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Supervisors’ Foreword

Anticipating the rapidly increasing need for telecommunication and data-streaming
applications within our society, a deeper understanding of the physical processes
behind this emerging technology is crucial for further innovations. A central ele-
ment here is the optical data transmission via fibers that needs to become more
efficient regarding speed, bandwidth, and energy consumption. By concentrating on
active optical elements like lasers and optical amplifiers, the work presented in this
book explores new device concepts by exploiting nonlinear as well as nonequi-
librium dynamics in nanostructured semiconductor devices. Thus, it focuses on the
charge-carrier dynamics within very small epitaxial structures (quantum-dots) that
can be included into standard quantum-well laser designs as the final step in
miniaturizing the active zone, and herewith also in miniaturizing the energetic
footprint of optical devices. The advantages of using nanostructured quantum-dot
devices are twofold. At first, these semiconductor structures can be electrically
driven and thus easily modulated as needed for input—output devices. Secondly, due
to their confined energy states, quantum-dots have sharp energetic transitions
similar to gas lasers which results in a smaller linewidth and better temperature
stability. Nevertheless, the complex scattering processes involved in filling the
optically active quantum-dot states are identified as sources for distinct dynamical
behavior as discussed here. Also, the presence of charge-carrier nonequilibrium
conditions during operation gives rise to new dynamics that first needs to be
understood before it can find its way into novel applications.

Starting from complex kinetic equations, this thesis derives and presents com-
prehensive theoretical models, which allow for an accurate description of optically
active quantum-dot devices. Comparisons with recent experimental observations
validate the modeling approach and predict routes for optimization. The thesis
further shows that most well-established models describing the dynamics of the
electric field in semiconductor bulk and quantum-well lasers do not correctly model
the dynamics of quantum-dot lasers, and it gives detailed suggestions on how to
circumvent this problem. The low sensitivity of quantum-dot lasers to optical



vi Supervisors’ Foreword

perturbations is directly attributed to their unique charge-carrier dynamics and
amplitude-phase-coupling, which was so far ignored by the scientific community.

The potential of quantum-dot semiconductor optical amplifiers for novel appli-
cations such as simultaneous multi-state amplification, ultrawide wavelength con-
version, and coherent pulse shaping is investigated. The scattering mechanisms and
the unique electronic structure of semiconductor quantum-dots are found to make
such devices prime candidates for the implementation of next-generation opto-
electronic applications, which could significantly simplify optical telecommunica-
tion networks and open up novel high-speed data transmission schemes.

The methods used within this work range from numerical integration of
stochastic partial differential equations, needed to understand pulse shaping effects
in the optical amplifiers, to asymptotic perturbation analysis of effective rate
equations to explore limits in parameter space. The thesis is outstanding in its
breadth and depth and achieves a comprehensive introduction to the topic of laser
modeling as well as a guide for optimization of nanostructured devices.

Berlin Kathy Liidge
June 2015 Eckehard Scholl



Abstract

In this thesis the dynamics and performance of optoelectronic devices based on
semiconductor quantum-dots are investigated.

In the first part, the dynamics of quantum-dot lasers under external perturbations
is discussed. Using a microscopically based balance equation model that incorpo-
rates detailed charge-carrier scattering dynamics and the possibility to describe
nonequilibrium between intraband electronic states, the relaxation oscillations
of the quantum-dot laser are investigated. Three qualitatively different dynamic
regimes are identified in dependence of the scattering rates—the
“constant-reservoir” regime for slow scattering, the “overdamped” regime, and the
“synchronized” regime for high scattering—characterized by a varying degree of
nonequilibrium between the quantum-dot and reservoir states.

Important differences to conventional lasers are found in the modulation
response and the dynamics in optical injection and feedback setups. Common
theoretical models and approaches used to describe these applications are shown to
yield inaccurate predictions, especially in the “constant-reservoir” and “over-
damped” dynamic regimes. An important consequence is that the amplitude-phase
coupling in quantum-dot lasers, commonly described by the a-factor, differs from
conventional descriptions due to the desynchronization of gain and refractive index.
While the a-factor describes bifurcations of fixed points accurately, it fails in
describing dynamic solutions and overestimates the extent of complex dynamics.
The observed low sensitivity to optical perturbations in quantum-dot lasers can
therefore be attributed partly to the charge-carrier nonequilibrium. Three
quantum-dot laser models on different levels of sophistication are presented that can
accurately describe the quantum-dot nonequilibrium dynamics.

In the second part of the thesis, the performance of quantum-dot semiconductor
optical amplifiers is investigated, and two types of applications unique to
quantum-dots as active medium are discussed. The ground and excited states of the
quantum-dots allow an ultra-broadband amplification of optical data streams.
Amplified signals on the ground-state frequencies are shown to generally exhibit
higher quality than on the excited state, due to a lower sensitivity of the
ground-state to carrier-density variations. Nevertheless, the quantum-dot amplifier

vii



viii Abstract

is found to allow effective amplification on both frequency ranges. Furthermore, a
parameter range is identified that allows for a simultaneous amplification of data
signals on the ground and excited state in a counter-propagating setup.

The long microscopically polarization dephasing times in quantum-dots are
found to enable quantum-coherent interactions on a macroscopic scale at room
temperature. By comparison with experiments, the occurrence of Rabi oscillations
by amplification of ultrashort pulses is demonstrated. Quantum-dot-based devices
could therefore be used for future applications based on quantum-coherent effects.
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Chapter 1
Introduction

Since their invention in 1960 [1] lasers have been the topic of great physical inter-
est and have been contributing to almost every technological field. Especially the
importance of semiconductor lasers is undoubted, as they are the building blocks of
many digital systems, telecommunication networks, and a variety of consumer-grade
products [2, 3]. Their small footprint and ease of integration, due to the possibility of
direct electrical pumping, makes semiconductors the first choice for implementation
of optoelectronic devices. Apart from lasers, semiconductor optoelectronic devices
include optical amplifiers [4—7], electro-optic and electro-absorption modulators [8—
10], and light-emitting diodes.

The importance of optoelectronic technologies is constantly increasing. The ongo-
ing transition from cable-based data transmission schemes to optical technologies
and the demand for ever faster data transfer rates requires constant improvements
in terms of speed, miniaturization, and energy efficiency of available optoelectronic
devices [11]. In the recent years, semiconductor quantum-dots have been gaining
attention as the material of choice for highly energy-efficient, small-footprint opto-
electronic devices [12]. The aim of this thesis is to explore the fundamental dynamics
of semiconductor-quantum-dot-based devices for an improvement of existing devices
and an investigation of possible novel technologies.

In the following, we will give a short introduction to the principles of light-
matter interaction, and to semiconductor lasers and their dynamics, as well as a short
overview on semiconductor quantum-dots.

1.1 Light-Matter Interaction in Semiconductors

Optoelectronic technology combines the fields of optics and electronics in a single
device. These devices offer the possibility to use electrical energy to manipulate
light passing through the device or to convert it directly into optical energy.

© Springer International Publishing Switzerland 2015 1
B. Lingnau, Nonlinear and Nonequilibrium Dynamics of Quantum-Dot
Optoelectronic Devices, Springer Theses, DOI 10.1007/978-3-319-25805-8_1
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Fig. 1.1 Sketch of the optical transitions in direct semiconductors. Light with photon energies hw
larger than the bandgap energy E, between the parabolic semiconductor bands can excite optical
transitions between the electrons (filled circles) in the valence band and vacant states (holes, empty
circles) in the conduction band. k is the electron wave vector

The requirement for an interaction between the matter and light is the existence
of optically active electronic transitions, which in semiconductors are given by the
excitation of electrons within the band structure, as sketched in Fig. 1.1. Here, the
transition of electrons in the filled valance band to vacant states (holes) in the empty
conduction band is depicted in wave-vector (k) space.

In the case of a semiconductor without an external pumping source and in thermo-
dynamic equilibrium, the electrons are distributed according to a Fermi distribution
[13, 14]. The occupation probability for a given k-state in the semiconductor band
b € {c, v} is thus given by:

crp — E -1
pp(er) = F(egp, Ep, T) := [1 + exp (%)} , (1.1)
B

with the energy of the electronic k-state € j, the equilibrium temperature 7" and
Boltzmann’s constant k. The Fermi energy E  then lies within the bandgap between
the valence and conduction band, leading to a nearly completely filled valence and
an empty conduction band.

Photons can then interact with the semiconductor medium by promoting a valence-
band electron to a vacant conduction-band state with energy difference hw = e —¢},
such that the photon energy matches the difference between the two electronic states.
The probability for this absorption process is in general given by

Wy e = B pu (€I — pelen)Iu(hw), (1.2)

with the Einstein coefficient B~ ¢ giving the transition rate, and the spectral energy
density u(hw) of the light field at the transition energy. The transition probability
is thus proportional to the probability to find an electron in the valence band and a
matching vacant state in the conduction band.

The reverse process, an electron transition from a higher conduction band state
to a vacant state in the valence band, is also possible. This can occur spontaneously
without external forcing, under emission of a photon of matching energy—known
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(a) (b) (c)

conduction band

Fig. 1.2 Sketch of light-matter interaction processes. a Absorption of an incoming photon with
matching energy fiw under promotion of an valence band electron to a vacant conduction band
state. b Spontaneous emission of a photon with random phase and direction under relaxation of
an conduction band electron to a vacant valence band state. ¢ Stimulated emission of an identical
photon by an incoming photon

as spontaneous emission. Additionally, an already existing photon can excite this
transition—leading to stimulated emission, creating a second, identical photon, thus
amplifying the optical field. The rate of stimulated emission is given by

Wi i = B e €01 = pu(e) Tu(hw). (1.3)

stim
The Einstein coefficient B, " for stimulated emission is equal to the absorption
coefficient B, ¢ under the assumption of equal degeneracy of the two states.

Absorption, stimulated and spontaneous emission, sketched in Fig. 1.2, are the
working mechanism by which matter can interact with light [15], and on which all
optoelectronic devices are based. The photon emission processes require an electron
to be in the higher energy conduction band, and are therefore very improbable to
occur under equilibrium conditions. In order to induce the emission of photons, the
optoelectronic device has to driven out of equilibrium, by filling the conduction band
with electrons and removing them from the valence band. This can be done either
optically—by exciting electronic transitions by a strong optical pulse with energy
higher than the bandgap, after which the excited electrons relax to the band edge by
scattering processes—or electrically, by injecting charge-carriers into the optically
active region.

The electrical pumping of a semiconductor is shown in Fig. 1.3 exemplarily for
a light-emitting diode (LED). In the unbiased case, Fig. 1.3a, the charge carriers
are in thermodynamic equilibrium, and their distribution is described by a common
Fermi energy across the band structure. The doping induces free electrons in the
n-type semiconductor and electron vacancies (holes) in the p-type side. The charge-
carriers in the interface region recombine, leading to the creation of a depletion
region without free carriers. Upon applying a bias, electrons and holes are injected
into the interface region, where they can recombine spontaneously under emission
of photons, as sketched in Fig. 1.3b. The application of an external voltage drives
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(a) (b)

p-doped

n-doped

Fig. 1.3 Sketch of a semiconductor band structure across a pn-junction in unbiased and biased
conditions. a Without electrical bias the system is in thermodynamic equilibrium, and the Fermi
level Er is constant across the junction (dashed line). At the interface (dotted line) exists a depletion
layer without free carriers. b When applying an external bias, charge-carriers are injected into the
interface region leading to a reduction of the band curvature. The nonequilibrium charge-carrier
distributions can then be described by individual quasi-Fermi levels Er ,, EF . in the valence and
conduction band, respectively

the system out of equilibrium, such that the electron distribution no longer follows a
Fermi distribution. Nevertheless, fast scattering processes—mediated by Coulomb
interaction or scattering with phonons—drive the distribution in each of the electronic
bands towards quasi-equilibrium, described by a quasi-Fermi distribution where the
quasi-Fermi levels Er ,, Er . differ between the two bands.

Apart from the direct emission of light, optoelectronic devices can be used to
modulate incoming light fields [8], e.g., for data transmission, by either changing its
intensity directly via absorption [16], or by change of the material refractive index
with applied voltage or current. The latter is used for example in Mach—Zehnder
interferometers, where the propagation phase difference due to the refractive index
change is exploited [17].

1.2 Semiconductor Lasers

Semiconductor lasers exploit stimulated emission of photons to create high-energy,
coherent light fields. In their simplest form, they consist of a single pn-junction
within a laser cavity, formed by two mirrors. As soon as the photon generation rate
exceeds the optical losses through the cavity mirrors, the light field is amplified.
Due to the refractive-index difference between common semiconductor materials
and air, nowadays the cleaved semiconductor facets provide high enough reflectivity
to enable lasing (e.g. R = 0.31 for the GaAs-air interface at A = 1.3 pm), without
the need for dedicated cavity mirrors.

Considering a given transition between the valence and conduction bands in a
semiconductor, the change of the photon number S at the corresponding energy can
be written as the sum of stimulated emission and absorption processes (neglecting
spontaneous emission):
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stim

d
S8 = (W g = W)
= Br[Nc(ex) — Ny(ex)Ju(hw). (1.4)

Here, n is the total number of optical transitions and N, describes the number of
electrons in the conduction and valence band states, respectively. A prerequisite for
the occurrence of stimulated emission of light is thus an inversion of the semicon-
ductor medium, i.e., a higher number of electrons in the conduction band than in the
corresponding valence band states. Since this is generally difficult to achieve in sim-
ple semiconductor structures and requires strong pumping, the first demonstration
of semiconductor lasers were limited to operation under liquid helium tempera-
tures [18].

The recurring problem after the first demonstration of lasing in semiconductors
was the confinement of charge-carriers. A broad spatial distribution of electrons and
holes due to diffusion reduces the probability for radiative recombination (under
emission of a photon) greatly, and is therefore unwanted. In order to restrict the
injected electrons and holes to a well-defined region, a variety of modifications to
the semiconductor structure has been made. The first, and most important, step was
the proposal of using a semiconductor heterostructure by Kroemer [19]. The use of
a semiconductor material (GaAs) in between a different material with higher band-
gap (AlGaAs), sketched in Fig. 1.4a, has then been successfully applied to provide
room-temperature operation of semiconductor lasers in 1968 by Alferov [20].

A further improvement was then achieved by development of the separate-confine-
ment-heterostructure (SCH). Here, additional semiconductor layers with higher
refractive index than the outer cladding layers were added on either side of the
optically active region, effectively improving the waveguide properties by confin-
ing the light. The resulting five-layer structure is depicted in Fig. 1.4b. Reducing
the active-layer width to a few nm then leads to the formation of a quantum well
(Fig. 1.4c). The addition of quantum-dots within the quantum well forms a dot-in-
a-well (DWELL) structure, with localized quantum-dot states providing the optical
transitions, shown in Fig. 1.4d.

(@) L) © @
€ —_— € —_— € —_— €
-0 P ) ~—e )
hw hw }M Ihw
O— O_—>_ ] O— ] O— ]
B — — e —

Fig. 1.4 Sketch of the progression of approaches to charge-carrier confinement in semiconduc-
tor heterostructures. a Double heterostructure, b separate confinement heterostructure (SCH), ¢
quantum-well heterostructure, d dot-in-a-well (DWELL) heterostructure. The optical transitions
are denoted by fw. After [3]
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All these steps have subsequently improved the design of semiconductor lasers,
leading to the technology that is available today, with highly efficient semiconductor
lasers that can be continuously operated at room-temperature and above.

1.3 Semiconductor Lasers as Dynamical Systems

Apart from providing a reliable source of constant, coherent, monochromatic light,
semiconductor lasers can exhibit a vast variety of different dynamics [21-24]. The
simplest model of a semiconductor laser to describe these dynamics consists of only
two equations:

d 1
G N =7 =29(N@) = No)S(1) T]N(t) (1.52)
%S(t) = 2g(N(t) — No)S(t) — 26S(1). (1.5b)

The charge-carrier number N = N, + N, describes the number of electrons and
holes in the active laser medium, S the number of photons. The pump process is
described by a generalized pump rate J, while charge-carrier losses are taken into
account by a combined lifetime 7;. The optical losses are given by the photon loss
rate 2k.

The term 2g(N — Np)S accounts for the stimulated emission of photons. The
inversion is given by N — Ny, with Ny being the number of charge carriers needed
to achieve transparency of the medium. The coefficient g describes the linear gain,
proportional to the Einstein coefficient By used in (Eq.1.4). As soon as the gain
2g(N — Ny) compensates the losses 2k, the time-derivative of the photon number
becomes positive and the laser light is amplified.

The stimulated emission adds a nonlinearity to the system, which can lead to
complex solutions. Semiconductor lasers are known to exhibit a variety of different
dynamics. This becomes apparent especially under external perturbations, e.g., of the
pump current or by an external light field [25, 26], as well as under optical feedback
[24, 27, 28]. Here, lasers can exhibit periodic oscillations, multi-stability [29], and
deterministic chaos [30, 31].

Solitary semiconductor lasers, due to the two-dimensional phase-space spanned
by the inversion and photon number, can—at most—exhibit oscillations. These
damped relaxation oscillations (ROs) can be directly observed and already give
an indication about the laser dynamics, as they characterize the laser response
to a perturbation. Upon displacement out of its stable lasing state, the laser will
perform relaxation oscillations back towards its steady state. The investigation of the
relaxation oscillations will therefore be a focus of this thesis.

Due to the prerequisite of charge-carrier inversion in order to obtain optical gain,
semiconductor lasers are always operated far from equilibrium. Nevertheless, the
charge-carrier distribution in each of the electronic bands will quickly relax towards
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a quasi-Fermi distribution, with quasi-Fermi energies that differ between conduc-
tion and valence bands. While the overall charge-carrier distribution can still be in
nonequilibrium, the carriers within the bands can thus be described to be in quasi-
equilibrium [13]. The quasi-equilibrium assumptions allow for the description of the
charge-carriers with just a single variable N (z), since the charge-carrier distribution
can be uniquely calculated from the total charge-carrier number. A description of
each k-state in the electronic bands is therefore not required.

In this work, we will investigate the cases where the quasi-equilibrium assumption
fails. Specifically, we will consider a nonequilibrium between localized quantum-
dot states and the surrounding continuum states within the same electronic band.
It will be shown that this can lead to important differences in the laser dynamics
and performance as compared to what would be expected from a quasi-equilibrium
description of the quantum-dot laser.

1.4 Semiconductor Quantum-Dots

Semiconductor quantum-dots (QDs) are the final step in miniaturization of the semi-
conductor optically active material and in the confinement of charge-carriers. Starting
from three-dimensional bulk semiconductors, a reduction of the semiconductor mate-
rial in one spatial dimension below the the de-Broglie wavelength of electrons (a few
nm) forms quantum-wells (QWs) [32]. These are quasi-two-dimensional semicon-
ductor structures, in which the electron motion is confined in one dimension, leading
to localized energy states. This localization leads to a strong increase in efficiency and
a reduction of the threshold current in lasers, such that modern LEDs and semicon-
ductor lasers almost always consist of quantum-well structures [3]. A confinement of
electronic states in an additional dimension leads to quasi-one-dimensional quantum
wires or dashes [33]. When all three dimensions are small enough that electrons are
confined, the localization leads to the formation of quasi-zero-dimensional, atom-like
states, with sharply defined energies. These structures are semiconductor quantum-
dots [34-36]. The dimensionality of the semiconductor structures determines their
electronic density of states, as sketched in Fig. 1.5, which in turn determines their
dynamical properties and device performance.

3D bulk 2D quantum well 1D quantum wire 0D quantum dot

density of states

energy energy energy energy

Fig. 1.5 Sketch of the density of states near the band edge depending on the dimensionality
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Semiconductor quantum dots can be fabricated in different ways [35]. The first
investigations of nano-scale lattice-matched heterostructures yielded poor results
[37, 38], and could not fulfill the predicted performance [34]. The transition to
the epitaxial growth of non-lattice-matched semiconductor material on a substrate
using molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition
(MOCVD) [39] lead to a self-organized formation of nano-scale semiconductor
islands on top of the substrate layer [40].

The so-called Stranski—Krastanov growth of quantum-dots [41, 42] is sketched
in Fig. 1.6, for InAs quantum dots grown on a GaAs substrate. While at first a very
thin InAs layer (wetting layer) is formed on top of the substrate, the strain induced
by the mismatch of the lattice constants of the two materials leads to the formation
of pyramidal structures. An overgrowth with InGaAs leads to a flattening of the
pyramid tops, and additionally creates an InGaAs quantum-well in which the InAs
quantum dots are embedded. The resulting dot-in-a-well (DWELL) structure will
be considered in all following investigations in this work. A sketch of the energy
structure of the electronic states in the DWELL structure is given in Fig. 1.7.

The coupling of the quantum dots to the quantum-well states crucially influences
the dynamic properties of quantum-dot optoelectronic devices, as we will show in
this thesis. The two-dimensional quantum-well states act as a charge-carrier reser-
voir for the quantum-dot transitions by means of charge-carrier scattering.The finite

InAs islands InGaAs
InAs = AANAANAN = [~ -~~~ ]

GaAs

Fig. 1.6 Sketch of the epitaxial Stranski—Krastanov growth of a dot-in-a-well (DWELL) structure.
Growth of InAs on a GaAs layer leads to a formation of a wetting layer of only few atomic layers
thickness (left). Further growth leads to formation of pyramidal InAs islands (middle). Overgrowth
of these islands with InGaAs of few nm height flattens the InAs quantum-dots and embeds them in
an InGaAs quantum-well, forming the DWELL structure

A _GaAs electron bulk states
@
c
wi InGaAs QW
electron 2D states
ES=—————=—== QD electron
GS——/  states
QD hole ——— —GS
states =———=ES
InGaAs QW
hole 2D states
GaAs hole bulk states

Fig. 1.7 Sketch of the energy structure of a dot-in-a-well (DWELL) structure. The localized InAs
quantum-dot states, a twofold spin-degenerate ground-state (GS) and a four-fold degenerate excited-
state (ES), lie within the band-gap of the InGaAs quantum-well (QW) states. The whole structure
is embedded within the states of the surrounding GaAs substrate
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scattering time of this process can lead to a nonequilibrium between the quantum-
dot and surrounding states, which, as we will show, gives rise to unique behavior of
quantum-dot devices compared to conventional semiconductor structures.

1.5 Outline of the Thesis

This thesis is organized as follows. In Chap. 2, we will derive a microscopically based
balance-equation model for the description of quantum-dot laser devices. At first, we
will describe the theoretical framework used to calculate the complex charge-carrier
scattering processes in quantum-dot devices. Then, the light-matter interaction will
be derived from a Maxwell-Bloch approach, which will be combined with the charge-
carrier dynamic equations to formulate a quantum-dot laser rate-equation model. A
description of the charge-carrier heating in terms of energy balance equations will be
subsequently given, which allows for a dynamic calculation of the quasi-equilibrium
temperature in quantum-dot laser devices.

Chapter 3 will investigate the dynamics of quantum-dot lasers with focus on the
differences to conventional semiconductor lasers. The laser relaxation oscillations are
analyzed in dependence of the charge-carrier scattering rates in Sect.3.2. A minimal
model for the description of relaxation oscillations will be presented in Sect. 3.3 and
will be subsequently used in an asymptotic analysis. The scattering-rate dependence
of the quantum-dot laser modulation response will be given in Sect. 3.4.

In Sect. 3.5 we will describe the amplitude-phase coupling in quantum-dot lasers
and highlight the differences to the commonly used a-factor approach. The applica-
bility of the a-factor will also be investigated in Sect.3.6, where we discuss the
quantum-dot laser dynamics under optical injection. A simplified quantum-dot laser
model with optical injection will be presented and implemented for numerical path
continuation of bifurcations in Sect.3.7. The dynamics of the quantum-dot laser
under time-delayed optical feedback will be shown in Sect.3.8.

The laser response to generalized external perturbations is the topic of Sect. 3.9,
where we will discuss the frequency-response of the quantum-dot laser to different
types of modulation. A summary of the chapter will be given in Sect. 3.10.

In Chap. 4 we will investigate the dynamics and performance of quantum-dot semi-
conductor optical amplifiers. An adequate model for the description of the amplifier
will be presented in Sect.4.2. The amplifier performance under large-signal ampli-
fication conditions on ground or excited-state wavelengths will be characterized in
Sect.4.3. Subsequently, the possibility of dual-state operation of the quantum-dot
amplifier will be illuminated in Sect.4.4. We will then discuss the occurrence of
quantum-coherent effects on a macroscopic scale in quantum-dot based amplifiers
in Sect. 4.5, before we give a conclusion of the chapter in Sect.4.6.

A summary of the results of this thesis and an overview about possible further
research will be given in Chap. 5.
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Chapter 2
Theory of Quantum-Dot Optical Devices

2.1 Introduction

Modern semiconductor optical devices can consist of a complex arrangement
of several different semiconductor crystal layers. By further processing, the semicon-
ductor structure is then shaped into the desired device geometry. Additional steps,
such as planarization and contacting, are then required to yield the final usable device.
Naturally, a complete microscopic description of the resulting object in all its degrees
of freedom is not tractable. Therefore, a restriction to only few degrees of freedom
is required, while still maintaining all necessary aspects determining the system
behavior.

In the theoretical description of quantum-dot semiconductor optical devices, this
means a restriction to the active region, i.e., the parts where the light-matter inter-
action occurs, and the immediate surrounding matter. Since the optical interactions
between the electric field and charge carriers (electrons and holes) are being consid-
ered, dynamic equations for these quantities must be derived.

There exist theoretical models for quantum-dot lasers on varying levels of sophis-
tication. Microscopic models that take into account the exact band structure and
many-body interactions [ 1-4] can describe the complex energy structure of quantum
dots very realistically, but these approaches are too complicated to be applied in
dynamic problems. On the other hand, simple rate-equation models exist [5—7] that
can be easily implemented and require little computation power, and often allow for
analytical treatment. These models, however, are prone to oversimplification, pos-
sibly neglecting important aspects that would lead to different results. In between
these two types of approaches there exist multi-rate equation models [8—11], that
take into account the delicate energy structure of quantum-dot active media. These
models offer a balance between complexity and practicability. In this spirit, we will
develop a quantum-dot laser model that takes into account the most important effects
needed to realistically describe the laser behavior, while still being simple enough
for thorough dynamic studies.

© Springer International Publishing Switzerland 2015 13
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This chapter presents the derivation of the microscopically based balance equation
model that we will use to model the quantum-dot laser and amplifier devices later
on in this work. The charge carrier exchange between the quantum-dots and the
surrounding material, forming the carrier reservoir, will be described in terms of
microscopically based Boltzmann scattering rates, based on carrier-carrier Auger-
scattering. The light-matter interaction within the active region will be formulated
using a Maxwell-Bloch approach, which we will use to describe the individual
contributions of the relevant optical transitions to the optical gain and carrier-induced
refractive-index change. Finally, a self-consistent charge-carrier heating model will
be presented, in order to dynamically describe the charge-carrier quasi-equilibrium
temperature within the quantum-dot device.

2.2 Charge-Carrier Scattering in Quantum-Dot Structures

In electrically operated semiconductor structures, electrons and holes are injected
into the medium at the respective contacts. The charge carriers then reach the active
region by transport processes due to the applied voltage [12]. In order to reach the
energetically lower states, the charge carriers must lose some of their energy. This
transfer of energy is realized by means of scattering processes. Here, two differ-
ent types of charge-carrier scattering can be distinguished: scattering involving only
charge carriers and scattering of charge carriers with the environment, most impor-
tantly lattice phonons. The scattering mechanisms are illustrated in Fig.2.1.
Independent of the underlying scattering mechanism, any system will be driven
towards an equilibrium state over time. Considering that the fundamental operat-
ing principle of lasers—stimulated emission of photons—rtelies on the inversion of
the charge carrier distribution, there always exists a strong nonequilibrium between
valence and conduction band electrons. Nevertheless, assuming that the intra-
band scattering processes happen on a timescale faster than the inter-band carrier

(@ (b)
AE

AE

Fig. 2.1 Scattering mechanisms in semiconductor structures. a Auger-scattering: an electron scat-
ters into a free energetically lower state under transfer of the energy difference AE to another
electron. b Carrier-phonon scattering: an electron emits a phonon with energy A E and scatters into
a free state A E below its initial state. The reverse process is possible under absorption of a phonon
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recombination, it is possible to reach a quasi-equilibrium of the electron distribu-
tions in each of the bands. As electrons are fermions, this distribution can then be
expressed as a quasi-Fermi distribution:

& -1
peq(5)=[1+exp (%)} , 2.1

with the energy of the corresponding state ¢, Boltzmann’s constant kg, the quasi-
equilibrium temperature 7%, and the quasi-Fermi level E}' relative to the corre-
sponding band edge. As the charge carriers are only in quasi-equilibrium, E;q can
differ between conduction and valence band.

The most important scattering mechanism for carrier-carrier scattering is the
Coulomb interaction between the charged particles. Since in each scattering event
the total energy must be conserved, the scattering of one carrier to a lower state must
be accompanied by the scattering of the scattering partner to a higher energy with
equal energy difference. This type of process is known as Auger-scattering [12, 13].
Since the total energy of the charge carriers is conserved, Auger-scattering will lead
to a change of charge-carrier temperature. A filling of vacant states that lie below the
average energy of the electron gas is accompanied by a promotion of other electrons
to higher states, such that the total energy is conserved. This effectively broadens the
electron distribution, which is equivalent to an increase in temperature and known
as Auger-heating [14-19], illustrated in Fig.2.2.

Apart from the direct interaction between charge carriers, scattering with phonons
in the semiconductor lattice is also possible. Here, the charge carriers either absorb
or emit energy by interacting with the semiconductor lattice. Contrary to the Auger-
scattering mechanism, the scattering with phonons does not conserve the total charge-
carrier energy. Thus, a cooling of the charge-carrier distribution towards the lattice
temperature is possible.

The theoretical description of the charge-carrier scattering processes can be
done on different levels of sophistication. The simplest approach would be a

—_
-]
~
~_~

redistribution

[

towards
quasi-equilibrium

cooling

=

towards lattice
temperature

Occupation probability
Occupation probability
Occupation probability

Energy Energy Energy

Fig. 2.2 Tllustration of carrier heating by Auger-scattering. a An initial nonequilibrium electron
distribution (solid line) is created from quasi-equilibrium (dashed). b 1t is then driven towards
quasi-equilibrium by Auger-scattering processes. ¢ The filling of vacant states at low energy is
accompanied by a filling of higher energy states, broadening the resulting quasi-Fermi distribution
(solid line)
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phenomenological description of the scattering by introducing a (constant) scattering
time constant at which the charge-carrier population is driven towards a target distri-
bution. On the other end of the spectrum, a microscopic quantum-kinetic description
of the many-body system allows a realistic modeling of the scattering dynamics. The
drawback of such an approach is of course the enormous computational effort in
keeping track of such a high-dimensional system.

Here, an intermediate approach will be pursued, such that the numerical handling
of the scattering remains manageable, while the underlying physical processes are
still accurately taken into account.

2.2.1 Coulomb-Scattering of Charge Carriers

The starting point for calculating the carrier-carrier scattering is the system Hamil-
tonian in second quantization [20],

. 1
Hsys = Hkin + HC = Z 5aaa’saﬂS + E Z V“bcd a;‘xa;s/acs/adm (22)

a bc,d
s

s
where a,, aj, are the electron annihilation and creation operators in the state x with
the energy ¢,, respectively. The Hamiltonian consists of the kinetic contribution
Hy;,, and the Coulomb-interaction Hamiltonian Hc. In the sums a, b, ¢, d denote
all possible electron states, with s, s” denoting their spins. The Coulomb interaction
matrix element is given by

2
Vabed —// drdr’ ¢;(r)¢,(r' )—dh (r)pa(r), (2.3)

bg|r

with the single-particle wave-functions ¢, (7). The vacuum and background permit-
tivity are given by €g and ey, respectively, and —ey is the electron charge.

The goal now is to describe the change of the electron probability distribution
by Coulomb scattering events. To this end, the change of the occupation probability
Pro = (al(,aw) in a specific state v with spin o will be derived. By applying Heisen-
berg’s equation of motion and the commutator relations for fermionic operators, one
arrives at:

0 j f i ot
EPW = ﬁ <[ sys» awfaua:” = _ﬁ Z (Vl/bcdaygab_y’acs,ad(/') —Hec.
bc’d
s
_2 ¢t
= 3 2 1M (Voead], @ ey ao) - (2.4)
bsc,d

The expectation value of the two-operator expectation value p,, now couples to
a sum of four-operator expectation values. A factorization of these four-operator
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terms into products of two-operator expectation values leads to the Hartree—Fock
approximation of the many-body Coulomb interaction. Within this approximation,
first-order renormalization effects, including band-gap renormalization and Coulomb
enhancement can be described [21, 22]. A description of charge-carrier scattering,
however, requires the evaluation of higher-order correlations.

The time derivative of the involved four-operator expectation values is again given
by Heisenberg’s equation of motion:

9 & i _ i b

E <a,,gabs/acs’ada> = ﬁ <|:Hsy57 aygabsfacs’ad0]>

i .
= ﬁ(ay +ep—ec _gd) <alljg'azs’acs/ad(7>
i
+ ([ He. a],alyevaas ). 2.5)

The evaluation of the commutator in the above equation leads to six-operator expec-
tation values, and their time evolution would couple to eight-operator expectation
values and so on. Without further approximations, it is therefore not possible to reach
aclosed set of equations. Thus, in order to get to a closed form, some approximations
must be introduced [20]. First, Eq. (2.5) will be solved adiabatically, by assuming a
fast evolution to a steady-state, such that % (aZJaZS,acsradU) = 0. This is the Markov
approximation, i.e., the explicit time evolution of (azaags,am/adg) is suppressed and
its value is solely determined by the current system state. Thus

<[HC, aiaa;ﬁx,am/adgh

(evtep—ec—eq) +ihy’

(a;:ga}l,sfacs’ada> =

(2.6)

where an additional phenomenological decay constant y has been introduced. Apply-
ing the limit v — O restores the right hand side of Eq.(2.5). This limit is evaluated
by applying the Dirac identity

1 1
lim — = — — [7wi(x). 2.7
=0t X + 17y X

The evaluation of the commutator in Eq. (2.6) contains six-operator expectation val-
ues. Instead of deriving equations of motion for these six-operator expressions, they
will be factorized into products of two-operator expectation values, neglecting higher
order correlations. This means that only terms up to second order in the Coulomb
potential will be taken into account. The resulting expectation value can be evaluated
to yield

<|:HC7 azgagsfacs’ada:” = [ :bcd - V:bdcfsa,s’] [(1 - Pua)(l - pbs’)pcs’pda
- pl/rfpbx’(l - pcs’)(l - Pd(f)]~
(2.8)
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Inserting this relation into Eq.(2.6), applying Eq.(2.7) and inserting the resulting
expression into Eq. (2.4) then gives the following equation:

0 2
apuokc = % Re [Wl/bcd (W:bcd - W;bdc)] 5(€u +ep —ec— 511)
bed

X [(1 - Puo—)(l - pbs’)pcs’pda - pl/apbs’(l - pcs’)(l - Pda—)]s (29)

which describes the Coulomb scattering in the second-order Born—Markov approxi-
mation [23-26]. In the above equation the bare Coulomb potential was replaced with
the screened potential W, defined via

W(r—r']) =V(r—r'De 1, (2.10)

Here, x is the screening wavenumber [20, 27], describing the screening of the
Coulomb interaction potential by a surrounding charge-carrier plasma, which can
be calculated in a self-consistent way [21, 27]. The screening becomes very impor-
tant at elevated charge-carrier densities where the unscreened Coulomb potential
would greatly overestimate the interaction between the charge carriers.

The summation terms in Eq. (2.9) describe the simultaneous scattering of d <> v
and ¢ <> b. The delta-function ensures energy conservation, such that the total energy
of the final states equals that of the initial states. The first term in the second line
describes the probability to find particles in the corresponding initial states (c, d)
and vacant spaces in the final states (v, b), and the second term describes the corre-
sponding inverse process, leading to a decrease of p,,.

Equation (2.9) can be written in form of a Boltzmann equation,

9 4
50| = S"11 = p(0)] = 5 p(1) @11

combining the summation terms into an in-scattering rate S™ and a corresponding
out-scattering rate S°* which, however, depend on the charge-carrier occupation of
all other states.

Scattering Channels in Coupled Quantum-Dot—Quantum-Well Systems

Equation (2.9) gives the general expression for calculating the Coulomb scattering
rates. The sums include all possible states, provided they fulfill the energy conserv-
ing d-function. The given quantum-dot-quantum-well system, however, allows the
distinction between qualitatively different scattering processes in order to break up
the sums in Eq. (2.9) into different parts which can be handled more easily.
Throughout this work, quantum-dots embedded in a quantum-well (dot-in-a-well,
DWELL structure) are considered, with two localized quantum-dot states in both
the conduction and valence band. Therefore, two general charge-carrier scattering
processes can be distinguished: Capture of a quantum-well electron into a confined
quantum-dot state, and intra-dot electron relaxation, with their respective inverse
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(a) (b)
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Fig. 2.3 Possible scattering channels in quantum-dot-quantum-well systems. a Direct capture into
the quantum dot (QD) ground state, b Intra-dot relaxation from excited state (ES) to ground-
state (GS). The considered electron scattering process is shown by the bold arrow, with the other
arrows denoting the possible simultaneous scattering of the Auger-electron to a vacant state: (i)
quantum-well (QW) intra-band electron transition, (ii) electron escape from ES to quantum well.
The corresponding mixed processes are shown in (iii) and (iv), where the Auger-electron is in the
valence band, (v) showing a capture of a valence electron to the GS. For all processes shown, the
corresponding reverse scattering is also possible. Not shown is the direct capture into the quantum-
dot excited state, analogous to (a)

processes. This is illustrated in Fig. 2.3a, b, respectively. The accompanying Auger-
process can involve either quantum-well states only, or transitions between quantum-
well and other quantum-dot states. Note that depending on the energy difference,
not all these scattering channels are possible. For example, in the depicted case of
the intra-dot relaxation in Fig.2.3b, the Auger-transition in the valence band from
the quantum well to the ground state is not possible, as it would violate energy
conservation. The possible scattering processes contributing to the total scattering
rate thus strongly depend on the exact energy scheme of the quantum-dot-quantum-
well system. Note that throughout this work impact ionization and Auger-assisted
recombination, i.e. the direct scattering between conduction and valence bands, is
not considered.

Following the above discussion, the scattering dynamics of the quantum-dot states
are rewritten as

apc,GS ‘
ot s

= SE8" Upawh (L = pegs) — SCES ({paw ) pe.cs

rel,out

+ SiiGs (powhpers (1 = pe.as) = SCas™ (powh (1 = pees)pe.as.
(2.12a)
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apc,ES cap,in cap,ou
B e = Scis (tpawh (1 = pess) = STTES "({pw ) pe.Es

+ S5 ({paw D pe.cs (1 — pers) — SEps™ ({pow D (1 = pe.gs)peEs-
(2.12b)

Here, p. denote the electron occupation probabilities of the conduction band states.
For valence band states, analogous equations can be written down (subscript v). The
scattering rates S denote the direct capture of quantum-well electrons into the
quantum-dot states, Srelin the intra-dot relaxation between the quantum-dot states,
with §° being the scattering rate of the respective reverse processes. We can identify
the relaxation processes of the excited state with the GS terms,

l Srel ,out

SEES (tpaw)) = =3 SEG8" (pow)). (2.13a)
rel,ou 1 rel,in
Seies" (Lpawh) = =3 S7es (loaw)). (2.13b)

with a factor % compared to the ground-state contribution, due to its two-fold degen-
eracy. All scattering rates in above equations depend on the whole quantum-well
distribution in both bands, denoted by {pow}.

2.2.2 Electron-Hole Picture

It is customary in semiconductor physics to describe the charge carriers in the
electron-hole picture, where, starting from a completely filled valence band, an unoc-
cupied state is described as a positively charged hole. The charge-carrier occupations
in the conduction and valence bands can then be given in terms of electron and hole
populations:

Pe = Pe (2148.)
on=1—p,. (2.14b)

This description leads to a reversed energy axis for holes, leading to a positive
effective hole mass. The expressions for the scattering rates is formally identical to
the electron picture. The sums in Eq. (2.9), however, now run over both electron and
hole states. Using b € {e, h} to distinguish electron and hole states, the scattering
dynamics can be written as:

apb,GS cap,in cap,ou
5 e = Snas (powhll = pras] = S "({pow ) pv.Gs

+ S5 Upow D v esll — pras] — Si ™ ({pew DI — py.es]oscs
(2.15a)
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apb,ES ca in ca ,ou
5 | = SyEs" (oowDI1 = pws] = SyES™ (oowD e

3 55 g hon sl —n sl — S5 pu D1 —ppslpncs].
(2.15b)

One thing to note is that the capture of valence band electrons into the localized
quantum-dot states now corresponds to the escape of holes from the quantum-dots,
thus reversing the interpretation of in and out-scattering processes in the valence
band. The formal structure of the above equation is nevertheless conserved.

