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Supervisor’s Foreword

The prediction of the existence of gravitational waves as one of the fundamental
consequences of Einstein’s theory of general relativity is almost exactly a hundred
years old. Einstein thought gravitational waves would be unobservable due to the
intrinsic weakness of this form of radiation. However, after many decades devoted
to the development of new instruments, a handful of detectors and observational
techniques are approaching a sensitivity adequate to finally capture these waves. We
are possibly on the brink of a revolution with the first direct detection finally in sight
and the opening up of a new observational window on the Universe.

One of the techniques used to search for gravitational waves is the monitoring of
ultra-stable radio pulsars that provide a galactic-scale gravitational-wave detector,
a pulsar timing array. These arrays are particularly suitable to capture gravitational
radiation from some of the most extreme objects in nature: binary systems of billion-
solar mass black holes.

Chiara Mingarelli’s Ph.D. thesis opens new research avenues in the use of pulsar
timing arrays (PTAs) to study populations of super-massive black hole binaries
through gravitational-wave observations. Her work has shown for the first time that
PTAs can yield information about the non-linear dynamics of the gravitational field.
This is possible because PTAs collect, at the same time, radiation from the same
source emitted at stages of its binary evolution that are separated by thousands of
years.

Chiara has also been amongst the pioneers of the techniques that will allow us to
probe the level of anisotropy of the diffuse gravitational-wave background radiation
from the whole population of super-massive black hole binaries in the Universe.
Indeed, future observations will provide us with hints about the distribution of
galaxies harboring massive black holes and insights into end products of hierarchical
mergers of galaxies.

Professor Alberto Vecchio
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Abstract

One of the main goals of a pulsar timing array (PTA)—a network of one or more
radio telescopes which regularly monitor millisecond pulsars—is to detect ripples
in the fabric of space-time, produced by accelerating masses, called gravitational
waves (GWs). Currently, PTAs are the only way to search for GWs in the
nanohertz band—a portion of the spectrum in which a promising class of sources
are supermassive black hole binary (SMBHB) systems with masses in the range
of ~107-10° M during their slow, adiabatic inspiral phase. The majority of the
sources in the PTA frequency band are individually unresolvable, but together, these
sources contribute to a stochastic GW background which may soon be detectable.

The focus of this research begins on the stochastic GW background. It is shown
that a level of anisotropy in the stochastic GW background may be present and that
the characterization of the GW energy density at different angular scales carries
important information. The standard analysis for isotropic backgrounds is then
generalized by decomposing the angular distribution of the GW energy density into
multipole moments. Generalized overlap reduction functions are computed for a
generic level of anisotropy and PTA configuration.

Following this, a rigorous analysis is done of the assumptions made when
calculating the standard overlap reduction functions. It is shown that for all
the overlap reduction functions, correlated phase changes introduce previously
unmodelled effects for pulsars pairs that are separated by less than a radiation
wavelength.

The research then turns to the study of continuous GW sources from SMBHBs.
Here it shown that the detection of gravitational radiation from individually
resolvable SMBHB systems can yield direct information about the masses and
spins of the black holes, provided that the GW-induced timing fluctuations both
at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear
dynamics of the gravitational field and a new avenue to tackle open problems in
astrophysics connected to the formation and evolution of SMBHs.
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Chapter 1
Introduction

1.1 Gravitational Waves

Gravitational waves (GWs) are ripples of space-time travelling at the speed of light,
originating from some of the most violent events in the Universe. In particular,
they provide a new means of addressing open questions in astrophysics and
fundamental physics and for studying black holes: from their formation, evolution
and demographics, to the assembly history of galactic structures and the dynamical
behaviour of gravitational fields in the strong non-linear regime. Specifically, GW
observations through a network of radio pulsars used as ultra-stable clocks called a
Pulsar Timing Array (PTA), cf. Estabrook and Wahlquist (1975), Sazhin (1978),
and Detweiler (1979), currently represent the only direct observational avenue
for the study of individual supermassive black hole binary (SMBHB) systems in
the ~108-10° M mass range, with orbital periods between ~1 month and a few
years. Moreover, the incoherent superposition of the cosmic population of SMBHBs
is expected to form a diffusive GW background, which has yet to be detected,
cf. Hellings and Downs (1983), Rajagopal and Romani (1995), Wyithe and Loeb
(2003), Sesana et al. (2004), Jaffe and Backer (2003), Jenet et al. (2006), Sesana
et al. (2008), van Haasteren et al. (2011), and Demorest et al. (2013).

Ongoing observations with some of the most sensitive radio telescopes around
the world, detailed in Verbiest et al. (2010), Ferdman et al. (2010), Jenet et al.
(2009), and Hobbs et al. (2010) for example, as well as instrumental improvements
culminating with the Square Kilometre Array, cf. SKA (2014), are expected to
yield the necessary timing precision to observe the stochastic GW background,
cf. Verbiest et al. (2009) and Liu et al. (2011). In addition to stochastic GW
background searches, searches for SMBHBs which are sufficiently high mass and
high frequency to rise above the background radiation are also underway, e.g. Jenet
et al. (2004), Sesana et al. (2009), Sesana and Vecchio (2010), Yardley et al. (2010),
Wen et al. (2011), Lee et al. (2011), Babak and Sesana (2012), and Ellis et al.
(2012a,b).

© Springer International Publishing Switzerland 2016 1
C.M.F. Mingarelli, Gravitational Wave Astrophysics with Pulsar Timing Arrays,
Springer Theses, DOI 10.1007/978-3-319-18401-2_1



2 1 Introduction
1.1.1 Evidence for Gravitational Waves

The discovery of pulsar PSR B1913 + 16—a pulsar with a companion neutron
star—by Hulse and Taylor in 1974 was the first instance where compact objects
in a relativistic system could be monitored. Hulse and Taylor (1975) claimed that
the binary should be emitting GWs, and consequently, the binary’s orbital period P},
should shrink by an amount P, due to the energy loss from gravitational radiation.
This would in turn change the time of periastron of the binary, i.e. the point of
closest approach, which was observed via radio observations of the pulsar at the
Arecibo Radio Telescope by Taylor and Weisberg (1982), see Fig. 1.1. They showed
that P,/ (Py)gr = 1.0013(21), where (P,)qr is the prediction of P, from GR. One
can see that these quantities are in excellent agreement. This has been hailed as
the first discovery of gravitational wave emission, and for this, Hulse and Taylor
were awarded Nobel prize in 1993, see Nobelprize.org (1993). More recently, the
highly relativistic double pulsar PSR J0737-3039A/B, see Burgay et al. (2003) and
Lyne et al. (2004), has yielded constraints on GR which surpass those of Taylor
and Weisberg (1982) by an order of magnitude, see e.g. Kramer and Wex (2009)
and references therein.

10 ®
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Fig. 1.1 Evidence for GWs form the change in the periastron of PSR 1913 + 16, updated in
Weisberg and Taylor (2005). Experimental data are the filled circles, error bars are half a percent,
and the solid line is the change in periastron according to the gravitational wave emission model
proposed by general relativity



1.2 Useful Definitions and Conventions 3

The Background Imaging of Cosmic Extragalactic Polarization (BICEP)
Collaboration claimed to have detected primordial GW signatures, called B-modes,
in the polarization of the Cosmic Microwave Background (CMB), cf. Ade
et al. (2014). The BICEP2 instrument was designed to measure the polarization
of the CMB on angular scales of 1-5° (I = 40-200), near the expected
peak of the B-mode polarization signature of primordial GWs from cosmic
inflation (Ade et al. 2014; Guth 1981; Linde 1982). Cosmological B-modes also
come from gravitational lensing of polarization by the large-scale structure of
the universe, see e.g. Zaldarriaga and Seljak (1998), occurring at much higher
angular scales, [ ~ 103. These B-modes were discovered in 2013 by the South
Pole Telescope collaboration, cf. Hanson et al. (2013). The BICEP2 researchers
also reported a relatively large number for r: the ratio of the GW fluctuations
in the CMB to the fluctuations caused by perturbations in the density of matter.
This quantity is especially interesting, as it is determined by the energy scale of
inflation. The previous upper limits this ratio was » < 0.11, based on all-sky CMB
maps from the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck
Collaboration, see Planck Collaboration et al. (2013). For BICEP2, r ~ 0.20, in
contention with previous upper limits.

Indeed, new results from Planck supported that the BICEP2 results were
substantially affected by dust, reporting » < 0.11 at 95 % confidence, see Planck
Collaboration et al. (2014). A follow-up joint analysis of Planck, BICEP2, and Keck
Array data, placed an upper limit of » < 0.12 at 95 % confidence, BICEP2/Keck and
Planck Collaborations et al. (2015).

1.2 Useful Definitions and Conventions

Before moving forward, a list of common definitions and equations is presented for
ease of reference.

Useful Definitions

The following are commonly used formulae which will be used throughout the text.
Unless otherwise specified, natural units of c = G = 1 are used. Therefore,

s =299,792,458 m ~ 3 x 105 m, (1.1)

and by using the Schwarzschild radius of the sun, ry = 2GMg/c?, one can write
the mass of the sun in units of seconds:

1 Mg =~ 4.9 us. (1.2)



4 1 Introduction

Common units used in this research are the light year, denoted “ly”, where
Ily=194x10"m~3.2x10s, (1.3)
and the parsec, denoted “pc”, where
lpc=331ly~10%s. (1.4)

Other useful definitions include the total mass M of a binary with component
masses mjp, my:

M =m; +m, (1.5)
the reduced mass, 1
myny
= , 1.6
2 i (1.6)
the symmetric mass ratio 7,
niniy
=5 (1.7)
and the chirp mass M
MP = mimaM™"? = uM?/3. (1.8)

Useful Forms of Kepler’s Third Law

Consider a binary system in a circular orbit with total mass M at orbital separation
r and period P. One can write Kepler’s Third Law as:

27\ ? _ M 19
Qnf)* = A%I (1.10)
r

where P = 1/f and f is the orbital frequency of the binary. The velocity v of the
binary can be expressed in terms of the orbital frequency as

2nr
v=7=2m_~f, (1.11)



1.3 The Linearized Field Equations 5

where 27 r is the circumference of a circle with radius . Hence,

v

Substituting Eq. (1.12) into Eq.(1.10) and using the fact that fow = 2fomw, see
Eq. (1.57), one can write

(fow)® = %(ﬂwa)3 ,
v = (Mfow)'? . (1.13)

Anther useful manipulation of Eq. (1.10) is

r=M"Pg23 20 (1.14)

1.3 The Linearized Field Equations

Matter tells space how to curve, and space tells matter how to move. (John A. Wheeler)

Einstein’s theory of General Relativity (GR) introduced a new way of thinking
about gravity, which was fundamentally different from the Newtonian paradigm.
In this section the linearized field equations will be derived and the GW solution
in a vacuum will be given. Furthermore, it will be shown that GWs have two
polarizations and travel at the speed of light. Several excellent texts on the subject
have been written, including Misner et al. (1973), Hawking and Israel (1987), Schutz
and Ricci (1999), and Flanagan and Hughes (2005), which can be consulted for
more details.

