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So then we just hack it all apart, take out all
the complicated bits, and keep it simple

Ritchie Blackmore



To Lucia



Preface

Theoretical physics evolved from Newton’s mechanics to a general theory for
modeling dynamical systems. Theoretical physicists not only earn their income by
investigating traditional physical systems like particles, condensed matter and star
systems, but also by applying their modeling skills on economics, informatics,
medicine, psychology, biology, environment, climate, language and sociology. This
is to a substantial part caused by a very flexible toolbox theoretical physicists learn
to use. It is this toolbox which makes physics a science with strong impact on man
and nature. This book is about the organization of this toolbox. Though, it is
intended as a little entertaining piece of natural philosophy and not as a nosh for the
military-industrial complex.

The central aim of this book is to present Markov and quantum processes as two
sides of a coin called generated stochastic processes. Quantum processes are
reversible stochastic processes generated by one-step unitary operators while
Markov processes are irreversible stochastic processes generated by one-step
stochastic operators. The characteristic features of quantum processes are oscilla-
tions, interference, lots of stationary states in bounded systems and possible
asymptotic stationary scattering states in open systems, while the characteristic
features of Markov processes are relaxations to a single stationary state. Quantum
processes apply to systems where all variables that control reversibility are taken as
relevant variables, while Markov processes emerge when some of those variables
cannot be followed and are thus irrelevant for the dynamic description. Their
absence renders the dynamic irreversible. Once one realizes that Markov processes
are incapable to describe reversibility, a necessity for the description of reversible
stochastic processes arises and abstract quantum theory does this job in close
analogy as Newton mechanics does the job for deterministic processes. Newton’s
invention as compared to Aristotle’s view was the introduction of two properties
serving as initial condition. The initial coordinate plus the initial velocity are needed
to formulate deterministic reversible processes. Similarly, for stochastic processes
not only the initial probability density defines the state (as in Markov processes),
but also the probability current density specifies the state in order to define
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reversible stochastic processes. Both quantities must be independent except for the
probability conservation. By generating probability density and current density
from a two component pre-probability,' unitary quantum theory reaches this goal in
a most elegant and compact way. In that sense the pre-probability as a complex
wave function does have a very clear and—to me—intuitive physical interpretation:
its squared modulus is the positive probability density and its phase generates the
probability current density as the two components of a state for a reversible
stochastic process. A similar more mathematically oriented reconstruction of
quantum theory as a theory for reversible stochastic processes was formulated by
Hardy in 2001.”

A further aim is to demonstrate that almost any subdiscipline of theoretical
physics can conceptually be put in the context of generated stochastic processes.
Classical mechanics and classical field theory are about deterministic processes
which emerge when fluctuations in relevant variables are negligible. Quantum
mechanics and quantum field theory are about genuine quantum processes.
Equilibrium and non-equilibrium statistics apply to the regime where relaxing
Markov processes emerge from quantum processes by omission of a large number
of uncontrollable variables. Systems with many variables often self-organize such
that only few slow variables can serve as relevant variables. Symmetries and
topological classes are essential in identifying such relevant variables.

The third aim is to provide conceptually general methods of solutions which can
serve as starting points to find relevant variables as well as to apply best practice
approximation methods. Such methods are available through generating
functionals.

The potential reader is a graduate student who likes to learn about quantum
systems from few to many particles and about stochastic processes in a unifying
way. She or he has heard already a course in quantum theory and equilibrium
statistical physics including the mathematics of spectral analysis (eigenvalues,
eigenvectors and Fourier and Laplace transformations) and may also have had some
contact to the particle number representation of many body systems. The book does
not follow the standard route of the present day’s theoretical physics education® and
does not focus on one particular subject of such education. The reader should be
open for a unifying look on several topics. If she or he then likes to be educated in
one particular subject like condensed matter theory or particle physics or Markov
processes in many of their facets, she or he may consult the texts cited in the book
at appropriate points.

'A notion lend from R.B. Griffiths: Consistent Quantum Theory, Cambridge University Press,
2002.

’L. Hardy: Quantum Theory From Five Reasonable Axioms, arXiv:quant-ph/0101012v4.

3See however the lecture notes of J. Chalker and A. Lukas, where quantum processes and Markov
processes are discussed together: J. Chalker, A. Lukas: Lecture Notes on M. Phys Option in
Theoretical Physics: C6, http://www-thphys.physics.ox.ac.uk/people/JohnChalker/theory/lecture-
notes.pdf.


http://arxiv.org/abs/quant-ph/0101012v4
http://www-thphys.physics.ox.ac.uk/people/JohnChalker/theory/lecture-notes.pdf
http://www-thphys.physics.ox.ac.uk/people/JohnChalker/theory/lecture-notes.pdf

Preface xi

I was first impressed by the richness of Markov processes by a lecture in 1987 of
my teacher Janos Hajdu and later in the 1990s by the applications in original
research by my teachers John Chalker and Boris Shapiro. I came to apply them in
my own work and gave a lecture course in 1998 based on these experiences.
I became aware that the Chapman—Kolmogorov equation is very similar to the
unitary time evolution in quantum theory and found a remark in a book of C.F. von
Weizsicker® which I interpret in the following way: quantum theory does not
formulate a new probability theory but only a new dynamics for probabilities as
compared to the Chapman—Kolmogorov dynamics. I liked to elaborate on this idea
and so the original plan of writing a book on Markov processes evolved over more
than 10 years into its present state.

I like to thank Claus Ascheron from Springer for his patience and encourage-
ment to finally transform my collection of lecture notes into a book. I also wish to
thank Janos Hajdu for his long-lasting intellectual and emotional support and for
many enlightening discussions over these years. Big thanks the students of my
courses who helped very much to shape the final content. Special thanks go to
Stefan Brackertz and Patrick Sudowe for intensive discussions about notions and
interpretations. Finally, I thank my father, Theo Dores Janssen, for having confi-
dence in me and for initiating my desire to clean up the desk.

Krefeld Martin Janf3en
April 2016

4C.F. von Weizsicker: Aufbau der Physik, dtv, pp. 309-310, 1988.
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Chapter 1
Introduction—Dynamics of Relevant
Variables

In physical modeling one faces almost contradictory requirements. We want to catch
up with reality, but by definite notions and mathematical relations. We like to describe
fast dynamical and slow—or even static—situations. We try to understand the sub-
microscopic down to 1073* m and the universe up to 10** m. We want to know the
properties of single elementary particles and of complex systems coupled to envi-
ronments. The complexity of modeling is drastically reduced if one can find a set
of few relevant variables appropriate for the specific questions to be answered. It
turns out that often relevant variables emerge within a more detailed theory with
elementary variables. Relevant variables are typically the slow variables in a system.
When dynamically time scales begin to separate, relevant variables emerge. The
best known example is thermodynamics where internal microscopic variables are
summed up in a partition sum and only environmental conditions of equilibrium like
temperature, chemical potential, pressure and applied magnetic field are known to
calculate system properties like average energy, particle density and magnetization
or secondary quantities like specific heat and magnetic susceptibility.

Despite the diversification of physics into many disciplines like atomic physics,
optics, nuclear physics, particle physics, astrophysics and condensed matter physics
it turned out in the last decades that a common methodological frame for theoretical
physics exists, which allows an overall view on basic concepts in theoretical physics.
This overall view can briefly be characterized as follows.

1. Theoretical physics is about models for probabilities of varying properties in
stochastic processes. These probabilities are empirically controlled by counting
documentable facts. In the modeling one tries to use as few as possible relevant
variables. This is the most creative job in physical modeling as the finding of
relevant variables is not automatic, yet.

2. A dynamical description of a system is given in terms of a step by step evolution,
which Mathematicians call a (semi-)group.

3. When fluctuations in the relevant variables are inessential, a time evolution can
be formulated directly for the relevant variables. The process is then called a
deterministic process and it is described locally in time by differential equations
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2 1 Introduction—Dynamics of Relevant Variables

which solutions become determined paths starting at some initial value. When
fluctuations are essential, the time evolution is searched for the probability dis-
tribution of relevant variables. Probability conservation relates the probability
distribution to a probability current.

4. On each level of description one can however distinguish between two funda-
mental different classes of dynamics: reversible and irreversible.

5. Stationary states of a dynamic always play an important role, e.g. as asymptotic
situations for scattering processes or as limiting situations of processes or as
building blocks in analyzing the dynamics.

6. Irreversible processes with step by step evolution can be described in terms of
a Chapman-Kolmogorov equation for the probability distribution and are called
Markov processes. The corresponding local in time equation is called Master
equation.

7. To reach reversible step by step evolution equations for processes with essential
fluctuations, it turns out that it cannot be formulated directly for the probabil-
ity distribution. It leads by its close relation to the current density generically
to relaxation and irreversibility. Fortunately, it can instead be formulated for a
two-component quantity called pre-probability. The components (put together
as a complex number with modulus and phase) allow to calculate probability
density and the current density as independent quantities, except for the probabil-
ity conservation fulfilled automatically by construction. This theory of reversible
step by step stochastic processes is just abstract quantum theory without explicit
use of the quantum of action. The corresponding local in time equation is called
Schrodinger equation. Fluctuating reversible step by step processes are called
quantum processes.

8. Both, Markov and quantum processes can be solved formally by elegant and
powerful methods exploiting the step by step character leading to generating
functionals for all quantities of interest. Analyzing symmetries and topological
constraints helps in moving from formal solutions by clear strategies of approxi-
mations to explicit approximate solutions.

To imagine the difference between reversible and irreversible processes consider
watching a movie. A movie of reversible processes can be played in reverse and
you will not take notice of this fact, while in situations of irreversible processes you
will find the movie “funny”. The funny things are seemingly impossible motions. In
reality they could only happen after an extraordinary sophisticated rearrangement of
environment and initial conditions.

In reversible dynamics the notion of energy plays a key role. It is the generator
of motion and serves as a conserved quantity that separates possible motions from
impossible motions (see Fig. 1.1).

In irreversible systems the notion of current through the system and the notion
of entropy play key roles (see Fig.1.2). The entropy measures the dispersion of
states in the space of possible states. In irreversible systems this dispersion increases
unless it has reached a stationary state. In regions of currents between reservoirs new
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Energy
Conservation

Fig. 1.1 Energy conservation

Far from Equilibrium

Equilibrium Close to Equilibrium

Current J, Force F
No global Current J dS/dt = F-J
Maximum Entropy S dSsys = dSext + dSint
Emergence of New
Structures possible

Strong Current J

Fig. 1.2 Equilibrium and non-equilibrium

structures can emerge, while in global equilibrium global currents vanish. Therefore,
entropy indicates which of several energetically allowed motions will probably take
place.

In this book a physical system is defined by a set of relevant variables which
form the configuration manifold. This manifold can be enlarged or (more often)
reduced, the variables can be transformed and they have a time evolution. Properties
of a physical system are functions on the configuration tangent bundle or cotangent
bundle. The tangent bundle contains the configuration point x and local tangential
vectors to describe velocities x. Instead of vectors one can take a dual description in
terms of linear forms on vectors. Actually, we usually gain information about vectors
by linear forms. A basis of the vector space at a given point x is the Gaussian basis 9y,
and the dual basis is dx; with dx;(dy,) = ;. Discrete variables and their (perhaps
discrete) time evolution are meant to be included in this notion; tangential objects
are deviations in short time.

The methods presented here are thought to provide an organized toolbox for
modeling quite general physical systems. The general strategy is: we like to
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calculate expectation values and correlations of properties of relevant variables
evolving in time, usually under some pre-described conditions. We use models where
dynamic and stationary expectation values and correlations can be calculated from
generating functionals.! The functionals are often called effective action. To reach
such generating functionals one exploits duality whenever possible. Duality means
that variables often have dual partners with respect to functionals, e.g. coordinate
x and wave number k are dual by the function e**. Fourier-Laplace and Legendre
transformations are typical examples of changing from variables to dual variables.
The underlying dynamics is modeled by Markov or quantum processes and limiting
behavior of such processes. Such limits can be stationary equilibrium, stationary
non-equilibrium, scattering situations, decoherent situations (crossover from quan-
tum to Markov behavior) and so called classical deterministic behavior (negligible
fluctuations for relevant variables). In finding relevant variables (usually the slow
ones in a system) symmetries and topology of the configuration manifold are most
helpful. Topology can lead to distinguished classes on the configuration manifold
which can—to a large extent—be treated separately and symmetries help optimiz-
ing the choice of coordinates for configurations. A crucial indicator for being on
the right track is: a stability analysis based on an expansion beyond a so called
Gaussian approximation (quadratic approximation around a characteristic point) in
relevant variables shows the right qualitative phase structure. Such stability analysis
often runs under the name of renormalization group analysis. This modeling strategy
is displayed in Fig. 1.3. To illustrate the methods we try to keep the formal and cal-
culation effort low and try to use significant but simple examples instead of trying
to reach full generality. We will consider simple abstract systems, simple toy sys-
tems and some model systems for real phenomena, e.g. ink in water, Laser light, the
quantum Hall effect and superconductors.

The book is organized as follows. In Chap.2 we introduce the dynamics with
semi-group or group character. States evolve step by step from an initial state. For
reversible systems the group has inverse elements as part of the dynamics. For semi-
groups an inverse does not necessarily exist within the semi-group. The short time
steps are captured by atime homogeneous generator resulting in differential equations
in continuous time. States can be configurations, probabilities or pre-probabilities
for configurations. In Chap. 3 formal methods of solving the dynamics are discussed.
These are of algebraic or analytic type which both have some advantages as a starting
point for approximate methods. In rare cases they even allow for explicit solutions.
The analytic formal solutions by generating functionals (path integrals, partition
sums) are most convenient as starting points for modeling systems by appropriate
relevant variables, as displayed in Fig. 1.3. To enrich the toolbox in modeling it is
helpful to know exactly solvable models and a variety of methods of finding them.
This is the subject of Chap. 4. Then we broader the view in Chap. 5 and work out a
theory where properties and states are generalized as to have compact and flexible
ways of calculation. We consider limits of stationarity and cross-over between differ-
ent types of dynamics by taking system environments into account. In each type of

IFunctionals stand for functions in perhaps infinitely many degrees of freedom.
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@t Variables =

Identifying slow variables

Dynamics as (semi-) group

Time dependent and stationary expectation values and correlations
from generating functionals over configurations exploiting duality

Classifying configurations by symmetry and topology
Finding characteristic points and doing the Gaussian approximation

Going beyond Gaussian and doing stability analysis

Fig. 1.3 Modeling strategy

dynamics or stationary limit, generating functionals appear as the unifying structure.
When fields form the configuration space for infinitely many degrees of freedom
one deals with stochastic field theories. In the case of quantum processes these are
so called quantum field theories. They are met commonly in particle physics and
condensed matter physics. As stressed before, one should study the topology and
symmetry of the starting configuration space with respect to the generating func-
tional to identify relevant variables. Thus, symmetry and topology are the subjects
of Chaps. 6 and 7. Finally we use the toolbox in Chap. 8 for some selected applica-
tions of the author’s choice to demonstrate their richness. Three appendices may help
filling gaps for readers not yet familiar with probability theory (Appendix A), the
method of characteristics (Appendix B) and many-body terminology (Appendix C).
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Chapter 2
Generated Dynamics

Abstract We introduce dynamics with semi-group or group character. States evolve
step by step from an initial state. For reversible systems the group has inverse elements
as part of the dynamics. The short time steps are captured by a time homogeneous
generator resulting in differential equations in continuous time. States can be configu-
rations, probabilities or pre-probabilities for configurations. We discuss some simple
prototypical systems and comment on randomness and determinism in stochastic
processes.

2.1 Algebraic Structure of Causal Step by Step Dynamics

When modeling time evolution of a physical system, we look for equations of gener-
ated (semi-)group character, because they reflect causality and time homogeneity
in the following sense: for each situation there is a situation earlier in time, such
that it can be considered as causing the later situation. The time difference can be
chosen arbitrarily. The physical laws as such should not depend on the time of appli-
cation. Formally, we can incorporate this by a time-independent generator for time
evolution, such that for a given initial state the time evolution follows by successive
application of transformations which form a semi-group'

]}37[2 : T‘[z*t] = 71[371] (2'1)

with
To=1. 2.2)

For discrete time steps of width §¢, the generator G is from the group’s tangent
space and transforms a state to the next state §¢ ahead in time,

I'The difference between semi-group and group is: in semi-groups not every element has an inverse.
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8 2 Generated Dynamics

Ty =1+ G -6t (2.3)
Tes = (1 +G - 80)F. (2.4)

For continuous time ¢, the generator G is the derivative of the group element with
respecttot att =0,

. Ty —1
G = lim
st—0 8t

: 2.5)

which yields a simple solution for the full time evolution operator in terms of the
exponentiated generator (it solves the corresponding differential equation).

Ty =700 | (2.6)

The natural dimension of a generator G is inverse time (frequency). Equations (2.5,
2.6) are central to the idea of (semi-)group dynamics: time evolution is step by step
and solving for short times allows to calculate for long times.

The defining feature of a state is that it can serve as an initial condition of the
(semi-)group dynamics. The time evolution operator operates on states,

State, = T,_,, State,,. 2.7

In this book a state can consist of properties or of a probability for properties or of a
pre-probability for properties.

We call a system reversible, if for each transformation 7;_,, an inverse transforma-
tion exists, which also describes a possible time evolution of the system, otherwise
irreversible. Thus, reversible systems have a time evolution with group character
while irreversible systems have a time evolution with semi-group character.

2.2 Deterministic Processes

For deterministic processes the generator G acts as a local differential operator on
states which are fixed by coordinates x only, or by elements of the tangential bundle
(coordinates and velocities) (x, x), or by elements of the co-tangential bundle (x, p),
also denoted as phase space of the system. In the first case, which we like to denote
as Aristotelian processes, the generator looks like

G = Ar = g(x)0 (2.8)
with some function g(x), thus leading to

X =g(x) (2.9)
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and more generally to an equation of motion for any property f(x),
fe) = f'00) - gx). (2.10)

Such dynamics cannot be reversible, since at a given value of x there is only one
value of X and the motion cannot be turned back. Reversible dynamics is possible with
states taken from the tangent bundle. The historic invention of Newton corresponds
to the following generator

G =N = xd, +a(x)d; @2.11)

with some function a(x) describing the acceleration as X = a(x). Since the accel-
eration is of second order in time derivatives, at a given point, the velocity can be
reversed and the motion can be turned back. The general equation of motion of
Newton processes then reads

Fx, %) =0 f(x, %) - X+ 0; f (x, %) - a(x). (2.12)

With the help of the phase space an additional structure besides possible reversibility
can be fulfilled: the invariance of the volume element dx A dp under the time evo-
lution. This so-called Liouville’s theorem allows for a proper counting of states in
statistical physics based on the phase space. The processes that ensure Liouville’s the-
orem are called Hamilton processes, where the generator has the form of Poisson’s
bracket

G ={H(x, p),-} = (3pH(x, p))dy - —(0xH (x, p))d,-, (2.13)

with a so-called Hamilton function H (x, p). The equation of motion in Hamilton
dynamics together with the relation between x and p read

x=0,H(x,p) ; p=—0H(x,p). (2.14)
The general equation of motion then reads

f(x, p) =0, f(x,p)-0,H(x, p)—0,f(x,p) 0:H(x,p). (2.15)

Of course, the Hamilton function itself stays invariant under the dynamics. Inter-
preted as a property of the system it is then called energy of the system. This energy
is conserved in Hamilton processes. We mention in passing that Newton and Hamil-
tonian dynamics are equivalent in many cases, since p and x are related, such that
p = —d,H(x, p) leads to a second order differential equation for x.

Thus, for deterministic processes the variable x or (x, x) fulfill closed differential
equations. Equations (2.11, 2.12) are just abstract in a single variable x for the
much broader class of differential and partial differential equations in physics for
relevant variables. Examples are the Euler equations for rigid body coordinates,
Navier-Stokes equation for fluid field, Maxwell equations for electromagnetic fields,
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Helmbholtz equation for wave fields and Einstein’s equation for geometric fields. All
of these equations represent deterministic (semi-)group equations for the relevant
variables under consideration.

As a simple toy-example consider the Aristotelian model of motion on earth
g(x) = —kx with positive k. The solution reads

x(t) = xpe (2.16)

and describes irreversible relaxation to rest (at 0). Another example is the logistic
equation of population dynamics g(x) = rx(1 — x/k) with positive growth rate r
and positive k. k describes finiteness of resources, such that exponential growth can’t
go on forever. The solution

)C()k

approaches a stationary state x = k and is irreversible.
For reversible motions the velocity x must be taken into account as state variable.
A prominent example is the harmonic oscillator model of motion in Newton dynamics

or Hamilton dynamics, X = —w?x. The solution reads
x(t) = xpcos(wt) + (Xo/w) sin(wt) (2.18)
and describes reversible harmonic oscillations with conserved energy E = %

()'c2 + a)zxz) (see Fig. 1.1).

2.3 Stochastic Processes

For stochastic processes the time evolution of a probability distribution? P, (x) for a
random variable x is searched for. P, (x)dx is the positive probability to find the actual
value x within the volume element dx at time 7, given appropriate initial conditions
(for an introduction to probability concepts see Appendix A). We will consider two
types of stochastic processes to be defined later: Markov and quantum processes. In
the following subsection we clarify notations used in both cases.

2.3.1 General Notations

The random variable can be continuous® or discrete. In the discrete situation the
random variable will sometimes be denoted as natural number n. Formally, it gives

2We use the terms probability density and probability distribution synonymously.
3The term continuous is used in a broad sense, e.g. C if appropriate.
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rise to a continuous representation as P;(x) = >_, §(x —n) P;(n) where P;(n) is the
probability to find # at time ¢. The random variable can have f degrees of freedom.
For simplicity we often stick to f = 1 and switch to f > 1 if a generalization is not
straightforward

The distribution P, serves to calculate expectation values of properties f(x) as
a linear operation on f and can be written as a symmetric real valued bilinear form
of distribution vectors | P;) and (co-) vectors of properties (f]|

(f) = /dx F@)P(x) = (fIP) | (2.19)

The expectation value of the characteristic function of some volume V, denoted as
Xv (x), is the probability to find x within the volume V.

(xv), = P(V). (2.20)

The average value of x is the expectation value of the identity function (x +— x),
denoted as id,. This average is often written as the left hand side of

(x), = (idy); = (id:| Py). (2.21)
The identity function should not be mixed up with the peak-function at x which is

x" > 8(x’ — x). The vector notation of the peak function at x is (x| such that we
have the relations

('|x) = 8(x" — x) (2.22)
x|P) = Pi(x) (2.23)
(flx) = fx). (2.24)

2.3.2 Constraints by Conservation of Probability

Every time evolution equation must respect the conservation of probability:

/dx P(x)=(1|P)=(1), =1, (2.25)
> P =1 (2.26)

For a finite volume V it follows

P (V)=—-10V), (2.27)
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where I;(dV) is the probability current leaving V through the boundary oV
In continuous time and for continuous variables x a continuity equation with
probability current density j, (x) must be fulfilled,

0 Py (x) = —0xji (%) | (2.28)

In discrete time steps §¢ and with discrete variables n the probability conservation
looks similar to Kirchhoff’s knot rule

Prisy(n) — Py(n) = [Lgain(n) — Loss ()] 81, (2.29)

where Ig,in (1) is the sum of all probability currents from other quantities n” increasing
the probability at n (gain) and I} (72) is the sum of all probability currents from n to
other quantities n’, thus decreasing the probability at n (loss). Keep in mind (2.27-
2.29) cannot serve as equations of motion but are constraints on any equation of
motion. An equation of motion can result as soon as the current / or j is specified
as a functional of P.

2.3.3 Markov Processes

For one large class of stochastic processes, called Markov processes, the defining
feature is that the semi-group property applies directly to the probability distribution.
In other words, the probability distribution serves as the state of the semi-group time
evolution. The corresponding equation is called Master equation. In continuous

time it reads
o,P,=MP; | (2.30)

where the operator M must be linear on the space of probability distributions to
preserve expectation values ( f(x)), = f dx f(x)P,(x). The M-operator is the gen-
erator G of (2.5) for Markov processes. It can be represented as a positive integral
kernel M (x’, x) or positive Matrix. Probability conservation requires that its sum
over columns must be unity for the full time evolution operator T; = ¢’ and zero
for M,

/dx’T(x/,x) =1, (2.31)
/dx/ M, x) =0. (2.32)

Such stochastic matrices 7" do indeed form a semi-group. However, inversion—if
it works at all—does, in most cases, lead out of the stochastic matrices. Thus, for
Markov processes the distribution function P, (x) fulfills a closed linear evolution
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equation with the semi-group character. In the continuous random variable situation
the M-Operator can—under conditions to be discussed later—very often be approx-
imated by linear differential operators with coefficient functions called drift and
diffusion. The corresponding linear partial differential equation of second order in
d, is denoted as Fokker-Planck equation. It can be encoded in a stochastic differential
equation called Langevin equation.

As an example of a phenomenological theory consider the modeling of ink in water
by a current density that is approximately proportional to the gradient of the density
of ink particles but points in opposite direction (Fick’s law). It reflects to linear order
in the gradient the observation of ink particle flow from regions of higher densities to
regions of lower densities. Since the density is proportional to the local probability
to find an ink particle, one has

j(x) =—D0d,P(x) (2.33)
with the so-called diffusion constant D. The resulting Master equation is a Fokker-

Planck equation with diffusion only and is known as the diffusion equation or heat
equation,

3 Pi(x) = D3P, (x) |. (2.34)

The solution to an initial value of delta-peaked* ink is an irreversible Gaussian
distribution with variance increasing linear in time,

P(x) = (2.35)

1 ( x2 )
——exp|——) |
V4w Dt P\ s

A variance increasing linear with time, (8x)%® = 2Dt, is the signature of diffusive
motion. The reader may check by differentiation that (2.35) is indeed the initial value
fundamental solution.

It is instructive to discuss an easy way of finding the initial solution of (2.34). One
exploits the fact that it is linear (superpositions of solutions are new solutions—a
fundamental solution can serve as a basis) and that it involves the derivatives without

mixing of x-dependent factors. Thus, one can use the fact that ¢/** is an eigenfunction
of the generator 9, of translations, 9, e'** = jke'** Thisis known as Fourier analysis,
a special form of spectral analysis. The Fourier transform works between x-space

and its dual k-space as

P (x) = 2n)"/? / dk P, (k)e'™, (2.36)

P, (k) = 2m)"\/? / dx P, (x)e %, (2.37)

4So-called fundamental solution or Green’s function of the linear differential equation.
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Equation (2.34) reads in k-space,
8, P,(k) = —DK*P, (k). (2.38)

Equation (2.38) is an ordinary differential equation in ¢ and solved by exponential
ansatz (again Fourier analysis with respect to time #). The initial distribution in k-
space, dual to a §-peak in x-space, is uniform, Py(k) = (277)~'/2, such that we found
the initial value solution in k-space,

Pi(k) = (27r) " /2= DK1 (2.39)

The solution (2.35) in x-space follows after performing the Fourier back-
transformation as a Gaussian integral, after completing the square in the exponent,
—Dk*t —ikx = —Dt(k+ (ix/2Dt))? — x>/ (4Dt), a technique we will face several
times in this book.

2.3.4 Quantum Processes

The most general class of stochastic processes known to date is characterized by
a linear unitary time evolution U, for a pre-probability (also called wave function)
¥, (x), generated by a hermitian operator. This generator is called Hamilton operator
or Hamiltonian H . Such processes are called quantum processes for historical reasons
on which we like to comment here.

Quantum processes were were first studied in physics after the discovery of the dis-
crete nature of the energy of light (1900-1905 by Planck and Einstein) and the discrete
nature of stationary bound states of discrete microscopic constituents of matter (1913
by Bohr). These discrete objects are called photons and atoms. The charged con-
stituents of an atom are also discrete and are called electron and proton. A crucial fea-
ture of these discrete objects is that they are completely characterized by a few quanti-
ties in discrete units of elementary quantities. These characterizing numbers are thus
called quantum numbers. Two of such quantum objects are completely indistinguish-
able from each other as soon as they share the same quantum numbers. It was found
in 1925-1927 by Heisenberg, Schrodinger, Born, Dirac and others that the dynamics
of these quantum objects can successfully be described as generated reversible sto-
chastic processes.’ This very formulation was able to explain those quantum numbers
that are associated with the dynamics. For example, the universal relation between
energy and frequency and the discrete nature of energy in a bounded system. In
a generated dynamics the natural dimension of the generator is frequency (inverse
time) and Planck’s constant 2 &~ 6, 63 - 1073* Js in the relation E = hv between
energy E and frequency v tells how to recalculate energy = frequency from natural
units into standard international units. Other quantum numbers, such as the charge

5 Although it was never called that way.
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and mass of electrons, still to this day remain to be explained by a special theory
of matter. The discovery of quantum processes started from observations of light
and the theory of light is now established as a quantum field theory called quan-
tum electrodynamics. The configurations in this theory are numbers of photons with
certain polarization and frequency within a volume element in space. The dynamics is
described as stochastic process because the numbers fluctuate. The reversible nature
of the dynamics excludes a Markov process description. Fortunately, the description
as a quantum process works out nicely. Because of the development of the theory
of reversible stochastic processes as a physical theory of the quantum nature of
matter and interaction, the name quantum theory got stuck with it and—as far as
the author knows—mathematicians do not consider it as a mathematical discipline
within stochastic processes. This may change when reversible stochastic processes
are discovered outside of genuine quantum field physics. However, the observation
of reversible stochastic processes is hampered, because the reversibility is unstable
against environmental contact.

The pre-probabilities are complex functions and their space (Hilbert space) is
equipped with a scalar product, (¢|¥) := [ dx ¢*(x)¥ (x). The pre-probability must
be normalizable, such that |1/ (x)|? can serve as a probability distribution. This is the
Born-rule in quantum theory. With the short-hand notation | x) for a delta-function
peaked at position x this means:

P(x) = (x| ¥)|%, (2.40)
Y = Uiy = e Py, (2.41)

=i} o

The differential time version (2.42) is called general Schrodinger equation. Here,
by construction, the probability is conserved and time reversibility is guaranteed by

Uu''=u_,=U. (2.43)
Quantum processes are reversible stochastic processes. They do not fulfill the Markov
property of (2.30), they do not provide a closed equation for P, (x), but rather a closed
equation for the pre-probability with full group character. Thus, in quantum processes
the pre-probabilities are the states which fulfill a closed linear evolution equation of
group character. We have written the generator in such a form that the hermitian
character of H = H' goes with the unitarian character of U,. Note, that so far we do
not rely on any presumed relation between the generator H here and the Hamilton
function of deterministic processes. Their relation will be derived later. Note also that
the pre-probability does not introduce a new concept of probability. Two different
values x; and x; of variable x are still exclusive properties of a system and a state
¥, (x) which is finite for both of them does not mean that a new property of x;
and x, is described, but simply that the probabilities of finding one of them are
finite. Note also, that the probability current density is not necessarily a functional
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of P;(x), but both, P;(x) and j,(x), are independent quantities following from the
pre-probability v, (x). This opens another way to realize that quantum processes can
be time reversible stochastic processes.

As the most basic comparison between Markov and quantum processes we con-
sider the toy models of two value systems in the following subsections. A comparison
for continuous variables in one dimension (1D) is discussed subsequently.

2.3.5 Markov: Two Values

The random variable n can take two values, called + and —. The process is defined
by two transition rates w4 _ from — to + and w_ from + to —. The Master equation
in continuous time then reads (see later)

P(+) = wy P(=) —w_ P,(+), (2.44)
Pi(=) = w_y P(+) — wi_ Pi(—). (2.45)

Since P;(+) = 1 — P;(—) aclosed equation for each of them is possible. We choose
P;(+). It reads

P(+) = wis — (wie +w_y) Py (4), (2.46)

and can be solved by exponential ansatz and variation of constant. The solution is

er,

P(+) = [1 — e e tw=o] 4 Py()e” et (2.47)

w4 — + w_y

For P,(—) the solution follows after interchanging + and —.
The solution relaxes to the stationary state

Wy —
Poolh) = —— 248)
+- —+

with relaxation time (w, _ +w__)~!. There is no way to get time reversal symmetric
solutions within the Markov scheme for a two value system.

On the other hand, measurement of relaxation time and stationary state yield
the parameters of the Master operator. Thus, observing and measuring relaxation to
stationary states opens the possibility to model the process by a Master equation,
without measuring the short time dynamics yielding the transition rates.

If the transition rates are symmetric, wy_ = w_; = w, then Py, = 0.5 and
the relaxation time is 1/(2w). If, in addition, Py(4+) = Po(—) = 0.5, then the
distribution stays constant. Thus, in the Markov case to much symmetry leads to
boring dynamics.



2.3 Stochastic Processes 17

2.3.6 Quantum: Two Values

The time evolution is unitary and the generator H is hermitian with real eigenvalues
(called energies or eigenfrequencies) w,, and a complete set of eigenstates | m). With
the help of the eigenstates C,,, := (x | m) the time evolution reads

Vi (x) = D Come ™" (m | Yo) , (2.49)

(m | Yo) = D Chox). (2.50)

For two values x = +, — and m = 1, 2 the diagonal elements of H are real numbers
H,, and H__. The off-diagonal elements are complex conjugated H_, = H} _.
The frequencies are

Hey +H__ Hy, — H__)?
o, = 2t j:\/( ++ ) I H P 2.51)
2 4
and the eigenstates are
—H,_
Ci = - : (2.52)
Vo, —Hy )+ [ Hi_ ]?
—H
Cio = Cyy - 25, (2.53)
H,_
—H_,
C,= , (2.54)
V(wy— H )+ | H_ |?
—H__
Ca=C, 27— (2.55)
H_,

Choosing the initial state as ¢y = + one finds so-called Rabbi oscillations in the
probability of a two value quantum system (frequently called two level system),

(2.56)

P(+)=1=4]Cpy P -(1= | Cyp ) -sin’ (M) .

2

For degenerate states w; = w,, of course, there are no oscillations. Starting with an
eigenstate, of course, the probability stays 1.

Oscillations rather than relaxation is the indicator of reversible stochastic
processes. As an example think of neutrino oscillations or spin precession in a mag-
netic field.

To model a reversible stochastic two value system, one can gain the Hamiltonian
from observing and measuring strength and frequency of oscillations. This yields the
difference H; . — H__ and the absolute value of H, _. However, the sum H,+ H__
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and the phase of H, _ remain undetermined. This indicates a general important feature
of quantum systems: the zero of energy remains free and a gauge freedom of a global
phase remains.

For systems with translation invariance one can choose Hy; = H__ = 0 and
finds wy, = & | Hy_ | with | C+1 |*>=1/2 and

P(+)=1—sin*(| H_ | 1). (2.57)

Thus, on time averaging, the same average probability of 1/2 appears as in the
Markov situation.

2.3.7 Comparison Between Diffusion and Free Quantum
Propagation

As an important and far reaching example we consider a free particle with spatial
coordinate x. To model a free quantum system we cannot directly write an ansatz
for the current density as in the diffusion model, since we need an equation for the
pre-probability. Instead, we argue with symmetries, which is the appropriate way to
model quantum processes from scratch. The very notion of free particle means that
translation invariance and rotational (in 1D reflection) invariance should be fulfilled.
This means that the Hamiltonian can be chosen as a function of the squared translation
generator, H (8)?), and does not explicitly depend on x. Thus, it has eigenvalues w (k2),
where k belongs to the translation eigenfunction ¢**. The mean velocity

(xX), ==d; (x), (2.58)
in such eigenstates can be found as the slope of w(k),

d; (x), = du (i (k%)), (2.59)
where we have assumed that the eigenstates e’** can be normalized to some finite
support and that xe’** = 9;.e**. If, in addition, we rely on a theory of inertial
symmetry, we may be able to further specify this function. Here, we take a Galilei
type symmetry which means that velocities add: when x changes to x + v, then k
should change to k 4+ §k(v) in a compatible way, such that the shift §% is a function
of v alone. This works out only if w(k?) is of first order in k?, otherwise the shift
8k will also depend on x. This scenario of a free particle with Galilei inertia leads
uniquely (up to an irrelevant constant) to the standard non-relativistic free Hamilton
operator,

-1 k2 k
H=—, ok)=—, ({)=—| (2.60)
2m 2m m
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Here m is a parameter controlling the inertia and usually called mass. In our units its
dimension is time per squared length. There is no need to rely on a so-called clas-
sical to quantum correspondence principle to find the Hamiltonian, only symmetry
restrictions are needed. The corresponding Schrodinger equation reads

0 () = 5020 (o) | (2.61)

It looks like a diffusion equation when we identify D with i /2m. Indeed, we can
find a fundamental solution (Green’s function) for the free Schrédinger equation by
similar Fourier analysis as for the diffusion equation. It reads

m mxz
G(x, xp,t) = E exp (—E) . (2.62)

Note, this is not quite the solution of the initial value problem for a particle initially
peaked at xg, but for a pre-probability function which is §-peaked initially at x¢. Its
absolute square is not normalizable to unity. Before we discuss the true initial value
problem, we have a look at the probability current. It cannot be red of the continuity
equation immediately. One firstly has to write down the continuity equation following
from the Schrodinger equation. For Hamiltonians, where the gradient appears as in
the free model (2.60) (called kinetic energy) and the Hamiltonian may include a
translation symmetry breaking term V (x) (called potential energy)

—1
H=—3+Vk), (2.63)

2m

the probability current density j,(x) is simply related to the phase gradient of the
pre-probability ¥ = /Pe'?,

Ox
—

1
i) = >— (W )@ (1)) = Y () (B Y] (1)) = Pr(x) (2.64)

You should check this by verifying the continuity equation using this current and
the Schrodinger equation. Note, the current density must be defined in another way,
according to the continuity equation, for more general Hamiltonians. A general cur-
rent density definition will be given in (5.12).

Now, we can compare the dynamics of diffusive propagation and free quantum
propagation. In both cases we take an initial normalized Gaussian distribution of
width o,

(x — x0)*

P[d] -2 2\—1/2 _
1100 = @ro®) P exp -

(2.65)
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As to the diffusion problem, this fixes the initial condition. In the free quantum case
we have the freedom to add a phase factor to the modulus and we take it such that
the initial probability current is ko /m,

(x — xp)?

[f] 2\—1/4
= (2 —
Yy (x) = 2ro”) exp|: 402

+ ikox]. (2.66)

The fact that the phase allows to give an initial condition to the current independently
of the density is related to the fact that quantum processes can describe reversible
processes. When reversing the process one can reverse the initial current appropri-
ately. With the fundamental solutions G'¥! of (2.35) and G!! of (2.62) one can find
the probability densities and pre-probability densities by integration,

P x) = / dx' G x, x', 1) PI (x'), (2.67)
1y =/dx/G[f](x,x/,t)w(gf](x/). (2.68)

Again, one has to calculate Gaussian integrals by completing the square in the expo-
nents. We leave the details as an exercise and state the answer:

N2
PI(x) = 2rg?) P exp - S0 (2.69)
262
. _ )2 it
t[f](-x) — (27_[6,2)—1/4 eXp _ (x (xOA‘+ v )) 1 B 1 «
452 mo?
X exp (+ikox — iw(ko)t). (2.70)

Here 62 = 0> + 2Dt and 6% = o> + (m’—a)z It shows already that the width of the
quantum wave packet grows linearly in time with velocity 1/(mo) while the peak
moves with velocity v = ko/m. The diffusive wave packet has no drift at all and its
width grows only as a square root in time. The current density in the diffusive case
is given by the density gradient,

[d X — X0
7N =

Py (x), @2.71)

52
and the current density in the free quantum case is given by the phase gradient,

jz[f](x) — [% + W} Pz(x)_ (272)

62m2o?

So far, the behavior of quantum propagation shows faster spreading of the wave
packet plus a motion of its center as compared to the diffusive process.



2.3 Stochastic Processes 21

To catch the more important interference aspect of quantum propagation we now
take an initial distribution of two Gaussian peaks (width o) separated at a distance
2d, say at x = %d, and with initial momentum Fkj, equal in strength (wave length),
but pointing in opposite directions. For better comparison we also shift the centers
of the diffusive motion by the same velocity Fko/m and calculate what happens at
times where the two packages meet. In the diffusive case one can simply add both
solutions corresponding to the initial Gaussians at x = =+d, because the diffusion
equation is linear for the density. In the quantum case one has a corresponding lin-
ear superposition for the pre-probabilities and must calculate the resulting densities
of probability and current afterwards. This results in interference patterns which
become most pregnant at meeting time t = d /v, provided the spreading is slower
than the movement of the packages and the wavelength is shorter than the spread-
ing. We leave the explicit calculations as a valuable exercise and only display the
resulting probability densities and current densities in a qualitative way in Fig.2.1.
They capture an essential difference between Markov (irreversible fluctuations) and
quantum processes (reversible fluctuations and oscillations). Figure 2.1 also shows
two interesting facts: the current density in the Markov case just follows from the
gradient of the probability density while the current density in the quantum case
has no resemblance to the probability density. It is generated by the phase of the
wave function not visible in the probability density. However, after smearing out the
interference oscillations in the quantum case, the Markov case is recovered with a
current following the gradient of the probability density. We will come back to this
in Sect. 3.4.2.

2.3.8 External and Internal Randomness and Deterministic
Representations

In this section we look at the interpretation of randomness in Markov and quantum
processes.

An electron position in an atom, a quasi-electron momentum in a conducting
wire, a car position in traffic, a number of radioactive atoms in a substance, a stock
index, a weather parameter form examples of dynamic random variables. An irregular
time evolution is indeed more general than a seemingly regular motion. Whenever
fluctuations in a system are an essential part of the description, we describe it as
a stochastic process. This does not mean that a deterministic description is absent
or that a deterministic description is impossible. Even in cases where we we have a
deterministic description we may use it only to extract the equations for the stochastic
process in terms of fluctuating relevant variables.

Throughout this book we will distinguish between external and internal random-
ness in the following ways. By external randomness we mean that the system vari-
ables x interact with external variables y which are not treated dynamically. Their
effect on x was integrated out, such that the system variables x become distributed at


http://dx.doi.org/10.1007/978-3-662-49696-1_3

22 2 Generated Dynamics

Fig. 2.1 Comparison of
diffusive Markov and free
quantum motion for two
oppositely moving Gaussian
packets. The probability
densities and the current
probability densities are
shown as functions of
coordinate in 1D at meeting
time

every instant of time and are described by a distribution P;(x). As an example think
of a car in traffic where its particular motion depends on many other participants.
The relevant variable x as the possible position of a car is now distributed. Another
example we have already addressed: the position x of a tiny volume of possible ink
particles pushed around by water molecules in thermalized water. Often, like in our
phenomenological treatment of ink in water, the integration over external variables
is not made explicit, but the result is incorporated statistically in a distribution of
parameters for the system under consideration or in fixed parameters like the dif-
fusion constant D. As a further example think of an quasi-electron in a conducting
wire with elastic scattering events. These events can be described by a distribution of
random potentials. Also here, the randomness is related to external variables which
are changed without explicit notice. The modeling will eventually lead to a certain
generator G for the stochastic process.

If the fluctuation of x is negligible, then the external variables y can or cannot
influence the reversibility of the x dynamics. However, as soon as fluctuations in
x are essentially due to the y variables, reversibility of the x dynamics is hardly
possible, because for a replay of a time sequence in reality the information about the
positions and velocities of the interacting y variables is necessary. In the dynamics
of x the information is lost and recurrence times for x become astronomic. However,
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as long as we are interested in not to small time intervals (where abrupt changes
are out of control) we can follow the time evolution of the distribution P,(x) step
by step by means of transition rates. Consequently, a Markov process description
is convenient for prognostication in systems with external randomness. We will see
that for continuous variables it often suffices to consider a deterministic drift of the
whole distribution and time dependent fluctuations around it, called diffusion. The
corresponding equation is the Fokker-Planck equation or its representation as a
Langevin equation. Often, external randomness is easy to identify as in the case of
ink in water. The thermalized water molecules are the eliminated partners of the ink
molecules.

By internal randomness we mean: interacting external partners are not identified
or there are no such partners. Nevertheless, the system shows relevant fluctuations.
In the absence of interacting partners randomness can e.g. show up after coarse
graining in deterministic chaos, because of a strong sensitivity on initial conditions.
Here, the Markov process description may apply and typically irreversibility emerges
on a coarse grained level of description due to the lack of information about the fine
grain dynamics. Such situation of internal randomness is very similar to external
randomness and the lost fine grain dynamics is similar to the external variables y.

In the case of reversible time evolution with fluctuations we have a true situation
of internal randomness and it is hardly possible to imagine that hidden variables y
cause fluctuations in x and do not destroy the time reversibility for the distribution of
x.5 This is the situation of quantum processes. Quantum processes have a complete
description by the unitary time evolution and there is no need to think about hidden
variables. But where do the fluctuations come from? This question can lead to long
philosophical debates. It simply cannot be answered within the theory of quantum
processes, but needs further interpretation. Here we like to stress that many deter-
ministic representations are possible, where randomness is entirely due to unknown
initial positions xg.

To clarify the notion, we define a deterministic representation of a stochastic
process as follows. The stochastic process is characterized by an initial distribution
Py, (x) and corresponding time dependent distribution P, (x) for each time 7 > #,. If
one manages to find for each initial value x (7)) a unique path x(¢), such that for
each distribution P, (x) of initial values x(#) the resulting paths x(¢) (k labeling
such corresponding paths) lead to the time dependent distribution on averaging over
quasi-continuously many paths

N
P(x) = lim % D80 —x(0), (2.73)
k

we call this ensemble of paths a deterministic representation of the stochastic process.
It is obvious that a deterministic representation is by no means unique for a given

OThis has to be distinguished from a situation where an reversible interacting system is approximated
by an effective non-interacting reversible system where each constituent moves in a mean field.
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stochastic process. Think of changes in paths that have no effect on the averaging
in (2.73).