2.2.3 Detailed Balance

The derived scattering expressions so far only describe the dynamics of quantum-dot
states and their interaction with the quantum-well charge carriers. The dynamics of
quantum-well carriers can in principle be expressed by Eq.(2.9) as well. However,
this would require resolving all quantum-well states and tracking their population
distribution in time, which greatly increases the dimensionality of the system state.
This problem can be resolved by assuming a specific distribution of the carrier pop-
ulation within the quantum-well.

The intra-band scattering between quantum-well states is typically in the order of
~100 fs [28-32]. As long as this scattering is faster than the charge-carrier exchange
between the quantum well and quantum-dots, the quantum well can be assumed to
be in quasi-equilibrium with good accuracy:

22D _ ped -1
eq bk F.b
Pb, Qw(€h b~ f(Eb %> F b T = |:1 + eXP(kBT)} , (2.16)

with the corresponding single-particle energies 5 and the quasi-Fermi level E
From this quasi-Fermi distribution the 2D- charge carrler density wy, in the QW's can
be calculated, by taking the density of states in the quantum well as

m*
Dy(E) = DyO(E — E)) = ﬂ;@(E — EZ)), (2.17)

under the assumption that the quantum-well sub-band spacing is large enough that
only the lowest sub-band needs to be taken into account. The energy E%V is the cor-
responding quantum-well band edge and ® is the Heaviside function. The quantum-
well charge-carrier density can then be written as

~1
2 5 cox ~ Ery
wp = 1 + exp —_— 7
Aact ey |: ( kpTed




22 2 Theory of Quantum-Dot Optical Devices

oo

= / de?® Dy (e2) [ 1+ exp Shi — Frb R
bk F0(Epk kg T4

—00

ES — EQY
= eq ZEb b0
= DpkgT1n |:1 + exp( kT ):| , (2.18)

where the sum over all quantum-well k-states was expressed as the integral over
the charge-carrier energy. A, is the active region in-plane area, with the factor 2
accounting for spin degeneracy. By inverting the above expression, the quasi-Fermi
level E;‘}b can be expressed in terms of the charge-carrier density in the quantum
well,

ES = EQY 4 kg T In [exp (#) - 1} . (2.19)

Thus, the quantum-well charge-carrier population can be expressed as a function of
the carrier density and the quasi-equilibrium temperature:

2D eq . -1
e — Eq, (wp, TY)
%W@%EWW@%%1%2P+W(hkkﬁ; H |
B

(2.20)

By entering this relation into the expressions for the scattering rates Eq. (2.9), also
the individual scattering rates can be expressed as functions of only the 2D charge-
carrier densities w, and their quasi-equilibrium temperature 74, eliminating the
need to keep track of the microscopic carrier population distributions.

Furthermore, it is now possible to relate the in and out-scattering rates of a given
scattering process to each other [9, 12]. The out-scattering contribution in Eq. (2.9) is
equivalent to the in-scattering contribution under the replacement p — 1 — p, which
for the quantum well in quasi-equilibrium can be expressed as

2.21)

2D _ eq eq
ok — Epp(wp, T
1= paw () = paw () eXp( :

kg T4

For the quantum-dot scattering processes the out-scattering rates can thus be written
as [33]:

QD eq
ap.i €,
ﬁ?www1%=$TmeJ%W(iﬁﬁﬁ) e
B

QD QD
. 3 — &
SIO (uy, wy, T) = S (., wy, T) exp(%), (2.22b)
B
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where 58131 denotes the energy of the localized quantum-dot state, withm € {GS, ES}
distinguishing between ground and excited state. The out-scattering of charge-
carriers thus becomes more probable at elevated charge-carrier temperatures [34,
35]. Note that in the derivation of above expressions, only a quasi-equilibrium within
the quantum well must be assumed without making assumptions about the quantum-
dot occupations. Equation (2.22) is therefore valid also in nonequilibrium situations
between quantum dot and quantum well.

2.2.4 Carrier-Phonon Scattering

Apart from the direct interaction of the charge carriers moving along the semicon-
ductor lattice, an interaction with the lattice itself is possible. This interaction occurs
by the excitation of phonons, the quanta of lattice atom oscillations. In polar semi-
conductors, such as GaAs, this displacement of the ionic lattice atoms leads to the
build-up of a polarization field. Charge carriers can thus couple to phonons in a polar
semiconductor via the Coulomb interaction.

Two different important types of phonons must be distinguished: longitudinal opti-
cal (LO) phonons and longitudinal acoustic (LA) phonons. The difference between
the two varieties lies in their dispersion relation w (k). LO phonons have a constant
energy around the I'-point (wave vector k = 0) and are thus dispersionless (for small
k), while LA phonons show a nearly linear dispersion relation:

wro(k) =~ const. wia (k) =~ v k|, (2.23)

where v; is the speed of sound. The different dispersion relations critically influence
the scattering dynamics of charge carriers with these types of phonons. Since both
energy and momentum must be conserved in scattering events, LA phonons only
allow for an efficient scattering under the condition that both the energy and momen-
tum difference between the initial and final states of a given scattering event match
that of the phonon. This greatly limits the number of possible scattering partners. The
scattering with LO phonons, on the other hand, is nearly independent of the momenta
of a given initial and final state, as long as their energy difference matches the LO
phonon energy hwy . While the scattering to transversal optical (TO) phonons is
in principle also possible, the transversal oscillation results in a much smaller total
electric field strength and thus to only little interaction with electrons [20].

The quantum-mechanical description of the carrier-phonon interaction is com-
monly expressed by the Frohlich electron-phonon coupling Hamiltonian [20]:

Hyp = hgttala, (bq n biq) . (2.24)
abq
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This Hamiltonian describes the transition between electronic states b — a under
either the emission of a LO phonon with wave vector g or the absorption of one with
wave vector —q. The coupling matrix element for these transitions is given by

gab =(a e | b)g, (2.25)

woW? (1 1
9y = [T e | I (2.26)

Here, sgg and 2 describe the static and high-frequency background permittivity of
the medium, respectively. W;D is the Fourier-transform of the statically screened
three-dimensional Coulomb interaction potential,

l—

2

€o
e 227
1 Veoevg (g% + K2) (227

with the normalization volume V, and the screening wavenumber &.
Following a similar approach as for the carrier-carrier scattering, we can derive
an expression for the charge-carrier scattering by carrier-phonon scattering [24, 36]:

9
ot Pvo

2
o = Zﬂ'z ’gf,”" {5u,a+LO [(1 - PVU)Pacrnph,q — pro(1 = Pao)(nph,q + 1)]
aq
dv,a—LO [(1 - pya)paa(nph,q + 1) — puo(l — Paa)nph,q]],
(2.28)

where 0, 4110 = 0 (5,, — (g, £ h/.uLo)) describe the possible situations where the
state v lies hwr o above (+) or below (—) the state a. The terms proportional to the
phonon number 7, 4, account for the processes where a phonon is absorbed, while
those including (7ph,4 + 1) account for stimulated and spontaneous emission of a
phonon.

Phonon scattering plays an important role for intra-band relaxation processes in
bulk and quantum-well structures [37] as well as charge-carrier capture processes into
quantum wells from the surrounding bulk semiconductor. The continuous density of
states of charge carriers in these systems allow for an efficient scattering with phonons
due to many possible transitions matching the LO phonon energy. A cooling of the
carrier distribution through emission of phonons is therefore possible and occurs
typically on timescales ~5-10 ps in InGaAs quantum-wells [38, 39].

For scattering processes involving quantum-dot states, on the other hand, the
d-function in Eq.(2.28) greatly limits the scattering efficiency. As the quantum-
dot levels are at a discrete distance from the quantum-well band edges, they can
couple only to a single charge-carrier energy level within the quantum well by LO
phonon scattering. In the case that the quantum-dot localization energy exceeds
the LO phonon energy, scattering between the quantum dot and quantum well by
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phonons becomes possible only by multi-phonon processes, which have a much
lower probability to occur, especially at low temperatures [40, 41]. For intra-dot
carrier relaxation processes, effective scattering by LO phonons becomes possible
only when the quantum-dot level spacing is an integer multiple of the LO phonon
energy, which should apply only for a vanishingly small number of QDs in a given
semiconductor structure.

However, it has been shown that the Markov approximation, leading to the emer-
gence of the energy conserving J-function in the scattering rates, can underestimate
its actual value [42—44]. This is due to a broadening of the transition probabilities
in energy space by non-Markovian dynamics, which makes scattering possible also
for energy differences not matching the LO phonon energy exactly. In [45, 46] it is
shown that the interplay between Coulomb and carrier-phonon interaction can lead
to an enhancement of scattering rates, with the total rate being higher than the sum of
the individual processes. This effect becomes especially prevalent for intra-dot relax-
ation processes, leading to efficient scattering only weakly dependent on the spacing
of quantum-dot energy levels. The charge-carrier capture into QDs, on the other
hand, was shown to be well described by carrier-carrier scattering for large enough
carrier densities, as they are commonly encountered in quantum-dot electro-optical
structures.

In the remainder of this work, we therefore neglect the contribution of the carrier-
phonon interaction on the quantum-dot scattering dynamics, in order to maintain
computational efficiency. The Coulomb carrier-carrier scattering will be taken into
account as the dominant scattering process, which describes the charge-carrier
dynamics sufficiently accurately while still allowing for a dynamical analysis of
the device behavior.

2.3 Light-Matter Interaction

So far we have derived equations describing the charge-carrier dynamics in the
quantum-dot optical structure due to scattering events. In this section, the interaction
of the semiconductor medium with light will be derived. The description of light can
be done within a semi-classical framework, where the light field itself is described
by Maxwell’s equations using classical fields. This treatment is often sufficient to
describe all important effects governing the behavior of macroscopic semiconductor
devices [36, 47].

A fully quantum-mechanical description of the light and its interaction with the
semiconductor medium can, however, lead to deviations from the semi-classical
treatment under certain conditions. This becomes especially evident in the case when
only a few quantum-dots or photons are involved in the lasing process [48, 49]. Then,
the non-classical light output from quantum-dots can be used, e.g., for creation of
entangled photons [50] or single-photon emission [51, 52]. When discussing optical
feedback of few-photon quantum-dot lasers, non-classical effects were also found
to arise, characterized by a “bunching” of photons [53, 54], that is unaccounted
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for in semi-classical models. In this work, we will limit ourselves to macroscopic
scales, and thus classical light states. A semi-classical description of the light-matter
interaction is thus sufficient.

2.3.1 Electric Field Dynamics

The starting point for the classical description of the electric field dynamics are
Maxwell’s equations for the dielectric displacement field D, the magnetic field B,
the electric field £, and the magnetizing field H:

V.-D(r,t) = p(r,t) (2.29a)
V-B(r,t)=0 (2.29b)
VxErF,t) = —%B(r, t) (2.29¢)
VxH(r,t)=j+ %D(r, 1), (2.29d)

with the free charge-carrier density p, the free current density j and the electric
displacement and magnetizing field given by

D(r,t) =go&(r,t) +P(r, 1), (2.30)
Hr 1) = #lO(B(r,t) — M, t)), 2.31)

respectively. P and M are the medium polarization and magnetization, respectively.
Assuming vanishing free carrier density and current, as well as a non-magnetizable
medium, Maxwell’s equations can be combined to yield the wave equation for the
electric field

82 2
Eouomg(", 1) — AE(r, 1) = —uowP(r, 1), (2.32)

with the Laplace operator A. Applying the slowly varying wave approximation, one
reaches the time derivation of the slowly varying electric field envelope

O k= p@r.p (2.33)
ot T 2505bg T ’
where E, P are defined via
1 .
Er 1) = 3 (E(r,t)e®™D tcc)e (2.34)
1 .
P(r, 1) = 3 (P(r, 1) ®™D tc.c) e+ coxpeEr, 1), (2.35)
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with a carrier frequency w, and a unit vector ¢ giving the electric field polariza-
tion. The real background susceptibility xug accounts for the linear response of the
background medium polarization to the incident electric field and yields the back-
ground susceptibility e, = (1 + Xb,), leading to the background refractive index
Nbg = ,/Ebg- The remaining contribution from P (r, ) contains the response of the
active medium, which in general cannot be assumed to be linear in £, and can also
have an imaginary part, leading to absorption or amplification of the electric field.
The fields are expanded in terms of plane waves with the wave vector k, where
k| = W""g . The slowly varying envelope functions E, P are in general complex and
thus 1nclude both the spatial amplitude as well as the phase profile of the fields.

It is often customary to separate the spatial dependence of the electric field from
its time dependence,

E(r, 1) = E@Qug(r), (2.36)

thus assuming a time-independent electric field profile in space. In a cavity, u(r)
describes the main cavity mode profile. Equation (2.36) then corresponds to the
single-mode approximation. In general optical cavities allow for a higher number
of possible modes, especially in Fabry—Perot type cavities. When a description of
multi-mode dynamics is required, Eq. (2.36) can be extended to a linear superposition
of the different cavity modes [55]. The assumption of a single mode is nevertheless
justified in Fabry—Perot microcavity devices, where the mode spacing between longi-
tudinal modes is very large, as well as in distributed feedback (DFB) devices, where
optical modes other than the fundamental cavity mode are suppressed [56-58]. In
the remainder of this work we therefore assume a single-mode electric field profile.
The expansion of the electric field in terms of a single mode simplifies the descrip-
tion of the electric field dynamics by eliminating its spatial dependence. The polar-
ization field in the active medium can be expanded in a similar way as Eq. (2.36),

P(r,t) = P(Hup(r)ug(r), (2.37)

under the assumption that the polarization amplitude is in first order proportional to
the electric field amplitude and thus to the electric field mode profile. The spatial
polarization profile u p (r) € R is defined by the active medium geometry. In general,
the spatial extension of electric and polarization field are different, with the electric
field often spanning over a larger volume.

Multiplying Eq. (2.33) with E*(z, t), adding its complex conjugate and integrating
over r yields

) B
3.k _ 2 [ 43 2
/d rE (z,t)atE(z,t) +c.c. at|E(t)| /d rlug )|

[iE*(t)P(t)+c.c.]/d3r|uE(r)|2MP(i‘),
(2.38)

- 2€0€bg
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Fig. 2.4 Tllustration of the y
geometric confinement
factor. The optical mode
profile u g (r) often extends
beyond the active medium
(light blue). The confinement
factor describes the overlap
of the mode with the active
medium distribution u p (r)
(color figure online)
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which we write as

%E(m2 =T [iE*)P(t) +c.c.], (2.39)

2e0Epg
where we have defined the geometric confinement factor [59]

r— J & lug()Pup(r)
[ Erugmr

(2.40)

This definition allows one to move the complete spatial dependence of Eq.(2.33)
into a single variable I'. The geometric confinement factor can be understood as the
overlap of the active medium with the optical mode, as illustrated in Fig.2.4. The
thus simplified electric field dynamics can be written as
0 iwl
—EQ@) =
ot @) 2505bg

P(1). (2.41)

Note that Eq.(2.41) does not satisfy Eq.(2.33) at every point in space, but instead
only fulfills its space-integrated form. Therefore, only the dynamic evolution of the
space-integrated mode amplitude can be described. Changes in the spatial mode
profile could in principle occur due to changes of the optical properties of the active
medium during operation, e.g., by gain or index guiding effects [60, 61], which could
be implemented as a variation of I" with the operational parameters.

Optical Losses

The electric field inside the optical cavity is subject to losses. Internal optical losses
lead to a decay with rate «;,,, which includes effects such as absorption of photons
by free carriers in the surrounding semiconductor material and waveguide losses
through the sidewalls. As there exist no perfect mirrors, only a part of the electric
field can be reflected back into the cavity, while the rest is transmitted through the
cavity mirrors. After each cavity round-trip the electric field is therefore reduced by
a factor ryry, with ry, r, denoting the mirror reflectivities at either end of the cavity.
Integrating over one cavity round-trip time 7oy = npgl/co, With the cavity length £,
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yields for the polarization-free cavity
E(t + Tcav) = E([)rer exp(_aiancav)~ (242)

Assuming that 7,, is small compared to all other processes determining the electric
field dynamics, the above equation can be transformed to a quasi-continuous change
in time:

0

= E@® = —ain E(1) —

ot losses Teav

In(rir)E(t) = —kE(t), (2.43)

where the losses have been combined to a total loss rate x. Inserting these additional
losses into Eq. (2.41), we arrive at the dynamic equation governing the time evolution
of the electric field inside the cavity:

iwlh

9
5 EO = P(t) — KE(t). (2.44)

2505bg

2.3.2 Maxwell-Bloch Equations

So far we have described only the dynamics of the electric field in the cavity, but still
missing is the interaction with the active medium. As derived in the previous section,
the electric field is driven by the active medium polarization. We will therefore derive
expressions for the dynamics of the polarization within the active region in second
quantization.

The interaction of the semiconductor matter with the incident light field is
described by the dipole interaction Hamiltonian in the electron-hole picture [62],
consisting of the kinetic and carrier-field interaction Hamiltonian:

H = Hy, + He ¢
=D e} acs+ Y evdf dys + Y (hQual d]  +He.), (2.45)
c v Ccv
A N s

where a, d denote electron and hole annihilator operators, with the summation indices
c and v running over all electron and hole states, respectively, with s their spin, and
¢, €y their single-particle energy. The interaction matrix element is defined as

hQey = (¢ | —ep&(r,t) -1 | v) = —eo/d3r Pr(r)E(r, 1) -1 py(r). (2.46)

Assuming that the lateral dimensions of the wave functions of the interacting states are
small compared to the electric field wavelength, the electric field can be split off from
the matrix element [62], and we can write the carrier-field interaction Hamiltonian
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in dipole approximation:

H=> cal ac,+ > eudf dy;+ > (peval di  +He) EFe. 1), (247)
c v cv
s s )

with £ = £e. The electric field is taken at the coordinate r..,,, assumed to be the center
of mass of the states ¢, v. The dipole interaction transition moment is defined as

fev = (c | —eor - € | v). (2.48)

We use Eq.(2.47) to calculate the dynamics of the occupation probabilities
Pecs = (a:f,SaC,X), Phovs = (dj’sdc,s), and the inter-band microscopic polarization
Devs = (dp.v.sae.c.s), by applying Heisenberg’s equation of motion. The resulting
equations of motion are given by

0 . . ~ & (T ey, t)

Epcv,s(t) of — _lwcvpcv,s (t) - ZT (pe,c,s(t) + ph,v,s(t) - 1) 5
(2.49a)

0 1 -

8_pe,c,s(t) =z Z 2Im (PCU,S (t)ﬂcvg(rcus t)) s (249b)

t c—f h >
Ap—r —1221 (PF, (O pterE Fep, t 2.49¢)
Eph,v,s )cff_ ﬁ - m Pw,s( HevC(Feys ))1 ( aJC

where the inter-band transition frequency is defined by w,, = %(ec — &,). Inserting
the definition of the real electric field £ = § (E(r, 1)e'®*"=*" + c.c.) into Eq. (2.49),
fast oscillating terms o< exp(Ziwt) with the carrier frequency w enter the equations.
Let us assume w ~ w,,, i.e., the active medium is excited with light close to the
inter-band transition energy. We then move into a co-rotating frame by defining

Pevs(t) = peus (e F ™D up(re,), (2.50)

leading to

0 . . Hev
_pcv,s(t)“%f = —1 (wcv - w)pcv,s(t) —1 ZFL

ot
X (pe,c,s (t) + ph,v.s(t) - l) s (251)

(E(t) + E*(t)672i(krw7wt+¢(rw)))

with ¢(r) = arg(ug(r)). As w for infra-red frequencies is in the order of ~ fs~!,
which is much faster than the active medium dynamics, the fast oscillating term
o E*(t)e**! can be assumed to average out and is consequently left out. This
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approximation is the rotating wave approximation, i.e., p., s is assumed to couple
only to frequencies close to the inter-band frequency. Furthermore, we assume that
only direct inter-band transitions contribute considerably to the light-matter interac-
tion, i.e., any given state ¢ couples only to one specific state v and vice versa. In the
quantum-well this corresponds to taking into account only optical transitions with-
out momentum transfer, thus only pg; remain. In the quantum-dots, only transitions
Pcs, Pes between the electron and hole ground states or excited states, respectively,
are kept. The spin index s is from here on suppressed for notational simplicity.
Thus, for the slowly varying transition amplitudes p we reach the following coupled
equations:

0 . e E(1)

;P ®| = —i@a =P () =i=2= (pe.c(®) + puu(®) = 1),
(2.52a)

0 n| = 11 * (O peE(t 2 2.52b

Epe,c( ) s ﬁ m (Pcv( v E@)|ug (re)l ) > (2. )

O o = Lim (0 (Ope Bt 2 2.52

Eph,v( ) of 7_1 m (PCU( )ch O Nuprea)l ) . (2.52¢)

So far, the effects of many-body interactions on the light-matter dynamics has
not been taken into account. Similar to the derivations in Sect.2.2, by including
the carrier-carrier and carrier-phonon interaction Hamiltonians for calculating the
time-derivatives, these many-body effects can be taken into account. Two types of
modifications to the free-carrier results obtained so far can be classified: First-order
effects, i.e., terms linear in the interaction matrix elements, lead to changes in the
transition energies and the microscopic polarization amplitudes, known as band-
gap renormalization and Coulomb enhancement [21, 22, 36, 63, 64]. Second-order
effects lead to scattering between charge carriers, as derived earlier for the occupa-
tion probabilities. These scattering events not only redistribute charge carriers, but
also lead to a decoherence of the involved states and thus to a decay of the micro-
scopic polarization, known as dephasing [65—-70]. In the following, these many-body
processes are not explicitly taken into account, but instead modeled by a single decay
time constant, 7», characterizing the lifetime of the microscopic polarization. We thus
arrive at

S| == [t =0+ | pat0
atpcv c—f_ HWey w T Pcv
o E(1)
— im0 (Pec® + o) = 1) (2.53)

Assuming now that the electric field amplitude changes only little over the active
region volume, we can set |ug(r)| to be constant. By scaling of E(¢) and p.,(t)
such that |ug(r)| = 1 within the active region, E () describes the actual electric
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field amplitude in the active region, and the Bloch equations can be simplified to a
space-independent form:

9 z)‘ i ( = P
Dev( il LA CY —w)+ — A Dev

ot
C'UE
- iﬂ 25(0 (pe,c(t) + ph,v(t) - 1) s (2543)
0
S pec)| = Im (pl, (O EW). (2.54b)
0
S| =Im (Pl (O, EC)) (2.54¢)

Defining the macroscopic polarization amplitude as the dipole density,

P(t) =

Zuwpwm (2.55)

act

where Vo = f d3r up (r) is the active region volume, we are able to write the electric
field dynamics as

gy =L 2 Zuwpw(n—nE(z) (2.56)

ot 2e0€bg Vact

This equation together with Eq.(2.54) then form the Maxwell-Bloch equations,
determining the light-matter interaction in the semiconductor device.

2.4 Quantum-Dot Laser Rate Equations

2.4.1 Maxwell-Bloch Laser Rate Equations

We now apply the previously derived dynamic equations to the considered quantum-
dot optoelectronic laser devices. In order to accurately describe its dynamics, the
behavior of the optically interacting quantum-dots as well as the charge carriers in the
surrounding quantum-well structure must be taken into account. The InAs/InGaAs
quantum-dots considered here are supposed to contain two localized electron and
hole levels, the energetically lowest one denoted as the ground state, the higher
one as excited state. Simpler models treating the quantum-dot confinement poten-
tial as a harmonic oscillator potential lead to a two-fold degenerate excited state
due to the rotational symmetry with respect to the growth axis [24]. More realistic
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models, however, lift this degeneracy [71]. Nevertheless, the difference in the local-
ization energy between the two first excited states is in the order a few meV, and is
thus neglected in the following. Additional to the electronic degeneracy due to the
geometric shape of the QDs, all states are assumed to be twofold spin-degenerate.
The energy band structure of the considered quantum-dot structure is schematically
depicted in Fig.2.5.

As seen in Sect.2.2.1, the carrier scattering into the quantum-dot states strongly
depends on the occupation of the surrounding carrier reservoir states. Thus, in order
to dynamically account for the scattering processes, the charge-carrier dynamics
in the reservoir must be taken into account. Following the argumentation of rapid
equilibration of the charge carriers within the reservoir states, only the total charge-
carrier densities w,, wy, per unit area in the reservoir must be considered, as the
carrier distribution can be calculated from the corresponding quasi-Fermi function.

In the following, let b € {e, h} denote electrons and holes, and m € {GS, ES}
quantum-dot ground and excited state, respectively, with v, their degree of degener-
acy, excluding spin. The dynamic equation of the reservoir carrier density can then
in general be written as:

,
stim

d J 1 in, ca : ow
w in,cap out,cap b
—Wp =— — Flges — 2up, [S CPbmi — S, (1 —pp, ,-)]——
dr €o loss Aget Z: b,m,i Pb.m.i b,m,i Pb.m.i ot

(2.57)

where J is the electrical pump current density per unit area, ¢ is the electron charge,
ri. 18 a general loss term, and A, is the area of the active region. The sum runs
over all confined quantum-dot states in the mth quantum-dot excited state, denoted
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by the index i, with the factor 2 accounting for spin degeneracy. The stimulated
recombination contribution is given by

Ows
ot

Zlm (p,iD*(t)uiDE(r)) , (2.58)

stim At

with the microscopic polarization and dipole moment of the corresponding k-state

D and ,uiD, respectively. Under the assumption that the reservoir charge carriers
are in quasi-equilibrium, the dynamic equation for the reservoir polarization can be
written as

—pk%) = - [i(w,%" —w)+ H P (@)
2

EPE(@)
_’Mkzh (f €20 Eptes T + f (g EfY T = 1), (2.59)

with the transition frequency w;P. The losses are modeled as
rll(l))ss == Bswewh (2.60)

with a bimolecular recombination rate BS [12], accounting for recombination
processes of an electron and a hole within the charge-carrier reservoir. The bimolec-
ular recombination of charge carriers in the reservoir is assumed to be the dominant
process at the charge-carrier densities encountered in laser devices. In order to model
the full carrier-density dependent losses, one would need to take linear losses, e.g.,
Shockley—Read—Hall recombination via trap states [72], as well as Auger-assisted
recombination processes [73] into account.

The sum over all quantum-dot states i in Eq.(2.57) is equivalent to the sum over
all quantum-dots within the active region, which would require keeping track of each
individual quantum dot as a dynamic variable. As the number of quantum-dots can
easily exceed several million within a typical quantum-dot device, Eq. (2.57) must
be reformulated.

Individual quantum-dots within the active layer can differ in shape, size, and
material composition. The most apparent effect of these inhomogeneities between
different quantum-dots is the broadening of the absorption and emission spectra of
quantum-dot optical devices. This inhomogeneous broadening is due to the depen-
dence on the transition energy on the aforementioned quantum-dot parameters. While
asingle quantum dot exhibits sharp transition energies, the quantum-dot ensemble has
a continuous spectrum, which can be accurately modeled by a Gaussian distribution
function of the quantum-dot energies around a mean value, with a full-width-at-half-
maximum (FWHM) of typically some 10 meV [74].

We now characterize each quantum dot by its transition energy, distributing the
quantum-dot ensemble into different subgroups, labeled by the index j, with their
respective mean transition energy wy,. We introduce the probability mass function
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Fig. 2.6 Illustration of the quantum-dot subgroups to model inhomogeneous broadening. The QDs
are distributed into jmax subgroups, assumed to follow a Gaussian distribution around the mean

transition energy (Awy,). The probability mass function f(j) gives the probability for a quantum
dot to be found in the jth subgroup

f(j) denoting the ratio of QDs within the jth subgroup in relation to the total
quantum-dot number, as illustrated in Fig.2.6. Following a Gaussian distribution,
f(j) is then given by

. . 2
1 hwli‘l - hwi;l

with the normalization constant A chosen such that > IRAC) — 1. For a continuous
distribution, one could analytically calculate a closed form for the normalization con-
stant. Due to the discreteness of the subgroups in the simulations, however, " must
be calculated numerically. The inhomogeneous broadening of the optical spectra is
given by the sum of the single-particle state broadenings,

AEinh = AEe + AEh, (262)

where Agy, is the corresponding electron and hole state broadening. Only the total
broadening A Ej,, is experimentally readily accessible, e.g., by measurements of
the quantum-dot luminescence spectra [75]. For the individual state broadening we
assume widths proportional to the localization energy of the given state:

AE,

Aep = AEjjy——m—.
b mhAEe-i—AEh

(2.63)

Under the assumption that each quantum dot is fully characterized by its transition
energy, i.e., the dynamics of QDs within the same subgroup is identical, the quantum-
dot ensemble can be described by a set of dynamic equations for all subgroups. This
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assumption is in general only approximately fulfilled, as the energy of the confined
quantum-dot states depends on a variety of parameters, such that QDs with equal
transition energy do not necessarily have to be identical, and their dynamics could
thus differ. By averaging the quantum-dot parameters over the whole ensemble the
resulting error should nevertheless be small.

For each quantum-dot subgroup a set of optical Bloch equations can be formulated:

pm E (1)
2h

(Phon®) + it = 1)
(2.64a)

ip-" (t) = _[i(w-f —w)+i} P =i
drm " L]
d

Iy — J _ J J ~
TFhn () = £Im (P1 OunE®) = Wapl, 0], (0) + atp,,,mm\sc. (2.64b)

The dynamic variables pj, (1), pfn, »(t) then describe the inter-band polarization and
occupation probabilities of electron and holes in the mth quantum-dot state of the
Jjth subgroup, respectively. In addition to the Bloch equations derived in Eq. (2.54),
an additional term accounting for the spontaneous recombination of quantum-dot
charge carriers has been introduced, with the recombination rate W,,. The charge-
carrier scattering contribution was derived in Eq. (2.15):

o . . -
5 has Ol = SL8® + 57w, (2.65a)
o A 1 .
oDl = SLES 0 — 5570, (2.63b)

with the individual contributions

S (1) = S (we, wh, TH[L — pf,, (1)]

_ Szflr;:l,out(we7 W, Teq)p[j;m (1), (2.66a)
SPN ) = S (g, wy, TEH[1 — P;];,Gs(f)]P;j;,Es(t)
_ Szel,out(we’ wy, Teq)plj;,GS(t)[l _ pi,ES(t)]' (2.66b)

Here, S;">" and S;*™ describe the quantum-dot in-scattering rates by direct capture
from the quantum well and by intra-dot relaxation from the ES to GS, respectively,
which depend nonlinearly on the carrier reservoir charge-carrier densities and the
quasi-equilibrium carrier temperature. The corresponding out-scattering rates are
calculated via detailed balance relations, Eq. (2.22).

We consider only relaxation between quantum-dot states between the ground and
excited states of the same quantum-dot subgroup, i.e., we assume a direct mapping
of one specific excited state energy to a given ground-state energy. This assumption
is strictly valid only if the inhomogeneous broadening of the quantum-dot states
is due to the non-uniformity of one specific quantum-dot parameter. As different
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quantum-dots might differ, e.g., both in size and shape, it might be possible that
any two given quantum-dots share the same ground-state energy but have different
excited-state energies, or vice versa. There is an ongoing discussion in the literature
whether the assumed one-to-one mapping of ground-state to excited-state energies is
valid [76, 77], with experimental results supporting the approximate validity of this
assumption. We will therefore only consider the charge-carrier relaxation between
equal quantum-dot subgroups.

The dynamic equation for the reservoir charge-carrier densities, Eq.(2.57), can
be written as:

d J i o Bwb
_ _w _ QD -\ ¢J-cap _
G (0 =7 = () = 2N i§m v (DSEP0 = 52| (@67)

where now the sum over all quantum-dot states was replaced by the sum over all
quantum-dot subgroups. The sheet density of quantum-dots within the active region
per quantum-well layer is given by NP,

Using Eqs. (2.55) and (2.56), the dynamic equation for the electric field amplitude
of the lasing mode can be written as

iwl
EoEbghQW

) L2 .
5 B0 = AN v f (D pi, + 1> P | — KE,
j.m

Aact kZD
(2.68)

where we used Vo, = a; ARV, with AV the height of a single quantum-well layer
and a;, the number of quantum-well layers.

2.4.2 Adiabatically Eliminated Polarization

As a further simplification of the previously derived quantum-dot laser model, the
dynamics of the microscopic inter-band polarization can be eliminated. The reason-
ing behind this is the fast dephasing time 7, of the polarization, which is usually in
the order of ~100 fs at room temperature [65, 69, 78]. Considering that the charge-
carrier scattering times are commonly in the order of a few ps [24, 26, 45, 79],
and the photon lifetime in conventional Fabry—Perot or DFB-type cavities is several
ps, this assumption is in many cases justified. All other dynamic variables can then
be assumed to be slowly varying, such that the microscopic polarization amplitudes
follow a quasi-static relation given by

d |
3P =0. (2.69)
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Inserting the dynamic equation for the polarization Eq. (2.64a) then yields

o mE@) () i 1= iTy(wh — w)
pL)=—iT o (pé,m(t)+ph,m(t) 1)(1+[T2(%,1_w)]2), (2.70)

with analogous expressions for the reservoir optical transitions. Inserting this expres-
sion in the charge carrier and electric field dynamic equations yields

0 ; . , .
=0 (0 = =Re(@)) (Pl (®) + ] () = 1) [P

1o}
= WLy (P} 1) + 501D 2.71)

%E(r) =gM)E(@) — KE(t), (2.72)

with the complex gain coefficient of each subgroup

g =Dl (1= iTaeon —w) 273)
T\ 1L+ D - w)P

The gain coefficients g,ch for the quantum-well inter-band transitions can be written in
the same form. Equation (2.73) leads to a Lorentzian-shaped gain spectrum for each
individual optical transition, witha FWHM of 247> ~!. The corresponding imaginary
part of the gain vanishes directly at the transition but becomes large at hw & 7T, ™!
and then decays slowly towards higher detunings from the carrier frequency w, as
illustrated in Fig. 2.7. This means that for large detuning of the optical field frequency
from a given optical transition, the imaginary part of the gain coefficient will pre-
dominate. Thus, if we assume the lasing frequency is detuned far enough from the
reservoir transitions, we can neglect the real part of the corresponding reservoir gain
coefficients. This allows us to neglect the stimulated recombination contribution in
the dynamic equation for the reservoir charge-carrier densities:

2D ~ N 8wb
ot

Re g7 ~ 0. (2.74)

stim

The resulting complex gain can then be written as

hwl
g(t) = m[zNQD Zme(J)gm (Pem(f) + th(t) - )

P (fEeD ERL. T + fein Fh,T"‘q)—l)]. (2.75)

k2D
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J
g m

Fig. 2.7 Lorgntzian gain profile of a single optical transition. The real part of the quantum-dot gain
coefficient g, has a Lorentzian profile around the carrier frequency w, the imaginary part becomes

extremal at |w — wj,| = T»~!, while vanishing for resonant transitions w = wiy. Note the slower
decay of the imaginary part compared to the real part for optical frequencies far from the transition
frequency

The downside of using the adiabatically eliminated polarization is the loss of optical
frequency dependence. By assuming % P () = 0, the response of the active medium

is fixed to a single frequency w, since p;, is the polarization within the rotating frame
of the carrier frequency w. Taking the full polarization dynamics into account, an
electric field E () o exp(—iAwt) would excite optical transitions at any arbitrary
frequency (w + Aw). However, the adiabatically eliminated polarization reacts to
every electric field as if it was centered at the frequency w. Thus, when a spectrally
broad electric field signal needs to be treated, the full polarization equations must
be taken into account. For narrow signals, as, e.g., in single-mode laser devices, the
adiabatically eliminated polarization will yield satisfyingly accurate results, with the
advantage of lower complexity of the differential equation system.

2.4.3 Modeling of Spontaneous Emission

So far we have only considered the stimulated emission contributing to the electric
field in the laser cavity, but have neglected spontaneous emission. In arigorous deriva-
tion, spontaneous emission can only be derived from a fully quantum-mechanical
description of the electric field [47, 80], which goes beyond the semi-classical picture
used in this work. Instead, we will derive the spontaneous emission terms phenom-
enologically from energy conservation criteria.

‘We have written the spontaneous charge-carrier losses in the quantum-dot states as

Jd S

— D = —=Wyupl pl . 2.76

ot ph,m( )Lp Pe.mPh.m ( )
The total energy lost by this recombination process can be calculated to

22 Zme(j)meg,mplj;,mM;{w 2.77)

Jj.m



40 2 Theory of Quantum-Dot Optical Devices

with the total quantum-dot number Z?P. We now assume that only a fraction 3 of
the spontaneously recombining charge-carriers emit a photon into the lasing mode.
The remaining recombination processes are assumed to either be non-radiative, or
emit photons into other modes. The change in the optical energy density (uqp) in the
laser mode is thus given by

0 2N

o ond | = B 2 D Wl l) (2.78)

Jj.m

From the electric field amplitude, the optical energy density can furthermore be
calculated to

|E|*. (2.79)

As the spontaneous emission process can be viewed as a stochastic process with
random phase, the contribution to the electric field can be written in terms of a
Gaussian white noise process:

9 vl = [Pe
Eﬂﬂw— L), (2.80)

with the complex white noise term (1) = &'(¢) + i&"(t), with £, " € R, and the
spontaneous emission amplitude Dp. The individual terms &', £” are assumed to be
uncorrelated Gaussian white noise processes. From this the average change in |E|?
can be shown to be [81, 82]:

0
SAEOP) | =Dy, 281
8t<|()|)sp sp (2.81)
Comparing Eqs. (2.78) and (2.81), the spontaneous emission strength is calculated to

2N

Dy, = 23———
5P ﬁﬁbg&‘thW

> v f D Wl P - (2.82)

J.m

Deterministic Approximation

The time-evolution of | E|* can also be written as

. 0
EIE(t)I —2|E|5|E|, (2.83)
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which leads to the deterministic approximation of spontaneous emission:

0 D
—E@)| =-—>.
ot @ sp 2E*

(2.84)

While numerically easier to implement than the stochastic approach, this approx-
imation, however, diverges for E = 0. A description in the photon picture could
circumvent this problem.

2.4.4 Carrier-Induced Gain and Refractive Index Changes

From Eq. (2.72) itbecomes clear that the real part of the gain coefficients g,{l contribute
to the amplitude gain or loss of the electric field. The imaginary parts lead to a
rotation of E(¢) in the complex plane. Since E(¢) is the slowly varying amplitude of
the electric field in a rotating frame with the carrier frequency w, the imaginary part
of the gain leads to a frequency shift of the electric field towards w — Im g(¢).

This shift of the electric field frequency induced by interaction with the active
medium can be understood as a change in the optical length of the cavity due to a
change in refractive index. Writing the total medium susceptibility as

X(t) = Xvg +6x(1), (2.85)

with the charge-carrier-induced susceptibility §y, which is related to the electric field
gain via

2
Sx(t) = f—fgm, (2.86)

results in a refractive index
V1+x@)

261,
= y/Ebg t l,—wgg(t)

2
nogy/ 1+ —9(0)

Mng (1 + élm g(t)) , (2.87)

n(t)

%

where in the last line we assumed |g(7)| < w. Considering now a Fabry—Perot cavity
of length ¢, the shifted resonance frequency wc¢ of the cavity can be calculated from
the resonance condition
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co
Urtn)

Co 1
~ 1——I t
q27r€nbg ( w m ))

w —Im g(2), (2.88)

we() =

withg € N, and w = gco/(2ményg). The above shows that the frequency shift of the
electric field is due to the shift of the cavity resonance frequency. This argumentation
is valid under the assumption of slowly varying g(¢) in relation to the cavity round-
trip time, i.e., that the build-up of the standing electric field can follow the induced
refractive index changes adiabatically.

Equations (2.88) and (2.73) reveal that optical transitions with a higher energy
than the considered carrier frequency will lead to a negative non-zero contribution to
the imaginary part of the gain. Following Eq. (2.88), these transitions will therefore
lead to a blue-shift of the resonance frequency with increasing population by charge
carriers. Correspondingly, transitions at lower frequencies than the optical field will
lead to a red-shift. By taking into account only the imaginary part of the gain coef-
ficients of the reservoir states in Eq.(2.75), we neglect the optical gain induced by
these transitions, but still take into account the induced refractive index changes.

The direct change of the refractive index by charge carriers in the states of the
off-resonant transitions is not the only mechanism by which the optical length and
thus the resonance frequency of the laser resonator can change. The charge carriers
that are lost in non-radiative recombination processes lead to a heating of the semi-
conductor lattice by emission of phonons in addition to Joule-heating by the applied
current. Due to the expansion of the lattice by the increasing temperature the physical
length of the resonator increases, leading to a decrease of the resonance frequency
and thus a red-shift of the lasing wavelength. This temperature-induced frequency
shift is pronounced, e.g., in edge-emitting laser structures, where the active medium
runs across the whole length of the laser cavity. The small physical footprint of
vertical-cavity surface-emitting lasers (VCSELSs) leads to a reduced heat transfer to
the surrounding medium or an attached heat sink and subsequently to a pronounced
heating of the semiconductor material and a red-shift [83].

