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Foreword

The main objective of this book is to lay the foundations of gas and fluid dynamics.
It does so by developing the basic equations from scratch, building on the
(assumed) knowledge of students of Classical Mechanics. In this way, we can
consider the mathematical properties of flows and discuss such things as conser-
vation laws, perturbation analysis and waves, shocks, etc. Often we will consider
ideal fluids and gases, where the influence of internal friction (called viscosity) can
be neglected. Viscous flows will be discussed when we consider flows around
obstacles and shocks.

Many of the examples used to illustrate various processes come from astro-
physics, but now and then, I will look at geophysical phenomena.

This subject is a challenging one: In order to fully understand the intricacies of
fluid mechanics/gas dynamics, one needs to know about scalars, vectors and simple
(rank 2) tensors, and the vector/tensor analysis that comes with it. I can only hope
that this book may serve as a readable introduction to a rich subject.

Nijmegen Abraham Achterberg
December 2015
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Chapter 1
Introduction

Almost all matter in the Universe is in the gaseous state. The mean density of the
universe at-large corresponds to less than one hydrogen atom per cubic meter, and
even the beautifully colored emission nebulae that grace the pages of many popular
astronomy books contain gas with a number density (the number of atoms per unit
volume) that is much less than the lowest density that can be achieved by the best
vacuum pump in a laboratory on Earth.

OnEarth itself, oceans covermore than 70%of its surface, and thewater volume is
1.3×109 km3. Our atmosphere, a layer of gas that is less than 80km thick but that will
only support macroscopic life below 5km, is essential for life in the biosphere. Both
the oceans and our atmosphere exhibit complex phenomena, studied respectively by
oceanography andmeteorology, that can only be understood in terms of the dynamics
of fluids and gases in a rotating reference frame.

On a human scale, gas and fluid dynamics are important for engineering and water
management. For instance: gas dynamics governs the design of airplanes and cars
(aerodynamics) and fluid dynamics is needed to figure out the flow of water through
a complicated pipe system (hydraulics) or for ship design.

The best available description for such tenuous matter is fluid dynamics or gas
dynamics. The distinction between the two, at least in the context of astrophysics
or geophysics, is rather marginal. In engineering applications there is a difference,
mostly having to do with the importance of friction in fluids and the fact that fluids
are much less compressible than most gases due to the fact that molecules in a fluid
are more densely packed together.

The common denominator in fluid and gas dynamics is the description of a
fluid/gas in terms of a continuum. In a continuum description the properties of
the material (velocity, density, pressure, temperature etc.) are distributed smoothly
over space.1

The continuum approximation neglects the details of the precise distribution of
the constituent molecules or atoms, as well as the individual atomic or molecular

1The exception to this rule are shocks and contact discontinuities, where fluid properties can make
sudden jumps.

© Atlantis Press and the author(s) 2016
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2 1 Introduction

properties. Rather, one works with an average density, temperature and velocity that
vary as a function of position and time. Such a description can only be achieved
through the use of fields: mathematical entities (scalars, vectors or tensors) that
vary continuously (or, in the case of shocks and so-called contact discontinuities:
discontinuously) as a function of position x, and may evolve in time. One has a
density field ρ(x, t), a velocity field V (x, t), a pressure field P(x, t) etcetera!

The dynamics of the gas (or fluid) is described in the terms of a limited number of
these fields, corresponding to the properties of the system such as density, pressure
and velocity, reducing the mathematical burden to manageable proportions.

Although phenomenological studies of fluids date back to (for instance) the well-
known drawings of Leonardo Da Vinci of turbulent flows, the mathematical descrip-
tion used today dates builds on the work started by Bernoulli and Euler [4, 14].

The first modern textbooks in fluid and gas dynamics appeared around the begin-
ning of the twentieth century, perhaps the most famous one being the monograph
by Horace Lamb [24]. Since then, many books on the subject have appeared. The
most useful modern introductory text in my view is the one by Faber [15]. Also
useful is the monograph of Acheson [1], reprinted 2009. The ‘bible’ of the subject,
originally written in 1959, is still the 6th volume of the well-known Course of Theo-
retical Physics by Russian physicists Landau and Lifshitz [26]. Advanced textbooks
devoted exclusively to astrophysical fluid mechanics appeared only quite recently in
2006–2007, most notably the books by Thompson [50], Clarke and Carswell [13]
and by Pringle and King [40].

Fluid dynamics makes full use of the dynamical laws as formulated for ordinary
(single particle) mechanics by Newton. This approach is natural but, as we will see,
it leads to an immediate complication: the description of all fundamental quantities
in terms of fields yields a set of coupled equations of motion that are non-linear.
This non-linearity makes the subject of fluid mechanics more difficult, but (at least
in the view of this author) more rich than ordinary single-particle dynamics. As a
consequence, exact solutions are more difficult to obtain than in simple mechanical
systems. It therefore comes as no surprise that many approximate methods have been
developed in the context of fluid dynamics.

The prime example of an approximate method that we will encounter is lineari-
sation, a technique where one considers the effect of small perturbations (such as a
small position shift) on a fluid or gas. This approach does away with the nonlineari-
ties in the system, and leads to a set of simple solutions whenever one can describe
these perturbations in terms of plane waves.

1.1 Scope of this Book

The aim of these lectures is to develop the fundamental understanding of fluids and
gases. A number of subjects typically covered in mainstream textbooks (such as
most engineering applications, boundary layers at solid surfaces, aerodynamics and
the physics of combustion etc.) will not be treated, or only treated on an elementary
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level. On the other hand, typical astrophysical examples, such as the theory of self-
gravitating fluids, will be covered here.

In Chap.2 the foundations of the fluid equations is explained, stressing the cor-
rect mathematical interpretation of the fundamental equations. Chapter 3 introduces
the conservative form of these equations that are important in many applications.
Chapter 4 discusses special flows, such as incompressible flows and flow that are
rotation-free. Chapter 5 concerns itself with steady incompressible flows, discussing
a number of important caseswhere the equations can be solved exactly, orwhere good
approximate solutions are available. This chapter also discusses flows where viscos-
ity (internal friction) is important. Chapter 6 discusses steady compressible flows,
with the equations for a stellar wind as an important application. Chapter 7 introduces
the techniques used to describe small-amplitude waves in a gas or fluid. Applica-
tions of the theory of waves are found in Chap.8. Chapter 9 discusses the theory of
shockwaves from the point-of-view of flux conservation for themassmomentum and
energy flux across the shock. Applications of shock theory can be found in Chap. 10.
Chapter 11 introduces the concept of vorticity and discusses Kelvin’s theorem. In
Chap.12 we consider fluid dynamics in a rotating reference frame, and discuss a few
geophysical and astrophysical applications of the theory presented in Chaps. 11–13.
Chapter 14 contains a selection of problems. Chapter 15 contains a mathematical
appendix outlining the conventions used in this book, as well as tables of frequently
used symbols and of physical and astronomical constants.
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Chapter 2
From Newton to Euler and Navier-Stokes

2.1 The Continuum Description

In ordinary dynamics, as first formulated by Isaac Newton, the motion of a single
particle of massm, following an orbit x(t) under the influence of some force F(x, t),
is described by two simple equations of motion, the first linking the acceleration
a = dV/dt to the force F and the second linking the velocity V to the position
change:

dx
dt

= V , m
dV
dt

= F(x, t). (2.1.1)

A fluid (or gas) consists in principle of a large number of particles (ions, atoms or
molecules), each of which individually satisfies equations like (2.1.1). However, the
expression for the force F is horribly complicated in this case. It has to take account
of all the interactions between the individual particles that depends sensitively on
the ever-changing position of each particle.

Consider for instance the case of a gas consisting of identical particles with mass
m that interact through mutual forces, such as the gravitational interaction or the
Coulomb force between charged particles. If we number the particles using greek
indices (e.g. α, β, . . .), the force equation for the α-th particle looks like

m
dVα

dt
=

∑

β �=α

Fαβ(xα, xβ). (2.1.2)

Here Fαβ(xα, xβ) is the force on particleα exerted by particle β, and the summation
over β enumerates all possible interactions.

Note that this force generally depends on the continuously changing position of
each particle! For instance: in a gas of electrons with mass me and charge −e the
electron-electron force is the repulsive electrostatic Coulomb force:

© Atlantis Press and the author(s) 2016
A. Achterberg, Gas Dynamics, DOI 10.2991/978-94-6239-195-6_2
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6 2 From Newton to Euler and Navier-Stokes

Fαβ(xα, xβ) = e2 (xα − xβ)

|xα − xβ |3 . (2.1.3)

Let us the ionized plasma in the Solar Corona as an example: one cubic centimeter
of Coronal gas contains about 106 electrons. This means that one would have to
calculate∼1012 interactions to describe the dynamics of all electrons in this volume,
and another ∼1012 interactions for the protons that are also present as the gas is
electrically neutral, and consists mostly of hydrogen. This is clearly an impractical
approach.

The power of the fluid description lies in the fact that it dispenses with a detailed
consideration of the constituent individual particles in some small (infinitesimal)
volume V , and replaces the massive point particles contained in that volume by a
smeared-out ’smooth’ distribution of mass with the same total mass �m. To that end
one introduces, at each position x and time t , a local mass density ρ(x, t), which is
formally defined as:

ρ(x, t) = total mass in a small volume centered at(x, t)

volume
= lim

�V→0

�m

�V . (2.1.4)

It also defines an average velocity V (x, t) that is essentially the center-of-mass
velocity of the collection of those particles residing inside the small volume �V at
a given position x at time t :

V (x, t) = 1

�m

∑

�V
mαvα. (2.1.5)

Here�m = ∑
�V mα is the totalmass of the particles residing in the volume-element

�V and vα is the velocity of particle α.
This continuum description of a fluid leads to an equation analogous to (2.1.1).

For a fluid with mass density ρ, subject to forces with a force density (the net force
per unit volume) f , the equation of motion reads

ρ
dV
dt

= f (x, t). (2.1.6)

This deceivingly simple-looking equation of motion hides two technical difficulties.
The first and obvious difficulty is the definition of the precise formof the force density
f . We will consider that question in more detail below. The second and less obvious
(but mathematically rather more intricate) problem is the correct interpretation of
the time-derivative d/dt .

InNewtoniandynamics this problemnever explicitly arises: there it is immediately
obvious that one has to evaluate the force F that appears in the equation of motion
(2.1.1) at the current time and the current position x(t) of the particle along its orbit.
Therefore, if the force depends explicitly on both position and time the Newtonian
force equation should be written more precisely as:
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m
dV
dt

= F(x(t), t) (2.1.7)

That immediately implies that the acceleration at any time t is also only well-defined
at the particle position.

I will now show that this interpretation essentially still holds in fluid mechanics,
but that the fact that we are using a continuum description (rather than following a
single particle) complicates things: in principle a fluid or gas can fill the whole space
(or some limited volume, such as a fluid container). There simply is no single particle
that defines where to look at a given time! This implies that the velocity V has to be
interpreted as a distribution of velocities over space: a velocity field V (x, t), which
changes with time and position. Therefore, fluid dynamics is formally a field theory,
and the fluid velocity is characterized by a vector field! As we will see, in order to
fully describe a simple fluid we need additional fields, such as the mass density field
ρ(x, t), the pressure field P(x, t) and the gravitational potential �(x, t), all scalar
fields.

In three different (but equivalent) notations1 the velocity vector can be represented
as:

V (x, t) = (
Vx , Vy , Vz

) = Vx x̂ + Vy ŷ + Vz ẑ . (2.1.8)

The magnitude and direction of the vector V is determined by the three functions
Vx (x, t), Vy(x, t) and Vz(x, t), which are the three components of the velocity
vector at each point in space-time.

Herewe use aCartesian (rectangular) coordinate systemwith unit vectors x̂, ŷ and
ẑ, but any other properly defined coordinate system, such as cylindrical or spherical
coordinates, will do equally well.2

The velocity V in fluid or gas dynamics has been defined as the local average
over some small volume of the velocities of the constituent particles at position x and
point in time t , c.f. Eq. (2.1.5). Elementary considerations from statistical physics
tell you that the velocity v of an individual particle in that volume is never precisely
equal to the average velocity V : thermal motion of the particles is superposed on the

1Throughout this book I will use two different notations for unit vectors, whichever is more conve-
nient in the context of the expressions: I will either write x̂ or êx for the unit vector in the x-direction,
and similar expressions for the unit vectors in the y- and z-directions of a Cartesian coordinate sys-
tem. If I do not specify the coordinate system used I will simply write êi for the i-th unit vector,
where i = 1, 2, 3.
2In this context it is important to realize that a vector like V has a mathematically well-defined
meaning, independent of the coordinate system that is used to represent this vector! It is simply
an arrow with a certain length and orientation. Coordinate systems represent a vector in terms of
components , and changing the coordinate system only changes the components (representation),
but not the vector itself! This implies an important property of all proper physical theories: they
are covariant, meaning that physical laws should not depend on the choice of coordinate systems.
When written in vector language, or more generally in tensor language, a physical law (equation
of motion, conservation law, . . .) always looks the same. We will occasionally use this principle
in these notes, for instance by doing intermediate steps in a complicated calculation in the most
convenient set of coordinates for that particular problem, and then writing the end result in vector
form. That is generally valid in any coordinate system.
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average motion. This leads to a range of possible velocities for an individual particle.
As we will see below, the influence of the deviations from the average velocity, the
so-called velocity dispersion, is taken into account by introducing the fluid pressure
and the associated pressure force. The velocity dispersion also defines the thermal
energy per particle. This is themean kinetic energy per particlemeasured by someone
who moves with the flow with (local) average velocity V .

2.2 Eulerian and Lagrangian Time Derivatives

Let us consider the precise interpretation of the time derivative d/dt . As already
discussed above, the interpretation of the time derivative d/dt is obvious in the case
of Newtonian mechanics: it is the change in time, as measured by a hypothetical
observer that moves with the particle along its orbit. The same interpretation should
hold for the time-derivative d/dt in fluid mechanics. It is the time derivative seen by
an observermoving alongwith the flow. Therefore, in theworld of fluid/gas dynamics
d/dt is usually called the comoving or Lagrangian time-derivative.

This is not the only time-derivative one can think of in a fluid description, where
all physical quantities are fields that depend both on position x and time t , which are
now independent variables.3 Let us assume that some quantity Q(x, t) is measured
by two observers. Q(x, t) stands for any field used in the fluid description. The
stationary observer is at some fixed position x in space, while the second observer
moves with the fluid at the (local) velocity V (x, t). We will call this second observer
the comoving observer. We calculate the change in Q in a small time interval �t , as
seen by these two observers, evaluated while sitting at/passing the same position x.

The first (stationary) observer measures a change

δQ = Q(t + �t, x) − Q(t, x)

(2.2.1)

≈
(

∂Q

∂t

)
�t,

assuming�t � t . This is a straightforward application of the definition for the partial
time derivative of Q(x, t), called the Eulerian time derivative in fluid mechanics.

The change seen in the same time interval by the comoving observer is influenced
by his position shift. For small �t this shift amounts to

�x = V �t = (
Vx �t, Vy �t, Vz �t

)
. (2.2.2)

3This situation is different from single-particle dynamics where x is a dependent variable that
depends on time!
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The comoving observer by definition follows the trajectory taken by the local flow, so
it stands to reason to define the change �Q that he measures in a small time interval
�t as

�Q ≡
(
dQ

dt

)
�t. (2.2.3)

Evaluating �Q using (2.2.2):

�Q = Q(t + �t, x + �x) − Q(t, x)

≈ ∂Q

∂t
�t + (�x · ∇)Q (2.2.4)

=
[
∂Q

∂t
+ (V · ∇)Q

]
�t

This leads to
dQ

dt
= ∂Q

∂t
+ (V · ∇)Q. (2.2.5)

Here∇ = (∂/∂x, ∂/∂y, ∂/∂z) is the gradient operator, and the short-hand notation
V · ∇ is defined in Cartesian coordinates as

V · ∇ ≡ Vx
∂

∂x
+ Vy

∂

∂y
+ Vz

∂

∂z
. (2.2.6)

In other coordinates it can take a more complicated form, see the Appendix.
This derivation shows that the Eulerian time derivative ∂/∂t , as measured by the

first observer at a fixed position, and the comoving (or Lagrangian) time derivative,
as measured by the second observer moving with velocity V , are related by:

d

dt
= ∂

∂t
+ (V · ∇). (2.2.7)

This last relation is written in vector form, and therefore valid in any coordinate sys-
tem! This means that the equation of motion for a fluid, which involves the comoving
time derivative, should be written as:

ρ

[
∂V
∂t

+ (V · ∇) V
]

= f . (2.2.8)

This form of the equation of motion for a fluid explicitly shows the reason why fluid
dynamics is more difficult than the Newtonian dynamics of a single particle. The
term (V · ∇)V is formally quadratic in V and thus introduces non-linearity into the
equation of motion. This is the price one has to pay for having to deal with a velocity
field V (x, t) where position x and time t are both to be considered as independent
variables.
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2.2.1 Eulerian and Lagrangian Change

By combining relations (2.2.1) and (2.2.4) one can also see that the Eulerian change
δQ, as measured at a fixed position, and the Lagrangian change�Q of some quantity
Q, given a small position shift �x, are related by:

�Q = δQ + (�x · ∇) Q. (2.2.9)

This relation is valid for small�x regardless the precise nature of Q (scalar function,
vector, tensor, . . .). This relation will be an important ingredient in the theory of
small-amplitude waves that is treated in Chap.7.

Finally, the following bears repeating: even though I have used Cartesian coordi-
nates x , y and z in the derivations, the final expressions (2.2.7), (2.2.8) and (2.2.9)
are written in vector form and (in this form) are generally valid, regardless the choice
of coordinates one ultimately uses to represent these equations in terms of the vector
components of �x, f or V .

2.3 Pressure of an Isotropic Gas

The precise form of the force density f of course depends on the circumstances.
Generally speaking, it consists of contributions that are internal to the fluid, such as
the pressure force or the force due to internal friction, and forces that are applied by
external sources, for example the gravitational pull of the Earth on its atmosphere.

The most important internal force density of a gas or fluid is the pressure force.4

The pressure force takes account of the spread of velocities of the constituent particles
around the mean velocity V . This velocity spread means that the exact momentum of
an individual particle, and the mean momentum of the fluid differ. This momentum
difference, or more precisely the associated flux of momentum, ultimately leads to
a macroscopic force when one averages over all particles. The spread in velocities
is due to the thermal motion of the particles. The precise derivation of fluid pressure
in terms of the microscopic physics of the constituent particles follows from kinetic
gas theory. It is possible, however, to give an approximate derivation of the pressure
force that gives important insight into its nature.

Consider a collection of particles of identical mass m in some local volume V .
The individual velocity of particle α5 is given by

vα = V (x, t) + σα(x, t). (2.3.1)

4I will follow the general convention to speak of ‘forces’ even though, technically speaking, one
should speak of force densities.
5Greek indices are used to distinguish particles.

http://dx.doi.org/10.2991/978-94-6239-195-6_7


2.3 Pressure of an Isotropic Gas 11

Here the velocity has been written as the sum of the mean velocity V of the whole
set of particles, and the deviation σα from the mean of particle α. If there are in total
N particles in the volume this definition implies, using a notation · · · for the average,

v ≡ 1

N

N∑

α=1

vα = V (x, t) (2.3.2)

and
σ = v − V = 0. (2.3.3)

Here I have used that V already is an average, and must therefore satisfy V = V .
Let us write down the equation of motion of each particle. We do this in the ‘fluid

mechanics’ form6:

m
duα

dt
= m

[
∂uα

∂t
+ (uα · ∇)uα

]
= Fα (2.3.4)

Substituting Eq. (2.3.1) for uα and summing over all N particles, using definition
(2.3.2) for the average, yields an average equation of motion:

Nm

[
∂V
∂t

+ (V · ∇) V + (σ · ∇)σ

]
= N F. (2.3.5)

One sees that the only term involving the deviations from the mean velocity that
survives this averaging procedure is a term that is quadratic in σ:

Nm (σ · ∇)σ. (2.3.6)

This term will in general not vanish. All terms that are linear in σ are averaged out
because of (2.3.3). This procedure assumes implicitly that the averaging process is
not influenced by the action of time- and space derivatives.

Themean number density (number of particles per unit volume) equals n = N/V ,
while the external (mean) force density is f ext = N F/V . Dividing (2.3.5) by V and
re-ordering terms one can write:

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −ρ (σ · ∇)σ + f ext, (2.3.7)

with ρ ≡ nm the mass density. One sees that the effect of the random thermal motion
leads to a force term that is quadratic in σ. In the next Section we will evaluate this
term for a gas with an isotropic distribution of the random velocities: the typical case

6Those of you who are uncomfortable with this step may assume that the fluid is composed of
’subfluids’ that consist of all particles that happen to have the same total velocity v.
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for a mono-atomic gas in thermodynamic equilibrium in absence of other forces, and
a good approximation in many other circumstances.

2.3.1 The Stress Tensor due to Thermal Motion

We now use a result from tensor analysis. For a good introduction see the book by
Arfken andWeber [2], Chaps. 1 and 2. Other useful references are [47], Chap. 10 and
[10], Chap. 11. Additional information can be found in Appendix A.

Consider the dyadic tensorT ≡ A ⊗ B, which is obtained from the direct product
of two vectors A = Ai ei and B = Bj e j :

A ⊗ B ≡ Ai B j ei ⊗ e j . (2.3.8)

The ei with i = 1, 2, 3 are the three unit vectors employed in the coordinate system.
For instance, in a standard Cartesian coordinate system one has e1 ≡ x̂ = (1, 0, 0),
e2 ≡ ŷ = (0, 1, 0) and e3 ≡ ẑ = (0, 0, 1). A vector A can be represented as a
column vector,

A = Ax x̂ + Ay ŷ + Az ẑ =

⎛

⎜⎜⎜⎜⎝

Ax

Ay

Az

⎞

⎟⎟⎟⎟⎠
,

and the direct product T = A ⊗ B as a 3 × 3 matrix with components Ti j = Ai B j :

A ⊗ B =

⎛

⎜⎜⎜⎜⎝

Ax Bx Ax By Ax Bz

Ay Bx Ay By Ay Bz

Az Bx Az By Az Bz

⎞

⎟⎟⎟⎟⎠
.

In (2.3.8) we employ the Einstein summation convention where one sums over
all repeated indices, in this case over i = 1, 2, 3 and j = 1, 2, 3. One can show that
the following relation holds generally if one takes the divergence of such a dyadic
tensor, This mathematical operation yields a vector in a manner that, for now, may
be employed as recipe:

∇ · (A ⊗ B) = (∇ · A) B + (A · ∇) B. (2.3.9)

Here we use the divergence of the vector A:

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
(2.3.10)
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The operator (A · ∇) B is defined as7

(A · ∇) B =
(
Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

)
B. (2.3.11)

Relation (2.3.9) is essentially the product rule for differentiation. As an example,
using some of the formal definitions found in Appendix A and employing Cartesian
coordinates (x , y, z),we can calculate the x-component of the vector (!)∇ · (A ⊗ B):

[ ∇ · (A ⊗ B) ]x = ∂

∂x
(Ax Bx ) + ∂

∂y

(
Ay Bx

) + ∂

∂z
(Az Bx )

= ∂Ax

∂x
Bx + Ax

∂Bx

∂x
+ ∂Ay

∂y
Bx + Ay

∂Bx

∂y
+ ∂Az

∂z
Bx + Az

∂Bx

∂z

(2.3.12)

=
(

∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
Bx +

(
Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

)
Bx

= [ (∇ · A) B + (A · ∇) B ]x .

Relation (2.3.9) allows us to write:

(ρ σ · ∇)σ = ∇ · (ρ σ ⊗ σ) − (∇ · (ρσ)) σ. (2.3.13)

This expression involves the dyadic tensor

T = ρσ ⊗ σ (2.3.14)

This tensor has a simple physical interpretation as the so-called stress tensor that
is associated with the thermal motion of the particles in the fluid or gas: the (i, j)
component is

Ti j = (ρσi ) σ j = (momentum density in the i-direction)× (velocity in j-direction).

Physically, it gives the amount of i momentum that is transported across a unit
surface per unit time, where the normal to said surface is along the j-direction. Since
there are three spatial directions, there are three momentum components that can be
transported, and there are three independent ways to orient a unit surface. So one
needs in total nine quantities to fully specify the momentum transport. Each index i
and j can independently take the values 1, 2 and 3, so there are indeed 3 × 3 = 9
components of the tensor Ti j . This partially justifies the use of the rank 2 tensor

7These last two definitions are only valid in Cartesian (rectangular) coordinates. More detailed
expressions, valid for general (curvilinear) coordinate systems, can be found in Appendix A.



14 2 From Newton to Euler and Navier-Stokes

T to describe the momentum transport due to thermal motions: it has the required
number of degrees of freedom.8 If one associates 1 with the x-direction, 2 with the y
direction and 3 with the z-direction in a Cartesian coordinate grid one can represent
the tensor T as a 3 × 3 matrix:

T =

⎛

⎜⎜⎜⎜⎝

ρ σ2
x ρ σxσy ρ σxσz

ρ σyσx ρ σ2
y ρ σyσz

ρ σzσx ρ σzσy ρ σ2
z

⎞

⎟⎟⎟⎟⎠
. (2.3.15)

However, we will see that things simplify considerably in an isotropic fluid or gas so
that, after averaging over all possible orientations of the vector σ, the stress tensor
has only three non-vanishing diagonal components.

2.3.2 The Case of an Isotropic Fluid or Gas in Equilibrium

If the detailed microscopic physics is in equilibrium, and if there is no preferred
direction so that the fluid is isotropic, the second term on the right hand side of
Eq. (2.3.13) vanishes upon averaging over all possible directions of σ. Another way
to see this is to realize that an isotropic system looks the same if it is rotated over
an arbitrary angle in an arbitrary direction. The quantity ∇ · (ρσ) is a scalar, and
therefore has a value that is not influenced by any rotation of the system. On the
other hand, σ is a vector which does feel the effect of a rotation. Therefore, in order
for the system to be invariant under rotations the second term on the right hand side of
Eq. (2.3.13) must vanish identically. For a gas or fluid where the molecular velocities
are distributed isotropically (see Fig. 2.1) we therefore have:

ρ (σ · ∇)σ = ∇ · (
ρ σ ⊗ σ

)
. (2.3.16)

The assumption of isotropy also implies that the following relations must be valid:

σ2
x = σ2

y = σ2
z = 1

3
σ2. (2.3.17)

More importantly, it also implies that the cross-correlation unequal velocity compo-
nents vanishes:

σxσy = σxσz = σyσz = · · · = 0. (2.3.18)

8More important is the fact thatT behaves in the rightway under general coordinate transformations,
a subject we will not get into here but that can be found in any textbook on tensor analysis, see for
instance [2, 10, 47].
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Fig. 2.1 An illustration of the meaning of the assumption of isotropy for the thermal velocities of
the gas. The row of three figures give the measured distributions of the thermal velocity components
σx , σy and σz along the three coordinate axes. These curves are the probability distribution functions
(PDFs) for the three components. The PDFs are symmetric with respect to σx,y,z = 0 so that the

average velocity satisfies σi = 0 for i = x, y, z. The width of a PDF determines σ2
i . In an isotropic

fluid the three PDFs are identical to each other

The first relationship says that all three coordinate directions on average contribute
equally toσ2 = σ2

x + σ2
y + σ2

z . The second relation follows from the fact that products
like σxσy change if one rotates the coordinate system, but that such a rotation can
have no effect if the physics is isotropic. This is only possible if all these cross-terms
vanish identically.

To see this explicitly how this comes about, consider a rotation of the coordinate
system in the x − y plane over an angle θ. The new unit vectors are

ê1 = cos θ x̂ + sin θ ŷ, ê2 = − sin θ x̂ + cos θ ŷ, ê3 = ẑ. (2.3.19)

The new components of any vector A follow from the projection of that vector on
the unit vectors, which can be expressed as a scalar product:

Ai = A · êi . (2.3.20)

Using (2.3.19) one calculates the velocity components in the rotated coordinate
system:

σ1 = σx cos θ + σy sin θ, σ2 = −σx sin θ + σy cos θ. (2.3.21)
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From this one immediately finds:

σ2
1 = σ2

x cos
2 θ + σ2

y sin2 θ + 2σxσy cos θ sin θ.

σ2
2 = σ2

x sin
2 θ + σ2

y cos2 θ − 2σxσy cos θ sin θ, (2.3.22)

σ1σ2 = (
σ2
y − σ2

x

)
sin θ cos θ + σxσy

(
cos2 θ − sin2 θ

)
.

If one now averages over an isotropic distribution of velocities one should find that
the averages do not change. To an observer rotating with the coordinate system the
gas has rotated over an angle −θ. However, an isotropic velocity distribution has (by
definition) the same statistical properties when rotated over any angle, and should
therefore have the same statistics regardless the value of θ. This means that one must
have:

σ2
1 = σ2

2 = σ2
x = σ2

y,

(2.3.23)

σ1σ2 = σxσy .

With σ2
x = σ2

y = σ2/3 one immediately finds that σ2
1 = σ2

2 = σ2/3, for any θ,
provided that the cross term satisfies σxσy = 0, simply because sin2 θ + cos2 θ = 1.
In that case one also immediately finds σ1σ2 = σxσy = 0. The set of rules (2.3.17)
and (2.3.18) is the only set of rules that is consistent with an isotropic distribution of
thermal velocities.

These two sets of relations, (2.3.17) and (2.3.18), can be summarized in a single
equation using the Kronecker symbol δi j , which has the properties δi j = 1 when
i = j and δi j = 0 when i �= j :

σiσ j = 1

3
σ2 δi j . (2.3.24)

The above representation of the dyadic tensor ρσ ⊗ σ together with (2.3.24) means
that one can write:

ρ σ ⊗ σ = ρ

⎛

⎜⎜⎜⎜⎝

1
3σ

2 0 0

0 1
3σ

2 0

0 0 1
3σ

2

⎞

⎟⎟⎟⎟⎠
= ρσ2

3
I. (2.3.25)
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Here I ≡ diag(1, 1, 1) is the 3 × 3 unit tensor. In component notation one has
Ii j = δi j . Defining the scalar pressure P as

P = 1

3
ρ σ2, (2.3.26)

one can write the pressure force density due to the thermal motion as:

ρ (σ · ∇)σ = ∇ · (
ρ σ ⊗ σ

) = ∇ · (P I) . (2.3.27)

The definition for the divergence of a rank 2 tensor T (which can be represented by
a 3×3 matrix with components Ti j ) in cartesian coordinates corresponds to a vector,
with components

∇ · T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Txx
∂x

+ ∂Tyx

∂y
+ ∂Tzx

∂z

∂Txy
∂x

+ ∂Tyy

∂y
+ ∂Tzy

∂z

∂Txz
∂x

+ ∂Tyz

∂y
+ ∂Tzz

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.3.28)

If one substitutes expression (2.3.25), written in the form

ρ σiσ j = P δi j , (2.3.29)

into this definition one finds:

∇ · (P I) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂P

∂x

∂P

∂y

∂P

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ∇P. (2.3.30)

This calculation leads to the following conclusion: in an isotropic gas the pressure
force involves the gradient of the scalar pressure P . This means that the equation of
motion (2.3.7) for a frictionless fluid or gas can be written as

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P + f ext. (2.3.31)
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Here f ext is the force density applied externally to the fluid. Note that the pressure
force is formally equal to

f P = −∇P = −∇ · T, (2.3.32)

with T = diag(P, P, P) the stress tensor associated with the pressure.

2.4 The Euler and the Navier-Stokes Equations

If there are no external forces such as gravity, the equation ofmotion for a frictionless
fluid is known as the Euler equation:

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P. (2.4.1)

Friction (called viscosity in fluid/gas dynamics) will be treated in more detail later.
In its simplest form the equation of motion for a viscous fluid is the Navier-Stokes
equation, included here for completeness’ sake:

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P + η

[
∇2V + 1

3
∇(∇ · V )

]
. (2.4.2)

The coefficient η in the last term on the right-hand side of the Navier-Stokes equation
is the shear viscosity coefficient. It determines the strength of viscous effects: internal
friction in the fluid or gas.

For now it is sufficient to note that viscosity, like pressure, arises from ther-
mal motion, specifically from the fact that (elastic) collisions between atoms
or molecules leads to an exchange of momentum. The viscous force density
η

[∇2V + 1
3 ∇(∇ · V )

]
is the macroscopic manifestation of this momentum

exchange in the many particle-particle collisions that occur each second, which fluid
mechanics (by construction) can not describe in detail. If particles typically travel a
linear distance � between collisions before colliding with another particle, and have
a typical thermal velocity σ, the viscosity coefficient equals

η = 1

3
ρσ�. (2.4.3)

Equations (2.4.1) and (2.4.2) respectively form the basis of ideal and viscous fluid-
or gas dynamics.
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2.5 Pressure, Temperature and the Internal Energy

In the Sect. 2.3 we have learned that the thermal motion of the particles, which is
the source of the velocity dispersion around the mean velocity V , leads to a force
proportional to the gradient in the pressure P . The minus sign in this pressure force
−∇P can be understood intuitively: material tends to move away from a region of
high pressure or is sucked into a region of low pressure, as any meteorologist will
tell you.

Thermodynamics (see for instance [18, 29]) tells us that the energy of a system
in thermal equilibrium at temperature T is 1

2kbT per degree of freedom, with kb
Boltzmann’s constant. In the case of an isotropic gas in three dimensions, consisting
of point particles with no internal degrees of freedom, this means

1

2
mσ2

x = 1

2
mσ2

y = 1

2
mσ2

z = 1

2
kbT, (2.5.1)

or equivalently
σ2
x = σ2

y = σ2
z = v2

th with vth = √
kbT/m. (2.5.2)

This thermodynamic relationship implies that the pressure is related to the number
density n (or mass density ρ = nm) and temperature T by the ideal gas law:

P(ρ, T ) = nkbT = ρRT

μ
. (2.5.3)

In this expression R = kb/mH is the universal gas constant, and μ = m/mH is
the mass of the particles, expressed in units of the mass of the hydrogen atom, mH.
The thermal energy density of the gas is the kinetic energy per unit volume that is
associated the thermal velocity:

1

2
nm

(
σ2
x + σ2

y + σ2
z

)
= 3

2
nkbT = 3

2

ρRT

μ
. (2.5.4)

One often uses the specific energy, which is the energy per unit mass. If the mass
density equals ρ a unit mass occupies a volume9 V = 1/ρ, a quantity known as the
specific volume.

The specific energy e is therefore:

e = 3

2

ρRT

μ
V = 3RT

2μ
= 3P

2ρ
. (2.5.5)

9Simply from: ρV = 1 in the mass units used.
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2.6 Gravity and Self-gravity

In single partice dynamics, a gravitational field with a potential �(x, t) and associ-
ated gravitational acceleration g = −∇� leads to a gravitational force on a particle
with mass m equal to

Fgr = m g = −m ∇�. (2.6.1)

Using the same analogy as was used to find the inertial forces on a fluid, the gravi-
tational action on a fluid due to a gravitational field with potential �(x, t) must be
described by using a force density that is the product of the mass density ρ and the
gravitational acceleration g:

f gr = ρ g = −ρ ∇�. (2.6.2)

We can represent the gradient of the gravitational potential �(x, t) as a column
vector in cartesian coordinates:

g(x, t) = −∇�(x, t) = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�

∂x

∂�

∂y

∂�

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.6.3)

If gravity is the only additional force working on the fluid, the equation of motion
becomes:

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P − ρ ∇�. (2.6.4)

In astrophysical applications, one has to deal with the case of self-gravitation, where
the mass of the fluid generates (part of) the gravitational field. In that case we must
add Poisson’s equation to the system of equations:

∇2�(x, t) = 4πG ρ(x, t). (2.6.5)

Poisson’s equation relates the gravitational potential�(x, t) to the mass distribution
ρ(x, t) that acts as a source of gravity. This equation is solved formally by:

�(x, t) = −
∫

d3x′ G ρ(x′, t)
|x − x′| . (2.6.6)

Note that Newtons potential works instantaneously, and is therefore only valid for
‘slowly varying’ gravitational fields. Here ‘slow’ is defined with respect to the light
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travel time across the system one is considering. To properly describe the effects of
a time-varying gravitational field one has to turn to General Relativity, where the
action of gravity is described by tensor fields rather than by a scalar potential �. In
particular, it is not correct to replace Newtons potential by a retarded potential to take
account of relativistic effects, such as the light travel-time between themass that is the
source of the potential, and the position where one tries to determine the value of the
gravitational potential. Such a procedureworks for electromagnetism,where one uses
retarded potentials to describe electromagnetic fields, see for instance [22], Chap. 14.
It does not for gravity as described by the theory of General Relativity. Although
such a theory can be formulated it’s predictions do not agree with experiments. A
discussion of such seemingly obvious but wrong approaches to relativistic gravity
can be found in the famous book of Misner, Thorne and Wheeler [32], Chap. 7 and
in the book by Zee [51], Chapter IX.5.

2.7 Mass Conservation and the Continuity Equation

In order to solve the equation of motion we need to know how the fluid mass density
ρ(x, t) behaves. It is a dynamical quantity that changes in response to the flow. If flow
lines locally converge mass is concentrated in that region of space, and the density
increases. Conversely: if flow lines locally diverge, the mass density will decrease
in that region as time progresses.

Consider a droplet of fluid at position x with infinitesimal volume �V and mass
�M = ρ�V . Due to the motion of the fluid the droplet will be deformed, as a simple
observation of the behavior of milk added to a stirred cup of coffee will immediately
show. However, as long as there are no processes that can create particles (e.g.
pair creation by high-energy photons) or destroy them, the mass of the droplet is
conserved, regardless how complicated its shape becomes:

�M = ρ �V = constant. (2.7.1)

This means that in principle it is sufficient to calculate the change in the droplet
volume�V . In order to properly calculate the deformation of a small volume-element
in a flow, we must first consider the concept of material curves: curves connecting
points where each individual point is carried along passively by the flow with a
velocity equal to the speed of the flow, see the Fig. 2.2.

2.7.1 Equation of Motion for a Material Curve

Take amaterial curve X(�),with �measuring the length along the curve.Bydefinition
each point along a material curve is carried along passively by the flow. This means
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Fig. 2.2 Material lines are carried passively by the flow. The figure shows how a given material
line is deformed as time progresses.

that the velocity at the position X(�) along the curve is always equal to the local fluid
velocity:

dX
dt

= V (x = X, t). (2.7.2)

Consider a infinitesimally small section of the curve with length��, located between
� and � + ��. For �� → 0 the section of curve can be approximated by the tangent
vector

�X = X(� + ��) − X(�) ≈ ∂X
∂�

��. (2.7.3)

The vector �X changes in time according to

d(�X)

dt
= V (X(�) + �X, t) − V (X(�), t). (2.7.4)

In the limit |�X| → 0 one can write:

d(�X)

dt
= (�X · ∇)V . (2.7.5)

2.7.2 Material Volumes

Any small volume in a flow can be defined by three infinitesimal (tangent) vectors
�X , �Y and �Z. These vectors need not be orthogonal (see Fig. 2.3), and form the
‘edges’ of the infinitesimal volume. If one takes these three edges to be sections of
material curves, the entire infinitesimal volume moves with the flow: it is a material
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Fig. 2.3 The volume
defined by three arbitrary
vectors �X, �Y and �Z

volume.10 This means that a material volume contains a fixed amount of mass: no
material can flow across amaterial curve, and therefore themass flux across the outer
surfaces of the volume, which are defined by material curves, also vanishes: no mass
can flow in or out. The vectors �X , �Y and �Z are carried passively by the flow
and, as a result, are stretched and rotated according to Eq. (2.7.5). According to the
results of vector algebra (e.g. [2], Sect. 1.4) the oriented volume spanned by these
three infinitesimal vectors equals

�V = �X · (�Y × �Z) =

∥∥∥∥∥∥∥∥∥∥

�Xx �Xy �Xz

�Yx �Yy �Yz

�Zx �Zy �Zz

∥∥∥∥∥∥∥∥∥∥

. (2.7.6)

Taking the time-derivative d/dt of this definition, the product rule for differentiation
gives:

d�V
dt

= d�X
dt

· (�Y × �Z) + �X ·
(
d�Y
dt

× �Z + �Y × d�Z
dt

)
. (2.7.7)

Now using the result (2.7.5) for material curves one finds:

d�V
dt

= [(�X · ∇)V ] · (�Y × �Z)

+ [(�Y · ∇)V ] · (�Z × �X)

+ [(�Z · ∇)V ] · (�X × �Y) (2.7.8)

10Two material vectors can be used to define a material surface, for instance: �O = �X × �Y .
We will have use for this later.
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Here I have used the cyclic permutation rule:

A · (B × C) = B · (C × A) = C · (A × B). (2.7.9)

Result (2.7.8) is quite general, but rather unwieldy. The algebra can be simplified
considerably if one makes a special (and rather obvious) choice for the three vectors
�X , �Y and �Z. Let us take the three infinitesimal vectors to be orthogonal and in
addition align them with the three coordinate axes of a Cartesian coordinate system:

�X =

⎛

⎜⎜⎜⎜⎝

�X

0

0

⎞

⎟⎟⎟⎟⎠
, �Y =

⎛

⎜⎜⎜⎜⎝

0

�Y

0

⎞

⎟⎟⎟⎟⎠
, �Z =

⎛

⎜⎜⎜⎜⎝

0

0

�Z

⎞

⎟⎟⎟⎟⎠
. (2.7.10)

It is easily checked that for this particular choice the volume-element (2.7.6) reduces
to�V = �X �Y �Z , as should be expected. This assumption simplifies the algebra
considerably but, as will be argued below, does not constrain the generality of the
final result.

The first term on the right-hand side of (2.7.8) can be written in determinant form
as

�X

∥∥∥∥∥∥∥∥∥∥

∂Vx/∂x ∂Vy/∂x ∂Vz/∂x

0 �Y 0

0 0 �Z

∥∥∥∥∥∥∥∥∥∥

= �X

(
∂Vx

∂x

)
�Y �Z . (2.7.11)

The remaining two terms can be calculated in a similar fashion, and give (∂Vy/∂y)
�X �Y �Z and (∂Vz/∂z)�X �Y �Z . Therefore expression (2.7.8) reduces to the
simple form

d�V
dt

= �X �Y �Z

(
∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z

)

(2.7.12)

= �V (∇ · V ) .

Since any volume, regardless its shape, can always be constructed usingmuch smaller
rectangular cubes as ‘building blocks’,11 with each small cube individually satisfying
relation (2.7.12), this relationship must be true regardless the shape of the volume,
provided that this total volume remains infinitesimally small.

11The ‘Lego Principle’.
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2.7.3 Mass Conservation and the Continuity Equation

Mass conservation, ρ�V = constant, implies that

d(ρ�V)

dt
= �V

(
dρ

dt

)
+ ρ

(
d�V
dt

)
= 0, (2.7.13)

or equivalently
dρ

dt
= −ρ

(
1

�V
d�V
dt

)
. (2.7.14)

Using the change-of-volume law (2.7.12) together with the now familiar expression
for d/dt one finds:

∂ρ

∂t
+ (V · ∇)ρ = −ρ (∇ · V ). (2.7.15)

Reordering terms in this equation and employing the vector identity12

∇ · ( f A) = f (∇ · A) + (A · ∇) f, (2.7.16)

one can write this differential version of the mass conservation law as

∂ρ

∂t
+ ∇ · (ρ V ) = 0. (2.7.17)

This equation is known as the continuity equation. The Box below gives a simple
one-dimensional derivation that uses a different point of view.

Fig. 2.4 The quantities used for the derivation of the continuity equation for a one-dimensional
flow along the x-axis. The flow with velocity V (x, t) is in the direction of positive x , as indicated
by the two arrows. The density of the fluid is ρ(x, t). We consider the change in the amount of mass
�M contained between x = X and x = X + �X , the gray box in the figure. We assume �X � X
throughout the calculation. The mass contained in the hatched area of width V δt is the mass that
enters the box in a short time span δt � t

12Another consequence of the product rule for differentiation, as is easily checked for Cartesian
coordinates!
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Continuity Equation for a One-Dimensional Flow

Consider a one-dimensional flow along the x-axis with density ρ(x, t) and
velocity V (x, t). The amount of mass that is contained in a fixed infinitesimal
one-dimensional box, bounded by x = X and x = X + �X with �X � X ,
equals

�M(t) = ρ(X, t) �X, (2.7.18)

see the Fig. 2.4.
Themass�M changes in time sincemass flows into or out of the box across

its two boundaries. I will assume that V > 0 everywhere in and near the box
in order to simplify the calculation. In that case the amount of mass that enters
the Box by flowing across its edge at x = X in an infinitesimal time span δt is

(�M)in = ρ(X, t)V (X, t) δt. (2.7.19)

This is the amount of mass contained in the strip of width �x = V (X, t) δt
along the x-axis. By the same token, the amount of mass that leaves the box
in the same time span by flowing across its boundary at x = X + �X is

(�M)out = ρ(X + �X, t)V (X + �X, t) δt. (2.7.20)

Therefore, the change in the mass contained in the box is

δ (�M) = (�M)in − (�M)out

(2.7.21)

= {ρ(X, t)V (X, t) − ρ(X + �X, t)V (X + �X, t)} δt.

Since the walls of the Box are fixed we have

δ (�M) = δρ �X =
{(

∂ρ

∂t

)

x=X

δt

}
�X. (2.7.22)

Here I have used that δt is infinitesimal.
For small �X we have

ρ(X, t)V (X, t) − ρ(X + �X, t)V (X + �X, t)

(2.7.23)


 −
(

∂ (ρV )

∂x

)

x=X

�X.
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Substituting these last two relations into (2.7.21) one gets:

(
∂ρ

∂t

)
�X δt = −

(
∂ ρV

∂x

)
�X δt, (2.7.24)

where it is now understood that all quantities are evaluated at x = X . The
density must therefore satisfy

∂ρ

∂t
= − ∂

∂x
(ρV ) ⇐⇒ ∂ρ

∂t
+ ∂

∂x
(ρV ) = 0, (2.7.25)

the one-dimensional continuity equation. This argument is easily extended to
three dimensions, using a rectangular cubewith volume�V = �X�Y�Z , by
considering the flow of mass across all six faces of the cube. Such a calculation
yields continuity equation (2.7.17).

2.8 The Adiabatic Gas Law

The final missing element in our description of a fluid or gas is a recipe that describes
the behavior of the pressure P = ρRT/μ. Iwill limit the discussion here to the special
(but important) case of an adiabatic gas.

An adiabatic process in thermodynamics is a process where (in a closed system)
no energy is added by irreversible heating the system, or extracted by irreversible
cooling the system. The first law of thermodynamics states that the amount of heat
dQ added to a gas in some volume V is related to the change in the energy dU and/or
the volume-change dV by

dQ ≡ T dS = dU + P dV. (2.8.1)

Here S is the entropy, T the gas temperature and P the gas pressure. We already
calculated the energy per unit volume of an ideal gas in thermal equilibrium: it equals
3ρRT/2μ, see Eq. (2.5.4).

The energy U in a small volume V is then simply:

U = 3

2

ρRTV
μ

. (2.8.2)

The pressure satisfies the ideal gas law (Eq. 2.5.3): P = ρRT/μ. An adiabatic
process satisfies by definition that no heat is added or subtracted from the system:
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dQ = T dS = 0. (2.8.3)

In that case, the first law of thermodynamics reduces to:

d

(
3ρRTV

2μ

)
+

(
ρRT

μ

)
dV = 0. (2.8.4)

Writing out the first differential, using the product rule d( f g) = (d f ) g + f (dg),
one finds: (

5ρRT

2μ

)
dV + V d

(
3ρRT

2μ

)
= 0. (2.8.5)

Using P = ρRT/μ and multiplying by the resulting relation 2/3 leads to the
following relation:

5

3
P dV + V dP = 0. (2.8.6)

This can be written as13

dP

P
+ 5

3

dV
V = d

{
ln

(
P V5/3

)} = 0. (2.8.7)

This implies that ln
(
P V5/3

)
is constant, which is equivalent with

P × V5/3 = constant. (2.8.8)

As long as the volume V is small, we can apply this law locally. Take an infinitesimal
volume V , containing a fluid of density ρ and pressure P .

As the gas expands (or contacts) the volume changes, and the pressure adjusts
according to (2.8.8). The conservation of mass implies that ρ V = constant. This
implies V ∝ 1/ρ, and relation (2.8.8) can be rewritten in terms of the density:

P ρ−5/3 = constant. (2.8.9)

2.8.1 The Polytropic Gas Law, the Specific Heat Coefficients
and the Isothermal Gas

Relation (2.8.9) is a special case of a polytropic gas law, which generally takes the
form

P = constant × ργ . (2.8.10)

13Here we use that dx/x = d ln x for any variable x , and ln(xy) = ln x + ln y.
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The value of the exponent γ (= 5/3 for an ideal classical gas) depends on the
circumstances. For an ideal gas γ is related to the ratio of specific heat at constant
volume, cv, and at constant pressure, cp: γ = cp/cv as we will now prove. Let us
introduce the specific volume V , the volume containing a unit mass:

V ≡ 1

ρ
. (2.8.11)

In terms of this quantity, relation (2.8.1) can be written as

dQ = T ds = de + P d

(
1

ρ

)
, (2.8.12)

by applying the general relation (2.8.1) to the specific volumeV . Here s is the entropy
per unit mass (specific entropy), and e the energy per unit mass (specific energy),

e ≡ 3

2

RT

μ
= 3

2

kbT

m
. (2.8.13)

The specific heat coefficient at constant volume cv is defined by the relation

(dQ)V = cnst = cv dT . (2.8.14)

It determines the amount of energy needed to raise the temperature of a unit mass of
gas by an amount dT , keeping the volume (and, because of mass conservation, the
density) constant. Using (2.8.12) with d(1/ρ) = 0 this definition implies

cv = ∂e

∂T
= 3

2

kb
m

. (2.8.15)

If one writes (2.8.12) in the form

dQ = d

(
e + P

ρ

)
− dP

ρ
, (2.8.16)

one can define the specific heat coefficient at constant pressure cp by

(dQ)P = cnst = cp dT . (2.8.17)

The coefficient cp determines the amount of energy needed to raise the temperature
of a unit mass by an amount dT while the pressure is kept constant so that dP = 0.
This means that the gas is allowed to expand if it is heated, or will contract as it cools.

Definition (2.8.17) implies
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cp = ∂(e + P/ρ)

∂T
= 5

2

kb
m

. (2.8.18)

One must have cp > cv because now part of the energy supplied goes into the work
done by the gas during the expansion rather than into heat, andmore energy is required
for a given temperature change dT . From (2.8.15) and (2.8.17) one immediately finds

cp − cv = kb
m

= R
μ

. (2.8.19)

The first law of thermodynamics can be rewritten in terms of cp and cv.
Using relations (2.8.15) to (2.8.19) one finds:

dQ = cv dT +
(

ρRT

μ

)
d

(
1

ρ

)

= cv dT −
(RT

ρμ

)
dρ (2.8.20)

= cvT

[
dT

T
−

(
cp
cv

− 1

)
dρ

ρ

]
.

Putting dQ = 0 as required for an adiabatic process, the resulting equation is solved
by

ln T − (γ − 1) ln ρ = constant, (2.8.21)

with

γ ≡ cp
cv

= 5

3
. (2.8.22)

Relation (2.8.21) is equivalent with ln
(
Tρ−(γ−1)

) = constant, and leads to the
adiabatic temperature-density relation:

Tρ−(γ−1) = constant. (2.8.23)

It is easily checked that this relation is equivalent with the adiabatic gas law: since
P = ρRT/μ ∝ ρT relation (2.8.23) implies P ∝ ργ . This proves the relationship
between the index γ in the polytropic gas law (2.8.10) and the specific heat ratio in
the case of an adiabatic gas.

As a by-product of this derivation we can calculate the specific entropy s for an
ideal gas directly from Eq. (2.8.20). Using dQ = T ds and (2.8.22) one has:

T ds = cvT

[
dT

T
− (γ − 1)

dρ

ρ

]
. (2.8.24)

Dividing out the common factor T , the resulting equation can be written as:
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d [ s − cv ln T + (γ − 1)cv ln ρ ] = 0. (2.8.25)

This relation can be immediately integrated to

s = cv ln

(
T

ργ−1

)
+ constant. (2.8.26)

An alternative expression for s follows from the ideal gas law P = ρRT/μ:

s = cv ln
(
P ρ−γ

) + constant. (2.8.27)

A special case, often used as a useful approximation in astrophysical models, is
the assumption of an isothermal gas that satisfies the relation

T = constant. (2.8.28)

In that case the pressure P = ρRT/μ is directly proportional to the density. The
polytropic index γ in (2.8.10) takes the special value

γiso = 1. (2.8.29)

This value for γ is consistent with the temperature-density law (2.8.23): for γ = 1 it
reduces to T = constant.

Note that for an ideal gas an isothermal state of the gas can only be maintained if
there exists some mechanism which acts as a ‘thermostat’ that keeps the temperature
constant by supplying (extracting) exactly the right amount of energy to the gas if
it expands (contracts). A gas embedded in a strong black-body radiation field14 of
fixed temperature often behaves in this manner. The radiation acts as a heat reservoir
with such a large heat capacity so that any changes in the internal energy of the gas
are immediately compensated by the radiation: if the gas is colder than the radiation
field it absorbs radiation until the temperatures equilibrate. Conversely: if the gas is
hotter it emits radiation until the temperatures of gas and radiation are equal. These
processes force the gas to remain in temperature equilibrium with the radiation field.

2.9 Application: The Isothermal Sphere and Globular
Clusters

Asafirst (astronomical) applicationwewill consider a simplemodel for a spherically-
symmetric, self-gravitating stellar system: the isothermal sphere. The isothermal

14Black Body Radiation has a unique distribution of photon energies. When expressed in terms of
the frequency ν (photon energy is ε = hν with h Planck’s constant) this distribution is n(ν) =
(8πν2/c3)[exp(hν/kbT ) − 1 ]−1, where n(ν) is the number of photons per unit volume and unit
frequency so that the number density of photons in a frequency interval dν equals dnphot = n(ν)dν.
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Fig. 2.5 The globular cluster NGC 5139

sphere is a crude model for a globular cluster, for the quasi-spherical central region
(‘bulge’) of a disk galaxy, or for the nucleus of an elliptical galaxy (Fig. 2.5).

Consider a large number of stars with a density distribution that only depends on
the distance r from the center of the sphere. If all the stars have a mass m∗ and the
number density at radius r equals n(r), the mass density equals

ρ(r) = n(r)m∗. (2.9.1)

If the number of stars is large enough we can describe it as a ‘gas’ of stars with a
‘temperature’ T , which is determined by the orbital velocity dispersion according
Eq. (2.5.1):

σ2
x = σ2

y = σ2
z ≡ σ̃2 = kbT

m∗
. (2.9.2)

This definition implies that σ2 = 3σ̃2. Typically, a globular cluster contains 100,000
stars and has a mass between 104 and 106 M�, with an average mass of 105 M�.

The velocity dispersion of the stars in a globular cluster can be measured by
looking at the Doppler broadening of the absorption lines in the spectrum of an
entire globular cluster: one observes the ‘average’ spectrum of a large number of
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stars, with a velocity dispersion σ̃ along the line-of-sight. This leads to a line-width
�λ in the integrated spectrum of the whole cluster given by

�λ

λ

 σ̃

c
. (2.9.3)

In the isothermal sphere model the cluster is treated as a self-gravitating ball of gas.
The pressure of this gas, where the stars play the role of ‘molecules’, equals

P(r) = n(r)kbT = ρ(r)σ̃2. (2.9.4)

The isothermal assumption means that the temperature, and therefore σ̃, does not
depend on the radius r . All other quantities are assumed to depend only on the radial
coordinate r , the distance to the center of the globular cluster.

The consequences of the isothermal sphere model were first investigated exhaus-
tively by Chandrasekhar [11]. A good modern account of this (and related) models
can be found in the book by Binney and Tremaine [6].

Since there is only velocity dispersion, and no bulk motion of the stars we have
V = 0, and the equation ofmotion becomes the equation for hydrostatic equilibrium,
where the gravitational force in the radial direction is balanced by the radial pressure
gradient:

dP

dr
= σ̃2

(
dρ

dr

)
= −ρ

G M(r)

r2
. (2.9.5)

Here we use the fact that for a spherically symmetric mass distribution the gravi-
tational acceleration at some radius r depends only on the amount of mass M(r)
contained within that radius. Because of this symmetry, the mass outside r does not
exert a net force. The amount of mass contained in a spherical shell between r and
r + dr equals

dM = 4πr2 ρ(r) dr. (2.9.6)

The mass contained within a radius r is given by an integral over mass shells:

M(r) =
∫ r

0
dr ′ 4πr ′2 ρ(r ′). (2.9.7)

The gravitational potential �(r) is defined by the equation

gr = −G M(r)

r2
= −d�

dr
. (2.9.8)

The isothermal assumption, together with P(r) = ρ(r)σ̃2, implies that the equation
of hydrostatic equilibrium (2.9.5) can be written as
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σ̃2

(
1

ρ

dρ

dr

)
= −d�

dr
. (2.9.9)

This equation has a formal solution ln ρ = −�/σ̃2 + constant, or equivalently:

ρ(r) = ρ0 e
−�(r)/σ̃2

. (2.9.10)

Here ρ0 is the mass density at r = 0, assuming that �(0) = 0. This expression gives
the density as a function of the gravitational potential, and is known in the context
of meteorology as the barometric height formula, see the Box below.

The Barometric Height Formula

Consider a static isothermal atmosphere in a constant gravitational field, with
gravitational acceleration g = −g ẑ. The pressure force balances gravity:

dP

dz
= −ρg. (2.9.11)

Using P = ρRT/μ with T = constant, this equation can be written as:

dρ

dz
= − ρ

H , (2.9.12)

with

H = RT

μg
(2.9.13)

the isothermal scale height. The solution is simple:

ρ(z) = ρ0 exp (−z/H) , (2.9.14)

with ρ0 ≡ ρ(z = 0). The density and pressure fall off exponentially with
increasing height. The gravitational potential in this case equals

�(z) = gz, (2.9.15)

where I have chosen�(0) = 0. Such a choice is always possible as the potential
is determined up to a global constant. This allows us to write the expression
for ρ(z) as

ρ(z) = ρ0 exp (−μ�(z)/RT ) . (2.9.16)

The thermal velocity of the gas equals
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σ =
√
RT

μ
, (2.9.17)

so this is equivalent with

ρ(z) = ρ0 exp
(−�(z)/σ2) . (2.9.18)

This is exactly the same expression as we derived for the density law in an
isothermal sphere.

The potential �(r) must be calculated by solving Poisson’s equation for the
gravitational field of the cluster. Because of the use of the radial coordinate r it takes
the form

1

r2
d

dr

(
r2

d�

dr

)
= 4πG ρ(r) = 4πGρ0 e

−�(r)/σ̃2
. (2.9.19)

One can introduce the following dimensionless variables for the radial distance and
gravitational potential:

ξ = r

rK
, � = �

σ̃2
= m∗�

kbT
. (2.9.20)

The radius rK is a normalizing length scale, the so-called King radius. It is defined
in terms of the central density ρ0 and the velocity dispersion σ̃ of the cluster:

rK =
(

σ̃2

4πGρ0

)1/2

=
(

kbT

4πGm∗ρ0

)1/2

. (2.9.21)

In terms of these variables Poisson’s equation takes the following simple form:

1

ξ2
d

dξ

(
ξ2

d�

dξ

)
= e−�. (2.9.22)

This dimensionless formof Poisson’s equation displaysno explicit information about
the properties of the cluster. In particular all reference to the central density ρ0 and the
velocity dispersion σ̃ has disappeared. The interpretation of this result is as follows.
All isothermal spheres are self-similar. If one plots the density relative to the central
density ρ(r)/ρ0 as a function of the dimensionless radius ξ = r/rK, all globular
clusters that behave as an isothermal sphere have exactly the same density profile!

Onemust solve this equation using two physicallymotivated boundary conditions:
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�(ξ = 0) = 0,

(
d�

dξ

)

ξ=0

= 0. (2.9.23)

The first boundary condition corresponds to our earlier assumption that�(0) = 0,
and is not special as the gravitational potential � is determined up to a constant: this
choice is always possible. The second condition is a consequence of the symmetry
of the problem: at the center of the sphere all the mass is at larger radii, and there
can be no net gravitational force: gr (0) = −(d�/dr)r=0 = 0.

Unfortunately, there is no analytical solution of this equation for these boundary
conditions in closed form. We therefore have to resort to considering the solution
near the center (ξ = 0) and far from the center (ξ � 1).

Near ξ = 0 one can solve by a power series, using the fact that for � � 1 the
exponential can be expanded:

e−� = 1 − � + 1

2
�2 + · · · . (2.9.24)

Assuming a solution of the form

�(ξ) = a1 ξ2 + a2 ξ4 + · · · , (2.9.25)

and using the above expansion of the exponential e� , one determines the coefficients
a1, a2 . . . by equating powers of ξ on both sides of Eq. (2.9.22). One finds:

�(ξ) 
 ξ2

6
− ξ4

120
+ · · · (for ξ � 1). (2.9.26)

The corresponding density follows from ρ = ρ0e−� , using the expansion for
exp(−�) once again:

ρ(ξ) 
 ρ0

(
1 − ξ2

6
+ ξ4

45
+ · · ·

)
. (2.9.27)

For large values of ξ, the solution goes asymptotically to

�(ξ) 
 log

(
ξ2

2

)
(for ξ � 1). (2.9.28)

The density for large values of ξ = r/rK is therefore

ρ(ξ) ≈ ρ0

(
2

ξ2

)
. (2.9.29)

Expressing the density in terms of the radius, this solution is known as the singular
isothermal sphere solution as the density goes to infinity at r = 0:
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Fig. 2.6 The mass density in
an isothermal sphere relative
to the central density ρ0 as a
function of the dimensionless
radius ξ = r/rK. The density
profile of all globular
clusters in hydrostatic
equilibrium look the same if
one scales the radius in terms
of the King radius
rK = √

σ̃2/4πGρ0, and the
density with the central
density ρ0

ρ(r) = σ̃2

2πGr2
. (2.9.30)

The singular isothermal sphere is in fact the only analytic solution known to the
isothermal sphere equation, as can be checked by substitution. Note that the density
in this solution depends only on the velocity dispersion and radius, but is independent
of the central density ρ0. It can be shown that any solution of the isothermal sphere
equation takes this form asymptotically at large radii: r � rK. The full solution for
the density of an isothermal sphere is plotted in the Fig. 2.6.

The density in a singular isothermal sphere decays with radius as ρ(r) ∝ r−2,
which means that the mass within a sphere of radius r grows for large radii as
M(r) ∝ r :

M(r) =
∫ r

0
dr ′ 4πr ′2 ρ(r ′) −→ 8πρ0 r

2
K r for r � rK. (2.9.31)

Such behavior is clearly unacceptable as a description for a real globular cluster:
the mass of an isothermal sphere grows without bound as r → ∞. This means that
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the isothermal sphere can only be an approximate model which fails at large radii
because important physical effects are neglected by the model. In this particular case
we have neglected tidal effects on the globular cluster due to the Galaxy. These will
be considered next.

2.9.1 The Tidal Radius

Observations show that clusters have a well-defined edge beyond which the stellar
density rapidly goes to zero. The relatively sharp edge of globular clusters can be
explained if one takes account of tidal forces: the variation of the gravitational accel-
eration of the Galaxy across the globular cluster. For a full discussion see: Spitzer
[46].

If the cluster is located at a distance R from the galactic center, the gravitational
acceleration of the galaxy has a magnitude

gGal(R) ∼ GMGal

R2
, (2.9.32)

with Mgal the mass of the Galaxy. If the radius of the cluster is rt the variation across
the cluster of this acceleration is typically gGal(R + rt) − gGal(R) 
 rt(dgGal/dR).
This is essentially the difference between the strength of the Galactic gravitational
force at the center, and at the outer edge of the globular cluster. Therefore, he typical
magnitude of the tidal acceleration for rt � R is

gt ≈
∣∣∣∣rt

∂

∂R

(
GMgal

R2

)∣∣∣∣ = 2GMgal rt
R3

. (2.9.33)

The value of rt , the so-called tidal radius, can be estimated by equating the tidal
acceleration to the gravitational pull due to the cluster itself: around rt tidal forces
are just able to pull stars from the cluster, so the tidal acceleration and the acceleration
due to the self-gravity of the cluster should nearly balance. If the cluster mass is Mc

this balance reads:
GMc

r2t
≈ 2GMgal rt

R3
, (2.9.34)

or equivalently:
rt
R

≈
(

Mc

2Mgal

)1/3

. (2.9.35)

This defines the maximum size of the cluster where the stars in the clusters are still
marginally bound by the gravitational pull of the cluster mass.

If one uses estimate (2.9.31) for the mass contained within a radius rt ,
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Mc ≈ 8πρ0r
2
K rt, (2.9.36)

one finds from (2.9.33):

rt =
(
4πρ0R3

Mgal

)1/2

rK =
(

σ̃2R3

GMgal

)1/2

. (2.9.37)

Using typical values for the distance, observed velocity dispersion and central mass
density of globular clusters and for the mass of our Galaxy,

σ̃ 
 5 km/s, ρ0 
 104 M� pc−3, R 
 10 kpc, Mgal 
 1011 M�,

one finds a tidal radius equal to

rt ≈ 200

(
σ̃

5 km/s

) (
R

10 kpc

)3/2

pc.

The tidal radius is much larger than the King radius, which equals for typical para-
meters

rK ≈ 0.2

(
σ̃

5 km/s

) (
ρ0

104 M� pc−3

)−1/2

pc.

That gives an a posteriori justification for our use of the asymptotic formula (2.9.36)
for the cluster mass.

The King radius yields a good estimate for the size of the dense central core of
the cluster: the density in an isothermal sphere drops to 1

2ρ0 at r ∼ 3rK ∼ 0.6 pc.
These estimates determine the typical mass of a globular cluster, from (2.9.36):

Mc ∼ 2σ̃2

G

(
σ̃2R3

GMgal

)1/2

≈ 2.5 × 106
(

σ̃

5 km/s

)3 (
R

10 kpc

)3/2

M�.

This estimate compares well with the masses of globular clusters that are inferred
from observations.

2.10 Application 2: Dark Matter Halos

The singular isothermal sphere is often used as a simple model for the mass distrib-
ution in the dark matter halo that is believed to be present around many galaxies and
clusters. This dark (i.e. non-luminous) halo is believed to consist of Dark Matter,
probably a massive, electrically neutral and weakly interacting fundamental particle
that is outside the Standard Model of particle physics. See [36, 5] for the observa-
tional and theoretical background of Dark Matter. A good general introduction to
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modern cosmology is the book by Ryden [43]. It is now commonly believed that
Dark Matter contains about 70% of all mass in the universe.

The existence of dark matter was first noted by the Swiss astronomer Bernard
Zwicky in 1942. In his observations of one of the close, rich clusters of Galaxies,
the Coma Cluster, he found that the individual galaxies were moving so fast that the
cluster could not be gravitationally bound by the mass associated with visible matter.
It should have flown apart long ago. He postulated that there was an unseen mass
present whose gravitational pull is able to confine the cluster, keeping it from flying
apart. Although Zwicky’s suggestion was initially ridiculed, Dark Matter is now an
essential ingredient in modern cosmological models.

Some of the most persuasive evidence for dark matter comes from the rotation
curves of disk galaxies (spiral galaxies). There one measures the rotation speed Vrot

of hydrogen clouds around the galactic center as a function of the distance to the
center. Assuming a circular orbit of radius R in the plane of the galaxy this rotation
speed is of order

Vrot ∼
√
GM(<R)

R
. (2.10.1)

Here M(< R) is the mass contained within the orbit. The gravitational pull of all
mass outside the orbit approximately cancels.15

On the basis of relation (2.10.1) one expects that the rotation speed decays as

Vrot ∼
√
GMgal

R
∝ R−1/2 (2.10.2)

in the outer reaches of the galaxy where almost all of the visible mass is inside the
radius R. The observations show something different: rather than the velocity law
(2.10.2) one finds for large radii:

Vrot ∼ constant. (2.10.3)

An example of such a rotation curve is shown in the Fig. 2.7.
Using relation (2.10.1) this behaviour implies

M(< R) ∝ R. (2.10.4)

This is exactly the behavior of an isothermal sphere at large radii, see Eq. (2.9.31).
The observations suggest that each galaxy is sitting inside an invisible dark matter
sphere, the dark halo, with an extent considerably larger than the size of the visible
galaxy. Apparently this dark matter halo obeys the density law of an isothermal
sphere at sufficiently large radius.

15This cancellation is exact if the mass is distributed spherically: Newton’s shell theorem.
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Fig. 2.7 The rotation curve of a spiral galaxy. Note the almost constant rotational speed at large
radii. The blue and the red curve give the rotational speed expected from the visible (luminous)
matter alone, and the rotation velocity due to the extra mass of the Dark Halo needed to explain the
observations. Note that the net rotation speed depends on the total mass, which is dominated by the
halo mass at large radii.

From solution (2.9.31) with r ⇒ R and definition (2.9.21) of the King radius rK
we can get the Keplerian rotation speed of a test particle moving on a circular orbit
in an isothermal sphere under the influence of gravity for R � rK:

Vrot ∼
√
8πG ρ0r2K = √

2 σ̃ =
√
2

3
σ. (2.10.5)

It is almost equal to the thermal velocity of the particles that make up the isothermal
sphere:

√
2/3 
 0.82.



Chapter 3
Conservative Formulation of the Fluid
Equations

3.1 Introduction

There is a formulation of the hydrodynamic equations that is useful for isolating the
constants of motion in stationary flows and for the determination of jump conditions
at discontinuities in a flow, such as a shock or the interface between two different
fluids: a so-called contact discontinuity. This conservative formulation also forms
the basis for most modern numerical codes in computational fluid/gas dynamics and
magnetohydrodynamics. The conservative formulation employs equations that take
the following generic form:

∂

∂t

⎛

⎝
density of

quantity

⎞

⎠ + ∇ ·
⎛

⎝
flux of that

quantity

⎞

⎠ =
⎛

⎝
external sources of that

quantity per unit volume

⎞

⎠ .

(3.1.1)
The flux in the divergence term is defined in such a manner that the amount of a

quantity passing an oriented infinitesimal surface dO (a vector!) in a time interval
�t equals

�

⎛

⎝ quantity

⎞

⎠ =
⎡

⎣

⎛

⎝
flux of that

quantity

⎞

⎠ · dO
⎤

⎦ × �t. (3.1.2)

This definition determines what form (vector, tensor, . . .) the flux takes.
If the quantity to be transported is some scalar field S, such as the number- or

mass density or the concentration of some contaminant, the associated flux must be
a vector field F so that the quantity F · dO once again is a scalar. Therefore, in the
case of a scalar field the conservative equation takes the form

∂S

∂t
+ ∇ · F = q(x , t). (3.1.3)
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The source term (the amount added per unit volume and unit time by external
sources) has been designated by q. In component-notation, and for Cartesian coor-
dinates, Eq. (3.1.3) reads

∂S

∂t
+

(
∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

)
= q. (3.1.4)

If the quantity involved is a vector field M, such as the momentum density ρV
of a fluid, the flux must be a (rank two) tensor field T so that

T · dO ≡
3∑

j=1

Ti jdOj

is once again a vector (meaning: has one free index!). In this case the conservative
equation must look like

∂M
∂t

+ ∇ · T = Q(x , t). (3.1.5)

Here the source term Q must be a vector field.
The fact that the flux of a vector field is a rank-2 tensor can be understood as

follows. The transported quantity is a vector with three arbitrary components. Each
of these vector components can be transported in three independent directions, for
instance the directions along the three unit vectors x̂, ŷ and ẑ. So, in total, there are
3× 3 independent quantities. This is exactly the number of components of a rank-2
tensor in three-dimensional space.

For example: a fluid with density ρ and flow velocity V has momentum density
M = ρV , which is transported with velocity V . Therefore, the momentum flux
associated with the mean flow equals Tre = ρV ⊗ V , an object known as the
Reynolds stress tensor. As we will see below, the total stress tensor of a fluid has
an additional contribution due to momentum transport due to the thermal motions
of the gas, which is proportional to the pressure. This Reynolds stress tensor has the
components

T re
i j = ρ ViVj , (3.1.6)

with i, j = x , y , z.
Generally, the divergence of an arbitrary rank two tensor (i.e. a tensor Ti j with two

free indices) is defined in Cartesian coordinates (i.e. x1 = x , x2 = y and x3 = z) as
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∇ · T = ∂Ti j
∂xi

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Txx
∂x

+ ∂Tyx

∂y
+ ∂Tzx

∂z

∂Txy
∂x

+ ∂Tyy

∂y
+ ∂Tzy

∂z

∂Txz
∂x

+ ∂Tyz

∂y
+ ∂Tzz

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1.7)

This means that, again for Cartesian coordinates, the component-form of (3.1.5)
reads:

∂

∂t

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mx

My

Mz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Txx
∂x

+ ∂Tyx

∂y
+ ∂Tzx

∂z

∂Txy
∂x

+ ∂Tyy

∂y
+ ∂Tzy

∂z

∂Txz
∂x

+ ∂Tyz

∂y
+ ∂Tzz

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qx

Qy

Qz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1.8)

The strength of this form of the equations lies in Stokes theorem, an integral
relation between the volume integral of a divergence of a flux and the integral of the
same flux over the surface bounding that volume.

Let V be some volume, and dO ≡ dO n̂ an element of the surface ∂V of that
volume, defined in such a way that the unit vector n̂ ≡ (nx , ny , nz) is always
pointing outwards, away from the volume. Stokes law, valid for both vectors and
tensors, then reads:

∫

V
dV

⎛

⎝
∇ · F

∇ · T

⎞

⎠ =
∮

∂V
dO ·

⎛

⎝
F

T

⎞

⎠ . (3.1.9)

In Cartesian coordinates the surface integrals should be interpreted as

∫
dO · F =

∫
dO (n̂ · F)

(3.1.10)

=
∫

dO
(
nx Fx + ny Fy + nz Fz

)

if the transported quantity is a scalar like density or total energy, and as

∫
dO · T =

∫
dO (n̂ · T) (3.1.11)
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if the transported quantity is a vector such as momentum density. In this case n̂ · T
is a vector with components, again in cartesian coordinates,

(n̂ · T) ≡ n̂i Ti j =

⎛

⎜⎜⎜⎜⎝

nxTxx + nyTyx + nzTzx

nxTxy + nyTyy + nzTzy

nxTxz + nyTyz + nzTzz

⎞

⎟⎟⎟⎟⎠
. (3.1.12)

In these expressions dO is the magnitude of the surface element, and n̂ is the
oriented unit vector normal to that surface element, which always points outwards
(i.e. away from the volume).

For instance, if one takes the volume integral of the scalar conservative equation
(3.1.3) over some volume V with surface ∂V and applies Stokes’ theorem, one finds
that

∂

∂t

(∫

V
dV S

)
=

∫

V
dV q(x , t) −

∮

∂V
dO · F. (3.1.13)

This integral relation states that the amount of quantity S in a volume can only
change due to sources contained within that volume (first term on the right-hand
side), or by a flux of that quantity into the volume (when F · dO < 0) or out of the
volume (when F · dO > 0) across its outer surface, as described by the second term
on the right-hand side.

The mass conservation law takes this form with S = ρ, F = ρV and q = 0. The
fluid mass contained in some fixed volume V therefore changes according to:

dM

dt
= ∂

∂t

(∫

V
dV ρ

)
= −

∮

∂V
(dO · V ) ρ = −

∮

∂V
dO ρVn, (3.1.14)

with
Vn ≡ (

n̂ · V )
(3.1.15)

the component of the fluid velocity normal to the surface.

3.2 Conservative Form of the Fluid Equations

In the preceding Chapter, the equations of motion for an ideal fluid have been derived
by analogy with Newtonian dynamics, with the help of mass conservation and some
simple thermodynamics. With a considerable amount of algebra the fluid equations
can be cast into the special conservative form discussed above.
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3.2.1 Conservative Mass Equation

The equation of mass conservation,

∂ρ

∂t
+ ∇ · (ρV ) = 0, (3.2.1)

already has the required form (3.1.3) for a scalar field (in this case: ρ), without
external sources and with flux vector equal to the mass flux, M = ρV . I now will
derive conservative equations for the momentum and energy of a fluid.

3.2.2 Conservative Momentum Equation

The momentum equation (2.6.4),

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P − ρ ∇�, (3.2.2)

can also be cast in conservative form.
First we use the product rule, together with (3.2.1), to rewrite the time derivative

of the velocity in the form

ρ
∂V
∂t

= ∂(ρV )

∂t
− V

∂ρ

∂t
(3.2.3)

= ∂(ρV )

∂t
+ V (∇ · (ρV )).

Substituting this into the equation of motion one finds:

∂(ρV )

∂t
+ (∇ · (ρV )) V + ρ(V · ∇)V = −∇P − ρ∇�. (3.2.4)

By applying relation (2.3.9) for the divergence of a dyadic tensor A ⊗ B, with
A = ρV and B = V , we can combine the second and third term on the left-hand
side of this equation. One finds:

(∇ · (ρV )) V + ρ (V · ∇)V = ∇ · (ρV ⊗ V ) . (3.2.5)

In addition, one can write the pressure force as a divergence:

∇P = ∇ · (P I). (3.2.6)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
http://dx.doi.org/10.2991/978-94-6239-195-6_2


48 3 Conservative Formulation of the Fluid Equations

Using these relations, one finds the conservative form for the equation of motion:

∂(ρV )

∂t
+ ∇ · (ρV ⊗ V + P I) = −ρ∇�. (3.2.7)

By defining the momentum density vector M of the fluid1 and the stress tensor T
as

M ≡ ρV , T ≡ ρV ⊗ V + P I, (3.2.8)

this equation assumes the standard form (3.1.5) for the transport of a vector:

∂M
∂t

+ ∇ · T = −ρ ∇�. (3.2.9)

The gravitational force on the fluid acts as the momentum source in this case.
The term ρ V ⊗ V in the definition (3.2.8) of the momentum flux tensorT is what

one expects naively. The second term involving the pressure P is the momentum flux
associated with the thermal motions.

Using the definitions of the previous Chapter this flux is equal to (note the analogy
with ρV ⊗ V !)

ρ σ ⊗ σ = ρσ 2

3
I = P I. (3.2.10)

Here I have used σiσ j = (σ 2/3) δi j and the definitions of the pressure and the
unit rank-2 tensor I.

It is easily checked, using the rules of averaging that were introduced in the
previous Chapter in our derivation of the pressure force, that the total momentum
flux tensor is exactly what one expects if one averages the momentum flux of all
particles, including the momentum associated with thermal motions:

T = ρ uα ⊗ uα = ρ
(
V ⊗ V + σ ⊗ σ

) = ρ (V ⊗ V ) + P I. (3.2.11)

3.2.3 Conservative Form of the Energy Equation

The aim is to find an equation of the form

∂W
∂t

+ ∇ · S = H, (3.2.12)

1In classical fluid mechanics the momentum density vector M = ρV equals the mass flux vector.
This no longer holds in relativistic fluid mechanics, where the mass flux vector is ρV and the
momentum flux vector equals ρ	V , with 	 = 1/

√
1 − V 2/c2 and ρ the lab-frame density.
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where W(x, t) is an energy density (a scalar field), the vector S(x, t) is the energy
flux and H(x, t) is the amount of energy that is added to the fluid per unit volume
per unit time in an irreversible way: the heating rate.

