transmitting and load-free dense (triangular) packed vertical planes. The relative
shear motion results in the breaking of one set of contacts between the loaded and
unloaded dense-packed planes. The bond breaking propagates upwards from the
wall until it reaches the top of the agglomerate when the kinetic energy attains its
minimum value at = 1.065 ps. During unloading, as the stored elastic energy is
converted into kinetic energy, a second set of contacts are broken, propagating
downwards from the top of the agglomerate. With further increase in kinetic
energy, some bonds are also broken in the third set of contacts leading to fracture
along some of the shear-induced weakened planes just prior to the end of the
impact. For an impact velocity of 2.0 m/s with interface energy of 4.0 J/m?,
Fig. 6.7 shows the space lattice after the end of the impact.

The effect of impact velocity on the breakage pattern obtained is shown in
Fig. 6.8 for agglomerates with (a) I'=4.0 J/m* and (b) I' = 0.4 J/m?. Figure 6.8a
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Fig. 6.6 Evolution of bond breakage for an impact velocity V=2.0 m/s and interface energy
'=4.01J/m*

clearly shows that at an impact velocity of 5.0 m/s all four of the shear-induced
weakened planes are fractured plus two short fracture planes that are parallel to the
square—packed planes. At lower impact velocities the fracture pattern is a subset of
that obtained for V =5.0 m/s. If the impact velocity is increased above 5.0 m/s no
extra fracture planes are created but the residual fragments are weakened due to
internal bond breakage and this leads to shattering at high velocities. For the weak
agglomerate shown in Fig. 6.8b, varying the impact velocity produced similar
results but at much lower impact velocities. Figure 6.9 shows that similar fracture
patterns are obtained for I'=2.0 J/m®. Also shown in the figure are images of the
corresponding particle configurations, as viewed from below, which illustrate the
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Elevation, £=59.634 ps Top view, t=59.634 us

Fig. 6.7 Space lattice after the end of impact
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Fig. 6.8 Equivalent space lattices viewed from below illustrating the breakage patterns for (a) a
strong and (b) a weak agglomerate

increasing amount of fine debris produced around the impact area when the impact
velocity is increased. For a velocity of 3.0 m/s, the largest surviving fragment
consisted of only 312 primary particles.

To quantify the internal damage, the proportion of bonds broken during an
impact can be defined as the damage ratio D, which is plotted against impact
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Fig. 6.9 Configuration of primary particles (top) and equivalent space lattice (bottom) as viewed
from below, for a strong agglomerate (I" = 2.0 J/m?)

velocity in Fig. 6.10 for different values of interface energy. All the data sets can be
approximated by the straight lines defined by

D =aln <v10) (6.1)

where V) is the threshold velocity below which no significant damage occurs.
Deviations from Eq. (6.1) occur at the limits D — 0 and D — 1 because (a) there
will be a range of low velocities at which the agglomerate rebounds but suffers a
small amount of internal damage and (b) even at very high velocities not all
contacts will be broken since it is possible that some doublets and triplets will
survive.

The data sets shown in Fig. 6.10 satisfy Eq. (6.1) with a = 0.35 for the range 0.2
< D < 0.8. The threshold velocity increases with interface energy, as shown in
Fig. 6.11, which can be expressed by the following power law.

Vo =0.171°? (6.2)
This implies that the damage ratio should scale with In(V/[*) and this is

confirmed reasonably well in Fig. 6.12 except for the results of the weakest
agglomerate.
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Fig. 6.11 Relationship between threshold velocity V, and interface energy

The size distributions of the fragments produced by impact breakage are illus-
trated in Fig. 6.13 for (a) a weak agglomerate and (b) a strong agglomerate. Using a
double-logarithmic plot of the cumulative mass fraction undersize f against
normalised size m/M where m is the mass of a cluster and M is the mass of the
original agglomerate. The figure shows that the fragment size distributions exhibit
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Fig. 6.13 Effect of impact velocity on the fragment size distribution of (a) weak and (b) strong
agglomerates

bilinear characteristics, which distinguish the residue of large fragments from the
complement of small fragments (debris). Similar results were obtained from free-
fall impact tests on sand-cement and limestone-cement spheres by Arbiter
et al. (1969) for impact velocities that produced semi-brittle fracture.

Considering the debris (complement), Fig. 6.13 shows that the mass fraction
undersize increases with impact velocity. Arbiter et al. (1969) demonstrated that the
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size distribution of the debris (complement) correlates with the specific impact
energy according to the expression

m\”n
= (7)) 6.3
f=a( (63)
As indicated in Fig. 6.13, both the exponent n and the prefactor A depend on the
interface energy I'. The two relationships are provided in Fig. 6.14 and may be
approximated by

n=025r"15 (6.4)
and
A=T" (6.5)

Using Egs. (6.4) and (6.5), the normalised fragment size distribution of the
debris is plotted in Fig. 6.15. It can be seen that all the data collapse reasonably
well onto a single curve. In general, however, 1 is expected to depend also on other
properties such as solid fraction and coordination number which define the
microstructure.

The size of the largest surviving fragment my; is plotted against the ratio of
impact velocity to interface energy in Fig. 6.16 which shows that the data satisfies a
power law scaling given by

-3/2
my, |
—=0.15(—= .
2 =0 5( ) (6.6)
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Fig. 6.17 Examples of agglomerate damage

6.1.2.2 TImpact of Polydisperse Agglomerates

To prepare polydisperse agglomerates, the primary particles are randomly gener-
ated as a granular gas within a defined region, spherical, cuboidal, cylindrical or any
other desired shape. A centripetal gravity field is then imposed to bring the particles
into contact. During this stage the interparticle friction is set to zero. The duration of
the imposed centripetal gravity field determines the solid fraction within the
agglomerate. When the desired solid fraction is reached, each particle is assigned
with the desired values of surface energy and interparticle friction. Having formed
an agglomerate with the requisite properties, the centripetal gravity field is slowly
reduced to zero to complete the preparation stage.

Thornton et al. (1999) reported simulations of a dense polydisperse agglomerate
consisting of 4000 primary particles of sizes in the range 60 3 pm. The average
diameter of the agglomerate was 1.113 mm with a solid fraction of 0.653 and an
average coordination number of 4.879. Examples of the damage produced at the
end of the impacts for different impact velocities are shown in Fig. 6.17.

For an impact velocity of 0.1 m/s, the agglomerate rebounded from the target
wall and did not fracture. Only a small percentage of bonds were broken, these were
concentrated close to the impact zone and resulted in a small amount of fine debris.
The total number of debris particles was 36, which corresponds to slightly less than
1 % of the initial agglomerate mass, and the total number of broken bonds was
223 compared to the initial 9,758 bonds. When impacted at a velocity of 0.2 m/s, the
agglomerate fractured into three (two large and one medium-sized fragments). At a
velocity of 0.3 m/s, there were six surviving fragments at the end of the test and
much more bond breakage and debris produced. The surviving fragments were not
just smaller but also weaker, due to more internal damage. The agglomerate
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Fig. 6.18 Space lattice views from above at the end of impact, showing existing contacts (grey)
and broken contacts (black)

shattered when impacted at a velocity of 0.9 m/s. The high impact velocity at first
tended to break-up the agglomerate into many medium-sized fragments as illus-
trated by the space lattice after 9 ps when the platen force had started to reduce. The
space lattice at the end of the test (t =512 ps) is also shown, indicating the extensive
bond breakage and flattening of the agglomerate. The largest fragment at the end of
the test contained only 153 particles.

Figure 6.18 provides a comparison of fracture patterns obtained for three impact
velocities. It is apparent, from Figs. 6.18a, b that a small variation in impact velocity
resulted in significantly different fracture patterns. However, it would appear from
the figure that the two fracture patterns are essentially subsets of the fracture pattern
created by the higher impact velocity of 0.3 m/s, as shown in Fig. 6.18c. In the case
of crystalline agglomerates it was clear that during the loading stage there is a shear
induced weakening of certain planes and then, during unloading, a number of these
pre-conditioned planes fractured and the extent of the fracture pattern depended on
the magnitude of the impact velocity. The same might be expected in the case of
polydisperse agglomerates but it is more difficult to verify this hypothesis.

From agglomerate impact simulations, Mishra and Thornton (2001) found that
loose agglomerates never fractured. It is therefore necessary to redefine the termi-
nology used to describe the observed breakage phenomena. The term “fracture” is
reserved for breakage patterns in which clear fracture planes (cracks) are visible.
This mode produces two or more large daughter fragments and is normally accom-
panied by some fines production adjacent to the impact site. If for example, due to
the high impact velocity used, the large daughter fragments are themselves broken
into small clusters of primary particles then the term “shattering” is used. An
alternative mode of breakage is one in which there is no evidence of any attempted
fracture and the end products consist of one cluster centred in the upper part of the
agglomerate with the remainder of the agglomerate reduced to very small clusters
of primary particles and singlets. This type of breakage is termed “disintegration”.
If the impact velocity is sufficiently high that disintegration extends throughout the
agglomerate and there is no ‘large’ surviving cluster then this mode is referred to as
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“total disintegration”. In this case, the size distribution of the fragments may be
similar to that produced by shattering but the distinction is the difference in kinetic
energy of the system at the end of the impact. When shattering occurs a significant
number of small daughter fragments are projected at relatively high speeds away
from the impact location. On the other hand, if total disintegration occurs the
agglomerate simply collapses into a heap on the target wall.

Mishra and Thornton (2001) found that for ‘compact’ agglomerates (as opposed
to fractal agglomerates) dense agglomerates always fracture and loose agglomer-
ates always disintegrate. This was found to be true irrespective of the strength of the
bonds between the primary particles which simply dictated the range of velocities
over which breakage would occur. It was also found that either fracture or disinte-
gration, or both, could occur for agglomerates with intermediate packing densities.
It was demonstrated that, in the intermediate case, the mode of failure could change
from disintegration to fracture by changing the location on the agglomerate surface
that is used as the impact site.

Moreno et al. (2003) reported DEM simulations of oblique impacts of spherical
agglomerates. They found that, for a constant impact speed, the number of bonds
broken and the amount of debris produced decreased as the impact angle became
more oblique. They demonstrated that this was due to the decrease in the normal
velocity component and concluded that “the normal component of the impact speed
is the dominant factor controlling the breakage of contacts”. However, it was also
shown that, for the same number of bonds broken, the spatial distribution of damage
(broken bonds) depended on the impact angle.

For non-spherical agglomerates, breakage depends also on the orientation of the
agglomerate prior to impact. To illustrate this, three agglomerates were prepared —
one spherical, one cuboidal and one cylindrical. Each agglomerate consisted of
10,000 primary particles of sizes in the range 20 £4 pm. The final, as prepared,
porosities of the spherical, cuboidal and cylindrical agglomerates were 0.395,
0.412 and 0.400 respectively, with corresponding coordination numbers of
5.124, 4.558 and 4.562, corresponding to 25,521, 21,831 and 22,092 contacts.
The dimensions of the three agglomerates were 0.54 mm diameter (spherical),
0.480 mm x 0.477 mm x 0.484 mm (cuboidal) and 0.500 mm diameter x 0.474 mm
length (cylindrical).

All the impacts are collinear normal impacts. That is to say that the line
orthogonal to the target wall at the initial point of contact passes through the centre
of mass of the agglomerate. In all cases an impact velocity of 1.0 m/s was used and
the interface energy was specified as "= 1.0 J/m>.

The spherical agglomerate was used as a benchmark against which the other
agglomerates could be compared. The breakage of the spherical agglomerate is
illustrated in Fig. 6.19, which shows that the agglomerate fractured; resulting in
three large fragments (consisting of 4,990, 2,256 and 1,084 primary particles) plus a
significant amount of small debris adjacent to the impact site.

Three different impact sites were selected for the cuboidal agglomerate — a face,
an edge and a corner of the agglomerate. For the face impact, illustrated in
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Fig. 6.19 Fragments for impact of the spherical agglomerate

Elevation Top View

Fig. 6.20 Fragments for face impact of the cuboidal agglomerate

Fig. 6.20, the agglomerate fractured into four large fragments (3,045, 2,843, 1,114
and 801 primary particles) together with small debris due to disintegration adjacent
to the wall. However, as can be seen in Fig. 6.21a, fracture did not occur when the
agglomerate impacted the wall along one of its edges. Disintegration adjacent to the
wall produced small debris with a largest cluster of 15 primary particles. The large
surviving cluster consisted of 9,030 primary particles with no evidence of any
internal damage. A similar breakage pattern occurred for the corner impact, see
Fig. 6.21b, but with a lower degree of disintegration adjacent to the wall.
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Fig. 6.22 Fragments for circular end impact of the cylindrical agglomerate

For the cylindrical agglomerate, impact sites were selected to provide a circular
end impact, a side impact and a rim impact. The resulting breakage patterns are
shown in Figs. 6.22 and 6.23.

It can be seen that both the end impact and the side impact resulted in fracture
but fracture was not observed for the rim impact. In the case of the end impact,
Fig. 6.22, the agglomerate fractured into two large fragments (3,975 and 3,186
primary particles) and a medium sized fragment (607 primary particles) resulting
from the bifurcation of the primary fracture; the remaining damage being small
debris adjacent to the wall. In the side impact, see Fig. 6.23a, aside from the small
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Fig. 6.23 Fragments for (a) side and (b) rim impacts of the cylindrical agglomerate

debris, fracture resulted in four large fragments (2,818, 2,012, 1,608 and 1,228
primary particles). Fracture did not occur when the impact was against the rim of
the agglomerate, as shown in Fig. 6.23b. The one large surviving cluster consisted
of 9,210 primary particles.

The above illustrations of agglomerate damage demonstrates that, for the
agglomerate specification in terms of number of primary particles, bond strength
and impact velocity, disintegration always occurs adjacent to the impact site and
that this is where the small debris is produced. Whether fracture occurs or not
depends on the impact site location. If fracture occurs then the fracture pattern and
the consequent size and shape of the large surviving fragments depend on both the
agglomerate shape and the location on the agglomerate surface used as the
impact site.

For all the impacts, the time evolution of the damage ratio is shown in Fig. 6.24.
It can be seen that the data sets for the non-spherical agglomerates fall into two
groups. Group A consists of the cubical face, cylindrical end and cylindrical side
impacts, all of which attain a final damage ratio of 0.32 which is significantly higher
than the value of 0.205 obtained for the spherical agglomerate. In contrast, the final
damage ratio for all Group B impacts is about 0.185 which is slightly less than that
of the spherical agglomerate. The figure shows that the damage ratio increases
rapidly to the final asymptotic value except for the cuboidal edge and cuboidal
corner impacts. In these two cases, there is a delay before the rapid increase in
damage ratio occurs, most notable in the case of the cuboidal corner. From an
examination of the time evolution of the wall force and the number of wall contacts,
see Liu et al. (2010), it was found that the number of wall contacts monotonically
increased except for the cuboidal corner, cuboidal edge and cylindrical rim impacts.
In these Group B impacts the number of wall contacts initially increased to a
maximum value and then decreased to a constant asymptotic value. Although
there were significant fluctuations in the evolution of the corresponding wall forces,
the general trend for Group A impacts was that of an increase to a maximum force
in about 10 ps followed by a reduction at a decreasing rate to a negligible value
corresponding to the self-weight of the residual fragments. In contrast, for Group B
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Fig. 6.24 Evolution of damage ratio during impact

impacts, there was a delay before the wall force increased to a maximum value.
This was most notable for the cuboidal edge and corner impacts. In both cases, the
peak wall force coincided with the rapid increase in broken contacts shown in
Fig. 6.24.

