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Foreword

Our crowded bookshelves all contain just a few ‘essential’ books – the ones we tend
to reach for as the most authoritative source on whatever the subject is. This book is

destined to become the essential text on the Discrete Element Method (DEM).

It is well known that the majority of products of the chemistry-using industries

are either sold as, or pass through, a particulate or dispersed form. Modelling of

these dispersed multiphase systems is therefore of economic importance. But that is

not the author’s main motivation. What he sets out to do is to understand the often

unexpected emergent behaviour of these systems – whether useful or not – by

building up models from the fundamental physics of their interparticle interactions.

DEM is deceptively easy. All that is apparently necessary is a framework for

building up a set of particles (or some other dispersed form such as bubbles or fibres

or people), some laws of interaction between them, and a means of stepping through

their developing behaviour, keeping track of forces and the resulting movement of

the particles at each step. However, each part of the process can be accomplished

superficially or thoroughly. Arguably, the real value of DEM lies not in prediction

of the outcome of equipment design variations, for example, but in ‘numerical

thought experiments’ where investigators can ask ‘what if’ questions just as in real

experiments. But for such ‘experiments’ to be useful, the fundamental physics

behind the DEM simulation must be correct. Rigour in understanding the contact

behaviour between particles has been one of the author’s major contributions to the

subject, and it is extremely welcome that he has assembled the work of a research

lifetime on this subject here in one place. Contact behaviour includes all the

complex variety of surface physics, including adhesion, friction, elasticity and

plasticity, usually all interacting at once in a complex geometrical arrangement.

The author has battled over decades with these problems and includes here every

permutation which is found in current DEM practice.

DEM is not just about setting up appropriate contact equations and operating a

calculation framework with ‘good housekeeping’. It is also about making the most

out of the results which are obtained and drawing appropriate conclusions from

them. Since the volume of data is so much more than in most real experiments, the
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post-experimental analysis presents far more choices for the researcher. Here again,

the author has spent decades thinking about how best to go about these choices and

how to present the results in the most revealing way. This book gives us the benefit

of that experience.

It is always helpful for a foreword to give a glimpse of the personality behind the

author. Colin Thornton trained as a civil engineer, including site work in all

weathers. He therefore came to particle technology through interest in soils,

perhaps the most complicated of particulate systems. He realised that the theories

for behaviour of such systems were at best semi-empirical and wanted to do better.

The advent of DEM, through the work of Cundall and Strack, gave him the

opportunity he needed to develop a more fundamental understanding of what was

going on, and he has been relentless in pursuing this direction ever since.

Colin is above all a persistent man who (if I can put it this way) doesn’t suffer
fools or foolish explanations gladly. In other words, he doesn’t accept easy answers
or ‘received wisdom’. Like all the best scientists, he works things through for

himself and is reluctant to take shortcuts. I have had the pleasure first of being

external examiner to some of his PhD students when he worked at the University of

Aston and then of working with him as a colleague at the University of Birming-

ham. In particular, we worked together on some aspects of fluidisation, which was a

new area for Colin. As a reasonably experienced researcher in fluidisation, I was

able to explain quite a lot of the accepted theory and practice to him. Nevertheless,

the work went slowly because he insisted on questioning every point! He wanted, as

ever, to build his own thorough understanding of what was going on, from the

ground upwards. I felt challenged, in the best scientific sense. The reader will be

able to see some of the results of that work in the present volume. I am sure that

everyone Colin has worked with will have considered themselves similarly chal-

lenged, and their work has been the better for it.

Guildford, UK Jonathan Seville

17th May 2015
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Preface

This book is about the author’s personal obsession with the complex behaviour of

particle systems. It is not intended as a textbook or a manual on how to do DEM

simulations. It is merely a collection of the author’s contributions to particle system
simulations. As such it should be of interest to other DEM researchers, but it is also

hoped that it will be informative to others working in particle technology/process

engineering and geomechanics, both experimentalists and theoreticians, in acade-

mia and in industry.

My initial inspiration for studying granular media at the particle scale was during

my PhD studies when I was introduced to the papers of Prof. Peter Rowe on ‘stress
dilatancy theory’. However, it wasn’t long before I realised that, in the context of

sand, this was no more than an empirical correlation that was applicable under

certain limited experimental conditions. This led me to consider regular arrays of

spheres and here I was inspired by the papers of Mindlin and coworkers, which

included analytical solutions for the contact interactions of elastic spheres, and the

paper by Rennie (1959), who considered rigid spheres.

The next logical step was to consider random arrays of polydisperse systems of

spheres, and in this area I am indebted to the late Prof. Gerard de Josselin de Jong

who explained to me how one could calculate stress and strain for particle systems

and the late Prof. Touran Onat who taught me everything I know about microstruc-

tural anisotropy, i.e. fabric. However, I am most indebted to Dr. Peter Cundall who,

in late 1979, gave me a copy of his 2D DEM code BALL and, in 1987, gave me a

copy of his 3D code TRUBAL on which all the results of the simulations presented

in this book are based. Without Peter’s generosity this book would not exist.

The book, in effect, tells the story of the author’s personal experience of DEM
simulations. Although trained as a civil engineer, in the mid-1980s the author

experienced difficulties in obtaining funding in soil mechanics. One referee to a

research proposal even suggested that this (DEM) was not fundamental research!

Fortunately the author discovered particle technology where it was deemed that the

most important research need was to know the nature and magnitude of the forces at

the contacts between particles.
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Chapter 1

Introduction

Abstract Particle systems comprising assemblies of individual grains or agglomer-

ates are widespread in nature and in industry. When examined at the macroscale, they

may appear to behave like a solid, a liquid or a gas depending on such factors as the

phase volume of the particles and the flow characteristics of the superficial gas.

Experimental research has normally been limited to measurements at the macroscale

and attempts to provide a rational explanation of the macroscopic phenomena

observed have relied on intuition. In order to better understand the behaviour of

particle systems numerical modelling techniques have also been used. Traditionally,

continuum modelling has treated particle systems as complex pseudo-solids or

complex pseudo-liquids with different highly complicated constitutive equations/

closure relationships depending on the state of the system. However, with continually

increasing computer power it is possible to treat particle systems as discontinua,

recognising that sands, powders and grains are composed of discrete particles that

interact with each other at the microscale. This discontinuum approach is now widely

used in many areas of science and engineering and is commonly referred to as the

Discrete Element Method (DEM). This chapter discusses the origins of particle

system simulations and presents some early applications of DEM.

Particle systems comprising assemblies of individual grains or agglomerates are

widespread in nature and in industry. When examined at the macroscale, they may

appear to behave like a solid, a liquid or a gas depending on such factors as the

phase volume of the particles and the flow characteristics of the superficial gas.

Experimental research has normally been limited to measurements at the macro-

scale and attempts to provide a rational explanation of the macroscopic phenomena

observed have relied on intuition. In order to better understand the behaviour of

particle systems numerical modelling techniques have also been used. Tradition-

ally, continuum modelling has treated particle systems as complex pseudo-solids or

complex pseudo-liquids with different highly complicated constitutive equations/

closure relationships depending on the state of the system. However, with contin-

ually increasing computer power it is possible to treat particle systems as

discontinua, recognising that sands, powders and grains are composed of discrete

particles that interact with each other at the microscale. This discontinuum

approach is now widely used in many areas of science and engineering and is

commonly referred to as the Discrete Element Method (DEM).

© Springer International Publishing Switzerland 2015
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The Discrete Element Method (DEM) is a numerical simulation technique

appropriate to systems of particles in which the interactions between contiguous

particles are modelled as a dynamic process and the time evolution of the system is

advanced by applying a simple explicit finite difference scheme to obtain new

particle positions and velocities. The technique can be used both for dispersed

systems in which the particle-particle interactions are collisional and compact

systems of particles with multiple enduring contacts. Consequently, although

particle systems may have the superficial appearance of behaving like a gas, a

liquid or a solid when observed at the macroscopic scale, all these different states

can be investigated using DEM. In principle, DEM can be used to (i) examine data

that is normally inaccessible (ii) perform rigorous parametric studies (iii) explore

technical innovation prior to prototype testing. DEM results can be used to develop

new continuum models that link the information at the micro-, meso- and macro-

scales (the academic holy grail); directly relate the macroscopic performance to the

intrinsic properties that define the particle specifications; provide detailed informa-

tion about what happens inside particle systems (which may include new informa-

tion – discoveries) and thereby provide a rational framework for decision making

that can impact upon our everyday thinking.

1.1 Origins

It could be argued that particle system simulations started with the publication of

the paper by Metropolis et al. (1953) in which two dimensional systems of hard

discs were examined using a Monte Carlo approach to study systems in thermody-

namic equilibrium. This led to the development of Molecular Dynamics (MD) in

which individual particle trajectories were calculated as they interacted with their

neighbours, Alder and Wainwright (1959). In MD calculations the forces between

particles are simply a function of the distance between them and the particles are

frictionless and consequently do not rotate. For larger particles, i.e. micron-sized

and above, more complex interactions are necessary and this led to the application

of Granular Dynamics (GD) to rapid granular flows in the early 1980s (Walton

1983, 1984; Campbell and Brennen 1983, 1985). In GD simulations the particles

are considered to be rigid and collisions are instantaneous. Energy is dissipated

during collisions due to surface friction and coefficients of restitution. Simulations

of rigid spheres are ‘event driven’ in that the time step used to advance the

simulation is the time to the next collision. This varies during a simulation and at

the limit when there are simultaneous or continuous contacts, as in dense compact

systems, the time step goes to zero and the GD approach is no longer applicable.

Hence, the GD technique is generally restricted to relatively dispersed systems

subject to rapid granular flows. For more details of the GD approach the reader is

referred to the book by Pőschel and Schwager (2005). An alternative rigid body

approach that can be applied to quasi-static deformation of compact systems with
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enduring contacts was developed by J.J. Moreau and is known as the Contact

Dynamics (CD) method; see Chapter 2 in Radjai and Dubois (2011).

An alternative approach to simulating particle systems, sometimes referred to as

the ‘soft sphere’ approach, originated with the work of Cundall (1971). In their

seminal paper, Cundall and Strack (1979) describe the technique as the distinct

element method but it is now more commonly referred to as the Discrete Element

Method (DEM). In the DEM approach collisions occur over a finite time during

which the contact forces evolve as the relative approach of the two particle

centroids varies during compression and restitution. In the original paper, Cundall

and Strack (1979), the particles were allowed to overlap each other at the contacts to

represent the local deformation of the individual particles which were considered to

be connected by linear springs in the normal and tangential directions. The normal

and tangential contact forces were calculated incrementally as the product of the

spring stiffnesses and the relative surface displacement increments of the two

contacting particles. As a consequence, the computational technique is applicable

to quasi-static deformation of compact systems with multiple enduring contacts,

rapid granular flows that may be dominated by collisions and heterogeneous flows

in which both collisions and enduring contacts coexist.

1.2 Early Work

Cundall (1971) presented two computer codes (i) the BLOCK code for applications

to rock mechanics and masonry walls and (ii) the BALL code for applications to

soil mechanics and particle technology. Figures 1.1 and 1.2 illustrate the first

applications of these two codes. Figure 1.1 shows a configuration of square blocks

that represent a blocky rock system. The shaded blocks are fixed with the remainder

free to move in any direction. With an interface friction angle set to a low value of

1� the blocks were allowed to settle until an equilibrium state was approached. The

interface friction angle was then set to 20� and seven of the fixed (shaded) blocks

were removed. As can be seen from the figure, the result was failure by toppling.

Figure 1.2 shows a triangular pile of close packed discs that is initially allowed to

consolidate under gravity using a high interface friction. Then, the interface friction

angle was reduced to 10� and, as shown in the figure, the pile collapsed.

Following the publication of Cundall and Strack (1979) two conference papers

were published Cundall et al. (1982), Cundall and Strack (1983). For the benefit of

soil mechanics readers it is worth quoting the following observations on the

micromechanics of granular material during quasi-static deformation: “Contact

forces are concentrated in stiff chains of particles.” “Slip almost never occurs in

the stiff chains, but in the relatively unloaded regions between chains.” “Observed

macroscopic velocity discontinuities do not consist of contiguous lines of slipping

contacts, but often correspond to ‘hinge’ regions, involving coherent particle

rotations (spins).” “Particle spins contribute largely to deformation in an assembly;

the stiff columns collapse in a ‘buckling’ mode that involves spins of alternating

1.2 Early Work 3
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Fig. 1.1 The first application of the BLOCK code (Cundall 1971, Figs. 3–6)

Fig. 1.2 The first application of the BALL code (adapted from Cundall 1971, Fig. 2)
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sign.” “During deviatoric loading, contacts with normal near the minor principal

direction are broken preferentially, and are not fully recovered on unloading.”

“After a sample undergoes some sequence of loading and unloading, ‘locked-in’
shear forces persist at contacts even though the boundary deviatoric stress is zero.”

In the 1980s DEM simulations were normally run on mainframe computers in a

time-sharing environment. This was extremely tedious and time consuming. For

example, Thornton and Barnes (1986) reported quasi-static shearing of a polydis-

perse assembly of 1000 discs. The simulations were performed on a CDC7600

‘state-of-the-art’ computer at the University of Manchester. During the shear stage

it took 15 months to achieve a deviator strain of 7 %. Research was mainly

motivated by soil mechanics involving 2D quasi-static simulations of discs with

linear springs. However, a notable exception was Walton (1983, 1984) whose

motivation was granular flow problems. An example is illustrated in Fig. 1.3

which shows the transfer of material from one inclined surface to another sloping

in the opposite direction. The figure is in fact a snapshot taken from a computer

generated movie showing the particles on the left and the corresponding particle

velocities on the right. It is notable that the particles are not discs but irregular

polygons.

Fig. 1.3 Flow of crushed oil shale rubble (Walton 1984, Fig. 1)
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In 1987, at a meeting in Sendai, Walton et al. (1988) presented the first 3D

simulations of particle flow, as illustrated in Fig. 1.4. The figure shows, for two

different particle concentrations, spheres falling under gravity through a regular

array of horizontal cylinders. Note that the vertical boundaries are periodic and

therefore a white circle indicates a sphere that is partially over the boundary and the

other part of the sphere can be seen at the opposite boundary. At the same meeting,

Cundall (1988) presented the first 3D simulations of quasi-static deformation using

the TRUBAL code, as shown in Fig. 1.5. The figure shows a polydisperse system of

432 spheres in a periodic cell and the effect of the number of spheres used on the

evolution of deviator stress and volumetric strain subjected to axisymmetric

compression.

In the 1990s research activity became focussed on particle technology. There

was an increasing number of 3D simulations with more complex contact force

models, see Chaps. 3 and 4, and computer generated videos became popular. This

became feasible as a result of the availability of dedicated workstations, which

encouraged a significant increase in the number of researchers active in DEM

simulations. The increasing number of DEM researchers was also a consequence

Fig. 1.4 Gravity flow

through a fixed array of

horizontal cylinders

(Walton et al. 1988, Fig. 2)
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of the availability of commercial codes. More researchers started to consider

non-spherical particle shapes. Most significant, perhaps, was the pioneering work

of Tsuji et al. (1993) who combined Discrete Element Method (DEM) modelling of

the particle phase with Computational Fluid Dynamics (CFD) modelling of the

fluid phase to simulate gas fluidised beds, see Fig. 1.6. More details and discussion

of DEM-CFD simulations will be provided in Chap. 7.

In the context of particle technology, after 1995, DEM became widely used to

investigate hopper flow, rotating drums, mixers and other particle handling prob-

lems. Some examples are shown below (Figs. 1.7, 1.8, 1.9 and 1.10).

Fig. 1.5 First application of the TRUBAL code (Cundall 1988, Fig. 1)

Fig. 1.6 2D DEM-CFD simulations of a gas-fluidised bed (Tsuji et al. 1993, Fig. 6d)
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Fig. 1.7 Hopper discharge

(Thornton 1991)

Fig. 1.8 Drag line bucket excavator (adapted from Cleary 1998, Fig. 7)
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1.3 Outline of the Book

Following this introductory chapter, the second chapter provides the theoretical

background to 3D DEM simulations dealing with particle kinematics and contact

force calculations in general terms.1 Chapter 3 deals with the detailed calculation of

contact forces assuming that the particles are elastic, elastic-plastic or adhesive

spheres. Other particle-particle interaction laws are often used by DEM researchers

and these are discussed in Chap. 4. Chapters 5, 6, 7 and 8 provide details of various

Fig. 1.9 V-mixer – N is the number of complete rotations (Moakher et al. 2000, Fig. 8)

Fig. 1.10 Ball mill – experiment (left) simulation (right) (Rajamani et al. 2000, Fig. 4)

1 Throughout the book, the Einstein tensor subscript notation is used including the Kroneker delta:

δij¼ 1 if i¼ j and δij¼ 0 if i 6¼ j. Also, the soil mechanics convention that compression is positive is

adopted and, hence, anticlockwise rotations are positive.
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applications of DEM published by the Author. Chapter 5 deals with single particle

impact and agglomerate impact simulations are presented in Chap. 6. Chapter 7

reports recent work on fluidised bed simulations. Finally in Chap. 8, simulations of

quasi-static deformation of compact, polydisperse systems of spheres, the Author’s
original area of interest, are presented. The book is not intended to be a textbook or

a manual on how to do DEM simulations. For that, the reader is referred to

O’Sullivan (2011).
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Chapter 2

Theoretical Background

Abstract This chapter deals with the theoretical background of granular dynamics

and assembly mechanics. The complete set of equations required to perform three-

dimensional DEM simulations are provided, dealing with particle kinematics,

contact forces, timestep and damping. The chapter then considers various charac-

teristics of compact particle systems with enduring contacts and provides deriva-

tions of the coordination number, fabric tensor, stress tensor and assembly modulus.

2.1 Granular Dynamics

2.1.1 Particle Kinematics

In a large system of particles, the components (i¼ 1, 3) of the translational and

rotational accelerations of each particle are given by the equations

dvi
dt

¼
X

Fci

mi
þ gi ð2:1Þ

dωi

dt
¼

X
FtiR

I
ð2:2Þ

in which Fc are the contact forces acting on the particle and FtR are the moments

due to the tangential components of the contact forces, g is the acceleration due to

any gravity field, v and ω are the linear velocity and angular velocity of the particle

respectively and I is the moment of inertia. For a solid sphere, I ¼ 2
5mR

2.

By numerically integrating (2.1) and (2.2), using an explicit central finite

difference scheme, new velocities and positions of the particles are obtained from

the following equations.

vnewi ¼ voldi þ dvi
dt

Δt and ωnew
i ¼ ωold

i þ dωi

dt
Δt ð2:3Þ

xnewi ¼ xoldi þ vnewi Δt and θ new
i ¼ θ old

i þ ωnew
i Δt ð2:4Þ

where xi and θi are the coordinates and components of angular rotation of the

particle, Δt is the small timestep used to advance the simulation. From the new

© Springer International Publishing Switzerland 2015
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positions and velocities of the particles new contact forces can be calculated. There

is then a need to check for new contacts and contacts that have been broken. For two

spheres A and B, contact exists if the distance between their centres is less than the

sum of the two radii, i.e.

α ¼ RA þ RB � D ð2:5Þ

where α is the relative approach in the normal direction and D is the distance

between the sphere centres.

If the translational and rotational velocities of the two spheres are vAi ,ω
A
i and

vBi ,ω
B
i then the relative normal displacement increment at the contact is

Δα ¼ vBi � vAi
� �

niΔt ð2:6Þ

where n is the unit vector normal to the contact plane and directed from sphere A to

sphere B. The timestep Δt will be discussed later.

The relative tangential surface displacement increment is obtained from

Δδi ¼ vBi � vAi
� �

Δt� Δαni � ωA
iþ1niþ2 � ωA

iþ2niþ1

� �
RAΔt

� ωB
iþ1niþ2 � ωB

iþ2niþ1

� �
RBΔt

ð2:7Þ

in which the subscripts i, i+ 1, i+ 2 are rotated between the limits 1 to 3, i.e. if i¼ 2,

i+ 2¼ 4 – 3¼ 1.

2.1.2 Contact Forces

Having obtained the relative incremental displacements at a contact, the new

contact reactions can be calculated. The normal force can be updated incrementally

using

Fnew
n ¼ Fold

n þ knΔα ð2:8Þ

However, it is better to use the functional form, e.g. Fn ¼ knα, using double

precision arithmetic, if the contact force model permits it, see Chap. 3 for details.

The tangential force is much more complicated and, necessarily, has to be updated

incrementally, as explained below.

During particle-particle interactions the contact plane continuously rotates and it

is, therefore, necessary to reorientate the current tangential force and tangential

displacement directions to be orthogonal to the new contact normal direction before

the tangential forces and displacements are updated. The rotation of the contact

plane is given by
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Ωi ¼ vBiþ2 � vAiþ2

� �
Δt� Δαniþ2

� �niþ1

D
� vBiþ1 � vAiþ1

� �
Δt� Δαniþ1

� �niþ2

D
ð2:9Þ

whereD is the distance between the centres of the two spheres. The directions of the

tangential force and displacement are adjusted using

Fti ¼ Ωiþ1F
old
t iþ2ð Þ �Ωiþ2F

old
t iþ1ð Þ and δi ¼ Ωiþ1δ

old
t iþ2ð Þ �Ωiþ2δ

old
t iþ1ð Þ ð2:10Þ

where Fold
ti and δoldi are the components of the tangential force and tangential

displacement before rotation of the contact plane and the adjusted tangential

force and displacement are obtained from

Ft ¼ FtiFtið Þ1=2 and δ ¼ δiδið Þ1=2 ð2:11Þ

Having accounted for the rotation of the contact normal vector, a further

complication arises in 3D simulations. Generally, the direction of the tangential

displacement increment, defined by Eq. (2.7), is not coaxial with the direction of the

old tangential displacement, defined by Eq. (2.10), as shown in Fig. 2.1a. The new

tangential displacement is obtained by vector summation, i.e.

δnewi ¼ δoldi þ Δδi ð2:12Þ

However, in almost all codes, the new tangential force is calculated as Fnew
t ¼ Fold

t

þktΔδ and this is not exactly correct. (This can be demonstrated by considering a

constant normal force, i.e. the contact area does not change. In this case, it will be

found that, due to the non-coaxiality, the tangential force reaches the limiting value

of Ft ¼ μFn at the wrong value of δ.)
For clarity, in Fig. 2.1, the magnitude of the tangential displacement increment

has been grossly exaggerated relative to the magnitude of the old tangential

Δδ

a b

Δδ

Δβ

Δδr = δnew - δold

δnew

δnew

δold

δold

Fig. 2.1 Non-coaxiality on the contact plane considering (a) Cartesian and (b) cylindrical local
coordinates
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displacement. From Fig. 2.1a, it is tempting to consider that Δδ has two compo-

nents, one that is coaxial with δ old and one that is orthogonal to the direction of δ old.

If this was the case it would raise the question as to what is the reaction to this

orthogonal component of Δδ.
The correct solution is obtained by considering cylindrical coordinates, as shown

in Fig. 2.1b. There is a normal displacement that creates a normal reaction force, a

radial tangential displacement that creates a tangential reaction force and a rota-

tional displacement (a twist) that is reacted to by a contact moment. Consequently,

the tangential force is updated using

Fnew
t ¼ Fold

t þ ktΔδr ð2:13Þ

using the scalar product

Δδr ¼ δnew � δold ð2:14Þ

and the tangential force components are calculated from

Fnew
ti ¼ Fnew

t

δnewi

δnewj j ð2:15Þ

The updated resultant tangential force is compared with the sliding criterion. If the

sliding criterion is exceeded then the tangential force is reset to the limiting value

Ft ¼ μFn.

Figure 2.1b also shows that, as a consequence of the non-coaxiality, there is a

rotational displacement increment indicated by the angle Δβ. However, due to the

small contact area, the resultant contact moment is generally ignored.

In the above, the contact stiffnesses kn and kt are the current stiffnesses and

depend on the contact force model used, which will be discussed in Chaps. 3 and 4.

2.1.3 Timestep

During its movement, a particle may collide with neighbouring particles or walls.

However, the particle movement is also affected by particles far beyond its local

neighbourhood through the propagation of disturbance waves. This problem is

solved by selecting a suitably small value for the timestep such that, during a single

timestep, a disturbance can only propagate from a particle to other particles in

contact with it. For the case when linear springs are used to model the contact

stiffnesses the critical timestep is related to the ratio of the contact spring stiffness

to the particle density. For non-linear springs (e.g. a Hertzian spring) the critical

timestep cannot be calculated a priori. However, it was shown by Miller and Pursey

(1955) that the Rayleigh waves account for 67 % of the radiated energy in

comparison with the dilational (7 %) and distortional (26 %) waves. In the
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Birmingham DEM code, it is assumed that all of the energy is transferred by

Rayleigh waves. This is a good approximation since the difference between the

Rayleigh wave speed and the distortional wave speed is very small and the energy

transferred by the dilational wave is negligible. In addition, the average time of

arrival of the Rayleigh wave at any contact is the same irrespective of the location

of the contact point. Consequently, the critical timestep is based on the minimum

particle size and a fraction of the critical timestep is used in the simulations. The

critical timestep is given by the following equation.

Δtc ¼ πRmin

vR
¼ πRmin

λ

ffiffiffiffi
ρ

G

r
ð2:16Þ

where Rmin is the minimum particle radius, ρ is the particle density, G is the particle

shear modulus, vR is the Rayleigh wave speed and λ can be obtained from

2� λ2
� �4 ¼ 16 1� λ2

� �
1� λ2

1� 2ν

2 1� νð Þ
� �� �

ð2:17Þ

which can be approximated by

λ ¼ 0:8766þ 0:1631ν ð2:18Þ

where ν is the Poisson’s ratio of the particle.

2.1.4 Damping

Unlike most other DEM codes, the Birmingham code does not include a dashpot

force as part of the contact force. There are, however, dashpots that are used to

dissipate a small amount of energy due to elastic wave propagation through a solid

particle. The dashpot forces are not considered to be part of the actual contact forces

but they are added to the normal and tangential contact forces to provide the

contribution to the out-of-balance force and moment acting on the particle from

that contact, used in Eqs. (2.1) and (2.2). The dashpot forces are given by

Fnd ¼ 2β
ffiffiffiffiffiffiffiffiffiffiffi
m∗kn

p
Δα=Δt and Ftd ¼ 2β

ffiffiffiffiffiffiffiffiffiffi
m∗kt

p
Δδr=Δt ð2:19Þ

with
1

m∗
¼ 1

mA
þ 1

mB
ð2:20Þ

where mA and mB are the masses of the two particles and the value of β in Eq. (2.19)
is in the range 0.01–0.03.
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2.2 Assembly Mechanics

When considering compact systems of particles with enduring contacts there is a

need to define certain characteristics such as stability, microstructure and the state

of stress for the system.

2.2.1 Stability Considerations

The structural stability of a system of particles is related to the average number of

contacts per particle, i.e. the coordination number Z¼ 2C/N where C is the number

of contacts, N is the number of particles and the 2 accounts for the fact that each

contact is shared by two particles.

Consider a 3D system of particles with μ ¼ 1, i.e. no sliding occurs at any

contact. The number of degrees of freedom of a single particle is 6 (3 rotations and

3 translations) and the total number of degrees of freedom in the system is 6N. The
number of constraints (unknown reactions) at a single contact is 3 (a normal force, a

radial tangential force and a contact moment) and the total number of constraints in

the system is 3C. If the total number of constraints equals the total number of

degrees of freedom, i.e. 3C¼ 6N, the system is statically determinate (isostatic)

and we can define a critical coordination number Zc¼ 4. If Z> Zc then the system is

indeterminate (hypostatic) which means that there are more contacts than necessary

to ensure stability; it is a redundant system. If Z< Zc then equilibrium cannot be

satisfied since there are fewer contacts than necessary to keep the system stable and

the system becomes a mechanism (hyperstatic).

Defining the coordination number as Z¼ 2C/N is not necessarily appropriate

since this is the apparent coordination number and includes particles with no

contacts. We can define a geometrical coordination number

Zg ¼ 2C

N � N0ð Þ ð2:21Þ

where N0 is the number of particles with no contacts. This geometrical coordination

number can be useful to characterise clusters or agglomerates. However, this

definition includes particles with only one contact and these do not contribute to

the stability of the system. Therefore, in order to examine stability, we define a

mechanical coordination number

Zm ¼ 2C� N1ð Þ
N � N1 � N0ð Þ ð2:22Þ

where N1 is the number of particles with only one contact. Consequently we define a

system to be isostatic when Zm¼ 4.
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The above is a limiting case. The other limiting case is when μ¼ 0. In this case

there are no particle rotations and the only constraint at a contact is the normal

force. Therefore, for μ¼ 0, the isostatic state corresponds to Zm¼ 6. Both in reality

and in simulations the interparticle friction is finite and, consequently, the critical

value of Zm depends on the percentage of sliding contacts and it is difficult to

ascertain exactly what the value should be, but Zm¼ 4 can be taken as a lower

bound.

An alternative is to define a redundancy index IR that is a function of the fraction
of contacts that are sliding. The redundancy index is defined as the ratio of the

number of constraints (allowing for the reduced number of constraints where

sliding occurs) to the number of degrees of freedom in the system. Therefore in

3D, if the contact moment referred to in Sect. 2.1.2 is ignored, then we can write

IR ¼ C

N

3� 2 f

6

� �
ð2:23Þ

where f is the fraction of sliding contacts, e.g. 0.10. If IR¼ 1 the system is isostatic,

hypostatic if IR> 1 and hyperstatic if IR< 1. If the particles with no contacts are

ignored and the number of particles with only one contact is negligibly small then

Eq. (2.23) can be rewritten as

IR ¼ Zm
3� 2 f

12

� �
ð2:24Þ

2.2.2 Microstructure

It is universally recognised that the mechanical behaviour of granular material is

strongly influenced by the closeness of the packing of the individual particles.

Consequently, it is common practice to characterise granular material by a scalar

parameter, e.g. void ratio, porosity or solid fraction. However, it is now well known

that the microstructure of granular materials is anisotropic and this requires a

tensorial description. Satake (1982) suggested that, for disc or sphere systems, the

structural anisotropy is defined by the orientational distribution of contact normals

ni that can be characterised by a second order fabric tensor ϕij

ϕi j ¼
1

2C

X2C
1

nin j ¼ nin j

	 
 ð2:25Þ

where C is the total number of contacts, which are counted twice since each contact

belongs to two particles. For discs and sphere assemblies, the direction cosines of a

unit contact normal vector are given by
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ni ¼ xAi � xBi
� �

= RA þ RB
� � ð2:26Þ

where xi
A and xi

B are the positions of the centres of the two contacting particles of

radii RA and RB. Although higher order fabric tensors such as ϕijkl ¼ nin jnknl
	 


may also be considered DEM simulations have shown that a second order repre-

sentation, as given by (2.25), is satisfactory

If we consider a continuous distribution of contact normal vectors we can also

write

ϕi j ¼
ð
Ω
E nð Þnin jdΩ ð2:27Þ

which satisfies the conditionsð
Ω
E nð ÞdΩ ¼ 1 and E nð Þ ¼ E �nð Þ ð2:28Þ

where E(n) is the probability density function of contact normals and E(n)dΩ gives

the estimated rate of n whose directions are within a small solid angle dΩ. The

probability density function can be expressed as a Fourier series which, in tensorial

form, can be written as

E nð Þ ¼ E0 þ Ei j f i j ð2:29Þ

where

f i j ¼ nin j � δi j
3

ð2:30Þ

The Fourier coefficients are given by

E0 ¼ 1

4π

ð
Ω
E nð ÞdΩ ¼ 1

4π
ð2:31Þ

Ei j¼15

8π

ð
Ω
E nð Þ f i jdΩ¼15

8π
f i j

D E
¼15

8π
ϕi j-

δi j
3

� �
ð2:32Þ

These coefficients are traceless, completely symmetric and transform as tensors

under rigid body rotations. In 2D systems we can write

ϕi j ¼
ð2π
0

E θð Þnin jdθ ð2:33Þ

where θ is the inclination angle of n with respect to the reference axis and
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E θð Þ ¼ E0 þ Ei j f i j ð2:34Þ

with E0 ¼ 1

2π

ð2π
0

E θð Þdθ ¼ 1

2π
and Ei j ¼ 2

π

ð2π
0

E θð Þ f i jdθ ¼ 2

π
f i j

D E
ð2:35Þ

Alternatively E(θ)can be expressed as

E θð Þ ¼ a0 þ a2 cos 2θð Þ þ b2 sin 2θð Þ ð2:36Þ

with

a0 ¼ 1

2π
; a2 ¼ 2

π
f 11h i ¼ 2

π
ϕ11 �

1

2

� �
; b2 ¼ 2

π
f 12h i ¼ 2

π
ϕ12 ð2:37Þ

It is of interest to note that if we assume a second order Fourier series represen-

tation then this implies limits on the degree of anisotropy that in 2D can be defined

by the deviator fabric ϕ1�ϕ2

� �
. If the principal axes of anisotropy coincide with the

reference axes then

E θð Þ ¼ 1

2π
þ a2 cos 2θð Þ ð2:38Þ

Since E(θ) cannot be negative we take E(θ)¼ 0 at θ¼ π/2 to be the limit condition

and, using Eq. 2.37, we obtain ϕ1¼ 0.75 and ϕ2¼ 0.25. Consequently, the maxi-

mum possible deviator fabric is 0.5. A similar exercise in 3D yields a corresponding

maximum possible deviator fabric of 0.25, in the case of axisymmetric

compression.

2.2.3 Stress

Particle systems sometimes behave like a solid and sometimes like a liquid. In

general, the state of stress is defined by the following equation.

σi j ¼ pδi j þ 1

2V

XN p

me_xie_x j þ 1

V

ð
σ p
i j dV ð2:39Þ

where V is the volume of the system containing Np particles, m is the mass of a

particle with a fluctuating velocity e_x ¼ _x � _xh i and σpij is the average state of stress

inside a particle.

The first term on the right hand side is due to the fluid pressure p which

contributes to the isotropic component of the stress tensor. The second term is the
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fluctuating kinetic energy density, or Reynolds stress, which is related to the

so-called ‘granular temperature’ and is, in general, anisotropic. The third term is

the Cauchy stress due to the particle-particle interactions, either collisional or

enduring.