Mathematically, Einstein’s field equations are written as a tensor equation,

1
R,L\,—Eg,sz&TT,w, w,v=20,1,2,3 (1.15)
where R, is the Ricci tensor, R is the scalar curvature, g, is the metric tensor
and T}, is the stress-energy tensor. A more compact form of the field equations is
sometimes used, where the right-hand side is rewritten as the so-called “Einstein
tensor”, Gy, such that

Gy = 87Ty (1.16)

In the above form of the field equations, it is perhaps clearer that the stress-energy
tensor 7, at a given event generates curvature G, at the same event.
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Gravitational waves arise a natural solutions to the field equations. The cleanest
way to show this is to make a few simplifying assumptions: assume a flat
background metric 7, and a small perturbation to this metric 4, < 7,,. In the
presence of this small metric perturbation, g,, can be written as

guv = M + My, (1.17)

where 7n,, is the flat Minkowski metric, diag(—1,1,1,1). Writing the metric
tensor as a sum of a flat space-time and a small perturbation is called the “linear
approximation”, and is correct to first order in h,,. The indices for the metric
perturbation are raised and lowered by 7,,,:

B = n"Pn" by (1.18)

Let h = n,,h*". The following math is simpler if the “trace-reversed” metric
perturbation,1 hyy is used, where

- 1

hyy = by — Enwh. (1.19)
The coordinate freedom in the 4, components is still considerable: #,,,, like the
metric tensor, is a 4 X 4 matrix with 16 components. However, both g,, and A,
are symmetric and therefore have 10 independent components. To restrict some the
degrees of freedom, we impose the gauge condition

3, =0, (1.20)

called the Lorentz gauge (also called the de Donder gauge), where 0, is partial
differentiation with respect to x”. The choice of this gauge applies 4 independent
conditions to 10 independent components of /,,, reducing the freedom to 6.

Substituting Eq.(1.19) into Eq.(1.16) under the Lorentz gauge conditions,
Eq. (1.20), yields a rather simple result,

12 L)\ 1
Guv = =5 (=53 + V2 ) v = =5 0, (1.21)

where [ is the D’ Alembert, or wave, operator. For more details, see e.g. Flanagan
and Hughes (2005) and Misner et al. (1973). Therefore, the linearized field
equations reduce to wave equations:

Ohyy = —167T),. (1.22)

I"This is called “trace-reversed since hj, = —h.
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The most straightforward solution to Eq.(1.22) is the vacuum solution, where
T, =0,

O = 0. (1.23)

Equation (1.23) is a wave equation, and therefore admits a plane wave solution of
the form

Bl =Ae”veikax°‘ =Aeﬂvei(k‘x—wf), (1.24)

where A is the amplitude, e”” is the polarization tensor and k, is the wave vector,
k* = (w,k). The properties of the wave vector can be derived by taking two
derivatives of Eq. (1.24):

B ph™ = kokgh’ (1.25)
1P 3q gh™ = n®Plykph" . (1.26)

The lefthand side of Eq. (1.26) is the wave equation, as required, if 7% kokg =0,
which is generically true if k,k* = 0, i.e. if k is light-like. One can therefore
conclude that GWs propagate at the speed of light.

Recall that there are still 6 degrees of freedom left in h,,. Indeed, it is still
possible to perform a small change in coordinates

i =axt 4 E (1.27)
which preserves the Lorentz gauge condition if d,£*" = 0. It is possible, however,

to remove 4 more degrees of requiring that the wave be transverse, Eq. (1.28), and
traceless, Eq. (1.29), i.e.

W =0, (1.28)
W = 0. (1.29)

These conditions put the metric into what’s known as the Transverse and Traceless
(TT) gauge. Since the metric perturbation is traceless, iza = hg. From hereon,
the metric perturbation h% will be assumed to be given in the TT gauge and will
be denoted by hy;, ij = 1,2, 3, when referring to the spatial components only. This
is a natural way of writing the metric perturbation, since the transverse condition,
Eq. (1.28), ensures that it is purely spatial.

There are now just two degrees of freedom remaining which cannot be fixed by
a choice of gauge, and these are the GW polarizations: “plus” and “cross”, whose
form will be given in Sect. 1.3.1, see Fig. 1.2.
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Fig. 1.2 The plus and cross polarizations of a gravitational wave. A represents a circle of test
masses at rest, in the absence of a GW. the lower left image is the response to a “+” polarized
GW, and the lower right image is the response to a “X” polarized GW. This is the characteristic
stretching and squashing of spacetime, due to a GW. Imagine reproduced from Larson and Wheeler
(2013)

1.3.1 Generating Gravitational Waves:
The Quadrupole Formula

The most straightforward way to derive the GW solution of the linearized field
equations was to solve the equations in a vacuum, thereby setting the source term
(or the stress-energy tensor) in Eq. (1.22) to zero. GWs, however, are generated by
TH'—the right hand side of Eq.(1.22). In the following paragraphs, the leading
order contributions to the spatial components of the metric perturbation will be
calculated, in an effort to present the standard quadrupole formula for the emitted
gravitational radiation. The steps here closely follow Flanagan and Hughes (2005),
Misner et al. (1973), Hawking and Israel (1987), Schutz and Ricci (1999), and
Shapiro and Teukolsky (1983), which may be consulted for the detailed calculations.
Here boldface is used to indicate a vector.

The linearized field equations, Eq.(1.22), can be solved using a well-known
Green’s function associated with the wave operator [,

80—l —x—x)

G, x 7, x) =
( ) dr|x — x|

: (1.30)

where t — |[x — X/| is called the “retarded time”, which emphasizes that there is lag
between points x and x’, due to the finiteness of the speed of light. Applying this
Green’s function, Eq. (1.30), to Eq. (1.22) yields
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_ T t— _ /’ /
Ty (£, %) :4/d3x’ =X =x],x) (1.31)

x — x|

This quantity is then evaluated far away from the source, such that D = |x — x/|.
This approximation leads to a fractional error of order Lyoyce /D, Where Lgoyce is the
size of the source. For compact GW sources such as black holes, cf Sect. 1.5 and
neutron stars, cf Sect. 1.7.1, Lyouce /D < 1. This substitution in the denominator of
Eq. (1.31) and in the time argument of T;:

T;(t — |x —X'|,x") ~ T;(t — D, X)), (1.32)

such that
7 4 3./ /
huo(t,X) ~ ) d’x'Tj(t — D,x). (1.33)

Equation (1.33) is the first term in the expansion of the gravitational radiation field.
In the linearized theory, however, it is required that 9, 7*" = 0. Physically, this can
be thought of as the conservation of momentum of the system, or in other words,
the stress-energy tensor must be conserved.

From the gauge condition, one can massage Eq. (1.33) into the form

92
3./ _ 3./
/d T; —aZ/dxpxl], (1.34)

where p = T, is the mass density. This manipulation is quite involved—the reader
is referred to the careful steps outlined by Flanagan and Hughes (2005) for details.
Let I;; be the quadrupole (or second) moment of the mass distribution:

Iy = / P p,. (1.35)

Equation (1.34) relates the second time derivative of the mass quadrupole to the
metric perturbation A;;, in the source’s rest frame in a relatively simple form:

- 2.

hij(t,xX) ~ BI,-j. (1.36)
Mathematically, one can now see that the second moment of the mass distribution
is the lowest order contribution to the strain. The lower order contributions were
eliminated based on mathematical arguments going from Egs.(1.31) to (1.33),
detailed in e.g. Misner et al. (1973) and Flanagan and Hughes (2005), however a
physical explanation of why these terms vanish may prove enlightening.
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The zeroth moment of the mass distribution M, is the mass itself,
My = /d3xp =M. (1.37)
The dipole (or first) mass moment is defined as
M, = / d*xpx; = ML; (1.38)

where L; is a vector with dimension of length. If the mass distribution displays
internal motion, then the moments of the mass current, j; = pv; may also be
important. The first moment of the mass current is the spin angular momentum, Si,

S = / dxpvpen = S;, (1.39)

where the cross product is written in terms of the Levi-Civita symbol, €;;, which is
1 for an even permutation of ijk, —1 for an odd permutation of the indices and 0 if
there is a repeated index.

The contribution to the strain &; from Egs. (1.37), (1.38), and (1.39) can now be
calculated. The Green’s function solution to the wave equation, Eq. (1.30) tells us
that the strain magnitude & scales as 1/D. The contribution from M, is

h M (1.40)
D’ '

but the mass does not vary dynamically since dM/dt = 0. The mass monopole
therefore does not contribute to the strain. Next consider the mass dipole, Eq. (1.38).
Its contribution to the strain would be

p~ ML (1.41)
D’ '

however from the conservation of momentum, it is clear that d>M; / dr* = 0, and
therefore does not contribute to the strain. Similarly, the contribution from the
angular momentum S; to the strain is zero since dS;/dt = 0, from conservations
laws. Therefore, it the first non-vanishing contribution to the strain comes from the
mass quadrupole, [, as described in Eq. (1.36).