In the astrophysical and geophysical context heating (or negative heating with
H < 0, which amounts to cooling) is often due to radiation processes such as
absorption or emission of radiation. I will derive an equation of the form (3.2.12) in
two steps, by first considering the kinetic energy of the gas, then the internal (thermal)
energy > I will combine the results to formulate an overall energy equation.

3.2.3.1 Step I: An Equation for the Kinetic Energy

Starting point for the derivation of an equation for the total energy of the fluid is the
equation of motion:

ρ

(
∂V
∂t

+ (V · ∇)V
)

= −∇P − ρ∇� . (3.2.13)

First we derive an equation for the kinetic energy. We employ the vector identity

(V · ∇)V = ∇(
1

2
V 2) − V×(∇×V ) (3.2.14)

to rewrite the (V · ∇)V term in a gradient and a term perpendicular to V . Then taking
the scalar product of Eq. (3.2.13) with V one finds:

ρ
∂

∂t

(
1

2
V 2

)
+ ρ(V · ∇)

(
1

2
V 2

)
= −(V · ∇)P − ρ(V · ∇)� . (3.2.15)

Using the equation for mass conservation once again one can write:

ρ
∂

∂t

(
1

2
V 2

)
= ∂

∂t

(
1

2
ρV 2

)
− 1

2
V 2

(
∂ρ

∂t

)

(3.2.16)

= ∂

∂t

(
1

2
ρV 2

)
+ 1

2
V 2 ∇ · (ρV ).

Now one can employ another vector identity,

ρ(V · ∇)

(
1

2
V 2

)
+ 1

2
V 2 ∇ · (ρV ) = ∇ ·

[
ρV

(
1

2
V 2

)]
, (3.2.17)
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to show that Eq. (3.2.15) becomes an equation for the kinetic energy density 1
2ρV

2

of the fluid:

∂

∂t

(
ρV 2

2

)
+ ∇ ·

(
ρV

V 2

2

)
= −(V · ∇)P − ρ(V · ∇)� . (3.2.18)

This equation shows how the kinetic energy of the fluid changes due to work done
by pressure forces (first term on the right-hand side) and by the gravitational force
(second term on the right-hand side). The pressure force and gravitational force act
as sources of kinetic energy. The left hand side of the equation shows that the flux
of kinetic energy (the term in the divergence) is simply the local velocity V times
the kinetic energy densityWkin = ρV 2/2. The kinetic energy flux Skin = ρV ( 12V

2)

merely redistributes the kinetic energy over space, but does no change the total kinetic
energy of the fluid.

3.2.3.2 Step II: Thermodynamics and the Conservative
Equation for the Total Energy

To derive an equation for the total energy one must use the thermodynamic relation
(2.8.12):

dQ = T ds = de + P d

(
1

ρ

)

(3.2.19)

= d

(
e + P

ρ

)
− dP

ρ
.

Defining the enthalpy per unit mass as

h ≡ e + P

ρ
, (3.2.20)

one has for an ideal fluid with adiabatic index γ = cp/cv:

e = cv T = 1

γ − 1

kbT

m
= P

(γ − 1)ρ
, (3.2.21)

and

h = cp T = γ

γ − 1

kbT

m
= γ P

(γ − 1)ρ
. (3.2.22)

The second relation in (3.2.19) allows one to write the pressure gradient as

∇P = ρ∇h − ρT∇s. (3.2.23)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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In addition, the first relation in (3.2.19) implies

ρ
∂e

∂t
= ρT

∂s

∂t
+ P

ρ

∂ρ

∂t
(3.2.24)

= ρT
∂s

∂t
− P

ρ
∇ · (ρV ).

Here I employed the nowwell-known trick of usingmass conservation to eliminate
∂ρ/∂t .

3.2.3.3 Step III: Adding the Equations for Internal and Kinetic Energy

Adding Eq. (3.2.24) for the internal energy e to Eq. (3.2.18) for the kinetic energy,
eliminating the pressure gradient using (3.2.23), one finds after some re-arrangement
of terms:

∂

∂t

(
1

2
ρV 2 + ρ e

)
+ ∇ ·

[
ρV

(
1

2
V 2 + h

)]

(3.2.25)

= ρT

(
∂s

∂t
+ (V · ∇)s

)
− ρ (V · ∇)� .

The first term on the right-hand side corresponds to the irreversible changes in
the internal energy of the fluid. This can be can be seen by using the first law of
thermodynamics in the form

ρT

(
∂s

∂t
+ (V · ∇)s

)
= H, (3.2.26)

whereH is the amount of heat irreversibly added (or removed) from the gas per unit
volume by external agents.2 The second term corresponds to the work done by the
gravitational field. It can be rewritten using the definition of d/dt together with mass
conservation:

ρ(V · ∇)� = ρ
d�

dt
− ρ

∂�

∂t
(3.2.27)

= ∂(ρ�)

∂t
+ ∇ · (ρV �) − ρ

∂�

∂t
.

2In this derivation I assume that internal friction (viscosity) is not present in the gas. That case will
be treated later.
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Substituting relations (3.2.26) and (3.2.27) into (3.2.25) yields the final form of
the energy conservation law:

∂

∂t

(
1

2
ρ V 2 + ρe + ρ�

)
+ ∇ ·

[
ρV

(
1

2
V 2 + h + �

)]
= Heff . (3.2.28)

Here the ‘net heating rate’ per unit volume is given by:

Heff ≡ H + ρ
∂�

∂t
. (3.2.29)

The first term inHeff is the true heating (or cooling) due to ‘external’ irreversible
processes such as radiation losses. The second ‘gravitational heating’ term∝ ∂�/∂t
corresponds to the process known as violent relaxation in a time-varying gravitational
potential.

Our final result (Eq. 3.2.28) is indeed of the form (3.2.12), with the energy density
equal to

W = ρ

(
1

2
V 2 + e + �

)
, (3.2.30)

and the energy flux given by

S = ρV
(
1

2
V 2 + h + �

)
. (3.2.31)

3.2.4 Energy Non-conservation and Violent Relaxation:
A Single-Particle Analogy

The violent relaxation term ∝ ∂�/∂t is formally completely analogous to the non-
conservation of energy of a single particle in a time-dependent gravitational field. A
particle of mass m moving in a gravitational field with potential �(x, t) obeys the
equation of motion:

m
dv

dt
= −m ∇�. (3.2.32)

A simple example is the motion of a single star in a galaxy or globular cluster.
The star feels the fluctuating gravitational field due to all other stars. These stars
themselves all move around in the galaxy or globular cluster, leading to a very
‘granular’ and strongly time-dependent gravitational potential.

Taking the scalar product with the velocity v = dx/dt yields:

m v · dv
dt

= d

dt

(
1

2
mv2

)
= −m(v · ∇)�. (3.2.33)
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The kinetic energy of the particle changes due to thework done by the gravitational
field. Now, the total time derivative of the potential along the particle orbit is

d�

dt
= ∂�

∂t
+ (v · ∇)�. (3.2.34)

This means that we can rewrite (3.2.33) as

d

dt

(
1

2
mv2 + m�

)
= m

∂�

∂t
. (3.2.35)

This shows that the total particle energy, defined in the usual manner as

E ≡ 1

2
mv2 + m �, (3.2.36)

is not conserved in a gravitational field that explicitly depends on time so that
∂�/∂t �= 0:

dE
dt

= m
∂�

∂t
. (3.2.37)

In that case the gravitational field is not a conservative force field.
Violent relaxation plays an important role in the dynamics of galaxies, where it

acts in a way analogous to a conventional heating mechanism, see for instance [6],
p. 380. There is, however, one important difference between violent relaxation and
thermal relaxation due to collisions between molecules in a gas: in the latter case the
system relaxes towards thermal equilibrium, where all particles have (on average) the
same thermal energy regardless their mass. In contrast, violent relaxation essentially
changes the energy per unit mass ε = E/m as we can write:

dε

dt
= ∂�

∂t
, (3.2.38)

an equation where the mass of the particle does not appear explicitly. Therefore,
given a change in the potential, the particles (stars in the case of galactic dynamics)
with the largest mass will have gained (or lost) the most energy.

3.3 Entropy Law for an Ideal Gas in Conservative Form

An additional conservative equation can be derived for the specific entropy s of the
gas,

s ≡ cv ln
(
Pρ−γ

)
, (3.3.39)



54 3 Conservative Formulation of the Fluid Equations

with cv = R/(γ − 1)μ. Starting point is relation (3.2.26):

ρT

(
∂s

∂t
+ (V · ∇)s

)
= H, (3.3.40)

If the irreversible heating vanishes (so thatH = 0) this simplifies to

∂s

∂t
+ (V · ∇)s = 0. (3.3.41)

If we now multiply this equation with ρ one can use

ρ

(
∂s

∂t
+ (V · ∇)s

)
= ∂ (ρs)

∂t
+ ∇ · (ρV s)

(3.3.42)

−s

(
∂ρ

∂t
+ ∇ · (ρV )

)
.

The second term on the right-hand side vanishes because of mass conservation,
and we are left with the conservative equation

∂ (ρs)

∂t
+ ∇ · (ρV s) = 0. (3.3.43)

The entropy density is S ≡ ρs and one can write:

∂S
∂t

+ ∇ · (Sv) = 0. (3.3.44)

If one allows for irreversible heating (or cooling) this equation is modified to

∂S
∂t

+ ∇ · (Sv) = H
T

. (3.3.45)

3.4 Conservative Equations with Viscosity

Viscous effects change the equations for momentum- and energy conservation. Vis-
cousmomentum exchange leads to an extra contribution to themomentumflux, again
characterized by a rank 2 tensor that equals for a given shear viscosity with viscosity
coefficient η:

Tvisc = −η
[ ∇V + (∇V )† − 2

3 (∇ · V ) I
]
. (3.4.46)

Here ∇V and (∇V )† are both rank two tensors. Their components are obtained
by taking all possible partial spatial derivatives of the three velocity components.
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Note that there are 3 × 3 = 9 such quantities in total, exactly enough independent
quantities to provide all components of a rank 2 tensor in a 3×3matrix representation.
Formally the components are (using Cartesian coordinates!):

(∇V )i j ≡ ∂Vj

∂xi
, (∇V )

†
i j ≡ (∇V ) j i = ∂Vi

∂x j
(3.4.47)

This defines the velocity gradient tensor and its transpose.
The viscous force follows from the viscous stress tensor Tvisc in a manner analo-

gous to the calculation of the pressure force (as in Eq.2.3.32):

f visc = −∇ · Tvisc = η
[∇2V + 1

3 ∇(∇ · V )
]
. (3.4.48)

The last equality assumes (for simplicity) a constant shear viscosity coefficient η.
This implies that the conservative momentum equation in the presence of viscosity
becomes

∂ (ρV )

∂t
+ ∇ · (

ρ V ⊗ V + P I + Tvisc
) = −ρ ∇�. (3.4.49)

The energy equation for a viscous fluid takes a little more work.

3.4.1 Viscous Dissipation

Viscous forces do work on a flow. This work converts the kinetic energy of the flow,
the energy of the bulk motion, into thermal energy: the kinetic energy of the thermal
motion. The internal friction provided by viscosity will therefore heat the fluid.

The amount of viscous dissipation of the kinetic energy can be derived directly
from the equation of motion.Wewill only consider shear viscosity where the viscous
stress tensor takes the form (3.4.46). If one writes the equation of motion (Navier-
Stokes equation) as

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P − ∇ · Tvisc, (3.4.50)

one immediately finds from the scalar product of this equation with V , c.f.
Eq. (3.2.18):

∂

∂t

(
ρV 2

2

)
+ ∇ ·

(
ρV

V 2

2

)
= −(V · ∇)P − (∇ · Tvisc) · V . (3.4.51)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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The last term in this equation is the amount of work per unit volume done by
viscous forces:

W visc ≡ f visc · V = −(∇ · Tvisc) · V (3.4.52)

We now use an identity valid for an arbitrary tensor T and vector V :

∇ · (T · V ) = (∇ · T) · V + T† : ∇V . (3.4.53)

Here T† is the transpose tensor of T obtained from interchanging rows and
columns so that

T †
i j = Tji , (3.4.54)

and the symbol ‘ : ’ is a double contraction, defined for two rank-2 tensors T and U
as an operation which yields a scalar quantity defined as (remember the summation
convention for double indices!)

T : U = TikUki . (3.4.55)

The above identity can be most simply proven in Cartesian coordinates where
xi denotes x for i = 1, y for i = 2 and z for i = 3. It is a simple consequence
of the product rule for differentiation. In component form (using the summation
convention) one has:

∇ · (T · V ) ≡ ∂

∂xi
(TikVk) = ∂Tik

∂xi
Vk + Tik

∂Vk

∂xi

= (∇ · T)kVk + T †
ki (∇V )ik (3.4.56)

= (∇ · T) · V + T† : ∇V .

Since the viscous stress tensor is symmetric,

(Tvisc)† = Tvisc, (3.4.57)

this identity allows one to write the amount of work done by viscous forces as

W visc = − ∇ · (Tvisc · V )︸ ︷︷ ︸
divergence of viscous energy flux

+ Tvisc : ∇V︸ ︷︷ ︸
kinetic energy loss

(3.4.58)

≡ −∇ · Fvisc − Hvisc.
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The first term on the left-hand side is the divergence of an energy flux that is
associated with the diffusive transport of momentum:

Fvisc ≡ Tvisc · V . (3.4.59)

This viscous energy flux does not correspond to true dissipation. Like any flux, it
is a measure of how rapidly (in this case) viscosity redistributes energy! The second
term, Hvisc, corresponds to the net loss of kinetic energy per unit volume due to
viscous dissipation. This term describes true dissipation. It is easily shown thatHvisc

is a positive definite quantity, as it should be: dissipation is irreversible, and friction
always leads to a loss of bulk kinetic energy.

Using (3.5.4) one finds that the amount of kinetic energy lost per unit time is

Hvisc ≡ −Tvisc : ∇V

= η

(
∂Vi

∂x j
+ ∂Vj

∂xi

)
∂Vi

∂x j
− 2

3η (∇ · V )2 (3.4.60)

= 1

2
η

(
∂Vi

∂x j
+ ∂Vj

∂xi
− 2

3 (∇ · V ) δi j

)2

.

The last equality follows after some tensor algebra. The viscous heating Hvisc

represents the heat generated by internal friction in the fluid or gas.
Viscous heating is an irreversible process,which leads to an increase of the entropy

density s of a gas or fluid. The entropy increase in an ideal gas with entropy density

s = cv ln

(
P

ργ

)
(3.4.61)

is described by (see Eq.3.2.26):

ρcvT

(
∂

∂t
+ V · ∇

)
ln

(
P

ργ

)
= H. (3.4.62)

Here I have introduced the total heating rate:

H = Hvisc + Hext. (3.4.63)

Here Hvisc gives the contribution of viscous dissipation as given by Eq. (3.4.60),
and Hext includes all external sources (or sinks) of heat, such as radiation losses.
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3.4.2 Energy Equation with Viscosity

The equation for the kinetic energy (Eq.3.4.51) can be written as

∂

∂t

(
ρV 2

2

)
+ ∇ ·

(
ρV

V 2

2
+ Tvisc · V

)
= −(V · ∇)P − ρ(V · ∇)� − Hvisc.

(3.4.64)
Here I have used tensor identity (3.4.53) once again, together with the definition

of the viscous heating rate.
If one uses the thermodynamic relations (3.2.23) and (3.2.24),

∇P = ρ∇h − ρT∇s, ρ
∂e

∂t
= ρT

∂s

∂t
− P

ρ
∇ · (ρV ) (3.4.65)

together with

ρ(V · ∇)� = ∂(ρ�)

∂t
+ ∇ · (ρV �) − ∂�

∂t
, (3.4.66)

one finds that one can write this relationship as an equation for the total (thermal
plus kinetic) energy density of the fluid:

∂

∂t

(
1

2
ρV 2 + ρ e + ρ �

)
+ ∇ ·

[
ρV

(
1

2
V 2 + h + �

)
+ Tvisc · V

]

(3.4.67)

= ρT

(
∂s

∂t
+ (V · ∇)s

)

︸ ︷︷ ︸
thermal energy gained

− (Hvisc + ρ (V · ∇)�
)

︸ ︷︷ ︸
kinetic energy lost

.

If we now substitute relation (3.4.62) for the entropy density, one finds that the
viscous heating term involvingHvisc drops out of the equation. This is obvious from
a physical point-of-view: the kinetic energy lost due to internal friction, as given in
Eq. (3.4.64), is added to the thermal energy of the gas. Since viscosity is an internal
process, it can not change the total energy of the gas or fluid! The only viscous
effect that remains in the conservative form of the energy equation is the viscous
contribution to the energy flux, equal to Fvisc = Tvisc · V .

The final form of the conservative energy equation for a viscous medium reads:

∂

∂t

(
1

2
ρ V 2 + ρe + ρ�

)
+ ∇ ·

[
ρV

(
1

2
V 2 + h + �

)
+ Tvisc · V

]
= Heff . (3.4.68)
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As before, the net heating term Heff contains only the heat added or removed
irreversibly for the system by external processes such as radiation losses, and the
violent relaxation term that occurs in a time-dependent gravitational field:

Heff ≡ Hext + ρ
∂�

∂t
. (3.4.69)

3.5 Jump Conditions and Surface Stress

The conservative formof the equations also allows for a relatively simple treatment of
conditions at a sudden jump (at a contact discontinuity or a shock) in fluid properties,
or the fluid stress at a solid surface. I will limit the discussion to the case of a steady
flow, in which case the two fundamental conservation laws are mass- andmomentum
conservation, respectively:

∇ · (ρV ) = 0 , ∇ · T = 0. (3.5.1)

If one includes the effects of viscosity, the stress tensor T of a fluid equals

T = ρ V ⊗ V + P I + Tvisc, (3.5.2)

where the viscous contribution to the stress is in it simplest form3

Tvisc ≡ −η
(∇V + (∇V )† − 2

3 (∇ · V ) I
)
. (3.5.3)

In component form, using the definition (3.4.47) of the rank 2 tensors ∇V and
(∇V )†:

T visc
i j = −η

(
∂Vj

∂xi
+ ∂Vi

∂x j
− 2

3 (∇ · V ) δi j

)
. (3.5.4)

As before η is the coefficient of shear viscosity. Note that the stress tensor T is a
symmetric tensor: its components satisfy Ti j = Tji .

Consider a surface, with on that surface an infinitesimal surface element dO that
we represent as

dO = dO n̂ (3.5.5)

The unit vector n̂ is perpendicular to the surface element. I will adopt the conven-
tion that n̂ point into the fluid if the surface is a solid surface. If the surface separates
two fluids the direction of n̂ can be chosen freely as convenient.

3We only consider shear viscosity here, with viscosity coefficient η. In the general case there is also
bulk viscosity.
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3.5.1 Mass Conservation

By definition of the mass flux, the amount of mass crossing the surface per unit time
is

dM

dt
= ρV · dO = ρVn dO, (3.5.6)

with Vn ≡ V · n̂ the velocity component normal to the surface. Because of our
convention in choosing n̂, material flows towards the surface when Vn < 0. There
are now two possibilities:

1. The surface is completely permeable, meaning that it lets all mass through. In
that case there should be an equal amount of mass entering the surface on one
side, and exiting on the other side. This means

(ρVn)1 = (ρVn)2 , (3.5.7)

where 1 (2) denotes the conditions just above (below) the surface. This is a
physical argument that relies on the fact that an infinitely thin surface has no
volume in which one can store mass: mass that flows into the surface on one side
in must come out at exactly the same rate on the other side! Note that the case
where no mass flows through the surface, i.e. Vn1 = Vn2 = 0, is a special case
of that trivially satisfies this requirement. If the surface is semi-permeable, more
complicated conditions apply.

2. The surface is solid, and lets no fluid through. In that case one must demand that
Vn = 0 at the surface.

In the case of a solid surface, one should also consider what happens to the
tangential velocity V t , formally defined by writing

V = V t + Vn n̂ (3.5.8)

with V t · n̂ = 0. There are two extreme cases that are easily analyzed. If the fluid
sticks to the surface the no-slip condition applies:

V t = 0 on the surface. (3.5.9)

This condition applies when the surface is at rest. If the surface slides with a
tangential velocity V s the no-slip condition becomes V t = V s.

The other limiting case is where the surface is very smooth (like Teflon) and exerts
(almost) no friction on the fluid. In that case V t is not constrained, and can take any
value.

Finally, if the surface separates two different fluids or gases there is once again no
constraint on V t on either side of the surface. When the surface separates two gases
with different V t on either side, an example of a contact discontinuity, that situation
is usually unstable: the ordered flow near the surface breaks down as a result of the
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so-called Kelvin-Helmholtz Instability. In the instability the surface is warped and
breaks down, leading to strongmixing of the two adjacent fluids in a turbulent mixing
layer around the position of the original surface. That mixing ultimately erases the
jump in V t . leading to a smooth transition in the velocity.

3.5.2 Force Exerted by a Fluid on a Solid Surface (Stress)

Consider a surface element on a solid container of gas or fluid equal to dO = dO n̂,
with n̂ pointing into the fluid. The force (a vector!) exerted by the fluid on the surface
element corresponds to the amount of momentum impinging the surface per unit
time due to the momentum flux T (a tensor!)4:

dF = −T · dO = − (
T · n̂)

dO, (3.5.10)

in component form (employing theEinstein summation convention) dFi = − (
Ti j n j

)

dO . If we write n̂ ≡ (n1, n2, n3) and define the force per unit area (also called the
stress) t as

t ≡ dF
dO

= −T · n̂, (3.5.11)

one has t ≡ (t1, t2, t3) with:

⎛

⎜⎜⎜⎜⎝

t1

t2

t3

⎞

⎟⎟⎟⎟⎠
= −

⎛

⎜⎜⎜⎜⎝

T11n1 + T12n2 + T13n3

T21n1 + T22n2 + T23n3

T31n1 + T32n2 + T33n3

⎞

⎟⎟⎟⎟⎠
. (3.5.12)

Choosing a convenient set of Cartesian coordinates x1, x2 and x3 such that n̂ =
(1, 0, 0) lies along the x1-axis, this simplifies to:

t = − (
T11 x̂1 + T21 x̂2 + T31 x̂3

)
. (3.5.13)

The x̂i (i = 1, 2, 3) in this expression are the unit vectors along the three coordi-
nate axes. This case is illustrated in the Figure below. This result makes it obvious
that, unless the stress tensor is diagonal so that Ti j = 0 for i �= j , the force not only
has a component perpendicular to the surface (that is: in the x1-direction), but also
along the surface (Fig. 3.1)!

4The minus signs in this expression is again a consequence of our choice for the direction of n̂. For
that reason some textbooks employ a stress tensor T ′ = −T in order to get rid of that minus sign.
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Fig. 3.1 An illustration of
the situation leading to
expression (3.5.13) for the
force t acting on a unit area
of a surface

The simplest case occurs for a fluid at rest with V = 0, where T = P I: then

t = −P x̂1 = −P n̂, (3.5.14)

where the minus sign is due to our choice of having n̂ pointing into the fluid: the
force per unit area on the surface is simply the pressure, as it should be, and points
away from the fluid.

Now we allow for flow. Then t formally follows from (3.5.2) and can be written
as:

t = − (
P + 2

3 η (∇ · V )
)
n̂ − ρ

(
V · n̂)

V + η
(∇V + (∇V )†

) · n̂. (3.5.15)

With a fair amount of algebra (see the Box at the end of this Chapter) this can be
expressed in terms of vectors and vector operations, to be evaluated on the surface:

t = − (
P + 2

3 η (∇ · V )
)
n̂ − ρ

(
V · n̂)

V + 2η (n̂ · ∇)V + η n̂× (∇×V ) .

(3.5.16)

Consider an impenetrable and flat solid surface. On the entire surface we must
have

(
V · n̂) = V1 = 0, which implies:

V1 = 0 ,
∂V1

∂x2
= ∂V1

∂x3
= 0 (on the surface.) (3.5.17)

Using these relations it is obvious that the second term on the right-hand side of
(3.5.16) vanishes identically. The normal component t1 = t · n̂ is

t1 = 2η
∂V1

∂x1
− P − 2

3 η (∇ · V ). (3.5.18)
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The tangential components of t are:

t2 = η
∂V2

∂x1
, t3 = η

∂V3

∂x1
. (3.5.19)

As the velocity component along the surface is V t = V2 x̂2 +V3 x̂3, the tangential
force per unit area is

t t = η
∂V t

∂x1
≡ η ∇⊥V t. (3.5.20)

Here I have introduced the gradient in the direction perpendicular to the surface:
∇⊥ = x̂1 · ∇ = ∂/∂x1 = n̂ · ∇.

In many engineering applications one can assume an incompressible fluid
(∇ · V = 0) and the flow is along the surface, that is n̂ · V = V1 = 0 through-
out the flow so that V t = V . In that case t takes the following simple form for a flat
surface:

t = −P n̂ + η ∇⊥V . (3.5.21)

One can show that these results remain correct even for a time-dependent flow.
It is perhaps good to note that the tangential component of the force does not

vanish even if the no-slip condition V t = 0 applies on the surface: the magnitude
of t t depends on the (normal) derivative of V t! Physically this is due to the fact
that molecules or atoms coming from a thin layer above the surface, where V t �= 0,
stick to the surface when they hit it, a consequence of the no-slip condition. Their
momentum is then transferred to the surface, leading to a force along the surface.
Particles from this thin layer can reach the surface as a result of their thermal motion,
while the thickness of the layer is determined by the mean-free-path 
 for particle-
particle collisions. The typical tangential flow velocity in a thin layer of thickness
∼ 
 above the surface equals

�V t 
 
 ∇⊥V t, (3.5.22)

hence the appearance of the normal velocity gradient in the expression for t t .
In the limit of an incompressible, viscous flow the equation of motion for the fluid

itself simplifies to:

ρ

(
∂V
∂t

+ (V · ∇)V
)

= −∇P + ρ g + η∇2V . (3.5.23)
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3.5.3 Conditions on a Surface Separating Two Ideal Fluids

I now look at a non-moving surface that separates two ideal fluids where the effects
of viscosity can be neglected. If we use an index 1 (2) to denote the conditions
immediately above (below) the surface, we already established above that the mass
flux through the surface must be continuous (or vanish):

(ρVn)1 = (ρVn)2 (3.5.24)

Something similar should hold for the momentum (a vector!) and for the energy.
Let n̂ be the normal to that surface, and let x1 again be the coordinate that runs

along n̂. The physical interpretation we gave is that no mass can accumulate in the
surface as its has zero volume. The amount of momentum flowing across the surface
per unit area and unit time equals in an ideal fluid

dP
dt

= T · n̂ = ρVnV + P n̂. (3.5.25)

If the surface can not accumulate momentum we must demand (at the surface)
that momentum flux in = momentum flux out:

(
ρVnV + P n̂

)
1 = (

ρVnV + P n̂
)
2 . (3.5.26)

For the normal component of momentum along n̂ this gives:

(
ρV 2

n + P
)
1 = (

ρV 2
n + P

)
2 . (3.5.27)

For the tangential momentum we get

(ρVn V t)1 = (ρVn V t)2 . (3.5.28)

The amount of energy crossing the surface per unit area and unit time equals for
a fluid with P ∝ ργ , neglecting gravity:

dE

dt
= S · n̂ = ρVn

(
1

2
V 2 + γ P

(γ − 1) ρ

)
. (3.5.29)

The surface can not accumulate energy either, so:

[
ρVn

(
1

2
V 2 + γ P

(γ − 1) ρ

) ]

1

=
[

ρVn

(
1

2
V 2 + γ P

(γ − 1) ρ

) ]

2

. (3.5.30)
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There are now two possibilities:

1. There is no flow across the surface: Vn = 0. In that case conditions (3.5.24),
(3.5.28) and (3.5.30) are trivially satisfied, and condition (3.5.27) states that the
pressure on both sides should be equal:

P1 = P2. (3.5.31)

This means that such a surface, the contact discontinuity we briefly discussed
above, can separate two fluids and remain stationary if the pressure on both sides
is the same, so that the two fluids exert an equal but opposite force per unit area on
the surface. The same conditionwould hold if we replace the contact discontinuity
by a very thin sheet of solid material.

2. If there is a flow across the surface, Vn �= 0, the surface becomes an infinitely thin
standing shock. Then (3.5.7) together with (3.5.28) implies that the tangential
velocity should be the same on both sides of the shock surface,

V t1 = V t2. (3.5.32)

In a similar fashion (3.5.30) together with (3.5.28) implies that the energy/unit
mass should be the same on both sides of the shock:

(
1

2
V 2 + γ P

(γ − 1) ρ

)

1

=
(
1

2
V 2 + γ P

(γ − 1) ρ

)

2

. (3.5.33)

Because of (3.5.32) one may replace this by

(
1

2
V 2
n + γ P

(γ − 1) ρ

)

1

=
(
1

2
V 2
n + γ P

(γ − 1) ρ

)

2

. (3.5.34)

Unlike what happens at a contact discontinuity a pressure jump is now possible.
The magnitude of the jump follows from the simultaneous solution of the condi-
tions (3.5.7), (3.5.27) and (3.5.33), the so-called jump conditions. If the material
flows into the shock from region 1 one finds P2 ≥ P1. We will consider shocks
further in Chap. 7, where it will be shown that such shocks can only exist if the
material flows into the shock surface with a speed that exceeds the speed of sound.
Shocks only occur in supersonic flows.

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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Appendix: A Vector Form for the Viscous Stress

It is possible to derive a vector expression for the viscous contribution to the
stress on a surface. I will first limit the discussion to the incompressible case
∇ · V = 0. Then, using that Tvisc is a symmetric tensor, we can write

tvisc = −Tvisc · n̂ = −n̂ · Tvisc = η n̂ · (∇V + (∇V )†
)
. (3.5.35)

In what follows I use the totally antisymmetric Levi-Cevita pseudo-tensor εi jk
that (in cartesian coordinates) has the property (see Appendix, Eq.15.2.3)

εi jk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 for i jk equal to 123, 231 and 312;

−1 for i jk equal to 213, 132 and 321;

0 otherwise, that is if any of the two indices are equal.

(3.5.36)

The cross product of two vectors A and B and the curl of some vector V in
Cartesian coordinates can then be written in components as

(A×B)i = εi jk A j Bk, (∇×V )i = εi jk
∂Vk

∂x j
= εi jk (∇V ) jk . (3.5.37)

The Levi-Cevita pseudo-tensor has the useful property

εi jk εklm = εki j εklm = δil δ jm − δim δ jl . (3.5.38)

Here is the Kronecker delta we introduced before with δi j = 1 for i = j and
δi j = 0 for i �= j .

http://dx.doi.org/10.2991/978-94-6239-195-6_15
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With this last property one can prove the following relation:

n̂× (∇×V ) = n̂ · (
(∇V )† − ∇V

)
. (3.5.39)

In component form the proof is relatively straightforward:

(
n̂× (∇×V )

)
i
= εi jk n j (∇×V )k = εi jk εklm n j (∇V )lm

= (
δil δ jm − δim δ jl

)
n j (∇V )lm

(3.5.40)

= n j
[
(∇V )i j − (∇V ) j i

]

= [
n̂ · (

(∇V )† − ∇V
) ]

i .

In addition, again easily checked in Cartesian coordinates:

n̂ · (∇V ) = (n̂ · ∇)V . (3.5.41)

As a result of (3.5.39) and (3.5.41) one can use the following trick:

n̂ · (∇V + (∇V )†
) = n̂ · (

2 ∇V + [
(∇V )† − ∇V

])

(3.5.42)

= 2 (n̂ · ∇)V + n̂× (∇×V ) .

This allows us to write for an incompressible flow:

tvisc = 2η (n̂ · ∇)V + η n̂× (∇×V ) . (3.5.43)

In a compressible flow with ∇ · V �= 0 there is an additional term:

tvisc = 2η (n̂ · ∇)V + η n̂× (∇×V ) − 2
3 η (∇ · V ) n̂. (3.5.44)



Chapter 4
Special Flows

4.1 Introduction

The complexity of the complete set of fluid equations makes finding general solu-
tion difficult. This has lead to a number of useful approximations to the equations
that apply for flows with special mathematical properties, such as symmetries. The
following are often encountered. They form the basis of many exact flow solutions,
see for instance the classic textbooks by Acheson [1] and Batchelor [3].

Steady flows

Perhaps the most important approximation is that of a steady flow, where there is no
explicit time dependence:

∂

∂t
(all flow quantities) = 0. (4.1.1)

This class of flows will be considered in more detail in the next chapter. There we
will see that the steady flow assumption leads to a constant of motion, which can be
interpreted as the energy per unit mass of the flow.

Axisymmetric flows

Another example is an axi-symmetric flow, where the flow properties doe not change
if one rotates around some axis. Usually one aligns this symmetry axis with the z-
axis. If one then defines the azimuthal angle φ through x/y = tan φ, or equivalently
x = R sin φ, y = R cosφ with R = √

x2 + y2 the cylindrical radius, an axi-
symmetric flow satisfies

∂

∂φ
(all flow quantities) = 0. (4.1.2)

© Atlantis Press and the author(s) 2016
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This mathematical symmetry again leads to a constant of motion. This is seen most
easily by writing the equation of motion

ρ

[
∂V
∂t

+ (V · ∇) V
]

= −∇P (4.1.3)

in cylindrical coordinates (R,φ, z), neglecting gravity and viscosity. The
φ-component of this equation reads:

ρ

(
∂Vφ

∂t
+ (V · ∇)Vφ + VRVφ

R

)
= − 1

R

∂P

∂φ
= 0, (4.1.4)

where I have used (4.1.2). In that case we have

(V · ∇)Vφ = VR
∂Vφ

∂R
+ Vz

∂Vφ

∂z
, (4.1.5)

and (4.1.4) is equivalent with

(
∂

∂t
+ VR

∂

∂R
+ Vz

∂

∂z

) (
RVφ

) ≡ dλ

dt
= 0. (4.1.6)

Here λ = RVφ is the specific angular momentum, the angular momentum per unit
mass that is conserved if one moves with the flow.

Two-dimensional flows

Such flows are independent of one of the coordinates, usually taken to be the z-
coordinate, so that

∂

∂z
(all flow quantities) = 0. (4.1.7)

These above three examples concern themselves with a ‘coordinate symmetry’, that
is: the fact that the flow properties do not depend on one of the four independent
variables (x, t) of the problem. Another class of special flows have an internal
symmetry. Two important examples are the incompressible flow and the irrotational
flow.

4.2 Incompressible Flows

In an incompressible flow the velocity satisfies

∇ · V = 0. (4.2.1)
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This property has an immediate consequence for the continuity equation that
describes mass conservation. Eq. (2.7.15) implies for an incompressible flow:

∂ρ

∂t
+ (V · ∇)ρ = −ρ (∇ · V ) = 0, (4.2.2)

or equivalently:
dρ

dt
= 0. (4.2.3)

In an incompressible flow, an observer moving with the flow will see a constant
density as time progresses. This does not necessarily mean that the density should
be the same everywhere: comoving observers in different parts of the flow generally
measure a different density in their immediate surroundings. Physically, condition
(4.2.1) means that a small droplet of fluid or parcel of gas always retains its original
volume: the flow may deform the shape of a droplet/parcel but its total volume
remains the same!

However, if the density is the same everywhere in the flow at some fiducial time
(say: at t = 0), the density remains the same everywhere at later times. Such constant
density flows are a good approximation for water flows.

In a flow with a globally constant density the equation of motion can be written
as

∂V
∂t

+ (V · ∇)V = −∇
(
P

ρ
+ �

)
+ ν ∇2V . (4.2.4)

Here ν = η/ρ is the specific viscosity.
If one now employs the vector identity

(V · ∇)V = ∇
(
1

2
V 2

)
− V × (∇ × V ), (4.2.5)

one can also write:

∂V
∂t

= V × (∇ × V ) − ∇
(
V 2

2
+ P

ρ
+ �

)
+ ν ∇2V . (4.2.6)

4.2.1 Stream Function for Steady Incompressible Flows

Condition (4.2.1) also implies that one can find a fluid vector potential A(x, t) such
that1

V = ∇ × A. (4.2.7)

1This is analogous to what happens in electrodynamics: the magnetic field B is divergence free,
∇ · B = 0, so one defines a vector potential A such that B = ∇ × A.

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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This approach is sometimes useful, in particular in a steady, two-dimensional flow.
Consider such a flow in the x − y plane. Expressing the fluid velocity as

V ≡ u(x, y) x̂ + v(x, y) ŷ, (4.2.8)

which satisfies condition (4.1.7), one can choose:

A = A(x, y) ẑ. (4.2.9)

In terms A(x, y) the two velocity components are:

u(x, y) = ∂A

∂y
, v(x, y) = −∂A

∂x
, (4.2.10)

and the flow is indeed divergence-free:

∇ · V = ∂u

∂x
+ ∂v

∂y
= ∂2A

∂x∂y
− ∂2A

∂y∂x
= 0. (4.2.11)

In this particular case the single component Az = A(x, y) of the vector potential A is
usually written as ψ(x, y) rather than A(x, y), and is known as the stream function.
One then writes instead of (4.2.10):

u(x, y) = ∂ψ

∂y
, v(x, y) = −∂ψ

∂x
. (4.2.12)

This definition implies

(V · ∇)ψ = u
∂ψ

∂x
+ v

∂ψ

∂y
.

(4.2.13)

= ∂ψ

∂y

∂ψ

∂x
− ∂ψ

∂x

∂ψ

∂y
= 0.

As shown in more detail in the Box at the end of this chapter, this relation means
that ψ has a constant value along a given streamline, but may vary from streamline
to streamline. Since this is a steady flow this also means that a comoving observer,
who follows a streamline, locally always measures the same value of ψ.
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4.3 Irrotational Flows (Potential Flows)

Another example of an internal symmetry is a flow where the velocity field has a
vanishing curl:

ω(x, t) ≡ ∇ × V = 0. (4.3.1)

The quantity ω(x, t) is called the vorticity. The global vanishing of the vorticity
implies that one can write the velocity in terms of a velocity potential ϕ(x, t):

V (x, t) = ∇ϕ(x, t). (4.3.2)

Condition (4.3.1) is then automatically satisfied as ∇ × ∇ϕ = 0 for any scalar
function ϕ(x, t). Flows satisfying relation (4.3.2) are called both irrotational flows
and potential flows.

If a potential flow is also incompressible, the velocity potential satisfies Laplace’s
equation:

∇ · V = ∇ · ∇ϕ = ∇2ϕ = 0. (4.3.3)

Then ϕ(x, t) is a harmonic function. This property is often helpful when solving
flows with boundary conditions, such as a flow bounded by impenetrable walls.

A special case is a constant density (and therefore also incompressible) potential
flow. The equation of motion (4.2.6) for such a flow can be written as

∂V
∂t

= −∇
(
V 2

2
+ P

ρ
+ �

)
. (4.3.4)

Here ρ is the (now globally constant) density, and the incompressible continuity
equation dρ/dt = 0 is trivially satisfied. Viscosity has been neglected. In a potential
flow V = ∇ϕ. Furthermore, taking the gradient and taking the time-derivative are
commuting operations. Explicitly in this particular case: ∂V/∂t = ∂(∇ϕ)/∂t =
∇(∂ϕ/∂t). This implies that one can write equation of motion (4.3.4) as:

∇
(

∂ϕ

∂t
+ 1

2
V 2 + P

ρ
+ �

)
= 0. (4.3.5)

Therefore, the quantity

Ẽ(t) ≡ ∂ϕ

∂t
+ 1

2
V 2 + P

ρ
+ � (4.3.6)

can only depend on time, but can not depend on any of the coordinates!
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In a steady, irrotational and incompressible two-dimensional flow, V = u x̂ + v ŷ,
one can use both the stream function ψ and the velocity potential ϕ to represent the
velocity:

u(x, y) = ∂ϕ

∂x
= ∂ψ

∂y
, v(x, y) = ∂ϕ

∂y
= −∂ψ

∂x
. (4.3.7)

The condition of vanishing vorticity in this two-dimensional flow reduces to ω =
ω(x, y) ẑ = 0, so:

ω(x, y) ≡ ∂v

∂x
− ∂u

∂y
= −

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
= 0. (4.3.8)

In this case both ϕ(x, y) and ψ(x, y) are both harmonic functions in the x − y plane.
Since the stream function ψ is conserved along streamlines the curves of constant
ψ must coincide with streamlines. The curves of constant ϕ always intersect the
streamlines at right angles: this follows immediately from (V · ∇)ψ = ∇ϕ · ∇ψ = 0.

If such a two-dimensional steady flow has a quantity that is conserved along flow
lines, so that this quantity Q(x, y) satisfies

(V · ∇)Q = 0, (4.3.9)

that quantity must be a pure function of ψ(x, y). Using for the velocity V = (u, v)

we have:

(V · ∇)Q = ∂ψ

∂y

∂Q

∂x
− ∂ψ

∂x

∂Q

∂y
= 0. (4.3.10)

This implies that Q(x, y) = Q(ψ), as is easily checked.

4.4 Bernoulli’s Law for a Steady, Constant-Density Flow

Now consider a steady, incompressible flow with globally constant density ρ. We
allow vorticity to be present. The equation of motion for such a fluid or gas reads:

(V · ∇)V = −∇
(
P

ρ
+ �

)
. (4.4.1)

Using (4.2.5) and defining

Es ≡ 1

2
V 2 + P

ρ
+ �, (4.4.2)
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Equation (4.4.1) can be written (up to an overall minus sign) as:

V × (∇ × V ) = ∇
(
1

2
V 2 + P

ρ
+ �

)
= ∇Ẽs. (4.4.3)

Taking the scalar product of this relation with V the left-hand side of the resulting
equation vanishes. One finds:

(V · ∇)

(
1

2
V 2 + P

ρ
+ �

)
= (V · ∇)Ẽs = 0. (4.4.4)

One concludes that in this case the quantity Ẽs is constant along streamlines (see
the Box below), but may vary from streamline to streamline. Relation (4.4.4) is
Bernoulli’s law for a constant-density incompressible steady flow, and can be inter-
preted as conservation law for specific energy along a streamline. The three terms in
Ẽs then respectively correspond to the kinetic energy, the internal (thermal) energy
and the gravitational energy per unit mass. In the Chap.6 we will find the analogous
relation for a steady, compressible flow with varying density (Fig. 4.1).

Fig. 4.1 Flow lines in the
x − y plane for a steady flow.
At each point along a flow
line, the flow velocity is
tangent to the line. The
coordinates (x, y) along a
given flow line therefore
satisfy the relation
dx = Vx dt and dy = Vy dt

http://dx.doi.org/10.2991/978-94-6239-195-6_6
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When is a Quantity Constant Along Streamlines?

Consider the streamlines or flow lines of a flow field (see the Figure below),
defined as a trajectory x = X(�) such that the tangent vector to the line is
always parallel to the local flow velocity:

dX
d�

‖ V (X). (4.4.5)

Here � is a length parameter along the streamline, which can always be chosen
such that the tangent vector has unit length:

∣∣∣∣
dX
d�

∣∣∣∣ = 1. (4.4.6)

In that case the a fluid element courses along the streamline with velocity
V = |V | so that

d�

dt
= V . (4.4.7)

In the case of a steady flow, the streamlines are an infinite set of fixed curves
through space.

The coordinates of points on a given streamline satisfy the (rather obvious)
difference relation

dX = V (x = X) dt. (4.4.8)

Writing this definition in Cartesian components, e.g. X = (X,Y, Z) and dX =
Vx (X) dt etc., this definition can be written as a set of difference equations:

dX

Vx (X)
= dY

Vy(X)
= dZ

Vz(X)
= d�

|V | = dt. (4.4.9)

This relation can be thought of as a recipe for constructing streamlines.
For instance: the projection of a streamline onto the x − y plane is a curve

that satisfies
dx

dy
= Vx (x)

Vy(x)
. (4.4.10)

Let us assume that some quantity f (x) is constant along streamlines. This
implies

d f

d�
= dX

d�

∂ f

∂x
+ dY

d�

∂ f

∂y
+ dZ

d�

∂ f

∂z
= 0. (4.4.11)
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If one rewrites this relation as

d f = dX
∂ f

∂x
+ dY

∂ f

∂y
+ dZ

∂ f

∂z
= 0, (4.4.12)

one finds that the constancy of f along streamlines can be expressed in terms
of the displacement dX along a streamline:

(dX · ∇) f (x) = 0. (4.4.13)

The definition of a streamline implies that dX = V (X) dt , so it is easily seen
that relation (4.4.13) is equivalent with

(V · ∇) f (x) = 0. (4.4.14)

Note that in this final form of the relation all reference to the actual streamlines
(e.g. reference to � or to X(�)) has disappeared: only the local velocity V
appears in Eq. (4.4.14). So, in a steady flow there is no need to construct the
streamlines explicitly to see if a quantity is conserved along them!



Chapter 5
Steady Incompressible Flows

5.1 Introduction

Incompressible viscous flows are important as many fluids in engineering
applications are nearly incompressible, satisfying ∇ · V � 0. This leads to a sig-
nificant simplification of the fundamental equations. A further simplification occurs
when one considers a flow of constant density. The continuity equation in the incom-
pressible limit,

dρ

dt
= ∂ρ

∂t
+ (V · ∇)ρ = 0, (5.1.1)

is then always satisfied if the fluid at some reference time had a globally constant
density: ∇ρ = 0 at some time t0. Then any observer moving with the flow will see
the same density, which is only possible if the density is the same everywhere. Here
I limit the discussion to steady, constant density flows, where Eq. (5.1.1) is trivially
satisfied as ∂ρ/∂t = 0 and ∇ρ = 0. That means that we can disregard the continuity
equation in what follows, and concentrate on the equation of motion.

The equation of motion (including viscosity) for a constant-density incompress-
ible flow reads, keeping the time derivative for now:

ρ

(
∂V
∂t

+ (V · ∇)V
)

= −∇P + ρ g + η ∇2V . (5.1.2)

Here g = −∇� is the gravitational acceleration. Defining

P̃ ≡ P

ρ
, ν = η

ρ
, (5.1.3)
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the equation of motion becomes

∂V
∂t

+ (V · ∇)V = −∇ P̃ + g + ν ∇2V . (5.1.4)

5.2 The Reynolds Number

For order-of-magnitude estimates it is useful to have a measure of the importance
of viscous effects on a flow. This measure is provided by a dimensionless number,
known as the Reynolds number, which can be defined as:

Re = magnitude inertial force

magnitude viscous force
∼ |ρ (V · ∇)V |

|η ∇2V | . (5.2.1)

Let U be the typical value of the velocity, and L the gradient scale of the velocity
field so that |(∇V )i j | ∼ U/L . These scales are usually set by the problem at hand,
such as the typical streaming velocity and the diameter of a water pipe.

In that case one may use the estimates

|ρ (V · ∇)V | ∼ ρU 2/L , |η∇2V | ∼ ρν U/L2. (5.2.2)

This implies that the Reynolds number has a typical magnitude

Re ∼ UL

ν
. (5.2.3)

Here I have used η = ρ ν. If the Reynolds number is large, so that Re � 1, one can
neglect the viscous effects to lowest order. They become important when Re ≤ 1: in
that case viscous forces will dominate the force balance in the flow.

5.3 Incompressible, Irrotational and Steady Corner Flow

The first example that highlights the use of a velocity potential is an ideal flow
contained between two straight and impermeable walls that intersect at the origin,
see the Fig. 5.1. One of the walls lies along the x-axis. The angle between the two
walls is θ = π/n, where n = 1, 2, . . .. The flow is steady (∂/∂t = 0) and two-
dimensional. It has a constant density ρ. At the origin r = (x, y) = (0, 0) the flow
stagnates so that

V (r = 0) = 0. (5.3.1)

We will employ cylindrical coordinates R = √
x2 + y2 and φ = tan−1(x/y).
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Fig. 5.1 A steady, incompressible flow in the x-y plane that is confined between two walls. The
first wall is along the x-axis, the second wall is at an angle θ = π/n with n = 1, 2, . . .. The two
walls meet at the origin x = y = 0, which is a stagnation pointwhere V = 0. The figure illustrates
the case n = 3 and θ = 60o. The flow is symmetric with respect to the dashed half-angle line In
this example that line makes an angle of 30o with respect to the x-axis

We seek a solution without eddies or swirls that has ∇ × V = 0 so that it can be
represented as

V = ∇ϕ(r, φ) =
(

∂ϕ

∂r
,
1

r

∂ϕ

∂φ

)
. (5.3.2)

The incompressibility of the flow, ∇ · V = 0, implies that

∇2ϕ = 1

r2
∂

∂r

(
r2

∂ϕ

∂r

)
+ 1

r2
∂2ϕ

∂φ2
= 0. (5.3.3)

The walls are impermeable so that at the two walls, located at φ = 0 and at φ =
θ = π/n, the normal component of the velocity must vanish:

Vn = Vφ = 1

r

∂ϕ

∂φ

∣∣∣∣
φ=0 & φ=θ

= 0. (5.3.4)
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It is easily checked that the two functions

�1(r, φ) = A rn cos(nφ) and �2(r, φ) = A r−n cos(nφ) (5.3.5)

satisfy both equation (5.3.3) and boundary conditions (5.3.4). Here A is an arbitrary
constant. However, only the velocity field obtained from �1(r, φ) remains finite at
r = 0 and gives a stagnation point where V (0) = 0. We conclude that ϕ(r, φ) =
�1(r, φ) and

Vr = nA rn−1 cos(nφ), Vφ = −nA rn−1 sin(nφ). (5.3.6)

The constant A is undetermined: in principle there are infinitely many solutions to
the problem, each with a different flow speed at a given point, but with the same
streamlines. The stream lines follow from

dr

Vr
= r dφ

Vφ
, (5.3.7)

which (using 5.3.6) gives:

dr

dφ
= r Vr

Vφ
= −r

cos(nφ)

sin(nφ)
. (5.3.8)

The solution is1

rn sin(nφ) = constant, (5.3.9)

where the constant differs from streamline to streamline. At the symmetry axis φ =
θ/2 = π/2n we have the closest approach of a given streamline to the origin, where
Vr = 0. If we call the closest distance rmin the constant in (5.3.9) is rnmin. The
streamlines can be represented as the one-parameter family of curves given by

r(φ) = rmin

(sin(nφ))1/n
. (5.3.10)

If we call the velocity at the symmetry axis Vφ = −Vmin, with Vmin is the minimum
absolute velocity on a given streamline, we have:

1That this is indeed the solution is seen by writing the differential equation for r as dr/r =
d(ln r) = cos(nφ)dφ/sin(nφ) = −d(ln sin(nφ))/n. Formal integration yields ln[r {sin(nφ)}1/n] =
constant ⇔ rn sin(nφ) = constant.
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Vr (r, φ) = Vmin

(
r

rmin

)n−1

cos(nφ),

(5.3.11)

Vφ(r, φ) = −Vmin

(
r

rmin

)n−1

sin(nφ).

The choice of sign in the expression for Vφ follows from the direction of the flow
chosen in the Fig. 5.1. The absolute velocity is

V =
√
V 2
r + V 2

φ = Vmin

(
r

rmin

)n−1

. (5.3.12)

5.4 Laminar Viscous Flow Between Two Parallel Plates

As a first example of a flow where viscosity plays an important role consider the
steady, laminar flow between two plane, parallel plates, located in the plane y = 0
(the x = z plane) and at y = H . “Laminar” means that the flow is very ordered and
regular: essentially it consists of thin layers of fluid sliding over each other without
any whirls or turbulence, see the Fig. 5.2. Such a flow is known as a Poiseuille
flow. Laminar flow typically occurs when the Reynolds number is sufficiently small:
Re < 10. I will assume that the flow does not depend on time t , or on the coordinate
z: it is a two-dimensional, steady flow with velocity

V (x) = u(x, y) x̂ + v(x, y) ŷ. (5.4.1)

Fig. 5.2 The viscous flow between two parallel walls parallel to the x-z plane a separated by a
distance H
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The two walls are impenetrable, so that one must have:

v(x, 0) = v(x, H) = 0. (5.4.2)

The constant-density assumption automatically means that the flow is
incompressible:

∇ · V = ∂u

∂x
+ ∂v

∂y
= 0. (5.4.3)

If the two plates are very large, with a length (and width) L � H , the flow velocity
will quickly become almost uniform in x , in the sense that

∂u

∂x
,

∂v

∂x
= O

(
H

L

)
×

(
∂u

∂y
,

∂v

∂y

)
� 0. (5.4.4)

In that case the incompressibility condition (5.4.3) becomes ∂v/∂y ≈ 0. The fact
that v vanishes at the two walls then immediately implies v = 0. The flow is along
the x-axis. Equation of motion (5.1.4) with ∂V/∂t = 0, ∂u/∂x = 0 and v = 0
becomes in component form:

0 = −∂ P̃

∂x
+ ν

∂2u

∂y2
,

(5.4.5)

0 = −∂ P̃

∂y
.

These two equations essentially describe [1] the balance between the pressure force
and the viscous force in the x-direction, and [2] the absence of any forces in the
y-direction. The second equation implies that P̃ only depends on x , and therefore
∂ P̃/∂x can only depend on x .

We already established that (to leading order in H/L) u does not depend on x so
u = u(y). Then the pressure gradient term and the viscous term on the right-hand
side of the first equation are respectively a pure function of x , and a pure function of
y. That equation can only be satisfied for all x and all y in the range [0, H ] if

∂ P̃

∂x
= ν

∂2u

∂y2
= constant ≡ K . (5.4.6)

The equation for u(y) yields the general solution:

u(y) = A + By + K

2ν
y2. (5.4.7)
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Since this is a viscous flow, the proper boundary condition for u(y) on the two plates
is the no-slip condition we discussed before:

u(y = 0) = 0, u(y = H) = 0. (5.4.8)

The first condition immediately yields A = 0 while the second condition gives
B = −K H/2ν. The full solution for the flow therefore is a parabolic velocity
profile:

u(y) = K

2ν
y(y − H), v(y) = 0. (5.4.9)

The maximum absolute velocity |u| occurs in the mid-plane between the two plates,
located at y = 1

2H . There the velocity equals:

u

(
1

2
H

)
= u∗ = −K H 2

4ν
. (5.4.10)

For a flow in the positive x-direction with u > 0 (and u∗ > 0) we need

K = d P̃

dx
= 1

ρ

dP

dx
< 0. (5.4.11)

This makes sense physically: flow in situations such as this always transport the fluid
from high pressure to low pressure. From (5.4.6) one sees that the pressure behaves as

P(x) = ρK x + constant. (5.4.12)

5.4.1 Drag on the Plates

It is also instructive to calculate the drag (stress in the x-direction) exerted by the
flow on the two plates. Since the flow is symmetric with respect to the mid-plane
y = 1

2H the force on the plates along the flow (the x-direction) is equal. We will
calculate it for the plate at y = 0. According to the results of Sect. 3.3 it equals:

tx (y = 0) = η

(
du

dy

)

y=0

= −ηK H

2ν
= −H

2

dP

dx
. (5.4.13)

Here I have used P̃ = P/ρ and η = ρν. The drag force is completely determined
by the pressure gradient and the distance between the two plates!

http://dx.doi.org/10.2991/978-94-6239-195-6_3
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5.4.2 Case of a Moving Plate

Now assume that the top plate at y = H moves with velocity U in the x-direction.
This situation could serve as a simple model of what happens in a bearing where
two metal surfaces slide with respect to each other, lubricated by a thin layer of oil.
Most of the calculation is exactly the same as before. The only difference is that the
no-slip condition at y = H becomes:

u(y = H) = U. (5.4.14)

The solution of ν
(
d2u/dy2

) = K for u(y) that satisfies the no-slip conditions at
y = 0 and y = H now becomes:

u(y) = U
( y

H

)
+ K

2ν
y(y − H). (5.4.15)

This flow is known as a Couette-Poisseuille flow. The Fig. 5.3 shows the solution
curves for a Couette-Poisseuille flow, expressed in terms of a dimensionless coordi-
nate ỹ = y/H and a dimensionless velocity ũ = u(y)/U . In terms of these quantities
the solution with a sliding top plate reads:

ũ(ỹ) = ỹ + K̃ ỹ (ỹ − 1) , K̃ ≡ − H 2

2ρνU

dP

dx
. (5.4.16)

Note that the flow profile ũ(ỹ) depends on the single parameter K̃ .

Fig. 5.3 The velocity profile for a Couette-Poisseuille flow for different values of K̃ . Note the
backflow (ũ < 0) that develops in the case K̃ = −2 for 0 < ỹ < 0.5
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The solutions have an interesting structure. Let us assume thatU > 0. In that case
the solutions with positive K̃ (dP/dx < 0) have a cooperative pressure gradient: the
pressure force in the fluid pushes the fluid in the same direction as U , that is: in the
positive x direction. For K̃ < 0 (dP/dx > 0) we have an adverse pressure gradient:
the pressure force tries to slow down the motion of the fluid induced by the motion
of the top plate in the positive x-direction. When K̃ < −1 a backflow can develop
where u(y) < 0 in the lower part of the flow. Finally: for K̃ = 0 (vanishing pressure
gradient) the flow profile becomes linear in y, with constant shear2 du/dy = U/H
(dũ/d ỹ = 1).

5.5 Couette Flow Between Two Rotating Coaxial Cylinders

A second example is a flow trapped between two coaxial, rotating cylinders of radius
R1 and R2. The two cylinders rotate with angular velocity �1 and �2 respectively.
This is known as a Couette flow.

Employing cylindrical coordinates (R, φ, z) with the z-axis along the common
rotation axis, the flow is assumed to be entirely in the azimuthal (φ-) direction in the
range R1 ≤ R ≤ R2 with velocity

V (R) = V (R) φ̂ = �(R)R φ̂. (5.5.17)

Here �(R) ≡ V (R)/R = dφ/dt is the angular velocity of the flow, and φ̂ the unit
vector in the φ-direction. The flow lines are concentric circles, see the Fig. 5.4 for an
illustration.

The situation is highly symmetric, with

∂

∂t
(any flow quantity) = ∂

∂φ
(any flow quantity) = ∂

∂z
(any flow quantity) = 0.

(5.5.18)

We are dealing with a two-dimensional, axisymmetric steady flow. On the two cylin-
ders we enforce the no-slip condition, which in this case is conveniently written as

�(R1) = �1, �(R2) = �2. (5.5.19)

The equation of motion only has non-vanishing R- and φ-components3:

2A flow has shear when the velocity varies in the direction perpendicular to the flow lines, so
Poiseuille-Couette flows are all shear flows.
3Since all flow quantities depend only on R we could replace ∂/∂R by d/dR everywhere. We do
no do this, keeping the primitive form of the equations.
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Fig. 5.4 Couette flow
between two coaxial
cylinders with radius R1 and
R2. The fluid occupies the
gray area. The two cylinders
rotate with angular velocity
�1 and �2 respectively.The
flow between the cylinders
has a set of concentric circles
as flow lines

R-component:
∂ P̃

∂R
= V 2

R
= �2R,

(5.5.20)

φ-component: ν
(∇2V

)
φ

= ν

[
1

R

∂

∂R

(
R

∂V

∂R

)
− V

R2

]
= 0.

The first equation says that the pressure force provides the centripetal force needed
to keep the fluid moving on concentric circles.4 The second equation states that there
can be no no viscous force in the azimuthal direction as both the azimuthal pressure
force and the inertial force are identically zero. This is such a strong constraint
that, together with the boundary conditions, it determines the flow profile! We try a
solution of the form

V (R) ∝ Rα. (5.5.21)

Substituting this into the second equation of (5.5.20) one finds that this leads to

(
α2 − 1

) V

R2
= 0 ⇐⇒ α = 1 or α = −1. (5.5.22)

Since we are solving a linear equation for V (R) the superposition principle applies,
and the general solution is:

V (R) = AR + B

R
, (5.5.23)

4For a flow like this one has (V · ∇)V = −(V 2/R) R̂, with R̂ the unit vector in the R-direction.
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with A and B constants. The no-slip condition at R = R1 is V (R1) = �1R1 and the
no-slip condition at R = R2 gives V (R2) = �2 R2. This leads to

�1R1 = A R1 + B

R1
and �2R2 = A R2 + B

R2
. (5.5.24)

Solving for the constants A and B:

A = �2 R2
2 − �1 R2

1

R2
2 − R2

1

, B = − (�2 − �1) R2
1R

2
2

R2
2 − R2

1

. (5.5.25)

It is instructive to look at two special cases. Let us first assume that the rotation
frequency of both cylinders is equal:

�1 = �2 ≡ �∗. (5.5.26)

It immediately follows that A = �∗ and B = 0, so the flow mimics solid-body
rotation even though it is a deformable medium:

V (R) = �∗ R for R1 ≤ R ≤ R2. (5.5.27)

This is the cylindrical equivalent of the constant-shear flow for K̃ = 0 between
two plates if one of the two plates moves, see the previous Section. In this case the
equation for the pressure,

∂ P̃

∂R
= 1

ρ

∂P

∂R
= �2

∗R, (5.5.28)

is easily solved:

P(R) = P(R1) + 1

2
ρ�2

∗
(
R2 − R2

1

)
. (5.5.29)

The pressure must increase quadratically with radius to force the flow into circular
orbits with angular frequency �∗.

The second case is thatwhere the inner cylinder does not rotate:�1 = 0,�2 = �∗.
In this case we have

A = �∗ R2
2

R2
2 − R2

1

, B = −�∗ R2
1R

2
2

R2
2 − R2

1

. (5.5.30)

The resulting flow can be written as:

V (R)

�∗R2
= R1R2

R2
2 − R2

1

(
� − 1

�

)
, 1 < � ≡ R

R1
<

R2

R1
. (5.5.31)



90 5 Steady Incompressible Flows

5.6 Small-Reynolds Number Stokes Flow Past a Sphere

Consider an incompressible, viscous flow past a solid sphere of radius a, located at
the origin (see Fig. 5.5). The flow has to divert because of the sphere, leading to a
drag force on the sphere that we will calculate below. Far ahead of the sphere, we
have a uniform flow along the z-axis with velocity |V | = U ,

V (z = −∞) = U ẑ. (5.6.32)

In this assignment we will use spherical coordinates (r, θ, φ). The flow is steady,
and symmetric around the z-axis so that

∂

∂t
(any flow quantity) = ∂

∂φ
(any flow quantity) = 0. (5.6.33)

We will assume a highly viscous flow so that the Reynolds number is very small:
Re � 1. We may then neglect the inertial term (V · ∇)V in the equation of motion.
We also neglect gravity. With these approximations Eq. (5.1.2) reduces to the much
simpler form, assuming a constant viscosity η:

∇P = η ∇2V . (5.6.34)

Using the vector identity

∇2V = ∇ (∇ · V ) − ∇ × (∇ × V ) (5.6.35)

and the incompressibility condition∇ · V = 0 one sees that Eq. (5.6.34) is equivalent
with

∇ × ω = −∇P

η
. (5.6.36)

Fig. 5.5 The situation for the viscosity-dominated, slow and incompressible Stokes Flow around
a solid sphere with radius a. Far ahead of the sphere the flow is along the z-axis and has velocityU
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Here ω = ∇ × V is the vorticity of this flow that we defined earlier. Now taking
the divergence of both sides of this equation and using ∇ · (∇ × ω) = 0 for any ω,
one sees that the pressure satisfies5

∇2P = 1

r2
∂

∂r

(
r2

∂P

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
= 0. (5.6.37)

The general solution of this equation that remains finite as r → ∞ is

P(R, θ) = P∞ +
∞∑

n=0

bn r
−(n+1) Pn(cos θ), (5.6.38)

with the Pn(cos θ) the Legendre polynomials of order n. P∞ and all the bn are con-
stants that are to be determined from boundary conditions. For a general discussion
of the way this solution is obtained (that is: by separation of variables) see the dis-
cussion in Arfken and Weber [2], Chaps. 9 and 12. This procedure may be familiar
from Electrostatics, where the electric potential� satisfies this equation in the empty
space around a charge distribution.

For this problem we will only need a few terms in the expansion. The first four
terms involve

P0(μ) = 1, P1(μ) = μ, P2(μ) = 3μ2 − 1

2
with μ ≡ cos θ, (5.6.39)

and can be represented (with a slight redefinition of the bn tailored for this particular
problem) as:

P(R, θ) = P∞ +b0
(a
r

)
+b1

(a
r

)2
cos θ+b2

(a
r

)3 3 cos2 θ − 1

2
+· · · (5.6.40)

This is essentially (in the terminology of electrostatics) a multipole expansion for
P(R, θ), with the second term being the monopole term, the third the dipole term
and the fourth the quadrupole term. Note that in the limit r → ∞ only the first term
survives, so P∞ corresponds to the pressure at infinity.

For r → ∞ the velocity is known, seeEq. (5.6.32).Using that ẑ = cos θ r̂−sin θθ̂
we get the velocity components in spherical coordinates for large r :

V∞ ≡ V (r → ∞) = (U cos θ, −U sin θ, 0) . (5.6.41)

The incompressibility condition ∇ · V = 0 is satisfied automatically if we introduce
a stream function ψ(r, θ) and write6:

5This is the point where the assumption η = constant comes in handy!
6This is the same as writing V = ∇ × A with A ≡ (ψ/r sin θ) φ̂.
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Vr = 1

r2 sin θ

∂ψ

∂θ
, Vθ = − 1

r sin θ

∂ψ

∂r
. (5.6.42)

Then indeed

∇ · V = 1

r2
∂

∂r

(
r2 Vr

) + 1

r sin θ

∂

∂θ
(sin θ Vθ)

(5.6.43)

= 1

r2 sin θ

(
∂2ψ

∂r∂θ
− ∂2ψ

∂θ∂r

)
= 0

The stream function is conserved along flow lines:

(V · ∇)ψ =
(

1

r2 sin θ

∂ψ

∂θ

∂

∂r

)
ψ −

(
1

r2 sin θ

∂ψ

∂r

∂

∂θ

)
ψ = 0. (5.6.44)

Therefore the flow lines coincide with the curves ψ = constant.
Expression (5.6.41) tells us that for r → ∞

ψ(r, θ) → ψ∞(r, θ) ≡ 1

2
Ur2 sin2 θ. (5.6.45)

This suggests that we try
ψ(r, θ) = F(r) sin2 θ. (5.6.46)

Then

Vr = 2F(r)

r2
cos θ, Vθ = − sin θ

r

dF

dr
. (5.6.47)

In addition: the fact that the velocity components are linear functions of cos θ and
sin θ suggests that themultipole expansion for the pressure only contains the constant
term and the dipole term:

P(R, θ) = P∞ + b
(a
r

)2
cos θ. (5.6.48)

Here I have written b for b1.
The vorticity equals7

ω = ∇ × V = −
(

�∗ψ
r sin θ

)
φ̂. (5.6.49)

7To obtain this you have to use the correct expression for the curl in spherical coordinates, see
the Appendix. In this particular case ω only has a φ-component, which equals (1/r) ∂(rVθ)/∂r −
(1/r) ∂Vr/∂θ.
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Here �∗ is a differential operator that is defined by:

�∗ψ ≡ ∂2ψ

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
. (5.6.50)

Writing out the equation of motion (5.6.36) in components using (5.6.48) we have

η

r2 sin θ

∂

∂θ

(
�∗ψ

) = ∂P

∂r
= −2ba2 cos θ

r3
, (5.6.51)

and
η

r sin θ

∂

∂r

(
�∗ψ

) = −1

r

∂P

∂θ
= b a2 sin θ

r3
. (5.6.52)

These two equations can be satisfied simultaneously if

�∗ψ = −ba2

ηr
sin2 θ. (5.6.53)

Using the definition of �∗ it follows that the stream function should satisfy

∂2ψ

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
+ b a2

ηr
sin2 θ = 0. (5.6.54)

Substituting (5.6.46) for ψ(r, θ) one finds the following relation:

(
d2F

dr2
− 2F

r2
+ b a2

ηr

)
sin2 θ = 0. (5.6.55)

The term inside brackets should vanish identically. The resulting inhomogeneous
ordinary differential equation for F(R) is solved by:

F(r) = A r2 + B

r
+ ba2r

2η
. (5.6.56)

The first two terms are the homogeneous solution (the solution for F(r) that is
obtained by putting b = 0) and the third term is the particular solution. The stream
function is

ψ(r, θ) =
(
A r2 + B

r
+ b a2 r

2η

)
sin2 θ. (5.6.57)

Condition (5.6.45) for r → ∞ implies

A = U

2
. (5.6.58)
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The two remaining constants B and b follow from the conditions at the surface of the
sphere. The sphere is solid, so the radial velocity at the surface of the sphere should
vanish: Vr (r = a) = 0. We should also apply the no-slip condition at the surface
of the sphere. If the sphere does not rotate this means Vθ(r = a) = 0. Therefore,
V = 0 at r = a. Then expression (5.6.47) for V gives the following two conditions
at r = a:

F(a) = U

2
a2 + B

a
+ b a3

2η
= 0 (5.6.59)

and

(
dF

dr

)

r=a

= U a − B

a2
+ b a2

2η
= 0. (5.6.60)

This implies

B = U

4
a3, b = −3ηU

2a
(5.6.61)

so that

ψ(r, θ) = U

2
r2 sin2 θ

(
1 + 1

2

(a
r

)3 − 3

2

(a
r

))
. (5.6.62)

The curves ψ = constant are streamlines, and the flow should “hug” the sphere so
that the surface of the sphere is a flow line.8 Putting r = a shows that ψ = 0 on the
sphere, and ψ(a, θ) is indeed constant.

Now that the stream function has been determined, the velocity and pressure can
be obtained. The results are:

Vr (r, θ) = U cos θ

(
1 − 3

2

(a
r

)
+ 1

2

(a
r

)3
)

,

Vθ(r, θ) = −U sin θ

(
1 − 3

4

(a
r

)
− 1

4

(a
r

)3
)

, (5.6.63)

P(r, θ) = P∞ − 3

2

ηUa

r2
cos θ.

We will use this solution for a calculation of the drag force exerted by the fluid on
the sphere.

8If this were not the case there would be bubbles of vacuum between the spherical surface and the
fluid, clearly an unphysical situation!
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Fig. 5.6 Surface stress on a sphere

5.6.1 Drag Force on the Sphere

The surface stress exerted by this flow on the sphere leads to a drag force. For sym-
metry reasons this drag force should be along the z-axis. Physical intuition suggests
that, for a slow flow such as this one, it should be proportional to the asymptotic flow
speed U . Definition (3.5.11) of the surface stress t (force per unit area) and some
simple trigonometry (see the Fig. 5.6) gives the z-component of the stress,

tz = −Trr (r = a) cos θ + Trθ(r = a) sin θ, (5.6.64)

see the Fig. 5.6. The relevant components of the stress tensor with ∇ · V = 0,

T = P I − (∇V + (∇V )†
)
, (5.6.65)

must be evaluated at the surface of the sphere, at r = a:

Trr = P − 2η

(
∂Vr

∂r

)

r=a

= P(r = a) = P∞ − 3ηU

2a
cos θ,

(5.6.66)

Trθ = −η

[
r

∂

∂r

(
Vθ

r

)
+ 1

r

∂Vr

∂θ

]

r=a

= 3ηU

2a
sin θ.

The apparent complexity of these expressions stems from evaluating∇V and (∇V )†

in spherical coordinates. Substituting this into (5.6.64) one finds:

tz(θ) = −P∞ cos θ + 3ηU

2a
. (5.6.67)

http://dx.doi.org/10.2991/978-94-6239-195-6_3
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The total drag force is found by integration over the entire surface of the sphere:

FD =
∫ 2π

0
dφ

∫ π

0
dθ a2 sin θ tz(θ)

(5.6.68)

= 2πa2
∫ +1

−1
dμ

(
3ηU

2a
− P∞ μ

)
= 6πηaU.

Here once again μ ≡ cos θ. The term involving P∞ has no net contribution to the
integral and the drag force is indeed proportional toU . This result is known as Stokes’
Law.

5.6.2 The Drag Coefficient

The drag force on a body is usually expressed in terms of a dimensionless Drag
Coefficient CD by writing:

CD = |FD|
1
2ρU

2 A . (5.6.69)

Here U is the flow speed far ahead of the body, and A is the area presented by the
body in the plane perpendicular to the flow. For instance, our calculation of the fluid
drag on a sphere in a very viscous flow, where FD = 6π η aU = 6π ρν aU and
A = πa2 yields:

CD = 12ν

Ua
. (5.6.70)

Since the variation in the flow (see solution 5.6.63) near the sphere is on a scale ∼a,
the typical Reynolds number of the flow is

Re � aU/ν, (5.6.71)

and the drag coefficient satisfies

CD = 12

Re
. (5.6.72)

This is an example of a more general phenomenon for very viscous flows (typically
forRe < 0.5),where the drag coefficient depends on theReynoldsNumber, typically:

CD = f (Re)∼Re−1 (For Re � 1). (5.6.73)
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In flows with high Reynolds-number (where Re � 1) the situation is completely
different: there one typically finds

CD = O(1) (For Re � 1). (5.6.74)

Definition (5.6.69) of the drag coefficient can be understood in simple terms. Given
the areaA of an object transverse to the flow, the amount of fluidmomentum crossing
this area per unit time, well ahead of the flow, equals:

dpfluid
dt

∼ (
ρU 2 + P

) A. (5.6.75)

Since this has the dimension of a force one might expect

|FD| ∝ dpfluid
dt

, (5.6.76)

with the constant of proportionality ∼CD.

5.7 Ideal Potential Flow Past a Sphere

In the previous Section we calculated the viscous, low-Reynolds number flow of
constant density past a sphere, and the drag force on that sphere. Here we consider
the opposite case: an ideal flow (formally the limit Re → ∞) past a sphere without
vorticity, so this is a potential flow. The symmetries (5.6.33) again apply, and we
assume that the flow is incompressible with a constant density so that ∇ · V = 0.
The fundamental equations are in this case:

V = ∇ϕ, ∇ · V = ∇2ϕ = 1

r2
∂

∂r

(
r2

∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
= 0.

(5.7.1)

A sphere of radius a and with its center at the origin deflects the flow. Far ahead of
the sphere, the flow velocity is along the z-axis with velocity U . This implies:

V (r → ∞) = U ẑ ⇐⇒ ϕ(r → ∞) = Uz = U r cos θ. (5.7.2)

The asymptotic result on ϕ is easily checked using Cartesian coordinates: ∇(Uz) =
(∂(Uz)/∂z) ẑ = U ẑ.

The equation for ϕ, ∇2ϕ = 0, is the same as the equation for P̃ in the case of
a viscous flow. There is one difference: P̃ = P/ρ is a measurable quantity, and
therefore needs to be finite for all r . There is no such restriction on ϕ, since the
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measurable quantity is V = ∇ϕ. That means that ∂ϕ/∂r and (1/r) (∂ϕ/∂θ) should
remain finite. Therefore, we can try the following solution9:

ϕ(r, θ) =
(
A r + B

r2

)
cos θ, (5.7.3)

with A and B constants. The asymptotic result (5.7.2) for large r immediately yields

A = U. (5.7.4)

The constant B can be determined from the boundary conditions at the surface of
the sphere, at r = a. Since there is no viscosity, we can no longer impose the no-slip
condition and Vθ can take any value.

The only remaining condition is that surface of the sphere is impenetrable, and that
there are no vacuum bubbles between the fluid and the sphere so that Vr (r = a) = 0
at all times. This yields:

Vr (r = a) =
(

∂ϕ

∂r

)

r=a

=
(
U − 2B

a3

)
cos θ = 0 ⇐⇒ B = U a3

2
. (5.7.5)

Therefore the flow potential is:

ϕ(r, θ) =
(
1 + a3

2r3

)
Ur cos θ. (5.7.6)

This gives the velocity components in spherical coordinates:

Vr = ∂ϕ

∂r
= U

(
1 − a3

r3

)
cos θ, Vθ = 1

r

∂ϕ

∂θ
= −U

(
1 + a3

2r3

)
sin θ. (5.7.7)

Bernoulli’s law for a steady, constant-density flow (see Eq. 4.4.4 with � = 0, as we
neglected gravity) reads in this case:

1

2
V 2 + P

ρ
= constant = 1

2
U 2 + P∞

ρ
. (5.7.8)

Here P∞ is the pressure far ahead of the sphere, where the flow has not yet been
deflected. This gives the pressure distribution in the flow:

P(r, θ) = P∞ + ρ

2

(
U 2 − V 2(r, θ)

)
. (5.7.9)

9These are the non-vanishing terms for this case in the general axisymmetric solution ϕ(r, θ) =∑∞
n=0

(
An rn + Bn r−(n+1)

) Pn(cos θ), using P1(cos θ) = cos θ.

http://dx.doi.org/10.2991/978-94-6239-195-6_4
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In particular, at the surface of the sphere we have:

Vr (a, θ) = 0, Vθ(a, θ) = −3

2
U sin θ,

(5.7.10)

P(a, θ) = P∞ + ρU 2

2

(
1 − 9

4
sin2 θ

)
.

This result for P(r, θ) has an important consequence: there is no drag force on the
sphere. The total force exerted by the fluid on the sphere (in absence of any viscosity)
is the total pressure force on its surface:

F =
∫ 2π

0
dφ

∫ π

0
dθ sin θ a2

(−P(a, θ) n̂
)

(5.7.11)

Here n̂ = r̂ is the outward pointing unit vector perpendicular to the spherical surface.
Explicit calculation of F proceeds most simply in Cartesian coordinates, where

n̂ = r̂ = r
r

= (sin θ cosφ, sin θ sin φ, cos θ) . (5.7.12)

It is easily seen that Fx and Fy integrate to zero because of the factors cosφ and
sin φ that respectively appear in the integrand. The z-component, after the trivial
integration over φ has been performed, equals (see 5.7.10):

Fz = −2πa2
∫ π

0
dθ sin θ cos θ

{
P∞ + ρU 2

2

(
1 − 9

4
sin2 θ

)}
. (5.7.13)

Fz vanishes identically since the pressure and cos θ are symmetric for the interchange
θ → −θ (that is: fore-aft symmetry with respect to the flow direction at infinity)
while sin θ is anti-symmetric.

This result, the vanishing of the drag force in an ideal potential flow past a sphere,
is a manifestation of d’Alembert’s Paradox. In fact, this result holds generally for an
ideal potential flow around an object, as we will now briefly show.

5.7.1 d’Alembert’s Paradox

Our discussion of this paradox largely follows the discussion by Acheson [1],
Sect. 4.13. Consider a stationary object in a fluid confined in a straight channel
with uniform cross section S, see the Fig. 5.7. The length of the channel is along the
z-direction, and the center of mass of the object is at z = 0. There is a steady, ideal
potential flow with constant density through the channel and around the object. Far
ahead of the object the flow is uniform and parallel to the walls of the channel so
that V = U ẑ. Far behind the object the flow will return to a uniform, parallel flow
pattern.
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Fig. 5.7 Schematic representation of the flow used to prove that the drag force of an ideal potential
flow around an object (the black ellipse) vanishes identically

Consider a channel cross section S1 with total area S ahead of the object. The
amount of z-momentum crossing this surface per unit time is:

(
dpz
dt

)

1

=
∫

dS1
(
ρV 2

z + P
)
. (5.7.14)

In a similar way, the amount of z-momentum crossing a surface S2 some distance
behind the object equals

(
dpz
dt

)

2

=
∫

dS2
(
ρV 2

z + P
)
. (5.7.15)

If there is any drag force, it must have resulted from momentum transfer from the
fluid to the object. Momentum conservation for the whole system then demands for
the z-component of this drag force, taken to be the only component:

Fz =
∫

dS1
(
ρV 2

z + P
) −

∫
dS2

(
ρV 2

z + P
)
. (5.7.16)

We now move the first surface to z = −∞ and the second surface to z = +∞. The
flow at z = +∞ has become uniform again, and must flow parallel to the walls.
Along flow lines Bernoulli’s law (without gravity) for this flow reads

1

2
V 2 + P

ρ
= constant = 1

2
U 2 + P∞

ρ
. (5.7.17)

Here U and P∞ are the velocity and pressure at z = −∞. Mass conservation states

∫
dS1 ρVz =︸︷︷︸

z → −∞
ρU S =

∫
dS2 ρVz . (5.7.18)
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Fig. 5.8 The shedding of vortices in the wind wake of the Cape Verde Islands off the coast of North
Africa. The vortices are visible because of the fleecy clouds that follow the flow

If the flow returns to a uniform statewith the flowparallel to the z-axis far downstream
(when z → +∞), that state must have Vz = U in order to satisfy mass conservation.
If this were not the case, mass would accumulate in (or drain away from) the region
between the two surfaces and the flow would no longer be steady. If Vz(∞) = U
Bernoulli’s law immediately gives P(+∞) = P∞. We conclude that the flow returns
to the same flow parameters as it had at z = −∞: P(+∞) = P(−∞) ≡ P∞ and
V (−∞) = V (+∞) = U ẑ. But this implies that

∫
dS1

(
ρV 2

z + P
) =

∫
dS2

(
ρV 2

z + P
) = (

ρU 2 + P∞
)
S, (5.7.19)

and the drag force vanishes: Fz = 0. This constitutes d’Alembert’s Paradox.
The resolution of this paradox lies in the assumption that the flow around the

object remains a potential flow. In practice this is not the case: an extensive wake
will form. There will be vorticity generated in that wake, sometimes in the form of
a train of vortices (“whirls”) that are shed by the object, see the illustration below.
The flow around the object is no longer a potential flow, and as a result a drag force
will be present! (Fig. 5.8).