The fluctuating velocities arise from the particle collision forces and the drag

forces, lift forces, etc., or anything else that causes the particles to deviate from the

fluid streamlines. In quasi-static deformation of compact systems, when particle

interactions are enduring, the second term is negligibly small and we can define,

what is known in soil mechanics as, the effective stress, σ
0
ij

σ
0
i j ¼ σi j � pδi j ¼ 1

V

ð
σ p
i j dV ð2:40Þ

The average stress tensor for a single particle may be written as

σ p
i j ¼

1

V p

ð
σi j dV

p ð2:41Þ

where Vp is the volume occupied by a single particle. (Note that the volume

occupied by the particle Vp is not the solid volume of the particle but also includes

the portion of the void volume that is more close to the particle than to any other

particle.) The volume integral can be replaced by a surface integral, using the

Divergence Theorem, to give

σ p
i j ¼

1

V p

ð
xit j dS ð2:42Þ

By considering the tractions tj to consist of discrete forces Fj acting at point

contacts defined by the coordinates xi the integral in Eq. (2.42) may be replaced by a

summation over the n contacts of particle p. Thus

σ p
i j ¼

1

V p

Xn
1

xiF j ð2:43Þ

Since the effective stress is not continuously distributed over the system (σ
0
i j ¼ 0

in the voids) Eq. (2.40) may be rewritten as a summation

σ
0
i j ¼

1

V

XN p

σ p
i jV

p ¼ 1

V

XN p Xn
xiF j ð2:44Þ

noting that for each particle the coordinates xi are referenced to the particle centre

and, for systems of discs or spheres, xi¼Rni. Also, the contact force F may be

partitioned into the normal and tangential components, Fn and Ft, so that Fni¼Fnni
and Fti¼Ftti, where ni define the contact normal vector and ti is orthogonal to ni.
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For polydisperse systems of spheres (or discs) the summation is simply carried out

over the C contacts in the system to give

σ
0
i j ¼

1

V

XC
RA þ RB
� �

Fnnin j þ 1

V

XC
RA þ RB
� �

Ftnit j ð2:45Þ

or, in terms of statistical averages, we may write

σ
0
i j ¼

C

V
DFnnin j

	 
þ C

V
DFtnit j
	 
 ð2:46Þ

where D ¼ RA + RB is the distance between the centres of the two contacting

spheres.

2.2.4 Assembly Modulus

Following Walton (1987) we may construct an equation relating a small change in

the ensemble average stress to small changes in the interparticle contact forces.

Then, by making a simplifying assumption about the applied strain increment field

we may obtain the current effective modulus/compliance of an assembly of parti-

cles. In other words, we wish to establish the following relationships

dσi j ¼ Sijkldεkl or dεi j ¼ Cijkldσkl with Cijkl ¼ Sijkl
� ��1 ð2:47Þ

Taking the pore fluid pressure to be zero, Eq. (2.46) may be written as

σi j ¼ C

V
DniF j

	 
 ð2:48Þ

or, in incremental form

dσi j ¼ C

V
Dni dF j

	 
 ð2:49Þ

If kn and kt are the current normal and tangential contact stiffnesses then

dFi ¼ knnidαþ ktdδri ð2:50Þ

where dα is the increment in the relative approach of the two particles and dδr is the
relative radial tangential displacement increment at the contact. It follows that
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dσi j ¼ C

V
Dkndαnin j

	 
þ Dktdδrin j

	 
� � ð2:51Þ

To proceed further, we assume that the incremental displacement dui of the sphere
centres is consistent with an applied uniform strain increment field, i.e.

dui ¼ dεi jX j ð2:52Þ

where Xij defines the coordinates of a sphere and dεij is the applied strain increment

tensor.

In a polydisperse system of spheres the individual sphere rotations significantly

affect the relative tangential displacement increment at the contact, see Eq. (2.7), in

a random way and are independent of the applied strain increment tensor. They are

therefore difficult to incorporate into the macroscopic stress-strain description.

Consequently if, for simplicity, we assume no particle rotations then dδri¼ dδi
and the normal and tangential relative incremental displacements at the contact are

dα ¼ duB
i � duA

i

� �
ni ð2:53Þ

dδi ¼ duB
i � duA

i

� �� dαni ð2:54Þ

However

duB
i � duA

i

� � ¼ dεi j X B
j � XA

j


 �
¼ dεi jDn j ð2:55Þ

Therefore

dα ¼ Ddεi jn jni ð2:56Þ
dδi ¼ Ddεi jn j � Ddεklnknlni ð2:57Þ

which may be substituted into Eq. 2.51 to give

dσi j ¼ C

V
knD

2dεkinin jnlnk
	 
� þ ktD

2dε jknink
	 


� ktD
2dεklninlnkn j

	 
� ð2:58Þ

Noting that the second term is not necessarily symmetric we write

dσi j ¼ C

V
knD

2dεklnknlnin j

	 
� � kt D
2dεklnknlnin j

	 

þ 0:5 kt D

2dεiknkn j

	 
þ kt D
2dε jknkni

	 
� �� ð2:59Þ

Using dεik ¼ dεklδil and dε jk ¼ dεklδ jl we obtain dσi j ¼ Sijkldεkl with
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Sijkl ¼ C

V
knD

2nin jnknl
	 
� � kt D

2nin jnknl
	 


þ 0:25 ktD
2n jnk

	 
�
δil þ kt D

2nink
	 


δ jl

þ kt D
2n jni

	 

δik þ kt D

2ninl
	 


δ jk

�� ð2:60Þ

An example of the use of Eq. (2.60) will be provided in Chap. 8.
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Chapter 3

Contact Mechanics

Abstract As a result of the relative displacements between contiguous particles,

forces are generated at the interparticle contacts. The contact force-displacement

behaviour depends on the material properties of the particles, the sizes of the two

particles in contact and the surface conditions. In this chapter we consider contact

force models that are based on theoretical contact mechanics. Equations are derived

for both the normal and tangential contact forces between two spheres in contact for

elastic and elastic-plastic interactions, with and without adhesion.

The application of external strain fields to granular materials causes relative

movement between the constitutive particles. As a result of the relative displace-

ments between contiguous particles, forces are generated at the interparticle con-

tacts and the macroscopic state of stress is a function of the distribution of contact

forces within the material. The contact force-displacement behaviour depends on

the material properties of the particles, the sizes of the two particles in contact and

the surface conditions. In this chapter we restrict our consideration to spheres

although the theories can be generalised to other shapes provided that the surfaces

are non-conforming and the curvature of the two contacting particles at the point of

contact is known (Johnson 1985).

3.1 Elastic Interactions

The normal and tangential force-displacement relationships for elastic spheres with

friction are provided by the theories of Hertz (1881), Mindlin (1949), and Mindlin

and Deresiewicz (1953). The normal and tangential contact forces are obtained by

integrating the respective normal and tangential traction distributions over the

contact area.
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3.1.1 Normal Interaction

For two contacting elastic spheres of radii Ri (i¼ 1, 2), the theory of Hertz (1881)

predicts a semi-ellipsoidal normal pressure distribution acting over the small

circular contact area of radius a, and expressed as

p rð Þ ¼ p0 1� r

a

� �2� �1=2
ð3:1Þ

which leads to normal displacements over the contact area as illustrated in the

cross-section shown in Fig. 3.1 and given by

ui rð Þ ¼ π p0 1� ν2i
� �
4aEi

2a2 � r2
� � ð3:2Þ

where Ei and νi are the Young’s modulus and Poisson’s ratio for the respective

sphere and Eq. (3.2) satisfies the following boundary condition for the surface of the

contact area

a a

z2

u2

u1

z1
α1

α2

Fig. 3.1 Geometry of the local deformation at the contact between two dissimilar, unequal sized

elastic spheres subjected to an applied normal force (vertical scale exaggerated)
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u1 rð Þ þ u2 rð Þ ¼ α� r2

2R∗

� 	
ð3:3Þ

with the relative curvature of the surface defined as

1

R∗ ¼ 1

R1
þ 1

R2
ð3:4Þ

and α ¼ α1 þ α2 is the relative approach of the centroids of the two spheres in

contact. Substitution of Eq. (3.2) into Eq. (3.3) for i¼ 1, 2 leads to

π p0
4aE∗

� �
2a2 � r2
� � ¼ α� r2

2R∗

� 	
ð3:5Þ

where the relative contact compliance is

1

E∗ ¼ 1� ν21
� �

E1
þ 1� ν22
� �

E2
ð3:6Þ

Substituting r¼ 0 into Eq. (3.5), the relative approach is

α ¼ π p0 a

2E∗ ð3:7Þ

and the radius of the contact area is obtained from Eqs. (3.5) and (3.7) with r¼ a to

give

a ¼ π p0R
∗

2E∗ ð3:8Þ

The total normal force is defined as

Fn ¼
ða
0

p rð Þ2πrdr ¼ 2

3
p0π a

2 ð3:9Þ

which may be substituted into Eqs. (3.7) and (3.8) to give

a3 ¼ 3FnR
∗

4E∗ ð3:10Þ

and

α3 ¼ 9F2
n

16R∗E∗2
ð3:11Þ

3.1 Elastic Interactions 29



noting also that

a2 ¼ R∗α ð3:12Þ

Rearranging Eq. (3.11)

Fn ¼ 4

3
E∗ R∗α3
� �1=2 ð3:13Þ

from which the normal contact stiffness is defined as

kn ¼ dFn

dα
¼ 2E∗ R∗αð Þ1=2 ¼ 2E∗a ð3:14Þ

3.1.2 Tangential Interaction

Although it is only strictly valid for two spheres with the same elastic properties, for

simplicity, we assume that the tangential interaction does not affect the normal

interaction. Mindlin (1949) demonstrated that, for a constant normal force Fn, the

effect of applying a tangential force Ft< μFn is to cause a small relative tangential

motion, termed ‘slip’, over part of the contact area. Over the remaining part no such

relative movement occurs and the surfaces are said to ‘adhere’ or ‘stick’. The
application of a tangential force initiates the formation of an annulus of slip at the

perimeter of the contact area which, for a monotonically increasing tangential force,

progresses radially inwards until, when Ft ¼ μFn, the ‘stick’ area is zero and sliding
occurs with the tangential traction q(r) ¼ μp(r) for all r � a.

The tangential force results in shear deformation adjacent to the contact surface

as illustrated in Fig. 3.2, which shows the rigid displacements of the sphere centres

δi, the tangential elastic displacements at the contact surface ui and the slip

displacements si. The resultant slip displacement

s ¼ s1 � s2 ¼ u1 � δ1ð Þ � u2 � δ2ð Þ ¼ u1 � u2ð Þ � δ1 � δ2ð Þ ð3:15Þ

In the ‘stick’ region s¼ 0 therefore

u1 � u2 ¼ δ1 � δ2 ¼ δ ð3:16Þ

For the limiting condition Ft ¼ μFn, the distribution of the tangential traction is

given by

q rð Þ ¼ 3μFn

2π a3

� 	
a2 � r2
� �1=2

f or 0 � r � a ð3:17Þ

For Ft < μFn, the corresponding traction distribution is obtained by superimposing

a negative traction over the stick region of radius b < a

30 3 Contact Mechanics



q rð Þ ¼ � 3μFn

2π a3

� 	
b2 � r2
� �1=2

f or 0 � r � b ð3:18Þ

Hence, the distribution of the tangential traction over the total contact area, shown

in Fig. 3.3, is given as

q rð Þ ¼ 3μFn

2π a3

� 	
a2 � r2
� �1=2 � b2 � r2

� �1=2h i
f or 0 � r � b ð3:19aÞ

q rð Þ ¼ 3μFn

2π a3

� 	
a2 � r2
� �1=2

f or b � r � a ð3:19bÞ

Mindlin (1949) showed that the relative tangential displacement of the two spheres

is

δ ¼ 3μFn

16G∗a

� 	
1� b2

a2

� 	
ð3:20Þ

where

1

G∗ ¼ 2� ν1ð Þ
G1

þ 2� ν2ð Þ
G2

ð3:21Þ

ft

ft

2

1

u1

a a

u2

s1

s2

δ2 δ2

δ1δ1

Fig. 3.2 Shear deformation adjacent to the contact due to an applied tangential force
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The magnitude of the tangential force is defined, using Eq. (3.19), as

Ft ¼ 2π

ða
0

qrdr ¼ μFn 1� b3

a3

� 	
ð3:22Þ

Rearranging Eq. (3.22) and substituting in Eq. (3.20) we obtain the tangential force-

displacement law as

δ ¼ 3μFn

16G∗a

� 	
1� 1� Ft

μFn

� 	2=3
" #

ð3:23Þ

To obtain the tangential stiffness it is convenient to differentiate Eq. (3.23) to obtain

the compliance and then invert. Thus

kt ¼ dFt

dδ
¼ 8G∗a 1� Ft

μFn

� 	1=3

ð3:24Þ

The development of the slip annulus during loading involves a dissipative

process and hence the slip annulus does not simply recede during unloading. If

the tangential displacement is reversed then slip in the opposite direction

(counterslip) spreads radially inwards from the perimeter of the contact area. The

b

Eq. (3.19)

Eq. (3.26)

Eq. (3.25)

c

a

Fig. 3.3 Tangential traction distributions during loading and during unloading
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energy required to produce the annulus of counter slip is twice that needed to form

the original slip annulus since the counterslip has to cancel the original slip and

progress the slip in the opposite direction.

The distribution of the tangential traction at the start of unloading is given by

Eq. (3.19a, b). To obtain the traction distribution during unloading, a negative

traction is superimposed of the form

q rð Þ ¼ �2
3μFn

2π a3

� 	
a2 � r2
� �1=2 � c2 � r2

� �1=2h i
f or 0 � r � c ð3:25aÞ

q rð Þ ¼ �2
3μFn

2π a3

� 	
a2 � r2
� �1=2

f or c � r � a ð3:25bÞ

where c � r � a defines the annulus of counterslip. The resultant traction distribu-

tion is obtained by adding Eqs. (3.19a, b) and (3.25a, b) to give

q rð Þ ¼ � 3μFn

2π a3

� 	
a2 � r2
� �1=2 � 2 c2 � r2

� �1=2 þ b2 � r2
� �1=2h i

f or 0 � r � b

ð3:26aÞ

q rð Þ ¼ � 3μFn

2π a3

� 	
a2 � r2
� �1=2 � 2 c2 � r2

� �1=2h i
f or b � r � c ð3:26bÞ

q rð Þ ¼ � 3μFn

2π a3

� 	
a2 � r2
� �1=2

f or c � r � a ð3:26cÞ

which is illustrated in Fig. 3.3.

Integrating Eq. (3.26a, b, c) over the contact area to obtain the tangential force

Ft ¼ μFn 1� b3

a3

� 	
� 2μFn 1� c3

a3

� 	
ð3:27Þ

from which

c ¼ a 1� F∗
t � Ft

� �
2μFn

� �1=3
ð3:28Þ

where F∗
t is the tangential force from which unloading commenced and is given by

Eq. (3.22). The relative displacement of the two spheres is given by

δ¼ 3μFn

16G∗a

� 	
2
c2

a2
� b2

a2
� 1

� 	

¼ 3μFn

16G∗a

� 	
2 1� F∗

t �Ftð Þ
2μFn

� 	2=3

� 1� F∗
t

μFn

� �2=3
� 1

" # ð3:29Þ
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Differentiating Eq. (3.29) to obtain the compliance and then inverting provides the

tangential stiffness

kt ¼ dFt

dδ
¼ 8G∗a 1� F∗

t � Ft

� �
2μFn

� �1=3
ð3:30Þ

The force-displacement curve for a reversal of the tangential displacement is

shown in Fig. 3.4. If unloading commenced from the point A on the loading curve

OA*, then the tangential force decreases along ABC. The distribution of the

tangential traction at point B, when Ft¼ 0, is defined by Eq. (3.26a, b, c) and

illustrated in Fig. 3.3. Counterslip continues to spread radially inwards until point C

is reached when Ft ¼ �Ft
* and c ¼ b. Further decreases in Ft follow the inverse

loading curve OCC* in Fig. 3.4.

Following the sequence of loading and unloading, it is possible that a further

reversal in the relative tangential displacement of the two spheres will occur which

will result in a reloading situation. Consider that the initial tangential loading

produced slip over the annulus b < r < a, as shown in Fig. 3.3. Subsequent

unloading produced a counterslip annulus c < r < a and a resultant traction

distribution, defined by Eq. (3.26a, b, c), when the tangential force was zero.

Reloading from this point will initiate slip at the perimeter of the contact area in

the same sense as that produced by the initial loading. This ‘reslip’ will spread
radially inwards over an annulus d < r < a with increasing tangential force and to

obtain the distribution of tangential traction during reloading a positive traction of

the form

B
o

displacement

A
A*

C*
C

ta
ng

en
tia

l f
or

ce

Fig. 3.4 Tangential contact

force-displacement

relationship
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q rð Þ ¼ 2
3μFn

2π a3

� 	
a2 � r2
� �1=2 � d2 � r2

� �1=2h i
ð3:31aÞ

q rð Þ ¼ 2
3μFn

2π a3

� 	
a2 � r2
� �1=2 ð3:31bÞ

is superimposed on the traction distribution at the start of reloading given by

Eq. (3.26a, b, c). Integrating the resulting traction distribution over the contact

area leads to

Ft ¼ μFn 1� b3

a3

� 	
� 2μFn 1� c3

a3

� 	
þ 2μFn 1� d3

a3

� 	
ð3:32Þ

from which

d ¼ a 1� Ft � F∗∗
t

� �
2μFn

� �
ð3:33Þ

where F∗∗
t is the tangential force from which reloading commenced. The relative

tangential displacement is given by

δ¼ 3μFn

16G∗a

� 	
1� b2

a2
þ 2

c2

a2
� 2

d2

a2

� 	

¼ 3μFn

16G∗a

� 	
1� 1� F

∗
t

μFn

� �2=3
þ 2 1� F∗

t �Ftð Þ
2μFn

� 	2=3

� 2 1� Ft�F∗∗
tð Þ

2μFn

� 	2=3
" #

ð3:34Þ

which leads to the tangential stiffness during reloading

kt ¼ dFt

dδ
¼ 8G∗a 1� Ft � F∗∗

t

� �
2μFn

� �1=3
ð3:35Þ

The tangential force is also dependent on the magnitude of the normal force and

hence there exists an infinite set of geometrically similar force-displacement

curves, each corresponding to a different value of normal force. Figure 3.5a

shows two such curves for the case of tangential loading. A theoretical analysis

of the behaviour of elastic spheres in contact under varying oblique forces was

presented by Mindlin and Deresiewicz (1953). Solutions were given in the form of

instantaneous compliances which, due to the dependence on both the current state

and the previous loading history, could not be integrated a priori. However, several

loading sequences involving variations of both normal and tangential forces were

examined from which general procedural rules were identified. Adopting an incre-

mental approach, the procedure is to update the normal force and contact area
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radius, using Eqs. (3.13) and (3.10), followed by calculating ΔFt using the new

values of Fn and a.
From the figure,

Δδ ¼ Δδ1 þ Δδ2 ð3:36Þ

where

Δδ1 ¼ μΔFn

kt01
and Δδ2 ¼ ΔFt � μΔFn

kt12
ð3:37Þ

with

kt01 ¼ 8G∗a and kt12 ¼ 8G∗a 1� Ft þ μΔFn

μFn

� 	1=3

ð3:38Þ

Hence

Δδ ¼ 1

8G∗a
μΔFnþ

ΔFt � μΔFnð Þ
1� FtþμΔFn

μFn

� �1=3
0
B@

1
CA ð3:39Þ
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0

2

2
2

1 1

1

2

3

3 3

kt01 ΔFn+Fn

fn+Δfn
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f**

Fn

ΔFt

Ft

μΔFn

Δδ2Δδ1

Δδ δ

kt12

t

f**−mΔfnt

f* +mΔfnt

f*t

Fig. 3.5 Effect of changing normal force during (a) loading (b) loading, unloading and reloading
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By reanalysing all the loading cases considered by Mindlin and Deresiewicz

(1953), it was shown by Thornton and Randall (1988) that the tangential incremen-

tal displacement may be expressed as

Δδ ¼ 1

8G∗a
�μΔFn þ ΔFt � μΔFn

θ

� 	
ð3:40Þ

except when

ΔFn > 0 and Δδj j < μΔFn

8G∗a
ð3:41Þ

Rearrangement of Eq. (3.40) defines the tangential stiffness as

kt ¼ 8G∗aθ � μ 1� θð ÞΔFn

Δδ
ð3:42Þ

where

θ3 ¼ 1� Ft þ μΔFnð Þ
μFn

Δδ > 0 loadingð Þ ð3:43aÞ

θ3 ¼ 1� F∗
t � Ft þ 2μΔFn

� �
2μFn

Δδ < 0 unloadingð Þ ð3:43bÞ

θ3 ¼ 1� Ft � F∗∗
t þ 2μΔFn

� �
2μFn

Δδ > 0 reloadingð Þ ð3:43cÞ

and the negative sign in Eq. (3.42) is only invoked during unloading. The param-

eters F∗
t and F∗∗

t define the load reversal points, as shown in Fig. 3.5b, and need to

be continuously updated

F∗
t ¼ F∗

t þ μΔFn and F∗∗
t ¼ F∗∗

t � μΔFn ð3:44Þ

to allow for the effect of varying normal force.

For a current state given by point 1 in Fig. 3.5b, during loading, unloading or

reloading, a tangential incremental displacement equal to the right hand side of

Eq. (3.41) will result in a new state given by point 2 on the curve corresponding to

the new value of Fn. Larger values of Δδ will result in a state farther along the curve
such as point 3. A problem occurs if the conditions given in Eq. (3.41) are true,

since point 2 is not reached and the new state does not lie on the curve

corresponding to the new value of Fn. However, by adopting an incremental

approach, a satisfactory solution to the problem is obtained by setting θ¼ 1 in

Eq. (3.42) until the following condition is satisfiedX
ΔFtj j > μ

X
ΔFn ð3:45Þ

Note that this problem does not exist for ΔFn < 0.
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3.1.3 Contact Moment

As explained in Sect. 2.1.2, in addition to the normal and tangential force reactions

there is also a moment reaction to the twist (rotation about the contact normal

vector). An exact solution to this problem was provided by Lubkin (1951) for

monotonic loading. The solution is illustrated in Fig. 3.6. Unfortunately the solution

is very complex, involving both the definite and indefinite elliptic integrals of the

first and second kind; which is not useful to DEM researchers.

By making a small simplifying assumption, Deresiewicz (1954) obtained tangi-

ble analytical solutions for both the loading and unloading cases. Figure 3.7a shows

the hysteretic moment-rotation curves and Fig. 3.7b shows how the traction distri-

bution changes during unloading. It should be recognized that the moment-rotation

problem has all the same complexities as the tangential force-displacement problem

defined by Mindlin and Deresiewicz (1953), as described in the previous

subsection.

If we define a rotational ‘stiffness’ kr then, from Deresiewicz (1954), during

loading

kr ¼ 16G∗a3

3
2 1� 3

3

M

μFna

� 	�1=2

� 1

" #�1

ð3:46Þ

and during unloading

kr ¼ 16G∗a3

3
2 1� 3

2

M∗ �M

2μFna

� 	�1=2

� 1

" #�1

ð3:47Þ

These equations are for a constant normal force. For a varying normal force there

are an infinite number of moment-rotation curves and, for an increase in the normal

force, there is a problem if ΔM < μΔFna which has to be solved like the case of
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Fig. 3.6 Lubkin’s (1951) solution (a) torsional traction distribution (b) relationship between the

twisting moment M and the angle of twist β (Lubkin 1951, Figs. 2 and 3)
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ΔFt< μΔFn in the Mindlin and Deresiewicz model, see Sect. 3.1.2. However, to the

author’s knowledge, the contact moment-rotation model has never been

implemented in a DEM code.

3.2 Elastic-Plastic Interactions

With increase in compression between two spheres, ignoring the possibility of

fracture or crushing, the material behaviour becomes more complex as it passes

through a series of phases, namely elastic, elastoplastic, perfectly plastic and finite

plastic deformation (Mesarovic and Fleck 1999). Consequently, for implementation

in particle system simulations, some simplifying approximations are inevitable. In

this section we ignore the elastoplastic and finite plastic deformation phases and

consider that the material stress-strain behaviour is simply linear elastic followed

by perfectly plastic, i.e. the stress-strain curve is bilinear.

3.2.1 Normal Interaction

The initial normal interaction is elastic with the normal force, the normal stiffness

and the radius of the contact area defined by the theory of Hertz (1881), see

Eqs. (3.12), (3.13) and (3.14). Thornton (1997) suggested that the normal interac-

tion becomes plastic when a ‘limiting contact pressure’ py is reached at the centre of

Fig. 3.7 Deresiewicz’s (1954) solution (a) hysteretic moment-rotation curves (b) traction distri-

butions during loading and unloading (Deresiewicz 1954, Figs. 3 and 1)
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the contact area. This idea originates from Hardy et al. (1971) who reported results

of a finite element analysis of a rigid sphere indenting an elastic-perfectly plastic

half-space, see Johnson (1985) Fig. 6.11. They showed that the Hertzian pressure

distribution is valid until the pressure at the centre of the contact area is equal to 1.6

times the yield stress σy of the material, at which point yield occurs below the

surface at the centre of the contact area. Further compression results in a spreading

of the plastic deformation zone below the surface and a slight modification of the

shape of the contact pressure distribution as the maximum contact pressure

increases further. When the pressure at the centre of the contact area reaches

about 2.4 times the yield stress, the plastic deformation zone in the substrate reaches

the contact surface at the perimeter of the contact area. Beyond this point, further

compression results in a significant change in the form of the pressure distribution.

Over an increasing central portion of the contact area the contact pressure becomes

almost constant with only a slight increase in the pressure at the centre of the

contact area. This is also illustrated in Fig. 3.8, which shows the evolution of the

normal contact pressure distribution for the impact of an elastic sphere against an

elastic-perfectly plastic half-space, obtained from finite element analysis by Wu

et al. (2003).

Thornton (1997) proposed that the evolution of the contact pressure distribution,

described above and illustrated in Fig. 3.8, could be approximated by an ‘elastic’
stage during which the pressure distribution is Hertzian followed by a ‘plastic’ stage
during which the pressure distribution is described by a truncated Hertzian
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Fig. 3.8 Evolution of the normal pressure distribution during loading
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distribution by defining the limiting contact pressure py � 2:5σy, as shown in

Fig. 3.9a. The consequence of this approximation is that the plastic loading curve is

given by a straight line tangent to the Hertzian curve at (Fny, αy) where Fny and αy are
the normal contact force and relative approach when the pressure at the centre of the

contact area first becomes equal to the specified value of py, as shown in Fig. 3.9b.

The limiting contact pressure py is specified and defined by

py ¼
3Fny

2π a2y
ð3:48Þ

The corresponding relative approach αy is obtained by substituting Eqs. (3.12) and

(3.13) into Eq. (3.48) and rearranging to give

αy ¼
π py
2E∗

� �2
R∗ ð3:49Þ

The corresponding normal force is

Fny ¼ 4

3
E∗R∗1=2α3=2y ð3:50Þ

It is assumed that for α < αy the response is elastic and Hertzian theory is used to

calculate the normal force and contact radius. It is also assumed that further

compression results in plastic deformation. Therefore, for α > αy, the normal

force is given by

Fn ¼ FH
n � 2π

ða p

0

p rð Þ � py

 �

rdr ð3:51Þ

a b
Hertz

Hertz

Fny

Py

Fn
H

ay ap a*
a

Fn
*

Fig. 3.9 The Thornton (1997) model (a) normal pressure distribution (b) force-displacement

relationship
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where FH
n is the equivalent Hertzian force, given by Eq. (3.10), that would result in

the same total contact area and ap is the radius of the contact area over which a

uniform pressure py is assumed, as indicated in Fig. 3.9a. Integrating Eq. (3.51) we

obtain

Fn ¼ πa2p py þ FH
n 1� a p

a

� �2� �3=2
ð3:52Þ

The limiting contact pressure py is defined by Eq. (3.48) or, according to Fig. 3.9a,

by

py ¼
3FH

n

2πa2
1� a p

a

� �2� �1=2
ð3:53Þ

The contact radius is obtained from

a3 ¼ 3R∗FH
n

4E∗ ð3:54Þ

By combining Eqs. (3.48), (3.53) and (3.54) we find that

1� a p

a

� �2� �
¼ ay

a

� �2
or a2 ¼ a2p þ a2y ð3:55Þ

Substituting Eqs. (3.54) and (3.55) into Eq. (3.52) we obtain

Fn ¼ Fny þ π py a2 � a2y

� �
ð3:56Þ

Substituting Eq. (3.12), the force-displacement relationship during plastic loading

is given as

Fn ¼ Fny þ πR∗ py α� αy

� � ð3:57Þ

which is linear, as shown in Fig. 3.9b.

According to Thornton (1997), the normal force during unloading can be

approximated by

Fn ¼ 4

3
E∗R∗1=2

p α� α p

� �3=2 ð3:58Þ

where R∗
p > R∗ due to contact flattening and is calculated using

R∗
p ¼ 4E∗

3F∗
n

2F∗
n þ Fny

2π py

 !3=2

ð3:59Þ

and F∗
n is the maximum normal force from which unloading commenced.
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The parameter αp in Eq. (3.58) is the relative approach at which the normal force

becomes zero, i.e. αp is the plastic (irrecoverable) displacement. It needs to be

calculated before Eq. (3.58) can be used. This is achieved by rearranging Eq. (3.58)

to give

α p ¼ α∗ � 3F∗
n

4E∗R∗1=2
p

 !2=3

ð3:60Þ

where α* is the maximum relative approach at the point of unloading. During

unloading the contact radius is calculated from

a3 ¼ 3R∗
pFn

4E∗ ð3:61Þ

An attraction of this model is that in the context of particle impacts it leads to an

analytical solution for the normal coefficient of restitution, see Chap. 5. However,

the unloading stage is not strictly correct. Unloading is elastic but not Hertzian as

implied by Eq. (3.58). The pressure distribution during unloading for elastic- plastic

interactions was analysed by Mesarovic and Johnson (2000). By using rigid punch

decomposition, they derived the following equation for the normal pressure distri-

bution during unloading.

p ¼ 2 py
π

sin�1 a2 � r2

a*2 � r2

� 	1=2

ð3:62Þ

where a* is the contact radius at the start of unloading. The normal pressure

distribution during unloading is illustrated in Fig. 3.10 which shows the analytical

solution given by Eq. (3.62) and results of finite element analysis by Wu

et al. (2003).

The corresponding normal force relationship, given by Mesarovic and Johnson

(2000) is

Fn ¼ 2F*
n

π
sin �1 a

a*

� �
� a

a*
1� a

a*

� �2� �1=2( )
ð3:63Þ

The relative approach during unloading isα ¼ α* � αuwhere αu is the recovered
deformation during unloading. Martin (2003) derived the following equation for αu.

αu ¼
2pya

*

E*
1� a

a*

� �2� �1=2
ð3:64Þ
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Substituting Eq. (3.64) into Eq. (3.63) the normal force displacement relationship

can be expressed as

Fn ¼ 2F*
n

π
sin �1 1� λ2

� �1=2 � λ 1� λ2
� �1=2h i

ð3:65Þ

where

λ ¼ E* α* � α
� �
2 pya

*
ð3:66Þ

If Thornton’s (1997) model is used for the loading stage (any change in R* during

plastic loading is ignored) then

α* ¼ 2F*
n þ Fny

2πR* py
and a* ¼ 2F*

n þ Fny

2π py

 !
ð3:67Þ

can be used. Figure 3.11 shows a comparison between the unloading prediction

using Eq. (3.65) and the assumed Hertzian unloading of Thornton (1997). The

Fig. 3.10 Evolution of the normal pressure distribution during unloading
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non-Hertzian unloading curve exhibits slightly less elastic recovery but the differ-

ence is very small.

3.2.2 Tangential Interaction and Contact Moment

It was originally assumed that the tangential interaction is the same as for elastic

interactions, i.e. Mindlin and Deresiewicz (1953), but that the tangential stiffness

would be higher since, for a given normal force the contact area would be larger.

This assumption has been demonstrated to be correct using finite element analysis

of the tangential interaction between a rigid sphere and elastic and plastic substrates

with the normal force held constant, C-Y Wu (2009, personal communication)

unpublished work, as shown in Fig. 3.12. Figure 3.12a clearly shows that the plastic

tangential interaction is much stiffer. A further consequence is that sliding occurs at

a much smaller value of tangential displacement.

According to Mindlin and Deresiewicz (1953) the tangential force-displacement

relationship for a constant normal force may be written as

Ft ¼ μFn 1� 1� δ

δμ

� 	3=2
" #

ð3:68Þ

where δμ is the tangential displacement at which sliding commences and, for the

interaction between a rigid sphere and a planar surface, can be expressed as
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Fig. 3.11 Comparison between the Hertzian and non-Hertzian unloading models
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δμ ¼ 3 1þ νð Þ 2� νð Þ
8aE

ð3:69Þ

The data shown in Fig. 3.12a is re-plotted in Fig. 3.12b with Eq. (3.68)

superimposed, which confirms the applicability of Mindlin and Deresiewicz

(1953) solutions to elastic-plastic tangential interactions.

In a similar way, it is expected that the Deresiewicz (1954) solution for the

contact moment will also apply to elastic-plastic interactions, although verification

of this is still awaited.

3.3 Adhesive, Elastic Interactions

Particles may adhere together in a number of different ways depending on the type

of bond formed. For relatively strong bonds the bond may be solid, cemented or

glued by a viscous liquid. Weaker bonds may be provided by pendular liquid

bridges, van der Waals forces, electrostatics or electro-magnetic fields. The type

of bond dictates the contact interaction law required. However, in this section we

only consider autoadhesive particles that result from van der Waals forces.

For particle sizes less than say 50 μm, van der Waals forces become significant

and particles tend to stick to each other. Two theoretical models for the

autoadhesion of spheres were developed over 40 years ago (a) the JKR model

(Johnson et al. 1971) and (b) the DMT model (Derjaguin et al. 1975). The two

models were initially thought to be competitive but subsequently shown to be limits

to a range of solutions that are governed by the non-dimensional parameter

μ ¼ R*Γ2

E*2z30

� 	1=3

ð3:70Þ
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where z0 is the equilibrium separation in the Lennard-Jones potential, Γ is the work

of adhesion and Γ ¼ γ1 þ γ2 � γ12 where γ1 and γ2 are the surface energies of the
two solids and γ12 is the interface energy, i.e. Γ¼ 2γ for like spheres. The general
consensus is that JKR theory applies for μ> 5 and DMT theory applies for μ< 0.1.
For intermediate values of μ a complicated solution has been provided by

Maugis (1992).