Now, let

1
fy=1I; — 58,-1- trace(l), (1.42)

1
= /d3x’p (x;x; - 5517 trace(I)) , (1.43)
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be the “reduced” quadrupole moment, cf. Misner et al. (1973). The “reduced” part
refers to the 1/3 term which multiplies the trace of .

The energy E carried away by the GWs can also be written in terms of the mass
quadrupole:

dE 1 o\ 1,

@ =5\F)=5(Hh). 149
where the angled brackets represent the average value. Equation (1.44) is also called
the gravitational luminosity £ of the source.

An example from Wheeler (2013) will help to solidify these ideas. Consider a
circular binary with orbital separation », component masses m; and m;,, and reduced
mass i, cf. Eq. (1.6). Confining the orbit of the binary to the x — y plane, one may
write the barycentric the coordinate as mx; = myx,, where r = x| +x; is the orbital
separation of the binary. This yields to coordinates

X] = ﬂ(cos 0,sind,0), (1.45)
nmy

X = P cos, —sin6,0), (1.46)
ny

where 6 is the polar angle, which can be expressed in terms of the orbital frequency,
Jorb, a8 0 = 2 fopt = wt.
It is now straightforward to substitute the above components into Eq. (1.35):

= [prd3x = mlx% + mzxg (1.47)

1 1
= 2P (— + —) cos’ (1.48)

n nmyp
= ur? cos*(wt) (1.49)

1
= E,urz[l + cos(2wt)]. (1.50)
Similarly,
S
r? = E/Lr [1—cosRwt)], (1.51)
1

P =r<= sz sinQwt). (1.52)

In order to obtain the reduced quadrupole moment #;, the traceless component must
be subtracted, as in Eq. (1.43):
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1 . 1 .
S U7 Y LR O (1.53)
3 3
1 ..
= ESU;UZ [1 + coswt) + 1 — cosRw?)] , (1.54)
1 i
= 387, (1.55)

The matrix ¥ can now be written down, as all of its components have been
calculated:

| 1/3 + cosQwt)  sinRwt) 0
= Eurz sinQwt)  1/3 —cosQRwt) 0 . (1.56)
0 0 -2/3

The second time derivative of the mass quadrupole is of particular interest as it
is rela}ed to the GW strain, Eq. (1.36). Moreover, the energy E emitted in GWs is
E = (#;). Taking two derivatives of Eq. (1.56) one can write:

) cos(Qwt) sin(Rwt) 0
¥ = —2ur*w? | sinRwt) —cosRwt) 0 | . (1.57)
0 0 0

Note that the GW frequency in a circular binary is twice the orbital frequency. In
other words, for each cycle made by the binary motion, the GW signal goes through
two full cycles and fow = 2fow.- From Eq. (1.57), it is clear that the magnitude of
the GW energy is

E = 2urfew’, (1.58)

and from Kepler’s Third Law to relate the binary mass, angular frequency and orbital
separation, cf. Sect. 1.2, one can write the GW energy in the familiar form,

1 uM
E—__HM (1.59)
2 r

Equation (1.57) also highlights the two independent GW polarizations amplitudes,
h4+ and hy, defined as

Al _ 2
hy (1) = (

4
T) = —B;,era)z cos(2wt) (1.60)

flz le
hx(t) = (+)

Tl Tl

4
-5 urtw? sinQQot) . (1.61)
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The magnitude /4 of a typical non-zero component of /;; is readily obtained by using
Eq. (1.14):

4602/3MM2/3
D

4
= SR M, (1.62)

Finally, the gravitational luminosity £ is calculated from the third time derivative of
the mass quadrupole ¥,

—sin(2wt) cosRwt) 0

7= —4ur*w’® | coswr) sinQwi) 0 | . (1.63)
0 0 0
and by Eq. (1.44),
dE |
7 (Fit)
1
= _§(4W2w3)2 (2sin? 2wt) + 2 cos*(2wt)) (1.64)
32 uM?
:_?Mrs , (1.65)

where Kepler’s Third Law was used to write @ in terms of mass and orbital
separation.

A useful quantity which can now be derived from Egs. (1.65) and (1.59) is the
change in the GW frequency per unit time, fow. This quantity can be derived by
taking the time derivative of Kepler’s Third Law:

M

(Tfow)® = = (1.66)

dwa 3M dr
2(r? =—— 1.67
(7" faw) = b (1.67)

dfow 3M 1 dr dE
= 1.68
Jaw =g 272 4 dE dr (1.68)
but dr/dE is simply (dE/dr)~", which is easily calculated from Eq. (1.59):

dE 1uM E

=—-—=—. (1.69)

dr 2 r
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Substituting Eqs. (1.69) and (1.65) into (1.68) yields

dfGW M 27‘2 32 ,LL2M3
= - — || = . 1.70
fow dt (2n2r4) (,uM) ( 5 (1.70)

Equation (1.14) was used to write r in terms of the mass and frequency of the binary,
and applying the definition of chirp mass, Eq. (1.8), gives the final result:

dfgw 96 13
=M a7

The expression for fgw () is obtained by integrating Eq. (1.71) from some time ¢ to
the time of coalescence, 7..:

—3/8
fow(®) = 7' M8 [?(n - t)} . (1.72)

Similarly, one can derive the orbital separation of the binary at any time by writing
dE/dt = (dE/dr)(dr/dt) and substituting Egs. (1.65), (1.59) and (1.69). Integrating
r from some time ¢ to the time of coalescence ¢, gives:

1/4
r(t) = (%%MMZ) (te — 1)"/*. (1.73)

1.4 The Post-Newtonian Approximation

There are very few exact solutions to Einstein’s field equations—see e.g. Stephani
et al. (2003) for a collection of known exact solutions—and numerical solutions
to the field equations are still very computationally demanding, e.g. Bona et al.
(1995), Pretorius (2005), and Centrella et al. (2010). Instead of writing down the
exact solution for 2-body dynamics, a perturbative expression—the so-called post-
Newtonian (pN) approximation—is often used. The pN approximation is used to
compute the amplitude of the GW and the evolution of the orbital phase of a compact
binary. Here the perturbation parameter is the characteristic velocity v of the binary,
Eq. (1.13), where v < 1. Expansions in terms of other parameters, such as the mass
ratio, are also used when appropriate, cf. Buonanno et al. (2009). The order n of
the expansion is denoted by p”N, which is given in terms of (v/c)?". The evolution
of the orbital phase during the binary’s inspiral is complete to order (v/c)’, see
Damour et al. (2009), Buonanno et al. (2009), and Blanchet (2014). The Newtonian
approximation is the n = 0 leading order term. Note that n can take on integer
and half integer values, and that in General Relativity, p’’N= 0, see e.g. Blanchet
(2014) and references therein.
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The pN approximation for the change in GW frequency, df /dt is given by several
authors, e.g. up to p'°N by Cutler and Flanagan (1994) and up to p>N by Poisson
and Will (1995) and Blanchet et al. (1995). Consider a compact binary with GW
frequency f, component masses m;, m, at a distance D from the observer. From
Eq. (1.57), one can write the GW strain as

h ~ A cos(nfowt), (1.74)

where A ~ fé{,g/\/ls/ 3Q(angles)/D is the GW amplitude, cf. Eq.(1.62), and

O(angles) contains the geometric parameters of the binary (right ascension, dec-
lination, orbital inclination). If the total angular momentum of the binary is L, and
each compact object has a spin S1, S, the pN approximation for the change in the
GW frequency wa to p?N order is

o LB P 1 (g + ) (eMow " + (o = ) (M)

a5 336
34103 13661 59 , o
(718144+72016n+18 +o) (eMfow)*> + ](1-75)
where
1 & :
B = _22[113( ) +75n}L-Sz~, (1.76)
i=1
_nr_ S - §
_ 48[ 247 (8, s2)+721 (L S (L Sz)]. (1.77)

For more details on this, the “Taylor F2” expansion, see e.g. Buonanno et al. (2009)
and Blanchet (2014). Note that the chirp mass M dominates the Newtonian contri-
bution, and the symmetric mass ratio 1 enters the expansion at p'N. Contributions
from the spins enter at p'°N via the B term, hence this order is usually called the
“spin-orbit” coupling. In this case, the coupling is between the spin of the compact
object and the orbital angular momentum, L-S;. The p*N contribution is called the
“spin-spin” contribution, as this term includes the interaction of the binary’s spins
with each other, S; - S.
The maximum value of Eq. (1.76) is achieved for an equal mass binary when its
spins S; are aligned with the orbital angular momentum L, such that

Bmax = 2 113 12~|—75 ! —47~783 (1.78)
max—12 4 —_— 6~ . . .
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The maximum value of Eq. (1.77), 0, is also achieved for an equal mass binary with
spins aligned with the total angular momentum:

! 1( 247 + 721) 474 2.47 (1.79)
T 48 4 192

The pN approximation is truncated at p?N since higher order terms will be further
suppressed by factors of v?". Recall from Eqs. (1.13) and (1.75) that

Mo \2? 2/3
vpin = (TMfow)?? ~ 8.4 x 10‘3( ) ( Jow ) . (1.80)

109 Mg 50 nHz
N M Jow
M) 7T 10 , 1.81
UplSN (7w Mfow) (109MO) (50 nHZ) ( :
M N\ fow \Y?
= (TMfow)*® ~ 7.1 x 1075 - (182
v = (TMfew) X 109 Mg 50 nHz (152

A multiplicative factor of (47 — ) ~ 5, Eq.(1.75), boosts the contribution to the
p'°N term, for optimal B, cf. Eq.(1.76), to ~1073, which is comparable to the
p'N term. For optimal alignments and mass ratios, the p?>N contribution gains an
additional factor of order 10, cf. Eqs. (1.75) and (1.77), however, it is still at least an
order of magnitude smaller than the p'°N contribution.

1.5 Supermassive Black Holes

Supermassive black holes (SMBHs) in the range 10° — 10° M, are found in the
centres of most nearby galaxies, cf. e.g. Ferrarese and Ford (2005) and Magorrian
et al. (1998). Moreover, studies by e.g. Ghez et al. (2005) indicate that the centre
of our own Milky Way hosts a ~4 x 10® My SMBH, see e.g. the review by Genzel
et al. (2010). The focus of this section will be on SMBH binaries, and how galaxy
mergers—and therefore SMBHB mergers—can lead to GWs in the PTA band.