Nevertheless, it is interesting that for every stochastic process with continuous
variable in continuous time a deterministic representation can be explicitly con-
structed. The corresponding paths x (#) are simply the integral curves of the velocity
field v, (x) := ji (x)/ P (x),

$(t) = v, (x(1)). (2.74)

In the case of external randomness, however, the interpretation does not give a real-
istic motion. There, in principle, we can observe the paths and their irregularity due
to external interactions. Usually it does not coincide with the smooth behavior of the
integral curves in (2.74). In the case of internal randomness and quantum systems
the deterministic representation by integral curves of the velocity field is known as
de Broglie-Bohm theory or Bohmian mechanics (see [1, 2]). It is a completely
legitimate interpretation of quantum processes and its appealing feature is that the
stochastic velocity flow is also the deterministic flow and no other variables than the
original configuration variables have to be taken into account. Randomness just stems
from the unknown initial conditions of configuration variables. This interpretation
keeps the philosophical principle of sufficient reason intact: every event has a precur-
sor event which determines it sufficiently. Two predictions within this interpretation
are: (1) In every stationary state the deterministic realization stays at rest, although
distributed according to the initial distribution. In this interpretation it seems plausi-
ble that stationary states of charged particles do not radiate. (2) Paths do not intersect
each other, because the velocity field is unique. This allows to identify paths in a
double slit experiment from each slit to the position of detection. However, it does
not mean that we can actually pin down this motion in a probabilistic prognostic
sense. For example, the conditional probabilities for finding an interference pattern
at detectors with particles entering through known initial slit positions vanishes. Of
course, it is speculative that this deterministic representation describes the true par-
ticle motion, because it is not unique and it seems difficult to experimentally test the
priority of this interpretation as long as the paths cannot be resolved to accuracies
better than allowed by the uncertainty relation of quantum theory (see Sect. 5.1).
Furthermore, in the discrete case, the construction of a deterministic realization is
more difficult. The velocity field can take any real value but the discrete numbers
must change by discrete differences in a given time step. Thus, the velocity field
does not lead in a unique deterministic way to the discrete quantities in the next time
step. Lacking a more fundamental theory than quantum theory, we have to leave its
interpretation beyond the stochastic process level as open.

So, when we say that our variable is found to be at x at some time 7, we may imagine
some deterministic representation compatible with P, (x) and j, (x), but we don’t need
an explicit representation when calculating the time evolution of a stochastic process.
We are also allowed to think that there is no realistic deterministic representation
at all but only pre-probabilities or probabilities and probability currents evolve in
time steps with (semi-)group properties. In this view, events come into existence
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or leave existence within the range of possibilities’ described by these probabilistic
tools. This latter view is taken when we speak of creation and annihilation of discrete
quanta (e.g. photons) in a quantum field theory describing infinitely many degrees
of freedom.

2.4 Exercises

Exercise 1: Examples for stochastic processes

Find examples for each of the mentioned equations in books or other media. Try to
answer: Why is the process stochastic? What is the fluctuating variable and why are
fluctuations essential to the problem. Is there oscillation or relaxation?

Exercise 2: Meaning of the velocity field and deterministic representation
Consider a vector coordinate x with components x*. Show

(e (), = 8 {x),

where averaging is with respect to P;(x). Argue, that the knowledge of j,(x) for all
t and x and the initial distribution Py, (x) suffices to obtain P;(x) by the continuity
equation and thus also v, (x). Show that for the densities and current densities related
to a number N of paths x(7) by

1
0i(x) = ST @ —xm, (2.75)
k %
1 .
i) = 5 Z H O(xf (1) — xM8(x} (1) — xV), (2.76)
k v#w

a continuity equation holds in the sense of distributions. Argue that, therefore, the
integral curves of v,(x) lead—on averaging over the initial distribution—to the full
distribution P, (x).

Exercise 3: Stochastic matrices
Show that stochastic matrices form a semi-group. Give an example where no inverse
exists or the inverse is no longer a stochastic matrix.

Exercise 4: Discrete time in Markov and quantum two value systems

Consider two value systems with discrete time step dynamics for Markov and quan-
tum processes for one step §¢. Specialize to wy_ = 0.5 = w_, and w;_ = 0 with
w_4 = 1 and for the quantum caseto H,_ = land H,, = H__ = 0.

Exercise 5: Continuous free fluctuations: reversible and irreversible
Find the fundamental solution for the free particle Schrodinger equation and the
diffusion equation by yourself in 1D by Fourier analysis. Find the time evolution

7Some people like to call it many worlds.
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for the probability distribution P;(x) and the probability-current density j,(x) for
Gaussian initial distribution of width oy centered at x = 0. In the quantum process,
the initial momentum can be captured in an initial phase factor e’**. Keep the right
normalizations in mind. Compare the behavior of fluctuations.

Exercise 6: Interference in reversible stochastic processes

Generalize your solutions of Exercise 5 to an initial distribution consisting of sepa-
rated Gaussian peaks at x = £d. In the quantum process the initial momentum Fkg
should be chosen equal in strength (wave lengths), but pointing in opposite direc-
tions. Pay attention to commensurability of d and the wavelength. For the diffusion
process add a velocity v = Fko/m to the mean value of the peaks for better com-
parison with the quantum process. Take the movement by this velocity faster than
the spreading of the wave packets, such that the packets can meet at some meeting
time r = d/v. Compare the possibility of constructive and destructive interference
between Markov and quantum processes (Fig. 2.1 gives a qualitative picture).
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Chapter 3
Formal Solutions

Abstract Formal methods of solving the dynamics are discussed. These are of
algebraic (Lie series) or analytic (generating functional) type which both have some
advantages as a starting point for approximate methods. In rare cases they even
allow for explicit solutions. The analytic formal solutions by generating functionals
(path integrals, partition sums) are most convenient as starting points for modeling
systems. They provide a basis for interpreting Markov processes by the chain rule
for probabilities and for interpreting quantum processes by Huygens’ principle in
combination with Born’s rule. They also allows to discuss the emergence of Markov
behavior in quantum processes (decoherence) and of classical deterministic behavior.

3.1 Generator as Differential Operator

In deterministic processes the generator G acts as a local differential operator on states
which are fixed by coordinates x, coordinates and velocities (x, X), or by elements
of the co-tangential bundle (x, p), also denoted as phase space of the system.

For Markov processes the generator G = M can be represented as a kernel
M(x,x'),

O,P,(x) = /dx/M(x,x’)P,(x’). 3.1)

For quantum processes the Hamiltonian H as generator G = —iH can also be
represented as a kernel H (x, x'),

O (x) = —i/dx/H(x,x/)z/J,(x/). (3.2)

Such kernels can alternatively be represented by a series of local differential operators
of arbitrary high order, because 0, is nothing but the generator of translations / in
variable x, leading to the following useful relations
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S W 8x n
fa+h) = f =73 (n, o, (3.3)
n=0 :

/dx’f(x,x’) - /dh Fx,x+h) = Z(ax)"/dh h—’:f(x —h,x). (34)
=0 n:

In the Markov case, the diagonal part of the kernel M (x, x") must be singular like
a delta-function and it is related to the sum over all off-diagonal elements by the
conservation of probability, (2.33). Furthermore, it is positive and consequently the
off-diagonal terms are just transition rates from x’ to x per unit time, w(x" — x),
and the Master equation becomes an equation of gain and loss,

0, P(x) = /dx’ {wix' = )P (x) —wkx = xHYP,(x)}| (3.5)

Exploiting the translational group content of (3.4) one arrives for Markov processes
at the so called Kramers-Moyal representation

0P (x) = > (0" [D" () P()] |, (3.6)

n=1

which is a differential equation of infinite order. The Kramers-Moyal coefficients
are defined as the moments of the transition rate in deviations Ax = x’ — x and can
suggestively be written as

="

n!

[n] — i n

D" (x) := lim ((ax)"), /At (3.7
For obvious reasons D! is called drift coefficient (deviation in linear time) and D!
diffusion coefficient (quadratic fluctuation in linear time). It can happen that only
DU 'and D'?! are non-zero. In such case (3.6) is called a Fokker-Planck equation and
the short time dynamics of (3.7) captured as drift and diffusion is the corresponding
Langevin equation. The positivity of the probability ensures that all other coefficients
have to be non-zero, as soon as one of them for n > 2 is non-vanishing.

Without general proof we report that the Fokker-Planck situation occurs in con-
tinuous systems provided a separation of time scales occurs, such that the short time
dynamics is already randomized in a Gaussian way. It means that a central limit
theorem' holds and higher moments vanish. When many additive random elements
are already at work on some time scale 7, the process on times larger than 7 may very
well be described by a Fokker-Planck equation of second order in 0,. A simplified
demonstration is given in Sect. 4.2.6.

ISee Appendix A.9.
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Due to probability conservation there is no D!°! and the current density j, (x) of
the continuity equation (2.29) can be red off the right hand side of (3.6) by reducing
the power of —0, by one. It is an essential insight that the current density in a Markov
process can be expanded in derivatives of the probability. It is not an independent
quantity and it shows the irreversible character of Markov processes as soon as they
show fluctuations. Fluctuations automatically make the diffusion coefficient non-
zero. The corresponding current contribution will point in the direction of decreasing
probability, a signature of irreversibility.

By using the calculus for §-functions, already used in one of the previous exercises,
one can show the intuitive result: as long as only drift is non-zero, the dynamics stems
from a deterministic process of Aristotelian type and is given by ¥ = — D! (x). Thus,
in the absence of fluctuations a first order generator for a deterministic process is
indeed sufficient.

In the quantum process case we don’t have to care about positivity and conser-
vation of probability since this is guaranteed by unitarity of the time evolution and
hermiticity of the Hamiltonian. Nevertheless, we can exploit the translational group
content of (3.7) and arrive at

Orpy (x) = —i D (0" [H" )b (0] |, (3.8)

n=0

which, again, is a differential equation of infinite order. The coefficients are deter-
mined as
="

H" (x) =
n!

/dx’ (" = x)" (x'|H|x). (3.9)

Now, there is no restriction on these coefficients apart from hermiticity of H which
means

/dx H"M (x) = (—1)”/dx [H" ()] (3.10)

On average over x even coefficients are real and odd coefficients are imaginary. In
constructing Hamiltonians we will not rely on a classical to quantum correspondence
principle. We start from scratch and we have to develop tools to further specify
the coefficients which we like to denote as Hamilton coefficients. Kramers-Moyal
coefficients are moments of positive transition rates and separation of time scales and
the central limit theorem can help in specifying them. The Hamiltonian coefficients
don’t have an interpretation as moments of rates, but rather as moments of complex
rate amplitudes. Thus, only restrictions like symmetries can help in specifying the
coefficients. As an important and far reaching example we have already discussed
in Sect. 2.3.7 the particle propagation in 1D with Galilei inertia and a translation
symmetry breaking potential V (x),

H= _—laf + V(x), (3.11)
2m
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where m is the mass. Here, the probability current is given by the phase gradient of
the pre-probability (2.65).

Since each of the generators for Markov and quantum processes can be written as
series of differential operators (3.6, 3.8) we arrive at the conclusion that the generator
of a (semi-)group dynamics can be written as a differential operator of possibly
infinite order,

G-=> 0" [¢"x)]. (3.12)

n=0

with coefficients uniquely determined by the kernel representation (x/|G|x) =
[dx6(x — x')(GO(x — x)),

G"(x) = - Dn/d (' — )" (x'|Glx). (3.13)

Alternatively, the coefficients can be determined by requirements when modeling a
certain system. By partial integration and using 0z f (¥ — x') = =0y f (X — x’) we
can rewrite the kernel in a nice way appropriate for integration

[e.¢]
(x'1G|x) = Z [0 = )] - G"(x). (3.14)
n=0
As quite general results we can state.

e Deterministic (semi-)group type equations of motion correspond to the case where
only the first order term is non-vanishing. In such case the probability or pre-

probability §(x — x(¢)) with drift equation ¥ = —GU(x) solves the equation
of motion. Such distribution shows no fluctuations along the deterministic drift
path x(z).

e In the quantum case a pure zeroth-order term yields a pure phase factor in pre-
probabilities, such that probabilities don’t change in time at all.

e In the Markov case there is no zeroth order term due to probability conservation.

e The case of a zeroth order plus a first order term in the quantum case combines a
phase factor in the pre-probability and a non-fluctuating probability peaked along
the drift path.

e In the Markov case the current density can be red of the right hand side of (3.6)
by reducing the power of —0, by one. Thus, it is not an independent quantity
and it shows the irreversible character of Markov processes as soon as they show
fluctuations.

e In the quantum case the current density is not related to derivatives of the proba-
bility, but generated by the phase of the pre-probability (for a general definition
see Sect. 5.1).
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3.2 Lie-Series

In all of the mentioned dynamics the generated (semi-)group character allows for the
formal solution of f = Gf by exponentiation

f() = e £(0), (3.15)

where f(¢) stands short for f(x(z)) or f(x(z), X(2)), f(x(2), p(?)), P;(x), or ¥ (x)
and f(0) for f(x) or f(x,x), f(x, p), Po(x) or ¢y(x) as the initial values. The
exponential function can be taken serious by its series representation and thus pro-
vides a formal solution of the dynamics. It also has practical relevance [1, 2]. In the
literature of differential equations it is called Lie series. The solution reads

o0

t"mG"
[ =§ —— 1), (3.16)
f(r)=2f17( (0" [g['”(x>]) O} (3.17)
m=0 : n=0

Notice, the series solution is defined by pure differentiation and thus can be carried out
to arbitrary high order by (computer-) algebra. In some special cases the summation
can be done completely and in all other cases it can be used as a quite effective tool
for approximations.

As an example with a complete analytical solution we consider the Aristotelian
model for motion on earth: G = —kx0,. The Lie series applied to an initial x
yields x(1 + (—kx)t + (1/2)(=k)*t> + ---) and coincides with the series of the
exponential decay xe ™' to rest. Notice, the Lie series doesn’t need a special ansatz,
but only algorithmic differentiation. As an exercise try the harmonic oscillator, which
also works out nicely.

An advantage of the Lie series for approximations is: for short times one can
restrict to few terms in the series and take the result as a new starting point for the
next time step. To capture fluctuations, the second order derivatives in G have to
be taken into account. This gives a tool with flexible step width. It works best for
deterministic processes where G is of first order in derivatives and the state is just
the variable which is differentiated. Then, higher terms can often be calculated by
recursive means.

In addition, it can serve as the starting point for perturbation theory when G =
G + 6G with some G for which solutions are known and allows for expansions in
powers of G. This goes along the same lines as time dependent perturbation theory
in ordinary quantum mechanics (see e.g. Chap. XVII in [3]) and will not be repeated
here.
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3.3 Path Integrals

There is another general method of formal solutions which opens a wide range
of further treatment: path integral solutions (see e.g. [4—7]). It exploits two central
ideas: (1) the (semi-)group property by iterating on short time solutions
(short time propagator for a single time step) and (2) by solving the short time prop-
agator with spectral analysis of translations and linear approximations in time steps.
We treat Markov processes and quantum processes together by denoting 7, as the
(semi-)group element, G (x’, x) as the generator kernel and | x) as the state peaked
at position x. We like to calculate the transition(-amplitude) (called propagator)

(x', tlx, to) == (x"| Ty 1x) . (3.18)

The (semi-)group property now yields in kernel representation an equation which is
well known from quantum theory (1 = U, 1U, = [d% | %,7){%,7 |) and also well
known in Markov theory as the Chapman-Kolmogorov equation.

(x' 11x, 1) = /dfc (x',11%, 1) (%, 7|x, 1) - (3.19)

This can be iterated as often as one likes thanks to the (semi-)group property. After
a large number N of steps each propagator becomes a short-time propagator which
can be treated to linear order in the time step At = (t — tp) /(N + 1)

(x',t + At|x, 1) == (x'|1 + GAt]x). (3.20)

Now we use the kernel representation (3.14) and use the spectral representation (a
concept of duality) of the delta-function.

(x'.t + At|x,t) = /(dk/27r) K= [1 + AtZ(ik)"g["](x)i| . (3.21)
n=0

The expression

> 0" G" (x) =: G(x. k) (3.22)

n=0

will be called generator function. In the quantum case it will be called (quantum)
Hamilton function. This function depends on the definition of the coefficients GV (x)
and therefore on the ordering of derivatives and coefficients in G. The variable k is
just an integration variable and has, so far, no meaning as a canonical conjugate of
x as in classical Hamilton mechanics. Such meaning only emerges under certain
conditions to be discussed in Sect. 3.4.2.
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The term 1 4+ AtG(x, k) can be re-exponentiated in the order A¢, such that we
finally arrive at a complete integral solution

(x/,t|x,t0) = limpy_ oo %;Nﬂfd)ﬁv ...fdx1 fde+1 fdkl .

[~exp {27:11 G(xj 1, k) At + %m}] (3.23)

As a short-hand notation such path integral can be written as

,idT{G(X(T).k(T))Jrik(T)fC(T)}
(x’, tx, to) = / Dx(1)Dk(7) €0 . (3.24)

x—x'

Let us stress the importance of this formal solution by some remarks.

e The integration over elements of paths Dx(7) is restricted to intermediate steps;
the initial value x and final value x’ are kept fix (a visualization is in Fig.3.1).

e The propagation over an arbitrary time step is expressed as an integral (although
high-dimensional) where only functions on the sliced configuration manifold com-
plemented by dual coordinates k are involved. It forms a dual solution to the
solution by Lie series where no integration but only differentiation was involved.
In terms of programming it only involves ordinary numerics (e.g. Monte Carlo
integration) while Lie series involve computer algebra.

variable x, k

x(t)=x'

X(t)=x

time

Fig. 3.1 The propagator is a sum over many paths. Each path contributes a factor. The factor is
positive in Markov processes and complex in quantum processes
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e Asawarning and as a guideline for further treatment: the path integral is uniquely
defined by the partitioning in (3.23). The short-hand notation (3.24) can only be
used as a short-hand notation. It does not prescribe the discretization in a unique
way as (3.23) does. There are no tables for path integrals. Only integrals up to
second order in k or x variables can be integrated in closed form by Gaussian
integrals.

e The path integral has a similar look and status in stochastic dynamics as the par-
tition sum in equilibrium statistical physics. With the help of additional source
terms it can serve as a generating functional for almost any expectation value one
likes to calculate (see Sect.5.5).

e All known approximation schemes can be applied: perturbation in small parame-
ters and expansion about a solved generator G as with Lie series.

e Further approximation schemes show up: expansion around characteristic points
of functionals, exploiting symmetries and topology of functionals, reducing to
relevant variables by integrating out irrelevant variables, enlarging variable space
with auxiliary variables (see Sect. 8.5) to re-express difficult terms or constraints
via Lagrange multipliers.

3.4 Chain Rule and Huygens-Born Principle

In (3.23, 3.24) the integrations are over paths in the configuration variable x and in
the dual variable k. We can get rid of the dual variable by formally carrying out this
integration at each intermediate step as a kind of Fourier-Laplace transform changing
the variable k(7) to x(7),

j‘ dT{ G (x(1),k(T))+ik(T)x(T)} j’ dr L% (x (1),%(7))
/ Dk(T) év =: eb ) (3.25)

The function resulting from this transformation is called the L-function and its inte-
gral over time is a functional of a path x(7) and is called the S-functional,

1

S x(M)] == /dT L% x(7), x(1)). (3.26)

fo

Note, L is not necessarily the Legendre-transform of G, but more generally defined
by the Fourier-Laplace transform of (3.25). For Markov processes (G = M) the
negative of the L-function is called Onsager-Machlup function and the exponents
are written with a minus sign, LI = —LIOM] and §I¢1 = —SIOM] For quantum
processes the L-function is (with a factor of (i) called (quantum) Lagrange function
and written as
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A variable

p(alx) path via a p(x'|a)

p(blx)

path via b p(x'|b)

\

time

Fig. 3.2 A Markov process with only two paths. The path integral represents the usual chain rule

L'l = i L and the corresponding S-functional as action functional i S[x(7)] =
i f[; d7L(x(7), x(7)). Thus, the propagator of a Markov process can be written as

(', tlx, 1) = / Dix(r)e ™ Jo 4T HM @) | (3.27)

x—x'

Similarly, the propagator of a quantum process can be written as

(', t1x, 1) = / Dix(r)e o dTEE@ ) | (3.28)

’

X—>X

To illustrate the meaning of a path integral with only the configuration variable
we have a look at a process with only one intermediate time step and with only
two possible values a, b for the configuration variable at that time, resulting in a
restriction to just two paths (see Fig.3.2).

In the Markov case, where ¢ 5" isa positive weight with probabilistic meaning

for each path, the path integral simply represents the usual chain rule to calculate the
probability to find x” when started at x, denoted as p(x’|x): multiply the conditional
probabilities along each path and sum them up, resulting in

p(x'lx) = p(x'|la)p(alx) + p(x'|b) p(b|x) = pa + p». (3.29)
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variable

ein->a path via a eiSa->x'

path via b

\

time

Fig. 3.3 A quantum process with only two paths. The path integral represents the Huygens-Born
principle

In the quantum case, e’ is not a positive weight and it cannot be interpreted as a
probability attached to a path. But the path integral represents the complex amplitude
for the process from x to x” as Huygen’s principle: the amplitude is a superposition
of amplitudes with phases accumulated along paths starting at x and ending at x’
(see Fig.3.3). Since the resulting amplitude of the full process has probabilistic
meaning in the sense of Born’s rule, we can view the path integral as the realization
of Huygen’s principle and Born’s rule to interpret wave intensities as probabilities.

/p(x/lx)ei{b — \/Eeisxﬁa-f-isaﬁx/ _’_\/Eel‘sxﬁb‘kisb‘)k/
= /1,e'5 + /1. (3.30)

For two paths with equal absolute intensities I, = I, = I we get for the transition
probability a simple interference pattern

px'|x) =21 (1 4 cos(S, — Sp)) |. (3.31)

The total intensity (probability) oscillates between 0 (destructive interference) and
41 (constructive interference), while an averaging over phases yields 2/, as for a
Markov process with equal probabilities for each of two paths.

Note, in quantum processes there is no immediate probabilistic measure attached
to paths between two values x and x’ with intermediate steps. The natural way,
how paths enter the formalism is via the group property for pre-probabilities. Then
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paths appear as elements of path integration and its interpretation is along Huygen’s
principle with Born’s rule and it incorporates interference. This leads frequently to
the misunderstanding that quantum theory introduces a novel probability theory with
violation of Kolmogorov axioms. This is not true, since two different values a and b of
property x are mutually exclusive at any time and weighted by a probability measure
in the Kolmogorov sense. The novel aspect of quantum theory is that the dynami-
cal evolution is non-Markovian in a way that allows for a full group property and
reversibility. Independently from path integrals as realization of the Huygens-Born
principle it is also possible to explicitly attach probabilities to paths along discrete
time steps in a meaningful way within quantum theory. This requires additional con-
sistency conditions on top of the Huygens-Born principle. For an elaboration on this
so called consistent histories approach see for example [8, 9]. We will not elaborate
on this, as it has no practical value for the topics addressed in this book.

3.4.1 The L-Function for Second Order Derivatives

When generators are up to quadratic in derivatives the generator function reads
G(x, k) + iki = GNx) + k (iGM (x) + ix) — K* G (x). (3.32)

Now the important Gaussian integral relation (valid for arbitrary complex numbers
a, b, c as long as the real part of a is positive)

, / 2
/dx efax“+bx+c — z€%+c (333)
a

allows to perform the Fourier-Laplace transform explicitly and leads to

— ( + G

[Gliy ) — (310]
L™ (x,x) =G (x) + 2G000)

(3.34)

Also here we can see that in processes with vanishing fluctuations (G®!(x) — 0) we
arrive at a deterministic process with drift ¥ = —G(x), since the L-function acts
as Gaussian with shrinking width in the path integral, thus leading to a J-function
distribution along the drift path.

In the Markov situation G'°! vanishes due to probability conservation and the
Onsager-Machlup function reads

(& + DM (x))?

LIOM (3 =
(x, %) 4D (x)

(3.35)

In the quantum situation of a Galilei particle (GP(x) = —i %) with translation
symmetry breaking terms G!°! = —i V (x) (V is called potential energy) and G!!! =
—iHM (x) (HM is called gauge field) we get the Lagrange function
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. m ., .q 1] 2
L(x,x)= 7 (x —iH (x)) - V(). (3.36)

Note, that we did not use any correspondence principle or any “quantization”
of a classical theory. Equation (3.36) states the exact quantum Lagrange function
of a Galilei particle in a translation symmetry breaking potential and gauge field.
From this Lagrange function the full quantum propagator can be calculated as a path
integral.

Note also, that the L-function for up to second order generators is indeed the
Legendre transform of the generator function with respect to 0_;;G(x, k) =
This is a general mathematical property of Fourier-Laplace transformsfor Gaussian
integrands. Still, this does not define a deterministic equation of motion for x(z).
Such equation only results as a limiting situation when fluctuations are negligible.

3.4.2 Emergence of a Quantum to Classical Correspondence

Fluctuations in the path integral can become negligible as a consequence of the
characteristic physical parameters for the relevant variable x under consideration.
It means that the integral is dominated by a certain path from x(#) to x (). Since
the functional e’S*®1 is a strongly oscillating quantity the path integral will sum
up many oscillating contributions. A path x.(¢) that leaves the action stationary can
serve as the starting point for an expansion in deviations from this stationary solution,

n(t) = x(t) — xc(1),
S[x ()] = Slxc()] + S2[n@)] + 6S[n(1)]. (3.37)

where S,[n] contains quadratic fluctuations in 7 and 0S[n] all higher orders. By
definition there are no linear order terms left at a stationary path and the stationary
path fulfills the Lagrange equation of classical mechanics,

8Sx(n)] _ OL dIL
e "o war =" (3.38)

The quadratic fluctuations are determined by the Hessian of the action at the stationary
action solution,

,52S[x(t)] o
/ / (5x(t’)5x(t”)|x"(tm(t)n(t ). (3.39)

When 6 S[7(¢)] turns out to be sub-leading, the path integral can be approximated by
the so-called stationary action approximation with Gaussian fluctuations as
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(xba tp | Xas ta> ~ exp {iSc(xb’ Iy Xa, ta)} F(xln Iy Xa, ta)a (340)

where S.(xp, tp; X4, 1) is the action for the stationary path under the boundary con-
ditions
Xe(ta) = Xq, x(fp) = Xp (341

and F(xp, tp; X4, t,) 18 a factor resulting from a Gaussian integral with fluctuations
S>[n]. Since Gaussian integrals in many variables are evaluated in eigenvalue coor-
dinates of the corresponding quadratic form and involve the determinant of this form
(see Sect. 5.5.3), the factor will be called determinant factor. In the present case, a
simple expression for this determinant factor can be derived by a sophisticated and
clever analysis which, however, is of no further use for our purposes. The proof can
be collected from Chaps. 6, 12 and 13 of Schulman’s classic text [6]. We simply state
the result where the Hessian of the stationary action with respect to initial and final
coordinates is involved,

: . i 02SH
(Ko 1y | X o) & D /S0t det( <) G4

P o Ox,0xy

Since it often happens (for an example see Sect. 8.1) that a stationary action solution
for the boundary conditions (3.41) is not unique, a summation over distinct station-
ary action solutions (labeled by k) can be performed—provided the corresponding
extrema can be separated. We mention that an integer multiple of 7/2 (so-called
Maslov correction) must be subtracted from the action in (3.42) when an integer

number of so-called focal points exist along the path of stationary action. At focal
25k

points the second derivative aax o becomes infinite (see [10]).

Equation (3.42) shows that there are always fluctuations in the propagator due
to the determinant factor. If they are negligible or undetectable for practical reasons
the system can best be described by the classical deterministic Lagrange equation.
This is a consequence of system parameters and is an emergent phenomenon like the
emergence of Gaussian distributions with tiny variance in real statistical ensembles
(central limit theorem, see Appendix A.9). The corresponding classical Hamilton
function H(x, p) is the Legendre transform of L(x, X) and coincides, of course,
with the quantum Hamilton function in those cases where it is of up to second order
in k (denoted as p in classical mechanics).

Thus, the quantum-classical correspondence might emerge for some relevant vari-
able. To take it as a construction principle for quantum time evolution is dangerous
because of its limitations. For the historical development of quantum theory it was a
very helpful guide. However, to model quantum time evolution one should directly
model the quantum Hamilton operator from characteristic parameters of oscilla-
tions and symmetry requirements or model some of its derivatives like the quantum
Hamilton function or the quantum action.
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3.4.3 Emergence of a Quantum to Markov Behavior

Consider the time evolution of a wave function in discrete representation

V) = D (n, tlm, 10) Y (). (3.43)

m

For the corresponding probability distribution this means a non-Markovian non-
closed time evolution

Pa(t) =D (n. tlm, to) {m', toln, t) o (t0)03 (t0) | (3.44)

mm'’

The diagonal terms (2 = n) do not contain phase factors, but the off-diagonal terms
do. They are essential for the possibility to describe a time reversible stochastic
process. This can be seen easily, once we assume that the off-diagonal parts in this
sum can be neglected. We arrive at a Chapman-Kolmogorov equation characteristic
for Markov processes,

Py(t) = D w(n, t; m, 10) Py (to) | (3.45)

with positive transition rate,
w(n, 1;m, 1) = | (n, tlm, 1) °. (3.46)

In systems coupled only very tiny to some environment the phases are typically
much more sensitive to the coupling than the amplitudes. After a characteristic time
scale, called decoherence time 7,,., the phases become effectively random and a
coarse grained description for P, cannot resolve the filigree information buried in the
rapidly fluctuating off-diagonal contributions. Because of large sums over randomly
fluctuating phases with smoothly varying amplitudes, the systems dynamics can
effectively be described by a Markov process instead of the original quantum process.
Thus, on a time scale larger than the decoherence time 7,,., the tiny coupling to the
environment, not captured explicitly in the dynamics, will finally lead to the typical
behavior of Markov processes, which means some relaxation and irreversibility. A
related and more elaborated discussion will be presented in Sect. 5.4.2.

Here we have a closer look at the different roles of the probability current density
Jj(n, t) in Markov and quantum processes. We simplify the discussion by restricting
to the case where the quantum current density is only first order in gradients of the
phases of wave-functions 1) = %> P+¢,
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i, 1) = UY(n, 0 (n, 1) — *(n, 1)0,h(n, 1)}

Ong(n, 1)
0

i
71

= P(n,t) (3.47)

and the Markov current density is only first order in gradients of the probability,
M@, t) = —D0O,P(n,1). (3.48)

Exploiting the quantum dynamics of (3.43) and writing the transition amplitudes as
(n, tim, ty) = eO>Mwem+igtm yields for the quantum current

1 0,5
-Q _ / / ’ 7\ 0,
je(n,t) = - ,%" (w(n, nYw(n,m)P(n")P(m ))
x [sin (p(n, n) = @, m") + (') — ¢(m") (3,0, 5Inw(n, n'))
+ cos (p(n,n') = p(n,m") + o' = p(m") (Bup(n,n)].  (3.49)

The Markov dynamics of (3.45) yields for the Markov current

Mn,t)y=-D Z w(n, t;n',19) (0, Inw(n, t;n', 1)) P(n', o). (3.50)

n

In the decoherent situation, the dominating diagonal part of the quantum dynamics
leads to a coarse grained current density dynamics

1
JOCn, 0 == w10, 1) P, 1) (0" (n, 10, 10)). (351
m

n

Thus, after coarse graining and decoherence, a reversible dynamics with quantum
currents from phase gradients turns to an irreversible situation with Markov currents
from rate gradients,

1
—0,0%PC(n, 10, 10)) = —DO, Inw(n, t; 1, 1)) |. (3.52)
m

3.5 Exercises

Exercise 1: Lie Series for Harmonic Oscillator
Solve for x(z) with Lie series for the harmonic oscillator Gx = {H, x} with
H(x, p) = % (p2 +w2x2).
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Exercise 2: Pure Drift
Show that §(x — x(¢)) with drift equation X = —G!!(x) solves the equation of
motion, if only G!'! is non-zero in the generator expansion.

Exercise 3: Basic Gaussian Integral

Show (3.33) in two steps: First b = ¢ = 0 and considering the square of the integral
as performed in 2d with polar coordinates and then by quadratic extension for b, ¢
finite.

Exercise 4: Path Integral for Free Particle
Follow the calculation of the propagator for a free quantum particle H = — %8; by

the path integral method along the lines presented in books (e.g. [11]) with pen and
paper. You also get to know Gaussian integrals there.

Exercise 5: Fourier-Laplace and Legendre
Show that the L-function of (3.34) is the Legendre transform of the generator function
with respect to 0_;; G (x, k) = x.
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Chapter 4
Special Solutions

Abstract The Lie series solution and the path integral solution of the (semi-)group
dynamics are formal solutions which show the way for approximation schemes.
Rarely, these series or integrals can be performed exactly leading to explicit solutions.
Even then, quicker solutions by an appropriate ansatz can be found. To enrich the
toolbox in modeling it is helpful to know exactly solvable models and a variety of
methods of finding them. We will discuss such special solutions which can be derived
without the use of path integrals. However, sometimes it helps to know the path
integral to find a short-cut. We firstly consider discrete variables in deterministic and
Markov processes. Here the translation operator is also discrete and the generator of
translations is the hopping between nearest neighbor variables. Secondly, we consider
the important continuous models of Markov and quantum processes which are the
Ornstein-Uhlenbeck process and the quantum well and harmonic oscillator models.

4.1 Discrete Few States Deterministic Processes

In deterministic situations with discrete time steps and a discrete variable the dynamic
equation is of the form

n(t + 8t) = n(t) + G(n(t))st, “.1)

with a function G (n). Consider only two states n = 0, 1. There are only four pos-
sible time steps: 0 — 0,0 — 1,1 — 0, and 1 — 1. For a time homogeneous
group dynamics we have three possible motions: (A) constant, (B) periodic and
(C) relaxing to (A). For (A) we have 0 stays 0 and 1 stays 1 and for (B) we have 0
followed by 1 followed by 0 etc. or starting with 1 followed by 0. The corresponding
functions are

Gn)=0 (A), “4.2)
G(n) = (1—2n)/8t (B). (4.3)
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The solutions of (A) and (B) are reversible. The constant solution has the full time
translational symmetry. The time homogeneity is broken spontaneously by the peri-
odic solutions (B) with finite period of 2 steps.! However, they don’t survive the
limit # — 0. On averaging over periodic solutions or coarse graining over periods,
the time translational symmetry is restored. In this sense, the time translational sym-
metry is hidden in the periodic solutions with finite period. The motion (C) happens
when one starts with 0 followed by 1 followed by 1 and thus staying at 1 or one
starts with 1 followed by O staying at 0. Here relaxation in finite time (1 step) to a
stationary state occurs.

For three states we have also (A) stationary solutions and (B) periodic solutions
with periods of 2 or 3 steps and also (C) solutions with relaxation to stationary
solutions in finite time (1 step or 2 steps). For each periodic solution a time reversed
solution exists. The relaxing solutions break time reversal symmetry. Again, the finite
period solutions don’t survive the limit 6z — 0 and they spontaneously break the
time translational symmetry and restore it on averaging. Similar statements hold for
any finite number of states.

4.2 Discrete Nearest Neighbor Markov Processes

This section contains mainly standard applications. You can find similar and more
applications in [1, 2]. Here we elaborate a little more on stationary solutions with
external currents.
The Master equation for discrete random variables reads in the form of a gain—loss
rate equation
3 Pi(n) = D" Wy Pi(n') — wyn Pr(n), (4.4)

n

where w,,, is the transition rate per unite time from state n’ to n. It doesn’t need to be
symmetric. A simpler local situation corresponds to so-called one-step processes,
where transitions only occur between successive states or nearest neighbors:

Wyp = ln’(sn,n’—l + gn’an,n’-&-la (45)

where /,, measures the strength of loss at n (death rate in the case of n species) and
g the strength of gain at n (birth rate in case of n species). You may interpret it
as hopping on a 1D lattice with hopping rates /, to the left and g, to the right (see
Fig.4.1). Then the change at position n is due to 4 steps: one to the left from n to
n — 1 (loss at n), one from the right n + 1 to n (gain), one to the right fromn ton + 1
(loss) and one to the right from n — 1 to n (gain). Thus, the Master equation reads
for such discrete nearest neighbor (one-step) processes

UIf a symmetry of the dynamics is not present in the solutions it is called a spontaneously broken
symmetry (see Chap. 6).
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n n+l

Fig. 4.1 The nearest neighbor (one-step) process and its transition rates

0P (n) =l P(n+ 1)+ gu1Pi(n —1) — (8o + 1) P(n) | (4.6)

The discrete natural number n can range from —oo to oo (unbounded variables),
or from n = 0 to oo (bounded from one side variables). If it terminates after a
finite number N it corresponds to a variable that is bounded from both sides. For the
bounded situation (4.6) is completed by the boundary conditions

0 P (0) =11 P (1) — go P (0) = J (1), 4.7)
P (N)=gn1P(N —1) = IyP(N) = —=J(1). (4.8)

Here J(#) corresponds to a possible external probability current flowing from
higher n to lower n (from right to left). In unbounded situations one requires that
P, (n) goes to zero fast enough for n — Fo0.

It is now quite interesting that the stationary solution can be found in closed form
and that external currents can be very important. Stationarity, d, P;(n) = 0 within the
system, means

LigyiP(n+1) — gy P(n) =1, P(n) — g1 P(n — 1) = J, (4.9)

where J is a constant independent of n (and ¢). The equation with J = 0 is identical
to a situation in certain closed isolated systems at equilibrium where P (n) is the equi-
librium distribution and transition probabilities have to fulfill/, P(n) = g,_1 P(n—1)
as a constraint, called detailed balance (see [1] Chap. V.6 and XVIIL.7). However,
here we like to study the more general case with J > 0. We consider the bounded
situation. When we come to the boundary at n = 0, we have [, P(1) — goP(0) = J
and J > 0 describes a probability current from O and to the left environment. At the
boundary n = N we find [y Py — gny—1 Py—1 = J. Thus, an external current J > 0
flows from right to left through the system.
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To study the local change of the stationary solution P (n) we rewrite (4.9)? as

1
Pn+1)—Pn) = ; [+ (g0 — LD P)]|. (4.10)

n+1

A stationary solution can become uniform, P (n) = P, for a perfect balance between
death and birth rate,

J

b1 — 8 = P 4.11)

In the absence of external current J a uniform stationary solution can only exist
in the exceptional situation of the equality of death and birth rates. In non-uniform
situations (4.10) tells:

e If g, — [, stays positive, then P (n) will increase as a function of n.

e If g, — [,4 stays negative, then J plays an important role. Without an external
current, P(n) would decrease as a function of n, but a finite external current can
change the situation.

e For certain values of n it may happen, that J — (,,+1 — g,) P (n) changes its sign and
the stationary solution shows some internal structure due to an external current.
Take for example a situation where the birth rate can be neglected in comparison
with the death rate, g, < [,,11. Then

P(n) = li (4.12)

n

In case of non-linear /, this solution can show structure. An illustrative example
with [, of fourth order with two minima is shown in Fig.4.2.

Since (4.10) has a semi-group structure the stationary solution can be given in closed
form for arbitrary /,, # 0 and g, # O by iteration, starting from P (0),

1 n n n
P(n):g—{JZHf—:Jr(zOP(O))Hf—:} . 4.13)
n k=0

r=1 k=r

Equation (4.10) has a continuum limit (n — x and /(x), g(x) slowly varying on the
scale of 1) as a linear (inhomogeneous) ordinary differential equation,

iP()c) =a(x) — b(x)P(x), (4.14)
dx

2assuming that [, # 0.
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Fig. 4.2 An external current can lead to structure in stationary distributions

witha(x) = J/I(x) and b(x) = 1 — g(x)/I(x). It is solved by standard methods as

X

P(x)=¢ 2@ L P0) + / dra()e®®}, (4.15)
0

where B(x) = [; d b(1).
The full time dependent solutions can only be given in closed form for linear
n-dependence of birth and death rates

L, =1y+1-n, (4.16)
g =8 + g -n. “4.17)

There are two tracks for finding time dependent solutions: (A) equations of motions
for moments (or linear combinations) and (B) solving for a generating function. On
the first track (A) one writes down time evolution equations for moments (nk) , by
virtue of (4.6). For mean and variance they read in an unbounded situation (n from
—00 to +00)

d

T (n); = (gn)y — (L) (4.18)
d
I (Bn)?), = 2((8n)(gn = 1)), + L)y + (80)1 5 (4.19)

where dn := n — (n). In the linear case such equations become closed differential
equations in time. In the non-linear case the equations for low moments involve
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higher moments and one can find approximate solutions by truncation. In bounded
situations additional terms may appear when re-indexing sums. The second track
(B) rests on a generating function, a basic concept in theoretical physics that we
will meat several times. We consider the unbounded situation for simplicity. The
generating function is defined as a Laurent series® for complex variable z with P;(n)
as coefficients,

Fz.t):== > 2" P(n). (4.20)

n=—00

It exploits the group character of the hopping operators f(n) — f(n £ 1) by
introducing z" as eigenfunctions of zd, and as states on which z and 9, act as raising
and lowering operators with respect to variable 7.

(2d,)7" = nz", zz" =", 82" =n". 4.21)

The order of z and 9, counts, because they do not commute. Their commutator
acting on some function f(z) is

[0z, 21 £ (2) = (8:2 — 28:) f(2) = f(2). (4.22)
This is usually written without explicit notice of an arbitrary function as
[0;,z] = 1. (4.23)

The master equation transforms to a partial differential equation for the generating
function,

1
O F(z,1) = [(Z - 1) lizay + (2 = 1)3(:3;):| F(z,1). (4.24)

Here the variable n has been replaced in [, and g, by the differential operator z9z.
Once F(z, t) is known, one can generate moments simply by differentiation

("), = (- 0 F(z. 1) |- (4.25)

Even the full distribution can point-wise be calculated by inversion of the Laurent
series,

1 F(¢,
P (n) = 2_711?{ ﬁdg, (4.26)

Sn-&-l
C

3for complex analysis see e.g. the excellent and efficient book by Cartan [3].
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where C is a closed loop around z = 0 within the radii of convergence. In the linear
case the partial differential equation for F(z, t) is of first order and can thus be solved
by the method of characteristics (see Appendix B). It reads

F(z,t) =1 —2)( —g2)0.F(z,t) + (1 —2)(o/z — go) F(z,1) | 4.27)

The fundamental solution for an initial sharp position at n = m (Py(n) = Sum,
F(z,0) = z") reads in terms of the generating function (for a derivation see [1]
Chap. V1.6 and Appendix B)

lo
le@—Dr _ 1(1 — e&=Dty, =177
F(Z, t) — Zm [ e g + ( e )Z ]
I—¢
| — 00Dt _ (1 — (8Dt —m—%
x [ e z—g; ¢ )Z} . (4.28)

It is now time to apply our findings to a number of interesting examples.

4.2.1 Random Walk

The random walk is characterized by constant hopping rates to the left and right,
l,, = lo, gn = 80- (429)

For gy = lp = w the random walk is symmetric.
In a bounded situation with vanishing external current J, due to (4.13), the sta-
tionary solution reads

P(n) = P(0) (f—:) (4.30)

which increases (decreases) to the right for stronger (weaker) hopping to the right.
For gy = [ the stationary distribution stays uniform.
In the unbounded situation, the time evolution for average and variance (4.18,
4.19) allow to conclude
(n), = no + (go — lo)t, (4.31)

and
(6n)?), = (o + go)t + (8n)g. (4.32)

For the initial condition of a sharp startatn = 0, one has ny = (8n)(2) = 0. Both, mean
and variance increase linear in time. The mean stays at rest for symmetric hopping,
while the variance is insensitive to the hopping direction and shows the characteristics
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of diffusion (linear time dependence of the variance). The unbounded random walk
has no stationary limit, since the distribution keeps spreading out diffusively.

For a discussion of the full dynamic solution we restrict to the symmetric random
walk w = [y = go. The generating function F(z, t) can easily be found from (4.27)
as

F(z,1) = F(z,0)e" /2, (4.33)

We take the initial condition of a sharp position at n = 0, which means Py(n) = &,

and F(z, 0) = 1. To identify the distribution as Laurent coefficients we use the series
of the exponential function and write

o k k o -1
F(z, 1) = 2 (Z (w;), : )(Z %) - 434)

k=0 1=0
& o n+2k
—2wt n (wt) i
= E E — ], 4.35
‘ n=—00 ’ (k:O k'(k +n! ( :

where we made use of the fact that the variable n = k — [ runs from —oo to +00
and n could be replaced by —n in the last sum over k. We can now read off P;(n) as
a power series,

2wt - (wt)nJer —2wt
Pn)=e"" " T Iy Qut), (4.36)
k=0

where one can identify this series with a special function, known as special Bessel

n+2k . . . . .
function 1,(x) = >;2, % By analyzing this Bessel function in the limit

t — oo with fixed ratio n?/t one can show that the random walk is described by the
fundamental solution of the diffusion equation,

1 n?
Pi(n) = Nzr=mm exp (—m) , 4.37)

with diffusion constant D = w. We will give a short-cut argument for this finding in
Sect. 4.2.6.

4.2.2 Population Dynamics

A simple model of population dynamics is characterized by birth and death rates
being proportional to the number 7 of species,

l, =1In, g, = gn. (4.38)
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The number 7 is usually bounded, at least from below by n = 0. Ignoring any
environmental resources captured in boundary conditions we consider the dynamics
of mean and variance first (see (4.18, 4.19)). The mean shows exponential increase
(g > 1) ordecrease (I > g),

(n), = noe®™"", (4.39)

and the variance obeys a similar linear differential equation with an inhomogeneity,

d
@), = (e =D(6n)7), + (¢ + 1) n), (4.40)

It can be solved by variation of parameters for the particular solution. We assume
that initially n(#y) = ny is sharp,

((5n)?), = noeteDi’ +gl (s — 1), (4.41)
=

The variance shows exponential increase for g > [ and exponential decrease for
g < [,to00. Thus, the linear population model becomes unrealistic whenr = g—[ > 0
would cause exponential growth while resources are limited. Then, at least a nonlinear
modification in death- and birth rates and/or specific boundary conditions have to be
taken into account. In Sect. 2.3.8 we have already presented the logistic equation as
a nonlinear replacement for the evolution of the average number 7.

In the linear case, (4.13) also tells that stationary states at n # 0 do not exist for
vanishing currents J = 0, since /[y = 0. Thus, in the decreasing case, P(n) = &, is
the stationary limit. With finite external current J, the linear case yields,

J n g n—r+1
Py = ; (7) . (4.42)

As we have discussed in Sect. 4.2 already, the stationary solution can show some
internal structure (changes from increase to decrease) when the rates become non-
linear.

As to the full dynamics of the distribution P;(n) the solution for the generating
function (4.28) can be used, but it does not give more insight as the discussion of
mean and variance.

4.2.3 Radioactive Decay

A model of radioactive decay is characterized by death rates being proportional to
the number 7 of kernels which did not decay yet,
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ln = ln’ gn = O (443)

The number 7 is bounded from below by n = 0.
The solution for the generating function (4.28) can be used for this case and yields

Fz,t)=[1—(1-2e"]" (4.44)

where ny is the sharp value of kernels at # = 0. Since n > 0 the generating function
is a series in nonnegative powers of n, and the full distribution can be found by
differentiation,

n

! no—n
F(2.1) [smg= —— e (1 — 7)™ " (4.45)

1
Pin) = —
= (10 —n)'n!

Note, that this distribution equals the conditional probability from ny at ¢+ = 0 to
n at t. Thus, it provides a complete solution of the Markov process for radioactive
decay.