The maximum tensile force required to break the contact, the so-called ‘pull-off’
force, is

Fnc ¼ 1:5πΓR* ð3:71Þ

for the JKR model, and

Fnc ¼ 2πΓR* ð3:72Þ

for the DMT model.

It may be noted that the DMT curve is simply the Hertzian curve displaced by a

constant amount given by Eq. (3.72). In other words, according to DMT theory, the

adhesion does not modify the elastic interaction and the contact breaks when α¼ 0.
The JKR theory is more complex.

3.3.1 Normal Interaction

Johnson (1976) provided the following relationship between the normal contact

force Fn and the relative approach α., which is shown in Fig. 3.13.

α

α f
¼

3 Fn

Fnc

� �
þ 2þ 2 1þ Fn

Fnc

� �1=2
32=3 Fn

Fnc
þ 2þ 2 1þ Fn

Fnc

� �1=2� �1=3 ð3:73Þ

where

α f ¼ 3F2
nc

16R*E*2

� 	1=3

ð3:74Þ

is the relative approach (negative) at which the contact breaks, point D in Fig. 3.13.

When the two surfaces come into contact the normal force between the two

spheres immediately drops to a value of Fn¼�8Fnc/9 (point A in Fig. 3.13) due to

van der Waals attractive forces. If the two spheres are compressed until the contact

force reaches a maximum (say point B in Fig. 3.13) and then decompressed until

α¼ 0 then all the work done during the loading stage has been recovered when

point A is reached during unloading. At this point, when α¼ 0, the contact area is
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not zero, the spheres remain adhered together, and further work is required to break

the contact and create ‘new’ surface area. If the system is load controlled then the

situation becomes unstable at point C when Fn ¼ �Fnc, α ¼ �α f =3
2=3 and the

contact breaks. However, particle system simulations are always displacement

driven in which case separation occurs at point D when α ¼ �α f and

Fn ¼ �5Fnc=9.
It was shown by Johnson et al. (1971) that in the presence of adhesion the contact

radius a may be defined from

a3 ¼ 3R*=4E*
� �

FH
n ð3:75Þ

in which

FH
n ¼ Fn þ 2Fnc þ 4FnFnc þ 4F2

nc

� �1=2 ð3:76Þ

where FH
n is the apparent Hertzian force required to create the same contact area,

which is larger than the actual applied normal force Fn.

The normal contact pressure distribution can be written (Johnson 1985) as

p rð Þ ¼ 2E*a

πR*

� 	
1� r

a

� �2� �1=2
� 2E*Γ

π a

� 	1=2

1� r

a

� �2� ��1=2

ð3:77Þ

or

p rð Þ ¼ 3FH
n

2π a2

� 	
1� r

a

� �2� �1=2
� FH

n � Fn

2π a2

� 	
1� r

a

� �2� ��1=2

ð3:78Þ

whereFH
n � Fn ¼ 8πE*Γ a3

� �1=2
is the force due to the adhesion traction. Therefore

the applied normal contact force is given by

A
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D

αf

α

Fn

−Fnc

Fig. 3.13 Normal force-

displacement curve (JKR

theory)
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Fn ¼ 4E*a3

3R*
� 8πE*Γ a3
� �1=2 ð3:79Þ

and the corresponding relative approach by

α ¼ a2

R*
� 2πΓ a

E*

� 	1=2

ð3:80Þ

By differentiating both Eqs. (3.79) and (3.80) with respect to a and then combining

to obtain dFn/dα the normal contact stiffness can be defined by

kn ¼ 2E*a
3� 3 ac

a

� �3=2
3� ac

a

� �3=2
" #

ð3:81Þ

or

kn ¼ 2E∗a
3
ffiffiffiffiffiffiffi
FH
n

q
� 3

ffiffiffiffiffiffiffi
Fnc

p

3
ffiffiffiffiffiffiffi
FH
n

q
� ffiffiffiffiffiffiffi

Fnc

p

0
B@

1
CA ð3:82Þ

Which degenerates to the Hertzian solution (kn¼ 2E*a) when there is no adhesion

(Fnc¼ 0).

3.3.2 Tangential Interaction

Savkoor and Briggs (1977) extended the JKR analysis to account for the effect of

oblique loading in the presence of adhesion. It was suggested that the tangential

traction distribution over the contact area would be prescribed by the ‘no-slip’
solution of Mindlin (1949) given by

q rð Þ ¼ Ft

2π a2
1� r

a

� �2� ��1=2

ð3:83Þ

with the relationship between the tangential contact force and the tangential dis-

placement at the contact given by

Ft ¼ 8G*aδ ð3:84Þ
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It was also suggested that the application of a tangential force reduces the potential

energy by an amount Ftδ/2 leading to the following expression for the radius of the
contact area, see Thornton and Yin (1991).

a3 ¼ 3R*

4E*
Fn þ 2Fnc þ 4FnFnc þ 4F2

nc �
F2
t E

*

4G*

� 	1=2
" #

ð3:85Þ

Equation (3.85) indicates a reduction in the contact radius under increasing tan-

gential force. Savkoor and Briggs (1977) suggested that this corresponds to a

‘peeling’ mechanism that continues in a stable manner until a critical value Ftc is

reached when the square root in Eq. (3.85) becomes zero. Hence,

Ftc ¼ 4 FnFnc þ F2
nc

� �
G*=E*


 �1=2 ð3:86Þ

It was argued by Savkoor and Briggs (1977) that when Ft ¼ Ftc the contact area

would collapse to the Hertzian value. However, at Ft ¼ Ftc Eq. (3.85) reduces to

a3 ¼ 3R*

4E*
Fn þ 2Fncð Þ ð3:87Þ

and it was suggested by Thornton (1991) that, following peeling the micro-slip

model of Mindlin and Deresiewicz (1953) could apply, see Sect. 3.1.2, by replacing

Fn by Fn þ 2Fnð Þ and using Eq. (3.87) to define the contact radius. It then follows

that the sliding condition becomes

Ft ¼ μ Fn þ 2Fncð Þ ð3:88Þ

However, although experimental evidence of peeling has been provided for

rubber (Savkoor and Briggs 1977) results obtained by Homola et al. (1990) for

mica indicated that no peeling occurred. Consequently, we might conclude that the

effect of a tangential force in the presence of adhesion is not yet fully understood

and may be dependent of the type of material used.

Until this problem is resolved an alternative and simpler model, which might be

appropriate for hard materials, is to assume that no peeling process occurs. In this

case, the tangential stiffness is

kt ¼ 8G∗a ð3:89Þ

where the contact radius a is obtained from Eq. (3.75) and the sliding criterion is

Ft ¼ μFH
n ð3:90Þ

in which FH
n is defined by Eq. (3.76).
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3.4 Adhesive, Elastic-Plastic Interactions

Two contact mechanics based approaches to the modelling of adhesive, elastic-

plastic particle interactions have been reported in the literature by Martin (2003)

and by Thornton and Ning (1998).

3.4.1 Normal Interaction

Martin (2003) neglected any adhesion effects during loading and modelled the

loading stage as elastic-plastic in a manner very similar to that of Thornton (1997)

except that the plastic loading stiffness was higher. During unloading, the repulsive

force is given by Eq. (3.65) to which is added the negative adhesion force to obtain

Fn ¼ 2F*
n

π
sin �1 1� λ2

� �1=2 � λ 1� λ2
� �1=2h i

� 8πΓE∗a3
� �1=2 ð3:91Þ

where

λ ¼ E* α* � α
� �
2 pya

*
¼ 1� a

a∗

� �2� �1=2
ð3:92Þ

Hence

a3 ¼ a∗3 1� λ2
� �3=2 ð3:93Þ

and

Fn ¼ 2F*
n

π
sin �1 1� λ2

� �1=2 � λ 1� λ2
� �1=2h i

� 8πΓE∗a∗3 1� λ2
� �3=2h i1=2

ð3:94Þ

This model was used to simulate powder compacts for which the major concerns

are the control of dimensions due to springback during unloading and the strength

of the resulting green compact. In this context, the model is satisfactory but, due to

the neglect of adhesion during loading, it is not appropriate for general problems.

For example, the model cannot be used to simulate agglomeration in which

particles stick together when they collide with each other.

A more comprehensive model was presented by Thornton and Ning (1998). In

order to model elastic-plastic spheres with adhesion, as in the case of non-adhesive
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elastic-plastic spheres, they again assumed a limiting contact pressure py, as shown
in Fig. 3.14.

The applied force during plastic deformation, Fnp, is obtained from

Fn p ¼ Fn � 2π

ða p

0

p rð Þ � py

 �

rdr ð3:95Þ

which leads to

Fn p ¼ Fn � 4E∗a3

3R∗ 1� 1� a2p
a2

 !3=2
2
4

3
5

þ 8πΓE∗a3
� �1=2

1� 1� a2p
a2

� �1=2� �
þ πa2p py

ð3:96Þ

with Fn defined by Eq. (3.79). Using Eq. (3.77), the limiting contact pressure is

given by

py ¼
2E∗ay
πR∗ � 2ΓE∗

πay

� 	1=2

ð3:97Þ
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Fig. 3.14 Normal pressure distribution for adhesive, elastic-plastic spheres
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Unfortunately, for the case of adhesive spheres, Eq. (3.55) is not exactly correct but

we nevertheless assume it to be a reasonable approximation in order to simplify

Eq. (3.96) and obtain

Fn p ¼
4E∗a3y
3R∗ � ay 8πΓE∗að Þ1=2 þ π py a2 � a2y

� �
ð3:98Þ

Differentiating Eqs. (3.98) and (3.80),

dFn p

da
¼ 2π pya�

2πΓE∗a2y
a

 !1=2

ð3:99Þ

dα

da
¼ 2a

R∗ � πΓ

2E∗a

� 	1=2

ð3:100Þ

By combining Eqs. (3.99) and (3.100), and substituting Eqs. (3.66) and (3.70), it

can be shown that the contact stiffness during plastic loading is given by

dFn p

dα
¼

3πR∗ py

ffiffiffiffiffiffiffi
FH
n

q
� 2E∗ay

ffiffiffiffiffiffiffi
Fnc

p

3
ffiffiffiffiffiffiffi
FH
n

q
� ffiffiffiffiffiffiffi

Fnc

p ð3:101Þ

Note that, for non-adhesive elastic-plastic spheres, πR∗ py ¼ 2E∗ay in which case

Eq. (3.101) would lead todFn p=dα ¼ πR∗ py. However, for adhesive elastic-plastic

spheres

πR∗ py
2E∗ay

¼
3
ffiffiffiffiffiffiffi
FH
n

q
� 3

ffiffiffiffiffiffiffi
Fnc

p

3
ffiffiffiffiffiffiffi
FH
n

q
� ffiffiffiffiffiffiffi

Fnc

p ð3:102Þ

During elastic unloading, by analogy with Eq. (3.82), the unloading stiffness is

defined by

dFn

dα
¼ 2E∗a

3
ffiffiffiffiffiffiffi
FH
nr

q
� 3

ffiffiffiffiffiffiffiffi
Fncr

p

3
ffiffiffiffiffiffiffi
FH
nr

q
� ffiffiffiffiffiffiffiffi

Fncr

p

0
B@

1
CA ð3:103Þ

where

FH
nr ¼

4E∗a3

3R∗
p

ð3:104Þ

and
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Fncr ¼ 1:5πΓR∗
p ð3:105Þ

with

R∗
p ¼ R∗FH∗

n

F∗
n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4FncF

H∗
n

q ð3:106Þ

Where F∗
n and FH∗

n are the applied load and the equivalent Hertzian force from

which unloading commenced. The corresponding force-displacement behaviour for

adhesive elastic-plastic interactions is illustrated in Fig. 3.15. The figure demon-

strates that the plastic loading curve is linear and that, with increase in initial

compression, the unloading stiffness increases and the pull-off force required to

overcome adhesion increases due to the decreased radius of curvature caused by

plastic flattening during loading.

3.4.2 Tangential Interaction

There is no detailed experimental information about the tangential interaction for

adhesive, elastic-plastic spheres. However, for non-adhesive, elastic-plastic

spheres, in Sect. 3.2.2 it was demonstrated, Fig. 3.12, that the elastic theory of

Fig. 3.15 Force-displacement curves
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Mindlin and Deresiwicz (1953) also applies to elastic-plastic interactions but with a

higher stiffness due to the larger contact area. Consequently, in the case of adhesive,

elastic-plastic spheres, a strategy that would be expected to produce reasonable

results is to apply the theory described in Sect. 3.3.2 for adhesive elastic spheres.
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Chapter 4

Other Contact Force Models

Abstract Implementation of the contact force models described in the previous

chapter into particle system simulation codes involve complex algorithms and require

load reversal points to be stored in memory. Consequently, many researchers elect to

use simpler contact force models in order to reduce computer time requirements. A

selection of the most common simpler contact force models are described in this

chapter, including linear springs and non-linear springs, with and without dashpots,

partially latching springs and adhesive piecewise linear models.

Implementation of the contact force models described in the previous chapter into

particle system simulation codes involve complex algorithms and require load rever-

sal points to be stored inmemory. Consequently,many researchers elect to use simpler

contact forcemodels in order to reduce computer time requirements. A selection of the

most common simpler contact force models are described in this chapter.

4.1 Linear Spring Models

The simplest elastic contact force model is to assume that, during contact, two

interacting bodies are connected, both normally and tangentially, by linear springs.

Hence, the normal and tangential contact forces can be calculated from the follow-

ing equations

Fn ¼ knα ð4:1Þ
Fnew
t ¼ Fold

t þ ktΔδ except if Fnew
t � μFn then Fnew

t ¼ μFn ð4:2Þ

where kn and kt are the normal and tangential spring stiffnesses, α is the relative

normal approach andΔδ is the relative tangential surface displacement increment at

the contact. Note that the tangential contact force is calculated incrementally in

Eq. (4.2) In all contact force models, the tangential interaction has to be calculated

incrementally because sliding may have previously occurred and δ is no longer

simply the extension of the spring. However, the exception to this rule is the linear

spring model. Tsuji et al. (1992) calculated the tangential force using Ft¼ ktδ and
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suggested that, when sliding occurred, not only should the tangential force be reset

to the Coulomb limit Ft¼ μFn but also the tangential displacement should be reset

to δ ¼ μFn=kt. The same suggestion was made by Brendel and Dippel (1998).

Although the method is correct for a linear spring model, Eq. (4.2) is simpler. For

non-linear spring models an incremental approach is essential, see discussion

provided by Thornton et al. (2011).

In the context of particle impact, the linear spring model predicts the contact

duration tc to be

tc ¼ π
m∗

kn

� �1=2

ð4:3Þ

with

1

m∗
¼ 1

m1
þ 1

m2
ð4:4Þ

where m1 and m2 are the masses of the two interaction spheres. Unrealistically, the

contact duration is independent of the impact velocity. However, it was shown by

Thornton et al. (2011) that, if the normal spring stiffness is calibrated by equating

Eq. (4.3) to the corresponding contact duration for a Hertzian spring, see Eq. (5.5),

very accurate predictions of the rebound characteristics for oblique impacts can be

obtained provided that a realistic value is used for the ratio of the normal and

tangential contact stiffnesses. As will be explained in the next section, the range of

realistic values is 1 � kt=kn � 2=3.
In the context of quasi-static deformation of compact particle systems with

enduring contacts it is not possible to reliably calibrate the spring stiffness. This

may be possible for a given stress level, i.e. shearing with the mean stress held

constant, but if a range of stress levels are examined then the resultant stress strain

curves can become unrealistic.

The most common contact force model, used for both normal and tangential

interactions, is the linear spring-dashpot model introduced by Walton (1983). This

model is widely used to artificially dissipate energy through viscous means without

implying that the particles are actually viscoelastic. In the linear spring-dashpot

model the normal force is calculated using

Fn ¼ knαþ 2γ
ffiffiffiffiffiffiffiffiffiffiffi
m∗kn

p
vn ð4:5Þ

where vn is the relative normal velocity. The tangential force is obtained from

Fi
te ¼ Fi�1

te þ ktΔδ ð4:6Þ

and

Ft ¼ Fi
te þ 2γ

ffiffiffiffiffiffiffiffiffiffi
m∗kt

p
vt except ifFt � μFn then Ft ¼ μFn ð4:7Þ
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where, for a given timestep i, Fi
te is the elastic component of the tangential force and

vt is the relative tangential surface velocity. In Eqs. (4.5) and (4.7) the value of the

damping coefficient γ is dependent on the desired value of the normal coefficient of

restitution en which is defined by

en ¼ exp �
ffiffiffiffiffiffiffiffiffi
kn
2m∗

r
γ tc

 !
ð4:8Þ

where tc is the contact time during an impact. For the linear spring dashpot model a

widely used equation is

γ ¼ �lnenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln2en

p ð4:9Þ

However, the equation is incorrect since it is based on the assumption that the

contact time tc ends when the displacement α first returns to zero. At this point the

normal force is tensile which is not acceptable in simulations of non-adhesive

particles. For non-adhesive spheres, the appropriate value of tc to be substituted

into Eq. (4.8) is the time when the normal contact force first returns to zero. The

correct solution for the linear spring model was provided by Schwager and P€oschel
(2007). Their solutions, given by Eq. (23) in their paper, can be rewritten as

ln en ¼ � γffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p π � arctan
2γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
2γ2 � 1

 !" #
for γ � 1ffiffiffi

2
p ð4:10aÞ

lnen ¼ � γffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p arctan
2γ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p
2γ2 � 1

 !
for 1 � γ � 1ffiffiffi

2
p ð4:10bÞ

lnen ¼ � γffiffiffiffiffiffiffiffiffiffiffiffiffi
1� γ2

p ln
γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 1

p
γ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 � 1

p
 !

for γ � 1 ð4:10cÞ

It is worth noting that for γ< 0.707 the coefficient of restitution en> 0.21 and

hence, in particle system simulations, only Eq. (4.10a) is relevant. Using an

elaborate curve fitting technique for Eq. (4.10a, b and c), an expression for γ as a

function of en was provided by Thornton et al. (2013).

Many researchers mistakenly attribute the linear spring-dashpot model to

Cundall and Strack (1979). Although dashpots were used by Cundall and Strack

(1979) they did not contribute to the contact forces. The contact forces were simply

the forces in the springs. However, the dashpot forces were added to the spring

forces to provide the contribution to the particle out-of-balance force to be used

when calculating the particle accelerations. The original purpose of the dashpots

was to suppress ‘rattling’ at contacts during 2D quasi-static simulations. However,

the use of dashpots in the sense as used by Cundall and Strack has a physical
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justification since they are used to dissipate a small amount of energy due to elastic

wave propagation through a solid particle, as explained in Sect. 2.1. When two

adhesive spheres collide at small enough relative impact velocities that they stick

together then, without these dashpots, the normal and tangential contact forces

oscillate ad infinitum and never reach equilibrium.

4.2 Non-linear Spring Models

In order to avoid the complexity of the hysteretic tangential force model of Mindlin

and Deresiewicz (1953) a number of researchers choose to use the ‘no-slip’ model

of Mindlin (1949) which, when combined with Hertzian theory for the normal force

provides a non-linear spring model; to which non-linear dashpots may be added in

order to dissipate energy. Considering the combined non-linear spring-dashpot

model the normal and tangential contact forces at the ith timestep are obtained from

Fn ¼ 4

3
E∗

ffiffiffiffiffiffiffiffiffiffiffi
R∗α3

p
þ 2γ

ffiffiffiffiffiffiffiffiffiffiffi
m∗kn

p
vn ð4:11Þ

Fi
te ¼ Fi�1

te þ k i
tΔδ for ΔFn � 0 ð4:12Þ

Fi
te ¼ Fi�1

te

k i
t

ki�1
t

 !
þ k i

tΔδ for ΔFn < 0 ð4:13Þ

Ft ¼ Fi
te þ 2γ

ffiffiffiffiffiffiffiffiffiffi
m∗kt

p
vt except if Ft � μFn then Ft ¼ μFn ð4:14Þ

in which the variable stiffnesses are

kn ¼ 2E∗
ffiffiffiffiffiffiffiffiffi
R∗α

p
and kt ¼ 8G∗

ffiffiffiffiffiffiffiffiffi
R∗α

p
ð4:15Þ

and the damping coefficient γ can be obtained as a function of the desired value of

restitution coefficient using Eq. (B6) provided by Thornton et al. (2013)

As indicated by Eqs. (4.12) and (4.13), the elastic component of the tangential

force Fi
te depends on whether the normal force is increasing or decreasing. If the

normal force decreases the contact area decreases. Associated with the reduced

contact area is a reduced stiffness and for that stiffness the current magnitude of the

relative surface displacement is insufficient to generate the magnitude of the elastic

component of the previous tangential force Fi�1
te which needs to be rescaled

according to Eq. (4.13). Elata and Berryman (1996) demonstrated that if the old

tangential force is not rescaled then spurious energy can be created.

Using Eqs. (3.6) and (3.21) and the relationship E ¼ 2 1þ νð ÞG, the contact

stiffness ratio κ can be written as

60 4 Other Contact Force Models

http://dx.doi.org/10.1007/978-3-319-18711-2_2
http://dx.doi.org/10.1007/978-3-319-18711-2_3
http://dx.doi.org/10.1007/978-3-319-18711-2_3


κ ¼ kt
kn

¼ 2
G2 1� ν1ð Þ þ G1 1� ν2ð Þ
G2 2� ν1ð Þ þ G1 2� ν2ð Þ
� �

ð4:16Þ

Note that if ν1 ¼ ν2 ¼ ν, Eq. (4.16) reduces to

κ ¼ 2 1� νð Þ
2� νð Þ ð4:17Þ

even ifG1 6¼G2. Also, since0 � ν � 1=2 the range of realistic values of κ for elastic
interactions is 1 � κ � 2=3 ; and this constraint also applies to the linear spring

model discussed in Sect. 4.1.

The ‘no-slip’ model of Mindlin (1949) can also be combined with the elastic-

plastic normal contact force model of Thornton (1997) to provide energy dissipa-

tion without the need for dashpots. In addition, the calculation of the contact

moment is simplified since the rotational ‘stiffness’ kr given by Eq. (3.46) reduces

to

kr ¼ 16G∗a3

3
ð4:18Þ

4.3 Partially Latching Spring Models

In order to mimic plastic deformation, as observed in experiments, Walton and

Braun (1986) and Walton (1993) introduced a so-called ‘partially latching spring’
model that used different normal spring stiffnesses for loading and unloading. In

this model the normal force is written as

Fn ¼ k1α ð4:19Þ

during loading, and

Fn ¼ k2 α� α0ð Þ ð4:20Þ

during unloading, where α0 is the relative approach when the unloading curve

reaches zero force and

k1
k2

¼ e2n ð4:21Þ

α0 ¼ αmax 1� k1=k2ð Þ ¼ αmax 1� e2n
� � ð4:22Þ

where en is the normal coefficient of restitution and αmax is the maximum relative

approach from which unloading occurred. A problem with the partially latching

spring model, defined by Eqs. (4.19), (4.20), (4.21) and (4.22), is that Eq. (4.21) is

4.3 Partially Latching Spring Models 61

http://dx.doi.org/10.1007/978-3-319-18711-2_3


ambiguous. There are at least three interpretations which are illustrated in Fig. 4.1

and defined below.

Model A is illustrated by Fig. 4.1a

Fn ¼ k1α ¼ kα during loading ð4:23Þ

Fn ¼ k2 α� α0ð Þ ¼ k

e2n
α� α0ð Þ during unloading ð4:24Þ

Fi
t ¼ Fi�1

t þ κ
k

e2n
Δδ except if Ft � μFn then Ft ¼ μFn ð4:25Þ

Model B is illustrated in Fig. 4.1b

Fn ¼ k1α ¼ enkα during loading ð4:26Þ

Fn ¼ k2 α� α0ð Þ ¼ k

en
α� α0ð Þ during unloading ð4:27Þ

Fi
t ¼ Fi�1

t þ κ
k

en
Δδ except if Ft � μFn then Ft ¼ μFn ð4:28Þ

k

kk
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α

α

α α
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Fn Fn Fn

Fn Fn
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Fig. 4.1 Three possible partially latching spring models for en¼ 0.8 (upper figures) and en¼ 0.5

(lower figures)
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Model C is illustrated in Fig. 4.1c

Fn ¼ k1α ¼ e2nkα during loading ð4:29Þ
Fn ¼ k2 α� α0ð Þ ¼ k α� α0ð Þ during unloading ð4:30Þ

Fi
t ¼ Fi�1

t þ κkΔδ except if Ft � μFn then Ft ¼ μFn ð4:31Þ

In all three models, k is the elastic stiffness that would result if en¼ 1.0.

It was demonstrated by Thornton et al. (2013) that, for oblique impacts, all three

models predict exactly the same rebound kinematics when the tangential spring

stiffness is related to the normal unloading stiffness, as above. The differences are

in the magnitude of the contact forces and the contact duration. Compared to the

model of Thornton (1997), see Sect. 3.2.1, Model A significantly over-predicts the

normal force and under-predicts the contact duration, whereas Model C signifi-

cantly under-predicts the force and over-predicts the duration of contact. It was

found that the force evolution for Model B was quite similar to that of Thornton’s
(1997) model due to the fact that the model captures two significant aspects of the

model of Thornton (1997) in that for a decrease in en the value of the limiting

contact pressure decreases and therefore the plastic loading stiffness decreases as

indicated by Eq. (3.57) and the unloading stiffness increases since a decrease in py
leads to an increase in R∗

p , as indicated by Eq. (3.59).

As indicated by Eq. (4.21), all three above models predict a normal coefficient of

restitution that is independent of impact velocity. Walton and Braun (1986)

suggested a variable latching spring model by making the normal unloading

stiffness, as given in Eq. (4.20), a function of the maximum normal force from

which unloading commenced, i.e.

k2 ¼ k1 þ sFn maxð Þ ð4:32Þ

where s is an empirical scaling coefficient. Using Eq. (4.32) the normal coefficient

of restitution is given by

en ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m∗

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m∗

p þ sVni

 !1=2

ð4:33Þ

which exhibits a dependency on the normal impact velocity Vni

4.4 Adhesive Piecewise Linear Models

Luding (2005) purported to extend his previous partly latching spring model

(Luding 1998) to account for adhesive/cohesive contacts. The corresponding

force-displacement law is illustrated in Fig. 4.2a. A more elaborate model was

proposed by Luding (2008), which is illustrated in Fig. 4.2b. It is clear that both

models are physically unrealistic since they imply that all the deformation produced
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by plastic loading, αmax, can be recovered and that contact ceases when α¼ 0. The
consequences of this will be illustrated later.

In the Luding (2005) model shown in Fig. 4.2a the force-displacement equations

are

F ¼ k1α for initial loading ð4:34aÞ
F ¼ k2 α� α0ð Þ for unloading=reloading ð4:34bÞ

F ¼ �kcα for further unloading ð4:34cÞ

with

α0 ¼ 1� k1
k2

� �
αmax ð4:35Þ

and

αmin ¼ k2 � k1
k2 þ kc

� �
αmax ð4:36Þ

If we consider a normal impact between a sphere and a planar target wall the initial

kinetic energy is given by

1

2
mV2

i ¼
1

2
k1α

2
max ð4:37Þ

and the rebound kinetic energy is given by

Fmax Fmax

Fmin Fmin

F
a b

αmin

αmin

αmax αα0

αmax αα0

k1

k1

k2

k2

kc kc

F

F0

Fig. 4.2 Force-displacement laws (a) Luding (2005) (b) Luding (2008)
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1

2
mV2

r ¼
1

2

k21
k2

α2max �
1

2
kcα0αmin ð4:38Þ

where the first term on the RHS is the kinetic energy recovered when α¼ α0 and the
second term is the work done when the contact force becomes tensile. Substituting

Eqs. (4.35) and (4.36) we obtain

1

2
mV2

r ¼
1

2

k21
k2

α2max �
1

2

kc
k2

k2 � k1ð Þ2
k2 þ kcð Þ α2max ð4:39Þ

Dividing Eq. (4.39) by Eq. (4.37) leads to

e2 ¼ k1
k2

� kc
k1k2

k2 � k1ð Þ2
k2 þ kcð Þ ð4:40Þ

where e is the coefficient of restitution. If kc¼ 0 and k1¼ 200N/m, k2¼ 500N/m
then e¼ 0.6325. For the same values of k1 and k2 but with kc¼ 100 N/m the value of

e¼ 0.5. In both cases the coefficient of restitution is independent of impact velocity,

even when Vi ! 0.
Many experiments have demonstrated that the coefficient of restitution is a

function of the impact velocity. In order to obtain a velocity dependent coefficient

of restitution it was suggested by Walton and Braun (1986) that the unloading

stiffness should be a function of the maximum force, see Eq. (4.32). Since the

loading stiffness is linear this is equivalent to suggesting that k2 is a function of

αmax. Luding (2008) suggested the following expression.

k2 ¼ k1 þ k̂ 2 � k1
� �αmax

α∗max
ð4:41Þ

where

α∗max ¼
k̂ 2

k̂ 2 � k1
ϕ f

2R1R2

R1 þ R2
ð4:42Þ

in which Ri are the radii of the two spheres in contact and ϕf was described as the

“dimensionless plasticity depth”. For a sphere impacting a target wall the equation

reduces to

α∗max ¼
k̂ 2

k̂ 2 � k1
ϕ f d p ð4:43Þ

Luding (2008) suggested that k̂ 2 is a limiting unloading stiffness that applies for

all αmax � α∗max and suggested a value of ϕf¼ 0.05. This is not necessary and,

therefore, we will consider k̂ 2, which is arbitrarily selected, to be the unloading
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stiffness whenαmax ¼ α̂ max and choose k̂ 2 ¼ 500N/m and ϕf¼ 0.01. Consequently,
we use

α̂ max ¼ k̂ 2

k̂ 2 � k1
ϕ f d p ð4:44Þ

and

k2 ¼ k1 þ k̂ 2 � k1
� �αmax

α̂ max
ð4:45Þ

Rather than consider the Luding (2008) model as a separate issue we can adapt

the Luding (2005) model in order to examine the effects of the various details. In

this sense, we examine three different cases in which the unloading stiffness is

defined by Eq. (4.45). In all cases we take k̂ 2 ¼ 500 N=m.

First, we consider the case of no adhesion, i.e. the contact terminates when α ¼
α0 during unloading. Secondly, we consider the case with ‘adhesion’ in the sense

that there is a tensile force permitted, as illustrated in Fig. 4.2a. In the third case, we

add an initial negative force F0, as illustrated in Fig. 4.2b. The results obtained are

shown in Fig. 4.3.

The figure shows that for no adhesion the coefficient of restitution reduces at a

decreasing rate as the impact velocity increases. For the second case, since a tensile

force is admitted the results show that as Vi! 0, en! 1 which is counterintuitive.

Furthermore, in this case, the coefficient of restitution reduces until, for Vi> 1.8m/s
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there appears to be sticking. However, at these higher velocities sticking does not

occur. It is simply the fact that, due to the increasing work done by the tensile force

stretching the surfaces back to α¼ 0, there is no energy left for the sphere to

rebound from the target wall. It simply sits on the wall but is not sticking to the

wall. In other words, with this model there is no adhesion. It is concluded that the

results shown in Fig. 4.3 clearly demonstrate that the Luding (2005, 2008) models

are physically unrealistic.

For the non-adhesive case a further problem exists, which also applies to the

partially latching spring model of Walton and Braun (1986). If tensile forces are not

permitted then Eq. (4.40) reduces to

e ¼
ffiffiffiffiffi
k1
k2

r
ð4:46Þ

If k2 is a function of α, as given by Eq. (4.45)

e2 ¼ k1

k1 þ k̂ 2 � k1
� �

αmax
α̂ max

¼ 1

1þ Aαmax
ð4:47Þ

However,

αmax ¼
ffiffiffiffiffi
m

k1

r
Vi ð4:48Þ

and therefore, for high velocities, e / V
�1=2
i contrary to the well-established fact

that for perfect plastic interactions (Johnson 1985; Thornton 1997) e / V
�1=4
i .

Consequently, it is clear that, in order to obtain e / V
�1=4
i , k2 should be a function

of
ffiffiffiffiffiffiffiffiffi
αmax

p
, i.e.

k2 ¼ k1 þ k̂ 2 � k1
� � ffiffiffiffiffiffiffiffiffiffi

αmax
α̂ max

r
ð4:49Þ

The corresponding results obtained from simulations using Eq. (4.49) are shown in

Fig. 4.4.

Pasha et al. (2014) recognised the physically unrealistic nature of Luding’s
(2008) model and suggested the force-displacement model shown in Fig. 4.5,

which is clearly more realistic than that of Luding (2008). However, the unloading

stiffness is a function of α and hence the velocity dependence is incorrect.
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Fig. 4.5 Force-displacement law (Pasha et al. 2014, Fig. 10)
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Chapter 5

Particle Impact

Abstract Understanding the impact between two particles is of fundamental

importance in numerous engineering applications and scientific studies. A binary

collision may appear to be a very simple problem but, in fact, it is a very complex

event. This is due to the short duration and the high localised stresses generated that,

in most cases, result in both frictional and plastic dissipation. In addition, if rigid

body sliding does not occur throughout the impact, then local elastic deformation of

the two bodies becomes significant. This chapter examines both normal and oblique

impacts of a sphere with a target wall and considers the effects of elasticity, plastic

dissipation, surface energy and initial spin.

Understanding the impact between two particles is of fundamental importance in

numerous engineering applications and scientific studies. A binary collision may

appear to be a very simple problem but, in fact, it is a very complex event. This is

due to the short duration and the high localised stresses generated that, in most

cases, result in both frictional and plastic dissipation. In addition, if rigid body

sliding does not occur throughout the impact, then local elastic deformation of the

two bodies becomes significant. In the powder processing industries and in nature,

the problem is further complicated due to the fact that the particles are

non-spherical and the outcome of an impact event depends on the particle shape

and orientation. For simplicity, in this chapter, only spherical particles will be

considered.

5.1 Normal Impact

The original pioneering work on impact of spheres is due to Hertz (1896). Follow-

ing directly from his theory of elastic contact, Hertz analysed the impact of

frictionless elastic bodies. The assumption made in this quasi-static theory is that

the deformation is restricted to the vicinity of the contact area. The theory also

assumes that the energy loss due to elastic wave propagation can be ignored and the

total mass of each body moves at any instant with the velocity of its centre of mass.
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A particular consequence of the quasi-static nature of the model is that the elastic

energy of the two bodies acquired during the collision is entirely reversible, the

magnitudes of the impact and rebound velocities are identical and the normal

coefficient of restitution en is unity.