The fragment size distributions resulting from all the impacts are shown in
Fig. 6.25, which shows the expected bilinear distributions that distinguish the
large fragments (residue) from the complement of small fragments (debris). The
figure demonstrates that, for a given impact velocity, the amount of debris produced
is dependent on agglomerate shape and impact site. The smallest amount of debris
is produced by the cuboidal corner impact and the largest amount occurs for the
cuboidal face impact. It is noted that the exponent of the debris is independent of
agglomerate shape and impact site location, in this case about 0.13. It therefore
follows that the exponent for the debris only depends on the bond strength, as
illustrated in Fig. 6.13.

The cuboidal agglomerate was reoriented, as shown in Fig. 6.26a, so that it
impacts the wall along the leading edge. The vector connecting the point of contact
with the centre of mass of the agglomerate is inclined at 30° to the vertical. An
initial vertical velocity of 1.0 m/s was specified for all the primary particles in order
to simulate a non-collinear normal impact with the wall, which resulted in breakage
of the agglomerate as shown in Fig. 6.26b. Figure 6.26b shows a thin central section
(approximately three particles wide) in order to clearly illustrate the fracture mode.
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Fig. 6.26 Cuboidal agglomerate (a) before impact (b) after 11 ps

The advantage of this configuration is that, although the particle arrangement is
three-dimensional, the overall behaviour is essentially two-dimensional making
visualisations of the mechanisms much easier to identify.

The evolution of the total wall force generated by the impact is shown in
Fig. 6.27. The wall force increases to 6.5 mN, drops and then increases to a
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Fig. 6.27 Evolution of the total normal wall force

Fig. 6.28 Force transmission (a) after 1.125 ps (b) after 1.892 ps

maximum value of 7.3 mN after 1.64 ps. There is then a sudden drop in the force to
about 3 mN after which the force reduces further with significant fluctuations until,
after 65 ps, the force is approximately 1 uN corresponding to the self-weight of the
agglomerate.

Figure 6.28 illustrates the force transmission through the agglomerate. The lines
show the location and orientation of the (resultant) contact forces. The thickness of
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Fig. 6.29 Particle velocity fields at various elapsed times

the lines indicates the magnitude of the force scaled to the current maximum. For
clarity, only the thin central section seen in Fig. 6.26b is shown. Figure 6.28a shows
that, when the wall force is 6.5 mN, the large forces generated at the contacts with
the wall propagate vertically upwards. Figure 6.28b shows that, just after the wall
force has reached its maximum value, there is a significant but smaller wall force
propagating towards the lower right-hand side of the agglomerate.

Figure 6.29 shows the particle velocity field as it evolves during the impact. It
can be seen that, as a consequence of the large forces transmitted vertically upwards
into the agglomerate, the primary particles in the region into which these forces
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propagate are decelerated but continue to move downwards in a vertical direction.
Particles in the lower right-hand side of the agglomerate do not experience such a
rapid deceleration and, consequently, a heterogeneous velocity field is created,
which results in an inclined velocity discontinuity between the loaded and unloaded
regions. The relative shear motion along the velocity discontinuity causes some
breakage of contacts and thereby a weakened plane is created. As a result of the
secondary, inclined contact force transmission seen in Fig. 6.28b, there is a rotation
of the velocity field in the lower right-hand region of the agglomerate that increases
the shear weakening along the velocity discontinuity and results in the fracture
plane shown in Fig. 6.26b. Further details are provided by Thornton and Liu (2004).

6.2 Agglomerate-Agglomerate Collisions

One would expect that, for comparable impact speeds, agglomerate-agglomerate
collisions would be less destructive than agglomerate-wall collisions. In this section
we briefly consider agglomerate-agglomerate collisions.

Figure 6.30 illustrates the breakage resulting from oblique collisions between
two identical spherical agglomerates when the relative impact speed is 1 m/s. Each
agglomerate consists of a polydisperse system of 2000 primary particles which
were modelled as autoadhesive, elast-plastic spheres, see Sect. 3.4 for details. The
average diameter of the primary particles was 20 pm and the nominal size of the
agglomerates was 0.176 mm. The interface energy I" =2 J/m?. A timestep of 9 ns
was used and the collision duration varied from 3 to 9 ms.

The two agglomerates are identical but the second agglomerate is simply a copy
of the first agglomerate that was translated to provide a small initial gap between the
two agglomerates. Hence, the microstructures adjacent to the point of impact were
different and, therefore, the force transmission through the two agglomerates was
different. Consequently, as can be seen in Fig. 6.30, the two agglomerates experi-
enced different breakage patterns.

The figure illustrates the effect of impact angle on the amount of breakage that
occurred when the impact angle was varied between 0 and 45°. For impacts at
angles greater than 45° the breakage was limited to the production of singlets that
were abraded from the agglomerates with the number of singlets reducing with
increase in the impact angle. To quantify this, Fig. 6.31 shows how the damage ratio
varies with impact angle for a strong (I"=2.0 J/m?) and a weak (I'=0.2 J/m?)
agglomerate.

In Fig. 6.32a, the damage ratio, D, is replotted against a Weber number, W,
which is defined as

_P dei
T

w (6.7)
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6 =30° 6 =45°

Fig. 6.30 Oblique agglomerate-agglomerate collisions (relative impact speed 1.0 m/s)

where p and d,, are the solid density and mean primary particle size and V, is the
normal component of the relative impact speed. From the figure, the power law
scaling is D =0.86 W*”®. Defining the debris as being composed of fragments
consisting of less than 20 primary particles, it is found that the mass fraction of
debris produced is linearly proportional to the Weber number, as shown in
Fig. 6.32b.
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Fig. 6.31 Variation of

1.
damage ratio with impact 0L
angle (relative impact )
speed =1 m/s) 0.8+
A 4
2
S 064
&~
D -
&
] 0.4
<
Q -
0.2
0.0 4 v T v T r T T
0 20 40 60 80
Impact Angle o.°
a, - b .
(2}
=
8
a 8
(=} e
£ c
o~ .14 S 14
& 8
g BT=02,v=10 E 0 r=02,v=10
a ] O T =20,v=10 2 O r=20,v=10
AT =220,v=20 = A T'=20,v=20
01 — T ——rrry —rrer 01 o T
.01 A 1 10 01 A 1 10
Weber number W Weber number W

Fig. 6.32 Dependency on the Weber number of (a) damage ratio (b) mass fraction of debris

References

Arbiter, N., Harris, C.C., Stamboltzis, G.A.: Single fracture of brittle spheres. Trans. Soc. Min.
Eng. AIME 244, 118-133 (1969)

Kafui, K.D., Thornton, C.: Numerical simulations of impact breakage of a spherical crystalline
agglomerate. Powder Technol. 109, 113-132 (2000)

Liu, L., Kafui, K.D., Thornton, C.: Impact breakage of spherical, cuboidal and cylindrical
agglomerates. Powder Technol. 199, 189-196 (2010)

Mishra, B.K., Thornton, C.: Impact breakage of particle agglomerates. Int. J. Miner. Process. 61,
225-239 (2001)

Moreno, R., Ghadiri, M., Antony, S.J.: Effect of impact angle on the breakage of agglomerates: a
numerical study using DEM. Powder Technol. 130, 132—137 (2003)



References 121

Takagi, Y., Mizutani, H., Kawakami, S.: Impact fragmentation experiment of basalt and pyro-
phyllites. Icarus 59, 462-477 (1984)

Thornton, C., Liu, L.: How do agglomerates break? Powder Technol. 143-144, 110-116 (2004)

Thornton, C., Yin, K.K., Adams, M.J.: Numerical simulation of the impact fracture and fragmen-
tation of agglomerates. J. Phys. D. Appl. Phys. 29, 424-435 (1996)

Thornton, C., Ciomocos, M.T., Adams, M.J.: Numerical simulations of agglomerate impact
breakage. Powder Technol. 105, 74-82 (1999)

Yin, K.K.: Numerical modelling of agglomerate degradation. PhD thesis, Aston University (1992)



Chapter 7
Fluidised Beds

Abstract Gas-fluidised beds have been extensively studied in academia and
widely used in industry. When examined at the macro-scale, fluidised beds may
appear to behave like a solid, a liquid or a gas, depending on the magnitude of the
applied superficial gas velocity. One of the attractions of DEM is that it can model
all three different phases. To account for the interstitial gas, a combined Lagrang-
ian-Eulerian approach is used by combining the use of DEM for the particle phase
with CFD modelling of the gas phase. In this chapter, following an initial outline of
the theoretical background to the methodology, results of 2D and 3D simulations of
fluidized beds are presented. Using 2D simulations, we examine the different types
of behaviour as the gas velocity is increased to cover the complete range from fixed
bed to homogeneous expansion, bubbling, turbulent and fast fluidisation. we also
examine how the transition from fixed bed to bubbling bed, i.e. the so-called
homogeneous expansion regime, is affected when surface energy is attributed to
the particles. Then, using 3D simulations, we examine and provide visualisations of
bubble formation, bubble rise and bubble splitting.

In this chapter the results of simulations of fluidised beds are presented. This is
restricted to the author’s own work that was motivated by the need to re-examine
historical issues that had not been completely resolved. For more general applica-
tions of fluidised bed simulations the reader is referred to papers published by Prof.
Tsuji’s group in Osaka, Prof. Yu’s group at Monash (previously UNSW) and the
group of Prof. Kuipers at Eindhoven (previously Twente).

The increasing power of computer hardware has made a Lagrangian-Eulerian
modelling of gas-solid fluidisation feasible following the original work of Tsuji
et al. (1993) who combined the discrete element method (DEM) modelling of the
particle phase with computational fluid dynamics (CFD) modelling of the fluid
phase to simulate fluidised beds in 2D. This combined DEM-CFD approach is fully
described by Kafui et al. (2002).

In this chapter the results of simulations of fluidised beds are presented. This is
restricted to the author’s own work that was motivated by the need to re-examine
historical issues that had not been completely resolved. For more general applica-
tions of fluidised bed simulations the reader is referred to papers published by Prof.
Tsuji’s group in Osaka, Prof. Yu’s group at Monash (previously UNSW) and the
group of Prof. Kuipers at Eindhoven (previously Twente).
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7.1 Theoretical Considerations

The total force F; acting on particle i in a fluidised bed has a number of components:
a gravitational force m;,g, a fluid-particle interaction force Fy,; and a solid particle-
particle contact force F ;. The translational and rotational motions of each particle
are governed by the equations

d Vi
M =Fi=F+Fyp+mg (7.1)
d w;
; =T 72
Loy, 7.2

in which T; is the torque arising from the tangential components of the contact force
and [;, v; and w; are the moment of inertia, linear velocity and angular velocity of the
particle respectively. Equations (7.1) and (7.2) correspond to Egs. (2.1) and (2.2)
but with the fluid-particle interaction force Fjy,; added in Eq. (7.1).

By numerically integrating Eqgs. (7.1) and (7.2) twice, using Eqs. (2.3) and (2.4),
new velocities and positions of the particles are obtained and from the new
positions and velocities of the particles new fluid-particle interaction forces and
solid-solid contact forces can be calculated.

7.1.1 Fluid-Particle Interaction Force

Following Anderson and Jackson (1967), the force exerted by the fluid on each
particle, Fj,;, can be written as the sum of a component due to ‘macroscopic’
variations in the fluid stress tensor or and a component F ;'f i due to detailed

variations of the point stress tensor in the fluid flow field around a particle.

%

Ffp,' = V,,,V '6f+Ffpi (73)

where V),; is the volume of the particle. The local average stress tensor in the fluid
may be written as

cy=—pé+1y (7.4)
where p is the fluid pressure, ¢ is the identity tensor and 7y is the deviatoric stress

tensor. Assuming a Newtonian fluid with a viscous stress tensor dependent only on
the fluid motion, following Bird et al. (1960), we may write

= [(u,, - ;us)v : u} 5+ g [(vu) + (Vi)™ (7.5)

where u, u;, and p, are the velocity, bulk viscosity and shear viscosity of the fluid
respectively.
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The second term on the right of Eq. (7.3) includes skin friction and drag
contributions and is made up of (i) an effective drag force in the direction of the
relative velocity between the fluid and the particle and (ii) a virtual or added mass
force accounting for the resistance of the fluid mass that is moving at the same
acceleration as the particle. In gas-solid systems the virtual mass term is negligible
and F jﬁ i reduces to the effective drag force which, according to Anderson and
Jackson (1967), is the drag force F, obtained from the experimentally based
correlations multiplied by the local void fraction €. Consequently, substituting
Eq. (7.4) into Eq. (7.3) the fluid-particle interaction force is given by

Ffp,' = —V,,,V - p+ V,,,V “TF eF ;i (76)

The drag force F; is calculated using the following empirical correlation of Di
Felice (1994) which provides a continuous variation of drag force over the full
practical range of flow regimes and voidages.

nd?, -
Far= éCDfﬂprlgi"”j =] (= vi)e; (7.7)

where py is the fluid density, d,,; is the particle diameter and the subscript j for the
fluid velocity u and the voidage e denotes the computational fluid cell in which

particle i resides. The fluid drag coefficient for a single, unhindered particle Cp; is
calculated from

2
4.8
Cpi = 0.63 + T] (7.8)

e,,,-

and the particle Reynolds number Re,,; is based on the superficial slip velocity
between particle and fluid

dpiejlu —v
Rey :ﬂf p j| | (7.9)
Hy

(+1)

The term e; in Eq. (7.7) is a correction for the presence of other particles with

(].5 —log; Repi)2
2

x=37—0.65 exp [ (7.10)

7.1.2 Particle-Fluid Interaction Force

For the fluid hydrodynamics, the continuity and momentum equations used in the
PGF model of Kafui et al. (2002) are
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O(ep,
(g/;f) +V - (eppu) =0 (7.11)
0
%—FV-(spfuu) =—-Vp+V .z —F,r+epsg (7.12)

in which the particle-fluid interaction force F, is obtained by summing up the fluid-
particle interaction forces F,; acting on all the particles in a fluid cell n. and
dividing by the volume of the fluid cell AV..

ar
Fop= Z'A—"/ Ir (7.13)

The ideal gas law is used to calculate the fluid density py.

M
pr—Y’:p (7.14)

where the average molecular weight of air M;=0.0288 kg/mol at a temperature
T=293 K.