For mean and variance one finds from the generating function by virtue of
(4.25, 4.26),

(n), = noe™", (4.46)
(6n)?), = noe™" (1 —e7"). (4.47)

The decay goes on until the last kernel has decayed. Thus, the stationary limit is
P(n) = éy0-

4.2.4 Fluctuations in an ldeal Gas

A model of fluctuations of ideal gas molecules in a volume element AV is charac-
terized by leaving rates /, proportional to the number n of molecules and entering
rates g,, being independent of n,

L, =1In, g, = go. (4.48)

The number 7 is bounded from below by n = 0.
Here, the stationary state corresponding to an equilibrium situation (no external
current J) is most interesting. The stationary distribution follows from (4.13) as

P(n) = (5"’;

P(0), (4.49)
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which is known as a Poisson distribution. In terms of its mean value (which also
results as stationary limit of (4.18))

(n) = % (4.50)
and after normalization it can be written as
n ,—(n)
P(n) = m)n—f 4.51)

For the variance one finds by clever summation that it equals the mean
(6n)*) = (n). (4.52)
We mention without proof that for a Poisson distribution special combinations of

moments called cumulants (see Appendix A) are all equal to the mean. This can
serve as a defining feature of the Poisson distribution.

4.2.5 Shot Noise

As our last example of discrete linear one-step processes we consider the problem
of classical shot noise. It corresponds to the incoherent excitation of a number n
of discrete charges g from a source that move to a drain, thus giving rise to an
average electric current (/) = ¢ %. The creation rate is constant and no charges get
destroyed,
I, =0, g, = go. (4.53)

As initial value we take ny = O particles. The average is by (4.18)

(n); = got, (4.54)
such that

(I) = qgo- (4.55)
From (4.19) we find that variance and mean are equal,

((6n)?), = got = (n), . (4.56)

This reminds us of a Poisson distribution. As a check we calculate the generating
function F(z, t) from (4.27)
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o]

F(z,1) = e20@ D — =80t Z

0

" (got)"
L lgot)” (4.57)
n!
from which we can read off (recall the definition of F(z, t)) the full time dependent
distribution to the sharp initial value at n = 0,

n ,—(n),
Pi(n) = M. (4.58)
n!
It is indeed a Poisson distribution. Such processes are therefore also called Poisson
processes.
When analyzing stochastic process experimentally one very often considers the
spectral content of random functions like the current 7(¢) and studies the auto-
correlation spectral function S;(w) defined by

Sp(w) = / dt (81(0)81(t)) e ! (4.59)

For Markov processes the auto correlation function is a function of the time difference
only and it can be shown* that S; (w) is equal to the power spectrum defined by

T
1 .
S/(w) := lim —(|IT(a))|2), It (w) :=/dt[(t)e”“”. (4.60)
T—soo T
-T
For the shot noise problem we have

t 1
q(I), = ((6n)?), =/dt1 /dz2 (8I(1)81(12)) . (4.61)

0 0

The characteristic time for the auto-correlation of n(f) is given by the time scale
(g0) ™" due to exponential time behavior in P, (n). Therefore, the current as derivative
can be correlated only on even shorter time scales and we may assume that it is
approximately §-correlated in time, or white noise when talking about its spectrum.
With this white noise assumption we find by replacing 7, with the new variable
At = 1, — 1) that average current times charge equals the white noise spectral
function in a shot noise situation,

g {I) = Si(w). (4.62)

4known as Wiener-Khintchine theorem.
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4.2.6 Fokker-Planck Equation in the Continuum Limit

Non-linear cases of [, and g, are difficult to solve. However, one can get further in
the continuum limit. We use again the translation property,

fn+a)=e f(n) (4.63)

with arbitrary a. For the original one-step process we have to take @ = 1 in the end.
We perform a Kramers-Moyal expansion of the Master equation. This yields kth
order coefficients .

—1
%ak [gn + (=D*L]. (4.64)

DM (n) = .

Thus, fora = 1 there is no truncation criterion for high orders. All orders k contribute.

However, in a continuum limit, where a = ?—Z < 1 with a scale of resolution
8L and rates [, and g, for hopping on the scale Ax, one can conclude that the first
two coefficients dominate and a Fokker-Planck equation with D! = a(l, — g,)
and D! = a%(l, + g,) yields a reasonable description of the Markov process on
scales larger than §L. Scales larger than §L means in the discretized picture that
we look for changes on large scales én within time # when studying the dynamics
of P,;(n). For the symmetric random walk the resulting Fokker-Planck equation is
the diffusion equation and (4.36) in this limit is no surprise. The advantage of the
continuum approach is that non-linear one-step processes can be addressed by the
approximation methods for Fokker-Planck equations to be presented in Sect. 5.5.4.

4.3 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process in a one component variable x is characterized by
the following Fokker-Planck equation,

& P, (x) = yd, [x Pi(x)] + D3? P (x), (4.65)

with y = t~! an inverse relaxation time and D a diffusion constant with dimension

[x21/[t]. It can alternatively be described by a stochastic differential equation, called

Langevin equation,
X
X = —; =+ CY],

where C = 2D is the fluctuation strength of a Gaussian white noise random rate
(also called white noise random force) 1,

() =0, (nOn"H) =81 —1". (4.66)
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On the equivalence of both descriptions we comment a little later. The Fokker-Planck
equation (4.65) is of second order in 9, and has a linear in x drift. Thus, one can
study its Fourier transformed which yields a first order partial differential equation
in Fourier variable k, which can be solved by the method of characteristics. Alterna-
tively, one can calculate the path integral by Gaussian integration, since k and x are
not higher than second order in the generator function. The path integral represen-
tation also shows that the Ornstein-Uhlenbeck process is the Markov pendant to the
harmonic oscillator of quantum mechanics. Without doing this integral explicitly we
can infer from this that the solution of the initial value problem Py = §(x¢) for the
Fokker-Planck equation must be Gaussian and reads

Pi(x) =

2
—(x={x)) ] 7 4.67)

1
V2mo2(1) P [ 202(t)

where the time evolution of average and variance still have to be calculated. This can
either be done with the help of the Langevin equation, solving it and performing the
average over 7 in calculating average and variance of x at time 7, or it can be derived
from integrating the Fokker-Planck equation over x and x> and doing integral per
parts to reach closed differential equations for average and variance of x at time ¢.
Either of these methods yields the desired answer:

(x), =x0- e o*(1) = ((Ax)%), = g [1—e]. (4.68)

For short time intervals Ar < 7 one reproduces the defining features of drift and
diffusion in the Fokker Planck equation,

(Ax) = —yx - At; ((Ax)?)=2D - At. (4.69)

To see the equivalence of the Langevin equation with the Fokker Planck equation
it is sufficient to see that the Langevin equation as a differential equation leads to
the short time behavior for drift and diffusion as displayed by (4.69). Therefore, the
drift and diffusion expressions are just another way to define a Langevin equation
for a Fokker-Planck equation. In the long time limit the variable relaxes to zero with
constant variance Dt—which is a stationary equilibrium state.

In the limit y — 0 the Ornstein-Uhlenbeck process tends to a Wiener process
which has no relaxation but only diffusive fluctuation,

(Ax), =0 ((Ax)*), =2D - 1. (4.70)
The corresponding Langevin equation as a stochastic differential equation reads

i =/C. 4.71)
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The resulting Fokker-Planck equation is, of course, the diffusion equation (2.35).
The Ornstein-Uhlenbeck process has two prominent realizations:

1. The variable is a velocity v in a Brownian motion.” For short times (f < 1)
the velocity behaves diffusive with D, = C/2 and for long times it relaxes
to equilibrium, such that ((Av)2> = (vz) = Ct/2 can be identified with the
equipartition law® 7'/m. The corresponding spatial coordinate x with v = x will
also behave diffusive in the long time limit with diffusion constant D, = Ct?/2.
Thus, a relation (called Einstein relation) between diffusion constant, relaxation
time, mass and temperature follows:

D, =—r. (4.72)
m
We will come back to this realization in a slightly more general context with two
variables x and v in the next chapter.
2. The variable is the spatial coordinate of a stochastically relaxing particle in the
presence of a harmonic oscillator potential with strong friction (negligible accel-
eration),

0~ b =—2 4 F(x)/m+Cn, (4.73)
T
which leads via x = v and F(x) = —kx to the Langevin equation for x,
. Tk
XxX=——x+71tv(Cn. 4.74)
m

4.4 Elementary Quantum Systems

For quantum systems the normalized eigenstates | E,) of the Hamilton operator H
(energy eigenstates with energy eigenvalue E,,) are the stationary states in the sense
that their time dependence is simply a phase factor,

| Eq); = e 5" | Eg)y, (4.75)
and the corresponding probability distribution P, (x) = |E,(x)|? is stationary. These

states can be used for a spectral representation of H and thus for the spectral repre-
sentation of the dynamics for any initial state v (x) as

Vi (x) = > e I CYE, (x), (4.76)

o

5 A suspended particle is kicked around by lighter fast moving thermalized particles.

ST is temperature in units of frequency (kg = i = 1) and m is mass in units of time/length® or
equivalently in units of frequency/velocity?.
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where Cg = (Eq|¥o) and E,(x) = (x|E,). The resulting probability density has
stationary contributions from diagonal contributions and shows quasi-periodic’ oscil-
lations from non-diagonal contributions,

Pi(x) = D |COP|Eq(x)[?

+ > Re {CYE.(x)(C)*Ep(x)*} cos ((Eq — Ep)t)
P
— Im{CYEq(x)(CY)*Ep(x)*} sin ((Eq — Ep)t) . (4.77)

Here o can be a discrete index of summation or a continuous index for integration.
Only energy differences regulate the quasi-periodic time dependence. To represent
the dynamics this way is helpful for theoretical considerations (like quasi-periodicity)
and helpful for practical calculations if the eigenstates are known and their overlaps
CY with the initial state can be calculated exactly or approximately.

4.4.1 Quantum Well

The model of a Galilei particle with mass m and piecewise constant potential V (x) =
Vap for x € [a, b]in one dimension serves as a solvable toy model to capture essential
qualitative features of quantum systems,

92
H=-——"+V). (4.78)
2m

On each interval [a, b] the eigenvalue problem for energy eigenvalue E has (because
of piecewise translational invariance) solutions of the form e/** with piecewise eigen-
value E (k) = k*/(2m) + V,;,. The possible values k are related to the energy as

k(E) = £v2m(E — Vyp). (4.79)

For E > V,;, they describe waves of wavelength A = 25/ k directed left or right. For
E <V, they describe exponential modes with characteristic lengths of exponential
decay ! = i/k to the left or right. On each interval a solution for a given energy eigen-
value E is possible as a linear combination of two eigenfunctions corresponding to
(4.79). To reach a solution on the conjunction of intervals, one has to fulfill continuity
conditions for the eigenfunction and its first derivative to guarantee the continuity
of the probability density and the current probability density. Thus, matching con-
ditions have to be fulfilled at the boundaries of the intervals. These matching con-
ditions cannot always be solved analytically but by accurate approximate methods.

7Quasi-periodicity means a superposition of periodic oscillations of non-commensurate periods.
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NAVAVA

v,
Y, - | /Ez
Y1 ) ~~—"|ME,

Fig. 4.3 Illustration of eigenstates in a piecewise constant potential in 1D. Eigenstates /| (sym-
metric with respect to smaller wells) and v, (anti-symmetric with respect to smaller wells) are
nearly degenerate in their energies E| and E» for large barrier height V,. Bound states 3 with
energies above the barrier V), are standing waves fitting within the well of size L. Extended states
Y4 have exponential modes within an obstacle as long as their energy is lower than the obstacle
potential V,, (for simplicity the effect of the well is not shown in v/4)

Furthermore, these matching conditions are responsible for discrete bound states as
they cannot be fulfilled for a continuum of energy eigenvalues in the case of bound
states. Examples can be found in most textbooks on quantum mechanics, e.g. in
Chap. 2 in [4]. In Fig. 4.3 a potential landscape with piecewise constant potentials is
shown. The far left and far right with V' = 0 can serve as ingoing and outgoing regions
of scattering processes. The region of width o with potential V,, serves as an obstacle
to propagation and the region of width L and depth V,, serves as a so-called quantum
well model for bound states. Within the quantum well a barrier of width b and height
V}, is placed at the bottom of the well. For a given value of energy E eigenstates
may be constructed from the piecewise solutions under the matching conditions. For
0 > E > —V,, only discrete values are allowed by the matching conditions, while
for E > 0 extended eigenstates exist at any energy. The discrete energies correspond
to stationary bound states and the discreteness of the energy eigenvalues explains the
energy quantization phenomenon for bound states. The extended eigenstates cannot
be normalized on the infinite line and are thus called improper eigenstates. It is also
possible to close the system at some very large embedding length £ and normalize
the eigenstates to that system size. The resulting quasi-continuous energies are dis-
crete with a level spacing vanishing for infinite £. The following conclusions about
possible qualitative behavior can be drawn.



60 4 Special Solutions

e For E < —V,, no eigenstates exist. It is impossible to construct a non-vanishing
eigenfunction from only exponential modes.

e For -V, < E < —V,, + V), discrete eigenstates exist. In the two wells of width
(L —b)/2 they are wavelike and within the barrier region of width b they consist of
exponential modes. The probability within the barrier region gets rapidly smaller
as the barrier height Vj, gets larger. The probability decays exponentially into the
region outside the wells and vanishes when the well depth V,, becomes infinite.
Thus, the particle is localized to the well of width L up to exponentially small
corrections. It is concentrated in the two wells of width (L — b)/2 but has some
smaller but finite chance to be found between the two wells. The discrete allowed
wave lengths within the two wells get smaller for larger energy and the largest
is approximately twice the width of the wells for sufficiently large barrier height
V. It becomes exact for infinite V, and V,,. For sufficiently large barrier height
V,, the lowest lying energies occur in almost degenerate pairs of energies. Their
eigenstates can be approximated by linear superpositions of eigenstates located
in individual wells. The two possible unbiased superpositions (the sum and the
difference) have nearly the same energy (see v and v, in Fig.4.3). The sum state
has higher probability within the barrier and is thus often called binding state while
the difference state is called unbinding state because of lower probability within
the barrier. It turns out that also the energy of the sum state is a bit lower as that
of the difference state.® A further characteristic feature of quantum systems with
few degrees of freedom can be seen: although the energy is below the potential
barrier, the sum and difference states, as stationary states, have equal probability in
both wells and the particle cannot have a stationary state in only one of the wells.
These statements can easily be substantiated within a two level approximation
as discussed in Sect. 2.3.6. The dynamics of a particle starting in one well will
show Rabbi oscillations between two wells. Such process is called tunneling with
the misleading imagination that particles tunnel through a barrier violating energy
conservation. One should keep in mind that we are talking stationary states when
addressing fixed energies. When talking the dynamics from one well to the other the
superposition of at least two eigenstates with some maybe small energy difference
Ae is involved leading unavoidably to oscillations with frequency Ae. For larger
barriers the frequency decreases drastically. One should also keep in mind that
couplings of a particle to some environment may effectively localize it into one of
the wells (see the discussion on quantum Master equations in Sect. 5.4.2).

e For -V, + V, < E < 0 discrete eigenstates with wavelike behavior within the
well exist. The wavelength is a bit larger in the region of the barrier. The barrier
becomes insignificant when V,, < E + V,, and the width L is approximately an
integer multiple of half of the wavelength (see 13 in Fig.4.3). This becomes exact
for V, =0and V,, —> o0.

8The model can be used to illustrate atomic binding.
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e For 0 < E <V} a continuous spectrum of energies E is allowed with wavelike
behavior of improper extended eigenstates outside the region of the obstacle.
Within the region of the obstacle exponential modes exist (see Y4 in Fig.4.3).
In a scattering situation with ingoing wave from the left the stationary situation is
such that on the left side of the obstacle a superposition of ingoing and reflected
waves exists, where the amplitude of the reflected wave is r times the amplitude of
the ingoing wave. On the right of the obstacle and the quantum well a transmitted
wave with an amplitude of ¢ times the amplitude of the ingoing wave results. The
squared absolute values of r and ¢ can be interpreted as reflection and transmis-
sion probability and they sum up to 1. The effect of the obstacle in this energy
regime is to drastically decrease the transmission amplitude. The transmission is
non-vanishing despite the fact that E is smaller than the obstacles potential energy
V,. This fact is also denoted as tunneling. When considering a propagating wave
from the left it consists of a spectrum of energy modes and the obstacle leads to
energy dispersion. The effect of the following quantum well is that the transmis-
sion gets some resonance peaks when the wave length becomes commensurate
with the width L of the well.

e For V) < E the situation is similar to the regime before, except that no exponential
modes have to be taken into account and the transmission is not so drastically
diminished.

4.4.2 Harmonic Oscillator and Occupation Numbers

The harmonic oscillator is that model in theoretical physics on which almost any
method of solution gets tested and to which one would like to map almost any given
problem. Its main feature is the symmetry between configuration coordinate and
translation operator or velocity. Both appear in second order in the Hamiltonian
resulting in an oscillation between kinetic energy and potential energy with one
characteristic parameter, the period 7. In terms of the corresponding frequency o =
27 /T the Hamiltonian reads

-2 maw’x?
H=—2X (4.80)
2m 2
Since it is quadratic in the hermitian generator of translation p := —id, with real

eigenvalue k and in x, one can find the propagator from the path integral by Gaussian
integration in k and x paths. In that sense, the harmonic oscillator problem is the
reversible stochastic process pendant to the irreversible Ornstein-Uhlenbeck process.
In doing the path integral calculation one can start from the discretized version and
perform the continuum limit in the end. Alternatively, one can use the quantum to
classical correspondence in the sense of Sect. 3.4.2. This is demonstrated e.g. in part
6 of the classic text on path integrals by Schulman [5]. One has to solve the stationary
action differential equation (classical equation of motion) and calculate the action of


http://dx.doi.org/10.1007/978-3-662-49696-1_3

62 4 Special Solutions

such solutions from one location to another in time ¢. In addition one has to calculate
a multicomponent Gaussian fluctuation integral yielding a determinant (see (3.42)).
We leave these lengthy calculations as an exercise and only state the result here,

mo
(x, 1| X0, o) = \/Zm' @l — 1) X (4.81)
e x5 2 4.82
X exp Tl =) [(* + xg) cos(@(t — 1p)) — 2xxo]}.  (4.82)

It is possible to extract eigenvalues and eigenvectors of H from the propagator by
Fourier-Laplace transformation and integrations in the complex energy plane. How-
ever, these are tedious and sophisticated calculations. For the purpose of extracting
eigenvalues and eigenvectors a much more elegant way is provided by an algebraic
method based on creation, annihilation and number operators. We present this also
because it can be generalized to quantum field theories for an arbitrary number of
oscillating particles whose interactions can be expressed with the help of these oper-
ators. This algebraic method is presented in many textbooks on quantum mechanics
and we follow the compact treatment in [6].

From the shape of the parabolic potential V (x) and our experience with the quan-
tum well we expect that the Hamiltonian has discrete positive energy eigenvalues,
as the parabola could be interpreted as a particle confining potential. Firstly, we
introduce the length scale [ := 1/./mw and a factorization of the positive quadratic
Hamiltonian with dimensionless linear factor operators

X g2 (4.83)
a:=—+i—, .
V2 V2
: by . pl
a' = ——i—, (4.84)
V2 V2
such that we can write
. 1 i
H=uw a'a+§[a,a] . (4.85)

The commutator [a, a"'] appears, because the order of infinitesimal translation with
d, and multiplication with x counts. When applied to a function, the commutator of
these elementary operations reads

[0y, x] = 1. (4.86)

and as a consequence we have

[a.a'] =1, (4.87)
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such that the Hamiltonian shows explicitly its positive spectral character,

H=w (aTa + %) . (4.88)

It is now crucial to realize that the operators a and a' transform an eigenstate of the
operator

N :=d'a (4.89)

into another eigenstate with a shift in the eigenvalue by just 1. This follows from
the commutation relations

[N, a] = —a, (4.90)

[N, aT] = af, 4.91)

as a result of the fundamental commutation relation of (4.87). When operating on
an eigenstate | N) of hermitian positive N with Na we can apply the commutation
relation and find that

N(a | N)) = (N — 1)(a | N)). (4.92)

Thus, the operator a has transformed an eigenstate of N with eigenvalue N to another
eigenstate with eigenvalue N — 1. Similarly, we find that

N@ | N) = (N + D@t | N, (4.93)

and the operator a” has transformed an eigenstate of N with eigenvalue N to another
eigenstate with eigenvalue N 4 1. Since N is positive, there must be a minimum
eigenvalue for it and we call this state | Ny). Since a cannot lower this eigenvalue
the application of a on this state must vanish,

al| Ny)=0. (4.94)

On operating from the left with a” we see that the eigenvalue Ny of N must be zero.
Therefore this state can be written as | 0). By successive applications of a” we get
all other eigenstates and we know the spectrum of N: it just consists of all natural
numbers including 0 as the ground state level. These marvelous findings justify to
call N the number operator and a a creation operator and a an annihilation operator.
They create and destroy quanta. For the harmonic oscillator these quanta are related
by (4.88) to the energies. The eigenenergies (or eigenfrequencies) are equidistant
with distance w and ground-state value w/2,
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1
Ey =w(N + 5)' (4.95)

To get properly normalized states from the normalized ground state one finds by
recursion

|N) = — (a")" 0) | (4.96)

Also, the coordinate representation (x | 0) =: ¢p(x) can be found from the resulting
differential equation

(x]al0)=0= ]%(X) (4.97)

[lj;' V2

as a Gaussian which reads

1 2
00 (x) = N (—%) . (4.98)

All higher eigenvalue eigenfunctions (Hermite polynomials) can be generated by
(4.96).

The algebra of creation, annihilation and number operators can be used to describe
systems where discrete states, labeled as index j, are occupied with certain natural
numbers. Such systems are called many particle systems or many body systems
because the discrete states can be viewed as the states of a single of many indistin-
guishable quantum objects and the occupation number N tells how many of these
quantum objects occupy the single object state ;. Deﬁmng the vacuum state | 0)
as ground-state for the particle number operator N. =a; ;a;j to eigenvalue 0 one can
create a convenient many particle basis of the many body system by applications of
the creation operators aJT. on the vacuum state. The algebra

4.4 | =ou (4.99)

together with

~ ¥

N; =dla (4.100)

is sufficient to express the dynamics of a many body system with natural numbers as
occupation numbers. Such particle types are called Bosons. Their wave function must

9To call a quantum object a real particle does however need some further ingredients of spatial
symmetries and the possibility to find the object in a finite region of space.
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be symmetric against interchanging the coordinate of two of its indistinguishable
particles.

To represent Fermions (the wave function must be antisymmetric against inter-
changing the coordinate of two of its indistinguishable particles) one can use a similar
algebra of creation (b;), annihilation (b;) and number operators,

N :=blb; (4.101)

where for Fermions the algebra is defined with anti-commutator!® relations,

b5 5} =61 (4.102)

and a rule of antisymmetry in state indices

{b1.0]} =0={b;. b} (4.103)

Equations (4.102, 4.103) define an algebra of creation and annihilation for Fermion
many particle systems. The basis states for an index j are just | 0 j) with no particle
(vacuum state) and | 1 j) with one particle in state j. The algebra suffices to show that

N ; 1s the particle number operator for state j and that b; creates a particle from the
vacuum and that b; annihilates a particle in j state. Both operators applied twice to
any state yields zero, consistent with the possible particle occupation numbers 0, 1
for each state j.

An algebraic setup of a quantum field theory can then be formulated with the
help of local creation, a’(x), annihilation, a(x), and particle density operator,
N (x) = a’(x)a(x), where creation/annihilation means creation/annihilation of a
particle at configuration coordinate x within the volume element dx such that N (x)dx
is the number operator in volume element dx. We remark that the local creation and
annihilation operators a’(x) and a(x) are often simply called field operators and
written with letters known from wave functions like ¥ (x) and the completely inad-
equate notion of second quantization is still widespread for the occupation number
representation of many body physics.

4.5 Exercises

Exercise 1: Few States Deterministic
Consider deterministic motions in the case of 3 states for discrete time homogeneous
dynamics (n = 0, 1, 2) and discuss their solutions along the line of Sect. 4.1.

10The anti-commutator of two algebra elements A and B is defined as {A, B} := AB + BA.
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Exercise 2: Generating Function for One Step Processes
Discuss why the non-linear case of /, and g, is difficult to solve.

Exercise 3: Poisson Distribution
Calculate mean and variance for the Poisson distribution P(n) =
summation.

-
E=5— by clever

Exercise 4: Wiener-Khintchine Theorem
Show the equality of expressions (4.59) and (4.60) for sufficiently fast decay of the
auto-correlation function at infinity.

Exercise 5: Ornstein-Uhlenbeck Process

Derive closed differential equations for mean and variance from the Fokker-Planck
equation for the Ornstein-Uhlenbeck process and solve them for a sharp initial value
at xo.

Exercise 6: Propagator for the Harmonic Oscillator

Follow the calculation of the propagator for the harmonic oscillator model in the
sense of Sect. 3.4.2 as outlined e.g. in part 6 of [5] and also in Sect. 3.5 of [7]. You
may alternatively do the calculation directly from the discretized path integral of
(3.23) with Gaussian integrations in x and k.
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Chapter 5
Observables, States, Entropy and Generating
Functionals

Abstract We broader the view and work out a theory where properties and states
are generalized as to have time derivatives of properties and reduced states (density
operators) included with compact and flexible ways of calculation. We introduce
the notion of entropy as a dispersion measure and consider its time evolution in
Markov and quantum processes. We consider limits of stationarity and cross-over
between different types of dynamics by taking system environments into account.
In each type of dynamics or stationary limit generating functionals appear as the
unifying structure. When fields form the configuration space for infinitely many
degrees of freedom one deals with stochastic field theories. In the case of quantum
processes these are so called quantum field theories met commonly in particle physics
and condensed matter physics. Modeling strategies are discussed that start with a
Gaussian approximation around stationary action solutions, supplemented with a
stability analysis.

5.1 Time Derivatives, Compatibility and Uncertainty

To treat time derivatives of properties on the same level as properties we like to define
observables f that correspond to the time derivatives of properties in the following
sense: their expectation value at a given time should be equal to the time derivative
of the property expectation value at that time,

(f), = 0 {f),. (5.1)
In the Markov case we can write
; (f), = (fIO:P) = (FIMP) = (M"f|P,) =: (f),. (5.2)

where M7 is the transposed operator (partial integration in kernel notation) to the
generator M. Again, the time derivative observable

F@) = M"f(x) (5.3)
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is a function of x and can be viewed as a property compatible with any other property,
since their values can be addressed simultaneously. Nevertheless, the system shows
fluctuations which are controlled by the Kramers-Moyal coefficients of order two or
higher; characteristic is the diffusive fluctuation for short times,

((6x)%) = 2Dt (5.4)

Note, that the operator O, is relevant in the theory as it generates translations and
the commutation relation [0y, x] = 1 expresses the incompatibility of addressing
simultaneously values to a position and a translation, resulting in the well known
uncertainty relations between Fourier transformed

\6x] - |6k| > 1/2. (5.5)

Either the spectrum of positions is sharp or the spectrum of translations is sharp; both
cannot be sharp as position and translation are strictly incompatible notions. This can
be clearly seen for Gaussian functions by (3.33), where the equality is met. Another
intuitive reading of (5.5) is: with one wave of wave-length A you cannot resolve
objects smaller than ~\/2. However, in Markov dynamics this uncertainty has no
direct manifestation with observables, as they can all be represented by functions of
the configuration variable.

In the quantum case we write the property f(x) as an operator in spectral decom-
position

/= /de(X) | x) (x| (5.6)
and use the Leibniz rule for differentiation,

O if) =0 (W1 f 1 ¥)
= (—iHY | f | 9)+ (@ |f | — iHY)
=i Hf ) =iy | fH | ¥)
= i{[H.[1). .7)

Thus, in quantum processes an observable can be defined which represents the time
derivative of some property f by

f = ilH,f]. (5.8)

Now, something very interesting has happened: the time derivative of a property is
no longer a property in the usual sense as a function of the configuration variable—
as soon as fluctuations are present: the Hamilton operator is of second or higher
order in the translation generator 0,, resulting in a dependence of f on 9y of order
one or higher. Therefore, within fluctuating quantum processes time derivatives
are no longer compatible observables with those properties where they stem from.
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Their values cannot simultaneously be addressed, since they do not commute and do
not have a common spectral decomposition. Depending on the Hamiltonian coeffi-
cients the uncertainty relation between Fourier transformed translates to uncertainty
relations between properties and their time derivatives. For example, in the case of a
Galilei particle with mass m, the uncertainty between local coordinate x and velocity
X reads

) 1
[0x] - [0x| = o (5.9)

This sets a limit to the resolution of observations of smooth paths in quantum
processes. If m becomes large, the uncertainty shrinks, but also the fluctuations as
such. In quantum processes the fluctuations and the resolution of paths are controlled
by the same Hamiltonian coefficients.

From now on we will denote as generalized property or observable O such her-
mitian operators which are either properties (diagonal in x), or are time derivatives
of such properties, or are functions of properties and their derivatives. Their time
derivatives fulfill also

0 = i[H, Ol. (5.10)

From now on we will denote the hermitian translation operator k := —id, as momen-
tum operator and the Hamiltonian as energy operator, since they can be seen as
observables in fluctuating quantum processes. The spectral content of momentum
is provided by Fourier analysis. The eigenvalues of momentum k have dimension

[x]~!. The momentum eigenstates | k) read in x-representation (x|k) = ﬁeik".

The spectral content of energy is the frequency spectrum w, (dimension [¢]~!) of
stationary states U, | w,) = e~ | w,,).

With the notion of generalized properties (observables) we can also define in a
completely general way the property density operator for some s-component property
O (components are listed as O*) and an associated property current density operator.
To distinguish the property operator from its spectrum we use O for the operator and
O for its eigenvalue. Then the property density operator is given as

50) =[] (O/" - 0/’/) : (5.11)
p

Its expectation value in some state yields the spectral density of property O in that state
in a probabilistic sense: the probability to find O in the volume element d*O in that
state is given by (0(Q)) d°O. The configuration probability is given as P, (x) = (@(x))t.
As the most general definition of an associated conserved property current density
operator we can define

J0) =6 (O/* - 0“) [1s (b” - 0”) : (5.12)
vFEL
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By comparing > u 80“}'/"(0) with 8, 6(0) and exploiting o © (0O—0)=—-5(0-0)
and the Leibniz rule of differentiating commuting operators one finds that a continuity
equation holds already on the level of operators,

> 00:"(0) +8,6(0) = 0| (5.13)

I

Thus, the continuity equation must also hold for expectation values (a linear opera-
tion) of such densities. As a special case, the configuration probability current density

can be expressed as j*' (x) = <}” (x)> .
t
With (5.12, 5.10) we are able to find explicit expressions for the probability
current density j,(x) in terms of the wave function for a given Hamiltonian in terms

of its Hamiltonian coefficients. As an exercise show that we get back (2.65) for
Hamiltonians of the form of (3.11).

5.2 Reduction of Variables and the Density Operator

In our notation of expectation values for quantum processes (O) = (¢ | O | 1) the
dual character of observables and states is not obvious. For the discussion to follow
it is very instructive to rewrite the expectation value in the following way

(0),, =Tr {OP,} (5.14)

where Tr is a unitarian invariant matrix operation called trace and reads

Tr-z/dx<x|-|x>=Z<n|-|n). (5.15)

n

The trace has the important cyclic invariance
Tr {ABC} = Tr {CAB} = Tr {BCA}. (5.16)
The hermitian operator Py, is the projector on state 1),
Py = 1Y) (¢ | (5.17)
It has eigenvalues 0 and 1 and fulfills the important projector condition

P> =P. (5.18)
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When we are not interested in all variables of a system but in a reduced set
(relevant variables) we like to set up the theory in terms of the reduced variables.
In terms of a probability distribution for the reduced variable A(x) (typically the
number of degrees of freedom of A is much lower than that of x) the construction of
the distribution for A in terms of the distribution for x is straightforward

Py(A) = (6(A — AX))p, () - (5.19)

If P,(x) follows a Master equation, so does P, (A) and the Kramers-Moyal coefficients
can easily be derived by studying the moments of deviations JA in short time. Nothing
spectacular happens to the formalism as such.

In terms of pre-probabilities or corresponding projectors something very interest-
ing happens: the state for the reduced variable is no longer described by a projector
but by a so called density operator o which fulfills three conditions: (1) it is her-
mitian, (2) positive and (3) normalized to unity (Tr ¢ = 1). This can be understood
by the following discussion of a vector-state in a product Hilbert space Hx x Hp

| ) =D WA B) | A) | By). (5.20)

AiB;

The corresponding projector reads

Py = Z U (Ar, BOU(Ai, B)) | Aj) | Bj) (B | (Ax |. (5.21)

A;,Bj, Ay, By

Once we consider observables belonging to A and not to B we can calculate their
expectation values with the help of a state g4 defined by the following constraint:

() =Tr {Pf (W)} =Tr {eaf ), (5.22)
and o, results from a partial trace along B over P,
04 1= "l;r {Py}. (5.23)
The matrix representation of g4 is then

(00 = D ¥" (Ax, BYY(A;, B). (5.24)

B

We leave it as an exercise to show that this a density matrix. Density matrices which
reduce to projectors o = o’ are called pure states.

In the following we consider quantum processes in relevant variables x as char-
acterized by density operators g as states and observables O which are functions of
properties or of their corresponding time derivatives O. Expectation values can be



72 5 Observables, States, Entropy and Generating Functionals

calculated as
(0) = Tr {00} |. (5.25)

If the dynamics can be considered as closed for the relevant variables the group
property is given by either the Schrodinger equation for states or the Heisenberg
equation for observables. The Schrodinger equation for the density operator is often
called von Neumann equation.

o=—ilH,ol, O=i[H,O0]| (5.26)

5.3 Entropy

Entropy is a measure for the degree of dispersion of a state over possible states. The
degree of dispersion is proportional to the degree of information one gains in taking
notice of the actual state. Depending on the character of state we distinguish between
configuration entropy and quantum entropy. With configuration entropy S(x = &)
we mean the degree of information we gain when ¢ is the actual configuration state,
while the configuration states are distributed according to some distribution P(x).
With quantum entropy S(P;) we mean the degree of information we gain when the
actual state is given by projector P;, while the states are distributed according to some
density operator ¢ having P; as a projector in its spectral decomposition.

The definition of entropy is motivated by the following special situation: a variable
can take N different values with equal probability P = 1/N. Somebody knows the
actual value. He or she already has the information that we can get by asking him or
her binary questions. How many binary questions do we need to ask? The answer is
that log, (N) = — log, (P) is always enough, because that is the number of digits of
N.

A requirement for the definition of entropy is that it should be additive for indepen-
dent variables. This leads to the logarithm’s functional equation. The choice of basis
is arbitrary as it just defines the unit of a dimensionless entropy. In thermodynamics,
for historical reasons, the entropy has the dimension of energy/temperature and the
logarithm is multiplied by the Boltzmann constant. We use the natural logarithm and
dimensionless entropy.

5.3.1 Configuration Entropy

We define the configuration entropy as

S(x) := —In(P(x)), (5.27)
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where P(x) is a dimensionless probability density.! Accordingly the average con-
figuration entropy is

S:=(Sx) = —/de(x) InP(x) | (5.28)

Note that S(x) is, like the probability P(x), not an original property, but a meta
property of the system (depending on what we know about the system). The average
configuration entropy is a functional of the probability P(x). In calculations to follow
we will use the following relations

P(x) =e¢3W; dP = —PdS; dInP = —dS. (5.29)

To study the time evolution of the average configuration entropy we make use of
the continuity equation and then specify to certain processes.

S= —/de(x)(l +InP(x)) =/dx8xj(x)(1 +InP(x)). (5.30)

By partial integration we get an edge term which can only survive in open systems
plus a volume term over a scalar product of two vectors: the current density and the
entropy gradient,

S = Skdge +/dxj(x) -9 S(x) | (5.31)

Equation (5.31) is the most general statement about the dynamics of the average
configuration entropy for continuous variables in continuous time. It is also true for
quantum processes, where j is not a functional of the distribution P. However, for
quantum processes the configuration entropy is not of great importance for character-
izing the process. Therefore, we now consider Markov processes and further simplify
to Fokker-Planck processes which captures the main ingredients drift and diffusion
for continuous configurations. It is always possible [1] to transform to variables such
that the diffusion D'?! is independent of x. Thus, we can write for the current density

jx) = =DM x)P(x) — DO, P(x), (5.32)
and for the entropy rate

S = Skdge + / dx [-DM () - (0:S(x)) P(x) — D*O,P(x) - 0,.S()],

S = Skgee — (0:DM (1)) + (0:S(x) - DT - 0,5 (x)) . (5.33)

I'The integral measure dx can be made dimensionless by a convenient unit for variable x.
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In the last step we made use of (5.28) and partial integration.

In a closed system the edge term vanishes and the diffusion term is a quadratic
form with positive coefficient (matrix) D'?! thus leading to an increase in entropy.
The drift term vanishes for a reversible Hamiltonian dynamics, since this expresses
Liouville’s theorem: the divergence of the vector D!!l(x, p) = (8,H, 0,H) vanishes
due to 9;,H = 0, H.

Thus, for closed deterministic reversible Hamiltonian dynamics without fluctua-
tions the average entropy stays constant. For irreversible dynamics with reversible
deterministic drift and diffusive fluctuations the entropy increases with time.

We mention that for purely deterministic but irreversible processes the entropy
may increase or decrease depending on the divergence of the drift. For example in
1D with x = —kx all motions come to rest at x = 0 and thus the distribution gets
finally pinned at x = 0 and the entropy decreases with time.

For the exactly solvable Ornstein-Uhlenbeck process with linear drift (friction),
D" = x/7 and diffusion constant D the solution is a Gaussian® with time dependent
variance 0> = D7(1 — e /7). The drift term contributes —1/7 to the entropy
derivative. However, the diffusive term with squared entropy gradients yields®
D(;T’z)z = [7(1 — ¢7?/7)]7!. Thus, the time derivative of entropy starts strongly
positive with 1/2¢ — 1/7 for short times (¢ < 7), reaches 1/7 att = (7/2)In(2)
and finally approaches 1/7 — 1/7 = 0 for infinitely large times. During the whole
irreversible process the entropy increases. This generalizes to a multidimensional
variable x.

Systems far from equilibrium are not closed and characterized by strong currents
of energy, material and entropy from its environment, as depicted in Fig.1.2. For
such systems the edge term in (5.33) is of great importance and one can write down
a non-equilibrium entropy equation as

|dS = dSext + dSinc | (5.34)

where d.S means the systems entropy change in total, dSj, the internal entropy change
and dS.x, the entropy change due to input and output through the edge between system
and environment. The internal entropy change is always non-negative, as discussed

before,
. (5.35)

The external change can be arbitrary. We can qualitatively distinguish three situations.

1. The system exports more entropy then it imports and lowers its entropy in total,

dSext < 0, [dSext| > dSine, dS < 0. (5.36)

2See [1-3], note the opposite sign convention in the definition of DI,
3The entropy as In of the Gaussian is quadratic in deviations from the average.
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In such a situation within the system new order and structures can emerge (self-
organized).

2. Similar to the first case, but with constant total entropy,

dSext < 0, [dSext| = dSine, dS =0. (5.37)

The new structures reach a stationary non-equilibrium state.
3. Finally the situation, where the system entropy increases in total,

dSext > 0, dS > 0. (5.38)

The order will disappear.

To describe a non-equilibrium stationary state with a Master equation one has to
consider finite current boundary conditions.

5.3.2 Quantum Entropy

To get an entropy for the pre-probability as a meta-observable we define it with
respect to the spectral content of the density operator as

S:=—Inp. (5.39)
For an eigenvalue g, the corresponding entropy S, fulfills
on=e" (5.40)

The average quantum entropy is defined accordingly,

S=—(lng) = —Tr {oln o} \ (5.41)

By the cyclic invariance of the trace one can show (exercise) that in reversible quan-
tum processes the quantum entropy stays constant

S =0. (5.42)

The density operator evolves in time, but the degree of dispersion over states stays
constant like in deterministic reversible Hamiltonian processes.
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5.4 Stationary States and Equilibrium

In this section we study how stationary states can represent an equilibrium situation.
We begin with the exactly solvable case of an Ornstein-Uhlenbeck process and then
see how quantum systems can be described by a Master equation as soon as the
dynamics is not a closed one in relevant variables by contact to some environment.
The relaxation to stationarity in Markov processes is generic. This route gives support
for the use of the maximum entropy principle in systems at global or local equilibrium.
Another situation of irreversible stationarity is with scattering states to be discussed
at the end of this section.

5.4.1 Stationary State in Ornstein-Uhlenbeck Processes

For the exactly solvable Ornstein-Uhlenbeck process we can see how the distribution
reaches a stationary state. For an initial value peaked at xy the Gaussian distribution
is centered around the average value (x), = e~"/"x, with the variance o> = D7 (1 —
e~2/7) discussed already for the entropy production. For long times the distribution
becomes stationary with stationary average (x),, = 0 and stationary variance o2, =
Dr. Thus, the entropy increases unless the distribution has reached a stationary state
where the entropy stays constant. Such situation is called equilibrium.

It is even more instructive to consider an Ornstein-Uhlenbeck process in two
degrees of freedom: x; = x and x, = v = x. The diffusion can be restricted to
D,, = D. The velocity drift can incorporate friction and a linear Newton force

F(x) = —V'(x) = —kx = m for a particle with mass m, which means
DM = /1 + V'(x)/m. (5.43)
The drift in the coordinate x is simply D) = —v for consistency. The stationary

equilibrium limit can be written as

(/204 V@/m

o (5.44)

1
Poy(x,v) = Z exp

which remarkably coincides with the canonical equilibrium distribution of a par-
ticle subject to a potential force F(x) = —V’'(x), once we identify the diffusion
constant times the friction time with temperature 7' over mass m (7" in units where
the Boltzmann constant is 1),

DT =T/m. (5.45)

The friction time 7 serves as relaxation time to reach equilibrium. The relation
(5.45) is quite famous and also known as Einstein relation between the product
of diffusion and relaxation time, and the temperature. We have argued with the
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help of the exactly solvable case with linear force, but the validity of the canon-
ical equilibrium distribution can also be shown for more general potential forces
(see [1, 2]).

5.4.2 Quantum Master Equation

Quantum systems reduced to relevant variables may not be describable by a unitary
time evolution, because of the missing irrelevant variables. The irrelevant variables
are irrelevant in the sense that we cannot follow them and we have to concentrate
on the slow macroscopically relevant degrees of freedom. They are however not
irrelevant for the reversibility of the whole system. The idea is to get rid of them by
formally integrating out their dynamics. The price to pay is the loss of closed unitary
dynamics. But this price fits well as we get a Markov type dynamics with relaxation to
macroscopically stationary solutions. We follow the quite general projector formal-
ism developed by Zwanzig for quantum processes. The formalism as such is of great
importance in many applications of linear algebra. Its generality is advantageous
for getting the right general structure of quantum Master equations. On the other
hand, it is not explicit about the couplings between relevant and irrelevant variables.
Therefore, we will later rely on certain assumptions about separation of time scales
in the system without exemplifying these assumptions on specific models.

Our relevant variables belong to a certain linear subspace of the full Hilbert space
and we project onto this subspace by a projection operator P. All expectation values
of relevant observables can be calculated with the help of the relevant density
operator

Orel := op := PoP. (5.46)

The projector on the complement to the relevant variables is denoted as Q := 1 —P.
The full density operator that fulfills a von Neumann equation with full Hamiltonian
H can be decomposed as

0= 0rel + 00 +0pPo + 00P (5.47)

with obvious notation. We like to construct the dynamic equation for o).
To concentrate on the structure we simplify the notation. The von Neumann equa-
tion can be written as
0,0, = —iLo; (5.48)

with the so called Liouville operator £- = [H, -] as the generator. The formal solution
is the time evolution operator for states,

0 =e . (5.49)
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The spectral content of such time evolution operator is captured in the frequency
dependent resolvent R (z) (—i times the Laplace transformed of the time evolution)

0 0
R@) :=[z—L]"'=—i / dr e F = [i / dr e LT, (5.50)
0 —00

On the real valued spectrum R(z) is singular and analytic in the upper plane z =
w + ie or lower plane z* = w — ie. At isolated eigenvalues R(z) has poles (states
are normalizable), along the continuous spectrum (states are non normalizable in
infinite systems) it has branch cuts. The resolvent’s matrix elements are usually
called Green’s function of the linear dynamic or frequency dependent propagator.
These notions are even more common on the level of the Schrodinger equation with
H as generator.
Now, the evolution of the full density operator reads in frequency space

0@ =ilz— L1 . (5.51)

For the relevant density operator a similar equation holds for purely algebraic reasons

0@ = i[2 = Loy @] 0reto- (5.52)

Here the effective Liouville operator L4 (z) lives on P space only, but depends on
the spectrum. It is, in general, no longer hermitian but develops complex eigenvalues
for each value of z. Therefore, eigenstates can decay with characteristic life time. As
long as eigenvalues are discrete and close to the real axis, the imaginary part can be
identified with the inverse lifetime. This is, of course, due to the coupling to the Q
degrees of freedom, which have only formally been integrated out. Therefore, within
the effective dynamics the reversibility can get lost and irreversibility shows up.

The most simple non-trivial situation is, that £z (z) does not significantly depend
on z (time scale separation), but develops imaginary parts in its eigenvalues leading to
relaxation to a stationary state. This is an emergent behavior—it is not by our choice,
but by organization within a complex system, that some degrees of freedom emerge
as the slow variables such that we can identify them as relevant to characterize it.
The effective Liouville reads

L@ =Lp+Lpo[z—Lo] Lop | (5.53)

The terms have a very intuitive interpretation. The first term is the bare Liouville in
‘P space. It would be the full Liouville in the absence of any couplings to Q-degrees.
The second term is due to virtual processes in P-space. They are produced by hops
from P-space to Q-space, there taking a lift with the propagator [z — Lo]™! in Q
space, followed by hoping back onto P-space (see Fig.5.1). Equation (5.52) could
be called quantum Master equation in frequency space. One can use the so-called
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Fig. 5.1 Visualizing the effective Liouville in P space by direct processes and virtual processes
via propagation in Q space

Sokhotski-Plemelj decomposition for ¢ — 0 of the resolvent in Q space to separate
real and imaginary parts,

lim [z — Lo] ' =P[w—Lo] '~ imdw - Lo). (5.54)

where P stands for the Cauchy value on integration. Thus, the real eigenvalues of Lp
gain some negative imaginary parts, as soon as the spectrum of Lo is much denser
as that of £p and summation can be replaced by integration. Negative imaginary
parts 1/7 in eigenvalues of the effective Liouville means that the former eigenstates
of the pure L£p begin to decay with characteristic time scale 7 (Fig.5.2).