5.1.1 Elastic Impact

From the theory of Hertz we can rewrite Eq. (3.13) as

m∗ d2α

dt2
¼ �4

3
E∗R∗1=2

α3=2 ð5:1Þ

Since, for a sphere of mass m and radius R impacting a massive target wall, m* ¼
m and R* ¼ R. Integrating with respect to α gives

m

2
V2
i �

dα

dt

� �2
" #

¼ 8

15
E∗R1=2α5=2 ð5:2Þ

where Vi is the velocity of approach at t ¼ 0. When the displacement reaches the

maximum value there is no relative motion between the two bodies and therefore

αmax ¼ 15mV2
i

16E∗R1=2

� �2=5

ð5:3Þ

The duration of the impact tc is given (Raman 1920) by

tc ¼ 2:94
αmax
Vi

ð5:4Þ

thus

tc ¼ 2:865
m2

RE∗2Vi

� �1=5

ð5:5Þ

The validity of the Hertz theory was demonstrated experimentally by Andrews

(1930), who investigated the impact of two equal spheres of soft metal at low impact

velocities and confirmed that tc / V
�1=5
i and the coefficient of restitution is very close

to unity. Energy loss due to elastic wave propagation during an elastic impact was

analysed by Hunter (1957) who showed that, for a steel ball impacting a large block

of steel or glass, less than one per cent of the initial kinetic energy was converted into

elastic waves. At higher velocities, energy dissipation occurs due to plastic deforma-

tion or fracture. It was shown by Hutchings (1979) that only a few per cent of the

initial kinetic energy is dissipated by stress waves during plastic impacts.
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5.1.2 Effect of Plastic Dissipation

Consider the normal impact of two elastic-perfectly plastic spheres. If the relative

impact velocity Vi is just large enough to initiate yield in one of the spheres then,

using Eqs. (3.12) and (3.13), we may write

1

2
m∗V2

y ¼
ðαy

0

Fndα ¼ 8E∗a5y

15R∗2
ð5:6Þ

where Vy, defined as the yield velocity, is the relative impact velocity belowwhich the

interaction is assumed to be elastic, ay is the contact radiuswhen yield occurs andm
* is

related to the two particle masses by 1=m∗ ¼ 1=m1 þ 1=m2. Rearranging Eq. (5.6),

ay ¼
15R∗2m∗V2

y

16E∗

 !1=5

ð5:7Þ

Combining Eqs. (3.12), (3.48) and (3.50), the limiting contact pressure py may be

written as

py ¼
2E∗ay
πR∗ ð5:8Þ

Then, from Eqs. (5.7) and (5.8) the yield velocity is given by

Vy ¼ π

2E∗

� �2 8πR∗3

15m∗

� �1=2

p5=2y ¼ 3:194
p5yR

∗3

E∗4m∗

 !1=2

ð5:9Þ

In the case of a sphere of density ρ impacting a massive plane target wall, R* ¼ R,
m* ¼ m and Eq. (5.9) reduces to

Vy ¼ π

2E∗

� �2 2

5ρ

� �1=2

p5=2y ¼ 1:56
p5y

E∗4ρ

 !1=2

ð5:10Þ

which was originally obtained by Davies (1949).

Thornton (1997) considered the normal impact of two elastic-perfectly plastic

spheres, see Sect. 3.2.1 for details of the contact mechanics formulation, and

derived the following analytical expression for the normal coefficient of restitution.

en ¼ 6
ffiffiffi
3

p

5

� �1=2

1� 1

6

Vy

Vi

� �2
" #1=2 Vy

Vi

� �
Vy

Vi

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
5 � 1

5
Vy

Vi

� �2r
2
664

3
775
1=4

ð5:11Þ
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which satisfies the condition en ¼ 1.0 when Vi ¼ Vy and, at high impact velocities

when (Vy/Vi)
2 ! 0

en ¼ 6
ffiffiffi
3

p

5

� �1=2
Vy

Vy þ 2
ffiffi
6

pffiffi
5

p Vi

0
@

1
A

1=4

ð5:12Þ

Then, taking Vi � Vy we obtain

en ¼ 6
ffiffiffi
3

p

5

� �1=2 ffiffiffi
5

p

2
ffiffiffi
6

p
� �1=4

Vy

Vi

� �1=4

¼ 1:185
Vy

Vi

� �1=4

ð5:13Þ

For the case of a sphere impacting a plane surface we may substitute for Vy using

Eq. (5.10) to obtain

en ¼ 1:324
p5y

E∗4ρ

 !1=8

V
�1=4
i ð5:14Þ

A similar expression was provided by Johnson (1985) except that the prefactor was

1.72 as a result of assuming that the plastic normal stiffness was twice that assumed

by Thornton (1997).

Generally, there are four deformation regimes depending on the impact velocity

or amount of indentation, namely the elastic, elastoplastic, plastic and finite plastic

deformation regimes, Mesarovic and Fleck (1999). The initial deformation is elastic

with the contact force increasing at an increasing rate, as defined by Hertz (Johnson

1985). This is followed by a complex elastoplastic regime.

At the transition from elastic to elastoplastic behaviour the force-displacement

curve deviates from the Hertzian curve and is tangent to the Hertzian curve at the

point when initial yield occurs. Subsequently the contact force increases at an

increasing rate due to strain hardening during which the effective yield stress

increases at a decreasing rate. Li et al. (2002) developed a rather complicated

theoretical model to incorporate strain hardening effects and Kharaz and Gorham

(2000) presented results of normal impact experiments that illustrated the velocity

dependency of the restitution coefficient in this regime.

At sufficiently high impact velocities, the behaviour is perfectly plastic and the

contact stiffness is constant, as assumed by Thornton (1997). This is followed by a

finite plastic deformation regime at very high impact velocities. In this regime the

plastic deformation of the sphere extends beyond the contact area and the conse-

quence is that the contact force increases at a decreasing rate, Mesarovic and Fleck

(1999). From the results of their finite element analyses, Wu et al. (2003) showed

that in this regime the exponent of the power law relationship between the coeffi-

cient of restitution and the impact velocity suddenly changed from �0.25 to �0.5.

Interestingly, the same abrupt change in the velocity exponent was obtained by

Schrapler et al. (2012) from their DEM simulations of agglomerate impact.
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5.1.3 Effect of Surface Energy

For adhesive elastic spheres, as shown in Fig. 3.13, separation occurs at point D

when α ¼ �αf and hence the work required to break the contact Ws is given by the

area under the curve for 0 > α > �αf. Hence

Ws ¼ 7:09
Γ5R*4

E∗2

� �1=3

ð5:15Þ

Neglecting energy losses due to elastic wave propagation we may write

1

2
m∗V2

i �
1

2
m∗V2

r ¼ Ws ð5:16Þ

If the rebound velocity Vr ¼ 0 then the impact velocity Vi ¼ Vs, the critical

velocity below which sticking occurs and from Eqs. (5.15) and (5.16) we obtain the

sticking criterion

Vs ¼ 14:18

m∗

� �1=2 Γ5R*4

E*2

� �1=6

ð5:17Þ

For a sphere impacting a flat surface, R* ¼ R and m* ¼ m leading to

Vs ¼ 1:84
Γ=Rð Þ5
ρ3E∗2

" #1=6
ð5:18Þ

If Vi > Vs, then bounce occurs and we may rewrite Eq. (5.16) as

1� Vr

Vi

� �2

¼ Vs

Vi

� �2

ð5:19Þ

from which the coefficient of restitution is defined by

en ¼ 1� Vs

Vi

� �2
" #1=2

ð5:20Þ

For Vi > Vs, the coefficient of restitution increases at a decreasing rate and, as

shown by Thornton and Ning (1998), when the impact velocity is ten times higher

than the critical sticking velocity the coefficient of restitution is 0.995.

For adhesive, elastic-plastic spheres, Thornton and Ning (1998) assumed that the

work dissipated due to plastic deformation and the work dissipated due to adhesive

rupture are additive, i.e.
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1� e2n
� � ¼ 1� e2p

� �
þ 1� e2a
� � ð5:21Þ

where ep is the coefficient of restitution due to plastic deformation given by

Eq. (5.11) and ea is the coefficient of restitution due to adhesive rupture given by

Eq. (5.20). This leads to the following equations.

en ¼ 0 for Vi � Vs ð5:22aÞ

en ¼ 1� Vs

Vi

� �2
" #1=2

for Vs � Vi � Vy ð5:22bÞ

and for Vi � Vy the coefficient of restitution can be obtained from

e2n ¼
6
ffiffiffi
3

p

5

� �
1� 1

6

Vy

Vi

� �2
" # Vy

Vi

� �
Vy

Vi

� �
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6
5
� 1

5

Vy

Vi

� �2r
2
664

3
775
1=2

� Vs

Vi

� �2

ð5:22cÞ

The solution to the above equations is illustrated in Fig. 5.1 by plotting the

coefficient of restitution against the normalised velocity (Vi/Vy) for different ratios

of (Vs/Vy).
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Fig. 5.1 Dependency of the coefficient of restitution on the yield velocity and the critical sticking

velocity for adhesive elastic-plastic interactions
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5.2 Oblique Impact

In particle system simulations normal impact is a rare event except when particles

collide with wall boundaries. If two spheres collide then only if their velocities are

such that the centres of both spheres would arrive at exactly the same point in space

at exactly the same time will the collision be a normal impact. For simplicity we

focus on oblique impacts of a sphere with a planar target wall.

The problem is illustrated diagrammatically in Fig. 5.2. The sphere approaches

the wall with an initial translational velocity Vi at an impact angle θi. After

interaction with the wall, the sphere rebounds at an angle θr with a rebound

translational velocity Vr and a rebound angular velocity ωr. Note that Vi and Vr

are the velocities of the sphere centre. The corresponding tangential components of

the surface velocities at the contact are denoted by vti and vtr that are related to the

translational velocities by

vti ¼ Vti þ Rωi and vtr ¼ Vtr þ Rωr ð5:23Þ

Note that, in the figure, Z and X indicate the positive axes and that anti-clockwise

rotation is positive. Also, the sphere approaches the wall without any rotation, there

is no gravity field, and the wall is considered to be massive in comparison with the

sphere. The effect of initial rotation will be discussed later in the chapter.

Results of simulations of an elastic sphere impacting an elastic wall at different

impact angles are shown in Figs. 5.3, 5.4 and 5.5. The contact force model used is

Fig. 5.2 Diagram of the

oblique impact of a sphere

with a plane surface

5.2 Oblique Impact 77



described in Sect. 3.1, i.e. Hertz (normal), Mindlin and Deresiewicz (tangential).

The sphere and the wall had the same elastic properties and the coefficient of

interface friction μ¼ 0.1. For all impact angles the impact speed was 5.0 m/s.

Figure 5.3 shows the time evolution of the tangential force for impact angles in

the range 5–45�. For impact angles �30� the tangential force never reverses

direction because in this range the contact is sliding, Ft ¼ μFn, throughout the

impact duration. Figure 5.4 shows the corresponding tangential force-displacement

curves from which it can be seen that for very small impact angles, e.g. 5� and 10�,
the displacement is negative at the end of the impact.

In Fig. 5.5 the tangential force is plotted against the normal force. When the

impact angle is 5�, sliding does not occur (Ft < μFn) until the very end of the

impact. This behaviour applies if tanθi � μ/κ. For θ ¼ 10� and 15�, sliding occurs

from the start of the impact and continues until the decelerating tangential transla-

tional motion of the sphere and the accelerating particle rotation induced by the

tangential force combine to reduce the tangential force increment to ΔFt < μΔFn.

At this point, in the context of the theory of Mindlin and Deresiewicz (1953), Sect.

3.1.2, a stick region starts to grow from the centre of the contact area. Subsequently,

as the resultant force rotates, the tangential force reduces, reverses in direction and

finally, towards the end of the impact, sliding reoccurs. For θ ¼ 20� and 25�, the
initial sliding condition continues into the restitution stage, when the normal force

is reducing, before the |ΔFt| < μΔFn condition occurs. This is then followed by

rotation of the resultant force and finally sliding occurs towards the end of the

impact. For θ � 30�, the sliding condition, Ft ¼ μFn, applies throughout the impact

with no reversal of the tangential force direction.
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Of primary importance in particle collisions is to be able to define the rebound

kinematics. At the end of the impact, we need to know the direction and spin of the

rebounding sphere because this will affect the next collision. In other words, we

need to predict the complete rebound kinematics.

The simplest theoretical approach to the oblique impact of a sphere with a target

wall is that of rigid dynamics (Goldsmith 1960; Brach 1991; Stronge 2000).

However, the approach is only valid if the impact angle is sufficiently large that

sliding occurs throughout the impact duration. At smaller impact angles, the theory

predicts that the tangential surface velocity is zero at the end of the impact event.

That this is not the case was demonstrated by Maw et al. (1976, 1981) who showed

that the tangential surface velocity reverses its direction due to the tangential elastic

compliance. Nevertheless, rigid body dynamics does provide appropriate dimen-

sionless groups that characterise the kinematic behaviour of oblique impacts.

5.2.1 Rigid Body Dynamics

In rigid body dynamics, rebound velocities are related to the impact velocities by

empirical coefficients of restitution in the normal and tangential direction, defined

by

en ¼ �Vnr

Vni
and et ¼ Vtr

Vti
ð5:24Þ

where the subscripts n and t indicate the normal and tangential components

respectively. The correlation between the tangential and normal interactions during

an impact, is characterised by an impulse ratio defined as

f ¼ Pt

Pn
¼

ð
Ftdtð
Fndt

ð5:25Þ

where Pn and Pt are the normal and tangential impulses respectively. If sliding

occurs throughout the impact duration then the impulse ratio is equal to the

interface friction coefficient f ¼ μ, otherwise f < μ. According to Newton’s second
law, the normal and tangential impulses can be expressed in terms of the impact and

rebound velocities as

Pn ¼ m Vnr � Vnið Þ and Pt ¼ m Vtr � Vtið Þ ð5:26Þ

where m is the mass of the sphere. Combining Eqs. (5.24), (5.25) and (5.26) we

obtain
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et ¼ 1� f 1þ enð Þ
tan θi

ð5:27Þ

By analogy, we can also define a rotational ‘impulse’

Pω ¼ I ωr � ωið Þ ð5:28Þ

where I is the moment of inertia of the sphere and ωi and ωr are the initial and

rebound angular velocities of the sphere. According to the conservation of angular

momentum about the contact point

Pω ¼ RPt ð5:29Þ

where R is the radius of the sphere. From Eqs. (5.26), (5.28) and (5.29) we obtain

ωr � ωi ¼ �mR

I
Vti � Vtrð Þ ð5:30Þ

For a solid sphere, I ¼ 2mR2=5. Hence,

ωr � ωi ¼ � 5 Vti � Vtrð Þ
2R

¼ � 5Vti 1� etð Þ
2R

ð5:31Þ

or, using Eq. (5.27),

ωr � ωi ¼ � 5 f 1þ enð ÞVni

2R
ð5:32Þ

The tangential component of the rebound surface velocity at the contact patch vtr is
obtained from Eqs. (5.23) and (5.32)

vtr ¼ Vtr þ Rωi � 5

2
f 1þ enð ÞVni ð5:33Þ

Combining Eqs. (5.24), (5.27) and (5.33) we then obtain

vtr � vti ¼ �7

2
f 1þ enð ÞVni ð5:34Þ

and, finally, the rebound angle θr is obtained from

tan θr ¼ Vtr

Vnr
¼ �et

en
tan θi ð5:35Þ
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5.2.2 Dimensionless Groups

If sliding occurs throughout the impact duration then f ¼ μ and the following three

equations are obtained to define the complete rebound kinematics

vtr ¼ vti � 7

2
1þ enð ÞμVni ð5:36Þ

ωr ¼ ωi � 5 1þ enð Þ
2R

μVni ð5:37Þ

et ¼ Vtr

Vti
¼ 1� μ 1þ enð Þ

tan θi
ð5:38Þ

Rearranging Eqs. (5.36) and (5.37)

2vtr
1þ enð ÞμVni

¼ 2vti
1þ enð ÞμVni

� 7 ð5:39Þ

2R ωr � ωið Þ
1þ enð ÞμVni

¼ �5 ð5:40Þ

from which we identify three dimensionless groups, namely

2vti
1þ enð ÞμVni

,
2vtr

1þ enð ÞμVni
and

2R ωr � ωið Þ
1þ enð ÞμVni

ð5:41Þ

which, in the case of no initial rotational velocity, reduce to

2tan θi
1þ enð Þμ ,

2vtr
1þ enð ÞμVni

and
2Rωr

1þ enð ÞμVni
ð5:42Þ

Maw et al. (1976, 1981) suggested, for elastic impacts between similar bodies,

alternative dimensionless groups to normalise the data that can be written as

κtanθi
μ

and
κvtr
μVni

ð5:43Þ

However, it was demonstrated by Thornton (2009) that, for different values of κ, the
data was not normalised, even in the sliding regime.

5.2.3 Effect of Elasticity

The elastic moduli affect the magnitude of the contact forces and the contact

duration. The rebound kinematics, defined in terms of the above dimensionless

groups, are sensitive to the ratio of tangential to normal elastic stiffnesses, κ,
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because this parameter controls the ratio of the frequencies of the tangential and

normal force oscillations. For dissimilar materials κ depends on the elastic moduli

and the Poisson’s ratios of the two colliding bodies, see Eq. (4.16), but if the elastic
properties of the two bodies are the same then κ only depends on ν, see Eq. (4.17).

The rebound kinematics, expressed in terms of the dimensionless groups, are

shown in Figs. 5.6 and 5.7 and the tangential coefficient of restitution et is shown in
Fig. 5.8, for different values of κ. The frequency of the tangential force oscillation is
exactly twice that of the normal force oscillation when κ¼ 1. When κ¼ 2/7, the

frequencies of the tangential and normal force oscillations are equal, which is

physically unrealistic since this means that the obliquity of the resultant contact

force is constant throughout the collision withFt ¼ 2=7tan θiFn or, if sliding occurs

throughout the impact, Ft ¼ μFn. As pointed out in Sect. 4.2, see Eq. (4.17),

physically realistic values of κ are limited to the range 1� κ� 2/3 since Poisson’s
ratio is limited to the range 0� ν� 0.5. If sliding occurs throughout the impact then

the data points, in Fig. 5.6, lie on the inclined straight line defined by Eq. (5.39) and,

in Fig. 5.7, lie on the horizontal line defined by Eq. (5.40). The figures show that

sliding throughout the impact depends on the value of κ. Rigid body dynamics

predicts that sliding occurs throughout the impact if tanθi � 7μ. However, for
elastic impacts, sliding occurs throughout the impact duration at smaller impact

angles when the following condition is satisfied.

tan θi
μ

� 7 � 1=κ ð5:44Þ
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If sliding does not occur throughout the impact then, for no initial spin, the

tangential coefficient of restitution is defined by

et ¼ 5

7
þ 2vtr
7Vti

ð5:45Þ

In this case, if κ¼ 2/7 then et¼ 3/7 and rigid body dynamics (vtr ¼ 0) predicts et ¼
5/7. It is also worth noting that, since all the data sets in Fig. 5.6 pass through the

origin, the tangential coefficient of restitution is indeterminate when the impact

angle is zero.

Comparisons of the rebound kinematics obtained using linear and non-linear

spring models (no dashpots) with the results obtained using the Hertz, Mindlin and

Dereseiwicz model are provided by Thornton et al. (2011).

5.2.4 Effect of Plastic Dissipation

In this section we examine the effect of plastic dissipation on the rebound charac-

teristics using the contact force models of Thornton (1997) for the normal interac-

tion and Mindlin and Deresiewicz (1953) for the tangential interaction, see Sect. 3.2

for details. For comparisons with the results of other contact force models the reader

is directed to Thornton et al. (2013).
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Consider the oblique impact of a sphere with a target wall, as shown in Fig. 5.2.

For the results presented in this section, the physical properties of the sphere are

radius R¼ 25 mm, density ρ¼ 2650 kg/m3 and hence a mass m¼ 0.1734 kg. The

elastic properties of both the sphere and the wall are E¼ 70 GPa, ν¼ 0.3, therefore

κ¼ 0.8235, and the interface friction μ¼ 0.1. A constant normal component of the

impact speed Vni¼ 5 m/s, and hence a constant normal coefficient of restitution, is

used for all impact angles. For a selected value of en the yield velocity Vy is obtained

from Eq. (5.11) and substituted into Eq. (5.10) to obtain the required value for the

limiting contact pressure py.
In Fig. 5.9, the tangential force evolution for different impact angles is shown for

values of the normal coefficient of restitution en¼ 1.0, 0.75, 0.5 and 0.25. It can be

seen that the frequencies of the tangential force oscillations change when the

normal coefficient of restitution is changed. The figure shows that, for en¼ 0.5,

there is a second reversal of the tangential force when the impact angle is 5�. For
en¼ 0.25, this is also true when the impact angle is 10� and when the impact angle is

5� there is a third reversal. Multiple reversals of tangential force have been

observed experimentally by Cross (2002) albeit for a hollow basketball impacting

at an angle of 24�. Becker et al. (2008) showed that, using linear springs, by

arbitrarily increasing the tangential to normal stiffness ratio to values of κ �1

they obtained multiple reversals of the relative tangential surface displacement, and

hence the tangential force, for small impact angles. With the Thornton, Mindlin and

Deresiewicz model, ratios of tangential to normal stiffness greater than unity arise

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0
e t

κ = 1
κ = 2/3
κ = 1/2
κ = 2/7

2tanθi/μ(1+en)

Fig. 5.8 Effect of κ on the tangential coefficient of restitution

5.2 Oblique Impact 85



due to the decrease in normal loading stiffness and the increase in tangential loading

stiffness when en is decreased.
Figure 5.9 also shows that the value of en affects the range of impact angles for

which sliding occurs throughout the impact duration and the range of small impact

angles for which sliding does not occur until towards the end of the impact. Sliding

occurs throughout the impact if the following inequality is true

tan θi � μ 1þ enð Þ
2

7 � en
κ

� �
ð5:46Þ

and sliding only occurs at the end of the impact if

tan θi � μ 1þ enð Þen
2κ

ð5:47Þ

The effect of the plastic dissipation on the rebound kinematics is shown in

Figs. 5.10 and 5.11. Figure 5.10 shows that the range of small impact angles for

which the rebound tangential surface velocity is positive increases as the normal

coefficient of restitution reduces to en¼ 0.5 and that there is a reduction in the

maximum negative tangential surface velocity. When en¼ 0.25, additional fluctu-

ations appear and as en ! 0, vtr ! 0, coinciding with the rigid body dynamics
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solution for impacts during which sliding does not occur throughout the impact.

The fluctuations in the rebound tangential surface velocity are due to the way in

which the normal coefficient of restitution changes the frequencies of the tangential

force oscillations, as shown in Fig. 5.9. It was demonstrated by Thornton

et al. (2013) that the sign and magnitude of the rebound tangential surface velocity

corresponds to the slope of the tangential force-time curve that would have occurred

at the end of the impact, if sliding had not occurred.

Because of Eq. (5.45), for impacts during which sliding does not occur through-

out the impact, the fluctuations in the rebound tangential surface velocity shown in

Fig. 5.10 are reflected in oscillations in the tangential coefficient of restitution, as

shown in Fig. 5.11.

5.2.5 Effect of Initial Spin

In this chapter, for simplicity, we have only considered impacts with no initial spin.

This is quite unrealistic since, even in this case, the spin imparted during the

collision will become the initial spin for the next collision. In the previous sub-

sections the normalised rebound kinematics have been plotted against the

normalised impact angle. However, the contact force reactions are functions of

the relative surface velocities.

If there is no initial spin then the tangential surface velocity is vx ¼ Vx and the

impact angle is defined by tanθ ¼ Vx=Vy, as shown in Fig. 5.12a. If there is an

initial in-plane spin the tangential surface velocity is vx ¼ Vx þ Rωz where ωz is the

rotational velocity about the z axis, as shown in Fig. 5.12b.

The contact reaction thinks that the sphere is coming in at a different angle

defined by

tan θ
0 ¼ vx

Vy
¼ Vx þ Rωz

Vy
ð5:48Þ

where θ
0
may be referred to as the ‘effective impact angle’, see Thornton (2009). In

this chapter the rebound kinematics have been presented in terms of the dimension-

less groups given by Eq. (5.42). If there is an initial in-plane spin then exactly the

same curves are obtained by using the dimensionless groups defined by Eq. (5.41).

Fig. 5.12 Impact with a

horizontal wall (a) no initial
spin (b) with initial spin
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If there is an additional out-of-plane initial spin component about the x-direction

then the resultant direction of the tangential surface velocity v is inclined to the

x-direction by an angle β as shown in Fig. 5.13a. If we consider that the tangential

surface velocity components shown in Fig. 5.13a are the initial values at the start of

the impact then, since vz ¼ �Rωx, vx ¼ Vx þ Rωz and vz=vx ¼ tanβ, the ratio of the
components of the tangential force T at the end of the first time step isTz=Tx ¼ tanβ
since T ¼ ΔT ¼ ktvΔt.

Fig. 5.13 Tangential surface velocities for out-of plane spin
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The tangential force will then decelerate both the translational and rotational

velocities of the sphere and will create new velocity increments given by

ΔVz ¼ Tz=mð ÞΔt and ΔVx ¼ Tx=mð ÞΔt ð5:49Þ
Δωz ¼ 5Tz=2mð ÞΔt and Δωx ¼ 5Tx=2mð ÞΔt ð5:50Þ

from which ΔVz=ΔVx ¼ ΔRωx=ΔRz ¼ Tz=Tx and hence Δvz=Δvx ¼ Tz=Tx ¼ tanβ.
The incremental velocity components are shown in Fig. 5.13b. The resultant

velocity increments ΔV and ΔRω are relocated in Fig. 5.13c to show the new

velocity vectors, in red, which indicate that during the impact the trajectory of the

sphere centre changes direction and the direction of the plane of spin rotates. This is

also evident in Fig. 5.13d which shows the old and new surface velocity compo-

nents as dashed arrows and solid arrows respectively. However, the plane of spin

remains orthogonal to the wall. It is important to note that the direction of the total

surface velocity and the direction of the tangential force do not change during the

impact. Consequently, if the initial tangential surface velocity v shown in Fig. 5.13a
is used to define the ‘effective impact angle’ then, exactly the same normalised

rebound surface velocities will be obtained. Predictions of the change in angular

velocity and tangential coefficient of restitution are more complex and have not

been fully examined.

The general impact case is when the initial plane of spin is not orthogonal to the

wall. In this case, there is a component of rotation about the contact normal

direction, ωy, and this will create an additional reaction, i.e. a contact moment, as

discussed in Sect. 3.1.3.

5.2.6 Effect of Surface Energy

There has been very little research on oblique impacts of adhesive particles. For

non-adhesive elastic spheres, Thornton and Yin (1991) showed that for very small

impact angles sliding did not occur until the end of the impact. For adhesive elastic

spheres they found that, for the same range of small impact angles, the sphere

rebounded back along the initial impact direction without any imparted spin, i.e. the

tangential coefficient of restitution et¼ �1. For larger impact angles the rebound

kinematics were very similar but not exactly the same as obtained for non-adhesive

elastic spheres.
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Chapter 6

Agglomerate Impacts

Abstract The storage, transport, handling and processing of particulate materials

constitutes a significant part of the operations in most chemical, pharmaceutical and

allied industries. These particulate materials are frequently in the form of powders

which are, themselves, agglomerations of much smaller sized primary particles. A

common problem inherent in the handling of powders is the degradation resulting

from attrition and/or fragmentation of the agglomerates as they collide with each other

and with the process equipment. In this chapter we focus on agglomerate breakage. It

is shown that, for spherical agglomerates, dense systems fracture or shatter depending

on the impact velocity. In contrast, loose systems disintegrate to a degree that depends

on the impact velocity. Non-spherical agglomerates are also considered and, finally,

the following question is addressed – ‘How do agglomerates fracture?’.
Due to the short duration of an impact event, information from physical exper-

iments is normally restricted to post-impact examinations of the fragments and

debris produced. Explanations tend to rely on inferences that are based on solid

mechanics concepts of brittle or semi-brittle fracture. However, it is not clear to

what extent such solid mechanics ideas are applicable to particle systems such as

agglomerates. Numerical simulations of systems of discrete particles are not

restricted by small time or length scales and the micro-examination of short

duration events such as fragmentation is ideally suited to DEM modelling.

The storage, transport, handling and processing of particulate materials constitutes a

significant part of the operations in most chemical, pharmaceutical and allied industries.

These particulatematerials are frequently in the form of powderswhich are, themselves,

agglomerations ofmuch smaller sized primary particles.A commonproblem inherent in

the handling of powders is the degradation resulting from attrition and/or fragmentation

of the agglomerates as they collide with each other and with the process equipment.

Due to the short duration of an impact event, information from physical exper-

iments is normally restricted to post-impact examinations of the fragments and

debris produced. Explanations tend to rely on inferences that are based on solid

mechanics concepts of brittle or semi-brittle fracture. However, it is not clear to

what extent such solid mechanics ideas are applicable to particle systems such as

agglomerates. Numerical simulations of systems of discrete particles are not

restricted by small time or length scales and the micro-examination of short

duration events such as fragmentation is ideally suited to DEM modelling.
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In all the simulations reported in this chapter the normal particle-particle inter-

actions were modelled by JKR theory, see Sect. 3.3.1, and the tangential interaction

model has been described in Sect. 3.3.2.

6.1 Agglomerate-Wall Impacts

6.1.1 2D Simulations

The first simulations of agglomerate impact fracture were performed by Yin (1992)

and reported by Thornton et al. (1996). Due to computing limitations at the time, a

2D monodisperse, circular agglomerate consisting of 1000 primary particles was

used. The particles were attributed with surface energy and the particle interactions

were modelled by the adhesive-elastic contact force model described in Sect. 3.3.

The primary particles were initially randomly generated as a granular gas within a

prescribed circular region and a centripetal gravity field was then imposed to bring

the particles together. When the particles were satisfactorily packed together, surface

energy was introduced and increased incrementally to the desired value. The cen-

tripetal gravity field was then slowly reduced and readjusted to provide a vertical

gravity field with g ¼ �9.81 m/s2. The preparation stage was somewhat tedious and

required continuous monitoring in order to ensure a satisfactory dense agglomerate.

All particle velocities were then zeroed and the agglomerate was allowed to equili-

brate. A wall was then created in a suitable location and then, by specifying a wall

velocity for an appropriate number of timesteps, the wall was brought into a position

within one timestep of contact with the agglomerate and its velocity was set to zero.

The radius and density of the primary particles was 100 μm and 2650 kg/m3

respectively. The elastic properties of both the primary particles and the wall were

E¼ 70 GPa and ν¼ 0.3. The coefficient of interface friction was set at 0.35 and the

surface energy was 3.0 J/m2. The initial state of the agglomerate before impact is

shown in Fig. 6.1.

The initial particle configuration, Fig. 6.1a, would appear to have a regular

structure. The actual microstructure is more clearly illustrated by the equivalent

space lattice, Fig. 6.1b, which is formed by connecting the centres of particles in

contact by solid lines. The figure confirms the overall crystalline structure and

highlights the structural defects. The space lattice is replotted to show the contacts

subjected to compressive forces in Fig. 6.1c and the contacts at which the force is

tensile in Fig. 6.1d. The compressive forces are of similar magnitude as the tensile

forces and it is clear that both distributions are random.

To simulate the normal impact of the agglomerate with the wall, the desired

impact velocity was then specified and all primary particles were attributed this

initial value. At relatively high impact velocities, the interaction with the wall

results in a compressive wave which propagates from the point of contact through

the agglomerate. Behind the wavefront contacts are broken, contact sliding occurs

and all but a few contacts are in compression. From an examination of the locations

of sliding contacts and contacts that have been broken, the agglomerate appears to
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deform plastically rather than exhibiting fracture. This plastic deformation process

is illustrated in Fig. 6.2.

For an impact velocity of 1.0 m/s, Fig. 6.2 shows the space lattice after 6.5 μs
when the wall force was still increasing. Figures 6.2a, b show the distributions of

contacts carrying compressive and tensile forces respectively, which can be com-

pared with Figs. 6.1c, d to reveal the changes that have occurred. As described

above, behind the wavefront most of the contacts are in compression and the

relatively few contacts carrying tensile forces are orientated in one of two direc-

tions. Figure 6.2 also shows the distributions of all surviving contacts at that time

and the ones that have been broken.

The plastic deformation zone spreads throughout the agglomerate at high impact

velocities and this results in a depleted structure with a coordination number of four.

Then, as the tale-end of the compression wave travels through the agglomerate,

more contacts are broken due to tensile separation. This results in shattering of the

previously created plastic deformation zone. Once the contact force with the wall

has reduced to zero the maximum number of contacts has been broken and the

initial damage caused by the impact is complete.

If the impact velocity is reduced by an order of magnitude to 0.1 m/s then the

behaviour is very different from that described above. Initially, a compression wave

Fig. 6.1 Monodisperse 2D agglomerate – initial state (a) particle configuration (b) equivalent
space lattice (c) compressive forces (d) tensile forces
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propagates from the wall producing sliding and contact breaking associated with

plastic deformation. However, since the force generated at the wall is much smaller

the effect is less extensive. Due to attenuation of the stress wave, the plastic

deformation zone is restricted to a small localised region near the point of impact.

This is followed by the initiation of cracks at the perimeter of the plastic deforma-

tion zone which propagate outwards towards the agglomerate surface. By the time

that the force on the wall has reduced to zero, the initial damage is complete and the

crack pattern is established. There is then a relatively long period of crack opening

inwards from the agglomerate surface.

At sufficiently low impact velocities no crack formation occurs and the agglom-

erate rebounds. Damage, however, may be produced as a result of localised plastic

deformation adjacent to the wall contact. Also, due to the centre of mass of the

agglomerate not being exactly vertically above the point of impact with the wall, a

rotation was imparted to the agglomerate as it rebounded from the wall. Therefore,

at sufficiently low impact velocities, the agglomerate behaved similar to that of a

single, almost elastic, sphere or disc.