Chapter 6
Steady, Ideal Compressible Flows

6.1 Basic Equations

The conservative form of the fluid equations treated in Chap. 3 is a powerful tool in
the case of steady flows: flows where the relation

∂

∂t
(all flow quantities) = 0 (6.1.1)

is satisfied. We will limit most of the discussion to the case of so-called adiabatic
and ideal flows, where there is no net heating (H = 0) and no viscosity (η = 0).
The basic equations in conservative form for such an ideal, steady and adiabatic flow
read:

mass conservation: ∇ · (ρV ) = 0; (6.1.2)

momentum conservation: ∇ · (ρ V ⊗ V + P I) = −ρ∇�; (6.1.3)

energy conservation: ∇ ·
[
ρV

(
1

2
V 2 + h + �

)]
= 0; (6.1.4)

entropy law: ∇ · (ρV s) = 0. (6.1.5)

The specific enthalpy h and specific entropy s for an adiabatic gas have been defined
in Eqs. (3.2.20) and (3.3.39):

h = γP

(γ − 1)ρ
, s = cv ln

(
Pρ−γ

)
. (6.1.6)
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6.2 Bernoulli’s Law for a Steady Compressible Flow

One can combine the mass conservation equation and the energy conservation law
by using the vector relation

∇ · ( fA) = f (∇ · A) + (A · ∇)f . (6.2.1)

It follows that the energy conservation law can also be written as

(∇ · ρV )

(
1

2
V 2 + h + �

)
+ ρ(V · ∇)

(
1

2
V 2 + h + �

)
= 0. (6.2.2)

Because of the steady mass conservation law ∇ · (ρV ) = 0 the first term vanishes.
One is left with:

(V · ∇)

(
1

2
V 2 + h + �

)
= 0. (6.2.3)

This alternative form of the energy conservation law has a simple physical interpre-
tation: condition (4.4.14) ensures that the function 1

2V
2 + h + � is constant along

any streamline in a steady flow. However, it is important to realize that a variation
across streamlines is still allowed by this relation.

We conclude that energy law (6.2.3) in a steady flow can now be represented by
a constraint equation known as Bernoulli’s law:

1

2
V 2 + γP

(γ − 1) ρ
+ � = constant along flow lines. (6.2.4)

The quantity

E ≡ 1

2
V 2 + γP

(γ − 1) ρ
+ � (6.2.5)

is the energy per unit mass or specific energy. It consists of the contributions from
the kinetic energy ∝ V 2/2 of the mean flow, from the thermodynamic energy due
to thermal motions and from the gravitational potential energy. Here I have used the
definition of the enthalpy per unit mass for an ideal gas, h = γP/(γ − 1)ρ.

I stress again that this says nothing about the variation of E across flow lines!
Therefore, the value of E may differ from flow line to flow line, which implies that
in general E is not a global constant, i.e. a quantity that is constant over all of space.

http://dx.doi.org/10.2991/978-94-6239-195-6_4
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6.2.1 Conservation of Entropy Along Flow Lines

The assumption of no net heating or cooling implies (according to the last equation
in 6.1.2) that for each fluid element in a steady flow the relation

d

dt

(
P ρ−γ

) = (V · ∇)
(
P ρ−γ

) = 0 (6.2.6)

must hold. If we use definition (2.8.27) for the specific entropy s of an ideal gas this
relation is seen to be equivalent with:

(V · ∇)s = (V · ∇)
[
cv ln

(
P ρ−γ

)] = 0. (6.2.7)

An adiabatic, steady flow is isentropic along a given flow line. This leads to a second
important constraint on the flow:

s = cv ln
(
Pρ−γ

) = constant along flow lines. (6.2.8)

This relation could also have been derived from the entropy equation (3.2.26) with
H = 0 (no irreversible heating) and ∂s/∂t = 0 (steady flow).

Alternatively, one can use the conservative entropy equation (3.3.44), which in
the steady state reduces to

∇ · (ρV s) = (ρV · ∇)s + s ∇ · (ρV )︸ ︷︷ ︸
vanishes due to mass conservation

= 0. (6.2.9)

This result can be combined with Bernoulli’s law, E = constant along flow lines.
One gets:

E = 1

2
V 2 + h0

(
ρ

ρ0

)γ−1

+ � = constant along flow lines. (6.2.10)

Here

h0 = γP0

(γ − 1)ρ0
, (6.2.11)

P0 and ρ0 are constant reference values on a given streamline for specific enthalpy,
pressure and density that enter the equation by writing the adiabatic gas law for the
variation of the pressure along a flow line as P(ρ) = P0(ρ/ρ0)

γ .

http://dx.doi.org/10.2991/978-94-6239-195-6_2
http://dx.doi.org/10.2991/978-94-6239-195-6_3
http://dx.doi.org/10.2991/978-94-6239-195-6_3
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6.3 The Laval Nozzle

As a first application I briefly discuss the Laval nozzle, named after Swedish inventor
Gustav de Laval, who discussed steam turbines. The basic problem is simple: how
does one engineer a nozzle (exaust tube) that is the most efficient in converting the
thermal energy of a super-heated gas into a high-velocity flow. Modern applications
of the principle are found in jet- and rocket engines.

Let us assume that the shape of the nozzle is sufficiently smooth and slender
that one can approximate the flow as quasi one-dimensional, that is: nearly uniform
across the cross-sectional area A(z) of the tube. If z is the distance along the nozzle
axis (see Fig. 6.1), and if mass is introduced into the nozzle at a constant rate Ṁ, the
fundamental equations for a steady, ideal flow are:

Fig. 6.1 A Laval Nozzle is a tube with a constriction, which is generally used in rocket engines.
High-pressure gas coming from the combustion chamber enters the nozzle, and flows into a region
where the nozzle cross section declines: dA/dz < 0. The thermal energy is converted into kinetic
energy of the flow, and the flow accelerates. It can only keep accelerating if the flow goes through a
sonic point (where V = Cs) at the critical point z∗, where dA/dz = 0. The cross section increases
again after the critical point, dA/dz > 0, and the gas is accelerated further. The two critical point
conditions, V = Cs(z∗) and dA/dz = 0 at z = z∗, are analogous to those encountered in the Parker
model of the Solar Wind, as discussed in the next section
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ρ(z)V (z)A(z) = Ṁ = constant (Mass conservation),

1

2
V 2 + γP

(γ − 1)ρ
= E = constant (Bernoulli’s law), (6.3.1)

P(z) = K ργ(z) (Entropy conservation).

Here K is a constant.
If one differentiates the mass conservation law with respect to z and divides the

resulting equation by Ṁ = ρVA one finds:

1

ρ

dρ

dz
+ 1

V

dV

dz
+ 1

A
dA
dz

= 0. (6.3.2)

Using
γP

(γ − 1)ρ
= γK

γ − 1
ργ−1, (6.3.3)

differentiation of Bernoulli’s law with respect to z yields:

V
dV

dz
+ γK ργ−2 dρ

dz
= 0. (6.3.4)

Using (6.3.2) to eliminate dρ/dz yields an equation that is most conveniently
written as:

(
V 2 − C2

s

) d ln V

dz
= C2

s
d lnA
dz

. (6.3.5)

Here

C2
s ≡ γK ργ−1 = γP

ρ
. (6.3.6)

is the square of the adiabatic sound speed,1 a quantity that we denote by Cs.
This equation is singular in the sense that the coefficient of the velocity derivative

d ln V/dz vanishes if the flow speed equals the sound speed: V = Cs. This will lead
to sudden jumps in the solutions unless this happens exactly at the point where the
cross section of the Laval nozzle has a minimum so that dA/dz = 0. If the point
where this occurs is located at z = z∗, smooth flows through the nozzle are only
possible if

V (z∗) = Cs(z∗) &
dA
dz

∣∣∣∣
z=z∗

= 0 (6.3.7)

1As we will show in the next chapter this is the propagation speed for sound waves in an adiabatic
gas.
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These are the so-called critical point conditions that must be satisfied for a smooth
flow transition from a supersonic flow (V > Cs) to a sub-sonic flow (V < Cs).
A critical point always occurs when there is such a transition, as the following
astrophysical examples will show. In the case of a jet- or rocket engine this is an
important design consideration: the super-heated gas coming from a combustion
chamber must be accelerated down the nozzle to the largest possible speed, that is
from a sub-sonic flow to a supersonic flow.

6.4 Parker’s Model for a Stellar Wind

The constraint equations derived in the previous section are sufficient to derive flow
properties in those cases where the flow lines are known a priori. Invariably, these
are cases where the physical situation has a high degree of symmetry.

The simplest examples of relevance for astrophysical applications are spherically
symmetric flows. In such a flow the flow lines are radial lines, and if the flow is steady
(∂/∂t = 0) the velocity vector takes the form

V (x) = V (r) r̂. (6.4.1)

Here r̂ is a unit vector in the radial direction. All flow quantities depend only on the
radial distance r to the origin.

In this case the mass conservation equation, ∇ · (ρV ) = 0, reads

1

r2
∂

∂r

[
r2ρ(r)V (r)

] = 0. (6.4.2)

The factors r2 appearing in this equation arise because of the use of the spherical
coordinate r: the radial flow lines diverge! The areaA of a bundle of radial flow lines
increases with radius as A ∝ r2. Equation (6.4.2) can be integrated immediately:

ρ(r) V (r) r2 = constant ≡ Ṁ

4π
. (6.4.3)

Here the constant Ṁ corresponds to the amount of mass that crosses a spherical
surface at arbitrary r (with area 4πr2) per unit time.

The other two constraints for this spherical flow are Bernouilli’s law (the conser-
vation of the energy per unit mass),

1

2
V 2(r) + γP(r)

(γ − 1) ρ(r)
+ �(r) = constant ≡ E, (6.4.4)
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and the condition for an adiabatic (i.e. isentropic) flow:

P(r) = constant × ργ(r). (6.4.5)

In this highly-symmetric case the conserved quantities Ṁ = 4π r2ρV , E and s =
cv log(Pρ−γ) are in fact global constants of the flow: they take the same value at any
radius.

In what follows we will use the conservation laws (rather than the fundamental
equation of motion) to construct a solution.

6.4.1 Parker’s Equation

We will limit the discussion to the case of flows near a star of mass M∗, which
determines the Newtonian gravitational potential:

�(r) = −GM∗
r

. (6.4.6)

The mass conservation law (6.4.3), Ṁ = 4πr2ρV = constant, implies the following
relation for the infinitesimal density change dρ if one moves a distance dr along a
radial flow line:

dṀ = 4π
{
(r2 V ) dρ + (ρ r2) dV + (2ρ V ) rdr

} = 0. (6.4.7)

This relation can be written as an equation for the density change dρ over a distance
dr:

dρ

ρ
= −

(
dV

V
+ 2

dr

r

)
. (6.4.8)

Bernouilli’s law implies dE = E(r + dr) − E(r) = 0 along a radial stream line, so
we must have:

dE = V dV + d

[
γP

(γ − 1) ρ

]
+ GM∗

r2
dr = 0. (6.4.9)

Here I have used the Newtonian potential (6.4.6) so that

d� = d�

dr
dr = GM∗

r2
dr. (6.4.10)

The second term in (6.4.9) can be rewritten using condition (6.4.5) for an isentropic
flow:

d

[
γP

(γ − 1) ρ

]
= dh = dP

ρ
=

(
∂P

∂ρ

)
dρ

ρ
. (6.4.11)
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The adiabatic sound speed Cs was already defined in our discussion of the Laval
nozzle:

Cs ≡
√

∂P

∂ρ
=

√
γP

ρ
=

√
γRT

μ
. (6.4.12)

Using this definition one has dh = C2
s (dρ/ρ), and Bernoulli’s law becomes

V dV + C2
s
dρ

ρ
+ GM∗

r2
dr = 0. (6.4.13)

Substituting (6.4.8) for dρ/ρ and re-ordering the resulting equation one finds:

(
V 2 − C2

s

) dV

V
=

(
2C2

s − GM∗
r

)
dr

r
. (6.4.14)

This equation can be written as a differential equation. Using the relations dr/r =
d ln r, dV/V = d ln V and d ln V ≡ (d ln V/d ln r) d ln r (see Appendix A), we
find an equation that is known as the Parker equation (named after the American
astrophysicist Gene Parker):

(
V 2 − C2

s

) d ln V

d ln r
= 2C2

s − GM∗
r

. (6.4.15)

Parker proposed this equation for the Solar Wind [35], a tenuous stream of particles
emanating form the Sun with a net mass loss of

Ṁ� ≈ 10−14 M�/yr.

The possible existence of a Solar Wind was the subject of much discussion in the
1950/60’s. It had been noted in the 1950s by German astrophysicist Biermann that
the most plausible explanation for the behavior of the tails of comets (known from
their spectra to contain ionized matter) was the existence of a stream or wind of
ionized matter from the Sun. It had also been noted that the activity of the Sun, and
the occurrence of such geophysical phenomena such as the Northern Lights (Aurora
Borealis) are related, which hints at an agent propagating from the Sun to the Earth.

The existence of such a wind is also plausible for another reason: the outer layer
of the Solar atmosphere, the Corona, has a temperature T ∼ 2 × 106 K. This was
known from observations of the Corona during a solar eclipse. At such temperatures,
the proton thermal velocity is of order

vp =
√
3kbT

mp
∼ 200 km/s,
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fairly close to the escape velocity of the Sun:

vesc
� ∼

√
2GM�
r�

∼ 620 km/s.

This would mean that protons in the tail of the thermal Maxwellian distribution, with
a velocity some three times themean thermal velocity, could in principle escape from
the Sun.

Such considerations (among others) led Parker to his hypothesis. His prediction
of the existence of the Solar Wind and of its velocity near Earth (∼ 400 km/s) was
convincingly demonstrated to be correct by the first satellite measurements around
1960. The history of the subject can be found in the book by Brandt [9].

We now know that the Sun is not unique: many stars show signs of mass loss,
some much stronger than the Sun For a wide-ranging introduction see [25]. Bright
young stars (so-called O-B-stars, much hotter and bluer than the Sun), Wolf Rayet
and Be-stars and the stars on the Asymptotic Giant Branch have strong winds, some
with velocities up to 3000km/s. Given the large mass-loss rate in some of these cases
(Ṁ ∼ 10−8−10−5 M�/yr) the existence of such a stellar wind can have a distinct
influence on the evolution of the star concerned.

It is also believed that Young Stellar Objects, stars in the evolutionary phase imme-
diately after the ignition of stellar nucleosynthesis in their core, have strong outflows.
In some cases the stellar winds have a visible influence on their surroundings: they
blow a hot bubble of tenuous gas in themuch colder surrounding interstellar medium.

The manner in which the wind material is accelerated away from the star is not
always the same. In cool stars, such as our Sun, the wind is the result of the presence
of the hot corona. Such corona’s are probably the result of themagnetic activity of the
star, which requires the presence of a convection zone just below the visible stellar
surface.

In this case pressure forces are ultimately responsible for the wind. In hot stars on
the other hand the wind is driven by radiation forces which result from the absorption
of photons by ’metals’2 in the wind material.

6.4.2 The Critical Point Conditions

In the case of Parker’s wind model the wind is ‘driven’ by the large pressure (and
the associated thermal energy) of the material in the Solar Corona. In the wind, the
thermal energy is converted into the kinetic energy of the outwardmotion. Thismeans
that the flow must accelerate away from the star, dV/dr > 0, and must also make a
smooth transition from a subsonic flow (V < Cs) to a supersonic flow (V > Cs).

2In the astronomical jargon, all elements heavier than Helium are referred to as metals, with no
regard to their chemical properties in the laboratory.
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If one tries to solve Parker’s equation,

(
V 2 − C2

s

) d ln V

d ln r
= 2C2

s − GM∗
r

, (6.4.16)

one is faced with two possible difficulties:

• If the term on the right hand side changes sign, which will occur if the flow crosses
the so-called sonic radius r = GM∗/2C2

s ≡ rs, the sign of dV/dr will change:
assuming the flow starts for r < rs as an accelerating flow with dV/dr > 0, it will
become a decelerating flow for r > rs. This is not the type of solution one expects:
rather than a high-speed wind at large radius one gets a low-speed breeze!

• A second problem will occur if the term in front of d ln V/d ln r vanishes when
the flow velocity equals the local sound speed so that V (r) = Cs(r). At the radius
where this occurs the velocity derivative dV/dr will -generally speaking- go to
infinity, which is clearly unphysical (Fig. 6.2).

Parker realized that these problems can be avoided if the two equalities V = Cs and
r = rs = occur simultaneously:

V (r) = Cs(r) & 2C2
s (r) − GM∗

r
= 0. (6.4.17)

Fig. 6.2 A schematic representation of the solution plane of the Parker equation. The radius varies
in the horizontal direction, and the flow velocity V in the vertical direction. The solution plane can
be divided into four regions, depending on V < Cs (subsonic flow) or V > Cs (supersonic flow),
and on the conditions r < rc and r > rc. The critical point is located intersection of the boundaries
of these regions, at V = Cs and r = rc = GM∗/2C2

s . In the lower left and upper right panes of this
diagram the flow accelerates so that dV/dr > 0. In the lower right and upper left panes the flow
decelerates so that dV/dr < 0.
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In this way infinities in the solution are avoided while maintaining an outward accel-
erating flow at all radii. These are Parkers critical point conditions. These relate
the flow speed V , the sound speed Cs and the value of the critical radius rc = rs:

V (r = rc) = Cs(r = rc) =
√
GM∗
2rc

. (6.4.18)

The critical point occurs at the sonic radius

rc = GM∗
2C2

sc

, (6.4.19)

with Csc ≡ Cs(r = rc). These conditions plays a central role in the Parker wind
theory.

The reason for this behavior is easily seen when one considers a schematic rep-
resentation of the solution plane of Parker’s equation, shown in the figure above.
The solution must inevitably go through the critical point, where V = Cs and
r = GM∗/2C2

s = rc, if the wind starts subsonic (i.e. V < Cs) at small radii near
the stellar surface, becomes supersonic (V > Cs) at some distance from the star,
and continues to accelerate so that dV/dr > 0 throughout the flow: the true wind
solutions.

Note that condition (6.4.19) is in general an implicit equation as the sound speed
varies with radius. Only in the case of an isothermal (constant temperature) wind is
the sound speed a constant. This case is discussed in the next section.

Once this the location of the critical point is determined, the mass loss can be
calculated immediately:

Ṁ = 4πr2cρcCsc = πρc(GM∗)2

C3
sc

(6.4.20)

Here ρc and Csc are the density and sound speed at the critical point. This critical
point condition defines a unique solution: there are no other admissible solutions
which can make a smooth transition from a subsonic outward flow to a supersonic
outward flow while maintaining acceleration (dV/dr > 0) throughout the flow.

6.4.3 Isothermal Winds

A special case, which allows the analytical solution of Parker’s equation, is the
isothermal wind. There one assumes

P = nkbT0 = ρRT0
μ

(R = kb/mH), (6.4.21)
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with a constant temperature T0. Formally for a pressure-density relation of the form
P ∝ ργ this corresponds with γ = 1, and the above expressions are no longer valid:
the enthalpy h = γP/(γ − 1) ρ becomes infinite!

This problem can be circumvented by defining the enthalpy as the ‘PdV’-work
done per unit mass:

h(ρ) ≡
∫ ρ

ρ0

dP

ρ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

RT0
μ

ln

(
ρ

ρ0

)
isothermal gas with γ = 1

γP

(γ − 1) ρ
polytropic gas with γ > 1

. (6.4.22)

Here ρ0 is an arbitrary reference density that is put equal to zero for γ > 1. Note that
this definition for h reduces for γ > 1 to the case already discussed above.

The sound speed in this case, called the isothermal sound speed, is constant as it
depends only on temperature:

s =
√

∂P

∂ρ
=

√
RT0
μ

= constant. (6.4.23)

This fact allows a direct calculation of the location of the critical point. In an isother-
mal wind it occurs at a radius

rci = GM∗
2s2

= GM∗
2(RT0/μ)

, (6.4.24)

determined only by the assumed temperature T0 and the mass M∗ of the star. The
conserved energy per unit mass along flow lines now equals

E = 1

2
V 2 + s2 ln

(
ρ

ρ∗

)
− GM∗

r
. (6.4.25)

Here the reference density is chosen to be the density ρ∗ at the stellar surface.
Evaluating E twice, once at the stellar surface r = r∗, assuming that the velocity

is much less than the escape velocity (i.e. V (r∗) 
 √
2GM∗/r∗), and once at the

critical point r = rci where V = s, one can derive a relation for the density at the
critical point, given the density at the stellar surface:

ln

(
ρc

ρ∗

)
≈ 3

2
− 2rci

r∗
, (6.4.26)

where I have definedρ∗ ≡ ρ(r∗). Given the temperatureT0 in thewind this determines
the density at the critical point, and the total mass loss Ṁ:

Ṁ = πρc(GM∗)2

(RT0/μ)3/2
. (6.4.27)
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The isothermal solution applies whenever there is a mechanism that acts as a ‘ther-
mostat’ that keeps the temperature of the wind material constant. An example of
such a mechanism is a strong radiation field which forces the material to remain at
a temperature equal to the effective temperature of the radiation.

Let us apply this model to the Sun. Assuming T0 to be the typical coronal tem-
perature derived from observations, T0 = 2 × 106 K, the isothermal sound speed
equals

s ≈ 138 km/s,

and the critical radius (sonic radius) is3

rci ≈ 3.5 × 1011 cm � 5 R�.

This implies a density at the critical point equal to

ρc ≈ e−8.5ρ∗ ≈ 3.4 × 10−20 g/cm3,

and a mass loss rate4

Ṁ � 6.7 × 1011 g/s = 1.1 × 10−14 M�/yr.

Here I used relation (6.4.26) with the observed number density n∗ ∼ 108 cm−3 at
the base of the Solar Corona, corresponding to ρ∗ ∼ n∗mp ≈ 1.6 × 10−16 g/cm3.
This crude estimate of the Solar mass loss rate is surprisingly close to the observed
value, even though the Solar Wind is not isothermal or spherically symmetric.

6.4.4 Analytical Solution for an Isothermal Wind

It is possible to construct the analytical solution for a Parker wind in the isothermal
case. Using the dimensionless variables

ξ = r

rci
= 2s2r

GM∗
, y ≡ M2

i = V 2

s2
(6.4.28)

with s = √RT/μ the isothermal sound speed, Parker’s equation can be written as

(
1 − 1

y

)
dy

dξ
= 4

ξ

(
1 − 1

ξ

)
. (6.4.29)

3The Solar radius is equal to R� = 6.96 × 1010 cm.
41 M�/yr = 6.3 × 1025 g/s.
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This implies
(y − 1) dy

y
= 4(ξ − 1) dξ

ξ2
. (6.4.30)

Integration of this relation is elementary:

y − ln y = 4 ln ξ + 4

ξ
+ constant. (6.4.31)

The integration constant is determined by the critical point condition, in these vari-
ables:

y = M2
i = 1 for ξ = r

rci
= 1. (6.4.32)

One finds that the integration constant must equal −3 so the solution reads:

y − ln y = 4 ln ξ + 4

ξ
− 3. (6.4.33)

Reverting back to physical variables, (ξ, y) =⇒ (r, V ), one finds:

(
V

s

)2

− 2 ln

(
V

s

)
= 4 ln

(
2s2r

GM∗

)
+ 2GM∗

s2r
− 3. (6.4.34)

The figure on the next page represents the solution curves for an isothermal wind.

6.5 The Accretion Solution

If one studies Fig. 6.3 or the basic equations carefully, it becomes obvious that the
same set of equations applies to an accretion solution with radial flow lines and
velocity

V = −V (r) r̂. (6.5.1)

Here the minus sign ensures that V (r) > 0 to avoid problems with quantities like
ln V . This represents a flow onto the star, starting at infinity. In this solution the
magnitude of the velocity is zero at infinity, V (∞) = 0, crosses the critical point
with the sound speed and ultimately hits the star at a supersonic speed.

This flow can be thought of as material falling onto the star due to the star’s grav-
itational pull on the interstellar gas, but never attaining the full free-fall speed, being
“frustrated” by the pressure force, which points away from the star. This pressure
force is due to the inevitable increase in density that occurs as the material nears the
star.
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Fig. 6.3 Diagram showing
the possible solutions to
Parker’s equation, assuming
an isothermal wind with
T = constant, γ = 1. nly the
Parker wind solution and the
Bondi solution (solid lines)
can make the transition from
subsonic to supersonic flow
at the critical point. All other
solution curves (which are
represented by dash-dot
lines) are unphysical.

This spherically symmetric inflowmodel is knownasBondiAccretion. In principle
one can calculate the amount of mass Ṁ hitting the star per unit time from the
temperature and density of interstellar gas. Even though accretion is very important
as an energy sourcewhenevermaterial accretes onto a compact object, such as awhite
dwarf, neutron star or black hole, the Bondi solution for all its simplicity is probably
irrelevant in real life. In all such systems material rotates around the compact object,
and as a result it carries angular momentum. If this angular momentum is not lost,
for instance by friction (viscosity), the gas will hit the centrifugal barrier where the
centrifugal force becomes larger than the gravitational force. The same mechanism
prevents the planets from falling into the Sun.

As a result these accretion flows will not be spherically symmetric, but (at best)
cylindrically symmetric around some rotation axis. .An example of such a flow is
an accretion disk, where material orbits around the compact object while slowly
seeping through the disk in the radial direction due to loss of angular momentum.
The physics of accretion is described in detail in the book by Frank et al. [16].
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6.6 The Pressure-Confined Astrophysical Jet

There is a class of stationary flows of great importance to astrophysics: jet flows.
These are flows which can be considered as almost one-dimensional in the sense: the
streamlines are confined to quasi-cylindrical surfaces with a small opening angle.
Jets are highly collimated streams of matter, not unlike the exhaust of hot gas from
a jet engine, or the water stream from a high-pressure fire hose.

Jets are observed in a number of astrophysical objects, as summarized in Table6.1
below:

This table uses the astronomical distance measure of 1 pc = 3.08 × 1016 m.
The jets associated with Young Stellar Objects andMicro-quasars are associated

with stellar-mass compact objects. Young Stellar Objects are proto-stars that still
accrete matter from their surroundings. They are often embedded inside a dense
Molecular Cloud that provides the necessary material.

In the case of Micro-quasars one is dealing with a neutron star or a black hole,
residing in a close binary system. The compact object pulls matter from the com-
panion star, a normal star like the Sun or a more massive star, by tidal forces. This
accreted matter collects in an accretion disk around the neutron star or black hole.
Radio galaxies and quasars contain super-massive black holes with a mass of
106−109 M�. In that case one again has an accretion disk, which is probably fed by
the debris from stars that are pulled apart by tidal forces when these stars pass too
close to the black hole.

The jets associated with Gamma Ray Bursts are rather special: they are formed
inside a dying massive star when the core of this star collapses directly into a black
hole: a so-called collapsar or hypernova. The material raining onto the collapsed
core forms an accretion disk since it carries angular momentum due to the rotation
of the progenitor star. The Gamma Ray Burst phenomenon involves short-lived,
very powerful jets where an energy of ∼ 1052 ergs (1% of the rest-energy of one
solar mass) is liberated in 10-100 seconds. The jets produced in this manner are ultra-

Table 6.1 Sources of astrophysical jets

Object Jet length (in pc) Jet power (in W) Opening angle (in
degrees)

Flow speed
(in units of c)
(Lorentz factor γ)

Gamma Ray
Bursts

0.01 1043 ∼0.01 ∼1
(γ ∼ 102−103)

Young stellar
objects

0.01−1 1028−1030 1−10 0.001

Microquasars in
X-ray binaries

∼1 1031 (?) small 0.3−1

Radio galaxies
and quasars

103−106 1035−1040 1−10 0.2−1
(γ ∼ 1−10)
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relativistic, with a speed Vj corresponding to a Lorentz factor�j = 1/
√
1 − V 2

j /c2 ∼
100−1000. The figure below shows a numerical simulation of a collapsar jet as it
propagates through the mantle of the dying progenitor star.

The common denominator of all these sources is that they derive their power
from the accretion of matter, probably through an accretion disk. Apparently, some
process associated with this accretion disk is capable of accelerating a small fraction
of the accreted material to high velocities, expelling it from the system in a strongly
collimated flow.

A good introduction to astrophysical jets is the book by Smith [44]. A more
advanced discussion can be found in [31], Chaps. 13–15. Here I will concentrate on
the simplest model where the jet is driven by the pressure of the jet material.

6.6.1 A Bit of History

Historically, the need for the existence of jets was first realized in the context of
powerful double radio galaxies. Double radio sources consist of two radio-emitting
clouds located on either side of the parent galaxy. The archetype is the radio galaxy
Cygnus A (see figure), one of the strongest radio sources in the sky, which Baade and
Minkowski identified in 1954 as being associated with an elliptical galaxy. The radio
emission is synchrotron radiation from relativistic electrons spiraling in a magnetic
field of 1−100μG. This can be inferred from the observed properties of the radiation:
its spectrum and the polarization. The theory of synchrotron radiation can be found
in [42], Chap. 6.

Synchrotron emission causes the relativistic electrons to loose energy, so one
would expect such radio-emitting clouds to fade over time. However, it became clear
that many of the observed powerful radio galaxies must be older than the synchrotron
loss time: their linear size is larger than (loss time) × (velocity of light)! This
observation led Roger Blandford andMartin Rees [8] to the conclusion that the older
models, which proposed that the radio clouds are expelled from the parent galaxy
and obtain all their energy in a single explosive event, can not be correct.
They argued that there must be a continuous supply of energy from the ‘central
engine’ in the nucleus of the active galaxy or quasar to the clouds of radio emission,
which lie at a distance from the parent galaxy ranging from ∼ 100 kpc up to several
Mpc. Blandford & Rees proposed that a strongly collimated flow of matter,5 a so-
called jet, furnishes this supply. It was not long before advances in radio astronomy
made it possible to observe these radio jets directly. We now know that jets are the
common outcome when matter is accreted on a compact object (Fig. 6.4).

5They also left open the possibility that the ‘jet’ consists almost purely of radiation. This idea has
gone out of fashion in view of some theoretical difficulties, and the modern observations which
clearly show the jets as sources of synchrotron radiation, for which one needs a copious supply of
electrons (or positrons) in addition to magnetic fields.
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Fig. 6.4 The radio galaxy Cygnus A, one of the most powerful radio galaxies in the sky. This
shows a false-color map of the synchrotron emission at a wavelength λ = 6 cm (ν = 5 Ghz).
The location of the nucleus of the active galaxy, the one visible jet and of the Hot Spots (red) is
indicated. Around the hot spots, extensive radio lobes (yellow) are formed. These lobes are clouds
of relativistic, synchrotron-emitting electrons that have been accelerated in the shocks that form
the hot spots. The electron clouds are then left behind as the jets push further into the surrounding
intergalactic medium. The galaxy that hosts the massive Black Hole, which is responsible for the
jets, is invisible in this radio image, as the stars that make up the galaxy emit very little power at
radio frequencies. The distance between the two Hot Spots is ∼ 150 kpc. Image credit: R. Perley,
C. Carilli & J. Dreher, NRAO/AUI/NSF

6.6.2 Fundamental Equations for a Pressure-Driven Jet Flow

Consider a quasi-cylindrical jet with its axis oriented along the z-axis, and a cylin-
drical radius R(z) that varies along its length. The cross-section of the jet equals
A(z) = πR2. We assume that all fluid variables (density ρ, pressure P, velocity
V · · · ) all depend only on the coordinate z along the axis, and are constant over the
cross-section A.

These assumptions are justified if the expansion of the jet radius is sufficiently
slow. Physically this condition means that the jet should be able to adjust rapidly
to any pressure changes in the direction perpendicular to its axis. In that case the
pressure of the material in the jet equals the pressure of the surrounding medium:
there is pressure balance. If the flow speed in the jet equals V (z), a fluid element
‘feels’ a pressure change equal to

dP

dt
= V (z)

dP

dz
, (6.6.1)
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as it travels along the jet. This pressure change must be communicated rapidly to all
points over the jet’s cross-section, which will take a time of order t⊥ ∼ R(z)/Cs since
pressure changes propagate as sound waves. These waves propagate at the adiabatic
sound speed (to be derived in Chap.7):

Cs = √
γP/ρ. (6.6.2)

The jet will be able to adjust smoothly to pressure changes provided

dP

dt

 P

t⊥
=

(
Cs

R

)
P. (6.6.3)

Using the above expression (6.6.1) for the pressure change, it is easily seen that this
condition corresponds to

1

P

dP

dz

 1

MsR
, (6.6.4)

with Ms ≡ V/Cs the sound Mach number of the flow: the ratio of the flow speed
and the local speed of sound. If the jet changes its properties on a scale �z = L so
that dP/dz ≈ P/L, this condition implies

R 
 L/Ms. (6.6.5)

As jets are strongly supersonic at large distances from the source region (Ms � 1),
this implies that the opening angle α of the jet must be small:

α ≈ dR

dz
≈ R

L

 1

Ms

 1. (6.6.6)

Here I use the approximation tanα ≈ α. If this condition is satisfied the equations
for the jet flow simplify considerably. The equations are:

Ṁ ≡ ρV A = constant (mass conservation)

E ≡ 1

2
V 2 + γP

(γ − 1) ρ
+ �(z) = constant (Bernouilli’s law)

(6.6.7)

P = P0

(
ρ

ρ0

)γ

(isentropic flow)

P(z) = Pe(z) (pressure balance)

The first equation makes use of the fact that the flow lines are almost perpendicular
to the jet cross-section as long as the opening angle α 
 1. In that case the amount

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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of mass flowing through the jet (which is simply the mass flux × area) equals
Ṁ = ρVA. The Bernoulli equation and the adiabatic gas law for an isentropic flow
should be familiar by now.

The pressure P0 and the density ρ0 are simply reference values, which we can
choose to be the pressure and density of the gas at the beginning of the jet in the
nucleus of the active galaxy.

The last equation is the pressure balance equation that must be imposed for a
steady jet. At the outer edge of the jet (at cylindrical radius R) there must be balance
between the pressure P inside the jet and the pressure Pe of the surrounding medium.
If this was not the case, the interfacewould start tomove radially outwards or inwards
in attempt to equalize the force acting on both sides. If the jet expands slowly in the
sense of Eq. (6.6.6), pressure equilibrium is established quickly over the whole jet
cross-section. Therefore, the interior jet pressure must equal the pressure of the
surrounding gas.

The interface between the jet and the surrounding gas is an example of a contact
discontinuity. These will be discussed briefly in Chap.7. Note that (by definition)
there is no mass flux across this cylindrical surface. If the gas surrounding the jet is
the atmosphere of some galaxy, and if this atmosphere is in hydrostatic equilibrium
with a density ρe, the exterior (atmospheric) pressure satisfies the

dPe

dz
= ρe gz, (6.6.8)

with gz = −∂�/∂z the local z-component of the gravitational acceleration due to
the galaxy, in the direction along the jet axis.

The pressure constraint,P(z) = Pe(z), together with the condition of an isentropic
flow, immediately fixes the density of the jet material:

ρ(z) = ρ0

(
Pe(z)

P0

)1/γ

. (6.6.9)

Bernoulli’s law can be rewritten into an equation for the flow speed in a way similar
to the Parker wind (Chap. 4.2), simply by considering a small change dV in the jet
speed and pressure change dP that occur if one moves a small distance dz along the
jet axis:

V dV + dP

ρ
+

(
∂�

∂z

)
dz = 0. (6.6.10)

From mass conservation, ρV A = constant, one finds that the density must change
by an amount

dρ

ρ
= −

(
dV

V
+ dA

A
)

. (6.6.11)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
http://dx.doi.org/10.2991/978-94-6239-195-6_4
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If the external gas satisfies the equation (6.6.8) for hydrostatic equilibrium one has

(
∂�

∂z

)
= −gz = − 1

ρe

dPe

dz
. (6.6.12)

This, together with the pressure equilibrium condition P = Pe, allows us to write the
equation of motion as:

V
dV

dz
= −1

ρ

dP

dz
+ gz = −

(
ρe

ρ
− 1

)
gz. (6.6.13)

This equation immediately tells us that the increase in the outward velocity of the
jet (dV/dz > 0) can be understood as the effect of buoyancy6: the rise against the
direction of gravity of a lighter fluid or gas inside a denser fluid or gas. In this case
gz < 0 as the local gravitational acceleration vector points back towards the host
galaxy. The jet velocity increases towards positive z provided the jet material is less
dense than the gas in its surroundings: ρ < ρe. No jet can be formed if ρ > ρe: the
material would simply fall back onto the nucleus unless it is ejected with a speed
much larger than the local escape speed.

This is the essential ingredient of the Blandford-Rees model of jet formation.
Here one assumes that the ‘central engine’ in the nucleus of the AGN produces a hot,
tenuous gas with a high pressure and low density compared with the surrounding
interstellar gas. This material becomes buoyant in the gravitational field of the galaxy
hosting the massive black hole and its entourage, and the material escapes in the
direction where the gravitational acceleration is largest, usually the rotational axis of
the central part of the galaxy. The material accelerates until it reaches the maximum
velocity allowed by Bernoulli’s law.

An illuminating analogy (due to Martin Rees) is the following: put a hose dis-
charging air at the bottom of a lake. If the gas discharge is small, individual air
bubbles will rise to the surface. When the discharge rate of the air hose is cranked up
there will ultimately come a point where so much air will rise to the surface that the
air bubbles merge and a jet of air propagates to the surface, confined by the pressure
of the surrounding water. At each depth, there will be (roughly) pressure equilibrium
between the water pressure and the air pressure in the jet. The internal jet velocity
near the lake surface will be larger if we put the air hose in a deeper lake so that the
pressure at the mouth of the hose is larger, and the jet is (by necessity) longer.

For all its elegance the Blandford-Rees model for jets has largely gone out of
fashion. It is now believed that the jet flow is largely driven by electromagnetic
forces due to the magnetic field inside the jet that is wound up into a spiral due to
the rotation of the material close to the black hole in the nucleus of the host galaxy.

6Also known as Archimedes’ law; The word buoyancy comes from the Dutch boei, a floating object
used to mark shipping lanes.



Chapter 7
Small Amplitude Waves: Basic Theory

7.1 Introduction

One of the main difficulties of fluid mechanics is its intrinsic non-linearity, explicitly
visible in the (V · ∇)V term in the equation of motion. This non-linearity makes it
difficult to find exact solutions, except in those cases where there is a lot of symmetry.
The preceding chapters contained a number of examples of such symmetric flows.

Another way to simplify the fundamental equations, and so obtain a problem
that is tractable using analytical solutions, is to look at small perturbations around
an equilibrium. This equilibrium state is a solution of the fluid equations. One then
looks at small deviations from that equilibrium, assuming that the changes in velocity,
density and pressure due to that deviation remain small. If that is the case, non-linear
terms can be neglected when describing the evolution of these small perturbations.

For instance: when describing small-amplitude waves, all variations in fluid quan-
tities such as velocity, density and pressure can be expressed as linear functions of
the displacement field ξ(x, t). This field describes how far individual fluid elements
are displaced from their equilibrium position x, using a (seemingly) simple recipe:

x ⇒ x + ξ(x, t). (7.1.1)

The vector field ξ(x, t) (simply called the displacement vector from now on) plays
a pivotal role in the theory. The technique works well if the amplitude |ξ| of the
displacement vector remains sufficiently small.

As an illustration of this technique, often referred to as perturbation analysis, I
will look at an analogous situation in classical mechanics.

© Atlantis Press and the author(s) 2016
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7.1.1 Perturbation Analysis of Particle Motion in a Potential

Consider a particle of mass m moving in one dimension x in a potential V (x), which
leads to a force F(x) = −dV/dx. The equation of motion for this particle reads:

m
d2x

dt2
= F(x) = −dV

dx
. (7.1.2)

Now let’s assume that there is an equilibrium position x0 where the force F(x)
vanishes. This implies that the potential satisfies

(
dV

dx

)

x=x0

= 0. (7.1.3)

Consider a particle at rest at the equilibrium position x = x0. We now perturb the
particle, shifting its position from x = x0 to x = x0 + ξ. How will the particle move?

In the immediate vicinity of x0 (i.e. for small ξ) the potential can be expanded in
powers of ξ = x − x0 as:

V (x0 + ξ) ≈ V0 +
(
dV

dx

)

x=x0

ξ + 1

2

(
d2V

dx2

)

x=x0

ξ2 + · · · (7.1.4)

Here V0 ≡ V (x0). If we break off the expansion for the potential at the quadratic
term, and use the equilibrium condition (7.1.3) we get

V (x0 + ξ) ≈ V0 + 1

2
k ξ2, (7.1.5)

where k ≡ (d2V/dx2)x=x0 . Now substituting

x(t) = x0 + ξ(t) (7.1.6)

into the equation of motion (7.1.2), and using ξ = x − x0 so that for constant x0 one
has

dV

dx
= dξ

dx

dV

dξ
= dV

dξ
, (7.1.7)

one finds:

m
d2ξ

dt2
= −dV

dξ
= −kξ. (7.1.8)

By breaking off the expansion (7.1.4) of the potential at the quadratic term in ξ, we
get a linear equation of motion for the displacement ξ(t) of the particle. Had we
included terms proportional to ξ3, there would be a corresponding nonlinear term
∝ ξ2 in the equation of motion for ξ. By making this choice we have linearized the
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problem. We must therefore assume that |ξ| remains sufficiently small so that our
approximation for V (x0 + ξ) remains valid.

The equation of motion (7.1.8) looks like the equation of motion for a linear
oscillator if k > 0. In that case the force is directed back towards the equilibrium
position x0, and the solution is a harmonic oscillation around the equilibriumposition:

ξ(t) = ξ0 cos(ωt + α), (7.1.9)

where ξ0 is the amplitude of the oscillation and the oscillation frequency equals

ω =
√

k

m
=
√

1

m

(
d2V

dx2

)

x=x0

. (7.1.10)

The amplitude ξ0 and phase angle α follow directly from initial conditions: the
displacement ξ(0) = ξ0 cosα and the velocity (dξ/dt)0 = −ωξ0 sinα at t = 0.

The condition k > 0 corresponds to:

(
d2V

dx2

)

x=x0

> 0. (7.1.11)

Condition (7.1.11) is simply that the position x0 must correspond with a minimum in
the potential. In that case the equilibrium is stable since a small perturbation from
the equilibrium position leads to a harmonic oscillation of the particle around that
position. The stable case is illustrated below (Fig. 7.1).

If, on the other hand, the equilibrium position is at a maximum so that k < 0 and

(
d2V

dx2

)

x=x0

< 0, (7.1.12)

the force is always directed away from equilibrium position x0. In that case the
solution of the equation of motion for ξ reads:

ξ(t) = ξ+ exp(σt) + ξ− exp(−σt). (7.1.13)

The term proportional to ξ+ grows exponentially in time, and will dominate the
solution when σt � 1. The growth rate σ equals

σ ≡
√ |k|

m
=
√

1

m

∣∣∣∣
d2V

dx2

∣∣∣∣
x=x0

. (7.1.14)
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Fig. 7.1 Asimple example of a stable oscillation is themotion of a spherical ball in a bowl under the
influence of gravity. The gravitational potential energy equals V (ξ) = mg h(ξ), with g acceleration
of gravity and where ξ is the horizontal distance to the point where the bottom of the bowl reaches
its lower level. This point coincides with x = 0. Also, h(ξ) is the height above the lowest point at
distance ξ. The minimum of the potential occurs in this example at x = 0, and the constant k in this
case equals k = mg (d2h/dx2)x=0

The amplitude of the term ∝ ξ+ doubles in a time interval �t = τ = ln 2/σ =
0.693/σ, and grows without bound.

This exponential growth of ξ(t) (in the linear approximation) implies that the equi-
librium is linearly unstable: the particle will move further and further away from the
equilibrium position. This means that our assumption that ξ remains small ultimately
breaks down when the displacement becomes sufficiently large. In principle it is still
possible that the exact motion is stable and the displacement stays bounded, so that
the equilibrium is linearly unstable, but nonlinearly stable. In what follows, we will
not consider that case and assume that the presence of a linear instability signals a
true instability of the system.

This example of perturbation analysis illustrates the main features of an approach
that is also valid in fluid mechanics. There we will also perturb an equilibrium,
and derive a linear equation of motion for a small displacement �x = ξ from that
equilibrium. If the equilibrium is stable we will find the linear waves (oscillations)
the fluid is able to support. If the equilibrium turns out to be unstable, we will find
the linear growth rate of the instability. Like in the case of ordinary mechanics, the
perturbation approach allows us to determine the stability of an equilibrium state.
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7.2 What Constitutes a Small-Amplitude Wave?

In an ideal fluid in a stable equilibrium, small perturbations in pressure, density and
temperature propagate as waves. The qualification ‘small’ in this context means that
a number of conditions must be satisfied:

• The amplitude of the pressure perturbation �P, density perturbation �ρ and the
temperature perturbation �T are all small compared with the average pressure,
density, and temperature:

|�P| � P, |�ρ| � ρ, |�T | � T . (7.2.1)

• The displacement vector �x ≡ ξ of a fluid element must be small compared with
the wavelength λ of the wave, and the wavelength is small compared with the
scale length L on which the average pressure, density or temperature of the fluid
change:

|ξ| � λ � L. (7.2.2)

If these conditions are not fulfilled, a description in terms of simple linear and purely
harmonic waves is not possible.

Wewill mostly deal with the case of plane waveswhere it is assumed that�P,�ρ,
�T and ξ all vary harmonically in space and time, with a well-defined wavelength
and wave frequency.1

Such harmonic behavior is to be expected. Consider for example what happens
in a sound wave, which is simply a periodic train of alternating regions of slightly
higher and slightly lower pressure than the average pressure. When the gas is locally
compressed so that the density increases, the associated local pressure increase will
lead to a pressure force directed away from the compression region. This pressure
force induces a motion of the gas away from the compression which, by virtue of
mass conservation, decreases the density. This density decrease can not stop instan-
taneously due to the inertia of the material. Therefore it continues until the region
becomes less dense than its surroundings. The region is now under-pressurized and
the direction of the pressure force reverses. As a result, the material flows back into
the region. Without some form of friction, this cycle will continue indefinitely.

7.3 The Plane Wave Representation

The displacement ξ(x, t) of a fluid element in a harmonic plane wave can be repre-
sented in terms of complex functions as

1In the case where we are dealing with cylindrical or spherical waves, as opposed to plane waves,
the situation is more complicated.
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ξ(x, t) = a exp (ik · x − iωt) + cc. (7.3.1)

Here a is a complex amplitude and k the wave vector, which is related to the wave-
length λ by:

k = 2π

λ
n̂, (7.3.2)

with n̂ a unit vector perpendicular to the wave front. In addition ω is the wave fre-
quency and the notation ‘cc’ denotes the complex conjugate. The complex conjugate
must be included to keep the displacement vector ξ (which is an observable quan-
tity!) real-valued. Such a representation is equivalent (but much more convenient, as
we will see) to a representation in terms of sines and cosines. One could also write
the displacement as

ξ(x, t) = 2|a| êa cos (k · x − ωt + α) , (7.3.3)

if we write a = aêa where êa is a (real) unit vector. The phase angle α is related to
the real and imaginary parts of the complex amplitude a:

α = tan−1 (Im(a)/Re(a)) ≡ tan−1 (ai/ar) , (7.3.4)

and the amplitude |a| is defined as

|a| = √
a · a∗ =

√
a2r + a2i . (7.3.5)

Note that the displacement vector ξ(x, t) is a field on space-time, just as the fluid
velocity. The velocity perturbation associated with this displacement is

�V = dξ

dt
. (7.3.6)

For the other quantities that vary as a result of the presence of the waves similar
expressions can be written down that all take the form

perturbed quantity = (complex amplitude) × (phase factor) + cc, (7.3.7)

where, for plane waves, the phase factor takes the standard form

phase factor = exp (ik · x − iωt) . (7.3.8)

For instance: one can write for the density and pressure variations in the wave

�ρ = ρ̃ exp (ik · x − iωt) + cc,

(7.3.9)

�P = P̃ exp (ik · x − iωt) + cc.
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The fundamental equations of the flow will (after linearization) provide the relation
between �ρ or �P and the displacement ξ, and between the complex amplitudes a,
ρ̃ and P̃. This means that in the end one van write down a single wave equation that
only involves ξ(x, t)!

The plane-wave description will be valid provided the wave number k ≡ |k| and
wave frequency ω satisfy

|ω|T � 1, kL � 1. (7.3.10)

Here L is the length scale of the spatial variation of the properties of the fluid,
and T the timescale on which the fluid changes its properties. The wave period
P = 2π/|ω| must be much shorter than the time scale on which the fluid changes
its global properties, and the wavelength λ = 2π/k must be much smaller than
the scale on which inhomogeneities occur in the fluid or gas. If these equalities are
marginally satisfied, there are advanced methods, such as the WJKB method (see
for instance [34], p. 1095) that is also used to construct approximate solutions to the
wave equations of quantum mechanics.

7.4 Lagrangian and Eulerian Perturbations

In Chap.2.1 we already noted the two different time derivatives that play a role
in fluid mechanics: the partial (or Eulerian) time derivative ∂/∂t which gives the
change at a fixed coordinate position, and the total (or Lagrangian) time derivative
d/dt which is the derivative following the flow. We also pointed out the difference
between the Eulerian perturbation δQ of some quantity (field) Q(x, t) as measured
at some fixed position, and the Lagrangian perturbation �Q, given a small change
in position �x:

�Q = δQ + (�x · ∇) Q. (7.4.1)

The definitions for the Eulerian and Lagrangian derivatives and the Eulerian and
Lagrangian variations can be given a precise mathematical meaning. If the flow field
is well-behaved, it is possible to assign to each fluid element a label that will identify
it unambiguously. A simple choice for such a label is the position the fluid element
has at some arbitrary reference time t0:

Lagrangian label : the position x(t0) ≡ x0 of each fluid element at t = t0.

One can think of the position of a fluid element as a function of time t and of the
label x0, which marks its position at time t0:

x = x(x0, t). (7.4.2)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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This is equivalent with an ‘initial condition’ x(t0) = x0. Evaluating this function
x(x0, t) at fixed x0 as a function of t gives you the trajectory of a given fluid element:
a flow line. Changing the value of x0 at fixed t takes you to a different fluid element,
and you are moving (in a continuous fashion) from flow line to flow line. The label
x0 is carried along by a flow element, is constant along a given flow line and must
therefore satisfy

dx0
dt

= 0. (7.4.3)

The Lagrangian time derivative can be re-interpreted in these terms as

d

dt
≡
(

∂

∂t

)

x0

. (7.4.4)

In contrast, the partial (Eulerian) time derivative is taken with the coordinate position
x kept fixed:

∂

∂t
≡
(

∂

∂t

)

x
. (7.4.5)

In the same manner one can define the Lagrangian perturbation �Q and its Eulerian
counterpart δQ for any fluid quantity Q(x, t) as

�Q = perturbation of Q with x0 fixed,

(7.4.6)

δQ = perturbation of Q with x fixed.

This definition ensures that �Q is the change as seen by an observer moving with
the flow.

There is an important set of relations between these variations, spatial derivatives
and the Eulerian and Lagrangian time derivatives. These follow directly from the
formal definitions (7.4.4), (7.4.5) and (7.4.6):

δ

(
∂Q

∂t

)
= ∂ δQ

∂t
, δ(∇Q) = ∇(δQ), �

(
dQ

dt

)
= d �Q

dt
. (7.4.7)

These results will prove useful when we perform the perturbation analysis of the
fluid equations in order to derive wave properties.

7.4.1 Velocity, Density and Pressure Perturbations in a Wave

Linear perturbations

The displacement vector (wave amplitude) ξ(x, t) as defined above corresponds to
the change of the coordinates (associated with a fixed coordinate grid) as seen by a
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hypothetical observer who is moving with the oscillating motion of the fluid in the
wave: the sloshing motion. An observer fixed to the grid, on the other hand, is by
definition always at the same coordinate position. This implies for a small-amplitude
wave that the following relations must be valid:

�x = ξ(x, t), δx = 0. (7.4.8)

We can use the unperturbed position x of the fluid as a Lagrangian label that identifies
the different fluid elements.2 Note that the unperturbed position need not be constant:
if there is a large-scale flow, x corresponds to the trajectory of a given fluid element
in that flow: x = x(t).

Each fluid element is displaced according to the simple prescription

x −→ x = x + ξ(x, t). (7.4.9)

If we use the definition (7.4.6) and relation (7.4.1), which give the relation between
the Lagrangian and Eulerian variations in some quantity Q, one finds:

�Q = δQ + (ξ · ∇)Q. (7.4.10)

This is the connection between the Lagrangian and Eulerian variation of the quantity
Q(x, t) in a small-amplitude wave, neglecting terms of order |ξ|2 and higher in this
linear analysis. The quantity Q can be a scalar, vector or tensor.

We will now use these fundamental relations to calculate in a systematic fashion
the velocity, density and pressure perturbations that are induced by the wave motion.
There are other methods to do this, but they tend to be ad hoc, applicable to spe-
cial situations only. The method used here can be applied in any situation where a
description in terms of plane waves applies.

The velocity perturbation

We can apply the relations derived in the previous section immediately to calculate
the velocity perturbation induced by the wave. The Lagrangian velocity perturbation
equals

�V ≡ �

(
dx
dt

)
= d �x

dt
(7.4.11)

= dξ

dt
≡ ∂ξ

∂t
+ (V · ∇)ξ.

2From this point onwards, I will write x rather than x0 for the unperturbed position of a fluid element.
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The Eulerian velocity variation seen by a fixed observer now follows from (7.4.1)
as:

δV = �V − (ξ · ∇)V

(7.4.12)

= ∂ξ

∂t
+ (V · ∇)ξ − (ξ · ∇)V .

These relations simplify considerably in the case where the fluid is globally at rest
so that V = 0. In that case one has �V = δV = ∂ξ/∂t. Note that we consistently
neglect all higher order terms ∝ |ξ|2, |ξ|3 . . ..

Collecting results we have:

�V = ∂ξ

∂t
+ (V · ∇)ξ, δV = ∂ξ

∂t
+ (V · ∇)ξ − (ξ · ∇)V . (7.4.13)

The density perturbation

The density change follows from a simple argument of mass conservation, quite
similar to the one thatwas used to derive the continuity equation in Sect. 2.6. Consider
different fluid elements, their unperturbed position separated by an infinitesimal
vector dx, which we write in component form as

dx ≡ (dx1, dx2, dx3) . (7.4.14)

The wave motion (7.4.9) transports each fluid element to a new position according
to

xi −→ xi = xi + ξi(x, t) for i = 1, 2, 3. (7.4.15)

Thismeans that—at given time—the vector dx is both stretched (or shrunk) in length,
and tilted in direction according to the prescription

dxi −→ dxi = ∂xi
∂x1

dx1 + ∂xi
∂x2

dx2 + ∂xi
∂x3

dx3. (7.4.16)

This expression follows from the fact that each of the components of the new vector
x̄ are functions of time and the components of the old vector x:

xi = xi(t, x1, x2, x3) (7.4.17)

Byusing theEinstein summation convention,where a summation is impliedwhenever
an index is repeated, we can write dxi as

dxi = ∂xi
∂xj

dxj ≡ Dij dxj. (7.4.18)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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In this expression the summation is over the index j for j = 1, 2, 3. The quantity
Dij ≡ ∂xi/∂xj is formally a rank 2 tensor, the so-called deformation tensor. In
principle this tensor contains all the information needed to calculate how the vector
dx connecting two neighboring points is changed as a result of the fluid motion from
x to x̄. Using (7.4.15) one can calculate the components of this tensor:

Dij = ∂xi
∂xj

= δij + ∂ξi

∂xj
. (7.4.19)

In matrix representation the deformation tensor looks like

D(x, t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + ∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1
1 + ∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2
1 + ∂ξ3

∂x3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.4.20)

This tensor generally is a function of (unperturbed) position and of time through
ξ(x, t).

Now consider the infinitesimal volume dV defined by the three infinitesimal vec-
tors dX ≡ (dX, 0, 0), dY ≡ (0, dY , 0) and dZ ≡ (0, 0, dZ) that all connect to
neighboring fluid elements. The infinitesimal volume enclosed by these three vec-
tors is given by the general rule (2.7.6):

dV = dX · (dY × dZ) = dX dY dZ. (7.4.21)

Each of these three vectors changes as a result of the wave motion, in a manner
described by recipe (7.4.18).

For instance, the infinitesimal vector dX = (dX, 0, 0) becomes dX, where:

dX = D · dX =
(
1 + ∂ξ1

∂x1
,

∂ξ2

∂x1
,

∂ξ3

∂x1

)
dX. (7.4.22)

The first component is along the unperturbed vector, and corresponds to a change
of length of the vector, which increases when ∂ξ1/∂x1 > 0 or decreases when
∂ξ1/∂x1 < 0. The other two components are in the direction perpendicular to the
unperturbed vector. For that reason they correspond to a rotation of the vector that
changes the orientation dX with respect to dX. This is illustrated in the Fig. 7.2.
Similar expressions can be written down for dY and dZ:

dY =
(

∂ξ1

∂x2
, 1 + ∂ξ2

∂x2
,
∂ξ3

∂x2

)
dY , dZ =

(
∂ξ1

∂x3
,
∂ξ2

∂x3
, 1 + ∂ξ3

∂x3

)
dZ. (7.4.23)

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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The volume enclosed by the new separation vectors dX, dY and dZ is

dV = dX · (dY × dZ
)
. (7.4.24)

Let us write this in component form, using the totally anti-symmetric Levi-Cevita
tensor εijk which is defined by:

εijk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 for i j k an even permutation of 1 2 3;

−1 for i j k an uneven permutation of 1 2 3;

0 if any of the i j k have the same value.

(7.4.25)

This definition implies ε123 = ε312 = ε231 = +1, ε132 = ε213 = ε321 = −1, and all
other components vanish. In terms of this tensor, the components of the cross product
of two vectors A and B can be written as (remember the summation convention!)

(A × B)i = εijk AjBk . (7.4.26)

The volume-element (7.4.24) expressed in component notation is

dV = εijk dXi dYj dZk . (7.4.27)

Using (7.4.22) for dX in component form, dXi = Di1 dX, and the corresponding
expressions dYi = Di2 dY , dZi = Di3 dZ , one finds:

dV = εijk Di1 Dj2 Dk3 dX dY dZ. (7.4.28)

The product involving the Levi-Cevita tensor and the three factors ofDij is actually
the determinant of the deformation tensor3:

εijk Di1 Dj2 Dk3 ≡ det(D) ≡ D(x, t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 + ∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1
1 + ∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2
1 + ∂ξ3

∂x3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. (7.4.29)

3This is easily checked by fully writing out the product.
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Fig. 7.2 The stretching and rotation of the infinitesimal vector dX = (dX, 0, 0), illustrated for two
dimensions in the x-y plane. The change of the vector is characterized by a displacement vector
ξ(x, y, t) at its root, and by a displacement vector ξ(x+dX, y, t) at its tip. The difference between the
x-components of these two displacement vectors leads to stretching of the vector dX by an amount
∝ (∂ξx/∂x)dX , while the difference between the y-components, ξy(x+dX)−ξy(x) ≈ (∂ξy/∂x)dX ,
rotates the vector away from its original orientation parallel to the x-axis, with a rotation angle
∝ (∂ξy/∂x) dX , all to first order in |ξ|

This means that expression (7.4.28) for the volume dV is simply

dV = D(x, t) dV. (7.4.30)

Writing out the determinant of the deformation tensor one finds:

D(x, t) = 1 + ∂ξ1

∂x1
+ ∂ξ2

∂x2
+ ∂ξ3

∂x3
+ terms of order |ξ|2 and |ξ|3. (7.4.31)

Using the definition4
∂ξ1

∂x1
+ ∂ξ2

∂x2
+ ∂ξ3

∂x3
= ∇ · ξ, (7.4.32)

one has
D(x, t) = 1 + ∇ · ξ + terms of order |ξ|2 and |ξ|3. (7.4.33)

The perturbed volume (7.4.30) therefore equals, neglecting terms of order |ξ|2 and
|ξ|3:

dV = (1 + ∇ · ξ) dV. (7.4.34)

The density change follows from the conservation of the mass contained in the
volume,

dm = ρ dV = ρ dV = constant. (7.4.35)

4Simply associate x1 with the x-coordinate, x2 with the y-coordinate and x3 with the z-coordinate.
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This implies:

ρ = ρ

(
dV
dV

)
. (7.4.36)

Using (7.4.34) one can express the new density in terms of the old and ∇ · ξ:

ρ = ρ

(1 + ∇ · ξ)
≈ ρ (1 − ∇ · ξ) . (7.4.37)

Here I have used the approximation (1 + η)−1 ≈ 1 − η + O(η2) that is valid for
|η| � 1.

The Lagrangian variation of the density is by definition

�ρ = ρ − ρ = −ρ (∇ · ξ) . (7.4.38)

The Eulerian density perturbation follows from Eq. (7.4.10)5:

δρ = −ρ (∇ · ξ) − (ξ · ∇) ρ

(7.4.39)

= −∇ · (ρξ).

Collecting results we have:

δρ = −∇ · (ρξ), �ρ = −ρ (∇ · ξ) . (7.4.40)

7.4.1.1 The Pressure Perturbations �P and δP

We consider an adiabatic gas without external heat sources or heat sinks. This means
that the pressure must obey the adiabatic gas law P ∝ ργ for a given fluid element.
Then the pressure depends only on the density, and we can calculate the pressure
change following a fluid element from the density change. The Lagrangian pressure
perturbation, �P = P(x + ξ, t) − P(x, t), therefore equals

�P =
(

∂P

∂ρ

)
�ρ = −γP (∇ · ξ) . (7.4.41)

The Eulerian pressure perturbation δP = P(x) − P(x) follows in the now familiar
fashion:

δP = −γP (∇ · ξ) − (ξ · ∇)P. (7.4.42)

5Here I use the vector identity f (∇ · A) + (A · ∇)f = ∇ · (fA).
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Table 7.1 Perturbed quantities in a linear adiabatic wave

Quantity Lagrangian perturbation Eulerian perturbation

Position x �x = ξ(x, t) δx = 0 (by definition!)

Velocity V (x, t) �V = ∂ξ

∂t
+ (V · ∇)ξ δV = ∂ξ

∂t
+ (V · ∇)ξ − (ξ · ∇)V

Density ρ(x, t) �ρ = −ρ (∇ · ξ) δρ = −ρ (∇ · ξ) − (ξ · ∇) ρ

= −∇ · (ρξ)

Pressure P(x, t) �P = −γP (∇ · ξ) δP = −γP (∇ · ξ) − (ξ · ∇)P

The table above collects all the results we have derived in this section for the
perturbations that are associated with a small-amplitude wave with displacement
vector ξ(x, t). In the Box below, the principles behind this derivation are illustrated
for the much simpler case of a one-dimensional flow, where one can (temporarily)
forget about the vector character of the displacement ξ (Table7.1).

The One-Dimensional Case

The derivation of the Lagrangian density change �ρ and the pressure change
�P (and their Eulerian counterparts δρ and δP) given above is quite general, but
also rather complicated. Some insight can be gained from the one-dimensional
case, where one does not have to worry about the vector-character of the dis-
placement. Consider a one-dimensional fluid with density ρ(x, t) and pressure
P(x, t). The position of all fluid elements changes as a result of a perturbation
(sound wave). If we label this position with an x-coordinate, we can represent
the effect of the perturbation by:

x −→ x̄ ≡ x + ξ(x, t). (7.4.43)

This defines the displacement ξ(x, t) for the one-dimensional case. The role
of the small ’volume’ is now played by the interval �x, see the Fig. 7.3.
Consider the fluid element with its trailing edge at x− ≡ x and the leading
edge at x+ = x− + �x. The mass of the fluid element is

�m = ρ �x. (7.4.44)

Due to the perturbation (7.4.43) the trailing edge of the volume changes its
position from x− to x̄− = x− + ξ(x−, t), whereas the leading edge changes its
position from x+ to x̄+ = x+ + ξ(x+, t). The width of the fluid element is now
equal to:
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�x̄ = x̄+ − x̄−
(7.4.45)

= x+ + ξ(x+, t) − (x− + ξ(x−, t)) .

Now using x− = x and x+ = x + �x one finds:

�x̄ = �x + ξ(x + �x, t) − ξ(x, t)

(7.4.46)

≈ �x + ∂ξ

∂x
�x.

Here I have used the fact that �x is infinitesimally small. One concludes that
the new and the old ‘volume’ are related by

�x̄ =
(
1 + ∂ξ

∂x

)
�x. (7.4.47)

This is the one-dimensional analogue of relation (7.4.34).
Note that the fluid element is compressed (so that�x̄ < �x) when ∂ξ/∂x <

0, and expands (so that �x̄ > �x) in the case ∂ξ/∂x > 0.
Mass conservation (�m = constant) now reads ρ �x = ρ̄ �x̄, so the new

density is

ρ̄ = ρ
�x

�x̄
. (7.4.48)

Using (7.4.47) one has

ρ̄ = ρ

1 + ∂ξ

∂x

≈ ρ

(
1 − ∂ξ

∂x

)
, (7.4.49)

where I have assumed that |ξ| is small compared with the wavelength λ of the
perturbation, which implies that |∂ξ/∂x| ∼ |ξ|/λ is much smaller than unity.

The new density ρ̄ is the density in the displaced fluid element, which is now
at a position x̄ = x + ξ. So we should write relation (7.4.49) more precisely
as:

ρ̄(x + ξ, t) = ρ(x, t)

(
1 − ∂ξ

∂x

)
. (7.4.50)

This defines the Lagrangian density perturbation as

�ρ = ρ̄(x + ξ, t) − ρ(x, t) = −ρ(x, t)

(
∂ξ

∂x

)
. (7.4.51)
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This is the one-dimensional version of relation (7.4.38).
Thedensity at the old (unperturbed) position follows fromusing (for small ξ)

ρ̄(x + ξ, t) ≈ ρ̄(x, t) + ξ

(
∂ρ

∂x

)
. (7.4.52)

Note that I have replaced ∂ρ̄/∂x by ∂ρ/∂x, which is allowed since the differ-
ence between ρ and ρ̄ (and the two density derivatives) is of order |ξ|, and can
be neglected sincewe are only considering terms linear in ξ in relation (7.4.52).
Substituting this into relation (7.4.50) and re-ordering terms one finds:

ρ̄(x, t) = ρ(x, t)

(
1 − ∂ξ

∂x

)
− ξ

(
∂ρ

∂x

)
. (7.4.53)

The Eulerian density perturbation is (by definition) the difference between the
new and the old density at the old (unperturbed) position. It follows from the
previous relation as

δρ = ρ̄(x, t) − ρ(x, t) = −ρ

(
∂ξ

∂x

)
− ξ

(
∂ρ

∂x

)
. (7.4.54)

This result for δρ can be written more compactly as

δρ = − ∂

∂x
(ρ ξ) . (7.4.55)

This is the one-dimensional version of Eq. (7.4.39).
In the special case of a uniform mass density, where ∂ρ/∂x = 0 every-

where in the unperturbed fluid, there is no difference between the Eulerian and
Lagrangian density perturbations:

δρ = �ρ = −ρ

(
∂ξ

∂x

)
(uniform fluid only!) (7.4.56)

In the general case �ρ and δρ do not coincide.
The pressure perturbation due to the displacement can be calculated inmuch

the same manner. For an adiabatic gas, where

P(ρ) ∝ ργ, (7.4.57)
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we can use (7.4.48) to write:

P̄(x + ξ, t) = P(x, t)

(
ρ̄

ρ

)γ

= P(x, t)

(
�x

�x̄

)γ

. (7.4.58)

Using (7.4.47) we have

P̄(x + ξ, t) = P(x, t)

(
1 + ∂ξ

∂x

)−γ

. (7.4.59)

Using |∂ξ/∂x| � 1 we can approximate this by:

P̄(x + ξ, t) = P(x, t)

(
1 − γ

∂ξ

∂x

)
. (7.4.60)

The Lagrangian perturbation of the pressure follows immediately:

�P ≡ P̄(x + ξ, t) − P(x, t) = −γP

(
∂ξ

∂x

)
. (7.4.61)

The Eulerian perturbation can be found using (compare Eq. 7.4.52)

P̄(x + ξ, t) ≈ P̄(x, t) + ξ

(
∂P

∂x

)
. (7.4.62)

Upon substitution of this relation into (7.4.60), and after a re-arrangement of
terms, one finds:

δP ≡ P̄(x, t) − P(x, t) = −γP

(
∂ξ

∂x

)
− ξ

(
∂P

∂x

)
. (7.4.63)

Only if the pressure gradient vanishes in the unperturbed fluid, so that
∂P/∂x = 0 everywhere, do the Lagrangian and the Eulerian pressure per-
turbations coincide:

�P = δP = −γP

(
∂ξ

∂x

)
(uniform fluid only!) (7.4.64)

In three dimensions Eq. (7.4.61) becomes Eqs. (7.4.41), and (7.4.63) becomes
(7.4.42).
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Fig. 7.3 A volume-element with width �x is stretched as a result of the difference between the
displacement ξ(x−) at the trailing edge, and the displacement ξ(x+) at the leading edge. Due to
these displacements, the new width equals �x̄. The example shown is for the case of expansion
where ∂ξ/∂x > 0 so that �x̄ > �x. The opposite case (where ∂ξ/∂x < 0, not shown) would
compress the volume-elements so that �x̄ < �x

7.5 Sound Waves

The results derived in the previous section allow us to calculate the properties of
an adiabatic sound wave propagating in a stationary, uniform fluid. We assume that
V = 0 everywhere and that average density ρ and average pressure P are are inde-
pendent of position. Because of that assumption, and the fact that the unperturbed
fluid is stationary, there is no difference between the linear Lagrangian variations
and the Eulerian variations:

uniform fluid: ⇐⇒ δQ = �Q, (7.5.1)

a relation that is valid for any quantity Q(x, t) in the fluid.
We introduce the small displacement �x ≡ ξ(x, t) of a fluid element, due to the

presence of a sound wave, that takes the form (7.3.1),

ξ(x, t) = a exp (ik · x − iωt) + cc. (7.5.2)

Pressure and density fluctuations induced by this wave satisfy

�ρ = δρ = −ρ (∇ · ξ), �P = δP = −γP (∇ · ξ). (7.5.3)
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The velocity induced by the wave equals

δV = �V = ∂ξ

∂t
. (7.5.4)

From the properties of the exponential function,

∂

∂t

[
exp (ik · x − iωt)

] = −iω exp (ik · x − iωt) ,

(7.5.5)
∂

∂xi

[
exp (ik · x − iωt)

] = iki exp (ik · x − iωt) ,

we can calculate the velocity perturbation and the density- and pressure perturbations
in terms of ξ by using (7.5.3) and (7.5.2):

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

δV (x, t)

δρ(x, t)

δP(x, t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iωa

−ρ i(k · a)

−γP i(k · a)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

× exp (ik · x − iωt) + cc. (7.5.6)

This incidentally shows that the amplitudes of the density- and pressure perturbations,
formally defined in relation (7.3.9), are:

ρ̃ = −iρ (k · a), P̃ = −iγP (k · a). (7.5.7)

The only missing ingredient at this point is an equation of motion that links the
velocity δV = ∂ξ/∂t to the density andpressure perturbations.Consider the equation
of motion for the gas:

dV
dt

= −1

ρ
∇P. (7.5.8)

From the Lagrangian perturbation of the left-hand-side of this equation we obtain the
acceleration of the fluid elements due to the wave. For this acceleration term we can
use the fact that taking the Lagrangian variation � and the comoving time derivative
d/dt commute. Using (7.5.4) one finds:

�

(
dV
dt

)
= d �V

dt
= d2ξ

dt2
= ∂2ξ

∂t2
. (7.5.9)

In the last equality I have used that the unperturbed velocity vanishes: V = 0.
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TheLagrangian perturbation of the right-hand-side of the equation ofmotion gives
the pressure force per unit mass induced by the waves. This term can be evaluated
using [1] the fact that we have assumed that both the unperturbed pressure P and the
unperturbed density ρ are constant everywhere, and [2] by applying (7.5.1) and the
properties listed in Eq. (7.4.7).

One finds:

�

(
1

ρ
∇P

)
= 1

ρ
�(∇P) (as ∇P = 0 in the unperturbed fluid)

= 1

ρ
δ (∇P) (as � = δ in a uniform fluid) (7.5.10)

= 1

ρ
∇ δP (as δ(∇P) = ∇δP.)

The steps taken in this last derivation are only true for the linear perturbations. The
perturbed version of the equation of motion obtained in this fashion is the equation
that governs the perturbations due to sound waves:

∂2ξ

∂t2
= −1

ρ
∇ δP

(7.5.11)

= γP

ρ
∇ (∇ · ξ) .

Here I have substituted expression (7.5.3) for δP. The relation

γP

ρ
≡ C2

s (7.5.12)

defines the adiabatic sound speed Cs. One can write (7.5.11) as a wave equation in
three dimensions:

∂2ξ

∂t2
− C2

s ∇ (∇ · ξ) = 0. (7.5.13)

In conclusion: in order to find the equation of motion for the displacement vector
ξ(x, t) one has to perturb and linearize the equation of motion, expressing all quanti-
ties (such as the velocity and pressure perturbations) in terms of ξ and its derivatives
and ruthlessly dropping all terms that are quadratic (or higher order) in ξ.
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7.6 The Plane Wave Assumption for Sound Waves

Wesubstitute the planewave assumption (7.5.2) for ξ into the sound equation (7.5.13)
and make use of the properties of the exponential factor. Equation (7.5.13) is then
converted into a set of linear algebraic equations for the amplitude a,6 given ω and k:

ω2 a − C2
s (k · a) k = 0. (7.6.1)

In order to simplify the algebra, assume that the sound wave propagates in the x − y
plane so that k = (kx, ky, 0). In that case we have

k · a = kxax + kyay.

It is always possible to define your coordinate system in such a way that this choice
is valid, as long as one is dealing with plane waves.

By writing out the three spatial components of equation (7.6.1) explicitly we get
three coupled, linear algebraic equations for ax, ay and az that can be represented in
matrix form: ⎛

⎜⎜⎜⎜⎝

ω2 − k2xC
2
s −kxky C

2
s 0

−kykx C
2
s ω2 − k2yC

2
s 0

0 0 ω2

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

ax

ay

az

⎞

⎟⎟⎟⎟⎠
= 0. (7.6.2)

Matrix algebra7 tells us that there exist non-trivial solutions, that is solutions where
the ai do not all vanish, when the determinant of the 3×3 matrix in (7.6.2) vanishes.
If we call this 3× 3 matrix Mij so that Eq. (7.6.2) can be represented by Mij aj = 0,
this determinant equals

det
(
Mij
) = ω2

{(
ω2 − k2xC

2
s

) (
ω2 − k2yC

2
s

)− (
kxky C

2
s

)2}
. (7.6.3)

Re-ordering terms, and putting the determinant equal to zero, yields a relation
between wave frequency ω and the wave number k, the so-called dispersion relation.
For sound waves in a stationary fluid or gas this dispersion relation is

ω4 (ω2 − k2 C2
s

) = 0, (7.6.4)

with k2 = k2x + k2y .

6There is a similar equation for the complex conjugate a∗, but that equation does not contain any
new information: it is simply the complex conjugate of the equation for a. We can therefore safely
ignore it in what follows, as I show in more detail below.
7e.g. [2], Chap.3.



7.6 The Plane Wave Assumption for Sound Waves 147

7.6.1 Character of the Solutions

There are two types of solutions: the solution ω = 0 does not really correspond with
a wave: the corresponding amplitude does not vary in time. Strictly speaking, this
solution should be discarded for this reason.

The remaining two solutions correspond to a positive- and a negative frequency
sound wave:

ω(k) = +kCs, ω(k) = −kCs, (7.6.5)

with k = |k| =
√
k2x + k2y . The frequency of the sound waves depends only on the

sound speed and the magnitude of the wave vector, but not on the direction of k!
This means that sound waves in a stationary fluid propagate with equal velocity in all
directions. There is no preferred direction. We will see below that this is no longer
true for sound waves in amoving fluid. In that case, the direction of the fluid velocity
V introduces a preferred direction.

Using the three possible solutions forω in the original equations one can determine
the corresponding eigenvectors. It is easily checked that the solution ω = 0 must
have ax = ay = 0 and az 
= 0 or ax/ay = −ky/kx and az = 0. In both cases a ⊥ k.
This can also be seen directly from (7.6.1): if we substitute ω = 0 it reduces to
C2
s (k · a) k = 0, which has the solution k · a = 0.
Sound waves on the other hand must have

ax/ay = kx/ky, az = 0. (7.6.6)

This implies that the sound wave amplitude and the wave vector must be parallel:

asound ‖ k. (7.6.7)

Sound waves are compressive longitudinal waves. The main properties of a sound
wave are illustrated in the Fig. 7.4.

Now that we know the frequency and the polarization of the sound wave, we can
immediately write down the relation between the amplitude |ξ| = √

2a · a∗ of the
wave, and the velocity, density and pressure perturbations. From (7.5.6) and (7.6.7)
one finds:

|δV | = Cs k|ξ|,

|δρ| = ρ k|ξ| = ρ
|δV |
Cs

, (7.6.8)

|δP| = γP k|ξ| = γP
|δρ|
ρ

.
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Fig. 7.4 The density ρ, displacement ξ and velocity δV in a sound wave of wavelength λ and
frequency ω propagating in the x-direction. This figure shows a ‘snapshot’ of the wave, the density
represented by the position of a large number of ‘test-particles’ carried passively along by the flow,
the displacement by a solid sinusoidal curve, and the velocity is represented by δV/|ω|: the dashed
curve. Note that with this scaling, the velocity curve has the same amplitude as the displacement
curve, (see Eq. 7.5.6) but is shifted by λ/2, i.e. the velocity curve is 90◦ out of phase. Note that the
density is largest at those locations where where the displacement derivative satisfies ∂ξ/∂x < 0
and simultaneously ξ = 0

What About the Complex Conjugate?

This derivation treats the algebra resulting from the plane wave assumption,

ξ(x, t) = a exp (ik · x − iωt) + cc,

in a rather cavalier fashion. To justify the approach taken, i.e. converting differential equations
for ξ to an algebraic equation for the amplitude a, I will look at this approach in more detail,
taking the case of sound waves as an example.