7.2 2D Simulations

Gas-fluidised beds have been extensively studied in academia and widely used in
industry. When examined at the macro-scale, fluidised beds may appear to behave
like a solid, a liquid or a gas, depending on the magnitude of the applied superficial
gas velocity. These “phase transitions” are important since the fundamental rate
parameters for reactor design and operation change in accordance with the flow
regimes of fluidisation. One of the attractions of DEM-CFD modelling is that it can
model all three different phases.

A series of 2D DEM-CFD simulations of fluidised bed behaviour was
performed, Thornton et al. (2015), to examine the transitions from fixed bed to
homogeneous expansion, bubbling, turbulent and fast fluidisation. Figure 7.1 illus-
trates how the bed behaviour changes as the superficial gas velocity is increased.
The bed width corresponds to 40 times the mean particle diameter and, as the gas
velocity was increased, the height of the container was adjusted to ensure that no
particles reached the top of the container. The whole of the container was divided
into small square computational fluid cells of dimension five times the mean
particle diameter. A polydisperse system of 5000 elastic spheres was used. All
the particles were initially randomly generated as a granular gas (no contacts) inside
the container with all the particle centres located in the same plane and subsequent
out-of-plane motion was suppressed. A vertical gravity field was then introduced in
order to create a pluvially deposited bed of particles. The mean particle diameter
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Fig. 7.1 Typical particle configurations for different superficial gas velocities

was 50 pm, the initial bed height was 6.54 mm with an initial voidage of 0.459 and
8,465 interparticle contacts. Further simulation details are provided by Thornton
et al. (2015).

An initial uniform gas velocity U = 0.0003 m/s was introduced into the bed from
the bottom row of computational fluid cells. The pressure drop across the bed was
obtained as the time-averaged difference between the average pressure in the
bottom and top rows of fluid cells. This was repeated for a range of gas velocities
incremented in relatively small steps up to U=1.2 m/s. With increasing gas
velocity, as seen in Fig. 7.1, bed expansion increases and the particles are
transported higher. Figure 7.2 shows how the average void fraction of the bed
changes with increasing superficial gas velocity. There are clearly three regimes. At
low gas velocities the void fraction does not change. This corresponds to the fixed
bed regime that exhibits solid-like behaviour. At high gas velocities, as the void
fraction € — 1, the behaviour is gas-like corresponding to fast fluidisation, as in the
riser of a circulating fluidised bed. Between these two regimes the bed behaves like
a liquid but there is no indication in the figure to distinguish between different
sub-regimes. In Fig. 7.1, however, it can be seen that there are three sub-regimes
corresponding to homogeneous expansion, bubbling fluidisation and turbulent
fluidisation. The transitions between these sub-regimes are considered below.
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Fig. 7.2 Variation of the average bed void fraction with increasing superficial gas velocity

7.2.1 The Transition from Fixed to Bubbling Bed

Conventionally, the point when the average pressure drop first becomes equal to the
bed weight divided by the cross-sectional area of the bed is defined as ‘minimum
fluidisation’ and the gas velocity at which this occurs is denoted as U, Above U,
the pressure drop remains constant and bed expansion occurs. In Fig. 7.3, the
average pressure drop is normalised by dividing by the bed weight per unit area.
From the figure, U,,,= 0.0048 m/s, which is in reasonable agreement with the value
of 0.0041 m/s predicted using the Ergun (1952) correlation.

Superimposed in Fig. 7.3 is the number of interparticle contacts normalised by
the initial number of contacts when the bed had been deposited. It can be seen that
some contacts were broken, without any significant change in voidage/bed height,
prior to minimum fluidisation and that, above U, the average number of contacts
decreased at a decreasing rate until an asymptotic value of about 5 % of the initial
number of contacts was reached when U=0.01 m/s. Also superimposed in the
figure is the mechanical coordination number Z,, defined by Eq. (2.22). From the
figure it can be seen that, when U= U, Z,,=3 which, in 2D, corresponds to an
isostatic state, see Sect. 2.2.1.

Figure 7.4 shows the expansion of the bed as the gas velocity is increased to
0.01 m/s. From examination of video sequences of the simulations it was observed
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Fig. 7.4 Bed expansion with increasing gas velocity
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Fig. 7.5 Cluster visualisation at the start of the homogeneous expansion’ regime

that the first bubble eruption at the bed surface occurred when U =0.01 m/s, which
therefore corresponds to what is termed the minimum bubbling velocity, U,,,,.

The gas velocity range U, < U < U,,; is conventionally known as the homo-
geneous expansion regime. Figure 7.5 shows snapshots to illustrate the evolution of
the structure of the bed at the start of the bed expansion. In each snapshot, the three
snapshots show (i) the six largest cluster sizes in the system (left column),
(i) singlets, doublets and triplets (centre column) and (iii) the spatial distribution
of interparticle contacts (right column). Note that clusters of intermediate size are
not shown. It can be seen that the number of contacts decreases sharply for
0.0048 m/s < U <0.006 m/s with a corresponding sharp increase in the number
of fines. The figure clearly shows the degradation of large clusters, the increase in
fines production and the corresponding loss of contacts as the gas velocity
increases.

From Fig. 7.5 it is also clear that, at least at the start of the “homogeneous
expansion” regime the bed is not in fact homogeneous. The results of the simula-
tions suggest that the so-called homogeneous expansion regime is actually a
transition regime. At U,,,rthe bed is at an isostatic state that is the start of a transition
from solid-like to fluid-like behaviour and that only when the contact number
reaches a small asymptotic value is the bed ‘fully fluidised” and bubbling can begin.

7.2.2 The Transition from Bubbling Bed to Turbulent Bed

Above U,,;, bubbling occurs, with the size of the bubbles increasing with increase in
gas velocity. As a consequence of bubble eruption at the bed surface the amplitude
of the pressure drop fluctuations also increases with increase in gas velocity. In the
bubbling regime both bubble splitting and bubble coalescence occur. When bubble
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Fig. 7.6 Non- averaged pressure drop fluctuations

splitting exceeds bubble coalescence the mean bubble size decreases leading to a
decrease in the amplitude of the pressure drop fluctuations, as shown in Fig. 7.6.

Figure 7.7 shows how the standard deviation of the normalised pressure drop
increases to a maximum value and then reduces at a decreasing rate towards an
asymptotic value. Yerushalmi et al. (1978) and Yerushalmi and Cankurt (1979)
suggested that the gas velocity U, at which the standard deviation of the pressure
drop reaches a maximum value indicates the beginning of a transition to turbulent
fluidisation. They also suggested that the gas velocity U, at which the standard
deviation of the pressure drop levels off at some low value indicates the end of the
transition. However, subsequent researchers have adopted U, as the start of the
turbulent regime and Uy, as the end of the turbulent regime and the transition to fast
fluidisation (Bi et al. (2000). From Fig. 7.7, U.=0.085 m/s but it is clear from the
figure that the above definition of Uy is ambiguous. Figure 7.7 also shows that the
simulation results indicate that in the turbulent regime the average pressure drop
increases with increasing gas velocity.

7.2.3 The Transition from Turbulent to Fast Fluidisation

The voidage data shown in Fig. 7.2 for the ‘liquid’ regimes indicates power law
behaviour. This is confirmed in Fig. 7.8 in which the void fraction and the gas
velocity have been normalised by the corresponding values at minimum
fluidisation, i.e. &,;=0.459 and U,,=0.0048 m/s respectively. From the best
fit line
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Fig. 7.8 Power law fit to the data in the bubbling and turbulent regimes
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U 52
B ( ¢ ) (7.15)
Umf Emf

and therefore
U = 0.275¢7 (7.16)

Equation (7.16) implies that when e =1 the gas velocity of 0.275 m/s corre-
sponds to the free-fall terminal velocity U, of an isolated sphere in an infinite fluid.
However, using a single average-sized sphere d,, = 50 pm and atmospheric gas with
the initial gas velocity set to zero, the gravity driven free-fall of an isolated particle
was simulated and the terminal velocity was found to be 0.3 m/s. The data point
corresponding to U, is indicated on Fig. 7.8.

Godard and Richardson (1969) proposed an alternative expression for the
exponent 7

p — 108 (Uns/U:) (7.17)
logem s

from which, using U, = 0.3 m/s, gives n = 5.266 which is very close to the value of
5.2 in Eq. (7.16).

It can be seen from Fig. 7.8 that the data points deviate from the power law
relationship given by Eq. (7.15) at very high gas velocities in the fast fluidisation
regime. This suggests that a rational definition of the transition from turbulent
fluidisation to fast fluidisation is provided by the gas velocity at which the data first
deviates from Eq. (7.15) and on this basis U, =0.2 m/s, as indicated on Fig. 7.8.

7.2.4 Effect of Surface Energy

In the above simulations the average particle size was 50 pm and at this size the
particles would be expected to be adhesive due to van der Waals forces. Conse-
quently a series of simulations was performed on the same particle system to
examine the effect of surface energy on the fluidised bed behaviour (Yang
et al. 2013) using the adhesive-elastic contact force model described in Sect. 3.3.
In the JKR model of adhesive-elastic particle interactions, the maximum tensile
force required to break a contact is given by Eq. (3.71) from which, for a polydis-
perse system, there will be a range of pull-off forces F,,. depending on the radii of
the two particles in contact. Consequently, values of interface energy I” are selected
to make the average bond strength a multiple of the average particle weight.


http://dx.doi.org/10.1007/978-3-319-18711-2_3
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Fig. 7.9 Bed expansion with increasing gas velocity (K= 1)

(Fue) = K{mg) (7.18)

For example, for K = 1 and interface energy I' = 27.25 uJ/m? the pull-off forces F,.
are in the range 1.605 nN +10 %.

This series of simulations focussed on the transition from fixed bed to bubbling
bed, i.e. the so-called ‘homogeneous expansion’ regime. Figure 7.9 shows the bed
expansion for K =1, which can be compared with the K =0 case illustrated in
Fig. 7.4.

Figure 7.10 provides comparisons between typical snapshots of the particle
configurations for different surface energies when the gas velocity was 0.01 m/s
and 0.02 m/s. When K =1 and K =2 the figure shows that, with a gas velocity
U =0.01 m/s, the bed has expanded without any obvious bubble observed. The
figure also shows that, for K =5, channelling occurs when U = 0.01 m/s. However,
when the gas velocity is increased to U =0.02 m/s, fully developed bubbles are
observed in all cases. This suggests that for 0 < K <5 the minimum bubbling
velocity lies in the range 0.01 m/s < U,,;, < 0.02 m/s and that with increasing
surface energy a higher gas velocity is required to reach the bubbling regime, if that
is possible.
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Fig. 7.10 Typical snapshots of the bed for gas velocities of 0.01 m/s and 0.02 m/s and K=0, 1, 2
and 5

In Fig. 7.11, the normalised pressure drop and the normalised number of contacts
are plotted against the superficial gas velocity. It can be seen that in the fixed bed
regime the pressure drop curve is independent of surface energy. However, in the
simulations, the surface energy was introduced after pluvial deposition of the
particle bed. It would have been more realistic to introduce surface energy prior
to pluvial deposition. This in itself would lead to a higher bed voidage and
consequently U, would increase with increase in surface energy. Nevertheless,
the results shown in Fig. 7.11 demonstrate that any increase in U, due to surface
energy is solely due to the higher voidage and not to any increased bed resistance
resulting from stronger interparticle bonds.

Figure 7.11 also shows that a pressure drop overshoot occurs for systems with
surface energy. For K=1 and K=2 the overshoot is slight but, for K=35, the
average pressure drop increases to a maximum value that is 10 % greater than that
necessary to balance the self-weight of the bed. To understand the overshoot
phenomenon, a bed with vertical periodic boundaries was simulated. The results,
shown later in Fig. 7.15, indicate that the overshoot is solely due to the wall effect
and, for all cases, minimum fluidisation occurs when the normalised pressure drop
first equals unity, which occurs before any overshoot appears.

The most notable aspect of Fig. 7.11 is that, for K > 1, bond breakage occurs in
two stages: (i) approximately 40 % of the bonds are broken, creating a ‘partially
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Fig. 7.11 Effect of surface energy on the evolution of pressure drop and number of contacts

fluidised’ bed, and (ii) for a higher bond strength a higher gas velocity is required to
break the remaining bonds in order to ‘fully fluidise’ the bed. When the gas velocity
is increased above U, a sufficient number of contacts is broken to form a few
relatively large agglomerates that consist of most of the particles in the bed. The
strength of the agglomerates so formed depends on the strength of the interparticle
bonds. As shown in Fig. 7.11, in order to fracture the initially formed agglomerates
a higher gas velocity is required for higher values of surface energy. Once this has
been achieved, further disintegration of the agglomerates continues progressively
until the fines predominate and occupy the whole bed. At this point the bed can be
considered to be “fully fluidised’ and bubbling can occur. The process is illustrated
in Fig. 7.12 for the case of K=1.

For each gas velocity, the three columns show (i) the six largest agglomerates
(left), (ii) singlets, doublets and triplets (centre) and (iii) the spatial distribution of
interparticle contacts (right); agglomerates of intermediate sizes are not shown.
Initially, the structure of the bed breaks into two once U,,sis reached. The amount of
fines remains low until U = 0.0075 m/s. At this point, the second large reduction in
the number of contacts begins, see Fig. 7.11, when the gas velocity is sufficiently
high to break up the large agglomerates, leading to a corresponding rapid increase
in the number of fines particles. The connectivity network completely disintegrates
until finally the bed consists entirely of singlets, doublets and triplets and is fully
fluidised and bubbling begins when U = 0.014 m/s. Typical snapshots of the beds at
minimum bubbling velocity are shown in Fig. 7.13 for K=0, 1, 2 and 5.
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U=0.0080m/s U=0.0095m/s U=0.014m/s

Fig. 7.12 Agglomerate degradation during ‘homogeneous expansion’

The average pressure drop and average mechanical coordination number are
plotted against superficial gas velocity, for different values of K, in Fig. 7.14. It can
be seen that the average mechanical coordination number, defined by Eq. (2.22), is
approximately 3 when U reaches U, except for the case of K =5. For the case of
K =35, the data is replotted in Fig. 7.15. The figure shows results obtained for both a
wall bounded system and a system with vertical periodic boundaries. It can be seen
that, when vertical periodic boundaries are used, there is no overshoot in the
pressure drop. This indicates that the pressure drop overshoot is an artefact resulting
from the extra kinematic constraint provided by the wall boundaries.