Fig. 6.2 Space lattice after 6.5 μs (max. wall force occurred at 10 μs) for V¼ 1.0 m/s (a)
compressive forces (b) tensile forces (c) existing contacts (d) deleted contacts
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The agglomerate damage pattern (involving plastic deformation, shattering or

crack initiation and propagation) is completed at the time when the wall force

becomes zero. This is followed by a long period during which the established cracks

open and would be visible to the conventional observer. The initial damage pattern

defines the damage caused by the impact with the wall and is best illustrated by the

equivalent space lattice. Figure 6.3 shows the equivalent space lattice for different

impact velocities after an elapsed time of 100 μs. For an impact velocity of 1.0 m/s,

most of the contacts are broken as a result of the extensive plastic deformation zone

and the agglomerate, as a consequence, is shattered. The extent of the plastic

deformation zone reduces with decreasing impact velocity. At an impact velocity

of 0.1 m/s, the plastic deformation zone is contained to a small region near to the

point of impact. From the perimeter of the plastic zone, cracks propagate to the

surface of the agglomerate leading to a semi-brittle fracture mechanism. It can be

seen in the figure that, for semi-brittle behaviour, the extent of fracture damage is

very sensitive to small changes in impact velocity. At an impact velocity of 0.04 m/

s, no cracks are observed but a small amount of internal damage has occurred due to

localised plastic deformation.

In Fig. 6.3 the elapsed time when the wall force reduced to zero was 53 μs for an
impact velocity of 0.1 m/s and 17 μs when the impact velocity was 1.0 m/s. For both

cases the particle configuration is shown in Fig. 6.4 at a time of 1.3 ms. The figure

clearly illustrates the difference between semi-brittle fracture and failure due to

shattering.

Of practical interest is the size distribution of the daughter fragments resulting

from a collision. It is conventional to show the cumulative percentage mass of

Fig. 6.3 Damage patterns
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material undersize plotted against size. However, in comparison with the 3D

situation, large 2D arrays are ‘small’ in terms of their mass. As a consequence,

the particle size distribution curves obtained from the simulations, when

represented on a double-logarithmic plot, do not exhibit the bilinear characteristics

which distinguish between the ‘residue’ of the larger fragments and the ‘comple-

ment’ made up of the smaller debris, as found experimentally by Arbiter

et al. (1969) for impact velocities that produced semi-brittle fracture. We may,

however, examine the extremes of the distribution, namely the percentage of

singlets produced and the size of the largest fragment.

If we normalise the number of singlets produced, by dividing by the total number

of constituent particles in the agglomerate prior to impact, and define the specific

energy input as the initial kinetic energy per unit mass then, as shown in Fig. 6.5a, it

is found that the percentage of singlets is a power law function of the specific

Fig. 6.4 Particle configurations for (a) V¼ 0.1 m/s (b) V¼ 1.0 m/s

Fig. 6.5 Effect of specific energy input on (a) the number of singlets produced and (b) the size of
the largest surviving fragment
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energy with an exponent of 5/8. Deviations from this relationship are only observed

at very high velocities that produce more than 90 % of singlets and for an impact

velocity of 0.06 m/s, which produced one singlet only. The simulation data satisfies

the above relationship over a range of impact velocities that include both semi-

brittle fracture and shattering.

In order to examine the maximum cluster size (largest fragment), two definitions

are used. The first is simply to count the number of primary particles in a fragmen-

tation cluster and divide by the number of primary particles in the original agglom-

erate. Such a cluster may include a string of particles that remains attached to the

main body of the cluster by a single bond and, in terms of survival, this definition is

optimistic. Data obtained using this definition is represented in Fig. 6.5b by open

circles.

An alternative is to consider the rigidity of such clusters. If three spheres are

connected by bonds to form a triangular arrangement then they form a rigid

structure that cannot be deformed, ignoring any elastic deformation, without break-

ing a bond. Therefore an alternative definition is to define a rigid cluster by the

number of continuously connected triangles formed by the particles as represented

by the equivalent space lattice. Only triangles connected by a common side are

accepted. If two triangles are connected at their common apex then they are

considered to belong to different clusters. The size of the cluster so defined is

normalised by dividing by the number of the underlying rigid cluster of the original

agglomerate. In Fig. 6.5b the solid circles represent data obtained using this

alternative definition of cluster size.

Figure 6.5b illustrates the relationship between the normalised maximum cluster

size and the specific energy. This representation has been used in asteroid physics

by Takagi et al. (1984) who examined the impact fragmentation of centimetre-sized

rock particles and obtained a power law relationship similar to that in Fig. 6.5. It can

be seen from the figure that the results are not significantly affected by the size

definition except at very high velocities when the maximum cluster consists of less

than ten primary particles, which are not necessarily compact. Therefore, only the

results based on the size of rigid clusters, i.e. the solid circles, will be considered

further. The data is best described by two straight lines that indicate that the

maximum cluster size is inversely proportional to the specific energy. As the

maximum cluster size approaches 10 % of the size of the initial agglomerate

there is a transition from one line to the other. This transition regime corresponds

to a range of impact velocities between 0.15 and 0.40 m/s and an examination of

Fig. 6.3 confirms that the transition between the semi-brittle and shattering regimes

occurs over this narrow velocity range.

6.1.2 3D Simulations

In this subsection agglomerate breakage is illustrated by computer generated

images of the configuration of the primary particles, in which the particles are
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colour coded to indicate the size of the fragment to which they belong. Fracture

planes are more clearly identified by representing an agglomerate by the equivalent

space lattice formed by connecting the centres of particles in contact by solid lines.

However, in order to visualise the evolution of bond breakage leading to fracture, it

is more appropriate to use solid lines to connect the centres of particles that were

initially in contact but which have broken contact during the impact.

6.1.2.1 Impact of a Crystalline Agglomerate

Kafui and Thornton (2000) reported the results of 3D simulations of a crystalline

(face-centred cubic) agglomerate impacting normal to a horizontal elastic target

wall. The agglomerate consisted of 7912 spheres of diameter dp¼ 20 μm and had an

overall diameter da¼ 0.461 mm with an average coordination number Z¼ 11.1

after preparation; Z< 12 due to the finite size of the agglomerate. The elastic

properties of both the primary particles and the wall were E¼ 70 GPa and

ν¼ 0.35. The solid density of the primary particles ρ¼ 2650 kg/m2 and the inter-

face friction coefficient μ¼ 0.3. Five values of interface energy Γ¼ 0.2, 0.4, 1.0,

2.0 and 4.0 J/m2 were used and impact was carried out at velocities in the range

0.05–20 m/s.

Having a face-centred cubic microstructure, impact fracture depends on the

microstructural orientation of the packing. For the results shown in this subsection

the orientation of the face-centred cubic packing was such that the square-packed

planes were vertical.

The evolution of bond breakage during the impact is illustrated in Fig. 6.6 by the

space lattice showing only the broken bonds. Two orthogonal views (an elevation

and a view from above) are shown for each elapsed time. During loading, bonds are

broken along four vertical planes that form a diamond shaped pattern when viewed

from above. The four planes coincide with the perimeter of the agglomerate-wall

interface and are the consequence of relative shear motion between adjacent load-

transmitting and load-free dense (triangular) packed vertical planes. The relative

shear motion results in the breaking of one set of contacts between the loaded and

unloaded dense-packed planes. The bond breaking propagates upwards from the

wall until it reaches the top of the agglomerate when the kinetic energy attains its

minimum value at t¼ 1.065 μs. During unloading, as the stored elastic energy is

converted into kinetic energy, a second set of contacts are broken, propagating

downwards from the top of the agglomerate. With further increase in kinetic

energy, some bonds are also broken in the third set of contacts leading to fracture

along some of the shear-induced weakened planes just prior to the end of the

impact. For an impact velocity of 2.0 m/s with interface energy of 4.0 J/m2,

Fig. 6.7 shows the space lattice after the end of the impact.

The effect of impact velocity on the breakage pattern obtained is shown in

Fig. 6.8 for agglomerates with (a) Γ¼ 4.0 J/m2 and (b) Γ¼ 0.4 J/m2. Figure 6.8a
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clearly shows that at an impact velocity of 5.0 m/s all four of the shear-induced

weakened planes are fractured plus two short fracture planes that are parallel to the

square–packed planes. At lower impact velocities the fracture pattern is a subset of

that obtained for V¼ 5.0 m/s. If the impact velocity is increased above 5.0 m/s no

extra fracture planes are created but the residual fragments are weakened due to

internal bond breakage and this leads to shattering at high velocities. For the weak

agglomerate shown in Fig. 6.8b, varying the impact velocity produced similar

results but at much lower impact velocities. Figure 6.9 shows that similar fracture

patterns are obtained for Γ¼ 2.0 J/m2. Also shown in the figure are images of the

corresponding particle configurations, as viewed from below, which illustrate the

Fig. 6.6 Evolution of bond breakage for an impact velocity V¼ 2.0 m/s and interface energy

Γ¼ 4.0 J/m2
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increasing amount of fine debris produced around the impact area when the impact

velocity is increased. For a velocity of 3.0 m/s, the largest surviving fragment

consisted of only 312 primary particles.

To quantify the internal damage, the proportion of bonds broken during an

impact can be defined as the damage ratio D, which is plotted against impact

Fig. 6.8 Equivalent space lattices viewed from below illustrating the breakage patterns for (a) a
strong and (b) a weak agglomerate

Fig. 6.7 Space lattice after the end of impact
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velocity in Fig. 6.10 for different values of interface energy. All the data sets can be

approximated by the straight lines defined by

D ¼ αln
V

V0

� �
ð6:1Þ

where V0 is the threshold velocity below which no significant damage occurs.

Deviations from Eq. (6.1) occur at the limits D ! 0 and D ! 1 because (a) there

will be a range of low velocities at which the agglomerate rebounds but suffers a

small amount of internal damage and (b) even at very high velocities not all

contacts will be broken since it is possible that some doublets and triplets will

survive.

The data sets shown in Fig. 6.10 satisfy Eq. (6.1) with α¼ 0.35 for the range 0.2

< D < 0.8. The threshold velocity increases with interface energy, as shown in

Fig. 6.11, which can be expressed by the following power law.

V0 ¼ 0:17Γ3=2 ð6:2Þ

This implies that the damage ratio should scale with ln(V/Γ3/2) and this is

confirmed reasonably well in Fig. 6.12 except for the results of the weakest

agglomerate.

Fig. 6.9 Configuration of primary particles (top) and equivalent space lattice (bottom) as viewed
from below, for a strong agglomerate (Γ¼ 2.0 J/m2)
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The size distributions of the fragments produced by impact breakage are illus-

trated in Fig. 6.13 for (a) a weak agglomerate and (b) a strong agglomerate. Using a

double-logarithmic plot of the cumulative mass fraction undersize f against

normalised size m/M where m is the mass of a cluster and M is the mass of the

original agglomerate. The figure shows that the fragment size distributions exhibit

Fig. 6.11 Relationship between threshold velocity V0 and interface energy

Fig. 6.10 Effect of impact velocity on the damage ratio D
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bilinear characteristics, which distinguish the residue of large fragments from the

complement of small fragments (debris). Similar results were obtained from free-

fall impact tests on sand-cement and limestone-cement spheres by Arbiter

et al. (1969) for impact velocities that produced semi-brittle fracture.

Considering the debris (complement), Fig. 6.13 shows that the mass fraction

undersize increases with impact velocity. Arbiter et al. (1969) demonstrated that the

Fig. 6.12 Relationship between damage ratio, impact velocity and interface energy

Fig. 6.13 Effect of impact velocity on the fragment size distribution of (a) weak and (b) strong
agglomerates
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size distribution of the debris (complement) correlates with the specific impact

energy according to the expression

f ¼ λV2 m

M

� �n
ð6:3Þ

As indicated in Fig. 6.13, both the exponent n and the prefactor λ depend on the

interface energy Γ. The two relationships are provided in Fig. 6.14 and may be

approximated by

n ¼ 0:25Γ�1=5 ð6:4Þ

and

λ ¼ Γ�2 ð6:5Þ

Using Eqs. (6.4) and (6.5), the normalised fragment size distribution of the

debris is plotted in Fig. 6.15. It can be seen that all the data collapse reasonably

well onto a single curve. In general, however, λ is expected to depend also on other
properties such as solid fraction and coordination number which define the

microstructure.

The size of the largest surviving fragment mL is plotted against the ratio of

impact velocity to interface energy in Fig. 6.16 which shows that the data satisfies a

power law scaling given by

mL

M
¼ 0:15

V

Γ

� ��3=2

ð6:6Þ

Fig. 6.14 Effect of interface energy on the complement size distribution parameters
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Fig. 6.15 Normalised fragment size distribution of the debris (complement)

Fig. 6.16 Normalised mass of the largest fragment
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6.1.2.2 Impact of Polydisperse Agglomerates

To prepare polydisperse agglomerates, the primary particles are randomly gener-

ated as a granular gas within a defined region, spherical, cuboidal, cylindrical or any

other desired shape. A centripetal gravity field is then imposed to bring the particles

into contact. During this stage the interparticle friction is set to zero. The duration of

the imposed centripetal gravity field determines the solid fraction within the

agglomerate. When the desired solid fraction is reached, each particle is assigned

with the desired values of surface energy and interparticle friction. Having formed

an agglomerate with the requisite properties, the centripetal gravity field is slowly

reduced to zero to complete the preparation stage.

Thornton et al. (1999) reported simulations of a dense polydisperse agglomerate

consisting of 4000 primary particles of sizes in the range 60� 3 μm. The average

diameter of the agglomerate was 1.113 mm with a solid fraction of 0.653 and an

average coordination number of 4.879. Examples of the damage produced at the

end of the impacts for different impact velocities are shown in Fig. 6.17.

For an impact velocity of 0.1 m/s, the agglomerate rebounded from the target

wall and did not fracture. Only a small percentage of bonds were broken, these were

concentrated close to the impact zone and resulted in a small amount of fine debris.

The total number of debris particles was 36, which corresponds to slightly less than

1 % of the initial agglomerate mass, and the total number of broken bonds was

223 compared to the initial 9,758 bonds. When impacted at a velocity of 0.2 m/s, the

agglomerate fractured into three (two large and one medium-sized fragments). At a

velocity of 0.3 m/s, there were six surviving fragments at the end of the test and

much more bond breakage and debris produced. The surviving fragments were not

just smaller but also weaker, due to more internal damage. The agglomerate

Fig. 6.17 Examples of agglomerate damage
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shattered when impacted at a velocity of 0.9 m/s. The high impact velocity at first

tended to break-up the agglomerate into many medium-sized fragments as illus-

trated by the space lattice after 9 μs when the platen force had started to reduce. The
space lattice at the end of the test (t¼ 512 μs) is also shown, indicating the extensive
bond breakage and flattening of the agglomerate. The largest fragment at the end of

the test contained only 153 particles.

Figure 6.18 provides a comparison of fracture patterns obtained for three impact

velocities. It is apparent, from Figs. 6.18a, b that a small variation in impact velocity

resulted in significantly different fracture patterns. However, it would appear from

the figure that the two fracture patterns are essentially subsets of the fracture pattern

created by the higher impact velocity of 0.3 m/s, as shown in Fig. 6.18c. In the case

of crystalline agglomerates it was clear that during the loading stage there is a shear

induced weakening of certain planes and then, during unloading, a number of these

pre-conditioned planes fractured and the extent of the fracture pattern depended on

the magnitude of the impact velocity. The same might be expected in the case of

polydisperse agglomerates but it is more difficult to verify this hypothesis.

From agglomerate impact simulations, Mishra and Thornton (2001) found that

loose agglomerates never fractured. It is therefore necessary to redefine the termi-

nology used to describe the observed breakage phenomena. The term “fracture” is

reserved for breakage patterns in which clear fracture planes (cracks) are visible.

This mode produces two or more large daughter fragments and is normally accom-

panied by some fines production adjacent to the impact site. If for example, due to

the high impact velocity used, the large daughter fragments are themselves broken

into small clusters of primary particles then the term “shattering” is used. An

alternative mode of breakage is one in which there is no evidence of any attempted

fracture and the end products consist of one cluster centred in the upper part of the

agglomerate with the remainder of the agglomerate reduced to very small clusters

of primary particles and singlets. This type of breakage is termed “disintegration”.

If the impact velocity is sufficiently high that disintegration extends throughout the

agglomerate and there is no ‘large’ surviving cluster then this mode is referred to as

Fig. 6.18 Space lattice views from above at the end of impact, showing existing contacts (grey)
and broken contacts (black)
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“total disintegration”. In this case, the size distribution of the fragments may be

similar to that produced by shattering but the distinction is the difference in kinetic

energy of the system at the end of the impact. When shattering occurs a significant

number of small daughter fragments are projected at relatively high speeds away

from the impact location. On the other hand, if total disintegration occurs the

agglomerate simply collapses into a heap on the target wall.

Mishra and Thornton (2001) found that for ‘compact’ agglomerates (as opposed

to fractal agglomerates) dense agglomerates always fracture and loose agglomer-

ates always disintegrate. This was found to be true irrespective of the strength of the

bonds between the primary particles which simply dictated the range of velocities

over which breakage would occur. It was also found that either fracture or disinte-

gration, or both, could occur for agglomerates with intermediate packing densities.

It was demonstrated that, in the intermediate case, the mode of failure could change

from disintegration to fracture by changing the location on the agglomerate surface

that is used as the impact site.

Moreno et al. (2003) reported DEM simulations of oblique impacts of spherical

agglomerates. They found that, for a constant impact speed, the number of bonds

broken and the amount of debris produced decreased as the impact angle became

more oblique. They demonstrated that this was due to the decrease in the normal

velocity component and concluded that “the normal component of the impact speed

is the dominant factor controlling the breakage of contacts”. However, it was also

shown that, for the same number of bonds broken, the spatial distribution of damage

(broken bonds) depended on the impact angle.

For non-spherical agglomerates, breakage depends also on the orientation of the

agglomerate prior to impact. To illustrate this, three agglomerates were prepared –

one spherical, one cuboidal and one cylindrical. Each agglomerate consisted of

10,000 primary particles of sizes in the range 20� 4 μm. The final, as prepared,

porosities of the spherical, cuboidal and cylindrical agglomerates were 0.395,

0.412 and 0.400 respectively, with corresponding coordination numbers of

5.124, 4.558 and 4.562, corresponding to 25,521, 21,831 and 22,092 contacts.

The dimensions of the three agglomerates were 0.54 mm diameter (spherical),

0.480 mm� 0.477 mm� 0.484 mm (cuboidal) and 0.500 mm diameter� 0.474 mm

length (cylindrical).

All the impacts are collinear normal impacts. That is to say that the line

orthogonal to the target wall at the initial point of contact passes through the centre

of mass of the agglomerate. In all cases an impact velocity of 1.0 m/s was used and

the interface energy was specified as Γ¼ 1.0 J/m2.

The spherical agglomerate was used as a benchmark against which the other

agglomerates could be compared. The breakage of the spherical agglomerate is

illustrated in Fig. 6.19, which shows that the agglomerate fractured; resulting in

three large fragments (consisting of 4,990, 2,256 and 1,084 primary particles) plus a

significant amount of small debris adjacent to the impact site.

Three different impact sites were selected for the cuboidal agglomerate – a face,

an edge and a corner of the agglomerate. For the face impact, illustrated in
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Fig. 6.20, the agglomerate fractured into four large fragments (3,045, 2,843, 1,114

and 801 primary particles) together with small debris due to disintegration adjacent

to the wall. However, as can be seen in Fig. 6.21a, fracture did not occur when the

agglomerate impacted the wall along one of its edges. Disintegration adjacent to the

wall produced small debris with a largest cluster of 15 primary particles. The large

surviving cluster consisted of 9,030 primary particles with no evidence of any

internal damage. A similar breakage pattern occurred for the corner impact, see

Fig. 6.21b, but with a lower degree of disintegration adjacent to the wall.

Fig. 6.19 Fragments for impact of the spherical agglomerate

Fig. 6.20 Fragments for face impact of the cuboidal agglomerate
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For the cylindrical agglomerate, impact sites were selected to provide a circular

end impact, a side impact and a rim impact. The resulting breakage patterns are

shown in Figs. 6.22 and 6.23.

It can be seen that both the end impact and the side impact resulted in fracture

but fracture was not observed for the rim impact. In the case of the end impact,

Fig. 6.22, the agglomerate fractured into two large fragments (3,975 and 3,186

primary particles) and a medium sized fragment (607 primary particles) resulting

from the bifurcation of the primary fracture; the remaining damage being small

debris adjacent to the wall. In the side impact, see Fig. 6.23a, aside from the small

Fig. 6.21 Fragments for (a) edge and (b) corner impacts of the cuboidal agglomerate

Fig. 6.22 Fragments for circular end impact of the cylindrical agglomerate
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debris, fracture resulted in four large fragments (2,818, 2,012, 1,608 and 1,228

primary particles). Fracture did not occur when the impact was against the rim of

the agglomerate, as shown in Fig. 6.23b. The one large surviving cluster consisted

of 9,210 primary particles.

The above illustrations of agglomerate damage demonstrates that, for the

agglomerate specification in terms of number of primary particles, bond strength

and impact velocity, disintegration always occurs adjacent to the impact site and

that this is where the small debris is produced. Whether fracture occurs or not

depends on the impact site location. If fracture occurs then the fracture pattern and

the consequent size and shape of the large surviving fragments depend on both the

agglomerate shape and the location on the agglomerate surface used as the

impact site.

For all the impacts, the time evolution of the damage ratio is shown in Fig. 6.24.

It can be seen that the data sets for the non-spherical agglomerates fall into two

groups. Group A consists of the cubical face, cylindrical end and cylindrical side

impacts, all of which attain a final damage ratio of 0.32 which is significantly higher

than the value of 0.205 obtained for the spherical agglomerate. In contrast, the final

damage ratio for all Group B impacts is about 0.185 which is slightly less than that

of the spherical agglomerate. The figure shows that the damage ratio increases

rapidly to the final asymptotic value except for the cuboidal edge and cuboidal

corner impacts. In these two cases, there is a delay before the rapid increase in

damage ratio occurs, most notable in the case of the cuboidal corner. From an

examination of the time evolution of the wall force and the number of wall contacts,

see Liu et al. (2010), it was found that the number of wall contacts monotonically

increased except for the cuboidal corner, cuboidal edge and cylindrical rim impacts.

In these Group B impacts the number of wall contacts initially increased to a

maximum value and then decreased to a constant asymptotic value. Although

there were significant fluctuations in the evolution of the corresponding wall forces,

the general trend for Group A impacts was that of an increase to a maximum force

in about 10 μs followed by a reduction at a decreasing rate to a negligible value

corresponding to the self-weight of the residual fragments. In contrast, for Group B

Fig. 6.23 Fragments for (a) side and (b) rim impacts of the cylindrical agglomerate
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impacts, there was a delay before the wall force increased to a maximum value.

This was most notable for the cuboidal edge and corner impacts. In both cases, the

peak wall force coincided with the rapid increase in broken contacts shown in

Fig. 6.24.

The fragment size distributions resulting from all the impacts are shown in

Fig. 6.25, which shows the expected bilinear distributions that distinguish the

large fragments (residue) from the complement of small fragments (debris). The

figure demonstrates that, for a given impact velocity, the amount of debris produced

is dependent on agglomerate shape and impact site. The smallest amount of debris

is produced by the cuboidal corner impact and the largest amount occurs for the

cuboidal face impact. It is noted that the exponent of the debris is independent of

agglomerate shape and impact site location, in this case about 0.13. It therefore

follows that the exponent for the debris only depends on the bond strength, as

illustrated in Fig. 6.13.

The cuboidal agglomerate was reoriented, as shown in Fig. 6.26a, so that it

impacts the wall along the leading edge. The vector connecting the point of contact

with the centre of mass of the agglomerate is inclined at 30� to the vertical. An

initial vertical velocity of 1.0 m/s was specified for all the primary particles in order

to simulate a non-collinear normal impact with the wall, which resulted in breakage

of the agglomerate as shown in Fig. 6.26b. Figure 6.26b shows a thin central section

(approximately three particles wide) in order to clearly illustrate the fracture mode.

Fig. 6.24 Evolution of damage ratio during impact
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The advantage of this configuration is that, although the particle arrangement is

three-dimensional, the overall behaviour is essentially two-dimensional making

visualisations of the mechanisms much easier to identify.

The evolution of the total wall force generated by the impact is shown in

Fig. 6.27. The wall force increases to 6.5 mN, drops and then increases to a
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Fig. 6.25 Fragment size distributions

Fig. 6.26 Cuboidal agglomerate (a) before impact (b) after 11 μs

6.1 Agglomerate-Wall Impacts 115



maximum value of 7.3 mN after 1.64 μs. There is then a sudden drop in the force to
about 3 mN after which the force reduces further with significant fluctuations until,

after 65 μs, the force is approximately 1 μN corresponding to the self-weight of the

agglomerate.

Figure 6.28 illustrates the force transmission through the agglomerate. The lines

show the location and orientation of the (resultant) contact forces. The thickness of

Fig. 6.27 Evolution of the total normal wall force

Fig. 6.28 Force transmission (a) after 1.125 μs (b) after 1.892 μs
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the lines indicates the magnitude of the force scaled to the current maximum. For

clarity, only the thin central section seen in Fig. 6.26b is shown. Figure 6.28a shows

that, when the wall force is 6.5 mN, the large forces generated at the contacts with

the wall propagate vertically upwards. Figure 6.28b shows that, just after the wall

force has reached its maximum value, there is a significant but smaller wall force

propagating towards the lower right-hand side of the agglomerate.

Figure 6.29 shows the particle velocity field as it evolves during the impact. It

can be seen that, as a consequence of the large forces transmitted vertically upwards

into the agglomerate, the primary particles in the region into which these forces

Fig. 6.29 Particle velocity fields at various elapsed times
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propagate are decelerated but continue to move downwards in a vertical direction.

Particles in the lower right-hand side of the agglomerate do not experience such a

rapid deceleration and, consequently, a heterogeneous velocity field is created,

which results in an inclined velocity discontinuity between the loaded and unloaded

regions. The relative shear motion along the velocity discontinuity causes some

breakage of contacts and thereby a weakened plane is created. As a result of the

secondary, inclined contact force transmission seen in Fig. 6.28b, there is a rotation

of the velocity field in the lower right-hand region of the agglomerate that increases

the shear weakening along the velocity discontinuity and results in the fracture

plane shown in Fig. 6.26b. Further details are provided by Thornton and Liu (2004).

6.2 Agglomerate-Agglomerate Collisions

One would expect that, for comparable impact speeds, agglomerate-agglomerate

collisions would be less destructive than agglomerate-wall collisions. In this section

we briefly consider agglomerate-agglomerate collisions.

Figure 6.30 illustrates the breakage resulting from oblique collisions between

two identical spherical agglomerates when the relative impact speed is 1 m/s. Each

agglomerate consists of a polydisperse system of 2000 primary particles which

were modelled as autoadhesive, elast-plastic spheres, see Sect. 3.4 for details. The

average diameter of the primary particles was 20 μm and the nominal size of the

agglomerates was 0.176 mm. The interface energy Γ¼ 2 J/m2. A timestep of 9 ns

was used and the collision duration varied from 3 to 9 ms.

The two agglomerates are identical but the second agglomerate is simply a copy

of the first agglomerate that was translated to provide a small initial gap between the

two agglomerates. Hence, the microstructures adjacent to the point of impact were

different and, therefore, the force transmission through the two agglomerates was

different. Consequently, as can be seen in Fig. 6.30, the two agglomerates experi-

enced different breakage patterns.

The figure illustrates the effect of impact angle on the amount of breakage that

occurred when the impact angle was varied between 0 and 45�. For impacts at

angles greater than 45� the breakage was limited to the production of singlets that

were abraded from the agglomerates with the number of singlets reducing with

increase in the impact angle. To quantify this, Fig. 6.31 shows how the damage ratio

varies with impact angle for a strong (Γ¼ 2.0 J/m2) and a weak (Γ¼ 0.2 J/m2)

agglomerate.

In Fig. 6.32a, the damage ratio, D, is replotted against a Weber number, W,

which is defined as

W ¼ ρ d pV
2
n

Γ
ð6:7Þ
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where ρ and dp are the solid density and mean primary particle size and Vn is the

normal component of the relative impact speed. From the figure, the power law

scaling is D¼ 0.86W0.78. Defining the debris as being composed of fragments

consisting of less than 20 primary particles, it is found that the mass fraction of

debris produced is linearly proportional to the Weber number, as shown in

Fig. 6.32b.

Fig. 6.30 Oblique agglomerate-agglomerate collisions (relative impact speed 1.0 m/s)
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Chapter 7

Fluidised Beds

Abstract Gas-fluidised beds have been extensively studied in academia and

widely used in industry. When examined at the macro-scale, fluidised beds may

appear to behave like a solid, a liquid or a gas, depending on the magnitude of the

applied superficial gas velocity. One of the attractions of DEM is that it can model

all three different phases. To account for the interstitial gas, a combined Lagrang-

ian-Eulerian approach is used by combining the use of DEM for the particle phase

with CFD modelling of the gas phase. In this chapter, following an initial outline of

the theoretical background to the methodology, results of 2D and 3D simulations of

fluidized beds are presented. Using 2D simulations, we examine the different types

of behaviour as the gas velocity is increased to cover the complete range from fixed

bed to homogeneous expansion, bubbling, turbulent and fast fluidisation. we also

examine how the transition from fixed bed to bubbling bed, i.e. the so-called

homogeneous expansion regime, is affected when surface energy is attributed to

the particles. Then, using 3D simulations, we examine and provide visualisations of

bubble formation, bubble rise and bubble splitting.

In this chapter the results of simulations of fluidised beds are presented. This is

restricted to the author’s own work that was motivated by the need to re-examine

historical issues that had not been completely resolved. For more general applica-

tions of fluidised bed simulations the reader is referred to papers published by Prof.

Tsuji’s group in Osaka, Prof. Yu’s group at Monash (previously UNSW) and the

group of Prof. Kuipers at Eindhoven (previously Twente).

The increasing power of computer hardware has made a Lagrangian-Eulerian

modelling of gas-solid fluidisation feasible following the original work of Tsuji

et al. (1993) who combined the discrete element method (DEM) modelling of the

particle phase with computational fluid dynamics (CFD) modelling of the fluid

phase to simulate fluidised beds in 2D. This combined DEM-CFD approach is fully

described by Kafui et al. (2002).

In this chapter the results of simulations of fluidised beds are presented. This is

restricted to the author’s own work that was motivated by the need to re-examine

historical issues that had not been completely resolved. For more general applica-

tions of fluidised bed simulations the reader is referred to papers published by Prof.

Tsuji’s group in Osaka, Prof. Yu’s group at Monash (previously UNSW) and the

group of Prof. Kuipers at Eindhoven (previously Twente).
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7.1 Theoretical Considerations

The total force Fi acting on particle i in a fluidised bed has a number of components:

a gravitational force mig, a fluid-particle interaction force Ffpi and a solid particle-

particle contact force Fci. The translational and rotational motions of each particle

are governed by the equations

mi
d vi
d t

¼ Fi ¼ Fci þ F f pi þ mig ð7:1Þ

Ii
d ωi

d t
¼ Ti ð7:2Þ

in which Ti is the torque arising from the tangential components of the contact force

and Ii, vi and ωi are the moment of inertia, linear velocity and angular velocity of the

particle respectively. Equations (7.1) and (7.2) correspond to Eqs. (2.1) and (2.2)

but with the fluid-particle interaction force Ffpi added in Eq. (7.1).

By numerically integrating Eqs. (7.1) and (7.2) twice, using Eqs. (2.3) and (2.4),

new velocities and positions of the particles are obtained and from the new

positions and velocities of the particles new fluid-particle interaction forces and

solid-solid contact forces can be calculated.

7.1.1 Fluid-Particle Interaction Force

Following Anderson and Jackson (1967), the force exerted by the fluid on each

particle, Ffpi, can be written as the sum of a component due to ‘macroscopic’
variations in the fluid stress tensor σf and a component F∗

f pi due to detailed

variations of the point stress tensor in the fluid flow field around a particle.

F f pi ¼ Vpi∇ � σ f þ F*
f pi ð7:3Þ

where Vpi is the volume of the particle. The local average stress tensor in the fluid

may be written as

σ f ¼ � pδþ τ f ð7:4Þ

where p is the fluid pressure, δ is the identity tensor and τf is the deviatoric stress

tensor. Assuming a Newtonian fluid with a viscous stress tensor dependent only on

the fluid motion, following Bird et al. (1960), we may write

τ f ¼ μb � 2

3
μs

� �
∇ � u

h i
δþ μs ∇uð Þ þ ∇uð Þ�1

h i
ð7:5Þ

where u, μb and μs are the velocity, bulk viscosity and shear viscosity of the fluid

respectively.
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The second term on the right of Eq. (7.3) includes skin friction and drag

contributions and is made up of (i) an effective drag force in the direction of the

relative velocity between the fluid and the particle and (ii) a virtual or added mass

force accounting for the resistance of the fluid mass that is moving at the same

acceleration as the particle. In gas-solid systems the virtual mass term is negligible

and F∗
f pi reduces to the effective drag force which, according to Anderson and

Jackson (1967), is the drag force Fdi obtained from the experimentally based

correlations multiplied by the local void fraction ε. Consequently, substituting
Eq. (7.4) into Eq. (7.3) the fluid-particle interaction force is given by

F f pi ¼ �Vpi∇ � pþ Vpi∇ � τ f þ εFdi ð7:6Þ

The drag force Fdi is calculated using the following empirical correlation of Di

Felice (1994) which provides a continuous variation of drag force over the full

practical range of flow regimes and voidages.

Fdi ¼ 1

2
CDiρ f

πd2pi
4

ε2j u j � vi
�� �� u j � vi

� �
ε� χþ1ð Þ
j ð7:7Þ

where ρf is the fluid density, dpi is the particle diameter and the subscript j for the
fluid velocity u and the voidage ε denotes the computational fluid cell in which

particle i resides. The fluid drag coefficient for a single, unhindered particle CDi is

calculated from

CDi ¼ 0:63þ 4:8ffiffiffiffiffiffiffiffi
Repi

p
" #2

ð7:8Þ

and the particle Reynolds number Repi is based on the superficial slip velocity

between particle and fluid

Repi ¼
ρ f dpiε j u� vj j

μs
ð7:9Þ

The term ε� χþ1ð Þ
j in Eq. (7.7) is a correction for the presence of other particles with

χ ¼ 3:7 � 0:65 exp � 1:5� log10 Repi
� �2

2

" #
ð7:10Þ

7.1.2 Particle-Fluid Interaction Force

For the fluid hydrodynamics, the continuity and momentum equations used in the

PGF model of Kafui et al. (2002) are
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∂ ερ f

� �
∂t

þ∇ � ερ f u
� � ¼ 0 ð7:11Þ

∂ ερ f u
� �
∂t

þ∇ � ερ f uu
� � ¼ �∇ pþ∇ � τ f � F p f þ ερ f g ð7:12Þ

in which the particle-fluid interaction force Fpf is obtained by summing up the fluid-

particle interaction forces Ffpi acting on all the particles in a fluid cell nc and

dividing by the volume of the fluid cell ΔVc.