Furthermore, not all optical transitions have been accounted for in the present
model. In addition to the direct optical transitions already considered, also transi-
tions between confined quantum-dot states and the continuum states of the reservoir
involving only conduction band or valence band states are possible. The effect of
such transitions on the refractive index can be approximately expressed by a modified
Drude formula for the optical susceptibility [84, 85]. In the remainder of this work,
we will, however, concentrate on the effects of direct inter-band transitions.
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2.5 Quantum-Dot Laser Carrier-Heating Model

Temperature effects in semiconductor optical devices have been previously shown
to be important for device design considerations. An increase in lattice and charge-
carrier temperature often leads to reduced efficiency and diminished device perfor-
mance [35, 86]. On the other hand, higher temperatures were shown, e.g., to improve
the performance of mode-locked laser devices [87]. Quantum-dot lasers have been
theoretically predicted to exhibit lower sensitivity to temperature effects compared to
quantum-well devices, due to their confined levels inhibiting thermal escape of opti-
cally active carriers to the surrounding reservoir [88]. Experimental findings in some
cases confirm an improvement regarding temperature stability, especially in p-doped
quantum-dot lasers [89-92], while other results suggest a sensitivity to temperature
in quantum-dot lasers that is comparable to quantum-well devices [86, 93]. Taking
into account carrier heating and temperature effects can therefore be important for a
realistic modeling of quantum-dot optical devices.

In the previous sections, the importance of charge-carrier scattering processes in
quantum-dot optical devices has been discussed. The involved Auger processes enter
the dynamic equations for the charge-carrier occupations and densities as Boltzmann-
like scattering terms. They lead to a redistribution of the charge carriers between the
reservoir and quantum-dot states, and, in the process, create so-called hot electrons,
which increase the charge carrier distribution temperature. In the following, dynamic
equations for the charge-carrier energy and thus the quasi-equilibrium temperature
will be derived by formulating energy balance equations for the reservoir charge
carriers. These equations can then be used to dynamically include carrier heating in
quantum-dot optical devices.

2.5.1 Charge-Carrier Energy and Temperature

As stressed in the previous sections, Auger processes conserve the total charge-
carrier energy by redistributing the charge-carrier population. Specifically, when
carriers from reservoir states scatter into the lower quantum-dot confined states,
energetically higher reservoir states will be occupied by the Auger-electron or hole.
A rigorous way to treat this Auger-heating would involve the description of all k-
states in the reservoir and resolving every possible scattering process in order to
determine the dynamic change of each k-state. As was detailed previously, such an
approach would be numerically very expensive.

Nevertheless, under the assumption of fast quasi-equilibration of the reservoir car-
rier distributions, an alternative treatment of the Auger-induced carrier distribution
changes can be formulated. In quasi-equilibrium, the carrier distribution pj; qw (5,%3()
is given by the quasi-Fermi distribution f (523, E;?b, 7¢9). In order to fully char-
acterize the carrier distribution, only the quasi-Fermi level and quasi-equilibrium
temperature must be known. While the quasi-Fermi level can be inferred from the
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charge-carrier densities in the carrier reservoir, the quasi-equilibrium temperature
in most models is assumed to be constant, and thus Auger heating as well as other
heating effects are neglected. Here, an energy balance approach is presented that can
be used to dynamically calculate the change of the quasi-equilibrium charge-carrier
temperature.

Carrier heating has been previously shown to crucially influence the performance
of electro-optic devices. For example in quantum-well lasers carrier heating has been
shown to contribute to the nonlinear gain compression, i.e., the reduction of differen-
tial gain with increasing optical power [94]. In quantum-well optical amplifiers it was
shown that Auger-heating leads to a nonuniform carrier temperature along the device
[18]. Carrier heating in quantum-dot lasers has a strong impact on the charge-carrier
scattering dynamics due to a change in the detailed balance condition Eq. (2.22) with
temperature [95], as well as a quantitative change of the Auger-scattering rates [96].

The total kinetic energy density of the charge carriers in the reservoir states can
be written as

o0
U= Z / de; Dy(E3%) 5% Po.ow (ER2), (2.89)
b —00

which, under the assumption of a quasi-Fermi distribution in the reservoir states, is
related to the quasi-equilibrium charge-carrier temperature 7°1 via

Ji £ _ g\
=3 / de; Dy(E30) 5% [1 + exp(b’zTeq”)} . (2.90)
b —0Q0

In the case of non-degenerate semiconductors, i.e., for small carrier numbers, the
charge carrier distribution in the continuum states approximately follow Boltzmann
statistics, and the charge carrier energy density and quasi-equilibrium temperature
are simply related via

0 ES _ oD
eq eq ~ D 2D\ 2D Epp —€hk
U (we, wy, T |~ Z/dgb,k Dy (ebx) Ep.k CXP kT
b
0

= kT (w, + wy) 2.91)

where, for simplicity, the corresponding band edge energies were set to zero.
Generally, however, semiconductor optoelectronic devices can exceed the low-
density limit and the above approximation cannot be applied. Instead, the full expres-
sion Eq. (2.90) which takes the quasi-Fermi statistics into account must be evaluated.
The quasi-Fermi levels in the reservoir Ep’, can be expressed in terms of the
charge-carrier densities wj, by using Eq. (2.19). The total charge-carrier energy den-
sity then becomes a function of the carrier densities and their quasi-equilibrium
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temperature: u*4 = u®4(w,, wy,, T°1). For constant w, and wj,, the quasi-equilibrium
energy density increases monotonically with the temperature. As such, it is possible
to invert the function u®*(w,, wy, T°?) and instead calculate the quasi-equilibrium
carrier temperature from the charge-carrier densities and energy density:

T = T w,, wy, u®9). (2.92)

In order to calculate the dynamic changes of the charge carrier temperature during
operation of the optoelectronic device, dynamic equations for the charge carrier
energy must be formulated.

2.5.2 Carrier Heating by Auger-Scattering Processes

The change of the total kinetic charge carrier energy due to Auger-scattering
processes can be determined by calculating the net energy change of the reservoir
charge carriers involved in each considered scattering process. This is illustrated in
Fig.2.8. In a charge carrier capture event, a quantum-well charge carrier at energy ¢
(relative to the quantum-well band edge El%v) fills a vacant quantum-dot state with
energy eqp, under scattering of a quantum-well carrier from ¢, to the vacant state €3,
where energy conservation dictates €3 = €3 + (€1 — ggp). The total quantum-well
energy change is thus AU YV — ey —g) = €qn, and thus equal to the localization
energy of the involved quantum-dot state. Similarly, for intra-dot scattering from the
excited to the ground state, a net energy equal to the GS-ES separation A, is added
to the total quantum-well charge carrier energy.

o @ (b)
()]
5 €3 Qw QW
5 EQD{ €
El{ & }E Elf}Ae
€ 1
BV 2
s il s Ezt
ES = = ES =——¢ =
EQD Ae
GS —M GS —, -
GS

Fig.2.8 Mechanism of Auger-heating in quantum-dot devices, shown representatively for electrons
only. a Direct capture processes: a carrier with energy ¢ relative to the quantum-well (QW) band
edge EI%V scatters in to a quantum-dot state egp below the band edge, while another carrier in
the QW gains kinetic energy equal to €| + eqp. The net energy change in the QW is then gqp.
b Relaxation process: a carrier relaxes from the quantum-dot excited state (ES) into the ground state
(GS). The Auger electron in the QW adds a net energy of A, to the total QW charge-carrier energy
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Considering now all possible Auger-scattering processes in the considered system,
the change of the reservoir energy density due to this scattering can be written as:

a; Z2NQDZumf(;><EbO — e2) gcop

Auger

+ D vas F(D(ERR — el S (2.93)

Here, S/ and S/ denote the net scattering rates for capture and relaxation

processes, respectlvely, as defined in Eq. (2.66).

2.5.3 Energy Balance Equations

In addition to the above-mentioned contribution of Auger-heating, other mechanisms
that influence the charge carrier energy need to be be considered. Not only the
scattering of charge carriers with quantum-dot states will change the carrier energy
density, but also the scattering of carriers into the reservoir by the pumping process.
As the charge carriers can be expected to be thermalized with the lattice when they
reach the bulk material surrounding the active medium, the energy gained by the
capture of a pump carrier into the reservoir is roughly given by the band-gap energy
spacing between the reservoir and bulk materials. We thus assume an average pump
energy of epump per charge carrier. The corresponding contribution to the energy
density balance is therefore:

Ou J
E pump = afpump (294)

Furthermore, the spontaneous recombination of charge carriers in the reservoir
will effectively remove energy from it. Here, we assume that the recombination is
equally probable for all reservoir carriers, i.e., a recombination event will remove
twice the average charge carrier energy (u(¢)) = u(w, + wy)~' from the reservoir,
as both an electron and a hole are simultaneously annihilated in the process:

Ou _ a(we + u)h) _ 2Bswe([)wh(t)
E rec ot rec (u(®) = _mu(t) (2.95)

Lastly, we have to consider the cooling of the charge carrier gas due to the interac-
tion with lattice phonons. Here, carriers interact with the lattice by emitting a phonon,
effectively removing the phonon energy from the total charge carrier energy. This
process will cool the carriers towards the lattice temperature 7,. We assume that the
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rate of cooling is proportional to the excess energy of the charge carrier gas with
respect to the thermal energy it would have at 7y:

Ou

0| ) = Ny )] 296

phon

The carrier-phonon interaction rate v, is a measure for the timescale on which the
carriers are cooled.

Collecting all the above contributions to the energy density balance, we can write
the dynamic equation for u(¢) as

d (l)_ﬁu
a T o

ou
pump ot

u
rec ot

ou

— . 2.97
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Chapter 3
Quantum-Dot Laser Dynamics

3.1 Introduction

The stability of semiconductor laser operation plays a crucial role in almost every
possible application of these devices [1-4]. In most fields of operation, one would
require a stable steady-state output with constant intensity that follows any change
in external operating parameters instantaneously, thus enabling, e.g., arbitrarily fast
switching of the laser output. In reality such requirements can naturally never be met.

The semiconductor laser itself is a nonlinear dynamical system which can exhibit
a variety of dynamical instabilities and nonlinearities with respect to parameter
changes. In a dynamical sense, the appearance of different solutions and their bifur-
cations then determine which types of operation are experimentally accessible. In
order to understand and correctly predict the laser behavior in different setups, a
thorough analysis of the quantum-dot laser system is required. By means of such
analysis, one can predict and explain the performance of the laser device under dif-
ferent types of applications as well as determine the stability of different types of
solutions. Furthermore, the effects of noise, which is omnipresent in the real world,
e.g., due to spontaneous emission of photons or charge carrier injection noise, can
be discussed, and the sensitivity of the different solutions to noise can be assessed.

As shown in Chap. 2, the charge carrier dynamics in semiconductor quantum-
dots strongly depend on the scattering processes between the quantum-dot states
and the surrounding charge carrier reservoir. The scattering rates for these processes
are in itself highly nonlinear, depending on the reservoir carrier densities and tem-
perature. Compared to conventional bulk and quantum-well semiconductor lasers,
where charge carrier equilibration happens on a fast timescale, the carrier dynamics
between the quantum-dots and the surrounding material is of the same order as other
dynamic timescales. Carrier scattering thus plays an important role in quantum-dot
lasers, and its effects become evident in many experimental observations [5, 6].

In this chapter the dynamics of quantum-dot lasers will be discussed with focus
on the underlying charge-carrier scattering dynamics. The properties and behavior
of solitary and directly modulated quantum-dot lasers as well as setups with optical
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injection or feedback will be discussed. Here, interference effects and thus the phase
dynamics of the electric field play an important role. It will be shown that the carrier
scattering sensitively influences these phase dynamics by a dynamic shift of the active
medium refractive index, which gives rise to important differences in the dynamic
response of quantum-dot lasers when compared to conventional lasers.

In Sect. 3.2, the relaxation oscillations of quantum-dot lasers will be investigated
and compared to the predictions of established rate-equation systems. We will deter-
mine the dependence of the relaxation oscillation parameters on the charge-carrier
scattering rates in quantum-dot lasers and identify different dynamic regimes of laser
operation. We then present a minimal rate-equation model for quantum-dot lasers in
Sect. 3.3. This model is used to identify the key aspects of charge-carrier dynamics
that determine the unique features of quantum-dot laser dynamics. Analytical expres-
sions for the relaxation oscillation damping and frequency in the limits of slow and
fast charge-carrier scattering will be derived.

We will discuss the quantum-dot laser response to direct modulation in Sect. 3.4,
emphasizing the dependence of the small-signal response on the charge-carrier scat-
tering rates. Important differences of the modulation behavior of quantum-dot lasers
compared to conventional laser devices will be presented.

In Sect. 3.5, we will investigate the dynamics of carrier-induced refractive-index
changes in quantum-dot lasers. We will discuss the applicability of the commonly
used linewidth enhancement factor « in quantum-dot lasers and highlight important
effects in the frequency-response of quantum-dot lasers to external perturbations.
These lead to important differences to the behavior of conventional laser devices
when discussing optical interactions. The quantum-dot laser dynamics under optical
injection will thus be discussed in Sect. 3.6, where we will compare the predictions
of our quantum-dot laser model with those using an a-factor. In Sect. 3.7, we will
subsequently simplify our laser model and make it suitable for implementation in
path-continuation tools, allowing for the investigation of the detailed bifurcation
structure of the quantum-dot laser under optical injection. We will extend the inves-
tigation to the application of time-delayed optical feedback in Sect.3.8.

Then, we will discuss the frequency chirp and modulation of the quantum-dot laser
in response to generalized, frequency-dependent external modulations in Sect. 3.9,
again highlighting the unique features of quantum-dot lasers due to their complex
charge-carrier scattering dynamics. Finally, a conclusion will be given in Sect. 3.10.

3.2 Laser Dynamics—Relaxation Oscillations

In general, the dynamics of lasers is determined from the interaction between the
electric field, the inter-band polarization of the active medium, and the charge carrier
dynamics.! A classification of lasers due to Arecchi et al. [9] characterizes lasers by
the order of magnitude of characteristic dynamic timescales of these three parts:

IParts of this section have been published in [7, 8].
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e Class-C lasers are characterized by timescales of the polarization dephasing,
charge carrier decay, and cavity photon lifetime on the same order of magni-
tude. Their dynamics is characterized by the interaction of all three values. Most
importantly, solitary class-C lasers can exhibit deterministic chaos after a so-called
second laser threshold [10, 11]. This behavior can be explained by the formal iden-
tity of the class-C Maxwell-Bloch laser equations to the Lorenz—Haken equation
system, which is known to exhibit chaos [12, 13]. Examples for class-C lasers
include NHj3, Ne-Xe, and infrared He-Ne lasers.

e Inclass-B lasers the polarization dephasing lifetime is much smaller than the corre-
sponding photon and carrier lifetimes. The polarization will therefore adiabatically
follow the changes in both photon and carrier number. As such, no independent
motion of the polarization is possible, reducing the dynamical dimension by one.
Class-B lasers include CO; lasers and most semiconductor lasers.

e Class-A lasers possess photon lifetimes much longer than both the polarization and
charge carrier lifetimes. Only the optical intensity remains as a dynamical variable,
with both the charge carrier number and polarization adiabatically following its
time evolution. With only one dynamic degree of freedom left, class-A lasers
cannot exhibit chaos or oscillations. Examples for class-A lasers are dye lasers
and visible He-Ne lasers [10].

3.2.1 Relaxation Oscillations in Two-Variable Laser
Equations

Semiconductor lasers, including quantum-dot lasers, are generally class-B lasers. As
such, they exhibit dynamical behavior that is characterized in most parts by the two-
dimensional phase-space given by the optical power (or field amplitude) and the gain,
given by the inversion of the optically resonant transitions. Within this effectively
two-dimensional phase-plane the laser can exhibit damped oscillatory motion about
the fixed point, known as relaxation oscillations (ROs). These oscillations can be
modeled using a simple two-variable rate-equation system [ 1, 14] for the total charge
carrier number N and photon number S:

d 1

—N=J—2gNS— —N 3.1

ar g T, (3.1a)
d

aS = 2gNS — 2kS, (3.1b)

with a normalized pump current J, a gain coefficient g, the carrier decay time 77,
and the photon decay rate 2x. The stimulated emission term 2gN (#)S(¢) defines the
nonlinearity that is the driving source of the laser action and is included in all laser
models. An analysis of the fixed points of above equations, i.e., the points which
fulfill %_1;/ = i—f = 0, readily yields the fixed point of the non-lasing state
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N* = — S* =0, 3.2)
and the lasing state

N == s =Ly
= = th), (3.3)
g 2K

where the threshold pump current Jy, = ﬁ was introduced, below which $* < 0,
i.e., the laser is off. The lasing state is characterized by a linearly increasing photon
number with J, and a constant carrier number N* = Ny,. The gain is therefore clamped

to the threshold gain value, where it first becomes equal to the optical losses. This is

a direct consequence of the lasing condition 2gN < 2k, i.e., the gain exactly cancels
out the optical losses in the steady-state.

In order to derive the stability of the above fixed points, the differential equation
system will be linearized. In the vicinity of the fixed point solution, i.e., N =
(N —N*), 68 = (S — S*) are assumed to be “small”, the system can be assumed to
follow linear dynamics. We can thus write

d SN = 0 dN PN 9 [dN
dt N N+ 08 s

with an analogous expression for %6S . The time evolution can be written using the

system’s Jacobian matrix:
d (6N ON
a( 55) J( 5S) (35)

This linearized equation can be solved by using an exponential ansatz. We thus write
6N = 6N e, with some constant SN. Using the same ansatz for 45, Eq. (3.5) can be

written as
N SN
\(B)-1() »

The above is then an eigenvalue problem, with A, (5}\\! s &S')T being the eigenvalues
and eigenvectors of J, respectively. The eigenvalues allow for a classification of the

S, 34

fixed point as either stable or unstable. For A > 0, the small deviation from the
fixed point will grow exponentially in time, and the system will move away from the
fixed point, making it unstable. On the other hand, if A < 0, the system will asymp-
totically approach the fixed point—the system is then called asymptotically stable
[15]. The so-called Lyapunov-exponents A furthermore allow for the distinction
between oscillating and simple decaying solutions. If a pair of complex-conjugate
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Lyapunov-exponents with non-vanishing imaginary part exist, the system will per-
form oscillations around the fixed point, with an angular frequency given by the
absolute value of the imaginary part.

We now apply the linear stability analysis to the two-variable rate-equation system.
The eigenvalues of the Jacobian at the lasing fixed point, Eq. (3.3), can be calculated to

Ao = 125*+1 +i |4KgS* 125*+12
12 = ) g T, Ly 4Kg 4 g T,
Tro £ iy/w2, — TEo- 3.7

Here, the relaxation-oscillation damping rate I'rp as well as the relaxation-oscillation
resonance frequency wr.s was introduced. The fact that the real part of the eigenvalues
is always negative (or, ['rp positive) for all / > Jy,, means that the lasing fixed point
is always stable, and slight deviations from it will decay in time with the relaxation-
oscillation damping rate. Furthermore, oscillations about the fixed point with the

angular frequency wro = /w2, — '3, will appear, provided I'ro < Wies- The fixed
point is thus a stable focus. As can be seen, the relaxation oscillation damping I'go
scales linearly with the steady-state laser intensity, whereas the oscillation frequency
scales with its square root. For increasing power, the relaxation oscillations will
therefore become less pronounced.

The relaxation oscillations are illustrated in Fig.3.1a, b, showing the time-series
of the two dynamic variables and the trajectory in the (N, S)-phase-space, using
Eq.(3.1). Clearly visible are the damped relaxation oscillations in both dynamic
variables. When the trajectory is still far from the fixed point, the oscillations are
highly anharmonic, owing to the nonlinearity in the rate equations, and only become
harmonic close to the fixed point.

5 T i 5
(a) — sayst | D)
4t --  N()/N* | a4t
£ -
g 3t § 3t
= £
Z 2+ E 2+
S &
v ot 1t
0 . . . . 0 . . .
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Fig. 3.1 Relaxation oscillations after the laser turn-on in a two-variable laser rate-equation system
from simulation of Eq.(3.1) with 71 = 1, g = 1, 2k = 25, J = 50 = 2Jy, and S(0) = 0.01,
N(0) = 0. a Time-series of the normalized optical power S/S* and the normalized charge carrier
number N/N*. b Trajectory in the (N, S)-phase-space
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The relaxation oscillations of a laser define the laser response to small perturba-
tions from its lasing fixed point. Therefore, the relaxation oscillation damping and
frequency already can give an indication about the stability properties of lasers, as
well as its small-signal modulation capabilities. For example, when the laser oper-
ation is perturbed by optical feedback, e.g., due to reflections, the critical feedback
strength needed to destabilize the cw operation of the laser is directly proportional
to the relaxation-oscillation damping I'rp [16—18]. In applications where a constant
output power is required, strong damping of the relaxation oscillations is therefore
favorable. The relaxation-oscillation frequency is important for modulation applica-
tions, as a modulation of the laser with a frequency near wgp can resonantly excite
relaxation oscillations and lead to unwanted nonuniform laser responses [19], as will
be discussed in Sect.3.4.

From Eq.(3.7) it can be seen that the charge carrier lifetime 7 enters in both
the frequency and damping of the relaxation oscillations. In the case of quantum-
dot lasers, it is in general not possible to assign a single characteristic lifetime to
the charge carriers, due to the coupling of quantum-dot and reservoir states. The
relaxation oscillation behavior of quantum-dot lasers can therefore be expected to
differ from conventional lasers and to depend on the scattering lifetimes as well as the
respective charge carrier decay (recombination) times. In the following sections, the
dependence of the relaxation oscillation dynamics in quantum-dot lasers and their
dynamical performance on the underlying scattering processes and charge carrier
dynamics will be discussed.

3.2.2 Turn-On Dynamics of Quantum-Dot Lasers

We now utilize the quantum-dot laser rate equations derived in Sect.2.4 to simu-
late the turn-on dynamics of quantum-dot lasers. We consider a 1.2 mm long ridge
waveguide edge-emitting dot-in-a-well (DWELL) single-mode laser device, with a
number of a; = 15 stacked InGaAs quantum-wells, each embedding a density of
NP InAs quantum-dots. We consider an emission wavelength around A = 1.3 um
and set the carrier-frequency of our rotating frame to w = 230 THz. The quantum-
dots are assumed to have a localized ground-state and a twofold degenerate excited
state both for electrons and holes, each with an additional twofold spin-degeneracy.

The equations governing the dynamics of charge carriers in the device are thus
given by:

d J o
= BSwew;, — 2N D" vuf ()85 (3.8)

d .
b

Jj.m

_ ) ) o . 1.
_Re(g{n) (p]e,m + piz,m - 1) |E|2 - meif,mpz,m + Si),n]; + V_SZ ‘ (39)
'm
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where the carrier relaxation rate enters with a positive (negative) sign for m = GS
(m = ES). The charge-carrier in-scattering rates Scap/ e (e, wp, TSY) are precal-
culated for the reservoir carrier densities and temperature commonly encountered
in the quantum-dot laser and implemented as look-up tables in the simulations to
minimize computational effort.

The electric field dynamics are written as

= (9(t) —RE + (‘?E (3.10)

dl sp

with the complex optical gain given by the sum over all quantum-dot subgroup gain
coefficients,

- Dl 1= iD(wih —w)
= : , 3.11
T (1 + [T (wm — w)]Z) G0

as well as the frequency shift induced by the quantum-well transitions in quasi-
equilibrium approximation,

— hwr €q eq
dwQw = WAM zlm (f(gek’ Egi: T +/ (g Epoy T = )
(3.12)

The gain can then be written as

T
90 = — NQDZymf(J)g’ (Phon® + p () = 1) = i (3.13)

€0€bg

The spontaneous emission is included deterministically, by using

1 4BINQ
sp 2E* 5b 6()th

aEt)
72«

Z Vi D Wiy 5 (3.14)

The charge-carrier distribution temperature is calculated dynamically from the
energy density balance equations as derived in Sect.2.5.2

d du

U= —
dr dt

du
pump dt

n du
rec dr

du ‘
Auger dt Iphon ’

(3.15)

The above coupled differential equation system describes the complete dynamics
of the quantum-dot laser active medium with a separate treatment of electrons and
holes in the inhomogeneously broadened first two localized quantum-dot states as
well as in the surrounding quasi-two-dimensional charge carrier reservoir, taking
microscopically calculated Auger-scattering rates into account. The carrier-induced
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gain and refractive index change is calculated separately for each optical transition,
driving the light-matter interaction.

In the following sections the above equations are solved numerically, using the
simulation parameters given in Table 3.1, and the quantum-dot structure as illustrated

in Fig.3.2.

Table 3.1 Parameters used in the quantum-dot laser simulations, unless stated otherwise

Symbol Value Meaning

NP 10" cm=2 QD density per layer

ar, 15 Number of layers

A Snm QW layer height

Tbg 3.77 Background index

AFEinn 40 meV QD inhomogeneous
broadening FWHM

BS 540 nm2ns~! QW bimolecular
recombination rate

Was 0.44ns™! GS spontaneous
recombination rate

Wes 0.55ns™! ES spontaneous recombination
rate

I3 2x 1073 Spontaneous emission ratio

Lm 0.6nm e QD transition dipole moment

HQW 0.5nmeg QW transition dipole moment

T 100 fs QD polarization dephasing
time

r 0.03125 Geometric confinement factor

50ns~! Optical loss rate

T 0.2ps™! Carrier-phonon interaction rate

Epump 0.23eV charge carrier pump energy

AE,(AEy) 64 meV (35 meV) Electron (hole) QD GS
localization energy

A (Ap) 50 meV (20 meV) Electron (hole) QD GS-ES

energy spacing

Fig. 3.2 Energy scheme of
the localized quantum-dot
states, unless stated
otherwise. The energy
spacings are given in meV.
The reservoir band edges are
shown by the light-blue
shaded areas (color figure

online)
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normalized to the threshold current Jy,. The horizontal dashed lines show the respective values at
the threshold current

The light-current characteristic of the modeled quantum-dot laser device is shown
inFig. 3.3, along with the steady-state charge-carrier densities per quantum-well layer
in the quantum-dot and quantum-well reservoir states:

nd> = 2N " v, f () (pi,m + p’h) (3.16a)
J
A = w, + wy,. (3.16b)

After the threshold current is reached, the output power increases linearly with the
pump current and the quantum-dot ground-state carrier density is clamped to its
threshold value. These characteristics closely resemble the behavior of the simple
two-variable rate-equation system, Eq. (3.1). The off-resonant charge carriers in the
excited and reservoir states, however, keep increasing above their threshold values,
shown by the dashed horizontal lines in Fig.3.3. This is a direct consequence of
the scattering processes filling the active quantum-dot states: In the steady state the
ground-state charge carriers lost in stimulated emission processes, i.e., the lasing
action, must be replenished by the in-scattering of charge carriers from the other
states. Since the laser intensity increases with current, the increase in stimulated
losses must be compensated by higher in-scattering of charge carriers, which thus
necessitates higher carrier occupations in the other states. The charge carrier occu-
pations in quantum-dot lasers are therefore not clamped [20], in contrast to simpler
laser models. This will lead to important differences in the dynamical behavior of
quantum-dot laser compared to conventional lasers, as will be shown in the following
sections.
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Fig. 3.4 Simulated quantum-dot laser turn-on dynamics. a Time-series of the output power after
onset of the pump current at + = 0. b Phase-space trajectory in the phase-space spanned by total
quantum-dot ground-state carrier density and output power. ¢ Phase-space trajectory in the phase-
space spanned by total quantum-dot carrier density and total reservoir carrier density

The steady-state characteristics shown in Fig.3.3 depict the dependence of the
stationary steady-state values of the output power and carrier densities. For a char-
acterization of the dynamic properties, the time-dependence of the laser variables
must be investigated. We thus integrate the quantum-dot laser equations in time after
the onset of the pump current. The resulting turn-on dynamics at a pump current of
twice the threshold current Jy, are shown in Fig.3.4.

The intensity time-series, Fig. 3.4a, reveals an intensity peak after a turn-on delay
time of about 600 ps and subsequent strongly damped relaxation oscillations. This
comparably high damping is characteristic of quantum-dot lasers and has been related
to the charge-carrier scattering dynamics between the localized quantum-dot and
reservoir states as a limiting factor [20-23]. The turn-on trajectory plotted in the
phase-space spanned by the output power and the total quantum-dot ground-state
charge-carrier density (n@° + n,?D) in Fig. 3.4b show a qualitative similar behavior
as the simple two-variable rate equations shown in Fig. 3.1b, i.e., the fixed point is a
stable focus as well, albeit with much higher damping.

The phase-space plot in Fig.3.4c shows the trajectory in the quantum-dot—
quantum-well charge-carrier density phase-space. Here, also a spiraling motion into
the fixed point is visible. This reveals a phase-shift between the oscillations in the
corresponding charge-carrier ensembles, i.e., the carrier reservoir and quantum-dot
carriers exhibit desynchronized dynamics. A constant quasi-equilibrium between the
different charge-carrier sub-ensembles would translate to a functional dependence
of anD on wp, and vice versa, from which the shown result (Fig.3.4) clearly devi-
ates. The nonequilibrium description of the charge carriers in quantum-dot devices
is therefore required and leads to important dynamic effects, as will be shown in the
following sections.
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3.2.3 Influence of Charge-Carrier Scattering

As detailed before, the charge-carrier scattering processes in quantum-dot lasers
are an important aspect that distinguishes them from conventional quantum-well or
bulk lasers. We will therefore investigate the dependence of the quantum-dot laser
dynamics on the timescales of the involved scattering processes. The exact numeric
value of the scattering rates can depend on the operating current and temperature
[24], the material composition [25, 26], the quantum-dot size, or the dimensionality
of the carrier reservoir [27]. The scattering rates can therefore vary between different
devices and applications. In order to understand the quantum-dot laser dynamics, a
systematic study of the influence of the scattering processes is thus needed.

The scattering contribution to the quantum-dot ground-state carrier occupation is
given by

d . . .
8 ool =i+ 5y
= (SZ?ggn + SZe]’i“ﬂb,Es) (1 = Pl Gs)

_ (Sz?gsout + S}:el,out(l _ p;;,ES)) pL,GS' 3.17)

Looking now at a small deviation dp from the steady-state value of p,{ Gs- the above

equation can be linearized in g}, ¢ and rewritten as

d
—dp=——, 3.18
PRl . (3.18)

where the effective scattering lifetime 7, was introduced, given by
» i ap.out Lin j . A
P = SIS S 4 P g, (319)

which allows for a characterization of the scattering processes by a single value. The
scattering processes will thus drive the occupation after a small perturbation back
towards the steady-state value, with a time constant given by this effective scattering
lifetime. This makes 7, experimentally accessible, e.g., by pump-probe measure-
ments of the gain recovery of quantum-dot lasers or amplifiers, which measure the
time-dependence of the optical gain after an optical excitation which depletes the
initial carrier occupation of the system [28-32]. Provided the initial depletion is not
too large, the subsequent gain recovery can be fitted by a single-exponential recovery,
which then yields the effective scattering lifetime as the time constant. For strong
perturbation, however, the linearization approach used to derive 7, no longer holds,
and also the charge carriers in the excited and reservoir states will be depleted, which
introduces a nonlinear recovery, as the individual scattering rates depend on these
occupations.
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Fig. 3.5 Simulated quantum-dot laser turn-on dynamics for fast (red), intermediate (green), and
slow (blue) scattering. a Time-series of the normalized output power Ppormy after onset of the pump
current at ¢+ = 0. b Phase-space trajectory in the phase-space spanned by total quantum-dot carrier
density and output power. ¢ Phase-space trajectory in the phase-space spanned by total quantum-
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spanned by total reservoir carrier density and the normalized output power. The laser was biased at
twice the threshold current in each case

We now proceed by analyzing the quantum-dot laser dynamics in dependence on
the scattering rates. In order to isolate their effects, we start from the microscopically
calculated rates and introduce a common constant scaling factor to all individual
scattering rates. As before, we simulate the turn-on dynamics of the quantum-dot
laser with three different scaling factors, leading to effective scattering lifetimes 7,
in the steady-states. The resulting turn-on curves are shown in Fig. 3.5a. Both for the
fast scattering 7,! = 10'2s7! (red) and the slow value 7,! = 10'0s~! (blue) the
laser exhibits relatively strong relaxation oscillations after turn-on. For intermediate
rates, the quantum-dot laser exhibits an overdamped response, with a steady decay
of the output power towards the steady-state value without oscillations.

Taking into account the expression for the relaxation oscillation frequency and
damping determined from the simple two-variable rate-equation system, Eq. (3.7),
the damping could be expected to grow linearly with the inverse carrier lifetime 7 .
As the effective scattering lifetime enters the linearized equation Eq.(3.18) in the
same form as T in Eq. (3.1), the damping could be expected to grow with 7,1, which
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is also supported by analytical treatment of more sophisticated quantum-dot models
[33]. The corresponding behavior can be observed when increasing the scattering
rates from the slow to intermediate scattering cases in Fig.3.5a, where the damping
increases. The reoccurring relaxation oscillations at even faster scattering, however,
is not predicted by the simple model [34].

In order to understand this behavior, it is useful to analyze the turn-on process in
different projections of the phase-space, shown in Fig.3.5b—d. Here, the trajectory
in the phase-space spanned by the quantum-dot carrier density (P + nhQD) and
normalized output power Py, shows a spiraling motion or a simple linear motion
towards the steady-state values for the oscillating and overdamped cases, respectively.
This transition corresponds to a change of the fixed point from a stable focus to a
stable node. The trajectories in Fig.3.5¢c, d involving the carrier reservoir carrier
densities (w, + wy,) reveal the nature of the observed turn-on behavior. For the slow
scattering, the motion in the (w, + wp, Phom)-phase-space shows a very different
behavior from the (n?D + nED, Prorm)-phase-space. During the whole turn-on, the
reservoir carrier density continues to rise. The interaction with the photons during the
relaxation oscillations is thus limited to the quantum-dot carriers, while the reservoir
carriers are not affected. We therefore refer to this regime of slow scattering as the
“constant-reservoir regime”.

With increasing scattering rates, the reservoir starts to be affected by the light-
matter interaction in the quantum-dots, manifesting itself in qualitative similar
dynamics of the quantum-dot and reservoir carriers. For very fast scattering, the dif-
ferent carriers are closely coupled, and perturbations to the quantum-dot population
will be transmitted to the reservoir population. In the limit of instantaneous scatter-
ing, i.e., 7, — 0, the reservoir carriers would adiabatically follow the quantum-dot
occupation. The dynamic degree of freedom of the reservoir and excited state carriers
could then be adiabatically eliminated and the carriers would behave as a combined
charge-carrier system, and a single variable would suffice to describe all charge car-
rier occupations. The quantum-dot laser dynamics could then be described to good
accuracy by a simple rate-equation system similar to quantum-well laser models.
As shown for the two-variable laser model Eq. (3.1) before, the relaxation oscillation
damping in this case is given by the carrier lifetime related to the non-radiative losses,
which are in the order of ns, leading to the reappearance of relaxation oscillations for
the fast scattering. We call this dynamic regime of fast scattering the “synchronized”
regime, where the different carrier sub-ensembles are strongly coupled. Here, the
quantum-dot laser dynamics approach that of quantum-well lasers [34].

For a detailed study of the quantitative dependence of the quantum-dot laser
dynamics on the scattering rates, we extract the relaxation oscillation frequency and
damping in dependence of the scattering lifetime. Numerically, this is done by fitting
the output power time-series after a small perturbation with a damped harmonic
oscillation (see Appendix A.1). The resulting relaxation oscillation parameters in
dependence on the averaged effective carrier scattering rate, S = %(’Te_ Y b, is
shown in Fig. 3.6.
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Fig. 3.6 Relaxation oscillation (RO) parameters in dependence of the scattering rates. Shown is the
RO frequency wro and the RO damping I'ro for different effective carrier scattering rates S =
%(7';1 + 7, l), averaged over electrons and holes. (i) Constant-reservoir regime, (ii) overdamped
regime, (iii) synchronized regime. The pump current was set to twice the respective threshold current
at each data point. The dashed vertical line denotes the microscopically calculated scattering rates
for the device parameters given in Table 3.1

Clearly visible are the three qualitatively different dynamic regimes. The relax-
ation oscillation frequency vanishes around S &~ 1.5 x 10''s and the damping
becomes maximal, indicating the overdamped regime. Changing the scattering rates
from there to either lower or higher values, the damping decreases and the relax-
ation oscillations reappear. The microscopically calculated scattering rates lie in
the synchronized regime, close to the overdamped regime, such that the coupling
between quantum-dot and reservoir states is strong enough for the reservoir states
to be affected by the laser dynamics. On the other hand, the scattering is not fast
enough as to lead to a near-instantaneous coupling of the two carrier sub-ensembles,
therefore still allowing for independent carrier dynamics.

3.3 Minimal Model for Quantum-Dot Laser Dynamics

The crucial dependence of the quantum-dot dynamics on the involved scattering rates
can not be described by the traditional rate-equation approach given by Eq. (3.1),
as seen in the previous section. An important task is therefore to find the effects
responsible for the strong differences between the two models. By pinpointing these
physical processes, one can then formulate requirements for a given model to be
able to describe the physical phenomena in quantum-dot lasers. This way it becomes
possible to derive a minimal model taking all these effects into account, which can
then qualitatively describe the quantum-dot laser dynamics. The derivation of such
a simple model will be done in this section.’

2Parts of this section have been published in [35].
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As we have stressed before, the most important difference between conventional,
e.g., quantum-well lasers and quantum-dot devices is the complex charge carrier
scattering dynamics between the optically active states and the surrounding carrier
reservoir. An intuitive approach in order to extend the existing rate-equation system
Eq. (3.1) to quantum-dot devices is to introduce the quantum-dot occupation proba-
bility, and taking the charge carrier density N as the reservoir charge carrier density.
The resulting three-variable system can be written as

dy - S(N, p) (3.20a)
—N=J— — — , .20a
dt T, p

d SNV, p) — 2 2p—1S (3.20b)
P =SW.p Ty 92p :

d

55 =29Cp— DS =258, (3.20¢)

where the coupling between p and N is for now expressed as a general scattering
term S(N, p). The variable N expresses the reservoir charge-carrier density in units
of 2N?P_ The spontaneous losses in the quantum-dot are taken into account by the
spontaneous loss time T, the stimulated emission is given by the gain coefficient g
and the inversion (2p — 1). _

We now need to define the scattering contribution S(N, p). For direct capture
processes, i.e., the charge carrier scattering between the quantum-dot and reservoir
states, the scattering can be written as

SN, p) = SPIN)(1 — p) — S“PO(N) p. (3.21)
We rewrite this expression as [7]
SWNV. p) = RIN)(p*(N) = p), (3.22)

with

Scap,in

R(N) = S 4 geap-out pAN) = (3.23)

Scap.in 4 Scap,out *
The scattering processes can thus be described as driving the quantum-dot popula-
tion towards the quasi-equilibrium occupation probability p°d. The individual rates
depend on the carrier-reservoir density, and thus also p®. This dependence is given
by the detailed balance relationship,

eq
gcapout _ Scapﬁin exp e® — EF
kgT

|  _ gV -
_ geapin eXp(*fkTo ) [exp (D;‘;T) - 1] , (3.24)
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with the quasi-Fermi level in the reservoir E,, the reservoir band edge E(?w and
the quantum-dot energy level 9P, as well as the reservoir carrier density w =
2NQP . N and the corresponding density of states D. This expression leads to a rather
complicated dependence of the scattering term on the reservoir density. Thus, in
order to simplify the resulting terms, we linearize p®? in terms of the reservoir carrier
density. We choose a linearization around the corresponding threshold values of N
and p. As we have seen previously, the charge-carrier densities in quantum-dot lasers
are not clamped above threshold. Nevertheless, the deviations from the threshold
values can be seen as small, such that the linearization should yield reliable results.
Furthermore, the threshold values N, p" have an intuitive physical interpretation:
N™ is the number of charge carriers per quantum-dot in the reservoir required to reach
the lasing threshold. The threshold occupation probability p™ on the other hand can

be easily calculated from the lasing condition, i.e., %S = 0. We can thus write

P~ pt +d(N —NY), (3.25)
with
o Scap,in
ph=9tr d= — |—— (3.26)
29 8N Scap,in + Scap,out A

The newly introduced coefficient d thus describes the change of the quasi-equilibrium
quantum-dot occupation with the reservoir carrier density, due to the change in the
detailed balance between in and out-scattering. With these expressions, the three-
variable system for the quantum-dot laser is written as:

d N

—N=J—— —R(p"+dWN —NM — 3.27
= - (" + )—») (3.27a)
d p

—p=R(p"+dN —=N" —p) - L —g2p— DS 3.27b
3" (p +d( ) p) Ty g2p—1 (3.27b)
d

aS =2g(2p — 1)S — 2kS. (3.27¢)

3.3.1 Linearization and Eigenvalue Problem

In the following, the derived rate-equation system will be analyzed in terms of its
relaxation oscillation damping and frequency. To this end, we will perform a linear
stability analysis around its fixed point. Subsequently, the dependence on the effective
scattering rate R will be analyzed.
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The lasing fixed point of the three-variable equation system Eq. (3.27) is given by

T:(J + dRN™ dR *
N*=L, = g+ﬁ, S*=—(N*—Nth)—p— (3.28)
1 4+ dRT, 2g K kTsp

In order to determine the eigenvalue problem we determine the Jacobian matrix

—% —dR R 0
J = dR —%p —R—298* —r|, (3.29)
0 44S* 0

from which we can determine the eigenvalues as the roots of the characteristic
equation

0= —A[(i +dR+/\) (i +R—2gS*+)\) —dRz] — 4gKS* (i +dR+)\).
(3.30)

The roots of above equation, however, are very complex expressions which can not
be used for an analytic treatment of the problem. In order to determine the stability
properties and Lyapunov-exponents of the fixed points, the solutions to the above
equations will be determined numerically.