The origin of SMBHS is still a very active area of research: there are currently
three main competing theories on their formation, with the SMBH progenitors
commonly referred to as “seeds”, e.g. Volonteri (2010), which are summarized in
Fig. 1.3. The first theory proposes that SMBH seeds form from Pop III stars which
collapse into BHs with masses in the range of 100 — 300 M, see e.g. Whalen and
Fryer (2012) and Alvarez et al. (2009), top evolutionary track in Fig. 1.3. The second
theory claims that 10* — 10° M seeds form directly from baryon collapse in dark
matter halos e.g. Wise et al. (2008), Regan and Haehnelt (2009), and Shang et al.
(2010), see middle evolutionary track in Fig. 1.3. The third competing argument
presented in Djorgovski et al. (2008) supports the formation of 10*—10° My SMBH
seeds from the relativistic collapse of the first star clusters, see lower evolutionary
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Fig. 1.3 The three principal black hole seed theories, from Volonteri (2012)

track of BH seeds in Fig. 1.3. Low frequency GW signatures from these seeds
(or the lack thereof) will be a useful tool to distinguish between the aforementioned
theories, e.g. Sesana et al. (2004), Sesana et al. (2007), Volonteri (2010), and Arun
et al. (2009).

The current paradigm is that these massive black holes grow by accretion
and mergers, e.g. King (2003), Volonteri (2010, 2012) and references therein.
Observations of distant active galactic nuclei, e.g. Haehnelt and Rees (1993), imply
that SMBHs were also common in the past. If, as the current paradigm suggests, the
SMBH host galaxy experiences many mergers during its lifetime, see e.g. White and
Rees (1978) and Peebles (1982), then SMBHBs are the natural product of cosmic
evolution.

Observational evidence for SMBHBs exists in the quasar OJ287: a 12 year
light structure arises from the SMBHB system where a secondary SMBHB, m, =
1.4x 108 M, perturbs the accretion disc of the primary SMBH, m; = 1.8x10'° Mg
at regular intervals, causing increased emission in the jet, see Sillanpaa et al. (1988),
Valtonen et al. (2008), Kidger et al. (1992), and Valtonen et al. (2012). Other
observational signatures of SMBHB systems are outlined in e.g. Roedig et al.
(2014).

The following calculations show that GWs emitted by SMBHBs during their
coalescence history span a frequency range that extends from the nHz to wHz
regime, accessible via Pulsar Timing Array experiments.

Consider a pair of non-spinning, or Schwarzschild SMBHs. The maximum
frequency of the GWs emitted by the binary is emitted at the innermost stable
circular orbit (ISCO), at fiax:

1

M —1
fonax = ——— ~4.4%x107°( ———— | Hz, (1.83)
T63/2M

10° Mo



18 1 Introduction

A frequency of 1076 Hz is ~1/week—the high-frequency limit of PTAs. Assuming
that a SMBHB is 10° year from coalescence (f, = 0), one can scale the GW
frequency of the binary using Eq. (1.72):

fow(@®) =7.1x1078 M o ! o Hz (1.84)
Wi = o 4.4 x 108 M, 106 year ' '

Therefore, PTAs can access GWs generated by SMBHBs starting from 10° years
before coalesce to ISCO, or equivalently, in the frequency range

M —5/8 ¢ —3/8
7.1x1078 Hz <f < 4.4x107°
4.4 x 108 Mg 106 year

—1
Hz.

10° M@)
(1.85)

These binaries are at orbital separations r of

1/4 Mo\2 ; 1/4
r(f) = 9.6 x 1073 e pc,  (1.86)
2.5x 108 Mg 10° Mg 106 year

cf. Eq. (1.73), and have a GW strain magnitude, Eq. (1.62) of

M 55/ p -1 2/3
h~ 5510710 — - fow (1.87)
10° Mgy 1 Gpc 10—° Hz

where M is the redshifted value of the chirp mass, M = M(1 + z) at redshift z
corresponding to the luminosity D, distance of 1 Gpc.

Pulsar Timing Arrays can access GW in the nHz—puHz frequency band, and
therefore it is clear that SMBHBs are excellent GW source candidates (Fig. 1.4).

1.6 The Stochastic Gravitational Wave Background
from SMBHBs

The cosmic population of SMBHBs is expected to form a diffusive GW background,
which may soon be detected by PTAs. To show that the background is truly
stochastic, one can do a simple order of magnitude estimate for the number of
sources N in a frequency interval Af = 1/Tys, Where Tgps is the total observation
time of a PTA, typically 10 years. We wish to estimate

_dN ., dN (df\"
AN = 28 = (E) Af, (1.88)
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Fig. 1.4 Contribution of different redshift intervals to the build-up of the GW signal at two
different frequencies, f = 8 x 10~° Hz and 10~ Hz, computed using Monte Carlo sampling (solid
lines) and a semi-analytical approach (dotted lines). In each panel, the upper histograms refer to
f = 8 x 107° Hz and the lower histograms refer to f = 10~ Hz. Figure and caption reproduced
from Sesana et al. (2008)’s Fig. 4

and letting f = faw, fow & M5/3 11/3 by Eq. (1.71). Therefore
_ dN
AN oc MTf5 ”/SAfE. (1.89)

To roughly estimate dN/dt, one needs to estimate the number of galaxies in the
Universe, Ngy ~ 10", cf. Beckwith et al. (2006), the number of major mergers each
galaxy undergoes, Niyerger (Order of a few, see e.g. Conselice et al. 2003) and the age
of the Universe, which is taken to be a Hubble time, Hy !, Using these ingredients,
one may write down an order of magnitude estimate of dN/dt:

dN Ngal X Nmerger

1.90
dt H, ( )

10'! galaxies x 1 merger/galaxy 101
~ 1010 year (1.91)

~ 10 mergers/year. (1.92)
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We can now write down an order of magnitude estimate of the number of sources
AN in a frequency interval Af:

AN ~ 3.7 x 1012 MC - fGW s Tobs - dN/dt
’ 10° Mg 10—8 Hz 10 year 10 merg/year / -

(1.93)

It is clear that AN > 1. One may therefore safely assume that a stochastic GW
background exists.

1.6.1 The Characteristic Strain

In stochastic GW background searches, the amplitude of the GW background is
usually given in terms of a characteristic strain, i, = A(fgw/l year™')%, where
a = —2/3 for SMBHBEs. In this section, the reason for the « = —2/3 scaling
relation will be made clear via arguments presented in Phinney (2001). In other
words, Phinney’s theorem implies that the energy density in GWs per log frequency
interval is equal to the product of the comoving number density of event remnants
and the redshifted energy that each event produced, per log frequency interval.

Let f, be the GW frequency in the source’s rest frame such that f, = fow(l +
z), for some redshift z and frequency fgw observed at the Earth. The total energy
emitted in GWs between frequencies f, and f, 4 df, is

dE,,
df,

df,. (1.94)

Next, let N(z)dz be the number of events per unit of comoving volume occurring
between redshift z and z+dz. Define 2, (f) to be the present day GW energy density
per logarithmic frequency interval f, divided by the critical energy density p, =
3H?/(87) needed to close the Universe, i.e.

l dIOgW (f)

Qew(f) = ,
o) pe dlnf

(1.95)

where pg,, is the GW energy density. The total present day energy in GWs is
therefore:

df
A

where h. is the characteristic amplitude of the GW spectrum over a logarithmic
frequency interval. Note that A, is related to the 1-sided (0 < f < o00) spectral
density Sp,; of the GW background by 42(f) = fSj.1. The present day energy density

Equ = /0 PeQeu()dInf = /0 %fzhf(f) (1.96)
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£gw must be equal to the sum of the energy densities radiated at each redshift, divided
by a factor of (1 + z) to account for gravitational redshifting since the time of
emission. We can therefore write the &g, as:

1 dE df,
w . 1.97
&g / / N(z) T adr fr " dz (1.97)

Since f, = f(1 4 z), one can write df, /f, = df /f and simplify:

o dE d
:/ / NG _f, &, (1.98)

o Jo dfr f
Equating Eqgs. (1.96) and (1.98) one can write down Phinney (2001)’s main theorem:

T 0,2 * dEg,

P20 = 500 = [N (5 ) (1.99)
This is the main result, which implies that the energy density in GWs per log
frequency interval is equal to the product of the comoving number density of event
remnants and the redshifted energy that each event produced, per log frequency
interval. For the purposes of PTAs, we are interested in how this result can help us to
estimate the magnitude of the characteristic strain of the stochastic GW background,
h.(f), generated by the incoherent superposition of SMBHBs.

In the following paragraphs, the amplitude A of the characteristic strain is
estimated at a reference frequency of 1/year™': h.(f) = A(f/lyear™)~2/3.