F p f ¼
Xnc

i¼1
F f pi

ΔVc
ð7:13Þ

The ideal gas law is used to calculate the fluid density ρf.

ρ f

M f

RT
p ð7:14Þ

where the average molecular weight of air Mf¼ 0.0288 kg/mol at a temperature

T¼ 293 K.

7.2 2D Simulations

Gas-fluidised beds have been extensively studied in academia and widely used in

industry. When examined at the macro-scale, fluidised beds may appear to behave

like a solid, a liquid or a gas, depending on the magnitude of the applied superficial

gas velocity. These “phase transitions” are important since the fundamental rate

parameters for reactor design and operation change in accordance with the flow

regimes of fluidisation. One of the attractions of DEM-CFD modelling is that it can

model all three different phases.

A series of 2D DEM-CFD simulations of fluidised bed behaviour was

performed, Thornton et al. (2015), to examine the transitions from fixed bed to

homogeneous expansion, bubbling, turbulent and fast fluidisation. Figure 7.1 illus-

trates how the bed behaviour changes as the superficial gas velocity is increased.

The bed width corresponds to 40 times the mean particle diameter and, as the gas

velocity was increased, the height of the container was adjusted to ensure that no

particles reached the top of the container. The whole of the container was divided

into small square computational fluid cells of dimension five times the mean

particle diameter. A polydisperse system of 5000 elastic spheres was used. All

the particles were initially randomly generated as a granular gas (no contacts) inside

the container with all the particle centres located in the same plane and subsequent

out-of-plane motion was suppressed. A vertical gravity field was then introduced in

order to create a pluvially deposited bed of particles. The mean particle diameter
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was 50 μm, the initial bed height was 6.54 mm with an initial voidage of 0.459 and

8,465 interparticle contacts. Further simulation details are provided by Thornton

et al. (2015).

An initial uniform gas velocity U¼ 0.0003 m/s was introduced into the bed from

the bottom row of computational fluid cells. The pressure drop across the bed was

obtained as the time-averaged difference between the average pressure in the

bottom and top rows of fluid cells. This was repeated for a range of gas velocities

incremented in relatively small steps up to U¼ 1.2 m/s. With increasing gas

velocity, as seen in Fig. 7.1, bed expansion increases and the particles are

transported higher. Figure 7.2 shows how the average void fraction of the bed

changes with increasing superficial gas velocity. There are clearly three regimes. At

low gas velocities the void fraction does not change. This corresponds to the fixed

bed regime that exhibits solid-like behaviour. At high gas velocities, as the void

fraction ε! 1, the behaviour is gas-like corresponding to fast fluidisation, as in the

riser of a circulating fluidised bed. Between these two regimes the bed behaves like

a liquid but there is no indication in the figure to distinguish between different

sub-regimes. In Fig. 7.1, however, it can be seen that there are three sub-regimes

corresponding to homogeneous expansion, bubbling fluidisation and turbulent

fluidisation. The transitions between these sub-regimes are considered below.

0 m/s 0.008 m/s 0.01 m/s

Superficial gas velocity U (m/s)

0.04 m/s 0.06 m/s 0.08 m/s 0.1 m/s 0.25 m/s

Fig. 7.1 Typical particle configurations for different superficial gas velocities
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7.2.1 The Transition from Fixed to Bubbling Bed

Conventionally, the point when the average pressure drop first becomes equal to the

bed weight divided by the cross-sectional area of the bed is defined as ‘minimum

fluidisation’ and the gas velocity at which this occurs is denoted as Umf. Above Umf

the pressure drop remains constant and bed expansion occurs. In Fig. 7.3, the

average pressure drop is normalised by dividing by the bed weight per unit area.

From the figure, Umf¼ 0.0048 m/s, which is in reasonable agreement with the value

of 0.0041 m/s predicted using the Ergun (1952) correlation.

Superimposed in Fig. 7.3 is the number of interparticle contacts normalised by

the initial number of contacts when the bed had been deposited. It can be seen that

some contacts were broken, without any significant change in voidage/bed height,

prior to minimum fluidisation and that, above Umf, the average number of contacts

decreased at a decreasing rate until an asymptotic value of about 5 % of the initial

number of contacts was reached when U¼ 0.01 m/s. Also superimposed in the

figure is the mechanical coordination number Zm defined by Eq. (2.22). From the

figure it can be seen that, when U¼Umf, Zm¼ 3 which, in 2D, corresponds to an

isostatic state, see Sect. 2.2.1.

Figure 7.4 shows the expansion of the bed as the gas velocity is increased to

0.01 m/s. From examination of video sequences of the simulations it was observed
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Fig. 7.2 Variation of the average bed void fraction with increasing superficial gas velocity
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Fig. 7.3 Normalised pressure drop (solid circles), normalised number of contacts (open circles)
and mechanical coordination number (open squares)

u = 0.0046[m/s] u = 0.0060[m/s] u = 0.0075[m/s] u = 0.0085[m/s] u = 0.0095[m/s] u = 0.01[m/s]

Fig. 7.4 Bed expansion with increasing gas velocity
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that the first bubble eruption at the bed surface occurred when U¼ 0.01 m/s, which

therefore corresponds to what is termed the minimum bubbling velocity, Umb.

The gas velocity range Umf < U < Umb is conventionally known as the homo-

geneous expansion regime. Figure 7.5 shows snapshots to illustrate the evolution of

the structure of the bed at the start of the bed expansion. In each snapshot, the three

snapshots show (i) the six largest cluster sizes in the system (left column),

(ii) singlets, doublets and triplets (centre column) and (iii) the spatial distribution

of interparticle contacts (right column). Note that clusters of intermediate size are

not shown. It can be seen that the number of contacts decreases sharply for

0.0048 m/s < U <0.006 m/s with a corresponding sharp increase in the number

of fines. The figure clearly shows the degradation of large clusters, the increase in

fines production and the corresponding loss of contacts as the gas velocity

increases.

From Fig. 7.5 it is also clear that, at least at the start of the “homogeneous

expansion” regime the bed is not in fact homogeneous. The results of the simula-

tions suggest that the so-called homogeneous expansion regime is actually a

transition regime. AtUmf the bed is at an isostatic state that is the start of a transition

from solid-like to fluid-like behaviour and that only when the contact number

reaches a small asymptotic value is the bed ‘fully fluidised’ and bubbling can begin.

7.2.2 The Transition from Bubbling Bed to Turbulent Bed

AboveUmb bubbling occurs, with the size of the bubbles increasing with increase in

gas velocity. As a consequence of bubble eruption at the bed surface the amplitude

of the pressure drop fluctuations also increases with increase in gas velocity. In the

bubbling regime both bubble splitting and bubble coalescence occur. When bubble

Fig. 7.5 Cluster visualisation at the start of the ‘homogeneous expansion’ regime
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splitting exceeds bubble coalescence the mean bubble size decreases leading to a

decrease in the amplitude of the pressure drop fluctuations, as shown in Fig. 7.6.

Figure 7.7 shows how the standard deviation of the normalised pressure drop

increases to a maximum value and then reduces at a decreasing rate towards an

asymptotic value. Yerushalmi et al. (1978) and Yerushalmi and Cankurt (1979)

suggested that the gas velocity Uc at which the standard deviation of the pressure

drop reaches a maximum value indicates the beginning of a transition to turbulent

fluidisation. They also suggested that the gas velocity Uk at which the standard

deviation of the pressure drop levels off at some low value indicates the end of the

transition. However, subsequent researchers have adopted Uc as the start of the

turbulent regime and Uk as the end of the turbulent regime and the transition to fast

fluidisation (Bi et al. (2000). From Fig. 7.7, Uc¼ 0.085 m/s but it is clear from the

figure that the above definition of Uk is ambiguous. Figure 7.7 also shows that the

simulation results indicate that in the turbulent regime the average pressure drop

increases with increasing gas velocity.

7.2.3 The Transition from Turbulent to Fast Fluidisation

The voidage data shown in Fig. 7.2 for the ‘liquid’ regimes indicates power law

behaviour. This is confirmed in Fig. 7.8 in which the void fraction and the gas

velocity have been normalised by the corresponding values at minimum

fluidisation, i.e. εmf¼ 0.459 and Umf¼ 0.0048 m/s respectively. From the best

fit line
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U

Um f
¼ ε

εm f

� 	5:2

ð7:15Þ

and therefore

U ¼ 0:275ε5:2 ð7:16Þ

Equation (7.16) implies that when ε¼ 1 the gas velocity of 0.275 m/s corre-

sponds to the free-fall terminal velocity Ut of an isolated sphere in an infinite fluid.

However, using a single average-sized sphere dp¼ 50 μm and atmospheric gas with

the initial gas velocity set to zero, the gravity driven free-fall of an isolated particle

was simulated and the terminal velocity was found to be 0.3 m/s. The data point

corresponding to Ut is indicated on Fig. 7.8.

Godard and Richardson (1969) proposed an alternative expression for the

exponent n

n ¼ log Um f =Ut

� �
logεm f

ð7:17Þ

from which, using Ut¼ 0.3 m/s, gives n¼ 5.266 which is very close to the value of

5.2 in Eq. (7.16).

It can be seen from Fig. 7.8 that the data points deviate from the power law

relationship given by Eq. (7.15) at very high gas velocities in the fast fluidisation

regime. This suggests that a rational definition of the transition from turbulent

fluidisation to fast fluidisation is provided by the gas velocity at which the data first

deviates from Eq. (7.15) and on this basis Uk¼ 0.2 m/s, as indicated on Fig. 7.8.

7.2.4 Effect of Surface Energy

In the above simulations the average particle size was 50 μm and at this size the

particles would be expected to be adhesive due to van der Waals forces. Conse-

quently a series of simulations was performed on the same particle system to

examine the effect of surface energy on the fluidised bed behaviour (Yang

et al. 2013) using the adhesive-elastic contact force model described in Sect. 3.3.

In the JKR model of adhesive-elastic particle interactions, the maximum tensile

force required to break a contact is given by Eq. (3.71) from which, for a polydis-

perse system, there will be a range of pull-off forces Fnc depending on the radii of

the two particles in contact. Consequently, values of interface energy Γ are selected

to make the average bond strength a multiple of the average particle weight.
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Fnch i ¼ K mgh i ð7:18Þ

For example, for K¼ 1 and interface energy Γ¼ 27.25 μJ/m2 the pull-off forces Fnc

are in the range 1.605 nN �10 %.

This series of simulations focussed on the transition from fixed bed to bubbling

bed, i.e. the so-called ‘homogeneous expansion’ regime. Figure 7.9 shows the bed

expansion for K¼ 1, which can be compared with the K¼ 0 case illustrated in

Fig. 7.4.

Figure 7.10 provides comparisons between typical snapshots of the particle

configurations for different surface energies when the gas velocity was 0.01 m/s

and 0.02 m/s. When K¼ 1 and K¼ 2 the figure shows that, with a gas velocity

U¼ 0.01 m/s, the bed has expanded without any obvious bubble observed. The

figure also shows that, for K¼ 5, channelling occurs when U¼ 0.01 m/s. However,

when the gas velocity is increased to U¼ 0.02 m/s, fully developed bubbles are

observed in all cases. This suggests that for 0 � K �5 the minimum bubbling

velocity lies in the range 0.01 m/s � Umb � 0.02 m/s and that with increasing

surface energy a higher gas velocity is required to reach the bubbling regime, if that

is possible.

u = 0.0046[m/s] u = 0.0060[m/s] u = 0.0075[m/s] u = 0.0085[m/s] u = 0.0095[m/s] u = 0.01[m/s]

Fig. 7.9 Bed expansion with increasing gas velocity (K¼ 1)
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In Fig. 7.11, the normalised pressure drop and the normalised number of contacts

are plotted against the superficial gas velocity. It can be seen that in the fixed bed

regime the pressure drop curve is independent of surface energy. However, in the

simulations, the surface energy was introduced after pluvial deposition of the

particle bed. It would have been more realistic to introduce surface energy prior

to pluvial deposition. This in itself would lead to a higher bed voidage and

consequently Umf would increase with increase in surface energy. Nevertheless,

the results shown in Fig. 7.11 demonstrate that any increase in Umf due to surface

energy is solely due to the higher voidage and not to any increased bed resistance

resulting from stronger interparticle bonds.

Figure 7.11 also shows that a pressure drop overshoot occurs for systems with

surface energy. For K¼ 1 and K¼ 2 the overshoot is slight but, for K¼ 5, the

average pressure drop increases to a maximum value that is 10 % greater than that

necessary to balance the self-weight of the bed. To understand the overshoot

phenomenon, a bed with vertical periodic boundaries was simulated. The results,

shown later in Fig. 7.15, indicate that the overshoot is solely due to the wall effect

and, for all cases, minimum fluidisation occurs when the normalised pressure drop

first equals unity, which occurs before any overshoot appears.

The most notable aspect of Fig. 7.11 is that, for K > 1, bond breakage occurs in

two stages: (i) approximately 40 % of the bonds are broken, creating a ‘partially

Fig. 7.10 Typical snapshots of the bed for gas velocities of 0.01 m/s and 0.02 m/s and K¼ 0, 1, 2

and 5
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fluidised’ bed, and (ii) for a higher bond strength a higher gas velocity is required to
break the remaining bonds in order to ‘fully fluidise’ the bed. When the gas velocity

is increased above Umf a sufficient number of contacts is broken to form a few

relatively large agglomerates that consist of most of the particles in the bed. The

strength of the agglomerates so formed depends on the strength of the interparticle

bonds. As shown in Fig. 7.11, in order to fracture the initially formed agglomerates

a higher gas velocity is required for higher values of surface energy. Once this has

been achieved, further disintegration of the agglomerates continues progressively

until the fines predominate and occupy the whole bed. At this point the bed can be

considered to be ‘fully fluidised’ and bubbling can occur. The process is illustrated

in Fig. 7.12 for the case of K¼ 1.

For each gas velocity, the three columns show (i) the six largest agglomerates

(left), (ii) singlets, doublets and triplets (centre) and (iii) the spatial distribution of

interparticle contacts (right); agglomerates of intermediate sizes are not shown.

Initially, the structure of the bed breaks into two onceUmf is reached. The amount of

fines remains low until U¼ 0.0075 m/s. At this point, the second large reduction in

the number of contacts begins, see Fig. 7.11, when the gas velocity is sufficiently

high to break up the large agglomerates, leading to a corresponding rapid increase

in the number of fines particles. The connectivity network completely disintegrates

until finally the bed consists entirely of singlets, doublets and triplets and is fully

fluidised and bubbling begins when U¼ 0.014 m/s. Typical snapshots of the beds at

minimum bubbling velocity are shown in Fig. 7.13 for K¼ 0, 1, 2 and 5.
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Fig. 7.11 Effect of surface energy on the evolution of pressure drop and number of contacts
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The average pressure drop and average mechanical coordination number are

plotted against superficial gas velocity, for different values of K, in Fig. 7.14. It can
be seen that the average mechanical coordination number, defined by Eq. (2.22), is

approximately 3 when U reaches Umf, except for the case of K¼ 5. For the case of

K¼ 5, the data is replotted in Fig. 7.15. The figure shows results obtained for both a

wall bounded system and a system with vertical periodic boundaries. It can be seen

that, when vertical periodic boundaries are used, there is no overshoot in the

pressure drop. This indicates that the pressure drop overshoot is an artefact resulting

from the extra kinematic constraint provided by the wall boundaries.

It can be seen that, for the case of vertical periodic boundaries, when the

normalised pressure drop first reaches unity the average coordination number

Zm ~ 3.05 and when, in the case of the wall bounded system, the pressure drop

overshoot reaches a maximum value Zm ~ 3.15. As explained in Sect. 2.2.1, in 2D

the critical coordination number Zc¼ 3 for μ¼1 but for finite friction (in this case

μ¼ 0.3) it depends on the percentage of sliding contacts and is slightly higher.

Fig. 7.12 Agglomerate degradation during ‘homogeneous expansion’
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7.3 3D Simulations

This section presents results of 3D DEM-CFD simulations of a bubbling fluidised

bed the motivation for which was to examine bubble formation, bubble rise velocity

and bubble splitting, see Kafui et al. (2006) for more details. The bed consists of

100,000 elastic-plastic spherical particles in the size range 50� 5 μm which were

randomly generated in a container of 2� 2 mm cross-section and pluvially deposited

to yield a powder bed of height 2.9 mm and void fraction ε¼ 0.404. The bed was then

fluidised using a superficial gas velocity of 14.3 mm/s (~4.8Umf). Figure 7.16

illustrates the initial bed expansion, showing particles and contacts.

In order to clearly visualise bubble behaviour, the bed was divided into eight thin

vertical slices, each about 5dp thick, and videos were produced for each slice to

examine the evolution of the particle configuration, fluid velocities, particle veloc-

ities and interparticle contacts. Snapshots obtained from the videos are used below

to illustrate the behaviour.

K = 0
V = 0.01 m/s

K = 1
V = 0.014 m/s

K = 2
V = 0.015 m/s

K = 5
V = 0.02 m/s

Fig. 7.13 Particle configurations at Umb
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Fig. 7.14 Evolution of pressure drop Δp and mechanical coordination number Zm

Fig. 7.15 Effect of boundary constraint
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7.3.1 Bubble Formation

Figure 7.17 shows the typical formation of a bubble. The figure reveals that the

bubble was initially seeded from horizontal air pockets spanning the width of the

bed and originating from the base. In general, when the particle flow is mainly

downwards along the walls, the air pockets are swept upwards with the upward-

flowing central core towards the axis of the bed and coalesce to form a single well-

defined bubble which either erupts at the top of the bed or occasionally splits into

two bubbles. The width-spanning air pockets are a start-up phenomenon due to the

narrow bed and the idealised uniform fluidising gas inflow used in the simulations.

Visual evidence indicates that later in the simulations they are replaced by smaller

air pockets.

It can also be seen from Fig. 7.17 that redirection of the fluid flow through the

forming bubble becomes more pronounced as the voidage at the core of the bubble

increases. From examination of video sequences it was observed that fluid

recirculation loops formed at the sides of a fully formed bubble. These recirculation

loops are formed by fluid which, on passing through the bubble roof, circulates

through the particles adjacent to the bubble and returns again to the bubble. This

feature was predicted by Davidson and Harrison (1963) for cases where the bubble

rise velocity is greater than the fluidising gas velocity, as in this case.

Fig. 7.16 Initial bed expansion (showing particles and contacts)
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For a well-defined bubble, the particle configuration, fluid velocity field, particle

velocity field and location of interparticle contacts, i.e. collisions, are illustrated in

Fig. 7.18. It is interesting to note that collisions only tend to occur below the bubble

as a consequence of the fluid recirculation loops.

The particle velocity field, as shown in Fig. 7.18, appears to suggest that particles

enter the bubbles from the wake of the bubble, as suggested by Rice and Wilhelm

(1958). However, as illustrated in Fig. 7.19b, although the absolute particle veloc-

ities at the bottom of the bubble are travelling upwards, so is the bubble. Conse-

quently, the bubble velocity was subtracted from the particle velocities to provide

the relative particle velocities shown in Fig. 7.19c. It can be seen that the relative

velocities indicate that the particles enter the bubble from the roof, as suggested by

Harrison et al. (1961). Also it is noted that the relative velocities in the wake of the

bubble tend to be horizontal leading to the collisions illustrated in Fig. 7.18.

Fig. 7.17 Bubble formation showing particles (top) and fluid flow field (bottom)
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7.3.2 Bubble Rise

Bubble dimensions (xb, yb, zb) and bubble velocities (vbx, vby, vbz) in the three

coordinate directions can be determined visually for bubble rise sequences such as

the example shown in Fig. 7.20. The diameter of a volume-equivalent sphere db,
which is often employed in defining bubble size, is then calculated from

db ¼ xb þ yb þ zb
3

ð7:19Þ

Fig. 7.18 Snapshots showing particles, fluid velocity vectors, particle velocity vectors and

interparticle contacts (collisions)

Fig. 7.19 Bubble details showing (a) particles (b) absolute particle velocities (c) particle

velocities relative to bubble velocity
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and the bubble speed vb is obtained from

vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2bx þ v2by þ v2bz

q
ð7:20Þ

Figure 7.20 Bubble rise viewed in the y-direction (top) in the x-direction (bottom)

For the sequence shown in Fig. 7.20, using Eqs. (7.19) and (7.20) the average

bubble size was found to be 1.067 mm and the average vertical bubble velocity

vbz¼ 0.076 m/s. However, this method of determining bubble size, position and

hence velocities is very sensitive to the visual judgement of the bubble boundaries

since the shape of the bubble changes as it travels upwards through the bed. An

alternative is illustrated in Fig. 7.21.

The linear decrease in pressure from the bottom to the top of a fluidised bed is

interrupted by the presence of a bubble, as shown in Fig. 7.21. It can be seen that, within

the bubble, the pressure is almost constant. The intersection of the two pressure profiles

can be used to identify the location of the bubble centre and the bubble rise velocities as

the bubble moves upwards through the bed. The bubble size can also be estimated from

the width of the almost zero pressure gradient region of the pressure profile.

7.3.3 Bubble Splitting

As bubbles travel upwards though the bed, bubble splitting and bubble coalescence

frequently occur. An example of bubble splitting is illustrated in Fig. 7.22. The

Fig. 7.20 Bubble rise viewed in the y-direction (top) in the x-direction (bottom)
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Fig. 7.21 Comparison of pressure profiles through bubbling and bubble-free beds

Fig. 7.22 Bubble splitting showing particles (top) and fluid velocity vectors (bottom)
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bubble is fully formed between the first two snapshots in the sequence. However, as

can be seen in the second snapshot, particles falling down from the centre of the

roof of the bubble initiate a bifurcation of the fluid flow inside the bubble. Conse-

quently, the drag forces acting on the central falling particles is reduced and the

concentration of particles raining down from the centre of the roof of the bubble

increases, resulting in the creation of two distinct bubbles, as seen in the final

snapshot shown in Fig. 7.22. Bubble coalescence was never observed during these

simulations and it probably requires a wider and deeper bed to be simulated for this

to occur.
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Chapter 8

Quasi-static Deformation

Abstract This final chapter deals with quasi-static deformation of compact particle

systems with enduring contacts. Although DEM can be applied to more dynamic

problems, as illustrated in previous chapters, the original BALL and TRUBAL

codes were intended to be used to examine quasi-static deformation in the context

of soil mechanics. Prior to the introduction of DEM, analyses were restricted to

regular arrays of equal-sizeed spheres and an example is provided at the start of this

chapter. This is followed by presentations of the results of 2D simulations of the

direct shear, simple shear and biaxial compression tests in order to examine and

illustrate shear localisation, shear bands and non-coaxiality of stress, fabric and

strain rate during simple shear deformation. Results of 3D periodic cell simulations

of axisymmetric compression are then presented to illustrate the evolution of the

induced structural anisotropy and coordination number, the significance of the

strong force sub-network and the effect of plastic deformation at the interparticle

contacts. Finally, general 3D states of stress are explored and, for radial deviatoric

straining, stress and fabric response envelopes are illustrated and a deviatoric flow

rule is identified. This final section of the chapter provides an excellent example of

the power of DEM simulations, due to the ability to simulate an infinite number of

different tests from exactly the same initial state, a problem that is impossible to

achieve by an experimentalist.

Prior to the introduction of DEM simulations by Cundall and Strack (1979), particle

based analyses of quasi-static deformation was restricted to regular arrays of equal-

sized spheres. In the 1950s Mindlin’s research group used their contact mechanics

solutions, see Sect. 3.1, to obtain differential stress-strain relationships for face-

centred cubic arrays (Duffy and Mindlin 1957), simple cubic arrays (Deresiewicz

1958) and close-packed hexagonal arrays (Duffy 1959). An alternative approach

was to consider regular arrays of rigid spheres in order to rationalise shear strength

in terms of the micromechanics at the particle scale. This approach was initiated by

Rennie (1959) who considered the conditions under which sliding occurred at all

contacts under axisymmetric compression. This problem was also examined by

Rowe (1962) and, in the context of plane strain, by Leussink and Wittke (1963). A

more comprehensive analysis of failure conditions for body-centred orthorhombic
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arrays of rigid spheres subjected to general 3D straining was provided by Thornton

and Barnes (1982), which will be presented in the following section.

8.1 Failure Conditions for Regular Arrays of Rigid Spheres

Consider a range of regular arrays of rigid spheres that can be classified as body-

centred orthorhombic; and include body-centred tetragonal, body-centred cubic and

face-centred cubic arrangements as special cases. The structure of the body-centred

orthorhombic array is shown in Fig. 8.1a. The central sphere is in contact with eight

other spheres whose centres are defined by the coordinates

Xi ¼ liD i¼1, 2, 3ð Þ ð8:1Þ

where D is the diameter of the spheres and li are the direction cosines of the branch

vector joining the centres of each of these spheres with the centre of the central

sphere, which is located at the origin of the Cartesian coordinate system shown.

Consider irrotational deformation for which the principal stress and strain-rate

tensors are coaxial. Coaxiality is associated with a “multiple sliding” mechanism

in which sliding occurs at all contacts and the eight spheres remain in contact with

the central sphere throughout the subsequent deformation. Furthermore, for irrota-

tional deformation, the magnitude of the relative displacement-rate, _Δ, is the same

at all contacts and so we need only consider the relative displacement of one of the

spheres, as shown in Fig. 8.1b. Hence, if the assembly is subjected to a uniform

strain-rate _εi j, the relative displacement-rate of the contacting sphere may be

expressed as

Fig. 8.1 Body-centred orthorhombic array (a) configuration (b) contact details
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_Xi ¼ _εi jX j ð8:2Þ

or

_Xi ¼ mi2 _Δ ð8:3Þ

where mi are the direction cosines of the displacement-rate vector. Using Eqs. (8.1),

(8.2) and (8.3) we obtain the strain-rate tensor

_εi j ¼ mi2 _Δ

l jD
ð8:4Þ

in which _εi j ¼ 0 for i 6¼ j, i.e. the principal strain-rate directions coincide with the
axes of the Cartesian reference frame.

Since the tractions acting on the surface of a typical sphere are discrete forces

acting at the points of contact with adjacent spheres, the state of stress within a

sphere is not homogeneous. However, due to the regular arrangement of the

spheres, the average stress tensor will be identical for all spheres and will be

equivalent to the macroscopic state of stress for a large assembly of spheres. The

macroscopic stress tensor is defined by

σi j ¼ 1

V

ð
V

σi jdV ¼ 1

V

Xn
1

xiP j ð8:5Þ

where V is the volume of the space occupied by each sphere on which there are

n discrete forces P acting at the contacts defined by the coordinates xi. It is

convenient to partition the stress tensor as follows

σi j ¼ αi j þ Si j ð8:6Þ

where α is the normal force contribution and S is the tangential force contribution to
the stress tensor. For irrotational deformation there is no particle spin and hence, in

order to satisfy moment equilibrium for each sphere, all the tangential forces must

be equal. It then follows that, since coaxiality is associated with sliding at all

contacts, all the normal forces must also be equal. Therefore, let N be the normal

force and T ¼ μN be the tangential force at each contact.

If the direction cosines of the contact normal vector are ni (¼ li for spheres) then
the normal and tangential force contributions are obtained as

αi j ¼ 1

V

Xn
1

xiN j ¼ 4ND

V
nin j ð8:7Þ
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and

Si j ¼ 1

V

Xn
1

xiT j ¼ 4μND

V
nim j ð8:8Þ

in which αi j ¼ Si j ¼ 0 for i 6¼ j. Substituting Eqs. (8.7) and (8.8) into (8.5)

σi j ¼ σkk nin j þ μnim j

� �
with σkk ¼ 4ND

V
ð8:9Þ

Considering the rate of energy dissipation per unit volume, we may write

σi j _εi j ¼ αi j þ Si j
� �

_εi j ð8:10Þ

Substituting Eqs. (8.4), (8.7) and (8.8) leads to αi j _εi j ¼ 0 and Si j _εi j ¼ 8T _Δ=V
demonstrating that the normal force contribution is the non-dissipative stress and

the tangential force contribution is the dissipative stress.

The stress tensor, defined by Eq. (8.9), applies to all body-centred orthorhombic

arrays and defines the states of stress that will cause yield, the yield mechanism

being defined by the strain-rate tensor, given by Eq. (8.4). Thus, having specified

the physical properties of the array (structure and interparticle friction) it is possi-

ble, for a given mean stress, to identify the complete range of stress states that will

cause yield by varying the direction of the relative displacement-rate vector _Δ at the

contacts.

8.1.1 Solutions

Yield conditions are conventionally represented in principal stress space by yield

surfaces. Due to the dependence on mean stress it is clear that the yield surfaces are

cones and it is then convenient to depict the yield conditions on the deviatoric plane

(σkk ¼ constant) of principal stress space, as illustrated in Fig. 8.2. For the body-

centred cubic array l1 ¼ l2 ¼ l3 ¼ 1=
ffiffiffi
3

p� �
the yield conditions are defined by a

circle centred on the space diagonal, as shown in Fig. 8.2a. The radius of the circle

is equal to μσkk=
ffiffiffi
3

p
and, according to Eq. (8.4), all the states of stress defined by the

circular yield locus are associated with zero rate of volumetric strain. The yield

conditions for body-centred tetragonal arrays e:g: l1 6¼ l2 ¼ l3ð Þ are defined by

ellipses, as shown in Fig. 8.2b, which are symmetric about one of the axes and

whose centres are displaced from the space diagonal. Figure 8.2c shows a typical

yield locus for a body-centred orthorhombic array l1 6¼ l2 6¼ l3ð Þ.
Although there are an infinite number of possible body-centred orthorhombic

arrays there are restrictions due to the particle shape in that, for spheres, the

directions cosines are restricted to the range 1=2 � li � 1=
ffiffiffi
2

p
. Consequently
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there is a limit to the possible locations of the yield loci on the deviatoric plane.

Figure 8.3 shows the limiting envelope that circumscribes all the limiting yield loci.

It is interesting to note that the envelope is rather similar to the experimentally

observed failure envelope of Lade and Duncan (1975), see also Sect. 8.3.2.

The yield locus shown in Fig. 8.2c is redrawn in Fig. 8.4a and a three dimen-

sional view is shown in Fig. 8.4b. The yield conditions for all body-centred

orthorhombic arrays (with the exception of the body-centred cubic case) are defined

by oblique elliptical cones with their base planes parallel to the deviatoric planes.

Figure 8.4b illustrates how the total stress vector is subdivided into its

non-dissipative, α, and dissipative, S, components. It can be seen that the

non-dissipative stress vector coincides with the axis of the cone and the dissipative

stress vector lies in the deviatoric plane. The corresponding components on the

deviatoric plane are shown in Fig. 8.4a which illustrates that only part of the

deviatoric stress is dissipative since

si j ¼ ai j þ Si j ð8:11Þ

σ1
σ1 σ1

σ2
σ2 σ2σ3 σ3 σ3

a b c

Fig. 8.2 Deviatoric yield loci (a) body-centred cubic (b) body-centred tetragonal (c) body-centred
orthorhombic

σ1

σ2σ3

Fig. 8.3 Limit envelope
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where the deviatoric stress

si j ¼ σi j � σkkδi j=3 ð8:12Þ

and

ai j ¼ αi j � αkkδi j=3 ð8:13Þ

Yield cones for three body-centred tetragonal arrays l2 ¼ l3ð Þ are shown in

Fig. 8.5 with the strain-rate vectors for axisymmetric stress states σ22 ¼ σ33ð Þ
superimposed. It is clear that the normality rule of classical plasticity theory does

not apply. Instead, the strain-rate vectors are normal to the axes of the cones. This is

a physical requirement that the strain-rate and non-dissipative stress vectors are

orthogonal.
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Fig. 8.4 Geometry of a typical yield surface
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Fig. 8.5 Yield cones for body-centred tetragonal arrays
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It follows from the geometry in Fig. 8.5 that planes orthogonal to the axis of the

cone may be referred to as “dissipative stress planes. Adopting this terminology, it

is found that normality of the strain-rate vector to the yield surface is only observed

when the dissipative stress planes are examined by looking down the axes of the

cones. This is illustrated in Fig. 8.6, for the case of the body-centred orthorhombic

solution shown in Fig. 8.2c.

As shown in Fig. 8.2, the location and shape of the deviatoric yield loci depend on

the structure of the array. Yield results in a change in structure but, for irrotational

deformation, the general body-centred orthorhombic description remains valid

throughout the strain softening deformation process. Consequently it can be inferred

from Figs. 8.2, 8.4, and 8.5 that, during deformation, the non-dissipative stress vector

(which coincides with the yield cone axis) rotates about the origin of principal stress

space and, hence, the deviatoric yield loci translate, distort and rotate in a manner that

reflects the changes in the structural anisotropy of the array.

Figure 8.7 illustrates the evolution of the deviatoric yield locus for a face-centred

cubic array that is deformed in an arbitrary manner into a body-centred cubic

arrangement.

The initial yield locus is centred at A with the stress state defined by point

1. During deformation the centre of the yield locus follow the trajectory ABCDE

with the corresponding stress path defined by the points 12345. The lines A1....E5

correspond to the current dissipative stress vectors and it can be seen that they are

tangential to the trajectory ABCDE of the centre of the yield locus. Therefore, the

motion of the deviatoric yield locus may be defined as follows

_ai j ¼ �hSi j ð8:14Þ

σ1

σ2

σ3

Fig. 8.6 Dissipative stress

plane viewed along the axis

of the cone
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which, it is interesting to note, corresponds to Ziegler’s (1959) modification to

Prager’s (1955) kinematic hardening rule.

From the geometrical solutions presented above it is possible to identify the

complete corresponding macroscopic constitutive plasticity model in terms of the

yield function, flow rule and the (negative) hardening law, see Thornton and Barnes

(1982) for details. However, for random arrays of spheres, even monodisperse

systems, the above type of analysis is not possible due to the irregular arrangement.

This, together with other complications such as particle rotation, particle shape and

polydispersity, is what makes real granular materials, even spherical particle

systems, so complex and fascinatingly challenging, as will be demonstrated in the

remainder of this chapter.