The partial differential equation (wave equation) for sound waves reads

∂2ξ

∂t2
− C2

s ∇ (∇ · ξ) = 0.

Now writing the plane-wave assumption as

ξ(x, t) = a e+iS + a∗e−iS

with
S(x, t) ≡ k · x − ωt
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the phase of the wave and a∗ the complex conjugate of the (complex) wave amplitude,
substitution of this expression into the wave equation yields:

[
ω2a − C2

s k (k · a)
]
e+iS +

[
ω2a∗ − C2

s k (k · a∗)
]
e−iS = 0.

This equation should be satisfied for all values of x and t, meaning for all values of the phase
S(x, t). Since

e±iS = cos S ± i sin S,

the above equation can only be satisfied for all x and t if the two factors in the square brackets
are both zero:

ω2a − C2
s k (k · a) = 0,

and

ω2a∗ − C2
s k (k · a∗) = 0.

However, the second equation is simply the complex conjugate of the first equation (assuming

that ω and k are real quantities), so it contains no new information (as 0∗ = 0). Therefore

it is sufficient to solve only one of then, the equation for a. If the wave frequency becomes

complex, the story is a bit more complicated, but the final conclusion is the same: in the
algebraic equations resulting from the plane wave assumption we can forget the phase
factor e±iS after differentiation, and the complex conjugate. In effect you only need to
solve a set of equations for the components of the amplitude vector a.

The Fig. 7.5 summarizes the essential steps in deriving the properties of small-
amplitude plane waves, using sound waves as an example.

7.6.2 Wave Kinematics: Phase- and Group Velocity

The propagation of the waves is characterized by two velocities: the phase velocity
vph and the group velocity vgr. The phase velocity is the velocity at which points or
surfaces of constant phase move. This phase is defined by writing Eq. (7.5.2) as

ξ(x, t) = a exp [iS(x, t) ] + cc, (7.6.9)

where, for waves in a uniform steady fluid, the phase S is simply

S(x, t) ≡ k · x − ωt.

The phase velocity vph is defined by the requirement that an observer moving with
this velocity stays on a surface of constant wave phase:
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Fig. 7.5 Schematic representation of the steps needed to find the equation of motion for small-
amplitude sound waves

(
dS

dt

)

ph

= ∂S

∂t
+ (vph · ∇)S = 0. (7.6.10)

Since we have
∂S

∂t
= −ω,

∂S

∂xi
= ki, (7.6.11)

this condition means that the phase velocity must satisfy

ω(k) − k · vph = 0. (7.6.12)

The obvious choice is8

vph = ω(k)
k

κ̂, (7.6.13)

with κ̂ ≡ k/k the unit vector along the wave vector.
The group velocity vgr is defined as the velocity with which the wave amplitude

propagates. Its value can be determined by the following argument. For simplicity, I
use a one-dimensional example.

8One can always add an arbitrary velocity v⊥ ⊥ k to vph and still satisfy this condition. The only
sensible and non-arbitrary choice however is to put this perpendicular velocity to zero.
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Consider a wave packet, containing waves of different wavelengths, centered in
a small bandwidth �k � k around some central wave number k. In that case, the
displacement can be represented as an integral counting all wave numbers present in
the packet9

ξ(x, t) =
∫ +∞

−∞
dk′

2π
A(k′) eik

′x−iω(k′)t . (7.6.14)

An example of such a superposition of waves is shown below. The typical spatial
extent of the wave packet equals �x ≈ 1/�k. The differential wave amplitude (the
so-called Fourier amplitude) A(k) satisfies

A(k′) = 0 for |k′ − k| � �k, (7.6.15)

i.e. A(k′) is strongly peaked around wave number k.
The wave packet will evolve in time as the waves propagate. Everywhere along

the path of the wave packet (and at each wave number) the local dispersion relation
ω = ω(k) must be satisfied. This determines the wave frequency at some wave
number k + �k near k as

ω(k + �k) ≈ ω(k) + �k

(
∂ω

∂k

)
. (7.6.16)

Using this expansion, together with the fact that the Fourier amplitude is strongly
peaked around wave number k, one can write:

ξ(x, t) ≈ eikx−iω(k)t ×
∫ +∞

−∞
dk′

2π
A(k′) ei�k [x−(∂ω/∂k)t ]

︸ ︷︷ ︸
effective amplitude

. (7.6.17)

Here�k ≡ k′−k. The integral over k′ defines what can be considered as the effective
amplitude of the wave packet (Fig. 7.6).

This effective amplitude will be vanishingly small due to the sinusoidal behavior
of the exponential factor in the integrand, the result of destructive interference,
except at those positions where the phase factor in that exponential term vanishes:

x −
(

∂ω

∂k

)
t = 0. (7.6.18)

At those points the different Fourier amplitudes add up, a case of constructive inter-
ference. Condition (7.6.18) therefore determines the position of the wave packet, and
defines the group velocity in this one-dimensional example as

9This is an example of a so-called Fourier representation. It is needed to represent a wave packet
with a finite spatial size L ∼ 1/�k. In contrast, a monochromatic wave (�k = 0) always has an
infinite spatial extent.
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Fig. 7.6 The wave pattern that results from adding two sinusoidal waves, with a slightly different
wave number k and frequency ω. These two waves are the two sinus-like curves at the bottom of
the figure. Here the relation between the frequency and wave number is chosen to be of the form

ω(k) =
√
k2c2 + ω2

0 . The two waves together interfere to form the wave shown at top. The resulting
amplitude modulation in this wave travels at the group velocity. The rapid sinusoidal variation on
the other hand travels at the phase speed

vgr =
(
dx

dt

)

packet

= ∂ω

∂k
. (7.6.19)

In three dimensions this generalizes to:

vgr = ∂ω(k)
∂k

=
(

∂ω

∂kx
,

∂ω

∂ky
,

∂ω

∂kz

)
. (7.6.20)

The idea of constructive interference of waves with slightly different wavelength
(and wave number) gives an alternative way of deriving the group velocity: the wave
phase S(x, t) = k · x − ωt should be the same for waves with k � k0, so that the
phase is stationary in k near k0:

(
∂S

∂k

)

k0

= x −
(

∂ω

∂k

)

k0

t = 0. (7.6.21)

This is the three-dimensional version of (7.6.18). For sound waves in a medium at
rest, the phase and group velocity are equal:

vph = vgr = Csκ̂. (7.6.22)

Such waves are said to show no dispersion: the amplitude and phase propagate with
the same velocity, regardless the wavelength or frequency. If the sound waves in our
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atmosphere were not almost dispersion-less, human hearing would have to be much
more sophisticated to discern intelligible signals from human speech, which covers
a frequency range of ∼100 Hz to ∼1 kHz, or to enjoy music which covers a range
∼10 Hz to ∼20 kHz.

7.7 Sound Waves in a Moving Fluid

Now consider sound waves propagating in a moving medium with velocity V . If we
assume that the wavelength of the waves concerned is much smaller than the scale
on which this velocity changes, and that the wave period is much shorter than the
timescale on which the temporal variation of V occurs, we may treat this situation
(to lowest order) as a case where the fluid velocity is constant and uniform. In that
approximation, the relation between the displacement vector andLagrangian velocity
perturbation is

�V =
(

∂

∂t
+ (V · ∇)

)
ξ,

while the Lagrangian perturbation of the acceleration is

d�V
dt

=
(

∂

∂t
+ (V · ∇)

)2

ξ.

The only difference with the case treated above, where the fluid was at rest, is a
consistent replacement of the time derivatives:

∂

∂t
=⇒ d

dt
= ∂

∂t
+ (V · ∇), (7.7.1)

The ordinary time derivative is replaced by the comoving derivative in the unper-
turbed flow. The density- and pressure variations depend only on the spatial deriva-
tives of ξ, and remain unchanged, e.g.

�P = δP = −γP (∇ · ξ).

Therefore, we can immediately write down the wave equation for sound waves in a
moving fluid that corresponds to Eq. (7.5.13), which is valid in a stationary fluid:

(
∂

∂t
+ (V · ∇)

)2

ξ − C2
s ∇ (∇ · ξ) = 0. (7.7.2)

If we now again assume a plane wave solution,

ξ(x, t) = a exp (ik · x − iωt) + cc, (7.7.3)
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it is easily checked that we find essentially the same dispersion relation as before,

(ω − k · V )2 a − C2
s (k · a) k = 0, (7.7.4)

except for the replacement

ω =⇒ ω − k · V ≡ ω̃, (7.7.5)

i.e. the wave frequency ω is replaced by the Doppler-shifted frequency ω̃, which
corresponds to the frequency of the wave seen by an observer moving with the fluid,
i.e. the frequency in the fluid rest frame. This is a simple consequence of replacement
rule (7.7.1), which implies that the time derivative of the displacement vector ξ(x, t)
is:

(
∂

∂t
+ (V · ∇)

)
a exp (ik · x − iωt)

= −i (ω − k · V ) a exp (ik · x − iωt) (7.7.6)

We find the following dispersion relation for sound waves in a moving fluid:

ω̃ = ω − k · V = ±|k|Cs, (7.7.7)

or equivalently:
ω(k) = k · V ± |k|Cs. (7.7.8)

If we now calculate the group velocity, the velocity with which signals can propagate,
we find in this case:

vgr = ∂ω

∂k
= V ± Cs κ̂, (7.7.9)

with κ̂ = k/|k| as before. This result simply says that sound waves are dragged
along by the moving fluid at velocity V , and propagate with respect to the fluid at
the (local) sound speed in the direction of k.

7.8 The ω = 0 Solution as an Entropy Wave

In the preceding sections, I have consistently disregarded the solution ω = 0 of the
sound dispersion relation for a stationary fluid. There is, however, a physical reason
why such a solution appears in problems such as this. In all our calculations we have
considered waves in a uniform fluid where the pressure follows the adiabatic gas law
Pρ−γ = constant. The entropy of a ideal gas is

s = cv ln
(
Pρ−γ

)
. (7.8.1)
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The assumption of an adiabatic gas means the absence of dissipation (irreversible
heating) or processes like radiative cooling, and the entropy s is conserved in the
sense that (see Eq. 3.2.26 withH = 0)

ρT

(
∂s

∂t
+ (V · ∇)s

)
= 0. (7.8.2)

Let us assume that there is a small perturbation δs in the entropy, but that there is still
no net heating or cooling. Linearizing equation (7.8.2), allowing for gas flow with
constant velocity V but assuming a uniform unperturbed gas, one has

ρT

(
∂δs

∂t
+ (V · ∇)δs

)
= 0. (7.8.3)

If we now substitute a plane wave assumption for δs,

δs(x, t) = s̃ exp(ik · x − iωt) + cc, (7.8.4)

one finds:
− iρT (ω − k · V ) s̃ = 0. (7.8.5)

The plane wave assumption provides a solution provided that

ω̃ = ω − k · V = 0 ⇐⇒ ω = k · V . (7.8.6)

This corresponds to a zero-frequency wave in the rest frame of the fluid. If we put
V = 0 this so-called entropy wave satisfies ω = 0. This tells you that the entropy
perturbation is passively advectedby theflow: the entropywavehas the groupvelocity

vgr = ∂ω

∂k
= ∂ (k · V )

∂k
= V , (7.8.7)

which coincides with the velocity in the unperturbed flow. This means that our little
entropy perturbation δs always stays attached to the same fluid element.

One can show using the full set of linearized equations (where one now allows
for entropy perturbations) that entropy waves have δV = 0. The linearized equation
of motion, written as

ρ

(
∂

∂t
+ V · ∇

)
δV = −∇δP, (7.8.8)

then implies that the pressure perturbation associated with an entropy wavemust also
vanish: δP = 0. If one allows for entropy perturbations the pressure becomes a func-
tion P(ρ, s) of both density and entropy. The condition that the pressure perturbation
δP vanishes reads:

http://dx.doi.org/10.2991/978-94-6239-195-6_3
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δP ≡
(

∂P

∂ρ

)

s

δρ +
(

∂P

∂s

)

ρ

δs = 0. (7.8.9)

This relation fixes the density perturbation δρ that is associated with a linear entropy
wave of amplitude δs:

δρ = −
{(

∂P

∂s

)

ρ

/

(
∂P

∂ρ

)

s

}
δs. (7.8.10)

Note that our earlier definition of the adiabatic sound speed Cs assumed from the
outset that δs = 0. This means that, strictly speaking, we should have defined Cs as

Cs =
√(

∂P

∂ρ

)

s

. (7.8.11)



Chapter 8
Small Amplitude Waves: Applications

8.1 The Jeans Instability

Around 1902, Sir James Jeans investigated the stability of a self-gravitating fluid.
This calculation considers the fate of small-amplitude waves (‘sound waves’) in a
fluid which generates its own gravity. This means one one has to solve the equa-
tion of motion and the continuity equation together with Poisson’s equation for the
gravitational potential and the adiabatic gas law:

dV
dt

= −1

ρ
∇P − ∇�,

dρ

dt
= −ρ (∇ · V ),

(8.1.1)

∇2� = 4πG ρ,

P(ρ) = K ργ .

The unperturbed state on which these waves are superposed is sometimes referred
to as Jeans’ swindle: one assumes a fluid with uniform density ρ, pressure P and
no gravity: g = −∇� = 0. There can be no gravitational acceleration in a uniform
fluid: the gravitational acceleration g is a vector. Its direction would introduce a
preferred direction, which can not be present in an infinite, uniform and isotropic
medium that looks the same everywhere and in every direction. One must therefore
conclude that g = −∇� = 0, which implies � = constant. However, according to
Poisson’s equation one has∇2� = 4πG ρ. This will only give a constant� if ρ = 0.
This inconsistency is glossed over by assuming that Poisson’s equation only applies
to the density fluctuations induced by the waves.
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The results derived in Chap.7 for the velocity, density and pressure perturbations in
sound waves are purely kinematic and remain valid in this case:

δV = ∂ξ

∂t
, δρ = −ρ (∇ · ξ), δP = −γP (∇ · ξ) = C2

s δρ. (8.1.2)

The equation of motion for the perturbations must be modified in order to take the
effect of gravity into account. It now reads:

∂2ξ

∂t2
= −1

ρ
∇δP − ∇δ�. (8.1.3)

Here I have used that, according to Jeans’ Swindle, the gravitational acceleration
acting on a fluid element is

δg = −∇δ�. (8.1.4)

This acceleration is caused by the gravitational action of the density fluctuations:
density enhancements in the waves tend to attract the surrounding matter. Poisson’s
equation links the potential perturbations to the fluctuations in the density:

∇2 δ� = 4πG δρ. (8.1.5)

Let us define the relative density perturbation:

� ≡ δρ

ρ
= −(∇ · ξ). (8.1.6)

Substituting for the pressure perturbation δP from (8.1.2), the equation of motion
becomes:

∂2ξ

∂t2
= C2

s ∇(∇ · ξ) − ∇δ�. (8.1.7)

Using the fact that Cs = √
γP/ρ is constant, we can take the divergence of both

sides of the equation.
This procedure effectively isolates the compressive (∇ · ξ �= 0) ‘sound-like’
solutions:

∂2

∂t2
(∇ · ξ) = C2

s ∇2(∇ · ξ) − ∇2δ�

(8.1.8)

= C2
s ∇2(∇ · ξ) + 4πGρ (∇ · ξ).

Here I have used ∇ · ∇(· · · ) = ∇2 · · · , and I have employed Poisson’s equation
(8.1.5) to eliminate ∇2 δ� in terms of the density perturbation:

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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∇2δ� = 4πG δρ = 4πGρ �. (8.1.9)

Equation (8.1.8) is a linear equation for � = δρ/ρ:

[
∂2

∂t2
− C2

s ∇2 − 4πG ρ

]
� = 0. (8.1.10)

The rest of the analysis proceeds along the same lines as for sound waves. Consider
a plane wave solution, where the relative density perturbation � = δρ/ρ takes the
form1

�(x , t) = �̃ exp (ik · x − iωt) + cc. (8.1.11)

A substitution of this assumption for �(x , t) into (8.1.10) yields the dispersion
relation for compressive (sound) waves in a self-gravitating fluid:

ω2 = k2C2
s − 4πG ρ. (8.1.12)

The last term on the right-hand-side gives the modification of sound waves due to
gravity.

The solution of this equation,

ω(k) = ±
√

k2C2
s − 4πG ρ, (8.1.13)

describes fundamentally different behavior at short and long wavelengths.
The dividing line between these two types of behavior is at the wavelength λJ,

the so-called Jeans length, where the wave frequency ω(k) vanishes. Defining kJ =
2π/λJ one must have k2

J C2
s = 4πG ρ, and one finds:

λ2
J =

(
2π

kJ

)2

= πC2
s

Gρ
. (8.1.14)

For waves with a wavelength λ < λJ the argument of the square root in (8.1.13)
is positive, and the wave frequency is real. However, for wavelengths λ > λJ the
argument of the square root is negative, and the wave frequency becomes purely
imaginary. The solution (8.1.13) for λ > λJ can be written in terms of the Jeans
length:

ω = ±ikCs

√
λ2

λ2
J

− 1 ≡ iσ. (8.1.15)

1In terms of the plane-wave expression (7.5.2) for ξ(x , t) the amplitude �̃ is related to the
displacement amplitude a by �̃ = −i(k · a), see Eq. (7.5.6).
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Imaginary frequencies, where ω = iσ, lead to exponentially growing or decaying
perturbations. Solution (8.1.15) always has one exponentially growing mode and
one decaying mode. The decaying mode is not very important as it dies away. The
assumed time-dependence means that the relative density perturbation behaves as

�(x , t) ∝ e−iωt = eσt . (8.1.16)

If Im(ω) = σ > 0 the perturbation grows exponentially in time. It decays if σ < 0.
Here there is always a solutionwithσ > 0,which implies that thewave amplitude gets
larger and larger. Our assumption that the pressure, density and velocity perturbations
associated with the wave all remain small will ultimately break down. When such a
situation arises, the equilibrium state used to calculate the wave properties is said to
be linearly unstable against suitable perturbations:

If there is a solution with Im ω(k) ≡ σ(k) > 0 a linear instability arises

(8.1.17)

The importance of the Jeans length λJ as the wavelength that separates stable from
unstable oscillations can be illustrated in another way. The pressure force and the
gravitational force due to the perturbation are

Fp = −∇δP = −γP k2a exp (ik · x − iωt) + cc,

(8.1.18)

Fg = −ρ ∇δ� = 4πG ρ2 a exp (ik · x − iωt) + cc.

Here I have used the plane wave assumption, and the fact that a ‖ k. One sees
that the pressure force and the gravitational force are 180◦ out of phase: they work
in opposite directions, physically obvious as gravity promotes mass concentrations
while pressure forces try to negate them.

The amplitude of these two forces has a ratio

|Fg|
|Fp| = 4πG ρ

k2C2
s

=
(

λ

λJ

)2

. (8.1.19)

In the stable case (λ < λJ) the amplitude of pressure force is larger than the amplitude
of the gravitational force, and the system is stable. In the case λ > λJ the amplitude
of the gravitational force is larger than the amplitude of the pressure force. In that
case the system is unstable, and the density enhancements in the wave will continue
to grow.

This is illustrated in the two figures above. It shows the displacement ξ, the
velocity δv = ∂ξ/∂t , the pressure force and the gravitational force in a plane wave
propagating in the x-direction. The first figure considers the stable case λ = λJ/

√
2,

the second figure considers the unstable case with λ = √
2 λJ (Fig. 8.1).
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Fig. 8.1 The displacement (top panel, solid curve), velocity (top panel, dashed curve) gravitational
force (bottom panel, solid curve) and pressure force (bottom panel, dashed curve) in a linear sound
wave in a self-gravitating fluid. Shown is the stable case with wavelength λ = λJ/

√
2. In this case

the amplitude of the pressure force is twice that of the gravitational force. The small dots are test
particles moving with the fluid, and show where the compressions and rarefactions are located

We encountered a similar unstable situation in our simple perturbation analysis
of a single particle moving in a potential well. In that case, it turned out that an
equilibrium is unstable if d2V/dx2 < 0 at the equilibrium point. The example of the
Jeans’ instability shows that in fluid dynamics you can have a situation where there
are stable as well as unstable solutions to the equations of motion. However, if there
is an unstable solution, the system is unstable and can not persist (Fig. 8.2).
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Fig. 8.2 The displacement (top panel, solid curve), velocity (top panel, dashed curve) gravitational
force (bottom panel, solid curve) and pressure force (bottom panel, dashed curve) in a linear sound
wave in a self-gravitating fluid. Shown is the unstable case with wavelength λ = √

2λJ. In this case
the amplitude of the pressure force is half that of the gravitational force

The zero-frequency mode

For completeness sake, I mention the fact that the zero-frequency waves present in
our discussion of sound waves are also present in Jeans’ problem. This can be seen
by taking

∇ × (Equation of motion 8.1.7) .

Using the vector identity
∇ × ∇ f = 0, (8.1.20)
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valid for an arbitrary function f (x , t), this leads to

∂2

∂t2
(∇ × ξ) = 0. (8.1.21)

Note that this equation does not show any coupling to gravity since ∇ × ∇δ� = 0.
Substituting a plane wave solution for ξ(x , t) (c.f. 7.5.2) one immediately finds

ω2 (k × a) = 0. (8.1.22)

The only non-trivial solution where k × a �= 0 must have ω = 0. The compressive
(longitudinal) waves which play a role in the Jeans Instability have k ‖ a, just like
ordinary sound waves.

8.1.1 A Simple Physical Explanation of the Jeans Instability

The physics behind the Jeans Instability can also be understood without referring to
waves and their stability. This alternative approach uses a stability criterion based on
an energy argument. This is an example of a more general principle that can applied
to investigate the stability of a fluid system.

Consider a spherical cloud of hydrogen gas (μ ≈ 1)with radius a, uniform density
ρ, temperature T and pressure P = ρRT . The total energy W (a) of this cloud is

W (a) =
∫ M

0
dm(r)

[
3

2
RT − Gm(r)

r

]
≡ Uth + Ugr . (8.1.23)

Here

dm(r) = 4πr2 ρ dr, m(r) = 4π

3
ρ r3 (8.1.24)

is respectively the mass contained in a spherical shell between r and r + dr , and the
mass contained within a radius r . The total mass of the cloud is

M = 4π

3
ρ a3. (8.1.25)

The term 3RT/2 in integral (8.1.23) is the thermal energy per unit mass in an ideal
gas with adiabatic index γ = 5/3, and �(r) = −Gm(r)/r is the gravitational
binding energy per unit mass at radius r . Integrating these quantities over all mass
elements yields the total energy W of the self-gravitating cloud.

The integration of this expression is relatively straightforward. One finds:

W (a) = 3

2
MRT − 3

5

G M2

a
. (8.1.26)
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I now consider the effect of a change −�a (with �a > 0) in the radius of the cloud,
so that the radius decreases from a to a −�a. Let us assume that this change occurs
adiabatically, so that no heat is added to, or extracted from the gas. In that case,
the thermodynamical equations of Sect. 2.5 tell us that the thermal energy changes
according to dUth = −P dV . The volume change is �V = −4πa2 �a. This means
that the thermal energy of the cloud changes by an amount

�Uth = −P �V ≈ ρRT 4πa2 �a . (8.1.27)

The change of the gravitational binding energy due to the change in radius from a
to a − �a is

�Ugr ≈
(

∂Ugr

∂a

)
× (−�a) = −3

5

(
G M2

a2

)
�a . (8.1.28)

Here I have used that the total mass M of the cloud is conserved.
Adding these two contributions yields the change of the total energy, �W =

�Uth + �Ugr, of the cloud:

�W ≈
(
3MRT − 3

5

G M2

a

)
×
(

�a

a

)
. (8.1.29)

Now there are two possibilities:

• If �W > 0 the change costs energy since the increase in the inward gravi-
tational force is smaller than the increase of the outward pressure force that
resists the volume change. In this case the cloud is stable.

• If �W < 0, the change liberates energy! The inward gravitational force
increases faster than the outward pressure force. This implies that, once
started, the contraction of the cloud will continue, leading to gravitational
collapse. The cloud is unstable, which can be interpreted as a consequence
of the fact that physical systems tend to evolve towards a minimum-energy
state.

Using M = 4πρa3/3 expression (8.1.29) can be rewritten as

�W = 3MRT

(
1 − a2

λ
2
J

)
×
(

�a

a

)
. (8.1.30)
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The characteristic length λJ in this expression is defined by:

λJ =
√

15

4π

(RT

Gρ

)1/2

. (8.1.31)

This characteristic length corresponds to the Jeans length introduced in the previous
sectionwhenwediscussed the Jeans Instability in planewaves. This becomes obvious
when we formulate the instability criterion in terms of the cloud diameter D = 2a.

Using that the adiabatic sound speed in hydrogen gas equals Cs = (5RT/3)1/2,
one finds that a hydrogen cloud is unstable for gravitational collapse if its diameter
D = 2a satisfies

D = 2a > 2λJ = 3

π
λJ ≈ 0.95 λJ. (8.1.32)

The pressure increase that results from the compression is not large enough to resist
the collapse. Smaller clouds, with D < 2λJ, are stable as �W > 0. The internal
pressure in these clouds is able to resist gravitational collapse.

8.2 Jeans’ Instability in an Expanding Universe

We live in an expanding universe, as first shown by US astronomer Edwin Hubble in
1929, when he showed that distant galaxies appear to recede from us with a velocity
V proportional to their distance D (Figs. 8.3 and 8.4):

V = H0 D. (8.2.1)

The quantity H0 is the Hubble constant, and this relation is known as Hubble’s law.
The interpretation of Hubble’s law in the context of General Relativity is that space
itself expands (see for instance [36] and [43]).

In an expanding universe, the exponential growth of unstable waves with a wave-
length λ > λJ is slowed down to an algebraic growth. This effect can be illus-
trated using a simple (quasi-Newtonian) model for the universal expansion, without
recourse to the equations of general relativity. That is what we do in what follows.
This calculation also gives a perfect illustration of the use of Eulerain and Lagrangian
time derivatives.

8.2.1 Uniformly Expanding Flow

Consider a flow where the unperturbed position of fluid elements is given by the
prescription
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Fig. 8.3 The matter distribution calculated using a numerical imulation of the Jeans instability in
an expanding universe. Here the instability has long entered the non-linear phase, where matter
collects into thin filaments. Figure: the Virgo Consortium

x(t) = R(t)

R0
× r. (8.2.2)

Here R(t) is the so-called scale factor, R0 ≡ R(t0) is its value at some reference
time t = t0 and r is a set of constant comoving coordinates:

r ≡ (r1 , r2 , r3) = (x1(t0) , x2(t0) , x3(t0)) . (8.2.3)

These comoving coordinates are the perfect illustration of the concept of Lagrangian
labels introduced in Sect. 6.2. This is illustrated in the cartoon below.

The unperturbed velocity in this flow is

V (x , t) = dx
dt

=
(

1

R0

dR

dt

)
r =

(
1

R(t)

dR

dt

)
x(t). (8.2.4)

This is a vector version of Hubble’s law!
The velocity scales as

V = H(t) |x(t)|, (8.2.5)
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Fig. 8.4 An illustration of physical and comoving coordinates in the one-dimensional ‘Ant Uni-
verse’. The ants live on a rubber ruler that stretches uniformly as time progresses. The black and
white coordinate intervals painted on the rubber ruler are stretched, and define the comoving coor-
dinates. The physical coordinates on the other hand do not change, and have fixed length intervals.
As the Ant Universe expands, the relation between a physical distance and the comoving distance
intervals is�xphys = R(t)�xcm, with R(t) ≥ 1 the scale factor that measures the amount of stretch

where the Hubble ‘constant’ equals

H(t) = 1

R

dR

dt
. (8.2.6)

The kinematics of this flow, and in particular the ‘Hubble law’ (8.2.5), is the same
as the kinematics of the Friedmann model for an expanding universe.

A property of this Newtonian model is that the origin of the coordinate system is
singled out: it plays a special role as the center of expansion. In relativistic cosmology
it is usually assumed that the Copernican Principle applies, which states that there
is no preferred position in the Universe. General relativity solves this problem in a
simple fashion: there space itself expands, and the recession of distant galaxies from
us (and each other) which results from this expansion has no center, as it does not
correspond to a true physical velocity.

The Hubble flow, defined by Eqs. (8.2.2) and (8.2.5), leads to a density decrease.
The continuity equation (2.7.15) reads in this case:

dρ

dt
= −ρ (∇ · V ) = −3ρ H(t). (8.2.7)
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Here I have used that

∇ · V = H(t)

(
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
= 3H(t). (8.2.8)

With the definition (8.2.6) for the Hubble constant this equation for the density can
be solved immediately. Assuming a homogeneous density at time t0, ρ(x , t0) = ρ0,
one has

ρ(t) = ρ0

(
R(t)

R0

)−3

. (8.2.9)

This is the correct density law for a homogeneous universe filled with ‘cold’ (i.e.
non-relativistic) matter where the pressure satisfies P 
 ρc2.

To complete this model, we have to prescribe the behavior of the scale factor R(t)
as a function of time. For this we use Friedmann’s equation valid for a flat universe
(e.g. Peacock, [36], Chap. 3):

H 2 =
(
1

R

dR

dt

)2

= 8πG

3
ρ(t). (8.2.10)

It is easily checked that the following expansion law results:

R(t) = R0

(
t

t0

)2/3

, t0 = 1√
6πG ρ0

. (8.2.11)

One can always scale the coordinates in such a way that R0 = 1. This means that
the comoving coordinates correspond to the physical coordinates at time t0. We
adopt this convention, so the relation between physical (=Eulerian) and comoving
(=Lagrangian) coordinates, the expansion law and the density law become

x = R(t) r, R(t) = (t/t0)
2/3, rho(t) = ρ0 R−3. (8.2.12)

8.2.2 Equation for Small Perturbations

We now perturb this model universe. Since the unperturbed motion corresponds
to constant comoving coordinates ri it seems natural to separate out the universal
expansion by writing:

�x ≡ ξ(x, t) = R(t) η(r , t). (8.2.13)

By introducing the comoving perturbation vector η(r , t) we achieve this separation
cleanly. In addition we have changed the position variable from x to r , i.e. to the
Lagrangian coordinate labels of theHubble expansion. Thismeanswe have to rewrite
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our derivatives. The gradient operator ∇ can be expressed in terms of the ri by using
the general rule for a change of variables,

∂

∂xi
=
(

∂r j

∂xi

)

t

∂

∂r j
=
(

∂[x j/R(t)]
∂xi

)

t

∂

∂r j
= δi j

R(t)

∂

∂r j
= 1

R(t)

∂

∂ri
.

Here I have used relation (8.2.3) and the fact that the x-derivatives are taken at
constant t .

This result means one can write:

∇ = 1

R(t)
∇cm, (8.2.14)

where ∇cm ≡ (∂/∂r1 , ∂/∂r2 , ∂/∂r3) is the comoving gradient.
The interpretation of the partial time-derivative ∂/∂t must be considered carefully

in this case. If we employ ‘x − t language’, where the independent variables are x
and t , we must use the standard convention that the partial time derivative is taken
while the position x is fixed. But once we employ the r − t representation, where
the independent variables of the problem are r and t , one should keep r fixed when
taking the partial time-derivative. As I will demonstrate below, this means that in
‘r − t language’ ∂/∂t corresponds with the comoving time derivative in the Hubble
flow. This is in agreement with definition (7.4.4) given earlier, with r playing the
role of x0. These two time derivatives are therefore related by:

(
∂

∂t

)

x
=
(

∂

∂t

)

r
+
(

∂r
∂t

)

x
· ∂

∂r

=
(

∂

∂t

)

r
+
(

∂[x/R(t)]
∂t

)

x
· ∂

∂r
(8.2.15)

=
(

∂

∂t

)

r
−
(
dR

dt

) (
x

R2(t)

)
· ∂

∂r

=
(

∂

∂t

)

r
− H x · ∇.

Here I have used (8.2.14) again, together with the definition of Hubble’s constant.
This relation can be written as

(
∂

∂t

)

r
=
(

∂

∂t

)

x
+ H x · ∇. (8.2.16)

The partial time derivative at fixed r is seen to correspond with the co-moving
derivative in the unperturbed Hubble flow V = H x. This is not surprising: the
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comoving coordinates are defined in such away that an observer with fixed comoving
coordinates r = r0 passively moves with the Hubble flow.

One can apply these relations to calculate the perturbed quantities in terms of the
comoving coordinates and the comoving perturbation η From (8.2.13) and (8.2.14)
one finds immediately:

∇ · ξ(x , t) = 1

R(t)
∇cm · (R(t)η(r , t)) = ∇cm · η(r , t).

This means that the density- and pressure perturbations can be expressed as

�ρ = −ρ (∇cm · η),�P = −γP (∇cm · η) = C2
s �ρ, (8.2.17)

where we have simply used Eq. (7.5.3) which are generally valid, and substituted the
above relation for ∇ · ξ. Note that our ‘model universe’ is homogeneous (no density
or pressure gradients) so that δρ = �ρ and δP = �P .

Wemust be careful when we calculate the velocity perturbation: there are velocity
gradients in the Hubble flow, V = H x. The flow velocity is not uniform, unlike the
pressure or the density. As a result, the Lagrangian velocity perturbation �V and
Eulerian velocity perturbation δV do not coincide. They are related according to the
general rule (7.4.10), which in this particular case reduces to

�V = δV + (ξ · ∇)(H x) = δV + H ξ. (8.2.18)

Here I have used the relation (ξ · ∇)(H x) = Hξ. This relation is easily proven in
Cartesian coordinates2: the j-th component of (ξ · ∇)(H x) equals

(ξ · ∇)(H x j ) = H

(
ξi

∂x j

∂xi

)
= H

(
ξi δi j

) = H ξ j . (8.2.19)

The Lagrangian velocity perturbation is given as before by

�V ≡ dξ

dt
= d

dt
[R(t) η ] =

(
dR

dt

)
η + R(t)

(
dη

dt

)
. (8.2.20)

For the first term on the right-hand-side we can use

(
dR

dt

)
η =

(
dR

dt

)
ξ

R
= H ξ. (8.2.21)

2Since the final relation can be written in vector form, (ξ · ∇)(H x) = Hξ, the fact that Cartesian
coordinates are used for the intermediate steps in the calculation is not important! This is an example
of the covariance of physics: physical laws are independent of the coordinates used to represent
the vectors, tensors etc. that are involved. If the final result can be written in vector or tensor form,
the relation is generally valid.
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We therefore find:

�V = R(t)

(
dη

dt

)
+ H ξ. (8.2.22)

Comparing this expression with relation (8.2.18) one immediately finds the Eulerian
velocity perturbation:

δV = �V − H ξ = R(t)

(
dη

dt

)
. (8.2.23)

Here d/dt is the comoving derivative in x − t language in the unperturbed flow: we
are only interested in terms to first order in the perturbations. This means that we
can use Eq. (8.2.16) and write:

δV = R(t)
∂η(r , t)

∂t
≡ R(t) u(r , t), (8.2.24)

where the partial time-derivative is now taken at constant r and u ≡ ∂η/∂t . One
sees that in the expression for the Eulerian velocity perturbation δV the effect of the
universal expansion once again shows up as an overall scaling factor R(t).

We now must derive the equation of motion for the perturbations. In this case the
best strategy is to start with the equation of motion in the form

∂V
∂t

+ (V · ∇)V = −∇P

ρ
− ∇�, (8.2.25)

together with Poisson’s equation for the gravitational potential,

∇2� = 4πG ρ. (8.2.26)

We make use of the fact that in the unperturbed state there are no pressure gradients,
∇P = 0, and that theEulerian variation δ commuteswith spatial and timederivatives,
c.f. Eq. (7.4.7). The Eulerian variation of the total time derivative of the velocity (the
acceleration) on the left-hand-side of the equation of motion follows from

δ

(
∂V
∂t

+ (V · ∇)V
)

≡
(

∂[V + δV ]
∂t

+ ([V + δV ] · ∇)[V + δV ]
)

−
(

∂V
∂t

+ (V · ∇)V
)

(8.2.27)

= ∂δV
∂t

+ (V · ∇)δV + (δV · ∇)V + O (|δV |2) .

Note that the term (δV · ∇)δV (which is quadratic in δV ) has been neglected.
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Next we use the relationships (8.2.14), (8.2.16) and (8.2.24) derived above,
together with Hubble’s law V = H x:

∂δV
∂t

+ (V · ∇)δV = ∂δV
∂t

+ (H x · ∇)δV = ∂

∂t

(
R(t)

∂η(r , t)

∂t

)

r

= R(t)
∂2η

∂t2
+
(
dR

dt

)
∂η

∂t
; (8.2.28)

(δV · ∇)V = (δV · ∇)[H x ] = H δV

=
(
dR

dt

)
∂η

∂t
.

In the second expression I have used (δV · ∇)x = δV . Combining these terms one
finds the effective acceleration associated with the perturbed motion:

δ

(
∂V
∂t

+ (V · ∇)V
)

= R(t)

(
∂2η

∂t2
+ 2H

∂η

∂t

)
. (8.2.29)

The pressure and gravity term on the right-hand-side follow more simply3:

δ

(∇P

ρ

)
= ∇δP

ρ
= ∇cmδP

ρR
= C2

s (∇cmδρ)

ρR
,

(8.2.30)

δ (∇�) = ∇ (δ�) = ∇cm (δ�)

R
.

Here I have used Eq. (8.2.17).
The perturbed gravitational potential follows from Poisson’s equation as

∇2 δ� = 1

R2
∇2

cmδ� = 4πG δρ. (8.2.31)

This yields the following equation of motion for the perturbations:

∂2η

∂t2
+ 2H

∂η

∂t
= − 1

R2

(
C2
s

∇cmδρ

ρ
+ ∇cmδ�

)
. (8.2.32)

These results are summarized in the table on page 174.

3Strictly speaking one has δ(∇P/ρ) = ∇(δP) × (1/ρ) + ∇P × δ(1/ρ), but ∇P = 0 in this case.
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We now use a trick similar to the one employed in our discussion of the Jeans
Instability in a stationary medium. We define the quantity

� ≡ δρ

ρ
= −∇cm · η, (8.2.33)

and make use of the fact that Poisson’s equation, which links the perturbations in the
gravitational potential to the density perturbations, can be written as

∇2
cmδ� = 4πG ρ R2�. (8.2.34)

We take the comoving divergence,4 ∇cm · , of both sides of the equation of motion
(8.2.32). We can use

∇cm ·
(

∂η

∂t

)
= ∂(∇cm · η)

∂t
= −∂�

∂t
,

(8.2.35)

∇cm ·
(

∂2η

∂t2

)
= ∂2(∇cm · η)

∂t2
= −∂2�

∂t2
,

together with

∇cm ·
(

C2
s

∇cmδρ

ρ

)
= C2

s ∇2
cm�. (8.2.36)

Poisson’s equation (8.2.34) allows us to eliminate the gravitational potential δ� in
terms of �. This yields the following equation for �(r , t) = δρ/ρ:

[
∂2

∂t2
+ 2H

∂

∂t
−
(

C2
s

R2

)
∇2

cm − 4πG ρ

]
�(r , t) = 0 (8.2.37)

This is the wave equation for small density fluctuations in an expanding universe.
We can compare this equation with the one derived in the previous section: Eq.

(8.1.10). If we assume a static, non-expanding universe we can always put R = 1,
H = 0 and ∇cm = ∇. In that case, the above equation reduces to Eq. (8.1.10). So
the case of the ordinary Jeans Instability in an unchanging (static) self-gravitating
medium is contained in Eq. (8.2.37).

4This is defined in cartesian comoving coordinates as ∇cm · η = ∂η1/∂r1 + ∂η2/∂r2 + ∂η3/∂r3.
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Perturbed quantities in a linear adiabatic wave in an expanding universe
Quantity In ‘x − t’ language In ‘r − t’ language
Position (physical
and comoving)

x(t) = R(t) r r

Unperturbed
velocity
(Hubble flow)

V (x , t) = H(t) x V =
(
dR

dt

)
r,

∂r
∂t

= 0

Co-moving
derivative in
unperturbed flow

d

dt
=
(

∂

∂t

)

x
+ H(x · ∇)

(
∂

∂t

)

r

Physical gradient ∇ =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
1

R(t)
∇cm = 1

R(t)

(
∂

∂r1
,

∂

∂r2
,

∂

∂r3

)

Displacement
vector

�x = ξ(x , t) R(t) �r ≡ R(t) η(r , t)

Lagrangian
velocity
perturbation �V

dξ

dt
= ∂ξ

∂t
+ H(x · ∇)ξ

(
dR

dt

)
η + R(t)

(
∂η

∂t

)

Eulerian velocity
perturbation δV

∂ξ

∂t
+ H(x · ∇)ξ − H ξ R(t)

∂η

∂t

Eulerian
acceleration in
wave δa

∂δV
∂t

+ H (x · ∇)δV + H δV R(t)

(
∂2η

∂t2
+ 2H

∂η

∂t

)

8.2.3 The Growth of the Jeans Instability

Equation (8.2.37) has two new features: the first is the term 2H (∂�/∂t) proportional
to the Hubble constant. This term acts as a kind of ‘friction term’ if H > 0: it is
proportional to the first-order time derivative ∂�/∂t , which is the velocity of the
density change.

The secondnew feature is the fact that the coefficients in thiswave equation depend
explicitly on time. This reflects the fact that the background inwhich the perturbations
evolve is itself evolving in time due to the expansion of the Universe. For a cold
universe without a cosmological constant5 the scale factor satisfies R(t) ∝ t2/3 the
Hubble constant equals

H(t) =
(
1

R

dR

dt

)
= 2

3t
. (8.2.38)

Furthermore, if the gas in in the universe behaves as an ideal gas with P ∝ ργ , the
density decrease due to the universal expansion (see Eq. 8.2.12) implies a pressure
decrease,

ρ(t) = ρ0

(
t

t0

)−2

, P = P0

(
ρ

ρ0

)γ

= P0

(
t

t0

)−2γ

, (8.2.39)

5Often called dark energy in the modern literature.
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and an associated change in the sound speed:

Cs ≡
√

γP

ρ
= Cs0

(
t

t0

)−(γ−1)

. (8.2.40)

This time-dependence of the coefficients is the reason that it is no longer possible
to find solutions with a harmonic behavior in time (i.e. solutions where � ∝ e−iωt ).
Since we assumed a homogeneous Universe, the coefficients do not explicit depend
on the comoving position r . Therefore, we can still look for plane wave solutions of
the form

�(r , t) = �̃(t) exp(iq · r) + cc. (8.2.41)

Here q is the comoving wave number, which means that the maxima in the wave
amplitude are separated by a comoving distance (the comoving wavelength):

|�r| ≡ λcm = 2π

|q| . (8.2.42)

The physical wavelength follows from the general recipe for converting comoving
coordinate differences into physical distances (see Eq. 8.2.12):

λ(t) = R(t) λcm = 2πR(t)

|q| . (8.2.43)

The physical wavelength of the perturbation is proportional to the scale factor of the
universe. This is exactly the same behaviour as exhibited by photons in an expanding
Universe: like photons, the ‘acoustic’ waves of self-gravitating linear perturbations
in an expanding universe are redshifted to longer and longer wavelengths as the
Universe expands.

Ifwe substitute the trial solution (8.2.41) into theEq.8.2.37 onefinds the following
equation for the wave amplitude �̃(t):

[
d2

dt2
+ 2H(t)

d

dt
+
( |q|2C2

s

R2
− 4πG ρ(t)

) ]
�̃(t) = 0. (8.2.44)

As was the case for the Jeans Instability in a static universe, the solutions of this
equation behave in a fundamentally different manner for short and for long wave-
lengths. The criterion separating these two regimes is the same as in the static case.
Let us define the physical wave number k as

k(t) = q
R(t)

⇐⇒ λ(t) = 2π

|k(t)| . (8.2.45)
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We can write:

|q|2C2
s

R2
− 4πG ρ(t) = |k(t)|2C2

s − 4πG ρ(t)

(8.2.46)

= |k(t)|2C2
s

(
1 − λ2

λ2
J

)
,

with λJ = √πC2
s /Gρ the Jeans length defined above. Equation (8.2.44) leads to the

following possible solutions:

if λ < λJ : wave-like acoustic solutions
(8.2.47)

if λ > λJ : damped and growing (unstable) solutions

In an expanding Universe both the physical wavelength of the perturbation and the
Jeans length depend explicitly on time:

λ ∝ R(t) ∝ t2/3,λJ ∝ Cs/
√

ρ ∝ t2−γ . (8.2.48)

If the specific heat ratio satisfies γ > 4/3 the wavelength ratio λ/λJ grows in
time. This means that in an expanding matter-dominated Universe the wavelength
of acoustic waves in a cold gas (which has γ = 5/3) grows more rapidly in time
than the Jeans length. Therefore perturbations which start out as ‘sound waves’ with
λ < λJ which are stable against gravitational collapse, will ultimately be redshifted
into a wavelength range where λ > λJ, so that the perturbations become unstable
according to the Jeans’ criterion.

Let us consider the limiting case λ 
 λJ so that we can neglect the acoustic term
∝ C2

s in the equation for �̃(t). We use the properties of the universal expansion for
a flat universe:

H(t) = 2

3t
, H 2 = 8πG ρ

3
⇐⇒ 4πG ρ = 3

2
H 2 = 2

3t2
. (8.2.49)

Using these relations we can write (8.2.44) in the long-wavelength limit as

[
d2

dt2
+ 4

3t

d

dt
− 2

3t2

]
�̃(t) = 0. (8.2.50)

Let us try a power-law solution in time t6:

6You can guess this trial solution by observing that the equation for �̃(t) contains only time
derivatives and powers of t with the total number of factors of t in each term the same, counting
∂/∂t as a factor 1/t .
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�̃(t) = Atα. (8.2.51)

Substituting this into (8.2.50) one finds that the following equation must be satisfied:

[
α (α − 1) + 4

3
α − 2

3

]
Atα−2 = 0. (8.2.52)

This is only possible if the term in the square brackets vanishes identically:

α2 + 1

3
α − 2

3
= 0. (8.2.53)

There are two possible solutions for the exponent α of the power-law (8.2.51):

α =
⎧
⎨

⎩

2
3 (growing solution)

−1 (decaying solution)
. (8.2.54)

Since this corresponds to two independent solutions of a linear equation for �̃, the
most general solution is a superposition of a growing and a decaying solution:

�̃(t) = A+t2/3 + A−t−1. (8.2.55)

As time progresses, the growing solution ∝ t2/3 will always dominate so that

δρ

ρ
∝ t2/3 ∝ R(t). (8.2.56)

In an expanding Universe the growth of perturbations in the Jeans Instability is
slowed down to an algebraic growth. The relative density perturbation ultimately
becomes proportional to the scale factor R(t). This growth will continue until the
perturbation becomes so strong (i.e. when |�̃| ∼ 1) that the linear analysis, on which
this conclusion is based, becomes invalid.

8.3 Waves in a Stratified Atmosphere

In the photosphere of the Sun, or in the Earth’s atmosphere and oceans, long-
wavelength waves are influenced by the presence of gravity, and the associated strati-
fication of the atmosphere. This stratification leads to the occurrence of
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acoustic-gravity waves or internal gravity waves,7 where buoyancy plays a role in
determining wave properties.

I will consider the simplest case: that of a plane-parallel, isothermal atmosphere
at rest (V = 0), with a constant gravitational acceleration and a constant tempera-
ture. Assume that the vertical direction is along the z-axis, so that the gravitational
acceleration equals

g = −∇� = −g ẑ. (8.3.1)

The equation of hydrostatic equilibrium then reduces to

dP(z)

dz
= −g ρ(z). (8.3.2)

Given the constant temperature (∂T/∂z = 0), and using the ideal gas law,

P(z) = ρ(z)RT

μ
, (8.3.3)

hydrostatic equilibrium can be written as

(RT

μ

)
dρ

dz
= −ρ g. (8.3.4)

The solution of this equation is simple, and one finds that the pressure and density
decay exponentially with increasing height z:

P(z) = P0e−z/H, ρ(z) = ρ0 e−z/H. (8.3.5)

Here ρ0 and P0 = ρ0RT/μ are the density and pressure at z = 0.
The quantity H is the constant isothermal scale height of this atmosphere (see

also Sect. 2.9) that is given by:

H = RT

μg
. (8.3.6)

The presence of gravity and the associated density variation introduce new wave
modes. I will first consider the incompressible case, where the wave modes satisfy

∇ · ξ = 0. (8.3.7)

This condition removes pure sound waves from consideration, which require
∇ · ξ �= 0.

7For a discussion of these waves in the Solar atmosphere see [39], Chap. 4;
For a discussion of internal gravity waves in the ocean see [27], Sect. 2.10.

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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The equation of motion for small perturbations in a stratified atmosphere at rest
has the form

ρ
∂2ξ

∂t2
= −∇δP − δρg ẑ. (8.3.8)

The first term on the right-hand side is the pressure force associated with the wave,
and also occurs in the case of sound waves. The second term is the gravitational force
due to density variations: the effect of buoyancy.

Because of condition (8.3.7) the density perturbation follows from relation
(7.4.39) and (8.3.5) as:

δρ = −(ξ · ∇)ρ = −ξz
dρ

dz
= ρ

(
ξz

H
)

. (8.3.9)

Using this in the equation of motion yields

ρ
∂2ξ

∂t2
= −∇δP − ρ N 2 ξz ẑ, (8.3.10)

where I define a new frequency N by

N 2 = g

H . (8.3.11)

This is the characteristic buoyancy frequency that is associated with the stratification
of the atmosphere.

If we look at purely vertical oscillations of the form ξ = ξz(x , y , t) ẑ that
satisfy (8.3.7), the pressure term in the equation of motion automatically vanishes
(no z-dependence!) and we have

ρ

(
∂2ξz

∂t2
+ N 2 ξz

)
= 0. (8.3.12)

A solution of the form ξz ∝ exp(−iωt) solves this equation provided

ω = ±N . (8.3.13)

8.4 Incompressible Waves

I first look at the general case of purely incompressible waves that satisfy condition
(8.3.7). The basic equations are, summarized from the preceding section:

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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∇ · ξ = 0,

ρ
∂2ξ

∂t2
+ ρ N 2 ξz ẑ = −∇δP, (8.4.1)

N =
√

g

H .

Note that δP is left unspecified for now: the relationship derived in Chap.7 for
adiabatic (sound-like) waves does not apply here!

For plane waves with ξ ∝ exp(−iωt) so that ∂2ξ/∂t2 = −ω2ξ the following
relations hold between the components of ξ and the pressure perturbation δP:

ξx (x, t) = (∂ δP/∂x)

ρ(z) ω2

ξy(x, t) = (∂ δP/∂y)

ρ(z) ω2
(8.4.2)

ξz(x, t) = (∂ δP/∂z)

ρ(z)
(
ω2 − N 2

)

The condition that ξ remains divergence free can now be written as the following
partial differential equation for the pressure perturbation:

1

ρ(z)ω2

(
∂2 δP

∂x2
+ ∂2 δP

∂y2

)
+ 1

ρ(z) (ω2 − N 2)

(
∂2 δP

∂z2
+ 1

H
∂ δP

∂z

)
= 0.

(8.4.3)
Here I have used that ρ(z) ∝ exp(−z/H). The common factor 1/ρ(z) can be canceled
from Eq. (8.4.3), and one is left with an equation with constant coefficients, made up
from factors like 1/ω2 and 1/(ω2−N 2) and 1/H. Therefore, a planewave assumption
for δP can be used:

δP(x , t) = P̃ exp(ikx x + iky y + ikzz − iωt) + cc. (8.4.4)

As always you may forget about the complex conjugate in (8.4.4). With (8.4.4) one
finds:

1

ρ(z) ω2

[
k2

x + k2
y + ω2

ω2 − N 2

(
k2

z − i
kz

H
)]

P̃ = 0. (8.4.5)

This provides a solution if the term in square brackets vanishes. That happens if ω
is the solution of

ω2

(
k2 − i

kz

H
)

− N 2k2
h = 0. (8.4.6)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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Here I define the horizontal wavenumber kh by

kh ≡
√

k2
x + k2

y . (8.4.7)

and
k2 = k2

x + k2
y + k2

z = k2
h + k2

z . (8.4.8)

It is possible to find a solution to the complex dispersion relation (8.4.6) with a
real-valued frequency ω, provided that the vertical wave number kz is chosen to be
a complex quantity8:

kz = k̃z + iκ. (8.4.9)

Substituting this into dispersion relation (8.4.6) onegets a complex algebraic equation
of the form

{
ω2
(

k̃2 − κ2 + κ

H
)

− N 2k2
h

}
+ i

{
2k̃zκ − k̃z

H

}
= 0. (8.4.10)

Here
k̃2 ≡ k2

x + k2
y + k̃2

z = k2
h + k̃2

z . (8.4.11)

Both the real part (first term in curly brackets) and the imaginary part (second term
in curly brackets) should vanish simultaneously. For k̃z �= 0 putting the imaginary
part equal to zero gives

2k̃zκ − k̃z

H = 0 ⇐⇒ κ = 1

2H . (8.4.12)

Substituting this result for κ into the real part, and putting that to zero yields

ω2

(
k̃2 + 1

4H2

)
− N 2k2

h = 0. (8.4.13)

Solving for ω one finds:

ω = ±
√√√√√

N 2k2
h

k̃2 + 1

4H2

= ±N

√√√√√
k2
hH2

k̃2H2 + 1

4

. (8.4.14)

8In what follows, complex quantities are written as C = A + i B, where A and B are both real.
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If one looks at waves with k̃z = 0 we have k̃2 = k2
h . If we now take the limit khH 
 1

(i.e. a small wavelength in the horizontal plane) we have ω = ±N . This corresponds
to the case treated in the previous section.

Note that the wave amplitudes grows exponentially in the vertical direction
because of the complex kz and ρ(z) ∝ exp(−z/H):

ξ ∝ exp(ikzz)

ρ(z)
= exp(i k̃z z) exp(z/2H). (8.4.15)

Wewill encounter the same behavior in compressivewaves in a stratified atmosphere.

8.5 Compressive Waves Modified by Buoyancy

I will now calculate the properties of small-amplitude waves in this stratified
atmosphere. Since the unperturbed atmosphere is at rest, the velocity perturbation
associated with the waves again satisfies

�V = δV = ∂ξ

∂t
, (8.5.1)

with ξ the displacement vector of thewavemotion. The linearized equation ofmotion
for the perturbations becomes

ρ
∂2ξ

∂t2
= −∇δP + δρ g. (8.5.2)

This equation can be easily derived by taking the Eulerian perturbation δ of the full
equation of motion for the gas, neglecting the non-linear terms and using V = 0 and
δg = 0 as we are neglecting self-gravity. The density- and pressure perturbations
follow from the general expressions derived in Sect. 7.2:

δρ = −ρ (∇ · ξ) − (ξ · ∇)ρ

(8.5.3)

δP = −γP (∇ · ξ) − (ξ · ∇)P.

Here I have assumed that the pressure variations in the waves are adiabatic so that
�P = (γP/ρ) �ρ. One can combine these two expressions by eliminating ∇ · ξ
using the density equation. The pressure perturbation becomes

δP = γP

ρ
(δρ + (ξ · ∇)ρ) − (ξ · ∇)P. (8.5.4)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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This can be written as

δP = C2
s δρ − P (ξ · ∇) ln

[
Pρ−γ

]
(8.5.5)

Note that the sound speed Cs = √
γRT/μ is constant in an isothermal atmosphere.

Using P(z) = ρ(z)RT/μ one has (see Eq. 8.3.5):

∇ ln
[

Pρ−γ
] =

[
1

P

dP

dz
− γ

(
1

ρ

dρ

dz

) ]
ẑ

(8.5.6)

=
(

γ − 1

H
)
ẑ.

Using this in (8.5.4) we find:

δP = C2
s δρ − γ − 1

H ξz P. (8.5.7)

The first term on the right-hand side of this relation is the same as in a sound wave:
it is the acoustic response of the pressure to small density perturbations. The second
term, involving the scale height H is due to the stratification of the unperturbed
gas. The displacement of the gas in the z direction over a distance ξz means that an
observer at a fixed position z = z0 finds himself surrounded by gas that used to sit
at z0 − ξz . Since the gas is stratified in the z-direction he will measure a different
density and pressure. The stratification term in (8.5.7) takes account of the effect of
this pressure change.

We can use relation (8.5.7) together with the expression for δρ in (8.5.3) to solve
the equation of motion (8.5.2). First we make a change of variables, defining

ζ(x , t) ≡ ρ(z) ξ(x , t). (8.5.8)

In terms of this variable the inertial term in the equation of motion becomes

ρ
∂2ξ

∂t2
= ∂2ζ

∂t2
. (8.5.9)

The density and pressure perturbations are

δρ = −(∇ · ζ),

(8.5.10)

δP = −C2
s

[
(∇ · ζ) + γ − 1

γH ζz

]
.

Substituting these relations into the equation of motion (8.5.2), one finds a single
partial differential equation (wave equation) for ζ(x , t) with constant coefficients
(which motivates this variable change):
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∂2ζ

∂t2
= C2

s ∇
[
(∇ · ζ) + γ − 1

γH ζz

]
+ (∇ · ζ)g ẑ. (8.5.11)

The exponential z-dependence of pressure and density in the atmosphere has been
hidden, or rather it has been ‘absorbed’ into ζ. Because of the coefficients C2

s , g and
H in (8.5.11) are all constant we can once again look for a plane wave solution of
the form

ζ(x , t) = a eikx x+ikz z−iωt + cc. (8.5.12)

Here I have assumed that there is no dependence on the y-coordinate. This does not
restrict the the validity of the solution as one can always rotate around the z-axis,
in effect choosing new x and y coordinates, without changing the physics. In that
way you can align the x-axis with the component of k in the horizontal plane so that
plane waves show no dependence on y.

Substituting the plane-wave assumption into the equation of motion yields a set
of three algebraic relations between ax , ay and az which can be written in matrix
form as:

⎛

⎜⎜⎜⎜⎝

ω2 − k2
x C2

s 0 ikx (γ − 1)g − kx kz c2s

0 ω2 0

ikxg − kx kz C2
s 0 ω2 − k2

z C2
s + ikzγg

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

ax

ay

az

⎞

⎟⎟⎟⎟⎠
= 0. (8.5.13)

In deriving these relations I have made use of the definitions of the pressure scale
height H and of the adiabatic sound speed Cs.

These allow us to write:

H = C2
s

γg
,
(γ − 1) C2

s

γH = (γ − 1) g (8.5.14)

There is only a non-trivial solution to these equations if the determinant of the 3× 3
matrix in Eq. (8.5.13) vanishes. This condition leads to the following dispersion
relation for the waves:

ω2
{
ω4 − [(k2

x + k2
z

)
C2
s − ikzγg

]
ω2 + (γ − 1)k2

xg
2
} = 0. (8.5.15)

As always we discard the solution ω = 0. The term in the curly brackets contains
both a real and an imaginary part. This means that either the wave frequency, or
the wave vector k = (kx , kz) must be complex. We choose the latter possibility,
keeping the wave frequency ω real-valued in order to avoid waves that grow (or
decay) nonphysically as a function of time.

Let us write
kz = k̃z + iκ, (8.5.16)
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with k̃z = Re(kz) and κ = Im(kz). Substituting this into (8.5.15) one finds that the
term in the curly brackets splits into a purely real and a purely imaginary term, both
of which must vanish simultaneously. This leads to two solution conditions:

real part: ω4 −
(

k2
x + k̃2

z − κ2
)

C2
s ω

2 − κγgω2 + (γ − 1)k2
xg

2 = 0;
(8.5.17)

imaginary part: ω2k̃z
(
γg − 2κC2

s

) = 0.

The second equation immediately determines the value of κ:

κ = γg

2C2
s

= 1

2H . (8.5.18)

This is the same result as obtained in an incompressible medium, see Eq. (8.4.12).
This result implies that the z-dependence of ζ and of the displacement ξ is

ζ(x, t) ∝ eikz z = eik̃z z × e−z/2H

(8.5.19)

ξ(x, t) ≡ ζ(x, t)

ρ(z)
∝ eik̃z z × ez/2H.

This exponential behavior of the displacement vector ξ is a direct consequence of the
exponential pressure-and density profiles in the atmosphere. Substituting the above
value for κ back into the real term yields the dispersion relation for acoustic-gravity
waves in an isothermally stratified atmosphere:

ω4 −
(

k̃2C2
s + γ2g2

4C2
s

)
ω2 + (γ − 1) k2

xg
2 = 0. (8.5.20)

Here k̃2 ≡ k2
x + k̃2

z .
Let us define the following two frequencies, closely related to the buoyancy fre-

quency N = √
g/H that was introduced above:

Ns ≡ γg

2Cs
=
√

γ

4
N , NBV ≡ (γ − 1)1/2 g

Cs
=
√

γ − 1

γ
N (8.5.21)

Here I have used that Cs = √
γRT/μ = √

γgH. The second frequency is known
as the Brunt-Väisälä frequency. Its general definition (valid also in non-isothermal
atmospheres) is:

N 2
BV ≡ −

(∇P

γρ

)
· (∇ {ln [Pρ−γ

]})
. (8.5.22)
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It is easily checked that this definition reduces to N 2
BV = (γ −1)g2/C2

s in an isother-
mal atmosphere, where the pressure satisfies the equation of hydrostatic equilibrium.
One has Ns > NBV for γ < 2, and Ns = NBV = N at γ = 2. For an ideal mono-
atomic gas with γ = 5/3 one has Ns � 0.645 N and NBV � 0.632 N .

Expressed in terms of the two characteristic buoyancy frequencies Ns and NBV,
the above dispersion relation can be written as:

ω4 −
(

N 2
s + k̃2C2

s

)
ω2 + k̃2C2

s N 2
BV sin2 θ = 0. (8.5.23)

The angle θ in this expression is the angle between the real part of the wave vector
k and the vertical direction, i.e.

kx = k̃ sin θ, k̃z = k̃ cos θ.

Waves propagating in the horizontal plane have θ = π/2, and waves propagating
along the vertical have θ = 0. This dispersion relation for acoustic-gravity waves is
a quadratic equation for ω2, with the formal solution

ω2 = 1

2

(
N 2
s + k̃2C2

s

)
± 1

2

√(
N 2
s + k̃2C2

s

)2 − 4k̃2C2
s N 2

BV sin2 θ. (8.5.24)

We can look this solution in a number of limiting cases:

• Purely vertical propagation: kx = k̃ sin θ = 0.
In this case the solution of (8.5.23) is easily obtained:

ω = ±
√

k̃2C2
s + N 2

s .

• The high-frequency/short wavelength limit: ω 
 Ns, NBV and k̃ 
 1/H.
Here the terms due to the stratification of the atmosphere are unimportant, dis-
persion relation (8.5.23) can be approximated by ω2(ω2 − k̃2C2

s ) ≈ 0. This is the
dispersion relation for sound waves with solution

ω ≈ ±k̃Cs.

In this limit, the acoustic effects are much stronger than the effects due to the
stratification of the atmosphere, and the waves behave as sound waves.

• The low-frequency/short wavelenth limit: ω 
 k̃Cs and Ns , NBV 
 k̃Cs.
In this limit we can neglect the ω4 term in the dispersion relation altogether, and
neglect N 2

s with respect to k̃2C2
s in the second term of (8.5.23).

The dispersion relation can therefore be approximated by k̃2C2
s (ω

2−N 2
BV sin2 θ) ≈

0, and we find pure internal gravity waves as solutions:
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ω ≈ ±NBV sin θ.

This limit is valid when k̃H 
 1, corresponding to (horizontal) wavelengths much
smaller than the pressure scale height. In this low-frequency limit, the effects of
the stratification of the atmosphere determine the pressure perturbation, and the
behavior of the waves.

We can also rewrite the dispersion relation as an equation for k̃2:

k̃2 =
(

ω

Cs

)2

× ω2 − N 2
s

ω2 − N 2
BV sin2 θ

. (8.5.25)

Since we have assumed that k̃ and ω are real, the quantities k̃2 and ω2 are both
positive. Equation (8.5.25) can therefore only be satisfied if

ω2 − N 2
s

ω2 − N 2
BV sin2 θ

> 0. (8.5.26)

For an ideal mono-atomic gas with γ = 5/3 one has NBV ≈ 0.98 Ns, so this means
that no waves can propagate in the frequency range

NBV sin θ < | ω | < Ns. (8.5.27)

In this frequency range waves are evanescent since k̃ must become purely imaginary
in order to satisfy Eq. (8.5.25). The ‘forbidden region’ in frequency shrinks as θ →
π/2, in the direction towards purely horizontal propagation.

The figure shows the solution curves ω = ω(kx , kz) for acoustic-gravity waves
are shown for propagation angles equal to θ = 0 (vertical propagation), θ = π/4
and for θ = π/2 (horizontal propagation) (Fig. 8.5). By defining a dimensionless
frequency ν and wavenumber � as

ν = ωH/Cs, � = k̃H, (8.5.28)

the dispersion relation (8.5.23) can be written in the universal form:

ν4 −
(

�2 + 1

4

)
ν2 + γ − 1

γ2
�2 sin2 θ = 0. (8.5.29)

In terms of these variables the solution to the dispersion relation is

ν2 = �2 + 1
4

2
± 1

2

{(
�2 + 1

4

)2

− 4(γ − 1)

γ2
�2 sin2 θ

}1/2

. (8.5.30)
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Fig. 8.5 Diagram showing the solutions of the dispersion relation (8.5.23) in terms of the dimen-
sionless frequency ν and wave number �. Dispersion curves are shown for propagation angles with
respect to the vertical direction equal to θ = 0, 30◦, 45◦ and 90◦. Note that the low-frequencymodes
all stay below the horizontal (dashed) line ω = NBV, and asymptotically go to ω = NBV sin θ for
� = k̃H 
 1. The high-frequency solutions all stay above the sound line ω = k̃Cs (the diagonal
dashed line) and the line ω = Ns (not shown, but Ns ≈ NBV), and approach the diagonal sound line
closely for large values of �. The region between the Brunt-Väisälä frequency NBV and the sound
frequency k̃Cs is ‘forbidden’ as no propagating waves are allowed there regardless the propagation
angle. With increasing propagation angle θ the low- and high-frequency curves approach these two
limiting lines more closely

Note that all explicit references to the physical conditions in the atmosphere, such as
the sound speed Cs, the gravitational acceleration g and the pressure scale heightH,
have been scaled away. Soundwaves (the high-frequency/short wavelength limit) and
internal gravity waves (the low-frequency/short wavelength limit) correspond to:

ν = ±�

(sound waves; the limit � 
 1 and |ν| 
 1)

(8.5.31)

ν = ±
√

γ − 1

γ
sin θ

(internal gravity waves; the limit |ν| 
 � and � 
 1).
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8.5.1 The Brunt-Väisälä Frequency, Buoyancy
and Convection

TheBrunt-Väisälä frequency NBV,whichplays such aprominent role in the properties
of acoustic-gravity waves, has a simple physical interpretation. Consider a spherical
bubble offluid in agravitationally stratified atmosphere. Initially, the bubble is located
at some height z. The material in the fluid bubble has the same properties as its
surroundings: the internal pressure and density equal

P = Pe(z), ρ = ρe(z). (8.5.32)

I use a subscript ‘e’ to denote the properties of the fluid surrounding the bubble. We
now displace the fluid bubble in the vertical direction, from its initial position z to
a new position z̄ ≡ z + ξz . The fluid must remain in pressure equilibrium with its
surroundings.

If the bubble rises (ξz > 0) it finds itself in a environment with lower pressure,
and will expand until pressure equilibrium is re-established. The pressure at the new
position of the bubble equals

P̄ = Pe(z̄) ≈ P + ξz

(
dPe

dz

)
. (8.5.33)

Here I have used the initial pressure balance (8.5.32) and assumed that ξz is small.
If the fluid in the bubble behaves adiabatically, the density change �ρ the pressure
change �P must be related by

�P = γP

ρ
�ρ ≡ C2

s �ρ, (8.5.34)

with Cs the speed of sound in the bubble. The pressure change is

�P = P̄ − P = ξz

(
dPe

dz

)
. (8.5.35)

This implies that the density inside the bubble after displacement equals

ρ̄ = ρ + �P

C2
s

(8.5.36)

= ρe(z)

[
1 + ξz

(
1

γPe

dPe

dz

) ]
.

Here I have used that ρ = ρe(z) initially, and C2
s = γP/ρ ≈ γPe/ρe.
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The density in the surrounding medium at the new position z̄ equals

ρe(z̄) = ρ + ξz

(
dρe
dz

)
. (8.5.37)

In general, there will be a density difference between the fluid in the bubble and the
surrounding fluid:

ρ̄ − ρe(z̄) = ρe ξz

[
1

γPe

(
dPe

dz

)
− 1

ρe

(
dρe
dz

) ]
. (8.5.38)

This density difference leads according to Archimedes’ law to a vertical buoyancy
force on the bubble, with a force density that equals

f buoy ≡ (ρ̄ − ρe(z̄)) g

(8.5.39)

= −
[

1

γPe

(
dPe

dz

)
− 1

ρe

(
dρe
dz

) ]
gρe ξz ẑ.

If the fluid inside the bubble is lighter than the surrounding fluid at the new position,
this force is in the direction opposite to the direction of gravity, and the bubble will
float further upwards. If on the other hand the material in the bubble has a larger
density than the surrounding fluid, the bubble will sink.

The atmosphere as a whole must satisfy the equation of hydrostatic equilibrium,

dPe

dz
= −ρe g. (8.5.40)

Using this to eliminate g from the above expression for the buoyancy force one finds:

f buoy = 1

γ

(
dPe

dz

) [
1

Pe

(
dPe

dz

)
− γ

ρe

(
dρe
dz

) ]
ξz ê(z)

(8.5.41)

= −ρ N 2
BV ξz ẑ.

The characteristic frequency NBV is the Brunt-Väisälä frequency of the external
medium:

N 2
BV = − 1

γρ

(
dP

dz

) (
d

dz

{
ln
[
Pρ−γ

]})
. (8.5.42)

Here I have dropped the subscript ‘e’ on density and pressure.
The equation of motion for the bubble which results as a consequence of this

buoyancy force reads

ρ
∂2ξz

∂t2
= −ρ N 2

BV ξz . (8.5.43)
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The solutions of this equation behave differently, depending on the sign of N 2
BV:

• If N 2
BV > 0 the solution corresponds to harmonic motion, ξz ∝ e−iωt , with fre-

quency ω = ±NBV. This corresponds to pure internal gravity waves. As we will
see below they are called g-modes in the theory of stellar oscillations.

• If N 2
BV < 0 there is a solution where the vertical displacement grows exponen-

tially with time, ξz ∝ eσt , with σ =
√

−N 2
BV. This corresponds to an instability of

the atmosphere against convection, where slightly hotter bubbles will rise sponta-
neously and keep rising, and slightly cooler bubbles start to sink and keep sinking.

An atmosphere is stable against convection if the Schwarzschild criterion N 2
bv > 0

is fulfilled. For a full discussion of stellar convection and its consequences for stellar
evolution see [23],Chap. 6 or [38], Sect. 6.5. Since dP/dz < 0 the condition N 2

BV > 0
corresponds to

d

dz

{
ln

[
P

ργ

]}
= d

dz

{
ln

[
T γ

Pγ−1

]}
> 0. (8.5.44)

Here I have used the ideal gas law P = ρRT/μ to write

ln
[
P ρ−γ

] = ln
[
P (μP/RT )−γ

] = ln
[
T γ P−(γ−1)

]+ constant, (8.5.45)

assuming for simplicity that μ is constant (Fig. 8.6).

Fig. 8.6 The simple model that is used to demonstrate the Schwarzschild criterion for convection.
A small spherical bubble rises vertically along the z-axis over a distance ξz , from initial center
position z to a new position z̄ = z + ξz . It is assumed that the radius of the bubble is much smaller
than the pressure scale height. The surrounding atmosphere is stratified in the z-direction due to
gravity (the red arrow). As the bubble rises it expands in order to maintain pressure equilibrium
with the falling pressure in the surrounding gas. Even when initially the density and pressure inside
the bubble are the same as in the surrounding fluid (equal to P and ρ) initially, this is generally no
longer the case for the density after the bubble has risen and expanded. Therefore ρ̄ �= ρe(z̄)
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Writing out the logarithm in (8.5.44) one finds that this corresponds to

γ

(
1

T

dT

dz

)
> (γ − 1)

(
1

P

dP

dz

)
. (8.5.46)

Using the equation for hydrostatic equilibrium once again, dP/dz = −ρ g < 0, this
condition becomes

(
d ln T

d ln P

)
<

(
d ln T

d ln P

)

s=constant

= γ − 1

γ
. (8.5.47)

One can reformulate the Schwarzschild criterion in terms of the specific entropy s
of the gas. This specific entropy is given by (Eq. 2.8.27) for an ideal polytropic gas:

s = cv ln
(
Pρ−γ

)+ constant. (8.5.48)

The Brunt-Väisälä frequency can be expressed in terms of the specific entropy and
the gravitational acceleration g for an atmosphere in hydrostatic equilibrium:

N 2
BV = − 1

γρ cv
(∇P · ∇s) = − (g · ∇s)

γcv
. (8.5.49)

Schwarzschild’s criterion for stability, N 2
BV > 0, shows that a plane-parallel

atmosphere with gravitational acceleration g = −g ẑ is stable provided

g
ds

dz
> 0. (8.5.50)

The entropy of the gasmust increase with height. In an atmosphere where s decreases
with height, bubbles will rise spontaneously.

The figure shows a high-resolution image of the Solar photosphere, with the
pattern of granulation around a Sun Spot. This granulation is the top of the Solar
convection zone. The small cells are columns of rising, hot material that penetrates
into the visible surface of the Sun, the photosphere. Once the hot material cools,
it sinks back into the convection zone around the edges of the granular convection
cells, which are darker in this image (Fig. 8.7).

8.6 Surface Waves on Water

Consider a lake filled with water and with a constant depth H0. In absence of waves
the water is at rest (V = 0) and has a uniform density ρ. The water pressure varies
with height due to the hydrostatic balance between the vertical pressure force the

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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Fig. 8.7 A photograph of the granulation (the irregular cell-like pattern) at the top of the Solar
Convection Zone. The dark spot near the middle is a Sun Spot, a region of strong magnetic field
(field strength ∼ 1000 G) that is cooler than the surroundings. This temperature difference leads to
the large brightness contrast, which makes the Sun Spot seem black, even though the material in
the Sun Spot is actually quite bright. This photograph was taken with the Dutch Open Telescope,
a special-purpose 1-m solar telescope that is capable of making diffraction-limited images of the
Sun, with a resolution of ∼0.1 arc-second (∼75 km on the Sun)

gravitational force, with gravitational acceleration g = −g ẑ. If the vertical direction
is along the z-axis, with z = 0 at the bottom of the lake, we have:

dP

dz
= −ρg ⇐⇒ P(z) = P(H0) + ρg (H0 − z) . (8.6.1)

At the top of the lake (at z = H0) there should pressure balance between the water
pressure P(H0) and the constant atmospheric pressure Patm:

P(z = H0) = Patm = constant. (8.6.2)

Now consider a surface wave on the water, running in the x-direction and changing
the height of the water column to (see the Fig. 8.8)
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Fig. 8.8 Waterwaves propagating in the x-direction in a lakewith constant depth H0. At the surface,
the amplitude of the waves equals δH 
 H0. The lower graph gives the pressure fluctuation δP
that is induced by the ripples close to the surface, near z = H0. The pressure change corresponds
to the change in the weight per unit area over the overlying water column

H0 =⇒ H0 + δH(x , t). (8.6.3)

The change in the height of the water column induces a pressure change δP in the
water. We will assume that the density of the water is not affected by the presence
of waves, in practice a very good approximation for water. This implies:

�ρ = −ρ (∇ · ξ) = 0 ⇐⇒ ∇ · ξ = 0. (8.6.4)

The incompressibility condition for ξ applies here. The equation of motion for small
perturbations follows most easily from perturbing the equation of motion cast into
the form

dV
dt

= −1

ρ
∇P − g ẑ, (8.6.5)

with the mass density ρ and gravitational acceleration g both treated as constant.
In this case the equation governing the perturbations reads

∂2ξ

∂t2
= −∇(δP)

ρ
, (8.6.6)

formally the same equation as the one that governs sound waves, see Eq. (7.5.11).
However, the mechanism that generates the pressure fluctuations, namely the vary-
ing weight of the overlying water column at fixed depth due to the ripples on the
water’s surface, is completely different from the sound wave case: in sound waves
the compression and rarefaction of the gas (which require ∇ · ξ �= 0!) generates the
pressure changes.

One can take the divergence of both sides of (8.6.6). Since∇ · ξ = 0, plus the fact
that taking the divergence and taking the partial time derivative of ξ are commuting
operations, means that ∇ · (∂2ξ/∂t2) = ∂2(∇ · ξ)/∂t2 = 0. The left hand side of
the resulting equation vanishes! As a consequence, the pressure perturbation must
satisfy

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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∇ · (∇δP) = ∇2 δP = 0. (8.6.7)

We can try a solution of the form

δP = P̃(z) exp(ikx − iωt) + cc. (8.6.8)

This solution exhibits the usual plane wave behavior in the x-direction, but not in
the z-direction, simply because the unperturbed pressure (see Eq. 8.6.1) varies with
z. I will assume k > 0 from this point onwards. Substituting this assumption for δP
into (8.6.7), and forgetting about the complex conjugate as always, leads to:

d2 P̃

dz2
− k2 P̃ = 0. (8.6.9)

The general solution is

P̃(z) = P̃+ exp(kz) + P̃− exp(−kz). (8.6.10)

P̃+ and P̃− are constants yet to be determined. Now assume that the displacement
vector behaves in a similar fashion as the pressure perturbation:

ξ(x, t) = a(z) exp(ikx − iωt) + cc. (8.6.11)

Then the equation of motion (8.6.6) leads to:

ρ ω2 ax (z) = ik
(

P̃+ exp(kz) + P̃− exp(−kz)
)

,

ρ ω2 ay(z) = 0, (8.6.12)

ρ ω2 az(z) = k
(

P̃+ exp(kz) − P̃− exp(−kz)
)

.

Here I have canceled the common factor exp(ikx − iωt). The solution is trivial: one
finds ay = 0,

ax (z) = ik

ρ ω2

(
P̃+ exp(kz) + P̃− exp(−kz)

)
(8.6.13)

and

az(z) = k

ρ ω2

(
P̃+ exp(kz) − P̃− exp(−kz)

)
. (8.6.14)

Now the boundary conditions at the bottom and the top of the rippling lake come
into play. The water cannot penetrate the solid bottom at z = 0, so we must demand
ξz(0) = 0, and therefore az(0) = 0. This immediately yields P̃+ = P̃−. The appro-
priate condition at the top of the lake, at z = H0 + δH = H0 + ξz(H0), requires
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a little thinking. One should demand that, at the water‘s surface, the pressure still
matches the (unchanged) atmospheric pressure. This corresponds to the condition
(to first order in |ξ|)

�P = δP + ξz(H0)

(
dP

dz

)

z=H0

= 0. (8.6.15)

One has to use�P (rather than δP) here because one follows thewater on the surface
to the new (shifted) position of the lake surface. This determines δP as:

δP(z = H0) = −ξz

(
dP

dz

)

z=H0

= ρgξz(z = H0) ≡ ρg δH. (8.6.16)

This condition has a simple physical explanation. First consider the case ξz > 0. At
the fixed position z = H0 the pressure changes by the weight per unit area of the
overlying water, which equals δP = ρgξz(z = H0) as the water has been displaced
upwards over a distance ξz . For negative ξz one goes to the new position of the water’s
surface, where now the pressure equals P = Patm. One concludes that the pressure
has dropped by and amount δP = −ρg|ξz|(z = H0).