In the Newtonian limit, let us consider a circular binary with chirp mass M,
Eq. (1.8). Such a binary, which merges due to GW emission in less than a Hubble

time, has
dE,,  dE (df,\”'
df. — dr \ dt

T M
= S Gh (1.100)

using Eqgs. (1.65) and (1.71), and assuming that the binary’s separation is small
enough that it merges within a Hubble time. Substituting Eq. (1.100) into Eq. (1.98)
gives the scaling relations for €2, and the characteristic strain /.. Firstly,

M5/3
ng(f)=—/ N(z)l+ [f/;( f)m}dz, (1.101)

8>/

_ 2/3/\/15/3/ N
H2f ; (2)

1.102
o2 ( )

1
(1+ z)1/3dZ
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Let Ny = fooo N(z)dz be the present-day comoving number density of merged
remnants and

1 Zmax N
(1 +2)'3) = ]70/2 M%dz. (1.103)

Equation (1.102) can therefore be rewritten as

ng(f) =

87 23k 45/ 1/3
oM N (14 9'7). (1.104)
0

Similarly, from Eq. (1.99) one can derive an expression for the characteristic strain

he(f):

41 M>/3
B = S mM{(+ 27 %f(ﬂf)l/3 (1.105)
— %N_]/3f_4/3M5/3N0<(1 + Z)l/3), (1106)

and therefore h. o f —2/3_ To estimate the amplitude of the characteristic strain, we
require estimates of the black hole chirp mass M, the comoving number density of
merged remnants Ny and (( 1+2)V 3). Phinney (2001) shows that in a flat Universe,
one can expect ((1 + )V 3) = 0.74, and that this estimate is not very sensitive to the
cosmology chosen. According to simulations carried out in Rajagopal and Romani
(1995), Ny = 107 Mpc 3. The characteristic strain can therefore be written as a
function of frequency using the aforementioned typical values for N, ((1 + )V 3).
For a SMBHB with m; = m, = 10° M, and find that the strain scales as

he(f) ~ 2 x 107'9(F /1year ") 7>/3. (1.107)

Indeed, when setting a limit on the stochastic GW background, one identifies the
value of the amplitude A of the GW background reported at a reference frequency
at 1/year™': h.(f) = A(f/lyear ')~2/3 see Fig. 1.5. The best current limit on the
amplitude A of the characteristic strain of the stochastic isotropic GW background
from SMBHBS is from Shannon et al. (2013), who report a value of A < 2.4 x 10718,
at 95 % confidence. Other more speculative stochastic GW background sources,
such as cosmic strings and relic GWs, have different values of «. For cosmic strings
a = —7/6 and for relic GWs —1 < o < —0.8, see Maggiore (2000) and Grishchuk
(1975). Limits on the amplitude of these GW background are found in e.g. Sanidas
et al. (2012), Jenet et al. (2006), and van Haasteren et al. (2011).
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Fig. 1.5 The GW strain spectrum from PTAs in the nHz band to ground-based laser interferom-
eters in the kHz band. Note the lack of sensitivity in the PTA band to frequencies of 1/year—this
is due to solar system ephemeris errors. Pulsar TOA fitting processes remove low-frequency
information, making PTAs less sensitive to the lower frequency limit of the PTA band. Image
reproduced from Demorest et al. (2009)

1.7 Pulsar Timing Arrays as Gravitational Wave Detectors

The detection of GWs is one of the key scientific goals of Pulsar Timing Arrays
(PTAs). A PTA uses a network of radio telescopes to regularly monitor stable
millisecond pulsars, constituting a galactic-scale GW detector, cf. Verbiest et al.
(2010), Ferdman et al. (2010), Hobbs et al. (2010), and Jenet et al. (2009).
Gravitational radiation affects the propagation of radio pulses between a pulsar and
a telescope at the Earth. The difference between the expected and actual time-of-
arrival (TOA) of the pulses—the so-called timing residuals—carries information
about the GWs, cf. Sazhin (1978), Detweiler (1979), and Estabrook and Wahlquist
(1975), which can be extracted by correlating the residuals from different pulsar
pairs.

1.7.1 Neutron Stars and Pulsars

Neutron stars were first theorized by Baade and Zwicky (1934a,b), almost immedi-
ately after the discovery of the neutron by Chadwick (1932). Detailed calculations
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Fig. 1.6 A rotating neutron star with its spin axis misaligned with its magnetic field axis, called a
pulsar. Electromagnetic radiation centred on the magnetic field axis is produced above the surface
of the pulsar. Due to the misalignment of the magnetic and rotational axes, pulsars are often referred
to as cosmic lighthouses, since the received light appears to pulse as the beam crosses our line of
sight

of their structure were performed soon thereafter, see e.g. Oppenheimer and Volkoff
(1939), however, neutron stars were not actually discovered until 1967, when
S.J. Bell,2 under the supervision of A. Hewish, discovered the first evidence for
pulsars, reported in Hewish et al. (1968). This would earn Hewish and Ryle the
Nobel Prize for Physics in 1974, see Nobelprize.org (1974) for details.

Pulsars are neutron stars with their spin axis misaligned with their magnetic
field axis, Fig. 1.6. They have been used to provide the most stringent tests of
General Relativity and alternative theories of gravity (e.g. Kramer et al. 2006;
Lyne et al. 2004 and references therein) and have provided stringent evidence that
GW exist—e.g. Taylor and Weisberg (1982) and Kramer and Wex (2009). Pulsars
can be characterized by their period P and spin-down rate, or period derivative,
P. According to Lorimer and Kramer (2012) and references therein, the general
pulsar population has a typical period and spin-down rate of P ~ 0.5s and
P ~ 1075 ss™!. With these two quantities one can define the characteristic age
of a pulsar, t = P/ (2P), which for the above typical values yields a characteristic

age of ~107 year, and a typical magnetic field strength B o \/ﬁ ~ 102 G.

Of particular interest to this body of work are millisecond pulsars (MSPs)—
pulsars with P ~ 3ms and P ~ 1072 ss™!, first discovered by Backer et al. (1982).
MSPs are “old pulsars” with weaker magnetic fields, here T ~ 10° year and B ~
10® G, which were spun-up by mass transfer up by a companion, such as a white

2Now Dame (Susan) Jocelyn Bell Burnell, DBE, FRS, FRAS.
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dwarf or a main sequence star. In fact, 80 % of all MSPs are found in binary systems.
Weaker magnetic fields cause less glitches, and therefore MSPs tend to be the most
stable timers of all pulsars.

Each radio pulse received form a pulsar has its own profile. In order to get a
typical signal, one needs to integrate over a certain time which may vary from
pulsar to pulsar. The integration process is a coherent addition of many pulses which
becomes very stable over time with small TOA errors. The Hulse-Taylor pulsar PSR
1916+13, for example, can be profiled for 5 min and the resulting TOA error is 20 s
or less.

Stable TOAs, and hence small timing residuals, are important for detecting
GWs, since the strain PTA are sensitive to goes as the timing residual Az over the
observation time 7 yps,

At
o~

(1.108)

Tobs

The characteristic strain of the GW background from SMBHBs has been estimated
to be h, ~ 10713, therefore to detect the stochastic background, one would require
pulsars with residuals of the order

h T
At ~32x1077 [ —< obs ) g, (1.109)
10715 J \ 10 year

or roughly 300 ns.

The MSP TOAs are typically transformed to the solar system barycentre (SSB),
described in detail in Sect. 1.7.2, as to be in an inertial reference frame with the
pulsar. To accurately model a TOA, one needs to take into account various time
delays in the radio pulse: the Roemer delay, Shapiro delay, Einstein delay, the
interaction with the interstellar medium (ISM), and even the rotation of the Earth
on its axis induces daily modulations of Rg/c ~ 21 ms. These effects are now
briefly described—more details can be found in e.g. Maggiore (2007).

The Roemer delay of a pulse, denoted Ag o, is caused by the position of the
Earth in the Solar System: if the Earth is in the direction of the pulsar, the pulse
arrives early by a factor of #,. If the Earth is on the opposite side of its orbit, then
the pulse signal arrives later by a factor of #y with respect to the Sun.

The Einstein delay Ag o accounts for the time dilation from the moving pulsar
and the gravitational redshift caused by solar system objects, such as the sun and
the planets. This delay could also arise due to the presence of a binary companion,
since most MSPs are in binary systems.

The Shapiro delay Ag g is the extra time required by the pulses to travel through
the curved space-time containing massive objects such as the sun, planets and/or the
MSP’s companion, see e.g. NRAO (2014). For example, a pulse grazing the surface
of the sun would have a Shapiro delay of Ag o ~ 120 s, three orders of magnitude
larger than the residual required, cf. Eq. (1.109).

The final time delay to be considered here is due to the ISM. The ISM is primarily
composed of gases and dust, thus having an effective refractive index which changes
the frequency of the radio pulses coming from the pulsar. A radio pulse with
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frequency v travels with a group velocity v,:

nee?
vgzc(l— ), (1.110)

2w m,v?

where n, is the electron number density, m, is the electron mass and e is the electron
charge, e.g. Maggiore (2007) and NRAO (2014). Therefore, the travel time over a

distance L would be
L dl L 2 L
_:_+( ¢ )/ nedl. (1.111)
0 Vg c 2wmec ) Jo

From Eq. (1.111) a quantity called the Dispersion Measure (DM) is defined, cf. e.g.
Lorimer and Kramer (2012), where DM = fOL n.dl. As the DM is not known a priori,
it becomes one of the dimensions of the parameter space in which we perform data
analysis of the signal, cf. e.g. van Haasteren et al. (2011). This is the final correction
missing from the general formula to find the time of arrival of a pulse at the SSB,
tssp. By defining

D
Issp = Tobs = 3 + Apo + Aro — As o, (1.112)

where D = e?/(2mm,c)DM, we have established a coordinate time at which the
signal recorded by our laboratory clock on Earth at 7,,; would have arrived if the
absence of the gravitational potential of the solar system and the interaction with
the ISM. Now the time delay depends only on the properties of the source. Indeed,
most pulsar suffer from “timing noise”, described in e.g. Perrodin et al. (2013),
which limits the accuracy of their root-mean-square timing residuals.

The 300 ns accuracy, see Eq. (1.109), is currently achievable in only a few MSPs,
such as J0437—4715—see e.g. Lorimer (2008) and Verbiest et al. (2008), which is
the best known timer.

1.7.2 PTA Response to Gravitational Waves

GWs perturb the null geodesics of the radio waves travelling from the pulsar to the
Earth, so changes in the TOAs could signal the presence of a GW. Let us consider
a source emitting gravitational radiation in the PTA regime and consider a GW
metric perturbation /1, (¢) in the transverse and traceless (TT) gauge, see Sect. 1.3
for details. Recall that i, j = x, y, z are the spatial indices.