It can be seen that, for the case of vertical periodic boundaries, when the
normalised pressure drop first reaches unity the average coordination number
Z,,~3.05 and when, in the case of the wall bounded system, the pressure drop
overshoot reaches a maximum value Z,, ~3.15. As explained in Sect. 2.2.1, in 2D
the critical coordination number Z. = 3 for p = oo but for finite friction (in this case
p=0.3) it depends on the percentage of sliding contacts and is slightly higher.
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K=0 K=1 K=2 K=5
V =0.01 m/s V =0.014 m/s V =0.015m/s V =0.02m/s

Fig. 7.13 Particle configurations at U,

7.3 3D Simulations

This section presents results of 3D DEM-CFD simulations of a bubbling fluidised
bed the motivation for which was to examine bubble formation, bubble rise velocity
and bubble splitting, see Kafui et al. (2006) for more details. The bed consists of
100,000 elastic-plastic spherical particles in the size range 50 +5 pm which were
randomly generated in a container of 2 X 2 mm cross-section and pluvially deposited
to yield a powder bed of height 2.9 mm and void fraction € = 0.404. The bed was then
fluidised using a superficial gas velocity of 14.3 mm/s (~4.8U,,. Figure 7.16
illustrates the initial bed expansion, showing particles and contacts.

In order to clearly visualise bubble behaviour, the bed was divided into eight thin
vertical slices, each about 5d, thick, and videos were produced for each slice to
examine the evolution of the particle configuration, fluid velocities, particle veloc-
ities and interparticle contacts. Snapshots obtained from the videos are used below
to illustrate the behaviour.
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Fig. 7.16 Initial bed expansion (showing particles and contacts)

7.3.1 Bubble Formation

Figure 7.17 shows the typical formation of a bubble. The figure reveals that the
bubble was initially seeded from horizontal air pockets spanning the width of the
bed and originating from the base. In general, when the particle flow is mainly
downwards along the walls, the air pockets are swept upwards with the upward-
flowing central core towards the axis of the bed and coalesce to form a single well-
defined bubble which either erupts at the top of the bed or occasionally splits into
two bubbles. The width-spanning air pockets are a start-up phenomenon due to the
narrow bed and the idealised uniform fluidising gas inflow used in the simulations.
Visual evidence indicates that later in the simulations they are replaced by smaller
air pockets.

It can also be seen from Fig. 7.17 that redirection of the fluid flow through the
forming bubble becomes more pronounced as the voidage at the core of the bubble
increases. From examination of video sequences it was observed that fluid
recirculation loops formed at the sides of a fully formed bubble. These recirculation
loops are formed by fluid which, on passing through the bubble roof, circulates
through the particles adjacent to the bubble and returns again to the bubble. This
feature was predicted by Davidson and Harrison (1963) for cases where the bubble
rise velocity is greater than the fluidising gas velocity, as in this case.
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Fig. 7.17 Bubble formation showing particles (top) and fluid flow field (bottom)

For a well-defined bubble, the particle configuration, fluid velocity field, particle
velocity field and location of interparticle contacts, i.e. collisions, are illustrated in
Fig. 7.18. It is interesting to note that collisions only tend to occur below the bubble
as a consequence of the fluid recirculation loops.

The particle velocity field, as shown in Fig. 7.18, appears to suggest that particles
enter the bubbles from the wake of the bubble, as suggested by Rice and Wilhelm
(1958). However, as illustrated in Fig. 7.19b, although the absolute particle veloc-
ities at the bottom of the bubble are travelling upwards, so is the bubble. Conse-
quently, the bubble velocity was subtracted from the particle velocities to provide
the relative particle velocities shown in Fig. 7.19c. It can be seen that the relative
velocities indicate that the particles enter the bubble from the roof, as suggested by
Harrison et al. (1961). Also it is noted that the relative velocities in the wake of the
bubble tend to be horizontal leading to the collisions illustrated in Fig. 7.18.
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particles fluid velocities particle velocities contacts

Fig. 7.18 Snapshots showing particles, fluid velocity vectors, particle velocity vectors and
interparticle contacts (collisions)

Fig. 7.19 Bubble details showing (a) particles (b) absolute particle velocities (c¢) particle
velocities relative to bubble velocity

7.3.2 Bubble Rise

Bubble dimensions (xp, y5, z,) and bubble velocities (Vyy, Vpy, Vp.) in the three
coordinate directions can be determined visually for bubble rise sequences such as
the example shown in Fig. 7.20. The diameter of a volume-equivalent sphere d,,,
which is often employed in defining bubble size, is then calculated from

XYyt

dp 3

(7.19)
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Fig. 7.20 Bubble rise viewed in the y-direction (top) in the x-direction (bottom)

and the bubble speed v,, is obtained from

Vo = \/Vi T Vi, Vi (7.20)

Figure 7.20 Bubble rise viewed in the y-direction (top) in the x-direction (bottom)
For the sequence shown in Fig. 7.20, using Eqgs. (7.19) and (7.20) the average
bubble size was found to be 1.067 mm and the average vertical bubble velocity
». = 0.076 m/s. However, this method of determining bubble size, position and
hence velocities is very sensitive to the visual judgement of the bubble boundaries
since the shape of the bubble changes as it travels upwards through the bed. An
alternative is illustrated in Fig. 7.21.

The linear decrease in pressure from the bottom to the top of a fluidised bed is
interrupted by the presence of a bubble, as shown in Fig. 7.21. It can be seen that, within
the bubble, the pressure is almost constant. The intersection of the two pressure profiles
can be used to identify the location of the bubble centre and the bubble rise velocities as
the bubble moves upwards through the bed. The bubble size can also be estimated from
the width of the almost zero pressure gradient region of the pressure profile.

7.3.3 Bubble Splitting

As bubbles travel upwards though the bed, bubble splitting and bubble coalescence
frequently occur. An example of bubble splitting is illustrated in Fig. 7.22. The



7 Fluidised Beds

ot

" T e

ils

—o0— bubbling bed
~=-===- bubble-free bed

3
vertical distance along axis (mm)

1 n 1 1

144

10

g = 8 B s .
(ed) wvg-4 dmssaxd

Fig. 7.21 Comparison of pressure profiles through bubbling and bubble-free beds

Fig. 7.22 Bubble splitting showing particles (top) and fluid velocity vectors (botton)



References 145

bubble is fully formed between the first two snapshots in the sequence. However, as
can be seen in the second snapshot, particles falling down from the centre of the
roof of the bubble initiate a bifurcation of the fluid flow inside the bubble. Conse-
quently, the drag forces acting on the central falling particles is reduced and the
concentration of particles raining down from the centre of the roof of the bubble
increases, resulting in the creation of two distinct bubbles, as seen in the final
snapshot shown in Fig. 7.22. Bubble coalescence was never observed during these
simulations and it probably requires a wider and deeper bed to be simulated for this
to occur.
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Chapter 8
Quasi-static Deformation

Abstract This final chapter deals with quasi-static deformation of compact particle
systems with enduring contacts. Although DEM can be applied to more dynamic
problems, as illustrated in previous chapters, the original BALL and TRUBAL
codes were intended to be used to examine quasi-static deformation in the context
of soil mechanics. Prior to the introduction of DEM, analyses were restricted to
regular arrays of equal-sizeed spheres and an example is provided at the start of this
chapter. This is followed by presentations of the results of 2D simulations of the
direct shear, simple shear and biaxial compression tests in order to examine and
illustrate shear localisation, shear bands and non-coaxiality of stress, fabric and
strain rate during simple shear deformation. Results of 3D periodic cell simulations
of axisymmetric compression are then presented to illustrate the evolution of the
induced structural anisotropy and coordination number, the significance of the
strong force sub-network and the effect of plastic deformation at the interparticle
contacts. Finally, general 3D states of stress are explored and, for radial deviatoric
straining, stress and fabric response envelopes are illustrated and a deviatoric flow
rule is identified. This final section of the chapter provides an excellent example of
the power of DEM simulations, due to the ability to simulate an infinite number of
different tests from exactly the same initial state, a problem that is impossible to
achieve by an experimentalist.

Prior to the introduction of DEM simulations by Cundall and Strack (1979), particle
based analyses of quasi-static deformation was restricted to regular arrays of equal-
sized spheres. In the 1950s Mindlin’s research group used their contact mechanics
solutions, see Sect. 3.1, to obtain differential stress-strain relationships for face-
centred cubic arrays (Duffy and Mindlin 1957), simple cubic arrays (Deresiewicz
1958) and close-packed hexagonal arrays (Duffy 1959). An alternative approach
was to consider regular arrays of rigid spheres in order to rationalise shear strength
in terms of the micromechanics at the particle scale. This approach was initiated by
Rennie (1959) who considered the conditions under which sliding occurred at all
contacts under axisymmetric compression. This problem was also examined by
Rowe (1962) and, in the context of plane strain, by Leussink and Wittke (1963). A
more comprehensive analysis of failure conditions for body-centred orthorhombic
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arrays of rigid spheres subjected to general 3D straining was provided by Thornton
and Barnes (1982), which will be presented in the following section.

8.1 Failure Conditions for Regular Arrays of Rigid Spheres

Consider a range of regular arrays of rigid spheres that can be classified as body-
centred orthorhombic; and include body-centred tetragonal, body-centred cubic and
face-centred cubic arrangements as special cases. The structure of the body-centred
orthorhombic array is shown in Fig. 8.1a. The central sphere is in contact with eight
other spheres whose centres are defined by the coordinates

X;=1D (i=1,2,3) (8.1)

where D is the diameter of the spheres and /; are the direction cosines of the branch
vector joining the centres of each of these spheres with the centre of the central
sphere, which is located at the origin of the Cartesian coordinate system shown.
Consider irrotational deformation for which the principal stress and strain-rate
tensors are coaxial. Coaxiality is associated with a “multiple sliding” mechanism
in which sliding occurs at all contacts and the eight spheres remain in contact with
the central sphere throughout the subsequent deformation. Furthermore, for irrota-
tional deformation, the magnitude of the relative displacement-rate, A, is the same
at all contacts and so we need only consider the relative displacement of one of the
spheres, as shown in Fig. 8.1b. Hence, if the assembly is subjected to a uniform
strain-rate &;;, the relative displacement-rate of the contacting sphere may be
expressed as

a 1x, b

Fig. 8.1 Body-centred orthorhombic array (a) configuration (b) contact details
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Xi=¢&,X; (8.2)
or

where m; are the direction cosines of the displacement-rate vector. Using Egs. (8.1),
(8.2) and (8.3) we obtain the strain-rate tensor

(8.4)

in whiché;; = 0 for i # j,i.e. the principal strain-rate directions coincide with the
axes of the Cartesian reference frame.

Since the tractions acting on the surface of a typical sphere are discrete forces
acting at the points of contact with adjacent spheres, the state of stress within a
sphere is not homogeneous. However, due to the regular arrangement of the
spheres, the average stress tensor will be identical for all spheres and will be
equivalent to the macroscopic state of stress for a large assembly of spheres. The
macroscopic stress tensor is defined by

1 IR
ojj = vJVGijdV = vzxipj (85)
1

where V is the volume of the space occupied by each sphere on which there are
n discrete forces P acting at the contacts defined by the coordinates x;. It is
convenient to partition the stress tensor as follows

O',‘j:a,‘j—l-Sij (86)

where « is the normal force contribution and S is the tangential force contribution to
the stress tensor. For irrotational deformation there is no particle spin and hence, in
order to satisfy moment equilibrium for each sphere, all the tangential forces must
be equal. It then follows that, since coaxiality is associated with sliding at all
contacts, all the normal forces must also be equal. Therefore, let N be the normal
force and T = uN be the tangential force at each contact.

If the direction cosines of the contact normal vector are n; (= /; for spheres) then
the normal and tangential force contributions are obtained as

1 4ND
aij = ‘—/inNj = Tl’l,‘l’lj (87)
1
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and
S,’j = = X,'T_,' =07 nim; (88)

in which a;; = S;; = 0 for i # j. Substituting Eqgs. (8.7) and (8.8) into (8.5)

4ND
Gij = Ok (ninj + ynimj) with Ok = T (89)

Considering the rate of energy dissipation per unit volume, we may write
Uijéij: (a,-j—l—S,-j)é,-j (810)

Substituting Eqgs. (8.4), (8.7) and (8.8) leads to «;;é;; =0 and §;;&;; = STA/V
demonstrating that the normal force contribution is the non-dissipative stress and
the tangential force contribution is the dissipative stress.

The stress tensor, defined by Eq. (8.9), applies to all body-centred orthorhombic
arrays and defines the states of stress that will cause yield, the yield mechanism
being defined by the strain-rate tensor, given by Eq. (8.4). Thus, having specified
the physical properties of the array (structure and interparticle friction) it is possi-
ble, for a given mean stress, to identify the complete range of stress states that will
cause yield by varying the direction of the relative displacement-rate vector A at the
contacts.

8.1.1 Solutions

Yield conditions are conventionally represented in principal stress space by yield
surfaces. Due to the dependence on mean stress it is clear that the yield surfaces are
cones and it is then convenient to depict the yield conditions on the deviatoric plane
(o = constant) of principal stress space, as illustrated in Fig. 8.2. For the body-
centred cubic array (1 1 =b=5=1/ V3 ) the yield conditions are defined by a
circle centred on the space diagonal, as shown in Fig. 8.2a. The radius of the circle
is equal to uow /v/3 and, according to Eq. (8.4), all the states of stress defined by the
circular yield locus are associated with zero rate of volumetric strain. The yield
conditions for body-centred tetragonal arrays (e.g. I; # [, = I;) are defined by
ellipses, as shown in Fig. 8.2b, which are symmetric about one of the axes and
whose centres are displaced from the space diagonal. Figure 8.2c shows a typical
yield locus for a body-centred orthorhombic array (I, # I, # I3).

Although there are an infinite number of possible body-centred orthorhombic
arrays there are restrictions due to the particle shape in that, for spheres, the

directions cosines are restricted to the range 1/2 <1, <1/ V2. Consequently
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Fig. 8.2 Deviatoric yield loci (a) body-centred cubic (b) body-centred tetragonal (c) body-centred
orthorhombic

Fig. 8.3 Limit envelope 401

O3 02

there is a limit to the possible locations of the yield loci on the deviatoric plane.
Figure 8.3 shows the limiting envelope that circumscribes all the limiting yield loci.
It is interesting to note that the envelope is rather similar to the experimentally
observed failure envelope of Lade and Duncan (1975), see also Sect. 8.3.2.

The yield locus shown in Fig. 8.2c is redrawn in Fig. 8.4a and a three dimen-
sional view is shown in Fig. 8.4b. The yield conditions for all body-centred
orthorhombic arrays (with the exception of the body-centred cubic case) are defined
by oblique elliptical cones with their base planes parallel to the deviatoric planes.
Figure 8.4b illustrates how the total stress vector is subdivided into its
non-dissipative, @, and dissipative, S, components. It can be seen that the
non-dissipative stress vector coincides with the axis of the cone and the dissipative
stress vector lies in the deviatoric plane. The corresponding components on the
deviatoric plane are shown in Fig. 8.4a which illustrates that only part of the
deviatoric stress is dissipative since

s,-j:a,-j+S,-j (811)
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Oy

O3 O3

Fig. 8.4 Geometry of a typical yield surface

204

Fig. 8.5 Yield cones for body-centred tetragonal arrays

where the deviatoric stress

Sij = 0ij — o1; /3 (8.12)
and

aij = ajj — abij/3 (8.13)

Yield cones for three body-centred tetragonal arrays (I, =/;3) are shown in
Fig. 8.5 with the strain-rate vectors for axisymmetric stress states (o2 = 033)
superimposed. It is clear that the normality rule of classical plasticity theory does
not apply. Instead, the strain-rate vectors are normal to the axes of the cones. This is
a physical requirement that the strain-rate and non-dissipative stress vectors are
orthogonal.
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Fig. 8.6 Dissipative stress 4 o,
plane viewed along the axis
of the cone

O3
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It follows from the geometry in Fig. 8.5 that planes orthogonal to the axis of the
cone may be referred to as “dissipative stress planes. Adopting this terminology, it
is found that normality of the strain-rate vector to the yield surface is only observed
when the dissipative stress planes are examined by looking down the axes of the
cones. This is illustrated in Fig. 8.6, for the case of the body-centred orthorhombic
solution shown in Fig. 8.2c.