Before switching to the time dependent picture we will give a sketch of a proof
for the effective Liouville operator. It relies on the algebraic relation

[A—Bl '=A"1'4A"'B[A-B]"". (5.55)

which can be shown by multiplying with A — B from the right. It is also the basis
of the famous Dyson equation in perturbation theory and diagrammatics. The proof
relies in addition on the projector properties PQ = QP = 0 and 0? = Q and
P? = P. The proof needs three steps:
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(a) Full space Liouville: dense real spectrum

(b) P-space only Liouville: real point spectrum

& & . - »
L 2 L 2 L2 . » * >

(C) P-space with effective Liouville: point spectrum with imaginary part

Frequency

Fig. 5.2 The spectrum of a the full Liouville operator, b the closed part Liouville operator on P
space, and ¢ the complex valued spectrum of the effective Liouville operator

z— L1 'pp=[z—Lp]™"
+lz—Lpl™ (Lo+Lpo+ Lop)z— L' P,
[z — E]_IQP = [Z - ﬁg]_l
+[z—Lo]| ' (Lp+Lpo+ Lop)[z— L' P,
2= L1 'pp=Iz—Lp]™"
+lz—Lpl” (ﬁpg [- o] cgp) lz— L] P.
(5.56)

In the time dependent picture the evolution reads (see also Sect. 2.4.1 in [4])

t

0y 0re1 (1) = —iLp 0rel (1) "l‘/dT EPQe_iLQ(t_T)EQP Ore1 (T), (5.57)
0

which shows a retardation effect: all times between initial time 0 and time ¢ contribute
from the Q journey.

To get back a simple local in time dynamics the system has to manage a separation
of time scales, such that the retardation has a short time scale. A source for this is
offered by the oscillatory nature of quantum processes whenever phases are involved.
Therefore, we now consider the following special situation: the projector projects
onto diagonal elements of the density operator in some relevant basis:

(Orel) ym = 0nOnm- (5.58)
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These diagonal elements g, are not affected by phase fluctuations and are non-
negative like probabilities. Due to the conservation of >, g, = 1 the time evolution
can be written in the form of gain and loss as a retarded Master equation

t

Don() =) / At AWy (t = 7) 0w (T) — Win(t — T)on(T)} |, (5.59)

n’%,7 0

where

Wnn’(t - T) = ('CPQeiiﬁg(tiT)»CQP) ;. (560)

nn
For the choice to be really relevant, the following assumption about separation of time
scales has to be fulfilled. There is a time scale 74, over which W, () is concentrated.
Outside of it W,y (¢) is nearly zero due to random phase summations and on the other
hand g, () does not change significantly over this time scale. This time scale 74, can
be called decoherence time, because this time separation allows to approximate the
dynamics for the diagonal elements g,, without big quantitative errors by a dynamics
of the Master type:

0,00(t) = D AW 0w (1) = Wnon (0}, (5.61)

a
Ny

where W, = f?w d7 W (7). The dynamics for the rapidly varying off-diagonal
elements cannot be approximated this way. Their filigree rapid quantum oscillations
have been neglected and treated as zero because of random phase summations. Thus,
decoherence does not mean that quantum oscillations really die out but rather they
become very hard to be observed in the dynamics of macro observables. The corre-
sponding oscillations only lead to very very small deviations from the slowly varying
values calculated by the effective Master equation. The irreversibility is real in the
sense, that it is impossible to reverse the dynamics of the slowly varying relevant vari-
ables without knowledge about the fast irrelevant variables. A simpler discussion of
the possible emergence of a Markov dynamics from a quantum dynamics by random
phase summation was given in Sect. 3.4.3.

5.4.3 Stationarity in Markov Processes

Our demonstrations that solutions of the Master equation finally become stationary
states are not artificial. On the contrary, one can proof* (see [2] for enlightening
proofs): all solutions of a Master equation tend to a stationary solution in the infinite
time limit. The stationary solution is unique on an irreducible subspace of probability

4 An elementary treatment is given in Appendix A.7.
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densities.’ This is strictly true only for a finite number of states. For an infinite number
or for a continuous state space there are special exceptions like the pure diffusive
system, which does not reach a stationary state but keeps on spreading out. In a
generic situation with a bit of friction the statement of asymptotic stationarity still
holds. Therefore, the maximum entropy principle for equilibrium or local equilibrium
statistics is not only a principle of unbiased guessing of distributions or density
operators, but motivated by the semi-group dynamics of Master equations.

5.4.4 Maximum Entropy Principle

For a stationary density operator in energy representation g, the maximum entropy
principle states that the average entropy should be at a maximum with respect to
all possible values of g,. On fixing appropriate average values (A) by Lagrange
multipliers A (called fields) one can find the maximum entropy from minimizing

F[Qn] = Z —On 1n(9n) +A Z QnAm (562)

which leads to a (grand)-canonical equilibrium distribution (Gibbs distribution),

1
On = Z €Xp (>\An) . (563)

The well known normalized canonical equilibrium density operator,
1
Ocan = — eXP (=H/T); Z="Tr {e"'"} (5.64)

can be identified as the unbiased guess for the system’s state when, by its energetic
contact to the environment, the average value of energy can be held fixed by an
external (thermodynamical dual) field, called temperature 7' (measured in units of
energy). The environment is kept at constant temperature as a thermostat for the
system in equilibrium. The partition sum Z as a function of 7 and other relevant
macroscopic parameters like particle number, volume, field strengths of magnetic and
electric fields acts as the generating function(al) for average values and correlations
(see Sect. 5.5.2 and Appendix C).

3In a reducible space one has several independent systems treated as one system.
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5.4.5 Quantum Scattering

Asymptotic states in scattering theory are always meant in the sense of a long time
average limit—a simple limit of # — 00 is usually not well defined. One should
note that a long time average cannot be reversed and a reversed movie of a scatter-
ing process with asymptotic ingoing states (e.g. a plane wave of fixed wavelength)
scattered by a target leading to an outspread of outgoing asymptotic waves in several
directions looks as impossible as the reversed movie of a drop of ink put into water.
The long time average of a function f'(¢),

T;0
lim f (1) := lim (1/T) / dtf () (5.65)
0,—-T

can be calculated in a gentle way by the e-prescription,

00;0
; . . Fet
t_l}inoof(t) = (l_l)r(r)1+ € / drf(t)e™™. (5.66)
0;—o0

In spectral decomposition, f(f) = Y, f., e, one sees that only the zero modes
survives (see Fig.5.3).

z—légloof(t) = lim & ) (Fe)

) 2 =S F (5.67)
=0 o Fe + iwy, 0

We will, if not stated otherwise, assume that the zero mode is non-degenerate,
lim f(r) = f(w, = 0). (5.68)
t—+00

The zero energy ground state is called vacuum state and its wave function is denoted
as

Po(x) = (x]0). (5.69)
One finds by a similar calculation for the asymptotic stationary limit of the propagator

lim lim (x, t|xg, fo) = Po(x)" (xp). (5.70)

t—>00 ty—> —00
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Fig. 5.3 In the long time average of a function its zero mode emerges, free of oscillations

On an operator level it reads®

lim lim e 0= = [im = 0xo |- (5.71)

t— 00 fH—> —00 e—0+ H?2 — €2

In scattering theory all quantities of interest like scattering rates can be calculated
from the time ordered correlation functions (moments) in the vacuum state (see e.g.
[5] Sect. 6.3), called n-point Green’s functions

010, ... 1,)|0) := <0|f x(@) .. .x(t)} |0>, (5.72)

where T is the time ordering symbol meaning that all the observables are taken at
successive times starting from the right with #; and ending with 7, at the left. We want
to express the Green’s functions by the n-point propagator (x, t{|O(ty, ..., t,)|Xo, to)
for which we can write path integral representations. This is done in two steps. Firstly,
we use completeness and write

5Convergence can be expected only after sandwiching with states.
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010, ..., 1,)]0) =/dedx (Olx, ) (x, t]O(t1, . . . , ta) X0, fo) (Olx0, fo)
(5.73)

and use again completeness in the n-point propagator for t — oo and 7y — —o0 as
in (5.70),

(x, 1|O(t1, - - - , ta)|X0, o)
— [ 4000 (310, T) Q. TI0. .. 1)1Qu. Ta) (On. Tlxa. )
= ¢o(x)9"(x0) (0|O(t1, ..., 1,)]0) . (5.74)
The final expression is
(010G ... 1»)0) = lim lim b, ”O(&”t"'x;” ;:;'xo’ o) (5.75)

Note, the ratio is independent of x and xy and we may integrate over them in the
nominator and the denominator. As we will argue in the next section, the right hand
side can be expressed by a generating functional represented by a path integral.

5.5 Generating Functionals All Over

The main idea behind generating functionals is well established in equilibrium sta-
tistics. Instead of calculating many correlation functions by integration (Summation)
one can calculate only one integral (partition sum) for a system in the presence of a
so called source field J dual to the relevant variable x and then generate all of the cor-
relation functions of that variable by (functional) differentiation. The duality of the
source field J is by Fourier-Laplace or Legendre transformation and one can change
the roles of x and J, if appropriate. Thus, the generating functionals can depend on
external fields J or on the average relevant variable ¢ = (x). The cumulant generat-
ing functional as a functional of external field J is denoted as W[J] and its Legendre
transformed as a functional of the average value ¢ = (x) is called effective action
and denoted as I"[¢]. More explicit definitions will follow. We start with scattering
theory for a configuration variable x.

5.5.1 Scattering Theory

Recall from Sects. 3.3 and 3.4 the restricted path integral expression for the propa-
gator
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(', tlx, to) = / Dx(r) S, (5.76)

x—x'
where the action S is defined via the Lagrange function L as

t

S[x(7)] =/dTL(x(T),)'c(T)). (5.77)

fo

In general, the Lagrangian is related by a Fourier-Laplace transformation to the
Hamilton function H (x, k) which is, by the discretization procedure, uniquely related
to the Hamilton operator. However, for up to quadratic in kK Hamilton functions the
Lagrange function is simply the Legendre transformed of the Hamilton function,

L= (8kH)k - H; X = 3kH. (578)

By repeating all the steps in deriving the path integral representation of the propagator
one can see that the n-point propagator can be represented by the path integral
correlation function’

(X, 110G, ... t)|x, 1) = / Dx(1) x(t) ... x(t))eSF, (5.79)
x—x

Instead of operators on the left hand side one has functions on the right hand side.
This opens up for the following generating idea:

§[fdrJ() x(1)]
0J (1)

= x(t,). (5.80)

By adding a so-called source term to the action consisting of additive multiplicative
couplings between the variable x(7) and a dual auxiliary variable J(7) (called source
field) one arrives at the generator formula for the n-point correlator

/ 1 6” (-xa t|-x07 tO)J
(X SO, .. )X, fo) = }13}) m,

(5.81)
where the source-dependent propagator is defined via the action with source term

Slx(r); J(1)] := S[x(7)] —|—/d7’J(7') -x(7). (5.82)

fo

"The time ordering is essential in the discretization procedure.
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With the help of (5.75) we can now generate every n-point Green’s function of

scattering theory from the source dependent partition sum, defined as an unrestricted
path integral with long time averages for ¢y and ¢

ZlJ] = / Dx(7) SFOH O = 00y, . (5.83)

L 57171
010 - )0} = iy S e o

(5.84)

In statistics one is usually not so much interested in moments but in cumulants.
Cumulants are generated by the logarithm of the partition sum. As the cumulant
generating functional W[J] in scattering theory we take

WIJ]:=1InZ[J] (5.85)

and the cumulants are generated accordingly,

P SWIJ]
(0'0([],...,ln)|0>c —}%m . (586)

For reasons of graphical representations they are also called connected Green’s func-
tions. The relation between cumulants and moments follows by differentiation and
the cumulant of nth order combines moments of up to nth order. For example, the
first moment equals the first cumulant and the second cumulant is the correlator,

(Olx(#1)10), = (0lx(71)|0) (5.87)
(Olx(22)x(11)]0), = (Olx(22)x(11)|0) — (0]x(#2)[0) (Olx()[0) . (5.88)

As we will see, partition sums can be calculated exactly for quadratic form actions
(and some relatives) and for all other situations one relies on approximative or exact
but macroscopic methods. For such methods it turns out to be more advantageous
to consider a generating functional I” as a functional of the average value () :=
(0]x(#)|0). Motivated by its implicit definition it is called effective action I"[¢],

At /D77 Stetlti [ L0, (5.89)

where = x — ¢ is the deviation of variable x from its average value .
Equation (5.89) is solved when the effective action I"[¢] is a Legendre transformed
of W[J],

il = WAl + / At ILp )] - (1), (5.90)
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with 0[] SWIJ]
Pl ) —
5o =Jlpl: plJ] = 5 (5.91)

Once we know the effective action as a functional of macroscopic average fields, we
can calculate every n-point Green’s function we like. In other words, I"[(] solves
the scattering problem. The effective action is in the focus of most qualitative and
quantitative approximate treatments. If the integrand in (5.89) allows for a Gaussian
approximation around the average value, the effective action can be calculated (see
Sect. 5.5.3). Omitting the Gaussian fluctuations, the crudest approximation I"° is
simply the original action at the mean value .

I'lel = Slel. (5.92)

5.5.2 Canonical Equilibrium

In canonical equilibrium we have to calculate expectation values
(A) =Tr {Ap} = /dx (x|Aolx) = /dxdx'A(x, x)o(x', x) (5.93)

The Equilibrium theory is solved once we have calculated the density matrix o(x, x’).
In canonical equilibrium the density matrix has the same structure

o, x) = (x| e | X) (5.94)

as the propagator (x | e~ | x’) on identifying the inverse temperature as an imagi-
nary time,
B =it t=—i(. (5.95)

It can be represented as a restricted path integral. Using again a source field J,
which typically has real meaning as a thermodynamical conjugate field to a phys-
ical observable F, we can generate moments of such observable from the source
dependent partition sum,

1 ZIJ
(PO FO) = s [;J(M (5.96)
Zll = / Dx()) e~ o AEOIVIOFO} - (5.97)

Note, that a term X in the original Lagrange function L appears with a minus sign
in L since the integration variable is A = it. For a particle with Galilei inertia m and
a translation symmetry braking potential V (x) it reads
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- . mx2
L(x,x) = - + V(x). (5.98)

Note also, one has to fulfill periodicity conditions in imaginary time, x(0) = x(53).
This has lead to the Matsubara technique by exploiting this periodicity. We will
not elaborate on it here, but present a discussion in Appendix C. In addition, a
many body partition sum should respect the particle permutation laws (different for
Fermions and Bosons). These conditions can be fulfilled better within a coherent
states path integral approach to equilibrium statistics, which is also reviewed in
the same appendix. Canonical equilibrium is treated there for many body systems in
Matsubara technique and functionals are carried out in coherent states representation.

Finally, we comment on the formal analogies between equilibrium partition sum,

5]
— [AALx (V)5

Z = / Dx(\) e o (5.99)

X—>X

and Markov and quantum propagators (3.27) and (3.28). The analogies can be tech-
nically exploited when analytical continuations in the complex plane of the variables
temperature A (originally along the imaginary axis) and time 7 (originally along the
real axis) and of the integrand (real valued in the partition sum and the Markov case
and complex in the quantum case) can be performed. In the quantum case the par-
ticle is moving in time while in the partition sum of equilibrium the time is absent.
However, the parameter \ can also be interpreted as a one-dimensional coordinate of
a classical field x(\) in 1D (a string). The partition sum is the classical equilibrium
partition sum of that string. This analogy between quantum propagators and parti-
tion sum has lead to the following slogan: a quantum field theory in d dimensions is
equivalent to an equilibrium classical field system in d 4 1 dimensions. The analogy
between quantum and Markov propagators has led to the technical method of so
called stochastic quantization, which means that one can set up a Markov process
and calculate from it quantum propagators by analytical continuation (if possible).

5.5.3 Field Theory and Gaussian Fluctuations

So far, the configuration variable x could have been discrete, multicomponent discrete
or even multicomponent continuous and products as x -J are always meant as sums or
integrals of products >, f ds x;.(s)Ji (s). For later use it is convenient to distinguish
between external indices and internal indices. Following the usual nomenclature
the external indices are in principle multicomponent continuous (external space)
and now denoted as x, while the internal indices are discrete. The configuration
variable is than called a field and written as ¢(x), where x is short for time ¢ and
space coordinate x. The action S[¢] is then an integral over time and the external
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space over a Lagrange density £(¢, 0,¢). Usually, x is multicomponent real and ¢
is (perhaps multicomponent) real or complex. In situations of Fermion permutation
constraints the field components can be of anti-commuting, nilpotent, Grassmann
type® instead of commuting complex number type. The fields ¢ and their arguments
X may be subject to symmetry constraints, e.g. x is a vector in Euclidean space or
x is a four vector in Minkowski space (written as x*, y running from O to 3) and ¢
is a vector or a spinor or in general a tensor representation with respect to external
symmetry.® With this nomenclature, the scattering field theoretic connected n-point
Green’s functions are generated as

A WL
(o1 (o) .01 10) = tim = CELL - s.100)

with
eW[J] — /D(b ei5[¢]+ideJ(x)-q$(x). (5.101)

Here the - between J and ¢ means an appropriate contraction over internal indices.
Often you will find in the literature the generating functionals written with an imagi-
nary time 7 = it coordinate to change from fluctuating phases to relaxing amplitudes
and the prescription of analytical continuation at the end, usually by a simple rota-
tion back to real time (so-called Wick rotation). The action is then called Euclidean
action, since a quadratic form of type —t*> 4+ x> becomes an Euclidean quadratic
form 72 + x2. To the author’s knowledge this is not really a technical advantage as
only Gaussian integrals have to be performed explicitly for which analytic results
are available anyway. Nevertheless, we make use of the Euclidean action as it unifies
notation. In many body physics at finite temperature in equilibrium one can use the
Matsubara technique with coherent state path integrals, as reviewed in Appendix C.
The generating functionals have the same structure, except that integrations over
time are not from —oo — oo but can be deformed in the complex plane to take
the finite temperature equilibrium ground state into account. For such systems, the
question of analytic deformation of contours is really important. It is possible to
consider non-equilibrium states (Keldysh formalism) as well. Also, as we have seen,
solutions of Markov processes have path integral representations. Their stationary
limits are not restricted to equilibrium.

Thus, in almost any area of theoretical physics (dynamics, scattering limits, equi-
librium, non-equilibrium) quantities of interest, expectation values and correlations,
can be expressed by cumulants generated from a source field dependent functional
integral. In a unified notation for equilibrium statistics and the Euclidean version of
scattering field theory the cumulants (n-point Green’s functions) can be generated as

8For a compact introduction to Grassmann variables in field theory see [6, 7].
Representations of symmetry are elucidated in Sect. 6.2.
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A "W
(T 1o o01) = tim = S (5.102)

with

R / D ¢S+ eI @100 | (5.103)

The action S[¢] is specified for a system at hand by a Lagrange density L£(¢(x),
Ox¢(x)) which has to be summed (integrated) over all external indices. In the
Lagrange density the internal indices and discrete external indices were already
summed over to make £ a scalar with respect to discrete indices,

S[¢] = / dr L(6(), e () | (5.104)

The effective action I'[¢] is defined as the Legendre transformed of the cumulant
generating functional W[J],

ol = —Wilel] + / A0 - o5 E‘O)] I | (5.10%)

For non-interacting systems the action S[¢] is at most quadratic in the fields and
the path integral is a multidimensional Gaussian integral which can be calculated in
closed form. The essential formulas are given in the following.

The elementary Gaussian integral

2
/dxe”“(x 0 ‘/ i (5.106)

generalizes to higher dimensions. Let the commuting field configurations be ¢; con-
stituting a (large but finite dimensional) vector space. Defining a real valued Gaussian
distribution with real symmetric matrix A,

1
=S[o] _ E
e = CXP—E |: . Akl¢k¢l:| s (5107)

the real valued generating function(al)

= / [Tdéne™ exp D Jiehi (5.108)
n k

is evaluated to be
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~1 1 ( _1 )
ZIJ] = V/det(4/@2m) exp— > nAg' ). (5.109)
ki

where A~! is the inverse of matrix A. Notice that the normalization is given by the
determinant of A. The integration could be carried out as a product of one-dimensional
Gaussian integrals by changing to eigenvalues and eigenvectors of matrix A. This
isometric variable change does not change the integration measure. The determinant
is just the product of eigenvalues. This separability qualifies a quadratic action as an
action of a non-interacting system. The cumulant generating functionall W = InZ
is

1 1 _
WUl = = In(det(4/Q2m) + 5 (%JkAkllj,) . (5.110)
The field average is
OWlJ
QilJ] = 8—1[1] => AU (5.111)
k

which vanishes for vanishing source field,

OWIJ]
= lim —— = 112
(@) = lim — 0, (5.112)
and fluctuations of ¢ are determined by the inverse of the defining symmetric operator
A of the Gaussian distribution,

PW] -

(P192) = B =A).

(5.113)

Note, the vanishing of all higher but second order cumulants is the characteristic
feature of a Gaussian distribution. The effective action I'[¢] = —W[¢] Zk Jrpr
turns out to be the original Gaussian action up to a field independent logarithm, since
the fluctuation matrix does not depend on ¢,

I'[¢] = S[p] + const. (5.114)

In the case of a hermitian operator A = A' we require two fields, ¢ and its complex
conjugate ¢*, to define

Z.7] = / [Tdezden exp [ =D Audn Y Jidx ZJ;‘@‘]
n kl k k

= (det(A/(2m))) ' exp [ZJ;A,;‘J,] (5.115)

kl
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In the case of Grassmann fields (see e.g. [6] Chap.4) the integral expression

ZIE, €l = / [T dm.dm, exp [ = D WA D& D WkEk]
K K

n kl

= (detA) exp [ZZkA,dlg,] (5.116)

ki

is the Grassmann analog of the Gaussian integrals for commuting numbers. Notice,
the determinant appears now in the nominator instead of the denominator.

5.5.4 Stationary Action and Expansions

When the action is not quadratic one can try perturbation theory around a stationary
action solution. The stationarity of the action is solved by a field configuration ¢,
which fulfills the Euler-Lagrange equations,

9SI¢] oc oL > 5t oL (5.117)

=0= —9, S Y N —
6¢ a¢(x’ t) a (8t¢(-xv t)) k 8xk¢(-xv t))

A stationary action solution is a deterministic drift solution of the dynamics neglect-
ing any fluctuations. The corresponding Euler-Lagrange equations are often called
classical field equations or classical equations of motion, because they were stud-
ied historically before fluctuations of Markov and quantum types came into focus.
Using these stationary action solution as a starting point, one can incorporate fluctu-
ations on a Gaussian level first, and then one can perform a perturbational calculation
beyond the Gaussian level. Thus, one can expand the source dependent action in the
following way,

w 1 &
Slo,J] = Sg” + > / dxdx’ nx’) - S5° (x, x) - n(x) 4+ 6S[n], (5.118)

J
where Sg“ is the action at the stationary source dependent action solution and

S; g (x, x’) is the Hessian of the source independent Lagrange density at the source
dependent stationary action solution. It describes Gaussian fluctuations in the devi-
ation field n = ¢ — d)é around the stationary solution and 0S[7] contains all higher
order terms in 7). Note, the stationary action solution in the presence of the source
field fulfills the duality relation

_5S[¢] [¢(f)] =J. (5.119)

)
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In a first step one solves the Gaussian part, resulting in a Gaussian partition sum.'?
For commuting field variables it can be written as
& 7 1 &
WolJ] = =S,° +/de(x) - @ (x) — zTr log(S,°) | (5.120)

Note, the Gaussian approximation does already include source independent fluctua-
tions via 85/’ ? and the second quadratic term of the r.h.s. of (5.120) can also be written
as

/de(x) Bl ) = —%/dxdx/J(x’) : [sj’é]_l (x, X') - J(x). (5.121)

due to (5.119). To go beyond the Gaussian level one can use the fact that any poly-
nomial in 7 under the path integral in front of the source factor can be written as a
polynomial in functional derivatives with respect to J, because of the duality between
J and 7. Thus, one may write the full partition sum in the following way

exp W[J] = exp (—5S [%]) exp WolJ1 | (5.122)

This short equation actually defines in a unique way a perturbation expansion of the
full partition sum in terms of the solved Gaussian part around a stationary action
solution. The Gaussian part can be expressed solely in terms of Gaussian level two-
point Green’s functions, which can graphically be represented by a line connecting
two points (or loops, when points meet). The perturbation expansion thus corresponds
to summation over graphs of combined lines and loops. Equation (5.122) tells the so
called Feynman rules for the graphical perturbation expansion. As an example see
the ¢*-treatment in [7], Chap. 1.2 and the Appendix B there. For a compact treatment
within the effective action formalism see [8].

Rigorous statements about the accuracy of perturbation expansions are difficult
or impossible. Its validity rests on a good choice of the relevant variable and corre-
sponding stationary solution, such that the higher orders can hopefully be controlled
by a small parameter. Studying symmetries can help a lot in finding a good choice
for the relevant variable. The review [8] gives an overview about the state of the art
within the effective action formalism.

The expansion of the fields around the stationary action can often be justified by
the presence of a large parameter (called V) such that the action can be written as

S[¢] = NS[$]. (5.123)

10The logarithm of a matrix determinant, In det A, of some matrix A can be written as Tr log A—as
can be seen by diagonalizing it. The latter version is better for further expansions of the log, if
necessary.
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If S[¢] is independent of N and has some stationary action solution, the large pref-
actor will make this stationary solution much more important. This can be seen by
expanding S around the stationary solution,

S[¢po + nl = Slol + Saloln* + O (n°) . (5.124)

and introducing the rescaled field 77 := n+/N, resulting in an expansion for the large
action S, y }
S[¢] = NSlgol + Salolii® + O (T°N~/?) . (5.125)

Now it can be seen that the action is dominated by the stationary action and the
sub-leading quadratic term and that higher contributions die out asymptotically with
large N. Thus, asymptotically with large N the Gaussian approximation becomes
exact. As to the question of negligible fluctuations one can see that their ratio to the
drifting stationary action solution is typically of order 1/+/N. This is either due to
massive phase cancellations in quantum path integrals (large fluctuating imaginary
exponents lead to randomly oscillating contributions in the sum over paths), or due
to exponential suppression in weights of path integrals for Markov processes or
statistical partition sums. In that case, the deterministic solution ¢, captures the
essential physics behind the path integral with suppressed fluctuations. In quantum
processes this corresponds to the classical limit and was historically described in the
WKB approximation for wave functions, where only the action for the stationary
path was taken into account. In Markov processes this corresponds to the limit of
negligible diffusion, and in thermodynamic equilibrium this corresponds to the zero
temperature limit where the energetic ground state characterizes the thermodynamic
ground-state.

The condition for non-fluctuating behavior in real systems is that typical process
scales like wavelength, relaxation time and temperature are very small as compared
to the systems global scales like effective system size, measurement time and exci-
tation energy. To illustrate the condition of non-fluctuating behavior for quantum
processes we compare two systems: (1) A billard ball of mass 0.15kg in standard
units and typical velocity of Sm/s on a table of typical dimensions of 1.5 m. The
wavelength is 4/(mv) = 8.8 - 1073 m and the ratio of the wavelength to the table
size is approximately 6 - 1073*. (2) An electron in a quantum dot of size 10nm.
Its (Fermi-) wavelength is of the same order of magnitude and hence the relation
of wavelength to effective system size is of order 1. Obviously in case (1) quantum
fluctuations are irrelevant, while they are essential in case (2).

An enlightening example of the large N limit is also the emergence of the central
limit theorem, where N is the number of weakly correlated random numbers summed
up to an average random number which fluctuations become more and more Gaussian
as N increases. The mathematical way to show this is along the generating function
for cumulants, which is additive. N appears in the partition sum in exactly the way
discussed here (see also Appendix A on large numbers I and II).
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5.6 Modeling Strategies

Recall that for a physical system at hand, showing fluctuations in relevant variables,
one wants to calculate conditional expectation values, stationary and dynamic corre-
lation functions, propagators, susceptibilities and/or scattering rates. These quantities
can be expressed as Green’s functions which can be generated from a cumulant gen-
erating functional, or equivalently from its Legendre transformed with respect to
the dual source field. This Legendre transformed is the effective action. The whole
machinery for a physical system at hand is defined by the Lagrange density in terms
of the configuration field variable and its derivatives. The Lagrange density can be
uniquely'! constructed from the systems dynamic or equilibrium generator, encoded
in coefficients with respect to polynomials in ordered products of powers of the vari-
able and its deviations (Hamiltonian coefficients or Kramers-Moyal coefficients) or
in ordered products of powers of excitation and annihilation operators (occupation
number representation of many body systems). The modeling can thus set in at dif-
ferent levels: the generator coefficients or the Lagrange density or the effective action
can be starting points for the modeling.

On all modeling levels the first choice is the set of relevant variables. On all mod-
eling levels symmetries play a fundamental role in identifying relevant variables and
their couplings. Symmetry means that performing a related transformation (symme-
try transformation) of the variables may leave some quantities invariant (symmetry
invariants), almost invariant, or they vary in an easily controlled manner, e.g. by con-
tinuity equations. Almost invariant means a slower or smoother variation of some
quantities as compared to the change in the original variables. Thus, finding symme-
tries and corresponding invariants or almost invariant quantities helps to identify the
slow and smooth variables as candidates for macroscopic relevant variables. On the
other hand, those quantities which change rapidly under the symmetry transforma-
tion can be considered as irrelevant and one tries to “integrate them out”. Relevant
variables may be classifiable with respect to topology into distinct classes, either
as a consequence of boundary conditions or as a consequence of the topology of
symmetry invariant subspaces of the original configuration space. We will have a
closer look at symmetry in Chap. 6 and at topology in Chap. 7.

On the level of the generator, the modeling has to respect symmetries and the
algebraic structure of operators, which makes it a sophisticated task to find trans-
formations to relevant variables. Nevertheless, a number of successful techniques
like the projector formalism used in Sect. 5.4.2 or the Bogoluibov transformation
in the superfluid/superconductor problem (see e.g. [9]) have been developed. How-
ever, in this book we like to focus on the advantages of the modeling by generating
functionals.

On the slow and long ranged scales (macroscopic scales) a phenomenological
modeling may start right away with a choice of the mean field ¢ as the most macro-
scopic relevant variable and one constructs the effective action. Here, symmetry is
the guide to find an appropriate effective action. As a simple model for the phase

'n the discretized version with time ordering prescription.
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transition to spontaneous magnetization Landau introduced a quartic action function
(called Landau free energy) of a homogeneous order parameter field M for the one
dimensional caricature of the magnetization in a ferromagnet,

A
I'(M) = —ta*M? + ZM“, (5.126)

with positive parameters o> and A and a real parameter 7 as a dimensionless measure
of deviation from the transition temperature. The effective action function is sym-
metric under reflection M — —M, because the magnetization mechanism does not
single out a magnetization direction. It is thus expanded in a series of even powers of
M. 1t is stopped after the second term, because this suffices to model the occurrence
of spontaneous magnetic ordering into one of two symmetric possible directions,
as long as the system is in the ordered phase (7 > 0). It also describes the smooth
transition at 7 = 0 to an disordered phase of vanishing magnetization. It is depicted
in Fig. 5.4. We will also discuss a modified version including fluctuations in Sect. 6.3.
The modeling of the Lagrangian density can start from a level of microscopic
degrees with known interactions and one proceeds by reducing to relevant macro-
scopic variables. The reduction to relevant macroscopic variables is most easily done
within this formulation because of “summations first” instead of “algebra first”. The
prescriptions, to be exemplified in subsequent chapters, are given here.

T<Tc

Fig. 5.4 Effective potential for systems with continuous phase transitions for temperatures below
and above criticality
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e Having found by symmetry considerations a candidate for the macroscopic relevant
field ¥ as a function(al) of the microscopic fields ¢, ¥ = F[¢], one constructs
a partition sum for the macroscopic field ¥ by introducing the Fourier duality
trick,!2

1 =/Dl1/ S(¥ — F[6]) = /D.QDLI/ expli (W — F[¢])- 21,  (5.127)

and interchanging the order of integration over configurations

expW[J =0] = / D2 / Dy / D¢ ¢ S =FloD-21 (5.128)

If one manages to integrate out exactly or approximately the original microscopic
variable ¢ and one of the dual partners ¥ or §2, one ends up with a generating
functional in the macroscopic relevant field, which can be either ¥ or its dual
partner £2. In case of §2 being the remaining variable, the generating functional of
cumulants in £2 has again the usual form with a reduced action S [£2],

exp Wlg] = / DR ¢S 20T (5.129)

The action follows from performing the integrations over the original variable
¢ and one of the dual macroscopic partners, say ¥. In doing the integrations
one has to be aware of determinant factors from a symmetry induced change of
the integration variables. These determinant factors can be re-exponentiated as
Tr log-terms in the action. The ¢ integral can be performed exactly for quadratic
couplings F[¢] and one writes the remaining functionals by the duality of ¥ and
£2 in such a way that one can integrate out one of them in a Gaussian way. The
remaining reduced action'> S[£2] will usually be non-Gaussian and hast to be
further analyzed.

e Analyzing the reduced action S[£2] with respect to its symmetries and the topology
of these configurations one may separate further into few component slow modes
¢ and fast field modes and integrates out the fast modes, at least formally by
redefining the coefficients in front of polynomials in products of powers of the
field ¢ and its derivatives dy¢. Sometimes, an infinite power series can be recast
into the form of a special function.

e Ifonehas finally arrived at areduced action S [gz~5] in arelevant slow mode field zz), one
proceeds with the expansion starting from the stationary action solution, as outlined
before. Here, the stationary action, Fo[quSO], as a function of the homogeneous

12The Fourier duality trick is a bit more general than the Hubbard-Stratonovitch transformation
(see e.g. [6]) for quadratic F.

13The reduced action of the macroscopic field, S [£2], is also often called effective action, but should
not be mixed up with the Legendre transform I"[(£2)] which we denoted as effective action.
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stationary action solution (Z)o, is already a candidate for a mean field modeling
with a Landau free energy.

e The perturbative analysis beyond the Gaussian level has to be accompanied by
topological considerations and by a stability analysis, usually called renormaliza-
tion group analysis. Topological considerations mean that one must respect distinct
topological classes of configurations when calculating the partition sum. An exam-
ple will be discussed in Sect. 7.3.3. Action contributions from discrete topological
field configurations can be overlooked in an ordinary perturbational expansion,
because a continuous perturbation cannot change a discrete contribution.

5.7 The Renormalization Semi-Group

To study the stability of the model in a simple way one would look at the change
of the cumulants with increasing order of the perturbation series. However, in many
models of interest even the Gaussian level leads to diverging quantities when the
continuity of the external space is taken literally. For example,'* in the ¢*-model,

3

2 A
S[¢] = / dx [Z (D1p(x)* + ’%qﬁz(x) + §¢>“<x)} : (5.130)

=1

the effective action in a Gaussian level approximation around the stationary homo-
geneous action solution ¢ reads

m? A 1 d*k 3
Fiol= [ @12 20402 [ &85 e 2220
[] / x[zgﬁ -|—8<,0 +2 2y n[ +m +299
(5.131)

The integral shows a simple divergence due to infinite system size, called infrared
divergence, and a more serious divergence due to infinite k, called ultraviolet diver-
gence. The notions refer to wavelengths of light (infrared for long wavelengths and
ultraviolet for short wavelengths). One can regularize the integral by introducing a
finite macroscopic cubic system size L to cure the infrared divergence and a finite
shortest length [y with corresponding wave number K = 27/l and finds for the
integral

1 [ &k 3
- 1 k2 2 = 2
2] @y n[ tmtae

1 3 1
= —K> (3In(K? —2)+ —aK — —a*’?, 5.132
3K B +a) = 2) + 55K — 5ma (5.132)

14We follow here the discussion in [8].
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where a = m?> +3/2¢?. If one tries to incorporate the Gaussian approximation in the
stationary action by renormalizing the coefficients m? and ) as the first and second
derivative of the action with respect to %992 at o = 0, one finds for these renormalized
coefficients (as long as m% > 0),

3MK  3)\m
2 2
— - 5.133
"k + 472 8 ( )
o\2
AR =A\— . (5.134)
167mm

These equations show two interesting things. First, the mass parameter m sets an
inverse length scale to the problem, as contributions of K for K & m cause relevant
changes. This length scale can become infinite as the mass approaches zero, where
the phase transition occurs. Thus, the length scale can be identified with a correlation
length £ over which local quantities are correlated in the system. Second, for large
couplings the corrections to the coupling become large and naive perturbation theory
must break down. In addition, the coupling grows with mass going to zero, consistent
with the interpretation of mass as an increasing correlation length. This example
shows that a stability analysis must be based on an analysis of the scaling behavior
of the theory. The idea that characteristic length scales emerge in interacting systems
helps a lot in setting up analyzing tools for the stability analysis. It turns out that
the key, the so called renormalization group, is again a generated semi-group. As an
introductory text to scaling and the renormalization group we recommend Cardy’s
book [10]. Let us sketch the main ideas behind this tool.

One of the two central ideas is to introduce a probing length scale L into the
formalism such that one can consider the effective action or related quantities as
a scale dependent quantity. On the most general level an effective action can be
defined, 7 [¢], that takes into account the full fluctuations of fields on scales up to L
while fluctuations on larger scales are suppressed. As a lower limit for the scale one
takes the microscopic scale of the problem /y. When reaching this microscopic limit
the scale dependent effective action equals the pure action because fluctuations are
inessential at this scale,

lim I[p] = Slel. (5.135)
L—1y

For large probing lengthL the full effective action is recovered,

lim Tl = Iel. (5.136)

It is indeed possible, by a clever use of the Gaussian level approximation, to intro-
duce a Gaussian scale probing term with kernel R;, into the partition sum to reach the
desired limits and to write down an exact scaling equation for the flow of the effec-
tive action as a functional differential equation. This is achieved by the following
construction that takes the Legendre transform property, accompanied by a smooth
cut-off at length scale L,
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ory,
exp —Iilp]l = /Dn exp {—S[s0+n] +/de(X) - n(x)
- /dxdx/n(x’)RL(x’,x)n(x)]. (5.137)

Here the kernel Ry (x, x’) has to fulfill two limiting requirements: for |x — x| << L
the kernel is negligible and fields at these separations are correlated in the same way
as in the original model. In the opposite limit, |[x —x’| >> L the kernel becomes very
large to suppress any fluctuations at such large separations. The precise form of the
kernel can be chosen appropriately for a model at hand. In any case the functional
equation (5.137) leads to an exact flow equation (see [8] Sect. 2) for the effective
action, usually formulated in wave numbers K = 27 /L,

_ [2] !
8[(F[( ="Tr FK +R]( a[(R]( . (5138)

The trace stands for sums over all indices. Such equations are exact but hard to
solve in closed form as they are equivalent to a set of infinitely many coupled non-
linear partial differential equations. They can however serve as a solid and flexible
starting point for meaningful approximations. Approximations become meaningful
when one has found the appropriate relevant variables for the system at hand. Then
it will be possible to characterize the effective action by a few coefficients in terms
of an expansion into a series build of powers of the field and perhaps its deriva-
tive. In general, these coefficients will be functions of external coordinates. As an
example consider the so called vertex expansion which is the effective actions Taylor
expansion around the stationary solution ¢ of the effective action,

o0 n
1
[n]
Iilel =2 — H/dxj (0g) = o) | I, o). (5.139)
n=0 Jj=0
The so called vertex functions FL["] (x1, ...x,) are such coefficients characterizing

the effective action in an expansion. The first non-trivial one is I L[z] (x1, x2). Other
expansions are possible, for example with respect to symmetry invariants of the
model.

In the vicinity of homogeneous stationary action solutions it often suffices to con-
sider parameters characterizing those coefficients. These parameters do not depend
on the external coordinates, but only on the probing scale L. In such cases the scaling
behavior is captured in a set of few coupled ordinary differential equations for such
parameters, then called scaling variables. Examples are the mass m and the coupling
constant A in our introductory example (5.130).

Let us give a heuristic motivation for this second central idea behind the renor-
malization group: the scaling flow of the scaling variables g(L) is given by a set
of ordinary autonomous differential equations. This behavior can be recast in an
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assumption about the functional dependence of scaling variables on characteristic
macroscopic lengths &. For simplicity, we take a single relevant length ¢ and its rel-
evance is manifest when the single relevant scaling variable g(L) can be expressed
as a universal function of the ratio £/L,

g(L) = f(&/L). (5.140)

All parametric details enter through the macroscopic length &. Such behavior may
describe the dominating behavior relevant in a macroscopic description; deviations
may be present but negligible asymptotically with &/lp >> 1. Such behavior is emer-
gent and known as the universality phenomenon. It is found that macroscopic behav-
ior for different systems with different microscopic details can lead asymptotically
to the same macroscopic behavior. It might even turn out that systems with seem-
ingly unrelated microscopic variables lead to the same effective action in relevant
variables. An example is the liquid gas transition and the transition to spontaneous
magnetization which—on a level of homogeneous mean fields—is described by the
same Landau model (see (5.126) and Fig. 5.4) with quartic self-interaction potential.
In the case of universality, described by (5.140), the ratio £/L can be expressed as
the inverse function

flg)=¢/L. (5.141)

To be precise, one has to allow for branches of the scaling function f; each branch
belongs to a separate phase of the model. The branches meet at a critical point, where
& diverges. With (5.140) a so called 5-function can be defined as a function of g alone,

@)
A f(9g). (5.142)
Gy’

Calculating dg(L)/dL and using the scaling behavior (5.140) with (5.141) one finds
a flow equation for g(L) as an ordinary autonomous differential equation in terms of
the G-function. The generalization to a number of scaling variables g reads

Blg) == —

dg _
i B(g). (5.143)

Note that the logarithmic length scale + = In(L/ly) is the appropriate variable to
make the differential equations autonomous, i.e. the function on the r.h.s. does not
explicitly depend on ¢t = In(L/ly).

Equation (5.143) show that the scaling is captured by a semi-group of Aristotelian
deterministic dynamic type in the time like variable ¢. In an abstract notation the
renormalization group operator Ry fora rescaling from ¢ to 7 + ¢ does not depend
on t explicitly, but only on §z. The infinitesimal generator R:= lim(;HO(f%(;, —1)/6t
is then independent of ¢, such that a renormalization group transformation on the
scaling variables g reads
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g(t +01) = Ryg(t) = "Rg (1), (5.144)
leading to the differential equations

((11—‘(: =Rg(1) =: B(g(®). (5.145)
The S-functions correspond to the infinitesimal semi-group action of the renormal-
ization group on the level of scaling variables g(In(L/ly)). The dynamics in the time
like variable t+ = In L/l is irreversible as the differential equation is of first order
and autonomous. It is thus capable to describe the phenomenon of universality as the
asymptotic stationary limit of the renormalization group can turn out to be unique
for different initial model systems. The zeroings of the 3-functions are fixed points
of scaling. The fixed points can have stable, repulsive or marginal directions. In the
vicinity of fixed points one can study the stability and the scaling by linear approx-
imation of the 3-functions. The linear regime around a fixed point g* of the flow
(B (In g*) = 0) defines the critical regime (see Fig.5.5). The positive linear coeffi-
cient 4’ for a repulsive flow direction g leads to an exponential growth in the variable
lg(lo) — g*)| away from the fixed point, corresponding to a power law behavior in
the ratio L/l with power (',

l9(L) = g*| = lg(lo) — g)I(L/1)" . (5.146)

Power law behavior is the indicator of the absence of an intrinsic length scale in the
system and the power law must bend over to a scale dependent behavior when the
probing length L approaches the correlation length £, of the system. Reversing this
argument tells that the correlation length . diverges with power v = 1/ when

B(a)

AE

Fig. 5.5 Sketch of a [-function with two fixed points. At the left fixed point value the flow is
repulsive, at the right fixed point value the flow is attractive
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approaching the critical point,
§eoclg—g*™". (5.147)

Thus, also the critical exponents of a systems critical behavior can be extracted from
the renormalization group analysis. However, an exact calculation of 3 functions is
usually not possible. Within the effective action approach one should start from the
exact flow equation (5.138) with clever truncation of some appropriate expansion.
The calculations are based on the Gaussian approximation around stationary action
solutions and expansions in auxiliary parameters such as deviations from integer
dimensions or in real small parameters of the problem such as the dimensionless
electromagnetic fine structure constant o = 1/137.

Once the generating functional approach has put the finger on appropriate scaling
variables g(L) one is free to use simplified approaches to focus on these variables
and tries to set up the 3 functions as the result of a deterministic semi-group process.
This opens a great flexibility for several tools developed for dynamical deterministic
systems including, of course, numerical calculations for lattice models with explicit
introduction of a microscopic scale [ as the lattice constant and finite system size L.
In numerics, the ratio L/I, is usually restricted by computer power, but the variation
may already give valuable information about the scaling behavior when parameters
are varied such that the system exhibits different phases (see e.g. Chap.4 in [10]).

Models with a duality in coupling constants are very convenient for such stability
analysis. One can treat a strong coupling limit of one model as the weak coupling limit
of the other model. By this one may also be able to interpolate the 3 functions for one
model between two limits and make meaningful statements about the intermediate
regime where critical behavior might or might not occur. An example is the modeling
of the Anderson localization problem (see Sect. 8.7).

5.8 Exercises

Exercise 1: Hermiticity
Show that f and k are hermitian operators.

Exercise 2: Uncertainty
Show the uncertainty relation (5.9) from (5.5) for Galilei particles.

Exercise 3: Continuity Equation
Show by the general definitions of density (5.11) and current density (5.12) that we
get back (2.65) for Hamiltonians of the form of (3.11).

Exercise 4: Trace
Show the cyclic invariance and the unitary invariance of the trace and verify (5.14).
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Exercise 5: Projector
Show the property P> = P for the projector Py.

Exercise 6: Distribution for a Reduced Variable
Show that (5.19) is the appropriate distribution for all functions of reduced variable
A(x).

Exercise 7: Density Matrix
Show that (5.24) is a density matrix. Construct it for two two-value systems with
originally pure states for

(a) product state
| Y) = [A+) | B—),

(b) entangled states

1
|¢)=J;(|A+) | B=)+ [A—) | B+)).

Exercise 8: Quantum Entropy and von Neumann’s Equation
Show that the quantum entropy stays constant when the density matrix dynamics is
given by von Neumann’s equation ¢ = —i [H, g]

Exercise 9: Entropy of Gaussian
Calculate the entropy for a Gaussian distribution

(x — x0)?
202

P(x) = (1/~2w02) exp —

)

where o is dimensionless, measured in the units of variable x.

Exercise 10: Effective Action for Gaussian Fluctuations Around Stationary
Solutions

Recapitulate the derivation of the Euler-Lagrange equations as following from sta-
tionarity, interchange of linear approximations and partial integrations with vanishing
boundary terms. Then calculate the effective action I"[¢] for the Gaussian partition
sum of (5.120).