Information about the source is encoded in two independent polarization ampli-
tudes: iy (r) and hx (f). We write

hi(t,2) = eff (Dhy (1.2) + €] (Q) h (1. Q). (1.113a)
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hi(f.2) = e (hy (. Q) + € () hu (. Q). (1.113b)

The polarization tensors e’S(SAZ) are uniquely defined once one specifies the wave
principal axes described by the unit vectors 7 and 71:

ey () = iy — hih (1.114a)
e () = mufy + hghy (1.114b)

Following the steps outlined in Detweiler (1979) and Anholm et al. (2009) but
giving more detail, we will now derive the 2-pulse response function of a PTA to
a GW. Starting with a metric perturbation in the Q = 2 direction described by
Ry (8, Q= z), which will be referred to as h,, (f — z) from here on, we can look at
the background described by

Suv = N + by (1 — 2) (1.115)
~1000 00 0 0
0100 Ohy hy O

1.116

0010 | |0n—nyo (1.116)
0001 00 0 0

We then consider a null vector, s#, in Minkowski space-time, then in perturbed
space-time so that s* — ¢# according to

1
or = st — i s, (1.117)

which is obtained from the linearized equations of motion in a TT gauge. The null
vector in Minkowksi space-time that points from the pulsar to the solar system
barycentre is

st =v(,—a,—B,—y), (1.118)

where «, f, y are the direction cosines of x,y, z, respectively. The corresponding
perturbed vector, ¢*, is calculated from Eq. (1.117). The first two components are
calculated explicitly as an example. Using Eq. (1.117) one can find:

1
ol =5"— En”’hws“, (1.119)

but from Eq. (1.115) it is clear that only 1" gives a non-zero value, so we write

1
o' =5 — En”hms“ =1, (1.120)
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since the first row of the A, matrix is all zero. Therefore o' = v. Itis less trivial to
calculate o*:

1
of=s"— Enxvhws” (1.121)

1 Xt v XX v

=—o¢—§(n hiys” + 7% hyst +.0)) (1.122)
1

= —o— S (0—ahs — i) (1.123)

- TP D) (1.124)

STt ) Tt '

The other components are calculated similarly and the final vector is

1
— (1 - %h+) + ghx
—o (1 + 3hy) + Shx
-y

ot =v (1.125)

Radio pulses from the pulsars follow geodesics through space-time. The geodesic
equation, cf. e.g. Maggiore (2007), with affine parameter A tells us that

do'!
d_A = —F;wo'“o", (1.126)
where
1 dgvy | 08uv  O0guv
' =——g" 2, 1.127
my 28 (8x“ + dx¥ dxv ( )

Letting the indices vary, the only non-vanishing term is

_%gn (_%) - %gw (1.128)
and so
00 00
F;w=% 82: _hl.;g ) (1.129)
00 00

The geodesics can then be written in terms of the spatial indices only, i, j:
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do'! 1, .
= %00 (1.130)
1 . ¢ . . s
= =5 [2u0"0" + 2840707 + £1,070"] (1.131)
I x . ) . X
= =5 [8(0") + 2(@)’] = g0 (1.132)

and gy, &xy» &y and their derivatives can be computed from Eq. (1.115), yielding

— h?* [(0%)* = (07)*] - —hxa o”. (1.133)

Using Eq. (1.125) we can substitute the values of o':

5 2
(09 — (") = |:—oz (1 - %m) + %ﬁh] — (@), (1.134)

and after some algebra and to leading order in A:
(0%)% = (67)? = v (a? — B%) + O(h) and "0 = v2af + O(h). (1.135)

Since o' = v from Eq.(1.125), the following is obtained by Egs. (1.126) and
(1.133):

d 1. .
ﬁ = —Shpvi (e = B7) = v ap. (1.136)
Recall that iy = ha(t — z), where A = +, X and v = dt/dA, 0hy/dz = —0dhs /0t
and dz/dA = —vy. Now write the time derivatives as derivatives with respect to A:
dh BhA dt 8hA dz
1.137
dr ot dx | 9z dA ( )
Making the above substitutions gives us an expression for dh, /dr:
dhy Ohy BhA
— = — 1.138
= (G ) v+ e (1.138)
. dhy 1
hy = —————. 1.139
AT v+ y) (1-139)
Substituting Eq. (1.139) back into Eq. (1.136) and simplifying:
1d dh 2 B2 dh
ldv _dhy (@ —p)  dix of (1.140)

T vdh dh 14y dA 14y’
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Let us define Ahy = K} — hS. This can be thought of as the difference between
the metric perturbation at the pulsar, called the “pulsar term” with space-time
coordinates (7, X,), and the receiver has space-time coordinates (7, x). Integrating
the above equation and expanding to first order in Ahy:

t 1 (> — p?
WO, 1@, ap
Vo 2 1+vy I4+vy

Ahy. (1.141)

Therefore, for an observer at the SSB, the frequency is shifted according to the
2-pulse function

_ 2 a2
Vv 1@ =p,, B, (1.142)

zt,fl =
( ) Vo 2 1+vy I+vy

where v (¢) is the received frequency at the SSB.

1.7.3 Timing Residuals from a Stochastic GW Background

We will now briefly examine what happens when we combine the contributions from
GWsin N different directions, €2,,. As before, we consider a metric perturbation, /1,
in a TT gauge which is the sum of 7}, metric perturbations. Explicitly we can write

N
hyw = > (1= 2+ ), (1.143)

where ¢ and X form x*: a 4-vector in a Minkowski background. As before, let us
define a null vector in Minkowski space, s* = dx*/dA = v(1,—a, —f, —y) which
we will now call v(1, —p). The null geodesic perturbed by #,,, is described by o# =
s* 4 8s*. We are again interested in describing the geodesics defined in Eq. (1.127),

which result in F/fw = %g,w = %fdw. Therefore
do! 1.
E = —EhHUO'MUH (1144)
1.
= —zhlw(s“ + 8sM) (s + 8s”) (1.145)
= —Lystst 46
=3 avsts”, (1.146)

and since s* = v(1, —p) we can simplify the above expression to
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do' L. 5

where i, j are spatial indices. We now wish to write the right-hand side of Eq. (1.147)
in terms of dA, which can be done by using Eq. (1.137):

dn’s, (t — Q, - X) _Om, (- Q, X) dr Ol (1= Q¥ d(Q, - 7)

dA ot dA (2, - %) di
M, (=2, -%) 0K (1 — Q) dR 5
- ot v ot ay"
M (t— Q- %) 4
=+t —(v-Q,—~ ). 1.148
i (" dk) (1.148)

Recall however that dx/dA = v - (—p), and therefore the full expression can then be
written as

il (1= 2 -%) 0K — Q- DV + Q- )
d\ - ot ’

(1.149)

Substituting Eq. (1.149) into Eq. (1.147) gives an expression with derivatives in
terms of A, and for simplicity, we write (1 — 2, - X) = (1, 2,):

' dni(t, 2 .
7" _%[ G )U(l +1§2n-ﬁ)} VoY (1130
dni(t, 2, i
which can be readily integrated to yield
dey = M= _ ﬁ:lLAh@(z &) (1.152)
’ % Gy B
where
Ah(t,Q2) = hy(1,Q2) — hy (1. Q) (1.153)

is the difference between the metric perturbation at the Earth /;;(¢, fZ), the so-called
Earth term, with coordinates (z,x), and at the pulsar hij(tp, fZ), the so-called pulsar
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term, with coordinates (z‘p,?c,,).3 The fractional frequency shift over the entire sky
(for a stochastic GW background) is obtained by integrating Eq. (1.152) is:

2(t) = / dQz(t, Q). (1.154)

and the observable quantity in PTAs in the timing residual, obtained from integrating
the fractional frequency shift:

r(r) = / dr'z(). (1.155)

The timing residuals are then cross-correlated to search for stochastic GW
background signals. This is procedure is outlined in the following section.

1.8 The Overlap Reduction Function

Let us consider a plane wave expansion for the metric perturbation (¢, x) produced
by a stochastic background:

o0 A A~
(1, %) = Z / df /S 2d§2 ha(f, ) €299 ¢4(Q) | (1.156)
A —00

where f is the frequency of the GWs, the index A = 4, x labels the two independent
polarizations, the spatial indices are i,j = 1, 2, 3, the integral is on the two-sphere
S2, and our sign convention for the Fourier transform g(f) of a generic function g(z)
follows the GW literature convention

+o00
() = / dt g(1) e (L157)

o]

The unit vector €2 identifies the propagation direction of a single gravitational wave
plane, that can be decomposed over the GW polarization tensors ef}(fl) and the
two independent polarization amplitudes, see Eqgs. (1.113a), (1.113b), (1.114a) and
(1.114b). For a stationary, Gaussian and unpolarized background the polarization
amplitudes satisfy the following statistical properties:

(B, SOha (', 2)) = 82(Q2, QNoan8(F —fYH(HP(R) , (1.158)

3Note that the equivalent expression in Anholm et al. (2009), Eq.(9), has a sign error, as
acknowledged by the authors, see the discussion of Eq. (29) in e.g. Book and Flanagan (2011).
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where (-} is the expectation value and §2(Q, Q) = 8(cosh — cos 0)s(p — @)
is the covariant Dirac delta function on the two-sphere, cf. Finn et al. (2009).
This condition implies that the radiation from different directions are statistically
independent. Moreover, we have factorized the power spectrum such that P(f, Q) =
H (f)P(fZ), where the function H(f) describes the spectral content of the radiation,
and P(Q) describes the angular distribution of the GW energy density on the sky.
For now we assume that this is isotropic.

The search for a stochastic GW background contribution in PTA data relies on
looking for correlations induced by GWs in the residuals from different pulsars.
These correlations in turn depend on the spectrum H(f) of the radiation, cf.
Eq. (1.158), and the antenna beam pattern convolved with the angular distribution
P(Q) of the GW energy density in the sky, which is described below. For now, we
consider P(Q) = 1, the isotropic case, however a more general treatment is given
in Chap. 2.

The cross-correlated timing residuals enter into the likelihood function through
the evaluation of the overlap reduction function (ORF)—a dimensionless function
which quantifies the response of the pulsar pairs to the stochastic GW background.
The ORF is in turn a function of the frequency of the GW background, the
distance to each pulsar, and the angular separation of each pulsar pair and is usually
normalized such that pulsar pairs with zero angular separation have a maximal
detector response of 1 for an isotropic distribution of GW energy density.