Substituting the solution for δP(x, t) and ξ(x, t) into (8.6.16) using P̃+ = P̃−,
one finds:

P̃+ (exp(k H0) + exp(−k H0)) = P̃+
(

kg

ω2

)
(exp(k H0) − exp(−k H0)) . (8.6.17)

This is condition can only be met if the wave angular frequency ω satisfies

ω2 = kg

(
exp(k H0) − exp(−k H0)

exp(k H0) + exp(−k H0)

)
= kg tanh(k H0). (8.6.18)

It is interesting to consider two limits: that of a very deep lake, where k H0 =
2π H0/λ 
 1, and that of a very shallow lake, where k H0 = 2π H0/λ 
 1.

• Deep lake: when k H0 = 2π H0/λ 
 1 we have tanh(k H0) � 1 and we find:

ω � ±√kg. (8.6.19)

Close to the surface, the pressure fluctuation δP and ξz behave as:

δP ∼ δP(H0) exp (−k(H0 − z)) , |ξz| ∼ |ξz| (H0) exp (−k(H0 − z)) . (8.6.20)

In the vertical direction the wave decays exponentially away from the location of
the unperturbed surface z = H0. That is the reason why this is a surface wave:
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its influence in confined to a thin layer near the surface. Deep in the lake, when
|H0−z| 
 λ, the perturbations due to the rippling surface are exponentially small.

• Shallow lake: in the limit k H0 = 2π H0/λ 
 1 one can use the approximation
tanh(k H0) � k H0 + O(k H0)

2. One finds:

ω � ±k
√

gH0. (8.6.21)

The general dispersion relation (8.6.18) can be cast in a ‘universal’ form by intro-
ducing a dimensionless frequency ν and a dimensionless wavenumber κ:

ν = ω√
g/H0

,κ = k H0. (8.6.22)

Then (8.6.18) is equivalent with (choosing the positive root):

ν = √
κ tanh1/2(κ) �

⎧
⎨

⎩

√
κ forκ 
 1 (deep lake);

κ forκ 
 1 (shallow lake).
. (8.6.23)

It is also instructive to calculate the phase- and group velocity of water waves. They
are given in terms of ν and κ by:

vph ≡ ω

k
= √gH0

(ν

κ

)
, vgr ≡ ∂ω

∂k
= √gH0

(
∂ν

∂κ

)
. (8.6.24)

Note that
√

gH0 ≡ vff formally equals the free-fall speed over a distance H0. In the
two limits κ 
 1 and κ 
 1 we find for the phase velocity:

vph � √gH0 ×

⎧
⎪⎪⎨

⎪⎪⎩

1√
κ

forκ 
 1 (deep lake);

1 forκ 
 1 (shallow lake).

(8.6.25)

The group velocity of the surface waves is

vgr � √gH0 ×

⎧
⎪⎪⎨

⎪⎪⎩

1

2
√

κ
forκ 
 1 (deep lake);

1 forκ 
 1 (shallow lake).

(8.6.26)

It is also instructive to look more closely at the motion in these waves. The solution
can be represented in terms of real functions as:
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δP(x, t) = 2|P̃+| cosh(kz) sin(kx − ωt + α),

ξx (x, t) = A cosh(kz) cos(kx − ωt + α), (8.6.27)

ξz(x, t) = A sinh(kz) sin(kx − ωt + α),

where A ≡ 2k|P+|/ρω2 = 2|P+|/ρg tanh(k H0) and α is a constant phase angle
that is determined by the phase of the wave at some arbitrary time, say at t = 0. As
the wave phase S(x, t) ≡ kx − ωt + α varies between 0 and 2π, a tracer particle
moving with the water in the wave is carried once around an ellipse in the x − z plane
defined by:

ξ2x
cosh2(kz)

+ ξ2z
sinh2(kz)

= A2 = constant. (8.6.28)

Since cosh(kz) > sinh(kz) for positive kz (we have assumed k > 0) the major axis
of this ellipse is in the x-direction. The aspect ratio of the minor and major axes of
this ellipse equals tanh(kz). This means that, as one nears the bottom of the lake at
z = 0, the ellipse gets more and more flattened, until it degenerates into a horizontal
line along the x-axis just above lake bottom. If the lake is very deep, one can use
the approximation sinh(kz) � sinh(k H0) � cosh(kz) � cosh(k H0) � 1

2 exp(k H0)

near the lake surface. As a result, the water close to the surface of a deep lake
approximately moves around on a circle in the x − z plane.

8.6.1 Application: Kelvin Ship Waves

Ships moving on a lake often exhibit a characteristic wave pattern that start at the
ships bow, and moves with the ship. These are surface waves that are exited by the
fact that the ships bow pushes up water, creating a disturbance. This phenomenon is
known as Kelvin ship waves. The properties of these waves can be calculated from
the results of the previous section. I will consider these waves in the limit of a deep
lake, where surface waves with positive frequency satisfy

ω(k) = √kg. (8.6.29)

We will assume that the ship moves along the x-axis with velocity U . The surface
of the undisturbed lake is taken to be the x − y plane.

If the pattern is “attached" to the ship, the situation should be steady in the rest
frame of the ship. Defining the wave vector of the surface wave in the laboratory
frame by

k = k cosϑw x̂ + k sin ϑw ŷ, (8.6.30)
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this condition implies that

ω′(k) ≡ ω(k) − kU cosϑw = 0. (8.6.31)

Here ω′(k) is the wave frequency measured in the rest frame of the ship. This result
is most easily understood by realizing that the laboratory x-coordinate and the x-
coordinate attached to the ship, which we will call x ′, are related by x ′ = x − Ut .
Note that y = y′ in this case. The wave phase S ≡ k · x−ωt is a scalar, and therefore
a Galilean invariant:

S(x , y , t) = kx cosϑw + ky sin ϑw − ω(k) t = S′(x ′ , y , t)

= k
(
x ′ + Ut

)
cosϑw + ky sin ϑw − ω(k) t (8.6.32)

= kx ′ cosϑw + ky sin ϑw − (ω − kU cosϑw) t.

Condition (8.6.31) then follows from the requirement ∂S′/∂t = 0 with x ′ fixed.
However, this condition is not enough. As explained in Sect. 7.6 modulations

in the amplitude of a wave travel with the group velocity vgr = ∂ω/∂k. To get a
steady pattern in the wave amplitudes one should demand that there is constructive
interference of waves with different wavelengths. This is only possible if waves of
differentwavelengths (locally) have the samephase.We should therefore additionally
demand that

∂S

∂k
= ∂

∂k

[
k
(
x ′ cosϑw + y sin ϑw

)− (ω − kU cosϑw) t
] = 0. (8.6.33)

This is the stationary phase condition. I have used (8.6.32) to express the phase in
terms of coordinates that are attached to the ship. However, condition (8.6.31) states
that the term ∝ t in the wave phase must vanish identically, and this simplifies to:

∂

∂k

[
k
(
x ′ cosϑw + y sin ϑw

) ] = 0. (8.6.34)

Using (8.6.29) condition (8.6.31) leads to the equation
√

kg = kU cosϑw that is
solved by

k = g

U 2 cos2 ϑw
≡ K (ϑw). (8.6.35)

Using the fact that k is a function of ϑw condition (8.6.34) can be reformulated as

d

dϑw

[
K (ϑw)

(
x ′ cosϑw + y sin ϑw

) ] = 0. (8.6.36)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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Using (8.6.35) and canceling the constant factor g/U 2 this is:

d

dϑw

[
x ′ cosϑw + y sin ϑw

cos2 ϑw

]
= 0. (8.6.37)

Performing the differentiation and solving the resulting equation one finds that the
stationary phase condition (8.6.34) is satisfied along radial lines with

y

x ′ = −cosϑw sin ϑw

1 + sin2 ϑw
. (8.6.38)

If we write

x ′ = � cosφ, y = � sin φ,� ≡
√

(x ′)2 + y2, (8.6.39)

the locus of the significant (standing) waves in the ship frame follow from

tan φ(ϑw) = −cosϑw sin ϑw

1 + sin2 ϑw
≡ F(ϑw). (8.6.40)

In our case we have x ′ < 0. The function F(ϑw) vanishes at θ = 0 and at ϑw =
±π/2 and has a maximum (minimum) at ϑw = sin−1(1/

√
3) = 35o 16′ ≡ ϑm

Fig. 8.9 Schematic representation of the “Kelvin Wake” or Kelvin Ship Wave of a ship moving
on a deep lake in the x-direction. The figure shows the situation in the rest frame of the ship. The
two fundamental waves types, represented by a single quasi-transverse wave and a pair of diverging
waves, is shown, along with the angles involved. In reality, there is a whole train of these wave
crests, separated by a wavelength, see the small insert in the lower right
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(ϑw = − sin−1(1/
√
3) = −35o 16′ = −ϑm). This means that |F(ϑw)| < 2−3/2, so

waves are confined to the cone defined by

− 2−3/2 <
y

|x ′| < 2−3/2, (8.6.41)

which corresponds to an half-opening angle of φ = φm � 19o 28′. There are two
fundamentally different sets of waves, see the Fig. 8.9:

• Quasi-transverse waves start on the x-axis withϑw = 0 (propagation in the ship’s
direction of motion) and continue to the two edges of the cone at ϑw = ±ϑm,
φ = ±φm;

• A pair ofDiverging waves that start on the x-axis with ϑw = π/2 (i.e. propagation
transverse to the ship’s direction of motion) and then run “backwards” in ϑw up to
the edges of the cone, where again ϑw = ±ϑm, φ = ±φm.

The points ϑw = ±ϑm are cusps where the two solutions meet.



Chapter 9
Shocks

9.1 Introduction: What Are Shocks, and Why Do They
Occur?

In the previous chapter we discussed the propagation of small-amplitude distur-
bances, and showed that (under suitable circumstances) they take the form of linear
waves. It was easy to findwave solutions by using the fluid equations in the linearized
version, which neglects the non-linearities stemming from terms like (V · ∇)V in
the equation of motion. In this chapter I will consider the opposite limit of strong
disturbances, where the fluid properties change rapidly. In this case the intrinsic
non-linearity of the fluid equations plays an essential role.

Shock waves only occur in supersonic flows, where the flow velocity exceeds the
(adiabatic) sound speed. Therefore, the defining parameter for a supersonic flow is
theMach number that is defined as

Ms ≡ |V |
Cs

. (9.1.1)

A supersonic flow satisfies Ms > 1.
In essence shocks are needed in order for the flow to adjust to suddenly changing

conditions. An obvious example is the case where a supersonic flow hits an obstacle:
in order for the flow to deflect in time shocks must form so that, close to the obstacle,
pressure forces are able to deflect the flow in time.

We have seen in the previous chapter that small-amplitude sound waves in a flow
propagate with a velocity

vgr = V + Csκ̂, (9.1.2)

with κ̂ = k/|k| the direction of propagation. Sound waves act as an “messenger”:
they carry the density pressure fluctuations that in some sense alert the incoming
flow when an obstacle is present. For low-Mach number flows (Ms < 1) waves can
propagate against the flow, getting ahead of the obstacle.

© Atlantis Press and the author(s) 2016
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Fig. 9.1 When the Solar Wind impacts the Earth’s magnetosphere, the ‘sphere of influence’ of the
Earth’s magnetic field, it forms a bow shock. The flow feels the magnetic field because the Solar
Wind is ionized, consisting mainly of protons, electrons and Helium nuclei. These charged particles
are subject to the magnetic Lorentz force. In the bow shock, the incoming Solar Wind material is
decelerated, compressed and heated. The properties of the Earth’s bow shock can be studied using
satellites

However, in a supersonic flow with Ms > 1 the net velocity of the waves given
by (9.1.2) is always directed downstream for any orientation of κ̂. No sound waves
originating at the obstacle can reach the flow far upstream. This is the situation where
a shockwill form. The shock is a sudden transitionwhere the flow is slowed down and
the density, pressure and temperature of the flow all increase. Behind the shock the
temperature (and sound speed) becomes so high that the component of the velocity
normal to the shock becomes subsonic. In that post-shock region, the much faster
sound waves are able to communicate the presence of an obstacle to the flow so that
pressure forces can deflect the flow, steering it around the obstacle. The Fig. 9.1 gives
the Earth’s bow shock as an example.

Shocks are also associated with powerful explosions, such as nuclear explosions
in the Earth’s atmosphere or the explosions of massive stars at the end of their life,
the so-called core-collapse supernovae. In these cases a large amount of energy is
generated in a small volume. As a result a high-pressure “fireball” containing super-
hot gas is formed. This fireball (at least initially) expands with a velocity that exceeds
the sound speed in the surrounding (much colder) medium. As a result, a shock wave
forms around the fireball. As long as the expansion of the fireball proceeds at a
velocity much larger than the sound speed in the surrounding gas, this shock remains
very close to the outer edge of the fireball. Such a shock is usually called a blast
wave. We will consider the case of a strong point explosion in a uniform medium in
the next chapter.
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9.2 A Simple Mechanical Shock Analogue: The Plugged
Marble-Tube

As simple mechanical model for shock physics is the plugged marble tube of the
Fig. 9.2. Spherical marbles with a diameter D roll through the tube with velocity V .
The marbles are are separated by a distance L > D. The end of the tube is plugged,
forming an obstacle that prevents the marbles from continuing onwards. As a result,
the marbles collide. If the collisions are completely inelastic the marbles come to a
stand still and accumulate in a stack at the plugged end of the tube. Far ahead of the
stack, where the marbles still move freely, the line-density of marbles (the number
of marbles per unit length) equals n1 = 1/L . The density inside the stack equals
n2 = 1/D > n1.

The growth of the stack is calculated easily. In order to collide, two adjacent
marbles have to close the separation distance �D = L − D between their surfaces.
The time between two collisions at the front of the stack is therefore

�tcoll = L − D

V
. (9.2.1)

At every collision, one marble is added to the stack, and the length of the stack
increases by D. Therefore, the average velocity with which the length of the stack
increases equals

Vsh = − D

�tcoll
= −V

(
D

L − D

)
. (9.2.2)

Note that this velocity is negative: the minus-sign is introduced because this velocity
is directed towards the left. This relation defines the ‘shock velocity’ in this simple
model. The imaginary surface at the front end of the stack, the surface that separates a

Fig. 9.2 The marble tube as a simple model of shock formation. Marbles collide at the plugged end
of the tube, forming a stack that grows as time progresses. The transition between freely moving
marbles, and the stationary marbles in the stack, is the analogue of a shock surface. Like a real
shock, it marks the transition between a low marble density upstream, and a higher marble density
downstream of the transition
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region of low marble density1 (n1 = 1/L) from the high-density region (n2 = 1/D)
in the stack, is the analogue of a hydrodynamical shock.

Let us transform to a reference frame where the “shock” is stationary. We neglect
the fact that the stack grows impulsively each time a marble is added, using the
average increase of stack length. In this reference frame, the shock frame, incoming
marbles have a velocity

V1 = V − Vsh = V

(
1 + D

L − D

)
= V

(
L

L − D

)
. (9.2.3)

The marbles in the stack, which are stationary in the laboratory frame, move away
with speed

V2 = −Vsh = V

(
D

L − D

)
(9.2.4)

in the shock frame.
In any frame, the flux F of marbles simply equals their line-density × velocity in

that frame. In the shock frame the flux of incoming marbles (density n1 = 1/L) is:

F1 = n1V1 = V

L − D
. (9.2.5)

The shock-frame flux of the marbles in the stack with density n2 = 1/D equals:

F2 = n2V2 = V

L − D
. (9.2.6)

Comparing this with (9.2.5) one sees that these two fluxes are equal:

F1 = F2. (9.2.7)

This equality has a simple interpretation. The number of marbles crossing the shock
surface in a time �t equals �N = F�t . Since an infinitely thin surface can not
contain any marbles, as it has no volume, the number of marbles entering the surface
at the front must exactly equal the number that leaves in the back:

�Nin = F1�t = �Nout = F2�t. (9.2.8)

Equality (9.2.7) follows immediately. As we will see below, many of the concepts
introduced here can be immediately transplanted to the physics of shocks in a gas. In
particular we will find that the flux of mass, momentum and energy satisfy relations
equivalent to (9.2.7): what enters the shock surface in the front must come out in the
back. But the analogy goes further: in both cases several things happen when one
crosses a shock:

1The density is here a line density: the number of marbles per unit length.
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• The density increases across a shock;
• The velocity decreases in order to maintain mass conservation;
• Kinetic energy is dissipated. In the marble tube case this occurs when the inelastic
collisions convert the kinetic energy of the marbles into heat: the marbles get
hotter. In shocks occurring in a simple fluid the kinetic energy of the incoming
flow is (partially) converted into heat (internal energy), leading to an increase in
temperature and gas pressure.

9.3 The Mathematics of Shock Formation

9.3.1 Introduction

The fact that the fluid equations allow shock solutions is intimately connected to
their non-linear nature. An simple illustration is the behavior of the sound speed Cs.
In a polytropic gas with P ∝ ργ one has

Cs =
√

γP

ρ
∝ ρ(γ−1)/2. (9.3.1)

Consider a soundwave inwhich the density varies as ρ = ρ0+δρ(x, t). Here ρ0 is the
unperturbed density, a notation that I will also use for other unperturbed quantities.
The density variation leads to a variation in the sound speed. If δρ is sufficiently
small one has

Cs ≈ Cs0 +
(
dCs

dρ

)

0

δρ

(9.3.2)

= Cs0

(
1 + γ − 1

2

δρ

ρ0

)
≡ Cs0 + δCs.

Regions with δρ > 0 have a larger speed of sound, regions with δρ < 0 a smaller
speed of sound. In the linear wave analysis of the previous chapter this variation of
the sound speed is neglected, and all sound waves propagate with the same velocity
Cs0. In reality, the denser regions in the wave move a little faster, and the under-dense
regions move a little slower. This will distort the wave: it’s sinusoidal shape will be
distorted into a saw-tooth shape, see the Fig. 9.3.

When that happens something must change drastically: if the denser parts would
keep moving ahead, the density profile would become double-valued, which is phys-
ically impossible.

Nature solves this problem by introducing a (weak) shock at those locations
where this unphysical wave profile threatens to occur. In that shock the density
makes a sudden jump. This means that undamped sound waves that propagate over a
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Fig. 9.3 The evolution of the density profile in a sound wave with initial amplitude |δρ/ρ0| =
2�/(γ − 1). The wave starts out at t = t1 as a pure sine wave. The variation of the sound speed,
which equals Cs(1 + �) in a wave peak, Cs in a wave node and Cs(1 − �) in a wave valley, leads
to a distortion of the wave. At time t2 the steepened profile is still physically possible. At time t3
the density would become double-valued near the position of the tops of the wave if the steepening
were to continue unchecked, as indicated by the vertical dashed line. Before that happens a series
of shocks will form

sufficiently large distancewill steepen into a periodic train ofweak shocks. Individual
shocks are then separated by a wavelength.

In many practical situations, depending on the amplitude of the wave when it is
launched, it never comes to this due to wave damping. Damping of sound waves is
caused viscosity or by heat conduction. This damping lowers the wave amplitude
(and the amplitude of the density variations) and lets the wave die out before it
steepens into shocks.

9.3.2 Characteristics and Shocks

I will use the one-dimensional case to illustrate the most important points about
shock formation. Consider a flow in one dimension (x) with density ρ(x, t), pres-
sure P(x, t), velocity u(x, t), momentum flux M(x, t) ≡ ρu and energy density
W(x, t) = 1

2ρu
2 + ρe. Let us define two internal vectors

q(x, t) =

⎛

⎜⎜⎜⎜⎝

ρ

M

W

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

ρ

ρu

1
2ρu

2 + ρe

⎞

⎟⎟⎟⎟⎠
, F(x, t) =

⎛

⎜⎜⎜⎜⎝

ρu

ρu2 + P

ρu
(
1
2u

2 + h
)

⎞

⎟⎟⎟⎟⎠
. (9.3.3)

For a gas with P ∝ ργ we can use the definitions for e and h given in (9.3.4):

e = P

(γ − 1)ρ
, h = e + P

ρ
= γP

(γ − 1)ρ
= C2

s

γ − 1
, (9.3.4)
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respectively the specific internal energy and the specific enthalpy.
The state vector q contains the mass, momentum and energy densities. The flux

vector F is defined by the corresponding fluxes: it has the mass flux, momentum flux
and energy flux as its three components.

The three conservative equations describing this ideal one-dimensional flow can
be written compactly as:

∂q
∂t

+ ∂F
∂x

= 0. (9.3.5)

If we use an index i = 1, 2, 3 to distinguish the components of q and F, this last
equation can be written in component form2:

∂qi
∂t

+ ∂Fi
∂x

= 0. (9.3.6)

Definition (9.3.3) implies q1 = ρ, q2 = ρu and q3 = 1
2ρu

2 + ρe. The flux F is a
function of q, so each component of F satisfies

Fi = Fi (q1, q2, q3) . (9.3.7)

Using that the pressure satisfies P = P(ρ) = P(q1) and that the velocity can be
written as u = q2/q1, it is easily checked that the Fi are given by:

F1 = ρu = q2,

F2 = ρu2 + P = q22
q1

+ P(q1), (9.3.8)

F3 = 1

2
ρu2 + ρe + P = q2

q1
(q3 + P(q1)) .

Because of (9.3.7) the physical gradient ofF can be expressed in terms of the gradients
of the components qi of q:

∂Fi
∂x

= ∂Fi
∂q1

∂q1
∂x

+ ∂Fi
∂q2

∂q2
∂x

+ ∂Fi
∂q3

∂q3
∂x

. (9.3.9)

If we now define

Ui j (q1, q2, q3) ≡ ∂Fi
∂q j

, (9.3.10)

2Do not forget that these are components in an internal functional space, not in real (configuration)
space! Perhaps you are familiar with the analogous situation in quantum mechanics, where such an
internal space is known as Hilbert Space.



210 9 Shocks

Equation (9.3.6) can be written as

∂qi
∂t

+ Ui j
∂q j

∂x
= 0. (9.3.11)

In formal tensor notation, with U a 3 × 3 matrix with elements Ui j (q), this is:

∂q
∂t

+ U(q) · ∂q
∂x

= 0. (9.3.12)

The significance of this form of the equation becomes obvious if we use a procedure
from linear algebra.

Let us assume that the matrix U(q) is well-behaved so that one can diagonalize
it by using a suitable set of new variables in the three-dimensional internal space.
As explained in the Box at the end of this section, this is tantamount to a coordinate
transformation. Then U is transformed into

U(q) =⇒ Ū(q̄) = diag (λ1,λ2,λ3) . (9.3.13)

This procedure requires a change of variables from q(x, t) to q̄(x, t). In those new
variables (9.3.11) simplifies to:

∂q̄i
∂t

+ λi (q̄)
∂q̄i
∂x

= 0, no summation over i ! (9.3.14)

This form of the equation has a clear interpretation: it tells us that along each of the
three trajectories Ci (q̄) (i = 1, 2, 3), defined implicitly by

dx

dt
= λi (q̄), (9.3.15)

the quantity q̄i remains constant. Note that the λi are velocities. These special trajec-
tories are known as the characteristics of the set of equations. In this case there are
three such characteristic trajectories, since there are three fundamental equations.

Equation (9.3.14) is the fundamental form of a non-linear (as λi depends on q̄)
hyperbolic equation. One can show that it is in principle possible to solve any initial
value problem that specifies q at some time t0 by using the characteristics.

We do not actually need to perform this coordinate change (change of variables)
to find the three eigenvalues λ1, λ2 and λ3 of U(q). They are the solutions of the
eigenvalue problem

det (U − λI) = 0, (9.3.16)

with I ≡ diag(1, 1, 1) the unit tensor in state space. The solution of the eigenvalue
problemgives the eigenvalues for any choice of coordinate system, and for any choice
for the representation of U.
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Fig. 9.4 The three characteristics C1 (for eigenvalue λ1 = u − Cs), C2 (for eigenvalue λ2 = u)
and C3 (for eigenvalue λ3 = u + Cs). In the language often used in relativistic physics, the C2
characteristic (thick solid curve) is the world line of a fluid element. The characteristics C1 and C2
(the two dashed curves) correspond to the world lines of a backward and forward propagating sound
wave. The three characteristics start at the same event, i.e. the same point in space and at the same
time. By using the same definition at different points in the flow at a given time, one can generate
whole families of characteristic world lines. The situation drawn here is for a subsonic flow with
u < Cs. The three blue arrow are the local directions (world line tangents) corresponding to the
three speeds λ1, λ2 and λ3

In this particular case one can show3 that U(q) takes the following form when
expressed in terms of physical variables (rather than the qi ):

U(q) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0

−1

2
(γ + 1)u2 (3 − γ)u (γ − 1)

−u

(
1

2
u2 + h

)
+ 1

2
(γ − 1)u3

1

2
u2 + h − (γ − 1)u2 γu

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(9.3.17)
In order from small to large, for u ≥ 0, the three eigenvalues turn out to be

λ1 = u − Cs ≡ λ−, λ2 = u ≡ λ0, λ3 = u + Cs ≡ λ+, (9.3.18)

with Cs = √
γP/ρ the sound speed. Note that the λi (q) in general depend on both

position and time. Since the λi correspond to characteristic speeds, the characteristic
curves Ci that they generate through (9.3.15) in an x − t diagram can be interpreted
as [1] the space-time trajectory of a (non-linear) sound wave propagating against

3See for instance: [28].
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the flow, [2] a flow world line and [3] the space-time trajectory of a sound wave
propagating with the flow, assuming again that u ≥ 0.

One can also show that the q̄i can be chosen as

q̄1 = u − 2Cs

γ − 1
, q̄2 = s = cv ln

(
Pρ−γ

)
, q̄3 = u + 2Cs

γ − 1
. (9.3.19)

This is illustrated in the Fig. 9.4.

Diagonalizing the Characteristic Equations

In primitive form, the characteristic equations have the following form (see
Eq.9.3.11)

∂qi
∂t

+ Ui j
∂q j

∂x
= 0. (9.3.20)

I have suppressed the dependence of Ui j on q, writing Ui j rather than Ui j (q).
Let us perform a change of variables, from q to q̄. If this is a well-behaved
variable change, so that it has an inverse, it is possible to write the old variables
as functions of the new, and the new variables as functions of the old:

qi = qi (q̄), q̄i = q̄i (q). (9.3.21)

The first relation implies

∂qi
∂t

= ∂qi
∂q̄1

∂q̄1
∂t

+ ∂qi
∂q̄2

∂q̄2
∂t

+ ∂qi
∂q̄3

∂q̄3
∂t

. (9.3.22)

A similar expression can be written down for ∂qi/∂x . If we adopt Einstein’s
summation convention we have:

∂qi
∂t

= ∂qi
∂q̄a

∂q̄a
∂t

,
∂qi
∂x

= ∂qi
∂q̄a

∂q̄a
∂x

. (9.3.23)

One can define a 3 × 3 matrix R and its inverse R−1, analogous to a rotation
matrix and its inverse, with components

(R)ab ≡ Rab = ∂qa
∂q̄b

, (R−1)ab ≡ R−1
ab = ∂q̄a

∂qb
. (9.3.24)

These matrices satisfy R ·R−1 = R−1 ·R = I = diag(1, 1, 1), for instance:

R ·R−1 ≡ RabR
−1
bc = ∂qa

∂q̄b

∂q̄b
∂qc

= ∂qa
∂qc

= δac. (9.3.25)
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Let us substitute the expressions (9.3.23) into (9.3.20). This leads to

∂qi
∂q̄a

∂q̄a
∂t

+ Ui j
∂q j

∂q̄a

∂q̄a
∂x

= 0. (9.3.26)

With definitions (9.3.24) for R this is

Ria
∂q̄a
∂t

+ Ui jR ja
∂q̄a
∂x

= 0. (9.3.27)

Multiplying this equation from the left by R−1
ci and using (9.3.25) one gets:

∂q̄c
∂t

+ R−1
ci Ui jR ja

∂q̄a
∂x

= 0. (9.3.28)

This has the required form, compare Eq. (9.3.12):

∂q̄c
∂t

+ Ūca
∂q̄a
∂x

= 0. (9.3.29)

The matrix Ūca given by
Ūca ≡ R−1

ci Ui jR ja . (9.3.30)

In formal matrix notation the characteristic equation for q̄ reads:

∂q̄
∂t

+ Ū(q̄) · ∂q̄
∂x

= 0, (9.3.31)

with
Ū(q̄) = R−1 ·U(q) ·R. (9.3.32)

This procedure restores the primitive formof the equation for the newvariables.
The real problem of course is finding a variable change with a matrix R that
makes Ū diagonal, a well-known problem in linear algebra.

9.3.3 Shock Formation: Getting Your Characteristics Crossed

For illustrative purposes, consider a special case where there is only a single of
characteristic equation and eigenvalue λ that satisfies:

λ(q̄) = q̄. (9.3.33)
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It is easily checked that this case corresponds to the characteristic of the equation

∂u

∂t
+ u

∂u

∂x
= 0, (9.3.34)

known as the inviscid Burgers’ equation: the equation of motion for a pressure-less
fluid without viscosity in one dimension. In this particular case we have q = q̄ =
u(x, t). Dropping the internal index i and writing q rather than q̄ (or u) to simplify
notation, the characteristic equation is equivalent with

dq

dt
= 0 (9.3.35)

along the characteristic curve that follows from

dx

dt
= λ(q) = q = u. (9.3.36)

Nowconsider the following initial condition at t = 0 inwhich q is piecewise constant:

q(x, 0) =
⎧
⎨

⎩

qL for x < 0;

qR for x > 0;
(9.3.37)

If qL 	= qR the initial state exhibits a jump at x = 0. Then the characteristics,
represented as world lines in a x − t diagram, become straight lines with different
slopes. Consider the case qL > qR. It is easily checked that the solution is:

q(x, t) =
⎧
⎨

⎩

qL for x < st,

qR for x > st.
(9.3.38)

Here the velocity s can be interpreted as a shock speed, and equals:

s ≡ qL + qR
2

. (9.3.39)

The position x = st gives the location of the discontinuity. The situation is illustrated
in the Fig. 9.5.

The value for s follows from a simple argument. Burgers’ equation (9.3.34) can
be written in conservative form as

∂u

∂t
+ ∂F

∂x
= 0 with F = F(u) = 1

2
u2. (9.3.40)
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Fig. 9.5 Shock solution in the inviscid Burgers’ equationwith piecewise constant initial conditions.
The figure is for qL > qR. The left-hand panel shows the situation in configuration space, where
the discontinuity (jump in q) propagates to the right with velocity s. The thick profile is the situation
at t = 0, the dashed profile some time later. The right-hand panel is a x − t diagram showing
the characteristics (the thin slanted lines) and the shock (thick slanted line) at x = st . The arrows
on the two sets of characteristics shows the directionality of the motion along the characteristics.
The shock occurs where the characteristics intersect. Note that the characteristics enter the shock,
instead of leaving it

Let us assume that there is a discontinuity in u(x, t) that travels with a velocity s
along the x-axis. To the left of the discontinuity we have u = uL, and to the right
u = uR, both constant. In the rest frame of the discontinuity the velocities are

ūL = uL − s, ūR = uR − s (9.3.41)

For constant s the original equation (9.3.34) can be rewritten in terms of ū ≡ u − s
as

∂(u − s)

∂t
+ u

∂(u − s)

∂x
= 0. (9.3.42)

This is equivalent with

∂ū

∂t
+ ∂ F̄

∂x
= 0 with F̄(u) ≡ 1

2
u2 − su. (9.3.43)

The quantity F̄(u) is the flux in the moving frame. We can apply the flux in = flux
out principle in the moving frame where the discontinuity is at rest. This yields in
this particular case:

F̄L = 1

2
u2L − suL = F̄R = 1

2
u2R − suR. (9.3.44)
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Solving for s:

s = 1

2

u2R − u2L
uR − uL

= 1

2
(uR + uL) . (9.3.45)

This is relation (9.3.39) once one realizes that q = u in this particular case. More
generally, the speed s can be obtained from (reverting to q-notation):

s (qR − qL) = F (qR) − F (qL) . (9.3.46)

The discontinuity (jump in q) can in this case be considered as a traveling shock:
the velocity decreases from qL to qR < qL when one crosses the discontinuity at
x(t) = st . This simple example illustrates what purpose the shock serves in this
solution: it prevents the two sets of characteristics from crossing. If that were to
happen the same point in space would have two values for q, in this case both qL
and qR. Since q corresponds to a velocity in this example, that situation is clearly
unphysical. Inserting the shock (jump in q) prevents this from happening, and creates
a valid solution of Burgers’ equation for this set of initial conditions.

For completeness sake I will briefly consider the case qL < qR, where the velocity
at t = 0 increases rather than decreases when one crosses x = 0 in the positive
direction. One can show that the only stable solution of the equation now reads:

q(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qL for x < qLt,

x/t for qLt < x < qRt,

qR for x > qRt.

(9.3.47)

In this solution q(x, t) varies smoothly without any sudden jumps. Because of the
shape of the characteristics (see Fig. 9.6) the region qLt < x < qRt is called a
rarefaction fan or expansion fan. Although a shock-like solution (which would be a
rarefaction shock rather than a compression shock) can be constructed, it is not stable.
In this unstable solution the characteristics would leave the discontinuity, rather than
enter it.

9.3.4 The Steepening Sound Wave once Again

In the previous two sections I presented a physical argument for shock formation
using sound waves, and a mathematical argument based on the concept of char-
acteristics. These two should lead to the same conclusion in the same situation.
A complication in the full fluid case is that there are now three families of charac-
teristics, corresponding to the eigenvalues λ− = u − Cs, λ0 = u and λ+ = u + Cs.
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Fig. 9.6 Rarefaction solution of the inviscid Burgers’ equation with piecewise constant initial
conditions. This type of solution occurs when qL < qR. The left-hand panel shows the situation in
configuration space. The thick profile is the situation at t = 0, thedashed profile some time later.Note
that there are no jumps in q(x, t). The right-hand panel is a x−t diagram showing the characteristics
(the thin slanted lines). The rarefaction fan lies between the two limiting characteristics starting at
x = 0: x = qLt on the left and x = qRt on the right. These two limiting characteristics have been
drawn a little thicker for clarity

Consider a plane sound wave propagating along the x-axis in a fluid originally at
rest, so that all velocities are associated with the wave. The wave has a frequency
ω = kCs0 where k > 0. For a small amplitude wave, and with a suitable choice of
wave phase at t = 0, we can write the velocity and density perturbations in the wave
as:

u(x, t) = ṽ sin(kx − ωt) = ṽ sin (k(x − Cs0t)) ,

(9.3.48)

ρ(x, t) = ρ0 + ρ0

(
ṽ

Cs0

)
sin (k(x − Cs0t)) .

The subscript 0 is used here to denote unperturbed quantities, and ṽ is the velocity
amplitude of the wave, which should satisfy ṽ 
 Cs0. These results can be derived
from our discussion of sound waves in Chap. 7.

This is the forward propagating wave that one should associate with λ+. The
density variations change the sound speed: according to (9.3.2) we have

Cs = Cs0 + δCs = Cs0 + γ − 1

2
ṽ sin (k(x − Cs0t)) (9.3.49)

The presence of thewave changes the three eigenvalues associatedwith the character-
istic equations. In the unperturbed fluid one has λ− = −Cs0, λ0 = 0 and λ+ = +Cs0.
The presence of the wave changes this to first order in the wave amplitude into:

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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λ− = u − Cs � −Cso + 3 − γ

2
ṽ sin (k(x − Cs0t))

λ0 = u = ṽ sin (k(x − Cs0t)) , (9.3.50)

λ+ = u + Cs � Cs0 + γ + 1

2
ṽ sin (k(x − Cs0t))

At a density maximum (meaning: a net compression!), where sin (k(x − Cs0t) = 1),
λ+ has the largest absolute value for γ ≥ 1.At thewave node on the other hand,where
δρ = u = 0, the λi are unchanged, so λ+ = Cs0 Therefore the variation in density
over a wavelength will lead to a crossing of the C+ characteristics before the other
two characteristics C0 and C− get a chance to cross. Therefore the crossing of the C+
characteristics determines when and where a shock forms, as illustrated below. This
crossing occurs in characteristics coming from the range in x where ∂u/∂x < 0, see
the Fig. 9.7. In view of the fact that the forward propagating sound wave is the one
that is associated with λ+, this conclusion should not be too surprising. This simple
calculations does show, however, that the physical argument and the mathematical
argument lead to the same conclusion.

Fig. 9.7 The velocity u(x, t) due to a plane sound wave running along the x-axis, plotted as a
function of x , (bottom panel), and the direction of the C+ characteristics in an x − t diagram (top
panel). The crossing of the C+ characteristics determines when and where shocks are formed. The
crossing characteristics come from the part of the wave where ∂u/∂x < 0, the same part where the
density increases according to the linearized continuity equation: ∂ρ/∂t = −ρ0(∂u/∂x)
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9.4 Shock Waves in a Simple Fluid

I will consider a simple fluid with density ρ and a pressure P that satisfies on either
side of the shock the polytropic pressure-density relation

P = Kργ . (9.4.1)

The constant K will not have the same value in front of and behind the shock. This
is due to the dissipation (resulting in an entropy increase) that occurs in the shock
itself.4 In general K increases when the gas moves across the shock.

I will assume a planar shock located at the fixed position x = 0, occupying the
y − z plane. The flow is from left-to-right so that the pre-shock flow occupies the
half-space x < 0, and the post-shock flow the half-space x > 0 (see Fig. 9.8). The
shock-normal n̂, the unit vector pointing into the upstream flow, equals n̂s = −x̂.
I will use the subscripts 1 (2) to indicate the values of quantities directly ahead of
(directly behind) the shock.

In a planar shock the flow properties, such as velocity, density and pressure,
depend only on the x-coordinate: ∂/∂y = ∂/∂z = 0. I will assume that the velocity
vector lies in the x − z plane:

V = Vn x̂ + Vt ẑ. (9.4.2)

I have written Vn and Vt for Vx and Vz in order to stress that they respectively are
the velocity components normal to the shock surface and tangential to the shock
surface. Neglecting the effects of gravity and dissipation in the flow on either side of
the shock, the fluid equations in conservative form for this case reduce to:

∂ρ

∂t
+ ∂(ρVn)

∂x
= 0 (mass conservation)

∂(ρVn)

∂t
+ ∂

∂x

[
ρV 2

n + P
] = 0 (normal momentum conservation)

(9.4.3)
∂(ρVt)

∂t
+ ∂

∂x
[ρVnVt] = 0 (tangential momentum conservation)

∂

∂t

[
ρ

(
V 2

2
+ e

)]
+ ∂

∂x

[
ρVn

(
V 2

2
+ h

)]
= 0 (energy conservation).

Here V 2 = V 2
n + V 2

t and e and h are the internal energy per unit mass and the
enthalpy per unit mass, given by the usual relations

4Remember that the specific entropy s satisfies s = cv ln
(
Pρ−γ

) = cv ln K .
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Fig. 9.8 The geometry of the flow at a planar, oblique shock. The shock is a thin transition region in
the x − z plane, separating the high-velocity (supersonic) incoming flow (x < 0) from the shocked
outgoing flow (x> 0). Pre-shock quantities such as density and pressure are labeled with a subscript
1, and post-shock quantities with a subscript 2. The incoming flow has a velocity V1 at an inclination
angle θs with respect to the direction normal to the shock surface (the x-axis). In a normal shock
one has θs = 0. The thickness of the shock layer equals �s. In this chapter, we will take the limit
of vanishing shock thickness (�s → 0) in our calculations, treating the shock as a sudden jump in
velocity, density and pressure. In the shock the flow component normal to the shock is decelerated,
so that Vn2 < Vn1. The tangential velocity component is unchanged: Vt2 = Vt1. The normal Mach
number of the flow changes from supersonic (Mn = Vn/Cs > 1) ahead of the shock to subsonic
(Mn = Vn/Cs < 1) behind the shock

e = P

(γ − 1)ρ
, h = γP

(γ − 1)ρ
. (9.4.4)

We already briefly considered the proper jump conditions at a shock in Sect. 3.5:
conditions that link the properties of the downstream flow to those in the upstream
flow. Here I will derive them in a different manner.

All the equations in (9.4.3) have the same form:

∂Q
∂t

+ ∂F
∂x

= 0. (9.4.5)

Here Q is the mass density, momentum density or energy density, and F the cor-
responding flux in the x-direction. Let us assume that the shock has a thickness �s
around x = 0, so that it extends in the range − 1

2�s ≤ x ≤ 1
2�s. One can integrate

across the shock, from x = −�s/2 to x = +�s/2. The integrated version of (9.4.5)
reads:

F2 − F1 ≡ �F = − ∂

∂t

(∫ +�s/2

−�s/2
dxQ(x, t)

)
. (9.4.6)

http://dx.doi.org/10.2991/978-94-6239-195-6_3
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Here F1 ≡ F(x = −�s/2) and F2 = F(x = +�s/2) are the pre- and post-shock
values of the flux. If the shock thickness �s is small, and if the quantity Q changes
smoothly from an upstream value Q1 in front of the shock to a downstream value
Q2 behind the shock, one can estimate the integral in (9.4.6) using the mean value
of ∂Q/∂t :

− �F =
∫ +�s/2

−�s/2
dx

∂Q(x, t)

∂t
≈ �s

2

[
∂Q2

∂t
+ ∂Q1

∂t

]
. (9.4.7)

If one now assumes that the shock is infinitely thin, in effect taking the limit �s →
0, the integral becomes vanishingly small, �F = 0. In that case the shock is a
discontinuity surface where the fluid properties change abruptly. Integral relation
(9.4.6) in that case reduces to the conservation of flux across the shock:

F2 = F1. (9.4.8)

This expresses the simple fact that one can not store anything in a infinitely thin
surface: there is no volume to store it in. Therefore, the principle ‘flux in = flux out’
must hold. Exactly the same condition was derived in the marble tube analogy for
shock formation treated above.

Let us apply this result to the set of equations (9.4.3). Relation (9.4.8) should hold
for each of the different fluxes in the problem: [1] the mass flux, [2/3] the momentum
flux that has two components (normal and tangential to the shock), and [4] the energy
flux. These four conditions provide the information needed to calculate the state of
the gas behind the shock, given its state just ahead of the shock. The set of equations
(9.4.3) The four flux in = flux out relations are the so-called jump conditions:

ρ1Vn1 = ρ2Vn2 ≡ J

[
ρV 2

n + P
]
1 = [

ρV 2
n + P

]
2

(9.4.9)

[ρVnVt]1 = [ρVnVt]2

ρ1Vn1

[
V 2

2
+ h

]

1

= ρ2Vn2

[
V 2

2
+ h

]

2

[1] Conservation of Mass

The first equation states that the mass flux across the shock, J = ρVn, is constant:
you can not ‘store’ mass in an infinitely thin surface. Since the flow is compressed
in the flow (see below, or consider the marble tube analogy) one has ρ2 ≥ ρ1 and

Vn2 =
(

ρ1

ρ2

)
Vn1 ≤ Vn1. (9.4.10)
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The normal component of the flow speed stays the same (for a very weak shock) or
decreases. The second equation of (9.4.9) is the conservation of the x-component of
the momentum. We will deal with that conservation law below.

[2] Conservation of Tangential Momentum and the Tangential Velocity

The third equation is the conservation of y-momentum. Because the mass flux J =
ρVn does not change across the shock, this conservation law can be simplified to:

Vt1 = Vt2. (9.4.11)

The component of velocity along the shock surface remains unchanged.
There is a simple physical reason for this result. One can transform to a frame

that moves with velocity Vt1 along the z-axis towards positive z. In that frame one
has Vt = 0. The shock now is a normal shock, with the pre-shock flow velocity V
along the shock normal with speed |V | = Vn1.

Momentum flux conservation in the new reference frame tells you that the post-
shock flow must also be in the direction normal to the shock with Vt = 0. The
conclusion of this line of reasoning is as follows: every oblique hydrodynamic shock
can be transformed into a normal shock by choosing a new reference frame, and vice
versa every normal shock can be transformed into an oblique shock. This implies
that relation (9.4.11) must be valid.

The two relations (9.4.10) and (9.4.11) together imply that the shock refracts the
flow away from the shock normal, see Fig. 9.8. The angle between the velocity vector
and the normal direction increases as the flow crosses the shock.

[3] Conservation of specific Energy

The fourth equation gives the equality of the energy flux on both sides of the shock.
Since ρVn = J also does not change across the shock, this condition is equivalent
with a conservation law for the specific energy of the flow:

[
V 2

2
+ h

]

1

=
[
V 2

2
+ h

]

2

. (9.4.12)

In a steady flow this could be interpreted as an application of Bernoulli’s law, i.e. the
conservation of specific energy along flow lines, now applied when the flow lines
cross the shock. However, relation (9.4.12) still holds at a shock in a time-varying
flow, as long as the shock can be considered as infinitely thin. In that case Bernoulli’s
law does not hold in the flow at-large as it approaches (or has left) the shock.

Relation (9.4.11) implies V 2
t1 = V 2

t2, and the above relation can also be written in
a form that only involves the normal component of the velocity Vn:

[
V 2
n

2
+ h

]

1

=
[
V 2
n

2
+ h

]

2

. (9.4.13)
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[4] Momentum Conservation, the Pressure Jump and the shock Adiabat

The conservation of the x-momentum ρV 2 + P and the energy conservation law
(9.4.13) can be written in an alternative form. One introduces a new variable, the
specific volume V , defined as V = 1/ρ. This is the volume that contains 1 gram (or
1 kg, depending on the mass units you use) of gas. The specific volume takes the
following values on the upstream and downstream side of the shock:

V1 = 1

ρ1
, V2 = 1

ρ2
. (9.4.14)

The conservation of x-momentum can be expressed in terms of V as

P1 + J 2V1 = P2 + J 2V2. (9.4.15)

In a similar fashion, the energy conservation law becomes

h1 + 1

2
J 2V2

1 = h2 + 1

2
J 2V2

2 . (9.4.16)

The first equation yields

J 2 = P2 − P1
V1 − V2

. (9.4.17)

The specific enthalpy of an ideal gas is easily expressed in terms of V ,

h = γP

(γ − 1)ρ
= γ

γ − 1
PV. (9.4.18)

Using this one can write the energy flux conservation law as:

J 2
(V2

1 − V2
2

) = 2γ

γ − 1
(P2V2 − P1V1) . (9.4.19)

Eliminating J 2 from this equation using (9.4.17) one finds the so-called shock
adiabat:

γ

γ − 1
(P2V2 − P1V1) = 1

2
(V2 + V1) (P2 − P1) . (9.4.20)

One defines the shock compression ratio r as the density ratio across the shock:

r ≡ ρ2

ρ1
= V1

V2
. (9.4.21)
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Because of J = ρVn = constant, one also has:

r = Vn1

Vn2
. (9.4.22)

Substituting V1 = rV2 in (9.4.20), and solving for the compression ratio, one finds
the following relation:

r = ρ2

ρ1
=

γ + 1

γ − 1
P2 + P1

γ + 1

γ − 1
P1 + P2

. (9.4.23)

In shocks one has ρ2 ≥ ρ1, which implies that P2 ≥ P1 and Vn2 ≤ Vn1. The reason
why shock transitions with Vn2 > Vn1 (and P2 < P1) are not possible is discussed
below.

9.5 The Weak and Strong Shock Limits

Let us examine this relation in two important limits. In very weak shocks the fluid
properties change only slightly across the shock. One can write

P2 ≈ P1 + �P, ρ2 = ρ1 + �ρ, (9.5.1)

where the pressure jump �P and density jump �ρ are small in the sense that
�P 
 P1 and �ρ 
 ρ1. Substituting these relations into (9.4.23), and expand-
ing the resulting equation to first order in �P and �ρ, yields the following relation
between the density jump and the pressure jump:

�P =
(

γP

ρ

)

1

�ρ = C2
s1�ρ. (9.5.2)

This relation between the pressure- and density jump is exactly the same as the one
found in (small-amplitude) sound waves. For adiabatic sound waves in a gas where
the pressure satisfies P ∝ ργ one has

�P = ∂P

∂ρ
�ρ = C2

s �ρ. (9.5.3)

Therefore weak shocks (so that Vn1
>∼Cs) can be considered for all intents and pur-

poses as strong sound waves.
For very strong shocks on the other hand one expects a large pressure increase

across the shock so that P2 � P1. In that case (9.4.23) yields an asymptotic value
for the compression across the shock:
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r ≈ γ + 1

γ − 1
≡ rmax (strong shock). (9.5.4)

This is the maximum possible compression rate of a shock in an ideal (polytropic)
gas. For an ideal mono-atomic gas one has γ = 5/3, and rmax = 4.

9.6 The Rankine-Hugoniot Relations

One can parametrize the strength of the shock by introducing the normal Mach
number Mn, which is defined for Vn > 0 as

Mn =
(
Vn

Cs

)

1

. (9.6.1)

It is the ratio of the upstream normal component of the flow speed and the sound
speed. Defining the inclination angle θs of the incoming flow with respect to the
direction of the shock normal by writing

Vn1 = V1 cos θs, Vt1 = V1 sin θs, (9.6.2)

one can express the normal Mach number in terms ofMs = V1/Cs as

Mn = Ms cos θs. (9.6.3)

One can calculate the compression ratio ρ2/ρ1 ≡ r and the pressure ratio P2/P1
across the shock in terms Mn. The resulting expressions are the so-called Rankine-
Hugoniot relations5:

ρ2

ρ1
≡ r = (γ + 1)M2

n

(γ − 1)M2
n + 2

,

(9.6.4)
P2
P1

= 1 + 2γ

γ + 1

(M2
n − 1

)
.

Shocks only exist for Mn > 1. For Mn = 1 one finds r = 1 and P2/P1 = 1.
In this infinitesimally weak shock the flow crosses the shock surface unchanged: the
density, pressure and velocity in the post-shock flow are equal their pre-shock flow
values.

5see for instance [26], §85.
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Fig. 9.9 The density ratio
ρ2/ρ1 (solid curve), pressure
ratio P2/P1 (dashed curve)
and the temperature ratio
T2/T1 (dash-dot curve) for a
normal shock as a function
of the Mach number squared
M2

s . The temperature ratio
follows from the ideal gas
law P = ρRT/μ for
constant μ as
T2/T1 = (P2/P1)(ρ1/ρ2).
For an oblique shock one
finds the same curves if one
makes the replacement
M2

s =⇒ M2
n = M2

s cos
2 θs

In the limit of a strong shockwithMn → ∞ one finds r → (γ +1)/(γ −1), and the
pressure and temperature increase without bound. For instance: P2 ≈ 2γM2

n/(γ +
1) → ∞ asMn → ∞. The Fig. 9.9 gives a graphical representation of the Rankine-
Hugoniot relations.

9.6.1 The Limit of a Strong Shock

In many astrophysical applications the normal Mach number is large, Mn � 1. In
this strong shock limit the Rankine-Hugoniot jump conditions simplify considerably:

ρ2

ρ1
= Vn1

Vn2
≈ γ + 1

γ − 1
;

(9.6.5)
P2
P1

≈ 2γ

γ + 1
M2

n.
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Using the definitions (9.6.1) and (9.6.3), one finds that the post-shock pressure can
be written as

P2 ≈ 2ρ1V 2
n1

γ + 1
= 2ρ1V 2

1 cos2 θs

γ + 1
. (9.6.6)

In the Box below it is shown that one can get the strong shock limit by assuming
P1 = 0, which implies Cs1 = 0 andMn = ∞. One can then straightforwardly solve
the jump conditions and so derive the above results. These (approximate) relations
will be used extensively below, when we consider the physics of point explosions,
Supernova Remnants and Stellar Wind Bubbles.

The Infinitely Strong Normal Shock

The algebra involved in solving the general jump conditions across a shock
in an ideal fluid, and converting them into the Rankine-Hugoniot relations,
is rather tedious. There is one case, however, where the jump conditions can
be solved rather simply: the infinitely strong, normal shock. This is the case
with a vanishing pre-shock pressure, P1 = 0, and with Ms = Mn = ∞. The
jump conditions (9.4.9) reduce to the following, much simpler set of algebraic
relations:

ρ1V1 = ρ2V2 ≡ J ;

ρ1V
2
1 = ρ2V

2
2 + P2; (9.6.7)

1

2
V 2
1 = 1

2
V 2
2 + γP2

(γ − 1)ρ2
.

In the above set of equations I have written simply V1 and V2 for the pre-
and post-shock flow speeds. Note that we can not assume that the post-shock
pressure vanishes. If we put P2 = 0 the only solution of this set of relations is
the trivial solution where V1 = V2: there is no shock in the trivial case!

Combining the first two of these relations immediately yields:

V1 − V2 = P2
J

= P2
ρ1V1

. (9.6.8)

The last of the three relations of (9.6.7) can be written as

V 2
1 − V 2

2 = 2γ

γ − 1

P2V2

J
. (9.6.9)

Using V 2
1 −V 2

2 = (V1+V2)(V1−V2) and substituting for V1−V2 from (9.6.8),
this last equation can be written as:
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P2
J

(V1 + V2) = 2γP2V2

(γ − 1)J
. (9.6.10)

The common factor P2/J cancels, and the resulting linear equation

V1 + V2 = 2γ

γ − 1
V2 (9.6.11)

is easily solved for V2 in terms of V1:

V2 = γ − 1

γ + 1
V1. (9.6.12)

Substituting this result for V2 into (9.6.8), written as P2 = ρ1V1 (V1 − V2),
yields the post-shock pressure:

P2 = 2

γ + 1
ρ1V

2
1 . (9.6.13)

Finally, the fact thatmass flux J = ρV remains constant givesρ2 = ρ1(V1/V2).
Substituting (9.6.12) for V2, the post-shock mass density equals:

ρ2 = γ + 1

γ − 1
ρ1. (9.6.14)

This relatively straightforward calculation reproduces the strong-shock jump
conditions that follow from the general Rankine-Hugoniot relations (9.6.4)
when one takes the limitMn −→ ∞.

Case of an oblique shock

The case of an oblique infinitely strong shock, with both a normal velocity
Vn and a tangential velocity Vt , is easily obtained by making the replacements
V1 −→ Vn1, V2 −→ Vn2 in the above expressions, and by adding the jump
condition for the tangential velocity component:

Vt2 = Vt1. (9.6.15)

The last relation is valid for any hydrodynamical shock, regardless its strength,
for the reasons explained in the main text.
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9.7 Dissipation in a Shock and the Entropy Jump

In an ideal polytropic gas the specific entropy (entropy per unit mass) is defined as

s = cv ln
(
Pρ−γ

)
. (9.7.1)

Since we neglected dissipation in the derivation of our equations, the specific entropy
in the flow on either side of the fluid is constant:

s(x < 0) = constant ≡ s1, s(x > 0) = constant ≡ s2. (9.7.2)

However, from the Rankine-Hugoniot relations (9.6.4) one can calculate s2, given
the upstream state of the gas (including s1). If one does so one sees immediately that
the s2 ≥ s1 provided that ρ2 > ρ1 and (consequently) P2 > P1 and V2 < V1. Until
now we have assumed that this is indeed the case, with the marble tube analogy as
justification. The jump in the specific entropy across the shock is

�s ≡ s2 − s1 = cv ln

[(
P2
P1

)(
ρ1

ρ2

)γ]
≥ 0. (9.7.3)

One has �s = 0 in an infinitely weak shock with ρ2 = ρ1 and P2 = P1.
In general, the entropy per particle will increase across the shock, a sure sign

of some form of dissipation! That there must be some form of dissipation associ-
ated with the shock is intuitively obvious: part of the kinetic energy 1

2ρ1V
2
1 of the

directed motion in the upstream flow is irreversibly converted into the thermal (inter-
nal) energy of the shock-heated gas downstream. Nevertheless, the details of the
dissipation mechanism do not enter into the final equations (in this case: the jump
conditions).

One can appeal to the laws of thermodynamics in order to show that the only
possible shock transitions are those where the density, pressure and temperature
increase across the shock, and the flow velocity decreases. In that case the entropy
jump is positive: �s ≥ 0.

Formally, the jump conditions could also be satisfied if one interchanges the post-
shock and thepre-shockflows, andwhere theflowvelocity increases across the shock.
That would be a transition where the density, pressure and temperature decrease
across the shock, and where the flow accelerates rather than decelerates. In such a
transition the specific entropy decreases:�s < 0. Thermodynamics tells you that the
entropy of the system can only stay equal or increase. �s ≥ 0. This thermodynamic
law specifically excludes a shock transitionwhere the flow is accelerated (in the sense
that it leaves the shock with a higher velocity) rather than decelerated.

One can think of a shock as a self-regulating structure in the following sense: the
jump conditions (9.4.9), which were derived assuming an infinitely thin shock, put
a strong constraint on the system: given the upstream state of the fluid (i.e. ρ1, V 1

and P1) and the direction of the shock normal n̂s , the downstream state is completely
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determined by the Rankine-Hugoniot relations. The detailed (microscopic) structure
of the shock, such as it’s thickness,will have to adjust in such away that the dissipation
in the shock is exactly at the level required to reach a downstream state where the
density, pressure and flow velocity are equal to the values that follow from the jump
conditions.

The details of the dissipation only determine the thickness of the layer in which
the fluid makes the transition from the upstream state to the downstream state. If the
dissipation in the transition layer is due to two-body collisions between molecules or
atoms, one can show that the typical thickness of the shock is of similar magnitude
as the mean-free-path of the atoms or molecules in the gas. This mean free path
is the typical distance an atom or molecule can travel between two collisions. The
collisions convert part of the directed kinetic energy of the incoming flow into the
kinetic energy of the random thermal motions of the individual atoms or molecules.

9.8 Shock Thickness and the Jump Conditions

The formal derivation of the jump conditions in the preceding Sections assumes that
the shock transition layer is infinitesimally thin. We derived that this implies that the
flux entering the surface from upstream equals the flux exiting the surface into the
downstream region. What happens if we allow the shock to have a finite thickness?

The answer to that question is contained in Eq. (9.4.6): the fluxF of some quantity
entering the shock from upstream can only differ from the flux leaving the shock if
the associated density Q of this quantity depends explicitly on time:

∂Q
∂t

	= 0. (9.8.1)

This means that the flow must be time-dependent! In a steady flow, where all flow
quantities are independent of time, the jump conditions are also valid in the case of
a finite shock thickness. The reason is simple. Consider two infinite surfaces, one
just in front of the shock transition, and one downstream just behind the transition
The flow must cross both these surfaces. In a steady flow, no mass (and no energy or
momentum) can accumulate in (or drain away from) the volume contained between
these two surfaces. If mass did accumulate (or drain away) the flow would no longer
be steady since density or pressure would increase (decrease) in time. If one applies
this line of reasoning also to the energy or momentum of the flow one concludes that
the principle flux in = flux out also holds for shocks of finite thickness in a steady
flow: the flux of any quantity across the front surface must exactly equal the flux
across the back surface.

The thickness of shock waves is determined by microscopic processes: collisions
between the molecules or atoms in the gas. I will consider a simple case as an
illustration: the isothermal viscous shock. In an isothermal flow there is a mechanism
that acts as a thermostat, keeping the temperature constant so that
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P

ρ
≡ s2 = RT

μ
= constant. (9.8.2)

This relation defines the isothermal sound speed s. In a steady flow along the x-axis
(V = (V, 0, 0)) the momentum flux is ρV . We include the viscous contribution to
the momentum flux in the x-direction, see Sect. 3.4. The momentum flux becomes:

ρV 2 + P − 4

3
η
dV

dx
. (9.8.3)

Here (see Chap.2)

η = 1

3
ρσ� (9.8.4)

is the shear viscosity, determined by the thermal velocity dispersion σ of temolecules
or atoms, and the mean free path � between collisions. Up to factor of order unity
we have

σ � s. (9.8.5)

In this case the conservation of mass and momentum in a steady flow respectively
give:

ρV = constant ≡ ρ1V1,

(9.8.6)

ρV 2 + P − 4

3
η
dV

dx
= constant = ρ1V

2
1 + P1.

Here ρ1 and V1 are the density and velocity far ahead of the shock (formally at
x = −∞), where the flow becomes uniform with dV/dx = 0.

Let us define the isothermal Mach number

Mi ≡ V

s
. (9.8.7)

The momentum conservation law can be rewritten as

ρ

(
V 2 + s2 − 4

3
ν
dV

dx

)
= constant, (9.8.8)

with ν = η/ρ the specific viscosity, whichwe take to be constant.Wewrite V = Mis
and use mass conservation in the form ρ(x)Mi(x) = constant = ρ1M1. Then
momentum conservation, written in terms of the Mach number Mi(x), becomes:

M2
i + 1 − χ

dMi

dx
Mi

= M2
1 + 1

M1
. (9.8.9)

http://dx.doi.org/10.2991/978-94-6239-195-6_3
http://dx.doi.org/10.2991/978-94-6239-195-6_2
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HereM1 = V1/s is the Mach number far upstream, and

χ = 4η

3ρs2
� 4�

9
(9.8.10)

is a length, roughly equal to half the collisional mean free path.
We look for a shock solution where the velocity decreases, becoming uniform far

behind the shock (i.e. dV/dx = 0 for x → ∞) at some velocity V2 ≤ V1. Defining
M2 = V2/s momentum conservation demands that

M2
1 + 1

M1
= M2

2 + 1

M2
. (9.8.11)

It is easily checked that the non-trivial solution to this equation is

M2 = 1

M1
⇐⇒ V2 = s2

V1
. (9.8.12)

Such shock solutions exist only ifM1 > 1 (V1 > s),which impliesM2 < 1 (V2 < s)
and the flow goes from supersonic to subsonic with respect to the isothermal sound
speed as it transits the shock. We now solve Eq. (9.8.8). The equation can be written
as

χ
dMi

dx
= M1

(M2
i (x) + 1

) − Mi(x)
(M2

1 + 1
)

M1
. (9.8.13)

With a little algebra this becomes

χ
dMi

dx
= − (M1 − Mi(x)) (Mi(x) − M2) . (9.8.14)

This shows that dMi/dx indeed goes to zero for Mi = M1 and for Mi = M2 =
1/M1, and that Mi(x) decreases for M2 < Mi < M1. Separation of variables
gives

dMi

(M1 − Mi) (Mi − M2)
= −dx

χ
. (9.8.15)

Using

1

(M1 − Mi) (Mi − M2)
= M1

M2
1 − 1

(
1

M1 − Mi
+ 1

Mi − M2

)
, (9.8.16)

the integration of the above relation becomes trivial. One finds:

ln

(Mi(x) − M2

M1 − Mi(x)

)
= − x

Ls
. (9.8.17)
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Here an integration constant is taken to be zero. Ls is the characteristic shock thick-
ness:

Ls ≡ M1χ

M2
1 − 1

= 4M1�

9
(M2

1 − 1
) . (9.8.18)

Relation (9.8.17) gives the isothermalMach numberMi(x) as a function of position:

Mi(x) = M1exp(−x/Ls) + M2

exp(−x/Ls) + 1
. (9.8.19)

In terms of the flow speed V (x) this is

V (x) = V 2
1 exp(−x/Ls) + s2

V1
[
exp(−x/Ls) + 1

] (9.8.20)

This solution decelerates smoothly from Mi = M1 at x = −∞ to Mi = M2 =
1/M1 at x = +∞, where the width of the transition is of order Ls ∝ �. The point
x = 0 corresponds to the point where the Mach number takes the ‘average’ value
Mi = (M1 + M2)/2. Figure9.10 illustrates the shock solutions for three different
values of the upstream Mach number M1.

Fig. 9.10 The velocity
profile of an isothermal
shock, plotted as the
isothermal Mach number
Mi(x) = V (x)/s. Shown
are the profiles for M1 = 2,
M1 = 4 and M1 = 8. The
position is measured in units
of the collisional mean free
path �. The shocks get
steeper (i.e. the shock
transition occurs more
rapidly) as the Mach number
increases. Even though the
assumption of an isothermal
flow is usually not very
realistic, the behavior shown
here is typical for most
shocks
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Summary: The Jump Conditions at a Hydrodynamic Shock

The equations below summarize the relevant relations that are valid at an
infinitely thin hydrodynamic shock. They are formulated in the frame where
the shock itself is at rest. Subscripts “1” and “2” are used to denote quantities
just upstream and just downstream from the shock.

Definition Mach Number: Ms = V1

Cs1
=

√
ρ1V 2

1

γP1
;

Normal Mach Number: Mn = Vn1

Cs1
= Ms cos θs;

Density jump:
ρ2

ρ1
= (γ + 1)M2

n

(γ − 1)M2
n + 2

;

Jump normal velocity:
Vn2

Vn1
= (γ − 1)M2

n + 2

(γ + 1)M2
n

,

No jump tangential velocity: Vt2 = Vt1; (9.8.21)

Pressure jump:
P2
P1

= 1 + 2γ

γ + 1

(M2
n − 1

) ;

Strong shock limit : M2
n = ρ1V 2

n1

γP1
� 1

Density jump:
ρ2

ρ1
� γ + 1

γ − 1
;

Jump normal velocity:
Vn2

Vn1
� γ − 1

γ + 1
;

No jump tangential velocity: Vt2 = Vt1;

Post-shock pressure P2 � 2γM2
nP1

γ + 1
= 2ρ1V 2

n1

γ + 1
.



Chapter 10
Applications of Shock Physics

10.1 An Engineering Example: Shocks in Jet Flows

Consider the gas leaving the tailpipe (exhaust) of a jet or rocket. That gas has been
heated by chemical combustion, and accelerated to a large velocity in the nozzle of
the jet engine. The resulting momentum flux of the gas leaving the nozzle pushes the
plane or rocket forward by Newton’s principle of action = −reaction.

The gas forms a high-velocity jet, a strongly collimated flow, as it leaves the
nozzle. If the internal pressure Pi inside this jet is less than the pressure Pe in the
external medium (the atmosphere), one speaks of an over-expanded jet as the jet
material has expanded too much, resulting in a low internal pressure. The opposite
case (with Pi > Pe) is called an under-expanded jet. In both cases a complex pattern
of standing shocks and expansion fans forms that aim to re-adjust the pressure inside
the jet so that it comes to pressure-equilibrium with its surroundings. In particular
standing1 normal shocks appear at regular distances to the jet flow, known as Mach
disks.

What happens in these jets is illustrated in the Fig. 10.1. The Mach disks can
sometimes actually be observed, as is illustrated below for the case of the Bell X-1
rocket plane, the first plane to break the sound barrier, and for the Space Shuttle.

In an under-expanded jet, the jet material has a high pressure and expands side-
ways, leading to an expansion fan: a region where the gas expands, and pressure and
density decrease. These expansion fans reflect off the boundary of the jet, and turn
(upon reflection) into compression fans. Such compression fans steepen into oblique
shock waves, and finally cause the formation of the Mach disk. Material that crosses
theMach disk is compressed and heated, so that behind theMach disk the jet is again
under-expanded (and over-pressured) with respect to the surrounding gas that tries
to confine the jet. This means that the sequence of events starts anew, and a whole
series of expansion fans, compression fans and Mach disks is possible.

1In the rest frame of the jet plane or rocket.

© Atlantis Press and the author(s) 2016
A. Achterberg, Gas Dynamics, DOI 10.2991/978-94-6239-195-6_10
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Fig. 10.1 The flow in an under-expanded jet: a collimated stream of gas that leaves the nozzle
with a pressure lower than the atmospheric pressure. The flow direction is indicated by the little
arrows. After leaving the nozzle exhaust the jet flow is constricted: the flow turns inwards under
the influence of the atmospheric pressure. As a result a set of diamond shocks forms attached to
the nozzle. A diamond shock (thick lines in the figure) consists of oblique shocks in the outer part
of the jet, and a normal shock near the jet axis. The Mach disk is the normal shock in the diamond
shock system, perpendicular to the jet axis. Behind these shocks the jet becomes over-pressured,
and the flow turns outward. Eventually it becomes under-pressured again and the flow turns inward
once more, ultimately leading to a new diamond shock. The whole process than repeats itself

In an over-expanded jet, one starts with a compression fan as the jet material is
compressed in response to the higher pressure in the surrounding gas. A Mach disk
is formed, and the shock compression in this Mach disk raises the jet pressure so that
the jet material now becomes over-pressured (under-expanded) with respect to the
surrounding gas. The development of the jet thereafter proceeds as sketched above
for an under-expanded jet.

10.2 Astrophysical Jets

Tightly collimated flows are also observed in astronomical objects. These astrophys-
ical jets are usually associated with compact objects (in particular: neutron stars and
black holes) and with young stellar objects (proto-stars). The common denominator
in all cases is accretion of mass onto the compact object. The table below lists the
properties of these jets.

Sources of astrophysical jets
Object Jet length

(in pc)
Jet power (in
W)

Opening angle
(in degrees)

Flow speed (in units
of c) (Lorentz factor
�j)

Gamma ray bursts 0.01 1043 ∼0.01 ∼1 (γ ∼ 102−103)
Young stellar objects 0.01−1 1028−1030 1−10 0.001
Microquasars in X-ray binaries ∼1 1031 (?) Small 0.3−1
Radio galaxies and quasars
(Active Galactic Nuclei)

102−107 1035−1040 1−10 0.2−1 (�j ∼ 1−10)

1 pc = 3.08 × 1018 cm; �j =
(
1 − V 2

j /c2
)−1/2

with Vj the jet speed
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Fig. 10.2 Mach disks in the exhaust jet of the Bell X-1 rocket plane (top), and behind the three
main engines of the Space Shuttle (below). Behind the Bell X-1 a series of bright ‘blobs’ are visible.
These show the location of the series of Mach disks. Behind the Shuttle engines, only the first Mach
disk is clearly visible, the following Mach disks in the series are less distinct



238 10 Applications of Shock Physics

The jet power in this case is (energy flux)×(jet cross section). For a non-relativistic
flow in a quasi-cylindrical jet with local radius R, cross sectionA = πR2, flow speed
Vjet along its axis and internal pressure P , this power (mechanical luminosity) is

L jet = πR2 ρVjet

(
1

2
V 2
jet +

γP

(γ − 1)ρ

)
. (10.2.1)

These jets are usually supersonic with Vjet � Cs. The mass flow through the jet
is

Ṁjet = πR2 ρVjet. (10.2.2)

For relativistic jets more complicated expressions for L jet and Ṁjet apply
(Fig. 10.2).

Historically, the first astrophysical jets to be identified as such are associated with
distant galaxies with a massive black hole in their center: those supporting Active
Galactic Nuclei (AGN). These powerful jets can reach lengths of 10kpc to∼ 10Mpc
(1Mpc∼ 3×106 light years∼ 3×1022 m). They are somehow generated close to the
super-massive black hole that can have a mass of 108–109 solar masses. Figure10.3
on the shows an example: the radio galaxy Hercules A.

The jets associated with objects of a few solar masses (neutron stars, stellar-mass
black holes and young stellar objects in our own Galaxy) were identified somewhat

Fig. 10.3 The radio galaxy Hercules A, that shows two jets coming from the galaxy in the middle.
The jets end in large inflated bubbles, the so-called radio lobes, shown in pink in this optical-
radio composite picture. The two jets and lobes are filled with relativistic electrons that radiate
synchrotron radiation in a weak magnetic field, making them visible in radio telescopes. Hercules
A is at a distance of about 2 × 109 light years, and the jets are about 1.5 × 106 light years long.
Image credit: R. Perley and W. Cotton (NRAO/AUI/NSF)
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later. The fact that jets play a role in Gamma Ray Bursts, brief flashes (duration:
seconds to a few minutes) of gamma rays observed about once a day from the distant
universe, became obvious about a little over a decade ago. The jets associated with
Gamma Ray Bursts are rather special: they are formed inside a dying massive star
when the core of this star collapses directly into a black hole: a so-called collapsar
or hypernova. The material raining onto the collapsed core forms an accretion disk
since it carries angular momentum due to the rotation of the progenitor star. The
Gamma Ray Burst phenomenon involves short-lived, very powerful jets where an
energy of ∼1052 ergs (1% of the rest-energy of one solar mass) is liberated within
10–100s. The jets produced in this manner are ultra-relativistic, with a speed Vjet

corresponding to a Lorentz factor �jet = 1/
√
1 − V 2

jet/c
2 ∼ 100−1000.

Some astrophysicists believe that the bright ‘knots’ observed in the jets associated
with Active Galaxies, are standing (or traveling) shocks inside the jet flow such as
Mach disks. This idea is supported by simulations, which show that the characteristic
‘diamond shape’ pattern of oblique shocks andMach disks indeed occur, as illustrated
in Fig. 10.4.

Fig. 10.4 Anumerical simulation of a restarting relativistic jet. Here the oldest jet (jet 1) is followed
by a second jet (jet 2) after the jet-forming process inside an active galaxy has ceased for ∼ 106

years. Note the blunt bow shock preceding the first jet, the diamond-shape pattern of many shocks
inside each jet and the Mach Disk, just behind the head of the jet where it impacts the shocked
intergalactic medium that has just passed through the bow shock. The fine-structure in the jets is
caused by the pressure fluctuations associated with the so-called Kelvin-Helmholtz Instability that
occurs in the back-flow in the cocoon of shocked jet material near the head of the jet. This distorts
the jet boundary and causes the wavy undulations. A cocoon of material that has gone through the
bow shock surrounds the jet. (Figure courtesy of Sander Walg)
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10.3 Blowing Bubbles: Point Explosions and Winds

10.3.1 Introduction

Point explosions, where a large amount of energy is liberated in a very small volume,
form an illustration of both shock physics and an important mathematical tool: the
use of self-similarity. Self-similarity in fluid mechanics implies that a system evolves
in such a way that snap-shots of the system at different times are scaled versions of
each other. The expansion of a blast wave from a point explosion is an historically
important example.

Consider an explosion that generates a total energy E . The blast wave from that
explosion expands into a uniform medium with mass density ρ, creating a spheri-
cal bubble of very hot gas of radius r(t) and volume V(t) = 4πr3(t)/3. We will
assume that the explosion is so energetic that the bubble expansion initially proceeds
supersonically with respect to the sound speed in the surrounding gas. It will also be
assumed that the mass of the material involved in the explosion itself (i.e. the mass of
the vaporized debris) is small compared with the increasing mass that the expanding
fireball sweeps up from the surrounding gas. The swept-up mass equals

Msw(t) = ρ V(t) = 4π

3
ρ r3(t). (10.3.1)

Under these conditions there only three fundamental parameters in the problem:
[1] the elapsed time t after the explosion, [2] the explosion energy E and [3] the
external density ρ of the surrounding medium. Since the surrounding medium is
assumed to be uniform, it defines no length scale. Neither does the explosion itself as
it is concentrated in a single point, an obvious mathematical idealization. In fact, the
onlyway to formaquantitywith dimension [length] from the fundamental parameters
of the problem is through the combination

RSed ≡
(
Et2

ρ

)1/5

, (10.3.2)

the so-called Sedov radius, named after Russian physicist Leonid Ivanovitch Sedov
(1907–1999), the first scientist to lead the space exploration program of the former
Soviet Union. Sedov correctly argued that the radius the blast wave from a point
explosion should be roughly the Sedov radius, up to a factor of order unity:

r(t) ∼
(
Et2

ρ

)1/5

∝ t2/5. (10.3.3)

The point-explosion solution r(t) ∝ t2/5 is a power law in time. It was discovered
independently from Sedov by British physicist G.I. Taylor and a number of others.
Taylor used it [48, 49] to estimate the explosive yield froma series of photos of thefirst
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thermonuclear explosion in the desert of New Mexico in 1945, which conveniently
also included a blended image of a clock as well as a tower of known size. This
allowed Taylor to deduce the fireball size as a function of time, and estimate the
explosion energy. Taylor thereby uncovered information that was considered to be
classified by the United States authorities. No doubt Sedov did the same. For this
reason relation (10.3.3) has become known as the Sedov-Taylor expansion law.

In what follows I will derive the Sedov-Taylor expansion law from shock physics.

10.3.2 Expanding High-Pressure Bubbles into a Uniform
Medium

Consider a strong spherical shock, propagating with velocity Vs into a stationary and
uniform medium with pressure P0, density ρ0 and sound speed Cs0. This shock is a
normal shock over its entire surface, with a Mach number Mn = Ms that satisfies:

M2
s =

(
Vs

Cs0

)2

= ρ0 V 2
s

γP0
� 1 . (10.3.4)

This follows from the fact that the surrounding material enters the shock with
velocity Vs, so we should put V1 = Vs. Also, ρ0 and P0 are the pre-shock density
and pressure, which were denoted by P1 and ρ1 in the previous chapter. The strong
shock limit of the Rankine-Hugoniot relations for a normal shock (Eq.9.6.5) with
V1 = Vs gives the pressure P2 immediately behind the shock:

P2 ≈ 2γ M2
s

γ + 1
P0 = 2ρ0 V 2

s

γ + 1
. (10.3.5)

Here I have used (10.3.4). One can invert this relation, and calculate the shock
speed in terms of the post-shock pressure P2, and the pre-shock density ρ0:

Vs ≈
√

γ + 1

2

(
P2
ρ0

)1/2

. (10.3.6)

This useful result can be applied for the formation of high-pressure bubbles in a
stationary surrounding medium.

The density directly behind the spherical shock equals in the strong shock limit:

ρ2 = γ + 1

γ − 1
ρ0. (10.3.7)

This is the density of the gas swept-up by the blast wave, which collects in a thin,
dense shell. Equation (10.3.7) allows us to calculate the thickness of the shell. If the
external medium is uniform, a shock (blast wave) with radius Rs has swept a total

http://dx.doi.org/10.2991/978-94-6239-195-6_9
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mass equal to

Msw = 4π

3
ρ0 R

3
s . (10.3.8)

This mass is now residing in the dense shell with thickness �R and has a density
ρ2. So one must have for �R � R:

Msw ≈ 4π ρ2 R
2
s �R. (10.3.9)

Combining the last three equations one finds:

�R

Rs
= (γ − 1)

3(γ + 1)
= 0.083, (10.3.10)

where the numerical value is forγ = 5/3. So the assumption that the shell of swept-up
gas is geometrically thin is a very reasonable one. The swept-up material is separated
by a contact discontinuity from the hot, high-pressure material inside the bubble that
came from the original explosion.

Since this shell is so thin the pressure in the shell is roughly the post-shock
pressure everywhere. It is separated from the interior by a contact discontinuity, see
the Fig. 10.5. Therefore, this pressure should also equal the interior pressure Pi in
the bubble so that

P2 � Pi. (10.3.11)

In principle, an estimate of Pi would now suffice to calculate the expansion of the
bubble as P2 ∼ ρ0 V 2

s . We will take a slightly more sophisticated approach.
The expansion speed (10.3.6) of the blast wave with P2 � Pi is roughly equal to

dRs

dt
= Vs ≈

√
γ + 1

2

(
Pi
ρ0

)1/2

. (10.3.12)

The associated expansion law, which gives the bubble radius R(t) as a function
of time, can be obtained from a simple energy argument.