As shown in Fig. 8.2, the location and shape of the deviatoric yield loci depend on
the structure of the array. Yield results in a change in structure but, for irrotational
deformation, the general body-centred orthorhombic description remains valid
throughout the strain softening deformation process. Consequently it can be inferred
from Figs. 8.2, 8.4, and 8.5 that, during deformation, the non-dissipative stress vector
(which coincides with the yield cone axis) rotates about the origin of principal stress
space and, hence, the deviatoric yield loci translate, distort and rotate in a manner that
reflects the changes in the structural anisotropy of the array.

Figure 8.7 illustrates the evolution of the deviatoric yield locus for a face-centred
cubic array that is deformed in an arbitrary manner into a body-centred cubic
arrangement.

The initial yield locus is centred at A with the stress state defined by point
1. During deformation the centre of the yield locus follow the trajectory ABCDE
with the corresponding stress path defined by the points 12345. The lines Al....E5
correspond to the current dissipative stress vectors and it can be seen that they are
tangential to the trajectory ABCDE of the centre of the yield locus. Therefore, the
motion of the deviatoric yield locus may be defined as follows

aij = —hS;; (8.14)
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Fig. 8.7 Evolution of the 4
deviatoric yield locus
during deformation

which, it is interesting to note, corresponds to Ziegler’s (1959) modification to
Prager’s (1955) kinematic hardening rule.

From the geometrical solutions presented above it is possible to identify the
complete corresponding macroscopic constitutive plasticity model in terms of the
yield function, flow rule and the (negative) hardening law, see Thornton and Barnes
(1982) for details. However, for random arrays of spheres, even monodisperse
systems, the above type of analysis is not possible due to the irregular arrangement.
This, together with other complications such as particle rotation, particle shape and
polydispersity, is what makes real granular materials, even spherical particle
systems, so complex and fascinatingly challenging, as will be demonstrated in the
remainder of this chapter.

8.2 2D Simulations

Early applications of DEM to quasi-static deformation were restricted to
two-dimensional systems (Cundall and Strack 1979; Thornton and Barnes 1986;
Rothenburg and Bathurst 1989). Two-dimensional simulations of quasi-static
deformation are, in general, of limited use due to the extreme kinematic constraint
that there cannot be any out-of-plane motion of the particles. Even in plane strain
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Fig. 8.8 The direct shear test (a) schematic diagram (b) forces acting on the top half of the
specimen

particles are free to move out-of-plane. It simply requires that the average out-of-
plane motion is zero.

However, since visualisations of 3D particle systems are extremely difficult to
clearly illustrate, 2D simulations can be useful to obtain a basic understanding of
certain micromechanical features of granular media. In this sense, the next section
considers 2D simulations in the context of strain localisation and shear bands. This is
followed by results obtained from 3D simulations in axisymmetric compression, the
so-called ‘standard triaxial test’, followed by an examination of the shear behaviour
of compact particle systems under general 3D loading in which 6; # 6, # ©3.

8.2.1 Direct Shear Tests

In the direct shear test, the top half of the specimen is translated relative to the bottom
half of the specimen in order to create a shear band/plane across the mid-height of the
specimen. Although the direct shear test has been criticised for many years, it is still
widely used in industry for testing cohesionless material. Traditionally, in process
engineering the test is performed in a Jenike shear cell, which is circular in cross-
section, whereas the Casagrande shear box, which has a square cross-section, is used
in geotechnical engineering. In both cases the externally applied vertical and hori-
zontal forces are measured and the ratio of horizontal to vertical load is assumed to
provide an estimation of the average ratio of shear to normal stress acting in the shear
band and, thereby, provide a direct measure of the angle of internal friction, although
the exact state of stress within the shear band is unknown.

The test arrangement is shown diagrammatically in Fig. 8.8a. The upper half of
the specimen is contained by four walls (AB, CD, AD and BI), which are all
translated horizontally in the opposite direction to the four walls (EF, GH, FG
and CJ) containing the lower half of the specimen. The top and bottom walls are
free to move vertically, but not to rotate. In simulations, walls do not interact with
other walls, only with adjacent particles. More details can be found in Thornton and
Zhang (2003), Zhang and Thornton (2007).
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Two-dimensional simulations were performed on a polydisperse system of 5000
elastic spheres. Particle-particle and particle-wall interactions were modelled by the
Hertz, Mindlin and Deresiewicz models described in Sect. 3.1. During all simula-
tions no out-of-plane motion was permitted and, for the purpose of calculating
volumes, necessary for determining the stress tensor and the porosity, the dimen-
sion in the third orthogonal direction was taken to be the average particles diameter,
in this case 0.06 mm.

By summing all the forces at the particle/wall contacts the resolved reaction
forces may be calculated. Figure 8.8b shows the wall reaction forces for the upper
part of the shear box. From equilibrium it follows that

T=N;—N,+T; (815)
N=T;—T,+Nj3; (816)

and the Coulomb definition of the mobilised angle of shear resistance ¢, is given by

T T
t =— == 8.17
an b= =5 (8.17)

The shaded central band shown in Fig. 8.8a, which is about ten mean particle
diameters wide, is an approximation to the anticipated shear zone that will develop
at the mid-height of the specimen. Consequently, an approximation to the state of
stress acting in the shear zone can be obtained from the distribution of contact
forces in the shaded region using Eq. (2.45).

Sample preparation is simulated by omitting the top wall, AD in Fig. 8.8a, and
randomly generating the particles as a granular gas (no contacts) in a rectangle
whose height is approximately 40 % higher than the box height, AF in Fig. 8.8a. By
introducing gravity the particles rain down to form a bed. The top wall is then
positioned above all the particles and moved downwards to establish multiple ball/
wall contacts. The gravity field is then removed.

In order to simulate constant vertical normal stress tests, the top and bottom
walls are permitted to move in the vertical direction. Initially, tests were simulated
by adjusting the vertical position of the top and bottom walls to keep the vertical
normal force N; constant, see Fig. 8.8b. However this did not work, because the
vertical tangential forces T; and T, cannot be controlled by moving the top wall.
Ideally one would wish to maintain constant the vertical normal stress acting in the
shear band but, for reasons given later, this is not possible. Consequently the stress
tensor for the complete specimen was calculated using Eq. (2.45) and the top and
bottom walls were continuously adjusted to maintain the average vertical normal
stress o,, for the complete specimen, at a constant value. To achieve this, at each
time step, the vertical velocity of the top wall was set to

ity = g (o — o) (8.18)
where ¢? is the desired vertical normal stress, ¢¢ is the calculated vertical normal
stress for the whole specimen and g is the gain parameter, in this case set to 0.001.
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Fig. 8.9 Deformation pattern (a) and force transmission pattern (b) compared with experiments
by (c¢) Vardoulakis and Sulem (1995) and (d) Dyer and Milligan (1984)

The vertical velocity of the bottom wall is set to minus the value calculated by
Eq. (8.18). If &, is greater than a specified maximum admissible velocity i,,,, then

1, = sign [L'tmax,g(af — 05)] (8.19)

with #,,,, set to 8§ um/s.

Figure 8.9a shows the particle configuration at the end of shearing, which may be
compared with a real experimental result shown in Fig. 8.9¢c. By colour-banding the
particles vertically before the start of shear it can be seen that deformation is
localised in a narrow shear zone located at the mid-height of the specimen. The
actual shape of the shear zone is lenticular, not rectangular as indicated diagram-
matically in Fig. 8.8a. The width of the shear band in the centre is wider than near
the edge. It is clear that, within the lenticular shear zone, the shear strain is greatest
near the edges and reduces towards the centre. Consequently the state of stress is
not homogeneous within the shear zone.

The force transmission through the system of particles, at peak stress ratio, is
illustrated in Fig. 8.9b. Each line is drawn between the centres of two particles in
contact with each other. The larger-than-average contact forces are indicated by
black lines and grey lines indicate the lower-than-average contact forces. The
magnitude of each force is indicated by the thickness of the line, scaled to the
current maximum contact force. It can be seen from the figure that there are
significantly large contact forces acting on the top left-hand wall and the bottom
right-hand wall. Only small forces are transmitted to the other two vertical walls.
On the top and bottom walls the large forces concentrate to the side near the end
walls that push the sample. At the other side of the top and bottom walls the forces
are relatively small. It is clear that the normal stress distribution along the top and
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Fig. 8.11 Evolution of (a) porosity and (b) vertical and horizontal normal stresses in the shear
band

bottom walls is not uniform. Consequently, the strong force transmission pathways
are inclined as they pass through the shear zone at the mid-height of the specimen.
The overall pattern clearly indicates a very heterogeneous distribution of stress that
correlates very well with photoelastic observations for crushed glass, shown in
Fig. 8.9d, in which the orientation of the light stripes approximate to the major
principal stress direction.

The evolution of the mobilised shear strength obtained from three direct shear
simulations in which the normal stress was maintained constant at 10, 15 and
20 MPa is shown in Fig. 8.10. It can be seen that, in spite of the gross inhomoge-
neity within the specimen, the evolution of the mobilised shear strength defined by
T/N is similar to that obtained from calculating the average stress ratio in the central
part of the specimen.

Figure 8.11a shows the evolution of the porosity of the complete specimen, as
determined from the vertical displacements of the top and bottom walls, and the
porosity changes that occurred in the central region used to approximate the shear
band. Although the calculated porosity changes in the shear band show significant
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Fig. 8.12 Steady state stress conditions in the shear band

fluctuations, it is clear that the rate of dilation and the final voidage in the shear band
exceeds that indicated by the wall movements.

Figure 8.11b shows the evolution of the vertical and horizontal normal stresses
acting in the central part of the specimen used to approximate the shear band.
Although the average vertical normal stress of the complete specimen was con-
trolled to remain constant it can be seen that the vertical normal stress in the
approximated shear band increases by about 10 % during the simulations. As the
relative displacement between the upper and lower parts of the shear box increases
the horizontal normal stress increases until the stress ratio 7/o,, is a maximum. At
this stage the horizontal normal stress is greater than the vertical normal stress
reflecting the fact that the strong force chains, shown in Fig. 8.9b, are inclined at an
angle less than 45° to the horizontal. After peak stress ratio the horizontal normal
stress decreases and, significantly, becomes approximately equal to the vertical
normal stress when the steady state is attained at the end of the tests. If the vertical
and horizontal normal stresses in the approximated shear band are equal then o,
defines the centre of the Mohr circle at the steady state, the radius of which is equal
to 7 and the stress combination (z,0,,) is given by point P in Fig. 8.12. Note that the
Mohr definition of the mobilised angle of shearing resistance ¢,,# ¢.. since

(8.20)

and, at the steady (critical) state, tan ¢, = sin ¢,,.
In the standard shear testing procedures using the Jenike shear cell, the sample is
sheared in two steps. In the first, the sample is ‘presheared’ under a constant normal
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stress o, until steady state flow is established and 7 remains constant. It is normal
practice to assume that the measured values of ¢, and 7 define a point on the
‘effective yield locus’ (EYL) shown in Fig. 8.13.

From the experimental data the location of the corresponding Mohr stress circle
is not known. It is conventionally assumed that the ‘effective yield locus’ is the
same as the Mohr-Coulomb line traditionally used in soil mechanics, implying that
¢. = ¢, contrary to the inequality illustrated in Fig. 8.12. Consequently, the EYL is
assumed to be tangential to the Mohr circle as illustrated by the larger circle shown
in Fig. 8.13 with the ‘major consolidation stress’ 6; = o;yon-). However, the
simulation data shown in Fig. 8.11b indicate that the actual Mohr circle is the
smaller of the two circles and the ‘major consolidation stress’ is 6; = 61(Coutomb)-
From the geometry of Fig. 8.13, it follows that

O1(Mohr) (U +sing,) (1 + tan*¢,.)

8.21
O [(Coulomb) (] + tan ¢() ( )

which indicates that the Mohr interpretation over predicts the major principal stress
and that, as a consequence, the corresponding ‘flow function’ under predicts the
‘unconfined yield stress’ for a given value of major principal stress.

8.2.2 Shear Bands

In this section, biaxial compression tests are used to examine strain localisation and
shear band formation, using polydisperse systems of 5000 elastic spheres with
interparticle friction p=0.5 and either kinematically controlled wall boundaries
or periodic boundaries.

Figure 8.14 shows a wall-bounded system with a porosity of 0.406. The initial
configuration, prior to shearing, is shown in Fig. 8.14a in which the particles are
colour banded to enable subsequent identification of possible shear bands. Fig-
ure 8.14b shows the system with zero wall friction at 30 % deviator strain. Note that
the direction of compression is horizontal. It is evident that there is an inclined shear
band running from the top right-hand corner to a position along the left-hand side
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Fig. 8.14 Wall bounded specimens (a) before shear (b) end of shear (x,,=0.0) and (c) end of
shear (u,,=0.5)

Fig. 8.15 Periodic cell specimens with initial porosities (a) 0.365 (b) 0.401 (c) 0.436

wall. When the wall friction coefficient was changed to u,,=0.5, two conjugate
intersecting bands are observed, Fig. 8.14c, emanating from near the corners of the
specimen. The figure demonstrates that the inclination of shear bands depends on
the boundary conditions.