To write down the ORF, we consider a frame in which

- A

t,=t,—L=1t—L X, =1Lp, (1.159a)
t.=t X, =0, (1.159b)

€9

where the indices “e” and “p” refer to the Earth and the pulsar and L is the distance
to the pulsar. In this frame we can therefore write Eq. (1.153) using Eq. (1.113b)

w A A
Ahy(t.Q) =) / dfel(2) haf, sz)eﬂ”ff[l—e—ﬂ"ﬂ“m'ﬂ)]. (1.160)
A —00

The fractional frequency shift produced by a stochastic background is simply given
by integrating Eq. (1.152) over all directions. Using Egs. (1.160) and (1.154), we
obtain:

2(1) = / dQ z(1, Q).

o0 A A
- Z/ df/ AQFNQ)ha(f, ) [1 —e_iz”fL(1+Q"’)],(l.161)
4 /oo s2
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where FA(Q) are the antenna beam patterns for each polarization A, defined as

1 pip .
FAQ) = [21+g Aef}(Q):|. (1.162)

Regardless of whether the analysis is carried out in a frequentist framework, and
therefore one considers a detection statistic, see e.g. Anholm et al. (2009), or one
builds a Bayesian analysis, e.g. van Haasteren et al. (2009), the key physical quantity
that is exploited is the correlation of the timing residuals for every pair of pulsars
timed by a PTA.

The expected value of the correlation between a residual r(r), see Eq.(1.155),
from a pulsar, say a, at time #;, with that from a different pulsar, say b, at time #
depends on terms of the form:

ez = ([ ot [ are >zb<r”>>,
N </ Zt// tdt”/ "2 ()2 (f) e 27 = )>

/ dt' f dr’ / lfe" =) @D (F).  (1.163)

In analogy with Allen and Romano (1999), we define the quantity in the previous
equation that depends on the relative location of the pulsars in the PTA, and the
angular distribution of the GW energy density as the overlap reduction function:

@)p(f) = / A2k (f, ) [Z FQ(Q)FQ(Q)] , (1.164)
A

where

Kab (fa Q)

[1 _ eiznfLa(1+§2-ﬁ,,)] [1 _ e—iznﬂh(1+§f7h)] ) (1.165)

In Eq. (1.163), the frequency spectrum of the background, whether from SMBHBs
or other sources or processes in the early Universe, is described by the function H(f),
and “Y)T'(f) contains information about the angular distribution of GW background
power. Under the assumption that the background is isotropic, “”’T'(f) is a known
function that simply depends on the location of the pulsars timed by the array.

In this case, the overlap reduction function (ORF) (1.164) becomes:

@) = /dfz k(. 2) Y FHQFNQ). (1.166)
A
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which is the result derived by Hellings and Downs (1983) and is known (up to a
normalization constant) as the Hellings and Downs curve, which will be calculated
explicitly in Sect. 1.9. Equation (1.166) can be further simplified if one assumes that
many radiation wavelengths separate the pulsars from the Earth and from each other,
i.e. that fL > 1. If this is the case, the contribution from «,, quickly converges to
zero, such that Eq. (1.166) becomes and Earth-term-only expression, except for the
auto-correlation, when pulsar a = pulsar b. In this instance, the GWs add coherently
at the pulsar, and «,,;, ~ 2. Therefore in general k,;, & 14-8,,. This concept is further
explored in Sect. 2.3, and Chap. 3 explores where this assumption breaks down.

1.9 The Hellings and Downs Curve

For a pair of pulsars a and b, the we define a reference frame by first placing pulsar
a on the z-axis and pulsar b in the x — z plane. One can explicitly write geometry as
follows:

pa=(0,0,1), (1.167a)
D» = (sin¢, 0,cos 0), (1.167b)
Q2 = (sin#f cos ¢, sin 6 sin ¢, cos 0), (1.167¢)
m = (sin¢g, —cos ¢, 0), (1.167d)
n = (cos 6 cos ¢, cos 6 sin ¢, — sin 6), (1.167e)

where ¢ is the angular separation of the two pulsars, cos ¢ = p, - pp, see Fig. 1.7. In
this frame F)’ = 0, and Eq. (1.164) reduces to

@pm — (1 + 8,1,,)/ dQFF(Q)FF (). (1.168)
S2

It is now straightforward to compute the antenna beam patterns, % and Fj:

FX =0, (1.169a)

1
Ff = —5(1 —cos 0), (1.169b)
__ (sin¢ sin{)(cos Osin {cos ¢ — sin Hcos )
N 1 + cos cos ¢ 4 sinfsin ¢ cos ¢

1 (sin¢g sin £)? — (sin tcos Hcos ¢ — sin Hcos £)?
2 1 4+ cos @ cos¢ + sinf sin cos ¢

X
b

(1.169¢)

Fif = (1.169d)
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z GW direction

pulsar b
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Fig. 1.7 The “computational” reference frame: pulsar a is on the z-axis at a distance L, from the
origin, pulsar b is in the x-z plane at a distance L;, from the origin making an angle ¢ with pulsar a,
€ is the direction of GW propagation and i X 71 = 2. The polar and azimuthal angles are given
by 6 and ¢, respectively. This figure was reproduced from Mingarelli and Sidery (2014)

Substituting Eq.(1.169) into Eq.(1.168), the overlap reduction functions
become:

1
T = =2 (1 + 8a)

x/nde ) 9/2]Td¢ (1 — cos 0)[(sin ¢ sin £)?> — (sin {cos Hcos ¢ — sin Hcos ¢)?]
sin .
0 0 1 4 sin¢ sin 6 cos¢ + cos ¢ cos
(1.170)
One can write Eq. (1.170) as the sum of two integrals:
1
“T = 20+ R)(1+ ba). (1.171)

where

b g 2
0= N/ df sin 8(1 — cos 9)/ d¢p(1 — cos ¢cos O — sin ¢sin 0 cos ¢),
0 0
(1.172)
where N = 1/+/4m and

R = —2N sin? g[ df sin (1 —cos )1, (1.173)
0
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where

I= / 272145 sin’ ¢ (1.174)
A 1 + cos¢cos + sin¢sinf cos¢ '

Evaluating Eqs. (1.173) and (1.172), one obtains

1
= —— [ dfsinf 1—0059/ d¢ (1 — cos ¢ cos 0 — sin ¢ sin 0 cos
m/ ( ) [ dp(1 —cost ¢ ?).

21 T

~ Vax Jo
_ \/E(HCO;E). (1.175)

dfsin (1 — cos0)(1 — cos 6 cos {),

When solving for R, note that the “I” integral, Eq. (1.174), is evaluated via contour
integration in Anholm et al. (2009). In this work, a symbolic program was used to
evaluate it.* Integrating Eq. (1.174), one obtains

1+cos§cos@ |cos ¢ + cos 6|

L , (1.176)
sin? ¢ sin” 6
(5 () 0 <0 <
o 11]100; lsm ) (1.177)
() () m g <o <

The final form of Eq. (1.173) is therefore

R —«/_|:1—cos§)/ 1LOSG)Z—(I—}—COSE) nd@sin9:|,

no -

Var (1 —cos¢)4n (sin %) (1.178)

Using Eq. (1.171), one may write the isotropic solution to Eq. (1.170):

JT cos ¢
T[H 3

@1 = +4(1 —cos&)In (sm é)] (1+8). (1.179)

“Note that there is a sign typo in Anholm et al. (2009)’s appendix in the equation above C9 (it does
not have a number). Equation (1.176) has the correct sign. This was first reported in Mingarelli
et al. (2013).
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Fig. 1.8 The overlap reduction function for an isotropic stochastic GW background, called the
Hellings and Downs curve

This equation is the Hellings and Downs curve up to a multiplicative factor 4 /7 /3,
which is used to normalize the curve such that it has a maximum value of 1.0 at
¢ =0, i.e. pulsar a = pulsar b.

Note that for an isotropic stochastic GW background, the detector response for
¢ = 0 is twice that of { = 7, see Fig. 1.8. Considering the response to an incoming
GW at some angle 6 may help one to understand this observation. If { = 0, which
is the case for coincident and co-aligned pulsars (i.e. a = b), the antenna beam
pattern, Eq. (1.169), is given by

FrFl = %(1 — cos 9)%(1 —cos ) (1.180)
= 3(1 —cos 9)%. (1.181)

Note that in this particular geometry, there is no ¢ dependence. Integrating this
response over d2 = sin 0df gives

1 [~ 2
-/ df sin (1 —cos ) = =. (1.182)
4 Jo 3

When ¢ = m, the antenna beam pattern is given by
1 1
FIFl = 5(1 — cos 0)5[1 — cos(m — )] (1.183)

1
= Zsinze, (1.184)
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and integrating over 6 yields

1[ df sin O(sin’ ) = 1. (1.185)
4 Jo 3

It is therefore clear that particular geometries are more (or less) sensitive to
stochastic background signals. Note that this is an Earth-term-only argument, and
does not take into account the pulsar term which adds an additional factor of 2 to
the ORF at ¢ = 0.

More generally, this dependence can be explained in terms of the alignment of
the GW direction, 2 and the position of the pulsar, p, see Fig. 1.7. The product
Q- D enters into the ORF via the antenna beam patterns given in Eq. (1.162), where
F;_'b x (14 €2-p)7", and Kk, Eq. (1.165). When Q is parallel or antiparallel to p,
Q-p==+l.

When €2 - p = —1, the photons emitted from the pulsar surf the GWs, and there
is no redshift. This surfing effect can be seen mathematically when considering the
metric perturbation including the pulsar term: since the signal at the Earth is the
same as the signal at the pulsar, Ahy(t, fZ) = 0, cf. Eq. (1.153). Note however that
the ORF is integrated over the whole sky, and this is just one piece of the integration.

One may also be concerned with the case where Q- p = 1, since there appears
to be a divergence in the antenna beam pattern caused by zero division. If however
the complete antenna beam pattern is considered, then

1 sin’@ 1
F+= _Elf‘m = —5(1 - cosf). (1.186)

which is just Eq. (1.169), where the numerator has been computed from pipfe;T =

—sin® @ for pulsar a on the z-axis. When Q -p = 1,then § = 0 and F, = 0.
Note as well that in this case the photons from the pulsar travel over the maximum
number of radiation wavelengths, fL, resulting in a significant amount of “stretching
and squashing”, cf. Figs. 1.2 and 1.7. The additional phases introduced by the GW
then largely cancel out, limiting the detector response.