The total energy of the bubble and swept-up mass consists of the kinetic energy
of the expanding massive shell with mass Msw = 4πρ0 R3

s /3 and velocity ∼Vs, and
the internal (thermal) energy of the hot, tenuous gas in the bubble’s interior:

E(t) ≈ 1

2
Msw

(
dRs

dt

)2

+
(
4π

3
R3
s

)
Pi(t)

γ − 1
≡ Ekin + Eth . (10.3.13)

Here it is assumed that the internal pressure Pi is almost uniform and that the
kinetic energy of thematerial in the bubble’s interior can be neglected. It also neglects
the small difference of the radius of the hot bubble and the shock radius Rs. The
uniform pressure approximation is reasonable if the expansion speed is less than the
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Fig. 10.5 The structure of a
tenuous bubble of very hot
gas (large internal pressure
Pi and small density ρi)
expanding with velocity
Vs = dR/dt into a
low-pressure, high-density
medium at rest. The density
of the surrounding medium
equals ρ0. If the expansion
speed is supersonic with
respect to the sound speed in
the surrounding medium, the
exterior of the bubble is a
strong shock, also called a
blast wave. Behind the blast
wave, the material that the
bubble has swept up in its
life time collects in a dense
shell. The hot material in the
bubble interior is separated
from this swept-up material
by a contact discontinuity

internal sound speed:

Vs � Csi =
√

γPi
ρi

, (10.3.14)

which immediately implies that one should have ρi � ρ0. As argued above, the
interior pressure must be roughly equal to the post-shock pressure in the dense outer
shell:

Pi ≈ P2 ≈ 2

γ + 1
ρ0

(
dRs

dt

)2

. (10.3.15)

This implies that the ratio of the thermal energy and the kinetic energy of the entire
remnant (Ekin and Eth are defined in 10.3.13) becomes a constant. For γ = 5/3:

Eth

Ekin
= 4

γ2 − 1
= 9

4
. (10.3.16)

These (approximate) results give an approximate expression for the total
(kinetic + thermal) energy of the expanding bubble. Substituting (10.3.15) into
(10.3.13) and writing M(t) for Msw one finds:

E(t) = Cγ M(t)

(
dRs

dt

)2

. (10.3.17)
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Cγ is a numerical constant of order unity, in this simple model given by:

Cγ = γ2 + 3

2(γ2 − 1)
. (10.3.18)

For an ideal mono-atomic gas with γ = 5/3 one has Cγ = 13/8 = 1.625.
The value for Cγ is approximate because of the various approximations made

in the course of the derivation: assuming a constant interior pressure, for instance.
However, more exact treatments arrive at the same result, with a somewhat smaller
value for Cγ .

Relation (10.3.17) gives for M(t) = 4πρ0 R3/3:

R3
s

(
dRs

dt

)2

= 3E(t)

4πρ0 Cγ
. (10.3.19)

After taking the root:

R3/2
s

dRs

dt
=

√
3E(t)

4πρ0 Cγ
. (10.3.20)

If one knows at which rate energy is supplied to the bubble as a function of time,
so that E(t) is known, one can use this relation to derive the expansion law Rs(t) for
the shock radius.

I will treat two important cases: that of the point explosion discussed above, where
a fixed amount of energy E0 is supplied impulsively at t = 0 and where no energy
losses occur afterwards, so that E(t) = constant = E0. The other important case
is that of a constant energy supply with power (mechanical luminosity) L so that
E(t) = Lt .

10.3.2.1 The Point Explosion

When E(t) = E0 = constant, Eq. (10.3.20) can be written as

2

5

dR5/2
s

dt
=

√
3E0

4πρ0 Cγ
= constant. (10.3.21)

The solution is R5/2
s = 5

2

√
3E0/4πρ0 Cγ t if Rs = 0 at t = 0. This is Sedov’s

solution:

Rs(t) = C̄

(
E0

ρ0

)1/5

t2/5. (10.3.22)

C̄ is a constant of order unity, called ξ in version (10.3.3) of the Sedov-Taylor
expansion law. In our simple theory C̄ equals
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C̄ =
(

75

16πCγ

)1/5

(10.3.23)

For γ = 5/3 one finds C̄ ≈ 0.98.

10.3.2.2 The Case of a Constant Power Supply: The Wind Solution

Now consider the case where the energy of the bubble rises linearly in time, E(t) =
Lt , so that energy is supplied to the bubble at a constant rate L . As we will see below,
this is a simple model for a bubble blown into the interstellar gas by a stellar wind.
Equation (10.3.20) becomes

2

5

dR5/2
s

dt
=

√
3L

4πρ0 Cγ
t1/2 (10.3.24)

This implies R5/2
s ∝ t3/2 and thus Rs ∝ t3/5, assuming again that Rs = 0 at t = 0.

Writing R5/2
s = α t3/2 one finds from (10.3.24) that α = 5

3

√
3L/4πρ0 Cγ .

The bubble expands as:

Rs(t) = C̃

(
L

ρ0

)1/5

t3/5. (10.3.25)

The constant C̃ is

C̃ =
(

25

12πCγ

)1/5

. (10.3.26)

Note that this solution is almost the same as the solution that one gets if one
replaces the constant energy in the Sedov-Taylor expansion law by the energy at
time t :

E0 =⇒ E(t) = Lt. (10.3.27)

The reason is once again the self-similarity of the solution: the only quantity with
dimension [length] that one can construct out of the fundamental parameters ρ0, L
and t is

Rw =
(
L t3

ρ0

)1/5

. (10.3.28)

Our solution has Rs(t) � Rw, up to a constant of order unity.
This line of reasoning can be applied to more complicated situations: if at time t

the total energy of the bubble is E(t) and all the conditions assumed for this derivation
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are met (in particular: supersonic expansion into a uniform interstellar medium), the
typical radius of the bubble will be

Rs(t) ∼
(
E(t)

ρ0

)1/5

t2/5. (10.3.29)

10.4 Supernova Explosions and Their Remnants

10.4.1 The Core Collapse Mechanism

In a supernova the core of a massive star (born with a mass exceeding 10 M
)
collapses under its own weight. This collapse happens when the star it has exhausted
its nuclear fuel. Nuclear fusion only generates energy up to production of Iron nuclei.
Without the constant energy supplied by nuclear fusion, the gas pressure drops and
is no longer capable of supporting the outer layers of the star against gravity. This
happens first to in the core of the star. The now inert core starts to contact, which
raises the core pressure and temperature. When the temperature exceeds �1011 K,
the photons in the core are energetic enough to cause the photo-dissociation of Iron:

56Fe + γ =⇒ 13 4He + 4 n.

In this reaction an energy roughly equal to the nuclear binding energy of iron,
Eb � 124MeV, is lost. Since by this time the very hot photon gas gives a non-
negligible contribution to the pressure, the pressure in the core drops dramatically,
and it collapses under its own weight.

The amount of energy liberated in core collapse is the change in gravitational
binding energy of the core. For a homogeneous core with density ρ, radius R and
mass Mc = 4πρR3/3 the gravitational binding energy is an integration over mass of
the gravitational potential energy:

Egrav = −
∫ Mc

0
dMr

GMr

r
. (10.4.1)

Here Mr is the mass contained within a radius r and dMr = 4πr2ρ dr is the mass
in a shell of radius r and thickness dr � r . For a uniform sphere one has

Mr = 4π

3
ρ r3. (10.4.2)

This can be inverted to give a relation between radius and enclosed mass:

rM =
(
3Mr

4πρ

)1/3

. (10.4.3)
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The radius rM is the radius of the sphere enclosing a mass M . By definition
rMc = R.
Substituting this into (10.4.1) and performing the integration over mass yields:

Egrav(R) = −3

5

GM2
c

R
. (10.4.4)

If the core starts its collapse at an initial radius Ri, and the collapse is halted at a
radius Rb, the bounce radius, the amount of energy that the star must lose is

�Eb = −3

5

(
GM2

c

Ri
− GM2

c

Rb

)
. (10.4.5)

The bounce that halt the collapse is due to the change in the equation of state of
the material in the collapsing core. This change occurs when the material in the core
is compressed to nuclear densities (ρ � ρnuc = 1014 g cm−3). Nuclear forces, rather
than the pressure of the (degenerate) material then start to dominate the pressure.
In practice, the collapse of the core starts at a radius Ri � 7000 km, and halts at
Rb � 20 km, so Rb � Ri and we can approximate (10.4.5) by

�Eb ≈ 3

5

GM2
c

Rb
. (10.4.6)

With a core mass Mc ≈ 1.5 M
 the change in binding energy equals:

�Eb ≡ Esn ≈ 1053 erg. (10.4.7)

The binding energy is radiated away, mainly in the form of neutrinos. These
neutrino’s are the product of the reaction

p + e− =⇒ n + νe, (10.4.8)

which occurs in the dense corewhen protons and electrons ‘recombine’ into neutrons.
In this way the core loses its lepton number, and the core material is “neutronized”:
the core becomes a cooling proto-neutron star.

Neutrinos associated with the supernova SN 1987a in the LargeMagellanic Cloud
were detected on Earth in several experiments set up to measure proton-decay,2

experimentally confirming this scenario. The neutron stars that this scenario predicts
as the “stellar fossils” have been observed in a number of cases. In some very young
supernova remnants one sees the still cooling neutron star as a weak X-ray source. In
some older remnants, there is a pulsar (a rapidly rotating neutron star with a strong
magnetic field) in (or near) the remnant that must have been created by the original
supernova.

2See [20] and [7] for the discovery papers.
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Fig. 10.6 Amulti-wavelength picture of the supernova remnant Cassiopeia A, showing the optical
filaments (in yellow), X-ray emission (in green and blue) and the diffuse infra-red glow of dust
(in red). Photo credit: NASA/Hubble Space Telescope/Chandra X-Ray Observatory/Spitzer Space
Telescope

Even though neutrinos are weakly-interacting particles, there is enough material
in the still collapsing envelope of the star, which still contains several solar masses,
for the escaping neutrinos to have a noticeable effect. About 1% of the energy Esn

is transferred from the neutrinos to the stellar envelope. This energy is used to drive
a shock wave through the envelope that carries enough energy (�1051 erg) to eject
the entire envelope into the interstellar medium, leading to the observed supernova3

The mechanical energy of the ejecta is therefore of order

Esnr ≈ 0.01 × Esn ≈ 1051 erg. (10.4.9)

This energy fuels the explosive event that creates a supernova remnant. A super-
nova that forms according to this scenario is called a Type II supernova. The remnants
of these events can be seen for thousands of years (see Fig. 10.6).

In very massive stars (birth weight larger than 50–100 solar masses) there is
another possible core-collapse mechanism. There the temperature in the contracting

3It should be pointed out that the enormous amount of radiation that is observed for weeks-months
after a supernova, leading to the appearance of a “new” star, is not powered the explosion, but by
radioactive decay of elements like Cobalt and Nickel. These elements have formed as a result of
neutron capture, where the necessary neutrons have been provided close to the core by the neutron
star as it is being born.
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core can exceed 1012 K so that thermal photons are gamma-rays with enough energy
to lead to two-photon pair production:

γ + γ =⇒ e+ + e−. (10.4.10)

The pressure in these cores is almost exclusively radiation pressure, and each
electron-positron pair produced results in an energy loss of 2mec2 � 1 MeV from
the radiation gas.Again, there is a catastrophic loss of pressure, and the core collapses.
These cores are so massive that the formation of a neutron star becomes impossible:
the collapse of the core produces a black hole. This scenario for a so-called pair-
production supernova is much less certain than the scenario sketched above for the
Type II supernovae associated with less massive stars.

10.4.2 Evolutionary Stages of a Supernova Remnant

10.4.2.1 Supernova Remnant

In the very early stages of the expansion, the mass of a supernova remnant is still
dominated by the mass of the ejected stellar envelope. Calling this mass Mej, the
energy of the remnant is mostly in the form of kinetic energy once it has become
much larger than the original star. During the initial expansion pressure forces have
accelerated the ejecta outwards, converting the thermal energy of the material into
kinetic energy. Therefore the energy of the supernova remnant is

Esnr � 1

2
Mej V

2
s . (10.4.11)

With Mej � 2 − 10 M
 and Esnr � 1051 erg the expansion velocity equals

Vs � (2Esnr/Mej)
1/2 ≡ Vfr = 5000−10,000 km/s. (10.4.12)

The remnant expands with almost constant velocity, and the remnant radius equals
Rs � Vst with t the time elapsed after the explosion. This is the free expansion phase
of the remnant’s evolution.

10.4.2.2 The Sedov-Taylor Phase

As its expands, the remnant sweeps up mass from the surrounding interstellar
medium. If the density of the interstellar gas is constant and equal to ρism, and if
the radius of the remnant is Rs, the total mass of the remnant is
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Msnr = Mej + 4π

3
ρism R3

s . (10.4.13)

The expansion of the remnant starts to slow down appreciably once its has swept
up an amount of mass equal to the ejecta so that is mass has doubled. Simple energy
conservation, 12MsnrV 2

s = Esnr, predicts that the expansion velocity has been reduced
by a factor 1/

√
2 � 0.7 at that point in time. This happens when the radius of

the remnant equals the so-called deceleration radius. From 4π
3 ρism R3

s = Mej the
deceleration radius equals:

Rdc =
(

3Mej

4πρism

)1/3

. (10.4.14)

The interstellar gas consists of different phases (with different densities, temper-
atures and filling factors) that are roughly in pressure equilibrium with each other.
The density of the main phases of the interstellar gas is tabulated below. Taking a
typical particle density n � 1 cm−3, the corresponding mass density is (with mp the
proton mass, M
 a Solar mass):

ρism � nmp � 2 × 10−24 g/cm3 � 0.03 M
/pc3. (10.4.15)

The value of ρism in the rather unconventional (but useful) units used in the last
equality4 tells you immediately that the remnant has to expand to a size of several
parsecs before it has swept up up a few solar masses of interstellar gas and the
expansion will start to decelerate.

Main phases of the interstellar medium
Phase (filling factor) Particle density (in cm−3) Temperature (in K) Sound speed (in km/s)
Hot coronal phase (0.5) 0.004 >3 × 105 ≥85
HII gas (0.1) 1−104 104 ∼30
Warm HI gas (0.4) ∼0.6 5 × 103 8

The parameters in this table are adapted from B.T. Raine 2011: Physics of the Inter-
stellar and Intergalactic Medium, Princeton University Press.
Astronomical nomenclature: HI gas in neutral hydrogen, HII gas is completely
ionized hydrogen. In practice, about 25% of the mass in the interstellar gas is in the
form of Helium, with traces of heavier elements.
For typical parameters the deceleration radius equals

Rdc � 2

(
Mej

1 M


)1/3 ( nism
1 cm−3

)−1/3
pc. (10.4.16)

Around the time that the remnant has expanded to a deceleration radius several
things happen:

41 M
 � 1.989 × 1033 g; 1 pc = 3.086 × 1018 cm.
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• Amassive dense shell forms at the outer edge of the remnant, closely preceded by
a strong shock in the interstellar gas;

• The deceleration of the shell causes the ejecta to slam into the shell. The resulting
pressure pulse causes a transient second shock, the so-called reverse shock to prop-
agate through the ejecta. Ultimately that shocks reaches the center of the remnant
and dies out. By that time the ejecta have been reheated to a high temperature
(shock heating).

When the interior of the bubble has been completely reheated by the reverse shock,
the remnant behaves exactly the same as a point explosion in a uniform atmosphere.
The expansionSedov-Taylor expansion law follows the (10.3.22), where Rs ∝ t2/5.

In practical units for a supernova remnant the shock radius Rs and shock speed
Vs = dRs/dt are given by:

Rs � 3.8

(
Esnr

1051 erg

)1/5 ( nism
1 cm−3

)−1/5
(

t

1000 year

)2/5

pc

Vs � 1580

(
Esnr

1051 erg

)1/5 ( nism
1 cm−3

)−1/5
(

t

1000 year

)−3/5

km/s. (10.4.17)

It is also simple to calculate when the transition from free expansion to Sedov-
Taylor phase happens. Up to the deceleration radius the expansion speed is roughly
constant, and equal to the free expansion speed Vfr (see Eq.10.4.12). Therefore the
transition must happen at the Sedov-Taylor time

tST � Rdc

Vfr
� 250

(
Esnr

1051 erg

)−1/2 ( nism
1 cm−3

)−1/3
(

Mej

1 M


)5/6

year (10.4.18)

after the supernova explosion.

10.4.2.3 Later Stages: The Pressure-Driven and Snow Plow Phases

I will now briefly consider the two main evolutionary phases that follow the Sedov-
Taylor phase.

Typically ∼10,000 years after the supernova explosion the remnant begins to
cool, and its total energy is no longer conserved. The cooling mechanism is radiative
cooling, which scales with the particle number density n as n2. Since the density
inside the shell of swept-up matter is much larger than the density inside the hot
interior of the remnant, most of this cooling initially occurs in the shell of shocked
interstellar medium.

In the snow-plow approximation one assumes that all the energy put by shock
heating into the swept-up interstellar gas is radiated away immediately, but that
the hot interior of the remnant still behaves adiabatically. This means that the shell
of shocked interstellar gas collapses until it becomes extremely thin, and that the
pressure inside the remnant satisfies
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Pi ∝ ρ
γ
i . (10.4.19)

Since the ejecta mass residing in the hot interior is conserved one has:

ρi = Mej

(4π/3)R3
s

. (10.4.20)

Combining these two relations yields:

Pi ∝ R−3γ
s . (10.4.21)

For γ = 5/3 one finds Pi ∝ R−5
s . This behavior is quite different from the

behavior of the pressure in the Sedov-Taylor phase: there the pressure behaves as
Pi ∼ ρismV 2

s ∝ R−3
s .

The motion of the collapsed shell, which contains most of the mass, is driven by
the pressure of the remnant’s interior. The equation of motion of the massive shell
can be found by balancing the total outward pressure force on the shell (=bubble
pressure Pi × shell area 4πR2

s ) by the inertial force,

d

dt

(
M(Rs)

dRs

dt

)
= 4πR2

s Pi(Rs). (10.4.22)

The inward pointing pressure force of the interstellar medium on the shell has
been neglected.

At first sight his equation may seem to make no sense! Strictly speaking, momen-
tum is a vector, and if one calculates the net vector momentum of the entire remnant
in the proper way, it always vanishes because of spherical symmetry! The way to
salvage this calculation is to look at a small section of the shell. This section is
defined by the infinitesimal and fixed solid angle δ� ≡ δ� r̂ on the shell as seen
from its center. The surface element has a position vector r = Rs r̂ . The surface area
is δA = R2

s δ�, which contains a mass δM = M(Rs) (δ�/4π) and has a momen-
tum δ p = δM Vs r̂ . The outward pressure force on this area is Pi δA r̂ . The vector
equation of motion for this small mass element is (with Vs = dRs/dt):

d(δM Vs)

dt
r̂ = Pi A r̂. (10.4.23)

Using that δ� and the direction defined by r̂ are both fixed, this equation is
equivalent with

δ�

4π

d(M(Rs) Vs)

dt
r̂ = R2

s δ� Pi r̂. (10.4.24)

Multiplying by 4π/δ� one recovers (10.4.22).
Using the pressure law (10.4.21) together with M(Rs) � 4πρismR3

s /3 � Mej one
finds that the equation of motion (10.4.22) can be written as:
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d

dt

(
R3
s
dRs

dt

)
= A R2−3γ

s . (10.4.25)

Here A is a constant, whose value need not concern us here. If one tries to solve
this equation with a power-law that gives the radius of the remnant as

Rs(t) = B tα (10.4.26)

with B some constant, the condition that both sides of the equation contain the same
power of t gives a condition on α. It is easy to check that this condition reads

t4α−2 = t (2−3γ)α. (10.4.27)

Solving for α one finds:

α = 2

3γ + 2
= 2

7
≈ 0.286. (10.4.28)

The last value is for γ = 5/3. So in the pressure-driven snow plow phase the
supernova remnant expands as

Rs(t) ∝ t2/7. (10.4.29)

Numerical simulations of this pressure-driven snow plow phase show that the
value of α is actually closer to α = 3/10 = 0.3.

Finally, when the internal energy of the remnant has also been radiated away, the
internal pressure approaches zero, and the remnant enters themomentum-conserving
snow plow phase. Equation (10.4.22) reduces for Pi = 0 to:

d

dt

(
M(Rs)

dRs

dt

)
= d

dt
(M(Rs) Vs) = 0 ⇐⇒ M(Rs) Vs = constant. (10.4.30)

This can be interpreted as momentum conservation (see the discussion above) and
leads to a velocity that decays with remnant radius as

Vs(Rs) ∝ M−1(Rs) ∝ R−3
s . (10.4.31)

The resulting expansion law is easily derived:

Rs(t) ∝ t1/4. (10.4.32)

In the very last stages of its life, the supernova remnant dissolves into the general
interstellar medium.

Figure10.7 gives all stages of the typical evolution of a supernova remnant, show-
ing the free-expansion phase, the Sedov-Taylor phase, the pressure-driven snow plow
phase and the momentum-conserving phase. Ultimately, a supernova remnant will
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Fig. 10.7 The evolutionary stages in the life of a supernova remnant. The numbers are for a remnant
with Esnr = 1051 erg mechanical energy, expanding into a uniform interstellar gas with a number
density n = 1 cm−3. Adapted from: Cioffi, 1990, in: Physical Processes in Hot Cosmic Plasmas,
W. Brinkmann, A.C. Fabian & F. Giovannelli (Eds.), NATO ASI Vol. 305, p. 1, Kluwer Academic
Publishers

merge with the general interstellar medium, leaving a Hot-Phase bubble in the inter-
stellar medium.
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10.4.2.4 A Cautionary Note on the Use of a Power-Law Solution and
Other Assumptions

I have repeatedly solved the equations of motion of a supernova remnant in different
evolutionary stages with a power-law of the form Rs(t) ∝ tα. Although these are
mathematically speaking perfectly good solutions, physically they are approxima-
tions, simply because the assumptions behind the solutions are not valid over all
time. If a supernova remnant enters a different evolutionary stage (say: it goes from
the Sedov-Taylor stage to the snow plow stage) its behavior changes, as indicated by
a different expansion law. Near the time of the transition neither the Sedov-Taylor
expansion law nor the pressure-driven snow plow law give a good representation of
the behavior of the remnant. Thus power-law solutions are only a good approxima-
tion to the exact solution if one stays well away from the point in time where the
SNR changes its behavior because the underlying physics changes!

In our description of the physics we have also assumed that the different parts of
the remnant, such as the shell of swept-up gas and the interior, are neatly separated by
a stable contact discontinuity. Numerical simulations of supernova remnants show,
however, that all kinds of instabilities occur in the shell and at the contact disconti-
nuity. This leads to mixing of ejecta and swept-up interstellar gas. Nevertheless, the
global picture is still surprisinglywell described by the simplemodel,mainly because
that model uses global properties and conservation laws, such as the conservation of
energy.

10.5 Stellar Wind Bubbles

A somewhat more complicated situation is that of the bubble blown into the inter-
stellar medium by a spherically symmetric stellar wind. The total mass flux Ṁ and
mechanical luminosity Lw of the wind are roughly given by

Ṁ = 4πr2 ρ(r) Vw, Lw ≈ 1

2
Ṁ V 2

w. (10.5.1)

The velocity Vw = V∞ is the terminal velocity of the wind, the velocity it reaches
far beyond the critical radius rc (see Chap.5). The interpretation of the expression
for Lw is simple: it is the kinetic energy per unit mass, V 2

w/2, multiplied by the
amount of mass injected by the star into the wind per second, which equals Ṁ . The
thermal energy of the wind far beyond the critical point is small, as the density drops
off rapidly with increasing radius. For an adiabatic wind with P ∝ ργ density and
pressure scale with radius as:

ρ(r) = Ṁ

4πr2Vw
∝ r−2, P(r) ∝ r−2γ ∼ r−10/3. (10.5.2)
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Here I used γ = 5/3 and assumed Vw to be constant at large radii. Therefore,
sufficiently far from the star, the energy carried by the wind material consists almost
completely of kinetic energy. The wind is strongly supersonic and the mechanical
luminosity is indeed given by (10.5.1). The total energy injected by the wind into the
expanding bubble after a time t is

E(t) ≈ Lwt, (10.5.3)

assuming Lw is constant.
The detailed structure of a wind bubble is more complicated than the structure of

a supernova remnant (see the Fig. 10.8). I will look a t this structure by moving out
to ever larger radii, assuming that the size of the bubble is already much larger than
the critical radius of the wind, and starting well beyond the wind critical radius rc.

The stellar wind is supersonic beyond the critical point. Therefore, it must slow
down to a subsonic speed before it impinges on the swept-up interstellar matter.

Fig. 10.8 Schematic representation of a stellar wind bubble. Going outwards in radius from the
star that acts as a source of the wind one has: [1] the stellar wind, as described in Chap.5; [2]
a wind termination shock where the supersonic wind is slowed to subsonic speeds; [3] a contact
discontinuity, separating the shocked stellar wind material from the shocked interstellar gas, and
finally [4] the outer shock which propagates into the undisturbed interstellar medium. The latter
defines the outer radius of the bubble, and its expansion follows the expansion law Rs ∝ t3/5

derived above. In this idealized picture, there is no mass flow across the contact discontinuity,
and the pressure is equal on both sides. This means that the stellar wind material and the shocked
interstellar gas do not mix. As soon as one relaxes the assumption of strict spherical symmetry
mixing can occur due to instabilities at the contact discontinuity

http://dx.doi.org/10.2991/978-94-6239-195-6_5
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It does so by forming a spherical inner termination shock. At this shock the wind
material is slowed down, compressed and strongly heated. As a result most of the
kinetic energy of the incoming wind material is converted back into thermal energy,
and the pressure in the shocked wind material is high. The shocked wind material
gathers in a relatively thin shell.

One could argue that the termination shock is the analogue of the reverse shock
that occurs in a supernova remnant. The difference between the two of course is that
the reverse shock in a supernova remnant is a transient feature that occurs around
the Sedov-Taylor time tST, whereas the termination shock is a persistent feature in
the wind flow. Both serve the same purpose: reheating the initially cold material, the
ejecta in the case of a supernova remnant and the stellar wind material in the case of
a wind-blown bubble. As a result all material between the termination shock and the
outer blast wave consists of a hot, high-pressure gas.

In addition to this termination shock, there is also the outer shock (blast wave)
in the interstellar gas. That shock is present as long as the expansion velocity of the
bubble’s outer edge is supersonic with respect to the surrounding (cold) medium.
Behind that shock the swept-up material collects in a dense shell. In this respect the
situation is essentially the same as what happens in a supernova remnant.

We can exploit this similarity by realizing that the expansion of the entire bubble,
defined by the radius Rs(t) of the blast wave, must follow from the wind solution
(10.3.25) with L = Lw and ρ0 = ρism, the mass density of the interstellar medium:

Rs(t) = C̃

(
Lw

ρism

)1/5

t3/5. (10.5.4)

I will put C̃ = 1 (and Cγ � 1) in what follows.
The shocked interstellar matter and the shocked wind material are separated by

a contact discontinuity. Across this contact surface, the shocked wind material and
shocked interstellar gas should be in pressure-equilibrium.

The pressure-equilibrium condition can be used to calculate the radius Rts of the
termination shock, see the Fig. 10.9. If the termination shock is strong, the pressure in
the shockedwind behind the shock follows from the jump conditions for a high-Mach
number shock, Eq. (10.3.5):

P2w = 2ρwV 2
w

γ + 1
. (10.5.5)

Here ρw is the density just before the termination shock (see below). Solution
(10.5.4) assumes that the blast wave is a strong shock, so the shocked interstellar gas
in the shell behind the blast wave has a pressure

P2ism = 2ρismV 2
s

γ + 1
. (10.5.6)
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Therefore, the pressure equilibrium condition at the shocked wind/shocked inter-
stellar medium interface becomes

ρism V 2
s = ρw V 2

w. (10.5.7)

This assumes that the pressure in the dense shell of swept-up interstellar gas and
the pressure in the shell of shocked wind material are almost uniform. The quantity
ρV 2 is usually called the ram pressure. This calculation assumes that the wind speed
is large comparedwith the other speeds in the system. If that is not the case, we should
replace Vw by Vw − Vts, with Vts = dRts/dt the expansion speed of the termination
shock.

The wind density just before the termination shock, ρ(r = Rts) ≡ ρw, follows
from (10.5.1/10.5.2) at r = Rts:

ρw = Ṁ

4πR2
tsVw

= Lw

2πR2
tsV 3

w

. (10.5.8)

The ram pressure of the wind at the termination shock (r = Rts) equals:

ρw V 2
w � Lw

2πR2
tsVw

. (10.5.9)

At the blast wave one has from (10.3.20) with E(t) = Lwt . Putting Cγ ≈ 1 one
has:

Vs = dRs

dt
=

√
3Lwt

4π ρism R3
s

. (10.5.10)

Therefore the ram pressure associated with the interstellar gas just behind the
blast wave (r = Rs) is

ρismV
2
s = 3Lwt

4π R3
s

. (10.5.11)

We now assume that these two ram pressures also correspond to the pressure
(apart from a factor 2/(γ + 1)) on either side of the contact discontinuity, which is a
reasonable approximation. The pressure-equilibrium condition ρism V 2

s = ρw V 2
w at

the contact discontinuity then determines the termination shock radius Rts:

Rts(t) =
(
2 R3

s (t)

3Vwt

)1/2

. (10.5.12)

As the blast wave expands according to Rs(t) ∝ t3/5, relation (10.5.12) gives the
expansion law for the termination shock:
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Fig. 10.9 A snapshot of a small section of a stellar wind bubble, showing the quantities used in
calculating the pressure balance at the contact discontinuity. The curvature of the shock surfaces
(which are spherical) is neglected in the figure, and plays no role in the calculation. The view is from
the frame where the Forward Shock is at rest. The relative motion of forward shock (blast wave)
and the backward shock (termination shock) is neglected, and it is also assumed that Vw � Vs

Rts(t) ∝ R3/2
s (t)

t1/2
∝ t2/5. (10.5.13)

The termination shock radius increases as thewind bubble expands, but the expan-
sion proceeds at a slower rate than the expansion of the outer radius of the bubble.
In this way, an increasing volume is made available between the termination shock
and the blast wave where one can store the increasing amount of mass injected by
the central star into the shell of shocked wind material.



Chapter 11
Vorticity

11.1 Introduction

In astrophysics and geophysics, one often has to dealwith rotatingflows. This rotation
can be in a large-scale streaming pattern or in the form of vortices: small swirls, or
both. Also, in geophysics and planetary physics one usually describes an atmospheric
flow in a rotating reference frame, for instance a frame that is fixed to the Earth’s
surface. This choice has an effect on the description of the flow as such a frame is not
an inertial frame: centrifugal and Coriolis terms appear in the equation of motion.
Fluid dynamics in a rotating frame will be dealt with in the next chapter. Here we
will look at vorticity.

Small rotating structures in a flow can behave as important dynamical entities.
They can persist for a long time in a flow, seemingly having a life of their own. The
most obvious examples are cyclones and (on a smaller scale) the tornadoes which
occur in the weather patterns of the (sub)tropics. In planetary physics, theGreat Red
Spot visible on Jupiter is thought to involve cyclonic motion. Such cyclonic motions
are surprisingly stable: once formed, they degrade slowly or, in the case without any
friction, not at all. We will see that this is the result of a conservation law: Kelvin’s
circulation theorem.

11.2 Definition of Vorticity

The amount of rotation in a flow field V (x, t) is quantified in a mathematical way
by the vorticity vector ω(x, t), formally defined as the curl of the velocity field:

ω(x, t) ≡ ∇ × V (x, t). (11.2.1)
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In Cartesian coordinates the components of the vorticity vector are:

∇ × V (x, t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Vz

∂y
− ∂Vy

∂z

∂Vx

∂z
− ∂Vz

∂x

∂Vy

∂x
− ∂Vx

∂y

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.2.2)

Alternatively1 one can express it as a ‘determinant’. If the three (orthogonal) unit
vectors of the Cartesian coordinate frame are x̂, ŷ and ẑ one has:

∇ × V (x, t) =

∥∥∥∥∥∥∥∥∥∥∥∥

x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

Vx Vy Vz

∥∥∥∥∥∥∥∥∥∥∥∥

. (11.2.3)

This definition for the vorticity as a curl implies that the vorticity field is divergence-
free:

∇ · ω(x, t) = 0. (11.2.4)

It is possible to derive an equation for the vorticity of a fluid directly from the equation
of motion. One starts by taking the curl of the equation of motion:

∇ ×
{

∂V
∂t

+ (V · ∇)V = −1

ρ
∇P − ∇�

}
. (11.2.5)

The gravity term does not contribute:∇ × ∇� = 0. One then uses the vector identity
(3.2.14),

(V · ∇)V = ∇
(
1

2
V 2

)
− V × (∇ × V )

(11.2.6)

= ∇
(
1

2
V 2

)
− V × ω,

together with the relations

∇ × ∇ f = 0, ∇ × ( f ∇g) = ∇ f × ∇g, (11.2.7)

1See also the Mathematical Appendix.
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valid for any function f (x, t) and g(x, t). One finds that (11.2.5) reduces to:

∂ω

∂t
= ∇ × (V × ω) + 1

ρ2
∇ρ × ∇P. (11.2.8)

Finally, by using the vector identity

∇ × (A × B) = A (∇ · B) − B (∇ · A) + (B · ∇)A − (A · ∇)B (11.2.9)

together with Eq. (11.2.4), one can write Eq. (11.2.8) as

dω

dt
= (ω · ∇)V − ω(∇ · V ) + 1

ρ2
∇ρ × ∇ P. (11.2.10)

Here (as before) d/dt = ∂/∂t + V · ∇ is the comoving time derivative. This is the
equation of motion for the vorticity.

It is possible to rewrite this vorticity equation in a more compact form. One can
use the continuity equation to eliminate the velocity divergence ∇ · V :

∇ · V = −1

ρ

(
dρ

dt

)
. (11.2.11)

Substituting this relation into (11.2.10), and re-arranging terms, one finds:

d

dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
V + 1

ρ3
∇ρ × ∇P. (11.2.12)

This last version of the vorticity equation shows most clearly how the vorticity
changes in response to the motion, and the pressure and density gradients in the fluid
or gas.

The only true generation of new vorticity occurs when the surfaces of constant
pressure and the surfaces of constant density, the so-called isobaric and isochoric
surfaces, do not coincide.

Using the ideal gas law, P = ρRT/μ, this situation occurs whenever2 the condi-
tion

∇ρ × ∇P = ρR
μ

∇ρ × ∇T �= 0 (11.2.13)

holds. Therefore, the second term on the right-hand side of Eq. (11.2.12) describes
vorticity generation: even if ω = 0 initially, the vorticity will grow if condition
(11.2.13) is satisfied.

2Strictly speaking one has ∇P = (ρR/μ)∇T + (TR/μ)∇ρ, but since ∇ρ × ∇ρ = 0 the term
involving the density gradient does not contribute to the vorticity-generation term ∝ ∇ρ × ∇P .
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The first term on the right-hand side of Eq. (11.2.12), which is linear in the vor-
ticity, describes the effect of vortex stretching due to velocity gradients. This term
gives the change of existing vorticity in response to the fluid motions, i.e. vorticity
amplification. Note that this term can be negative as well as positive, so vorticity may
grow as well as decline locally, depending on the properties of the flow. However we
will see that, as long as friction is neglected, there is an conserved integral quantity
associated with vorticity: the circulation.

11.2.1 Vortex Stretching and Vortex Tubes

Let us consider the effect of vortex-stretching term a bit more closely, assuming
for the moment that the vorticity generation term ∝ ∇P × ∇ρ vanishes identically.
Consider a curve X(�) carried passively by the flow. In Sect. 2.4 we derived the
equation of motion for this curve (Eq.2.7.5): a small section �X of a material curve
changes according to

d(�X)

dt
= (�X · ∇)V . (11.2.14)

Equation (11.2.12) for the vorticity, without the generation term, has exactly the same
form:

d

dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
V . (11.2.15)

This means the following: consider a vortex line, which is defined in Cartesian
coordinates in terms of the vorticity vector components (ωx ,ωy,ωz) by the condition
that the relation

dx

ωx
= dy

ωy
= dz

ωz
= d�

|ω| (11.2.16)

is satisfied by points along the line. Here

d� =
√
dx2 + dy2 + dz2 (11.2.17)

is the parameter measuring the length along a vortex line (which in general is actually
a curve rather than a line). The direction of the tangent vector l̂ to a vortex line x(�, t)
is always along ω: from condition (11.2.16) it is easily seen that one has

l̂ ≡ ∂x
∂�

= ω

|ω| . (11.2.18)
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Vortex lines give the local direction of the vorticity field, and as such they are the
direct analogue of the magnetic field lines in electromagnetic theory.3 Vortex lines
are the field lines of the vorticity field. Note that the field lines of the related field
ω/ρ (vorticity per unit mass) are the same since the density ρ is a scalar. This means
that the vorticity can be written as

ω(x, t) = ω(x, t) l̂, (11.2.19)

with l̂ the unit vector tangent to the vortex line through position x at time t and
ω ≡ |ω|.

Now consider two neighboring points on a vortex line X(�), separated by an
(infinitesimal) distance �� ≡ |�X|. We now follow the motion of these two points.
The vortex line is a material curve, carried passively along by the flow. This follows
immediately from the fact that the equation of motion for ω/ρ and of any curve
carried by the flow has exactly the same form: they respond in the same way to the
flow. This implies that during the motion of the fluid, and the motion of the vortex
lines that results from the fluid motion, the condition

ω(�, t)

ρ(�, t)��
= constant (11.2.20)

must be satisfied at any point along a vortex line. Here �� is the distance between
the original two points on the line at time t .

If a vortex line is stretched, so that �� increases, this stretching must lead to an
associated increase of the vorticityω/ρ. If one assumes for simplicity that the density
ρ remains constant, this means that the vorticity must increase at the same rate as
��. This explains the term ‘vortex stretching’. Of course it is also possible that a
vortex line is shortened, in which case ω/ρ must decrease.

The amount of stretching of a vortex line that is built up between some fiducial
time t0 and some later time t , λ(t) can be defined formally, by introducing the stretch
parameter

λ(t) ≡ ��(t)

��(t0)
=

∣∣∣∣
∂X(�)

∂�0

∣∣∣∣ . (11.2.21)

Here �0 serves as a ‘Lagrangian label’ for points on a vortex line: it is the length
along the curve at time t0 so that |∂X(t0)/∂�0| = 1. This label is carried along by
each material point on the vortex line. It serves as an unique identifier of each point,
and defines the initial separation distance ��0. Given the amount of stretching λ and
the density ρ0 and vorticity ω0 at time t0 one has:

ω(t)

ρ(t)
= λ(t)

(
ω0

ρ0

)
. (11.2.22)

3This ‘magnetic analogy’ goes further. For instance, the magnetic field B can be defined in terms of
a so-called vector potential A as B = ∇ × A so that ∇ · B = 0. For more details see for instance
[12, 15], Sect. 7.
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Remember that different sections of a vortex line can be stretched or shortened by a
different amount, i.e. the amount of stretching λ(t) in general will be a function of
position along the vortex line, and one should write λ(�, t).

11.3 Kelvin’s Circulation Theorem

The circulation of a flow around an arbitrary closed curve C is defined as

�c ≡
∮

C
V · dr. (11.3.1)

Here dr is an infinitesimal section of the curve. From Stokes’ theorem,

∮

∂O
A · dr =

∫
(∇ × A) · dO, (11.3.2)

the circulation can also bewritten as a surface integral of the vorticity over the surface
enclosed by the curve C :

�c =
∫

(∇ × V ) · dO =
∫

ω · dO. (11.3.3)

Using the last expression, it follows that the time change of the circulation must
satisfy (according to the product rule)

d�c

dt
=

∫ {(
dω

dt

)
· dO + ω ·

(
d dO
dt

)}
. (11.3.4)

The equation for dω/dt has been derived above. For the evaluation of d dO/dt we
consider a material surface, defined as a surface where each element of the surface
(and therefore also its outer edge, as defined by the curveC) is carried along passively
by the flow.

Take a small (infinitesimal) oriented surface element (a vector!) defined by two
tangent vectors �X and �Y :

�O = �X × �Y . (11.3.5)

If �X and �Y are both carried by the flow, they are infinitesimal sections of a mate-
rial curve and consequently they both satisfy an equation like (11.2.14). Therefore
d�O/dt is given by:

d�O
dt

= (�X · ∇)V × �Y + �X × (�Y · ∇)V . (11.3.6)
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We treat a mathematically convenient special case and below argue that the result
obtained for this special case has general validity: it applies to any infinitesimal
surface-element of arbitrary shape and orientation.

Choose the coordinate system in such a way that the infinitesimal surface element
lies in the x-y plane. Take the shape of the surface element to be a rectangular tile.
The two vectors �X and �Y defining the surface-element are mutually orthogonal.
We can always orient the coordinate axes in such a way that �X and �Y are along
the x-axis and y-axis respectively so that

�X = �X x̂, �Y = �Y ŷ, �O = �X �Y ẑ, (11.3.7)

and

(�X · ∇)V = �X
∂V
∂x

, (�Y · ∇)V = �Y
∂V
∂y

. (11.3.8)

One can write the right-hand-side of (11.3.6) in determinant form:

d�O
dt

= �X

∥∥∥∥∥∥∥∥∥∥∥

x̂ ŷ ẑ

∂Vx

∂x

∂Vy

∂x

∂Vz

∂x

0 �Y 0

∥∥∥∥∥∥∥∥∥∥∥

+ �Y

∥∥∥∥∥∥∥∥∥∥∥∥

x̂ ŷ ẑ

�X 0 0

∂Vx

∂y

∂Vy

∂y

∂Vz

∂y

∥∥∥∥∥∥∥∥∥∥∥∥

. (11.3.9)

Expanding the two determinants:

d�O
dt

=
(

∂Vx

∂x
+ ∂Vy

∂y

)
�X �Y ẑ − �X �Y

(
∂Vz

∂x
x̂ + ∂Vz

∂y
ŷ
)

. (11.3.10)

Adding (∂Vz/∂z)�X �Y ẑ to the first term on the right-hand side of this equation,
subtracting it again by including it in the second term, one can write:

d�O
dt

= �X �Y

{(
∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z

)
ẑ

(11.3.11)

−
(

∂Vz

∂x
x̂ + ∂Vz

∂y
ŷ + ∂Vz

∂z
ẑ
)}

.

This simple trick, together with �O = �X �Y ẑ, allows one to write the whole
equation in vector form,

d�O
dt

= (∇ · V ) �O − (∇V ) · �O. (11.3.12)
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Here I use the velocity gradient tensor ∇V that was already introduced briefly in
Sect. 3.4. This 3 × 3 tensor is defined in Cartesian coordinates as:

∇V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Vx

∂x

∂Vy

∂x

∂Vz

∂x

∂Vx

∂y

∂Vy

∂y

∂Vz

∂y

∂Vx

∂z

∂Vy

∂z

∂Vz

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.3.13)

The nine components consist of all possible spatial derivatives of the three velocity
components Vx , Vy en Vz . In a more compact notation one can write this tensor as:

(∇V )i j = ∂Vj

∂xi
. (11.3.14)

This means that the second term in relation (11.3.12) reads in component form

∇V · �O =
⎛

⎝
∑

j

∂Vj

∂xi
�Oj

⎞

⎠ êi = �X �Y

(
∂Vz

∂x
x̂ + ∂Vz

∂y
ŷ + ∂Vz

∂z
ẑ
)

,

(11.3.15)
where the last relation is only true for this particular choice of �X , �Y and the
coordinate system. This is an example of the contraction of a tensor with a vector,
which yields another vector.

One can now make a similar argument as was employed in Chap.2, when we
derived the law for the change of volume of a volume element carried passively by
the flow. Relation (11.3.12) is written in vector form, without reference to the choice
of the coordinate system. It must therefore be true in any coordinate system by the
principle of covariance. The special choice of �X and �Y , while mathematically
convenient, does not restrict the validity of this result either. Any surface can be built
up of small rectangular ‘tiles’, each of which satisfying relation (11.3.12).

Therefore, relation (11.3.12) must be true for any infinitesimal surface, regardless
its shape. Another successful application of the ‘Lego Principle’!

One can conclude that the change of an infinitesimal surface-element that is carried
(and continuously deformed) by the flow satisfies the generally valid relation

d dO
dt

= (∇ · V ) dO − ∇V · dO. (11.3.16)

Here I have changed the notation �O =⇒ dO in order to stress that one is dealing
with an infinitesimal surface element. An alternative derivation of this relation (and
the closely related volume-change law) can be found in [41], Sect. 1.7 and in the
Box below.
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Using relation (11.3.16) in Eq. (11.3.4) one finds:

d�c

dt
=

∫
dO ·

{
dω

dt
− (ω · ∇)V + ω(∇ · V )

}
. (11.3.17)

Here I used
ω · (∇V · dO) = [(ω · ∇) V ] · dO. (11.3.18)

Substituting the vorticity equation of motion (11.2.10) in the form

dω

dt
− (ω · ∇)V + ω(∇ · V ) = 1

ρ2
∇ρ × ∇P (11.3.19)

into (11.3.17), one finds the following law for the change of the circulation�c around
a curve that is passively advected by the flow:

d�c

dt
= d

dt

(∫
dO · ω(x, t)

)
=

∫
dO · (∇ρ × ∇P)

ρ2
. (11.3.20)

This result leads to Kelvin’s circulation theorem, which in its original form reads:

In a homogeneous fluid the circulation �c around a
closed curve carried by the fluid is constant

As one can see from (11.3.20) Kelvin’s theorem holds not only in a homogeneous
fluid where ∇P = 0 and ∇ρ = 0. In fact, the condition ∇P × ∇ρ = 0 is sufficient!

Fig. 11.1 A vortex tube has
an outer surface formed by
vortex lines. The circulation
�c it corresponds to the
vorticity component along
the tube axis, integrated over
the tube cross-section. It is
the analogue of the magnetic
flux in a magnetic flux tube.
If Kelvin’s theorem holds,
the circulation is conserved
as the fluid moves the vortex
tube and in the process
deforms the shape of the tube
by stretching, squashing and
bending it

vortex lines
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rte

x
tu

be

curve C
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If Kelvin’s theorem holds, the so-called vortex strength of a vortex tube, i.e. a tube
whose boundary is made up of vortex lines, is constant: �c = ∫

dO · ω = constant.
This means that the curve bounding the outer edge of the tube always encloses a
fixed amount of (surface-integrated) vorticity as it is being progressively deformed
by the flow. This is illustrated in the Fig. 11.1.

Kelvin’s circulation theorem explains why some structures (in particular: vortex
tubes) with a strongly localized and large vorticity, such as tornadoes, water sprouts
and smoke rings (i.e. a closed vortex tube), are so surprisingly stable once formed.

Summary: Material Curves, Surfaces and Volumes

At this point it is convenient to summarize the equations for a section of
curve, infinitesimal volume-element and infinitesimal surface element that are
advected passively by the flow, that is: objects on/in which all points are mate-
rial points.

In Chap.2, Eq. (2.7.5) I derived the equation for the change of a small
section �X of a material curve:

d(�X)

dt
= (�X · ∇)V . (11.3.21)

This was then used to derive the change of an infinitesimal material volume
�V (Eq. 2.7.12)

d�V
dt

= �V (∇ · V ) . (11.3.22)

These two results can be used to give an alternative derivation of the equation
for the change in a material surface �O that we just derived in a geometrical
fashion.

Consider an oriented surface �O and a material curve �X . Both are infin-
itesimal vectors that together define an infinitesimal volume �V:

�V = �X · �O. (11.3.23)

This definition of course supposes that the vectors �X and �O are not per-
pendicular, in other words: the infinitesimal vector �X can not lie in the
surface defined by �O. Remember that �O = |�O| n̂, with n̂ a unit vector
perpendicular to the surface element!

Substituting (11.3.23) into (11.3.22) one gets:

d�V
dt

= d�X
dt

· �O + �X ·
(
d�O
dt

)
= (�X · �O) (∇ · V ) . (11.3.24)
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Substituting for d�X/dt from (11.3.21) yields:

[(�X · ∇)V ] · �O + �X ·
(
d�O
dt

)
= (�X · �O) (∇ · V ) . (11.3.25)

Re-arranging terms one can write this as:

�X ·
{
d�O
dt

+ ∇V · �O − �O (∇ · V )

}
= 0. (11.3.26)

This relation must be true for an arbitrary vector �X that is not tangent to
the surface element �O. This implies that the term in the curly brackets must
vanish identically. That requirement leads to

d�O
dt

= �O (∇ · V ) − ∇V · �O, (11.3.27)

which is relation (11.3.12) that we by other means derived above.
This shows that the three equations, Eq. (11.3.21) for amaterial line element

�X , Eq. (11.3.24) for a surface element �O and Eq. (11.3.22) for a volume
element �V are internally consistent.

11.4 Application to a Thin Vortex Tube

Let us consider a thin vortex tube, a bundle of vortex lines, with such a small cross
section that the magnitude of the vorticityω can be considered constant over its cross
section. In that case the circulation associated with the closed curve around the cross
section is simply (see figure below)

�c ≡
∫

dO · ω = |ω| A. (11.4.1)

HereA is the area of the cross section, and I have used that in this case the vorticity
vector is perpendicular to the cross section surface.

As the tube is advected by the flow, it is deformed. But since the outer surface of
the tube consists of vortex lines, and since vortex lines are material curves, no mass
can flow across the cylindrical surface that bounds the tube. Consider a small section
of the tube with length ��. The total amount of mass contained in that small section
is

�M = ρ A ��. (11.4.2)
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In principleA is a function of position � along the tube axis, but this is not important
for what follows. If we follow this mass-element as the tube is deformed, its mass
must be conserved as no mass can flow into or out of the tube across its cylindrical
surface:

ρ A �� = constant. (11.4.3)

If ∇ρ × ∇P = 0, there is also no production of new vorticity, and the circulation
theorem applies so that �c is a conserved quantity:

�c = |ω| A = constant. (11.4.4)

To fix the values of the two constants, these two conservation laws can be applied at
some reference time t0, when the density inside the element is ρ0, the cross section
is A0 and the length of the section of tube equals ��0. At an arbitrary (later) time t
the conservation of mass and circulation give:

ρ A �� = ρ0 A0 ��0,

(11.4.5)

|ω| A = |ω|0 A0,

where ρ, A and �� are the density, cross section and length of the mass-element at
time t . Combining these two relations by eliminating the tube cross section using

A
A0

= ρ0

ρ

��0

��
, (11.4.6)

Fig. 11.2 A thin vortex tube, made of a bundle of vortex lines, is deformed by the flow. As a result,
the length �� and the cross section A of a small mass-element in the tube changes
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the conservation of circulation yields:

|ω|
ρ

= |ω0|
ρ0

��

��0
. (11.4.7)

This should look familiar: it is essentially relation (11.2.20)! Therefore, the conser-
vation of circulation (Kelvin’s circulation theorem) when applied to thin vortex tubes
is equivalent with the vortex stretching law. Both laws essentially describe the same
physics (Fig. 11.2).



Chapter 12
Fluid Dynamics in a Rotating Reference
Frame

12.1 Introduction

In geophysics or in planetary physics it is convenient to use unit vectors tied to the
surface to the planet. The rotation of Earth or the planet influences the equations of
motion: the unit vectors are defined in a rotating frame, not an inertial frame.

An arbitrary vector A has an identity regardless the coordinates (and associated
unit vectors) employed to represent it: it is a arrow with a certain direction and a
certain length. In a given coordinate system that employs a set of orthonormal unit
vectors ê1, ê2 and ê3 it can be written in component form,

A = A1 ê1 + A2 ê2 + A3 ê3 ≡ Ai êi , (12.1.1)

where the last term on the right-hand side uses the Einstein summation convention.
The components A1, A2 and A3 form a set three scalar functions that are defined, in
an orthonormal coordinate system only, by the projection of A on the unit vector
êi . This projection corresponds to a scalar product:

Ai ≡ A·êi (with i = 1, 2, 3). (12.1.2)

This relation follows immediately from the orthonormality condition:

êi · ê j = δi j =
⎧
⎨

⎩

1 when i = j ,

0 when i �= j .
(12.1.3)

Let us now consider two sets of coordinates: Cartesian coordinates x , y and z in an
inertial frame (laboratory frame) with a fixed set of unit vectors x̂, ŷ and ẑ, and a set
of Cartesian coordinates in a rotating frame with unit vectors ê1, ê2 and ê3. Let us
also assume that the rotation is around a fixed axis that we choose along the z-axis,
and take ê3 = ẑ. We can define a (time-dependent) rotation angle φ(t) to parametrize

© Atlantis Press and the author(s) 2016
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Fig. 12.1 The relation
between the fixed unit
vectors x̂ and ŷ in the
laboratory frame, and the
unit vectors ê1 and ê2 in a
rotating frame. The
time-dependent rotation
angle is φ(t). Its derivative
dφ/dt ≡ � is the angular
velocity of rotation

the relation between the two sets of unit vectors (see the Fig. 12.1):

x̂ = ê1 cosφ − ê2 sin φ, ŷ = ê1 sin φ + ê2 cosφ, ẑ = ê3 (12.1.4)

with inverse

ê1 = x̂ cosφ + ŷ sin φ, ê2 = −x̂ sin φ + ŷ cosφ, ê3 = ẑ. (12.1.5)

If the rate of rotation (rate of change of φ(t)) equals

dφ

dt
= �, (12.1.6)

with � the angular velocity differentiation of these relations (12.1.5) immediately
gives

dê1
dt

= �
(−x̂ sin φ + ŷ cosφ

) = �ê2,

(12.1.7)
dê2
dt

= −�
(
x̂ cosφ + ŷ sin φ

) = −�ê1,

and dê3/dt = d ẑ/dt = 0. These three relations can be written as a single vector
equation:

dêi
dt

= � × êi , � ≡ � ẑ = � ê3. (12.1.8)

The vector � is the rotation vector.
The rate of change of any time-dependent vector A(t) = Ai êi can be written as

dA
dt

=
(
dAi

dt

)
êi + Ai

(
dêi
dt

)
. (12.1.9)
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The first term on the right-hand side, involving the change of the components, is the
change seen by an observer for whom the unit vectors are fixed. In this case that
is the observer in the rotating frame. The second term gives the contribution due
to the rotation of the coordinate system. These two terms together should always
add up to the same answer, regardless the coordinate system used! This is a simple
consequence of our earlier remark that any vector A has an identity irrespective
of the coordinate system used to represent that vector. The same holds for its time
derivative (also a vector!) dA/dt .

Using (12.1.8) this means we can write the change of the vector A(t) as

(
dA
dt

)

I

=
(
dA
dt

)

R

+ � × A. (12.1.10)

Here the subscripts I and R signify that the derivatives are taken in the inertial
(laboratory) frame and in the rotating frame respectively. The second term follows
immediately, using summation convention, from the linearity of the cross product:

Ai
dêi
dt

= Ai
(
� × êi

) = � × (
Ai êi

) = � × A. (12.1.11)

Equation (12.1.10) is a relation between vectors. Therefore it is valid in any coordi-
nate system, not just in the coordinates used in the derivation of some of the steps
leading to this result.

12.2 Velocity and Acceleration in a Rotating Frame

We can apply relation (12.1.10) immediately to calculate the relation between the
velocity assigned by observers to a particle or fluid element in the inertial frame,
and the velocity seen by an observer in the rotating frame. Let the position vector of
this particle or fluid element be r(t). The definition of the velocity in the two frames
should read:

V I =
(
dr
dt

)

I

, VR =
(
dr
dt

)

R

. (12.2.1)

Relation (12.1.10) applied to the position vector r(t) implies that the velocities in
the two frames are related by

V I = VR + � × r(t). (12.2.2)

Applying relation (12.1.10) once again, but now putting A = V I, one has

(
dV I

dt

)

I

=
(
dV I

dt

)

R

+ � × V I. (12.2.3)
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Eliminating V I in the right-hand side of this equation using (12.2.2) and performing
the time-differentiation in the resulting (d(V R + � × r)/dt)R term we can rewrite
this relation as:

(
dV I

dt

)

I

=
(
dVR

dt

)

R

+
(
d�

dt

)
× r + � ×

(
dr
dt

)

R

(12.2.4)

+� × (VR + � × r(t)) .

Re-ordering terms and using (dr/dt)R = VR:

(
dV I

dt

)

I

=
(
dVR

dt

)

R

+ 2� × VR + � × (� × r) +
(
d�

dt

)
× r. (12.2.5)

Here I have allowed for the possibility that the angular rotation vector � changes as
a function of time. Equation (12.2.5) links the acceleration (dV I/dt)I as seen by an
observer in the inertial (fixed) reference frame to the acceleration (dVR/dt)R seen
by an observer fixed in the rotating reference frame.

12.3 Fluid Equations in a Rotating Frame

Newton’s equation of motion for a single particle of mass m, moving under the
influence of some force F, formally only applies in the inertial frame:

m

(
dV I

dt

)

I

= F. (12.3.1)

Substituting for (dV/dt)I from (12.2.4), and re-arranging terms, yields an equation
of motion valid for an observer in the rotating frame:

m

(
dVR

dt

)

R

= F − 2m� × VR − m� × (� × r) − m
d�

dt
× r. (12.3.2)

The rotating observer must include a number of extra ‘force terms’ to the equation of
motion. These are ‘fictitious forces’ that are entirely due to the fact that the rotating
observer does not reside in an inertial frame.1 These extra force terms are:

• The Coriolis force Fco ≡ −2m� × VR;
• The centrifugal force Fcf ≡ −m� × (� × r);
• The Euler force FE ≡ −m(d�/dt) × r .

1For a full discussion of these issues see [17] and [37].
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The Euler force only arises if the rotation rate (or the rotation axis) of the coor-
dinate system changes with time. In what follows we will assume that this is not the
case, and put d�/dt = 0.

This treatment of single-particle forces in a rotating reference frame can be imme-
diately used to formulate fluid dynamics in a rotating frame. The equation of motion
for the fluid takes the form

ρ

(
dVR

dt

)

R

= −∇P − ρ∇� − 2ρ� × VR − ρ� × (� × r). (12.3.3)

Here a centrifugal termandaCoriolis terms appear in a completely analogous fashion.
Since we are dealing with a fluid or gas (continuum) they appear here as force
densities.
Equation (12.3.3) can be written as

ρ

(
dVR

dt

)

R

+ 2ρ � × VR = −∇P + ρgeff . (12.3.4)

The effective gravity geff in this expression is the sum of the true gravitational accel-
eration and the centrifugal acceleration:

geff = −∇� − � × (� × r). (12.3.5)

Here �(x, t) the Newtonian gravitational potential.
In the case of rigid rotation around the z-axis, where � = � ẑ, the centrifugal force
is

− � × (� × r) = ∇
(
1

2
�2R2

)
= ∇

( |� × r|2
2

)
. (12.3.6)

Here R = √
x2 + y2 is the cylindrical radius. This means that the effective gravity

can also be written in terms of a potential:

geff = −∇
(

� − |� × r|2
2

)
≡ −∇�eff . (12.3.7)

This effective potential

�eff(x, t) = � − |� × r|2
2

= � − �2R2

2
. (12.3.8)

This completes the derivation of the equations that govern an ideal fluid in a rigidly
rotating coordinate frame. Adding for completeness sake the equation of state for an
adiabatic medium and the continuity equation, and re-instating the subscript ‘R’, the
relevant set of equations is summarized in the Box on the next page.
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Summary: Equations for a Fluid in a Rotating Reference Frame
The equation of motion, the continuity equation, the definition of the effec-
tive potential �eff , the adiabatic gas law and the time derivative in a rotating
reference frame are respectively:

ρ

(
dVR

dt

)

R

+ 2ρ� × VR = −∇P − ρ∇�eff;

∂ρ

∂t
+ ∇·(ρVR) = 0;

�eff = � − |� × r|2
2

; (12.3.9)

P = P0

(
ρ

ρ0

)γ

;

(
dVR

dt

)

R

= ∂VR

∂t
+ (VR·∇) VR.

The last definition defines to the co-moving time derivative in the rotating
frame in terms of quantities measured in that frame.
These equations do assume that the angular rotation vector � is a constant
vector.



Chapter 13
Fluids in a Rotating Frame: Applications

13.1 Planetary Vorticity and the Thermal Wind Equation

For obvious reasons, geophysicists, oceanographers and planetary physicists use a
coordinate system that rotates with the planet: the co-rotating frame. To describe
the medium (the ocean, the atmosphere or the magma in the Earth’s interior), they
have to use the equations outlined in the preceding section. In many applications,
the vorticity of the fluid or gas plays an important role. Since we have transformed
the velocities to the co-rotating frame, something analogous must be done for the
definition of the vorticity, and the associated equation of motion. This will lead to the
definition of the absolute vorticity, whose definition includes a contribution from the
swirling motions in the rotating frame as well as a contribution from the planetary
rotation.

One canderive an equation for the vorticity in the rotating frame,ωR = ∇×VR, by
using the samemethods as were employed in Sect. 12.1. In order tomake the notation
less cumbersome, I will drop from this point onwards the subscript R in terms like
VR, (dVR/dt)R etc., assuming implicitly that all quantities without subscript are the
quantities as evaluated by an observer fixed in the co-rotating frame.

Using the vector identity

(V · ∇)V = ∇
(
1

2
V 2

)
− V × (∇ × V )

= ∇
(
1

2
V 2

)
− V × ω,

once again, one can write the equation of motion as:

∂V
∂t

+ (ω + 2�) × V = −∇P

ρ
− ∇

( |V |2
2

+ �eff

)
. (13.1.1)
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Taking the rotation ∇ × in both sides of this relation, one finds the equation of
motion for the vorticity ω = ∇ × V in the rotating frame:

∂ω

∂t
= ∇ × {V × (ω + 2�)} + 1

ρ2
∇ρ × ∇P. (13.1.2)

This equation of motion for ω(x, t) shows explicitly how the rotation of the coordi-
nate frame influences the vorticity in the co-rotating frame an influence that can be
traced to the Coriolis term ∝ 2� × V in the original equation of motion. One can
define the so-called absolute vorticity ωa by

ωa ≡ ω + 2�. (13.1.3)

If we assume that d�/dt = ∂�/∂t = 0, the vorticity equation can be written as an
equation for the absolute vorticity:

∂ωa

∂t
= ∇ × (V × ωa) + ∇ρ × ∇P

ρ2
. (13.1.4)

This equation has exactly the same form as the equation as derived for the vorticity
in a non-rotating frame (Eq. 11.2.8). This result is not surprising once one realizes
that the absolute vorticity ωa in fact coincides with the vorticity ∇ × V I of the fluid
in the inertial frame. Using

V I = V + � × r, (13.1.5)

one can show that for constant � the identity1

ωI = ∇ × V I = ∇ × (V + � × r) = ω + 2� = ωA (13.1.6)

is valid. According to this relation, the vorticity in the inertial frame can be thought
of as the sum of two contributions: the vorticity of the fluid motions (‘swirls’) in
the rotating frame, the relative vorticityω, and the so-called planetary vorticity 2�
that is due to the rotation of the reference frame. The circulation can therefore be
defined as

�c =
∫

ωa · dO =
∫

(ω + 2�) · dO. (13.1.7)

Kelvin’s circulation theorem still applies for the absolute vorticity ωa:

d�c

dt
= d

dt

(∮
(V + � × r) · dr

)
=

∫
dO · (∇ρ × ∇P)

ρ2
. (13.1.8)

1An interesting exercise in vector analysis, best performed in cylindrical coordinates with the
rotation axis chosen along the z-axis.
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This result means that in an ideal (i.e. frictionless) barotropic flow, where
∇P × ∇ρ = 0, the circulation �c is once again conserved:

�c =
∫

(ω + 2�) · dO = constant. (13.1.9)

In many practical applications the planetary vorticity is much larger than the relative
vorticity,

2|�| � |ω|. (13.1.10)

In that case, Eq. (13.1.4) can be approximated. First we write the equation in the
form

dω

dt
= [(ω + 2�) · ∇] V − (ω + 2�)(∇ · V ) + ∇ρ × ∇P

ρ2
. (13.1.11)

Here we once again take �/∂t = constant. If we now assume that the relative
vorticity is small compared with the planetary vorticity (Eq. 13.1.10), we can neglect
ω with respect to 2� whenever they appear together, as they do in the first two terms
on the right-hand side of Eq. (13.1.11).

For |ω| � 2� Eq. (13.1.11) can be approximated by:

dω

dt
= (2� · ∇)V − 2�(∇ · V ) + ∇ρ × ∇P

ρ2
. (13.1.12)

If, in addition, the timescale for changes in the flow is long compared with the
planetary rotation period, P = 2π/|�|, as is the case for instance when one describes
large-scale and long-lived planetary circulation rather than a small-scale, short-lived
local weather system, one can also neglect the time-derivative dω/dt on the left-hand
side of this equation. The resulting (approximated) vorticity equation is known as
the thermal wind equation. It is usually written in the form

(2� · ∇)V − 2�(∇ · V ) = −∇ρ × ∇P

ρ2
. (13.1.13)

A major simplification occurs for incompressible flows, with ∇ · V = 0. In such
flows the density is conserved along flow lines: from the continuity equation one has

dρ

dt
= −ρ(∇ · V ) = 0. (13.1.14)

In that case Eq. (13.1.13) is simplified:

(2� · ∇)V = − R
μρ

(∇ρ × ∇T ) . (13.1.15)
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Here I have used the ideal gas law, P = ρRT/μ. This equation shows how gradients
along the rotation axis in the flow are induced by the combined action of non-
parallel density- and temperature gradients. In practice the approximation of an
incompressible flow is reasonable as long as the flow speed is much less than the
speed of sound.

13.2 The Global Eastward Circulation in the Zonal Wind

Let us consider the consequence of the thermal wind equation to the dynamics of
the Earth’s atmosphere. We will assume that the atmosphere is a very thin layer, in
practice an excellent approximation.We choose a localCartesian coordinate system,
in such a way that the z-direction corresponds with the (local) vertical direction, that
the x-direction runs from West to East in longitude, and the y-direction runs from
South to North in latitude. Finally, the vertical component of the rotation vector of
the Earth is �z = � · ẑ. Only this component enters the Coriolis force in the x − y
plane.

The dominant density gradient in a geometrically thin atmosphere is the vertical
gradient due to the gravitational stratification:

∇ρ ≈
(
dρ

dz

)
ẑ ≈ − ρ

H ẑ. (13.2.1)

HereH is the atmospheric scale height (see Sect. 8.3):

H = RT

μgeff
. (13.2.2)

Here I assume for simplicity that the atmosphere is isothermal with height: ∂T/∂z =
0. Note that the gravitational acceleration is taken to be geff = −geff ẑ, which is the
effective gravity in the co-rotating frame. The dominant temperature gradient is the
temperature gradient from the Tropics to the Poles, which runs North-South in the
Northern Hemisphere, and in the opposite direction in the Southern Hemisphere:

∇T ≈
(
dT

dy

)
ŷ. (13.2.3)

Finally, since most of the large-scale motions must be in the plane of the atmosphere
(as there is little room for vertical motions) we assume that the velocity vector V
lies in the x − y plane. The thermal wind equation predicts that these density- and
temperature gradients induce a circulation along lines of constant latitude, which
satisfies:

2�z
dVx

dz
= R

μρ

(
dρ

dz

) (
dT

dy

)
. (13.2.4)
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Here I have assumed that the dominant component of the velocity gradient is in the
vertical (z-)direction.

Using the relations (13.2.1) and (13.2.2), the thermal wind equation can be
written as:

2�z
dVx

dz
= − R

μH
(
dT

dy

)
= −geff

(
1

T

dT

dy

)
. (13.2.5)

Since dT/dy < 0 in the Northern Hemisphere where �z > 0, and dT/dy > 0 in
the Southern Hemisphere where �z < 0, this induces a global, eastward circulation
at high altitude in the atmosphere: the Zonal Wind. Near the Earth’s surface this
eastward velocity is very small, due to friction between the atmospheric motions
and the surface of the continents, or the friction between the wind and the surface
of the oceans. However, the velocity increases with height according to (13.2.5). At
high altitudes only internal atmospheric friction operates, which is much smaller.
The resulting flow is an example of a shear flow, where the magnitude of the velocity
increases in the direction perpendicular to the flow.

The Fig. 13.1 shows a measurement of this global (mean) eastward circulation
pattern in the Earth’s atmosphere over a period of 10years, from 1990 until 1999.
Such a long-term measurement is needed in order to detect this pattern over the
strong ‘noise’ caused by the stronger (but shorter-lived) weather patterns such as
high-pressure regions, depressions and tropical cyclones.

Fig. 13.1 Measurement of the eastward Zonal Wind over the years 1990–1999
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Fig. 13.2 The prominent bands in the atmosphere of Jupiter, as photographed by the Cassini space
probe when it passed Jupiter on its way to Saturn. These bands are the visible evidence for strong
Zonal Winds, caused by the rapid rotation of Jupiter. Inside these bands, many vortices are seen that
are created due to the velocity shear between the different layers in the atmosphere. The large Jovian
moon on the right-hand side of this picture is Ganymede Photograph: Cassini Imaging Team/NASA

The large gas planets in our Solar System, such as Jupiter, Saturn and Uranus, are
rotating very rapidly compared to theEarth.2 As a result, ZonalWinds of these planets
are much stronger than those on Earth: they are the cause of the prominent colored
bands that are visible in the upper atmospheres of these planets. The photograph
below from the Cassini spacecraft illustrates this beautifully. In the gas giants the
zonal winds are the dominant weather systems! (Fig. 13.2).

13.3 The Shallow Water Approximation

In the study of planetary weather systems, both on Earth and in the giant gas planets
such as Jupiter and Saturn, one often uses Shallow Water Theory. In this theory the
motion of the fluid is described as a quasi two-dimensional flow of variable thickness,
see the Fig. 13.3.

2The rotation periods are for Jupiter: 0.41day, for Saturn: 0.44day and for Uranus: 0.65day.
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Fig. 13.3 The basic geometry of Shallow Water Theory. The flow is described by the motion in
the x − y plane with velocity V h = (u, v) and the thickness H of the fluid layer. The topography
of the bottom induces variations in H . The motion is independent of the height in the layer, as
illustrated by the vortex column in the figure. The height of the water column above the plane z = 0
is h = H + hb

The following approximations are made:

1. One assumes that the thickness of the layer is small: if the typical size of the flow
in the horizontal direction is L , and if the thickness of the flow layer in the vertical
direction is H , then the shallow water theory can be applied provided

H � L . (13.3.1)

2. One describes the flow in terms of the thickness of the layer, H(x, y, t), and the
two components of the velocity in the horizontal (x − y) plane, V h;

3. One assumes that the density and horizontal velocity are uniform in the vertical
(z-)direction so that

∂ρ

∂z
= 0,

∂V h

∂z
= 0. (13.3.2)

4. The underlying (fully three-dimensional) flow is assumed to be incompressible
so that the velocity satisfies∇ · V = 0. If we adopt the notation that is commonly
used in the geophysical community,3 and use condition (13.3.2), one can write
the velocity as:

V (x, t) = u(x, y, t)x̂ + v(x, y, t) ŷ + w(x, t) ẑ

(13.3.3)

≡ V h(x, y, t) + w(x, t) ẑ.

3see for instance Ref. [37], Chap. 3.



288 13 Fluids in a Rotating Frame: Applications

The incompressibility condition then reads:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (13.3.4)

5. One assumes that there is a uniform gravitational acceleration in the vertical
direction:

g = −g ẑ. (13.3.5)

Equation are formulated in the co-rotating frame. The vertical component of the
rotation vector is

�z ≡ � · ẑ. (13.3.6)

The assumption of an incompressible flow immediately leads to a dynamical equation
for the thickness of the layer. In an incompressible flow the volume �V of a fluid-
element is conserved by the flow (see Sect. 2.7):

d�V
dt

= 0. (13.3.7)

The conservation of such an infinitesimal volume can be represented as

�V = �OHH(x, y, t) = constant. (13.3.8)

Here �OH is the area of the fluid element when projected onto the horizontal plane,
and H is the layer thickness. The thickness of the layer varies as a function of the
position (x, y) in the horizontal plane, and can additionally be a function of time.
The shallow water approximation (13.3.1) implies that the vertical component of the
fluid velocity is much smaller than the horizontal component:

|w| ∼ H

L
|V h| � |V h|. (13.3.9)

In that case, the deformation of the surface element �OH is almost entirely due to
the motions in the horizontal plane.

It is therefore described by the z-component of Eq. (11.3.16):

d�Oh

dt
=

(
∂u

∂x
+ ∂v

∂y

)
�Oh. (13.3.10)

Because of (13.3.9), one can approximate the total time derivative here (and in what
follows) by

d

dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
. (13.3.11)
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Since the volume of a fluid element in the divergence-less flow is conserved,

d�V
dt

= 0 =
(
dH

dt

)
�Oh + H

(
d�Oh

dt

)
, (13.3.12)

one can use (13.3.10) to find an expression for the change in the layer thickness
H(x, y, t):

dH

dt
= ∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
= −H

(
1

�Oh

d�Oh

dt

)

(13.3.13)

= −H

(
∂u

∂x
+ ∂v

∂y

)
.

Re-arranging and combining terms, it is easily seen that this corresponds to

∂H

∂t
+ ∂

∂x
(uH) + ∂

∂y
(vH) = 0. (13.3.14)

The z-component of the vorticity equation (13.1.11) can bewritten for∇ρ × ∇P = 0
as:

dωz

dt
= (ω + 2�) · ∇w − (ωz + 2�z)∇ · V . (13.3.15)

The second term on the right-hand side vanishes as the flow is incompressible.
Turning our attention to the first term, we can use the fact that the layer is thin:

H � L . In that case we have as an order of magnitude:

∂w

∂z
∼ w

H
� ∂w

∂x
,

∂w

∂y
∼ w

L
. (13.3.16)

Therefore, we can approximate the z-component of the vorticity equation by

dωz

dt
= (ωz + 2�z)

∂w

∂z
. (13.3.17)

Using the incompressibility condition (13.3.4) to eliminate ∂w/∂z from this equa-
tion, and defining ζ ≡ ωz , one finds:

dζ

dt
= − (2�z + ζ)

(
∂u

∂x
+ ∂v

∂y

)
. (13.3.18)

If we now use (13.3.14) in the form

dH

dt
= −H

(
∂u

∂x
+ ∂v

∂y

)
, (13.3.19)
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and employ the fact that d�z/dt = 0, it is easily seen that these two equations can
be combined to yield a conservation law for (2�z + ζ)/H , a quantity known as the
potential vorticity:

d

dt

(
2�z + ζ

H

)
= 0. (13.3.20)

This equation shows that relative vorticity ζ can be generated by changes in the layer
thickness H , even when it is not initially present. If the layer thickness H changes,
the relative vorticity must adjust in order to keep the potential vorticity at a constant
value. Note that �z never changes: it is a constant set by the rotation of the planet!

This conservation law for the potential vorticity physically corresponds to vortex
stretching in ShallowWater Approximation. The motions responsible for the change
in the layer thickness generate vorticity due to the Coriolis force acting on the flow.

The pressure in the ShallowWater Approximation follows from hydrostatic equi-
librium in the vertical direction. This assumes implicitly that the underlying vertical
velocities remain small when compared with the horizontal velocities: |w| � |V h|.
The equation of hydrostatic equilibrium reads

∂P

∂z
= −ρg. (13.3.21)

Since the Shallow Water Approximation assumes a uniform density in the vertical
direction, ∂ρ/∂z = 0, the equation of hydrostatic equilibrium can be integrated
immediately. If there is a fixed pressure P0 at the top of the layer, which is located
at z = h(x, y, t), (see figure) the solution of (13.3.21) reads

P(x, y, z, t) = ρg [h(x, y, t) − z] + P0. (13.3.22)

The pressure at depth z is the weight per unit area of the overlying column of fluid,
plus the pressure P0 of the medium at the top of the layer. The pressure P0 could for
instance be the atmospheric pressure at the surface of a body of water.

This relation between the pressure and the height h of the top of the layer implies
that the horizontal pressure gradient is independent of the z-coordinate. Direct cal-
culation yields:

∇hP =

⎛

⎜⎜⎜⎝

∂P

∂x

∂P

∂y

⎞

⎟⎟⎟⎠ = ρg

⎛

⎜⎜⎜⎝

∂h

∂x

∂h

∂y

⎞

⎟⎟⎟⎠ . (13.3.23)

In the Shallow Water Approximation the resulting pressure force in the horizontal
plane is completely determined by the variations in the position h of the top of the
fluid layer. If the bottom of the layer is at height z = hb(x, y), where the variation
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of hb as a function of x and y gives the bottom topography, the thickness H of the
fluid layer is simply

H(x, y, t) = h(x, y, t) − hb(x, y). (13.3.24)

13.3.1 The Shallow Water Equations

We can now write down the set of equations governing Shallow Water Theory. To
facilitate the notation I define the following quantities:

∇h =
(

∂

∂x
,

∂

∂y

)
, V h = (u, v), V h · ∇h = u

∂

∂x
+ v

∂

∂y
. (13.3.25)

The vector V h and gradient operator ∇h are two-dimensional entities that ‘reside’
in the horizontal (x − y-)plane. The equations for a fluid in the Shallow Water
Approximation are:

1. The equation of motion in the horizontal plane:

∂V h

∂t
+ (V h · ∇) V h + 2�z

(
ẑ × V h

) = −∇hP

ρ
; (13.3.26)

This equation is simply the general equation of motion for a fluid in a rotating
frame (Eq. 12.3.3), projected onto the x − y plane. Note the presence of the
Coriolis term.

2. The equation for the layer thickness:

∂H

∂t
+ ∇h · (V hH) = 0; (13.3.27)

This equation replaces the continuity equation in ordinary fluid mechanics. It is
the result of mass conservation, and of the assumption that the underlying (fully
three-dimensional) flow, which the Shallow Water Approximation describes in
an approximate fashion, is incompressible.

3. The constituent relations for the density ρ, the layer thickness H and the
pressure P:

∂ρ

∂z
= 0;

P = P0 + ρg [h(x, y, t) − z] ; (13.3.28)

H(x, y, t) = h(x, y, t) − hb(x, y);

http://dx.doi.org/10.2991/978-94-6239-195-6_12
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The second of this set of equations replaces the equation of state of ordinary gas
dynamics: it provides the pressure as a function of the density and the height of
the layer. Since we are working in a rotating reference frame, the gravitational
acceleration g is really geff .

4. The equation for the potential vorticity which follows from the above equations
and the equation of motion for vorticity in a rotating reference frame:

(
∂

∂t
+ V h · ∇h

) (
2�z + ζ

H

)
= 0. (13.3.29)

This equation takes the form of a conservation law.

If one eliminates the pressure from these equations, using relation (13.3.23), one
can write the Shallow Water Equations in a form where all explicit reference to
pressure and density has disappeared:

The Equations of Shallow Water Theory

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− 2�zv = −g

∂(H + hb)

∂x
;

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ 2�zu = −g

∂(H + hb)

∂y
;

(13.3.30)

∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
= −H

(
∂u

∂x
+ ∂v

∂y

)
;

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

) (
2�z + ζ

H

)
= 0.

Here it is assumed that the bottom topography, as described by the function hb(x, y),
is given.

This formof the shallowwater equations is commonly employed in the geophysics
community. As such, these equations present a major simplification when they are
compared with the full set of equations employed in three-dimensional hydrodynam-
ics. This simplification explains the popularity of the ShallowWater Approximation
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in the fields of meteorology, oceanography and the study of the atmospheres of the
Gas Giants Jupiter, Saturn and Uranus.

Potential Vorticity: An Alternative Derivation
The two main equations leading to the conservation law for potential vorticity
can be derived in an alternative manner. I start with the equation for the layer
thickness H . The fully three-dimensional flow is assumed to be incompressible:

∇ · V = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (13.3.31)

This implies that the ‘two-dimensional’ divergence satisfies

∂u

∂x
+ ∂v

∂y
= −∂w

∂z
. (13.3.32)

The Shallow Water Approximation assumes that the horizontal velocity com-
ponents u and v do not vary with height:

∂u

∂z
= ∂v

∂z
= 0. (13.3.33)

Integrating equation (13.3.32) from the bottom of the layer, at z = hb, to the
top, at z = hb + H , using (13.3.33) one finds:

∫ hb+H

hb

dz

(
∂w

∂z

)
= −

∫ hb+H

hb

dz

(
∂u

∂x
+ ∂v

∂y

)

(13.3.34)

= −H

(
∂u

∂x
+ ∂v

∂y

)
.