8.2 2D Simulations

Early applications of DEM to quasi-static deformation were restricted to

two-dimensional systems (Cundall and Strack 1979; Thornton and Barnes 1986;

Rothenburg and Bathurst 1989). Two-dimensional simulations of quasi-static

deformation are, in general, of limited use due to the extreme kinematic constraint

that there cannot be any out-of-plane motion of the particles. Even in plane strain

σ1

1

2
3

4

5

A

B

C

D

E

σ2σ3

Fig. 8.7 Evolution of the

deviatoric yield locus

during deformation
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particles are free to move out-of-plane. It simply requires that the average out-of-

plane motion is zero.

However, since visualisations of 3D particle systems are extremely difficult to

clearly illustrate, 2D simulations can be useful to obtain a basic understanding of

certain micromechanical features of granular media. In this sense, the next section

considers 2D simulations in the context of strain localisation and shear bands. This is

followed by results obtained from 3D simulations in axisymmetric compression, the

so-called ‘standard triaxial test’, followed by an examination of the shear behaviour

of compact particle systems under general 3D loading in which σ1 6¼ σ2 6¼ σ3.

8.2.1 Direct Shear Tests

In the direct shear test, the top half of the specimen is translated relative to the bottom

half of the specimen in order to create a shear band/plane across the mid-height of the

specimen. Although the direct shear test has been criticised for many years, it is still

widely used in industry for testing cohesionless material. Traditionally, in process

engineering the test is performed in a Jenike shear cell, which is circular in cross-

section, whereas the Casagrande shear box, which has a square cross-section, is used

in geotechnical engineering. In both cases the externally applied vertical and hori-

zontal forces are measured and the ratio of horizontal to vertical load is assumed to

provide an estimation of the average ratio of shear to normal stress acting in the shear

band and, thereby, provide a direct measure of the angle of internal friction, although

the exact state of stress within the shear band is unknown.

The test arrangement is shown diagrammatically in Fig. 8.8a. The upper half of

the specimen is contained by four walls (AB, CD, AD and BI), which are all

translated horizontally in the opposite direction to the four walls (EF, GH, FG

and CJ) containing the lower half of the specimen. The top and bottom walls are

free to move vertically, but not to rotate. In simulations, walls do not interact with

other walls, only with adjacent particles. More details can be found in Thornton and

Zhang (2003), Zhang and Thornton (2007).

Fig. 8.8 The direct shear test (a) schematic diagram (b) forces acting on the top half of the

specimen

8.2 2D Simulations 155



Two-dimensional simulations were performed on a polydisperse system of 5000

elastic spheres. Particle-particle and particle-wall interactions were modelled by the

Hertz, Mindlin and Deresiewicz models described in Sect. 3.1. During all simula-

tions no out-of-plane motion was permitted and, for the purpose of calculating

volumes, necessary for determining the stress tensor and the porosity, the dimen-

sion in the third orthogonal direction was taken to be the average particles diameter,

in this case 0.06 mm.

By summing all the forces at the particle/wall contacts the resolved reaction

forces may be calculated. Figure 8.8b shows the wall reaction forces for the upper

part of the shear box. From equilibrium it follows that

T ¼ N1 � N2 þ T3 ð8:15Þ
N ¼ T1 � T2 þ N3 ð8:16Þ

and the Coulomb definition of the mobilised angle of shear resistance ϕc is given by

tan ϕc ¼
τ

σn
¼ T

N
ð8:17Þ

The shaded central band shown in Fig. 8.8a, which is about ten mean particle

diameters wide, is an approximation to the anticipated shear zone that will develop

at the mid-height of the specimen. Consequently, an approximation to the state of

stress acting in the shear zone can be obtained from the distribution of contact

forces in the shaded region using Eq. (2.45).

Sample preparation is simulated by omitting the top wall, AD in Fig. 8.8a, and

randomly generating the particles as a granular gas (no contacts) in a rectangle

whose height is approximately 40 % higher than the box height, AF in Fig. 8.8a. By

introducing gravity the particles rain down to form a bed. The top wall is then

positioned above all the particles and moved downwards to establish multiple ball/

wall contacts. The gravity field is then removed.

In order to simulate constant vertical normal stress tests, the top and bottom

walls are permitted to move in the vertical direction. Initially, tests were simulated

by adjusting the vertical position of the top and bottom walls to keep the vertical

normal force N3 constant, see Fig. 8.8b. However this did not work, because the

vertical tangential forces T1 and T2 cannot be controlled by moving the top wall.

Ideally one would wish to maintain constant the vertical normal stress acting in the

shear band but, for reasons given later, this is not possible. Consequently the stress

tensor for the complete specimen was calculated using Eq. (2.45) and the top and

bottom walls were continuously adjusted to maintain the average vertical normal

stress σv, for the complete specimen, at a constant value. To achieve this, at each

time step, the vertical velocity of the top wall was set to

_uv ¼ g σ d
v � σ c

v

� � ð8:18Þ

where σdv is the desired vertical normal stress, σcv is the calculated vertical normal

stress for the whole specimen and g is the gain parameter, in this case set to 0.001.
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The vertical velocity of the bottom wall is set to minus the value calculated by

Eq. (8.18). If _uv is greater than a specified maximum admissible velocity _umax then

_uv ¼ sign _umax, g σ d
v � σ c

v

� �� � ð8:19Þ

with _umax set to 8 μm/s.

Figure 8.9a shows the particle configuration at the end of shearing, which may be

compared with a real experimental result shown in Fig. 8.9c. By colour-banding the

particles vertically before the start of shear it can be seen that deformation is

localised in a narrow shear zone located at the mid-height of the specimen. The

actual shape of the shear zone is lenticular, not rectangular as indicated diagram-

matically in Fig. 8.8a. The width of the shear band in the centre is wider than near

the edge. It is clear that, within the lenticular shear zone, the shear strain is greatest

near the edges and reduces towards the centre. Consequently the state of stress is

not homogeneous within the shear zone.

The force transmission through the system of particles, at peak stress ratio, is

illustrated in Fig. 8.9b. Each line is drawn between the centres of two particles in

contact with each other. The larger-than-average contact forces are indicated by

black lines and grey lines indicate the lower-than-average contact forces. The

magnitude of each force is indicated by the thickness of the line, scaled to the

current maximum contact force. It can be seen from the figure that there are

significantly large contact forces acting on the top left-hand wall and the bottom

right-hand wall. Only small forces are transmitted to the other two vertical walls.

On the top and bottom walls the large forces concentrate to the side near the end

walls that push the sample. At the other side of the top and bottom walls the forces

are relatively small. It is clear that the normal stress distribution along the top and

Fig. 8.9 Deformation pattern (a) and force transmission pattern (b) compared with experiments

by (c) Vardoulakis and Sulem (1995) and (d) Dyer and Milligan (1984)
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bottom walls is not uniform. Consequently, the strong force transmission pathways

are inclined as they pass through the shear zone at the mid-height of the specimen.

The overall pattern clearly indicates a very heterogeneous distribution of stress that

correlates very well with photoelastic observations for crushed glass, shown in

Fig. 8.9d, in which the orientation of the light stripes approximate to the major

principal stress direction.

The evolution of the mobilised shear strength obtained from three direct shear

simulations in which the normal stress was maintained constant at 10, 15 and

20 MPa is shown in Fig. 8.10. It can be seen that, in spite of the gross inhomoge-

neity within the specimen, the evolution of the mobilised shear strength defined by

T/N is similar to that obtained from calculating the average stress ratio in the central

part of the specimen.

Figure 8.11a shows the evolution of the porosity of the complete specimen, as

determined from the vertical displacements of the top and bottom walls, and the

porosity changes that occurred in the central region used to approximate the shear

band. Although the calculated porosity changes in the shear band show significant
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Fig. 8.11 Evolution of (a) porosity and (b) vertical and horizontal normal stresses in the shear

band
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fluctuations, it is clear that the rate of dilation and the final voidage in the shear band

exceeds that indicated by the wall movements.

Figure 8.11b shows the evolution of the vertical and horizontal normal stresses

acting in the central part of the specimen used to approximate the shear band.

Although the average vertical normal stress of the complete specimen was con-

trolled to remain constant it can be seen that the vertical normal stress in the

approximated shear band increases by about 10 % during the simulations. As the

relative displacement between the upper and lower parts of the shear box increases

the horizontal normal stress increases until the stress ratio τ/σn is a maximum. At

this stage the horizontal normal stress is greater than the vertical normal stress

reflecting the fact that the strong force chains, shown in Fig. 8.9b, are inclined at an

angle less than 45� to the horizontal. After peak stress ratio the horizontal normal

stress decreases and, significantly, becomes approximately equal to the vertical

normal stress when the steady state is attained at the end of the tests. If the vertical

and horizontal normal stresses in the approximated shear band are equal then σn
defines the centre of the Mohr circle at the steady state, the radius of which is equal

to τ and the stress combination (τ,σn) is given by point P in Fig. 8.12. Note that the

Mohr definition of the mobilised angle of shearing resistance ϕm 6¼ ϕc since

sinϕm ¼ σ1 � σ2
σ1 þ σ2

ð8:20Þ

and, at the steady (critical) state, tanϕc ¼ sinϕm.

In the standard shear testing procedures using the Jenike shear cell, the sample is

sheared in two steps. In the first, the sample is ‘presheared’ under a constant normal

Fig. 8.12 Steady state stress conditions in the shear band
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stress σn until steady state flow is established and τ remains constant. It is normal

practice to assume that the measured values of σn and τ define a point on the

‘effective yield locus’ (EYL) shown in Fig. 8.13.

From the experimental data the location of the corresponding Mohr stress circle

is not known. It is conventionally assumed that the ‘effective yield locus’ is the
same as the Mohr-Coulomb line traditionally used in soil mechanics, implying that

ϕc¼ ϕm contrary to the inequality illustrated in Fig. 8.12. Consequently, the EYL is

assumed to be tangential to the Mohr circle as illustrated by the larger circle shown

in Fig. 8.13 with the ‘major consolidation stress’ σ1 ¼ σ1 Mohrð Þ. However, the
simulation data shown in Fig. 8.11b indicate that the actual Mohr circle is the

smaller of the two circles and the ‘major consolidation stress’ is σ1 ¼ σ1 Coulombð Þ.
From the geometry of Fig. 8.13, it follows that

σ1 Mohrð Þ
σ1 Coulombð Þ

¼ 1þ sinϕcð Þ 1þ tan2ϕcð Þ
1þ tanϕcð Þ ð8:21Þ

which indicates that the Mohr interpretation over predicts the major principal stress

and that, as a consequence, the corresponding ‘flow function’ under predicts the

‘unconfined yield stress’ for a given value of major principal stress.

8.2.2 Shear Bands

In this section, biaxial compression tests are used to examine strain localisation and

shear band formation, using polydisperse systems of 5000 elastic spheres with

interparticle friction μ¼ 0.5 and either kinematically controlled wall boundaries

or periodic boundaries.

Figure 8.14 shows a wall-bounded system with a porosity of 0.406. The initial

configuration, prior to shearing, is shown in Fig. 8.14a in which the particles are

colour banded to enable subsequent identification of possible shear bands. Fig-

ure 8.14b shows the system with zero wall friction at 30 % deviator strain. Note that

the direction of compression is horizontal. It is evident that there is an inclined shear

band running from the top right-hand corner to a position along the left-hand side

EYL

τ

σn σ1(coulomb) σ1(Mohr) σ

Fig. 8.13 Possible Mohr circles of stress at the steady state
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wall. When the wall friction coefficient was changed to μw¼ 0.5, two conjugate

intersecting bands are observed, Fig. 8.14c, emanating from near the corners of the

specimen. The figure demonstrates that the inclination of shear bands depends on

the boundary conditions.

Results of periodic cell simulations are illustrated in Fig. 8.15 for three different

initial porosities. A distinct shear band developed in the densest specimen, as shown

in Fig. 8.15a. Figure 8.15b is typical of medium dense specimens with no evidence

of shear band formation. For the loosest system, Fig. 8.15c suggests a folding

mechanism similar to that observed in rock formations. Interestingly, this system

never established a percolating pattern of force transmission across the system with

enduring contacts. Throughout the test, most particle interactions were collisional

corresponding to fluid-like behaviour.

Fig. 8.14 Wall bounded specimens (a) before shear (b) end of shear (μw¼ 0.0) and (c) end of

shear (μw¼ 0.5)

Fig. 8.15 Periodic cell specimens with initial porosities (a) 0.365 (b) 0.401 (c) 0.436
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Further detailed information can be obtained about shear bands, as illustrated in

Figs. 8.16, 8.17, and 8.18 for the densest specimen illustrated in Fig. 8.15a. Particle

locations at any two loading steps can be used to calculate displacement increments.

In Fig. 8.16a the incremental displacement field is shown for an increment in

deviator strain of about 2 % just prior to attaining peak stress ratio. As expected,

no clear shear band is observed at this pre-peak stage. The incremental displace-

ment field is essentially uniform except for a few hints of localization taking place

randomly inside the system. Figure 8.16b shows that during post-peak deformation

there are large incremental displacements distributed along an inclined band, which

corresponds to the finally developed shear band shown in Fig. 8.15a.

Fig. 8.16 Incremental displacement fields (a) pre-peak (b) post-peak

Fig. 8.17 Velocity fluctuations (a) near the start of shear (b) just after peak
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Figure 8.17 shows the fluctuating velocity field near the start of shear and just

after peak stress ratio. The velocity fluctuations are defined asevi ¼ vi � vih i, where
vi is the particle velocity and hvii is the average particle velocity. In a periodic cell,
if the origin is taken to be the centre of the cell, the average particle velocity is zero

and the fluctuating velocity is that resulting from the particle contact forces and

calculated using Eq. (2.3). Figure 8.17a shows the fluctuating velocity field near the

start of shear. It can be seen that the velocity vectors form many, randomly

distributed, local circular cells, as first observed by Williams and Rege (1997).

As shearing continues the velocity vectors rearrange, the vortex structures enlarge

and, after peak stress ratio, the large velocity fluctuations align in opposite direc-

tions along a distinct shear zone, as shown in Fig. 8.17b.

Figure 8.18 shows particle rotations during the same time intervals as the

displacement increments shown in Fig. 8.16. In the figure, only rotations larger

than 10 % of the current maximum particle rotation are shown. Open circles denote

clockwise (negative) rotation and solid circles denote anticlockwise (positive)

rotation. As shown in Fig. 8.18b, most of the particles in the established shear

band exhibit positive rotations. Prior to peak stress ratio, most of the particles

exhibiting significant negative rotations align in the direction perpendicular to that

of the positive rotations.

It is clear from Figs. 8.16a and 8.18a that the locations of the large particle

rotations correlate with the pattern of the incremental displacement field and indicate

the existence of small micro-shear bands during strain hardening prior to reaching the

maximum deviator stress, as first demonstrated by Kuhn (1999). Thornton and Zhang

(2006) also demonstrated that the locations of the intermittent small micro-shear

bands prior to peak also correlated with local regions of high dilation.

It should be noted that, in Figs. 8.16, 8.17, and 8.18, there appears to be a second

shear band during post-peak deformation, which is located at the bottom left-hand

corner. However, this is not correct because of the periodic nature of the

Fig. 8.18 Particle rotation field (a) pre-peak (b) post-peak
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boundaries. This ‘short’ shear band also exists at the bottom left-hand corners of the

cell above and the cell to the right, and is therefore simply a continuation of the one

continuous shear band.

Figure 8.19 illustrates the occurrence of a shear band in an initially rectangular

periodic cell, Fig. 8.19a, with an aspect ratio of 1.5. The system was compressed

vertically, expanded horizontally, and it can be seen in Fig. 8.19b that a shear band

formed post-peak inclined at an angle >45� to the major principal plane. At the end

of the simulation, however, the shear band inclination had reduced to about 45�,
Fig. 8.19c. In a periodic cell, in order to maintain continuity with surrounding cells,

the shear band inclination necessarily adjusts as the cell dimensions change and,

therefore, the inclination of shear bands cannot be examined by periodic cell

simulations. However, the existence of shear bands in periodic cell simulations

demonstrates that localization and shear band formation are genuine material

behaviours rather than artefacts created by boundary imperfections.

In this section it has been demonstrated that, prior to the attainment of peak shear

strength, the deformation becomes heterogeneous at the grain scale as a conse-

quence of the development of conjugate sets of micro-shear bands, which are

characterised by high rates of dilation and particle spins. At peak shear strength,

buckling of the chains of particles transmitting strong contact forces occurs and this

creates strong discontinuities in the fluctuating velocity field that leads to the

development of a persistent shear band along one of the existing micro-shear

band locations. The other micro-shear bands then disappear due to strain

localisation within the dominant shear band.

8.2.3 Simple Shear

It is difficult to reliably determine the stress-strain relationship within a shear band due

to the small number of particles involved. It is, in fact, questionable as to whether or

Fig. 8.19 Particle configuration at shear strains of (a) 0 % (b) 17.6 % (c) 33 %
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not a continuum description is appropriate when the width of the band is no more than

ten particles. However, it is normally accepted that the mode of deformation within a

shear band is one of simple shear. Consequently, simple shear simulations have been

performed in order to determine the evolution of the stress tensor, dilation rate, and the

principal directions of stress and strain-rate, Thornton and Zhang (2006). This was

achieved by simulating systems of particles that were contained within four kinemat-

ically controlled walls, analogous to the Grenoble 1γ2ε apparatus, Joer et al. (1992).
This ensured overall uniform strain in contrast to the alternative Couette configuration

that invariably results in heterogeneous stress and strain states.

The simple shear simulation model is diagrammatically illustrated in Fig. 8.20, in

which the dashed lines show the initial positions of the wall boundaries. In order to

apply simple shear, the two vertical walls AB and CD are rotated at a constant angular

velocity about the mid-points of the two walls. The top and bottom walls AD and BC

are translated using a compatible horizontal velocity in opposite directions and, in

addition, the vertical velocities are continuously adjusted using servo-control algo-

rithms to ensure that the vertical normal stress component of the stress tensor σ22
remains constant. The stress tensor and the fabric tensor are calculated for the system

of particles using Eqs. (2.45) and (2.25) respectively, but the summations do not

include the contacts with the walls. In the simulations, the wall friction coefficient

was the same as the interparticle friction coefficient, i.e. μw ¼ μ ¼ 0:5.
Three specimens were prepared with similar initial porosities but with different

initial normal stress ratios, K0 ¼ σh=σv¼ 0.5, 1.0 and 2.0 respectively. Figure 8.21
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shows the evolution with shear strain γ ¼ δ=hð Þ of (a) the ratio of shear to normal

stress acting on the horizontal plane τ21/σ22 and (b) the corresponding increase in

the vertical dimension of the specimen. It can be seen from the figure that the

evolutions of the stress ratio for K0� 1 are almost identical but, for the case of

K0< 1, the specimen exhibits a significantly more compliant response and the shear

strength is significantly lower. At the end of the tests, the stress ratio is the same for

all three specimens and all three are deforming at constant volume. Figure 8.21b

shows that, for the K0< 1 case, there is an initial contraction before the specimen

starts to expand. Also, for K0� 1, the specimens dilate from the beginning but at

significantly different rates, even though the evolutions of stress ratio are very

similar. The results demonstrate that, at least in simple shear, there is no simple

ubiquitous relationship between stress ratio and rate of dilation, as usually assumed

in traditional soil mechanics literature, Taylor (1948), Rowe (1962) and Bolton

(1986). Although there is a significant effect of K0 on the stress ratio and dilatancy

response, Fig. 8.22a demonstrates that the deviator fabric is insensitive to the initial

value of K0.

Fig. 8.21 Effect of initial normal stress ratio on the evolution of (a) the stress ratio and (b) dilation

Fig. 8.22 Evolution of (a) deviator fabric (b) vertical and horizontal normal stresses
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A major problem with laboratory simple shear experiments normally is the

inability to accurately measure the stress σh acting parallel to the horizontal, zero-

extension direction. This means that the location of the Mohr circle of stress and the

principal stress directions are unknown. Figure 8.22b shows the evolution of the

two normal stresses, σh and σv. In the figure the solid symbols indicate the vertical

normal stress that is held constant and the horizontal normal stress is indicated by

open symbols. The remarkable feature of this figure is that, irrespective of initial

stress ratio K0, the horizontal normal stress increases or decreases in order that the

two normal stresses are equal at large strains.

Figure 8.23 illustrates the force transmission at the start of shear and at peak

stress ratio for the case K0¼ 1. In the figure, the larger than average contact forces

are indicated by black lines joining the centres of the two particles transmitting the

force and, in a similar way, the less than average contact forces are indicated by

grey lines. Figure 8.23a demonstrates that, since the initial state is isotropic, the

larger than average forces are randomly orientated. In contrast, Fig. 8.23b shows

that the orientation of the larger than average contact forces align themselves with

the direction of the major principal stress, indicating that the direction of the major

principal stress rotates during simple shear deformation.

A typical Mohr circle representation of the state of stress during simple shear

deformation is shown in Fig. 8.24a and the corresponding Mohr circle defining the

strain-rate tensor is shown in Fig. 8.24b, where ψ defines the angle of dilation. In

Fig. 8.24a the point on the circle with coordinates (�τ, σv) defines the shear stress
and vertical normal stress acting on the horizontal planes. Drawing a line in the

direction of the (horizontal) plane on which this stress combination acts intersects a

point on the circle known as the ‘pole of the planes’, see Schofield and Wroth

(1968), p. 295. The property of the pole is that a line connecting any point on the

circle with the pole defines the orientation of the plane on which the shear/normal

Fig. 8.23 Force transmission (a) at start of shear (b) at peak shear strength
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stress combination represented by that point acts. Figure 8.24a indicates the orien-

tation of the planes on which the two principal stresses act. Consequently, the angle

ζ defines the inclination of the major principal stress to the horizontal direction. It

follows from Fig. 8.24a that ζ ¼ π=4� θ=2 where

tanθ ¼ σh � σv
2τ

ð8:22Þ

Applying the same procedure to Fig. 8.24b we identify that the angle η defining
the inclination of the major principal strain-rate to the horizontal direction is

η ¼ π=4� ψ=2 and

tanψ ¼ _εh � _εv
_γ

¼ � _εv
_γ

ð8:23Þ

It follows from the above that if ψ ¼ θ then η ¼ ζ and the principal directions of

stress and strain-rate are coaxial. Non-coaxiality occurs if ψ 6¼ θ. The difference

between the inclinations of the major principal stress and major principal strain-rate

is the angle of non-coaxiality ι ¼ η� ζ. In order to identify ι the procedure is to

(i) draw the Mohr circle of strain-rate with the same radius as the Mohr circle of

stress, (ii) superimpose the strain-rate circle on the stress circle and (iii) rotate the

strain-rate circle so that the points representing the conditions on the horizontal

plane (�τ, σv) and (_γ=2, _εv) coincide. An example of this for K0> 1 is illustrated in
Fig. 8.25 for (a) expansion (ψ > 0) and (b) contraction (ψ < 0).

Note that, in simple shear, there is a distinction between the Mohr definition of

the angle of shearing resistance given by

sinϕm ¼ σ1 � σ2
σ1 þ σ2

ð8:24Þ

Fig. 8.24 Mohr circle of (a) stress (b) strain-rate
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and the Coulomb definition given by

tanϕc ¼
τ

σv
ð8:25Þ

as can be seen in Fig. 8.25. From the geometry of Fig. 8.25a it follows that

tanϕc ¼
sinϕmcosθ

1� sinϕmsinθ
ð8:26Þ

and, from the figure, θ ¼ ψ þ 2ι. Therefore

tanϕc ¼
sinϕmcos ψ þ 2ιð Þ

1� sinϕmsin ψ þ 2ιð Þ ð8:27Þ

The above equation relates the stress tensor to the strain-rate tensor and, therefore,

can be considered to be the flow rule for simple shear deformation.

For the simple shear simulations with different initial stress states, the evolution

of the major principal stress and strain-rate directions (inclination to the horizontal)

is shown in Fig. 8.26. The corresponding evolution of the angle of non-coaxiality is

shown in Fig. 8.27. From the figures it is noted that (i) if K0 6¼ 1 then the initial angle
of non-coaxiality is either 0� or 90�, (ii) when the stress ratio is a maximum,

cf. Fig. 8.21a, the angle of non-coaxiality ι 6¼ 0 and (iii) at large strains ι¼ 0,

i.e. the directions of stress and strain-rate are coaxial. Consequently, it is significant

to note that at large strains, when the specimens have reached what in soil

mechanics terminology is referred to as ‘the critical state’, coaxiality of stress and

strain-rate exists, as illustrated in Fig. 8.28. Remarkably, this phenomenon was first

suggested by Hill (1950) but subsequently tended to be ignored by the soil mechan-

ics community.
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It has been shown above that, at any stage of shearing, the angle of

non-coaxiality depends on the mobilised shear strength, the rate of dilation and

the initial stress state. Consequently, the evolution of non-coaxiality is complicated

and cannot, in general, be predicted a priori since it is not simply a function of a

single material property as suggested by Mandl and Fernandez-Luque (1970).

Fig. 8.27 Evolution of the angle of non-coaxiality
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8.3 3D Simulations

In DEM simulations one may choose to mimic laboratory experiments but, if the

objective is to relate the micromechanics to the meso-scale constitutive behaviour,

it is necessary to use a periodic cell. In this section all the reported simulations were

performed using a representative volume element, with periodic boundaries,

subjected to uniform strain fields. In order to control the deformation of the system,

a strain-rate tensor _εi j is specified, according to which the centres of all the spheres

in the periodic cell move, as though they are points in a continuum, to satisfy the

equation

Δxi ¼ _εi jx jΔt ð8:28Þ

in which xj are the coordinates of a sphere centre and Δt is the small timestep used to

advance the evolution of the system. Additional incremental displacements occur as

a result of the interactions between contiguous spheres, as explained in Sect. 2.1. In

order to permit quasi-static (_ε ¼ 10�5) simulations to be continued to large strains

(ε¼ 0.5) within a reasonable timescale it is necessary to use density scaling. In the

simulations reported the particle density is scaled up by a factor of 1012. This

increases the timestep from microseconds to seconds and does not affect the forces,

displacements, work or energy.

In order to follow desired stress paths, servo-control algorithms are required and

take the general forms

_ε ¼ g σ∗ � σð Þ ð8:29aÞ
_εt ¼ _εt�Δt þ g σ∗ � σð Þ ð8:29bÞ

where σ∗ is the desired value of stress, σ is the calculated value and g is a gain

parameter whose appropriate value is obtained by trial and error. Equation (8.29a)

is used to bring the system to equilibrium at a desired stress state, for example when

performing isotropic compression. Equation (8.29b) is used to adjust the strain-rate

to minimise the difference between the desired and calculated stress states when

following a desired stress path, for example when performing shear deformation

with the mean stress held constant. Both equations may be expressed in terms of

individual components or combinations of components of the strain-rate and stress

tensors depending on the desired loading path to be followed. More than one servo-

control algorithm may be used but care must be taken to avoid conflicting adjust-

ments to the strain-rate tensor.

To start a simulation, spheres are randomly generated within a cuboidal cell

sufficiently large to provide an initial concentration of about 0.5 with no

interparticle contacts. After generation, the system is subjected to isotropic com-

pression using a strain-rate of 10�4/s until the mean stress has reached a value of

about 10 kPa. Isotropic compression is then continued using the servo-control

algorithm defined by Eq. (8.29a), with a limit set to 10�4/s, to raise the mean stress
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incrementally to the desired final value. If the value of interparticle friction to be

used in the shear stage is introduced at the start of isotropic compression then a

medium dense sample will be obtained. In order to obtain a dense sample the

interparticle friction is set to zero until the mean stress reaches 90 % of the desired

final value and then the desired value of interparticle friction is introduced for the

final increment of mean stress. A very loose sample can be obtained by using the

desired value of interparticle friction and switching off any particle rotation until

the mean stress reaches 90 % of the desired final value. Using these procedures

ensures that, with a sufficiently large number of particles, the prepared sample is

isotropic in terms of both the stress tensor and the fabric tensor. Figure 8.29

illustrates a polydisperse system of 8000 spheres in a periodic cell under isotropic

compression, axisymmetric compression and axisymmetric extension conditions.

8.3.1 Axisymmetric Compression

Figure 8.30 shows results obtained for a polydisperse system of 3620 elastic spheres

during axisymmetric compression σ1 > σ2 ¼ σ3ð Þ with the mean stress,

p ¼ σ1 þ σ2 þ σ3ð Þ=3, maintained constant at 100 kPa. Results are shown for

both a dense system and a loose one. Details of the particle properties etc. can be

found in Thornton (2000).

Figure 8.30a shows the evolution of the deviator stress σ1 � σ3ð Þ with deviator

strain ε1 � ε3ð Þ and the corresponding evolution of the volumetric strain

ε1 þ ε2 þ ε3ð Þ is shown in Fig. 8.30b. These two figures demonstrate that, qualita-

tively, the stress-strain-dilation response obtained for both the dense and loose

systems is typical of that obtained in laboratory experiments. The initial shear

modulus is much higher for the dense system, which exhibits a peak in the stress-

Fig. 8.29 Periodic cell under (a) isotropic compression (b) axisymmetric compression and (c)
axisymmetric extension conditions
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strain curve at about 5 % strain followed by strain-softening behaviour. The loose

system does not exhibit any strain-softening; the deviator stress increases at a

decreasing rate until an essentially constant value is reached at about 15 % strain.

The volumetric strain responses show that the dense system expands and the loose

system contracts. At large strains, both systems deform at constant volume and this

is associated with a constant deviator stress that is independent of the initial packing

density. It is worth noting that the stress-strain response of the dense system

demonstrates that strain-softening is a genuine material behaviour and not neces-

sarily the result of non-uniform deformation due to the existence of platen bound-

aries, which can be the case in laboratory experiments.

It is now well established that shear deformation of compact particle systems

produces an induced structural anisotropy that is developed primarily as a result of

contact separation occurring in directions that are approximately orthogonal to the

major principal strain direction. Structural anisotropy is defined by the distribution

of contact orientations and characterised by a fabric tensor ϕij defined by Eq. (2.25).
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Consequently, in axisymmetric compression, the degree of structural anisotropy

can conveniently be defined by the deviator fabric ϕ1 � ϕ3ð Þ, which is plotted in

Fig. 8.30c. The figure shows that the structural anisotropy increases at a decreasing

rate to a maximum value that is dependent on the initial packing density. The dense

system exhibits a decrease in structural anisotropy at strains in excess of 10 % until,

at large strains, the deviator fabric is the same for both systems. Although there is a

similarity between the stress-strain and fabric-strain curves shown in Fig. 8.30 there

is no simple relationship between the two, as will be demonstrated later. The

evolution of the mechanical coordination number Zm, defined by Eq. (2.22), is

shown in Fig. 8.30d. During the initial 3 % deviator strain, there is a rapid change in

the mechanical coordination number until a ‘critical’ value is attained, which

remains essentially constant thereafter, irrespective of whether the system is

expanding or contracting. It is considered that this ‘critical’ value in some way

reflects an underlying physical stability requirement but an exact explanation is still

awaited.

8.3.1.1 Effect of Interparticle Friction

In experiments it is difficult to distinguish between the effects of contact friction

and particle shape but, in numerical simulations the effects of contact friction can

be isolated. Thornton and Sun (1993) reported simulations of axisymmetric com-

pression using two different coefficients of interparticle friction μ¼ 0.3 and μ¼ 0.6

for both a dense system and a loose system. The results showed that an increase in μ
resulted in an increase in shear modulus and shear strength for both systems and

also resulted in a higher degree of structural anisotropy and higher rates of dilation.

Further effects of interparticle friction are shown in Fig. 8.31.

Figure 8.31a illustrates the effect of interparticle friction on the mobilised shear

strength sinϕ ¼ σ1 � σ3ð Þ= σ1 þ σ3ð Þ. Two sets of data obtained from the simula-

tions are shown, corresponding to the peak value sinϕmax and the value at the end of

the tests when the systems were deforming at constant volume sinϕcv, together with

experimental measurements of sinϕcv (including error bars) reported by Skinner

(1969). There is reasonable agreement between the simulated and experimental

data, except when μ ! 0. Skinner’s (1969) data suggest that sinϕcv is independent

of μ. This is contradicted by the results of the simulations, which are more

convincing, since random assemblies of frictionless spheres are inherently unstable

at all contacts all of the time, making it very difficult to develop any stable force

transmission through the system that would lead to the development of a deviator

stress. Also superimposed on the figure is the theoretical relationship suggested by

Horne (1969). The significant difference between the theoretical prediction and the

simulated data arises from the fact that the theory ignores the possibility of particle

rotation. If particle rotation is prohibited then the simulation data may approach the

theoretical curve.
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In Fig. 8.31b the void ratio at large strain, when the systems were deforming at

constant volume, is plotted against the interparticle friction coefficient. The figure

shows that, for a given mean stress, the critical void ratio depends on the

interparticle friction. In the case of μ¼ 0 the system, like a liquid, did not change

volume during shear. During all shear simulations, the ratio of sliding contacts

increases rapidly to a value that thereafter remains constant throughout the shear

stage. Figure 8.31c shows that increasing the interparticle friction reduces the ratio

of sliding contacts, as would be expected. In Fig. 8.31d it can be seen that the

critical mechanical coordination number decreases when the interparticle friction is

increased.
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8.3.1.2 Significance of the Strong Force Chains

For any system of discrete particles subjected to external loading, the transmission

of force from one boundary to another can only occur via the interparticle contacts.

Intuitively, therefore, we expect that the distribution of contacts will determine the

distribution of contact forces and that the forces will not necessarily be distributed

uniformly. From both photoelastic studies of two-dimensional arrays of discs

(Dantu 1957; Wakabayshi 1957; de Josselin de Jong and Verruijt 1969; Dresher

and de Josselin de Jong 1972; Oda and Konishi 1974) and both 2D and 3D

numerical simulations (Cundall and Strack 1979; Thornton and Barnes 1986;

Radjai et al. 1997; Thornton 1997) it has been demonstrated that the applied load

is largely transmitted by relatively rigid, heavily stressed chains of particles

forming a relatively sparse percolating network of above-average contact forces.

Groups of particles separating the strong force chains are only lightly loaded. The

implication is that, in a random system of particles, the applied load will search for

the shortest and most direct transmission path.

Even when both the microstructure and the stress state are isotropic, as can be

seen in Fig. 8.32a, some contacts transmit forces several times those of others but

with no preferred direction for the larger contact forces. During shear, the large

forces immediately realign to become oriented in the direction of the major

principal stress, as shown in Fig. 8.32b.