We choose parameters as given in Table3.2. These parameters were chosen in
correspondence with those given in Table 3.1 for the full quantum-dot laser model,
evaluated at twice the threshold current. The effective charge carrier lifetimes are
given by

Ty = [BS(we +wi)] ™, T = [Wos (Pecs + pnas)] (3.31)

with the average quantum-dot ground-state occupations p,, gs. The eigenvalues in the
steady-state are determined numerically. The resulting dependence on the effective
scattering rate R is shown in Fig. 3.7. The minimal model reproduces the three qual-
itative dynamic regimes that have been previously found for the quantum-dot laser:

Table 3.2 Parameters used in the minimal quantum-dot laser model, unless stated otherwise

Symbol Value Meaning

T, 0.17ns Reservoir charge carrier lifetime

Tsp 1.85ns Quantum-dot charge carrier lifetime

g 230ns~! Gain coefficient

K 50ns~! Optical losses

Nt 2.3 Reservoir carrier density at threshold (in units of
2ND)

d 0.022 Detailed balance coefficient
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Fig. 3.7 Eigenvalues )\ in the minimal quantum-dot model. Shown are the relaxation oscillation
(RO) damping I'rp (= Re)) and frequency wrp (= ImA\) of the eigenvalues that are complex
conjugate pairs. The dotted black line shows the eigenvalues that are not related to the relaxation
oscillations. The dashed lines show the results from the full quantum-dot laser model. The inset
shows the comparison in the constant-reservoir regime. The pump current was set to twice the
respective threshold value at each data point

two regimes with pronounced relaxation oscillations for low and high R, with an
intermediate overdamped regime around R ~ 10''s~!. In the synchronized regime
for large R also the results from the full quantum-dot laser model are shown as dashed
lines. Here, a very good quantitative agreement between the two approaches is visi-
ble. For slower scattering, however, while the three-variable model correctly predicts
the qualitative dependence of the dynamic regimes on the scattering rate, the two
approaches differ (see inset). There are possible reasons for this discrepancy:

e The three-variable rate-equation model does not take into account the different
dynamics of electrons and holes. Especially for slow scattering this can introduce
additional nonlinearities, as their dynamics then become less synchronized [5].

e For slow scattering the reservoir densities deviate from their respective threshold
values, as higher reservoir densities are required to supply the quantum-dot states
with enough charge carriers. Thus, the linearization approximations may not hold
any longer.

e Further effects, such as gain compression, which are especially pronounced for
slow charge carrier scattering [36, 37], have not been addressed in the simple
model. Gain compression is known to influence the relaxation oscillation parame-
ters [14], and might thus change the shown dependence for low R.

One must therefore keep in mind that the derived model should not be used for a
quantitative description of a given quantum-dot laser device. Nevertheless it already
offers a much better description than the conventional two-variable rate-equation
model. At a given operation point a correct choice of the effective model parameters,
e.g., from comparisons with experiments, should also yield quantitatively reliable
results.
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In contrast to three-variable models for quantum-dot lasers that do not take into
account the detailed balance of the scattering rates [34], our model is able to reproduce
the reappearance of relaxation oscillations in the synchronized dynamic regime for
high scattering rates. As we have seen this is a direct consequence of a reservoir-
carrier-density dependent out-scattering rate.

Furthermore, the derived model can yield important analytical results. By applying
additional model reductions an analytical treatment and formulation of closed-form
expressions become possible, e.g., for the relaxation oscillation parameters. This will
be done in the following.

3.3.2 Asymptotic Analysis—Relaxation Oscillations

The characteristic equation Eq.(3.30) needs to be solved in order to calculate the
eigenvalues of the Jacobian and thus the stability as well as relaxation oscillation
parameters. Given its cubic nature, the solutions can in principle be explicitly deter-
mined. However, this would result in lengthy and complicated expressions with little
practical value, as the dependences on different parameters would be hidden in the
multitude of terms. The idea to circumvent these issues is to expand the characteristic
equation in terms of one or more small parameters, and solve the reduced problem
[1, 33]. Depending on the choice of expansion, the resulting eigenvalues should
describe the original system well around the chosen expansion point or parameter.

Slow Scattering—Constant-Reservoir Regime

At first, we will try to derive a simpler expression for the eigenvalues in the constant-
reservoir regime. Our previous numerical analysis of the quantum-dot laser dynamics
within this regime has shown that the dynamics are dominated by the quantum-dot
charge-carrier dynamics, while the reservoir provides a nearly constant charge carrier
influx into the active quantum-dot states. As such, the charge-carrier subsystems
should be only weakly coupled. This leads us to a choice of expansion: In the given
three-variable system, the direct coupling between the quantum-dot and reservoir
carriers is determined by the coefficient d, describing the change of quasi-equilibrium
occupation in the quantum-dots depending on the reservoir carrier density.

We will therefore expand Eq. (3.30) in terms of d. We assume that the eigenvalues
can be written in the form

A=) +d )\ + 0. (3.32)

We proceed by inserting this into Eq. (3.30). Since our assumption was that d should
be small, we can at first neglect all resulting terms of order d or higher, as the
remaining terms should dominate the dynamics. This zeroth-order problem can then
be explicitly solved for .
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The resulting zeroth-order characteristic equation is given by

0 =4grS*Ty,
+ (1 +RT, + 298" T, + 4g/€S*T1Tsp) Ao
+ (T] + T, + RT\ T, + 29S™ T, TSP) Ao?
4T Tsp>\o3 (3.33)

which has three solutions,
cr,0 . cr,0
Ao = —TRy Fiwgy s (3.34a)

Ao = —, (3.34b)

with the zeroth-order relaxation oscillation damping and frequency in the constant-
reservoir regime (superscript cr):

Fcr,O _ 1 1 *
RO =5\ 7 +R+2957 ), (3.352)
2\ Ty

W0 =\ 4grs* — T80, (3.35b)

This result is identical to the expressions for the relaxation oscillation parameters
obtained from the two-variable system Eq.(3.7), apart from an additional ’—; in the
relaxation oscillation damping rate. This can be understood by a decrease of the
effective carrier lifetime in the quantum-dot states due to the scattering process: The
carriers will be driven towards their equilibrium distribution with the effective rate
(Tsp_l + R), which then takes the place of T in the simple two-variable rate equation
system.

The solution of the zeroth-order problem thus predicts an increase in the damping
with increasing scattering rate, in accordance with the previous observations. The
remaining third eigenvalue \¢+ is purely real and thus does not contribute to the
relaxation oscillations, but instead describes the dynamics of the reservoir, with its
lifetime 7.

We now proceed in the expansion of the characteristic equation by solving the
first-order problem, i.e., taking only terms of O(d) in Eq.(3.30) into account, after
inserting Eq. (3.32). The resulting equation reads

0 = 4gKS*RT Ty, + (RT) 4 2gRS*T1 Tp) o + RT\ Ty \o®
+ [14 RTy + 205" Ty + 4gnS™ T Ty,

+2 Ty + Ty + RT Ty + 298 T Typ) Mo +3Ti T o N1, (3.36)
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which can be readily solved for \;. After additional simplification, the resulting
first-order corrections in the constant-reservoir regime then can be written as

1
cr,1 2
IRy = —R N2 ) RE (3.37a)
o[ () + (- 4]
(Ff{éo - 4g/<;S*T1)
wro =R ——= - . (3.37b)
20y [ = 21%) + 4grs*Ti
Here we have written \; as
A= -y +wiy, (3.38)
such that the resulting relaxation oscillation parameters are given by
o =T8O +d TS + 0d), (3.392)
Wi = Wil 4+ d wiy) + O(d?). (3.39b)

The first-order corrections in d thus introduce an additional quadratic dependence
on the scattering rate R.

Figure 3.8 shows a comparison of the analytic approximations in zeroth and first
order in d with the numerically determined values. It can be seen that both approxi-
mations reproduce the dependence of the relaxation oscillation damping on the scat-
tering rate very closely. The zeroth order approximation, Eq.(3.35), shows minor
deviations in the frequency at the beginning of the overdamped regime, which are
alleviated by the first-order correction terms.
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Fast Scattering—Synchronized Regime

Next, we will look at the synchronized regime for fast charge carrier scattering.
This limit has been analytically treated in [34], but without separating the effects of
charge-carrier lifetime and the the coupling coefficient d. In order to simplify the
characteristic equation, we evaluate it in the limit of R — 00, i.e., taking only terms of
O(R) into account. The remaining terms can then be neglected, as the terms including
the scattering rate R will dominate the dynamics. We thus rewrite the characteristic
equation (3.30) in the high-R limit as

0 = (W) + 2o\ + A2 (3.40)

The cubic term in A is O(1) and is therefore neglected. The now quadratic equation
for A immediately yields the eigenvalues

A =T £ iwo (3.41)

with the relaxation oscillation frequency

Wro =4/ (@5o)? — (TRo)*. (3.42)

Expanding Eq. (3.30) in powers of A and comparison with Eq. (3.40) yields an expres-
sion for the relaxation oscillation damping and resonance frequency:

2ng+%+%p+%(4ng+%2gS+%Tsp) (3.43)
, 43a

Fro = 1 1 1
2(1+d+45Cos+ 4 + )

1
x 4grS (d n RLTI) ’
Whs = 1 —| (3.43b)
hd+h (205 + 4+ 2)

We proceed by expanding the above expressions in terms of the inverse scattering

rate r 1= % around r = 0, corresponding to the limit R — oo. The zeroth-order term
is evaluated to

14 d

2dgS + T + T,

2(1+d)
0 4dgkS
res 1 + d

o = , (3.44a)

. (3.44b)
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The first-order correction is given by

2
1 1
1 [ 2058 7—0—(1(;—0—295‘)

T == - : 3.45

RO= 2| 154 2(1 + d)? (3.452)
1 1

il = L [d9m5 (T ~d (5 +205) (3.45b)

o RV1+4d d(l1+4d) ' '
We now further note the following estimations
1 1 90
g8 > —, grS > —5 grS > dg=S-, (3.46)

Tsp Tl 2

which hold for moderate output power. We can thus approximate the relaxation

oscillation parameters in the synchronized regime in first-order expansion in 1% as

05 A ZdQS-i-TLl 2gkS
RO 200 +d) R +d)’

1
i 4dgkS 7= —2dgS
s~ 14+ D , 3.47b
Wres 1+d( toRA0 + d) (3.470)

with the RO frequency given by Eq. (3.42).

The analytic approximation is shown together with the numerically determined
eigenvalues in Fig.3.9. The zeroth-order approximation can be seen to reproduce
the values in the limit of very high R, but fails when reducing the scattering rate,
predicting a decrease of the damping. The first-order approximation corrects this and
correctly predicts the increase of the damping with decreasing R as well as the onset

(3.47a)

Fig. 3.9 Analytic 30
approximation for the ~ — Tro
relaxation oscillation (RO) '2 25} — Wgo E
parameters in the -~ — - Oth-order analyt. approx.
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dashed lines show the S
Oth-order analytic S 15¢
approximation, Eq. (3.44) g
and the dotted lines show the 2 10
1st-order approximation 2
Eq.(3.47). Cf. Fig.3.8 S50
0
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of the overdamped regime for intermediate scattering rates. The exact scattering rate
value of the onset of the overdamped regime is slightly overestimated by the analytic
approximation. A treatment of higher order approximations would likely improve the
accuracy of the analytic expression, but would however result in lengthy expressions
with little practical value. The first-order approximations derived here can therefore
be seen as a compromise between simplicity and accuracy and should be useful for
future analytical investigations of quantum-dot laser dynamics.

3.4 Modulation Response of Quantum-Dot Lasers

High-speed laser devices are a building block of current and future digital data trans-
mission systems [38, 39]. By either direct modulation of the laser output by the pump
current or a external modulation of the laser output one can encode digital data streams
in optical signals. Quantum-dot lasers have initially been suggested as a replacement
for currently used semiconductor lasers due to the prediction of improved charac-
teristics compared to the conventional lasers [40]. However, the maximum attain-
able modulation speed of quantum-dot lasers still mostly stays behind expectations.
This is commonly attributed to the charge-carrier dynamics in quantum-dot lasers
[7, 41-44]3

3.4.1 Small-Signal Response

The small-signal modulation of the quantum-dot laser quantifies the response of
the output power to a small harmonic modulation of the applied pump current. A
“small” modulation in this case means that the response of the laser system remains
linear, i.e., independent of the modulation amplitude. A quantification of the mod-
ulation capabilities of the laser device can be evaluated by the normalized transfer
function [14]

2

AP(w) (3.48)

Hw) = ‘ AP(w = 0)

where AP(w) is the modulation amplitude of the output power at a given current
modulation frequency w. H (w) is normalized to the static value AP(w = 0), which
corresponds to the differential output power change at a simple differential change
of the pump current.

The transfer function measures the reaction of the output power to perturbations
of the driving pump current. This initial perturbation has to “propagate” through the
different dynamic variables in the system. The variation in the pump current at first

3Parts of this section have been published in [7].
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modulates the reservoir carrier-densities, which in turn leads to a modulation of the
charge-carrier scattering into the quantum-dot states. The modulated inversion in the
quantum-dots then translates into a modulated optical gain, and finally influences the
optical power of the laser device. Each of these steps is characterized by a specific
timescale determining the speed of the respective coupling process. The resulting
transfer function will thus be determined by all of these coupling rates, making the
experimental analysis of the small-signal modulation behavior of laser devices a tool
for a direct measurement of device parameters.

Since the external modulation of the pump current is assumed to be small, the
dynamical system will deviate only little from its initial steady state. The analytical
treatment of the small-signal modulation can thus be performed by taking into account
only the linearized dynamical equations, and neglecting higher order perturbations
from the steady-state. Many important aspects of the frequency-dependence of the
modulation response can already be inferred from the analysis of the simple two-
variable rate-equation model. Assuming a harmonically modulated pump current,
J(t) = J* + AJe™", with the small modulation amplitude AJ, the dynamic variables
N, S of the dynamic system can be assumed to follow a similar time-dependence:

N(t) = N* + ANe™' (3.49a)
S(1) = §* + ASe™, (3.49b)

with the superscript % denoting their respective steady-state values. Inserting the
above expressions into the rate-equation system Eq. (3.1) then yields:

d , , | |
aN(t) - iWANelwl = J*+AJewﬂ - 2g(N*+ANe’Wf)(S*+ASeMt)

1 .
— (V' ANE) (3.50a)
1
d . . . .
S0 = IwASE = 2g(N*+ ANE') (ST + ASE) — 26(S™+ ASE™). (3.50b)

We now neglect the terms with order higher than one in the small amplitudes AX
(X € {N,S}), thus taking only the first-order deviations from the steady-state into
account. Noting that the terms involving only the steady-state values X* on the right
hand side of Eq.(3.50) equal the time-derivatives <X | = = 0, which vanish in the

dr
steady-state, leads to the linearized equations:

X*

1
iwAN = AJ —2g(S*AN + N*AS) — T—AN (3.51a)
1

IWAS =2g(S*AN + N*AS) — 2KAS, (3.51b)
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or, in matrix form,

(iwl — J) (i];) = (AOJ) , (3.52)

with the identity matrix / and the system Jacobian J. Inverting the above matrix
equation leads to the small-signal modulation amplitudes:
iwAJ
AN (w) = - 1 (3.53a)
4gKS* — w? +iw(2gS* + )
2gS*AJ
4gkS* — w2 + iw(2gS* + TL])'

AS(w) = (3.53b)

From the above expression the small-signal modulation transfer function Eq. (3.48)
for the simple two-variable rate-equation system can be calculated, under the assump-
tion that the output power is proportional to the photon number S:

w4

Hw) = (3.54)

2 272 N
Wi, — w?)? +4Tgow

where we have inserted the respective expressions for the relaxation resonance fre-
quency wyes and relaxation oscillation damping I'rp. The resulting transfer function
is plotted in Fig.3.10. It shows a resonance peak and a quick decrease afterward
for increasing modulation frequency. The peak in the modulation response is caused
by the resonant excitation of the relaxation oscillations by the external modulation,

small-signal respone H(w) / dB

—-40 L L P S S |

10° 10t 102

i _w

modulation frequency f=2

Fig. 3.10 Small-signal modulation transfer function for the two-variable rate-equation system at

currents of 2Jy, (red), 3Ji, (green), and 4Jy, (blue). The dashed line denotes a small-signal response
of —3 dB. Parameters as in Fig. 3.1
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Fig. 3.11 a Small-signal modulation response of the quantum-dot laser at pump currents of 2Jy,
(red), 3Jm (green), 4Jum (blue). b Comparison with the analytically predicted transfer function
Eq.(3.48) (dashed). The dashed gray line denotes a small-signal response of —3 dB

greatly enhancing the laser response around wgp. For technological applications an
important parameter is the —3 dB cutoff-frequency, giving the maximum modulation
frequency, for which the transfer function is still above —3dB =~ 0.5. The cutoff-
frequency gives an impression of the maximum frequency at which the laser can be
modulated.

The small-signal analysis as detailed above can in principle be applied to the given
quantum-dot laser model. However, its high dimensionality makes such an analytical
treatment impractical. While the small-signal response has been analytically inves-
tigated for simpler quantum-dot laser models [44, 45], we evaluate the modulation
transfer function by numerical integration. The resulting modulation response curves
are shown in Fig.3.11.

The simulations reveal a relatively flat modulation response, with a shallow and
broad resonance peak, which is a direct consequence of the strongly damped relax-
ation oscillations in the quantum-dot laser. With increasing pump current, the modula-
tion response curves become flatter and the cutoff-frequency increases. This behavior
could already be seen in the current dependence of the simple rate-equation system
and is related to the different scaling of the relaxation oscillation frequency and damp-
ing with the output power, leading to less pronounced oscillations with increasing
current.

In Fig.3.11b the numerically determined modulation response of the quantum-
dot laser is compared to the analytical prediction Eq.(3.48), using the relaxation
oscillation damping and frequency as parameters, which were obtained from the fits
to the quantum-dot laser response to a small perturbation. The analytical formula is
found to match the quantum-dot response closely, leading to a good approximation
of the modulation bandwidth for the given parameters.
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Fig. 3.12 Small-signal modulation bandwidth of the quantum-dot laser. Shown is the modulation
frequency f_34p at which the modulation response reaches —3dB ~ % for the first time (solid
curve). Also shown is the modulation bandwidth predicted from Eq.(3.48) (dashed). The pump
current was set to twice the respective threshold current at each data point. The three dynamic
regions are as noted in Fig.3.6

As we have seen previously in Fig. 3.1, the relaxation oscillations in quantum-dot
lasers are strongly dependent on the scattering timescales. We will therefore look at
the modulation capabilities of the quantum-dot laser for different scattering times.
The resulting modulation bandwidths in dependence of the effective carrier scattering
rate is shown in Fig.3.12. The bandwidth can be seen to increase with the effective
scattering rate in the overdamped and synchronized dynamic regimes. This is in
line with the common assumption of a carrier “bottleneck” between the reservoir
and the quantum-dot states limiting the modulation response [21, 46]. However,
when comparing the modulation bandwidth of the quantum-dot laser within the
synchronized regime with the analytically predicted bandwidth using Eq. (3.48), it
becomes evident that the quantum-dot laser exhibits modulation capabilities up to
higher frequencies than predicted by the simple rate-equation approach.

The constant-reservoir regime reveals a non-monotonous behavior, with a rela-
tively sharp increase in the bandwidth for scattering rates below ~10'%s~!. When
comparing the numerical results and analytical predictions, it becomes clear that
in this dynamic regime the simple two-variable approach fails. Using the numeri-
cally determined relaxation oscillation damping and frequency as input parameters,
Eq. (3.48) predicts a much higher modulation bandwidth than we observe in the sim-
ulations. The reason for this is the strong dynamical interaction between the resonant
quantum-dot charge carriers and the reservoir, which is not accounted for in the ana-
lytical approximation. For the limit of very slow scattering in the constant-reservoir
regime, the sudden increase in the modulation bandwidth means that the numerical
and analytical curves start converging. This can be understood by the weak inter-
action between the resonant and off-resonant states. Since the reservoir is nearly
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unaffected by the relaxation oscillations, they provide a constant carrier influx into
the quantum-dot states. This situation is then akin to the simple two-variable system,
where a constant pump current into the optically active states is assumed, and the
modulation response is well described by the analytical approximation. However,
it must be noted that in this regime the operating current must be much higher to
provide a sufficiently high in-scattering of charge carriers into the quantum-dots to
enable the lasing action. This makes practical applications improbable, as also the
absolute modulation response of the quantum-dot laser is strongly inhibited, i.e., a
very high modulation amplitude would have to be applied to achieve appreciable
modulation of the output power.

A detailed plot of the modulation response curves for different scattering rates is
shown in Fig.3.13. For fast scattering (dark red in Fig. 3.13), the transfer function
reveals the already known behavior, with a single resonance peak, after which the
modulation response drops steadily. With decreasing scattering rates, the resonance
peak disappears, due to the increasing damping and subsequent disappearance of the
relaxation oscillations (yellow to green), which decreases the modulation bandwidth.
For even slower scattering, again a peak appears which, however, only for very slow
scattering becomes appreciably large, leading to the sudden increase in modulation
bandwidth for ST < 10'°s~!. In the range 10'%s~! < s < 10" s~!, where the
analytical approximation would predict a much higher modulation bandwidth, the
interaction between the quantum-dot and reservoir states is still strong enough to
suppress the modulation.
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Fig. 3.13 Dependence of the quantum-dot laser modulation response on the effective scattering
rate ST, Shown are the small-signal modulation response curves for different values of S, given
by the color-code. The curves have been shifted along the vertical axis for better readability. The
black parts of the curves denote the parts for which the response is below —3 dB
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3.5 Amplitude-Phase Coupling in Quantum-Dot Lasers

As we have seen previously, the light-matter interaction in the active region between
the optical field and the semiconductor transitions leads to either gain or absorption,
as well as a change in the effective refractive index. These two contributions can
be expressed by the complex gain g(w, t) for a given lasing frequency w, and are
coupled by the dynamics of the charge carriers in the different optically active states.
This interplay of gain and refractive index (or frequency shift) is commonly referred
to as amplitude-phase coupling.*

In semiconductor lasers, the connection between the refractive index and the opti-
cal gain plays an important role in many applications and phenomena. The response to
external modulations or perturbations [48, 49], the laser linewidth [50], and the occur-
rence of dynamical instabilities as well as pattern formation in spatially extended laser
systems [51, 52] all crucially depend on this amplitude-phase coupling. Throughout
the literature, this connection is commonly described by assuming a linear relation-
ship between changes of the resonance frequency shift and gain. The proportionality
factor is called the linewidth-enhancement factor «.

This a-factor is commonly described as a constant device parameter, and used
to characterize the dynamical performance of the laser device. In general, a high
value of « is related to highly complex dynamics, unstable laser operation, and a
large laser linewidth. For example, in optical injection [47, 53] or optical feedback
setups [18, 54] the resulting bifurcation structure becomes largely more complex with
increasing alpha. Furthermore, the minimum feedback strength required to introduce
dynamical instabilities or chaos is lowered by « [1, 4, 17], which makes a diligent
suppression of undesired reflections in optical setups necessary.

On the other hand, there are applications which rely on the existence of complex
dynamic solutions. For example, chaotic semiconductor lasers have been success-
fully used for random-number generation [55-58], as well as for secure communi-
cation [2, 59, 60]. Furthermore, their complex dynamics allow for the studying of
many generic nonlinear phenomena in a comparably simple experimental setup [61].
For example, the appearance of chimera states—coexisting coherent and incoherent
states in coupled dynamic systems—has been recently predicted in coupled laser
networks, with the amplitude-phase coupling as a driving force [62].

In the following, we will investigate the amplitude-phase coupling in quantum-
dot lasers. In particular, we will look at the dynamics of the electric field phase
induced by the refractive-index dynamics in optical injection and feedback setups,
as well as under direct modulation. We will furthermore discuss the applicability and
limitations of the a-factor for quantum-dot lasers, by comparing our microscopically
based modeling approach with conventional, simpler, approaches.

4Parts of this section have been published in [47].
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3.5.1 The Linewidth-Enhancement Factor o

Under the dynamic operation of lasers, the complex optical gain changes with the
inversion of all optically active transitions in the active medium. Following Eq. (2.75),
the complex optical gain inside the laser cavity can generally be written as

hw
Eo&bgv

gw. 1) = > g e + gty — 1], (3.55)

with the contribution of the individual transitions labeled by the index i, which can
include quantum-dot and reservoir transitions,

3 T2|/JJI|2 ( 1 — iT2(W[ —W) )' (3.56)

I = \ T hw —or

As we have shown earlier, the charge-carrier-induced change of the refractive index
An, or, analogously, the shift of the resonance frequency Aw, can be written as

An
Aw = —w— = —Im g(w, 1), (3.57)
nbg

with the background index nyg and the cold-cavity lasing frequency w. As the imagi-
nary part of the complex gain is determined from the off-resonant optical transitions,
the refractive index dynamics is also determined by these states, whereas the ampli-
tude gain is determined from the resonant transitions.

As the different states in semiconductor lasers are coupled, also the dynamic
changes of the optical gain and refractive index will be coupled. Henry first explained
the high linewidth of semiconductor lasers by introducing the linewidth-enhancement
(or Henry-) factor «, as the ratio of the real and imaginary part of the variation of
the optical susceptibility with the charge carrier number N:

ox'/ON
o = IXJON (3.58)
ox"/ON
or, written in terms of the complex gain g:
ol ON
_ _Olmg/ON (3.59)
ORe g/ON

The mechanism responsible for the linewidth broadening then is the following:

By spontaneous emission processes, both the charge carrier distribution as well
as the optical field are subjected to statistical fluctuations. Due to the random
phase of spontaneously emitted photons, the phase of the optical field exhibits
a random walk, which limits the coherence time 7., of the laser output. The
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Wiener-Khinchin-theorem [63, 64] then states that the spectral linewidth Av of
the laser output is related to the coherence time via Ay = (71'7'0011)71. The resulting
laser linewidth then leads to the famous Schawlow-Townes linewidth ArST [65].
Experimental results, however, found a much larger linewidth than predicted [66].
In order to explain this, not only the direct contribution of the spontaneously emit-
ted light to the linewidth must be taken into account. Additionally, the fluctuations
in the light intensity will translate into a fluctuating charge carrier distribution by the
change in the stimulated emission rate. Thus, variations in the gain and refractive
index will arise, which additionally influences the optical field phase. This fluctua-
tion of the phase then leads to an additional shortening of the coherence time, and
consequently to a broadening of the laser linewidth, which is given by [50, 67]

Av = (1+o*)AVST. (3.60)

The concept of the a-factor has since been employed for characterizing laser
devices, as it provides a simple and experimentally accessible way of describing
the connection between index and gain changes in the device [68]. Following its
definition Eq. (3.59), the a-factor can be used to write the dynamic equation for the
electric field inside the laser cavity in a simple way:

%E(r) = (1 —ia)Re[g(w, H]E(t) — KE(t), (3.61)

thus implementing the linear relation between the instantaneous frequency shift,
—Im g(w, t), and the amplitude gain Re g(w, ). This assumption is, of course, gen-
erally not fulfilled, as the dependence of the two components on the charge carrier
number can be nonlinear, and depend on the density of states of the active medium,
as sketched in Fig. 3.14. One could, however, argue that above threshold, where most
lasers will be operated, the optical gain is clamped to its threshold value, and thus
deviations from the value of « at threshold will be small. This is a commonly made
assumption that works well in bulk and quantum-well lasers. In fact, this approach is
widely used in modeling approaches for conventional semiconductor lasers, and has
been successfully used to describe a multitude of dynamical scenarios [1, 2, 4]. We
will, however, show that in quantum-dot lasers this assumption is no longer valid,
and the concept of o breaks down.

3.5.2 Charge-Carrier-Induced Susceptibility
in Quantum-Dot Lasers

As we have stressed in the previous chapter, the macroscopic dynamics of quantum-
dot laser devices is crucially influenced by the microscopic charge-carrier dynamics
within the active semiconductor medium. We have shown that the charge-carrier
scattering between the quantum-dot and surrounding reservoir states can generate
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important difference in the dynamic response of quantum-dot lasers compared to
conventional bulk semiconductor or quantum-well laser systems. We now investigate
the required modifications to the concept of the a-factor, which are needed to account
for the different behavior of quantum-dot lasers.

After the advent of quantum-dot lasers, the well-established a-factor approach
has been widely also applied to this new type of laser device, and most works still
rely on this description [69-72]. When semiconductor quantum-dots were first pro-
posed, initial theoretical works suggested that the amplitude-phase coupling in these
novel devices should be approximately zero, based on the atom-like energy states
of quantum-dots [73]. Atom lasers operating at their optical resonance do, in fact,
exhibit o = 0. This becomes immediately clear from Eq. (3.56), where for vanish-
ing detuning of the lasing frequency from the atom resonance the imaginary part of
the gain is zero. Early studies, however, already showed that the influence of off-
resonant optical transitions of the quantum-dot excited states and reservoir states
lead to non-vanishing index variations [74].

Furthermore, there have been theoretical and experimental indications that the use
of an a-factor in quantum-dot lasers can be inaccurate. While in quantum-well lasers
values of & =~ 2. ..5 are commonly measured, the measured a-factors in quantum-
dot lasers range from near-zero [75—77] to very high values [78], and even “infinite”
a [70, 79]. Furthermore, a strong dependence on the pump current has been observed
[80, 81]. Theoretical works have shown that the a-factor measurements in quantum-
dot lasers will yield different results depending on the measurement procedure and
operating parameters [82—84].

The reasons for this unconventional behavior lie in the charge carrier dynamics
of the quantum-dot material. In its original definition, Henry introduced the alpha
factor using the derivatives of the optical susceptibility (or gain) with respect to the
total charge carrier number or density. This derivative, however, is only well-defined
if there exists a functional dependence of the gain and index on the charge carrier
number. In bulk and quantum-well material systems, this requirement is approxi-
mately fulfilled due to the fast quasi-equilibration of the charge carrier distribution,
provided the optical power is not exceedingly high [85]. This allows one to write the
charge carrier distribution for each individual state i as a function of the total charge
carrier number:
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with the quasi-Fermi distribution £, in which the quasi-Fermi energy Ep.}, is a unique
function of the carrier number N.
Thus, the a-factor can be written as a sum over the individual transitions:
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During operation of the laser device, the change in charge carrier number N can be
caused by different means. Variations in the pump current, the effective optical loss
rate, as well as the dynamical change in the carrier number, e.g., during relaxation
oscillations, will lead to variations in N.

In quantum-dot lasers, the above expression for the c-factor can be written as the
sum over all contributions to the gain from the individual optical transitions,

o 2
[ZNQD Zf(j)ymlm InOPhm + . Z Im 91%D5pb,Qw(k)}

m,b,j Aget b 2D
a=— — o . (364
[N S sgmaRe i, + 1 3 Respnanh)]
m,b,j act b2

Here, dp describe the variation of the charge-carrier distribution of the correspond-
ing states. As we have stressed before, the charge-carrier distribution in quantum-dot
lasers can deviate appreciably from a quasi-equilibrium distribution due to the com-
plex scattering mechanisms involved in the charge-carrier dynamics. Therefore, it
is no longer possible to define a functional relationship between the occupation of
individual charge-carrier states and the total charge-carrier number. The definition of
derivatives Jp/ON is therefore in general not possible. Instead, we have to express
the changes of the individual occupations as general variations dp.

The evaluation of Eq. (3.64) is thus not as straightforward as in conventional laser
devices. Whereas the definition Eq. (3.59) involves the evaluation of the derivatives at
a given operation point, in quantum-dot lasers Eq. (3.64) requires a perturbing event
to induce the variation of the charge-carrier distribution. The exact shape of this
variation is initially unknown and depends on the exact source of the perturbation.

In order to illustrate this, we simulate the reaction of the quantum-dot laser towards
external perturbations. Here we consider two different types of perturbation sources:
excitation by a fast change in the pump current, and the injection of an external



3.5 Amplitude-Phase Coupling in Quantum-Dot Lasers 87

optical pulse resonant to the ground-state transition into the laser cavity. In both
cases, we operate the laser at twice the threshold current and apply the perturbation
as Gaussian-shaped pulses. We therefore write the pump current as

2
t— 1
J(@) =Jo+ AJexp | —41n2 ( Ato) (3.65)

with the pulse amplitude AJ and the pulse FWHM 4¢. Analogously, we write the
optical perturbation pulse as an additional contribution to the electric field dynamic
equation:

Oty =KnEexp | —ama (=2 2 (3.66)
— =KrEexp | — , .
ot . P At

inj

where the constant E° denotes the electric field amplitude in the steady-state,  is the
optical loss rate, and K then defines a dimensionless injection strength. The choice
of the prefactor KxE? is arbitrary and we will motivate it later on.

The reaction to the perturbations is plotted in Fig. 3.15. Here, we chose AJ = Jy,,
At = 50ps, fp = 50ps, K = 0.5. The time-series shown in Fig.3.15a reveals
an increase in the output power as a response to both perturbation schemes, with
subsequent relaxation oscillations as the laser is driven back into its fixed point.
Figure 3.15b shows the trajectories in the complex plane spanned by the optical gain
(Re g(®), Im g(t)). These exhibit clearly quite complex forms, which differ qualita-
tively between the two cases.
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Fig. 3.15 Reaction of the quantum-dot laser to optical and pump-current perturbations. a Shown is
the output power after an initial perturbation pulse in the pump current (dotted) and by an external
optical pulse (solid). The perturbations are Gaussian-shaped with an FWHM of 50 ps and centered
around ¢ = 50 ps. b Phase-space plot in the plane spanned by the complex gain. The stable fixed
point is marked by the cross. The trajectories show the response of the gain to the perturbation
pulses. The dashed lines show linear fits to the simulated trajectory curves
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The importance of these trajectories lies in the definition of the a-factor. From
Eq.(3.59) it becomes evident that o describes the slope of the trajectories shown
in Fig.3.15b. The conventional way of using a—as a constant—would imply a
linear relationship between the real and imaginary parts of g(¢), from which the
quantum-dot laser clearly deviates. A possible approximation of the gain dynamics
would be a linear fit to the shown trajectories, yielding the average slope of the
trajectories as an averaged a-factor, as shown by the dashed lines. Even then, however,
the averaged values calculate to («;) &~ 2.1 for the pump-current perturbation and
(ag) ~ 0.73 with the injected optical pulse. Thus, even around the same fixed point,
no uniform value of an average « can be defined [54, 83]. The a-factor is therefore an
inappropriate measure for describing the gain dynamics of the quantum-dot medium.

The reason for the unconventional behavior of the quantum-dot laser can be seen
in the charge-carrier dynamics after the perturbation. This is shown in Fig.3.16a.
The pump current pulse induces a large increase in the reservoir charge-carriers,
which initially leads to a slight decrease of the quantum-dot occupations due to
carrier-heating effects. The charge-carrier buildup is transmitted to the quantum-dot
states in a delayed fashion, due to the finite charge-carrier scattering rates. Thus, the
excited-state quantum-dot carriers are first affected by the perturbation, and quickly
after that the ground-state. The subsequent relaxation oscillations also exhibit such
desynchronized dynamics between the different charge-carrier subensembles. As the
different charge carriers contribute to the real and imaginary parts of the total gain to
different extents, this behavior translates into the desynchronized variation of the
optical gain and carrier-induced frequency shift, shown in Fig.3.16c. The complex
behavior of the trajectories in the complex gain plane is thus a direct consequence of
the underlying charge-carrier dynamics. When considering the optical perturbation,
this becomes even more apparent. The carrier dynamics shown in Fig. 3.16b reveal a
strong initial depletion of the quantum-dot ground-state carriers due to the increased
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Fig. 3.16 Charge-carrier densities of the quantum-dot laser under a pump-current and b optical
perturbations. Shown are the total quantum-dot ground-state charge-carrier densities (solid), the
excited-state densities (dashed), and the reservoir densities (dotted). ¢, d The corresponding real
(solid) and imaginary part (dashed) of the complex gain after the perturbation, relative to the
steady-state gain g°
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stimulated recombination rate by the injected optical field. This perturbation is then
slowly transmitted to the excited-state and reservoir charge carriers, with a large
time-lag between the individual densities, again leading to strongly desynchronized
dynamics. Compared to the case we have considered before, now the quantum-dot
ground-state assumes the “leading” role, with the changes in the excited state and
reservoir lagging behind. This observation reveals the importance of the origin of
the charge-carrier variation in the quantum-dot laser, as the dynamics very clearly
differ depending on the type of perturbation.

In the following, we will thus perform simulations of the quantum-dot laser under
different dynamical setups, in order to highlight the differences in the predicted laser
dynamics resulting from the more complex amplitude-phase coupling in quantum-
dot lasers.

3.6 Dynamics Under Optical Injection

In this section we will discuss the dynamics of quantum-dot lasers under optical
injection. Optical injection describes the operation of the laser device under the
injection of an external optical signal into the laser cavity, as sketched in Fig.3.17.
Depending on the properties of the injected signal, the laser can exhibit versatile
dynamics.’

Often, a “master” laser is used to inject a quasi-monochromatic beam into the
cavity of the so-called “slave” laser. If the frequencies of both lasers are sufficiently
close, the slave laser will be phase-locked to the injected signal, a phenomenon
known from driven oscillators [86]. This mechanism was quickly found to be of
technological importance, as the properties of the slave laser can be changed by
phase-locking to an appropriate master signal, allowing for a sensitive tuning of the
lasing frequency to that of the master laser. Additionally, a considerable reduction of
the laser noise and linewidth by injection of a very stable, monochromatic signal is
possible [87]. For this application, the power of the master laser can be much lower
than that of the slave laser, allowing for the realization of high-power laser devices
with extremely low linewidth [88]. Furthermore, the modulation bandwidth of laser
devices was shown to be greatly increased by an appropriate injection setup [§9-91],
with bandwidths exceeding 100 GHz [92].

The nonlinear dynamics of semiconductor lasers under external optical pertur-
bations have been subject of extensive experimental and theoretical studies in the
past [53, 93, 94]. When the frequency of the injected signal is too large, the beating
between the external and cavity fields can induce nonlinear oscillations [95] as well
as deterministic chaos [96], multi-stability [97], or excitability close to the boundary
of phase-locking [98]. Apart from their scientific appeal, these nonlinear dynamics
can also be exploited and used for technological applications. For example, optically
injected lasers have been implemented as an all-optical memory or switch, allowing

SParts of this section have been published in [47, 54].
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Fig. 3.17 Sketch of the optical injection scheme. The external optical signal Ej,j has a frequency
detuning Awjnj with respect to the free-running laser. The optical interaction within the laser cavity
can lead to dynamic solutions

for a toggling between two different stable states by external trigger signals [99,
100]. Furthermore, optically injected quantum-dot lasers have been shown to be a
promising source for the generation of THz-radiation [101].

In the following, we will analyze the nonlinear dynamics of quantum-dot lasers
under optical injection. We will focus on the influences of the carrier dynamics in
quantum-dot lasers and the differences in the response of the laser to optical injection
compared to conventional laser devices.

3.6.1 Quantum-Dot Laser Model with Optical Injection

In order to take into account the effect of optical injection on the quantum-dot laser
we have to expand our model. The injected signal will enter the electric field equation
as an additional driving term, which we will derive here.

Considering an external optical field Ej,; present at the outside of the cavity mirror,
we can calculate the portion of this field transmitted into the laser cavity as ¢ - Ejp;,
with the cavity mirror transmission coefficient ¢. After half of the cavity-round-trip
time 7, the injected signal arrives at the back facet, where it is reflected with a
reflection coefficient r. The portion rtE;,; arrives again at the front facet after another
half round-trip time, as illustrated in Fig.3.18. From this simple consideration, we
can write the change of the average electric field amplitude in the laser cavity after
one round-trip time due to the injected signal as [53]

Einj
—_— Tin

tl tEwj r

Fig. 3.18 Optical injection into the laser cavity. The external optical field Ej,; is transmit-
ted through the cavity mirror with transmission coefficient 7, and reflected at the back-facet
(reflection coefficient ). After the internal round-trip time 73, = % the injected signal has filled
the whole cavity
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[+ 70) = B0 = StEiy + 5 r1E. (3.67)
inj 2 2

Considering now that the internal round-trip time is usually smaller than the dom-
inant dynamic time-scales within the laser, i.e., the relaxation oscillations, we can
approximate the above equation as a derivative:

_ tr+1)
inj B 2Tin

0
aE(l‘)

Einj = kinjEinj, (3.68)

where we have summarized the prefactors into the injection rate kiyj;. The dynamic
equation for the electric field is thus written as

d
TE() = (9 = £)E + kiniEn. (3.69)
We now introduce the relative injection strength K, defined via
KKE® = kinjEini, (3.70)

where E° is the steady-state electric field amplitude of the free-running laser. The
term xE° thus describes the electric field amplitude the free-running laser loses per
time interval. K then describes the electric field injected into the cavity in relation to
the field that is lost.