Exercise 11: Effective Action for Gaussian Fluctuations in the ¢*-Model
Derive (5.131) from the Gaussian approximation around the homogeneous stationary
action solution of the ¢*-model by using Fourier transformation to diagonalize the
derivative 0;¢(x).

Exercise 12: Phases from (3 Functions
A generating functional for a one component mean field ¢ with homogeneous action
of the form

AL

Iilel ==

2
(¥* = 01)
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has two positive scaling parameters A and gog with approximate 3-functions

/\2
Bl N) = 0,90 — ——————: B(5. \) = 1.05¢5 —

3(1+ 203 6(1+2003)

Discuss the fixed points and their stability character and possible phases of the model.
Calculate the critical exponent v of the correlation length as the positive eigenvalue
of the Jacobian matrix for the (3-functions at the critical point with a direction of
instability.
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Chapter 6
Symmetries and Breaking of Symmetries

Abstract Symmetries help to reduce complexity of calculations. A familiar example
is the use of spherical polar coordinates in calculating integrals of quantities which
are spherical symmetric. If one manages to find coordinates fitting to symmetries,
some of them disappear from the invariant functions and this reduces the calculation
task drastically. The same idea is behind the use of symmetries in representation
theory to classify (and thus simplify the calculation of) eigenspaces and eigenvalues
of invariant observables. The next task is to identity relevant variables and regimes
or phases of its states with the help of the system?s symmetrics. Finally, symmet-
rics can appear as local symmetrices together with a field controlling the correct
gauge to identify the symmetry at all. When spontaneous symmetry breaking occurs
with gauge symmetrices the gauge modes can become massive (Anderson - Higgs
mechanism).

The next task is to identify relevant variables and regimes or phases of its states with
the help of the system’s symmetries. In a macroscopic treatment of a system one
keeps watching for symmetries and related constants of motion by Noether’s theo-
rem. In highly excited states (high temperature) these symmetries are manifest. Low
energy long wavelength excitations in these highly excited states can be described
hydro-dynamically, where continuity equations of conserved quantities dominate the
slow macroscopic modes. For low lying excitations (low temperature) the process
of spontaneous symmetry breaking is indicated by appropriate order parameters. It
is further accompanied by defects, dislocations and dynamic modes which try to
restore the symmetry (Goldstone modes). These dominate the slow mode macro-
scopic behavior, e.g. elastic behavior.

Finally, symmetries can appear as local symmetries together with a field con-
trolling the correct gauge to identify the symmetry at all. This introduces a very
strong geometric principle of identifying interactions in nature. These symmetries
might only appear as subgroups after a process of broken symmetry. Actually, the
celebrated standard model of elementary particle physics is exactly of this type (see
[1]) and also gravitation theory (going beyond general relativity) can be viewed as
a gauge theory (see [2]). When spontaneous symmetry breaking occurs with gauge
symmetries the gauge modes can become massive (Anderson-Higgs mechanism).
This is observed in superconductivity and electroweak interaction.

© Springer-Verlag Berlin Heidelberg 2016 107
M. JanBen, Generated Dynamics of Markov and Quantum Processes,
DOI 10.1007/978-3-662-49696-1_6
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Fig. 6.1 Sketch of (
. a)
symmetry (reflection or
rotation) from full (dynamics
and ground-state) (a) over
explicitly broken (b) to
spontaneously broken
(dynamics yes, ground-states
no, but hidden) (c¢)

(b)

(c)

6.1 General Definitions

We start with a general definition in words complemented with figures with reflection
symmetry (Fig.6.1).

1. A symmetry of a system is a group G of transformations g acting on the config-
uration variables ¢ (x) (external or internal), properties F|[¢], states | @) of the
corresponding Hilbert space1 and/or observables O (a’(x), a(x)), where a'(x)
creates a state” from the vacuum with property x and its hermitian conjugate a (x)
annihilates such particle, leaving the time evolution operator 7—and/or some
other important system observable—invariant.

IFor fields the Hilbert space of infinite particle numbers is called Fock space.
2usually called particle.
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2. A symmetry is explicitly broken (perhaps to a subgroup H of G) if the former
invariant quantity / is changed by an amount 87, such that I’ = [ 4 81 is no
longer invariant under G (but perhaps under the action of the subgroup H).

3. A symmetry is spontaneously broken (perhaps to a subgroup H of G) if the
dynamics T is still invariant under the full group G, but the ground-state is not
invariant under G (but perhaps under H). Rather, the symmetry is hidden in the
sense, that the ground-state is a member of degenerate ground-states which can be
transformed into each other by the action of the factor space G/H = {gH |g € G}
(H actsasa l).

If a system shows many symmetry relations it has less special relations between its
configuration variables. In this sense it shows more disorder. For example, in a gas
all continuous translations and rotations are symmetry operations of the state; this
is also true for a liquid. But in a liquid a symmetry between occupied positions and
unoccupied positions is already broken that was present in the gas state. Thus, there
is a subtle difference in symmetry between both fluid phases. In a piece of condensed
matter the state is only symmetric under discrete translations and rotations. It has
more structure and less disorder. As a rule of thump with only few exceptions one
finds that states with higher thermodynamic entropy (configuration entropy in phase
space or quantum entropy) and higher temperature have more symmetry.

In the context of phase transitions there are transitions of first order with a jump
in one of the thermodynamic potentials (e.g. latent heat) and so-called second order
transitions with smooth behavior of thermodynamic potentials (although singularities
appear in derivatives). For first order transitions the breaking of symmetry can be to
a different symmetry group which is not a subgroup of the larger symmetry group.
For second order transitions this is not possible. The smaller symmetry must be a
subgroup H of the larger symmetry group G. In any case symmetries apply or don’t
apply. With second order transitions the order parameter shrinks continuously to
zero, while it jumps for first order transitions.

6.2 Transformation Groups and Representations

The paradigm of a symmetry is mirror symmetry. As a simple mathematical real-
ization consider the discrete group Z, consisting of two elements {—1, +1}. As a
transformation group acting on variables it looks like

1: x> x:=g1(x), (6.1)
x> —x:=g1(x). (6.2)

As an invariant / we can take every function I = f(x) with mirror symmetry with
respect to the y-axis, e.g.
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1
fx) =x*— Zx4 = f(—x). (6.3)

The symmetry is explicitly broken for
. 2 Ly 3
I +6I(j,e)=x —Zx + jx +ex’, (6.4)

where j and € are coupling constants that measure the strength of the explicit
symmetry breaking.
As an important example for a continuous group consider translations in R?,

g XH—>x+a. (6.5)

For a deterministic free Galilei particle of inertia m in d dimensions the Hamilton
function is translation invariant,

1
H(x,p) = E,ﬂ =H(x +a, p). (6.6)

The momentum as the generator of translations in canonical mechanics fulfills
{p.H} =0 (6.7)

and therefore the momentum p is a conserved quantity in systems of translational
invariant dynamics (an example of Noether’s theorem). To implement symmetries
from configuration variables on the space of states (probabilities or pre-probabilities)
they have to be represented on the space of states. Since probabilities are just functions
of the configuration, there is nothing new and we switch to Hilbert spaces of states.
A symmetry representation 7 (g) on a Hilbert space is an operator acting on states
that respects the original group structure (homomorphism)

m(g182) = m(g1)m(g2)
(g™ = (m(g)) ",
(1) = 1. (6.8)

The Wigner theorem (for a detailed discussion see Chap. 2 in [3]) states that in order
to respect the scalar product of the Hilbert space, the representing matrices have to be
unitary linear or anti-unitary anti-linear. An anti-unitary anti-linear matrix changes
the scalar product to its complex conjugated value. Anti-unitary transformations are
only relevant if a change of direction of time’s flow is involved. Besides the so-
called ray-representations of (6.8) there are also projective representations, where
the representation of a product may involve an additional phase. We will briefly
comment on this possibility a little later in the context of Lie algebras.
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A trivial representation is always possible: w(g) = 1. Thus, representations
need some qualifying attributes. Representations of practical relevance are the irre-
ducible representations. These leave no subspace invariant under their action, while
reducible representations do leave some true subspace H; invariant, 7 (G)H; = H;.
The group itself can be classified into symmetry classes [g] by an equivalence rela-
tion g ~ g’ = bgb~! with some group element b.

[¢]:={a € G|b e Gexist: bab™"' = g}. (6.9)

Two representations of the same group are called unitarily or anti-unitarily equivalent
if 1,(G) = Um(G)U ™! for all g with the same unitary or anti-unitary operator U.
There are some helpful theorems (see [4]):

e For discrete (and also for compact® continuous) groups any representation can be
decomposed as a direct sum of irreducible representations.

e For discrete finite groups there are as many nonequivalent irreducible representa-
tions as number of classes. With the definition of the character

Xg = Tr m(g), (6.10)

which is a class invariant, x| provides the dimension of the representation. The
criterion for irreducibility is: the average scalar product of characters over the
group of N elements is just unity,

G0 =N 5 () = 1. (6.11)

geG

e Once one knows the irreducible representations of group G that leaves the dynam-
ics invariant,

n(G)Hrn (G)=H (6.12)

one can conclude:
[H,7(G)] = 0. (6.13)
Thus, the representations and H can be diagonalized simultaneously in a common
basis. The dimension of the irreducible representation is the minimum degeneracy

factor of energy eigenvalues. H can be brought to block-diagonal form where each
block acts on an invariant subspace, where its eigenvalue is totally degenerate,

3closed and bounded.
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(4] [0] [0] [O]
(0] [H2] [0] [O]
(0] [0] [H5] [O]
(0] [0] [O] [Hd]

H= (6.14)

By accident eigenvalues on different invariant subspaces can coincide, too. Such
coincidences however disappear, as soon as parameters are changed that leave the
symmetry untouched.

These theorems have broad applications e.g. in classifying atomic levels with respect
to the angular momentum and spin quantum numbers and also in classifying energy
bands of crystals with their specific point group symmetries and in classifying ele-
mentary particles with their specific symmetry groups of e.g. flavour and isospin.

Continuous groups that form a topological manifold of dimension d and that can
be described locally by generators X,,,

8a = €Xp [i Zaaxa} : (6.15)

such that group members are analytic in the parameters «?, are called Lie groups
with a corresponding Lie algebra of the generators,

[Xa, Xp] = D iC5 X, (6.16)

c

Here C¢, are the so-called structure constants of the Lie algebra. The generators
live in the group’s tangent bundle and describe the group locally. The structure
constants will be respected by any reasonable representation. For so-called projective
representations (up to a phase products) there can appear a so-called central charge
in addition to the right side of (6.16); however not for single connected groups* (see
Chap. 2.7 in [3]).

The Lie algebra does, by the exponential map (6.15), lead back to the full group if
the group’s topology is connected.”> Many physically relevant groups have however
several disconnected components. But, they are distinguished by certain discrete
transformations like reflection and can thus be reconstructed from the connected
group component containing the 1. For each connected group there is a universal
covering group which has the same Lie algebra and is single connected. The cover-
ing property means that some discretely separated members of the covering group
correspond by the covering map to a single element of the covered group. As an

4Single connected: every closed path can be continuously deformed to a single point without leaving
the topological space.

3Connected means here: every two points can be connected by a path within the group.
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example take the circle S! covered by the full line R! by the covering map o > e'®,
where all real numbers with step-width 27 are mapped to the same circle point. Some
topology notion is captured in Fig.7.2.

Needless to say that there is a big machinery of mathematical theory about Lie
groups, algebras and their representations for physical systems. If you are familiar
with the classification of the rotation group SO (3) by spherical harmonics, the cor-
responding angular momentum algebra and quantum numbers, developed from rais-
ing and lowering operators, you have already seen it at work. How strong symmetry
classifications are, can be demonstrated by the fact that the form of a free particle
Lagrangian density is almost completely determined by the constraint of relativistic
Lorentz invariance. Usually this is presented under the label of classical field the-
ory but it holds true as well for the Lagrangian density of quantum field theoretic
generating functionals. No correspondence principle or quantization procedure has
to be defined in order to see the importance of symmetry constraints in relativistic
quantum field theory. We give some hints how to proceed and summarize some of
the findings. A compact and insightful discussion is presented in [5] and a deep and
self contained discussion is presented in [3].

For concreteness we use four vector notation. An event is characterized by four
coordinates x* for u = 0, 1, 2, 3, where (xl, x2, x3) are the spatial coordinates and
x? =t is the time coordinate. For small deviations dx* the spatial deviations give
rise to a distance dx in a (locally) Euclidean manner: dx = (dx', dx?, dx?) with
(dx)? = dx - dx. While events as such are absolute, their coordinates depend on a
spatial and temporal reference frame. Using the same metric units in all reference
frames a fundamental observational law states: for two events with infinitesimal
deviation, which happen at the same location dx’ = 0 in a certain reference frame,
there is a proper time dt that does not depend on the reference frame and equals the
time dr’ in the reference frame with dx” = 0 (like a clock in a co-moving reference
frame). In any other reference frame the invariant proper time can be calculated as

(dr)? = Z gopdxdx” =: deudx“ (6.17)
Y v

where g,,, is a pseudo-Euclidean (local) metric which by itself has to be determined
by equations of motion (e.g. Einstein’s equation of gravitation). When the local
gravitational interaction can be neglected the metric reduces to the Minkowski metric
g = n for all non-accelerated reference frames and one finds

(d7)* = (dr)? — 2 (dx)?, (6.18)

where c is a universal constant with the dimension of a velocity. It is convenient to
use units in which ¢ = 1. In these units the Minkowski metric can be written as,

n = diag(l, -1, —1, —1). (6.19)
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The symmetry transformations on dx* that leave the pseudo scalar product > dx,
dx? invariant form the group of Poincare transformations, also called inhomoge-
neous Lorentz transformations. They contain translations and homogeneous Lorentz
transformations which consist of rotations in space and Lorentz boosts. Lorentz
boosts describe the transformation between reference frames with relative constant
velocities v. In addition, there are some discrete transformations like reflection and
time reversal. A Lorentz boost in x! direction which doesn’t alter x> and x> can be
written as

' =y —vx?), @)=y —vxh), y) TP =1-2v  (6.20)

Other four component quantities a” which give rise to similar Lorentz invariants
>, aya’ like > dx,dx" for dx* are called four vectors of Minkowski space. The
generators of translation in time and space (energy and momentum) can be combined
to a four vector

au, = (0, 0x), (6.21)

since the duality >  9ux* = 4 holds. For free particles there must be common
eigenvalues of energy and momentum (w, k) and the four vector character yields

o — k> =m>?, (6.22)

where m is an invariant called the rest mass of the particle. Thus, the free particle
motion in a Lorentz invariant dynamics defines the property of inertia. For small k>
compared to m? the energy approximates to

k2
w=m+— (6.23)
2m
which is the Galilei form of energy for free particles (up to a constant energy due to
the rest mass). For particles of zero rest mass (like photons) the invariance of (6.22)
gives rise to the Doppler formula for the frequency shift between reference frames
moving with relative velocity v.
Another example of a four vector is the combination of charge and current density
Jj* = (o, j). An invariant is the continuity equation

>0, =0=0+0d, . (6.24)
i

Note, the charge density o alone is not an invariant under Lorentz boosts.
Representing the Poincare group on field configurations we know the translation
part is generated by 0, and rotations are represented on finite dimensional irreducible
spaces characterized by angular momentum quantum numbers 0, 1/2, 1, .. .. They
are now called spin, because they do not relate to the orbiting of an object around
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some fixed center in space. The spin of a free particle and its rest mass are invariants
and the energy momentum relation (6.22) as a relation between translations in time
and space dictates the possible invariant actions (up to prefactor conventions and
gauge freedoms in the Lagrangian), which we summarize for the two cases we need
later. A spin O particle of rest mass m is described by a (complex) scalar field ¢ (x)
and the Lagrangian is the Klein-Gordon Lagrangian

L= Z (0,0*(x)) (0" ¢ (x)) — m*$* (x) (x). (6.25)
m

A spin 1 and massless particle like the photon is described by a vector field A* with a
so-called gauge freedom,® such that the Lagrangian is expressed in terms of a tensor’
FH = 0rAY — 9V AH*,

_1 b
L= - ; F F*. (6.26)

Identifying A* with the electromagnetic vector potential, £ = 1 (E* — B?) with
E, B the electric and magnetic fields, respectively. A spin 1/2 particle with mass
m is represented by a spinor field (it is convenient to use 4 components) and its
Lagrangian is the Dirac Lagrangian which we will not write down explicitly, because
we will not use it.

6.3 Noether-, Ward- and Goldstone-Theorems

The essence of Emmy Noether’s glorious theorem (derived originally in the context
of deterministic Lagrangian mechanics) can be seen most clearly on an operator
level valid in any dynamical theory. Consider the action of the symmetry group on
the dynamical generator H

7 (g Hr(ge) = H(a), (6.27)

which yields for the generators X

]aaH(a) =i[X,H]=—i[H, X]=—-3X(t) \ (6.28)

Thus, as soon as the dynamics is invariant under the group, the generators are con-
stants of motion. In the context of inner symmetries the generators X multiplied by

%0ne can put a constraint on the components of A* because the spin has only two transversal
polarization degrees of freedom. This is caused by the vanishing mass, such that the particles travel
at maximum possible speed ¢ and components of spin in the moving direction are void.

"Tensor means that it transforms under the group like the product dx*dx" does.



116 6 Symmetries and Breaking of Symmetries

a convenient unit g are often called charge operators. In field theories one would
like to round out global conserved charges with local current densities and charge
densities fulfilling a continuity equation. Here we follow the modern text of [6],
Chap. 5, together with [7], Chap.2.4.

On the level of deterministic stationary action solutions the construction of local
currents can be defined in the following way. For a given local linear transformation
(x stands short for x* = (¢, x) as event coordinates in Minkowski space—or for x
as point coordinate in Euclidean space)

SayP (x) = —ia(x)F (9, ) (6.29)

the Lagrangian density changes as

L
Sa £ = i (—ia(x)F (¢, 8,0))

L .
+ ; 0.0 0:6) (0 (i (x)F (¢, 3,9))) - (6.30)

For stationary action solutions the Euler Lagrange equations (5.117) allow to rewrite
the change as

oL
Su L = 0, ——— | (—ia(x)F (¢, 3,¢)) +
ve=% st | )

AL ,
+ T0.9) (8, (—ia(X)F(¢, 8,9))) - 6.31)

One can see by partial integration and vanishing boundary conditions that indeed the
action is stationary, but here we like to identify the local current density. By defining
it as

oL
i (x) := —iF (¢, 0,) ——— (6.32)
Jx l ¢ M.¢ 9 (8M¢)
one can rewrite the change in (6.31) as
Sl = D j" ()8 (x) + ar(x)d,,j" (x). (6.33)

n

From here we can read off a generalized current definition, which can be useful even
when it is not conserved:

9 (8aw L)

T —
=g (B.0(0)

(6.34)


http://dx.doi.org/10.1007/978-3-662-49696-1_5

6.3 Noether-, Ward- and Goldstone-Theorems 117

Therefore, we can conclude Noether’s theorem for stationary action field config-
urations. If the action is invariant under a global continuous group, §,S = 0 and
d,a(x) = 0, then for stationary action field configurations the current density
of (6.34) obeys a continuity equation, >, 3, j" = 0.

To see the current identification (6.34) at work, we consider the U (1) invariant
Lagrangian for a complex Boson field ¢ (x) in the presence of some potential V:

L= (8,0)" @"¢) — V(gD (6.35)
"
The field changes are
8¢ = —ia(x)$; 8¢* = ia(x)$", (6.36)
80, P = —i9,(¢(X)$); 80, D" = iD, (@(x)¢"). (6.37)

The resulting change of the Lagrangian allows to identify the current as

9 (Bucn L)

i —
70 = S )

=i [p(0)* (@ p(x)) — 9" (x)(3"p(x))] . (6.38)

The current identification can be generalized to the complete theory in terms of the
path integral by noticing that a symmetry—in general—means that the combination
of action and measure is an invariant under a global symmetry transformation,

D¢'eS1?1 = De'SI?T, (6.39)

Making this transformation local allows to identify the current as field within the
path integral via

D@59 = Dgpei 9] (1 + / dx > (0,0(x)) j”“(x)) . (6.40)
"

Note, that the current may contain contributions from a change of the measure as
well. Equation (6.40) is the most general way to define a symmetry related current
density in quantum theory via functional integration. The current density j*(x)
corresponding to a continuous symmetry group is identified as the dual field to the
gradient of the parameter field d,,a(x). On performing a partial integration one can
conclude the continuity equation for global symmetries,

>0, (j" () = 0. (6.41)
i
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If the path integral is invariant under a global group action (9, (x) = 0), then
the current density of (6.40) obeys a continuity equation on average. This can be
generalized to constraints for correlation functions, known as Ward identities or
anomalous Ward identities (when measure changes are involved). For details see
Chap. 5 in [6].

Now, we have a look at the ground state (vacuum) of a system with a dynamic
symmetry generated by a charge operator Q with corresponding local current density
operator j*(x), such that O = f d3x o(x), as usual. We assume that it commutes
with the four momentum P* (H, —id,). The vacuum state is assumed to be a state
of zero energy and momentum.

Then a theorem known as Fabri-Picasso theorem (see [7]) tells: either the charge
operator annihilates the vacuum or its action on the vacuum is not normalizable. In
the first case the symmetry of the vacuum is manifest (since it is not changed), but
in the second case it is unconventional. The symmetry is said to be realized in the
Nambu-Goldstone way. To prove the theorem one considers

010010)= /d3x {Olo(x)Q10) . (6.42)

Since the vacuum is translation invariant the integrand is a constant. Either it is zero
or it is finite. In the first case Q annihilates the vacuum, in the second case it can not
be normalizable, since the integral diverges.

As a next step in investigating the Nambu Goldstone vacuum we make a further
reasonable assumption in view of our definition of spontaneous symmetry breaking.
We assume that there is some field operator @ (x) which is not invariant under the
action of Q,

P'(x) = —i[Q, ()], (6.43)

and which has -even under the action of Q-a finite expectation value in the vacuum
(019" (x)|0) # 0. (6.44)

If the continuous symmetry is realized in the Nambu Goldstone way, there exist soft
modes in the system above the ground state. We will proof this famous Goldstone
theorem for a situation with spontaneous symmetry breaking after explaining its
meaning. Soft modes are states which momentum goes to zero (long wavelengths)
when the energy goes to zero: k — 0 for @ — 0. In other words: the frequency
momentum dispersion relation w (k) is some positive power for low momenta (long
wavelengths). Such states are also called massless particles, since a mass term in
field theories corresponds to short ranged excitations even for low energies. This can
be seen as follows. A relativistic field equation for a free particle of mass m reads in
frequency momentum notation

> (k) (w, k) = [k* + m*1¢p(w, k), (6.45)
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which yields the dispersion relation

w(k) = VK2 +m2. (6.46)

On the other hand, a static excitation ¢, from a §-point source has to fulfill in Fourier
terms the condition

k> +m* | = 1, (6.47)

such that it coincides (up to a constant factor) with the Fourier transform of a r-
ranged Yukawa potential V () = (e~"/")/r,

de = Vi = 1/[K* + (1/r0)], (6.43)
when we identify mass and inverse range
m = 1/ry. (6.49)

For mass going to zero or range going to infinity, we get the infinite range Coulomb
potential and a dispersion @ ~ |k|.
The proof of the Goldstone theorem considers

(01" (x)|0) = </ d*x' [o(x)), Cb(x)]> (6.50)

0
With the help of the continuity equation one can show that the expression does not

depend on time ¢'. Introducing eigenstates of the four-momentum P |n) = p, |n),
translating x" to 0 and performing the integration one can write (6.50) as

(010 (1)10) = 32 8°(p,) [0l (O)|n) (n] @ (x)[0) e
— (01® (X)) (n]o(0)]0) e~ ] 6.51)

That this expression is non-vanishing and independent of ¢’ can only happen for finite
matrix elements (0|®@ (x)|n) (n|0(0)|0), when the frequency w, tends to zero as the
momentum p,, does (by the delta function).

As two qualitative examples for the Goldstone theorem let us have a look at
the fluid condensation to a crystal and at ferromagnetism. Both, in the fluid and
in the crystalline phases the dynamics of particles is translational invariant under
the full translation group, as the forces are two-body potential forces with potential
type V(x; — x;). When the fluid becomes a crystal, the ground state’s symmetry
is broken to a discrete crystal group. However, there are soft mode excitations, the
acoustic phonon excitations with long wavelengths for small frequencies. Both, in
the ferromagnetic phase as well as in the paramagnetic phase, the dynamics of spins
becomes rotational invariant, H = > _,, JuSk-S;+ >, h - Sk, when the magnetic
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field & is switched off. However, in the ferromagnetic phase the ground state is not
invariant but singles out a spontaneous direction. There are soft modes in the system,
the magnons (also called spin waves) with long wavelengths for small frequencies.

The most general way to discuss spontaneous symmetry breaking with generating
functionals is by considering the effective action, since it can also incorporate sym-
metry breaking that occurs after quantum fluctuations have been taken into account.
On the level of an effective action I'[¢] a spontaneously broken symmetry corre-
sponds to an effective potential as described by c) in Fig.6.1.

Let us consider a relative of the Landau model (5.126), the following ¢* model
for complex ¢,

il = / dx [Z (8.9) (8"¢*) + V((p):| . (6.52)

m

Here the Landau potential is

A
Vip) = —ta’|p)* + Zw (6.53)

with positive parameters o> and A and a tuning parameter t that can be varied from
positive values to negative values. As long as t stays positive the homogeneous
stationary state of the effective action is given by

(2102
M = |@o| = P (6.54)

This is an appropriate order parameter for the symmetry breaking. It vanishes
smoothly as 7 is going to zero and stays zero in the disordered phase, T < 0.
To study fluctuations around the stationary solution we take advantage of the factor
space G/H which is still U (1) in this case and write the field with small real valued
deviations 1 and 6 from the stationary solution

o =M +n). (6.55)
Expanding the effective action up to second order in the deviations leads to
I, 6] = /dx V(M) + [Z [M%(3,0)(9"0) +
%

+ @@} +2ta’n?]. (6.56)

This effective action of fluctuations around the broken ground state clearly demon-
strates:
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1. The excitation 7 is massive (short ranged) due to the curvature 4ro? at the sym-
metry broken mimima.

2. The excitation 6 establishes the hidden symmetry by going along different possi-
ble minima. It is massless, as no term proportional to A2 appears in the effective
action.

This model is actually a reasonable phenomenological model for the thermody-
namics of a superconductor/superfluid with order parameter field ¢ representing the
macroscopic complex wave function of Cooper pairs/superfluid bosons. The effec-
tive potential of this ¢* model is of the same Landau type potential that we discussed
already for continuous phase transitions in terms of order parameters and effective
potentials in Sect. 5.6. The parameter T = T, — T corresponds to the deviation of
temperature below the critical temperature T, as depicted in Fig. 5.4. The order
parameter is the density of Cooper pairs/superfluid bosons below the transition tem-
perature. The Goldstone modes are soft sound modes in the superfluid.

6.4 The Gauge Principle

A special form of symmetries are the so-called gauge symmetries because they allow
to introduce an interaction between the original configuration variables (fields) and
a Boson field which ensures the symmetry of the dynamics. As a reference we
recommend [1, 7]. The interaction is usually long ranged, but—as we will see—can
be effectively short ranged in the situation of spontaneously broken symmetries. The
idea behind gauge symmetries is geometric: a symmetry group G that normally acts
on the internal degrees of freedom of the field ¢,

@' (x) = g (x), (6.57)

is made local by gauging the unit element at every value of the external space x in a
slightly different way,

@' (x) = g(x)p(x). (6.58)

The different choices of gauge are incorporated in a so-called connection or gauge
potential field A (x) which re-gauges the translation operator d,, to a gauge-covariant
translation operator. A change of gauge is compensated by a change of the gauge
potential. For unitary representations the equations read

g =e =g, (6.59)

where X, are the hermitian generators of the gauge group and «“(x) the corre-
sponding local parameters of re-gauging. Since it is not assumed that the generators
commute one has in linear order of «“,
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g)Xag ' () = Xo —i D &"[Xp. Xo] = D a"Cp X, (6.60)
b bc

where C¢, are the Lie algebra structure constants, as before. The gauge-covariant
translation operator for fields ¢ (x) is defined as (for concreteness in four-vector
notation)

Dy =0, +igA,(x) ] (6.61)

where g is a free coupling constant, called charge and A, (x) is the gauge potential.
It takes values in the Lie algebra of the generators and can be represented as

A, = ZAZXG. (6.62)

In the combination g X, = Q, the generators are also called charge operators, as
mentioned earlier. The gauge potential transforms under the local action of G in a
definite way to make the procedure consistent,

D, =0, +iqgA),(x) = gx)D, g " (x), (6.63)
which leads to the transformation law

DA Xe=> [A;Xa + é(aﬂa“(x))xa + Zabcgaxc] (6.64)

a a be

and for A’ alone to

na a 1 a a c
(AN = AL+ @ue’ ) + > " ClAL | (6.65)
bc

For the Abelian group U (1) there is only one component, X = 1, C = 0, and the
third term in (6.65) vanishes.
As a consequence of the local gauge transformation, terms of the form

(0,0 ()] = 3. (g(X)9(x)) (6.66)

cannot be combined to invariants [3,¢ (x)]'[0,¢ (x)]*. However, on replacing the
translation with the gauge-covariant translation of (6.63) one finds

D, ¢'(x) = [Du¢(x)] = g(x)Dup(x) | (6.67)
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This can be easily combined to invariants
[D,¢' ()ID™ ¢ (x)]" = [Dy (x)I[D" P (x)]". (6.68)

It is also important to know that the identification by (6.34) of current (in unit of
charges q) generalizes in the presence of gauge fields simply to

oL

j@) == |
dAY,

(6.69)

Note, that here no change of integration measure is included. This can be cured by
considering the full change of the measure and the action: the current density j*(x)
corresponding to a continuous symmetry group is identified as (minus) the dual field
to the corresponding gauge potential A, (x).

In geometrically invariant notation the gauge potential corresponds to a 1-form
A =3, Audx" Tts exterior covariant derivative F = DA = dA +igA A Ais the
curvature 2-form (it measures differences in parallel transport along closed paths)
and is in physics denoted as field strength tensor. It reads explicitly

Fl, = 0,A% — 8,A% +q > C4 AL AL, (6.70)
cb

Its action on a field ¢ (x) can be written in covariant form as

ZFZUX0¢= (DMDU _DVDV)¢' (671)
a
The free dynamics of the gauge field is captured in a Lagrangian density

1 a auy
L4 = -3 ZFWF w (6.72)

nva

Again this choice is (up to the prefactor) dictated by symmetry. The free deterministic
field equations are §L£, = 0 yielding

> d, F =0, (6.73)
"

where the covariant derivative on the level of the field strengths is

4 F" o= 0, F" +q > Ch ASF (6.74)
bc
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The field equations (6.73) show (1) that free gauge bosons are always massless,
because all terms involve derivatives of A and no term proportional A” appears. This
is necessary to guarantee gauge invariance. They show (2) that the free field is self-
interacting since the covariant derivative acting on derivatives of A contains a factor
of A in the non Abelian situation (finite structure constants). In other words: non
Abelian gauge fields are charged and self interacting. However, in the Abelian U(1)
gauge theory the structure constants vanish and the U(1) gauge field is not charged
and thus not self interacting. Equation (6.73) simplifies in the U(1) situation to

D9, F =0 (6.75)
i

Taking A* = (V,A) and E = A— 0,V and B = 0, x A one finds from (6.75)
exactly the free of charge and current Maxwell equations for the fields E and B

3 -E=0-B=0, (6.76)
9 x E = —B, (6.77)
9. x B=E. (6.78)

Because of (6.69) A* also couples to the matter field in the same way as electro-
magnetic fields. Thus, the U(1) gauge theory can be identified with electromagnetic
quantum field theory.

The standard model of elementary particle physics treats the strong quark inter-
actions as a SU(3) gauge theory and the unification of electromagnetism and weak
interactions as a SU(2) x U(1) gauge theory. The gravitational force can also be writ-
ten as a gauge theory involving gauges for the Poincare group. It is not impossible
that physicists might find a grand unified gauge theory in the near future capturing
the four fundamental forces. It is likely that supersymmetry (a theory symmetric
in bosons and fermions) will be an ingredient, too. There are calculation reasons
for that and observational puzzles like dark matter which might be solvable along
supersymmetry.

6.5 Anderson-Higgs Mechanism

Now, we combine the gauge symmetry of electromagnetism with the ¢* model of
spontaneous symmetry breaking. As an application think of a superconductor in a
magnetic field. Since we have gauge covariant expressions it is easy to set up a
gauge invariant effective action corresponding to the model (6.52) including U(1)
electromagnetism,
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1
Tlp: Ayl = / dx [Z (Dup) (D"0") +V(9) = 3 D F,WF*W] L (679)

® uv

Note, in the superconductor case the elementary charge must be g = —2e. Again, we
consider the stationary state with respect to ¢ and A, where the latter is vanishing.
Now we look for fluctuations around the stationary solution

@(x) = "M +n(x)), A,(x) (6.80)

and exploit the fact that we can re-gauge A, (x) in such a way as to eliminate the
Goldstone mode 6 (x)

1
A;L(x) =A,(x)+ ZBM(G(JC)). (6.81)

Expanding the action again to second order in the remaining fields one arrives at

Iy, A, = [dx [Z ( 4’ M A, A" |+ (aun)(aﬂn)) +2tan? + V(M)

”w

_i > F;wFlw:| . (6.82)
v

Something very interesting has happened. The former massless gauge field has
acquired a mass m proportional to the ground-state value M of the order parame-
ter in the spontaneously broken phase while the Goldstone mode disappeared. This
mechanism is known as Anderson-Higgs mechanism and has at least two promi-
nent applications with experimental evidence. In the model here it describes the
Meissner-Ochsenfeld effect of a finite penetration width of a magnetic field into
the superconductor (an uncharged superfluid cannot undergo the Anderson-Higgs
mechanism) and the stationary point equation of motion for A is the London equa-
tion for superconductors, (9,)>A = const. - e>M?A. In a model with non Abelian
gauge group U(1) x SU(2) for fermion fields (Salam-Weinberg model) it describes
the presence of massive gauge particles of the weak interaction (W and Z Bosons)
and the presence of a massive particle, the famous Higgs Boson, described by the
scalar field  with a mass term proportional to ,/Te in our simplified model.

It is believed, that a Anderson-Higgs mechanism is at work to make elementary
particles massive and that spontaneous symmetry breaking is responsible for the low
energy symmetry groups that we observe nowadays in particle physics. According to
standard models of modern cosmology spontaneous symmetry breaking may have
occurred in the earliest very hot phases of our universe. One can fairly say that
theories about symmetry, its breaking and gauging are one of the most important
contributions to physics by the late 20th and beginning 21st century.
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6.6 Exercises

Exercise 1: Spontaneous Symmetry Breaking
Find examples for spontaneous symmetry breaking in nature: for single particle
systems, equilibrium and self organizing systems far from equilibrium.

Exercise 2: Current Identification in Global U(1) Invariant Cases

Calculate the expression in terms of fields and perhaps their derivatives for the current
density j*(x) for the U(1) global invariant Lagrange densities of a complex spin 0
boson (Klein Gordon Lagrange density) and for an electron (Dirac Lagrange density)
by (6.34).

Exercise 3: Current identification in Local U(1) Invariant Cases

Calculate the current density j*(x) in terms of fields and perhaps their derivatives
for the U(1) local invariant Lagrange densities of a complex spin 0 boson (Klein
Gordon Lagrange density with covariant derivatives) by (6.69).

Exercise 4: Stationary Field Equations in Local U(1) Invariant Cases
Derive the full set of field equations for a U(1) local invariant Lagrange density of
a complex spin 0 boson in the presence of electromagnetic fields (Klein Gordon
Lagrange density with covariant derivative and free field strength action).
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Chapter 7
Topology

Abstract Topology addresses local and global neighborhood aspects of sets. Con-
sider the mapping from R to a circle 8! where each real number ¢ is mapped to e'’.
By this mapping many formerly distinct real numbers ¢ + 2w Z become identical
points on the circle. Continuous deformations may change metric aspects of sets but
leave topological aspects invariant. Continuous mappings are therefore the homo-
morphisms of topology. Global aspects of topology are of special interest in physics
when quantities become discrete (quantized) for topological reasons and thus distin-
guished classes of these quantities exist or/and when (discrete) topological invariants
like winding numbers (indexes) are represented as integrals that occur in the con-
text of generating functionals. An obvious invariant in topological spaces is there
topological dimension (=number of parameters to describe it locally). We start with
three introductory examples and summarize some basics about topology before we
discuss few of a bunch of known topological aspects with the integer quantum Hall
effect IQHE).

7.1 Kinks, Quantization and Magnetic Monopoles

Consider a rope on a corrugated iron sheet as sketched in Fig.7.1. Shown are three
different situations with 0, 1 and 2 kinks. By continuously deforming the paths
one cannot get rid of the 1 kink situation. However, the 2 kink situation is actually a
situation of kink and anti-kink, because it can be continuously deformed into a 0 kink
situation. Thus the number of kinks with a grading of orientation is a topological
invariant for a rope on a corrugated iron sheet. It resembles a situation in an instanton
path integral description of tunneling (see e.g. Chap.3 in [1] and our discussion in
Sect. 8.1) between symmetric potential minima.
As a second example consider the wave equation in 1D for a field ¢ (x, 1)

[07 — *8] p(x,1) = 0. (7.1)
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Fig. 7.1 A rope on a corrugated iron sheet for three different situations: 0, 1 and 2 kinks. The
situation with 2 kinks (kink and anti-kink) can be continuously deformed to the O kink situation

As long as ¢ (x, t) is defined on the full 1D line x € R one knows that there are
infinitely many solutions. Actually, any differentiable functions f(x —ct) and g(x +
ct) solve the equation and linear superpositions do it as well. Also, exploiting the
translational invariance in time and space, a Fourier spectral representation

p(x, 1) = / dk dw ™' ¢ (k, w) (7.2)
solves the wave equation provided the dispersion relation
w* (k) = 2k (7.3)

is fulfilled. However, as soon as we put the equation on a circle S ! which means
some periodic boundary conditions like

¢(x=—L/2,t) =¢p(x =L/2,1), (7.4)

the possible solutions are discretized and momentum k and energy » become quan-
tized with a quantum number n € Z,

2
W2(k) = k2 ky = % (1.5)

Thus, the topology of S! being characterized by winding numbers n € Z has the
consequence that some physical quantities living on S! become quantized.
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As athird example we have a look at Dirac’s monopole (we follow the presentation
in [2]). A magnetic monopole of strength g sitting at the origin r = (x, y,z) =0
should fulfill

o - B(r) =4mgé(r). (7.6)

The solution is—as we know from electrostatics

A

B(r) = iz (7.7)
r

where 7 = r/r. This field is defined everywhere except at the origin. Its correspond-
ing 2-form is
B =B-dS = gds2, (7.8)

where d§2 = sin #d0d¢ is the solid angle 2-form, 6 is the polar angle against the z
axis and ¢ the azimuth angle in the x, y plane. Equation (7.8) with the Stokes-Gauss
theorem shows that the monopole fulfills the desired Poisson equation. However, for
magnetic fields we should have a vector potential A (r) and a corresponding 1 form

A= A(r)-dr (7.9)

such that
B =dA; B(r) =0, x A(r). (7.10)

One can define such vector potential, but one cannot define it on the full space
R3 — 0. One must leave out a full ray. For example, one can define two vector
potentials

1 % cosh)
ANS = 8 qryady; aVS(y = 8UF 0 g (7.11)

r(rxz) rsin@

where ¢3 = (—sing, cos(¢), 0) is the unit vector along the ¢ coordinate. AV is
defined everywhere except at the negative z axis and AS everywhere except at the
positive z axis. Indeed, everywhere where AY-5 are defined, they yield the monopole
field by the curl,

3 x ANS(r) = B(r) + 8(x)8(»)O(F2). (7.12)

Interestingly, both vector potentials are related by a gauge transformation,

AN — AS =2gdo, (7.13)
which is defined everywhere except at the poles & = 0, . Along the equator it is
well behaved and we can write the total flux @ as a sum of flux through the north

hemisphere and the south hemisphere and can express this via Stokes theorem by
the pure gauge field d¢,
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b= /dAN +/dAS = /2gd¢ =2g-2m, (7.14)
N

N N

as it should be. It shows that, by restricting to appropriate maps, one can find vector
potentials for magnetic monopoles. They cannot be defined everywhere, but they have
a common region where a gauge transformation relates them. One has to be careful
with applying Stokes theorem and check where the differential forms are defined.
Once a magnetic monopole exists, one can consider an electron in its vicinity. Its
wave function acquires a phase change for each winding around the monopole,

8¢ = degr. (7.15)

To keep its wave-function single valued, the phase must be an integer multiple of 27
and the electric and magnetic charges are quantized,

=27} 710

This theory suggests that the quantization of charge might be caused by topological
quantization.

7.2 Sketch of Topological Vocabulary

Here we sketch some vocabulary which occurs frequently in the context of topology
in physics and try to give some hints how it is used and how it may help. A good
reference for physicists is [2]. The first notions of compact, connected and single-
connected are exemplified in Fig.7.2.

e A compact space M is closed and bounded. If it has an edge d M, the edge belongs
to M. The important property is that every continuous function f into real numbers
takes its maximum and minimum on M and its image f (M) is compact, too. One
can compactify spaces like the real numbers; e.g. in an affine way with two infinite
points =00, or in a projective way with one infinite point co where both negative
and positive numbers meet. The projective compactification of R is topologically
equivalent to a circle S!.

e A connected space M cannot be disassembled in several separated components.
The important property is that every continuous function into discrete number
spaces is constant. Sometimes the weaker notion of arc-connected is used, which
means that every two points can be connected by a continuous path. Arc-connected
spaces are connected and the inverse holds except for some interesting pathological
exceptions which—as far as the author knows—have not yet popped up in physics.

e In asingle-connected space M every closed loop can be continuously deformed to
apoint. If a space is not single-connected one usually finds some hole of appropriate
dimensionality in M, such that certain closed loops wind around it and cannot be
deformed to overcome it.
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(a)

Qo

Fig. 7.2 Sketch of topological notions: a compact (bounded and closed with boundary) but dis-
connected, b compact and single connected (and of course connected), ¢ compact and connected
but not single connected (a path around the hole cannot be contracted within the space)

Fig. 7.3 Sketch of a star
shaped space. From a certain
point every other point can
be reached by a straight line

There is a type of spaces, called star shaped, which are single-connected and
have in addition a stronger property: there is one point from which every other point
can be reached by a straight line within it (see Fig. 7.3 for an example). For such star
shaped spaces a fundamental theorem holds, which is known as Poincare’s lemma:
On a star shaped space M every closed differential form w (closed means dw = 0)
is exact (in physical terms: has a potential),

. (7.17)

If you are unfamiliar with forms you may consult [2], Chap.5.4. You may also just
consider forms as multilinear alternating differentials which represent little volumes
like a determinant of coordinate differentials dx; which like to be integrated over. The
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main rules are: d f (x) Adg(x) = (32, 0 f dxi) A (D, dig dx;), dxe Adxy = —dxg A
dxy and for m-dimensional M: [,, f(x)dx; A... Adx, = [,, f(x)dx™. Applying
the exterior differentiation d twice to a form nullifies it!:

[ddo =0] (7.18)

The most beautiful theorem of calculus on manifolds, the general Stoke’s theorem,

reads in forms
/dw:/a). (7.19)
M aM

It shows the dual relation between forms and manifolds and it shows a nice immediate
topological property: Boundaries don’t have boundaries, 00 M = 0.

In mathematics one likes to find functors from one structure to another, hoping to
deal with heavy problems easier after transformation. In algebraic topology one con-
siders several such functors from topology to algebra. Two very important functors
in physical contexts are given by group functors: homotopy groups /7, and de-Rham
cohomology groups H,. The elements of the homotopy group I7, over a manifold M
are given by mappings from an n-sphere S" to M, f : S® — M. Two such mappings
g, f are equivalent, g ~ f, if they can be continuously deformed into each other;
they wrap the manifold similarly with an n-sphere. I1; is called the fundamental
group. The most important example is

m(SYH = Z. (7.20)

It means that the functions are equivalent as long as they have the same winding
number n € Z. For a function with winding number 7,

fu(@) =e"? (7.21)

the winding number can be represented as an integral,

_ 1 -1
e CIRIO%) (7.22)
st

Note, the winding angle form d¢ may appear in disguised form, for example in 2D as

_ —ydx +xdy

d¢ = 7.23
b=—ry (7.23)

'For example: dd f (x, y) = d [(3, f)dx + (3, f)dy] = (37, f)dx Ady + (87, f)dy A dx = 0.
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Some general results are:

7, (S") =7, (7.24)
I7,(S™) = 0 for n < m. (7.25)

Since the group U(1) is topologically equivalent to SO(2) (its universal covering
group in the terminology of Lie groups) and to a circle S', the fundamental group
(in the sense of algebraic topology) of U(1), SO(2) and S! is the group of integer
winding numbers Z. The Lie group SO (3) has SU (2) as its universal covering group
and SU(2) is topologically equivalent to a 3-sphere S%, such that SU(2) and S*
are single-connected (/7; = 0), but have integer wrapping numbers with respect to
3-spheres, 13 = Z.

With de-Rham cohomology groups we come to differential forms which can, by
Stokes theorem, tell something about the underlying topology. H; (M) is the group of
all closed k-forms over the manifold M which form equivalence classes with respect
to being identical up to a potential term

da)1 = da)z =0 (726)
wy ~ wy iff w; = w, +dn. (7.27)

If all closed forms have potentials (are exact), then they are all equivalent, dn; =
dn, + d(n; — n2) and the group consists of one element, denoted as 0. Thus, on
star-shaped manifolds M Poincare’s lemma tells us: Hiy(M) = 0 for all k up to
the dimension of M. For single-connected manifolds 1-forms have potentials, thus
H (M) =0.

Important examples of cohomology groups containing more than one element are
the first cohomology group on 2D areas with holes or in 3D spaces with missing
complete lines, because the angle 1-form d¢ has no potential, e.g.

H (R —0) #0. (7.28)

The solid angle 2-form d$2 tells that H, (R3 — 0) # 0. It turns out that curvature
2-forms F = dA in gauge theories can lead to non-trivial topological invariants
when they appear as terms F A F' in the action and can be reduced to edge terms.
The connection 1-form A approaches a pure gauge at the edge (where the curvature
has to vanish to guarantee finite action) A — U~ 9, U, similar to the situation with
Dirac’s monopole. This can lead to integrals over a phase 1-form and thus to winding
numbers. For an easy to read introduction see [3], Chap. 16.