The integral on the left-hand side of this relation is trivial: one has

∫ hb+H

hb

dz

(
∂w

∂z

)
= w(x, y, hb + H, t) − w(x, y, hb, t). (13.3.35)
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Sincew = dz/dt , and the fact that it is not possible to draw vacuum bubbles
between the bottom and the fluid, one must have:

w(x, y, hb, t) = dhb
dt

,

(13.3.36)

w(x, y, hb + H, t) = d(hb + H)

dt
.

Substituting these two relations into (13.3.34) one finds:

dH

dt
= −H

(
∂u

∂x
+ ∂v

∂y

)
. (13.3.37)

This is equation (13.3.13).
In the shallow-water approximation the only component of the vorticity is

the z-component. The absolute vorticity (i.e. the vorticity in the laboratory
frame that is not co-rotating) has a z-component

ωaz = ζ + 2�z . (13.3.38)

Thevortex lines associatedwith this vorticity are all along the z-axis. The length
of these lines varies as the thickness of the layer varies. Since the horizontal
velocity components u and v do not depend on z, the absolute vorticity also
satisfies:

∂ωaz

∂z
= 0. (13.3.39)

This means that the vorticity is uniform in the z-direction. We can then apply
the vortex stretching law Eq. (11.2.20) in the form

d

dt

(
ωaz

ρ�z

)
= 0 (13.3.40)

to the whole vortex line, which has a length �z = (H + hb) − hb = H .

http://dx.doi.org/10.2991/978-94-6239-195-6_11
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The ShallowWater Approximation assumes from the outset that the underlying
three-dimensional flow is incompressible. Therefore, the density in a given
fluid element remains constant:

dρ

dt
= −ρ∇ · V = 0. (13.3.41)

The vortex stretching law (13.3.40) in the shallow water approximation with
�z = H and ωaz = 2�z + ζ then simply reads:

d

dt

(
2�z + ζ

H

)
= 0. (13.3.42)

This is the conservation law (13.3.20) for the potential vorticity. For a steady
flow, with d/dt = V · ∇, this reduces to

V · ∇
(
2�z + ζ

H

)
= 0 ⇔ 2�z + ζ

H
= constant along streamlines.

(13.3.43)

13.4 Shallow Water Waves in a Rotating Frame

The equations of Shallow Water Theory have solutions that describe the small-
amplitude waves. Let us assume that the unperturbed fluid is at rest (V h = 0),
that the bottom is flat so that we can put hb = 0. Consider small perturbations in a
fluid of unperturbed depth H0, so that

V h = δV h = (δu, δv), H = H0 + δH(x, y, t). (13.4.1)

We already considered the more general case of waves on a lake of arbitrary depth
without frame rotation in Sect. 8.6, where we found that for a shallow lake the wave
frequency equals

ω = ±k
√

gH0 (13.4.2)

The results obtained here should reduce to that in the limit �z = 0.
The shallow water equations from the preceding section can be linearized by

consistently neglecting all quadratic terms in δu, δv and δH , in their cross-products
and in the derivatives. This yields the following set of linear equations:

http://dx.doi.org/10.2991/978-94-6239-195-6_8
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∂δu

∂t
− 2�zδv = −g

∂δH

∂x
;

∂δv

∂t
+ 2�zδu = −g

∂δH

∂y
; (13.4.3)

∂δH

∂t
= −H0

(
∂δu

∂x
+ ∂δv

∂y

)
.

Let us look for plane-wave solutions of the form

⎛

⎜⎜⎜⎜⎝

δu(x, y, t)

δv(x, y, t)

δH(x, y, t)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

ũ

ṽ

H̃

⎞

⎟⎟⎟⎟⎠
× exp(ikx x + iky y − iωt) + cc. (13.4.4)

This is the standard planewave expansion already introduced in Chap. 7. Substituting
this assumption into the set of equations (13.4.3) one finds a set of three coupled and
linear algebraic equations. They can be solved in the manner outlined in Chap.7. In
matrix notation: the plane wave assumption when substituted into (13.4.3) yields

⎛

⎜⎜⎜⎜⎝

ω −2i�z −kxg

+2i�z ω −kyg

−kx H0 −kyH0 ω

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

ũ

ṽ

H̃

⎞

⎟⎟⎟⎟⎠
= 0. (13.4.5)

As in the case of sound waves, there are only non-trivial solutions if the determinant
of the 3×3matrix in the above equation vanishes identically. This solution condition
yields the dispersion relation for shallow water waves, which includes the influence
of the horizontal component of the Coriolis force:

ω3 − [(
k2x + k2y

)
gH0 + 4�2

z

]
ω = 0. (13.4.6)

Discarding the trivial solution ω = 0, there remain two independent solutions for ω
of opposite sign:

ω = ±
√
k2C2

H + 4�2
z . (13.4.7)

Here k ≡
√
k2x + k2y is the horizontal wavenumber. In this dispersion relation appears

a characteristic velocity CH, which is given by

CH ≡ √
gH0. (13.4.8)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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In the limit �z = 0 relation (13.4.7) reduces to (13.4.2), as required. CH is the
typical velocity associated with the depth H of the fluid layer, and the strength g of
the gravitational acceleration.4 If there is no rotation (so that �z = 0) the dispersion
relation (13.4.7) reduces to ω = ±kcH , a dispersion relation that looks exactly the
same as the dispersion relation for sound waves: ω = ±kCs. This velocity CH is
analogous to the sound speed Cs in the following sense. The pressure at the bottom
of the layer equals P(z = 0) = P0 + ρgH0, with P0 the atmospheric pressure.

This implies that the speed CH formally obeys the relation

C2
H =

(
∂P

∂ρ

)

z=0

= gH0. (13.4.9)

For sound waves in a polytropic (adiabatic) gas on the other hand, where P ∝ ργ ,
the characteristic velocity associated with the waves is the adiabatic sound speed,
which is also determined by the derivative of pressure with respect to density:

C2
s = ∂P

∂ρ
= γP

ρ
. (13.4.10)

Despite this analogy, there is an important difference between the waves occurring in
Shallow Water Theory, and adiabatic sound waves. Sound waves are compressible,
with an associated velocity perturbation δV = ∂ξ/∂t that satisfies ∇ · δV 	= 0.
The shallow water equations on the other hand assume ab initio that the (three-
dimensional) flow is incompressible: ∇ · V = 0. As a result, the shallow water
waves are incompressible! Their existence is entirely due to the variations in the
layer thickness and the pressure forces caused by these variations, together with the
Coriolis force acting on the fluid.

13.5 Cyclones and Jupiter’s Great Red Spot

13.5.1 Cyclones

A cyclone (or hurricane) is a rapid circulation pattern around a compact region of
extreme low pressure. They occur in the (sub)tropics above the warm waters of
the oceans. (As we will see, the circulation around a high-pressure region is anti-
cyclonic: the material rotates in the opposite sense). The low pressure in cyclones is
the result of a strong rising motion in the atmosphere. This upward motion is driven
by buoyancy, which in turn results from the release of the latent heat by water in the

4There is an analogous velocity in classical mechanics: a pendulum with length �, suspended in
a gravity field with a uniform gravitational acceleration g, oscillates with frequency ω = √

g/�

around the vertical for small-amplitude oscillations. The velocity of the mass at the end of the
pendulum equals v = ω� = √

g�.
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Fig. 13.4 The circulation pattern in a cyclone or a hurricane. Moist air rises due to buoyancy, and
the resulting region of low pressure leads to a cyclonic circulation near sea level. At the top of the
cyclone, where matter flows away, the circulation is anticyclonic

moist air. This heat release occurs when water vapor condenses into droplets. The
gas absorbs the energy released by the condensing water vapor and the gas heats.
This heating causes the gas to expand in an effort to undo the associated increase
in pressure, so that the pressure equilibrium with the surrounding (colder and less
moist) air is restored. This lowers the density of the moist gas, and the gas rises due
to the Archimedes force. This upward motion lowers the pressure even more, and
more moist air from the surface that carries water evaporated from the ocean below
is sucked into the cyclone, keeping the process going. The two Figs. 13.4 and 13.5
respectively show the circulation pattern and, as an example of cyclonic circulation
on the Northern Hemisphere, a satellite image of the tropical Hurricane Katrina,
which devastated the South-Eastern coast of the United States in 2005.

The motion of air near the surface into the low-pressure region is deflected by the
Coriolis force, leading to a circulation around the low-pressure core.5 To describe
this circulation I will use the so-called geostrophic limit of the equations of motion.

In the geostrophic limit onemakes a number of approximations. If the typical time
for temporal changes in the flow is T , and if the typical length scale for gradients in
the horizontal plane is L , one can estimate the typical magnitude of derivatives as:

∣∣∣∣
∂V h

∂t

∣∣∣∣ ∼ |V h|
T

, |(V h · ∇h)V h| ∼ |V h|2
L

. (13.5.1)

5Because of mass conservation, the material must flow away again at high altitude, leading to an
anti-cyclonic circulation at great height.
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Fig. 13.5 Hurricane Katrina approaching Florida in 2005. Foto credit: NASA,MODIS Land Rapid
Response Team, Goddard Space Flight Center

The geostrophic limit corresponds to the situation where [1] the intrinsic time
dependence of the flow is slow, [2] the flow is very subsonic so that ρV 2

h � P and
[3] the flow only varies on a sufficiently large length scale. This implies

|∂V h/∂t |
|2� × V h| ∼ 1

2|�z|T � 1,
|(V h · ∇h)V h|

|2� × V h| ∼ |V h|
2�z L

≡ Ro � 1. (13.5.2)

The dimensionless quantity Ro is called the Rossby Number. It measures the relative
importance of frame rotation for the dynamics of a fluid. If the Rossby number
is small, the Coriolis force in the rotating system is dominant over the ordinary
inertial force: |2� × V h| � |dV h/dt |. In a flow with Ro � 1 one can (as a first
approximation) neglect the inertial term dV h/dt in the shallow-water equation of
motion. The reduced equation of motion in the geostrophic approximation therefore
reads:

2�z
(
ẑ × V h

) = −∇hP

ρ
. (13.5.3)

In this limit, the Coriolis force due to planetary rotation balances the pressure force.
The unit vector ẑ is oriented along the local vertical direction, so its direction (and
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consequently the vertical component �z = � · ẑ) varies with geographical latitude,
switching sign at the Equator. Taking the cross product of this equation with ẑ, using
the vector relation

A × (B × C) = (A · C) B − (A · B)C (13.5.4)

for A = B = ẑ and C = V h, together with ẑ · V h = 0 and ẑ · ẑ = 1, one finds:

V h = ẑ × ∇hP

2ρ�z
. (13.5.5)

In the geostrophic approximation, the flow direction is perpendicular to the direction
of the pressure gradient, exactly at right angles to the flow direction onemight naively
expect. This implies that the flow lines are along the lines of constant pressure: the
so-called isobars.

Since the projection of the planetary rotation vector on the local vertical, �z =
� · ẑ, changes sign at the equator, cyclones rotate in opposite directions on the
Southern- andNorthernHemisphere. OnEarth, the circulation around a region of low
pressure region (and around cyclones or hurricanes, which are essentially extreme,
compact low-pressure regions) is anti-clockwise on the Northern Hemisphere, and
clockwise on the Southern Hemisphere. For high-pressure regions the circulation
around the region has the opposite sense.

Of course, if one describes the flowmore precisely than is donewhen one employs
the geostrophic limit, the flow lines actually do cross the isobars, creating a spiral-like
flow pattern with mass flowing into a low-pressure region near the Earth’s surface,
and mass flowing out of a high-pressure region.

13.5.2 Jupiter’s Great Red Spot

Shortly after the invention of the telescope observers noticed a large feature in the
atmosphere of Jupiter. This feature, known as theGreat Red Spot for its reddish color,
measures some 14,000km in the north-south direction, and some 40,000km in the
east-west direction (see Fig. 13.6). TheGreat Red Spot has persisted until today, some
400years. Measurements of the motions of the material inside the Great Red Spot,
which were done by the Voyager space probes, have shown that this material moves
in a counter-clockwise (anticyclonic) direction. The material inside the Great Red
Spot is colder than its surroundings. It rotates once per seven days around the core.
This rotation corresponds to a wind speed of about 100 m/s. The uppermost clouds
of the Great Red Spot rise about 2–5km above the surrounding Jovian atmosphere.

There are many similar (but much smaller) structures visible in Jupiter’s
atmosphere, the so-called white ovals. Similar structures have been observed in the
atmospheres of the other two rapidly rotating gas giants, Saturn and Uranus.
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Fig. 13.6 Jupiter’s Great Red Spot as observed in 1996 by the Galileo spacecraft at infra-red
wavelengths. Foto credit: NASA/JPL/Cassini Imaging Team

The Great Red Spot (GRS) is the most powerful vortex known in the planetary
system. Over the years, a number of different hypotheses have been advanced as to
its origin:

• The oldest suggestion, due to Hide [19], is that the GRS is a so-called Taylor
Column. Such a column occurs if a planetary wind, (in the case of Jupiter the
strong zonal wind) encounters a solid obstacle, such as a mountain ridge or a large
skyscraper. In the lee (the sheltered side) of the obstacle a vortex (or in many
cases: a train of vortices) is formed. The thermal wind equation (13.1.13) in the
baroclinic limit (where ∇P × ∇ρ = 0), reduces to a particularly simple form if
one assumes incompressibility ∇ · V = 0:

(2� · ∇)V = 0. (13.5.6)

In this limit, the Taylor-Proudman theorem is valid, which states that the velocity
does not vary along the direction of �. Since the Great Red Spot occurs at rather
high latitudes, there is an appreciable angle between � and the (local) horizontal
plane. This means that any fluid motion induced by the obstacle is ‘mapped’ along
the direction of � to higher fluid layers. The fluid moves as if the obstacle were
present there also: it is forced to move in ‘columns’ along �. This is illustrated
below in Fig. 13.7 for a more simple laminar flow (a flow without vortices) around
a cylinder. This hypothesis for the GRS is no longer believed: we know that there is
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Fig. 13.7 An illustration of the Taylor-Proudman theorem. A cylinder of finite height forms an
obstacle in a flow in the horizontal plane. This cylinder serves as a simple model for a skyscraper.
The flow lines are forced around the cylinder. Above the cylinder, the flow behaves as if the cylinder
is still there, be it at a new position: the flow pattern is mapped without change to larger and
larger altitudes in the direction along �. The resulting flow pattern exhibits what is known as a
Taylor-Proudman column

no solid surface on Jupiter,6 and consequently there are no obstacles that a strong
zonal wind could hit.

• The Dutch-born planetary scientist Gerald Kuijper proposed in 1972 that the GRS
is in fact the top (called the ‘anvil’ by meteorologists) of the Jovian equivalent
of a hurricane. As explained in the previous section, the motion at the top of
a hurricane or cyclone is a diverging flow away from the core, leading to an
anti-cyclonic rotation. Such anti-cyclonic motion is indeed observed in the GRS.
Although not totally excluded, this hypothesis has gone out of fashion.Wind speed
measurements at greater depth do not seem to support the idea of the latent heat
release and the associated upward motion that is needed to drive the high-altitude
anti-cyclonic circulation.

• Presently, themost popular hypothesis is due toCaltech planetary scientist Andrew
Ingersoll [21]. He proposed in 1973 that theGRS is a free atmospheric vortex. Such
a vortex, once formed, is very stable as a result of the conservation of potential
vorticity:

2�z + ζ

H
= constant along streamlines. (13.5.7)

6At great depth, Jupiter probably has a solid core of rocks, surrounded by metallic hydrogen.
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In thismodel, theGRSoccurs in a shallow top layer of the Jovian atmospherewhich
overlies a deeper, strongly turbulent, azimuthal flow (zonal wind) that represents
the bulk Jovian circulation.
Both numerical experiments [30] and experiments in the laboratory using fluids
trapped between rotating annuli [45] have shown that such a system can lead to
the formation of a single (or a few) large dominant vortices. A phenomenon that
contributes to this is vortex merging, where smaller vortices merge to form a larger
vortex, with a total (potential) vorticity of this larger vortex roughly equal to the
total vorticity of all the contributing vortices. Small vortices are created continu-
ously, as a result of the interaction between the shallow top layer in the atmosphere,
and the turbulent (disordered) motions in the underlying flow. This deeper flow
exhibits a strong shear, where the velocity varies in magnitude in the direction
perpendicular to the flow lines. In the case of the gas giants, this strong shear
is due to the dependence of streaming velocity of the strong zonal winds on the
planetary latitude. The colored bands in Jupiter’s atmosphere shows convincingly
that such a strong shear is present, and the fine-structure in the atmospheric bands
consists of many vortices in a range of sizes. Direct measurements of wind speeds
by the Pioneer, Voyager and Galileo space probes confirm this picture.

In Ingersoll’s theory, the persistenceof theGRSover a period exceeding300years7

is explained as the combined result of three factors: [1] the absence of an underlying
solid surface which would degrade vortices due to friction, [2] the effect of vortex
merging, where vorticity lost due to internal friction in the gas is replaced by the coa-
lescence of smaller vortices, and [3] the fact that Jupiter has an internal heat source.
This heat source is associated with the slow contraction of the planet. That such an
internal heat source must be present follows simply from the fact that the amount of
energy emitted by Jupiter actually exceeds the amount of energy intercepted by the
planet in the form of Solar radiation. Jupiter emits about twice the amount of energy
received from the Sun (Saturn emits even three times that amount!). These giant
planets are still releasing the energy of their primordial contraction. In fact, they may
still be contracting at a rate of about 1mm/year. A more detailed description of the
gas giants can be found in the book by Morrison and Owen [33].

7In contrast: the cyclones and hurricanes in the Earth’s atmosphere typically last for a period of the
order of weeks!



Chapter 14
Selected Problems

14.1 Rotation-Free, Incompressible Stagnation Flow

Aims of this exercise: [1] learning to work with some of the fundamental
equations of fluid mechanics in terms of vector components and [2] exploit-
ing the mathematical properties (“symmetries”) such as incompressibility and
the rotation-free property (i.e. no swirls in the fluid).

Consider a two-dimensional corner flow in the x-y plane. The flow is confined to the
quarter space x ≤ 0, y ≥ 0. This space bounded by two semi-infinite impermeable
walls that meet at the origin x = 0, y = 0 (see Fig. 14.1). The flow is steady, so that
∂Q/∂t = 0 for any flow quantity Q. The velocity vector in this flow is written as

V ≡ u(x, y)x̂ + v(x, y) ŷ. (14.1.1)

Here x̂ and ŷ are the unit vectors in the x and y-direction.
We assume that the flow is both incompressible and rotation-free. This implies

the following two relations:

incompressibility condition: ∇ · V = 0 ⇐⇒ ∂u

∂x
+ ∂v

∂y
= 0;

rotation-free flow: ∇×V = 0 ⇐⇒ ∂v

∂x
− ∂u

∂y
= 0; (14.1.2)

These two assumptions are often justified in simple water flows without swirls.
In this assignment we consider the flow near the so-called stagnation point at

the origin x = 0, y = 0. There the two walls meet. We will use the mathematical
properties of this flow to construct the shape of the flow lines.

© Atlantis Press and the author(s) 2016
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Fig. 14.1 A two-
dimensional stagnation point
flow in the x-y plane,
confined to the quarter-plane
x ≤ 0, y ≥ 0. The velocity is
V = u x̂ + v ŷ. The thin lines
are the flow lines that satisfy
dy/dx = v/u

a. Show that a potential flow, defined with a functionϕ(x, y) as V = ∇ϕ, is always
rotation-free. In component form this flow is represented by

u(x, y) = ∂ϕ

∂x
, v(x, y) = ∂ϕ

∂y
. (14.1.3)

The function ϕ(x, y) is called the velocity potential.
b. Show that the condition of incompressibility ∇ · V = 0 implies that the velocity

potential ϕ(x, y) satisfies Laplace’s equation in two dimensions:

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0. (14.1.4)

c. What boundary condition should you impose on the velocity at the two imper-
meable walls, which are coincident with the lines x = 0 and y = 0 respectively?
Hint: first think what the presence of the two walls physicallymeans for the each
of the two velocity components u and v, and then translate what you find into a
mathematical condition for ϕ(x, y).

d. What is the velocity V (0, 0) at the stagnation point O?
e. Near the stagnation point (origin) x = y = 0 it is possible to make a Taylor

expansion of the potential ϕ of the form

ϕ(x, y) = Ax + By + Cxy + Dx2 + Ey2. (14.1.5)
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Determine the values of the coefficients A, B, . . . E from the result b and from
the boundary conditions obtained in c.

f. What is, given the form for the velocity potential ϕ(x, y) obtained in e, the
velocity field (u, v) of this stagnation flow?

Afterword to questions a through f: Even though the solution for ϕ(x, y) has
been obtained using a Taylor expansion, it is a valid solution of Laplace’s equation
that satisfies the boundary conditions at both walls for all x < 0 and y > 0. One
can show (using potential theory) that this solution is therefore valid in the entire
stagnation flow, and not just in the immediate vicinity of the stagnation point where
the derivation took place!

g. The flow lines are defined by the relation (see Chap.4)

dx

u(x, y)
= dy

v(x, y)
(14.1.6)

Show that in this flow the flow lines are implicitly defined by a functional rela-
tionship between the coordinates x and y along a given flow line:

ψ(x, y) = constant. (14.1.7)

The function ψ(x, y) is called the stream function. Give the form of ψ(x, y).
Hint: try tomanipulate the definition of theflow lines into the formdψ(x, y) = 0,
allowing you to identify ψ.

h. What is the shape of the flow lines in the corner flow?

14.2 Mass and Energy in a Corner Flow

We again consider the incompressible, rotation-free corner flow of Fig. 14.1. Mass
conservation in any flow is described by the continuity equation (Sect. 2.7) for the
mass density ρ(x, t). In this steady, two-dimensional flow with ∂ρ/∂t = 0 this
equation simplifies to

∂

∂x
(ρu) + ∂

∂y
(ρv) = 0. (14.2.1)

a. Show that, for the incompressible flowdiscussed here, this equation reduces to the
condition that the density remains constant along a given flowline (see Sect. 4.4):

u
∂ρ

∂x
+ v

∂ρ

∂y
= (V ·∇)ρ = 0. (14.2.2)

http://dx.doi.org/10.2991/978-94-6239-195-6_4
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b. Show that any mass distribution where the density is an arbitrary function of the
stream function ψ(x, y),

ρ(x, y) = F(ψ), (14.2.3)

solves the continuity equation for this stagnation flow.

We consider the special case where the density is the same on every streamline, so
that

ρ = constant (14.2.4)

throughout the whole corner flow. The equation of motion,

dV
dt

= −∇P

ρ
, (14.2.5)

can then be written as:

(V ·∇)V = −∇
(
P

ρ

)
. (14.2.6)

c. Show that the equation of motion (14.2.6) implies that in this two-dimensional,
incompressible, rotation-free flow with a constant density ρ, the following rela-
tionship holds:

1

2
V 2 + P

ρ
= 1

2
(u2 + v2) + P

ρ
= constant. (14.2.7)

Now draw your own conclusions about what these two equations mean in terms
of physics!
Hint: write the x and y-components of the equation of motion out explicitly,
taking special care with (V ·∇)V . Then use the properties (incompressibility
and rotation-free flow) of this flow to show that these two components can be
re-written in the form:

∂

∂x
(some expression involving u, v, P and ρ) = 0

∂

∂y
(same expression involving u, v, P and ρ) = 0
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14.3 The Special Status of the Comoving Derivative

Aim of this exercise: realizing some of the special properties of the comoving
derivative.

Taking the comoving derivative dV/dt of the velocity is the only proper way to
generalize the Newtonian acceleration to a fluid system. Since we are essentially
using the equivalent of Newtons dynamics, this acceleration should be invariant
under a Galilean velocity transformation, the low-velocity equivalent of the Lorentz
transformation of special relativity. In particular, the Galilean velocity addition law
should be valid.

In order to keep the mathematics simple, we consider a one-dimensional flow
along the x-axis with velocity V (x, t) and acceleration

a(x, t) ≡ dV

dt
= ∂V

∂t
+ V

∂V

∂x
. (14.3.1)

These quantities are all defined in the laboratory frame K . A moving frame K ′
moves with a constant velocity U along the x−axis. An observer at rest in K ′ uses
a coordinate x ′ and a time t ′ that are related to laboratory frame quantities x and t
through:

x ′ = x −Ut,

t ′ = t. (14.3.2)

He measures a fluid velocity V ′(x ′, t ′) and fluid acceleration a′(x ′, t ′).

a. Show that the obvious and logical definition for the fluid velocity in K ′ immedi-
ately yields the Galilean velocity addition law:

V = V ′ +U (14.3.3)

b. Show that the comoving derivative is an invariant in the sense that

d

dt
= ∂

∂t
+ V

∂

∂x
= ∂

∂t ′
+ V ′ ∂

∂x ′ . (14.3.4)

Hint: think very carefully about the way to handle the partial derivatives with
respect to time and space, and how these derivatives in different frames are related.

c. Show that the acceleration measured by observers in K and K ′ is the same:
a(x, t) = a′(x ′, t ′).

d. The equation of motion of a friction-less and one-dimensional fluid with density
ρ and pressure P reads in the laboratory frame K :

ρ

(
∂V

∂t
+ V

∂V

∂x

)
= −∂P

∂x
. (14.3.5)
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The density ρ (mass per unit volume) is an invariant since there is no Lorentz
contraction in the Galilean transformation. The same holds for the pressure P as
[1] it is defined in terms of the thermal velocity spread around the mean velocity
in either frame, see Sect. 2.5, and [2] the velocity addition law holds.
Now show that the equation of motion is form-invariant: it looks exactly the same
in both frames (K and K ′) when expressed in the appropriate variables.

Use of non-inertial frames
TheGalilean transformation (14.3.2) connects two inertial observers asU is assumed
to be a constant velocity. Now consider the case where the laboratory frame K is an
inertial frame, but the moving frame K ′ is not an inertial frame as the transformation
velocity U varies: the velocity addition law now reads

V (x, t) = V ′ +U (x, t). (14.3.6)

e. Show that the equation of motion for the fluid in the non-inertial frame reads

ρ

(
∂V ′

∂t ′
+ V ′ ∂V

′

∂x ′

)
= −∂P

∂x ′ + F, (14.3.7)

with

F ≡ −ρ
dU

dt
(14.3.8)

a so-called fictitious force. Do you understand this result if you recall what you
know from Classical Mechanics?

14.4 Flow on Cylinders

Aim of this exercise: appreciating the fact that even in a steady flow, with ∂/∂t =
0, the fluid is accelerated if flow lines are curved.

Consider a steady flow with the velocity vector in the x-y plane. The flow lines
are concentric circles around the z-axis, and the flow moves on these circles with a
constant angular speed �. The flow lines lie on co-axial cylinders around the z-axis.

If r = (x, y, z) is the position vector of a fluid element, the flow velocity of this
rigidly rotating flow can be represented in Cartesian coordinates as:

V (r) = � ẑ×r = (−�y,�x, 0) . (14.4.1)

A flow on cylinders is known as a Couette flow.

a. What is ∂V/∂t for this flow?

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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b. What are the two components of (V ·∇)V for this flow, andwhat do you conclude
from a and b for the acceleration of the fluid,

a = dV
dt

? (14.4.2)

Does the flow acceleration vanish or not?
c. Show that answer b implies that the acceleration of the fluid equals

a = −�2(x, y, 0). (14.4.3)

Let us assume that the rotating fluid has a constant density ρ. We also assume that
there is gravity, with gravitational acceleration in the vertial direction:

g = −g ẑ. (14.4.4)

The equation of motion then simplifies to

dV
dt

= −∇
(
P

ρ

)
+ g. (14.4.5)

In this situation the pressure depends on x , y and z! As a result, the water forms a
curved surface at z = H(x, y). See the Fig. 14.2 of the rotating bucket. At the water’s
surface the pressure equals the constant atmospheric pressure Patm.

d. Write out the three components of the equation of motion, and use these to show
that the pressure inside the fluid must satisfy

∂P

∂z
= −ρg, P(x, y, z) = 1

2
ρ�2

(
x2 + y2

) + F(z). (14.4.6)

Here F(z) is a (still) arbitrary function of z. The first equation is the equation of
hydrostatic equilibrium in th vertical direction.

e. Now show that hydrostatic equilibrium implies that anywhere below the surface
(i.e. at z ≤ min(H) ≡ H0) the pressure equals

P(x, y, z) = Patm + ρg (H(x, y) − z) . (14.4.7)

f. Show that the force balance (14.4.5) at fixed z is satisfied if the water surface has
a parabolic shape,

H(x, y) = H0 + �2

2g

(
x2 + y2

)
, (14.4.8)

with arbitrary minimum height H0 at x = y = 0.



312 14 Selected Problems

Fig. 14.2 A rotating bucket
(angular frequency of
rotation: �) is filled with
water. The water rotates
rigidly with the same angular
frequency. The force balance
between pressure forces, the
centrifugal acceleration and
gravitational acceleration
forces the water surface into
a parabolic shape. This is
precisely the situation you
are asked to analyze in
questions e and f of this
assignment

14.5 Use of Streamline Coordinates in Steady Flows

Aim of the exercise: using curvilinear coordinates; Gaining additional insights
into the physical meaning of the equations.

Consider a steady flow (no time-dependence!) with velocity V (x). In such a flow
one can define flow lines. In cartesian coordinates a flow line can be defined by the
relation (see Sect. 4.4)

dx

Vx
= dy

Vy
= dz

Vz
= d�

|V | . (14.5.9)

Here � measures the infinitesimal length along a flow line so that

d�2 = dx2 + dy2 + dz2, (14.5.10)

where dx , dy and dz are the infinitesimal changes in the coordinates if one follows
the flow along a given flow line over a distance d�.

It is always possible to define a local system of orthogonal, right-handed and
curvilinear coordinates ξ(x), η(x) and �(x), with associated unit vectors

êξ(x) ≡ ∇ξ

|∇ξ| , êη(x) = ∇η

|∇η| , ê�(x) = ∇�

|∇�| , êξ×êη = ê�, (14.5.11)

where the flow velocity is always along ê� so that:

V (x) = V (x)ê�(x). (14.5.12)

http://dx.doi.org/10.2991/978-94-6239-195-6_4
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These are streamline coordinates.Note that -generally speaking- the three unit vectors
change their orientation from point to point! In these coordinates flow lines are lines
with dξ = dη = 0, i.e. lines of constant ξ and η. The spatial distance between two
infinitesimally separated points x, x + dx is given by:

|dx|2 = h2ξ(x)dξ2 + h2η(x)dη2 + h2�(x)d�2. (14.5.13)

The so-called Lamé coefficients hξ(x), hη(x) and h�(x) are needed in this distance
recipe in order to account for the fact that streamlines can diverge and rotate. Recipe
(14.5.13) also shows that coordinate distances, such as dξ or d�, and physical dis-
tances are no longer the same. In what follows youmay need the following properties
(see Also the Mathematical Appendix):

1. Gradient operator:

∇ ≡ êξ

hξ(x)

∂

∂ξ
+ êη

hη(x)

∂

∂η
+ ê�

h�(x)

∂

∂�
,

2. Volume-element:

dV = hξ(x)hη(x)h�(x)dξdηd�,

3. Surface element perpendicular to the flow:

dA = hξ(x)hη(x)dξdη.

Consider a thin flowtube (see Fig. 14.3), whose four edges (and exterior surfaces)
consist entirely of flow lines. Each individual flow line satisfies ξ = constant, η =
constant. This means that no fluid can flow out of this tube: the flow is always along
its exterior surfaces. The coordinate distance along a flow line is measured by �.

Fig. 14.3 A flow tube, bounded by flow lines (the thick lines in this figure) that are separated
by infinitesimal coordinate distances dξ and dη. The two gray areas are tube cross sections, both
perpendicular to the flow. The two surfaces are separated by a coordinate distance d�.
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a. In a steady flow the density at any point remains constant: nomass can accumulate
(or drain away) anywhere in the tube. Consider the two surfaces in Fig. 2.1. They
are separated by an infinitesimal distance d�. The above condition means that
the mass flow across the two surfaces must be the exactly equal. Show that this
condition can be written as a partial differential equation:

∂

∂�

[
hξ(x)hη(x)ρ(x)V (x)

] = 0. (14.5.14)

b. The equation of motion for a steady flow is

ρ(V ·∇)V = −∇P. (14.5.15)

Show that (14.5.12), valid in streamline coordinates, implies that the fluid accel-
eration can be written in the form

(V · ∇)V = 1

h�(x)

∂

∂�

(
V 2

2

)
ê� + V 2κn̂, (14.5.16)

with n̂ a unit vector perpendicular to ê�, and κ the inverse curvature radius of a
flow line. Both are in principle a function of position. Give the expression for κn̂
in terms of the variation (i.e. a derivative!) of the unit vector ê� along streamlines.

c. At least locally, we are free to choose our coordinates ξ and η such that n̂ coincides
with êξ . Now show that the components of the equation of motion for the flow
can be written as:

ρV 2κ = − 1

hξ(x)

∂P

∂ξ
,

0 = ∂P

∂η
,

ρ

h�(x)

∂

∂�

(
V 2

2

)
= − 1

h�(x)

∂P

∂�
. (14.5.17)

d. Using thermodynamics (see Sect. 2.8) one can show that in a flow without dissi-
pation (an ideal flow) the pressure must have the form

P(ξ, η, �) = K (ξ, η)ργ . (14.5.18)

The function K (ξ, η) is constant along streamlines. For a classical simple fluid
the constant γ takes the value γ = 5/3.

http://dx.doi.org/10.2991/978-94-6239-195-6_2
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Show that relation (14.5.18) together with the third equation in (14.5.17) implies
that the following relation must be satisfied:

∂

∂�

(
V 2

2
+ γP

(γ − 1)ρ

)
= 0 ⇐⇒ V 2

2
+ γP

(γ − 1)ρ
= constant along stream lines.

(14.5.19)
This is Bernoulli’s law in an ideal flow.

14.6 The Isothermal Sheet

Historically important application of a gas model for a stellar system.

In Sect. 2.9 we discuss the isothermal sphere, a simple model for the radial dis-
tribution of mass in the form of stars inside a globular cluster. Here we look at
the one-dimensional plane equivalent of this, the so-called isothermal sheet. The
isothermal sheet can be considered a simple model for the distribution of mass in the
form of stars perpendicular to the plane of a disk galaxy, far away from the central
(quasi-spherical) bulge.

Assume that the sheet is filledwith identical stars ofmassm∗. The randomvelocity
of the stars is distributed isotropically, with a velocity dispersion equal to

σ2
x = σ2

y = σ2
z ≡ σ̃2 = kbT

m∗
. (14.6.1)

Here T is the (constant) kinetic temperature1 associated with the random motions.
Let us take the z-direction as the direction perpendicular to the plane of the disk

galaxy. We make a local approximation, where we assume that all quantities depend
only on z, but not on R ≡ √

x2 + y2, i.e. the distance to the Galactic center. This is
a good approximation if the disk thickness H satisfies H 	 R. Then the equation
governing the mass distribution is the equation of hydrostatic equilibrium in the
direction perpendicular to the disk plane,

dP

dz
= −ρ(z)

d�

dz
. (14.6.2)

Here
P(z) = n(z)kbT = ρ(z)σ̃2 (14.6.3)

is the ‘pressure’ of the stars, and � is the gravitational potential. The gravitational
potential satisfies Poisson’s equation ∇2� = 4πGρ. For a thin disk we can approx-
imate this by the one-dimensional version:

1Not to be confused with the temperature at the surface of an individual star!
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d2�

dz2
= 4πGρ(z). (14.6.4)

This assignment uses these equations to solve for � and ρ as a function of the height
z above the disk mid plane.

a. Show that the density distribution as a function of height satisfies

ρ(z) = ρ0e
−�(z)/σ̃2

, (14.6.5)

with ρ0 the density at z = 0. We assume that �(0) = 0, which is always possible
as the potential is defined up to an arbitrary constant.

One can define a dimensionless height ξ and dimensionless gravitational poten-
tial �:

ξ = z

H , � = �

σ̃2
= m∗�

kbT
, (14.6.6)

Here H is a normalizing height, the flat equivalent of the King Radius that plays an
important role in the theory of globular clusters:

H =
(

σ̃2

4πGρ0

)1/2

=
(

kbT

4πGm∗ρ0

)1/2

. (14.6.7)

b. Now show that the equation for the gravitational potential can bewritten in dimen-
sionless form as

d2�

dξ2
= e−�. (14.6.8)

c. A galactic disk is reflection-symmetric so that

ρ(z) = ρ(−z), �(z) = �(−z). (14.6.9)

What does this mean for the gravitational pull in the mid-plane z = 0,

gz(0) = −
(

∂�

∂z

)

z=0

? (14.6.10)

Hint: think what the symmetry means for the magnitude of the gravitational force
acting on a test star located in the mid-plane of this disk, at z = 0. What does this
imply for the potential �(z) at z = 0?

In the remainder of this assignment we will solve Eq. (14.6.8) for the dimen-
sionless gravitational potential �(ξ), using �(0) = 0 and the appropriate boundary
condition for d�/dξ at ξ = 0, which follows from the result obtained in question c.
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Fig. 14.4 The density distribution of an isothermal, self-gravitating sheet of gas that serves as a
simple model for the distribution of stars perpendicular to the Galactic disk. Note that the density
ρ(z) (in units of ρ0) runs in the horizontal direction, and the height z (in units of H) runs in the
vertical direction

d. Show, after multiplying both sides of (14.6.8) by d�/dξ, that this equation is
equivalent with

1

2

(
d�

dξ

)2

= constant − e−�. (14.6.11)

Determine the value of the constant from the conditions in the mid-plane z = 0.
e. Show that you can write this equation as

√
2
d

dξ

(
e�/2

) =
√
e� − 1. (14.6.12)

Integrate this equation by introducing the variable ζ = e�/2 and using the standard
integral ∫

dζ√
ζ2 − 1

= arcosh(ζ). (14.6.13)
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f. Use this result to show that the density in an isothermal sheet varies as

ρ(z) = ρ0

cosh2(z/
√
2H)

. (14.6.14)

Figure 14.4 gives this density distribution.
g. Using cosh(x) = 1

2 (e
x +e−x ), derive how the density behaves when |z| � √

2H,
by neglecting small terms.

14.7 Steady Potential Flow Past a Cylinder

A potential flow is a special flow where the velocity V (x, t) can be derived from a
potential ϕ(x, t), that is:

V = ∇ϕ. (14.7.1)

As explained in Sect. 4.3 such a flow has no vorticity: ∇×V = 0. If the flow is also
incompressible, the velocity potential ϕ satisfies Laplace’s equation:

∇ · V = ∇2ϕ = 0. (14.7.2)

Consider an ideal and steady.2 potential flow around a solid cylinder with radius
a. The flow has with a constant density ρ.3 We take the cylinder axis to be the z-
axis and use cylindrical coordinates, defined by x = R cos θ, y = R sin θ. In these
coordinates Laplace’s equation is

∇2ϕ = 1

R

∂

∂R

(
R

∂ϕ

∂R

)
+ 1

R2

∂2ϕ

∂θ2
= 0, (14.7.3)

provided the flow does not depend on z, as we assume here. This implies ϕ =
ϕ(R, θ).

The velocity components are:

VR(R, θ) = ∂ϕ

∂R
, Vθ(R, θ) = 1

R

∂ϕ

∂θ
. (14.7.4)

Far away from the cylinder the flow is along the x-axis and has speed U :

V (R ⇒ ∞) = U x̂. (14.7.5)

2So that ∂/∂t = 0 for any flow quantity.
3A constant-density flow is by definition incompressible!
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At the solid surface of the cylinder, located at R = a the radial component of the
flow velocity must vanish: the flow can not penetrate the cylinder so that

VR(R = a) =
(

∂ϕ

∂R

)

R=a

= 0. (14.7.6)

Relations (14.7.5) and (14.7.6) are sufficient to produce a unique solution for the
velocity potential ϕ(R, θ).

a. Show that condition (14.7.5) together with V = ∇ϕ implies that the velocity
potential far from the cylinder takes the form

ϕ(R ⇒ ∞) = Ux = UR cos θ. (14.7.7)

b. Show that a function of the type

Fm(R, θ) ≡
(
AmR

m + Bm

Rm

)
cos(mθ), (14.7.8)

with Am and Bm arbitrary constants and m = 1, 2, 3 . . ., provides for each m an
independent solution of Laplace’s equation (14.7.3).
Which value for m does the condition at R → ∞ suggest?

c. Try a solution that only involves the possibility m = 1:

ϕ(R, θ) =
(
AR + B

R

)
cos θ. (14.7.9)

Show that this solution satisfies relations (14.7.5) and (14.7.6) for

A = U and B = Ua2. (14.7.10)

This means that the velocity potential is given by:

ϕ(R, θ) = U cos θ

(
R + a2

R

)
. (14.7.11)

d. Calculate the velocity components VR(R, θ) and Vθ(R, θ) for R ≥ a.

In a steady, constant-density flow without gravity such as this the specific energy

Es ≡ 1

2
V 2 + P

ρ
= constant along flow lines, (14.7.12)
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see Sect. 4.4. In this particular case Es is a global constant of the flow: for |x | ⇒ ∞
we have V = U . If the pressure at infinity is P∞, we find:

Es = 1

2
V 2 + P

ρ
= 1

2
U 2 + P∞

ρ
. (14.7.13)

e. Use relation (14.7.13) and your velocity calculation in d to calculate the pressure
distribution on the surface of the cylinder: P(R = a, θ) as a function of θ. Show
that the following is true for the solution you have obtained:

• The highest pressure occurs at θ = 0 and at θ = π, where P = P∞ + 1
2ρU

2.
These are so-called stagnation points where VR = Vθ = 0;

• The lowest pressure occurs at θ = π/2 and θ = 3π/2, where P = P∞ − 3
2ρU

2.
At these points the velocity at the cylinder surface has its maximum value:
|V | = |Vθ| = 2U .

• The pressure distribution on the cylinder is so symmetric that the total pressure
force/unit length on the cylinder,

F = −
∫ 2π

0
dθaP(a, θ)R̂(θ), (14.7.14)

vanishes identically.
Hint: if you wish you may use that the unit vector in the radial direction is
R̂(θ) = x̂ cos θ + ŷ sin θ, and look at Fx and Fy separately.

Fig. 14.5 Potential flow
around a cylinder of radius a.
The small arrows give the
direction and magnitude of
the flow speed. The color
coding gives the pressure,
with red the highest
pressures and blue the lowest
pressures

http://dx.doi.org/10.2991/978-94-6239-195-6_4
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To avoid confusion: note that θ = 0 is the point x = a, y = 0 and θ = π
corresponds to x = −a, y = 0 . The last point is the point where the flow first
“hits” the cylinder. Figure14.5 gives the velocity and the pressure distribution for
this flow.

14.8 Steady, Cylindrically Symmetric Constant
Density Flow

Aim of this exercise: work out an example of an often-used advanced mathe-
matical technique that fully exploits the symmetries of the problem and uses
the stream function �.

The presence of symmetries usually simplifies the equations. This makes finding
general solutions of the equations much simpler. In this assignment we consider an
incompressible, constant-density flow that is steady, and symmetric around the z-axis
(cylinder symmetry). This means that

∂

∂t
(all fluid quantities) = ∂

∂φ
(all fluid quantities) = 0 (14.8.1)

and
∇ · V = 0, ρ = constant. (14.8.2)

The equation of motion then simplifies to (neglecting gravity)

(V ·∇)V = −∇
(
P

ρ

)
. (14.8.3)

We employ spherical coordinates r , θ andφ, with associated orthonormal unit vectors
r̂ , θ̂ and φ̂.TheMathematical Appendix to this assignment lists the precise form
of the operators for vector analysis in spherical coordinates!

a. Show that a flow of the form

V (r, θ) = ∇�×φ̂

r sin θ
+ Vφ(r, θ)φ̂, (14.8.4)

with �(r, θ) an (as yet) undetermined function, automatically satisfies the con-
dition that the flow is divergence-free.
(Hint: you will have to calculate the components of V in the r -θ plane explicitly!)

b. Show that �(r, θ), the so-called stream function, satisfies

(V ·∇)� = 0, (14.8.5)

so that it is constant along streamlines.
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The result you just obtained means that the projection of the streamlines on the
r -θ plane, and the curves of constant � coincide!

c. Because of cylinder symmetry there is no component of the pressure force in the
φ-direction. Use the general identity

(V · ∇)V = ∇
(
V 2

2

)
− V×(∇×V ) (14.8.6)

and (14.8.4) to show that force-balance in the φ-direction requires the following
relation to be satisfied:

∂�

∂θ

∂

∂r

(
r sin θVφ

) − ∂�

∂r

∂

∂θ

(
r sin θVφ

) = 0. (14.8.7)

d. Show that relation (14.8.7) is automatically satisfied if we choose

r sin θVφ = λ(�). (14.8.8)

Here λ(�) is an (as yet unknown) general function of the stream function�. Note
that r sin θ = R, with R = √

x2 + y2 the cylindrical radius. Therefore λ = RVφ

is the specific angular momentum of the flow due to the rotation of the flow around
the z-axis. Since � does not change along flow lines, neither does λ(�)!

e. Because of identity (14.8.6) we can write the equation of motion (14.8.3) as:

(∇×V )×V = −∇E, E ≡ P

ρ
+ 1

2
V 2. (14.8.9)

Show that this relation implies that the specific energy E(r, θ) satisfies

(V ·∇)E = 0. (14.8.10)

Also show that this corresponds for this flow to

∂�

∂θ

∂E
∂r

− ∂�

∂r

∂E
∂θ

= 0. (14.8.11)

Equation (14.8.11) is completely analogous to Eq. (14.8.7) for λ = r sin θVφ. We
must therefore conclude that the specific energy E must take the form

E(r, θ) = E(�). (14.8.12)

f. Finally consider the force balance in the r -θ plane. Show, using version (14.8.9)
of the force balance equation, that the r and θ components of the force balance
equation are satisfied simultaneously if �(r, θ) is the solution of the following
equation:
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−r2 sin2 θ

(
dE
d�

)
+ d

d�

(
λ2(�)

2

)
+ ∂2�

∂r2
+ sin θ

r2
∂

∂θ

(
1

sin θ

∂�

∂θ

)
= 0.

(14.8.13)

Hint: there are no obvious ‘shortcuts’ here, you will have to write out the two
components of the force balance equation and use all the results from a through e!

See the Mathematical Appendix for operator identities in spherical coordi-
nates!

14.9 Radially Spreading Flow over a Plane Surface

Awater flow, fed by a faucet (see Fig. 14.6) at a constant rate, spreads radially across
a solid plate in a thin layer. If the radius of the water stream that feeds this flow just
above the surface is r0, and the velocity equals u0, the amount of mass per second
that hits the plate is

Ṁ = πr20ρu0. (14.9.1)

The surface of the plate coincides with the plane z = 0. The water impacts the plate
in a region of radius ∼r0 around x = y = 0. The entire flow is assumed to be
incompressible, with a globally constant density ρ (∼1 g/cm3 for water).

The velocity along the plate depends only on the radial (cylindrical) distance
r ≡ √

x2 + y2 from the point of impact4:

V (x) = u(r)r̂. (14.9.2)

Here r̂ = cos θx̂ + sin θ ŷ is the unit vector in the radial direction, with θ the polar
angle. The thickness of the fluid layer is h(r). Expression (14.9.2) neglects the veloc-
ity associatedwith the change of the layer thickness,which is a good approximation if

∣∣∣∣
dh

dr

∣∣∣∣ 	 1. (14.9.3)

This flow is both steady and axi-symmetric around the z-axis. Gravity induces pres-
sure changes in the thin layer that aid in the spreading of the flow. The gravitational
acceleration is along the vertical,

g = −g ẑ. (14.9.4)

4In this assignment I use r rather than R to denote the cylindrical radius.
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Fig. 14.6 A vertical and
cylindrical water jet with
radius r0 and velocity u0 hits
a plate from above. The
water fans out over that plate
in a fluid layer. This layer
gets thinner and thinner with
increasing distance r from
the impact point. The
velocity along the plate is
u(r), and the thickness of the
layer is h(r). This
assignment analyzes this
flow

Finally: at the top of the fluid layer there must be pressure equilibrium with the
constant atmospheric pressure Patm:

P(z = h(r)) = Patm. (14.9.5)

The basic equations are:

r-component eqn. of motion: ρu
du

dr
= −∂P

∂r
,

z-component eqn. of motion: 0 = −∂P

∂z
− ρg,

mass conservation: 2πrh(r)ρu(r) = Ṁ = constant. (14.9.6)

The last equation simply states that the amount of mass/second crossing the annular
surface (ring) with area 2πrh(r) is the same for any r , and equal to the amount of
mass per second Ṁ that hits the plate. If this were not the case, the flow would not
be steady!
We will analyze this flow step-by-step.

a. Show using one of the components of the equation of motion that the pressure
must equal:

P(r, z) = Patm + ρg [h(r) − z] . (14.9.7)

What is the radial pressure gradient ∂P/∂r that follows from this result?
b. Show that result a, when substituted into the other component of the equation of

motion, leads to an equation that can be integrated immediately to give:

1

2
u2(r) + gh(r) = constant ≡ E . (14.9.8)
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This relation can be interpreted as an energy conservation law for the sum of the
kinetic energy 1

2u
2 and gravitational potential energy gh per unit mass.

Let us assume that, close to where the water from the faucet hits the surface, the fluid
velocity is u0, and the thickness of the layer is h0 ∼ r0. Then

E = 1

2
u20 + gh0. (14.9.9)

c. Show that
u2(r) − u20 = 2g [h0 − h(r)] . (14.9.10)

d. Show that mass conservation requires that

h(r) = u0r20
2ru(r)

. (14.9.11)

e. Use the results obtained in b, c and d to show that the velocity u(r) must be the
positive (and real) solution of the cubic equation

u3 − (
u20 + 2gh0

)
u + gu0r20

r
= 0. (14.9.12)

f. Show that for r =⇒ ∞ the flow velocity u(r) and layer thickness h(r) must
behave as:

u(r) �
√
u20 + 2gh0 = constant ≡ u∞,

h(r) � u0r20
2u∞r

∝ r−1. (14.9.13)

Afterword, for those who are interested.
It is possible to solve the above cubic equation for u(r) analytically, and derive a
condition for this flow to exist:

r > rmin ≡ 33/2gu0r20
2

(
u20 + 2gh0

)3/2 . (14.9.14)

To seewhere the existence condition (14.9.14) for this flow comes from, I first rewrite
Eq. (14.9.12) in dimensionless form by defining:

ũ ≡ u(r)

u∞
, r̃ = r

r∗
with r∗ ≡ gu0r20

u3∞
. (14.9.15)
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The cubic equation for u becomes much simpler in these variables:

ũ3 − ũ + 1

r̃
= 0. (14.9.16)

The way to solve cubic equations such as this is explained in M. Abramowitz
& I.A. Stegun, Handbook of Mathematical Functions, Sect. 3.8.2. Here I will just
give the results of that analysis without proof. The behavior of the solutions for this
particular equation depends on the sign of the quantity Q ≡ 1

4r̃2 − 1
27 :

Q = 1

4r̃2
− 1

27

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> 0 one real root, two complex conjugate roots;

= 0 all roots real, at least two roots equal;

< 0 all three roots are real.

(14.9.17)

Let us define the auxiliary variables

z̃1 =
(

1

2r̃
− √Q

)1/3

, z̃2 =
(

1

2r̃
+ √Q

)1/3

. (14.9.18)

The three roots of the cubic equation for ũ can be written in terms of z̃1 and z̃2 as:

ũ1 = − (z̃1 + z̃2) ,

ũ2 = z̃1 + z̃2
2

+ i
√
3

2
(z̃2 − z̃1) ,

ũ3 = z̃1 + z̃2
2

− i
√
3

2
(z̃2 − z̃1) .

For Q > 0 both z̃1 and z̃2 are positive and real, so there is a single negative real
root for ũ, not a physically sensible solution as we are dealing with an outflow with
u > 0. We are therefore forced to assume Q ≤ 0. I will disregard the special case
Q = 0. We must demand Q < 0, which leads to:

1

4r̃2
<

1

27
=⇒ r̃ = r

r∗
>

3
√
3

2
. (14.9.19)

This corresponds to condition (14.9.14) when we use the definition of r̃ . If Q < 0
the variables z̃1 and z̃2 are complex and each others complex conjugate.
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14.10 Applications of Bernoulli’s Law

Bernoulli’s law states that in a steady compressible flow without gravity the energy
per unit mass,

E = 1

2
V 2 + γP

(γ − 1)ρ
, (14.10.1)

is conserved along flow lines. It satisfies the relation

(V ·∇)E = 0. (14.10.2)

One can show that this relation remains valid even in the case where the flow
line crosses a shock, where there is a sudden jump in density, pressure and velocity.
This will be proven formally in Sect. 9. In this assignment we look at a number of
applications of this relation.

a. Consider a flow that hits an obstacle, and therefore (locally) comes to a complete
rest with V = 0: a stagnation point. See Fig. 14.7 for a real-life illustration
involving the wing of an airplane. Let us also assume that the pressure in the flow
behaves adiabatically, with

P(ρ) = Kργ(K is a constant). (14.10.3)

Velocity, density and pressure far ahead of the obstacle (“infinity”) are |V | = U ,
ρ∞ and P∞. Show that density and pressure at the stagnation point equal

Fig. 14.7 Flow around a wing. There are two stagnation points, one fore and one aft, where the
flow comes to a complete stand-still

http://dx.doi.org/10.2991/978-94-6239-195-6_9
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ρst = ρ∞
(

γ − 1

2
M2

∞ + 1

)1/(γ−1)

,

Pst = P∞
(

γ − 1

2
M2

∞ + 1

)γ/(γ−1)

. (14.10.4)

Here M∞ is the Mach number of the flow, the ratio of flow speed and sound
speed, defined at infinity in terms of the sound speed C∞ and U as

M2
∞ = U 2

C2∞
= ρ∞U 2

γP∞
. (14.10.5)

Two stars in a binary system both emit a supersonic and steady stellar wind. The
winds are both cold (very small pressure so that P 	 ρV 2) and have a velocity Vw1

(Vw2) for the first (second) star. The two winds collide somewhere between the two
stars, see Fig. 14.8. Just before the collision each wind goes through a termination
shock. Somewhere on the line connecting the two stars there will be a stagnation
point, as symmetry demands that the flow on both sides comes to a complete halt.
The pressure on either side of the stagnation point should be the same. You will
have to use this information to calculate where the stagnation point is on the line
connecting the two stars.

Fig. 14.8 Two stars (star 1 and star 2) emit a cold stellar wind with very supersonic velocity Vw1
and Vw2 respectively. Somewhere between the two stars, at a distance D1 from the first star and
a distance D2 from the second star, the winds collide after going through a shock, one shock for
each wind. In these shocks the wind material is heated, and pressure becomes important. On the
symmetry axis, where the two winds meet head-on, there is a stagnation point. You are asked to
calculate the position of this stagnation point. The figure as drawn here is for a the situation where
star 1 has the stronger wind of the two
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Note: the effect of the orbital motion of the stars around their common center of
gravity is neglected in this calculation. We also neglect the effect of the gravitational
forces due to the two stars on the material in each of the two winds. This is a good
approximation if the winds collide at a sufficiently large distance from the stars.

For most stellar winds, the following relations hold (dropping the subscripts 1 and
2 for now). Sufficiently far from the star the wind velocity is constant, and equal to
Vw. If the wind is spherically symmetric, the density in the wind varies with distance
r to the star as

ρw(r) = Ṁ

4πr2Vw
. (14.10.6)

Here Ṁ is the total mass loss in the wind. The mechanical luminosity of the wind is

Lw = 1

2
ṀV 2

w. (14.10.7)

b. If you neglect the pressure in both stellar winds before they pass the shock, what
is the value of the Bernoulli constant E in each of the winds? You may neglect
the effect of gravity.

c. The Bernoulli constant E does not change upon shock passage. Use this to calcu-
late the pressure in wind 1 and the pressure in wind 2 at the stagnation point in
terms of the density at the stagnation point and the wind velocity far ahead of the
stagnation point.

d. To a good approximation, the density at the stagnation point is the post shock
density for a strong shock, in this case the termination shock in each wind. This
post-shock density equals (see Sect. 9):

ρps = γ + 1

γ − 1
ρw. (14.10.8)

Use the properties of the wind to show that, in each of the two winds, the pressure
at the stagnation point (at a distance D to the star) is given by:

Pst = (γ + 1)Lw

4πγD2Vw
. (14.10.9)

(The pressure calculation is identical for both winds, so I have left out the indices
1 and 2!)

e. Show that the condition of equal pressures at the stagnation point implies that the
ratio of the two distances to the stagnation point must equal

D1

D2
=

√
Lw1Vw2

Lw2Vw1
=

√
Ṁ1Vw1

Ṁ2Vw2
≡ η. (14.10.10)

Now calculate the distance of the stagnation point to each of the two stars if the
stars are separated by a distance D.
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14.11 Steady Rotating Flow Towards a Drain

Consider a shallow layer of water with flow velocity in the x-y plane. The layer rests
on an impenetrable horizontal surface in the plane z = 0. The flow has a varying
thickness H(r) that depends only on the cylindrical distance r = √

x2 + y2 to the
origin. At the origin there is a hole (drain) that siphons off fluid that streams towards
the origin. A gravitational acceleration g = −g ẑ acts in the (negative) z-direction.
The equation of motion is

ρ

(
∂V
∂t

+ (V ·∇)V
)

= −ρg∇H. (14.11.1)

Here the velocity V and the gradient operator ∇ ‘live’ in the horizontal plane. In
cylindrical coordinates:

V = (
Vr , Vφ, 0

)
,∇ =

(
∂

∂r
,
1

r

∂

∂φ
, 0

)
. (14.11.2)

The force term on the right-hand side of (14.11.1) is the pressure force that results
from pressure variations induced by the change in layer thickness.

We will consider a steady flow (∂/∂t = 0) that is axisymmetric (∂/∂φ = 0) that
exhibits rotation: Vφ �= 0. The flow is towards the drain at r = 0, which implies
Vr < 0.

You may want to use the expressions from the Mathematical Appendix for vector
operations in cylindrical coordinates.

a. For a fluid like water we may assume a constant density ρ. Give the reason why
such a flow can only be a steady flow is it satisfies

Ṁ = 2πr H(r)ρ(r)Vr (r) = constant. (14.11.3)

Here Ṁ is the amount of mass that disappears down the drain per second.
b. Show that the φ-component of the equation of motion (14.11.1) together with the

assumption of axisymmetry leads to a conservation law:

d

dr

(
rVφ

) = 0 ⇐⇒ rVφ ≡ λ = constant. (14.11.4)

Here λ = rVφ is the specific angular momentum of the flow.
c. Show that the r -component of the equation of motion can be written as a third

conservation law:

d

dr

(
V 2
r

2
+ λ2

2r2
+ gH

)
= 0 ⇐⇒ V 2

r

2
+ λ2

2r2
+gH ≡ E = constant. (14.11.5)
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Here E is the (constant) specific energy of the flow, also known as the Bernoulli
constant.

d. Use a and c to show that the r -component of the equation of motion (14.11.1)
can also be written in a form analogous to Parker’s equation for the Solar wind,
or the equation for a Laval Nozzle:

(
V 2
r − gH(r)

) d ln |Vr |
d ln r

= gH(r) − λ2

r2
. (14.11.6)

Hint: try to eliminate dH/dr from the equation in terms of H , r en dVr/dr .
e. Show that a flow in which |Vr | increases monotonically towards r = 0 is only

possible if there exists some radius r0 with

|Vr | = |Vφ| = √
gH0, (where H0 ≡ H(r = r0)). (14.11.7)

What is r0 and what is H0, given the constants E and λ?

14.12 Steady, Viscous Flow Along an Inclined Plane

Aim of the exercise: an example of how viscosity affects a flow.

We consider a viscous flow along an inclined plane. The fluid (gray in Fig. 14.9)
forms a thin layer with constant density ρ and thickness h. The flow slides down
the plane under the action of gravity. With the x-coordinate along the plane and the
y coordinate along the normal to the plane, the velocity depends only on y and is
given by:

V (x) = u(y)x̂ + v(y) ŷ. (14.12.1)

Here x̂ and ŷ are the unit vectors in the x- and y-direction.

Fig. 14.9 Viscous flow along an inclined plane due to gravity. The plane is tilted at an angle α
with respect to the horizontal. The fluid layer has a constant thickness h and a constant density ρ.
At the top of the fluid layer (at y = h) there is pressure equilibrium with the atmosphere: the fluid
pressure P(y = h) equals the constant atmospheric pressure Patm. At the bottom of the layer (at
y = 0) the no-slip condition applies
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The flow is viscous with viscosity coefficient η. Because of the viscous nature of
the flow the no-slip condition applies where the flow touches the plane, at y = 0.
Also, the surface is solid so the fluid can not penetrate it. One concludes:

u(0) = v(0) = 0. (14.12.2)

a. Show that the assumption of a constant density (which implies the incompress-
ibility of the fluid: ∇ · V = 0) leads for this flow to a simple equation for v(y).
Also show that this simple equation only admits the solution v(y) = 0 for this
particular flow.

Result a leads to a major simplification of the equation of motion. All the inertial
terms (from ρ(V ·∇)V ) vanish and one is left with (in component form):

0 = −∂P

∂x
+ η

d2u

dy2
+ ρg sinα,

0 = −∂P

∂y
− ρg cosα. (14.12.3)

This describes the balance between gravity, the pressure force and the viscous force.

b. Use one of the two components of the equation of motion to prove that

P(x, y) = f (x) − ρg cosαy, (14.12.4)

with f (x) an arbitrary function of x .
c.1. At top of the flow, at y = h, the fluid pressure P must equal the (constant)

atmospheric pressure Patm for all x . Use this condition to determine f (x), and
so determine the behavior of the pressure P(x, y) as a function of position.

c.2. Nowcalculate the component of the pressure gradient along the plane:∂P/∂x .
d. Use result c together with the no slip condition (14.12.2) to show that the

x-component of the equation of motion has the solution

u(y) = ay − ρg sinα

2η
y2, (14.12.5)

with a an as yet undetermined constant.
e. At the top of the fluid layer, at y = h, there is a free surface. Such a free

surface can not support a shear stress (see Sect. 3.3 of the Lecture Notes) in
the x-direction. The air is simply too dilute to provide any balancing force.
This means that we must demand:

tx (y = h) = η
du

dy

∣∣∣∣
y=h

= 0. (14.12.6)
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Use condition (14.12.6) to determine a and the full velocity profile u(y) of
this flow.

f. At the bottom of the layer, at y = 0, there is a solid surface that canwithstand
a shear force per unit area tx in the x-direction due to the fluid. That force is
given by the analogue of (14.12.6), now at y = 0:

tx (y = 0) = η
du

dy

∣∣∣∣
y=0

. (14.12.7)

Calculate this force, and show the following:

1. tx is independent of viscosity;
2. tx effectively corresponds to the “weight per unit area” of the fluid column

as determined by the gravitational acceleration along the surface, g‖ =
g sinα.

Afterword: the result obtained in the last question tells you that the force/unit
area exerted by the fluid on the plate in the x-direction is essentially the same as
the force/unit area in the x-direction due to a fixed mass that is stuck to the inclined
surface. If the mass is M , and the area it covers on the plate is A, we have:

forcex/unit area = Mg sinα/A. (14.12.8)

The fluid layer of thickness h and density ρ has a mass per unit area equal to M/A =
ρh.

14.13 Added Mass of an Oscillating Cylinder Immersed
in a Fluid

Consider a cylinder of radius a with it axis parallel to the z-axis. The whole cylin-
der oscillates in the x-direction with angular frequency ω, and with a sinusoidal
displacement

�x = A cos(ωt). (14.13.1)

away from the z-axis. The cylinder is immersed in a fluid with uniform density
ρ and pressure P . The motion of the cylinder induces motions in the surrounding
fluid. I assume that the cylinder is impenetrable, so that the fluid at the surface of
the cylinder is forced to move with the same velocity as the cylinder surface in the
direction normal to the surface. The fluid is assumed to be frictionless, so that it can
freely move (slip) along the surface of the cylinder.

If we call the unit vector normal to that surface n̂, this means that at any time the
relative normal velocity between fluid and cylinder vanishes on the surface. If we
call the fluid velocity V this implies at the surface of the cylinder:
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Fig. 14.10 The cross section
of a cylinder with radius a
that is oscillating
harmonically along the
x-axis with oscillation
amplitude A. In the
assignment we will assume
that A 	 a. The angle φ is
the polar angle

Vn ≡ V · n̂ = −ωA sin(ωt)n̂x = −ωA sin(ωt) cosφ. (14.13.2)

Here φ is the polar angle around the circumference of the cylinder, with φ = 0
corresponding to the x-axis (Fig. 14.10). The induced velocity creates pressure per-
turbations in the surrounding fluid, and these pressure perturbations lead to a reaction
force from thefluid on the cylinder. In this assignmentwe calculate that reaction force.

a. If the amplitude of the oscillation is small, we can neglect the non-linear (V · ∇)V
term in the equation of motion for the fluid around the cylinder, which then
simplifies to

ρ
∂V
∂t

= −∇δP, (14.13.3)

with δP the induced pressure variation. You may assume that the density ρ is a
constant.
I will limit the discussion to the case of slow variations where the motion of the
fluid around the oscillating cylinder can be considered incompressible:

∇ · V = 0. (14.13.4)

Show that this last condition means that the pressure perturbation δP must satisfy
the equation

∇2δP = 0. (14.13.5)

b. Since the cylinder moves as a whole, there is no variation in the z-direction, and
relation (14.13.5) in cylindrical coordinates5 becomes

5Defined as usual by x = R cosφ, y = R sin φ, R = √
x2 + y2.
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1

R

∂

∂R

(
R

∂δP

∂R

)
+ 1

R2

∂2δP

∂φ2
= 0. (14.13.6)

In view of relation (14.13.2) we look for a solution with δP ∝ cosφ. Give all
possible solutions of the form

δP(r,φ, t) = P̃(R, t) cosφ. (14.13.7)

Hint: the radial part of the Laplacian ∇2 typically leads to solutions that
behave as Rα.

c. Which of these solutions (there are two!) decay as δP(r → ∞,φ, t) → 0, so
that the perturbation vanishes far from the oscillating cylinder, as one expects on
physical grounds?

If you did your algebra correctly, you should have found that the pressure around the
oscillating cylinder varies as

δP(R,φ, t) = K (t) cosφ

R
. (14.13.8)

Here K (t) is a function of time, which we determine now by using this result in the
equation of motion.

d. If the amplitude of the oscillation is much smaller than the radius of the cylinder
(A 	 a), we can make the approximation

VR(R = a,φ) � Vn = −ωA sin(ωt) cosφ. (14.13.9)

for the fluid velocity at the surface of the cylinder. This neglects the displacement
of the cylinder. Now use the radial (R-)component of the approximate equation of
motion (14.13.3) for the fluid to show that the function K (t) in relation (14.13.8)
must equal

K (t) = −ρω2a2A cos(ωt). (14.13.10)

e. Use this last result to calculate the pressure δP(R,φ, t), and in particular the
pressure at the surface of the cylinder, where R = a.

f. The force by the fluid on a section with length �z of the cylinder is the surface
integral over the pressure:

�F = −�z
∫ 2π

0
dφaδP(R = a,φ)n̂(φ). (14.13.11)

The minus sign expresses the fact that this forces presses inwards so that it is in
the direction opposite to the normal n̂ to the cylinder’s surface:

n̂ = (n̂x , n̂ y, 0) = (cosφ, sin φ, 0). (14.13.12)
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Calculate both the x and the y component of this force.
g. Let us assume that the the oscillatory motion of the cylinder is driven by an

external force per unit length (i.e. for �z = 1) equal to f c(t) = f0 cos(ωt)x̂.
Now do the following:

• Write down and solve the equation of motion for a section of the cylinder with
length �z = 1 under influence of the external force and the force due to the
surrounding fluid.

• Show that the effect of the surrounding fluid is an added mass: it seems like
the tube must drag along extra mass per unit length equal to μadd = πa2ρ.

Afterword: added mass effects on moving solid bodies immersed in a fluid are
important in calculations of the motion of ships in waves, and ship stability.

14.14 Sound Waves in a Rotating Frame

Aim of the exercise: get used to applying the general techniques for calculating
wave properties, learning about an important geophysical/astrophysical appli-
cation in the process.

In geophysical fluid dynamics one has to deal with the fact that the Earth is rotating.
Rotation is also an ubiquitous astrophysical phenomenon: it occurs in planets, stars,
disk galaxies and in the accretion disks around compact objects.

In many cases it is convenient to work in a reference frame where the rotation is
transformed away, the co-rotating frame. In this frame the Earth’s crust, or a fluid or
gas is (locally) at rest. Since a rotating frame is not an inertial frame, one has to deal
with the complications that this fact causes in the dynamics of particles or fluids. In
particular one must make the replacement (see Sect. 12.2)

dV
dt

=⇒ dV
dt

+ 2�×V + �×(�×r). (14.14.1)

Here V is the velocity as measured in the rotating frame, r the position vector of a
fluid element in that frame and the rotation vector � is defined as � ≡ �êrot, with �

the constant angular rotation rate of the reference frame, and êrot a unit vector along
the axis of rotation. The rotation period equals 2π/�.

The two extra terms on the right-hand side of Eq. (14.14.1) correspond to the
Coriolis force (the term∝ �) and the centrifugal force (the term∝ �2) respectively.
Inmany geophysical applications, the centrifugal force is a relatively small correction
to gravity. Then the Coriolis force is the most important effect that one has to take
into account when working in the co-rotating frame.

In this assignment we will consider the modification of sound waves by the Cori-
olis force. Consider a fluid in a rotating frame, with the axis of rotation along the
z-axis:

� = � ẑ. (14.14.2)
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The equation of motion for the fluid then reads, neglecting the effects of gravity and
the centrifugal force:

dV
dt

= −∇P

ρ
− 2�×V . (14.14.3)

Assume that the unperturbed fluid is at rest in the co-rotating frame (i.e.: V = 0) and
that the fluid is homogeneous so that P and ρ both take constant values. The fluid is
perturbed by a wave-like disturbance,

x =⇒ x + ξ(x, t). (14.14.4)

a. Using the samemethods as used for soundwaves in Sect. 7.5, derive the linearized
equation of motion for the small perturbation, and write it in the form

∂2ξ

∂t2
= F(ξ). (14.14.5)

Here F(ξ) is the linearized perturbing force per unit mass. Give the expression
for F(ξ). As a check on your algebra: F(ξ) should be expressed entirely in terms
of ξ or its derivatives, the sound speed Cs and the rotation rate �, and only terms
linear in ξ or its derivatives should appear!

b. We now consider plane-wave perturbations that propagate in the plane perpen-
dicular to the axis of rotation, the x-y plane, so that

ξ(x, t) =

⎛

⎜⎜⎜⎜⎝

ax

ay

0

⎞

⎟⎟⎟⎟⎠
× exp(ikx x + iky y − iωt) + cc. (14.14.6)

Substitute this assumption into the equation of motion from (a). Show that it leads
to a set of two coupled linear algebraic equations for the amplitude components
ax and ay that can be written in matrix form as

⎛

⎝
Dxx Dxy

Dyx Dyy

⎞

⎠

⎛

⎝
ax

ay

⎞

⎠ = 0. (14.14.7)

Calculate the components Di j of this 2 × 2 matrix.
c. The set of two linear equations has a non-trivial solution provided that the deter-

minant of the 2 × 2 matrix vanishes:

Dxx Dyy − DxyDyx = 0. (14.14.8)
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Fig. 14.11 The solution of the dispersion relation for sound waves in a rotating reference frame.
Only the positive solution for thewave frequency is shown. Thewave frequency is plotted in terms of
the dimensionless frequency ν = ω/2� and thewave number in terms of the dimensionless quantity
� = kCs/2�. In these variables the positive solution of the dispersion relation is ν = √

�2 + 1.
The diagonal dashed line corresponds to a pure sound wave in a non-rotating frame, which satisfies
ν = � (i.e. ω = kCs) in these variables. For � � 1 the solution approaches this line asymptotically.
For � 	 1 one has ν � 1 (i.e. ω � 2�)

Show that this solution condition determines the wave frequency ω as

ω(k) = ±
√
k2C2

s + 4�2, (14.14.9)

with k2 = k2x + k2y .
d. Calculate both the phase speed and the group velocity (as defined in Sect. 7.6) for

these rotation-modified sound waves.

Figure 14.11 illustrates the properties of the rotation-modified sound waves. Plot-
ted is the dimensionlesswave frequency ν = ω/2� as a function of the dimensionless
wavenumber � = kCs/2�. In terms of these variables the dispersion relation for these

http://dx.doi.org/10.2991/978-94-6239-195-6_7


14.14 Sound Waves in a Rotating Frame 339

waves has the following ‘universal’ form6:

ν = ±
√

�2 + 1. (14.14.10)

The solid curve is the (positive frequency) sound wave in the rotating frame, while
the dashed line gives the frequency of a pure positive frequency sound wave in a
non-rotating frame: ν = � (ω = kCs). For �2 � 1 (the limit of small wavelengths)
the effect of rotation is small and the curve approaches the line of pure sound waves.

14.15 Jeans’ Instability for a Fluid Rotating on a Cylinder

Aim of this exercise: learn how rotation may stabilize the Jeans Instability of
sound-like waves in a self-gravitating gas.

In this assignment we consider Jeans’ instability in a rotating fluid. We use exactly
the same situation as in the previous assignment, but add the effect of self-gravity:

• The unperturbed fluid is at rest in the rotating frame;
• The effects of gravity and the centrifugal force on the unperturbed state are
neglected; The unperturbed fluid is therefore treated as a uniform fluid without
pressure or density gradients;

• The influence of the Coriolis force and of self-gravity on the properties of the
linear waves is taken into account;

• Rotation is around the z-axis; the perturbations propagate entirely in the plane of
rotation, the x-y plane;

The equation of motion reads:

dV
dt

= −∇P

ρ
− 2�×V − ∇�. (14.15.1)

The effect of self-gravity follows from Poisson’s equation for the gravitational poten-
tial �(x, t),

∇2� = 4πGρ. (14.15.2)

a. Show, using the methods outlined in Sect. 7.5 of the Lecture Notes, that the equa-
tion of motion for linear perturbations now reads

∂2ξ

∂t2
= F(ξ) − ∇δ�. (14.15.3)

Here F(ξ) has already been calculated in a of the previous assignment.

6I use the term ‘universal’ in order to describe a form in which the physical properties of the system,
in this case � and Cs, no longer appear explicitly. Such a universal form therefore applies to sound
waves in all rotating systems, regardless the value of Cs or �.
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b. Show that perturbing Poisson’s equation leads to the conclusion that the pertur-
bation δ�(x, t) in the gravitational potential should satisfy

∇2δ� = −4πGρ(∇ · ξ). (14.15.4)

c. We assume plane wave perturbations of the form

ξ(x, t) =

⎛

⎜⎜⎜⎜⎝

ax

ay

0

⎞

⎟⎟⎟⎟⎠
× exp(ikx x + iky y − iωt) + cc.

δ�(x, t) = �̃exp(ikx x + iky y − iωt) + cc.

Show that this assumption yields a relation between the amplitude of the pertur-
bation in the gravitational potential and the displacement amplitude of the form

�̃ = 4πiGρ(k · a)
k2

, (14.15.5)

with k · a = kxax + kyay .
d. Write the equation of motion found in a in its two components in the x and

y direction. Show that you find two coupled linear algebraic equations for the
components of the amplitude, a = (ax , ay, 0), just as you found in (b) of the
previous assignment: ⎛

⎝
Dxx Dxy

Dyx Dyy

⎞

⎠

⎛

⎝
ax

ay

⎞

⎠ = 0. (14.15.6)

Calculate the components Di j of this 2 × 2 matrix
e. The set of two linear equations has a non-trivial solution if the determinant of the

2 × 2 matrix vanishes:
Dxx Dyy − DxyDyx = 0. (14.15.7)

Use this condition to determine the wave frequency ω(k).
f. Show that waves with a wave number k such that

k2C2
s < 4πGρ − 4�2 (14.15.8)

are unstable since then one of the solutions has

Im(ω) > 0. (14.15.9)

This is the Jeans’ instability in a rotating and self-gravitating fluid.
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g. Now answer the following two questions:

1. Is there a regime when there is no instability regardless the value of k?
Remember that k is a real quantity!

2. Would you conclude that rotationmakes the fluidmore, or less stable against
the Jeans’ instability.

Afterword: A conclusion similar to the one you have just found holds for the
stability of a rotating disk galaxy (spiral galaxy). A complication there is the fact
that a spiral galaxy does not rotate rigidly (like a DVD for instance), with � =
constant. A galactic disk has differential rotation, where � depends on the distance
R = √

x2 + y2 to the center of the disk. In that case a similar equation for ω2 holds
provided one makes the replacement

4�2 =⇒ 2�

(
2� + R

d�

dR

)
≡ κ2. (14.15.10)

The (differential) rotation prevents a disk galaxy from breaking up into a set of
concentric, self-gravitating rings. The epicyclic frequency κ also plays an important
role in the theory of spiral density waves in galaxies, the theory that tries to explain
that spiral structure if disk galaxies.

14.16 Planetary Waves

Aim of the exercise: get familiar with an approximation that is used often in
geophysical fluid dynamics.

Long-wavelength waves in a thin planetary atmosphere (pressure scale height H
much less than the planetary radius) can be described using a two-dimensionalmodel.
Thatmodel uses Cartesian coordinates x and y in the local horizontal plane, and takes
account of the effects of planetary rotation by including the horizontal components
of the Coriolis force.

The equations for small-amplitude waves in a layer of thickness �z = H take
the following form:

∂u

∂t
− f v = −g

∂h

∂x
,

∂v

∂t
+ f u = −g

∂h

∂y
, (14.16.1)

∂h

∂t
= −H

(
∂u

∂x
+ ∂v

∂y

)
.



342 14 Selected Problems

Here u and v are the components of the velocity perturbation in the horizontal plane,
δV = u x̂ + v ŷ, h is the change in the layer thickness (i.e. H =⇒ H = H + h, with
h 	 H ), g is the magnitude of the effective gravitational acceleration (g = −g ẑ)
and the frequency f = 2� sin θ, with � = 2π/P the angular velocity of planetary
rotation P , and θ is the longitude on the planet. It determines the Coriolis force.

Here we try to find plane wave solutions, where (u, v, h) can be written as

⎛

⎜⎜⎜⎜⎝

u(x, y, t)

v(x, y, t)

h(x, y, t)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

ũ

ṽ

h̃

⎞

⎟⎟⎟⎟⎠
× exp

(
ikx x + iky y − iωt

)
. (14.16.2)

In this expression the quantities (ũ, ṽ, h̃) are fixed amplitudes. We forget about the
complex conjugates, and f en g en H are treated as constants (“local approximation”,
so we are not considering global planetary waves!).

a. Show that the plane wave assumption (14.16.2) leads to a set of linear equations
that can be represented in matrix notation as

⎛

⎜⎜⎜⎜⎝

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

ũ

ṽ

h̃

⎞

⎟⎟⎟⎟⎠
= 0. (14.16.3)

Determine the nine matrix elements Di j in terms of ω, kx , ky , f , g en H .
b. Show that the solution condition for this system leads to a dispersion relation

for the wave frequency ω of the form:

iω
(
ω2 − f 2 − k2gH

) = 0, (14.16.4)

with k2 ≡ k2x + k2y .
c. Give the true wave-like solutions for ω. Show that there is a ‘characteris-

tic wavenumber’ kc that separates short-wavelength (i.e. large k) and long-
wavelength (small k) solutions, and give the (approximate) frequency for ‘short’
and ‘long’ waves.

d. Calculate both the phase velocity and the group velocity of these waves (see
Lecture Notes, Sect. 7.5), and examine the short- and long-wavelength limits.
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14.17 Stellar Oscillations

Stars are basically self-gravitating balls of gas that are supported against their own
weight by pressure forces. As such, they support waves: not just at wavelengths that
are much smaller than the stellar radius, so-called the internal gravity waves, but
also waves that have a wavelength comparable to the stellar radius. Such waves are
observed in our own Sun, such as the famous five minute oscillations.