We write the injected signal as

Einj(t) = |Eipjle" ", (3.71)

where wy,; is the optical frequency of the injected signal in the rotating reference
frame of the chosen carrier frequency w. As we have stressed before, the charge
carriers in the laser active medium will lead to a change in refractive index, which
in turn shifts the laser resonance frequency away from the rotating frame frequency.
Thus, in the lasing steady-state, the free-running laser will operate on a frequency
given by

P =w—-Img¢’ =w+ P, (3.72)

where ¢° is the complex optical gain evaluated in the lasing steady-state of the free-
running laser and w° the corresponding induced frequency shift. Note that a positive
value of w°, i.e., a frequency increase, corresponds to a mathematical negative sense
of rotation of E(¢). Within the rotating frame the optical field in the steady state of
the free-running laser is thus given by

E(1)|,, = E% ™" (3.73)
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We now consider a possible detuning between the injected signal and the optical
frequency of the free-running laser. We thus write wiyj = WO+ 27 Avyy,j. The electric
field equation is thus written as

d A
SE() = (g(l) - Ii)E  KRED e~ +2namy)t, (3.74)

This choice of Avi,; means that a positive value of the detuning refers to an optical
frequency of the master laser that is higher compared to the slave laser.

The explicit time-dependence of the injection term in the above equation results
in a system that is non-autonomous. We can, however, write it in an autonomous
form by a change of the rotating frame. We introduce the new electric field variable

E@t) := E(t)e' t2mavmt, (3.75)

which transforms the electric field E(¢) in the rotating frame of the carrier frequency
w into a new rotating frame of the frequency (w +w® + 27 Avij) = (w+winj), which
is the optical frequency of the injected signal. Rewriting the electric field equation
in this new rotating frame, we arrive at

d~ _ _
—E(0) = (g(t) — kAt in)E + 27 AvinE + KKE". (3.76)

The first of the newly added terms, i E, compensates the carrier-induced frequency
shift in the free-running case. Thus, without injection, i.e., K = Avj,; = 0, when the
laser reaches its steady-state, %E vanishes, since iw® = —Im go. This was not the case
in the old rotating frame, as there the electric field would rotate in the complex plane
with the carrier-induced frequency-shift. The second term, i%ﬂ'Aij then transforms
the electric field into the frame of the injected signal. When E reaches a steady-state
in the case with optical injection, the laser field is thus phase-locked to the injected
signal and its frequency matches that of the master laser. Furthermore, as we now
inject a real-valued signal into the laser cavity, the complex phase of E immediately
gives the phase difference between the master and slave laser.

The remaining laser equations are unaffected by this change of rotating frame, as
only the absolute square |[E|> = |E|? enters the charge-carrier equations.

3.6.2 Injection Locking of Quantum-Dot Lasers

‘We now implement Eq. (3.76) and simulate the quantum-dot laser under optical injec-
tion. The additional term in Eq. (3.76) describing the optical injection adds two new
parameters to the system, the injection strength K and the detuning Avj,;. In order
to characterize the dynamics of the laser with respect to these parameters, we create
numerical bifurcation diagrams in the parameter plane spanned by (K, Avjyj). In
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Fig. 3.19 Numerically simulated bifurcation diagram of the quantum-dot laser under optical injec-
tion. Shown are the dynamic regimes depending on the injection strength K and the detuning Avjy;.
The solid and dashed lines denote SNIPER and Hopf bifurcations delimiting the triangular phase-
locked region. The continuous color code inside this region shows the relative laser intensity from
low (dark blue) to high intensity (light blue). Outside of the phase-locked region the laser exhibits
oscillations. The white area denotes period-1 oscillations with one local maximum. The discrete
color code denotes oscillations with two (orange), three (yellow) and four (red) maxima per oscil-
lation period. Oscillations with higher number of maxima, an indication for chaotic and irregular
oscillations, are shown by the dark gray color code. The hatched areas denote the regions where
the laser is oscillating, but still frequency-locked to the injected signal

order to characterize the laser dynamics, we distinguish between steady-state and
oscillating solutions. Additionally, we determine the periodicity of the oscillations
by evaluating the number of local extrema in the electric field amplitude during one
oscillation. This allows us to perform a characterization of the injection-induced
dynamics in dependence of the injection parameters. The resulting bifurcation dia-
gram for the considered quantum-dot laser device is shown in Fig.3.19.
Immediately visible is the triangular-shaped region of phase-locking, converging
towards K = 0, Avy,; = 0. Within this region, the slave laser is phase-locked to the
injected master signal, i.e., the system reaches a steady-state in the rotating frame of
the master laser. Here, the master laser “enslaves” the injected laser, i.e., the injected
signal is strong enough to force the slave laser to assume the same wavelength.
The frequency detuning interval for which this phase-locking is possible is in first
order proportional to the injection strength K [86, 102]. This phenomenon shows the
similarity between the optically injected quantum-dot laser and harmonically driven
oscillators, from which such locking and synchronization effects are known [103].
When reaching the boundaries of this locking region for low K < 0.14, the stabil-
ity of the phase-locked steady-state solution is lost in a saddle-node-infinite-period
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Fig. 3.20 Sketch of a saddle-node-infinite-period (SNIPER) bifurcation. a A stable fixed point
(full circle) and an unstable saddle (empty circle) exist with a heteroclinic connection: the unstable
manifold of the saddle is a stable manifold of the stable node. b At the bifurcation point the
nodes collide, forming a homoclinic connection. ¢ After the bifurcation, the fixed points have been
annihilated and a periodic orbit was born from the former homoclinic connection

(SNIPER) bifurcation, denoted by the solid black lines in Fig.3.19. Here, a stable
fixed point collides with an unstable saddle, eliminating both fixed points in the
process, and creating a periodic orbit. This process is sketched in Fig.3.20. This
mechanism of unlocking can be derived already in very simple models of driven
phase oscillators [86]. While the numeric evaluation of the injected quantum-dot
laser dynamics does not deliver an immediate conclusion about the involved bifur-
cation, the similarity of these systems already give an indication of the underlying
dynamics. We will show later on by using numeric path-continuation techniques that
here indeed a saddle-node bifurcation is responsible for the loss of phase-locking.
Close to this SNIPER bifurcation, the injected laser has been shown to be excitable
[72, 98, 104]. This can be understood by the close distance of the stable node and
the saddle in phase-space. When the laser operates on the stable fixed point, a small
perturbation—either by an external trigger signal or noise [105]—will be able to
drive the system across the unstable node and induce a large excursion along the het-
eroclinic connection. This excitability makes optically injected lasers an interesting
system for nonlinear dynamics studies, e.g., as “optical neurons” [106].

For higher injection strengths, the phase-locking region is delimited by a Hopf
bifurcation of the stable fixed point on the positive detuning side. At the collision
point of the SNIPER and Hopf bifurcation lines exists a codimension-2 saddle-
node-Hopf point [107-109], where the Hopf bifurcation changes its criticality from
subcritical to supercritical for higher K, as we will see later on. From there on, at
the locking boundary the stability of the stable fixed point is lost in the supercritical
Hopf bifurcation, in which a stable limit cycle is born out of the fixed point.

The periodic orbit born in the Hopf bifurcation is qualitatively different from those
born in the SNIPER bifurcations. This becomes obvious from its phase dynamics. We
can evaluate the optical frequency of the slave laser by looking at the time evolution
of its electric field phase ¢:

Al = d7 _ I ik 3.77
( Vm)-—(—a(b)—(—m 53 ) (3.77)
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where (-) means the time average. The quantity (Awi,s) then describes the average
frequency detuning of the injected laser from the master signal. In the phase-locked
region (A, is zero, since the laser is in a steady-state, and % ¢ = 0. However, there
can also be oscillating solutions that yield (Avj,s) = 0, even for %(E # 0. As long as
the optical field phase is bounded, the time-averaged phase-change is zero. Then, also
(Ars) = 0, meaning that the optical frequency of the slave laser is still locked to the
injected signal, while the intensity performs periodic oscillations. The hatched lines
in Fig. 3.19 denotes these regions of frequency-locked or phase-bounded oscillations
[110, 111].

The transition from a phase-bounded to phase-unbounded oscillations is illus-
trated in Fig.3.21. Here, we plot the time-series of the laser output power for K = 5
and Avj,; = —5GHz, where the oscillations are phase-bounded, as well as for
Avyyj = —6 GHz, where they are unbounded. The time-series Fig. 3.21a, d look very
similar between the two cases. The trajectories in the complex electric field plane,

K=0.5, Any,;=—5 GHz K=0.5, Av,;=—6 GHz
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Fig. 3.21 Phase-unbounding of the optically injected quantum-dot laser after a Hopf bifurcation. a
Output power time-series of the optically injected quantum-dot laser for K = 0.5, Avjp; = —5 GHz,
b corresponding periodic orbit in the complex electric field plane. The complex origin is marked by
the dashed lines. ¢ Optical power spectrum P(f) of the laser output. The frequency f = 0 corresponds
to the master laser frequency v4y;. The free-running laser frequency is marked by 1. The spectrum
was calculated with an artificial 350 MHz detector resolution. d—f show the corresponding plots for
Avyyj = 6GHz
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Fig.3.22 Period-doubling bifurcations to chaos. Shown are the power time-series (top), trajectories
in the complex electric field plane (middle), and the optical spectra relative to the master laser

frequency. Shown are the dynamics for Avjy; € {—4.5, —4, —3.8, —3.6} GHz (a—d) and K = 0.3,
cf. Fig.3.21

Fig.3.21b, e, reveal the qualitative difference. The oscillation for Av;,; = —5 GHz is
still phase-bounded, i.e., the periodic orbit does not include the origin of the complex
plane. The phase therefore oscillates between two extreme, but no full revolutions
occur. For Avy,; = —6 GHz, on the other hand, the origin lies within the periodic
orbit and thus every oscillation period correspond to a 27 phase-shift. Here, the
oscillation is thus unbounded and the mean output frequency of the laser becomes
unlocked from the master signal.

The phase-unbounding transition is also visible in the optical spectrum of the laser
output, shown in Fig.3.21c, f. Here, we evaluate the optical spectrum of the laser
output by a Fourier-transform of the electric field,

2

P(f) = ‘ / drE(r) e 2" (3.78)

Since we chose the frequency of the master laser as the reference frame for E,inthe
spectrum f = 0 then refers to the master laser frequency.

Within the phase-bounded region the spectrum is dominated by the frequency of
the master laser, with a smaller beat-signal contribution centered at the free-running
laser frequency. The phase-unbounding then describes the point where the former
beat note becomes the dominant peak, i.e., here the laser returns to its free-running
frequency (with a slight offset due to frequency-pulling). The transition point has
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recently been found to be of significant technological importance. Near this point
noise effects can easily introduce strong phase-slips, depending on whether the noise
drives the periodic orbit across the complex origin. Thus, the phase-noise exhibits
a pronounced peak around this transition [112], which worsens the laser linewidth
and coherence.

Apart from the near-harmonic oscillations dominated by the beat-note between the
injection signal and the slave laser, more complex oscillating solutions are observed
in the bifurcation diagram Fig. 3.19. Most prominent is the elliptic region of higher
periodicity located around K = 0.3, Avy,j = —3 GHz. Here, bifurcations of the
periodic orbits lead to highly complex dynamics, due to the near-resonant excitation
of relaxation-oscillations in the quantum-dot laser. Lying within bubbles of highly-
periodic oscillations there exist two regions of chaotic dynamics. The generation
mechanisms of such chaotic regions can be manifold [53]. For K = 0.3 we find a
period-doubling route to chaos when increasing the detuning Awv;,; from negative
values outside of the period-2-oscillation region. This is illustrated in Fig. 3.22.

Starting at Avy,j = —4.5 GHz, we encounter period-1 oscillations with the distinct
beat note in the optical spectrum. Once we cross the period-doubling bifurcation, at
Avyyj = —4 GHz, the periodic orbit breaks into a dual loop. This is accompanied
by the appearance of subharmonic peaks in the optical spectrum at half the distance
between the two main peaks, due to the doubling of oscillation period. A period-4
oscillation is shown for Av;,; = —3.8 GHz, until finally the chaotic attractor is born
from the period-doubling cascade, following an infinite number of further period-
doubling bifurcations.

Figure 3.19 also shows a region of higher periodicity around K = 0.1 at either side
of the locking region. A further look into the periodic orbits involved in these regions,
however, reveals that here no bifurcation occurs. Instead, the appearance of relaxation
oscillations induces additional extrema in the output power. The recorded higher
number of maxima is therefore a consequence of a deformation of the periodic orbits
and no indication of period-doubling bifurcations. The chosen evaluation routine
thus can not discriminate complex trajectory shapes from higher periodicity. The
corresponding periodic orbits are shown in Fig.3.23.

3.6.3 Dependence on the Quantum-Dot Structure and
Pump-Current

In the previous section we have presented the rich nonlinear dynamics of the optically
injected quantum-dot laser. We will now investigate the dependence of the bifurcation
structure on key parameters of the quantum-dot laser. The easiest parameter to control
is the pump current driving the quantum-dot laser. As we have shown before, the
pump current influences the charge-carrier dynamics in the system by a change of
the reservoir charge-carrier densities and the subsequent change of the individual
scattering-rates.
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Fig. 3.23 Additional maxima due to deformation of the periodic orbit. Shown are the power time-
series (fop), trajectories in the complex electric field plane (middle), and the optical spectra relative
to the master laser frequency. Shown are the dynamics for Avy,; € {1.8, 1.7, 1.5} GHz (a—c) and
K =0.1, cf. Fig.3.21

When comparing different quantum-dot structures, a change of material composi-
tion or crystal growth parameters can change the underlying energy structure [113].
In addition to the quantum-dot device we have considered so far, we will investi-
gate a different structure, which we will refer to as “deep-dot”. The difference to
the previously discussed structure (the “shallow-dot” structure, see Fig.3.2) lies in
the different energy levels, as shown in Fig. 3.24, with a deeper confinement of the
quantum-dot states.

We now proceed by evaluating the bifurcation diagrams of both quantum-dot
laser structures at different pump-currents. For the shallow-dot quantum-dot laser
the resulting bifurcation diagrams are shown in Fig.3.25. Here, we compare the
dynamics of the optically injected laser for J = 2Jy,, which we had already shown
in Fig. 3.19, with the resulting dynamics at J = 5Jy,.
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Fig. 3.25 Numerically simulated bifurcation diagram of the shallow-dot quantum-dot laser under
optical injection, cf. Fig.3.19. Shown are the bifurcation diagrams for a J = 2Jy,, and b J = 5Jy,

Comparing the two bifurcation diagrams, a shift of the saddle-node-Hopf point
for positive detuning towards higher injection strengths can be observed, along with
a similar shift of the period-doubling region on the negative-detuning side outside
of the locking region. We can understand this behavior from the dependence of the
quantum-dot laser relaxation oscillation parameters on the pump current, which we
have investigated in Sect.3.2. With increasing pump-current, the relaxation oscil-
lation damping and frequency both increase. It has been previously shown that the
injection strength at which the saddle-node-Hopf point is located increases nearly
linearly with the relaxation oscillation damping rate [4]. This is in line with the inter-
pretation of the excitation and undamping of relaxation oscillations by the injected
signal, as the initial relaxation-oscillation damping must be overcome by the injected
signal.

The period-doubling region outside of the locking region for negative detuning is
shifted towards higher K and enlarged nearly proportionally. The internal structure,
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Fig. 3.26 Numerically simulated bifurcation diagram of the deep-dot quantum-dot laser under
optical injection, cf. Fig.3.19. Shown are the bifurcation diagrams for a J = 2Jy,, and b J = 5J,

however, remains the same, with two pronounced chaotic regions located inside
the ellipse, suggesting a high robustness of the global bifurcation structure towards
changes in the pump current [114].

We now simulate the bifurcation diagrams for the deep-dot structure, again at
twice and five times the threshold current. This is shown in Fig. 3.26. The bifurcation
diagrams reveal a generally similar shape, with a triangular phase-locking region and
regions of more complex oscillatory dynamics on the outside. Here, however, both
the onset of the Hopf bifurcation on the positive detuning side of the locking region
as well as the period-doubling regions are shifted towards lower absolute K, due to
the lower relaxation oscillation damping rate of the quantum-dot laser with deeply
confined energy levels.

The bifurcation structure inside of the period-doubling ellipse on the lower half
of the bifurcation diagram reveals a much more involved arrangement of bifurca-
tions. An extensive discussion of the dynamical details of this structure can be very
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complicated [53] and goes beyond the scope of this work. Nevertheless, we can again
see that an increase in the pump current leads to the same shift of the bifurcations
towards higher K that we have already seen for the shallow-dot laser, while keeping
the overall structure the same. It is interesting to note that for the deeply confined
quantum-dots there exists an additional period-doubling region for positive detuning,
close to the saddle-node-Hopf point. This region, however, overlaps with the region
of induced relaxation peaks that we have discussed earlier (see Fig. 3.23), making a
separation of these two effects difficult.

We have now gotten a first impression of the quantum-dot laser dynamics under
optical injection. In the following, we will discuss the impact of the amplitude-phase
coupling in the quantum-dot laser on its dynamics, by comparing our full model to
the dynamics that conventional models predict.

3.6.4 Evaluation of the a-Factor from Optical Injection

From the discussion of the injection-locking dynamics of the quantum-dot laser in the
previous section we can conclude that quantum-dot lasers possess a similar general
response to the injection of a master-laser signal, when compared to conventional
laser devices. This includes a region of phase-locking for not too large detuning and
areas of highly complex dynamics outside of this region.

In the following, we will thus try to describe the quantum-dot laser dynamics
in the best way possible using a conventional modeling approach, i.e., using an
a-factor to describe the amplitude-phase coupling. As we have shown earlier, the
a-factor implements a linear dependence of the carrier-induced index change on the
optical gain:

Im g(t) = —aRe g(). (3.79)

We will therefore rewrite Eq. (3.76) as
d - = - 0
aE(t) = (Re g(t) — Ii) (1 — za)E + 2w AviE + KKE”, (3.80)

where we have exploited the fact that the frequency shift w® of the free-running laser
is given by w® = aRe ¢° = ax due to the gain-clamping in the steady-state. While
neglecting the complex charge-carrier dynamics which determines the frequency-
shift in the full model, the a-factor approach greatly simplifies the dynamics of the
electric field. Using only the field dynamics Eq. (3.80), we can derive an analytical
expression for the saddle-node bifurcation delimiting the phase-locking region in
dependence of K and Aviy;.
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__ Assuming that the laser is in a phase-locked steady-state, the time-derivative of
E must vanish:

0= (Reg(r) — k) (1 — ia)E + i2r AviniE + KKE". (3.81)

By splitting the above equation into its amplitudez and complex phase 5, we arrive at

d~ ~ KKE®
0= 60 = —a(Reg(r) - r) +2mAviy — sin '% (3.82a)

0= %Z(r) = (Re g(1) — I{)Z + cos @ KkE®. (3.82b)

Inserting Eq. (3.82b) into Eq. (3.82a), we can rewrite it as

KKE® ~ ~
27 Ay = “T [~ cos § + sin 3] (3.83)

Utilizing the trigonometric identity sin(¢) — a cos(¢) = +/1 + o2 sin(¢ — arctan «),
we can write

A
KKEO1 + o2

which admits only solutions if the left-hand side stays within [—1, 1]. From this, we
acquire the locking boundaries as

21 Ay = sin(q~5 — arctan o), (3.84)

Kk E° K
AV = 12—7’:7\/1 Fa2~ iz—:\/l F a2 (3.85)

where the last term approximates the locking boundaries for A =~ E ie., for low
injection strengths. Equation (3.85) describes the linear increase of the locking range
with the injection strength K that we have already observed in the numerical eval-
uation of the bifurcation structure. Under the assumption of constant electric-field
amplitude and o = 0, the above equation would reproduce the phase-locking behav-
ior known from Adler’s equation [86], showing the connection between the optically
injected quantum-laser and simple driven phase oscillators.

Equation (3.85) gives an expression for the locking boundaries in dependence on
the parameter . We can thus fit our numerical results for the SNIPER bifurcation
lines using the above expression to extract a value for a. For the shallow-dot laser
device at twice the threshold current we obtain o = ajpj = 1.19. We use the symbol
«ipj to label the a-factor extracted from the optical injection simulations.

Figure 3.27 shows the comparison between the analytical approximation Eq. (3.85)
and the numerically obtained bifurcation diagram. The analytical expression
(red curve) shows perfect agreement with the numerical results for low injection
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strength. With increasing K, the numerically determined SNIPER bifurcation lines
show a deviation towards higher Av;,;. Here, the approximationg ~E 0 fails. In order
to resolve this problem, one would need to derive an expression for A in dependence
of the injection parameters, for which a consideration of the charge-carrier dynamics
is required. Analytical expressions can be derived for simple carrier dynamics [1, 4],
but are not feasible for our full modeling approach.

The approach used in determining oy, by fitting the bifurcation lines apparently
yields an accurate, but also rather complicated task. We can circumvent the fitting
procedure by directly applying the definition of the a-factor, Eq. (3.64), using the ratio
of variation in the imaginary and real parts of the optical gain. As we have stressed
before, this definition is in general not well-defined, as it depends on the individual
charge-carrier occupation changes ¢ p. In the present case of optical injection, we can
however explicitly determine these changes from the numerics.

We thus evaluate the reaction of the quantum-dot laser towards a small change in
the electric-field amplitude, realized by a change in the injection strength K:

_0lmg /0K  Imglg—ax — Imglk=o
OReg /0K Reglk—ak — Reglxk—o

(3.86)

Qinj =

We evaluate this expression at K = 0 and Av;,; = 0, i.e., the numerical derivatives
0/0K become the differences of the real and imaginary parts of the gain with respect
to their values obtained for the free-running laser at K = 0. Here it is important to note
that we evaluate the adiabatic changes of the gain with the injection strength, i.e., we
evaluate it after all transients have decayed and the laser has reached its new steady-
state. When we perform this procedure using AK = 10~*, we obtain iy = 1.19,
which is exactly the value received from the fit to the bifurcation diagram. We will
thus evaluate Eq.(3.86) in order to extract an a-factor that describes the locking
behavior of the quantum-dot laser in the best way possible.
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3.6.5 Comparison with o-Factor-Based Models

Shallow-Dots

We now create bifurcation diagrams for the different cases we have studied before,
but using an a-factor approach to model the amplitude-phase coupling. We thus
apply Eq. (3.86) and determine an effective a-factor to describe the response of the
quantum-dot laser to the optical injection. In the simulations we then implement
Eq.(3.80) instead of calculating the index-changes from the off-resonant optical
transitions.

For the shallow-dot case at twice the threshold current, we will at first compare
the bifurcations delimiting the phase-locking region. The comparison between the
modeling approaches is shown in Fig. 3.28. Here we can see a very good agreement
between the two cases for the SNIPER bifurcation lines, which show only slight
differences at higher injection strength. The Hopf bifurcation lines on the other hand
show a shift along the detuning axis, with the full model predicting a slightly smaller
locking range at the positive detuning side. Along with the Hopf lines also the regions
of frequency-locked oscillation are shifted. This good agreement shows us that our
choice of ajy; does indeed reproduce the locking dynamics of the quantum-dot laser
rather well.

We thus proceed to create the complete bifurcation diagram using the a-factor
model. The comparison between the two approaches is shown in Fig.3.29. We can
see that the a-factor reproduces the same general shape of dynamics outside of
the locking range, with a bubble of more complex dynamics outside of the lower
locking boundary. However, the period-doubling ellipse is shifted towards higher
K, and the bifurcation structure inside of this region can be seen to differ from the
full model. Using an a-factor, the chaotic region at smaller K vanishes, and the
other chaotic region differs in shape and size, with a rather pronounced region of
period-3 oscillation appearing. Apart from this, the period-doubling region at positive
detunings near the saddle-node-Hopf point, that was previously only seen in the deep-

Fig. 3.28 Comparison of the 6 Shallow-dot ‘ . .
injection-locking range for — full model =7
the shallow-dot laser under a b — =1.19 === - 1
optical injection. Shown are > i
the SNIPER (solid) and 5 ==" |
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and the a-factor approach g
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‘frequlency—l‘ockeq
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Fig. 3.29 Comparison of the bifurcation diagram for the shallow-dot laser under optical injection.
a shows the bifurcation diagram obtained using the full model, Eq.(3.76), b a-factor approach,
Eq.(3.80). J = 2Ju, cf. Fig.3.19

dot case, is now also visible for the shallow-dot laser. The bifurcation diagrams for
J = 5Juw, Fig.3.30, reproduce this behavior, showing similar difference between the
two models.

The bifurcation diagrams show that the a-factor approach reproduces the bifur-
cations of the steady-state solutions—the phase-locked states—rather well. The
dynamic solutions, on the other hand, exhibit differences. We will try to under-
stand this behavior by investigating the dynamics of the complex optical gain of the
injected quantum-dot laser.
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Fig. 3.30 Comparison of the bifurcation diagram for the shallow-dot laser under optical injection.
a shows the bifurcation diagram obtained using the full model, Eq.(3.76), b a-factor approach,
Eq.(3.80). J = 5Ju, cf. Fig.3.19

We thus look at the response of the quantum-dot laser to an instantaneous switch-
ing of the injection frequency. This is depicted in Fig. 3.31, where we have simulated
the quantum-dot laser with injection at K = 0.25 and Av;,j = 0 GHz, such that the
laser is in a phase-locked steady-state. From there, we have changed Aviy to 1, 2,
and 3 GHz, with Av;,; = 3 GHz lying outside the phase-locking region, the other
two values within (see Fig.3.31a).

When switching to values of the detuning that lie within the locking range, the
laser will reach a phase-locked steady-state after the transients have decayed (blue
curves in Fig.3.31b). The gain ¢° that is assumed in the steady-states for different



3.6 Dynamics Under Optical Injection 107

4 15 T T T
(a) (b) g gain g° (locked) ——
%,,- N gain g(t) (transient) ——
3 10 gain g(t) (unlocked) — — |
N T
I 2 w5k i
G c
< -
< = of i
< £
0 -5} o
AN
\
- _10 Il ! 1 — = =~
0.2 0.3 40 45 50 55 60
injection strength K Re g(t) / ns™

Fig. 3.31 Transients of the complex gain in the optically injected shallow-dot laser. The detuning
Avyy; is switched from 0 GHz (filled circle in the section of the bifurcation diagram in a) to 1 GHz,
2 GHz, or 3 GHz, respectively (crosses in a). b shows the corresponding transients g(¢) in the
complex plane of the optical gain. The transients when switching to another phase-locked state are
shown in blue, the green dashed line shows the periodic orbit outside of the locking range. The
black line shows the steady-state gain values ¢* inside of the locking range for K = 0.25.J = 2Jy,,
cf. Fig.3.19

Avyy; inside the phase-locked region are shown by the black line. As we can see, this
curve is nearly linear, which would be in agreement with a constant a-factor, giving
a constant slope in the (Re g, Im g)-phase-space. The transients when switching to a
different Av;y;, however, reveal a deviation from this linear relationship. The periodic
orbit outside of the locking-range for Avi,; = 3 GHz (green dashed) as well as the
transients can clearly not be described by a linear relationship between the real and
imaginary parts of the optical gain.

We can understand this behavior by discussing the charge-carrier dynamics
induced by the change of injection parameters. As long as we only look at the
steady-state solutions, we can easily define a functional dependence of the charge-
carrier distribution p, including all quantum-dot and reservoir states, on the injection
parameters: p = p(K, Aviy). As the gain ¢* in the steady-state is a function of the
carrier distribution, the derivative 0g°/0 Ay, exists, and we can define an a-factor
in terms of the derivatives of the real and imaginary parts of g* with respect to Avjy;,
similar to Eq.(3.86). As we have stressed before, this is no longer possible when
looking at dynamic solutions, as the time-evolution of the gain can exhibit com-
plicated dynamics itself, without the possibility to describe it by an a-factor. This
will become especially pronounced when discussing dynamically complex solutions
where the electric field exhibits dynamics on the timescale of the charge-carrier
lifetimes, where the carrier distribution is no longer able to adiabatically follow
the electric field dynamics. Here, using an a-factor would artificially constrain the
dynamics of the gain in the phase-space to the black line in Fig.3.31, which, as we
have seen, will lead to inaccurate predictions of the dynamics.
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The above discussion explains the differences between the full-modeling approach
and the a-factor model. The bifurcations of the steady-state solutions delimiting the
locking region can be very well describe with an «o-factor, since the steady-state
solutions adiabatically follow a nearly linear relationship in the complex gain. The
dynamical solutions, on the other hand, cannot be described by an a-factor, and their
bifurcations thus differ between the two approaches.

It has become clear that the difference between quantum-dot laser dynamics
and conventional lasers is strongly influenced by the amplitude-phase coupling. We
will therefore take another look at the quantum-dot laser dynamics in terms of the
amplitude-phase coupling by evaluating its gain and index dynamics. We thus extend
the definition of ayj, Eq. (3.86), to the whole parameter space:

d1Im g* (K, Aviyj) / OK

. K, A i) = — :
Oémj( ij) ORe g (K, AVinj)/aK

(3.87)

We must again note that this definition is only well-defined within the phase-locking
region, where the laser reaches a steady-state. The definition for cy; (K, Avy) there-
fore is based on the derivatives of the steady-state value of the complex gain,
9° (K, Avyy,;). When the laser is not phase-locked, a different definition has to be
used. As we have seen in Fig.3.31, the real and imaginary parts of g(f) are desyn-
chronized for oscillatory solutions, and the derivative ORe g(#)/0Im g(t) cannot be
defined. Instead, we will evaluate the modulation amplitudes of these quantities, i.e.,
we define

ARe g(K, Avyy) = [max[Re g(t)] — min[Re g(t)]] (3.88a)

s AlVinj

Alm g(K, Aviy) = [max[Im 9(t)] — min[Im g(t)]] (3.88b)

sAVinj

with their minimum and maximum values evaluated for the corresponding dynamic
solution obtained at the parameter combination (K, Av;,;). We then evaluate their
ratio,

Alm g(K, AVinj)

dyn .
K. Avy) = — D2 Dlin)
inj (K, Aving) = 72 9(K. Ainy)

inj (3.89)
in order to quantify the amplitude-phase coupling outside of the locking range.

We evaluate Egs. (3.87) and (3.89) for the shallow-dot laser under optical injection.
The resulting values in dependence of the injection parameters are shown in Fig. 3.32.
The value of oy within the locking region exhibits a decrease towards higher K,
which coincides with an increase of the optical power. This can be understood in
terms of the quantum-dot ground-state occupation. At higher intensity, the stimulated
recombination rate becomes larger, forcing the quantum-dot occupation towards
zero inversion. With reduced occupation, the gain saturation due to Pauli-blocking
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Fig. 3.32 Evaluation of the amplitude-phase coupling in the optically injected shallow-dot laser.
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becomes less pronounced in the ground-state, such that a variation of the charge-
carrier distribution leads to a higher relative change of the optical gain and thus to a
smaller value of ay;.

At the locking boundaries, the value of «y; is nearly constant, and approximately
equal to the value evaluated at K = Avj;,; = 0. This explains the good agreement
between the full gain dynamics and the description with an a-factor, as here the full
gain dynamics can be very well described with this constant cp;.

Outside of the locking region, however, the discrepancies become evident. While
for small values of K and Avj,; the values inside and outside of the locking region
match rather well, there is a substantial decrease of afnyjn towards greater detuning
frequencies | Aviy|. Furthermore, the laser dynamics itself can be seen to influence
the value of afnyjn. The signatures of the different qualitative dynamics and their
bifurcations within the elliptic region of higher periodicity at the lower injection-
locking boundary are clearly visible also in the amplitude-phase coupling. This again
shows that no single value of « can be defined for quantum-dot lasers that would be
valid for all types of solutions, but a consistent and independent description of the
optical gain and frequency-shift is required.

Deep-Dot Laser

We now also simulate the quantum-dot laser with deeply confined localized states and
compare its dynamics with the results from the a-factor description. The evaluation of
iy yields a lower value of 0.55 at J = 5/, in this case. Compared to the shallow-dot
laser, this reduced value can be explained by the larger energy spacing of the reservoir
states from the quantum-dot ground-state, reducing their effect on the frequency shift
at the ground-state energy.
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Fig. 3.33 Comparison of the bifurcation diagram for the deep-dot laser under optical injection.
a shows the bifurcation diagram obtained using the full model, Eq.(3.76), b a-factor approach,
Eq.(3.80). J = 5Ju, cf. Fig.3.19

Figure 3.33 reveals the same general trend that we have already seen for the
shallow-dot laser. The simulations using an «-factor can reproduce the bifurca-
tions of the static phase-locked solution very well, while the bifurcations of the
dynamic solutions are shifted in parameter space. Furthermore, the detailed bifur-
cation structure enclosed within the period-2 region at negative Awvj,; exhibits quite
substantial differences. It becomes again evident that when using an «a-factor for
the simulation of quantum-dot laser dynamics, the amplitude-phase coupling cannot
be accurately described. This holds especially for the complex bifurcation structure
of the periodic solutions. As we will see later on in Sect. 3.9, this abrupt change of
the amplitude-phase coupling between the locked and unlocked regions is due to a
frequency-dependent modulation response of the carrier-induced frequency-shift.
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Fig. 3.34 Evaluation of the amplitude-phase coupling in the optically injected deep-dot laser.
J = 5J, cf. Fig.3.32

The amplitude-phase-coupling thus becomes subsequently smaller the faster the
dynamics of the electric field becomes. This is also demonstrated in Fig. 3.34, which
shows the amplitude-phase coupling in the injection parameter plane, as done before
for the shallow-dot (cf. Fig.3.32). Here we can clearly observe the reduction in
amplitude-phase coupling as soon as we leave the phase-locked region, which then
leads to the differences in the dynamics between the two modeling approaches.

Our numerical results by direct integration of our quantum-dot laser model shows
that the unique dynamics of quantum-dot lasers lead to important modifications to the
bifurcation structure. While the numerical bifurcation diagrams of the quantum-dot
laser in the parameter plane gives an overview of the qualitative dynamics, a more
general investigation of the dynamics would be favorable. A detailed investigation of
the bifurcations, however, requires a treatment that goes beyond the simple integration
of the quantum-dot laser model. In the following section we will therefore present
a simplification of our full model that is suitable for implementation in numerical
path-continuation tools.

3.7 Optical Injection—Numerical Path Continuation

While the numerical evaluation of bifurcation diagrams, as shown in the previous
sections, can give an overview of the possible dynamics in the system, it has sev-
eral drawbacks. The bifurcation diagrams were created by direct integration of the
quantum-dot laser equations. Together with the high number of sampling points in
the parameter space required for a sufficiently high resolution, this can lead to sig-
nificant computational demands. Furthermore only stable solutions can be found by
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this approach. And in the case of multi-stability only one particular solution will be
reached, with the remaining going potentially unnoticed.®

A more elegant way of characterization of the occurring dynamics is offered
by path-continuation programs. These makes it possible to trace points of interest,
e.g., bifurcation points, in parameter space [115]. The advantage of this approach
is that bifurcations of both stable and unstable solutions can be found, and often
more efficiently and accurate than a sampling of the parameter space. A thorough
description of the bifurcations then gives a complete and consistent picture of the
qualitative dynamics that can occur when the control parameters are varied.

For the optically injected quantum-dot laser, the path-continuation along with an
asymptotic analysis of the saddle-node and Hopf bifurcation lines has been performed
for a model that incorporates the complex charge-carrier dynamics considered here,
but which uses an a-factor [4]. Here, we will apply the path continuation on our
model that dynamically calculates the carrier-induced index changes.

For the application of the path continuation tools it is advantageous to use a
model that is as simple as possible in order to reduce the computational effort. A
Thorough investigation of quantum-dot laser dynamics has been prevented by the
high complexity of realistic models. In the following, we will therefore present a
simplification of our full quantum-dot model, which we will then implement in the
path continuation tools.

3.7.1 Quantum-Dot Laser Model Simplification

We will now reduce our quantum-dot laser model to a simpler form, which is easier
to handle both numerically and analytically. In the process we have to take care not
to neglect any of the important effects that define the unique features of quantum-dot
laser dynamics.

In Eq.(3.9) we had written the dynamics of the individual quantum-dot sub-
groups as

. rel

d L o s
apll;,m = _Re(g]m) (p]e,m + p]h.m - 1) |E|2 - meiz,mp]h,m + Szall; + VL’ (3.90)

with the sign +, — accounting for the ground and excited-state dynamics, respec-
tively. The dynamic equations for the charge-carrier occupations of different sub-
groups thus differ in the strength of the light-matter interaction with the laser field,
given by the gain coefficient g},. As we have seen before, the real part of the gain
coefficient describes a Lorentzian lineshape around the resonance frequency w. The
quantum-dots subgroups close to the resonance thus mostly dominate the light-matter
interaction, whereas for sufficiently off-resonant subgroups the corresponding term

6Parts of this section have been published in [8].
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can be neglected. A common approach [116, 117] is thus to separate the quantum-
dots into two groups—active and inactive dots—and replacing the former smooth
dependence of Re(g},) on the quantum-dot frequencies with a discrete dependence:
The complete stimulated emission takes place in the active dots, and vanishes in
the inactive dots. In the following, we will describe the fraction of active dots with
respect to the total quantum-dot number as f*“, and the corresponding fraction of
inactive dots as ",

We can write the dynamic equation for the two new subgroups, which we label
with the indices “act” and “inact” for the active and inactive fractions of dots, respec-
tively, as

d IPyGs 1
2 . X 2 cap,act rel,act
EPZ?ES = "or lwm Ry Gs +Spas + S (3.91a)
d . . . 4
&t = i, SR s ao)

Assuming now that the contribution of the quantum-dot excited states to the optical
gain can be neglected, we can lump all excited states into one dynamic variable:

d 1 ) .
pr,ES — _Rsp,ES 4 SzaEpS _ 5 [faclszel.act _‘_fmactSlr;el,macl] ] (3.92)

In above equations, the spontaneous recombination contribution is given by

(in)act (in)act _(in)act
ngég = WasPGse Posh » Ry Es = WESPES, e PES > (3.93)

and the charge-carrier scattering contributions

,(in)act i i t out (i t
Szasl imact _ Sza}; m[1 _ Pg:,),ac ] _ Szar[; oul pg‘r:r)lac , (3943)
Szel,(in)act — Szel,in[l _ Pl(?i_n(;;C[]Pb,ES _ Slrjel,outp;{rggct[l _ pZES] (3.94b)

Next we will rescale the electric field such that
|EI* := Nn, (3.95)

where Ny is the 2D photon density inside the laser cavity. The new electric field
variable is thus related to the original field strength via

~ Ebe€0 aLhQW
E=,2-"—E, 3.96
2w T ( )

where a; hQV /T is the effective mode height. The dynamic equation of the new
electric field variable (without spontaneous emission) is thus given by
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d . N
—Em = (g(t) - n)E. (3.97)

We will now have to derive expressions for the complex optical gain g(¢). In Eq. (3.13)
we had written

g(t) = 2N Z Vi (DG (p’e O — 1) — i0waw- (3.98)

€0Ebg hQW

We now rewrite the contribution of the quantum-dot states in terms of the active and
inactive quantum-dot fractions as

hwl
90| op = WZN P[5 (reGs+rias—1) + ges (PbEs+oies —1)].

(3.99)

where the gain coefficients of the lumped states are calculated by averaging over the
individual subgroups:

¢ N, ~Tolucs|? ( 1 )
g5s = Re FWass | =D fG) : (3.100a)
Bfe| 20 | =20 0\ S iy —ar
. L Tz|uEs| T (whs — w) )
ges = ilm | > 2f (Ndhs | = —i D 2F() : .
B Z‘ e Z‘ ” (1 +[Ta(whs — )12

(3.100b)

In the above, we take into account only the real part of the ground-state contribution
to the gain into account, as the imaginary parts of the gain coefficient cancel each
other out for excitation resonant to the maximum of the inhomogeneously broadened
ground-state distribution. In principle the asymmetric occupation of the ground-states
leads to a stronger gain at the lower-energy side of the distribution and thus to an
asymmetric gain spectrum with non-vanishing index-shift. However, we found the
carrier-induced frequency shift by this asymmetry to be negligible in comparison
with the contributions of the other transitions. For the excited-state transitions, we
only take the imaginary part of their gain coefficients into account, assuming that
their contribution to the amplitude gain is negligible.
The contributions from the charge-carrier-reservoir transitions are written as

hwT

T 2D eq d reqy
o hQWAaCtZImg (f(sek,EFe,T ) +f (e Epy. T )

5wQW

~ 5w6wwe + (Swawh + (5wa, (3.101)
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Z Im 2°. (3.102)

2D

5wow
Q EOEbghQ Aact

In the above, we have approximated the sum over all individual k-states by a linear
dependence on the summed up reservoir densities w;. For the densities typically
encountered during the laser operation we have verified this to be a good approxi-
mation. The term 5”(0)w describes the constant frequency shift due to the absorption
by the empty reservoir states. As a constant, we can compensate its effect by a
proper choice of a rotating frame. In the following, we will therefore neglect this
contribution.