7.3 Topology and the Quantum Hall Effect

In this section we use standard units. We will consider three aspects of topology:
(1) The phase transition underlying the quantum Hall effect can be described as a
transition from closed loops with zero windings around a circular system direction
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Fig. 7.4 Setup to measure current voltage characteristics of 2 D electrons in perpendicular
magnetic fields B. From these characteristics the conductances are determined

to extended loops with one winding around a circular system direction. (2) The Hall
conductivity can be described as a topologically quantized loop invariant. While
(1) and (2) are demonstrated within a deterministic dynamics approximation with
separation of time and length scales provided by very strong magnetic fields, we
consider (3) the more general fully quantum mechanical field theory approach to the
underlying quantum phase transition; however in a drastically simplified caricature
of this field theory. The caricature contains a similar topological term as the full field
theory. Our discussion follows closely the presentations in [4, 5].

7.3.1 Quantum Hall Effect

The integer quantum Hall effect (IQHE) was discovered by von Klitzing [6] in a 2D
electron system in the presence of strong perpendicular magnetic fields at tempera-
tures below 1K when investigating conductances from current voltage characteristics
(see Fig.7.4). The effect is characterized by a step-function like behavior of the Hall
conductance gy (see Fig.7.5) as a function of the so called filling factor. The filling
factor v is a dimensionless quantity proportional to carrier concentration n and in-
versely proportional to the magnetic field B. It also describes the ratio of the number
of electrons in the system N, to the number of magnetic flux quanta through the
system Ny,
hn N

_m N 7.29
"TeB T N, (7:29)

The plateau values of the Hall conductance turned out to be exactly quantized in
units of the quantum unit of conductance (conductivity)?

62

gn=Jj—-,Jj=123,.... (7.30)

2In 2D we do not need to distinguish between Hall conductivity o and conductance g .
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Fig. 7.5 Qualitative picture | G, Gy [e¥/nh]
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of the QHE being due to a
sequence of
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Remarkably, each integer j corresponds to a small region around integer filling
factors v = j. In addition, the IQHE is characterized by a vanishing dissipative
conductivity o in the Hall plateau regimes (see Fig. 7.5).% The peaks in the dissipative
conductivity as a function of the filling factor have a clear interpretation in terms
of a zero temperature quantum phase transition where electrons change from
immobile and localized to mobile and delocalized. This transition is called after his
discoverer [7] Anderson transition or more technically LD transition.

The IQHE can be described within an effective model of independent electrons
subject to a random potential V (x, y). Treating electrons as independent Fermi par-
ticles the thermodynamics is described by the Fermi distribution function for single
particle states. For simplicity we ignore the spin degree of freedom.

Since dissipative electric currents are due to transitions of charge carriers from oc-
cupied to empty states, at zero temperature, only states at the Fermi energy contribute
to the conductivity. In other words, the conductivity is a Fermi level quantity. If the
Fermi energy, in a macroscopic system, is situated in an energy range of localized
states no electric current can be carried through the system. Consequently, the zero
temperature conductivity vanishes.

Now, recall from a quantum mechanics course that strong magnetic fields quantize
the energies of free electrons into highly degenerate Landau levels*

3 Note, that for non-vanishing Hall conductivity a vanishing dissipative conductivity causes also
the vanishing of the longitudinal resistivity, since the current flow is perpendicular to an applied
electric field.

“#a harmonic oscillator problem with independence on a continuous quantum number.
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€j=ho:|j+ 3 (7.31)

where w. = eB/m is the cyclotron energy. Any amount of disorder in the system
will break the degeneracy and broaden these levels into Landau bands for the
density of states (see Fig.7.5). The IQHE occurs when the Landau level broadening
I" does not wash out the structure of separated Landau bands (I < hw,). In addition,
the temperature must be low enough to keep thermal transitions from localized to
delocalized states low (kyT < I, hw,). The filling factor v is an integer for each
fully occupied Landau band. According to the observed behavior of the longitudinal
conductivity in the IQHE it seems that states situated between the Landau levels,
corresponding to the plateau regions of the Hall conductance, are localized, while
states in the vicinity of Landau levels are delocalized. The latter correspond to the
transition regimes between subsequent plateaus (see Fig.7.5). The IQHE is thus
interpreted in terms of localization-delocalization (LD) transitions which occur close
to the Landau band centers. Localization in 2D disordered quantum systems at very
low temperature is by no means an unusual phenomenon. On the contrary, in a 2D
system with sufficiently strong disorder states are localized. Delocalization can only
happen for certain topological reasons—as is the case in the IQHE (see [8] for an
up to date review). The delocalization at the band centers occurring in the IQHE is
attributed to the strong magnetic field which puts an orientation to the area and to
certain states. In a finite system, the Hall conductance can be represented as a Fermi
level quantity, too. In this case, so called (oriented) edge states occur. They alone
cannot cause any dissipation, but contribute to the Hall conductance. Now we will
have a more quantitative look at the problem.

7.3.2 Winding Paths

The most simple and illuminating approach to the quantum Hall effect is provided
by the high field model which will be discussed now.

In the high field limit the cyclotron radius which is proportional to the magnetic
length £33 shrinks and electrons move along equipotential lines of potentials which
vary smoothly on the scale of /5. To see this one introduces center coordinates (X, )
and rapidly varying relative coordinates ({ = v, /w., 1 = —v,/w,) of the (distorted)
cyclotron orbit

x=X+¢ y=Y+n. (7.32)

The following commutation relations result

(X, Y]=it3, [, n]=—il3. (7.33)

5The magnetic length is defined by a square containing one flux quantum.
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The Hamiltonian reads

mw.?
H=TC(§2+U2)+V(X+;“,Y+17). (7.34)
Since the expectation values of ¢ and 5 are of the order £z ~ 1/ VB, in the limit
B — oo, for smooth potentials, the Hamiltonian (7.34) separates. Under the bound-
ary conditions of the Landau model the eigenvalues of the first term are the Landau
energies ¢,. Thus, in the limit B — o0, (7.34) is equivalent to

H=¢,+V(X,Y). (7.35)

Furthermore, in the limit B — oo the commutator of X and Y vanishes like 1/B and
thus the quantities X and Y can be treated approximately as commuting variables with
vanishing fluctuations. For this so called classical approximation the corresponding
canonical equations of motion are

. v 029V
- B y_—_B " 7.36
h oY h oX (7.36)
Obviously dV /dt = 0, i.e. the electron moves along equipotential orbits V (X, Y) =
const. (see Fig.7.6). We shall assume that the random potential is symmetrically
distributed around V = 0 and its variation AV := Vjux — Vpin is small compared
with the Landau level splitting, AV < hw,.

Fig.7.6 Equipotential orbits near the botfom and near the fop of a smooth random potential. Arrows
indicate the direction of the motion
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Fig. 7.7 In a system with edges directed equipotential lines exist which cannot backscatter in a
regime of bulk localization and therefore have transmission probability 7 = 1

Then, in the limit of infinite system size we have a topological classification: all
equipotential orbits with V' # 0 are closed (see Fig.7.6) while percolating open
equipotential orbits can only exist for V = 0, i.e. at energy E = ¢,. Thus, in an
infinite system there is a localization-delocalization transition which is in the high
field model a topological transition between closed and open percolating paths. If
the system is finite with one periodic direction, then the open percolating paths wind
around the periodic direction. Note however, that the percolating path meets several
saddle points where paths come close of the order of a magnetic length and therefore
the classical approximation, ignoring tunneling, becomes invalid. Let us concentrate
on a situation where the Fermi energy is in a regime of bulk localized states, where
the high field model is fine. In finite systems with contacts at two opposite sites
and boundaries macroscopically separated, there appear, due to the steep rising edge
potentials, directed equipotential lines along the edge (see Fig. 7.7). These edge states
are oriented according to the magnetic field and the gradient of the edge potential.
At opposite edges the direction is opposite. In a regime off the Landau energies,
where only closed equipotential lines exist in the bulk of the system, there is no
way for backscattering of an electron on its way along an edge state. Thus, in finite
systems also in the regime of bulk localization there are—due to their orientation-
topologically protected open edge states which are topologically distinguished
from bulk localized states. Both types cannot be transformed continuously into each
other without changing the winding number around a periodic system direction. It
has become popular to call such system a topological insulator. The impossibility
for an edge state to backscatter (the transmission probability is one) can be used to
demonstrate the quantization and stability of the Hall conductance in a scattering
theoretical approach to multi probe conductors pioneered by Landauer and Biittiker
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Fig. 7.8 In a Corbino Disc
geometry at the edges
directed edge states exist in a

regime of bulk localized
states @

(D

(for a review see e.g. [9]). Here we like to demonstrate that the quantization can be
captured by integration with topological content. For that purpose we put the 2D
system on the surface of a finite cylinder or-topologically equivalent—on a so called
Corbino disc as displayed in Fig. 7.8. We take the periodic direction along the current
direction (y direction). The current occurs in response to an applied electric field in
x direction. We start from the Kubo formula for the Hall conductivity oy without
detailed derivation (which is possible along the lines presented in Appendix C.1,
(C.20))

2 rdXdY of(E) .—
=e_ 5 M X, (7.37)
Ar ) 2m¢3 OE

OH

where f(E) is the Fermi distribution, which at zero temperature is the step function
F(E)=0(r—E), E=¢6,+V(X,Y), (7.38)

and X is the long time limit of center coordinate X. The formula can be made
plausible by pointing out that in the Kubo susceptibilities two operators enter: the
current —eY and the long time limit of the coupling operator to the driving field,
which is here the dipole moment —eX. The phase space in the high-field limit is
the (X, Y) space with unit size 271@%. The derivative of the step function shows the
Fermi edge character of conductivity. We can use the equation of motion for ¥ and
write
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- ——/dXdY X (7.39)

and, on integrating by parts,®

_ < / dXdy f(H) 9X (7.40)
D= AL X" ‘

At T = 0 the Fermi function limits the 2D integration to an area called B(er)

X X
/dXdY f— = / dxdy —
X

X
B(er)
= / dX A dY. (741)
B(er)

Let the Fermi energy lie above the Landau level. The area B(e) is the filling between
equipotentials at the Fermi edge. We can now apply Stoke’s theorem and find

/ dxdy fg—i = / X ()Y (s)ds. (7.42)

0B(er)

The boundaries 913 include all boundaries of B with proper orientation (see Fig.7.8),
i.e. in particular also those at =L, /2. The geometry of the system is equivalent to
that of a cylinder of length L,, there are no boundaries with respect to y. The set
0B (er) consists of contours which either wind around the cylinder and thus cannot
be contracted to a single point or do not wind and so can be contracted to one point.
Obviously, the latter do not contribute to the Hall conductivity (and thus represent
localized states), whereas each of the former (delocalized edge states) contributes an
amount proportional to

/ dsX(5)Y (s) = (£L,/2)(£Ly) = Ar (7.43)

where the sign reflects the handedness. Thus, each occupied Landau level contributes
via its edge contours one quantum e?/h to the Hall conductivity in a regime of
localized bulk states.

5The boundary value term vanishes since the potential energy right at the geometric boundary
is larger than the Fermi energy. Furthermore, a “would be” compensating term had already been
omitted in deriving (7.37).
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7.3.3 Field Theory with Topological Term

The aim of the field theoretical approach to the QHE invented by Pruisken [10] is
to explain the LD transitions by an appropriate generalization of the field theoret-
ical method applied to the metal-insulator transition in disordered systems at zero
temperature (Anderson transition) for strong magnetic fields. As shown by Wegner
[11] averaging of Green’s functions with respect to a short-range correlated random
potential V (r),

(Viva))=cse—r), (7.44)

can be formally carried out on the generating functional for disorder averaged Green’s
functions.
We sketch the main steps which follow the prescriptions of Sect.5.6.

1. As we have learned already, the one particle Green’s function-as an inverse
operator-can be represented as a Gaussian integral over commuting fields, where
a determinant appears in the denominator. One likes to average out the potentials
which is hard to do for the determinant. Therefore one likes to get rid of it.

2. One can either introduce several copies of the model (replicas) and let formally
the number n of replicas goes to zero which is mathematically dangerous. Or one
introduces anticommuting fields to get rid of the determinant and stays with a
supersymmetric field theory in fields of Bosonic and Fermionic type, ¥, ¥.

3. Now one averages over disorder which results in a quartic coupling of fields.
These fields are not the appropriate long range fields of the problem. To get those,
one reduces by integration to matrix variables quadratic in field combinations,
X = WY, By taking also their dual Fourier partners 0 into account and inte-
grating Gaussian variables out, one ends up with an effective theory in the dual
supermatrix field Q.

4. The next step is the search for stationary points and quadratic fluctuations. One
finds a situation of broken symmetry where the Goldstone matrix modes Q are
the candidates for describing transport modes in the system.

5. The final action is quadratic in gradients plus an oriented boundary term which
can be neglected in the absence of handedness in the system. However, the fields
are subject to constraints (Q? = 1) which makes the theory non-linear. In sys-
tems with magnetic fields there is an orientation and the boundary term becomes
important. The resulting action is mainly dictated by symmetry constraints and
the requirement of keeping only second order gradients. What remains to be cal-
culated explicitly are the coupling constants. It turns out that they are related to
the dissipative conductance g and the Hall conductance gy measured in quantum
units e?/ h and evaluated at the mean field level.
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The structure of the action of Pruisken’s non-linear sigma model is shown here’

S[0] = /dx [g (sTr {(3, Q) (3. 0)}) + %” (sTr{Q[0,0, BXQ]})]. (7.45)

As discussed in Sect. 5.7 with such model one tries to find the renormalization flow
of the coupling constants g and gy as a function of system size L to study the phase
transition. We briefly recapitulate the main ideas. The scale dependence is introduced
into the generating functional by a regulator that takes the full fluctuations of fields
on scales up to L into account while fluctuations on larger scales are suppressed. The
form of the Lagrangian will change by this procedure, but one hopes that one can
recast it in the same form as before with renormalized couplings. These renormalized
couplings will become scale dependent running couplings. This renormalization
step may be iterated and forms the renormalization semi-group action on the running
couplings, giving rise—when done in small steps—to differential equations with
respect to a continuous change of scale,

ding — B ): dingpy
ding P& 8 Tt

= ﬂgy(gv gH) (746)

The B-functions contain the scaling behavior of the coupling constants and the zero-
ings are the fixed points of scaling. They can be either stable or repulsive (in certain
directions), or marginal. In the vicinity of fixed points one can study the scaling
by linear approximation of the S-functions, giving rise to scaling exponents. How-
ever, an exact calculation of B-functions is usually not possible. The integration over
irrelevant fields can, of course, only be done by relying on Gaussian integration
and meets restrictions of applicability. This renormalization program for Pruisken’s
model (7.45) could be done so far only approximately in the vicinity of the delocal-
ized phase, where the mean field conductances are large numbers and the Goldstone
modes describe long ranged electron diffusion. However, a reliable qualitative con-
sistent picture for the scaling behavior in the IQHE emerged from that (see e.g. the
discussion in [12] or in [1], Chap.9). For this qualitative picture the second term in
the Lagrangian turned out to be of great importance. It shows the handedness due
to the magnetic field since it breaks the symmetry against interchanging x and y.
This goes together with its character being a total derivative, thus representing an
edge term. This edge term turns out to be topologically quantized. The resulting
two-parameter flow diagram compatible with the theory must then be periodic in gy
and must show a transition between different quantized Hall conductances. These
two hard facts of the model allow to sketch a qualitative form of the renormalization
flow, as predicted shortly after the model was found. It is shown in Fig. 7.9. The pre-
cise position g* of the separating unstable fixed point and precise scaling exponents
could not be derived so far from the model. However, alternative ways relying on a
numerical finite size scaling analysis were developed (for overviews see [8, 13]).

7STr stands for a trace respecting supersymmetry requirements.
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Fig. 7.9 Flow diagram of conductance g and Hall conductance gy compatible with the quantum
Hall effect. On the right B-functions (8(g) = dIn g/dIn L) are shown corresponding to a fixed
half-integer value of g ;7 (fop) and to the asymptotic one-parameter regime, drawn as bold semi-circle
(bottom)

To illustrate the interrelation of symmetry breaking, boundary condition and topo-
logical quantization let us consider a simple one-dimensional caricature model for a
complex scalar field ¢(x) with the U(1) global invariant Lagrangian

1
L= (3:¢") (0:9) + V(9 p) + % [¢* (0:0) — ¢ (3:9")] (7.47)

i

depending on ¢ and its first derivative d,¢ (and their complex conjugates). In (7.47)
V(¢*¢) is an arbitrary potential taking minimal values along a circle iy = M?
in the complex g-plane (see e.g. the p*-model of (6.52)) and the third term on the
r.h.s. introduces a handedness by breaking the symmetry against space reflection
x — —x. To study fluctuations around the stationary constant solution M we write
again—as with the discussion of Goldstone modes

p(x) = (M + n(x))e'“™ (7.48)
and expand to second order in the fields n and «,

1
L=V(M»)+ [(a,m)2 + <EV”|M2> nz}

+ M*(0,0)% + (Bc0) (M? +2M7), (7.49)
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which indicates again that «(x) is a massless Goldstone mode. Integrating out the
short-ranged field 1(x)® we end up with the reduced Lagrangian

Lur = M0, +| M2 @) | (7.50)

Thus, the contribution of the reflection symmetry breaking part of the effective La-
grangian (M 2(3,a)) to the effective action,

T = /dx Letr, (7.51)

is a pure boundary term which has no effect on the level of Euler-Lagrange equa-
tions. However, for the generating functional—defined by the effective action— the
boundary conditions become essential. Once we consider finite action solutions we
compactify the line R to a circle S! and the corresponding periodic boundary condi-
tions,

lim €% = lim %W (7.52)
lead to
lim (e(x) — a(—x)) =27 - Z (7.53)
X—>00

and quantized values for the boundary term result. A proof for the quantization of
the topological term in the field theory of (7.45) follows very similar lines [14].

7.4 Exercises

Exercise 1: Topological Classes
Find examples for topological classes by considering closed paths on manifolds.

Exercise 2: Dirac Monopole I
What could be concluded if the vector potential for the monopole could be defined
everywhere without any singularity? Think of Poincare’s Lemma.

Exercise 3: Dirac Monopole I1

Verify that the magnetic field fulfills the equations with A" and AS and that both
vector potentials are related by the given gauge transformation. Clarify the range
of definition of this gauge transformation. Repeat the argument about the quantized
charges.

Exercise 4: Quantization of Hall Conductivity
Go through the calculations which lead to (7.42) and argue carefully, why closed
bulk contours do not contribute and why edge states contribute one quantum.

8The linear coupling 2M nd,« changes the prefactor M 2 of (3y)? to some M2
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Exercise 5: Quantization of Topological Term in Caricature Field Theory
Repeat the argument about the quantization of the topological term in the caricature
field theory (7.47). Why must such term break a discrete symmetry? Which discrete
symmetry is it in Pruisken’s model (7.45) and why can that happen?
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Chapter 8
Selected Applications

Abstract We will have a look at selected applications of the methods developed so
far. Tunneling in a double well potential shows the importance of topological instan-
ton solutions as stationary action solutions. We have a look at the generating role of
entropy as a generalized thermodynamic potential close to equilibrium. A paradig-
matic model for non-equilibrium phase transitions is the Laser model where we meet
again the Landau potential and the interplay of drift and diffusion. That the concept
of semi-group dynamics cannot only be used for real time Markov processes will
be demonstrated within random matrix theory where a pseudo time Markov process
helps in simplifying the formulation of limiting distributions in different variables,
avoiding tedious measure transformations. Markov processes can be set up for evo-
Iution processes in other real parameters such as disorder strength s in a random
Hamiltonian problem or as system length L in a quasi-one dimensional (quasi-1D)
system for a so called transfer matrix. In the context of the dynamics for matrix vari-
ables we demonstrate the construction of an effective field theory that captures—in
a certain regime—the essential physical phenomenon: universal fluctuations in addi-
tive macroscopic variables. Finally, we look at a simplified renormalization group
analysis for the localization-delocalization quantum phase transition, bringing ideas
of quantum processes (interference) and Markov processes (renormalization group)
together in a single application.

8.1 Tunneling in a Double Well

The problem of tunneling of a particle with coordinate x in a one-dimensional (1D)
double well can be analyzed with the help of a Landau potential as displayed in

Fig.(6.1c),
2

Vi = -2 4 Ay & 8.1)

2 4 4x’ '
for a, A > 0and further simplifying approximations. We will only keep the following
characteristics of this potential: the positions x = +a := /a/A of the two minima
(where V = 0), the curvature mw? := V”(+a) = 2« at the minima and the barrier
height Vy := o?/(4)\).
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Fig. 8.1 Visualization of the two level approximation for the eigenvalue problem in a double well
potential

One knows from 1D quantum eigenvalue problems (see the listing in Sect. 4.4.1)
that the two lowest energy eigenstates are an almost degenerate pair of symmetric
and antisymmetric linear combination of ground states (energy Ey) of a single well
centered at opposite positions £a. These ground states of single wells will be called
| £) for obvious reasons. We will approximate the general tunneling problem by
restricting the dynamics to the two level problem of Sect. 2.3.6. Thus, in the | &)
representation the Hamiltonian is the 2 x 2 matrix with identical diagonal elements
H,. = H__ = Ej and identical off-diagonal elements H, - = H_, =: Ae/2. This
Age is, according to (2.52), the so-called tunneling splitting energy,

Ae
E1,2=E0:|:7. (8.2)
In this approximation (see Fig. 8.1) the tunneling splitting energy can be calculated
as twice the Hamiltonian matrix element

2

d
Ae=2H,_ = /dx Uy (x) [—% + V(x):| W (x). (8.3)

Since 14 (x) are concentrated on opposite sites, one can approximate this integral
very well by omitting the overlap with V (x) and doing partial integrations with the
kinetic energy term. As a result one has

Ae~m™! [H-(0)U] (0) — ¢4 (0¥ (0)]. (8.4)
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In this approximation the splitting energy is uniquely determined by the single well
wave functions centered at =a. The probability amplitude for a particle to start at
a and reach —a after time ¢ is the propagator (Green’s function) G(—a,a,t) =
(—a | e | a). From the calculations in Sect. 2.3.6 we know the answer in the
two-level approximation:

G(—a,a,t) =

% (e—i(Eo—As/2)t . e—i(Eo+Ae/2)z) — o—iE g (%I) '

(8.5)

The Green’s function can alternatively be calculated as a path integral via the
stationary action method as given by (3.42). We have a look at this calculation,
because we will see the importance of topological classes of such stationary action
solutions by direct comparison with (8.5). In a first step we have to find the stationary
action solution from a to —a in time ¢ which solves the classical equation of motion
mX = —V/'(x). By multiplying this with X and integrating over time from O to t and
noting that V(a) — V(—a) = 0, we have

m .,
—X

5 24 V(x)=0 (8.6)

and the action of such path with a one-to-one correspondence between time and
coordinate is purely imaginary,

a

Sinst = 1 / dx /2mV (x). 8.7)

—a

It is independent of the details of how the path is parametrized except that it must be
in a one-to-one correspondence. Such stationary action solution with a one-to-one
correspondence between time and coordinate is called single instanton action or
single ant-instanton action (if the path is reversed keeping the action the same). The
name was chosen by t"Hooft to point out that, for such single instanton action path,
the essential change from a to —a is localized in time at some intermediate time
t; over a time scale of order 27 /w set by the time period of motions in one of the
minima. Usually we look at probing times ¢ >> 1/w. In such case one must take
into account that not only this single instanton is a stationary solution, but many
instanton solutions with several bounces back and forth from a to —a exist. They
can be taken into account by summing them up in the stationary action method, as
written in (3.42). It is assumed that typically they are separated in time and thus
contribute independently (dilute instanton gas). The consistency of this assumption
can be justified by comparison to our previous result for the propagator for arbitrary
times 7. A typical multi-instanton solution is displayed in Fig.8.2 and shows the
topological character of kinks very much the same as in our example of a corrugated
iron sheet in Sect. 7.1. The total kink number must be —1 as we have a motion from
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Fig. 8.2 Visualization of a multi-instanton solution with total kink number —1

a to —a. Consequently, the instanton action can contain an odd number n of instantons
and anti-instantons. Thus, the contribution from & (anti-) instantons (k odd) is simply

S = & Sinet. (8.8)

The calculation of the determinant factor is a bit tricky because we have to solve
for the eigenvalues of the Hessian of the action at stationarity (see (3.42)) and here
we simply lend it from the oscillator problem in one minimum which is found for
large times ¢ to be proportional to e “*£0" where Ej is the ground state energy of such
oscillator. It can be written in the presence of k instantons as (for details see [1])

(CrkeEo! (8.9)

where C is a constant which remains to be calculated. Finally we must take care of the
fact that the positions of instantons in time are arbitrary and we cannot distinguish
them. For that reason we have to devide the contribution of k instantons by k! to
avoid double counting.! Now we apply (3.42) and find, after identifying the series
over odd k as the series for the sin function, for the propagator

G(—a,a,t) ~ e "5 sin (Cte'Sm) | (8.10)

By comparison with (8.5) we see how important the incorporation of many instan-
ton stationary action solutions is to get the correct functional dependence of the

TAn alternative view is performing an average over intermediate times 1% fot dn (;‘ dry ...
"tk—1
JoF Hdne = 17k
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propagator for arbitrary large times. In addition, we have learned that the tunneling
splitting energy .
Ae = 2Ce' S (8.11)

can be expressed by the instanton stationary action and the constant C to be deter-
mined from the determinant factor.

8.2 Entropy Close to Equilibrium

We consider the entropy S (quantum or configuration) with respect to a relevant
density operator or relevant distribution over configurations. To simplify notations
we write equations for the quantum case with traces over operators. This can easily
be translated to integration over functions. We consider further a situation of hydro-
dynamics, which means that the times 7 considered are separated from microscopic
times 79 where individual collisions could be resolved as well as from large time
scales 7., of global equilibrium. However, the time ¢ may be in a regime, where the
system has locally relaxed to some kind of local equilibrium. It is also important
that macroscopic currents /,,, are driven through the system. These currents are the
expectation values of time derivatives of some relevant observables O,,,

Xn(t) =(0,) () =Tr {00ra(1)}, (8.12)
I,(t) = atxm(t)a (8.13)
Orer(t) = 750, (8.14)

Now, we anticipate that X,, = (O,,) are convenient coordinates within a maximum
entropy ansatz for the non-equilibrium operator g,.;. Thus, we can write

Orel (1) = e~ P2, Ell(t)om’ (8.15)

where F,, () are Lagrange multipliers to guarantee the average values X,,. They are
called forces in this context. @ (¢) is a non-equilibrium thermodynamic potential.

It is now easy to show that the average entropy serves as a non-equilibrium ther-
modynamic potential,

S(t) = &) + D Fu() X (1), (8.16)

and that (8.12) requires the variational relation

0P
5Fﬂ]

=—Xn. (8.17)
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Thus, (8.16) generalizes the equilibrium Legendre transformation to this
non-equilibrium case (see [2]). The analogy goes further, as any variation of the
average entropy results in

05(t) = D Fu()6X (1) (8.18)

showing that forces and coordinates are thermodynamically conjugate to each other,

5S(1)
6Xﬂl (t) '

F(t) = (8.19)

Consequently, the positive average entropy rate within the system is bilinear in cur-
rents and forces

S@t) = Z F, (1), () > 0]|. (8.20)

An example is the entropy rate in the heat exchange between two reservoirs with
temperature difference AT'. The current is the heat current ¢ and the forceis 1/T —
1/(T + AT) ~ AT/ T?. A second example is the entropy rate of an electric current
I for a voltage U. Here, the force is voltage per temperature, U/T .

Very often the currents can be expanded in powers of the forces and the linear
response regime has a macroscopic range of applicability. In terms of the Fourier
coefficients f(w) of time dependent functions f(¢) = f dt f(w)e™’, the linear
relations can be written as

In(@) = D Lyn(@) Fy (), (8.21)

where L,,, (w) are called kinetic coefficients. They often fulfill symmetry conditions,
known as Onsager relations, due to the reversibility of the microscopic dynamics.
In the Appendix C explicit linear response formulas for such kinetic coefficients
are presented as Kubo susceptibilities. To see the relevance of such coefficients
in calculating physical effects consider a situation with heat exchange and electric
voltage. The electric current I and the heat current ¢ can be expanded as

U AT
I'=Leer + Ly s (8.22)
) U AT
q = Lqe? + quF. (823)

Now, the Seebeck effect corresponds to a potential drop related to the temperature
difference at vanishing electric current,

Loy AT
L T

U =

(8.24)
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In addition, the Peltier effect corresponds to a heat current at vanishing temperature
difference due to the presence of a voltage,

) U Ly
g = Lq,gF = L‘; I. (8.25)

An interesting conclusion, called minimal entropy production principle, can
be drawn for systems in the linear regime close to equilibrium. From (8.20) we have
for constant forces

S=>" LuFuF, = 0. (8.26)

mn

In full equilibrium all currents vanish, as well as the entropy production. Keeping
one current, say /|, non-vanishing, while the others, say /, tend to vanish, allows to
write for this state . .
%5 _ 21, =0; 0’ =2L (8.27)
oF, T 7 ooF T T '

Since diagonal elements Ly, are positive (due to positive entropy production), one
concludes that the entropy production is minimal with respect to driving forces. This
can help in modeling non equilibrium processes close to equilibrium.

In systems close to full equilibrium the equilibrium state is reached with minimal
entropy production. However, no new structure can emerge, as long as alternative
stationary states, separated by instability regions, are missing. As a prototype of the
emergence of new structures in non-equilibrium situations we consider the Laser
phenomenon in the following section.

8.3 Self-organized Laser Far from Equilibrium

The Laser problem can serve as a paradigm for self-organizing systems far from
equilibrium (see e.g. [3]). Before discussing this problem in some detail we like
to summarize the main ingredients of such systems in words and by a mathemati-
cal model, the Haken-Zwanzig model. A much more detailed discussion, capturing
quantitatively the fluctuating aspects, can be found in Chap. 12 of Risken’s book [4].

Self-organized systems can be described by a slowly varying relevant variable X,
called order parameter. The order parameter X is coupled to (many) fast relaxing
variables y, which follow the order parameter instantaneously. This leads to a non-
linear feedback for the order parameter which may then have more than one stable
region. The stable (attractive) regions are separated by unstable (repulsive) regions.
The dynamics of the order parameter may be described by a deterministic drift
part and a stochastic diffusive part. The drift part dynamics is characterized by a
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non-equilibrium phase transition scenario of Landau potential type (see Sect. 6.3).
The fluctuation part is dominating in the regime of vanishing (mean) order parameter
and it is responsible for triggering the spontaneous transition into a new stable ordered
phase, when the system is situated in the instability region.

The Haken-Zwanzig model captures the deterministic part of this scenario. It is
defined by two coupled (positive coupling constants a, b) deterministic differential
equations,

X =€eX —aXy, (8.28)
y=—y/T+bX" (8.29)

The relaxation time 7 of the fast relaxing variable y is assumed to be much smaller
than the long repulsion time 1/¢ of the slow order parameter X. Then, for |y| < |y /7|,
the fast relaxing variable follows the order parameter instantaneously,

y =r7bX?, (8.30)

and the order parameter fulfills an effective closed deterministic equation with Lan-
dau potential,

X =eX —abtX’ = -V'(X) (8.31)

—€_, abrt
VX)) = —X"+—

3 1 x4 (8.32)

The Landau potential has three local extrema, one local maximum at X = 0 and two

absolute minima at

X=+ /- (8.33)

Tab

provided the small parameter ¢ is positive. Then, the system shows order with non-
vanishing order parameter. It will, triggered by stochastic fluctuations, finally reach
one of two finite valued minimal positions. If the system is tuned to negative values
€, only one minimum at vanishing order parameter, X = 0 survives. When crossing
the threshold, ¢ = 0, stochastic fluctuations become very important (see Chap. 12.5
in [4]).

In a lamp oscillating dipoles of N atoms are sending photons which electric field
amplitude E is a superposition of waves. It reads in a one component 1D plane wave
approximation

N

E"™(x,1) = > e)(t) sin (wi(x/c — 1) + ¢ (1)) (8.34)

=1
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The amplitudes ¢;(¢) and phases ¢;(¢) are drifting and fluctuating quantities. Their
drift dynamics is typically much slower than the very fast wave oscillations,

lal 1o o, (8.35)

leil” 1]

Thus, we completely separate off the fast oscillating wave dynamics and look at the
slow drift dynamics. The stochastic fluctuations will be treated only qualitatively. For
an incoherent lamp light the field amplitudes and phases are only weakly correlated
random numbers resulting in a small common field amplitude E'*™(¢), as qualita-
tively shown in Fig. 8.3. However, a laser light source manages to self-organize in
such a way that all amplitudes, frequencies and phases become synchronized up to
some stochastic fluctuations,

E™(x, 1) = Ne(t) sin (w(x/c — 1) + ¢(1)), (8.36)
The resulting field amplitude is qualitatively shown in Fig.8.4. To see how this
comes about we sketch a semi-phenomenological treatment of the drift aspect of laser

dynamics (seee.g. [5]). In atwo level laser system with atomic energy level difference
€y — €1 = w and level occupation numbers N; and N,, three types of processes can

15
05

0.5

Electric field in a.u.

15
time in a.u.

Fig. 8.3 Qualitative sketch of the fluctuating field amplitude of an incoherent light source

15

1

Electric field in a.u.

-15

time in a.u.

Fig. 8.4 Qualitative sketch of the fluctuating field amplitude of a coherent laser light source
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occur: (1) spontaneous emission of a photon such that an electron changes from e,
to €1, (2) absorption of a photon with frequency w to raise an electron from € to
€2, (3) and stimulated emission of a photon with an electron moving from level ¢,
to level €;. While the spontaneous emission is independent of the field strength E
and occupation number, the absorption and induced emission depend on the field
strength and the occupation number of the initial level. The change of the electric
field is due to the coupling to the dipole fields and has some relaxation,

E=—kE+g) e, (8.37)
1

where « is a relaxation parameter and g a coupling constant. On the other hand, the
electric field E changes the dipole fields due to absorption and spontaneous emission

e = —ve +gdE, (8.38)

where vy is a relaxation parameter for the dipoles and d measures the difference in
occupation numbers D := N, — N; over the number of dipoles N,

_NM=N; D

d = —, 8.39
N N (8.39)

Usually, d is negative, because the lower level has higher occupation numbers in
an equilibrium situation. However, if one manages to get an occupation number
inversion by external pumping, one can reach a non-equilibrium situation withd > 0.
Furthermore, the occupation number difference will decrease as the energy of the
electric field becomes larger. The energy is quadratic in the field strength. Thus, the
difference can be modeled as

D = Dy — cE?, (8.40)

where c is some positive constant. We see, that (8.37-8.40) look similar to the Haken-
Zwanzig model. Provided the dipoles relax fast, |¢;| < v|e;|, we conclude that the
dipoles follow the external field instantaneously,

i (8.41)
v

having the same frequency and phase as the field £. We finally arrive at a drift
equation for the electric field of Landau model type,

— Z_E* (8.42)

. 2D 2
E=-V(E), VE)=(L22 _Eyp2 - 2°€
2 2
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Now, as soon as the lasing condition,

g*Dy
— K
Y

>0, (8.43)

is fulfilled, one finds two stable finite lasing field strength minima, separated by an
unstable maximum at £ = 0. In the non-lasing regime, the stable field strength is
E = 0 and fluctuations make the incoherent light.

8.4 Brownian Motion in Random Matrix Theory

Systems with disorder or complex dynamics can be captured by a stochastic mod-
eling and are described by an ensemble of Hamiltonian matrices in a certain matrix
representation. The relevant physical quantities can be obtained from the statistical
properties of the Green’s function G*(x, x'; E) = (x | [E +i0 — H]™! | x) as the
matrix representation of the resolvent [z — H]~' at energies that approach the real
spectrum from the upper complex half plane z = E +-i0. The field theoretic approach
to the quantum Hall effect briefly described in Sect. 7.3.3 stems from a mapping of
such random matrix problem. Here we will look at a simpler modeling focusing on
some universal properties of complex or disordered systems in a certain limit of their
dynamics, called ergodic limit. Owing to the energy eigenstate representation of the

resolvent,
| Ya,) (Y, |

, 8.44
E—«qa,+i0 ( )

[E+iO—H]’1=Z

Qay

the statistics of G (x, x’; E) is contained in the joint probability distribution of
eigenvalues, ¢, and eigenvectors, ¥,

P (60,1 s Ways Eays Wans Eazs Yazs - - ) (8.45)

To get some feeling about the nature of the statistical problem we consider the
Hamiltonianin a finite basis {|i)};,—; __ ashermitian N x N matrix Hy, = (i | H | k).
The diagonalizing unitary matrix U € U (N) with matrix elements Uy, fulfills

Z U;, HiyUro = 5(,16(1,3' (8.46)
ik

It is related to the amplitude of an eigenstate 1, in the {|k)} basis by

Valk) = (k|ta) = Uka- (8.47)
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We can think of the randomness of H as being controlled by a large number of
independent parameters, e.g. strength and position of point scatterers in space for a
spatially disordered system. We can also think of the matrix elements H;; as random
transition amplitudes in a complex system of states labeled by quantum numbers i.
Each realization of the Hamiltonian represents one point in a high dimensional para-
meter space.

As to the problem of the statistics of eigenvectors one can easily imagine two
extreme situations. In the first situation the probability distribution of U is peaked
at a single fixed matrix. This matrix singles out a certain basis of eigenstates. We
choose this matrix as the unit matrix, such that the Hamiltonian is diagonal in this
basis

Hik = E,‘(S,‘k. (848)

The corresponding eigenstates are localized to certain quantum number states, i.e.
Vo (k) = dak. (8.49)

The second extreme situation corresponds to an isotropic distribution for the unitary
matrix. By this we mean that the probability density, P (U), to find a certain unitary
matrix U within the volume element, d[{/(N)], is equal for all elements U € U(N).
The volume element itself stays invariant under the action of group transformations
(invariant measure) d[U(N)], i.e. it does not single out any particular element. The
corresponding eigenstates are isotropically distributed among all possible eigen-
states, no basis is preferred. Such systems are called ergodic. Of course, both extreme
situations are not generic ones, but can serve as limiting situations (phases) in a stabil-
ity analysis of complex or disordered systems. Therefore, to model an ergodic phase
we assume the distribution of the Hamiltonian matrix to be unitarian invariant. One
of the simplest possible choices is the so-called Gaussian unitary ensemble (GUE)
introduced by Wigner [6] when studying the level statistics of complex nuclei,

P ({Re Hy;, InHy}) d[H] = Cy exp (—%Tr H2) d[H]. (8.50)
0

Here Cy is a normalization constant, £ some arbitrary energy scale and the volume
element is defined in terms of the independent matrix elements of H as

N N
d[H] = HdH,-,- Hd(Re Hy) d (ImHp). (8.51)
1 i<k

Since Tr H> =2, _, [(Re Hy)* + ImH)*] + >_; H? the GUE describes a ran-
dom matrix with all its elements uncorrelated. Each of the elements vanishes on
average and its absolute value fluctuates, <|Hik |2) = Eg /N . If we think of the model
in a site-representation we see that by (8.50) transition amplitudes from from one
site to another are equally probable independent of the distance between sites. This
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means that we can associate a vanishing traveling time scale ¢p to travel through
the whole system. Ergodic systems are systems where the traveling time through the
system is much smaller than any other relevant probing time scale. In the absence of
intrinsic time scales one expects universal behavior.

Introducing eigenvalues ¢, and eigenvectors 1), (k) = Uy, one can transform the
probability P({Re H;;, ImH;;})d [ H] to these variables at the expense of introducing
a Jacobian between the set of variables. To calculate this Jacobian one needs precise
knowledge about the parametrization of the continuous group U (N). Fortunately,
these parametrizations are known and the Jacobian can be calculated (see [7]), the
integration over d[Z/(N)] being a trivial normalization (since Tr H? is unitarian
invariant), and one obtains for the joint probability of eigenvalues

N

N

Pler,...,en) =Cy H (ea — 65)zexp(— Z Eei) (8.52)
a<f3 « 0

The factors in front of the exponential are due to the Jacobian and describe that the
probability to find two levels close to each other vanishes; a phenomenon which is

denoted as level repulsion. The factors can be rewritten as exp (2 D aplnlea — €3 |>
such that the joint probability describes a classical Gibbs ensemble,

P ({ea}) = Cyexp[—FH ({ea D], (8.53)

of a gas of particles with coordinates €, and a Hamiltonian

1
H(gah) = 5 D Uear ) + 2 V(ea) (8.54)
a#f «
that contains a logarithmic two-body interaction U(x,y) = —In|x — y| and a

one-body (confining) potential V(x) = N x? / (Zﬂé'g). The inverse temperature is
1/T = 2 for the GUE. A related ensemble of real symmetric matrices, reflecting
time inversion symmetry, denoted as Gaussian orthogonal ensemble (GOE), gives
rise to the same Gibbs ensemble, the only change being 1/T =1 (1/T = 4 cor-
responds to spin systems with time reversal symmetry, for more details and review
see [7]). From a symmetry classification point of view, adopted in [8], further matrix
ensembles have been introduced and extensively investigated since. The interpreta-
tion of the joint probability distribution of levels as a Gibbs-ensemble has led to an
important mean-field approach to level statistics which we will embed into a field
theoretic description in the following Sect. 8.5.

In the standard random matrix ensembles a number of results are well known
which we will not repeat here (for a short overview see e.g. Sect. IITA in [9]). The
main result is that ideal ergodic systems (with vanishing time scale #p) are character-
ized by an incompressible spectrum of correlated energies. Here, we like to present
a stochastic process that leads to the GUE as its equilibrium state and which avoids
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the tedious calculation of Jacobians and allows a direct way, by perturbation theory
of second order, to find the Fokker-Planck equations for reduced variables. The con-
struction goes back to Dyson who constructed an Ornstein-Uhlenbeck process for
matrices in fictitious time s that relaxed to the Wigner Dyson equilibrium ensem-
ble [10]. The general ansatz for a stepwise change of the Hamiltonian is

OH = +ésH, + 6sH, (8.55)
with statistical properties of drift and diffusion,
(Hi) =0, (Hy) = DY, (HyyHypp) = 2Dg . (8.56)
Note, that D2 will in general depend on H (s). This general ansatz can be used
for drift and diffusion of any property derived from H, e.g. for the resolvent G =
[z — H]~! by perturbation theory up to second order in § H by terminating the Dyson
equation after two terms

0G =GIHG + GIHGJHG. (8.57)

This leads to drift and diffusion of a Fokker-Planck equation for the distribution of
the resolvent with respect to the evolution parameter s,

(0Gu) ] o)
5 = ; G Gu Dy + 2m§w GimGmnGuiDppy e (8.58)

6G 5G 1]
Lot Z Gion Gt Gem Gt Dy - (8.59)

The corresponding Fokker-Planck equation may be useful as a starting point to
investigate the distribution of matrix elements of the resolvent, e.g. the imaginary
part of diagonal elements which captures the local density of states. In this general
non-linear form it cannot be solved and further approximations are necessary; e.g.
linearization and decoupling. One may also have a direct look at the eigenvalues by
second order perturbation theory and one finds that, in the general case, the eigenvalue
statistics is coupled to the eigenvector statistics. To the authors knowledge, this
general concept of Brownian motion in random matrix theory has not been fully
exploited yet. However, in the extreme situation of a fully isotropic ensemble with
respect to unitary rotations, the situation simplifies and has been studied by Dyson.

The following choice by Dyson guarantees that diffusion with strength D is uncor-
related and equal for all absolute values of the complex matrix H with uncorrelated
real parts H' and imaginary parts H2.

<5H52’25H,L;2> = 6:10im (1 + 8) DSs. (8.60)
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The drift 5
§Hy = —Hy 2> (8.61)
T

serves to relax to an equilibrium situation for large s with relaxation time 7. The
corresponding Ornstein-Uhlenbeck process for H and initial Hy has the solution

—Tr (H — qHp)*

. L 2N—f/2
P,(H) = const.(1 — ¢°) exp 2D7(1 —q?)

, (8.62)

where ¢ = ¢™*/7 and f is the number of independent matrix elements. The sta-
tionary solution just equals the standard isotropic Gaussian ensemble of (8.50) with
parameters D and 7 appropriately identified.

For the eigenvalues Dyson’s choice of diffusion and drift of H leads to the fol-
lowing drift and diffusion for the eigenvalues by second order perturbation

Os D
(ek) = —&xr— + E (8.63)
T 12k E] — €&k
(5k51> = 5k[2D5S (864)

Consequently, the equilibrium level distribution is just the standard isotropic Gaussian
ensemble level distribution (8.52) with parameters appropriately identified.

Note, the level repulsion term is now a result of simple second order perturbation
theory and not a result of sophisticated investigations about invariant measures.

8.5 A Field Theory for Universal Fluctuations

We have a look at the Gibbs ensemble in (8.54) and want to set up a field theory
for fluctuations of a general dimensionless macroscopic additive variable X which
can be written as a so-called linear statistics of the N microscopic level variables
x;, X = Y, f(x;) in a Gibbs ensemble of a classical gas determined by a para-
meter free (universal) two-body potential (which can be chosen to be symmetric)
and a parameter-dependent one-body (confining) potential which contains the pre-
factor N,

POO = [ aVaP ) 5(x -3 f(x»),
P ({x:}) = Z7"exp —BH ({x;}).
H () = %%‘,U(xn,w +ZV(x,»>. (8.65)
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As an example, think of the number of energy levels in some energy interval,
N(OE; Ep). In this context x; are energy levels and f(x) could be chosen as a
characteristic function of an interval of width § E centered around Ej; as a smooth
function it could be a Gaussian,

N(GE: E)) = > f(x): f(x) = expl—(x — Eo)*/2(5E)?]. (8.66)

l

Another example is the total transmittance 7 of a wave guide with a large number
of traveling wave modes in a prescribed direction. The total transmittance is the sum
of the eigenvalues 7; of the transmission probability matrix. Explicit expressions will
be discussed in subsequent sections. Such wave modes can be charged or uncharged
modes like electron modes, electromagnetic modes and sound modes. For charged
modes the transmittance is the conductance in dimensionless units, as found by
Landauer [11] and generalized by Biittiker [12].

In a work on electron conductance Beenakker pointed out [13] that the one-body
potential in the Gibbs ensemble can be viewed as a source term in the partition sum

Z[V] :/de exp [—BH ({x; D] (8.67)
All cumulants® of the level density, o(x) := >, 6(x — x;), can be obtained by

functional derivatives

({oCxp) ... 0(x))) = o oo
O O S AV G -6 BV ) .