Results of periodic cell simulations are illustrated in Fig. 8.15 for three different
initial porosities. A distinct shear band developed in the densest specimen, as shown
in Fig. 8.15a. Figure 8.15b is typical of medium dense specimens with no evidence
of shear band formation. For the loosest system, Fig. 8.15¢ suggests a folding
mechanism similar to that observed in rock formations. Interestingly, this system
never established a percolating pattern of force transmission across the system with
enduring contacts. Throughout the test, most particle interactions were collisional
corresponding to fluid-like behaviour.
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Fig. 8.17 Velocity fluctuations (a) near the start of shear (b) just after peak

Further detailed information can be obtained about shear bands, as illustrated in
Figs. 8.16, 8.17, and 8.18 for the densest specimen illustrated in Fig. 8.15a. Particle
locations at any two loading steps can be used to calculate displacement increments.
In Fig. 8.16a the incremental displacement field is shown for an increment in
deviator strain of about 2 % just prior to attaining peak stress ratio. As expected,
no clear shear band is observed at this pre-peak stage. The incremental displace-
ment field is essentially uniform except for a few hints of localization taking place
randomly inside the system. Figure 8.16b shows that during post-peak deformation
there are large incremental displacements distributed along an inclined band, which
corresponds to the finally developed shear band shown in Fig. 8.15a.
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Fig. 8.18 Particle rotation field (a) pre-peak (b) post-peak

Figure 8.17 shows the fluctuating velocity field near the start of shear and just
after peak stress ratio. The velocity fluctuations are defined as v; = v; — (v;), where
v; is the particle velocity and (v;) is the average particle velocity. In a periodic cell,
if the origin is taken to be the centre of the cell, the average particle velocity is zero
and the fluctuating velocity is that resulting from the particle contact forces and
calculated using Eq. (2.3). Figure 8.17a shows the fluctuating velocity field near the
start of shear. It can be seen that the velocity vectors form many, randomly
distributed, local circular cells, as first observed by Williams and Rege (1997).
As shearing continues the velocity vectors rearrange, the vortex structures enlarge
and, after peak stress ratio, the large velocity fluctuations align in opposite direc-
tions along a distinct shear zone, as shown in Fig. 8.17b.

Figure 8.18 shows particle rotations during the same time intervals as the
displacement increments shown in Fig. 8.16. In the figure, only rotations larger
than 10 % of the current maximum particle rotation are shown. Open circles denote
clockwise (negative) rotation and solid circles denote anticlockwise (positive)
rotation. As shown in Fig. 8.18b, most of the particles in the established shear
band exhibit positive rotations. Prior to peak stress ratio, most of the particles
exhibiting significant negative rotations align in the direction perpendicular to that
of the positive rotations.

It is clear from Figs. 8.16a and 8.18a that the locations of the large particle
rotations correlate with the pattern of the incremental displacement field and indicate
the existence of small micro-shear bands during strain hardening prior to reaching the
maximum deviator stress, as first demonstrated by Kuhn (1999). Thornton and Zhang
(2006) also demonstrated that the locations of the intermittent small micro-shear
bands prior to peak also correlated with local regions of high dilation.

It should be noted that, in Figs. 8.16, 8.17, and 8.18, there appears to be a second
shear band during post-peak deformation, which is located at the bottom left-hand
corner. However, this is not correct because of the periodic nature of the
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Fig. 8.19 Particle configuration at shear strains of (a) 0 % (b) 17.6 % (¢) 33 %

boundaries. This ‘short’ shear band also exists at the bottom left-hand corners of the
cell above and the cell to the right, and is therefore simply a continuation of the one
continuous shear band.

Figure 8.19 illustrates the occurrence of a shear band in an initially rectangular
periodic cell, Fig. 8.19a, with an aspect ratio of 1.5. The system was compressed
vertically, expanded horizontally, and it can be seen in Fig. 8.19b that a shear band
formed post-peak inclined at an angle >45° to the major principal plane. At the end
of the simulation, however, the shear band inclination had reduced to about 45°,
Fig. 8.19c. In a periodic cell, in order to maintain continuity with surrounding cells,
the shear band inclination necessarily adjusts as the cell dimensions change and,
therefore, the inclination of shear bands cannot be examined by periodic cell
simulations. However, the existence of shear bands in periodic cell simulations
demonstrates that localization and shear band formation are genuine material
behaviours rather than artefacts created by boundary imperfections.

In this section it has been demonstrated that, prior to the attainment of peak shear
strength, the deformation becomes heterogeneous at the grain scale as a conse-
quence of the development of conjugate sets of micro-shear bands, which are
characterised by high rates of dilation and particle spins. At peak shear strength,
buckling of the chains of particles transmitting strong contact forces occurs and this
creates strong discontinuities in the fluctuating velocity field that leads to the
development of a persistent shear band along one of the existing micro-shear
band locations. The other micro-shear bands then disappear due to strain
localisation within the dominant shear band.

8.2.3 Simple Shear

It is difficult to reliably determine the stress-strain relationship within a shear band due
to the small number of particles involved. It is, in fact, questionable as to whether or
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Fig. 8.20 Scheme for simulations of simple shear tests

not a continuum description is appropriate when the width of the band is no more than
ten particles. However, it is normally accepted that the mode of deformation within a
shear band is one of simple shear. Consequently, simple shear simulations have been
performed in order to determine the evolution of the stress tensor, dilation rate, and the
principal directions of stress and strain-rate, Thornton and Zhang (2006). This was
achieved by simulating systems of particles that were contained within four kinemat-
ically controlled walls, analogous to the Grenoble 1y2e apparatus, Joer et al. (1992).
This ensured overall uniform strain in contrast to the alternative Couette configuration
that invariably results in heterogeneous stress and strain states.

The simple shear simulation model is diagrammatically illustrated in Fig. 8.20, in
which the dashed lines show the initial positions of the wall boundaries. In order to
apply simple shear, the two vertical walls AB and CD are rotated at a constant angular
velocity about the mid-points of the two walls. The top and bottom walls AD and BC
are translated using a compatible horizontal velocity in opposite directions and, in
addition, the vertical velocities are continuously adjusted using servo-control algo-
rithms to ensure that the vertical normal stress component of the stress tensor o5,
remains constant. The stress tensor and the fabric tensor are calculated for the system
of particles using Egs. (2.45) and (2.25) respectively, but the summations do not
include the contacts with the walls. In the simulations, the wall friction coefficient
was the same as the interparticle friction coefficient, i.e. u,, = y = 0.5.

Three specimens were prepared with similar initial porosities but with different
initial normal stress ratios, Ky = 6/0, =0.5, 1.0 and 2.0 respectively. Figure 8.21
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Fig. 8.22 Evolution of (a) deviator fabric (b) vertical and horizontal normal stresses

shows the evolution with shear strain (y = §/h) of (a) the ratio of shear to normal
stress acting on the horizontal plane 7,,/0,, and (b) the corresponding increase in
the vertical dimension of the specimen. It can be seen from the figure that the
evolutions of the stress ratio for Ky > 1 are almost identical but, for the case of
Ky < 1, the specimen exhibits a significantly more compliant response and the shear
strength is significantly lower. At the end of the tests, the stress ratio is the same for
all three specimens and all three are deforming at constant volume. Figure 8.21b
shows that, for the Ky < I case, there is an initial contraction before the specimen
starts to expand. Also, for K, > I, the specimens dilate from the beginning but at
significantly different rates, even though the evolutions of stress ratio are very
similar. The results demonstrate that, at least in simple shear, there is no simple
ubiquitous relationship between stress ratio and rate of dilation, as usually assumed
in traditional soil mechanics literature, Taylor (1948), Rowe (1962) and Bolton
(1986). Although there is a significant effect of K, on the stress ratio and dilatancy
response, Fig. 8.22a demonstrates that the deviator fabric is insensitive to the initial
value of K.
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Fig. 8.23 Force transmission (a) at start of shear (b) at peak shear strength

A major problem with laboratory simple shear experiments normally is the
inability to accurately measure the stress o, acting parallel to the horizontal, zero-
extension direction. This means that the location of the Mohr circle of stress and the
principal stress directions are unknown. Figure 8.22b shows the evolution of the
two normal stresses, oy, and o,. In the figure the solid symbols indicate the vertical
normal stress that is held constant and the horizontal normal stress is indicated by
open symbols. The remarkable feature of this figure is that, irrespective of initial
stress ratio K, the horizontal normal stress increases or decreases in order that the
two normal stresses are equal at large strains.

Figure 8.23 illustrates the force transmission at the start of shear and at peak
stress ratio for the case Ko = I. In the figure, the larger than average contact forces
are indicated by black lines joining the centres of the two particles transmitting the
force and, in a similar way, the less than average contact forces are indicated by
grey lines. Figure 8.23a demonstrates that, since the initial state is isotropic, the
larger than average forces are randomly orientated. In contrast, Fig. 8.23b shows
that the orientation of the larger than average contact forces align themselves with
the direction of the major principal stress, indicating that the direction of the major
principal stress rotates during simple shear deformation.

A typical Mohr circle representation of the state of stress during simple shear
deformation is shown in Fig. 8.24a and the corresponding Mohr circle defining the
strain-rate tensor is shown in Fig. 8.24b, where y defines the angle of dilation. In
Fig. 8.24a the point on the circle with coordinates (—z, o,) defines the shear stress
and vertical normal stress acting on the horizontal planes. Drawing a line in the
direction of the (horizontal) plane on which this stress combination acts intersects a
point on the circle known as the ‘pole of the planes’, see Schofield and Wroth
(1968), p. 295. The property of the pole is that a line connecting any point on the
circle with the pole defines the orientation of the plane on which the shear/normal
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Fig. 8.24 Mohr circle of (a) stress (b) strain-rate

stress combination represented by that point acts. Figure 8.24a indicates the orien-
tation of the planes on which the two principal stresses act. Consequently, the angle
¢ defines the inclination of the major principal stress to the horizontal direction. It
follows from Fig. 8.24a that { = z/4 — 6/2 where

Op — Oy

tanf =
an 7

(8.22)

Applying the same procedure to Fig. 8.24b we identify that the angle » defining
the inclination of the major principal strain-rate to the horizontal direction is
n=rnx/4—w/2 and

ey — &, —&

¥ /4

tany = (8.23)

It follows from the above that if y = @ then # = { and the principal directions of
stress and strain-rate are coaxial. Non-coaxiality occurs if y # 0. The difference
between the inclinations of the major principal stress and major principal strain-rate
is the angle of non-coaxiality : = 5 — . In order to identify : the procedure is to
(i) draw the Mohr circle of strain-rate with the same radius as the Mohr circle of
stress, (il) superimpose the strain-rate circle on the stress circle and (iii) rotate the
strain-rate circle so that the points representing the conditions on the horizontal
plane (—z, 6,) and (7 /2, ¢&,) coincide. An example of this for K¢ > / is illustrated in
Fig. 8.25 for (a) expansion (y > 0) and (b) contraction (y < 0).

Note that, in simple shear, there is a distinction between the Mohr definition of
the angle of shearing resistance given by

0] — 02

ing,, =+ =2 8.24
S = (8.24)
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Fig. 8.25 Superimposed Mohr circles of stress and strain-rate (a) y >0 (b) y <0

and the Coulomb definition given by

tan ¢, = - (8.25)
Oy
as can be seen in Fig. 8.25. From the geometry of Fig. 8.25a it follows that
tan ¢, = % (8.26)
and, from the figure, & = y + 21. Therefore
sin @,,cos (w + 21) (8.27)

It L=
and. 1 — sin,,sin (w + 21)

The above equation relates the stress tensor to the strain-rate tensor and, therefore,
can be considered to be the flow rule for simple shear deformation.

For the simple shear simulations with different initial stress states, the evolution
of the major principal stress and strain-rate directions (inclination to the horizontal)
is shown in Fig. 8.26. The corresponding evolution of the angle of non-coaxiality is
shown in Fig. 8.27. From the figures it is noted that (i) if Ky # / then the initial angle
of non-coaxiality is either 0° or 90°, (ii) when the stress ratio is a maximum,
cf. Fig. 8.21a, the angle of non-coaxiality 10 and (iii) at large strains 1 =0,
i.e. the directions of stress and strain-rate are coaxial. Consequently, it is significant
to note that at large strains, when the specimens have reached what in soil
mechanics terminology is referred to as ‘the critical state’, coaxiality of stress and
strain-rate exists, as illustrated in Fig. 8.28. Remarkably, this phenomenon was first
suggested by Hill (1950) but subsequently tended to be ignored by the soil mechan-

ics community.
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It has been shown above that, at any stage of shearing, the angle of
non-coaxiality depends on the mobilised shear strength, the rate of dilation and
the initial stress state. Consequently, the evolution of non-coaxiality is complicated
and cannot, in general, be predicted a priori since it is not simply a function of a
single material property as suggested by Mandl and Fernandez-Luque (1970).
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8.3 3D Simulations

In DEM simulations one may choose to mimic laboratory experiments but, if the
objective is to relate the micromechanics to the meso-scale constitutive behaviour,
it is necessary to use a periodic cell. In this section all the reported simulations were
performed using a representative volume element, with periodic boundaries,
subjected to uniform strain fields. In order to control the deformation of the system,
a strain-rate tensor ; ; is specified, according to which the centres of all the spheres
in the periodic cell move, as though they are points in a continuum, to satisfy the
equation

Ax; = é‘,‘j)CjAf (828)

in which x; are the coordinates of a sphere centre and At is the small timestep used to
advance the evolution of the system. Additional incremental displacements occur as
a result of the interactions between contiguous spheres, as explained in Sect. 2.1. In
order to permit quasi-static (¢ = 10~>) simulations to be continued to large strains
(¢ =0.5) within a reasonable timescale it is necessary to use density scaling. In the
simulations reported the particle density is scaled up by a factor of 10'% This
increases the timestep from microseconds to seconds and does not affect the forces,
displacements, work or energy.

In order to follow desired stress paths, servo-control algorithms are required and
take the general forms

é =g(c" — o) (8.29a)
A 4 o(6* —0) (8.29b)

&=
where ¢* is the desired value of stress, o is the calculated value and g is a gain
parameter whose appropriate value is obtained by trial and error. Equation (8.29a)
is used to bring the system to equilibrium at a desired stress state, for example when
performing isotropic compression. Equation (8.29b) is used to adjust the strain-rate
to minimise the difference between the desired and calculated stress states when
following a desired stress path, for example when performing shear deformation
with the mean stress held constant. Both equations may be expressed in terms of
individual components or combinations of components of the strain-rate and stress
tensors depending on the desired loading path to be followed. More than one servo-
control algorithm may be used but care must be taken to avoid conflicting adjust-
ments to the strain-rate tensor.

To start a simulation, spheres are randomly generated within a cuboidal cell
sufficiently large to provide an initial concentration of about 0.5 with no
interparticle contacts. After generation, the system is subjected to isotropic com-
pression using a strain-rate of 10~*/s until the mean stress has reached a value of
about 10 kPa. Isotropic compression is then continued using the servo-control
algorithm defined by Eq. (8.29a), with a limit set to 10~*/s, to raise the mean stress
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Fig. 8.29 Periodic cell under (a) isotropic compression (b) axisymmetric compression and (c)
axisymmetric extension conditions

incrementally to the desired final value. If the value of interparticle friction to be
used in the shear stage is introduced at the start of isotropic compression then a
medium dense sample will be obtained. In order to obtain a dense sample the
interparticle friction is set to zero until the mean stress reaches 90 % of the desired
final value and then the desired value of interparticle friction is introduced for the
final increment of mean stress. A very loose sample can be obtained by using the
desired value of interparticle friction and switching off any particle rotation until
the mean stress reaches 90 % of the desired final value. Using these procedures
ensures that, with a sufficiently large number of particles, the prepared sample is
isotropic in terms of both the stress tensor and the fabric tensor. Figure 8.29
illustrates a polydisperse system of 8000 spheres in a periodic cell under isotropic
compression, axisymmetric compression and axisymmetric extension conditions.