We define
hwT
= — DN gact 3.103
gaGs 200V 9as ( a)
o QD
Swgs = —Im Logbghow 2N gEs:| , (3.103b)

which allows us to write the complex optical gain in a very simple form:

act act

9(0) = gas (PeGs+ies —1) — idwes (PiEs +Picks) — i0wgwwe — idwhw wh.

(3.104)
With this we can now write the resulting rate-equation-system as
d . .
GEO= (9() — K)E (3.105a)
d gGS pg +pact -1) . cap,ac rel,ac
aihos = ( fdgsa NG D - Ritgs 4 ST 4 5P u0sb)
d ; in. rel,in
3 Phes = ~RyGs + 5,65 4 gyt (3.105¢)
d 1 ) .
Spums = —Ripps + Syl — 5 [ syt (3.105d)
d J ;
G = o~ Bwan, — 2N [Fresyibacpmasti a5 (3.105e)

Fit Functions for Scattering Rates

The above equation system has reduced the quantum-dot model to a 10-variable rate-
equation system. The charge-carrier occupations are, however, still coupled by the
scattering rates, with complex dependencies on the reservoir charge-carrier densities.
In the following, we therefore approximate these terms by easier fit functions, with
only a few parameters to describe their dynamic dependencies.
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Fig. 3.35 Fits of the scattering rates for the shallow-dot device. Shown are a the direct-capture
and b the intra-dot relaxation rate for electrons and holes, in dependence of the electron reservoir
density w, (with w, = w,, T = 300K). The microscopically calculated rates (solid lines) are
shown together with the simple fit functions (dashed lines). The dotted gray vertical lines show the
value of w, atJ = 2Jy,. Fit parameters are given in Table 3.3

A first look at the scattering rates in dependence of the reservoir densities wy
reveals for the capture rates a quadratic increase at low densities, and a transition
to nearly linear increase at higher values of w;. The relaxation rates, on the other
hand, show a linear increase at first and a subsequent saturation. This is depicted in
Fig.3.35 (solid lines). Taking these characteristics into account, we fit the scattering
rates using the following functions

i Awb2
geap-n = 3.106
() = o (3.106a)
i Cwb
grel-in - 3.106b
b,m (wb) D + wy ( )

As we have seen before, the detailed balance relationship between the in and out-
scattering rates plays an important role for a correct description of the quantum-dot
laser dynamics. The corresponding out-scattering rates are therefore calculated from
this condition, using Eq. (2.22). The fitting parameters extracted from the microscop-
ically calculated rates are given in Table 3.3.

Table 3.3 Fitting parameters for the shallow-dot scattering rates

Electrons Holes

GS ES GS ES
A 10 " em?ns™!) | 185 48.3 10.5 21.4
B (10" ecm™2) 1.9 0.48 5.3 1.8
Cms™h 1014 2272
D (10" cm™2) 1.4 2.3
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Fig. 3.36 Comparison of the full model (solid lines) and the simplified 10-variable rate equation
system (dashed lines). Shown are the time-series of a the output power and b the electron densities
during the turn-on of the shallow-dot laser. J = 2Jiy,

The comparison shown in Fig. 3.35 shows a good agreement between the micro-
scopically calculated rates and the fit functions. For reservoir carrier densities above
the typically encountered values (gray dotted vertical line for twice the threshold
current) the fits show a slight deviation, especially pronounced in the electron relax-
ation rate. For not too high pump currents, however, the laser should be well in the
region with good agreement. We will verify this by comparing the turn-on dynamics
of the two approaches in the following.

Comparison of the Full and Simplified Models

We now verify the accuracy of our simplified 10-variable rate-equation model by
comparing its results with the full quantum-dot model. The turn-on dynamics sim-
ulated with the two models is shown in Fig.3.36. As we can see, our simplified
approach reproduces the results of the full quantum-dot laser model excellently,
with only slight differences in the reservoir carrier densities. In the following, we will
therefore employ the simplified model to investigate the quantum-dot laser dynamics
under optical injection.

3.7.2 Path Continuation Results

We will now revisit the optically injected quantum-dot laser, using the simplified
10-variable rate-equation model, Eq. (3.105). The optical injection is implemented
in the electric field equation in the same way as in Eq.(3.76), by moving into the
rotating frame of the master laser:

Y500 = (a6 — 5 + 6OV E + 2w AveF 0
th(t) = (g(t) K+ idw )E+ 27 AvigE + KKE”, (3.107)
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Table 3.4 Parameters used in the simplified 10-variable rate-equation model for the shallow-dot
laser

Symbol Value Meaning

N 10" em=2 QD density per layer

ar, 15 Number of layers

BS 540 nm2 ns~! QW bimolecular recombination rate

Was 0.44ns~! GS spontaneous recombination rate

Wks 0.55ns ! ES spontaneous recombination rate

K 50ns~! Optical loss rate

F 0.5 Fraction of optically active quantum-dots
gGs 230ns~! Ground-state gain coefficient

SWES 125ns~! Excited-state frequency-shift coefficient
dwhw 11.3 x 107" cm?ns~! Reservoir electron frequency-shift

coefficient

5w6w 5.5x 107" em? ns~! Reservoir hole frequency-shift coefficient
where §w® = —Im ¢° is the frequency shift in the steady-state of the free-running

laser, and Avyy,; is the detuning of the master laser from the free-running laser fre-
quency.

We use the path-continuation program AUTO07p [118, 119] to create bifurcation
diagrams of the optically injected quantum-dot laser. The numerical parameters used
in the simulations are given in Table 3.4. Starting with the shallow-dot laser, we show
the bifurcation diagram in Fig. 3.37a, depicting the results from the direct integration
method combined with the bifurcations obtained from the path-continuation. Both
approaches agree perfectly with each other, the numerically found boundaries of
the phase-locked solutions match the bifurcations found by path-continuation. Addi-
tionally, we are now able to track the saddle-node and Hopf bifurcations beyond the
phase-locked solution.

This reveals the underlying structure of the bifurcations of the phase-locked solu-
tion, as depicted in Fig.3.37b for a larger parameter region. The bifurcations to
either side of the locking range can be seen to be connected. The parts of these bifur-
cations that apparently go through the locking region are bifurcations of unstable
fixed points, shown in light gray. By direct integration—or in experiments—these
bifurcation could therefore not be found.

The period-doubling bifurcations of the oscillatory solutions outside of the locking
range (up to period-4 oscillations) are shown in blue in Fig. 3.37a. These also reveal
a highly complex structure, reaching well inside the locking region. As we have
discussed earlier, the two slim regions outside of the locking region around K ~
0.1 with higher number of local extrema are not a consequence of period-doubling
bifurcations, but due to deformation of the periodic orbit.
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Fig. 3.37 Path-continuation results for the optically injected shallow-dot laser using the simplified
quantum-dot laser model, Eq. (3.105). a Shown are the laser dynamics obtained from direct integra-
tion, cf. Fig.3.19, together with the bifurcation lines obtained using path continuation. Shown are
SNIPER (black solid lines), Hopf (dashed lines) and period doubling (blue solid lines) bifurcations.
b Bifurcation lines of the steady-state solution for a larger parameter area. Bifurcations of stable
solutions are shown in black, those of unstable solutions in light gray. J = 2Jy,

While there is a multitude of additional bifurcations present, especially near the
period-doubling regions, we will only calculate the bifurcations of the fixed points and
period-doubling bifurcations up to period-4 oscillations. A complete discussion of all
the bifurcations occurring in the system would be a task that far exceeds the scope of
this work. In the following, we will therefore create bifurcation diagrams for different
parameter sets. Furthermore, we will apply the path-continuation approach to our
simplified quantum-dot model taking into account the carrier-induced frequency-
shift from the off-resonant carriers. We will then compare these results to those
obtained when using an a-factor to describe the amplitude-phase coupling.



120 3 Quantum-Dot Laser Dynamics

shallow-dot shallow-dot Simplified model

J=2Jy 0, =142

full gain dynamics

o

_—-Hopf

) | — - Hopf
— SNIPER

— SNIPER

—_— ptleriod dqubling . : —_— pgriod dqubling , ’
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
injection strength K injection strength K

Fig. 3.38 Path-continuation results for the optically injected shallow-dot laser using the simplified
quantum-dot laser model with a full gain-dynamics, Eq. (3.105), and b using cvipj = 1.42.J = 2Jyp,
cf. Fig.3.37

Comparison with a-Factor Approaches

In order to discuss the impact of using a constant a-factor, we additionally simulate
the shallow-dot laser using the simplified model with the amplitude-phase coupling
expressed by an a-factor. We thus implement Eq. (3.80) to model the electric field
dynamics. The simplified model yields o;,; = 1.42, which differs slightly from
the value obtained for the shallow-dot laser using the full model, due to the loss of
spectrally resolved quantum-dot subgroups. The comparison between the bifurcation
diagrams of the two approaches is shown in Fig. 3.38. As we had already seen using
the full quantum-dot model, the two approaches yield very similar bifurcation lines
for the phase-locked solution, but a shift of the bifurcations of the periodic orbits.
The simplified model thus reproduces the results obtained with the full model very
well.

3.7.3 Dependencies on Scattering and Reservoir Loss Rates

The simplified quantum-dot laser model is now applied to investigate the influence
of the scattering rates and charge-carrier loss rates in the reservoir. The carrier-loss
rates in the reservoir states are composed of non-radiative losses, e.g., recombination
via lattice defects or Auger-recombination, and radiative recombination by sponta-
neous emission. Low reservoir losses are generally preferred, increasing the overall
efficiency of the device. We will therefore exemplarily investigate the laser dynamics
for reduced carrier loss rates. As we have written earlier, the scattering rates crucially
depend on the quantum-dot material composition and size, as well as external para-
meters such as the temperature. As we have shown in Sect. 3.2.3, the quantum-dot
laser operates in different dynamic regimes depending on the effective carrier scat-
tering rate. The shallow-dot and deep-dot lasers we have discussed so far operate
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Fig. 3.39 Path-continuation results for the optically injected shallow-dot laser with scattering rates
reduced by a factor 50. Shown are results for the simplified quantum-dot laser model with a full
gain-dynamics and b using ajpj = 0.29. J = 2Jy,, cf. Fig.3.37

above the overdamped regime, within the synchronized regime. In the following we
will therefore look at the case of reduced scattering rates, such that the laser is within
the constant-reservoir regime.

Figure 3.39 shows the dynamics of the optically injected shallow-dot laser device
with its scattering rates reduced by a factor of 50. This reduction makes the laser
operate at the upper end of the constant-reservoir dynamic regime, with a strong
desynchronization between the quantum-dot states and the reservoir. Immediately
visible is the more symmetric shape of the locking region and the bifurcations of
periodic solutions. Regions of period doubling bifurcations now exist at either side of
the locking region. This increased symmetry can be explained by a smaller amplitude-
phase coupling due to the less effective coupling between resonant and off-resonant
states, which also leads to a rather low value of o, = 0.29. Using this value in the
model with a constant a-factor leads to the bifurcation diagram shown in Fig. 3.39b.
Interestingly, the a-factor approach leads to a much more asymmetric bifurcation
structure. The bifurcations of the phase-locked region, on the other hand, again reveal
a very good agreement.

The changes of the bifurcation structure introduced by the variation of the charge-
carrier scattering rates again emphasizes the strong dependence of the amplitude-
phase coupling on the internal charge-carrier dynamics. Even though the gain spectra
of the lasers with full and reduced rates would be nearly identical, the response of
the two lasers to the optical injection is very different.

‘We now take a look at the effects of reduced reservoir loss rates. When we decrease
the loss rate to BS = 54nm?ns~', in addition to the reduced scattering rates, we
obtain the bifurcation diagram shown in Fig.3.40. Here, the modifications to the
bifurcation diagram become much more pronounced. The bifurcations delimiting
the phase-locking region become very asymmetric, whereas the dynamics in the
unlocked region have a high degree of symmetry. When we simulate the quantum-dot
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Fig. 3.40 Path-continuation results for the optically injected shallow-dot laser with scattering rates
reduced by a factor 50, and reservoir losses reduced by a factor 10. Shown are results for the
simplified quantum-dot laser model with a full gain-dynamics and b using aipj = 0.77. J = 2Jy,
cf. Fig.3.37

laser using an a-factor, the resulting bifurcation structure outside of the locking region
shows a high degree of asymmetry. Here, the a-factor approach clearly fails, as it
can not reproduce the dynamics of the full modeling approach.

3.7.4 Summary

To summarize the previous sections, we have found the optically injected quantum-
dot laser to exhibit dynamics that are qualitatively similar to conventional lasers,
with a region of phase-locking to the master signal and regions of complex dynamics
in the unlocked region. In general, the dynamics cannot be described by the use of
an a-factor, which is due to the desynchronized dynamics of the real and imaginary
parts of the gain (and thus the optical susceptibility). While the bifurcations of the
phase-locked solution with respect to the injection strength and detuning are well
described by an a-factor, the qualitative dynamics differ in the unlocked parameter
range. This becomes especially pronounced for quantum-dot lasers that operate in
the constant-reservoir regime, i.e., for slow scattering, and when reservoir-losses are
low.

We have derived a simplified quantum-dot laser rate-equation model based on our
microscopic modeling. The simplified model reproduces the dynamics of the full
model very well, while being simple enough to be implemented in path-continuation
packages. This opens up the possibility to perform further investigations of the
quantum-dot laser dynamics by continuation of the occurring bifurcations, taking
into account the unique features of quantum-dot lasers.
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3.8 Dynamics Under Optical Feedback

In this section we will investigate the dynamics of quantum-dot lasers under the
effect of time-delayed optical feedback. In contrast to the optical injection setup
discussed in the previous sections, which required an external master signal, the
perturbation of the laser under optical feedback is induced by its own light. The
easiest way to realize optical feedback is to place a mirror in front of the laser
diode in a distance £. The light coupled out of the laser cavity then reaches the
cavity facet again after a time 7 = £/v,, with the light group velocity v,. The
basic time-delayed optical feedback scheme is depicted in Fig.3.41. The phase-
sensitive interference of the light inside the cavity with its time-delayed field can
then lead to a variety of different dynamics [4, 120—124]. Often, feedback effects
are undesirable in applications where stable laser output is required, as feedback-
induced periodic or even chaotic dynamics could appear [125-129]. On the other
hand, optical feedback has been shown to improve device performance. For example,
time-delayed feedback control has been implemented in laser devices to stabilize
specific target states [130—133]. Furthermore, frequency stabilization [134], noise
suppression [135-138], and modulation bandwidth improvements [48] by optical
feedback has been shown. Deterministic chaos in semiconductor lasers has been
utilized, e.g., for chaos communication [2, 59, 60, 139, 140], or random-number
generation [55, 56]. In mode-locked lasers, optical feedback has been shown to
substantially improve the phase-noise and timing-jitter [141-144].

The introduction of time-delay into the laser equation system mathematically
increases the system’s dimensionality to infinity. The state of the system at a given
time ¢ is then given by the current values of the dynamical variables as well as by
the values of the time-delayed variable over the whole interval [f — 7, #]. The high
dimension of the phase space then leads to the multitude of different dynamics that
is observed in experiments and theory.

Recently, this high dimensionality of lasers with delayed optical feedback has
been exploited for the implementation of optical neural networks [145] and reservoir
computing [146-148]. Here, the increase of dimensionality by the feedback leads to
the formation of many “virtual network nodes”, while only one physical laser node
has to be employed, leading to an increase in computational power.

3.8.1 Quantum-Dot Laser Model with Optical Feedback

The theoretical implementation of the time-delayed optical feedback in the laser
equations has been first realized in [149]. Lang and Kobayashi independently derived
the corresponding theoretical formulation [150] in their seminal paper on feedback-
induced effects in semiconductor lasers. The implementation of the feedback signal
in the electric field equation is realized by a feedback term,

TParts of this section have been published in [47].
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Fig. 3.41 Sketch of the optical time-delayed feedback scheme. The out-coupled optical signal E(¢)
is reflected off a mirror and reaches the cavity facet again after a time 7, with a possible phase-shift
C. The optical interaction within the laser cavity can lead to dynamic solutions

2E(t) = kp e CE(t — 1), (3.108)
5] fb

with a feedback rate kg, and the feedback phase C. The appearance of the time-
delayed variable E (¢ — 7) transforms the dynamic equations into a delay-differential-
equation (DDE) system [151]. In the above equation the phase shift C enters due to
the possibility of a phase difference between the laser field and the light reentering
the laser cavity. This phase difference arises whenever the feedback length is not an
integer multiple of the corresponding laser wavelength: C = 27£/\° = 7/w°, with
A% and W the wavelength and optical frequency of the free-running laser.

The above shows that delay time 7 and feedback phase C are coupled quantities, as
both depend on €. However, a change of the feedback length by one laser wavelength
leads to a rotation of the phase by 27, while barely changing the delay time. The
parameters 7 and C can therefore be seen as independent, and a characterization of
the laser behavior under optical feedback needs to take into account the dependencies
on both these parameters [152, 153]. This is in line with experimental difficulties
of fine-adjusting and stabilizing the delay length on the resolution of a single laser
wavelength, making the exact control of the feedback phase difficult.

We now transform our electric field into the rotating frame of the free-running
laser, and rewrite the feedback rate as kg, = Kppk, with the new feedback strength
K, similar to Eq.(3.76). Here, we will employ the full quantum-dot laser model,
including microscopically calculated scattering rates, dynamic temperature and the
multi-subgroup description. The electric field equations then become

d~ A —icT
—E() = (g(t) — kAt iw )E(t) 4 Kpre CE({ — 7). (3.109)

It must be noted that the parameter C can only be interpreted as the phase difference
between the cavity and the time-delayed field in the case of Im g() = —«°, i.e., in
the free-running case. As soon as the feedback induces a frequency-shift away from
the free-running laser frequency, the phase of the cavity field performs a rotation in
the complex plane of el 91)+<")71 quring one delay time. The total phase-difference

is then given by C + (Im g(¢) + w7
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3.8.2 Quantum-Dot Laser Dynamics Under Optical Feedback

In the following, we will discuss the bifurcations of the quantum-dot laser subject
to time-delayed optical feedback. Quantum-dot lasers are known for their lower
sensitivity to optical feedback when compared to conventional semiconductor laser
devices [18, 69, 154, 155]. This decreased sensitivity is commonly attributed to
the higher relaxation-oscillation damping of quantum-dot lasers. This is supported
by analytic calculations, showing that the critical feedback strength, at which the
first bifurcations of cw-solutions appear, depends approximately linearly on the
relaxation-oscillation damping [156].

The dynamics of semiconductor lasers under time-delayed optical feedback can
be understood in terms of external-cavity modes (ECMs). These refer to cw-solutions
with constant frequency:

E(t) = Efe™0w' (3.110)

with a constant amplitude E*.The frequency deviation from the free-running laser is
the given by dw®. The external-cavity modes can be seen as standing-wave solutions
in the coupled laser-cavity and external-cavity system [157-159].

Inserting the ansatz Eq. (3.110) into (3.109) yields for the ECM frequency

—6w® = (Im ¢* + iw®) + Kk sin(dw'r — C), (3.111)

which is a transcendental equation in dw*, that also depends on the carrier-induced
frequency-shift, —Im g¢*, which in turn depend on the charge-carrier dynamics of the
quantum-dot system. From above equation it is possible to deduce that the number
of dw* that fulfill the equation, i.e., the number of ECMs, increases with the feedback
strength Ky,. The ECMs always appear in pairs in saddle-node bifurcations, with one
of them being always unstable [160]. For high feedback strengths, a high number of
ECMs coexist, which makes multi-stability a commonly encountered phenomenon
[124, 152, 161, 162].

The stability of the quantum-dot laser can therefore be understood in terms
of external-cavity modes. The occurring bifurcations characterize how the laser
switches between different ECMs under changes of the feedback parameters [163].

For the simulation of the quantum-dot laser with time-delayed optical feedback we
choose a short delay time of 7 = 100 ps, corresponding to an external cavity length
of 15 mm. A numerical bifurcation diagram for a steady increase of the feedback
strength is depicted in Fig. 3.42. At Ky, ~ 0.16 the stability of the first ECM is lost
in a Hopf bifurcation. The periodic orbit undergoes several bifurcations that lead
up to a region of chaotic dynamics around Ky, ~ 0.23, before the laser reaches the
second stable ECM. This ECM remains stable for all higher feedback strengths. The
bifurcation structure is qualitative similar to previous theoretical investigations of
quantum-dot laser dynamics under feedback [18, 155].



126 3 Quantum-Dot Laser Dynamics

Fig. 3.42 Numerically 0.08
simulated bifurcation 5 0.07| shallow-dot
diagram in the feedback 5 0.06 ?::ijék‘sﬁ ”M
strength Ky, of the g 0.05 fi
shallow-dot laser. Shown are S 404 : C
the output power extrema in ‘5 003 _\ 1
dependence of the feedback 5 ;
strength. The diagram was z 0.02 d
obtained by stepwise 2 0.01 \ .
o

i [ 0.00
increase of ki 0.00 0.05 0.10 0.15 0.20 0.25 0.30

feedback strength Ky

The chosen feedback length of 100 ps lies within the short-cavity regime, where
the laser response is known to sensitively depend on the feedback phase C [121]. In
order to get a complete picture of the dynamics, we numerically calculate bifurcation
diagrams of the laser dynamics spanning the (Ky,, C)-plane.

Figure 3.43 shows the resulting bifurcation diagrams. In the regions denoted by
the continuous color-code (dark blue to light blue) the laser is on a stable cw-solution,
i.e., ECM. Figure 3.43a, b show different sweep directions of the feedback phase C.
In these, the phase was either increased (panel a) or decreased (panel b), using the
old system state as the initial state of the simulation with the new parameter value.
Together with sufficiently small parameter changes, this assures that one stays on a
given solution as long as it remains stable. In the previous discussion of the quantum-
dot laser dynamics under optical injection we had limited ourselves to one sweep
direction, as there the regions of multi-stability are much smaller than with optical
feedback.

The two sweep directions reveal a bistability between two ECMs around Ky, ~
0.12, C =~ 1.257. Here, two saddle-node bifurcation lines collide at a cusp point. This
cusp marks the creation of the first additional ECM. Between the two saddle-node
lines originating in this cusp point, the two ECMs coexist. We can distinguish the
two solutions by their different intensities. The higher-intensity solution is followed
in the parameter space for a downward sweep of the feedback phase (panel b), until
it is destroyed in the saddle-node bifurcation.

The lower-intensity ECM, on the other hand, exhibits a variety of bifurcations,
visible in Fig. 3.43a. Slightly above the cusp point, in terms of Ky,, this ECM under-
goes a Hopf bifurcation, in which the ECM loses its stability and the laser dynamics
is forced onto a stable periodic orbit. This is denoted by the white area in Fig. 3.43.
This periodic solution undergoes additional bifurcations. Especially close to the cusp
point, period-doubling bifurcations are visible, leading to periodic orbits of higher
periodicity. This is shown by the increasing number of maxima, denoted by the color
code in the bifurcation diagram. For K 2> 0.2, the upper boundary of the periodic
region is lined with a quasi-periodic region, born in a torus bifurcation of the peri-
odic orbit. The torus becomes unstable when increasing C even higher, and the laser
reaches the higher-intensity ECM.
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Fig. 3.43 Numerically simulated bifurcation diagram of the shallow-dot laser under optical feed-
back. Shown are the dynamics depending on the feedback strength Ky, and phase C. The continuous
color code (dark blue to light blue) shows cw-solutions and their relative laser intensity. The discrete
color code denotes oscillatory solutions. Shown are period-1 oscillations with one local maximum
(white), two (orange), three (yellow) and four (red) maxima per oscillation period. Oscillations
with higher number of maxima, an indication for chaotic and irregular oscillations, are shown by
the dark gray color code. The dashed thin line denotes the numerically retrieved location of the
saddle-node (SN) bifurcation. The arrow denotes the direction of the phase-sweep in (a) and (b).
J = 2Ju, cf. Fig. 3.19. The green dotted line in (a) shows the parameter range covered in Fig.3.42

Next, we simulate the deep-dot laser with optical feedback. The resulting bifurca-
tion diagram is shown in Fig. 3.44. Compared to the shallow-dot laser, the dynamics
are now much more stable. While the first additional ECM is born at approximately
the same Kp,, the region of accompanying bifurcations is much smaller. Only a slim
region of periodic oscillation is visible. Furthermore, this region is delimited in large
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Fig. 3.44 Numerically simulated bifurcation diagram of the deep-dot laser under optical feedback.
J = 2Ju, cf. Fig.3.43. The dotted green line shows the parameter range covered in Fig. 3.45
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parts on both sides of the feedback phase by Hopf bifurcations. Note, that the position
of the saddle-node bifurcations in parameter space does not change under a varia-
tion of the effective charge-carrier scattering rates [155]. Nevertheless, the different
amplitude-phase coupling in the deep-dot structure leads to a shift of the saddle-node
lines compared to the shallow-dot. The closeness of the saddle-node and Hopf bifur-
cations at the edges of the dynamic region, however, makes a numeric identification
of the bifurcation lines difficult, and would require additional investigations. While
possible [155], the path continuation of bifurcations in delay-differential equation
systems is much more complex, and will thus not be part of this work.

Nevertheless, we can identify a qualitative difference in the way the ECMs are
organized due to the changes in bifurcation structure. The two ECMs are now con-
nected by a periodic orbit born in the Hopf bifurcations, leading to a bridge of
periodic dynamics between the steady-state ECM solutions [164]. This is illustrated
in Fig.3.45.
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Comparison with a-Factor-Based Models

We now proceed in terms of a comparison of the quantum-dot laser dynamics under
optical feedback with the conventional approach of using an a-factor for describing
the amplitude-phase coupling, analogous to the case under optical injection in the
previous sections. We thus rewrite the electric field equation in terms of an ag:

d~ . = —iCT
GE0 = (Re g(1) — ) (1 — i) E(¢) + Kpre CE(t — 7). (3.112)

The value of oy, is evaluated from the laser response to an infinitesimal feedback rate.

_aImgs/(?be _ _Img“|Kﬂ)=AK — ImgS|Kﬂ,=0
ORe g* / 0Ky, Re ¢*|kp=ak — Re glky=0

1= (3.113)

As in the case of optical injection, we again evaluate the adiabatic change of the
steady-state value of the complex gain, ¢°, under a change of the perturbation para-
meter. Comparing Eqgs. (3.113) and (3.86) it becomes clear that in fact ai,; = ap
holds, as long as the laser reaches a steady-state. This can be understood intuitively
by the origin of the perturbation that induces the gain and frequency-shift variations.
In both cases an increased optical field leads to a higher stimulated recombination
rate that, in turn, induces a variation of the carrier distribution, which then changes
the complex optical gain g°. We can thus use the values obtained for oy in the
simulations of the optical injection in the optical feedback simulations.

For the shallow-dot laser at twice the threshold current the bifurcation dia-
grams under optical feedback are shown in Fig. 3.46 for the full modeling approach,
Eq.(3.109), and using an a-factor, Eq. (3.112). The comparison between the two
diagrams reveals a similar location of the saddle-node bifurcation lines of the first

- shallow-dot T=100ps 9 shallow-dot T=100ps
T T T T T T
J=2Jy, full model J=2Jy, a, =1.19

feedback phase C
feedback phase C

0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
feedback strength K, feedback strength K,

Fig. 3.46 Comparison of a the full model, Eq.(3.109), and b the a-factor approach, Eq. (3.112) of
the shallow-dot laser dynamics under optical feedback. J = 2Jy,, cf. Fig.3.43
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ECM between the two approaches. When describing the amplitude-phase coupling
with ag,, however, the extent of the periodic regions in parameter space is greatly
exaggerated. The Hopf bifurcation on the lower boundary of the oscillatory region is
shifted towards lower values of the feedback phase C, resulting in a broader region
of stable periodic oscillations. Furthermore, the regions of complex dynamics near
its upper boundary is enlarged as well.

This behavior is similar to what we had observed in the case of optical injection.
The saddle-node lines, which are bifurcations involving exclusively fixed points, are
well described in both approaches. As soon as dynamic solutions play a role, e.g.,
Hopf or period doubling bifurcations, the c-factor approach becomes inaccurate. In
the optical feedback setup this leads to a prediction of lower stability towards optical
feedback, due to larger areas of periodic and irregular dynamics.

The bifurcation diagrams for the deep-dot laser show the same trend, as depicted
in Fig.3.47. The a-factor approach again predicts a larger area of complex dynamics
than the full model. Due to the smaller periodic region in the deep quantum-dot laser
this effect is less pronounced than previously, but nevertheless a clear destabilization
of the laser dynamics can be observed.

The results presented here lead to an important conclusion about quantum-dot
laser stability. The strong damping of the relaxation oscillations in quantum-dot
lasers does explain their higher stability to optical perturbations only in part. The
dynamics of the amplitude-phase coupling also lead to a higher dynamical stability
by reducing the extent of complex dynamics in parameter space. This again shows
that the a-factor should not be used when an accurate prediction of the quantum-dot
laser dynamics is required.

(a) deep-dot T=100ps (b) deep-dot 7=100ps
2m 2

full model ag, =0.56

feedback phase C
3
feedback phase C
3

!

0 . 0 . .
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
feedback strength K, feedback strength K,

Fig. 3.47 Comparison of a the full model, Eq.(3.109) and b the a-factor approach, Eq. (3.112) of
the deep-dot laser dynamics under optical feedback. J = 2Jy, cf. Fig.3.43



3.9 Small-Signal Frequency Response of Quantum-Dot Lasers 131

3.9 Small-Signal Frequency Response
of Quantum-Dot Lasers

In the previous sections we have shown that the amplitude-phase coupling in
quantum-dot lasers can be quite different than in conventional quantum-well or
bulk laser diodes. The modeling of the dynamical response to optical perturbations
therefore requires an approach that goes beyond a simple a-factor to describe the
carrier-induced index changes and thus the frequency modulation. The frequency
modulation also plays an important role in modulated lasers. For example under
direct pump current modulation, the variation of the pump current will not only
induce a gain change and thus an amplitude modulation, but also a change in the
optical frequency. This induces a so-called frequency chirp, which leads to side-
bands in the optical spectrum. A low frequency chirp is thus generally preferred in
amplitude-modulated signals.®

3.9.1 Evaluation of the Frequency and Amplitude
Modulation Indices

In the following we will apply the simplified quantum-dot laser model for the shallow-
dots derived in Sect. 3.7.1. Under small-signal modulation of the laser device with a
modulation frequency f, we can assume a harmonic response of the complex optical
gain g(¢) around its steady-state value g*. We can thus write

g(t) = g° + Ag' cos2nft + ¢') +iAg" cosQnft + ¢"), (3.114)

where Ag’, Ag” are the corresponding modulation amplitudes of the real and imag-
inary parts of the gain. We allow a phase shift in each of the individual parts of the
response, given by ¢/, ¢”. Inserting this into the electric field equation yields

%E(r) = [Ag cos@ft + ¢') + iAg" cosmft + ¢)] E@®), (3.115)

where we have exploited the gain clamping condition, i.e., g° exactly balances out

the optical losses in the steady-state.
The instantaneous frequency of the electric field is given by Im %, which
allows us to identify the frequency chirp, i.e., the modulation amplitude of the instan-

taneous frequency, as

Aw = Ag’, (3.116)

8Parts of this section have been published in [8].
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and the so-called frequency modulation index, (3, defined as

A A /"
g=Y 29 3.117)
2nf  2nf
The amplitude modulation can be calculated from the real part of the gain modulation.
The electric field amplitude can thus be calculated from

%|E(;)| = Ag cos2nft + ¢ E®)], (3.118)

which can be readily solved:

|E(1)] = E® exp [f—gf cos(2nft + ¢’)} , (3.119)

T
with the steady-state amplitude E°. Under small-signal modulation we can assume
the gain modulation to be small, i.e., exp(e) & 14¢ (fore <« 1). The above equation
can then be used to calculate the so-called amplitude modulation index m, defined as

_ AP maxP() —minP(t) Ag

== = 5 - (3.120)

m:

The ratio of the frequency and amplitude modulation indices, 23/m, then yields an
experimentally accessible way of determining the relative gain modulation [165]:

2ﬂ _ Ag//

= . 3.121
Ay (3.121)

Such FM/AM measurements are an established procedure to determine the amplitude-
phase coupling of semiconductor laser devices. This becomes immediately clear if
we express the complex gain by an a-factor. Then, the simple relation

Ag' = —aAg (3.122)

holds, and we immediately see that

25

a. (3.123)

3.9.2 Numerical Evaluation of FM/AM Measurements

We will now employ the FM/AM technique to determine the frequency-resolved
amplitude-phase coupling in quantum-dot lasers. As we have seen in Eq. (3.123), if
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the amplitude-phase coupling could be described by an a-factor, we would expect a
flat dependence of 2/3/m on the modulation frequency.

In the following, we will consider two different modulation techniques. The most
simple is the direct modulation of the pump current, i.e., we set

J(@t) = J° + AJ cos 2nft, (3.124)

with the small pump-current modulation amplitude AJ. Additionally, we also con-
sider a modulation of the cavity field, realized by a small harmonic source term in
the electric field:

%E(z) = (9(t) — K)E(®) + AE cos 2rft, (3.125)

with the modulation amplitude AE. Following the argumentation leading to
Eq.(3.123), we denote the FM/AM ratio in the two cases as oy (f) and ag(f) for
the pump current and electric field modulation, respectively.

Figure 3.48a shows the small-signal response of the quantum-dot laser under the
different types of modulation. The small-signal transfer function shows the damped
peak and subsequent decay that we had already seen in Sect.3.4. The correspond-
ing frequency response, shown in Fig.3.48b, reveals a very high value of a; for
small modulation frequencies, that decreases towards a plateau around f = 10 GHz.
This high value at low modulation frequencies is also known from conventional laser
devices, and attributed to gain compression effects [14]. This can be understood intu-
itively by the gain-clamping condition. The slower the modulation the closer the laser
can follow this parameter change. In the limit of f — 0 the laser would adiabatically
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Fig. 3.48 Small-signal modulation response of the quantum-dot laser under current and electric
field modulation. a Small-signal transfer function H (f) (cf. Eq.3.48) for pump current J and elec-
tric field £ modulation. b FM/AM response ax (f), for X € {J, E} for current and electric field
modulation, respectively. Also shown are min(cy) = 1.91 (dashed) and max(ag) = 1.42 (dotted),
respectively
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follow the modulation and always assume a state where the gain-clamping condition
is fulfilled, i.e., g(¢#) = ¢*, such that the real part of the gain modulation Ag’ would
vanish. Unless Ag” = 0, the FM/AM ratio will thus tend to infinity for f — 0. In
order to extract a value for the a-factor from the FM/AM measurement, one there-
fore evaluates the value of 23/m for high enough modulation frequency, where the
dependence of ay (f) on f is nearly flat, i.e., its minimum value. In our case this yields
min(ay) = 1.91, denoted by the dotted line in Fig.3.48b.

In contrast to conventional lasers, where the FM/AM response remains flat for
high enough modulation frequency, we can observe a rise of «; for high frequencies
around f 2> 20 GHz. This rise has been attributed to the charge-carrier scattering
processes [82], which influence the modulation response, when f comes close to the
involved scattering rates [44]. Then, the finite scattering rate restricts the transfer of
the charge-carrier modulation to the ground-state occupation, reducing Ag’ and thus
increasing the relative frequency chirp. For conventional lasers, this effect would be
visible only for frequencies close to the intra-band relaxation rates, which are much
faster than the charge-carrier scattering rates in quantum-dot lasers. This signature
of the scattering processes in the frequency response of quantum-dot lasers has been
experimentally observed [166]. In [82] it has been proposed to use the minimal value
of ag(f) as the “result” of the FM/AM measurements, ocpnm/am, Which is a reasonable
choice for directly modulated quantum-dot lasers.

‘We now also take a look on the modulation behavior under electric-field variation.
The source term in Eq.(3.125) induces a modulation of the electric field that is
transferred to the charge-carriers by a modulated stimulated recombination rate. The
resulting amplitude modulation exhibits a strongly pronounced resonance peak at
around 2.5 GHz. The corresponding FM/AM response shows a much different picture
than under current modulation. For small modulation frequencies, the response ag (f)
is flat. With increasing f 2 2 GHz, it then starts to quickly decrease. The plateau at
low frequencies lies at ag = 1.42, which corresponds exactly to the value of «;,; and
as, which we had evaluated in the optical injection and feedback setups. There, we
also characterized the adiabatic response of the quantum-dot laser to a perturbation
of the electric field, such that indeed cjpj = af, = ag(f = 0) holds.

The decrease at higher modulation frequencies can again be understood by the
charge-carrier scattering processes. Here, however, the transfer of the modulation
of the ground-state occupation to the off-resonant states becomes less effective for
higher frequencies, such that the refractive-index variation becomes smaller. This
results in the decrease of ap that we can observe in Fig.3.48b. With this we can
also understand the different dynamics predicted by our full modeling approach
and when using a constant a-factor to describe the amplitude-phase coupling. In
Fig.3.32 we had seen that the amplitude-phase coupling is reduced when the laser
operates on oscillatory solutions. This is reproduced in the FM/AM response, where
for oscillatory solutions, i.e., f > 0, ag is indeed smaller than in the limit f — 0.

Another important result that we can extract from the FM/AM response is the
sensitivity of the amplitude-phase coupling to the explicit measurement used for
its evaluation. There is experimental evidence that in quantum-dot lasers different
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Fig. 3.49 Small-signal modulation response of the quantum-dot laser under current and electric
field modulation for scattering rates reduced by a factor 50, cf. Fig. 3.48. The solid curves show the
response of the laser with reference reservoir losses (B = 540nm? ns~ 1), the dorted curves those
with lower losses (BS = 54nm?ns™!)

measurement techniques will yield different values for the linewidth-enhancement
factor [167], whereas in quantum-well lasers many different techniques will yield
comparable results [168].

3.9.3 Influence of Scattering Rates and Reservoir Losses

We now take another look on the frequency-response of the quantum-dot laser device
in dependence on the scattering rates and charge-carrier reservoir losses. In Sect. 3.7.3
we had seen that the dynamics of the optically injected quantum-dot laser depends
crucially on these charge-carrier lifetimes. We will therefore simulate the response
of the quantum-dot laser to pump-current and electric-field modulation with reduced
scattering rates. The resulting response curves are shown in Fig. 3.49.

The decrease of the scattering rates moves the quantum-dot laser into the syn-
chronized-reservoir regime, slightly below the overdamped regime. As we had seen
earlier, the modulation bandwidth suffers in this regime, as evident from the strong
decay of the small-signal modulation transfer function in Fig.3.49. The frequency
chirp under pump current modulation is greatly enhanced, reaching a minimal value
of min(ay) = 4.0, and a subsequent strong increase for f 2 3 GHz.

The response to the electric field modulation stays comparable to the earlier case
(Fig.3.48). However, the value of ag at low modulation frequency is reduced to 0.29.
The reduction of « is due to the reduced modulation of the off-resonant states when
we modulate the resonant charge-carriers directly via the electric field. Since a low
value of the amplitude-phase coupling leads to a reduction of the dynamical com-
plexity under optical perturbations [114, 155], we can thus expect a slow scattering
rate to increase the resistance to unwanted instabilities in quantum-dot lasers.
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When additionally decreasing the reservoir losses, the unique quantum-dot fea-
tures in the modulation response curve become even more pronounced. This is shown
by the dotted lines in Fig.3.49. The resulting high carrier lifetime in the reservoir
worsens the modulation response curve for pump current modulation. The frequency
response towards optical perturbations is also increased, with ag(f = 0) = 0.77.
The chosen very low scattering rates and reservoir losses are extreme values that
will probably not be found in realistic devices. So far, however, we can predict that
a reduction of the carrier-losses, while improving the device efficiency, can be detri-
mental to the dynamic device performance.

To obtain a complete picture of the dependence of the frequency response on
the scattering rates, we now perform simulations for varying values of the effective
scattering rate Seff 'We thus evaluate ap(f = 0), which we have seen to represent
the adiabatic laser response under optical perturbations very well. We also calculate
apM/am = min(cy), which should approximate the frequency response under pump
current modulation in an interval of relevant modulation frequencies.