Cumulants of a linear statistics X = >_. f(x;) are given by integration
((x4) = / dxy ... dxg {(o(x1) ... 00)) f@D) ... f(). (8.69)
The whole distribution P(X) can be obtained from a modified partition sum Z(x),
P(X) = / dr e Z(k), (8.70)
where Z (k) follows from Z through a simple shift in the one-body potential

Vo) == V(x) + igf(x). 8.71)

2Recall that cumulants {(X")) are linear combinations of moments of order k < n. While moments
can be generated from a partition sum Z, the corresponding cumulants are generated by In Z. The
Gaussian distribution is characterized by vanishing cumulants for n > 3.
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In order to work with functional derivatives one has to know Z (or Z(k)) as an
explicit functional of the one-body potential. Alternatively, the knowledge of the
average level density as a functional of the one-body potential would be enough,

v(x) = (o(x)) = V[V (x)]. (8.72)

A field theoretic approach by the author [14] will be discussed now. Starting from
the partition sum Z, or Z(x), one proceeds along the prescriptions of Sect. 5.6 which
is also analog to the derivation of the field theory for the quantum Hall Effect, briefly
discussed in Sect. 7.3.3, albeit with much less technicalities.

1. The Hamiltonian is expressed by the level density o(x), replacing sums by inte-
gration. Here the absence of self-interaction is ignored in a first step and cured
later on an effective potential level,

Z Uxn, Xm) ~ /dx dy o(x)e(MU (x, y). (8.73)
n#Em

2. With the help of a -functional,
olv — @D (8.74)

a field ¢(x) is introduced that takes the role of the level density.
3. The §-functional is replaced by its Fourier representation,

exp [i / dx ¢ (x) [v(x) — ¢>(X)]] ; (8.75)

on introducing a dual field 1 (x).

4. Now, the original integration over the set {x;} can be carried out leaving a field
theoretical partition function in terms of two field degrees of freedom, ¢(x) and
Y(x).

5. Due to the two-body character of the original H the field ¢(x) can be integrated
out by a Gaussian integration. The final result is a path integral representation
of the partition sum Z or of the complete distribution function P(X), where the
integration runs over field configurations of ¢)(x). We concentrate on P (X) which
reads

P(X) = / D[] exp —S [t X1,

—1 1
S[@/J;X]:ﬁ(¢IK|¢)+§(f|K|f)Q2(¢;X)

+ Fy[¢+ BV]. (8.76)


http://dx.doi.org/10.1007/978-3-662-49696-1_5
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Here we made use of a short-hand scalar product notation,

(f1Al9) :Z/dx dy f()AC, )g(v). (flg) :Z/dx Jx)g(x). (8.77)

K denotes the inverse operator of U (U(x,y) = (x|U |y)), the functional
O(1); X) is defined as

X -8 (fIK )
BHSIKLD

and the functional Fly is a free energy of N independent particles with one-body-
potential ¢ + GV,

oW; X) =

(8.78)

Fy[Y+ BV]:=—NIn |:/ dx exp[— (¥(x) + ﬂV(x))]:| . (8.79)

The omission of the self-interaction can be cured on an effective potential level.
By shifting the one-body-potential V (x) to Vx) = Vx) — %U (x,x + A(x))
where A(x) is the average level spacing at x, the theory is able to account for
those quantities that are smooth on the scale of A(x). For example, with the
logarithmic interaction, U(x, y) = —1In | x — y | the effective potential reads
V(x) = V&) — nv).

The path integral in (8.76) cannot be calculated exactly. However, for large N

one can use the method of stationary action. Recall that V (\) contains the prefactor
N which we assume to be large: N > 1. Introducing the mean-field level density

VY as
0 N 0
Vx = — exp [— (43 +8V)], (8.80)
X
Zy = / d exp [~ (L (V) + BV )], (8.81)
corresponding to the stationary solution,
08
—| =0, (8.82)
o “
the mean-field equation reads®
~ ~ NK |1
) = =RV +57 k) + 57 QUORIf) + k. (689

3Equation (8.83) is identical to the one obtained by Dyson in the standard random matrix

ensemble [10].
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Here the kernel K is defined as

K — _M KiD=1lK=0 (8.84)
B Ak B o '
and Q(X) as
0(X) -_X_—YX (8.85)
- BTUIKL '
v N (fIK 1)
Yo o > 1.0
Xy :=—(fIK|V+p8 lnz/x)+—(l|K|1) . (8.86)

In deriving these equations it has been used that the mean-field level density is normal-
ized (1 | ¥}) = N and yields the current X as an expectation value (f | 1) = X.
Now one can draw the following conclusions:

1. For [V > A 'In ug)( the expression Xy equals the average value of X, inde-
pendently of current X. Since V' contains the large factor N the inequality is
satisfied as long as

[0X] < (X), (X)> 1. (8.87)

2. The stationary point of S is then given by

1 (X —(X)?
=-—"—+
28V (fIK 1)

where S(x is independent of current X.

3. One can also analyze fluctuations around the stationary solution and show that
they give sub-leading contributions to the path integral. Finally, one arrives at the
conclusion that the distribution of the linear statistics in a Gibbs ensemble with
universal two-body interaction and a parameter dependent one-body potential is,
for [6X]| < (X) > 1,

S M?(; 9] Sixy (8.88)

(8.89)

_ 2
P(X) = const. exp [_ X —(X) }

26- (fIK1f)
up to O(In X) corrections in the exponent.

Therefore, the distribution of the dimensionless linear statistics in the regime of a
large average value is described by a Gaussian with a variance,

(X)) =B (fFIK|f), (8.90)

being independent of the average value and only depending on the inverse kernel of
the two body potential in a quadratic form with the defining function f of the linear
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statistics. In the context of standard random matrices the variance of the number of
levels in an interval with large average number (N) > 1 thus turns out to be of
order 1,*

(6N)?) ~ 1. (8.91)

This result is plausible as the strong level repulsion in ergodic systems, captured
by the parameter free two body interaction potential U (x, y), makes the spectrum
of levels incompressible such that the number in a given window cannot fluctuate
strongly and the level number variance is of order 1, independent of the large number
of levels in that window. In the context of large average transmittance (7') > 1 the
variance is, for similar reasons, of order unity, too,

(0T)*) ~ 1. (8.92)

Thus, these type of fluctuations run under the name of universal fluctuations.

8.6 Transfer Matrix as Semi-Group Dynamics

When systems have a preferred long direction and transverse short directions
(like a wire or a wave guide) it can be helpful to consider the system as quasi-one-
dimensional (quasi-1D) with a finite number N, of quantum numbers labeling the
quantum states due to the finite extension in transverse direction. We will assume that
this number does not change along the preferred long direction. To exploit the quasi-
1D character one can try to do calculations of partition sums, or eigenvalue problems,
or scattering problems by a step by step procedure in the preferred direction. This step
by step procedure has a one-parameter continuous semi-group character if the units
can be defined as individual units coupled at their boundaries. The parameter is the
increasing system length L in the preferred direction. If the semi-group elements can
be represented by matrices and the group operation by multiplication such matrices
are called transfer matrices. We will exemplify this for wave guides in a scattering
set up with random locally weak scatterers to calculate transmission probabilities.
Thereby we make contact with the previously mentioned transmission matrix formu-
lation of transmittance and in Sect. 8.7 we look at an explicit renormalization group
treatment of the Anderson localization problem in 1D and of a quantum Hall effect
in a setup of two intertwined chiral 1D wave guides.

In a scattering problem for N, wave modes (channels) a scattering matrix can be

defined,
rt
S = (t r/) (8.93)

“When f is smooth; for a sharp step function a weak logarithmic dependence on the average level
number remains.
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Fig. 8.5 Visualizing the S-matrix relating incoming and outgoing scattering fluxes from left and
right

connecting incoming and outgoing fluxes left and right of a scattering region, f,
r, t" and r’ being N, x N, matrices of transmission and reflection coefficients for
scattering from left to right and vice versa, respectively (see Fig. 8.5),

(0] 1

The probability flux conservation |I|*> + |I'|?> = |O|*> + | O'|? requires the S-matrix
to be unitary,
SST = la,. (8.95)

Let us briefly mention how this S-matrix is related to a Hamiltonian dynamics
(see textbooks on formal scattering theory in quantum mechanics, e.g. [15]). The
Hamiltonian can be decomposed into a part that describes wave guides free of any
scattering, Hy, and a part H; that describes the finite scattering region. The scattering
states of the wave guides have a continuous energy spectrum which can be chosen
to obey energy normalization

((E)|o(E")) = 6(E — E). (8.96)
The S-matrix as defined by (8.94) at conserved energy E is given as
Saﬁ = 5ag - ZWiTag (8.97)

where the transition operator T is related to the Hamiltonian’s resolvent (Green’s
function) GT = (E +i0* — H)"! by

T=H, + HG"H,. (8.98)

Note that | ar) describe the incoming and outgoing modes corresponding to Hy and
the matrix elements of T are taken with these modes. Thus, the S-matrix is a well
defined object capturing the long time averaged scattering amplitudes following from
the Hamiltonian dynamics of a finite scattering region attached to wave guides. Here,
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however, we consider the matrix elements as starting point of the modeling and don’t
bother how they might have been calculated from a Hamiltonian.

The idea of a transfer matrix can be exploited by writing the relation between
in and out modes as a relation between left and right modes. We define the transfer

matrix M
I 0]
(5)=n(9). @59

By algebra one finds from the S-matrix that the transfer matrix M can be expressed as
Nl -1
m= () 8.100
(O, (5.100)
The probability flux conservation requires the symmetry property
Mo.M' = o, (8.101)
with o, being the Pauli matrix, which is diagonal, (1y,, —1x,). The semi-group
character of the transfer matrix becomes obvious when two scattering regions are
put together,
M = MaM,, (8.102)
as shown in Fig. 8.6.

As a macroscopic observable of great practical relevance we will address the
(total) transmittance,

T :=Tr {t'}| (8.103)

For charged modes this total transmittance equals the dimensionless conductance
g of a two-probe linear response setup. The conductance in standard units is then
given by g times the natural unit of conductance, e.g. 2/ & for electron modes. This
relation of transmittance to conductance has been found by Landauer [11] and was

I
Ly | —
M M
0 1 2 0
- - >
M
1+2

Fig. 8.6 Visualizing the composite transfer matrix M4, of two scattering regions connected by
wave guides
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generalized to a scattering matrix theory of admittance for multi-probe setups by
Biittiker and coworkers (for review see [16]). The relation between the S-matrix and
the transfer matrix M allows to express the transmittance as

2
T =Tr .
MMt + (MMH 1 +2

(8.104)

The matrices 7 and MM occurring in the transmittance formulas (8.103, 8.104)
are hermitian and, thus, can be diagonalized. The positive eigenvalues are denoted
as0 < 7; < 1 (fortt")and as 0 < e” < oo (for MM"). The eigenvalues of MM
appear in inverse pairs and we can restrict to those with v; > 0. The transmittance
reads in the corresponding eigenvalue representation

2
gzzi:zzzi:m. (8.105)

Here we see, as announced in the foregoing section on universal statistics, that
in these S-matrix models the transmittance appears as a linear statistics. There-
fore, the results on universal fluctuations apply to transmittance in ergodic regimes
(where the traveling time through the disordered system is much shorter than any
probing time scale).

8.7 Quantum and Markov: Anderson Localization

In the following we will look at the opposite limit where the modes become unable to
travel through a disordered system because of destructive interference after multiple
scattering events. This Anderson localization is a generic phase in quasi- 1D coherent
disordered wave guides. From the point of view of this book it is interesting that this
generic quantum phenomenon can be best captured by a Markov process in the
pseudo-time variable system size L. We thus have a closer look at the modeling
in quasi-1D based directly on the scattering matrix or, equivalently, on the transfer
matrix. The modeling of the coherent disordered wave guide goes by

1. fixing the statistical properties of the S-matrix corresponding to a small strip of
length § L, denoted as strip S-matrix S(dL) and

2. the composition of the whole wave guide by putting statistically independent strip
S-matrices in series by the multiplication of corresponding strip transfer matrices
M(@L).

The assumption of statistical independence is justified if the strip length § L is larger
than the microscopic disorder potential correlation length /. Furthermore, the mod-
eling allows for a simple description of the mean free path corresponding to the strip
S-matrix. As long as the corresponding reflection probabilities | 45 |* =: Rqs are
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small compared to 1 the mean free path /,, is large compared to 6 L and can be defined
as follows

L _
= N2 %(Raﬂ((m) : (8.106)

This situation is called local weak scattering as the mean free path is larger than the
strip length.

The S-matrix fulfills the requirement of unitarity. To model systems with specific
symmetry properties one can impose further symmetry constraints on S. Internal
degrees of freedom, such as spin, can also be incorporated by taken the corresponding
quantum numbers of wave modes into account.

Thus, the modeling rests on a microscopic length scale, the mean free path [,,, and
symmetry properties. The statistical problem is thus defined by (A) fixing the distri-
bution of the strip S-matrix S(JL) and (B) by applying the semi-group composition
law for the corresponding transfer matrices,

M(L +6L) = MGLYM(L) |. (8.107)

This defines a stochastic multiplicative process where the pseudo-time parameter is
the system length L. The statistical properties of the increment

SM(L,SL) = M(L + 6L) — M(L) (8.108)

are known by construction and hence it is always possible to construct a Fokker-
Planck equation for the distribution function P(M; L) (see e.g. [17]). This is, in the
local weak scattering situation, an exact equation as higher orders of a Kramers-
Moyal expansion vanish in the continuous limit L — 0. Still, a general solution of
this equation is presently not available and we will not discuss it in detail. Before
looking at the simpler situation of N, = 1 alittle later we collect some general results
for the case of an arbitrary number N, of channels. Under the additional assumption
of isotropic scattering with respect to the N, channels a Fokker-Planck equation can
be constructed in terms of only so-called radial parameters \; of the transfer matrix.
It is known as the DMPK equation (for a review see Chap. C in [9]) and it is known
that a solution has the form of a Gibbs ensemble with universal two-body potential
and a parameter dependent one-body potential, as discussed in the forgoing section.
This corresponds to an ergodic behavior in the transversal directions of the wave
guide. For large average transmission the universal transmission fluctuations can be
explicitly calculated. However, the average transmission does depend on the system
length L and is large only for system lengths shorter as the localization length ¢; to
be discussed now.

The semi-group property of the transfer matrix M (L) for L = NJL contains
the key to localization because eigenvalues of MM larger than 1 describe growth
of amplitudes, those smaller than 1 decay. Now, mathematical theorems (see [18])
as extensions of the central limit theorem (see Appendix A.9) for large products



8.7 Quantum and Markov: Anderson Localization 171

(large sums of logarithms) to the case of products of independent random transfer
matrices guarantee the existence of eigenvalues of the diagonalizable limiting matrix

Nlim (M(N)MT(N))ﬁ (8.109)
— 00
of the form

(eMWe, .. .,eM e, .., e V). (8.110)
The quantities y; < --- < ryy, are called Lyapunov exponents. The inverse of the

smallest Lyapunov exponent serves us to define the relevant localization length of
the problem
& =~;'0L. (8.111)

In the limit of large system sizes, NOL, N — oo, following (8.104), the transmit-
tance shows the behavior

1 .
lim m log Tr tt' = —27,. (8.112)

N—oo

This means that the transmittance becomes exponentially small for L > &,
T oc e 24, (8.113)

This is interpreted as a localization of the probability to find the corresponding
transport quanta in energy eigenstates to some finite region within the wave guide.
Indeed, numerical calculations of the stationary eigenstates of the corresponding
closed disordered wave systems show this spatial localization in typical eigenstates
at the corresponding energies (for a review see [19]).

As an instructive and paradigmatic example we consider the case of N, = 1.
The composition law (8.107) yields, after some algebra, the composition law for the
transmission (see Fig. 8.6)

1515)
fip = T (8.114)
1 —rir
Exploiting unitarity of S yields for the transmission probability
T =t R=1Ir; T=1-R (8.115)
and
T,
T, (8.116)

T 1= 2cos(VA TR + (1 — T)R,’

where ¢ is the sum of phases of r{ and r,. Based on (8.116) one can derive an
evolution equation for the probability distribution of 7" with increasing length L. We
take ) = T(L) and T, = T (L) and expand the denominator with respect to the
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small quantity 2 cos ¢/(1 — T(L))R(OL) + (1 — T(L))R(6L) up to second order,
such that orders of (R(JL)) 1/2 and R(JL) are kept consistently. The result is

OT(L) :=T(L+0L)—T(L)=T(L) [2 cos(¢)y/1 — T(L)y/R(SL)

+ R(SL) (4cos® (@) (1 — T(L)) — (1 — T(L)) — T(L))] (8.117)

Averaging over realizations of increments of width § L means averaging over random
phases ¢ and random R(JL). The latter is characterized by the mean free path /,,,

(R(SL)) = ‘;—L (8.118)

The resulting Kramers-Moyal coefficients stop after the second term in the continuum
limit 0L — 0 and read for drift and diffusion:

_erw) o TP

5L =P =— (8.119)
(O6T@)?) o A =TA)NTXL)
s = DM = T . (8.120)

The Fokker-Planck equation for the distribution of P, (T) depending on system
length L can be easily brought to the form of a continuity equation

AL PL(T) = (L)™' 07 [(1 = T) Or (T Pu(T))] | (8.121)

where the current density is J;(T) = —(l,,) " [(l —T)0r (TZPL(T))]. This dis-
tribution depends on only one parameter, the mean free path /,,. The Fokker-Planck
equation has two fixed points at vanishing current: T is J-peaked at 7 = 1 or alter-
natively at 7 = 0. The fixed point at 7 = 1 is unstable and any small deviation leads
to a flow to the stable solution peaked at 7 = 0. This can be seen in the two limiting
cases: (A) T < land B)R=1-T « 1.

For case (A) the solution is a log-normal distribution,

! [_ (InT — (=L/ln))*
AL, 20L/l)

with a typical value 7; := exp(InT) = exp (—L/Il,). This solution corresponds
to a typical localization length of £ = 2/,,. Interesting is the fact that the second
parameter of the log-normal distribution, the log-variance 2L /1, is simply related
to the log-average value

P.(T)dT = ] dInT, (8.122)

(InT —(InT))*)=2(InT) = 2L/1,. (8.123)
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For case (B) the solution is an exponential distribution for the variable R,
-
P (R) = 2 exp (—RIl,,/L) (8.124)

with average value (R(L)) = L/l,,. This solution is valid only for very small system
sizes L < [, and becomes invalid very quickly for increasing system size L. When
the system size reaches the mean free path, a cross over to the log-normal distribution
with exponential localization behavior evolves. The stability of exponential local-
ization can also be concluded by looking at the time evolution of average values of
functions of 7', (F'(T)), which follows uniquely from the Fokker-Planck equation,

O (F(D)), = )~ {{T?(1 = TYF"(T)), = (T*F'(T)), }, (8.125)

where F’ and F”, stand for first and second derivatives with respect to T, respectively.
Taking the variable F(T) = InT yields a very simple exact equation:

0, (InT), = ()| (8.126)

This proofs unambiguously that the typical transmission decays exponentially for
large system sizes and that the localization length is

§ =2, (8.127)

in the 1D disordered wave guide. Notice that the distributions in both limits
(A) and (B) are very broad as can be concluded from the strong growth of moments.
The occurrence of broad distributions is central in disordered coherent systems
(see e.g. [20]).

For arbitrary channel numbers N, the above 1D result of a localization length of
only twice the mean free path does not apply. For ergodic systems with respect to the
transverse directions it turns out, as one might expect from a parallel composition
law, that the localization length is

&I(Ne) =~ Nely. (8.128)

We now switch to a related model of two intertwined chiral 1D wave guides
which captures the qualitative essence of the localization-delocalization mechanism
of the quantum Hall effect as discussed in Sect. 7.3. The idea goes back to the
Chalker-Coddington model for the quantum Hall effect in 2D [21] which picks up
the high field limit of Sect. 7.3.2, but allows for tunneling at each saddle point where
equipotential lines with opposite orientation come close of about a magnetic length /p
(see [22]). The Chalker-Coddington model consists of a regular network of scatterers
as displayed in Fig. 8.7.


http://dx.doi.org/10.1007/978-3-662-49696-1_7
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Fig. 8.7 The graphical
representation of the
Chalker-Coddington network
model. Wave amplitudes
propagating on links can be
scattered either to the left
with transmission coefficient
t or to the right with
reflection coefficient r by
unitary scattering matrices
situated at the nodes of the
network

Fig. 8.8 Schematic
representation of a \

renormalized T(L)
Chalker-Coddington network

of size L x Lina

two-terminal set up having
the same terminal structure
as a cell in the original \

network

/ R(L)

N

These scatterers, interpreted as 2D scatterers in a rectangular network, have only
two ingoing modes and two outgoing modes like a scatterer in 1D. However, with the
topology of the 2D network such scatterers allow for 7 = 1 — R &~ 0 only clockwise
motion and for 7 & 1 only counter-clockwise motion, resembling equipotential
orbits in the high field limit (see Fig. 7.6) for states with energy eigenvalues below or
above the percolating energy level, respectively. The possibility of finite transmission
or reflection at a scatterer makes the Chalker-Coddington model a quantum model
for the assumed universal quantum phase transition responsible for the quantum Hall
effect. Now, a real space renormalization of the Chalker-Coddington model could be
build on the study of the system size L dependence of the two-terminal transmission
T (L) as displayed in Fig. 8.8. The calculation of macroscopic transmission to the left
or to the right is, so far, possible only numerically (see [23]). However, a caricature
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Fig. 8.9 Construction of a
network of an intertwined
chiral set up of two 1D wave
guides by adding
infinitesimal networks to a
square network of linear size
L. The infinitesimal
networks are characterized
by a small extension JL in
one direction. The network is
composed according to
series and parallel
composition laws (see text)

can be set up (see [24]) by attaching infinitesimal blocks at two sides of the 2D system
as displayed in Fig. 8.9. This set up ignores lots of scatterers but keeps the chirality
of clockwise or counterclockwise edge states intact. It can no longer be considered
as a fully 2 dimensional Chalker-Coddington network but as a an intertwined chiral
set up of two 1D wave guides. We now proceed in analogy to the one-dimensional
case and take the average of the infinitesimal strips as

(R(L,0L)) = (—=InT) - (dL/L),
(TOL,L+6L)) =(—In(1 —=T)),-(SL/L). (8.129)
With this setting and taking the composition laws of 1D wave guides (8.116) in an
alternating way for 7 in the 2D setup (now called series composition) and than for
R =1 —T (now called parallel composition) the resulting Fokker-Planck equation

reads
OL P = —0rJi(T), (8.130)

where the current density J. (T') is given by

2L
T 2
+ (In(1 = 7)) 570, {(1 ~T) PL(T)} . (8.131)

J(T) =(InT),

o {TZPL(T)}
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The results that one can obtain from the Fokker-Planck equation (8.131) are:

e There are three fixed point distributions: 6(7"), §(1 — T'), and a uniform very broad
critical distribution P*(T) = 1.

e The d-like solutions correspond to stable separated percolating edge states.

e The broad uniform critical distribution is unstable and describes large fluctuations
at criticality. As soon as the system is slightly off criticality the distribution flows
to one of the stable distributions under increasing system size L.

e To extract the critical exponent v of the localization length one may take

X, =(n(1-T)) —(InT), \ (8.132)

as a scaling variable. It has a fixed point value X* = 0. Linearizing the flow
equation around the fixed point distribution gives rise to a J-function for X,
which reads

dx,
T =P =X, (8.133)

Consequently, the critical exponent of the correlation length is v = 1.

Although this intertwined setup of two chiral 1D wave guides does not lead to the
full Chalker-Coddington network, it is able to describe the correct qualitative physics
of the localization-delocalization transition reminiscent of the quantum Hall effect:
separated chiral edge states where the localization for one orientation means delo-
calization for the other and a transition with delocalization in both is unavoidable for
topology reasons.

8.8 Exercises

Exercise 1: Tunneling in a Double Well

Show for a two level system with identical diagonal elements and identical off-
diagonal elements that the eigenfunctions are symmetric and antisymmetric super-
positions of the basis states in which the matrix was set up (see Sect. 2.3.6).

Exercise 2: Self-organized Candle Flame

The self-organized candle flame is a paradigmatic example of a so called dissipa-
tive structure where a system is subject to currents of energy and material. In the
stationary state the wick supplies the flame with a liquid wax stream, evaporates in
the burning zone and reacts with the oxygen of the air. This releases energy which
can be transformed to light in the area of the candle flame. Argue that the internal
entropy production AS; scales with the volume of the flames size and argue that the
exported entropy AS, scales with the surface of the flames size. Find an argument
of stationarity such that a certain stable flame size results.
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Exercise 3: Drift and Diffusion for Green’s Function

Derive a Fokker-Planck equation for the distribution of Green’s function starting
from (8.56) and (8.57). Specialize to a Fokker-Planck equation for the distribution
of the local density of states o(E; x),

o(E;x) == (x [ 0(E — H) | x)

1 cA1—1 :n1—1
=§<x|[E—H+IO] —[E — H —i0] |x).

Exercise 4: Range of Universal Fluctuations
Analyze fluctuations around the stationary solution of the model defined by (8.76)
and show that they give sub-leading contributions to the approximation

(X — (X))? }

P(X) = const. exp [_m

as long as [0 X| < (X) > 1 (up to O(In X) corrections in the exponent).

Exercise 5: Typical Quantum Transmittance
In 1D the phase average yields for the logarithm of the series composition the simple
additive result:

(ln T12>¢ =1In T] + In Tz.

Iterating this procedure tells that the logarithm of the transmission will be distributed
in a Gaussian way according to the central limit theorem for independent additive
random numbers. This motivates to call 7; := exp (In T') the typical transmission,
and to write down a quantum series composition law for transmittance in 1D wave
guides

T.(Ly + L) = (L) T(Ly).

Now combine this with a subsequent parallel composition, where R = 1 — T takes
the role of 7. Look at an infinitesimal increase of systems length: L; = L, L, = dL.
Conclude that a S-function for the typical transmittance of such combination of series
and parallel composition reads

dIn T;
dInL

B(T) = =TInTi—(A-T)In(1 -T).

Analyze its fixed point behavior and calculate the critical exponent v for this -
function.
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Appendix A
Random Variables

Quantities that change in time in stochastic processes are called random variables.
Random variables in general with no explicit reference to time are the subject of
statistics and probability theory, the basic concepts of which we introduce in this
appendix. Some overlap with the main part is tolerated for better readability.

A.1 Facts, Frequencies, Mean and Fluctuation

In a scientific approach to reality there are at least two good reasons for using statis-
tical methods. (1) We like to classify events which have taken place and are known
through documents. In classifying such facts we describe them in terms of proper-
ties and then make a choice which properties are relevant for us. Counting facts with
some relevant properties is elementary in any scientific discipline and is the basis
of descriptive statistics. (2) We like to prognosticate or even predict properties of
potential events that could become facts in the future.

Usually, for practical or general reasons, we cannot exactly predict an event to take
place at a definite time. Thus, we call it a random event. A prognostication based
on a descriptive statistics of facts and theoretical insight is the area of probability
theory.

A random event ¢ is an element of a space of events with f degrees of freedom
forming a configuration space. For a quantitative description we assume that random
events can be represented by real coordinates x'(¢),/ = 1, ..., f, forming a vector
of coordinates x (¢) € R/. The coordinates x of the random event ¢ are called random
numbers or random variables. They can be either discrete or continuous.

To describe facts associated with random events we consider M non-overlapping
classes Q;, j = 1,..., M which are either identical to the random numbers in the
discrete case or form an f-dimensional hypercube,

Qj=1'x--x1I! (A1)
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where 1 jl is some interval for coordinate x’. The total space S of random numbers is
called coordinate space of events (sometimes “coordinate” is dropped for simplicity),
or in short sample space. It is made up by all classes

- M
s=UJ_ 0 (A2)

We assume to know how to decide if an event has taken place and has become a fact.
The registration of a fact is what we call a measurement, or in short a trial. Surely,
a reliable measurement that meets scientific standards can only be done on the basis
of some theory, or at least a pre-theory, that is open to improvements. The theory
tells which documents are to be accepted in order to decide if an event with certain
properties has become a fact. Performing measurements under controlled conditions
that could be met again later within some accepted range of validity is what we call
an experiment.

The number of facts with random variables to be found in class Q; is denoted
as H; and called the absolute frequency of class Q. Often, each class Q; will be
represented by a discrete random number x ; within that class.

The total number of facts N := Z/;/I:, H; should equal the total number of trials
in the experiment, assuming that each of N trials leads to a definite result within the
M classes. Thus, the relative frequencies /1; := H; /N are normalized to unity,

M
> hj=1. (A.3)
j=1

The well known example for a discrete random event is the outcome of throwing a
dice, which can be described by a one-dimensional variable represented by a coordi-
nate x that can take discrete values, for example two values 0 and 1. The outcome of
an experiment where the dice is thrown 100 times may be H (0) = 34and H (1) = 66.
The relative frequencies are 2(0) = 0.34 and /(1) = 0.66, summing up to one.

As an example for a continuous random event, we take the weight of a certain
sort of bread that we buy on many days in the same bakery, say 682 times. The
bread is announced to have a weight of 500 g. Thus, we have a one-dimensional
variable x which can take positive real numbers in units of g. The precision of our
scale may suggest to take classes of intervals of width 5 g. A possible outcome of the
experiment is depicted in Fig. A.1. What to do with the outcome of an experiment,
the relative frequencies? The relative frequencies allow to calculate the mean of any
property A(x) being a function of x, i.e.

1 N
(Adg = D> A, (A4)
i=1
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Fig. A.1 Frequencies for weight of a sort of bread

where the sum runs over N trials with outcome x;;, i = 1, ..., N. With the relative
frequencies it can be calculated as a sum over the M classes as

M
(A)g =D Ax))h;. (A.5)
j=1

The following special functions are sometimes useful for formal derivations: the
characteristic function ; of a class Q; which equals unity, if x € Q; and vanishes
otherwise, and the 1-function which equals unity on all classes, i.e. | = > i X The
mean of the characteristic function is nothing but the relative frequency,

(Xj)d = hj, (A.6)
and the mean of the 1-function yields the normalization of relative frequencies,
(g = 1. (A7)
The mean is a linear operation,
(MAL+ 2A2)q = A (Ar)g + A2 (Az)g . (A.8)

In the above examples of throwing a dice 100 times and of buying many days a
certain type of bread, the means are (x)4 = 0.66 and (x)4 = 502.8, respectively.
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Whenever a random number fluctuates in our experiment, i.e. the relative fre-
quency is not simply 1 for just one class (h; # 0;j, for some jj), the descriptive
variance o7, of any x-sensitive quantity A(x) is non-vanishing,

oha = ((64)%), == ((A — (A)y)?), = (A7), — (A)3 = 0. (A.9)

The square root 44 1= \/JTAd is called descriptive standard deviation. In the above
examples of throwing a dice 100 times and of buying many days a certain type of
bread, the standard deviations are 0,4 = 0.47 and 0,4 = 7.0, respectively.
Fluctuations in two quantities A(x) and B(x) show up in the descriptive corre-
lation,
Capa:=(0AOB)y = (AB)g — (A)q (B)4 - (A.10)

The resulting descriptive correlator

C
Rapg = — 2B (A.11)
TAdO Bd

is anumber between —1 and 1. We denote A and B as uncorrelated, if R 4 g4 vanishes,
as totally correlated, if R4pq = 1, or as totally anti-correlated, if Ropq = —1.

The relative frequencies /; contain the complete knowledge about a system in
descriptive statistics. Naturally, one tries to characterize the system by few charac-
teristic parameters, such as mean (xl) > standard deviation 0,14, correlations Cyi kg
and possibly higher moments <x’ .. .xm) 4 of the random variable x. However, high
moments usually don’t add very much to the understanding.

Instead, in the case of a one-dimensional random variable x the so-called quantiles
can be very helpful in characterizing. The a-quantile x,, is defined as that (in an
infimum sense) value of the variable x, for which the summed histogram has reached

the value o € [0, 1],
M'(x0)

> hj#a (A.12)
j=1

In particular, x( s is called median and can often serve as a typical value of the
histogram, even when the mean is strongly influenced by rare events far from typical
values. Furthermore, positions were the histogram has local maxima and minima
may be of importance.

Before we turn to prognostication and probability theory, let us stress that ran-
domness is not necessarily in conflict with determinism. To clarify the notion, we call
a set of random numbers x;y, i = 1, ..., N deterministic, if we know a law which
determines each value in a definite way. For example, a time series x;; = x(f;) of
a motion x (¢) obeying a differential equation x = F(x) with continuous F yields a
deterministic set of numbers. Even in this case, we can study mean values and fluctu-
ations. When we talk about random numbers we simply do not know an underlying
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deterministic law, or we know such law, but its to complicated to study, or its of no
use for the questions we like to ask. In some cases, as in quantum theory, there might

be good reasons to assume that there is no underlying deterministic theory at all, but
this is to some extent a matter of taste.

A.2 Potential Events, Probability, Mean and Fluctuation

Probability theory is a mathematical discipline. However, when applied to practice,
probability has the following meaning directed to the future: the probability P; > 0
of potential events in class Q; is a prognostication for the relative frequencies & ; to
be found when potential events have become facts.

For continuous random variables a probability distribution, with P(x) > 0,
yields the probability P; of class Q

P; :=/dfx P(x)y;(x). (A.13)

Prognostic mean values for quantities A (x) are commonly called expectation values.
For probability distribution P (x) they are defined as

(A) :=/dfx P(x)A(x). (A.14)
It is linear in A and must fulfill the normalization
(1) :/dfx P(x)=1. (A.15)
Equation (A.13) can be written as
P; = (Xj)~ (A.16)
Expected fluctuations in quantities A(x) and B(x) are given by the correlation,
Cap :=(0A6B) = (AB) — (A) (B), (A.17)
or, in case of a single quantity, by the variance,
o3 = ((0A4)%) = (A%) — (A)%. (A.18)
For a one-dimensional random variable the a-quantile x,, is defined as that (in an infi-

mum sense) value of the variable x, for which the integrated probability distribution
has reached the value « € [0, 1],
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Fig. A.2 Gauss-distribution in a.u.

Xo

/ dx P(x) = o (A.19)

—00

In particular the median x5 can often serve as a typical value of the distribution,
even when the mean (x) is strongly influenced by rare events in fat tails far from
typical values. However, quantiles are difficult to calculate, because one has to invert
the integrated probability with respect to the upper limit.

The well known Gaussian distribution (also called normal-distribution) is a
prototypic probability density. It is defined for f = 1 by

Poauss(x) = 2ma?) " exp —(x — x0)*/(20%). (A.20)

Itis displayed in Fig. A.2. The Gauss-distribution is centered around its maximum
at the average position (x) = xo = x¢ s with exponentially small tails. Its variance is
indeed the parameter o2 with xg + 0 & xg 84, X0 + 20 = X093 and xo + 30 & x0.999.

A probability fulfills its purpose, if it yields reliable expectation values for descrip-
tive means,

(A)y — (A). (A.21)

The “limit” is an empirical limit, not a mathematical one. To test a probability we
have to perform N trials under “similar conditions”, take the relative frequencies
h;j(N) and check empirically for large N if we find

hj(N) = P; =0;(N) —,_.. 0. (A.22)

00
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Notice that this empirical limit involves not only a large number N of trials, but they
have to be performed under similar conditions. That similar conditions lead to similar
facts is the central observation on which any science is based. In its sharpest form,
where equal conditions lead to equal facts it is the reason to formulate philosophical
categories as causality, continuity and homogeneity of time. In reverse, we expect
from equal facts that equal conditions had been fulfilled leading to the principle of
sufficient reason.

In practice, we can never be sure, that we have met similar conditions. But if
seemingly similar conditions do not lead to similar facts, we expect that either we
missed something essential in preparing similar conditions, or we face a phenomenon
with very sensitive dependence on the variation of conditions. In the latter case we try
to fix in a quantitatively controlled manner the conditions and look for the quantitative
fluctuations in facts, which should at least shrink in a systematic way.

What does “large N”” mean? If we are able to perform an experiment of N trials
under similar conditions, then we expect that for each trial the expectation value can
be estimated by the same distribution P(x). If that is true, a mathematical result,
known as law of large numbers helps in fulfilling the empirical limit of (3.8). An
elementary version of this law will be discussed in the following section.

In most cases of constructing time-independent probabilities, if not all, one starts
from some a-priori probability distribution for elementary situations with high sym-
metry or no preferential outcome. For such elementary situations the probability is
equally distributed or biased in a specific way if constraints have to be fulfilled. They
can be constructed on the basis ofmaximum information as discussed in Sect. A.10.

As an example consider throwing a dice with say 6 sides and corresponding
numbers. For a good dice all 6 sides should be made the same way and no side
is distinguished. Even, if we take little variations into account, by throwing the
dice in an unpredictable way, we expect that all numbers have the same a-priori
probability. If we have very much detailed knowledge about the design of the dice
and all of the conditions when throwing it, we might be able to predict which number
becomes a fact, i.e. the underlying dynamics might be fully deterministic. However,
the sensitivity to slight variations in the conditions of throwing is such, that after
many trials the resulting facts do not seem to prefer any specific number.

In such cases, where the outcome of each of N possible events has no preferential
outcome the golden rule of probability applies. It states that the probability of a
class Q is the ratio of advantageous elements (M) to all possible elements (N),

P(Q) = M/N. (A.23)

Before we proceed, a few remarks on notation. In mathematical statistics € is
called elementary event; more generally any subset w of the set S of elementary
events is called an event. Probability is introduced as a real valued function P(w)
satisfying Kolmogorov’s axioms 1-3.
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1. P(w) >0
2. P(S) =1
3. P(Uw) =2, P(w)

Within our notation the first axiom means positivity of the probability distribution, the
second means normalization and the third allows for the introduction of a distribution
to be summed up by integration. For a 1D-continuous set of random numbers P(x) =
f *dx’ P(x") is called probability of the set with random numbers smaller than x.
While mathematicians prefer this probability, physicists prefer the density P (x)
with the understanding that P (x)d/ x is the probability to find x in the infinitesimal'
volume element d/ x. For discrete random numbers x,,, the density has delta-peaks
P(x) = > P,6(x —x,), such that P, is the probability to find the discrete value x,,.
Mathematicians dislike the notion of §-function, since it is an ill defined function. Its
sound definition is via the notion of distributions (linear functionals), but physicists
like to think of a family of strongly peaked normalized functions which shrink to a
point-like support and keep in mind that the corresponding limit has to be performed
after some integral has been carried out.

A.3 Large Numbers I

As a consistency check for the interpretation of probability as relative frequency for
large N we consider the following situation.

We have N random numbers {x;} each of which could have been predicted by
the same distribution P (x). Then we find for the predicted mean and variance of the
relative frequencies h; = 1/N S, x, (x))

(h;) = p;, (A.24)

((6n;)%) = % (P — P2). (A25)

The first of these equations is nothing but repeating the interpretation, but the second
equation is deep. It tells two interesting things.

Whenever P; = sz, which means P; = 0 or P; = 1, there are no fluctuations in
frequencies, independent of N. More importantly, if relative frequencies fluctuate at
all, the fluctuations die out with large N as 1/+/N and & ;j reaches asymptotically its
mean value P;, i.e. relative frequencies become self-averaging.

This mathematical result is alaw of large numbers. It ensures that the interpretation
of probability as relative frequency for large N is no nonsense. However, it does not
prove the empirical finding of convergence of relative frequencies to probabilities,
since we can never be sure, that each random number is well predicted by the same
distribution, i.e. measured under similar conditions.

!nfinitesimal is short hand for: where linearity rules.
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A4 Or, And, and Conditional

So far we considered non-overlapping classes Q; which exhaust the full space §
of random events. Since Q; N Qy = ¥ we have P(Q; U Q) = P(Q;) + P(Qx)
and >, P(Qx) = 1. Non-overlapping classes mean that the corresponding events
of Q; U Qy are either in Q; or in Q. Thus the simple summation of probabilities
corresponds to “either-or” of events.

Now, consider an arbitrary class Q of events which may have some overlap with
class Q. Since we can always decompose Q into non-overlapping classes as Q =
O\ (@NQU(QNQx), wehave P(Q\(QNQk)) = P(Q)—P(QN Q). Then we
decompose Q U Qy into three non-overlapping classes QU QO = (Q \ (Q N Q) U
(O N Or) U (Qk\ (QN Qy)) and get the generalized sum rule for probabilities
corresponding to “or” of events,

P(QU Qr) = P(Q) + P(Qr) — P(QN Qo). (A.26)

For the latter probability corresponding to “and” of the events in Q and Q; a multi-
plication rule can be formulated

P(QNQr) = P(Q) - Po(Qx), (A.27)

where Py (Qy) is denoted as the conditional probability of class Q; under the
condition that class Q is already known as a fact. Equation (A.27) is indeed the
definition for the conditional probability. Why does it make sense?

To motivate the meaning of conditional probability let us consider an example,
before we investigate its formal properties. In an urn we have three balls of three
different colors, say yellow (y), blue (b) and red (r). We take out one ball by chance,
keep it, and then another ball by chance. What is the probability to have first a
yellow ball and then a red ball. By the golden rule (A.23) we have in the first step
P(y) = 1/3. Given the fact, that we have already the yellow ball, the probability to
find the red ball is (by the golden rule) the conditional probability P, (r) = 1/2, since
there are two possible balls left to be taken. By the golden rule we can also calculate
the probability to find the ordered pair of yellow and red, just by counting the possible
events of the two-step experiment. It equals P(yandr) = 1/6 and coincides with
the product of P(y) and P, (r).

As to the formal properties of Py (Qy) we look at the situations where (1) Q and
QO have no common events, (2) Q is within Q. In case (1) the product in (A.27)
has to vanish, either because P(Q) is zero already, or the conditional probability
Py (Qk) has to vanish, which meets the interpretation of conditional probability for
there is no chance to have an event of class Qy, when it is sure to have found the event
in non-overlapping class Q. In case (2) Q N Q, = Q and the conditional probability
Py (Qr) = 1, which also meets the interpretation, for there is evidence in having an
event in Oy after knowing it took place in Q which is within Q.
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Furthermore, Q can always be decomposed into non-overlapping classes denoted
as Q" and Q' as Q = Q™ U Q°, such that Q N Q; = Q™. As a consequence,
we can write P(Q N Q) = P(Q™) = [P(Q™) + P(Q°)] - Po(Qx) such that

P(Q™)

0= Pl =5 gm + Pig =

1, (A.28)

which meets the interpretation of a probability.
Finally, summing over all classes Qy yields >, P(QNQx) = P(QNS) = P(Q),
such that the conditional probability is normalized in an adequate way,

> Po(Q0) =1. (A.29)
k

Consider the urn example, but this time we put the ball back after we have documented
its color. This time the probability to have first a yellow ball and then a red ball can
be found by similar steps as before. By the golden rule (A.23) we have in the first
step P(y) = 1/3. This time, the fact that we have already the yellow ball does
not influence the probability to find the red ball. By the golden rule the conditional
probability P,(r) = 1/3 = P(r), since there are again three possible balls left to be
taken. By the golden rule we can also calculate the probability to find the ordered pair
of yellow and red, just by counting the possible events of the two-step experiment. It
equals P(yandr) = 1/9 and coincides with the product of P(y) and P, (r) = P(r).

Thus, it makes sense to call a situation where the conditional probability Py (Qy) =
P(Qy) is insensitive to the condition a situation where class Qy is statistically inde-
pendent of Q. Then a simple multiplication rule can be formulated corresponding
to “and” of statistically independent events in Q and Oy,

P(QN Q) = P(Q)- P(Qi). (A.30)

Consequently, the relation of statistical independence is also symmetric, while the
conditional probability in general must not be symmetric.

Quite often the conditional probability Py (Q’) (to find class Q' given that class
Q is a fact) is written as P(Q’ | Q) or as P(Q | Q). We avoid this notation which
may suggest a symmetric role of Q and Q’. Instead of general symmetry we have

P
Po(Q) = PQ(Q,)%- (A.31)

A.5 Joint, Reduction, Change and Conditional

The considerations of the foregoing section were general for events in classes, now
we stick to the notion of probability distributions P(x). Here x is again short-
hand for f degrees of freedom x', ... x/ and P(x) = P(x', ... x/) is called the
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joint-probability density of the f random variables. The interpretation is that it
yields the probability to find x! and x2, ..., and x/ in the conjoint infinitesimal
volume element dx! A --- A dx/. The wedge product of differentials in a volume
element is antisymmetric and reminds us that a volume element is a determinant of
differentials along different coordinates. This volume element is abbreviated as d/ x
or as dx. The probability of a class Q is given by the appropriate integration over its
characteristic function, as displayed in (A.13).

As an example consider the probability density to find a point with coordinates
(x', x?) on a plane within a given area A. The probability density is by the golden
rule P(x', x?) = (1/A)xa(x', x?) with x4 the characteristic function of the area.
The density is normalized to unity. By partial summations we can construct reduced
probability densities, e.g.

PRt o x) = /dxl Acoondxf Pt ). (A.32)

In the example of points on a 2D area we can ask for the probability density of
only coordinate x', and to be concrete we assume a rectangular A = L L,. Then,
by (A.32), P(x") = (1/L1)xz,(x"), as expected by the golden rule.

In general, we can construct a reduced probability distribution P (A) for a given
function A(x) with F < f degrees of freedom by the expression

PA)=(0(A—Ax))) = /dx P(x)d (A —Ax)). (A.33)

which yields the same mean values for any function of A(x) as the original P (x).
When A has much less degrees of freedom than x (F < f), the reduced probability
P(A) is much easier to handle than the original P (x).

As an example, consider the case of points on a 2D disc area of size mR*. We can
ask for the probability density of finding a certain radius r, while the total probability
density of finding any point there is 1/7R?. By the one to one mapping of cartesian
coordinates to polar coordinates (0 <r < R,0 < ¢ < 27)

x! = rcos ¢, x% = rsin ¢, dx' A dx? =rdr A do, (A.34)

we find a non-constant probability density

2r
P(r)dr = Fdr. (A.35)
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Interestingly, the density vanishes for » — 0.> Furthermore, it shows that non-trivial
probability densities often (if not always) arise from originally trivial probability
densities (e.g. by the golden rule of no preferential outcome) by reduction.

Equation (A.33) is very important, whenever we are able to foresee the relevant
variables A of a problem at hand, which was set up from a model with detailed vari-
ables x. It is extensively used e.g. in quantum and statistical field theories based on
the so called path integral approach. It allows to get rid of complexity in calculations
and to concentrate on relevant variables by simple integration (see Sect. 5.6).

As a special case, (A.33) also tells how to perform a change of coordinates from
f-dimensional x to f-dimensional y = y(x) in a one to one way,

7]
P(y) = (6 (y —y(x)) = P (x(y)) | det (%) | (A.36)

The last equation can be captured by the short hand notation

P(y)dy = P(x)dx, (A.37)

withdx =| det (g—’y‘) | dy.Itstates that probability of an infinitesimal class expressed

as density times volume element is invariant with respect to change of coordinates.
As an example, consider again the case of points on a 2D disc area of size mR?.
The mapping of Cartesian coordinates to polar coordinates tells

P(r, o)dr Ndop = #rdr ANdo. (A.38)

Besides joint and reduced probability densities we can also construct conditional
probability densities P . (xT', ..., x/). They are defined similarly to (A.27) by

.....