8.3.1 Axisymmetric Compression

Figure 8.30 shows results obtained for a polydisperse system of 3620 elastic spheres
during axisymmetric compression (6; > 6, =063) with the mean stress,
p = (67 + 02 + 03)/3, maintained constant at 100 kPa. Results are shown for
both a dense system and a loose one. Details of the particle properties etc. can be
found in Thornton (2000).

Figure 8.30a shows the evolution of the deviator stress (¢; — o3) with deviator
strain (e, —&3) and the corresponding evolution of the volumetric strain
(&7 + €2 + €3) is shown in Fig. 8.30b. These two figures demonstrate that, qualita-
tively, the stress-strain-dilation response obtained for both the dense and loose
systems is typical of that obtained in laboratory experiments. The initial shear
modulus is much higher for the dense system, which exhibits a peak in the stress-
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Fig. 8.30 Evolution of (a) deviator stress (b) volumetric strain (c¢) deviator fabric and
(d) mechanical coordination number

strain curve at about 5 % strain followed by strain-softening behaviour. The loose
system does not exhibit any strain-softening; the deviator stress increases at a
decreasing rate until an essentially constant value is reached at about 15 % strain.
The volumetric strain responses show that the dense system expands and the loose
system contracts. At large strains, both systems deform at constant volume and this
is associated with a constant deviator stress that is independent of the initial packing
density. It is worth noting that the stress-strain response of the dense system
demonstrates that strain-softening is a genuine material behaviour and not neces-
sarily the result of non-uniform deformation due to the existence of platen bound-
aries, which can be the case in laboratory experiments.

It is now well established that shear deformation of compact particle systems
produces an induced structural anisotropy that is developed primarily as a result of
contact separation occurring in directions that are approximately orthogonal to the
major principal strain direction. Structural anisotropy is defined by the distribution
of contact orientations and characterised by a fabric tensor ¢;; defined by Eq. (2.25).
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Consequently, in axisymmetric compression, the degree of structural anisotropy
can conveniently be defined by the deviator fabric (¢, — ¢;), which is plotted in
Fig. 8.30c. The figure shows that the structural anisotropy increases at a decreasing
rate to a maximum value that is dependent on the initial packing density. The dense
system exhibits a decrease in structural anisotropy at strains in excess of 10 % until,
at large strains, the deviator fabric is the same for both systems. Although there is a
similarity between the stress-strain and fabric-strain curves shown in Fig. 8.30 there
is no simple relationship between the two, as will be demonstrated later. The
evolution of the mechanical coordination number Z,,, defined by Eq. (2.22), is
shown in Fig. 8.30d. During the initial 3 % deviator strain, there is a rapid change in
the mechanical coordination number until a ‘critical’ value is attained, which
remains essentially constant thereafter, irrespective of whether the system is
expanding or contracting. It is considered that this ‘critical’ value in some way
reflects an underlying physical stability requirement but an exact explanation is still
awaited.

8.3.1.1 Effect of Interparticle Friction

In experiments it is difficult to distinguish between the effects of contact friction
and particle shape but, in numerical simulations the effects of contact friction can
be isolated. Thornton and Sun (1993) reported simulations of axisymmetric com-
pression using two different coefficients of interparticle friction 4 =0.3 and 4 =0.6
for both a dense system and a loose system. The results showed that an increase in u
resulted in an increase in shear modulus and shear strength for both systems and
also resulted in a higher degree of structural anisotropy and higher rates of dilation.
Further effects of interparticle friction are shown in Fig. 8.31.

Figure 8.31a illustrates the effect of interparticle friction on the mobilised shear
strength sing = (o; — 03) /(61 + 63). Two sets of data obtained from the simula-
tions are shown, corresponding to the peak value sing,, and the value at the end of
the tests when the systems were deforming at constant volume sing..,, together with
experimental measurements of sing,, (including error bars) reported by Skinner
(1969). There is reasonable agreement between the simulated and experimental
data, except when ¢ — 0. Skinner’s (1969) data suggest that sing.., is independent
of p. This is contradicted by the results of the simulations, which are more
convincing, since random assemblies of frictionless spheres are inherently unstable
at all contacts all of the time, making it very difficult to develop any stable force
transmission through the system that would lead to the development of a deviator
stress. Also superimposed on the figure is the theoretical relationship suggested by
Horne (1969). The significant difference between the theoretical prediction and the
simulated data arises from the fact that the theory ignores the possibility of particle
rotation. If particle rotation is prohibited then the simulation data may approach the
theoretical curve.
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In Fig. 8.31b the void ratio at large strain, when the systems were deforming at
constant volume, is plotted against the interparticle friction coefficient. The figure
shows that, for a given mean stress, the critical void ratio depends on the
interparticle friction. In the case of y =0 the system, like a liquid, did not change
volume during shear. During all shear simulations, the ratio of sliding contacts
increases rapidly to a value that thereafter remains constant throughout the shear
stage. Figure 8.31c shows that increasing the interparticle friction reduces the ratio
of sliding contacts, as would be expected. In Fig. 8.31d it can be seen that the
critical mechanical coordination number decreases when the interparticle friction is
increased.
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Fig. 8.32 Contact force transmission in a 2D array of polydisperse discs (a) isotropic stress state
(b) deviator stress state

8.3.1.2 Significance of the Strong Force Chains

For any system of discrete particles subjected to external loading, the transmission
of force from one boundary to another can only occur via the interparticle contacts.
Intuitively, therefore, we expect that the distribution of contacts will determine the
distribution of contact forces and that the forces will not necessarily be distributed
uniformly. From both photoelastic studies of two-dimensional arrays of discs
(Dantu 1957; Wakabayshi 1957; de Josselin de Jong and Verruijt 1969; Dresher
and de Josselin de Jong 1972; Oda and Konishi 1974) and both 2D and 3D
numerical simulations (Cundall and Strack 1979; Thornton and Barnes 1986;
Radjai et al. 1997; Thornton 1997) it has been demonstrated that the applied load
is largely transmitted by relatively rigid, heavily stressed chains of particles
forming a relatively sparse percolating network of above-average contact forces.
Groups of particles separating the strong force chains are only lightly loaded. The
implication is that, in a random system of particles, the applied load will search for
the shortest and most direct transmission path.

Even when both the microstructure and the stress state are isotropic, as can be
seen in Fig. 8.32a, some contacts transmit forces several times those of others but
with no preferred direction for the larger contact forces. During shear, the large
forces immediately realign to become oriented in the direction of the major
principal stress, as shown in Fig. 8.32b.

Rather than focus on the particles in the strong force chains, Radjai et al. (1997)
suggested that the contact network may be partitioned into two complementary
sub-networks: a ‘strong’ percolating sub-network of contacts transmitting above-
average contact normal forces and a ‘weak’ sub-network of contacts transmitting
below-average contact normal forces. From 2D simulations of biaxial compression
on a polydisperse system of about 4000 rigid discs, they concluded that the forces in
the strong sub-network account for all of the deviator stress, whereas the weak
sub-network contributes only to the isotropic component of the stress tensor. They
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also found that the orientation of the induced structural anisotropy in the strong
network coincided with the orientation of the stress tensor but the orientation of the
induced structural anisotropy in the weak network was orthogonal to that of the
strong network. This was also demonstrated for a 3D polydisperse system of 8000
elastic spheres by Thornton and Antony (1998).

The stress tensor and the fabric tensor are defined by Egs. (2.45) and (2.25)
respectively. Both of these tensors can be calculated on the basis of the separate
contributions of the contacts transmitting larger than average contact forces and the
contacts transmitting less than average contact forces, i.e.

oij=o0;;+o; and ¢;; = qp;; + (1 — q)9" (8.30)

where the superscripts s and w indicate the strong and weak sub-networks and ¢ is
the proportion of contacts in the strong sub-network.

Figure 8.33a shows the evolution of (6; — 63), (67 — 03)" and (67 — 63)"; the
evolution of (¢; — ¢3), (¢p; — ¢3)" and (¢p; — ¢h;)" is shown in Fig. 8.33b. In both
figures the symbol f = N/(N) where N is the normal contact force. It is clear that
the results fully support the conjectures of Radjai et al. (1997). Throughout the
simulation the percentage of contacts in the strong sub-network was about 33 %.
The significance of this is that a system of compact particles is a highly redundant
system but in order to mobilise shear resistance only a minority of the contacts are
required as a consequence of the way in which forces are transmitted through the
system. The consequence of this is that the system is highly adaptive and therefore
robust. If the direction of principal stress is suddenly rotated then the force
transmission immediately adapts and selects a new set of contacts to transmit the
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strong contact forces. Because of the high redundancy this is achieved without any
major change in the microstructure.

Although the evolutions of the deviator stress and the deviator fabric are
qualitatively similar, as shown in Fig. 8.30, there is no simple correlation between
them. However, it has been shown above that, to a close approximation, the
deviator stress is entirely due to the sub-network of favourably oriented contacts
transmitting the larger than average contact forces. In order to examine this further,
it is useful to define a fabric stress tensor

o, = oudy; (8.31)

and to decompose the fabric tensor into the separate contributions of the strong and
weak contacts. We may then examine the correlation between the fabric deviator
stress due to the strong sub-network, o (¢, — ¢b;)°, and the mobilised deviator
stress (61 — o3). This is shown in Fig. 8.34 and it can be seen that the correlation is
excellent if the small initial value of fabric deviator stress is ignored.

8.3.1.3 Effect of Plastic Deformation at the Interparticle Contacts

Using the elastic-plastic contact force model described in Sect. 3.2, axisymmetric
compression tests were simulated, with the mean stress held constant at 100 kPa,
using a polydisperse system of 4000 spheres in order to examine the effect of plastic
yield at the contacts. Three tests were simulated. In the first test a very high limiting
contact pressure p, was specified so that no contacts yielded in order to provide data
for a system of elastic spheres for comparison. Using the results of the first test, the
distribution of mean normal contact pressures was examined prior to shear. From
this information a limiting contact pressure was selected such that about 10 % of
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contacts would have yielded if the spheres had not been elastic. Starting from a
lower isotropic stress state of 50 kPa the calculated limiting contact pressure was
specified and the system was then isotropically compressed to 100 kPa to provide a
second specimen to be sheared at constant mean stress. When checked, it was found
that in fact 12 % of contacts had deformed plastically before the start of the shear
stage. A third specimen was also prepared in the same manner but with a lower
limiting contact pressure specified, which resulted in plastic deformation at 80 % of
the contacts prior to shear.

It can be seen from Fig. 8.35 that plastic deformation at interparticle contacts has
a pronounced effect on the stress-strain-dilation behaviour. There is a large reduc-
tion in the shear modulus even when only a relatively small number of contacts
have yielded. Increasing the number of yielded contacts reduces the shear modulus
more but not to a large degree. Volumetric expansion is greatest for the elastic
sphere system. A small number of yielded contacts significantly reduces the rate of
dilation, which is further reduced slightly when there are many contacts that have
yielded. The explanation for the behaviour shown in Fig. 8.35 is that the magnitude
of the deviator stress is dictated by the contact forces in the strong sub-network of
contacts transmitting greater than average forces, as shown in Fig. 8.33a. Generally
there are 30—35 % of contacts in the strong force sub-network. Consequently, the
contacts that had yielded in the second test (12 %) were all in the strong
sub-network. It can also be inferred that the results obtained for the specimen
with 80 % yielded contacts is very similar to what would have been obtained if
all the contacts in the strong sub-network had yielded and there were no yielded
contacts in the weak sub-network.

8.3.1.4 Elastic Properties

The elastic response of granular media has been examined by Digby (1981), Walton
(1987) and Bathurst and Rothenburg (1988). Subsequent work using two
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homogenization techniques has suggested that the kinematic hypothesis, which
assumes a uniform strain field, provides an upper bound to the elastic moduli and
the static hypothesis, which assumes a uniform stress field, provides a lower bound,
see Kruyt and Rothenburg (2002) or Hicher and Chang (2005) for details. However,
both pairs of researchers compare their predictions with results of DEM simulations
of irrotational bonded spheres which they consider provides the true solution. In the
opinion of the author this is not exactly correct.

If one applies a small deformation to a system of particles then, no matter how
small the deformation, there will be a small change in the coordinates of all of the
particles. Consequently, all contact normal vectors will experience a small change
in their orientations resulting in a small, irreversible change in the fabric tensor.
Therefore the elastic properties of particle systems can only be approximated by
performing DEM simulations. In order to identify the true elastic properties it is
essential that absolutely no deformation is actually applied.

As demonstrated in Sect. 2.2.4, the fourth order tensor S;;; defining the assembly
modulus was derived and given by Eq. (2.60). The tensor is a function of the current
distribution of contact normal vectors, the current normal and tangential contact
stiffnesses and the current contact density. In DEM simulations all this information
is known at any stage of a test. However, if a small incremental strain is applied, no
matter how small, then this information will change due to irreversible, inelastic,
deformation. Consequently, what will be obtained is the ‘small strain stiffness’ not
the true elastic properties.

Figure 8.36 shows the evolution of the deviator stress and deviator fabric
during axisymmetric compression of a polydisperse system of 3600 elastic
spheres performed in a periodic cell with the mean stress held constant at
100 kPa. The properties of the particles were: Young’s modulus =70 GPa,
Poisson’s ratio=0.3, interparticle friction coefficient=0.5 and sizes ranging
from 30 pm to 90 pm.

For every point on the pre-peak loading curve shown in Fig. 8.36a all the
components of the fourth order tensor S;;; were calculated. However, it is then
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convenient to calculate the compliance tensor Cjy = Si;kl, in order to compare
directly with the classical anisotropic elastic compliance matrix given by

- _ _ i
RS v v, 0 0
En E]22 Ej3;3
vz 1L —vm 0 0
E;;  Ex»n  Es;
—EI/13 —El/23 E_ 0 0 0
11 22 33 ] (8.32)
0 0 —_— 0 0
2Gy3
1
0 0 0 0 —
2Gy3
1
0 0 0 0 0 —
L 2G|

The evolution of the elastic parameters, obtained as described above, are shown
in Figs. 8.37 and 8.38.

From Fig. 8.37a it can be seen that the modulus E;; in the direction of the major
principal stress/strain is greater than the moduli in the other two directions. This
demonstrates the anisotropic elasticity of the system. The agreement between E,,
and Es3 demonstrates that the elasticity is transversely isotropic. The moduli E,,
and E3;3 decrease at a decreasing rate until a constant value is reached before peak
shear strength is reached. The reduction in the values is due to the loss of contacts in
the 2- and 3-directions. The value of E;; remains constant after the initial shearing
stage. The initial increase in E;; is not due to an increase in the number of contacts
in the one-direction but due to an increase in contact stiffness (Hertzian) when the
large force chains quickly realign with the o, direction. Ignoring the random
fluctuations, it is clear from Fig. 8.37b that, after the initial 2 % strain, the three
shear moduli remain constant and that G;, = G5 > Gps.