The resulting FM/AM response curves are shown in Fig.3.50. When decreas-
ing the scattering rates from the microscopically calculated values (denoted by the
vertical dashed line), the separation between the frequency response towards pump
current and optical modulation becomes larger, as we have observed in Fig. 3.49. The
value of o in the constant-reservoir regime is thus reduced to values well below
1, while the frequency response under pump-current modulation shows a steady
increase towards lower scattering rates. The figure shows that only in the limit of
instantaneous scattering, ST — oo, the two measures converge. The frequency
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Fig. 3.50 Dependence of the frequency-modulation response on the effective scattering rate S
Shown are the minimum of «a; (f) under pump current modulation (top curves) and ag(f = 0) for
a static variation of the electric field (bottom curves). The resulting values are shown for reference
reservoir losses (BS = 540nm? ns™!, solid lines) as well as for reduced losses (BS = 54nm?ns~!,
dotted lines). The pump current was set to twice the respective threshold current at each data point.
The shaded gray area denotes the overdamped laser regime, the microscopic rates are denoted by

the vertical dashed line
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response towards different types of perturbation can therefore be expected to differ
in quantum-dot lasers.

A reduction of the reservoir losses can be seen to improve the agreement between
ap and «y. As discussed before, this counteracts the decrease of the amplitude-
phase coupling under optical perturbations for low scattering rates, and this might
increase the sensitivity towards optical instabilities of the quantum-dot laser. On the
other hand, for directly modulated quantum-dot lasers the reduction in a;; would be
beneficial.

3.10 Conclusion

In this chapter we have investigated the dynamics of quantum-dot lasers under
external perturbations and highlighted the unique features brought about by the
charge-carrier scattering dynamics. We have discussed the relaxation oscillations
in quantum-dot lasers as an indicator of the laser stability and its internal time scales.
Depending on the effective charge-carrier scattering rate, we have identified three
dynamic regimes of laser operation:

(i) For slow charge-carrier scattering, the reservoir states provide a nearly constant
carrier-influx into the quantum-dots, leading to pronounced relaxation oscilla-
tions. We thus call this regime the “constant-reservoir regime”.

(ii) Forintermediate scattering rates in the order of the relaxation oscillation angular
frequency, the relaxation oscillation damping is strongly increased, leading to
overdamped oscillations. This regime is thus called the “overdamped regime”.

(ii1) For fast scattering rates, the coupling between quantum-dot and reservoir states
is strong enough to influence the reservoir carrier density. In this “synchronized
regime”, the reservoir carriers thus contribute to the light-matter interaction,
leading to the reappearance of pronounced relaxation oscillations.

We have subsequently proposed a minimal three-variable rate-equation model in
order to explain this behavior. We have found the detailed balance of in and out-
scattering rates to be a necessary condition for describing the transition between
the three dynamic regimes as described above. Analytic expressions for the relax-
ation oscillation damping and frequency have been derived in the limit of very slow
and very fast scattering rates, i.e., for the “constant-reservoir” and “synchronized”
regimes.

The small-signal modulation response of the quantum-dot laser has been analyzed
in dependence on the scattering rates. A general trend towards higher modulation
bandwidths with increasing scattering rates has been found, albeit with a nonlinear
dependence of the bandwidth on the scattering rate. The conventional analytic for-
mula used to calculate the intrinsic modulation bandwidth of the laser by evaluating
its relaxation oscillation parameters was found to yield inaccurate results in quantum-
dot lasers. It greatly exaggerates the expected bandwidth in the constant-reservoir
regime while slightly underestimating the bandwidth in the synchronized regime.
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We investigated the amplitude-phase coupling in quantum-dot lasers. The com-
plex charge-carrier dynamics lead to a response of the carrier-induced refractive-
index shift that goes beyond the traditional description by an a-factor. We have thus
simulated the quantum-dot laser dynamics under optical injection and time-delayed
optical feedback, and compared the results with the predicted dynamics when using
an a-factor to describe the amplitude-phase coupling. In both cases we have found
that the bifurcations of fixed-point solutions are well described by the a-factor.
Bifurcations of periodic and dynamic solutions, on the other hand, show appreciable
differences between the two approaches. The a-factor approach was found to be
unable to correctly describe the dynamics of the quantum-dot laser in this scenarios,
due to the desynchronized dynamics of the real and imaginary part of the optical
susceptibility.

Subsequently, we have simplified our full quantum-dot laser model to a much less
complex 10-variable rate equation system, that still retains all important features of
the quantum-dot laser dynamics. We have shown this model to be suitable for imple-
mentation in numeric path-continuation programs, thus opening up the possibility to
study the detailed bifurcation structure of quantum-dot lasers in various applications.
We have applied the numeric path-continuation to the optical injection setup, again
revealing differences in the full description of the carrier-induced susceptibility and
the simple a-factor approach. Especially in the constant-reservoir regime, i.e., for
slow scattering, as well as for low non-radiative carrier losses, the differences become
pronounced, and here the a-factor clearly cannot be used.

In order to explain these observed differences we have investigated the frequency
response of the quantum-dot laser subject to modulations of the pump current and
the electric field. We have thus simulated FM/AM measurements to determine the
frequency-dependence of the amplitude-phase coupling in quantum-dot lasers. Under
pump current modulation a high value of the amplitude-phase coupling was found for
low modulation frequencies with a plateau at higher frequency, comparable to results
for conventional lasers. Unique to quantum-dot lasers is an additional increase for
even higher modulation frequencies. We have found this increase to be related to the
charge-carrier scattering, making it more pronounced with slower scattering. Under
modulation of the electric field, a very different frequency response was found, with
a plateau for low modulation frequencies, and a subsequent steep decrease. This
phenomenon explains the observed differences in the laser response to optical injec-
tion and feedback. Due to the finite scattering time, the amplitude-phase coupling
is much lower for a fast modulation of the electric field. The difference between
the frequency responses to either pump current or optical modulations was found to
be even more pronounced for slower scattering. This explains experimental results
which found different values of the amplitude-phase coupling, i.e., the a-factor, for
different measurement techniques.

Our results thus show that in order to correctly model and describe the quantum-
dot laser dynamics, an accurate description of the complex charge-carrier dynamics
is required. We have developed three quantum-dot laser models on different levels
of sophistication which fulfill this requirement.
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Chapter 4
Quantum-Dot Optical Amplifiers

4.1 Introduction

Semiconductor optical amplifiers (SOAs) are optoelectronic devices commonly
used in optical data communication networks and signal processing. Semiconductor
amplifiers are structurally similar to laser devices, with the difference lying in the
absence of an optical cavity. To this end, the waveguide facets of optical amplifiers
are commonly treated with an anti-reflection coating in order to increase the optical
transmission through the facets and minimize losses. The optical amplifier devices
we consider in this work are therefore single-pass devices, where the optical sig-
nal coupled into one side of the waveguide structure is ideally passing exactly once
across the device and is out-coupled without losses at the back facet. This, how-
ever, means that optical amplifiers generally have to be longer than laser devices, in
order to provide a long enough interaction time between optical signal and the active
medium.

Optical amplifiers are used in optical networks in order to raise the signal power
level, e.g., to compensate the inevitable optical losses in long glass-fiber connec-
tions. Here, a linear amplification with a low noise figure is required, to ensure low
distortion of the input signal [1-3]. On the other hand, nonlinear optical applications,
such as four-wave-mixing [4—7] and cross-gain modulation [8—10] for wavelength
conversion, as well as regenerative amplification, require a nonlinear response of
the optical amplifier. In the nonlinear amplification regime the amplifier response is
input-power dependent and will thus lead to signal distortions, which can be utilized,
e.g., for pulse shaping [11-13].

Quantum-dot semiconductor optical amplifiers (QDSOAs) show great potential
for the use in these applications. They have generally a higher gain bandwidth
than conventional devices based on semiconductor quantum-wells due to the inho-
mogeneous broadening of the localized quantum-dot states, allowing for a broad-
band amplification. Additionally, due to the coupling to a charge-carrier reservoir
by charge-carrier scattering rates in the picosecond range, ultrafast gain recovery
[14-19] and nonlinear signal processing is possible [7, 10, 20].
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Furthermore, the comparably slow dephasing time of the microscopic inter-band
polarization in the localized quantum-dot states [21-23] allows the possibility to
directly observe quantum-mechanical effects, such as Rabi-oscillations [24-28] or
self-induced transparency [11, 29]. This could potentially open up new applications
in the signal processing of ultra-short, ultra-strong optical pulses.

In this chapter, we will at first derive a delay-differential equation model for the
description of the electric field propagation through a quantum-dot semiconductor
optical amplifier device, presented in Sect. 4.2.1. The charge-carrier dynamics will
be described in the framework of microscopically calculated scattering rates that we
have already successfully employed in the previous chapter. We will then derive a
description of the amplified spontaneous emission in the amplifier, and proceed by
comparing our theoretical results with experimental measurements of pump-current
dependent amplified-spontaneous-emission spectra.

Then, in Sect. 4.3, we will investigate the possibility of large-signal amplification
of optical data signals on optical frequencies corresponding to either the quantum-dot
ground-state or excited-state. Subsequently, we will look at the amplifier performance
under simultaneous amplification of two optical signals in Sect. 4.4.

Lastly, Sect. 4.5 presents simulation results on coherent pulse-shaping induced
by the amplification of ultra-short optical pulses. We will compare the results with
experimental measurements, demonstrating the possibility to induce and measure
coherent effects in quantum-dot semiconductor optical amplifiers even at room tem-
perature.

In the last Sect. 4.6, a conclusion of the results presented in this chapter will be
given.

4.2 Quantum-Dot Semiconductor Optical Amplifier Model

A model of the quantum-dot semiconductor amplifier must accurately describe the
light-matter interaction during the propagation of the optical signal along the device.
In contrast to the quantum-dot laser model we had derived in the previous chapter,
we can not work with a spatially averaged electric field due to the absence of standing
waves. Instead, we must explicitly take the electric field propagation into account,
and thus require a spatially resolved description of our dynamical variables.

In the past, models without spatial resolution have been employed for the descrip-
tion of semiconductor amplifiers [8, 30-32]. As soon as strong spatial inhomo-
geneities arise, such models are, however, bound to fail. We will therefore in the
following derive amplifier model equations which include the electric field propaga-
tion along the waveguide axis.
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4.2.1 Electric Field Propagation

We will now derive the equations governing the propagation of the electric field along
the amplifier device. We denote the propagation axis as z, as sketched in Fig. 4.1.
The real electric field amplitude is then written as

1 . o
£ =3 [ET(z, )™ + E™(z, )e ] e +c.c., 4.1)

where we have introduced the slowly varying field amplitudes E*, describing the
forward (+) and backward (—) propagating electric field. The wave number is given
by k, and w is the optical frequency of the reference frame. From Maxwell’s equations
we can derive the propagation equations for the electric field amplitudes within the
slowly varying envelope approximation:

iwl

(0 £v40.)Ex(z, 1) = > Pi(z,1) =: 8+(z, 1), 4.2)

Ebg€o

with the group velocity v, = nLTOg and the macroscopic slowly varying polarization
amplitude Py(z,?). We summarize the right hand side in a general source term
Si(z,1).

The numerical solution of the above partial differential equation requires a spatial
discretization into very fine sections of length hv,, where & is the numerical time-
step, in order to ensure numerical stability [33]. For a device length in the order of
mm, this results in a high number of spatial discretization points and thus presents an
inefficient way of modeling the electric field propagation [34, 35]. A more elegant
approach is the formulation of the problem as a delay-differential equation system
[36, 37], which we will do in the following.
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4.2.1.1 Delay-Differential-Equation Model

The partial differential equation (4.2) can be transformed into a co-moving frame,
by defining a new time variable

f=r 4 4.3)
Vg

By expanding the total derlvatlve -, we can thus write

iE( th = ﬂ:iﬁ—i- 9 E.( t/)—:f:iS( th “4.4)
dz o= , 0t 0z o= vgiz’ ' ’

Now we describe the optical amplifier by a number of Z sections along the prop-
agation axis, such that the distance between two discretization points is given by
Az := £/ Z. Integrating Eq. (4.4) over the length of Az thus yields:

1o 7
Ei(z,t)=Ei(quAz,t—At)+—/ S. (z¢z’,t——)dz’
Vg Jo Vg

At
~ Es(zF Azt — AL + 7[Si(z, N+ SizTF Azt — At)] 4.5)

Here we have introduced At := Az . The integral over the source term was approxi-
mated by its values at the end p01nts of the integration interval. This approximation
is valid for negligible change of S along the integration path, i.e., for a sufficiently
small space discretization step. The electric field at time # now depends on the values
of E4, S1 at time ¢ — At, which introduces a time-delay into the equations.

The electric field in each of the spatial sections along the amplifier device thus
couples to the time-delayed electric field in the neighboring sections, with the time
At describing the time needed for the electric field propagation along the length of
one section [36, 37]. The resulting discretization scheme is illustrated in Fig. 4.2.

4.2.2 Quantum-Dot Material Equations

The material dynamics within each amplifier section are described within the
Maxwell-Bloch approach, as derived in Sect. 2.3. We extend these equations by
taking into account the microscopic polarization p,’ni corresponding to the forward
and backward propagating parts of the electric field. Within the slowly varying enve-
lope approximation, we can take these into account separately by neglecting the fast
oscillating terms oc e*2“ and ox e*%**, The material equations then read
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At At
A A/\ A/\ A/\ A/_\ AT N
E_(0) E_(2—Az) (2) 2+ Az) E_(0)
S4(0) e Si(z—Az)] Si(2) Si(z+Az) e S+(¢)
E.(0) E, (z2—Az) E, (2) B (2+Az) E. (0)
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0 z— Az z z+ Az l

Fig. 4.2 Space discretization scheme of the QDSOA device with length £ used in the DDE
model. The forward and backward propagating electric field, E, is described at points n - Az,
n €{0,...,Z} with Az = £/Z. The corresponding material quantities and source terms Si, are
treated as constant within each of the Z sections given by the intervals z € [n Az — T nAz + ]
which are centered around the discretization points of the electric field. Cf. [12, 37-39]

d j . L]
_pm,i(Lt) = l(wrjn_w)+_ pm,i(zst)

dt T,
_jbm (p )+ pl (2o t) — 1) Ei(z.1), (4.6a)
Zﬁ e,m h,m
d 1 * 1 J * ok
() == 2Im [ ph G0, B0 = 2im [p G0 B2 G |
. , 9 .
= Wbl G 0P} a1+ 50 1) (4.6b)

Here, we again denote the localized quantum-dot states by m € {GS, ES} and their
subgroup index by j. The macroscopic slowly varying polarization amplitude is
calculated from the microscopic contributions:

2NQP , .
Pe(e,t) = Z o2 2 v F (D P 31 7

J.m

The reservoir charge-carrier density follows the dynamic equation

d J cay
@@ 0 = =@ NP v f(DSI @, (48)

j m

with the scattering contributions between the reservoir and quantum-dot states given
by Eq. (2.66). The above equations are defined for each space discretization point
along the amplifier device, allowing for a spatially inhomogeneous distribution of
the charge-carrier distribution, as encountered in long amplifier devices [40, 41].
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4.2.3 Modeling of Spontaneous Emission

In comparably long amplifier devices the radiation spontaneously emitted along the
propagation axis will be subject to stimulated amplification. This amplified stimu-
lated emission (ASE) is important for the device characteristics and performance,
as it can become strong enough to influence the charge-carrier dynamics [42—44].
Furthermore, it will create an—in most cases unwanted—noise background that will
deteriorate the signal quality of the optical input signal.

The correct description of the amplified spontaneous emission is therefore impor-
tant. In general there exist two appropriate modeling approaches: the deterministic
description of the ASE power spectral density in frequency space [8, 45] and the
stochastic description in time-domain [35, 43]. Here, we will employ the stochastic
description, which simplifies the inclusion of time-varying input signals.

We therefore phenomenologically add an additional source term on the right-
hand side of Eq. (4.4), modeling the stochastic spontaneous emission added to the
propagating electric field:

d 1 )
CEs(z ) = —[Se@ ) + 5P ) 4.9)
dz Vg

The electric field propagation along one space-discretization section is again deter-
mined by integration of Eq. (4.9) over the interval Az:

At
Ei(i, )~ Ex(z F Azt — A1) + 7[Si(z, 0+ Se(zF Az — At)]

1 Az - , Z/ ,
+ — SPlzxz,t— =) de. (4.10)
Ug 0 Ug

The spontaneous emission source term must account for all optical transitions in the
inhomogeneously broadened QD ensemble. Let 7;,(z, t) describe the spontaneous
emission contribution of the jth subgroup of the mth localized state. We write for
the electric field spontaneously added to the propagating field along Az:

1 Az . Z’ )
= S (ZZFZ/,Z— —) dz’ = Zn,il(z,t). 4.11)
0

Vg Vg mj

The spontaneous emission of an optical transition has a finite linewidth given by its
homogeneous broadening. In order to correctly implement the spectral properties of
the amplified spontaneous emission, the spontaneously emitted field 7y, (z, t) must
therefore have the correct lineshape and center frequency. It is thus not possible to
describe the spontaneous emission by white noise, which would produce a flat noise

spectrum, but must be rather modeled using colored noise. We implement this colored
noise by two-dimensional Ornstein-Uhlenbeck processes. The time evolution of each
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of the respective noise signals is thus given by the following stochastic differential
equation:

d . ) ; ~.
577;]71(1’ t) = —’777an(Z, t) + Dgp,m(Zs t) g;{n(Z, t)v (412)

where 5 (z, 1) is a complex Gaussian white noise process, which is d-correlated both
in z and ¢. The correlation time of 7, is given by 4~ !. The noise signal then fulfills
the following properties [46]:

(Ren) (z, 1)) = (Imnl,(z,1)) =0 (4.13)
Jj

(e ) = D2l (4.14)
J

1l 0 (4 T) A —Dsp’"fy(z’ D -l “.15)

Equation (4.15) is valid only under the assumption of a slowly varying noise ampli-
tude 0;Dg,(z,¢) < 7, such that within one correlation time ~~! the sponta-
neous emission amplitude can be assumed as constant. Using the Wiener-Khinchin-
theorem, this relation can be used to calculate the power spectrum S% (z,w) of

(2, 1):

1 [ . .

S,z w) = g/ (nl(z, Oml, (2, t +71))e"7dr (4.16)
DL 1

_ Don(@) 4.17)

T w2+’}/2’

which yields a Lorentzian line shape with a width (FWHM) of 2. We thus identify
v = (T»)~', such that the noise linewidth equals the homogeneous linewidth of the
QD transitions.

Using the noise correlation properties, the average power that is added to the
electric field by the noise can be calculated. Combining Eqgs. (4.10) and (4.11) and
summarizing the deterministic source terms in a combined variable, §jttim, yields for
the electric field:

Ei(z,1) = Ex(z F Az, — A1) + 53 (z, 1) + zrl,f,;(z, 1) (4.18)

m,j

(st r)]2> = |Eac F Azt — A+ 53, t))z +> (| z)f}
m,j

~ . 2 .
- ‘Ei(Z:FAZ,t— AtHsfm(ZJ)} +> DI, @0, 419
m.j
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where we have used the zero mean property, (77,’,}) = 0. On average, the spontaneous
emission thus increases the squared modulus of the electric field along one space
discretization step during the propagation time At by >, i D, m(z, ). Or, written
in terms of a time derivative:

T, ,
= > DL, G.1). (4.20)

m,j

8|E (D
31‘ +\Z,

sp

In the photon picture, the average change of the electric field energy density due to
the spontaneous emission can be calculated:

0 €bg€0 0 2
— , 1 = —|E , 1
@ n| =g B 0P|
2N o , .
== 2 v F (DA, Wnel, @ Dol @0, (421

m,j

with the notation as introduced in Sect. 2.4. The individual noise strengths are thus
given by

~ At 26T hwi, 2 NP Ir ~

J m ; J J
Dipn(z.1) = o = v () (Rl (2.0 + Rz 7 Az, 1 = An)].
(4.22)

where the average of the spontaneous emission rate at the endpoints of the integration
interval [z, z F Az] was taken, defined by

RL (. 1) = Wyol (.00}, 2. 1). (4.23)

The spontaneous emission noise thus depends on the optical frequency and on the
occupation of the individual quantum-dot subgroups.

4.3 Large-Signal Amplification in Quantum-Dot Amplifiers

The device performance of semiconductor optical amplifiers is generally limited by
two competing effects. On the one hand, the maximum achievable optical output
power is limited by the charge-carriers available for stimulated emission. The gain
of the amplifier will therefore decrease when the optical power becomes too large.
This effect is known as gain saturation.’

On the other hand, a too small optical signal will significantly reduce the signal-to-
noise ratio, as the spontaneous emission background will dominate the output. Noise
effects thus play an important role in the amplification of optical data signals [47, 49].

IParts of this section have been published in [47, 48].
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Fig. 4.3 Comparison the simulated and measured ASE spectra. a shows the simulated ASE spectra
for currents between 50 mA (dark blue) and 1000 mA (dark red), increased in steps of 50 mA. The
vertical dashed gray lines denote the center wavelengths of the considered optical data signals at
A = 1305nm (GS) and A = 1215nm (ES). b Corresponding experimentally measured spectra,
courtesy of Holger Schmeckebier, TU Berlin

A strong noise background will negatively impact the signal quality by distorting the
corresponding optical output, and potentially corrupting the transmitted data stream.

In this section we will investigate the amplifier performance in terms of gain
and signal quality under large-signal amplification conditions. In order to accurately
model the spontaneous emission noise we will perform pump-current dependent
simulations of the amplified spontaneous emission spectra and compare them with
experimental results.> Then, we calculate the amplifier performance for different
large-signal input powers, with data signals centered on either the ground-state or
excited-state energies.

4.3.1 Calculation of Amplified Spontaneous Emission
Spectra

We will employ the previously derived delay-differential equation model to simu-
late the amplified spontaneous emission of real quantum-dot amplifier devices. The
modeled device is a 3 mm long dot-in-a-well structure, consisting of ten 5 nm thick
InGaAs quantum-wells, each embedding a density of 3 x 10'° cm~2 InAs quantum-
dots, with a shallow-etched, 4 wm wide ridge waveguide.

The pump-current dependent optical power spectra of the amplified spontaneous
emission have been measured, as shown in Fig. 4.3b. The experimental results reveal
a strong peak around A\ = 1300 nm, corresponding to the quantum-dot ground-state

2Experimental data courtesy of Holger Schmeckebier, Inst. f. Festkorperphysik, TU Berlin.
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emission. With increasing pump current j, the ground-state peak increases until it
saturates around j = 300 mA, after which it decreases again. Around A = 1200 nm a
second peak arises with increasing pump current, corresponding to the quantum-dot
excited state. This peak saturates around j = 800 mA, with a slight decrease at higher
pump currents. the whole spectrum exhibits a red-shift towards higher wavelengths
with increasing pump current.

We proceed by fitting the experimental spectral data with the results from our
simulations. The resulting model parameters are given in Table 4.1. Here, we have
treated the quantum-dot density N QP the reservoir loss rates AS, BS, the quantum-
dot dipole moments yt,,, their inhomogeneous broadening A Ef7, , and their dephasing
times 75", as well as the geometric confinement factor I" and the spontaneous emission
ratio [ as fitting parameters. In order to reproduce the measured spectra, we must
include a pump-current efficiency, n = 0.4, describing the ratio of injected charge-
carriers that reach the optically active region. This reduced efficiency models the
losses during carrier transport from the contacts and in the separate confinement

Table 4.1 Model parameters used in Sects. 4.3 and 4.4, unless stated otherwise

Symbol Value Meaning

NQD 3 x 1010cm—2 QD density per layer

ar, 10 Number of layers

hV 5nm QW layer height

Tbg 3.71 Background index

AES}S1 30 meV QD GS inhomogeneous broadening FWHM
AEEE] 55 meV QD ES inhomogeneous broadening FWHM
AS 0.7ns~! QW linear recombination rate

BS 50 nm? ns~! QW bimolecular recombination rate

Was 0.44ns™! GS spontaneous recombination rate

WEs 0.55ns ! ES spontaneous recombination rate

I} 3.5%x 1074 Spontaneous emission ratio

1GS 0.62nmey x (1 + ﬁ)*% QD GS transition dipole moment

UES 0.85nmeg x (1 + ﬁ)_% QD ES transition dipole moment

T2GS 200fs x (1 + mﬁ)_l QD GS polarization dephasing time

TES 300fs x (14 mﬁ)*l QD ES polarization dephasing time

r 0.045 Geometric confinement factor

AE.(AER) | 95meV (50 meV) Electron (hole) QD GS localization energy
A (Ap) 60 meV (25 meV) Electron (hole) QD GS-ES energy spacing
n 0.4 Pump current efficiency

V4 30 Number of space discretization steps
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heterostructure that are not explicitly included in the model. The relation between
the experimental pump current j and the effective pump current density that enters
in our model is given by

n .
J = 7, 4.24)
apAg

where A,y = 3mm X 4 um is the waveguide area.

In order to correctly describe the pump-current dependence of the amplified spon-
taneous emission spectra, we introduce a pump-current dependence of the gain, which
is modeled as a dependence of the transition dipole moments,

N AR
|t (D7 = e (4.25)
25A

with ¢ the corresponding dipole moments at j = 0. At the maximum current of j =
1000 mA that we will use here, the square of the dipole moment, and thus the gain, is
reduced to 71 % of its original value. This phenomenological change of the resulting
gain is used to explain effects that are not intrinsically included in the quantum-dot
amplifier model, e.g., the quantum-confined stark effect at higher bias voltages that
leads to a decrease of the dipole moment [50, 51]. Furthermore, the dephasing time
T, of the quantum-dot transitions is known to depend on charge-carrier density and
temperature [22, 23, 52-54]. We thus introduce a current-dependent dephasing time,

m,0
TZ

J
1+ 300 mA

' (j) = : (4.26)

where sz,o denotes the corresponding dephasing times at j = 0. We assume a longer
dephasing time for the quantum-dot excited state compared to the ground-state [55].

Across the pump-current range from 50 to 1000 mA a red-shift of the gain-
spectrum by about 30 nm can be observed. We attribute this shift to band-gap renor-
malization due to many-body interactions [56—60] as well as a Varshni-shift induced
by an increase of the active-medium lattice temperature. Experimental and theoret-
ical works predict a band-gap renormalization in the order of below 10 nm due to
many-body effects [61, 62]. In order to explain the observed red-shift of ~30nm,
we therefore need to additionally implement a pump-current dependent lattice tem-
perature

T,(j) = 295K + X Jj, 4.27)

14 mA
which leads to a red-shift of 0.4meV K~! of the band-gap energy [63, 64], and

reproduces the observed shift in the measured spectra. The resulting pump-current
dependent parameter fits are shown in Fig. 4.4.
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Fig.4.4 Fitted pump-current dependence of the model parameters used in Sects. 4.3 and 4.4. Shown
are the quantum-dot dephasing time (botfom curves) and dipole moment (center curves), both for
ground state (solid) and excited state (dashed), as well as the lattice temperature (fop curve) in
dependence of the pump current j

For the correct description of the reservoir losses we furthermore include linear
and bimolecular loss rates, AS and BS, in the dynamic equations of the reservoir
carriers:

e = A% Jwowy, + BSw,wy,. (4.28)

The dependence of the linear loss term on the geometric mean ,/w,w, is chosen
such that the same value of 1% can be used in both the electron and hole reservoir
equations, ensuring charge conservation. In the earlier discussion of quantum-dot
laser dynamics we had neglected the linear loss term, due to the comparably high
reservoir carrier densities above the laser threshold, for which the higher-order loss
term dominates. Here, on the other hand, we have a large variation in the pump
current, such that the linear loss rate AS becomes important to correctly reproduce
the carrier-dependent dynamics also for low currents.

Using these model parameters we now simulate the amplified spontaneous emis-
sion spectra at the pump currents corresponding to the experimental values. The
resulting spectra are shown in Fig. 4.3a. We can reproduce the pump-current depen-
dence of the amplified spontaneous emission very well both qualitatively and quan-
titatively. The experimental spectra reveal a shoulder around A = 1150 nm at higher
pump currents. We identify this as the reservoir band edge. Since we do not explicitly
take into account the spontaneous emission of the reservoir states, the simulations
cannot reproduce this part of the spectrum. In the following, we will however limit
ourselves to the amplification of signals centered at the quantum-dot ground and
excited state energies. We can therefore neglect the discrepancy between the spectra
at this wavelength.

Apart from the amplified spontaneous emission, we additionally calculate the
small-signal gain for different pump currents, as shown in Fig. 4.5. Here we choose
A = 1305 nm at the ground-state center frequency and A = 1215 nm for the excited
state. The simulated results match the experimentally obtained data excellently. The
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Fig. 4.5 Pump-current 40
dependence of the optical 30
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solid) and the excited-state 10
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circles, ES: squares),
courtesy of Holger
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corresponding gain curves match the qualitative behavior of the amplified sponta-
neous emission spectra, with a saturation and subsequent decrease of the gain.

We can conclude that our simulations quantitatively reproduce the experimental
results very well. In the next section, we will therefore employ the quantum-dot-
semiconductor-amplifier model with the obtained parameters to simulate the perfor-
mance under amplification of optical large-signal data streams.

4.3.2 Gain Saturation

Large-signal amplification refers to the use of optical signals that can be large enough
to influence the charge-carrier occupation along the amplifier device, and thus intro-
duce nonlinearities. The charge-carrier distribution in the quantum-dot amplifier can
then be substantially perturbed, leading to an input-power dependent response of
the device. In order to quantify this response, we simulate the amplifier under the
injection of a constant optical input signal. As we have seen in the previous section,
the quantum-dot amplifier is capable of amplifying optical signals on the ground-
state and excited-state energies. We will therefore investigate the device performance
under amplification of signals at either of the two corresponding wavelengths.
We thus model the electric field at the input facet as

E (0,1) = Alle™™", (4.29)

where the input amplitude is related to the optical power by

bg€0C€0
g
Pi;n = Abeam

|A]%, (4.30)
with the effective transversal mode area Ape,m. In Eq. (4.29) the frequency detuning
w™ (m € {GS, ES}) of the input signal relative to the carrier frequency is chosen to
yield A = 1305 nm for signals centered on the ground-state energy, and A = 1215 nm
for the excited-state. We can then evaluate the device gain in the steady-state by
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Fig. 4.6 Optical gain G of the quantum-dot amplifier in dependence of the optical input power P’
for different pump currents j. Shown is the response to optical signals centered on (a) the ground-
state, and (b) the excited-state frequency. The areas marked by the arrows denote the approximate
extents of the linear and nonlinear amplification regimes for j = 400 mA
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The power-dependent gain for both wavelengths is plotted in Fig. 4.6.

Figure 4.6a shows the ground-state gain in dependence on the optical input power
for different pump currents. The small-signal gain, i.e., at low input powers, shows
the behavior that we have seen before in Fig. 4.5, with an increase up to a pump
current of j = 400 mA and a subsequent decrease for higher j. The gain curves are
flat for low input powers (linear regime), but start decreasing once P;, becomes large
enough (nonlinear regime). This effect is known as gain saturation [2, 3, 45]. In order
to characterize the onset of the nonlinear regime, the saturation input power P is
defined as the input power at which the gain is reduced to half the small-signal gain.
Depending on the application, different demands on the amplifier device are made.
When a linear amplification of the input signal is required, the flat section of the
gain characteristics should extend towards as high input power as possible, leading
to a distortion-free amplification of arbitrarily strong optical signals [65]. On the
other hand, optical signals with powers in the nonlinear regime induce a nonlinear
response of the amplifier, which can be used, e.g., for wavelength conversion via
four-wave-mixing [4—7] or cross-gain-modulation [8, 9].

A general trend in the onset of the nonlinear regime towards higher optical power
can be observed with increasing pump current in the ground-state. This effect can be
explained by the increase of the in-scattering rates and the reservoir charge-carrier
density [2]. The faster and more efficient refilling of the quantum-dot states after
depletion by the optical signal shifts the saturation regime towards higher power.
The gain at the excited-state wavelength, shown in Fig. 4.6b, also shows the much
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Fig. 4.7 Pump-current dependence of (a) the saturation input power and (b) the saturation output
power of ground (solid) and excited state (dashed)

higher gain compared to the ground-state. However, the onset of the nonlinear regime
is located at much lower optical input power. This can be understood by the weaker
confinement of the quantum-dot excited states compared to the ground state. This
increases the sensitivity of the excited-state occupation to changes in the reservoir
charge-carrier density. Together with the strongly increasing gain at the excited-state
frequencies the saturation input power thus decreases with increasing pump current.

The pump-current dependence of the saturation input power is summarized in
Fig. 4.7. Panel (a) quantifies the general trend that we have observed in Fig. 4.6. The
ground-state saturation input power is minimal at j = 300 mA and then increases
steadily, while for the excited state the minimum is reached at j = 800 mA, and only
then starts to increase again. This behavior shows the correlation with the optical
gain, as a high gain will increase the internal optical power and thus decrease the
input power required to induce a nonlinear response. Looking at the saturation output
power P32, on the other hand, i.e., the output power for which the gain is reduced
to —3 dB relative to the small-signal gain, a steady increase with the pump current
at both wavelengths can be seen. This is depicted in Fig. 4.7b. An increase in pump
current therefore always increases the maximum output power for which near-linear
amplification is possible [2, 66, 67].

4.3.3 Amplification of Optical Data Streams

We will now investigate the performance of the quantum-dot semiconductor optical
amplifier under amplification of optical data signals. Optical data streams that are
encoded via pulse-amplitude-modulation (PAM) use the signal power level to repre-
sent the data. For example, a bit-stream (zeroes and ones) can be encoded in a simple
on-off scheme—*“ones” are encoded as high power, “zeroes” as low power—referred
to as on-off-keying (OOK) or PAM-2. In the following we will consider non-return-
to-zero (NRZ) OOK signals, as illustrated in Fig. 4.8. In the simulations, we will
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Fig. 4.8 Illustration of the non-return-to-zero pulse amplitude modulation scheme. The data stream
is encoded by the power level, with Pop/ofr corresponding to one and zero-bits, respectively

use optical data signals with a repetition rate of 40 Gbs~'. The input electric field is
rewritten as

E.(0,t)=|P" A (t — 1, e 432
10,0 = | Pn, Abmnbgsocoz bit (1 — In,y) (4.32)

where the index n,, runs over the one-bits and ¢, , is the arrival time of the no,th bit.
The pulse amplitude shape is modeled as

2¢c08(Z frepT)? || < 2
Abit(T) — ZfCP | I frlep , (433)

0 7] >

Jrep

with the bit repetition rate f.,. The above definition ensures that, for a data signal
consisting of only one-bits, a constant optical power level is used as input. For a
data signal with uniform distribution of zero and one-bits, the average optical input
power is given by Pj,. Here, we will employ bit-patterns with a random uniform
distribution of zeroes and ones.

The results of the simulations for the amplification of an exemplarily chosen
optical data stream in the quantum-dot semiconductor optical amplifier are presented
in Fig. 4.9. It shows the resulting optical eye-diagram of the output signal, i.e., a
histogram of the output power in time, created by overlaying the output of 240 bits.
The eye diagram clearly shows the distinct zero and one power levels, i.e., a clear

P | mW

Fig. 4.9 Sketch of the evaluation of the quality factor from optical eye diagrams. Shown is an
eye-diagram of the output optical data stream on the ground-state, for an optical input power of
Pyg = —20dBm at j = 400 mA. The quantities used in the evaluation of the Q-factor Eq. (4.34)
are the standard deviations of the on and off-power-level, A Py, and A Pyr, respectively, and the
eye-opening amplitude Pon, — Pogr
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opening of the “eyes”. Nevertheless, the power level of the one-bits, P, is rather
noisy. In order to quantify the signal quality of the amplified data stream, we define
the quality (or Q-) factor

Pon — Loff

Q._ APon‘i‘APoff’

(4.34)

with the variance A P of the corresponding on or off power level. The Q-factor thus
describes the possibility to distinguish between the zero and one-levels in the optical
data signal. For a low Q-factor the variance of the power would become larger, so a
misinterpretation of the amplified data stream becomes more probable. This increases
the bit-error-rate (BER), i.e., the ratio of wrongly decoded bits in the data stream.
For a Gaussian distribution of the variation of the power levels from their mean, the
bit-error-rate can be calculated from the Q-factor via [68]

2
BER = —g) . (4.35)

1
Vzmo " ( 2

We employ the above definitions and calculate the quality factor for different pump
currents in dependence on the average input power P,. The resulting curves are
shown in Fig. 4.10 for signals on the ground and excited-state energies, respectively.
The ground-state quality factor shows a clear maximum in the optical input power,
for which the signal quality thus becomes optimal [47]. Towards lower input power
the signal quality is limited by the spontaneous emission background noise, which
becomes increasingly dominant for decreasing signal power. At high powers, on the
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Fig. 4.10 Input-power dependence of the quality-factor for optical bit patterns at different pump
currents. Shown is the quality factor of (a) signals centered at the ground-state (A = 1305 nm) and
(b) at the excited-state (A = 1215 nm), for pump currents of j = 400 mA (solid), 700 mA (dashed),
and 1000 mA (dotted). The gray shaded area denotes the values of the Q-factor for which the BE R is
below 10~2. The input signals were non-return-to-zero on-off-keyed pseudo-random bit sequences
with a 40 GHz repetition rate
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Fig.4.11 Eyediagrams of the optical data signals on the ground-state after amplification for average
input powers of a ng = —25dBm, b ng = —15dBm, and ¢ ng = —5dBm. j =400mA, cf.
Fig. 4.9

other hand, the signal quality is limited by the onset of the nonlinear amplification
regime, which introduces patterning effects in the output signal [49, 69]. This is

depicted in Fig. 4.11, showing the transition from a noise-dominated signal at sz =

—25dBm, over a near-optical signal at ng = —15dBm, to the appearance of
patterning effects at Pa(;’g = —5dBm.

Consequently, we can observe an increase in the optimal input power with increas-
ing pump current, correlated with the increasing saturation input power P;*. For the
excited-state, on the other hand, only for j = 400 mA a maximum in the quality-
factor can be observed, whereas for higher currents the Q-factor steadily decreases
with the input power and a general decrease of the quality is visible, due to the
reduction of PS* we had seen in Fig. 4.7. Furthermore, the Q-factor is generally
smaller than on the ground-state. This suggests that for signals on the excited-state
frequencies, the signal quality is primarily limited by the onset of patterning effects,
whereas spontaneous emission noise plays a smaller role.

Different demands on the bit-error-rate exist depending on the application and the
use of error-correction techniques. Generally, a BER of 10~ is favorable, correspond-
ing to Q = 6. This requirement is met for all considered currents and input powers
on the ground-state, and for P,y; < —15dBm on the excited-state at j = 1000 mA.
Our results thus show that the given quantum-dot semiconductor amplifier can be
effectively used to amplify data signals over a broad range of wavelengths.

While so far we have only considered the amplification of optical data streams
centered on either of the quantum-dot state energies, a simultaneous amplification of
two independent data signals might also be possible. We investigate this application
in the next section.

4.4 Multi-State Operation of Quantum-Dot Amplifiers

In the previous section, we have shown that the quantum-dot semiconductor optical
amplifier can be used to amplify optical data streams corresponding to its ground-state
and excited-state energies with good resulting signal quality. Subsequently, in this
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Fig. 4.12 Sketch of the multi-state operation of the quantum-dot semiconductor optical amplifier.
Optical signals centered on the ground-state frequencies, traveling to the right, and excited-state
frequencies, traveling to the left, are simultaneously injected into the amplifier through the front
and back facets, respectively

section we will investigate the possibility of a dual-state operation of the quantum-
dot amplifier device, by simultaneous amplification of data signals on the ground and
excited-state gain peaks. This would correspond, e.g., to the application of a single
amplifier device for a dual-band amplification of counter-propagating upstream and
downstream data signals on different wavelength bands. We will in the following
perform simulations of the signal quality in dependence on the corresponding input
power and the pump current.’

We consider the simultaneous input of optical data signals centered on the
ground and excited-state energies at opposing facets of the quantum-dot amplifier,
as sketched in Fig. 4.12. We thus write, similar to Eq. (4.32), the boundary values of
the electric field as

2 . ,GS
E.0,)=|PSS——= S A (r—1 -l 4.36a
+0,0) = | Py AbeamnngOCOZG; bie(t —tags) | € (4.36a)

S —iwES
E_(¢,1)= ngAbedmnbgWoZAm (t—tus) | e (4.36b)

We thus look at the case that the ground-state signal is injected at the front facet (z =
0), and the excited-state signal at the back facet (z = £). This counter-propagating
setup reflects the application of a single optical amplifier device for the simultaneous
amplification of an up and down-stream, from and to a telecommunication network
node. Furthermore, the counter-propagation should minimize cross-talk between the
two signals, whereas the individual bits in co-propagating signals could interact along
the whole device length. Similar to the analysis done in the previous section we now
analyze the dependence of the large-signal gain on the optical input power.