Rather than focus on the particles in the strong force chains, Radjai et al. (1997)

suggested that the contact network may be partitioned into two complementary

sub-networks: a ‘strong’ percolating sub-network of contacts transmitting above-

average contact normal forces and a ‘weak’ sub-network of contacts transmitting

below-average contact normal forces. From 2D simulations of biaxial compression

on a polydisperse system of about 4000 rigid discs, they concluded that the forces in

the strong sub-network account for all of the deviator stress, whereas the weak

sub-network contributes only to the isotropic component of the stress tensor. They

Fig. 8.32 Contact force transmission in a 2D array of polydisperse discs (a) isotropic stress state
(b) deviator stress state
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also found that the orientation of the induced structural anisotropy in the strong

network coincided with the orientation of the stress tensor but the orientation of the

induced structural anisotropy in the weak network was orthogonal to that of the

strong network. This was also demonstrated for a 3D polydisperse system of 8000

elastic spheres by Thornton and Antony (1998).

The stress tensor and the fabric tensor are defined by Eqs. (2.45) and (2.25)

respectively. Both of these tensors can be calculated on the basis of the separate

contributions of the contacts transmitting larger than average contact forces and the

contacts transmitting less than average contact forces, i.e.

σi j ¼ σ s
i j þ σ w

i j and ϕi j ¼ qϕ s
i j þ 1� qð Þϕw

i j ð8:30Þ

where the superscripts s and w indicate the strong and weak sub-networks and q is

the proportion of contacts in the strong sub-network.

Figure 8.33a shows the evolution of σ1 � σ3ð Þ, σ1 � σ3ð Þs and σ1 � σ3ð Þw ; the
evolution of ϕ1 � ϕ3ð Þ, ϕ1 � ϕ3ð Þs and ϕ1 � ϕ3ð Þw is shown in Fig. 8.33b. In both

figures the symbol f ¼ N= Nh i where N is the normal contact force. It is clear that

the results fully support the conjectures of Radjai et al. (1997). Throughout the

simulation the percentage of contacts in the strong sub-network was about 33 %.

The significance of this is that a system of compact particles is a highly redundant

system but in order to mobilise shear resistance only a minority of the contacts are

required as a consequence of the way in which forces are transmitted through the

system. The consequence of this is that the system is highly adaptive and therefore

robust. If the direction of principal stress is suddenly rotated then the force

transmission immediately adapts and selects a new set of contacts to transmit the
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strong contact forces. Because of the high redundancy this is achieved without any

major change in the microstructure.

Although the evolutions of the deviator stress and the deviator fabric are

qualitatively similar, as shown in Fig. 8.30, there is no simple correlation between

them. However, it has been shown above that, to a close approximation, the

deviator stress is entirely due to the sub-network of favourably oriented contacts

transmitting the larger than average contact forces. In order to examine this further,

it is useful to define a fabric stress tensor

σ f
i j ¼ σkk ϕi j ð8:31Þ

and to decompose the fabric tensor into the separate contributions of the strong and

weak contacts. We may then examine the correlation between the fabric deviator

stress due to the strong sub-network, σkk ϕ1 � ϕ3ð Þs, and the mobilised deviator

stress σ1 � σ3ð Þ. This is shown in Fig. 8.34 and it can be seen that the correlation is

excellent if the small initial value of fabric deviator stress is ignored.

8.3.1.3 Effect of Plastic Deformation at the Interparticle Contacts

Using the elastic-plastic contact force model described in Sect. 3.2, axisymmetric

compression tests were simulated, with the mean stress held constant at 100 kPa,

using a polydisperse system of 4000 spheres in order to examine the effect of plastic

yield at the contacts. Three tests were simulated. In the first test a very high limiting

contact pressure py was specified so that no contacts yielded in order to provide data
for a system of elastic spheres for comparison. Using the results of the first test, the

distribution of mean normal contact pressures was examined prior to shear. From

this information a limiting contact pressure was selected such that about 10 % of
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contacts would have yielded if the spheres had not been elastic. Starting from a

lower isotropic stress state of 50 kPa the calculated limiting contact pressure was

specified and the system was then isotropically compressed to 100 kPa to provide a

second specimen to be sheared at constant mean stress. When checked, it was found

that in fact 12 % of contacts had deformed plastically before the start of the shear

stage. A third specimen was also prepared in the same manner but with a lower

limiting contact pressure specified, which resulted in plastic deformation at 80 % of

the contacts prior to shear.

It can be seen from Fig. 8.35 that plastic deformation at interparticle contacts has

a pronounced effect on the stress-strain-dilation behaviour. There is a large reduc-

tion in the shear modulus even when only a relatively small number of contacts

have yielded. Increasing the number of yielded contacts reduces the shear modulus

more but not to a large degree. Volumetric expansion is greatest for the elastic

sphere system. A small number of yielded contacts significantly reduces the rate of

dilation, which is further reduced slightly when there are many contacts that have

yielded. The explanation for the behaviour shown in Fig. 8.35 is that the magnitude

of the deviator stress is dictated by the contact forces in the strong sub-network of

contacts transmitting greater than average forces, as shown in Fig. 8.33a. Generally

there are 30–35 % of contacts in the strong force sub-network. Consequently, the

contacts that had yielded in the second test (12 %) were all in the strong

sub-network. It can also be inferred that the results obtained for the specimen

with 80 % yielded contacts is very similar to what would have been obtained if

all the contacts in the strong sub-network had yielded and there were no yielded

contacts in the weak sub-network.

8.3.1.4 Elastic Properties

The elastic response of granular media has been examined by Digby (1981), Walton

(1987) and Bathurst and Rothenburg (1988). Subsequent work using two
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homogenization techniques has suggested that the kinematic hypothesis, which

assumes a uniform strain field, provides an upper bound to the elastic moduli and

the static hypothesis, which assumes a uniform stress field, provides a lower bound,

see Kruyt and Rothenburg (2002) or Hicher and Chang (2005) for details. However,

both pairs of researchers compare their predictions with results of DEM simulations

of irrotational bonded spheres which they consider provides the true solution. In the

opinion of the author this is not exactly correct.

If one applies a small deformation to a system of particles then, no matter how

small the deformation, there will be a small change in the coordinates of all of the

particles. Consequently, all contact normal vectors will experience a small change

in their orientations resulting in a small, irreversible change in the fabric tensor.

Therefore the elastic properties of particle systems can only be approximated by

performing DEM simulations. In order to identify the true elastic properties it is

essential that absolutely no deformation is actually applied.

As demonstrated in Sect. 2.2.4, the fourth order tensor Sijkl defining the assembly

modulus was derived and given by Eq. (2.60). The tensor is a function of the current

distribution of contact normal vectors, the current normal and tangential contact

stiffnesses and the current contact density. In DEM simulations all this information

is known at any stage of a test. However, if a small incremental strain is applied, no

matter how small, then this information will change due to irreversible, inelastic,

deformation. Consequently, what will be obtained is the ‘small strain stiffness’ not
the true elastic properties.

Figure 8.36 shows the evolution of the deviator stress and deviator fabric

during axisymmetric compression of a polydisperse system of 3600 elastic

spheres performed in a periodic cell with the mean stress held constant at

100 kPa. The properties of the particles were: Young’s modulus¼ 70 GPa,

Poisson’s ratio¼ 0.3, interparticle friction coefficient¼ 0.5 and sizes ranging

from 30 μm to 90 μm.

For every point on the pre-peak loading curve shown in Fig. 8.36a all the

components of the fourth order tensor Sijkl were calculated. However, it is then

0.0
0

20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

40

60

A

B

C

D

80

100

120
a b

0.1
ε1- ε3 ε1- ε3

σ 1-
 σ

3(
kP

a)

φ 1-
 φ

3

0.2 0.0 0.1 0.2 0.30.3

Fig. 8.36 Evolution of (a) deviator stress (b) deviator fabric

8.3 3D Simulations 181

http://dx.doi.org/10.1007/978-3-319-18711-2_2
http://dx.doi.org/10.1007/978-3-319-18711-2_2#Equ60


convenient to calculate the compliance tensor Cijkl ¼ S�1
ijkl in order to compare

directly with the classical anisotropic elastic compliance matrix given by
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The evolution of the elastic parameters, obtained as described above, are shown

in Figs. 8.37 and 8.38.

From Fig. 8.37a it can be seen that the modulus E11 in the direction of the major

principal stress/strain is greater than the moduli in the other two directions. This

demonstrates the anisotropic elasticity of the system. The agreement between E22

and E33 demonstrates that the elasticity is transversely isotropic. The moduli E22

and E33 decrease at a decreasing rate until a constant value is reached before peak

shear strength is reached. The reduction in the values is due to the loss of contacts in

the 2- and 3-directions. The value of E11 remains constant after the initial shearing

stage. The initial increase in E11 is not due to an increase in the number of contacts

in the one-direction but due to an increase in contact stiffness (Hertzian) when the

large force chains quickly realign with the σ1 direction. Ignoring the random

fluctuations, it is clear from Fig. 8.37b that, after the initial 2 % strain, the three

shear moduli remain constant and that G12 ¼ G13 > G23.

Figure 8.38 shows that νij 6¼ νji except for ν23 ¼ ν32. This is necessary to ensure

symmetry of Cijkl. It can be seen from Fig. 8.38 that the average values approximate

to ν12 ¼ ν13¼ 0.10, ν21 ¼ ν31¼ 0.05 and ν23 ¼ ν32¼ 0.075. These values are in
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reasonable agreement with values predicted by Bathurst and Rothenburg (1988) for

random arrays of equal-sized spheres with assumed linear contact stiffnesses.

Further details can be found in Thornton and Zhang (2005).

8.3.2 General 3D Stress States

Most 3D simulations of element tests are axisymmetric compression. This is a state

of stress that is rarely encountered in real world situations. The general case is one

in which σ1 6¼ σ2 6¼ σ3. In this general case Mohr stress circles are not useful and,

instead, one has to consider principal stress space in which the state of stress is

given by a point and represented by a vector σ from the origin, as illustrated in

Fig. 8.39a. The stress vector has two orthogonal components: an isotropic stress

vector

σz ¼ σ1 þ σ2 þ σ3ffiffiffi
3

p ð8:33Þ
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and a deviatoric stress vector

σr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y þ σ2x

q
ð8:34Þ

where the σy and σx axes are illustrated in Fig. 8.39b, which shows the deviatoric

plane as viewed along the z (isotropic) axis, and defined by

σy ¼ 2σ1 � σ2 � σ3ffiffiffi
6

p and σx ¼ σ2 � σ3ffiffiffi
2

p ð8:35Þ

It should be noted that, in principal stress space, the subscripts 1, 2 and 3 indicate

the principal stresses in the three orthogonal directions of the global reference frame,

as shown in Fig. 8.39a, and not necessarily the major, intermediate andminor principal

stresses. This convention also applies to the strain and fabric tensors considered later.

Figure 8.39b indicates the three possible directions for axisymmetric compression

(AC) and axisymmetric extension (AE). For general states of stress, the orientation of

the deviatoric stress vector σr is defined by the Lode angle ασ, as indicated in

Fig. 8.39b. Taking ασ¼ 0 in the 1-direction, the Lode angle is defined by

tan ασ ¼
ffiffiffi
3

p
σ2 � σ3ð Þ

2σ1 � σ2 � σ3
ð8:36Þ

In traditional soil mechanics, shear strength is defined by the Mohr-Coulomb

criterion, sinϕ ¼ constant, where ϕ is the inclination of the line tangent to a set of

Mohr stress circles. In principal stress space, all points representing failure states of

stress lie on a failure surface (or limit surface) that is conical, as shown in Fig. 8.40a

for axisymmetric compression and axisymmetric extension. Figure 8.40b shows

various possible failure criteria, as viewed on the deviatoric stress plane, including

Mohr-Coulomb (sinϕ ¼ constant) extended Tresca (σ1� σ3 ¼ constant), and

extended von Mises (σr ¼ constant) as considered by Bishop (1966) plus more

recently proposed forms suggested by Matsuoka and Nakai (1974) and Lade and

Duncan (1975).

Fig. 8.39 Principal stress

space (a) general view (b)
deviatoric plane
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Figure 8.41 shows the deviatoric failure states of stress reported by Thornton

(2000) for both a dense and a loose specimen. Both systems were sheared with the

mean stress held constant and subjected to deviatoric loading during which the ratio

b ¼ σ2 � σ3
σ1 � σ3

ð8:37Þ

was maintained constant using a servo-control algorithm like Eq. (8.29b) with σ
replaced by b. A series of simulations covering the range 0< b< 1 were performed

ranging from axisymmetric compression (b¼ 0) to axisymmetric extension (b¼ 1).

For each value of b, the state of stress corresponding to failure (maximum

deviatoric stress) was identified and plotted on the deviatoric stress plane. In all

Fig. 8.40 Failure surfaces on the (a) axisymmetric plane (b) deviatoric plane

S1

S2S3

h = 9.53

h = 3.08

Fig. 8.41 Deviatoric

failure surfaces for a dense

and a loose specimen

8.3 3D Simulations 185



cases the principal stress in the one-direction was the major principal stress. Then,

assuming a sixfold symmetry, the complete failure surfaces were produced as

shown in the figure. Superimposed on the figure is the failure criterion proposed

by Lade and Duncan (1975), which is defined by

η ¼ I31
I3
� 27 ð8:38Þ

where I1¼ σ1 + σ2 + σ3 is the first stress invariant and I3¼ σ1σ2σ3 is the third stress
invariant. The figure shows excellent agreement between the simulation data and

Eq. (8.38) which has also been confirmed by Calvetti et al. (2003); and by Ng

(2004) for assemblies of ellipsoidal particles.

Rather than control a stress path it is easier to apply a strain path and monitor the

stress response. Thornton and Zhang (2010) reported results obtained from radial

deviatoric straining of a dense polydisperse system of 27,000 elastic spheres that

had initially been isotropically compressed to 100 kPa. The deviatoric strain

increment vector is defined by

Δεd ¼ 1ffiffiffi
3

p Δε1 � Δε2ð Þ2 þ Δε1 � Δε3ð Þ2 þ Δε2 � Δε3ð Þ2
h i1=2

ð8:39Þ

The Lode angle for strain is defined as

tan αε ¼
ffiffiffi
3

p
Δε2 � Δε3ð Þ

2Δε1 � Δε2 � Δε3
ð8:40Þ

It follows from Eqs. (8.39) and (8.40) that

Δε2 � Δε3 ¼
ffiffiffi
2

p
Δεdsin αε ð8:41aÞ

2Δε1 � Δε2 � Δε3 ¼
ffiffiffi
6

p
Δεdcos αε ð8:41bÞ

Δε1 þ Δε2 þ Δε3 ¼ 0 ð8:41cÞ

and therefore

Δε1 ¼
ffiffiffi
2

3

r
Δεd cos αε ð8:42aÞ

Δε2 ¼ Δεd
sin αεffiffiffi

2
p � cos αεffiffiffi

6
p

� �
ð8:42bÞ

Δε3 ¼ �Δεd
sin αεffiffiffi

2
p þ cos αεffiffiffi

6
p

� �
ð8:42cÞ

Consequently, if the simulations are to be performed at constant volume, for any

prescribed values of Δεd and αε the corresponding strain-rate tensor is
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_εi j ¼ 1

NΔt

Δε1 0 0
0 Δε2 0
0 0 Δε3

24 35 ð8:43Þ

where N is the number of timesteps Δt chosen to reach the desired value of Δεd.
If the simulations are to be performed at constant mean stress then it is, in

addition, necessary to use a servo-control of the form given in Eq. (8.29b) by which

the volumetric strain-rate is continuously adjusted to maintain the trace of the stress

tensor constant at the desired value, i.e.

_ε t
kk ¼ _εt�Δt

kk þ g σ∗kk � σkk
� � ð8:44Þ

The adjusted volumetric strain-rate then needs to be distributed to the three normal

strain-rates in a manner that prevents the servo-control from modifying the dilat-

ancy ratios. This is achieved by the following equations

_ε t
11 ¼ _εt�Δt

11 þ _ε t
kk

_ε11
_εkk

				 				t�Δt

ð8:45aÞ

_ε t
22 ¼ _εt�Δt

22 þ _ε t
kk

_ε22
_εkk

				 				t�Δt

ð8:45bÞ

_ε t
33 ¼ _εt�Δt

33 þ _ε t
kk

_ε33
_εkk

				 				t�Δt

ð8:45cÞ

In a constant mean stress test, at each timestep, Eq. (8.44) and Eqs. (8.45a, b and c) are

applied before Eq. (8.43). Since Eq. (8.43) involves no change in volumetric strain,

see Eq. (8.41c), there are no conflicting adjustments made to the strain-rate tensor.

With the mean stress held constant, strain probes were applied for 10� incre-

ments of the Lode angle from 0 to 360�, as shown in Fig. 8.42.

At the end of each probe, the stress tensor was calculated and the corresponding

stress state was plotted on the deviatoric plane of principal stress space. For a given

value of deviatoric strain, defined by the circles in Fig. 8.42b, there is a

corresponding surface in stress space, which is referred to as a stress response

envelope. The stress response envelopes obtained for different values of deviatoric

strain are shown in Fig. 8.43a in which the stresses are dimensionless by dividing by

the mean stress. Superimposed on the figure is a set of Lade surfaces, defined by

Eq. (8.38), fitted to the data points corresponding to the plane strain states. The

agreement with all data sets is excellent. Figure 8.43a shows that Eq. (8.38) is not

simply a failure criterion but defines the evolution of the mobilised strength, defined

by the parameter η, throughout deformation. In the context of elastoplasticity

theory, the stress response envelopes can be considered to be ‘bounding surfaces’,
see Dafalias and Popov (1976).
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Since it is a tensor, the fabric tensor can be manipulated in the same way

as the stress tensor. Consequently, for the deviatoric strain probes shown in

Fig. 8.42b the corresponding fabric response envelopes can be plotted in principal

fabric space, as shown in Fig. 8.43b. Superimposed on Fig. 8.43b is a set of surfaces

that take the shape of ‘inverted’ Lade surfaces that can be characterised by the

parameter η* where

η∗ ¼ I31
2I1I2 � 3I3

ð8:46Þ
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Fig. 8.42 Radial deviatoric strain probes (a) strain-increment vector (b) complete sets of probes

for different values of deviatoric strain
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In terms of the fabric tensor

I1 ¼ ϕ1 þ ϕ2 þ ϕ3 ¼ 1 ð8:47aÞ
I2 ¼ ϕ1ϕ2 þ ϕ1ϕ3 þ ϕ2ϕ3 ð8:47bÞ

I3 ¼ ϕ1ϕ2ϕ3 ð8:47cÞ

Consequently, the fabric response envelopes can be characterised by the parameter

η∗f defined by

η∗f ¼ 1

2I2 � 3I3
ð8:48Þ

and it can be seen in Fig. 8.43b that the curves defined by Eq. (8.48) show excellent

agreement with the data sets.

In soil mechanics it is common to use the parameter

sinϕ ¼ σ1 � σ3ð Þ= σ1 þ σ3ð Þ to define the mobilised shear strength. Figure 8.44a

shows the evolution of sinϕ with deviatoric strain for a separate series of simula-

tions on the same system in which radial deviatoric straining was performed for

different constant values of the parameter bε ¼ ε2 � ε3ð Þ= ε1 � ε3ð Þ. Note that a

constant bε test is equivalent to a constant Lode angle for strain since

tan αε ¼
ffiffiffi
3

p
bε= 2� bεð Þ.

It is clear from Fig. 8.44a that sinϕ is very sensitive to strain path. In terms of

shear strength, as defined by sinϕmax, the lowest value occurs in axisymmetric

compression (bε¼ 0) and the highest value occurs in plane strain (bε¼ 0.5). The

second lowest value shown in the figure corresponds to axisymmetric extension

(bε¼ 1). Figure 8.44b shows the evolution of volumetric strain with deviatoric

strain, for the complete range of bε values. It can be seen that, at least until well past
the peak strength, all the data sets collapse on to one master curve.

Figure 8.44c shows that if the evolution of the Lade parameter η is plotted

against deviatoric strain then all the data sets collapse on to one master curve. This

demonstrates that, rather than sinϕmax, the general definition of shear strength is

given by ηmax. Since the fabric response envelopes are inverted Lade surfaces,

Fig. 8.43b, it can be anticipated that if the characteristic fabric parameter, defined

by Eq. (8.48), is plotted against deviatoric strain then all data sets will also collapse

on to one master curve. This is confirmed in Fig. 8.44d allowing for the exaggerated

differences due to the vertical scale selected.

In Sect. 8.3.1.2 the significance of the strong force chains was discussed and it was

demonstrated that the deviator stress is almost entirely due to the contact forces in the

strong sub-network of contacts transmitting greater-than-average forces, as shown in

Fig. 8.33a. The fabric response envelope for εd¼ 0.05, shown in Fig. 8.43b, is

replotted in Fig. 8.45a. Superimposed on the figure is the fabric response envelope

for the strong sub-network which can be seen to take the form of a Lade surface. By

multiplying the fabric tensor by the trace of the stress tensor a fabric stress tensor is

obtained, as given by Eq. (8.31). Dividing the fabric stress tensor by the mean stress
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the fabric response envelope for the strong sub-network can be obtained, as shown in

Fig. 8.45b. Superimposed on Fig. 8.45b is the corresponding total stress response

envelope. The figure shows that there is excellent agreement between the stress

response envelope and fabric stress response envelope for the strong sub-network,

except in the regions close to the axisymmetric compression states. Figure 8.45b is, in

effect, a generalised extension to Fig. 8.34.

A problem with the Lade parameter η is that it can in theory range from zero to

infinity and it is not clear whether any value, say 15, indicates a high or very high

strength. Consequently, an alternative parameter is sought. Rearranging Eq. (8.38)

I3

I31
¼ 1

27þ η
ð8:49Þ
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or

I*3 ¼
σ1
p

σ2
p

σ3
p
¼ 27

27 þ η
ð8:50Þ

where I∗3 is the third invariant of the normalised stress tensor, in which the stresses

are normalised by dividing by the mean stress. Unfortunately, the value of this

parameter reduces with increase in the size of the stress response envelope. Con-

sequently, in order to define the size of a stress response envelope the following

parameter is used

1� I∗3
� � ¼ η

27 þ η
0 � 1� I*3

� � � 1 ð8:51Þ

The lower limit of zero corresponds to an infinitesimally small circle and the upper

limit of unity corresponds to an equilateral triangle that defines the limit of

compressive stress space on the deviatoric plane.

A close examination of Figs. 8.42b and 8.43a reveals that for any radial strain

path, except axisymmetric strain states, the corresponding stress paths are curved. It

is therefore of interest to relate the Lode angle for stress, defined by Eq. (8.36), to

the Lode angle for strain, defined by Eq. (8.40). This is illustrated in Fig. 8.46. For

axisymmetric compression αε¼ 0�, 120� or 240� and cos(3ασ) ¼ cos(3αε)¼ 1 and

for axisymmetric extension αε¼ 60�, 180� or 300� and cos(3ασ) ¼ cos(3αε)¼�1.

For non-axisymmetric strain states the data points in Fig. 8.46a are fitted by

circular arcs that are characterised by the curvature 1/R which, since cosα� 1, has

0.3
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Fig. 8.45 Response envelopes (a) fabric (b) stress and fabric stress
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limits 0� 1/R� 0.5. Figure 8.46a shows that the curvature increases with deviatoric

strain. The equation of the circular arcs is

cos 3ασ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5R2 � 1
� �q
 �2

þ cos 3αε �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5R2 � 1
� �q
 �2

¼ R2 ð8:52Þ

which can be rearranged to give

cos 3ασ ¼ R2 � cos 3αε �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5R2 � 1
� �q
 �2( )1=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5R2 � 1
� �q

ð8:53Þ

Since, for radial deviatoric strain paths, the directions of strain and strain-rate are

the same, the above equation relates the direction of the deviatoric stress vector to

the direction of the deviatoric strain-rate vector and thereby provides a deviatoric

flow rule.

The size of the stress response envelopes can be defined by 1� I∗3
� �

which is

plotted against 1/R in Fig. 8.46b. The figure clearly indicates a power law relation-

ship that has the form

1� I∗3
� � ¼ 1=Rð Þ3=2 ð8:54Þ

which provides a scaling law. There is increasing evidence from both simulations

and experiments that, for granular media, failure envelopes and stress response

envelopes in general are accurately defined by Lade surfaces. The size of such

surfaces, however, is significantly greater for real granular materials due to particle
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shape effects. Consequently, for real granular material, it is expected that the

scaling law needs to be modified to

1� I∗3
� � ¼ A 1=Rð Þ3=2 with A � 1 ð8:55Þ

The work reported in this subsection is an excellent demonstration of the power

of DEM and its ability to contribute to our understanding of the behaviour of

granular material under complex states of stress and strain. It is the opinion of the

author that the simulated results presented above are qualitatively generic and that

particle shape will only affect the magnitude of the various parameters but will not

affect the form of the various relationships. Attempts to validate the findings by

performing experiments in general 3D stress space are extremely difficult due to the

inability to prepare exact replicas of the initial particle system. In contrast, DEM

has the significant advantage that an infinite number of different tests can be

simulated for exactly the same initial sample conditions. However, the work

reported in this subsection indicates that, in terms of general 3D stress space,

there is much more work that needs to be done.
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Groupe Fr. Rheologie 2, 73–86 (1969)

Deresiewicz, H.: Stress-strain relations for a simple model of a granular medium. J. Appl. Mech.

25, 402–406 (1958)

Digby, P.J.: The effective elastic moduli of porous granular rocks. J. Appl. Mech. 48, 803–808
(1981)

Drescher, A., de Josselin de Jong, G.: Photoelastic verification of a mechanical model for the flow

of a granular material. J. Mech. Phys. Solids 20, 337–351 (1972)

Duffy, J.: A differential stress-strain relation for the hexagonal close-packed array of elastic

spheres. J. Appl. Mech. 26, 88–94 (1959)

Duffy, J., Mindlin, R.D.: Stress strain relations and vibrations of a granular medium. J. Appl.

Mech. 24, 585–593 (1957)

References 193



Dyer, M.R., Milligan, G.W.E.: A photoelastic investigation of the interaction of a cohesionless soil

with reinforcement placed at different orientations. In: Proc. Int. Conf. In Situ Soil Rock Reinf.,

pp. 257–262. Presse Ponts et Chaussees, Paris (1984) (Fig. 7, p. 260)

Hicher, P.Y., Chang, C.S.: Evaluation of two homogenization techniques for modelling the elastic

behaviour of granular materials. J. Eng. Mech. ASCE 131, 1184–1194 (2005)

Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

Horne, M.R.: The behaviour, rigid, cohesionless particles, III. Proc. R. Soc. A 310, 21–34 (1969)

Joer, H.A., Lanier, J., Desruees, J., Flavigny, E.: 1γ2ε: a new shear apparatus to study the

behaviour of granular materials. Geotech. Test. J. ASTM 15, 129–137 (1992)

Kruyt, N.P., Rotheburg, L.: Micromechanical bounds for the effective elastic moduli of granular

materials. Int. J. Solids Struct. 39, 311–324 (2002)

Kuhn, M.R.: Structure deformation in granular materials. Mech. Mater. 31, 407–449 (1999)

Lade, P.V., Duncan, J.M.: Elastoplastic stress-strain theory for cohesionless soil. J. Geotech. Eng.

ASCE 101, 1037–1053 (1975)

Leussink, H., Wittke, W.: Difference in triaxial and plane strain shear strength. In: Symp. Lab.

Shear Testing Soils. STP 361, pp. 77–89. American Society for Testing and Materials, Ottawa

(1963)

Mandl, G., Fernandez-Luque, R.: Fully developed plastic shear flow of granular materials.

Geotechnique 20, 277–307 (1970)

Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three

different principal stresses. Proc. Jpn Soc. Civ. Eng. 232, 59–70 (1974)

Ng, T.T.: Shear strength of assemblies of ellipsoidal particles. Geotechnique 54, 659–669 (2004)

Oda, M., Konishi, J.: Microscopic deformation mechanism of granular material in simple shear.

Soils Found. 14, 25–38 (1974)

Prager, W.: The theory of plasticity: a survey of recent achievements. Proc. Inst. Mech. Eng. 169,
41–57 (1955)

Radjai, F., Wolf, D.E., Roux, S., Jean, M., Moreau, J.J.: Force networks in dense granular media.

In: Behringer, R.P., Jenkins, J.T. (eds.) Powders & Grains 97, pp. 211–214. Balkema, Rotter-

dam (1997)

Rennie, B.C.: On the strength of sand. J. Aust. Math. Soc. 1, 71–79 (1959)

Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealised granular

materials. Geotechnique 39, 601–614 (1989)

Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in

contact. Proc. R. Soc. A 269, 500–527 (1962)

Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

Skinner, A.: A note on the influence of interparticle friction on the shearing strength of a random

assembly of spherical particles. Geotechnique 19, 150–157 (1969)

Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948)

Thornton, C.: Force transmission in granular media. KONA Powder Part. 15, 81–90 (1997)

Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media.

Geotechnique 50, 43–53 (2000)

Thornton, C., Antony, S.J.: Quasi-static deformation of particulate media. Phil. Trans. R. Soc.

Lond. A 356, 2763–2782 (1998)

Thornton, C., Barnes, D.J.: On the mechanics of granular material. In: Vermeer, P.A., Luger,

H.J. (eds.) IUTAM Symp. on Deformation and Failure of Granular Materials, pp. 69–77.

Balkema, Rotterdam (1982)

Thornton, C., Barnes, D.J.: Computer simulated deformation of compact granular assemblies.

Acta Mech. 64, 45–61 (1986)

Thornton, C., Sun, G.: Axisymmetric compression of 3D polydisperse systems of spheres. In:

Thornton, C. (ed.) Powders & Grains 93, pp. 129–134. Balkema, Rotterdam (1993)

Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chem. Eng. Technol. 26,
153–156 (2003)

194 8 Quasi-static Deformation



Thornton, C., Zhang, L.: On the elastic response of granular media. In: Garcia-Rojo, R., Herrmann,

H.J., McNamara, S. (eds.) Powders and Grains 2005, pp. 235–238. Balkema, Leiden (2005)

Thornton, C., Zhang, L.: A numerical examination of shear banding and simple shear non-coaxial

flow rules. Philos. Mag. 86, 3425–3452 (2006)

Thornton, C., Zhang, L.: On the evolution of stress and microstructure during general 3D

deviatoric straining of granular media. Geotechnique 60, 333–341 (2010)

Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic & Profes-

sional, London (1995) (Fig. 6.1.1)

Wakabayshi, T.: Photoelastic method for determination of stress in powdered mass. In: Proc. 7th

Japan National Congress on Applied Mechanics, pp. 153–158 (1957)

Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35,
213–226 (1987)

Williams, J.R., Rege, N.: The development of circulation cell structures in granular materials

undergoing compression. Powder Technol. 90, 187–194 (1997)

Zhang, L., Thornton, C.: A numerical examination of the direct shear test. Geotechnique 57,
343–354 (2007)

Ziegler, H.: A modification of Prager’s hardening rule. Q. J. Appl. Math 17, 55–65 (1959)

References 195


	Foreword
	Preface
	Contents
	List of Colour Figures in Printed Book
	Chapter 1: Introduction
	1.1 Origins
	1.2 Early Work
	1.3 Outline of the Book
	References

	Chapter 2: Theoretical Background
	2.1 Granular Dynamics
	2.1.1 Particle Kinematics
	2.1.2 Contact Forces
	2.1.3 Timestep
	2.1.4 Damping

	2.2 Assembly Mechanics
	2.2.1 Stability Considerations
	2.2.2 Microstructure
	2.2.3 Stress
	2.2.4 Assembly Modulus

	References

	Chapter 3: Contact Mechanics
	3.1 Elastic Interactions
	3.1.1 Normal Interaction
	3.1.2 Tangential Interaction
	3.1.3 Contact Moment

	3.2 Elastic-Plastic Interactions
	3.2.1 Normal Interaction
	3.2.2 Tangential Interaction and Contact Moment

	3.3 Adhesive, Elastic Interactions
	3.3.1 Normal Interaction
	3.3.2 Tangential Interaction

	3.4 Adhesive, Elastic-Plastic Interactions
	3.4.1 Normal Interaction
	3.4.2 Tangential Interaction

	References

	Chapter 4: Other Contact Force Models
	4.1 Linear Spring Models
	4.2 Non-linear Spring Models
	4.3 Partially Latching Spring Models
	4.4 Adhesive Piecewise Linear Models
	References

	Chapter 5: Particle Impact
	5.1 Normal Impact
	5.1.1 Elastic Impact
	5.1.2 Effect of Plastic Dissipation
	5.1.3 Effect of Surface Energy

	5.2 Oblique Impact
	5.2.1 Rigid Body Dynamics
	5.2.2 Dimensionless Groups
	5.2.3 Effect of Elasticity
	5.2.4 Effect of Plastic Dissipation
	5.2.5 Effect of Initial Spin
	5.2.6 Effect of Surface Energy

	References

	Chapter 6: Agglomerate Impacts
	6.1 Agglomerate-Wall Impacts
	6.1.1 2D Simulations
	6.1.2 3D Simulations
	6.1.2.1 Impact of a Crystalline Agglomerate
	6.1.2.2 Impact of Polydisperse Agglomerates


	6.2 Agglomerate-Agglomerate Collisions
	References

	Chapter 7: Fluidised Beds
	7.1 Theoretical Considerations
	7.1.1 Fluid-Particle Interaction Force
	7.1.2 Particle-Fluid Interaction Force

	7.2 2D Simulations
	7.2.1 The Transition from Fixed to Bubbling Bed
	7.2.2 The Transition from Bubbling Bed to Turbulent Bed
	7.2.3 The Transition from Turbulent to Fast Fluidisation
	7.2.4 Effect of Surface Energy

	7.3 3D Simulations
	7.3.1 Bubble Formation
	7.3.2 Bubble Rise
	7.3.3 Bubble Splitting

	References

	Chapter 8: Quasi-static Deformation
	8.1 Failure Conditions for Regular Arrays of Rigid Spheres
	8.1.1 Solutions

	8.2 2D Simulations
	8.2.1 Direct Shear Tests
	8.2.2 Shear Bands
	8.2.3 Simple Shear

	8.3 3D Simulations
	8.3.1 Axisymmetric Compression
	8.3.1.1 Effect of Interparticle Friction
	8.3.1.2 Significance of the Strong Force Chains
	8.3.1.3 Effect of Plastic Deformation at the Interparticle Contacts
	8.3.1.4 Elastic Properties

	8.3.2 General 3D Stress States

	References