Figure 8.38 shows that v;; # v;; except for V3 = v35. This is necessary to ensure
symmetry of Cjj. It can be seen from Fig. 8.38 that the average values approximate
to vip = ;3 =0.10, vo; = 131 =0.05 and v,3 = v3, =0.075. These values are in
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reasonable agreement with values predicted by Bathurst and Rothenburg (1988) for
random arrays of equal-sized spheres with assumed linear contact stiffnesses.
Further details can be found in Thornton and Zhang (2005).

8.3.2 General 3D Stress States

Most 3D simulations of element tests are axisymmetric compression. This is a state
of stress that is rarely encountered in real world situations. The general case is one
in which 6; # 67 # o3. In this general case Mohr stress circles are not useful and,
instead, one has to consider principal stress space in which the state of stress is
given by a point and represented by a vector ¢ from the origin, as illustrated in
Fig. 8.39a. The stress vector has two orthogonal components: an isotropic stress
vector

01+ 02+ 03

o=k (8.33)
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Fig. 8.39 Principal stress a b Oy
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and a deviatoric stress vector

o, = /03 + 0 (8.34)

where the o6, and o, axes are illustrated in Fig. 8.39b, which shows the deviatoric
plane as viewed along the z (isotropic) axis, and defined by

20'1 — 0) — 03

Oy = \/6

03 — 03

V2

and o, =

(8.35)

It should be noted that, in principal stress space, the subscripts 1, 2 and 3 indicate
the principal stresses in the three orthogonal directions of the global reference frame,
as shown in Fig. 8.39a, and not necessarily the major, intermediate and minor principal
stresses. This convention also applies to the strain and fabric tensors considered later.
Figure 8.39b indicates the three possible directions for axisymmetric compression
(AC) and axisymmetric extension (AE). For general states of stress, the orientation of
the deviatoric stress vector o, is defined by the Lode angle a,, as indicated in
Fig. 8.39b. Taking a, =0 in the 1-direction, the Lode angle is defined by

tana, = V3o —03) (8.36)
20'1 — 0 — 03

In traditional soil mechanics, shear strength is defined by the Mohr-Coulomb
criterion, sin¢g = constant, where ¢ is the inclination of the line tangent to a set of
Mohr stress circles. In principal stress space, all points representing failure states of
stress lie on a failure surface (or limit surface) that is conical, as shown in Fig. 8.40a
for axisymmetric compression and axisymmetric extension. Figure 8.40b shows
various possible failure criteria, as viewed on the deviatoric stress plane, including
Mohr-Coulomb (singg = constant) extended Tresca (6;,— o3 = constant), and
extended von Mises (o, = constant) as considered by Bishop (1966) plus more
recently proposed forms suggested by Matsuoka and Nakai (1974) and Lade and
Duncan (1975).
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Fig. 8.41 Deviatoric

failure surfaces for a dense
and a loose specimen

Figure 8.41 shows the deviatoric failure states of stress reported by Thornton
(2000) for both a dense and a loose specimen. Both systems were sheared with the
mean stress held constant and subjected to deviatoric loading during which the ratio

o 0) — 03

h=""2 8.37
p—— (8.37)

was maintained constant using a servo-control algorithm like Eq. (8.29b) with o
replaced by b. A series of simulations covering the range 0 < b < 1 were performed
ranging from axisymmetric compression (b = 0) to axisymmetric extension (b = 1).
For each value of b, the state of stress corresponding to failure (maximum
deviatoric stress) was identified and plotted on the deviatoric stress plane. In all
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cases the principal stress in the one-direction was the major principal stress. Then,
assuming a sixfold symmetry, the complete failure surfaces were produced as
shown in the figure. Superimposed on the figure is the failure criterion proposed
by Lade and Duncan (1975), which is defined by

i

=09 (8.38)
I3

n
where I; = 0; + 0, + 03 is the first stress invariant and /3 = ;0,03 is the third stress
invariant. The figure shows excellent agreement between the simulation data and
Eq. (8.38) which has also been confirmed by Calvetti et al. (2003); and by Ng
(2004) for assemblies of ellipsoidal particles.

Rather than control a stress path it is easier to apply a strain path and monitor the
stress response. Thornton and Zhang (2010) reported results obtained from radial
deviatoric straining of a dense polydisperse system of 27,000 elastic spheres that
had initially been isotropically compressed to 100 kPa. The deviatoric strain
increment vector is defined by

1 12
Aey = 7 (Ae) — Aey)? + (Aey — Ag3)? + (Aey — Ae3)? (8.39)

The Lode angle for strain is defined as

3(4e, — A
tan a, = V3(der ~ dey) (8.40)
2A€1 — A&‘z — A83

It follows from Egs. (8.39) and (8.40) that

Aer — Aey = V2Aeysina, (8.41a)
2Ae; — Aey — Aey = V6Aeycos a, (8.41b)
Aey +Aey +A4e3 =0 (8.41c¢)

and therefore

2
Ag) = \/;Aed COS e (8.42a)

sind, Cosda,
Aey = Agy| ——— — 8.42b
2= a5 ) (8.420)
sina, Cosa;,
Aegy = —Agg| ——— + 8.42¢
= () (8420

Consequently, if the simulations are to be performed at constant volume, for any
prescribed values of Ae,; and a, the corresponding strain-rate tensor is
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1 A&’l 0 0
é,‘j - 0 Aé‘g 0 (843)
Natl 0 0 ae

where N is the number of timesteps Af chosen to reach the desired value of Ae,.

If the simulations are to be performed at constant mean stress then it is, in
addition, necessary to use a servo-control of the form given in Eq. (8.29b) by which
the volumetric strain-rate is continuously adjusted to maintain the trace of the stress
tensor constant at the desired value, i.e.

e = " +8(0f — on) (8.44)
The adjusted volumetric strain-rate then needs to be distributed to the three normal

strain-rates in a manner that prevents the servo-control from modifying the dilat-
ancy ratios. This is achieved by the following equations

. t—At

. . .t |E11

t _ st—At t

L =& F el — (8.45a)
Ekk
é —At

st et—At .t 22

&y = &+ EL T (8.45b)
Ekk
é t—At

st at—=At | -t |€33

£33 = €5+ &gy " (8.45¢)

In a constant mean stress test, at each timestep, Eq. (8.44) and Egs. (8.45a, b and c) are
applied before Eq. (8.43). Since Eq. (8.43) involves no change in volumetric strain,
see Eq. (8.41c¢), there are no conflicting adjustments made to the strain-rate tensor.

With the mean stress held constant, strain probes were applied for 10° incre-
ments of the Lode angle from 0 to 360°, as shown in Fig. 8.42.

At the end of each probe, the stress tensor was calculated and the corresponding
stress state was plotted on the deviatoric plane of principal stress space. For a given
value of deviatoric strain, defined by the circles in Fig. 8.42b, there is a
corresponding surface in stress space, which is referred to as a stress response
envelope. The stress response envelopes obtained for different values of deviatoric
strain are shown in Fig. 8.43a in which the stresses are dimensionless by dividing by
the mean stress. Superimposed on the figure is a set of Lade surfaces, defined by
Eq. (8.38), fitted to the data points corresponding to the plane strain states. The
agreement with all data sets is excellent. Figure 8.43a shows that Eq. (8.38) is not
simply a failure criterion but defines the evolution of the mobilised strength, defined
by the parameter 7, throughout deformation. In the context of elastoplasticity
theory, the stress response envelopes can be considered to be ‘bounding surfaces’,
see Dafalias and Popov (1976).
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Fig. 8.42 Radial deviatoric strain probes (a) strain-increment vector (b) complete sets of probes
for different values of deviatoric strain
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Fig. 8.43 Response envelopes for (a) stress (b) fabric

Since it is a tensor, the fabric tensor can be manipulated in the same way
as the stress tensor. Consequently, for the deviatoric strain probes shown in
Fig. 8.42b the corresponding fabric response envelopes can be plotted in principal
fabric space, as shown in Fig. 8.43b. Superimposed on Fig. 8.43b is a set of surfaces
that take the shape of ‘inverted’ Lade surfaces that can be characterised by the
parameter n* where

3
* Il

- 8.46
201, — 315 (8.46)

n
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In terms of the fabric tensor

Li=¢,+d,+¢3=1 (8.47a)
L= ¢\ + d1p3 + hrths (8.47b)
I3 = 10,05 (8.47¢)

Consequently, the fabric response envelopes can be characterised by the parameter
n} defined by

. 1

= 4
I 7oL -3 (8.48)

n

and it can be seen in Fig. 8.43b that the curves defined by Eq. (8.48) show excellent
agreement with the data sets.

In soil mechanics it is common to use the parameter
singg = (61 — 03)/(01 + 03) to define the mobilised shear strength. Figure 8.44a
shows the evolution of sin¢ with deviatoric strain for a separate series of simula-
tions on the same system in which radial deviatoric straining was performed for
different constant values of the parameter b, = (¢, — €3)/(e; — &3). Note that a
constant b, test is equivalent to a constant Lode angle for strain since
tana, = \/3b,/(2 — b,).

It is clear from Fig. 8.44a that sin¢ is very sensitive to strain path. In terms of
shear strength, as defined by sing,,.x, the lowest value occurs in axisymmetric
compression (b, =0) and the highest value occurs in plane strain (b, =0.5). The
second lowest value shown in the figure corresponds to axisymmetric extension
(b.=1). Figure 8.44b shows the evolution of volumetric strain with deviatoric
strain, for the complete range of b, values. It can be seen that, at least until well past
the peak strength, all the data sets collapse on to one master curve.

Figure 8.44c shows that if the evolution of the Lade parameter 7 is plotted
against deviatoric strain then all the data sets collapse on to one master curve. This
demonstrates that, rather than sing,,.x, the general definition of shear strength is
given by #max. Since the fabric response envelopes are inverted Lade surfaces,
Fig. 8.43D, it can be anticipated that if the characteristic fabric parameter, defined
by Eq. (8.48), is plotted against deviatoric strain then all data sets will also collapse
on to one master curve. This is confirmed in Fig. 8.44d allowing for the exaggerated
differences due to the vertical scale selected.

In Sect. 8.3.1.2 the significance of the strong force chains was discussed and it was
demonstrated that the deviator stress is almost entirely due to the contact forces in the
strong sub-network of contacts transmitting greater-than-average forces, as shown in
Fig. 8.33a. The fabric response envelope for g4=0.05, shown in Fig. 8.43b, is
replotted in Fig. 8.45a. Superimposed on the figure is the fabric response envelope
for the strong sub-network which can be seen to take the form of a Lade surface. By
multiplying the fabric tensor by the trace of the stress tensor a fabric stress tensor is
obtained, as given by Eq. (8.31). Dividing the fabric stress tensor by the mean stress
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the fabric response envelope for the strong sub-network can be obtained, as shown in
Fig. 8.45b. Superimposed on Fig. 8.45b is the corresponding total stress response
envelope. The figure shows that there is excellent agreement between the stress
response envelope and fabric stress response envelope for the strong sub-network,
except in the regions close to the axisymmetric compression states. Figure 8.45b is, in
effect, a generalised extension to Fig. 8.34.

A problem with the Lade parameter # is that it can in theory range from zero to
infinity and it is not clear whether any value, say 15, indicates a high or very high
strength. Consequently, an alternative parameter is sought. Rearranging Eq. (8.38)

I 1

S 8.49
L 27+ (8.49)
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Fig. 8.45 Response envelopes (a) fabric (b) stress and fabric stress

or

1*70162037 27
S ppp 27+

(8.50)

where / ;k is the third invariant of the normalised stress tensor, in which the stresses
are normalised by dividing by the mean stress. Unfortunately, the value of this
parameter reduces with increase in the size of the stress response envelope. Con-
sequently, in order to define the size of a stress response envelope the following
parameter is used

(1—1¥) :271’7 0<(1-1)<1 (8.51)

The lower limit of zero corresponds to an infinitesimally small circle and the upper
limit of unity corresponds to an equilateral triangle that defines the limit of
compressive stress space on the deviatoric plane.

A close examination of Figs. 8.42b and 8.43a reveals that for any radial strain
path, except axisymmetric strain states, the corresponding stress paths are curved. It
is therefore of interest to relate the Lode angle for stress, defined by Eq. (8.36), to
the Lode angle for strain, defined by Eq. (8.40). This is illustrated in Fig. 8.46. For
axisymmetric compression a, = 0°, 120° or 240° and cos(3a,) = cos(3a,) =1 and
for axisymmetric extension a, = 60°, 180° or 300° and cos(3a,) = cos(3a,) = —1.

For non-axisymmetric strain states the data points in Fig. 8.46a are fitted by
circular arcs that are characterised by the curvature //R which, since cosa < 1, has



192 8 Quasi-static Deformation

100

/3

71010

1

1020 +
1072.0 1071 .0 100
1/R

Fig. 8.46 Flow rule (a) and scaling law (b)

limits 0 < //R <0.5. Figure 8.46a shows that the curvature increases with deviatoric
strain. The equation of the circular arcs is

2 2
{cosSat[7 + (0.5R2 — 1)] + [cosSae — (O.SR2 — 1)} =R’ (8.52)

which can be rearranged to give
oy 1/2
cos3a, = {RZ - [cos3a€ —/(0.5R% — 1)] } —/(0.5R* = 1)  (8.53)

Since, for radial deviatoric strain paths, the directions of strain and strain-rate are
the same, the above equation relates the direction of the deviatoric stress vector to
the direction of the deviatoric strain-rate vector and thereby provides a deviatoric
flow rule.

The size of the stress response envelopes can be defined by ( 1-— I;k) which is
plotted against //R in Fig. 8.46b. The figure clearly indicates a power law relation-
ship that has the form

(1-1%)=(1/R)? (8.54)

which provides a scaling law. There is increasing evidence from both simulations
and experiments that, for granular media, failure envelopes and stress response
envelopes in general are accurately defined by Lade surfaces. The size of such
surfaces, however, is significantly greater for real granular materials due to particle
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shape effects. Consequently, for real granular material, it is expected that the
scaling law needs to be modified to

(1 1) =A(1/R)? with A> 1 (8.55)

The work reported in this subsection is an excellent demonstration of the power
of DEM and its ability to contribute to our understanding of the behaviour of
granular material under complex states of stress and strain. It is the opinion of the
author that the simulated results presented above are qualitatively generic and that
particle shape will only affect the magnitude of the various parameters but will not
affect the form of the various relationships. Attempts to validate the findings by
performing experiments in general 3D stress space are extremely difficult due to the
inability to prepare exact replicas of the initial particle system. In contrast, DEM
has the significant advantage that an infinite number of different tests can be
simulated for exactly the same initial sample conditions. However, the work
reported in this subsection indicates that, in terms of general 3D stress space,
there is much more work that needs to be done.
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