The top row in Fig. 4.13 shows the resulting large-signal gain for optical signals
on the ground-state energy. For increasing pump current we can observe the decrease
in gain that we have already seen previously. Also, the gain can be seen to decrease

3Parts of this section have been published in [70].
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Fig. 4.13 Dependence of the ground-state (fop row) and excited-state (bottom row) gain (color-
coded) in dependence on the ground-state and excited-state average input powers for dual-state
operation. Both for ground-state and excited-state a non-return-to-zero pseudo-random bit-sequence
was used as input signal. Shown are the resulting values at a j = 400mA, b j = 700 mA, and
¢ j = 1000 mA. The hatched area denotes the range of operation for which we expect good
performance

with increasing ground-state input power, once it reaches the saturation input power.
Additionally, a steady decrease of the ground-state gain with increasing optical power
on the excited state can be observed, which amounts to a ~5dB smaller gain when
increasing the excited state input power from —25 to 0 dBm at the investigated current
range. We can thus conclude that the excited-state amplification has only minuscule
effect on the ground-state performance.

For the excited-state gain, shown in the bottom row in Fig. 4.13, on the other hand,
a stronger influence of the ground-state signal can be seen at j = 400 mA. Here, the
excited-state gain decreases by 20 dB upon increasing the ground-state input power
to 0 dBm. This can be understood by the intra-dot relaxation scattering driving the
quantum-dot states towards quasi-equilibrium. As the quantum-dot ground-state is
located at lower energy than the excited state, a variation of the excited-state occupa-
tion results in only little change of the quasi-equilibrium occupation at the ground-
state. On the other hand, when the ground-state occupation is depleted by the optical
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signal, already a small change in its occupation will considerably impact the excited
state population by the increased out-scattering into the now empty quantum-dot
states. This explains the observed stronger impact of a ground-state signal on the
excited state gain, as compared to the converse case.

For higher currents, however, not only the excited state gain is increased consid-
erably, but also the perturbation by a ground-state signal is much less pronounced.
This is a consequence of the increased reservoir carrier density, refilling the excited
state more efficiently, and the decreasing gain of the ground-state, reducing the stim-
ulated recombination rate on the ground-state. This shows that, in terms of the optical
gain, the dual-state operation of the quantum-dot amplifier is in general possible. The
pump-current must however be chosen adequately, to ensure low enough perturba-
tion of the excited-state gain due to the presence of a signal on the ground state, while
still providing strong enough ground-state gain. In our case, we therefore identify
Jj = 700 mA as the optimal choice.

So far, we have only looked at the optical gain of the quantum-dot amplifier device
under dual-state operation, showing promising results. The perturbation of the gain
medium by the respective other data signal could however negatively impact the
quality of the optical data streams. Analogously to the investigation of the optical
gain in dependence of the optical input powers, we will therefore calculate the quality
factor of the two simultaneously amplified signals. The resulting diagrams are shown
in Fig. 4.14. The ground-state quality factor shows a clear maximum with respect to
the ground-state input power, which is shifted towards higher ground-state power,
when we additionally increase the optical power of the excited-state signal. This can
be understood by the reduced optical gain on the ground-state that we had observed in
Fig. 4.13. The increasing optical power on the excited state reduces the ground-state
gain, which in turn reduces the signal-to-noise ratio of the ground-state signal for low
input power. Furthermore, a general decrease of the signal quality with increasing
excited-state power can be observed. This is exemplarily shown in Fig. 4.15 for a
ground-state input power of Pg: = —5dBm, where for increasing power on the
excited state a distortion of the ground-state eyes can be seen. The overall quality-
factor, however, is well above 10 for most of the considered values, ensuring very
good signal quality over a large parameter range.

With increasing pump current, the parameter range with a high Q-factor is
extended towards higher ground-state input powers, leading to very little signal dis-
tortion at these currents. As we had seen before, this is however accompanied by
a drastic reduction in the ground-state gain, which limits the applicability at high
pump currents.

In the single-state operation on the excited-state, we had already observed a
decrease of the overall signal quality on the excited state with increasing pump
current. At the low current of j = 400 mA, however, a severe deterioration of the
excited-state signal quality with increasing ground-state power can be observed. This
again shows the stronger perturbation of the excited-state gain caused by variations
of the ground-state occupation, exemplarily illustrated in Fig. 4.16. Here, the increas-
ing ground-state intensity leads to a strong distortion of the one-level. Nevertheless,
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Fig. 4.14 Dependence of the ground-state (fop row) and excited-state (bottom row) quality-factor
(color-coded) in dependence on the ground-state and excited-state average input powers for dual-
state operation. Both for ground-state and excited-state a non-return-to-zero pseudo-random bit-
sequence was used as input signal. Shown are the resulting values ata j = 400mA, b j = 700 mA,
and ¢ j = 1000 mA. The hatched area denotes the range of operation for which we expect good
performance. The labeled markers denote the operation parameters used in the respective panels in
Fig. 4.15 (ground state) and Fig. 4.16 (excited state)
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Fig.4.15 Eye diagrams of the optical data signals on the ground-state under simultaneous amplifi-

cation of an excited-state signal with a PaF;Sg —25dBm, and b P;:,z —5dBm. The ground-state

optical input power in both cases is ng —5dBm. j =700 mA
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Fig. 4.16 Eye diagrams of the optical data signals on the excited-state under simultaneous ampli-
fication of a ground-state signal with a Pacvig = —20dBm, and b PSQ = 0dBm. The ground-state

optical input power in both cases is PaF;Sg = —20dBm. j = 700 mA

it can still be clearly distinguished from the zero-level. A higher pump current can
partly alleviate this distortion and reduce the reduction in the Q-factor due to the
presence of a ground-state signal.

Taking into account the signal quality as well as the optical gain, we predict best
performance under dual-state operation for a pump current around 700 mA and input
powers of up to PS5 < —7dBm and PES < —13 dBm. This parameter region is
denoted in Figs. 4.13 and 4.14.

To conclude, we investigated the possibility of a dual-state operation of a quantum-
dot semiconductor optical amplifier for amplification of optical data signals. We have
considered the simultaneous amplification of counter-propagating optical non-return-
to-zero on-off-keyed data signals, in frequency bands centered on the ground-state
and excited-state gain peaks, respectively. We have adjusted our model parameters
by comparison with experimental data and achieved good quantitative agreement.
Our results predict the possibility to use the same quantum-dot amplifier device
for simultaneous amplification of counter-propagating optical data streams while
providing sufficient gain and a high enough signal quality on both frequency bands. In
general the excited-state signal quality was found to be more prone to the perturbation
by the presence of a ground-state signal, as compared to the converse case. A proper
choice of the pump current, in our case j = 700 mA, yields strong enough gain in
the ground state and good signal quality for signals on the excited state to make the
dual-state operation possible.

4.5 Coherent Transients in Quantum-Dot Amplifiers

Coherence in light-matter interaction refers to physical phenomena in which the
phase between the active medium polarization and the incident light field is main-
tained. A precondition for such effects is thus a sufficiently long lifetime of the micro-
scopic polarization, i.e., a slow dephasing. Investigations of this topic are therefore
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Fig. 4.17 Sketch of the Rabi-oscillation induced pulse shaping in quantum-dot semiconductor
optical amplifiers. The strong and ultra-short input pulse excited Rabi oscillations in the active
medium, which lead to the formation of characteristic dips and peaks in the optical pulse

often limited to systems at low temperature and with only few emitters [71-74], in
order to keep the number of possible dephasing processes small [75].*

Semiconductors were consequently initially disregarded as potential candidates
for the observation of coherent transients and quantum-coherent interaction, due to
the high density of charge-carriers [56, 76] and the dephasing due to scattering with
lattice phonons [77, 78]. Furthermore, the superposition of an ensemble of optical
transitions with different energies leads to an additional decay of the polarization
[79]. On the other hand, with the advent of semiconductor quantum dots, atom-
like transitions within the semiconductor material could be realized. Semiconductor
quantum-dot transitions were shown to exhibit much longer dephasing times [21,
80], making localized quantum-dots an attractive choice for applications in quantum-
optics [81].

Recently, however, coherent pulse propagation in macroscopic semiconductor
devices have been observed in quantum-cascade lasers [82], quantum-dash [28]
and quantum-dot semiconductor amplifiers [27], relying on ultra-short, strong opti-
cal pulses. It is important to note that in the experiments using optical amplifiers,
the measurements were performed at room temperature, opening up possible future
quantum-coherent applications using uncooled devices.

In this section, we will present experimental measurements and a theoretical
description of Rabi oscillations induced by ultra-short pulses in a quantum-dot semi-
conductor optical amplifier at room temperature [27]. Rabi oscillations denote a peri-
odic exchange of energy between the optical field and the active medium, which leads
to characteristic modifications of the optical pulse traveling through the amplifier
device, as sketched in Fig. 4.17. Apart from the appearance of Rabi oscillations, the
long dephasing in semiconductor quantum-dots can enable quantum-coherent effects
such as lasing without inversion [83, 84] and electromagnetically-induced trans-
parency [85-87]. The observation of quantum-coherence in semiconductor devices
might therefore open the possibility of new applications utilizing the coherent inter-
action between active medium and light [88].

4Parts of this section have been published in [27].
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In this section we will present simulations of the propagation of ultra-short pulses
through a quantum-dot semiconductor optical amplifier. We investigate the pulse-
amplitude dependent pulse shaping by Rabi oscillations and show that the coherent
signature can in principle be observed by measurements of the small-signal gain.
Then, we compare our theoretical results with electric-field cross-correlation mea-
surements in a pulse-propagation setup, and we will show that the experimentally
observed pulse shaping is indeed the result of Rabi oscillations.

4.5.1 Rabi-Oscillations in Quantum-Dot
Semiconductor Amplifiers

The quantum-dot semiconductor optical amplifier device we are modeling in this
section consists of a 2 um wide and 1.5 mm long shallow-etched waveguide. The
active medium is a DWELL structure composed of 15 layers of InGaAs quantum-
wells with embedded InAs quantum-dots. The model parameters used to describe
the device are given in Table 4.2. In order to describe the dynamic dependence of
the dephasing time on the pump current, we implement the following fit function:

—1

0.92
Ty(we, wy) = | 3ps—! + (— LW 5! (4.37)
2, Wi P 44-100em2) P ' '

The first term accounts for dephasing processes, e.g., due to phonon-carrier scattering,
which we assume to be independent of the surrounding charge-carrier density. Here
we take a dephasing rate of 3ps~! to account for these effects. It has been shown
theoretically [23, 53, 54, 89-91] and experimentally [22] that the dephasing time
in a DWELL structure depends on the charge-carrier density in the carrier reservoir.
We thus implement a numeric fit to the carrier-density dependence of the dephasing
time presented in [23], leading to the second term in Eq. (4.37).

Compared to the quantum-dot amplifier device investigated in the previous sec-
tions, a shallower quantum-dot confinement is assumed here. The dependence of
the dephasing time on the reservoir charge-carrier density of both devices is plotted
in Fig. 4.18. While the qualitative dependence is the same, the shallower quantum-
dot confinement leads to a longer dephasing time, in agreement with microscopic
calculations [92].

In this section we limit ourselves to a single forward-propagating electric field
pulse, and neglect spontaneous emission noise for simplicity. We therefore need to
describe only one electric field variable, which we label E(z, t). The input pulse
is assumed to enter the amplifier device at z = 0, with the back facet at z = £.
Furthermore, noise effects are neglected, as the shorter length of the amplifier device
leads to a lower noise intensity. Additionally, optical signals with much higher peak
power compared to the previous sections are considered here, which makes amplified
spontaneous emission noise negligible.



172

4 Quantum-Dot Optical Amplifiers

Table 4.2 Parameters used in the simulations in Sect. 4.5, unless stated otherwise

Symbol Value Meaning

NP 3 x 1019 cm—2 QD density per layer

ar, 15 Number of layers

hWV 4nm QW layer height

Nbg 3.77 Background index

AEinn 30 meV QD inhomogeneous broadening FWHM
AS Ons~! QW linear recombination rate

BS 540 nmZ ns~! QW bimolecular recombination rate

Was 0.44ns™! GS spontaneous recombination rate

WEs 0.55ns™! ES spontaneous recombination rate

m 0.6 nm ¢ QD transition dipole moment

T See Eq. (4.37) QD polarization dephasing time

r 0.1+ m Geometric confinement factor

AE.(AEp) | 74meV (50 meV) Electron (hole) QD GS localization energy
A (Ap) 40meV (20meV) Electron (hole) QD GS-ES energy spacing
V4 30 Number of space discretization steps
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Fig. 4.18 Fitted dephasing times for the quantum-dot semiconductor optical amplifier devices in
Sect. 4.3 (deep confinement, dashed) and here (Sect. 4.5, shallow confinement, solid). Shown is the
ground-state dephasing time in dependence of the total reservoir charge-carrier density w, + wy,

In order to understand the emergence of Rabi oscillations, we take a look at the
dynamic equation for a single quantum-dot subgroup:
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We reduce the above equations by introducing the inversion d := (p{;,m + pﬁ’m —1)

and neglecting losses. Furthermore, we limit ourselves to a resonant excitation, i.e.,

W= w:

gtp,g(z 1) = —z—d(z NE(z,1), (4.392)
d 2 ‘
5@ D =—Im [1 E* (2, 0 pj, (2, ] .- (4.39b)

For an initial inversion of dy and vanishing polarization amplitude, the above equa-
tions have the solution

plz, 1) = —’5 sin O(z, 1), (4.40a)
d(z, 1) = docos O(z, 1), (4.40D)

with the pulse area defined as

t

@(Z,t)z/MGS‘E(

—00

4.41)

Equation (4.40b) shows that, with a proper choice of the pulse area, it is possible,
e.g., to invert the charge-carrier distribution by choosing ® = 7. When choosing
® = n2m,n € N, i.e., integer multiples of 27, the system returns to its initial state
after the exciting pulse has passed through. This important property shows that the
coherent interaction between the optical field and the active material is a reversible
process, as long as the polarization dephasing time is larger than the pulse width.
The ~ps long pulses that we have investigated in Sect. 4.3, on the other hand, were
significantly longer than the dephasing time. Their interaction with the active medium
was thus irreversible.

We now use our quantum-dot semiconductor optical amplifier model to simulate
the amplification of ultra-short optical pulses. Here, we consider Gaussian pulses
with a width of §zr = 235 fs (FWHM) in amplitude. Taking the optical pulse area ®
as an input parameter, the input electric field is thus given by

2% +/4In2 —0\"| _in
E(0,1)=0— —41n2 idwr 4.42
©.0 KGs 51«/— |: ( ot ) ]e (442

where 1y is the pulse arrival time at the front facet. The detuning from the optical
carrier frequency Aw is chosen to yield a center frequency of the optical pulse
corresponding to a blue-shift of 6 meV from the quantum-dot ground-state gain
maximum, in accordance with the experimental setup discussed in Sect. 4.5.2.
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Fig. 4.19 Rabi-oscillations in the quantum-dot semiconductor optical amplifier. a Input electric
field amplitudes for different input pulse areas ®. b Corresponding time-traces of the quantum-dot
ground-state inversion of the resonant subgroup at the input facet for different input pulse areas.
¢ Electric field amplitudes at the output-facet for different input pulse areas ®. d Corresponding
time-trace of the integrated small-signal gain, Eq. (4.43), for different input pulse areas. The curves
in (a), (c) are shifted along the vertical axis for better readability. The time delay is given with
respect to the arrival time of the pulse at the corresponding device facet. J = 20Jy

Figure 4.19a shows the electric field amplitude of the pulse that enters the input
facet of the amplifier for different values of the input pulse area ®. The amplifier is
biased at twenty times the transparency current density Jy. The transparency current
density is defined as the current density at which the ground-state gain is 0dB, i.e.,
no net amplification (or loss) along the device is observed. At J = 20J the initial
ground-state inversion is approximately 0.45, as can be seen in Fig. 4.19b prior to
the pulse arrival. For ® = 0.1 the inversion can be seen to be nearly unaffected by
the input pulse, as the input power and the corresponding stimulated emission rate
is too low to disturb the inversion appreciably. With increasing pulse area, a clear
reduction in the ground-state inversion is visible, with a subsequent refilling by the
charge-carrier scattering processes.

For an input pulse area of ® = 27, shown by the green line, the ground-state
inversion reaches a minimum value well below zero. This is a clear indication of
Rabi-oscillations and thus evidence of coherent interaction within the device. From
Eq. (4.40b), we would expect a complete Rabi oscillation for the input pulse area of
27, i.e., the inversion should reach its original value after the pulse has passed. This
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expectation is not fulfilled, due to the presence of dephasing processes and a finite
charge-carrier lifetime, which lead to a damping of the Rabi oscillations [72]. This
is especially visible for ® = 57, which clearly show two and a half damped Rabi
cycles.

The corresponding output pulses, shown in Fig. 4.19c¢, exhibit the appearance
of characteristic modifications of the pulse shape with increasing pulse area. While
the input area of 0.17 is too low to induce Rabi oscillations, resulting in a nearly
Gaussian-shaped output pulse, the higher pulse areas lead to the formation of addi-
tional peaks in the output field amplitude.

The signature of the Rabi oscillations is also visible in the small-signal device
gain, shown in Fig. 4.19d, which is calculated via

£
1
G(r) = exp Z/dz “Reg (z, fo+ = + T) : (4.43)

Vg Vg

where g(z, t) is the complex gain as defined in Eq. (2.75). Equation (4.43) describes
the intensity gain that a small pulse traveling along the amplifier waveguide would
experience, with 7 denoting the time-difference between this virtual pulse and the
probe pulse. G (7) thus describes the gain measured in pump-probe experiments [17,
19, 93]. Thus, with a sufficiently narrow probe pulse and high time resolution, the
signature of Rabi oscillations should be possible to detect in a pump-probe setup.

The theoretical results clearly show the possibility of coherent interaction in the
form of Rabi oscillations in quantum-dot semiconductor optical amplifiers. In the
next section, we will thus compare our model with experimental cross-correlation
measurements of ultra-short pulses in a quantum-dot amplifier.

4.5.2 Comparison with Experimental Measurements

We now apply the quantum-dot amplifier model to recreate the results from an cross-
correlation experimental setup. Since the electric field amplitude is easily accessible
in our model, but is not immediately accessible by experimental detection schemes,
different measurement techniques must be employed. Here, we compare our theoret-
ical results with heterodyne cross-correlation measurements® (FROSCH: frequency-
resolved optical short-pulse characterization by heterodyning [27]).

A simplified sketch of the heterodyning setup is shown in Fig. 4.20. An incoming
short optical pulse is first split into two separate beam paths by an acousto-optic
modulator, which also induces a frequency shift in the extraordinary (reference)
beam. The ordinary (probe) beam is coupled into the quantum-dot amplifier, while
the reference pulse goes through a variable delay stage. The delayed reference beam

5The measurements were performed by Mirco Kolarczik, Nina Owschimikow, and Yiicel Kaptan,
Inst. f. Optik u. Atomare Physik, TU Berlin.
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Fig. 4.20 Simplified sketch of the heterodyne measurement technique. The incoming optical pulse
is split into two beam paths in an acousto-optic modulator (AOM). The probe pulse passes through
the quantum-dot semiconductor amplifier (QDSOA), while the reference pulse goes through a
variable delay-stage. The two pulses are then lead to the detector (lock-in-amplifier), where the
cross-correlation between the delayed input pulse and the amplified pulse is measured

and the probe beam are recombined onto a lock-in amplifier, detecting the beat note
between the pulses. The measured signal S(7) is thus proportional to the cross-
correlation of the reference and probe pulses:

]

S(T) o / dt E,(t) EX (t +7)|, (4.44)

o0

where E; and E, are the reference and probe pulse electric fields, respectively. The
advantage of this technique is the high temporal resolution of below 1 fs, since the
time-delay 7 can be precisely adjusted. Furthermore, the measured signal is linear in
the probe amplitude £}, providing high sensitivity even atlow light intensities. On the
other hand, a drawback of the cross-correlation is that the electric field itself cannot
be measured independently. Only the convolution of the probe and reference pulses
is accessible. Thus, while the signal S(7) has a high resolution in 7, the achievable
resolution in ¢ of the actual electric field amplitude E(¢) is limited by the width of
the reference pulse.

While Eq. (4.44) does not allow for a direct access to the electric field amplitude,
it is still closely related to the electric field pulse shape. For example, the cross-
correlation of two Gaussian pulses will again yield a Gaussian pulse in 7, albeit with
a larger width. In addition to the cross-correlation amplitude, also the phase of the
correlation integral in Eq. (4.44) can be experimentally determined. This allows the
evaluation of time-resolved phase dynamics of the amplified pulse, and can be used,
e.g., to determine charge-carrier induced frequency chirp [94].

We proceed by comparing the measured pump-current dependent pulse amplifi-
cation in the quantum-dot amplifier with our theoretical results. In the experiments,
input pulses with widths of § = 235 fs with variable pulse area are produced by an
optical parametric oscillator with a repetition rate of 75.4 MHz. The measurements
presented here were obtained at room-temperature. The resulting cross-correlation
curves are shown in Fig. 4.21, where we compare both the cross-correlation ampli-
tude and phase with the experimental results. Figure 4.21a shows the resulting curves
for an input pulse area of ® = 0.337 and an unpumped, i.e., absorbing, device. The
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Fig. 4.21 Comparison of the Rabi-oscillations in the amplified ultra-short pulses between exper-
iment and theory. Shown is the normalized cross-correlation amplitude, Eq. (4.44), (fop panel)
and its phase (bottom panel), both for the experimental results (black) and theoretical predictions
(blue), as a function of the delay 7 between probe and reference pulses. a Low input power of 1 mW
(® = 0.337m) and J = 0. b High input power of 12 mW (® = 1.157) for current densities of J = 0,
J =3Jy, J =20Jy, and J = 30Jp, respectively

output pulse shape is nearly Gaussian, which is to be expected from a low input
pulse area, as we have already seen in the previous section. Upon increasing the
input pulse area to ® = 1.157, shown in Fig. 4.21b—e, modifications to the pulse
shape become visible. These are most pronounced at J = 0 and J = 20J, i.e. for
empty and moderately filled quantum-dots, where a pronounced dip and additional
peak in the amplitude for positive time delays can be observed. At J = 3Jj, only
minor pulse shape modifications are visible, due to operating near transparency. For
even higher pump currents, J = 30Jp, while the initial quantum-dot inversion is
increased, the dephasing time of the optical transitions is much lower due to the high
number of injected charge carriers. This leads to a less pronounced coherent interac-
tion, and the amplitude dip is much smaller. The investigation of the cross-correlation
phase reveals that the appearance of the minima in the amplitude is accompanied
by a phase jump, due to the change of sign of the electric field induced by the Rabi
oscillations [72].

The theoretical results reproduce the experimental findings very well. We can
therefore conclude that our model is well suited for the description of the quantum-
dot amplifier device. However, we can also use the model to investigate the dynamics
of the amplifier during the coherent interaction, which cannot be resolved experi-
mentally.

Figure 4.22 shows the quantum-dot ground-state dynamics at the input and output
facets for the amplification of a pulse with ® = 1.157 at J = 20Jj, as already shown
in Fig. 4.21d. In Fig. 4.22a, b the corresponding cross correlation amplitudes, along
with the solitary electric field amplitude, are shown. Here, the slight loss of detail
due to the evaluation of the cross-correlation can be observed, as the electric field
amplitude at the output facet shows a more complex shape than the resulting cross-
correlation signal. The cross-correlation translates this complex shape into a smooth
envelope with a single amplitude dip.
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Fig. 4.22 Quantum-dot dynamics under the amplification of an ultra-short pulse. Shown is the
dynamics at the input facet (left column) and at the output facet (right column). a, b Electric field
amplitude (red line) and corresponding cross-correlation signal (black line). The lower panels show
the time-trace of (c¢), (d) the inversion in dependence of the detuning of the individual quantum-
dot subgroups from the signal and (e), (f) the normalized quantum-dot ground-state polarization
amplitude. ® = 1.157, J = 20Jy

The color-coded density plots shown in Fig. 4.22c, d depict the corresponding
inversion of the different quantum-dot subgroups, characterized by their detuning
with respect to the pulse center frequency. As seen before, the optical pulse drives
the population inversion below transparency, again confirming the occurrence of
(partial) Rabi oscillations within the device. It can also be seen that for near-resonant
subgroups the Rabi-oscillations are much more pronounced, whereas the far-detuned
quantum-dots only weakly interact with the pulse.

This is also visible in the time-evolution of the polarization amplitude of the
individual subgroups, Fig. 4.22e, f. Here it can be seen how the incoming pulse
builds up a strong polarization at the resonant subgroups. The dynamics at the front
facet, panel e, already exhibits a difference in the dynamics of the different quantum-
dot subgroups, with a more persistent polarization for subgroups slightly detuned
from the pulse. This becomes even more pronounced at the output facet, where the
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pulse shape is more complex and the pulse area higher due to the amplification along
the amplifier. Here, the dynamics of the individual quantum-dot subgroups is much
more complex, and the Rabi oscillations faster due to the increased field amplitude.
The polarization dynamics is not symmetric around the resonant subgroup, as could
have been expected, but instead shows rather strong asymmetry due to the asymmetric
quantum-dot carrier distribution and the additional frequency components added to
the optical pulse along its path.

In order to support our interpretation of Rabi-oscillation-induced pulse-shaping
in the device, we now simulate the quantum-dot semiconductor optical amplifier
within the rate-equation approach, i.e., with adiabatically eliminated polarization.
As we had derived earlier in Eq. (2.70), we can write for the polarization amplitudes
in the limit of fast polarization decay

_ Jo_
pl@) = _iTZ“’"_E(t) (P({,m(f) +Pi,m(f) _ 1)( 1 =il (win —w) ) (4.45)

2h 1+ [Ta(wihy — W2

We thus assume a quasi-static relation between the polarization and the incoming
electric field. This, however, means that the dephasing process is treated as instanta-
neous, such that the polarization is assigned the value it would assume after complete
dephasing. Subsequently, the rate-equation model cannot reproduce the pulse-shape
modifications observed in the experiments, as demonstrated in Fig. 4.23.

Similar to the plots shown before in Fig. 4.22 we evaluate the inversion and
polarization of each subgroup. The differences between the two approaches become
immediately visible in the output pulse shape, which lacks the complex pulse shape
we had seen before. While the front of the pulse shows a slight deformation, the cross-
correlation amplitude reproduces a near-Gaussian shaped output pulse. This is due
to the lack of autonomous polarization dynamics that was observed in Fig. 4.22e, f.
Here a quick buildup of the polarization amplitude can be seen, with a subsequent
fast decay in the resonant subgroups. This decay is due to the “bleaching” of the
corresponding subgroups (Fig. 4.22c, d). The inversion is depleted to near zero,
rendering these subgroups transparent to the pulse. The rate-equation approach thus
quite obviously cannot reproduce the observed dynamics.

In conclusion, we have demonstrated coherent interactions between ultra-short
optical pulses and the quantum-dot active medium in quantum-dot semiconductor
optical amplifiers. Provided strong enough input pulses and high enough time reso-
lution, we predict the possibility to directly observe Rabi oscillations in pump-probe
experiments. While the pronounced modifications to the electric field amplitudes due
to the Rabi oscillations cannot be measured directly, we found that cross-correlation
measurements provide a reliable tool to identify Rabi oscillations by characteris-
tic modifications of the cross-correlation envelope. By comparing corresponding
experimental results with the predictions of our simulations, we have confirmed the
occurrence of Rabi-oscillations in the quantum-dot active medium even at room tem-
perature. This opens up the possibility for further quantum-theoretical research on
the basis of macroscopic quantum-dot optical devices.
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Fig.4.23 Quantum-dot dynamics under the amplification of an ultra-short pulse using adiabatically
eliminated microscopic polarization, cf. Fig. 4.22

4.6 Conclusion

In this chapter, we have studied the performance of semiconductor quantum-dot based
optical amplifiers. A delay-differential equation model that incorporates microscop-
ically calculated nonlinear charge-carrier scattering rates was presented, which can
efficiently and accurately model the electric-field propagation through the amplifier
device. The light-matter interaction is modeled on the basis of Maxwell-Bloch equa-
tions, taking the microscopic polarization of the quantum-dot medium into account.
This approach yields the possibility to correctly describe the spectral properties of the
spontaneous emission noise, as demonstrated by a comparison with experimentally
obtained amplified spontaneous emission spectra.

We have performed studies of the large-signal amplification capabilities of the
quantum-dot amplifier for optical signals that are resonant to the ground-state or
excited-state transitions. A characterization of the device in terms of amplified spon-
taneous emission noise spectra has been presented, which shows very good agree-
ment with experimental measurements on a corresponding quantum-dot amplifier
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device. We have calculated its response to large-signal amplification in terms of
gain-saturation characteristics and quality factor for the amplification of non-return-
to-zero on-off-keyed pseudo-random bit sequences. Our results predict error-free
(bit-error rate <10~7) amplification of optical signals centered on the ground-state
for input power ranges of —25dBm < PSS < 0dBm. The signal quality was found
to be limited by amplified spontaneous emission noise at lower input powers, and
the onset of patterning effects due to the nonlinear amplification at higher powers.

The response of the quantum-dot amplifier on the excited state was found to be
characterized by a higher gain but a stronger sensitivity to patterning effects, due to
the onset of the nonlinear amplification regime for much lower input powers than
on the ground state. This can be understood by the close coupling of the excited
state to the charge-carrier reservoir, which leads to a stronger perturbation of the
excited-state gain by variations of the total charge-carrier density. This results in a
lower output saturation power of the excited state, and error-free amplification only
for signals with input powers below —15 dBm at high pump currents.

We have subsequently investigated the possibility of a multi-state operation of
the quantum-dot semiconductor optical amplifier. Here, two signals centered on the
ground and excited state are being simultaneously amplified in a counter-propagating
setup. We have performed similar studies of the large-signal gain and signal quality as
before, now in dependence on the optical input powers on the ground and excited state
and for different pump currents. Our model predicts a minor impact of an additional
excited-state signal on the performance of the ground-state. For an input power of
0 dBm on the excited state, we found a decrease of the ground-state gain of only 5 dB
compared to the solitary ground-state signal amplification. The signal quality on the
ground state was found to decrease with increasing excited-state power, nevertheless
staying well above a bit-error-rate of 10~ for the considered input powers on the
excited state below 0 dBm.

As before, the excited-state response has been demonstrated to be more sensitive
to the presence of a signal on the ground-state. A strong decrease of both the large-
signal gain and the quality-factor can be observed at low pump currents. Increasing
the pump current can partly improve the excited-state performance, albeit under a
decrease of the ground-state gain. Taking these results into account, we predict that
the dual-state operation of the quantum-dot amplifier is possible for a intermediate
pump current of 700 mA for input powers below —7 dBm on the ground-state and
below —13 dBm on the excited-state, thus ensuring error-free amplification of the
input signals and providing reasonable gain.

Furthermore, we have investigated the possibility of coherent pulse-shaping appli-
cations in quantum-dot semiconductor optical amplifiers. We have thus performed
simulations of the propagation of ultra-short (=200 fs) optical pulses along the ampli-
fier structure. Our model predicts the appearance of Rabi oscillations in the optical
pulse and the quantum-dot active medium, which leads to a characteristic pulse shape
modification of the output pulse. Depending on the input pulse area, a varying number
of Rabi cycles is excited which becomes visible also in the integrated small-signal
gain of the device.
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Our theoretical results were applied in a comparison with experimental measure-
ments performed in a cross-correlation setup. In the experiment, ultra-short optical
pulses were amplified in a quantum-dot semiconductor optical amplifier. For dif-
ferent pump currents the cross-correlation between the amplified probe pulse and
the reference input pulse was measured, showing clear pulse shape modifications for
sufficiently high input powers. By calculating the corresponding signals from the the-
oretically obtained output pulses, we were able to directly compare the experiments
with our predictions. The model results were found to match the experimental mea-
surements very well. We could thus confirm that the changes in pulse shape are caused
by Rabi oscillations, whereas an adiabatically eliminated microscopic polarization,
i.e., an incoherent interaction, cannot reproduce the observed dynamics. Our results
thus clearly show that macroscopic quantum-dot semiconductor optical devices are
promising candidates for the applications of quantum-coherent effects.
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Chapter 5
Summary and Outlook

In this thesis, the dynamics of semiconductor quantum-dot optoelectronic devices
has been investigated. The complex charge-carrier dynamics due to the coupling
of localized electronic quantum-dot states and the surrounding continuum reservoir
states has been found to crucially influence the dynamic response of the quantum-dot
devices to external perturbations.

A microscopically based balance equation model for semiconductor quantum-
dot lasers has been derived, which explicitly takes into account the microscopic
Auger-scattering processes between the localized quantum-dot states and the sur-
rounding charge-carrier reservoir. The resulting Boltzmann-like scattering terms
ensure arealistic description of the quantum-dot charge-carrier dynamics and enables
the possibility to describe intra-band nonequilibrium situations. Energy balance
equations have been derived which allow the dynamic calculation of the charge-
carrier quasi-equilibrium temperature, taking into account carrier-heating due to
Auger-scattering. Together with a spectrally resolved inhomogeneously broadened
quantum-dot ensemble, as well as a consistent description of the charge-carrier-
induced gain and refractive index, the model is an adequate tool to describe quantum-
dot laser dynamics.

The quantum-dot laser model was used to investigate its relaxation oscillations,
which describe the intrinsic response of the laser device to perturbations from its
steady-state. In dependence of the charge-carrier scattering rates, three qualitative
different dynamic regimes have been found:

(i) For slow charge-carrier scattering, the reservoir states provide a nearly con-
stant carrier-influx into the quantum-dots, leading to pronounced relaxation
oscillations. This regime is called the “constant-reservoir regime”, which is
characterized by a strong nonequilibrium between the quantum-dot and reser-
voir states.

(ii) For intermediate scattering rates, in the “overdamped regime”, the relaxation
oscillation damping is strongly increased, leading to overdamped oscillations.
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(iii) For fast scattering rates, the coupling between quantum-dot and reservoir states
is strong enough to influence the reservoir carrier density. In this “synchronized
regime”, the reservoir carriers are thus closely coupled to the light-matter inter-
action in the quantum-dot states, leading to the reappearance of pronounced
relaxation oscillations.

The reappearance of pronounced relaxation oscillations for high scattering was found
to be caused by the detailed balance between charge-carrier capture and escape rates
in the quantum-dot states. Quantum-dot laser models that do not take into account
a dependence of the escape rates on the reservoir carrier density can therefore not
describe the “synchronized regime”. A minimal three-variable rate-equation model
has been derived that takes this important effect into account. Using effective para-
meters, this minimal model has been shown to qualitatively reproduce the dynamics
of the full balance equation model. This opens up the possibility of further analytical
studies on quantum-dot laser dynamics using this simple, but sufficiently complex
quantum-dot laser model.

The dynamic regimes were found to crucially influence the response of the quan-
tum-dot laser to external modulations and perturbations. While in the synchronized
regime the modulation bandwidth is well described by the conventional analytical
expression that take the relaxation oscillation damping and frequency into account,
the actual modulation response differs from this prediction in the overdamped and
constant-reservoir regimes.

The amplitude-phase coupling in semiconductor lasers, commonly described by
an «-factor, was found to fail in describing the quantum-dot laser dynamics. This has
been demonstrated for quantum-dot lasers under optical injection and time-delayed
optical feedback. While fixed points and their bifurcations are well described by
an «-factor, it cannot be used to describe time-varying solutions. This is due to
a frequency-dependent amplitude-phase coupling, leading to different frequency-
responses at different perturbation frequencies. An «-factor cannot describe this
behavior and generally overestimates the extent of complex laser dynamics. This
discrepancy was found to be especially pronounced when the laser operates within
the constant-reservoir regime, due to the strong nonequilibrium between the resonant
and off-resonant electronic states.

The investigations in this work have thus shown that many conventional frame-
works for the description of semiconductor laser dynamics fail when applied to
quantum-dot lasers. This discrepancy is due to the possible intra-band nonequi-
librium situations between the charge-carrier states. In order to correctly model
and describe the quantum-dot laser dynamics, an accurate and consistent descrip-
tion of the complex charge-carrier dynamics and charge-carrier induced gain and
refractive index is required. Three quantum-dot laser models on different levels of
sophistication which fulfill this requirement have been derived and presented, which
can be used in future works for an accurate representation of quantum-dot lasers.
Specifically, a simple three-variable rate-equation model has been developed that
correctly predicts the three dynamic regimes in dependence of the scattering rate.
This model could be used in future studies for a deeper analytical understanding of
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quantum-dot lasers. A ten-variable rate-equation model has been successfully
implemented in path-continuation routines for the investigation of the occurring
bifurcations in an optical injection setup. This model could be extended, e.g., to
optical feedback, and can be used in further bifurcation studies.

In the second part of this thesis, two types of experimental applications unique
to quantum-dot semiconductor amplifiers have been investigated. To this end, the
quantum-dot laser balance equation model was extended to a delay-differential-
equation model, that explicitly takes into account the electric field propagation along
the device.

It was found that quantum-dot semiconductor optical amplifiers enable ultra-
broad-band amplification of optical data signals by utilizing the localized ground and
excited-state transitions. The performance of a quantum-dot amplifier under large-
signal amplification has been analyzed in terms of the gain and quality factor of an
optical data signal, centered on either of the first two localized quantum-dot states.
While the excited-state generally shows poorer performance than the ground-state,
the results indicate that an effective application of the amplifier on both wavelength
ranges is possible. Furthermore, the dual-state operation under simultaneous ampli-
fication of data signals on the two wavelengths in a counter-propagating setup was
investigated. The theoretical results predict a parameter range for which an effective
amplification of both data streams, in terms of gain and signal quality, is possible.
The unique electronic density of states and the efficient charge-carrier refilling by
the reservoir could thus be used to simplify optical data communication networks
by using a single quantum-dot semiconductor optical amplifier for the simultaneous
amplification of different wavelength bands.

Furthermore, it was shown that quantum-dot semiconductor optical amplifiers
exhibit coherent effects on the macroscopic scale. Experimental results on the pulse-
shaping of ultra-short optical pulses propagating through a quantum-dot amplifier at
room temperature have been compared with the theoretical predictions. The observed
pulse-shape modifications have been unambiguously explained by the occurrence
of Rabi oscillations in the quantum-dot active medium. Macroscopic quantum-dot
devices have thus been shown to exhibit coherent pulse-shaping effects, owing to
the long dephasing time of the localized quantum-dot states compared to conven-
tional semiconductor active materials. The application of semiconductor quantum-
dot active media might therefore open up the possibility of novel quantum-optical
devices.



Appendix A

A.1 Evaluation of RO Parameters from Numerical
Time-Series

In the numerical evaluation of the relaxation oscillation parameters the time-series of
the output power is fitted in order to extract the corresponding eigenvalues. We chose
an exponentially damped harmonic oscillation with an underlying slow exponential
decay in order to fit the numerical results:

S™(#) = So [1 + acos (wrot — o) e * +be ] . (A.1)

The fitting parameters are the steady-state power Sy, the RO amplitude a, the RO fre-
quency wro, the phase shift ¢, the RO damping I'rp, the amplitude of the additional
exponential decay b, and the corresponding decay rate ~. This additional decay term
describes the (often slow) relaxation of the reservoir charge-carriers, and is related
to the third eigenvalue A3 found in the minimal QD laser model (see Eq. 3.35).

A.2 Table of Symbols

See Tables A.1 and A.2.
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Appendix A

Table A.1 List of commonly used symbols

Symbol Meaning

—ep Electron charge

co Vacuum speed of light

€0, Ebg Vacuum and background dielectric constants

NQD QD sheet density per QW layer

ar Number of QW layers

piym QD occupation of the jth subgroup in the mth state (b € {e, h})
Din QD microscopic polarization of the jthsubgroup in the mth state
" Dephasing time of the microscopic polarization

w,j;l QD subgroup transition frequencies

Lm Optical transition dipole moment in the mth QD state

g,{, QD gain coefficients under adiabatically eliminated polarization
Vm Degree of degeneracy of the mth QD state, excluding spin

fi Probability mass function of the jth QD subgroup

Wi Spontaneous recombination rate in the mth QD state

I} Spontaneous emission ratio

r Geometric confinement factor

w Frequency of the reference frame, ~electric field carrier-frequency
wp QW charge-carrier density

AS Linear recombination rate in the carrier-reservoir

BS Bimolecular recombination rate in the carrier-reservoir

Aact In-plane active-region area

AE) Energy separation between QD GS and QW band edge

Ap Energy separation between QD GS and QD ES

AEinn QD inhomogeneous broadening width (FWHM)

sy S;fl’i“ QD direct-capture and relaxation in-scattering rates

Avyy Frequency detuning of the optically injected master signal from the slave laser
K Injection strength, relative to the optical loss rate x

T Optical feedback time delay

C Feedback phase shift

K Feedback strength, relative to the optical loss rate s

BER Optical data signal bit-error-rate

0 Optical data signal quality factor

® Optical input pulse area
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Table A.2 List of commonly used acronyms
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Acronym Meaning

cw Constant-wave

QD Quantum-dot

QW Quantum-well

DWELL Dot-in-a-well

RO Relaxation oscillation

SNIPER Saddle-node-infinite-period (bifurcation)
QDSOA Quantum-dot semiconductor optical amplifier
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