Potentially the study of stellar oscillations can offer large rewards for astrophysi-
cists: exactly like what happens in seismology on Earth, where one can gain informa-
tion about the structure of the Earth from seismological data, the observed properties
of these waves can be used to fine-tune stellar models by comparing theory with
observations. The waves ‘probe’ the interior of the star, and even though we can
only see their manifestation at the stellar surface in the form of velocity fluctuations
or brightness fluctuations, the dispersion diagram for these waves (frequency as a
function of wavelength) contains information about the stellar interior. To extract
this information is the main aim of asteroseismology.
The simplest way we can estimate the typical frequency of stellar oscillations is the
spherically symmetric one-zone model for stellar pulsations: the case where the
motion is purely in the radial direction, and the surfaces of constant density and
pressure inside the star remain spherical.

Consider a single zone in the form of a thin radial shell at the outer edge of the
star, with thickness dR, see the Fig. 14.12. In equilibrium the star has a radius R∗,
and we assume dR 	 R∗. If the local mass density is ρ, the mass of this shell (think
of it as an atmosphere) is

ma = 4πR∗2ρdR. (14.17.1)

The shell is supported against gravity by the pressure of the underlying stellar mate-
rial, which has a pressure P . The pressure force on the whole spherical shell with an
area A = 4πR∗2 is FP = PA, so this balance corresponds to:

Fig. 14.12 The one-zone
model for radial oscillations
(pulsations) of a star. A thin
‘atmosphere’ of thickness
dR and mass ma sits on top
of a star with radius R∗ and
mass M∗. Pulsations of the
star change the pressure and
gravity at the stellar surface,
and set the atmosphere in
motion
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FP = 4πR∗2P = gma = GM∗ma

R∗2
. (14.17.2)

The layer borders on vacuum, so there is no inward pressure force from a surrounding
medium. Here g = GM∗/R∗2 is the magnitude of the gravitational acceleration at
the outer edge of the star, g = −g r̂ . I have assumed that ma 	 M∗ so that the thin
atmosphere essentially ‘feels’ the whole mass of the star.

a. Due to stellar pulsation, the radius of the star changes from R∗ to R∗ + ξr ,
displacing the thin atmosphere in its entirety in the radial direction over a distance
�r = ξr 	 R∗. Show that the linear change in the pressure force (in this case:
the Lagrangian variation!) on the entire atmosphere is

�FP = 8πR∗Pξr + 4πR∗2�P, (14.17.3)

with �P the Lagrangian pressure change at the stellar surface, which will be
determined in d.

b. Show that the displacement induces a change�g in the gravitational acceleration
acting on the entire thin atmosphere equal to

�g = −
(
2GM∗
R∗3

)
ξr . (14.17.4)

(Hint: the mass of the star does not change in all this!)
c. Calculate the net force on the whole shell and show that the equation of motion

for the pulsating atmosphere is

ma
d2ξr
dt2

= 8πR∗Pξr + 4πR∗2�P + ma

(
2GM∗
R∗3

)
ξr . (14.17.5)

d. For radial pulsations with ξ = ξr r̂ the general relations derived in Sect. 7 give
the pressure perturbation inside the star as

�P = −γP(∇ · ξ) = −γP

[
1

r2
∂

∂r

(
r2ξr

)]
. (14.17.6)

The simplest assumption we can make is that the star oscillates homologously,
with a displacement ξr for r ≤ R∗ given by:

ξr (r, t) = ξ0

(
r

R∗

)
e−iωt + cc. (14.17.7)

Here ξ0 is a constant. Show that this leads to a pressure perturbation equal to

�P = −3γP

(
ξr

R∗

)
. (14.17.8)

http://dx.doi.org/10.2991/978-94-6239-195-6_7
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e. Show, using the results a through d and the equilibrium force balance (14.17.2),
that the oscillations in the one-zone model satisfy the simple equation of motion

ma
d2ξr
dt2

= − (3γ − 4)
GM∗ma

R∗3
ξr . (14.17.9)

What is the frequency ω of these oscillations?
f. Show that the wave frequency you just found equals (up to factors of order unity)

|ω| ∼ √
Gρ∗, (14.17.10)

with ρ∗ the mean mass density of the star.
g. What do you think would happen if the polytropic index γ of the stellar gas were

to fall to a value γ < 4/3?

14.18 Surface Waves and Surface Tension

In Sect. 8.6 we discuss surface waves in an incompressible fluid of unperturbed con-
stant depthH, an excellent approximation forwaves onwater. For small perturbations
with a displacement vector ξ(x, t) the equation of motion inside the fluid is

∂2ξ

∂t2
= −∇δP

ρ
with ∇ · ξ = 0. (14.18.1)

Here δP is the pressure perturbation. If one takes surface tension into account, the
pressure P(H = H + ξz) at the surface just inside the fluid, and the (constant)
atmospheric pressure Patm are related by

P(H) − Patm = −τs∇2
‖ξz . (14.18.2)

Here τs is the coefficient of surface tension, ∇2
‖ ≡ ∂2/∂x2 +∂2/∂y2 is the Laplacian

along the unperturbed surface and ξz(x, t) = �z is the vertical displacement of
the surface, see Fig. 14.13. Inside the fluid, the pressure follows from hydrostatic
equilibrium:

dP

dz
= −ρg ⇐⇒ P(z) = P(H) + ρg(H − z), (14.18.3)

with g the gravitational acceleration and H the height of the water column:

H(x, y, t) ≡ H + ξz(x, y, z = H, t). (14.18.4)

http://dx.doi.org/10.2991/978-94-6239-195-6_8
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Fig. 14.13 Waves on a body of water of depth H

As before, H denotes the constant (unperturbed) height of the water column. The
bottom is located at z = 0, see Fig. 14.13.

a. Show that inside the water, the pressure perturbation δP(x, t) satisfies

∇2δP = 0. (14.18.5)

b. Show that for waves that vary as

δP = P̃(z)exp(ikx − iωt) + cc. (14.18.6)

the amplitude P̃(z) must take the form

P̃(z) = P̃+exp(kz) + P̃−exp(−kz), (14.18.7)

with P̃+ and P̃− constants yet to be determined from the appropriate boundary
conditions at the water’s surface and at the bottom.

c. Show, using the equation of motion to calculate ξz(x, t), that the condition that
the fluid can not penetrate the bottom of the lake (solid surface at x = 0!)

ξz(z = 0, t) = 0, (14.18.8)

can only be satisfied if P̃+ = P̃−.
d. At the surface of the lake, surface condition (14.18.2) leads (for small perturba-

tions) to the relation:

�P + τs
∂2ξz

∂x2

∣∣∣∣
z=H

= 0. (14.18.9)

Use the general relation between the Lagrangian perturbation � and the Eulerian
perturbation δ to show that in this particular case this surface condition leads to
the following relation for δP:

(
δP − ρgξz − k2τsξz

)
z=H = 0. (14.18.10)
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e. Show that the surface condition (14.18.10) can only be satisfied if the frequency
of the wave satisfies

ω2 =
(

gk + k3τs
ρ

)
tanh (kH) . (14.18.11)

We now specialize to the short-wavelength limit, where λ 	 H and kH � 1.
This is the limit of a very deep lake. In that case one has tanh(kH) � 1 and the waves
satisfy the following dispersion relation:

ω = ±
√

gk + k3τs
ρ

. (14.18.12)

On dimensional grounds one can define a characteristic wavenumber k0 and a char-
acteristic frequency ω0,

k0 =
√

gρ

τs
,ω0 = √

gk0 =
(

g3ρ

τs

)1/4

. (14.18.13)

If we express wavenumber and frequency in units of these characteristic values,
defining

κ = k/k0, ν = ω/ω0, (14.18.14)

dispersion relation (14.18.12) for water waves on a deep lake becomes

ν = ±
√

κ + κ3. (14.18.15)

g. Calculate the phase speed of these waves, and show that its has a minimum at
κ = 1 (k = k0) equal to

(
Vph

)
min =

(
4gτs

ρ

)1/4

. (14.18.16)

You may choose the plus sign in Eqs. (14.18.12/14.18.15).
h. Show that the group velocity of these waves can be written in terms of the dimen-

sionless wave number κ as

Vgr(k) = 1

2

(
gτs

ρ

)1/4 1 + 3κ2

√
κ + κ3

. (14.18.17)

You may choose the plus sign in Eqs. (14.18.12/14.18.15).
i. Make a sketch of the behavior of Vgr as a function of wave number k, and show

that Vgr(k) has a minimum at a wavenumber

k = k∗ =
(

2√
3

− 1

)1/2

k0. (14.18.18)
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Calculate this wavenumber, the corresponding wavelength and the associated
minimum propagation speed Vgr(k∗) for surface disturbances in deep water, using

ρ = 103 kg/m3, g = 9.8m/s2, τs = 10−3 J/m2.

14.19 The Isothermal Normal Shock

Aim of this exercise: consider a different type of shock that occurs in astrophys-
ical situations where radiation losses are strong.

In Chap. 9 we consider shock waves in an adiabatic gas, where the pressure and
density are related by a polytropic gas law of the form

P = P0

(
ρ

ρ0

)γ

. (14.19.1)

In this assignment we look at a special case: that of an isothermal gas where the
temperature on both sides of the shock is the same:

T1 = T2 = T . (14.19.2)

Formally this corresponds to γ = 1 as the ideal gas law gives P = ρRT/μ.
In the isothermal case one can express the gas pressure in terms of the (now

constant) isothermal sound speed s:

P(ρ) = ρs2, where s ≡ √
RT/μ. (14.19.3)

An isothermal gas can arise in astrophysics when the gas on both sides of the shock is
immersed in a strong radiation field that ‘imposes’ its temperature on the gas, acting
as a thermostat. Then something happens akin to what is illustrated in Fig. 14.14.

The gas first encounters a real shock in which the temperature sharply rises. This
shock is immediately followed by a thin transition layer. In this layer the excess
thermal energy of the gas is radiated away. Cooling stops when the gas has cooled
to the original (upstream) temperature. In this assignment we collapse this transition
layer to zero thickness.

In this asignment we consider a normal shock where the velocity is perpendicular
to the shock front. The strength of the shock can be characterized by the isothermal
Mach number

M = V/s. (14.19.4)

The table below gives the values of the flow parameters on both sides of the shock
in the up- and downstream region.

http://dx.doi.org/10.2991/978-94-6239-195-6_9
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Fig. 14.14 A schematic representation of the behavior of the gas temperature T (dashed curve) in
an isothermal shock. In this figure, the gas flows from left to right. First the incoming gas encounters
in a true shock, where (as in any shock) the temperature, density and pressure rise sharply. Then
the excess thermal energy per particle is radiated away as the gas cools in a transition layer behind
the shock. The cooling stops when the temperature returns to the pre-shock value. The downstream
state you are asked to calculate in this assignment corresponds to the state of the gas behind this
transition layer

Quantities in an isothermal shock
Quantity upstream downstream
Velocity V1 V2
Density ρ1 ρ2

Mach number M1 = V1/s M2 = V2/s

a. As in any shock, the mass flux and the momentum flux must be the same on both
sides of the shock so that no mass or momentum accumulates in the (infinitely
thin) shock see Sect. 9.4. Show that in the case of a normal isothermal shock
the laws of mass- and momentum conservation imply the following two jump
conditions:

ρ1M1 = ρ2M2 (mass conservation);
ρ1

(M2
1 + 1

) = ρ2
(M2

2 + 1
)

(momentum conservation). (14.19.5)

b. Show that these two jump conditions mean that the downstream Mach number
M2 and the upstream Mach number M1 satisfy the relation

M1M2
2 − (M2

1 + 1
)M2 + M1 = 0. (14.19.6)

http://dx.doi.org/10.2991/978-94-6239-195-6_9
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c. Show that there are two solutions, one trivial solution and one for a true isothermal
shock:

M2 = M1 (the trivial ‘no shock’ solution);

M2 = 1/M1 (the isothermal shock jump condition).

Give the compression r = ρ2/ρ1 = V1/V2 in the shock solution.
d. In the case of a shock in an ideal gas, as treated in Chap. 9, we need three

conservation laws (conservation of mass, momentum and energy, expressed in
terms of their respective fluxes. These are used to find a set of relations that link
the upstream state and the downstream state of the gas: the Rankine-Hugoniot
relations.
Give a physical argument why in the isothermal normal shock case the two
laws of mass- and momentum conservation are sufficient to totally determine the
downstream state, given the upstream state of the gas.

e. In an isothermal gas, the energy flux equals

ρV

[
V 2

2
+ s2 ln

(
ρ

ρ0

)]
, (14.19.7)

with ρ0 an arbitrarily chosen reference density. It is convenient for this particular
problem to take that density to be equal to the upstream density:

ρ0 = ρ1. (14.19.8)

Show that this energy flux isnot the same on both sides of the shock ifM1 �= M2.

The physical reason that the energy flux is not constant is simple: due to the
interaction of the gas with the radiation field, the energy per unit mass of the flow is
no longer a conserved quantity! When the gas is compressed, and tries to increase
its temperature, energy is transferred from the gas to the radiation field to keep the
temperature constant.

14.20 Theory of a Hydraulic Jump in a Channel

Aim of the exercise: illustration of another use of jump conditions at a discon-
tinuity in fluid mechanics.

Shock physics is enormously simplified by the fact that we can often describe the
phenomenon by replacing the shock by a sudden, infinitely thin jump. As a result,
the

flux in = flux out (14.20.1)

http://dx.doi.org/10.2991/978-94-6239-195-6_9


14.20 Theory of a Hydraulic Jump in a Channel 351

Fig. 14.15 The laboratory view of a Bore, where the depth of the water column changes from H1
to H2 over a length L . The Bore moves upstream with velocity VB. The flow speed in the river
ahead of the Bore equals V0. There is a constant gravitational acceleration g = −g ẑ in the vertical
direction

principle applied to the mass flux, the momentum flux and the energy flux allows us
to write down a set of algebraic equations that can be solved to calculate the state of
the gas behind the shock from the state of the gas ahead of the shock and the shock
speed.

Shocks are not the only fluid phenomenon where such an approach is useful. Here
we consider a hydraulic jump (also called a Bore): a sudden surge in the water level
in a river’s estuary, brought on by the rising tide. An example of a Bore can be seen
in the estuary of the River Severn (UK), where the tidal range is the 2nd highest in
the world: it can reach a height of about fifteen meters.

Consider the following simple model (see Fig. 14.15): let the water level in a
channel change rapidly from a depth H1 ahead of the Bore to a depth H2 > H1

behind the Bore. We approximate the Bore as a jump with transition length L , where
the height of the water column increases linearly. It will be explained in the appendix
to this assignment that the final results are valid regardless of the manner in which
the water level rises from depth H1 to depth H2, and for a rigid bore shape it does
not depend on the width of the transition L .

The flow speed of the river (from left to right) ahead of the bore equals V0, and
the force balance in the vertical direction is described by the equation of hydrostatic
equilibrium in the gravitational field with gravitational acceleration g = −g ẑ:

dP

dz
= −ρg. (14.20.2)

The density ρ of the water can be considered as constant. At the water’s surface there
is pressure equilibrium with the atmosphere:

P(z = H(x)) = Patm, (14.20.3)
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Fig. 14.16 The Bore Rest
Frame view, where the water
enters the bore with velocity
V1 and exits with velocity
V2. In this frame the flow
pattern is stationary

where H(x) is the depth of the water column, with x the coordinate along the length
of the river, pointing towards its mouth.

Wewill assume that (in the observer’s frame) the Bore propagates against the flow
from right to left with speed VB, without changing its shape: its structure is rigid in
the frame that moves with the Bore.

a. What is the pressure at a depth h below the water surface, given the atmospheric
pressure Patm?
Show with the help of (14.20.2) that this leads to

P(x, z) = Patm + ρg(H(x) − z), (14.20.4)

with H(x) the height of the water column at x .
b. What is the pressure difference between the water ahead of the Bore (state 1)

and behind the Bore (state 2) for z ≤ H1 Does that difference depend on where
along the x-axis you calculate it?

c. In what direction is the horizontal component of the pressure force (positive x
or negative x)? Is the incoming water slowed down, or is it accelerated?

We now go to the frame where the Bore is at rest. In that frame the fluid enters
the front of the bore with velocity V1, and leaves the back of the Bore with velocity
V2, see Fig. 14.16. As the bore is assumed to be rigid, we may assume that in this
frame (and in this frame only!) the flow pattern is stationary, i.e.

∂

∂t
(any flow quantity) = 0. (14.20.5)

d. Consider a strip, one centimeter wide in the y-direction, so that the areaA of the
strip transverse to x̂ is

A(x) = H(x) (14.20.6)
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Show that the amount of mass entering the Bore per second across this strip is

Ṁin = ρV1H1. (14.20.7)

e. In a steady flow the mass contained inside the transition region of width L must
remain constant. This means that the amount of mass leaving the Bore each
second across the strip (Ṁout) at its back must exactly balance the rate at which
mass streams in at the front. Show that this implies

V1H1 = V2H2. (14.20.8)

f. Usingmomentumconservationone can show(see theAppendix to this assignment
for an explanation) that the following equality holds:

V 2
1 H1 + gH 2

1

2
= V 2

2 H2 + gH 2
2

2
(14.20.9)

Together with relation (14.20.8) derived in e this can be thought of as a set of
jump conditions that determines V1 and V2, given the two heights H1 and H2.
Now calculate V1 and V2 in terms of g, H1 and H2.
Hint: The two jump conditions are symmetric under the label exchange 1 ⇐⇒ 2.
Therefore, the correct expressions for V1 and V2 should have the same symmetry:
you get V2 from the expression for V1 by making the label exchange, and vice
versa. This can act as a check on your algebra!

g. Alternatively, one can fix the value of the incoming fluid speed V1, and calculate
the possible solutions for the jump in height. Consider V1 as given, and define the
Bore height ratio

h ≡ H2

H1
, (14.20.10)

a dimensionless number. Show that result f leads to a quadratic equation for h:

h2 + h − 2Fr2 = 0. (14.20.11)

Here

Fr ≡ V1√
gH1

(14.20.12)

is the Froude number, another dimensionless quantity that serves as a measure
for the relative importance of the inertial and the gravitational force in the flow.

h. Give the solution for h.
When (that is: for what values of Fr) does that solution indeed give a positive
jump with H2 > H1? (The solution with H2 < H1, although mathematically
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allowed, is unphysical as it accelerates the fluid and requires an external energy
source)

i. Show that the Bore moves upstream (to the left: VB > 0 if we adopt the quantities
as defined in Fig. 14.15) in the Observer’s frame if

Fr2 >
V 2
0

gH1
, (14.20.13)

Also show that

h = H2

H1
>

1

2

√

1 + 8V 2
0

gH1
− 1

2
. (14.20.14)

14.20.1 Appendix: The Explanation for the Momentum
Conservation Law

If we work in the Bore rest frame where the flow is stationary, one can use the
conservative form of the equation of motion with ∂(ρV )/∂t = 0:

∇ · (ρV ⊗ V + PI) = −ρg ẑ. (14.20.15)

We can integrate this relation over an arbitrary volume V with exterior (closed)
surface S. Using Stokes’ theorem for some tensor T,

∫

V
dV (∇ ·T) =

∮

S
dS ·T =

∮

S
dS (n ·T) , (14.20.16)

one finds for T = ρV ⊗ V + PI:

∮

S
dS {ρ (n · V ) V + Pn} = −Mg ẑ. (14.20.17)

Here I have used that the vector (oriented) surface element can be written as

dS = dSn, (14.20.18)

with n a unit vector pointing outwards from the surface. The quantity dS is the
magnitude of the area of the surface element. The quantity M = ρV is the total mass
contained in the volume.

Let us consider the x-component of this vector equation. Defining Vn = V · n it
reads: ∮

S
dS {ρVnVx + Pnx } = 0, (14.20.19)
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Fig. 14.17 The dashed contour defines a volume of unit width in the y-direction, into the paper.
The surface integral consists of a piecewise integration of the unit strip along the closed path 12341,
and the two integrals over the two surfaces (front and back) in the x-z plane. As shown below, the
contribution to the surface integral from the front- and back surface cancel each other. This picture
is in the Bore rest frame where the flow pattern is stationary. The method employed here is known
as the use of a control surface

with nx = n · x̂ the x-component of the unit vector n. Gravity acts in the vertical
direction (along ẑ) and does not contribute. This is the relation we will use in what
follows.

Now consider the volume defined in Fig. 14.17 below by the dashed contour,
which has an extent�y = 1 in the y-direction (into the paper), the strip of unit width
that we already referred to above.

The integral over the closed surface S consists of [1] the surface associated with
the closed strip of unit width, and [2] the two integrals over the front- and back surface
in the x-z plane. However, these last two contributions cancel each other as [1] the
fluid properties do not depend on y so the magnitude of the two surface integrals
is the same, and [2] the unit vectors perpendicular to the surface are n = − ŷ and
n = + ŷ respectively for front and back. As a result, the two contributions cancel
exactly.7 What remains is the integral over the strip, which I calculate below. The
table below gives the value of the terms in the surface integral (14.20.19) for all
sections of the surface associated with the strip.

The first thing that is immediately obvious is that the surface integral over the
section 4 → 1 of the strip vanishes as Vn = nx = 0. Writing the three remaining
contributions to the integral as

∮

S
dS {ρVnVx + Pnx } = 0 = I12 + I23 + I34, (14.20.20)

we calculate each term separately, starting with the section 1 → 2.

7Even if that was not the case: we are only interested in the x-component of the relation, and for
the front and back surfaces do not even contribute on an individual basis.
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Quantity 1 → 2 2 → 3 3 → 4 4 → 1
nx -1 − sin θ +1 0
Vn −V1 0 V2 0
Vx V1 0 V2 not calculated explicitly
P Patm + ρg(H1 − z) Patm Patm + ρg(H2 − z) Patm + ρgH(x)

That calculation yields

I12 = −
∫ H1

0
dz

{
ρV 2

1 + Patm + ρg(H1 − z)
}

= −
(

ρV 2
1 H1 + PatmH1 + ρgH 2

1

2

)
. (14.20.21)

The integral over the inclined (rising) surface in the Bore is simply

I23 = −
∫ �m

0
d�Patm sin θ. (14.20.22)

Here � measures the length along the strip, which in this simple example is inclined
with a constant slope with angle θ with respect to the horizontal, ranges from 0 to
�m = √

L2 + (H2 − H1)2.
However, this particular integral can be simplified by noting that

dz = sin θd�, (14.20.23)

so we can write:

I23 = −
∫ H2

H1

dzPatm = Patm (H1 − H2) . (14.20.24)

One can even show that this result is quite general, and valid for any shape of the
surface, for instance a surface with small waves on it. In that case the inclination
angle θ varies with position along �, but relation (14.20.23) remains valid at every
point so that the value of the surface integral does not change: it depends only on the
height difference H2 − H1 in the Bore. As a result, the width L of the Bore never
enters!

The integral over the back surface of the strip is analogous toI12, apart froma sign:

I34 =
∫ H2

0
dz

{
ρV 2

2 + Patm + ρg(H2 − z)
}

= ρV 2
2 H2 + PatmH2 + ρgH 2

2

2
. (14.20.25)
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Adding the three contributions in reverse order one has, using (14.20.20):

0 = ρV 2
2 H2 + PatmH2 + ρgH2

2
2

+ Patm (H1 − H2) −
(

ρV 2
1 H1 + PatmH1 + ρgH2

1
2

)

= ρV 2
2 H2 + ρgH2

2
2

− ρV 2
1 H1 − ρgH2

1
2

. (14.20.26)

This immediately yields the relation used in the assignment, after canceling the
constant common factor ρ:

V 2
1 H1 + gH 2

1

2
= V 2

2 H2 + gH 2
2

2
. (14.20.27)

14.21 The Kelvin-Helmholtz Instability

Aim of this exercise: show how perturbation analysis can also be used to inves-
tigate the stability of a fluid system.

We consider an interface that separates two fluids, a so-called contact discontinuity.
The interface is located in the plane z = 0. The two fluids are in pressure equilibrium,

P(z < 0) = P(z > 0) ≡ P0. (14.21.1)

The two fluids have a different (but in each half-space constant) velocity and density:

[ρ(z), V (z)] =

⎧
⎪⎪⎨

⎪⎪⎩

[
ρ1, V1 x̂

]
for z < 0;

[
ρ2, V2 x̂

]
for z > 0.

(14.21.2)

We neglect the effects of gravity. The equation of motion for small perturbations
with displacement ξ and pressure perturbation δP reads for z �= 0

ρ
d2ξ

dt2
= −∇δP. (14.21.3)

The total derivative d/dt in the unperturbed flow that appears here is different on the
two sides of the interface:
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d

dt
≡ ∂

∂t
+ V ·∇ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
+ V1

∂

∂x
for z < 0;

∂

∂t
+ V2

∂

∂x
for z > 0.

(14.21.4)

We will consider incompressible perturbations that satisfy

∇ · ξ = 0. (14.21.5)

a. Look at each of the two half spaces, staying away from the interface at z = 0.
Show that the pressure perturbation δP must satisfy

∇2δP = 0. (14.21.6)

b. Because the fluid is not uniform in the z-direction, we can look for solutions of
the form

δP(z) = P̃(z)exp(ikx − iωt) + cc, (14.21.7)

the closest thing possible to a plane wave solution in this case. Determine the form
of the function P̃(z) in the half space z < 0 and in the half space z > 0 under
the assumption that the pressure perturbation vanishes at large distance from the
interface (You may forget about the complex conjugate in (14.21.7)!):

P̃(z = ±∞) = 0. (14.21.8)

c. At the interface the pressure perturbation in both fluids must be the same:

P̃(z = 0+) = P̃(z = 0−) ≡ P̃0. (14.21.9)

Now use the equation of motion, with a displacement vector ξ given by the
analogue of (14.21.7)

ξ(x, t) = a(z)exp (ikx − iωt) + cc, (14.21.10)

to show that the components of the amplitude a(z) ≡ (ax , ay, az) are given by:

ax (z) = ik P̃0
ρω̃2

e−k|z|,

ay(z) = 0, (14.21.11)

az(z) = − k P̃0
ρω̃2

(
z

|z|
)
e−k|z|.
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Here the Doppler-shifted frequency ω̃ is defined by

ω̃ =

⎧
⎪⎪⎨

⎪⎪⎩

ω − kV1 for z < 0;

ω − kV2 for z > 0.

(14.21.12)

(Hint: this goes best if you first do the two fluids at z < 0 and z > 0 separately.)
d. The fluids can not inter-penetrate, or form vacuum bubbles with no fluid at all at

the interface. This is only possible if displacementaz perpendicular to the interface
is the same on both sides8 of the (unperturbed) interface z = 0: az(0+) = az(0−).
Show that this condition can only be satisfied if the frequency ω satisfies

ρ1(ω − kV1)
2 + ρ2(ω − kV2)

2 = 0. (14.21.13)

e. Show that the solution of dispersion relation (14.21.13) gives a complex wave
frequency:

ω(k) = kU ± iσ. (14.21.14)

Determine the “mean wave velocity” U and the growth rate σ.
f. Show that there is always a solution with Im(ω) > 0 if V1 �= V2, where the wave

amplitude grows in time as
|a| ∝ e|σ|t , (14.21.15)

with
|σ| ∝ |V1 − V2|. (14.21.16)

The conclusion is that the interface between the two fluids is unstable, and
that small perturbations grow: the Kelvin-Helmholz Instability!

14.22 Deflection is an Oblique Isothermal Shock

As explained in Chap. 9, a fluid hitting a shock surface obliquely is deflected when
it crosses the shock. We look at the special case of an isothermal shock, where the
temperature T remains constant throughout the flow. This simplifies themathematics
enormously. The isothermal sound speed in the flow is also constant:

8Here we can neglect the fact that the interface is actually displaced over a distance ξz(z = 0) since
we are doing a linear analysis.

http://dx.doi.org/10.2991/978-94-6239-195-6_9
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Fig. 14.18 A flow along the
x-axis with velocity V1 hits
an oblique shock. The shock
surface is at an angle σ with
respect to the x-axis. The
post-shock flow proceeds
with velocity V2, at an angle
δ with respect to the x-axis

s =
√
RT

μ
, (14.22.1)

and the relation between the density ρ and the pressure is P = ρs2.
Consider a flow with velocity V1 along the x-axis. The flow hits an oblique shock.

The shock surface makes an angle σ with the x-axis, see Fig. 14.18. The jump
conditions at the shock surface are:

ρ1Vn1 = ρ2Vn2,

Vt1 = Vt2, (14.22.2)

ρ1V
2
n1 + ρ1s

2 = ρ2V
2
n2 + ρ2s

2. (14.22.3)

Here the subscript 1 (2) refers to conditions in the pre-shock (post-shock) flow. Vn

and Vt are the components of the velocity normal to and along the shock surface.

a. What is the physical argument that tells you that the tangential velocity component
Vt does not change across the shock?

b. Show that the fact that Vt does not change implies

V1

V2
= cos(σ − δ)

cos(σ)
. (14.22.4)

c. Show that the jump conditions allow a shock solution with a post- pre-shock
density ratio equal to

ρ2

ρ1
= Vn1

Vn2
=

(
Vn1

s

)2

≡ M2
s . (14.22.5)

HereMs is the normal Mach number of the isothermal shock.
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d. Show that results b and c allow you to calculate the deflection angle δ as:

tan δ =
(M2

s − 1
)
tan σ

M2
s + tan2 σ

. (14.22.6)

You might want to use the trigonometric relation

tan(a − b) = tan a − tan b

1 + tan a tan b
. (14.22.7)

e. What are the two possible conditions for which there is no deflection (δ = 0)?
Can you give a physical explanation for both these conditions?

14.23 The Relativistic Blast Waves of Gamma Ray Bursts

Aim of the exercise: an illustration of the usefulness of the concept of energy
conservation in the theory of blast waves.

In the case of an ordinary supernova explosion, idealized as a supersonically expand-
ing spherical bubble filled with gas and bounded by a blast wave, the expansion law
of the blast wave (i.e. the radius Rs as a function of time) can be derived from a
simple energy conservation law (see Sect. 10.4):

E ∼ 1

2
MsnrV

2
s = Esnr = constant. (14.23.1)

Here Esnr ∼ 1051erg is the mechanical explosion energy, and Msnr is the mass of the
remnant. The remnant mass Msnr consists of the mass of the original ejecta and the
mass of the interstellar gas that has been swept up by the blast wave:

Msnr = Mej + 4πρism

3
R3
s . (14.23.2)

In this assignment we look at the relativistic analogue of this situation, a relativistic
blast wave.

14.23.1 Gamma Ray Bursts

Gamma Ray Bursts (GRBs) are flashes of gamma rays that last ∼0.1–30 s. They
are observed at a rate of ∼ once every 1.5 day at a seemingly random (and there-
fore unpredictable) position on the sky. The observations of the X-ray, optical and
radio afterglows of GRBs have firmly established that the GRBs originate in distant
galaxies at cosmological distances.

http://dx.doi.org/10.2991/978-94-6239-195-6_10
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The energetics and time variability of the observed gamma rays can be explained
if one assumes that the GRB is associated with a powerful fireball (EGRB � 1052–
1053 erg) with small mass loading in the form of baryons (MGRB ≤ 10−4–10−5M�).
Since the total explosion energy is larger than the rest energy of the ejected mass,

EGRB � MGRBc
2, (14.23.3)

the blast wave must expand relativistically.
The outer shock that closely precedes the fireball moves with a speed Vs ∼ c and

a corresponding bulk Lorentz-factor

�s ≡ 1√
1 − V 2

s /c2
� 1. (14.23.4)

As you will be asked to show below, the value of �s and many other blast wave
properties are determined by the ratio of explosion energy and rest energy of the
ejecta,

η ≡ EGRB

MGRBc2
� 1. (14.23.5)

This is the fundamental parameter of the problem. One needs η � 100 − 1000 to
explain the observations. The mass MGRB plays the same role as Mej in the case of
ordinary supernova explosions. Because of this small mass loading the bulk motion
remains relativistic, (with Vs ≈ c) for a long period of time until a sufficiently large
amount of mass has been swept up from the surrounding interstellar medium.

The precise mechanism responsible for this explosion has as yet not been iden-
tified. It is believed to be associated with either the merger of two neutron stars in
a close binary, or with a hypernova: the extremely powerful explosion of a very
massive and rapidly rotating star at the end of its life.

In this assignment we will consider the simple case of a spherical relativistic
explosion. It is now clear that most GRBs are beamed: the outflow takes the form
of two oppositely directed collimated and relativistic jets, with an opening angle
θj ∼ 1–10◦. Nevertheless, most of the results obtained in this assignment for the
typical time scales and radii of the GRB phenomenon remain valid in that case.

a. We will try to follow the evolution of the relativistic blast wave by analogy with
an ordinary supernova explosion, starting with the free expansion phase where
the mass and energy residing in the swept-up interstellar (or circumstellar) gas
can be neglected.
Initially, the thermal energy of the exploded material is converted into the kinetic
energy of the expansion by pressure forces. At the same time the material cools
rapidly so that its thermal energy can be neglected. Use the proper relativistic
form of the energy conservation law (the analogue of Eq. 14.23.1) to argue that
the expansion of the blast wave in the free expansion phase (negligible effects of
the swept-up mass) must saturate at a velocity Vs ≡ βsc that corresponds to a
Lorentz factor equal to
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�s = 1√
1 − β2

s

= η. (14.23.6)

Hint: In this calculation you may assume that the entire ejected mass Mej moves
with the same velocity Vs.

Seen from the laboratory frame,where thematerial upstreamof the shock is at rest,
a relativistic shock with bulk Lorentz-factor �s � 1 boosts the energy (including the
rest energy) of each particle in the upstream material by a factor �2

s upon crossing
the shock. This means that an amount of swept-up mass Msw is compressed in the
shock until its total downstream energy (mostly thermal energy) reaches a value

Esw ≈ �2
s Mswc

2. (14.23.7)

just behind the shock. Here I have used the fact that the upstream matter is cold so
that its upstream energy consists almost entirely of the rest energy Mswc2.

b. Nowwrite down the energy conservation law given a total explosion energy EGRB,
which involves the energy contained in the ejecta mass MGRB and the energy
contained in the swept-up interstellar gas with mass Msw. Your final expression
should contain only the fundamental parameters MGRB, Msw, EGRB and �s.

Exactly like what happens in a supernova blast wave, the GRB blast wave starts
to slow down once it sweeps up a suffient amount of mass. As long as the motion
is still relativistic, with Vs � c, this ‘slowing down’ corresponds to a smaller and
smaller value of the Lorentz-factor �s.

c. Using the results of question b show the following: When the energy contained
in the ejecta and the energy in the swept-up material become equally large, the
Lorentz factor has fallen to half its initial value,

�s = η

2
, (14.23.8)

and the amount of mass that has been swept up at that point is

Msw = 2MGRB

η
= 2EGRB

η2c2
≡ Md (14.23.9)

We will take this point in the evolution of the fireball to be the end of the free
expansion phase, and call the mass Md the deceleration mass.

d. Consider a spherical relativistic blast wave expanding into the cold interstellar
medium with density ρism ≈ nismmH. This implies that the swept-up mass equals

Msw = 4π

3
ρismRs

3. (14.23.10)
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Show that the free expansion phase will end when the blast wave has a radius

Rd �
(

3EGRB

2πη2ρismc2

)1/3

. (14.23.11)

This is the so-called deceleration radius.
e. Calculate both the deceleration mass Md (in units of a Solar mass, 1 M� =

2 × 1033 g) and the deceleration radius Rd (in parsec, 1 pc = 3× 1018 cm) using
the following parameters:

• explosion energy: EGRB = 1053 erg with η = 103;
• number density interstellar medium: nism = 1 cm−3;
• hydrogen mass: mH = 1.6 × 10−24 g.

f. Use the relativistic energy conservation law of question b to show the following:
the relativistic equivalent of the Sedov phase, where the swept-upmass dominates
the dynamics and total energy, corresponds to an expansion law (valid for Rs �
Rd) that can be written in terms of the shock Lorentz factor as

�s(Rs) =
(

3EGRB

4πρismc2R3
s

)1/2

= η√
2

(
Rs

Rd

)−3/2

. (14.23.12)

g. Consider the point on the shock surface precisely in the line-of-sight fromobserver
to the blast wave. We take this surface, which approaches us with velocity Vs, to
be the source of the observed photons. Assume that most of the observed radiation
in the gamma-ray flash is generated between the explosion (at time t = 0) and
the time td ∼ Rd/c, the time when the deceleration radius is reached. Now show
the following by considering the time of flight of the ‘first’ and ‘last’ photons
emitted during the free expansion phase Rs ≤ Rd:

• Because of the relativistic motion close to the velocity of light, with

Vs

c
= βs ≈ 1 − 1

2�2
s

, (14.23.13)

the radiation generated between t = 0 and t = td is observed at Earth in a time
interval

tobs ≈ td
2�2

s

≈ Rd

2η2c
. (14.23.14)

Hint: In these calculations you may put �s � η. It also helps if you make a
drawing of the situation at t = 0 and t = Rd/c.

• Calculate this time interval for the same set of parameters as given in d, using
c ≈ 3 × 1010 cm/s. Compare the result with the typical observed duration of
Gamma Ray Bursts: tGRB ∼ 0.1−30 s.
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This ‘compression’ of the observed duration of the burst has the same origin
as the phenomenon of ‘superluminal motion’ discussed in Sect. 5.2.1 of the
Lecture Notes: the fact that the region that emits the radiation, in this case the
shock surface near the line-of-sight, almost ‘catches up’ with the light it emits.
As a result photons that are emitted later have to cross a smaller distance in
order to reach an observer, which shortens the photon travel time as the blast
wave expands.

h. Show that the motion of the blast wave becomes non-relativistic when

Rs >

(
η2/3

21/3

)
Rd ≡ Rnr. (14.23.15)

Can you now immediately write down an energy conservation law and the cor-
responding expansion law (shock velocity as a function of radius) for the radius
Rs � Rnr, assuming that the total energy of the swept-up mass in blast wave is
still conserved?

http://dx.doi.org/10.2991/978-94-6239-195-6_5


Chapter 15
Appendices

15.1 Mathematical Appendix: Vectors and Tensors

In this book we use right-handed orthonormal coordinates with unit vectors ê1, ê2
and ê3 that satisfy:

êi · ê j = δi j =
⎧
⎨

⎩

1 for i = j

0 for i �= j
, ê1 × ê2 = ê3. (15.1.1)

The object δi j is known as the Kronecker delta.
We use scalar fields, vector fields and rank 2 tensor fields. A vector A is

A = A1 ê1 + A2 ê2 + A3 ê3 ≡ Ai êi , (15.1.2)

where the Einstein convention for summation over double indices is used. The scalar
product of two vectors A and B is

A · B = A1B1 + A2B2 + A3B3 = Ai Bi . (15.1.3)

Vector components are scalars: from (15.1.1) and definition (15.1.2) one has

Ai = A · êi . (15.1.4)

The cross product of two vectors A and B is a new vector C:

C = A × B. (15.1.5)
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It can be represented as a determinant:

C =

∥∥∥∥∥∥∥∥∥∥

ê1 ê2 ê3

A1 A2 A3

B1 B2 B3

∥∥∥∥∥∥∥∥∥∥

. (15.1.6)

A rank two tensor can be defined by

T = Ti j êi ⊗ ê j , (15.1.7)

where êi ⊗ ê j is a direct product of two unit vectors. The direct product of two
vectors A and B is a special class of rank 2 tensors that is defined through

A ⊗ B = Ai B j êi ⊗ ê j , (15.1.8)

corresponding to a tensor with components Ti j = Ai B j . Vectors and rank 2 tensors
can be represented as

A =

⎛

⎜⎜⎜⎜⎝

A1

A2

A3

⎞

⎟⎟⎟⎟⎠
, T =

⎛

⎜⎜⎜⎜⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞

⎟⎟⎟⎟⎠
. (15.1.9)

The difference between scalars, vectors and tensors lies in their transformation prop-
erties: scalars are invariant under the transformation, while vector components and
tensor components change. Let us introduce a new set of unit vectors (and coordi-
nates), where the old unit vectors êi are related to the new vectors ēi through

êi = Rki ēk . (15.1.10)

The Rik are the components of the transformation matrix.
The relation

A = Ai êi = Ai Rki ēk ≡ Āk ēk (15.1.11)

shows that the vector components in the new system are

Āk = Rki Ai . (15.1.12)

A similar exercise for a rank 2 tensor T yields

T = Ti j êi ⊗ ê j = Ti j (Rki ēk) ⊗ (Rli ēl) = Rki Rl j Ti j ēk ⊗ ēl ≡ T̄kl ēk ⊗ ēl .
(15.1.13)
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So the new tensor components are related to the old ones through

T̄kl = Rki Rl j Ti j . (15.1.14)

The transformation matrix appears twice! From this one can distill the relation be-
tween the rank of an object and its transformation properties: in an object of rank n
exactly n factor of R (transformation matrix elements) appear in the expression for
the components in the new coordinate system. In a symbolic notation doing away
with indices: Ō = RnO . For a scalar none appear (i.e. n = 0), for a vector one
appears (n = 1) and for a rank 2 tensor two appear (n = 2).

In order tomaintain the value of the scalar product A · B the transformationmatrix
Rik must be an orthogonal matrix that satisfies:

Rki Rkj = δi j ⇐⇒ A · B = Ai Bi = Āk B̄k . (15.1.15)

The contraction between a rank two tensor T and a vector A yields a new vector B:

T · A ≡ Ti j A j êi = Bi êi ⇐⇒ Bi = Ti j A j . (15.1.16)

A double contraction of a rank 2 tensor with two vectors A and B yields a scalar:

A · T · B ≡ AiTi j B j . (15.1.17)

A special case allows us to express the tensor components ofT in amanner analogous
to relation (15.1.4) for vectors:

Ti j = êi · T · ê j . (15.1.18)

15.2 Special Tensors

A special tensor that we will encounter is the rank 2 unit tensor:

I = diag(1, 1, 1) =

⎛

⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎠
(15.2.1)

Its components can be represented concisely as

Ii j = δi j . (15.2.2)
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The only rank 3 (pseudo) tensor that we use is the Levi-Cevita tensor that has the
properties:

εi jk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 for i jk equal to 123, 231 and 312;

−1 for i jk equal to 213, 132 and 321;

0 otherwise, i.e. if at least two of the indices i, j, k are equal.
(15.2.3)

It is also called the totally antisymmetric symbol. It can be used to write the com-
ponents of the vector cross products in the following way: if C = A × B, then its
components are

Ci = εi jk A j Bk . (15.2.4)

15.3 Differential Operators

The basic ingredient of differential calculus on vectors and tensors is the gradient
operator, that in someways can be thought of as a vector.1 For instance, one represents
the gradient operator in Cartesian coordinates as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (15.3.1)

In the language introduced in our discussion of tensors, one should see the gradient
operator as a rank 1 object. The effect it has on the object that it is applied to (by
performing the necessary differentiations) depends on the way it is applied. I give
the most relevant examples:

1. Gradient of a scalar or vector. Given a scalar S (rank 0) one produces a vector
(say C, a rank 1 object) by taking its gradient:

C ≡ ∇S. (15.3.2)

However, the application of the gradient operator is not confined to scalars. For
instance: letting the gradient act on a vector field V (x), produces a rank 2 object.
In Cartesian coordinates:

∇V =

⎛

⎜⎜⎜⎜⎝

∂Vx/∂x ∂Vy/∂x ∂Vz/∂x

∂Vx/∂y ∂Vy/∂y ∂Vz/∂y

∂Vx/∂z ∂Vy/∂z ∂Vz/∂z

⎞

⎟⎟⎟⎟⎠
. (15.3.3)

1Again this has to do with the way it behaves under coordinate transformations.



15.3 Differential Operators 371

Its nine degrees of freedom are all three possible partial derivatives with respect to
the coordinates of each of the three components of the vector V (x, t). In Einstein
notation with x1 = x , x2 = y and x3 = z this is:

(∇V )i j = ∂Vj

∂xi
(Cartesian coordinates only!) (15.3.4)

This confirms the rank-raising nature of the gradient operator.
2. Divergence.

The divergence of an arbitrary vector field A(x, t) is defined as:

divA ≡ ∇ · A. (15.3.5)

It can be interpreted as a scalar product (contraction) between the two vectors ∇
and A. It is therefore a rank-lowering operation: it converts a vector A (rank 1)
into the scalar ∇ · A (rank 0) as 1 − 1 = 0! In Cartesian coordinates one has

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
= ∂Ai

∂xi
. (15.3.6)

The sameholds true if one operates the divergence on a rank 2 tensorT: it produces
a vector (say: F), a rank 1 object as 2 − 1 = 1:

F ≡ divT = ∇ · T. (15.3.7)

In Einstein notation with x1 = x , x2 = y and x3 = z, and remembering the
summation convention (in this case over the double index i):

Fj = (∇ · T) j = ∂Ti j
∂xi

(Cartesian coordinates only!) (15.3.8)

Writing this out one gets:

∇ · T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Txx
∂x

+ ∂Tyx

∂y
+ ∂Tzx

∂z

∂Txy
∂x

+ ∂Tyy

∂y
+ ∂Tzy

∂z

∂Txz
∂x

+ ∂Tyz

∂y
+ ∂Tzz

∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fx

Fy

Fz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.3.9)

Here I have mixed different notations to maximum effect.
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3. Rotation or curl of a vector. The curl of a vector B(x, t), curlB ≡ ∇ × B, can
be written in several ways. For Cartesian coordinates:

∇ × B = εi jk
∂Bk

∂x j
=

∥∥∥∥∥∥∥∥∥∥

x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z

Bx By Bz

∥∥∥∥∥∥∥∥∥∥

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Bz

∂y
− ∂By

∂z

∂Bx

∂z
− ∂Bz

∂x

∂By

∂x
− ∂Bx

∂y

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.3.10)

This operation converts a vector field into another vector field.

15.4 Directional Derivative

The directional derivative of a vector B along another vector A produces a new
vector. In Cartesian coordinates it equals

(A · ∇)B ≡
(
Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

)
B, (15.4.1)

For instance, the x-component of this new vector is

[(A · ∇)B]x = Ax
∂Bx

∂x
+ Ay

∂Bx

∂y
+ Az

∂Bx

∂z
(15.4.2)

More generally the directional derivative leaves the rank unchanged: it equals that of
the object that is being operated upon. In the above example: the directional derivative
of the vector B is once again a vector. In a similar fashion: the directional derivative
of a scalar f (x), defined in Cartesian coordinates as

(A · ∇) f = Ax
∂ f

∂x
+ Ay

∂ f

∂y
+ Az

∂ f

∂z
, (15.4.3)

will again be a scalar.

15.4.1 The Question of Upper and Lower Indices

I will sometimes use upper rather than lower indices to indicate vector- or tensor
components. For instance, I will represent a vector A as

A = Ai ei . (15.4.4)
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For the orthonormal coordinate systems that I employ this makes no difference: the
two are numerically the same so that Ai = Ai . However, from a strict mathematical
point of view Ai and Ai are formally different animals: the components Ai form a
contravariant vector, while the components Ai form a covariant vector. The differ-
ence between the two becomes important in General Relativity, or in any theory that
uses more general, not necessarily orthonormal, coordinate systems. In those cases
contravariant and covariant vector components do differ, and need not even have the
same dimension.

15.5 Operator Gymnastics

Whenever differential operators such as gradient, divergence or curl (or combinations
thereof) appear in vector analysis, one has to take account of such things as the product
rule for differentiation. For instance: the product rule directly leads to the following
relation:

∇ · ( f A) = (A · ∇) f + f (∇ · A). (15.5.1)

Here f = f is a scalar field and A is a vector field. The first term on the right-hand
side comes from differentiating f (x, t), and the second term form differentiating
A(x, t). If you are not quite sure about the ’dots’ in the contraction, simply realize
that each term in an equality such as this must have the correct rank. In this case they
are all scalars of rank 0 since a scalar × a vector is again a vector and its divergence
is a scalar. The same principle holds for more complicated relations, for example:

(V · ∇)V = ∇
(
1

2
V 2

)
− V × (∇ × V ) . (15.5.2)

Here each term is obviously a vector (rank 1).More generally: all terms in an equation
should be of the same rank. This makes rank (and the way vector operations affect
it) a useful concept for checking your algebra.

Particularly useful relations are:

∇ · (∇ × A) = 0, ∇ × ∇ f = 0, (15.5.3)

together with

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
= ∇ · (∇ f ). (15.5.4)

The last relation defines the Laplacian operator in Cartesian coordinates. Generally,
relations such as these are easily checked in by calculating the components using
Cartesian coordinates x , y and z. If the final result of such a calculation can be
cast into a general vector relation (that is: in ‘abstract’ notation without referring
explicitly to individual components), it is true in any coordinate system. This is
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known as the Principle of Covariance. This states that all physical laws must be the
same, regardless the coordinate system used to represent them. The detailed form
that a fundamental equation takes may (and generally will!) look different once one
writes it in terms of vector components. That form depends on the coordinates one
adopts.

The Box on the next page lists the most important relations that we will have
occasion to use. Proof for these relations and a more complete discussion can be
found in [2], Chaps. 1–3.

Useful relations

A × (B × C) = (A · C)B − (A · B)C

∇ × ∇ f = 0

∇ · (∇ × A) = 0

∇2 f = ∇ · (∇ f )

∇2A = ∇(∇ · A) − ∇ × (∇ × A)

∇( f g) = f ∇g + g∇ f

∇( f A) = f (∇ · A) + (A · ∇) f

∇ × ( f A) = f (∇ × A) + ∇ f × A

∇ · (A × B) = B · (∇ × A) − A · (∇ × B)

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

∇(A · B) = A × (∇ × B) + B × (∇ × A)

+(A · ∇)B + (B · ∇)A

For A = B:

∇
(
1

2
|A|2

)
= A × (∇ × A) + (A · ∇)A

A × (∇ × B) = (∇B) · A − (A · ∇)B

∇ · (A ⊗ B) = (∇ · A)B + (A · ∇)B

For a rank 2 tensor T, using Cartesian coordinates and the summation conven-
tion:

∇ · T = ∂Tji

∂x j
êi

Integral theorems: for a closed surface with surface element dS = dSn̂, with
n̂ the outward-pointing unit normal vector on the surface, we have:
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∫
dV∇ · A =

∫
dS · A =

∫
dS(n̂ · A)

∫
dV∇ · T =

∫
dS · T =

∫
dS(n̂ · T)

Here the volume integral on the let-hand side is over the volume enclosed by
the surface.

If a curve C encloses a surface S the following holds:

∫
dS · (∇ × A) =

∫
dl · A.

Here the vector dl is an oriented infinitesimal section of the curve C , tangent
to the curve.

15.6 Calculus of Differentials

In order avoid cumbersome and long equations, I sometimes resort to calculations in
terms of differentials, essentially infinitesimally small changes in a quantity (scalar,
vector, . . .). A formal definition for scalars that is easily generalized to more com-
plicated situations concerns a function f (x) of a single variable x . In that case we
have:

d f ≡ f (x + dx) − f (x) ≡ d f

dx
dx . (15.6.1)

The second equality in this relation is only true for infinitesimal changes dx in the
independent variable x . Since a differential is essentially a short-hand notation for
something that involves differentiation, it obeys the same rules that differentiation
obeys.

For instance, if we want to calculate the differential of the product of two scalar
functions f (x) and g(x) we have:

d ( f g) = d( f g)

dx
dx =

(
g
d f

dx
+ f

dg

dx

)
dx = gd f + f dg, (15.6.2)

which is the product rule for differentiation. In fluid mechanics/gas dynamics one
usually deals with scalars, vectors or tensors that are function of both position x and
time t . For a scalar, one has to generalize (15.6.1) to:
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d f ≡ f (x + dx, t + dt) − f (x, t)

(15.6.3)

= ∂ f

∂t
dt + ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz.

I have used Cartesian coordinates for convenience so that the infinitesimal position
shift is dx = (dx, dy, dz). This definition now obviously involves partial derivatives,
and can be written in compact vector notation (therefore valid in any coordinate
system) as:

d f = ∂ f

∂t
dt + (dx · ∇) f. (15.6.4)

The first term gives the effect of the explicit time dependence of f (x, t), while the
second term results from the position dependence.

The differential of a vector field A(x, t) obeys the same rule:

dA = ∂A
∂t

dt + (dx · ∇) A. (15.6.5)

15.6.1 A Word of Caution

Some important remarks are in order. First of all, youmayhavenoticed that the remark
‘... for Cartesian coordinates’ or ‘Cartesian coordinates only’ appear repeatedly in
the above definitions. The reason is that for spherical coordinates or cylindrical
coordinates (more generally: curvilinear coordinates) these expressions do not hold
in this form. This has to do with three mathematical properties of these coordinates:

1. First of all the coordinate surface, defined as the surface on which a particular
coordinates remains constant, is in general not a flat surface. For instance, the
coordinate surface r = constant in spherical coordinates is (you guessed it!)
a sphere centered on the origin, and the coordinate surface R = constant in
cylindrical coordinates is a cylinder around the z-axis.

2. Secondly, the unit vector associated with a particular coordinate points always
in the direction of variation (increase) of that coordinate, and is therefore by
definition perpendicular to the coordinate surface. If that coordinate surface is
curved, the direction of the unit vector changes for point to point. This complicates
calculating the gradient, divergence or curl of a vector: one has to differentiate
not only the vector components, but also the unit vectors in this case!
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3. Finally, in curvilinear coordinates it is not guaranteed that all coordinates have
the dimension of [length]. For instance: two of the three coordinates employed in
spherical coordinates (r, θ,φ) are angles that are dimensionless quantities. Take
the gradient operator acting on a scalar field �(x, t) as an example: in order
for all terms (components) in that operator to have the dimension [�]/[length],
just like its Cartesian counterpart, you have to put in ’dimension correction fac-
tors’ that makes sure that each of the three terms have that dimension.2 These
are the so-called Lamé coefficients that enter the definition of the gradient as
factor 1/coefficient. For example: they make the gradient operator in spherical
coordinates look like:

∇ = r̂
∂

∂r
+ θ̂

r

∂

∂θ
+ φ̂

r sin θ

∂

∂φ
. (15.6.6)

Here r̂ , θ̂ and φ̂ are the unit vectors in the three coordinate directions. In this
specific example the Lamé coefficients associated with the two angles θ and
φ (r and r sin θ respectively) have the dimension of [length]. The same Lamé
coefficients appear as coefficient2 in the distance recipe between two close points
in spherical coordinates:

ds2 = dr2 + r2dθ2 + (r sin θ)2 dφ2. (15.6.7)

Here they ensure that each term in this sumof squares has the dimension [length]2.
This gives the physical distance squared (ds2) in terms of the coordinate distances
dr , dθ and dφ between the two closely adjacent points. Coordinate distance and
physical distance do not coincide in curvilinear coordinates! More importantly, a
distance in curvilinear coordinates can in general only be expressed as an integral,
formally:

s(x1 → x2) =
∫ x2

x1

ds. (15.6.8)

15.7 Differential Operators in Curvilinear Coordinates

Consider a set of coordinates x1, x2 and x3, and a distance recipe that links infini-
tesimal coordinate distances dx1, dx2 and dx3 to a physical distance ds:

ds2 = (
h1dx

1
)2 + (

h2dx
2
)2 + (

h3dx
3
)2

. (15.7.1)

2The different terms in any equation must always have the same dimension. You can often exploit
this fact as a check on your algebra in complicated calculations!.
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Here the hi (x) are the three Lamé coefficient of this coordinate system. An arbitrary
vectorfield A(x) is written as

A = A1 ê1 + A2 ê2 + A3 ê3. (15.7.2)

Here (and it what follows) I use upper indices to conform with conventions in the
literature. The Lamé coefficients and the orientation of the three unit vectors vary
with position while maintaining orthonormality.

These are the fundamental differential operators in this case:

∇ f = ê1
h1

∂ f

∂x1
+ ê2

h2

∂ f

∂x2
+ ê3

h3

∂ f

∂x3
,

∇ · A = 1

h1h2h3

[
∂

∂x1
(
h2h3A

1
) + ∂

∂x2
(
h1h3A

2
) + ∂

∂x3
(
h1h2A

3
)]

,

∇ × A = 1

h1h2h3

∥∥∥∥∥∥∥∥∥∥∥

h1 ê1 h2 ê2 h3 ê3

∂

∂x1
∂

∂x2
∂

∂x3

h1A1 h2A2 h3A3

∥∥∥∥∥∥∥∥∥∥∥

,

and

∇2 f = 1

h1h2h3

[
∂

∂x1

(
h2h3
h1

∂ f

∂x1

)
+ ∂

∂x2

(
h1h3
h2

∂ f

∂x2

)
+ ∂

∂x3

(
h1h2
h3

∂ f

∂x3

)]
.

Specific expressions are given below for cylindrical and spherical coordinates.
When calculating such quantities as (B · ∇)A one can either use one of the rela-

tions in the Box above to express it in terms of the operators listed above, or one can
explicitly differentiate the unit vectors ê1, ê2 and ê3. I briefly consider the second
approach.

If r is the position vector, one formally has

êi = 1

hi

∂r
∂xi

(no summation over double indices!) (15.7.3)

This implies because of êi · êi = 1 that

hi =
∣∣∣∣
∂r
∂xi

∣∣∣∣ . (15.7.4)
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From this definition and the orthonormality condition êi · ê j = δi j one can derive

∂ êi
∂x j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ê j

hi

∂h j

∂xi
for i �= j

−
∑

s �=i

ês
hs

∂hi
∂xs

for i = j

(15.7.5)

No summation over double indices in these expressions, unless explicitly indicated.
These lead to curvature terms that are entirely due to the choice of coordinates. For
instance:

(B · ∇)A = (B · ∇)(A j ê j ) = (B · ∇A j )ê j + A j
[
(B · ∇)ê j

]
︸ ︷︷ ︸

curvature term

. (15.7.6)

The operator B · ∇ is given by

(B · ∇) =
3∑

i=1

Bi

hi

∂

∂xi
. (15.7.7)

15.7.1 Polar Coordinates

Polar coordinates are defined by R = √
x2 + y2, z, φ = tan−1(x/y) (so that x =

R cosφ, y = R sin φ) and z. The distance recipe is

ds2 = dR2 + R2dφ2 + dz2. (15.7.8)

This implies (from definition15.7.1) that h1 ≡ hR = 1, h2 ≡ hφ = R and h3 ≡
hz = 1. The three unit vectors are R̂, φ̂ and ẑ. The differential operators are:

∇ f (R,φ, z) = ∂ f

∂R
R̂ + 1

R

∂ f

∂φ
φ̂ + ∂ f

∂z
ẑ; (15.7.9)

∇2 f = ∇ · (∇ f ) = 1

R

∂

∂R

(
R

∂ f

∂R

)
+ 1

R2

∂2 f

∂φ2 + ∂2 f

∂z2
, (15.7.10)

∇ · A = 1

R

∂

∂R
(RAR) + 1

R

∂Aφ

∂φ
+ ∂Az

∂z
; (15.7.11)

(∇ × A)R = 1

R

∂Az

∂φ
− ∂Aφ

∂z

(∇ × A)φ = ∂AR

∂z
− ∂Az

∂R
(15.7.12)

(∇ × A)z = 1

R

∂

∂R

(
RAφ

) − 1

R

∂AR

∂φ
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[(A · ∇)B]R =
(
AR

∂

∂R
+ Aφ

R

∂

∂φ
+ Az

∂

∂z

)
BR − AφBφ

R
, (15.7.13)

[(A · ∇)B]φ =
(
AR

∂

∂R
+ Aφ

R

∂

∂φ
+ Az

∂

∂z

)
Bφ + AφBR

R
, (15.7.14)

[(A · ∇)B]z =
(
AR

∂

∂R
+ Aφ

R

∂

∂φ
+ Az

∂

∂z

)
Bz . (15.7.15)

15.7.2 Spherical Coordinates

Polar coordinates are defined by r = √
x2 + y2 + z2, z, θ = cos−1(z/r) and φ =

tan−1(x/y) so that x = r sin θ cosφ, y = r sin θ sin φ and z = r cos θ. The distance
recipe is

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (15.7.16)

This implies (from definition 15.7.1) that h1 ≡ hr = 1, h2 ≡ hθ = r and h3 ≡ hφ =
r sin θ. The three unit vectors are r̂ , θ̂ and φ̂. The differential operators are:

∇ f (r, θ,φ) = ∂ f

∂r
r̂ + 1

r

∂ f

∂θ
θ̂ + 1

r sin θ

∂ f

∂φ
φ̂; (15.7.17)

∇2 f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2 , (15.7.18)

∇ · A = 1

r2
∂

∂r

(
r2Ar

)
+ 1

r sin θ

∂

∂θ
(sin θAθ) + 1

r sin θ

∂Aφ

∂φ
; (15.7.19)

(∇ × A)r = 1

r sin θ

∂

∂θ

(
sin θAφ

) − 1

r sin θ

∂Aθ

∂φ

(∇ × A)θ = 1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r

(
r Aφ

)
(15.7.20)

(∇ × A)φ = 1

r

∂

∂r
(r Aθ) − 1

r

∂Ar

∂θ

[(A · ∇)B]r =
(
Ar

∂

∂r
+ Aθ

r

∂

∂θ
+ Aφ

r sin θ

∂

∂φ

)
Br − AθBθ + AφBφ

r
, (15.7.21)

[(A · ∇)B]θ =
(
Ar

∂

∂r
+ Aθ

r

∂

∂θ
+ Aφ

r sin θ

∂

∂φ

)
Bθ + AθBr

r
− cotθAφBφ

r
, (15.7.22)

[(A · ∇)B]φ =
(
Ar

∂

∂r
+ Aθ

r

∂

∂θ
+ Aφ

r sin θ

∂

∂φ

)
Bφ + AφBr

r
+ cotθAφBφ

r
. (15.7.23)
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Symbol Meaning cgs unit/value
�V Infinitesimal volume element: �V = �x�y�z cm3

m Mass of the constituent particles (atoms, molecules) in a gas g
ρ(x, t) Mass density: mass per unit volume g/cm3

�M Mass in an infinitesimal volume: �M = ρ�V g
n(x, t) Number density: number of particles per unit volume; In a gas con-

sisting of particles with mass m one has n = ρ/m
cm−3

P(x, t) Gas/fluid pressure: force exerted per unit area by a gas or fluid; P =
nkbT = ρRT/μ

dyne/cm2

T (x, t) Gas/fluid temperature K
γ Specific heat ratio; equals 5/3 for an ideal mono-atomic gas
μ Molecular weight in units of the hydrogen mass, mH ∼ 1.66× 10−24

g
kb Boltzmann’s constant: relates temperature to thermal energy; Ther-

modynamics states that each degree of freedom contains an energy
Eth = 1

2 kbT in thermal equilibrium with temperature T

1.38 × 10−16

erg/K

R Universal gas constant, R = kb/mH 8.31×107 erg/gK
�(x, t) Newtonian gravitational potential; associated gravitational accelera-

tion is g = −∇�, g ≡ |g|
erg/g = cm2/s2

x Position vector; in Cartesian coordinates: x = (x, y, z)
r Alternative notation for position vector x
x0 Position vector at some fiducial time, used as Lagrangian label, say

at t = 0 so that x0 = x(t = 0)
X(t) Position vector of a given fluid element
V (x, t) Velocity field of the fluid: V = dx/dt cm/s
σ Random velocity due to thermal motion; Its mean square value relates

to particle mass and temperature by σ2 = 3kbT/2m

d/dt Comoving or Lagrangian time derivative;
d

dt
= ∂

∂t
+ (V · ∇)

M(x, t) Momentum density vector = mass flux vector, M = ρV g cm/s
I I = diag(1, 1, 1), rank 2 unit tensor
T(x, t) Fluid stress tensor (rank 2): T = ρV ⊗ V + PI g cm2/s2
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Symbol Meaning cgs unit/value

e Specific thermal energy, e = γP

(γ − 1)ρ
(ideal gas: e = 3kbT

2m ) erg/g

h Specific enthalpy, h = e + P

ρ
= P

(γ − 1)ρ
(ideal gas: h = 5kbT

2m ) erg/g

W Fluid energy density: W = ρ
( 1
2 V

2 + e + �
)

erg/cm3

S Fluid energy flux: S = ρV
( 1
2 V

2 + h + �
)

erg/cm2s
E Specific energy, E = 1

2 V
2 + h + � erg/g

s Entropy density: s = cv ln
(
Pρ−γ

)
(Except in association with waves, see

below)

� Lorentz factor: � = 1/
√
1 − V 2/c2

β Velocity in units of the speed of light (c): β = V/c
M∗ or m∗ Stellar mass g
R∗ Stellar radius cm
�∗ Stellar angular rotation rate (solid body rotation) rad/s
Ṁ Total mass loss rate/mass accretion rate g/s
M� Solar mass ∼2 × 1033 g
R� Solar radius ∼7 × 1010 cm
ξ(x, t) Small position displacement of a fluid element in a wave cm
δQ Small Eulerian variation of some quantity Q(x, t)
�Q Small Lagrangian variation of some quantity Q(x, t) In a linear wave they are

related by: �Q = δQ + (ξ · ∇)Q
ω Wave angular frequency rad/s
λ Wavelength cm
k Wave vector. In terms of wavelength λ: |k| = 2π/λ rad/cm

Symbol Meaning cgs unit/value

a Wave amplitude vector in plane wave expansion:
ξ(x, t) = a exp(ik · x − iωt) + cc.

cm

Cs Adiabatic sound speed: Cs = √
γP/ρ cm/s

s In association with waves: the isothermal sound speed; s = √
P/ρ cm/s

� Relative density perturbation: � = δρ/ρ

�̃ Amplitude of�(x, t) in planewave expansion:�(x, t) = �̃exp(ik · x−iωt)+
cc.

� Rotation angular frequency, related to rotation period Pr by � = 2π/Pr rad/s
λJ Jeans length (gravitational instability): λJ = √

πC2
s /Gρ cm

kJ Jeans wave number: kJ = 2π/λJ = √
4πGρ/Cs cm−1

H In association with waves: isothermal scale height; H = RT/μg cm
NBV Brunt-Väisälä frequency in a stratified atmosphere;

N 2
BV = −(∇P/γρ) · ∇ {

ln
(
Pρ−γ

)} s−1

Vw Wind speed (stellar winds) cm/s
Rs Shock radius (spherical shocks) cm/s
Vs Shock speed cm/s
Vn Component of speed along shock the normal to a shock surface cm/s
Vt Tangential speed: component of flow speed along shock surface cm/s
J Conserved mass flux through shock: J = ρVn g/(cm2s)
Ms Mach number: ratio Vs/Cs of shock speed and sound speed in the upstream

medium
Mn Normal Mach number shock : Mn = Vn/Cs in upstream quantities
Msw Swept-up mass supernova remnant: Msw = 4πρ0R3

s /3 g
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15.9 Physical and Astronomical Constants

Physical constants (cgs units)
Quantity Symbol Value in cgs units
Velocity of light c 2.998 × 1010 cm/s
Gravitational constant G 6.67 × 10−8 dyne cm2/g2

Plancks constant h 6.626 × 10−27 erg s

� = h

2π
1.05 × 10−27 erg s

Boltzmanns constant kb 1.381 × 10−16 erg/K
Electron mass me 9.11 × 10−28 g
Proton mass mp 1.67 × 10−24 g
Fundamental charge e 4.8 × 10−10 statcoulomb
Radiation constant ar 7.56 × 10−15 erg cm−3 K−4

Stefan-Boltzmann cnst. σsb 5.67 × 10−5 erg cm−2 s−1 K−4

Thomson cross section σT 6.65 × 10−25 cm2

Physical constants (SI)
Quantity Symbol Value in SI units
Velocity of light c 2.998 × 108 m/s
Gravitational constant G 6.67 × 10−11 Nm2/kg2

Plancks constant h 6.626 × 10−34 J s

� = h

2π
1.05 × 10−35 J s

Boltzmanns constant kb 1.381 × 10−23 J/K
Electron mass me 9.11 × 10−31 kg
Proton mass mp 1.67 × 10−27 kg
Fundamental charge e 1.602 × 10−19 C
Radiation constant ar 7.56 × 10−16 J m−3 K−4

Stefan-Boltzmann cnst. σsb 5.67 × 10−8 W m−2 K−4

Thomson cross section σT 6.65 × 10−29 m2
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Astronomical constants (cgs units)
Quantity Symbol Value
Year yr = 3.156 × 107 s
Earth radius R⊕ = 6.378 × 108 cm
Astronomical Unit AU = 1.496 × 1013 cm
parsec pc = 3.086 × 1018 cm
kiloparsec kpc = 103 pc = 3.086 × 1021 cm
megaparsec Mpc = 106 pc = 3.086 × 1024 cm
gigaparsec Gpc = 109 pc = 3.086 × 1027 cm
lichtyear lyr = 9.463 × 1017 cm
Solar mass M� = 1.989 × 1033 g
Solar luminosity L� = 3.862 × 1033 erg/s
Solar radius R� = 6.955 × 1010 cm
Hubble constant H0 = 73.5 ± 3.2 km/s per Mpc
Hubble time tH = 1/H0 = 1.33 ± 0.14 × 1010 yr
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A
Absolute vorticity, 281, 282

equatin of motion, 282
Acoustic-gravity waves, 185, 186
Adiabatic gas, 103
Adiabatic gas law, 30
Aerodynamics, 1
Angular velocity, 276
Archimedes’ law, 123
Astrophysical jet, 236

Blandford-Rees Model, 123
pressure-driven, 120

Atmospheric scale height, 284
Axi-symmetric flow, 69

B
Barometric height formula, 35
Barotropic flow, 283
Bernoulli’s law, 100, 222

as conservation of specific energy along
streamlines, 75

Black hole, 118
Blast wave, 240, 241, 257, 258
Boltzmann’s constant, 19
Bondi Accretion, 117
Bow shock, 204
Brunt-Väisälä frequency, 185, 189, 190, 192
Buoyancy, 123, 179, 182
Buoyancy force, 190
Buoyancy frequency, 179, 185
Burgers’ equation, 214

C
Center-of-mass velocity, 6
Centrifugal force, 279

Centripetal force, 88
Circulation, 266, 269, 272, 282
Collapsar, 118
Comoving coordinates, 166, 168
Comoving derivative, 171
Comoving time, 169
Complex amplitude, 130
Contact discontinuity, 59, 60, 65, 242
Continuity equation, 21, 25
Continuum approximation, 1
Continuum description, 6, 7
Convection, 189, 191
Coriolis force, 279, 284, 299
Corner flow, 80
Co-rotating frame, 281, 288
Couette flow, 87
Couette-Poisseuille flow, 86
Critical point, 108, 113, 114
Critical point conditions, 108
Critical radius, 113, 115
Cyclones, 261, 285, 297

D
D’Alembert’s Paradox, 99
Dark matter halo, 40
Deceleration radius, 250
Deformation tensor, 135, 136
Density field, 7
Density perturbation, 134, 138, 158
Direct product, 12
Dispersion relation, 146, 154

for compressible waves in a stratified at-
mosphere, 185

for incompressible waves in a stratified
atmosphere, 181

for self-gravitating fluid, 159
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surface waves on water, 196
Displacement field, 125
Displacement vector, 129, 130, 132
Divergence, 12

rank 2 tensor, 17
Doppler shift, 154
Drag, 85

on a sphere, 95
Drag coefficient, 96
Dyadic tensor, 12, 16

E
Effective potential, 279
Einstein summation convention, 12, 61
Energy density, 49, 52
Energy flux, 49, 52
Enthalpy, 50
Entropy, 27

specific, 53
Entropy perturbation, 155
Entropy wave, 154
Equation of state, 247
Euler equation, 18
Euler force, 279
Eulerian and Lagrangian change, 10
Expansion fan, 216

F
Field theory, 7
First law of thermodynamics, 27
Fluid description, 6
Fluid equations

conservative form, 43
conservative energy equation, 48
conservative mass equation, 47
conservativemomentumequation, 47
with viscosity, 54

Flux, 43
Friedmann model, 167
Friedmann’s equation, 168

G
Gamma ray burst, 118
General relativity, 21
Geostrophic limit, 298–300
Globular clusters, 31

King radius, 36
mass, 40
tidal radius, 39

Gravitational acceleration, 288
Gravitational field, 53

work done by, 51
Gravitational potential, 172, 246
Gravity, 18

binding energy, 164, 246
effective gravity in a rotating frame, 279
gravitational field, 20
gravitational potential, 20

Group velocity, 149
sound waves in a moving medium, 154

H
Harmonic behavior, 129
Heating rate, 49
Hubble constant, 165, 174
Hubble flow, 167, 169, 170
Hubble’s law, 165, 166
Hurricane Katrina, 298
Hydraulics, 1
Hydrostatic equilibrium, 33, 178, 186, 190,

192, 290
Hypernova, 118

I
Ideal gas law, 19, 27, 263
Impermeable wall, 81
Incompressible flow, 70, 79, 283
Internal energy, 19
Internal friction, 57
Interstellarmedium, 246, 249, 250, 252, 253,

255
Irreversible heating, 27, 54
Irrotational flow, 73

as a potential flow, 73
Isentropic flow, 105, 109
Isobaric surface, 263
Isochoric surface, 263
Isothermal gas, 31
Isothermal scale height, 35, 178
Isothermal sound speed, 114
Isothermal sphere, 31, 33

singular, 37
Isotropic fluid or gas, 14

J
Jeans length, 159, 160, 176
Jeans’ Instability, 157

from an energy argument, 163
in an expanding uiniverse, 165
power-law solution in an expanding uni-
verse, 176

Jupiter, 286
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Jupiter’s Great Red Spot, 261, 297, 300

K
Kelvin ship waves, 198
Kelvin’s circulation theorem, 261, 266, 269,

270, 282
Kelvin-Helmholtz Instability, 61
Kronecker symbol, 16

L
Lagrangian label, 131
Laminar flow, 83
Laval nozzle, 106
Legendre polynomials, 91
Levi-Cevita tensor, 136
Linear instability, 128, 160
Longitudinal waves, 147
Lorentz factor, 119

M
Mach disk, 235, 236
Mach number, 203

isothermal, 231
normal Mach number, 225

Magnetic field, 119
Mass conservation, 21, 25, 46, 47, 109, 137,

272
Mass density, 6, 11, 19–21, 32, 35, 38, 40
Material curve, 21, 266, 270
Material surface, 23, 266, 270
Material volume, 23, 270
Micro-quasars, 118
Momentum density vector, 48
Multipole expansion, 91, 92

N
Navier-Stokes equation, 18, 55
Neutrinos, 247, 248
No-slip condition, 60, 85, 86, 98

P
Parker’s model, 108
Perturbation analysis, 125
Perturbation vector

comoving, 168
Perturbations, 129

Eulerian, 131
Lagrangian, 131

relation between Eulerian and La-
grangian, 131

relation between time derivatives, 132
Phase velocity, 149
Plane waves, 129, 153

in shallow water, 296
representation, 129

Planetary vorticity, 282, 283
Point explosion, 204, 240, 244

power-law solution, 240
Poiseuille flow, 83
Poisson’s equation, 20, 36, 158, 171–173
Polytropic gas law, 28
Potential flow, 73

past a sphere, 97
Potential vorticity, 290, 292, 293, 302
Power-law Solution, 255
Pressure, 8, 10, 17–19, 27–29, 31, 33, 35
Pressure field, 7
Pressure force, 10, 17
Pressure perturbation, 129, 138

R
Radiative cooling, 251
Radio galaxies, 119
Radio galaxy, 119
Ram pressure, 258
Rankine-Hugoniot relations, 225, 241
Relative vorticity, 282, 283
Reverse shock, 251, 257
Reynolds number, 80, 83, 90, 96, 97
Rossby number, 299
Rotating reference frame, 261, 275

fluid equations in, 278, 279
time derivative in, 277
velocity in, 277

Rotation curve, 41
Rotation vector, 276, 288

S
Saturn, 286
Schwarzschild criterion, 191, 192
Sedov radius, 240
Sedov-Taylor expansion law, 241, 245, 251
Self-gravitating fluid, 157, 159
Self-similarity, 36, 240
Shallowwater approximation, 286, 290, 291,

293
Shallow water theory, 291, 292, 295
Shallow water waves, 295
Shear flow, 285
Shock, 59, 65
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Shock adiabat, 223
Shock compression ratio, 223
Shock waves, 203

characteristic speeds, 211
conservation of tangential momentum,
222

infinitely strong normal shock, 227
isothermal shock, 230
jump conditions, 220, 221, 226–229
marble tube analogy, 205
role of characteristics, 208
thickness, 230
weak- and strong shocks, 224

Small-amplitude waves, 125
Solar Corona, 110, 111, 115
Sonic radius, 112, 113
Sound speed, 107, 110, 145

isothermal, 114
Sound waves, 143

in a moving fluid, 153
Space Shuttle, 235
Specific energy, 19, 29, 75, 104, 222
Specific enthalpy, 103, 223
Specific entropy, 29, 30, 103, 192
Specific heat coefficient, 29
Specific viscosity, 231
Specific volume, 29
Stagnation point, 81
Stationary phase condition, 199, 200
Steady flow, 59, 69, 76, 77
Stellar wind, 108, 245

critical radius, 256
isothermal wind, 113
Parker’s equation for, 109
power-law solution for expansion, 246
termination shock, 257

Stellar wind bubble, 255
Stokes flow, 90
Stokes theorem, 45
Stratified atmosphere, 177
Stream function, 72, 91
Streamline, 76
Stress tensor, 12, 13, 44

Reynolds stress, 44
Subsonic flow, 111
Supernova explosion, 246

core collapse mechanism, 246, 248
Supernova remnant, 249, 253

deceleration radius, 250
free expansion phase, 249
power-law solution for expansion, 253
pressure-driven phase, 251
Sedov-Taylor phase, 249

snow plow phase, 251
Supersonic flow, 65, 111
Surface stress, 59
Surface waves, 192
Synchrotron radiation, 119

T
Taylor-Proudman theorem, 301
Tensor field, 44
Termination shock, 257, 259
Thermal motion, 10, 12, 13, 17
Thermal wind equation, 283–285
Thermodynamics, 19, 50, 51
Time derivative, 8

comoving, 8
Eulerian, 8
Lagrangian, 8
relation between Eulerian and La-
grangian derivatives, 9

Tornadoes, 261
Transpose tensor, 56

U
Unit tensor, 17
Universal gas constant, 19

V
Vector

components, 7
velocity, 7

Vector potential, 71
Velocity dispersion, 8, 19, 32, 33, 36, 40
Velocity field, 7
Velocity gradient tensor, 55, 268
Velocity perturbation, 133, 144

Langrangian, 153
Velocity potential, 73, 74
Violent relaxation, 52

dynamics of galaxies, 53
single-particle analogy, 52

Viscosity, 18, 90
shear viscosity coefficient, 18, 55
specific, 71
viscous dissipation, 55
viscous energy flux, 57
viscous stress tensor, 54

Vortex line, 264, 265, 294
Vortex shedding, 101
Vortex stretching, 264, 273
Vortex tube, 271
Vorticity, 73, 262, 281
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equation of motion for, 263
generation, 263

W
Wave frequency, 130
Wave packet, 151
Wave vector, 130

Y
Young stellar object, 118

Z
Zonal Wind, 284
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