Pix' o xy = PG x) P e (T ). (A.39)
It is interpreted as the probability for finding x°*!, ..., x/ in the conjoint volume
dx¢*'A...Adx/ knowing that x!, ..., x¢ are conjoint facts. Sometimes it is denoted
as P(x!', ..., x¢ | xT', ... xf) oras P(xt!, ... x/ | x', ..., x°), depending
on pure convention. Note, that it is not symmetric. This is best expressed by an
asymmetric notation. For example, normalization means

.....

/dxe+1 Acendx! Pa (T L x ) =1, (A.40)

2This phenomenon is known in the context of random matrix theory as level repulsion: When a
matrix has random entries, the mapping to eigenvalue coordinates as radial coordinates shows that
the probabilities to find close eigenvalues goes to zero.
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while

/dxl A Adx P(x', oo x0) P e(xTL L X)) (A41)

=P, x ). (A.42)

In the case of points on a 2D area we find for the conditional probability of finding
an angle ¢, given a fixed radius r

2

= —1/)2n. (A.43)
p

1
Pr(@:P(”,(b)/P(”):mrz

It turns out, as expected from symmetry, that it is independent of » and equals the
unconditional probability P(¢). For a non-trivial example of conditional probability
see the exercises.

A.6 Correlation

The probabilistic correlation of two quantities A and B is defined in the same way
as the descriptive correlation (A.10).

Cap := (0A6B) = (AB) — (A) (B) . (A.44)

For C,p = 0, A and B are called to be statistically uncorrelated. If for a set of
random numbers x and y every pair of functions A(x) and B(y) turn out to be
statistically uncorrelated, then the random numbers are called to be statistically
independent.

An equivalent characterization of statistical independence is, that the conditional
probability equals the unconditional one and thus the joint probability factorizes,

Pe(y) = P(y), Py(x) = P(x), P(x,y) = P(x)P(y). (A.45)

To show the equivalence it is helpful to use variational arguments in C 4 5 with respect
to the functions A(x) and B(y).

Note however, that the pure vanishing of a single correlation between two quanti-
ties does not necessarily mean that they are statistically independent: “uncorrelated”
is only a necessary, but not a sufficient condition for “independent”.

In the case of points on a 2D area we have uncorrelated cartesian coordinates for
arectangular area A = LL,

1 11
P(x', x?) = =—— =PxHPE?). A.46
(x', x%) IL-LL (x)P(x7) (A.46)
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For the circular area A = 7R? the polar coordinates are uncorrelated,

1 2r 1
_—y = — —
mR2 R2 27

P(r,¢) = = P(r)P (). (A.47)
In both cases the uncorrelated nature stems from the orthogonality of the directions
related to a change of only one coordinate and the adapted symmetry of the area,
such that the golden rule can be applied to each coordinate separately.

A.7 Compact Notation and Structure

Equation (A.37) allows to express the coordinate independent meaning of expectation
values with the help of the scalar product notation for real valued functions f, g,

g1f):= /dx g(x) f(x), (A.48)

(A)=(A|P)= /dx A(x)P(x) = /dy A(x(y) P(y). (A.49)

A (continuous) function f is a (infinite dimensional) vector, and with respect to the
scalar product one can introduce dual vectors by the linear form g*(f) := (g | f).
Physicists like the notation | f) for f and (g | for g* melting to the scalar product
(g | f) when they are multiplied in the corresponding manner. When they are multi-
plied the other way | f) (g | they can act as a bilinear mapping (g/ [-1 ) (g f/) =
@ 1) gl f)

The following functions need special attention: the 1-function which is constantly
1 for any event ¢ and the coordinate-function id, which just gives x (¢), the specific
coordinate representation of the events . With the 1-function normalization of prob-
ability is expressed as

(Hh=@a]|P)=1, (A.50)

and the average of coordinates x as
(x) =(@dx | P), (A.51)
A basis in the vector space of functions is given by the set of all delta-functions
{0x}res Where 0, (x') = §(x — x’) is peaked at x. Its expectation value just picks out

P(x),

(0x) = (0x | P) = P(x), (A.52)
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Motivated by a similar convention in quantum mechanics we will use the short-hand
| x) for d,, such that

(x [ P)=P(x) (A.53)

is the projected vector component of vector P. Note, that in order to avoid incon-
sistencies one should not use the abbreviation | x) for id,, since (x) # P(x).
Orthogonality of the basis {J,} .y is expressed by

(x |x') =6d(x—x"). (A.54)

In case that the probability | P) is a conditional one of type | P,/) we can define
in a unique way a linear “operator” D, denoted as distributor. It maps the sharp
conditional probability | x’) to the distribution | Py/),

D|x)=|P) and (x |D|x) = Po(x). (A.55)

In discrete matrix notation the mth column of D forms a probability vector P,, with
components P, (n) = D,,,. Thus, conditional probability densities Py (x) can be
viewed as matrix elements of a in general non-symmetric distributor. A distributor
has the following properties

(x | D | x’) >0, (A.56)
1/D=(@1], (A.57)

where the latter equation (normalization) reads in discrete matrix notation

> Dy =1. (A.58)

Such square-matrices with non-negative elements and each row summing to one are
commonly called stochastic matrices, sometimes probability matrices or transition
matrices. We prefer the name distributor for the discrete as well as for the continuous
case.

Asto eigenvalues and eigenvectors of distributors we find from the ansatzD | v) =
A | v) and (A.57)

(1lv)y=A(1]v). (A.59)

Thus, if v is an eigenvector with non-vanishing (1 | v) its eigenvalue is A = 1,
or |v) is an eigenvector with (1 |v) = 0. Since (1 | D | x) is non-negative,
sup, (1 | D | x) defines a matrix-norm [|DJ|, which is induced by the maximum
norm |lv|| = supy | (x | v) |. Then, one has the inequality ||[D | v) || < |ID]|]lv].
Here ||D|| = 1 and eigenvalues must fulfill | A\ |< 1. For the transposed operator
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| 1) is by (A.57) an eigenvector with eigenvalue 1. By transposing the secular equa-
tion, det (DT — /\1) = 0, for the determination of eigenvalues we also have 1 as an
eigenvalue for D. Without proof we state a more refined result from matrix theory
(Perron-Frobenius theorem): A = 1 is non-degenerate provided all elements of D
are strictly positive.

Thus we can summarize:

e Distributors have an eigenvector | v) with eigenvalue A = 1 and non-vanishing
element summation,

djv) : D|v)=|v),with (1|v)#0. (A.60)
e For strictly positive elements of D, A = 1 is non-degenerate.
e All eigenvalues fulfill
[ A< 1. (A.61)
[ ]
A#1=(1]|v)=0. (A.62)

It is of great importance for the theory of stochastic Markov processes (see
Sect.2.3.3) that distributors can be multiplied forming a semi-group, provided the
vector spaces of x and x’ can be identified. Semi-group means that we have an asso-
ciative multiplication the result of which stays within the group (see (A.57, A.58)),
but in general the elements have no inverse with respect to the 1-operator which
belongs to the semi-group. In the discrete notation where n and m may run over N
elements it is easy to see that by normalization we have N (N — 1) degrees of freedom
in the group of distributors. Viewing this group geometrically as a manifold one is
interested in the group elements D = 1 — /G that lie in the infinitesimal (linear order
of the parameter «) vicinity of 1. By the exponential map, exp (— Dk Gk) and a
complete algebra of generators G, one can generate the group. The generators have
to nullify the (1 | states,

(1]1Gx=0. (A.63)

A.8 Generating Function

Integrating is typically much more difficult than differentiating, since the first is an
inverse of the second, and only for differentiating we have algorithmic rules based on
differentiating elementary functions, that lead to definite results. Only in few cases
this algorithmic rules can be reversed to simple rules for integration.

To calculate expectation values with respect to a probability distribution we have
to integrate or to sum up. But, this is exactly what distributions are designed fo. To
characterize a probability distribution by averages we may have to calculate many
averages. For example, if we want to characterize the distribution by its moments we
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need infinitely many of them. It is therefore highly advantageous when calculating
averages to do that in one run for a whole family characterized by parameters,

G(a) = (G(x; a)) =/dx G(x; a)P(x). (A.64)

The result can also be used to generate further expectation values by differentiating
the family with respect to the parameters, provided convergence allows to commute
averaging and differentiating. Also, in many circumstances it may be much easier to
formally manipulate the family of averages than the probability distribution to reach
theoretical insight about the distribution. In that case one doesn’t care to much about
convergence, but rather sticks to the formal properties.

All moments can be generated from the moment generating function

Z(k) = (exp(ik - x)) = /dx exp(ik - x)P(x). (A.65)

The factor i in the exponent is conventional to work with Fourier transformed of
P (x). It may help for convergence but may also be assisted by a convergence gen-
erating k + ie prescription with ¢ — 0+. The generating feature of Z(k) goes with
differentiating with respect to ik and finally putting k = 0,

Z0) =1, (A.66)

Z(k) = <Z 0ka)> (A.67)

n

) a[m—t—rH—--- ] Z(k)
Bmelyr. . ) = . A.68
(e ) @ik (@"ik)) ... - (A.68)
The fact, that Z(k) is the Fourier transformed of P (x) allows to reconstruct P (x)
from Z (k) by backward transformation,

P(x)=Qn)~/ / dk exp(—ik - x)Z(k) . (A.69)

Thus, if the moments exist they form the Taylor series of Z (k) and therefore determine
the distribution. In addition, we can generate any expectation of an observable A (x)
given its Taylor expansion as a series in moments. Apart from these more formal
properties high moments are not very interesting on their own.

A better characterization of distributions is by cumulants which are defined via
the cumulant generating function W (k),

W (k) = In Z(k), (A.70)



196 Appendix A: Random Variables

in a similar way to moments,

W(0) = 0, (A71)
Wk) = Z<M> , (A72)

n!
n

) a[m+n+...]W k
(D), ) (A.73)

< (@mik)(D"ik)) . .. o

Cumulants of order s (order defined by the number of derivatives) are linear com-
binations of moments up to order s, but not higher. In particular, the first moment
equals the corresponding first cumulant, i.e. the mean

(x)e = (x), (A.74)
and the second order cumulants yield the correlation matrix C;;,
(xixj)c = ((6xi(5xj)) = Cij- (A75)

Since P(x) can be expressed by W (k) as
P(x)=(Qn)~/ / dk exp(—ik - x + W(k)). (A.76)

we conclude:

e A distribution P (x) which has no fluctuations at all but is d-peaked at its average
value (x), P(x) = 6(x — (x)), corresponds in a unique way to a purely linear
cumulant generating function W(k) = ik - (x).

e A distribution P(x) which has vanishing cumulants for order three and higher
corresponds in a unique way to a second order cumulant generating function
W(k) = ik - (x) + 1k - Ck.

e It can be written in closed form and is a Gaussian distribution

P(x) = 2m)~//det C exp |:—%(x —x)-Cclx— (x))] ) (A.77)

where C~! is the inverse of the symmetric matrix C, where the latter is the corre-
lation matrix corresponding to the Gaussian distribution.

In other words, Gaussian distributions are those distributions which have only first
and second order cumulants. All higher cumulants vanish. This is not true for the
moments which are generally non-vanishing to all orders. This fact is one advantage
of cumulants over moments.
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A.9 Large Numbers II

Another important property of cumulants is the following: for a sum of additive
uncorrelated random numbers

N
X=>x. (A.78)
=1

the cumulant generating function is additive too and so are the cumulants:

N

W(K) = > Wi(K), (A.79)
=1
N

(X" = 2 ) (A.80)

=1

Again, this is not true for the moments and Z(K). The remarkable property for a
large sum of uncorrelated random numbers is that every cumulants scale as N times
a single cumulant independent of its order. By normalizing the variance to unity,
every higher order cumulant scales with a negative power of /N with respect to
the variance and can thus be neglected in a large N limit provided the cumulants do
not grow two fast with increasing order n such that they cannot compensate for the
negative powers of +/N. We thus conclude a version of the central limit theorem
as our second law of large numbers: as long as the individual cumulants (x"). do not
grow faster than sub-linear exponential with n, the distribution P (X) of a large sum
of uncorrelated random numbers will approach a gaussian for large N.

A final remark on generating functions in mathematics: a generating function
is a formal power series whose coefficients encode information about a sequence
that is indexed by natural numbers. In mathematical statistics our generating func-
tion (A.65), the Fourier transform, is denoted as characteristic function while the
same expression with real value kappa instead of ik is denoted as moment gen-
erating function. Canonical and grand-canonical partition functions in equilibrium
statistics are special generating functions where parameters are external control para-
meters like temperature, pressure or chemical potential. Path integrals can be viewed
as generating functions where variables are paths or other field configurations (see
Sect.5.5). The appropriate tool for numerical calculations of generating functions and
functionals as high-dimensional integrals is the Monte Carlo integration method

(see [1]).
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A.10 Information

We gain information when an event takes place which, for us, was not sure to happen.
To quantify the gain of information we like to define a quantifier function depending
on x as well as a quantifier for the whole distribution P (x). It should fulfill the
following constraint: given N equally probable events, an information quantifier with
no further preference to one of the outcomes must be a monotonic increasing function
of N. The most basic representation of a natural number in digital representation tells
us that with log, (N) we are done.

In the continuous case we must specify a class Q; around x; such that the dig-
italization is finite. We can do that in two different ways. Either we integrate the
density P (x) times the characteristic function yielding P; of that class and are back
to the discrete case, or we keep the continuity description and simply multiply the
density P(x) with an appropriately chosen small volume element [ yielding an
approximate probability (<1) to find the value x in the volume I} around it. For this
to be reasonable the probability density has to be nearly constant within 1. We thus,
come to the following definition of a non-negative information function as

I; == —log, (P;), (A.81)
I(x) := —log, (P(x)Ip). (A.82)

The first line corresponds to the discrete case and the second line to the continuous
case. This notion goes back to Boltzmann, Gibbs and Einstein in treating entropy in
thermodynamics in the context of statistical mechanics and to Shannon in the context
of information in general probability theory. As a quantifier for the information
corresponding to the whole distribution we take the unbiased average value of the
information function

—log, (P;) P;, (A.83)

HMi

and in the continuous case
1 = —/dx log, (P(x)Ip) P(x). (A.84)

One bit is the information gain when we get to know the result of a binary alternative
with equal probability of 1/2. Three bits is the information gain when we get to know
the result of throwing a perfect eight-sided dice with probability 1/8 for each of its
eight sides.

We must note that the definition of information does depend on the choice of I5
in the continuous case, but it does also depend on the choice of classes in the discrete
case. In the continuous case it is obvious from the definition that a change of I} by
a factor a yields a change of I by — log, (a). Similar changes happen in the discrete
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case when we divide classes into subclasses or join them to form superclasses. In
both cases, the probability P; changes accordingly and so does the information.
For example, dividing a class into two classes of equal weight leads to half of the
former probability of the whole class and hence increases the information in each
class by an amount of 1 bit. Thus, classes and volume element I have to be chosen
appropriately for the problem at hand or for a class of similar problems for which
we like to compare the information /. But one should be careful with comparison of
information values without specifying classes or volume elements. This warning is
in the same spirit as the warning not to compare probabilities without clarifying their
conditional character. Once the classes or the volume element I, are chosen, we can
quantitatively compare the information for different probability distributions.

Information has by its logarithmic character the very helpful property of being
additive for independent random variables

P(x,y)=P@)P(y) — I, y)=1(x)+1(y). (A.85)

The great advantage of the concept of information of the whole distribution is its
additive and macroscopic character: it measures the overall distributiveness of the
distribution. A uniform distribution has maximum information and a singular dis-
tribution (with probability 1 for one class and zero for all others) has zero informa-
tion. Distributiveness and information have the same meaning in probability theory.
Indeed, we can use distributiveness as a construction principle for distributions as it
helps to quantify the ignorance principle of no preferential outcome. This principle
goes back to Gibbs and has been stressed as a general principle in probability theory
by Jayne.

A.11 Exercises

Exercise 1: Reduced Variable

Consider the probability of finding a point in the 2D disc of area A = 7 R?, but within
amixture of Cartesian and polar coordinates, say x and angle ¢. The relation between
coordinates is x = r cos ¢, y = r sin ¢ and the disc A is defined by x* + y> < R
(a) Show that

1 2 2
P(x,¢) = mm)@z (%) X(g/ny (tan® ¢ + 1)
with the characteristic function xy(X) = 1if 0 < X < Y and zero otherwise.

(b) Show by reduction that P(¢) = 1/27 and

24/ R% — x2
P(x) = TXW (Xz)
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Exercise 2: Conditional Probability

Verify the conditional probability for finding the angle ¢ for given x coordinate in
the 2D plane to be

X(R/xy (tan2 o+ 1)

2cos? p/R?/x2 — 1

and show it is different from the unconditional P (¢). Show that x and ¢ are correlated
random numbers.

Pe(¢) =



Appendix B
Method of Characteristics

The method of characteristics is a method of solving homogeneous partial differential
equations of first order.

B.1 Hamilton-Jacobi

A well known example is the Hamilton-Jacobi equation in mechanics. The momen-
tum p is the partial derivative of the generating action function S(x, #) with respect
to the configuration coordinate x,

px, 1) = 0cS(x, 1). (B.1)
The dynamics can be captured in the Hamilton-Jacobi equation,
H(x,0:S(x, 1) +0;S(x, 1) =0, (B.2)

where H (x, p) is the known Hamilton function of the system. This equation is a
partial differential equation of first order for the unknown function S(x, #). From a
solution with constant value S(x, t) = Sy one can find a possible solution x () and
also p(t). The Hamilton-Jacobi equation is intimately connected with the Hamilton
equations, which are ordinary differential equations,

i=0,H; p=—0,H. (B.3)

This connection is just an expression of the method of characteristics: the Hamilton
equations are the characteristic equations of the Hamilton-Jacobi equation.
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B.2 Characteristics

The method of characteristics can be summarized as follows. Given a homogeneous
partial differential equation of first order for an unknown function u(x, y) (we treat
two variables for simplicity),

a(x, y)Oxu(x, y) + b(x, y)9yu(x, y) =0, (B.4)

one studies its lines of constant value u(x (), y(¢)) = uo and finds from du = 0 and
(B.4), that (x(¢), y(t)) have to solve the characteristic equations,

X =a(x,y): y=>bx,y). (B.5)

These equations are ordinary differential equations and can typically be solved
easier than the original partial differential equation. The corresponding solutions
(x (1), y(¢)) are called characteristic curves and the constant solution u (x (t), y(t)) =
uy is called characteristic. Once a solution of the characteristic equations is found
for arbitrary initial values x¢, yo one can construct characteristics u (x (¢), y(¢)) which
are constants along the characteristic curves by rewriting the solutions in terms of
the constant initial values. This is the searched for characteristic.
As an example we consider the radioactive decayof Sect.4.2.3,

l,=1In, g, =0, (B.6)

for the Master equation (4.6), such that the partial differential equation for the gen-
erating function F'(z, t) of (4.20) reads,

O F(z,t) =1(1 —2)0.F(z,1). B.7)

The number 7 is bounded from below by n = 0. We introduce the parameter s as a
fictitious time and apply the method of characteristics,

i=1; z=1z—1). (B.8)

The first equation is solved as #(s) = s + # and the second is equivalent to

d,(z = 1) = 1(z — 1) and therefore solved as z(s) — 1 = (zo — 1)¢’*. Both solutions
can be put together in

2(s) — 1 = (zo — D' (B.9)

allowing to re-express the constants as

(zo— De™ = (z — De™"". (B.10)
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Thus, a general solution for F(z, ) is a function f((z — 1)e™"). The generating
function has to fulfill F(z = 1, #) = 1 due to probability normalization and F (z, t =
0) = z™, because Py(N) = dy, n. This fixes the choice of the function f and we
arrive at the solution

No

F(z,t) = ((z— De " +1) (B.11)

This generating function allows to calculate the full conditional distribution function

1 dN No!e—le(l+e—lt)N0—N 5
P N,t) = ———=F(z,t) |;=1= . B.1

B.3 Exercise

Exercise: Hamilton-Jacobi Theory
Show that the Hamilton equations are the characteristic equations of the Hamilton-
Jacobi equation.



Appendix C
Many-Body Green’s Functions

In this Appendix usual unit conventions are used unless otherwise stated. The many-
body Green’s functions are treated in Matsubara technique within a functional per-
turbation theory following mainly [2]. The machinery of perturbation theory for
H = H9 4 U is the subject of Sect.C.2, where the non-combinatorial method of
generating functionals is used. The path integral functional representation in coherent
states of Sect. C.3 follows mainly [3].

C.1 Susceptibilities and Matsubara Technique

Green’s functions in real time ¢, G(y, . .., ¥, X1, - .., X; ), describe the quantum
mechanical probability amplitude for n particles (excitations/quasi-particles) that
arecreatedatx, ..., x,, propagate atime ¢, and are annihilated at points y, ..., y,,.
A definite expression requires the notion of quantum state and time evolution. The
quantum state can be an equilibrium state described by a grand canonical ensem-
ble, the time evolution is described by the Schrodinger equation, usually as time
evolution of operators, called operators in Heisenberg picture. For time dependent
perturbations on a system, the time evolution is split between the operators evolving
according to the unperturbed Hamiltonian and the density operator evolving with the
perturbation such that expectation values contain the full dynamics. Such decompo-
sition runs under the name interaction picture or interaction representation. Operators
will be decomposed into linear combinations of products of creation and annihilation
operators. Since both, the Heisenberg time evolution as well as the grand canonical
density operator involve the form

e M (C.1)

where A\ = (1/Rh)t is purely real for time evolution, or A = —i( is purely imag-
inary for density operators, it turns out to be advantageous to treat Green’s func-
tions in so-called complex time. Transforming from time to energies introduces
© Springer-Verlag Berlin Heidelberg 2016 205
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Fourier/Laplace transformed Green’s functions of complex energy/frequency. The
basic formalism of these objects will be introduced for the linear response two-
operator Green’s functions. In non-interacting systems they can be related to the
one-particle Green’s function (x'| (E — H(1) £i0)~" |x) which is the real space
representation of the resolvent, (E — H(1) &+ i0)~1, of the one-particle Hamiltonian
H(1).

The most general object to be called Green’s function in theoretical physics is the
n-operator time-ordered Green’s function,

<fHXj(tj)>’ (C2)
j=1

where X ;(¢;) are operators in Heisenberg picture and (. . .) is a convenient statistical

average (e.g. grand-canonical) and T is the time ordering operator which means that
all operators to its right are to be ordered in increasing order of times, e.g.

T (X1(11)X2(12)) = O(t; — ) X1 (1) Xa(t2) £ Oty — 1) X2 () X1 (1) (C.3)

where (+) is for bosons and (—) for fermions. Time ordered n-operator Green’s
functions appear in the iterative solution of the integral equation of the form

St tg) =1— %/dﬂ Hi(HS(t, 1) (C.4)

fo

which solution can formally be written as the Dyson series,
S=Texp [%’ / dr'H, (z/)} . (C.5)

Here S is the time evolution operator in interaction representation, i.e. there is some
decomposition H = Hy + H; where the time evolution with H, is assumed to be
known,

W(t) = [e” RIS (1, 15)e /P HO W (1) (C.6)

and
Hy (1) = /Ml = (/M Ht (C.7)
(H; may have also an explicit time dependence which is suppressed in the nota-
tion). Such integral equations follow from the Schrodinger equation directly and we

mention that a similar to (C.4) integral equation holds for the time dependent density
operator in linear response theory and its first order iterative solution yields the Kubo
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formula to be discussed soon. The special case of n-particle propagation corresponds
to the choice of field creation and annihilation operators i(x), ¥(x),?

G(Yisoo s Ypi X1, oo, X5 1)
- <T [U (). Wy O (x,) .. w*(xl)]>. (C.8)

In linear response theory one faces a so-called retarded two-operator Green’s function
ret L —i o
GT(1) = O W) {[X (1), Y]). (C.9)

Linear response theory is a theory to calculate susceptibilities like magnetic suscepti-
bilities, polarizabilities and conductivities. In general, susceptibilities are introduced
as the linear coefficients between the expectation value of some observable (Y) and
a driving field F. To calculate the expectation of ¥ we may start from a many-body
Hamiltonian H = H(F) =: Hy, and we expand it with respect to an increment 0 F,

H(F +6F) = Hy— X(F)6F; X(F) := —0rH(F). (C.10)

Here X (F) is the dual operator to the field F which, in general, may depend on F
and may not commute with Hy. There are two different ways to proceed which yield
isothermal or Kubo susceptibilities. In the first case one considers a system that,
under variation of F, will equilibrate fast enough, such that, at any value of F, it can
be described by an equilibrated grand-canonical density operator

00 = exp — [B(Ho — uN)]e"® (C.11)

where 5 = 1/(kpT) is the inverse temperature, kg the Boltzmann constant, y the
chemical potential, N the particle number operator, and

Q(F,T,u, V) =—kgT InTr exp— [B(H(F) — uN)] (C.12)

is the grand-canonical potential. One may generate the equilibrium value (Y) by
solving for the grand-canonical potential depending on a dual field J that is coupled
to Y in H(F). Very often, one is interested in the observable Y = X and in that
case F' = J and the isothermal susceptibility in Or (X (F))r = X, is simply the
(negative) second derivative of §2 with respect to F. A different way to calculate a
general thermodynamic susceptibility

Xyx 1= Or (Y(F)) = OrTr {o(F)Y (F)} (C.13)

3The are defined such that the combination ¥ T (x)¥ (x) is the particle number density operator and
the charge density operator of particles with charge g is given as o(x) = q¥ T (x)¥ (x).
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is founded on a perturbation theory for the density operator (similar to the time
dependent perturbation theory of the time evolution operator e~“/#! in quantum
mechanics) and expresses susceptibilities as correlators in the absence of the perturb-
ing field. To safe writing, from now on, we will not explicitly write down the argument
F in operators or expectation values. We state the result for the susceptibility without
derivation (the derivation is a valuable exercise),

Xyy = (OFY) + B(AX; AY) | (C.14)

Here we have allowed for an explicit field dependence of observable Y, and AO :=
O — (O) stands for fluctuations around the average. The Kubo scalar product of two
operators is defined as*

B

(X;Y):= %/d)\ (XY (@hN) = (Y; X)*. (C.15)
0

The imaginary time evolution is meant in the Heisenberg picture with respect to
Hy, Y (t) = e(1/MHot x o=(/MHot The Kubo scalar product resembles the expectation
value of the simple product of X and Y and one can interpret: isothermal suscepti-
bilities are time independent correlations in equilibrium. The correlation is between
the quantity Y to be measured and the quantity X dual to the varied field. Usually,
the thermodynamic susceptibilities are real and therefore symmetric.

The second way to consider susceptibilities is by considering a dynamical opening
of the system. In the Kubo linear response theory a time dependent field increment
O F (t) is slowly switched on at #y. To introduce the loss of information about an arbi-
trary initial condition by a long time average procedure leading to entropy production
and stationarity, the initial time is sent to fy = —oo by an e-prescription,

Hp(t) = Hy — X0F (t)e”, (C.16)
where € is infinitesimally small and will be sent to zero after the thermodynamic
limit has been performed in the sense that the energy spectrum has become quasi-
continuous. At fy) = —oo the system has been in equilibrium, described by the grand-

canonical density operator, gy = 90(0F = 0). Now the density operator evolves in
time according to the von-Neumann equation

) —i
o(r) = r [HF (1), o()]. (C.17)
The solution linear in § F', keeping only a single Fourier component,

SF(1) = 6Fe ™, (C.18)

“Note, that X and Y are hermitian operators here, otherwise the definition has to be slightly modified.
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yields for the linear increment of the expectation value
(Y)sr (1) = {(OFY) + X, (2)} 6 F (1) (C.19)

with the Kubo susceptibility v, (z) given by the Kubo formula

X @) = / dt & ([Y (1), XT) | (C.20)
0
The so called Kubo-identity
. —i
(X;Y) = [3_71 ([X,Y]). (C.21)

turns out to be helpful in calculations. The susceptibility, in time representation, is
thus identical to minus the two-operator retarded Green’s function

X () = =GIH0) = O ()5 (Y (1), X1). (C.22)

Isothermal and Kubo susceptibilities are generally not identical and it depends on
the physical problem which one should be used. As a rule of thumb one may say
that susceptibilities in closed equilibrated systems (e.g. magnetic susceptibility) are
described by isothermal susceptibilities while in situations with driving currents
through the system, susceptibilities (e.g. conductance) are better described by Kubo
susceptibilities.

The definition (C.9) is useful for bosons operators X, Y. In fact, in linear response
only densities of observables are possible candidates for X, Y, and these must be
bosonic, i.e. they fulfill X'X = XX since X = X (and the same for Y). However,
in view of (C.2, C.8) it makes sense to extend the definition to Fermion operators,
for which X'X = —XXT. In case that X, Y are Fermion operators, we replace the
commutator by the anti-commutator. To cover both cases by one symbol one often
introduces [X, Y] where—is for Bosons (commutator) and + for Fermions (anti-
commutator). A mixed case will not be defined. The relation to the time-ordered
two-operator Green’s function (also often called causal Green’s function)

G, (1) == %l <f (X(t)Y)> (C.23)

will soon become clear. As an example consider the Green’s function corresponding
to the charge density response G and express it by field operators. The result is

o(x")o(x)

—ie2 . )
G. ()= % (T (@ s nw s vt @w ) (C.24)

o(x")o(x)
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which is close to the two-particle propagator of (C.8). For G, (¢) one can introduce
its Fourier transformed, called G, (w),

G, (W) = / dte™'G,, (1) (C.25)

It becomes well defined when using an infinitesimal damping in the auxiliary Green’s
function (being analytic in the half-plane Iz > 0)

o0

I, ()= %/dt FTXWDY), z=w+ie (C.26)
0
such that
Gy @) = lim T3, ()& 1, (=2") (C.27)

(where + for Bosons, — for fermions). On the other hand, the Fourier transformed
retarded Green’s function, being also analytic in Iz, can as well be expressed by I',,,

G (z) = / dt e “'G™ (1) =T, (2) = (.. (=29)". (C.28)

X
The last two equations rest on the time translation invariance
(Xt +10)Y (" +10) = (XY (1)) (C.29)

for any #y. Let us summarize the resulting strategy to obtain susceptibilities: knowing
the time-ordered two-operator Green’s function G, (¢) is enough to calculate '}, (z),
and hence the retarded two-operator Green’s function G;ey‘ (z). The latter yields the
linear response susceptibilities,

Gy () — Iy (2) — =G = X,y (D) | (C.30)

as the most interesting observables in many-body systems. For brevity we will, in
the following, call G, the propagator (although this relates more appropriate to the
special case X = ¥ (x'), Y = ¥'(x)) and Gﬁfy‘ the retarded Green’s function.
Although there are methods to directly calculate the propagator in real time
(mostly approximately) it is often more advantageous to calculate the frequency
dependent retarded Green’s function in a direct attack. To do that a trick was invented
by Matsubara in the 1950s and others which makes the calculations most easy, in
particular with respect to analytical properties. The imaginary-time propagator (also
called temperature Green’s function or Matsubara Green’s function). The Matsub-
ara technique relies on the similarity of time evolution and density operator. To make
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this similarity in the grand canonical case most closely, one modifies the Heisenberg
picture ruled by the Hamiltonian H to a time evolution given by

H" := H — uN. (C.31)

That means, in the following we take the time evolution of any operator X (¢) with
respectto H" instead of H. This must be kept in mind. Fortunately, for susceptibilities
this will not change anything as long as either X or ¥ do commute with N, and this
is the case for realistic physical densities. For Bose systems with vanishing p there
is, of course, no effect. If X, Y, do not commute with N, then one has to take the
change into account. In the relevant cases, e.g. when X, Y are simply creation and
annihilation operators, one finds simple relations between Green’s functions with
Heisenberg and Matsubara time evolution, such that the evaluation of the latter is
always sufficient to obtain the former.
With the Matsubara time evolution we define the imaginary-time propagator by

— G, (1) = <T (X(—ihT)Y)>
= O(T)(X(—ihT)Y) £ O(—T7) (Y X(—ihT)), (C.32)
where 7 is a real number with the physical dimension of inverse energy. To make the
writing more transparent we will take /2 = 1 in the following. It can be re-introduced

by simple dimensional analysis. The crucial property of the Matsubara time evolution
is the property

(X (—=in)Y(—it)) = (Y (=it X (=it +iB)). (C.33)

in addition to (C.29) (this can be shown by using the cyclicity of the trace). As a
consequence, a periodicity-property of the imaginary-time propagator follows

] G (T+P) ==£G,, (1) | (C.34)

Therefore a discrete Fourier expansion with respect to imaginary-time (temperature)
can be introduced

1 )
G,(M== D G,liv)e ™|, (C.35)

ﬂ n=0,+1,£2,...

where the Matsubara frequencies are

2mn
v, = 7 (Bosons), (C.36)

_ @n+Dm

vy 3 (Fermions). (C.37)
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The frequency dependent temperature Green’s function is obviously
o]

G,, vy =/d7' G (1) e, (C.38)

0

The nice feature of the temperature Green’s function is that it equals, after analytic
continuation in the half-plane Jz > 0, the retarded Green’s function,

G (ivy > 2) =G (2) | (C.39)

The proof of the last equality is easiest in energy representation, | £,) of total H,
and left as an exercise.

The equality (C.39) is very important, since in practice one tries to find the
temperature Green’s function at the Matsubara frequencies first, then analytically
continues to arbitrary complex frequencies Iz > 0, a process which becomes unique
by the requirement G, , (z) — 0 for |z| — oo.

We mention, that the temperature Green’s function appears directly in isothermal
susceptibilities®

8

Xy = Xyy = 0BY; X) =—G,, (v, =0) = —/dT (X(—iT)Y) | (C.40)
0

Thus, the thermodynamic Green’s function at zero frequencies determine the thermo-
dynamics. In particular, one can calculate the thermodynamic potential from special
Green'’s functions, e.g. from thatof X =Y = N.

As an important application we calculate the so-called unperturbed Green’s
functions or unperturbed one-particle propagator corresponding to creation and anni-
hilation operators for X, Y and a non-interacting Hamiltonian H'”! with one-particle
spectrum ¢; and eigenstates | « j), e.g.

G0, () 1=~ (1 (a?(—iT)aj,)>0 (C.41)

(the superscript © indicates the non-interacting dynamics and state). They form the
elementary objects of any perturbation theory. The time evolution of a; can be cal-
culated with the help of (3.21), since H” = 3" . ¢;aa;.

i [01_ _ [01_ —i(ei—
al(t) = M g e TN = o 7ICEm g (C.42)

5We have neglected an explicit field dependence of ¥ and assumed that the zero-field equilibrium
expectation of X, Y vanishes.
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Thus, we find for 7 > 0

0
GY(r) = —e 77 <aja;,> . (C.43)

10 0
Since <ajaj'-,> = (b(gj) + 1) §;; for Bosons, and <ajaj,> = (1 — f(g)))d;; for
Fermions, and at the Matsubara frequencies e!Pn = +1, one finds for the unperturbed
one-particle temperature Green’s function, and for the unperturbed retarded one-

particle Green’s function,

g?j’(iyn) = [ivy — ek + .u]71 5]7' ’ (C.44)

G;ejt,o(z) =[z—ex+pl"" 6 (C.45)

Note, that the Bose/Fermi-distribution functions exactly cancel, due to the Matsubara
time evolution; for the Heisenberg time evolution they don’t. Interesting enough,
the unperturbed retarded single-particle Green’s function equals the usual retarded
Green’s function of the single-particle Hamiltonian H (1) at an energy e shifted
from the chemical potential, i.e. the energy representation of the resolvent operator
Gz=p+e+i0):=[(u+e) — H)+i0]",

Gz =p+e+i0)=(a;|lz—HDI™ | ay)| (C.46)

This justifies the name Green’s function for the many-body case as a generalizing one.
The above unperturbed retarded Green’s function does not depend on the statistics
and we will refer to it as the free electron propagator.

For phonons, as introduced in condensed matter lectures, one needs also the free
phonon propagator. However it is not defined with respect to the pure creation and
annihilation operators of phonon modes, but with respect to the quantized normal
mode coordinates

1
O, = = (bk + bfk) =0, (C.47)

where by annihilates bosons of wave-vector k. The free phonon propagator is
defined as

N 0

D'(r.k) =~ (T (0u(=in o)) - (C.48)

Recall that a phonon Hamiltonian reads

1
HY =" huwy (Nk + 5) : (C.49)
k
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where wy is the frequency of phonon mode k. For small k and acoustic phonons,
the dispersion is linear. With this Hamiltonian the free phonon propagator reads (the
chemical potential is zero since the number of phonons is not conserved)

D7, k) = _% [ew <bkb;>0 4 T <b_kak>O:| , (C.50)

leading to the retarded free phonon Green’s function

1 1 1 Wk
Dreto , k J— |: _ ] — . C51
@ k) 2lz—w 74w 722 — (wy)? (€51

C.2 Generating Functional and Perturbation Theory

Recall the main expressions for the many-body temperature Green’s functions,

G, (1) = — <T (X(—iT)Y)> = £G,, (7 + P, (C.52)
1 .
Gu (1) = 3 > Gy iv)e ™, (C.53)
e
G, (iv,) = / dr G, (1)e™", (C.54)
0

where v, = 2mn/p (v, = 2(n + 1)/) are Matsubara frequencies for Bosons
(Fermions). The time evolution is with some many-body Hamiltonian H, and the
expectation value is given by

Tre PHn .. .
(L)y=—C 7 Tre P, (C.55)
Z
So far, we only know to calculate these Green’s functions for additive (non-
interacting) systems described by H, e.g.

G (ivy) = (ivy—er+ ). (C.56)

agay

To develop approximate schemes for calculating Green’s functions we proceed in
three steps. (1) We represent them as functional derivatives of a source dependent
partition sum Z [j]. The source is introduced by an additional term in H,,. In the
non-interacting case Z°[j] can be given in closed form as a Gaussian functional.
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(2) We can represent Z [ j] as a perturbation series from Z° [ j], which is well defined
for a given interaction term U in H = H'!") + U. As a result, one has a well
defined operational (in contrast to combinatorial) perturbation series for Green’s
functions. Each term can be represented by graphs which contain lines of unperturbed
propagators and vertices describing the interaction. To each graph a weight factor
is attached, that follows uniquely from the operational scheme The graphs can help
to comprehend the perturbation series and to visualize elementary processes that
build the series. In step (3) we represent the partition sum Z [j] by field theoretic
integrals (path integrals). This opens new approximation schemes that can go beyond
perturbation theory as outlined in Sect.5.6.
The n-operator Green’s function can be represented as a functional derivative

({1

(—y" " 7 *de > (M X(—iT)
= (— _— e o 1
Oj1(m) o ju(T)

which follows by differentiating the exponential functional. Here j;(7) are commut-
ing (e.g. complex) numbers for Bosons and anticommuting (Grassmann) numbers
for Fermions, i.e. j; jx = — ji Jji to preserve the commuting/anti-commuting nature of
operators X;, X; in the Green’s function (for details on Grassmann numbers see e.g.
[4]). Note, for Grassmann numbers the order of performing derivatives does count.
Defining a source dependent partition function by

, (C.57)
j=0

3
o A = [AT 3 (DX (—iT)
Zlj1:="Tr §ePHfe o T : (C.58)

one can write

. .
< (HXz( w))> Z[O]( el I

where Z[0] = Z is the ordinary partition sum, free of source terms. Since we know
how to deal with non-interacting systems, it is not surprising that one can find the
unperturbed source dependent partition sum in closed form. Without proof we state
here the result, a Gaussian functional,

2°[j1 = 2°[0]exp / dr / dr' 3 Gl (i) L (C60)

i
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It is easy to verify that this indeed generates the unperturbed propagator, but it needs
more effort to show, by using equations of motion with H'%!, that it does not contain
higher polynomials of j in the exponent. The proof, however, is much easier in the
field theoretic formulation of the following subsection. From the last two equations it
immediately follows that any n-operator unperturbed Green’s function factorizes into
(sums and integrals of) products of unperturbed propagators. The explicit formulas
are known as Wick’s theorem, which has been proved in a combinatorial way first.

Due to the fact that (a) any realistic interaction term U in H = H Oy Uisa
polynomial in some basic operators X, e.g.

U= Z Vklmna]ja;amanv (C.61)

klmn

and (b) that any polynomial in the operators X; can be generated by plugging the
derivative with respect to the dual source field §/0 j; as an differential operator into
that polynomial, the interaction can act on the exponential source and finally the
source is put to zero. Expanding the exponential function into its defining series and
comparing term by term one can then show the identity

B .
[drUl251

Zljl=e ¥

711 (C.62)

This formula is the pendant for finite temperature equilibrium to the scattering state
formula (5.122). It yields, by expanding the exponential function, an operative per-
turbative expansionof Z[ j] in terms of powers of G 0 connected by those terms (Viium
in the example above) defining the interaction. Each term can be represented graph-
ically by a diagram, in which lines represent propagators and vertices represent the
interaction. Each diagram can be classified with respect to the order of powers of U
entering, and with respect to the loop-order of diagrams. A loop represents a pertur-
bation term, where propagators have the same initial and final point. The perturbative
formula above has the great advantage over combinatorial diagrammatics, that the
weight of each diagram can be read of the formula by using the exponential series and
Laplace’s chain rule for derivatives. The only ingredients needed for this operational
perturbation scheme are the unperturbed propagators and the polynomial structure of
the interaction U; each term is generated from that by (C.59, C.60, C.62). Although,
for pure perturbative purposes in a H!°! + U decomposition, there is no need to
introduce a field theoretic formulation of the partition sum, we will do so in order to
open new approximation routes.
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C.3 Field Theoretic Partition Sum

The trace in the partition sum Z can be expressed with the help of the energy repre-
sentation, but for this to be useful one needs to diagonalize the problem first. Also,
one could use the occupation number representation { | )}

Tre " =" (n| e |n). (C.63)

n

Due to the exponential form, the matrix elements are not easy to calculate. One
could use a partition of the identity 1 = >, | n) (n | and divide the finite value
of 3 into a large number of small pieces § = 3/N. On each short piece evolution
e~9H: one may introduce the partition of the identity and approximate the exponential
by 1 — §H,,. Finally, one has to send N to infinity. The matrix elements can then
be calculated. Nevertheless, this leads to a mess of combinatorics with all possible
occupation number combinations. Although this route may be helpful for particular
interactions U, we will search for a more general approach in terms of integrals over
continuous quantum numbers.

Such representation is opened by the so-called coherent states representation of
many-body systems. Coherent states are defined as eigenvectors for a complete set of
annihilation operators d;. Such eigenstates, if they exist, must be a linear combination
of occupation number states. By this one notices that creation operators a' cannot
have eigenstates, since the lowest occupation number will in any case be raised by
one. A similar problem does not exist for annihilation, as there is no maximum
occupation number, and the minimum occupation number can be taken as zero. It
turns out that coherent states can be constructed by

| ) = e* > | 0) (C.64)

(£ distinguishes between Bosons and Fermions). They are right-eigenstates for the
annihilators

ar | ) = | ¥) (C.65)

and left-eigenstates for the creators
(W laf = | (C.66)

Here the right(left)-eigenvalues ¢ (1)) are commuting/anti-commuting numbers for
Bosons/Fermions. For commuting numbers 1) can be identified with the complex

conjugate of 1. A coherent state is determined by the set of numbers (fields) {wz, Ez }

where the label / runs over the complete set of one-particle quantum numbers. In
case of field-operators ¥ (x) they become fields over real space ¥ (x), 1 (x).
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Two different coherent states are not orthogonal to each other, but have a finite overlap

ZT//';%’)/
W' 1 yp)=eT . (C.67)

Furthermore, they form an over-complete set of states, when the fields run over all
possible numbers. Nevertheless, the coherent states allow for a partition of unity

b= / (H”“i”/ zd@zdw)e_y'w ) (1 (C.68)
l

For the definition of integrals over Grassmann numbers we only mention that it obeys
simple rules because Grassmann variables vanish to second order, for details see e.g.
[4]. For details on coherent states see [3]. With the help of coherent states the partition
sum reads

Z= / DI vle T (| e 0 | ), (C.69)

where we have abbreviated the measure [], 7~*Y/2dy),dyy by D[, ¢]. Since
the matrix elements of a Hamiltonian in occupation number representation H =
> h;’,‘j‘a,l a+Y lmn Vklmna]i a} apna, become simple in coherent states (operators are
Ik

replaced by the fields)

H, ! _ o o
W = Zh?}c“wﬂ/ﬁ/ + Z Vklmn%%%,% = H#(w’ ). (C.70)
lk

klmn

Therefore, one uses the above mentioned idea of cutting the finite [ into a large
number A of small pieces ¢ and introduces for each point 7; on that path a partition
of unity. By this procedure one arrives finally at the coherent states path integral
representation of Z

z =/D@, e S0 | (C.71)

Here the measure D@, 1)) is an abbreviation for the product va d [E(Ti), (1))
The action of the path integral is given by

8
$@.0) = [ ar | 250000+, (30, 00) (€72)

0 jk
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where the continuum limit A" — oo has formally been taken. It is only formal since
a concrete calculation (e.g. numerical) needs a discretized version to be definite. The
fields El (1), ¥y (7) have to fulfill Matsubara boundary conditions ©(0) = £U(B).

A source dependent partition sum can be constructed by adding source terms to
the action

5
S, s js J) = S, ) + / A7 D" i@ () + i (D (). (C.73)
!

0

For non-interacting systems the action is at most quadratic in the fields and the path
integral is a multidimensional Gaussian integral. The essential formulas were given
in Sect.5.5.3. With these formulas one can reproduce the free propagator formula
for Zy[j] of the foregoing section. Also, one can reproduce the perturbation series.
One can use all of the flexible strategies for functional integrals (see Sect.5.6).

C.4 Exercises

Exercise 1: Susceptibilities
Derive (C.14) by linear imaginary time dependent perturbation theory.
Show that the thermodynamic susceptibility can be written as

e BE-E) _

2 —B(Ex—uN,

AN

and the Kubo-susceptibility as

) XoovYow — Yoo X
ny(Z)Ze‘mZ[ A Y A A,\]e,g(grﬂm)

¥ Ev—E+hz

In both expressions §2 follows from

Ze*ﬂ(SA*#NA) — e P02
A

Exercise 2: Thermodynamic Potential as Generator
Show that the equilibrium value of X (F') follows from differentiating §2

(X(F))p = —0r$2.
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