1.10 Thesis Summary

Detecting a stochastic gravitational wave background, particularly radiation from
individually unresolvable SMBHB systems, is one of the primary targets for Pulsar
Timing Arrays. Increasingly more stringent upper limits are being set on these
signals under the assumption that the background radiation is isotropic. However,
some level of anisotropy may be present and the characterization of the gravitational
wave energy density at different angular scales carries important information. In
Chap. 2, we show that the standard analysis for isotropic backgrounds can be
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generalized in a conceptually straightforward way to the case of generic anisotropic
background radiation by decomposing the angular distribution of the gravitational
wave energy density on the sky into multipole moments. We introduce the concept
of generalized overlap reduction functions which characterize the effect of the
anisotropy multipoles on the correlation of the timing residuals from the pulsars
timed by a Pulsar Timing Array. In a search for a signal characterized by a generic
anisotropy, the generalized overlap reduction functions play the role of the so-called
Hellings and Downs curve used for isotropic radiation. We compute the generalized
overlap reduction functions for a generic level of anisotropy and Pulsar Timing
Array configuration. We also provide an order of magnitude estimate of the level of
anisotropy that can be expected in the background generated by SMBHB systems.

Current stochastic background searches assume that pulsars in a PTA are
separated from each other and the Earth by many GW wavelengths, and that all
pulsars lie at the same distance L from the Earth. As more millisecond pulsars
are discovered and added to PTAs, some may indeed be separated by less than
a radiation wavelength, resulting in correlated GW phase changes between close
pulsars in the array. In Chap. 3 we investigate how PTA overlap reduction functions
(ORFs), up to quadrupole order, are affected by these additional correlated phase
changes, and how these correlated phase changes are in turn affected by relaxing
the assumption that all pulsars are equidistant from the Earth. We find that in the
low frequency GW background limit of f = 107 Hz, and for pulsars at varying
distances from the Earth, that these additional correlations only affect the ORFs by a
few percent for pulsar pairs at large angular separations, as expected. However when
nearby (order of 100 pc) pulsars are separated by less than a radiation wavelength
in the low frequency limit, the correlated phase changes can introduce variations of
up to a factor of about three in the magnitude of the ORF. These correlated phase
changes rapidly converge to zero, however this convergence is slower particularly
for the quadrupole (/ = 2) ORFs. We write down a small angle approximation for
the correlated phase changes which can easily be implemented in search pipelines,
and for completeness, examine the behaviour of the ORFs for pulsars which lie at a
radiation wavelength from the Earth.

In Chap. 4, we show that the detection of gravitational radiation from individually
resolvable super-massive black hole binary systems can yield direct information
about the masses and spins of the black holes, provided that the gravitational-wave
induced timing fluctuations both at the pulsar and at the Earth are detected. This
in turn provides a map of the non-linear dynamics of the gravitational field and a
new avenue to tackle open problems in astrophysics connected to the formation and
evolution of super-massive black holes. We discuss the potential, the challenges and
the limitations of these observations.

Conclusions and work in progress are presented in Chap. 5.
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Chapter 2

Characterizing Gravitational Wave Stochastic
Background Anisotropy with Pulsar Timing
Arrays

This chapter is based on: C.M.F. Mingarelli, T. Sidery, I. Mandel, A. Vecchio,
“Characterizing stochastic gravitational wave background anisotropy with pulsar
timing arrays”, Physical Review D, Vol 88, 062005 (2013), cited as Mingarelli
et al. (2013). I wrote the draft of this paper, derived all of the generalized overlap
reduction functions, examined the behaviour of the pulsar term, wrote the codes and
made all of the figures.

2.1 Introduction

The detection of gravitational waves (GWs) is one of the key scientific goals
of Pulsar Timing Arrays (PTAs). A PTA uses a network of radio telescopes
to regularly monitor stable millisecond pulsars, constituting a galactic-scale GW
detector (Ferdman et al. 2010; Hobbs et al. 2010; Jenet et al. 2009; Verbiest et al.
2010). Gravitational radiation affects the propagation of radio pulses between a
pulsar and a telescope at the Earth. The difference between the expected and
actual time-of-arrival (TOA) of the pulses—the so-called timing residuals—carries
information about the GWs (Detweiler 1979; Estabrook and Wahlquist 1975; Sazhin
1978), which can be extracted by correlating the residuals from different pulsar
pairs. This type of GW detector is sensitive to radiation in the 107°-10"7 Hz
frequency band, a portion of the spectrum in which a promising class of sources
are super-massive black hole binary (SMBHB) systems with masses in the range of
~107-10° M during their slow, adiabatic in-spiral phase (Jaffe and Backer 2003;
Rajagopal and Romani 1995; Sesana 2013; Sesana et al. 2008, 2009; Wen et al.
2011; Wyithe and Loeb 2003). Other forms of radiation could be observable by
PTAs, such as cosmic strings (Kuroyanagi et al. 2013; Pshirkov and Tuntsov 2010;
Sanidas et al. 2012) and/or a background produced by other speculative processes
in the early universe, see e.g. Zhao (2011).
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A PTA can be thought of as an all-sky monitor that is sensitive to radiation
from the whole cosmic population of SMBHBs radiating in the relevant frequency
band. The overwhelming majority of sources are individually unresolvable, but
the incoherent superposition of the very weak radiation from the many binaries
in the population gives rise to a stochastic background' whose detection is within
reach of current or planned PTAs (Sesana 2013; Sesana et al. 2008; Siemens et al.
2013). In addition, some of the binaries may be sufficiently luminous to stand out
above the diffuse background level and could be individually observed (Sesana
and Vecchio 2010; Yardley et al. 2010). The search for GWs from a SMBHB
background (Demorest et al. 2013; Hellings and Downs 1983; Jenet et al. 2006; van
Haasteren et al. 2011) and from individual resolvable sources (Babak and Sesana
2012; Ellis et al. 2012a,b; Jenet et al. 2004; Lee et al. 2011; Yardley et al. 2010) has
recently catalysed the PTA GW search effort, and it is plausible that in the next 5 to
10 years GWs could indeed be detected. If not, stringent constraints can be placed
on aspects of the assembly history of SMBHBs (Koushiappas and Zentner 2006;
Malbon et al. 2007; Volonteri et al. 2003; Yoo et al. 2007).

In all the searches carried out so far, it has been assumed that the stochastic
background, regardless of its origin, is isotropic (Demorest et al. 2013; Hellings and
Downs 1983; Jenet et al. 2006; van Haasteren et al. 2011). This is well justified
if the background is produced by some physical processes in the early universe or
is largely dominated by high-redshift sources. Under the assumption of isotropy,
the correlated output from the data from any two pulsars in the array depends
only on the angular separation of the pulsars and is known as the Hellings and
Downs curve (Hellings and Downs 1983). However, a PTA also carries information
about the angular distribution of the GW power on the sky. It is therefore important
to address how this information is encoded in the data, and the implications for
analysis approaches. In fact, if evidence for a signal is found in the data, testing
the assumption of isotropy could be one of the methods to confirm its cosmological
origin. If, on the other hand, one expects some deviations from isotropy, which may
be the case for the SMBHB background created by a finite population, e.g. Ravi et al.
(2012) and Cornish and Sesana (2013), it is useful to be able to extract constraints
on the underlying physical population.

In this paper we show how the correlated output from pulsar pairs in a PTA
is related to the anisotropy of the signal, i.e. the angular distribution of GW
power on the sky, and how one can extract this information by measuring the
multipole moments that characterise the anisotropy level, following an analogous
approach to those applied to the case of ground-based (Allen and Ottewill 1997)
and space-based (Cornish 2002) laser interferometric observations. By doing this,
we generalize the Hellings and Downs curve to an arbitrary angular distribution on

Tt would be more appropriate to call this radiation a foreground, but to be consistent with the
established terminology we will keep referring to it as a background.
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the sky. We also provide an estimate for the expected level of anisotropy for the
background produced by an arbitrary population of sources, and in particular, the
population of SMBHB systems.

The paper is organized as follows. In Sect. 2.2, we estimate the expected level
of anisotropy in a background produced by a population of SMBHB systems. We
show that at low frequencies, where the PTA sensitivity is optimal and the number
of sources that contribute to the background is very large, the expected level of
anisotropy is small, and likely undetectable. However towards the high-frequency
end of the sensitivity window, where the actual number of sources decreases
sharply, the anisotropy level could be significant, increasing at smaller angular
scales. In Sect.2.3 we show that the present analysis approaches for isotropic
backgrounds can be generalized in a conceptually straightforward way to the case
of anisotropic signals by decomposing the angular distribution of the GW power on
the sky into multipole moments. We introduce the concept of generalized overlap
reduction functions, which replace the Hellings and Downs curve. Each one of
these characterizes the effect of a given anisotropy multipole on the correlation
of the timing residuals from a pulsar pair. In Sect.2.4 we derive expressions for
the generalized overlap reduction functions for an arbitrary stochastic background
angular distribution on the sky and PTA configuration. This is essential for future
analyses of PTA data which include anisotropy as part of the model. Section 2.5
contains our conclusions and suggestions for future work.

2.2 Approximate Level of Anisotropy in the Stochastic GW
Background

Until now, it has been assumed that the stochastic GW background is isotropic.
We now relax this assumption: each direction on the sky need not contribute to
the stochastic GW background in the same way, and the function P(Q) describes
this angular dependence (the “hot” and “cold” spots). As in Allen and Ottewill
(1997), we decompose the angular distribution function on the basis of the spherical
harmonic functions,

PQ) =) 'VM(Q). 2.1

im

where the sum is over 0 < [ < 400, and |m| < [. The coefficients c}* are the
multipole moments of the radiation which characterise the angular distribution of the
background. We adopt the convention that the monopole moment is normalized as

) = Var. (2.2)

The angular distribution of the radiation is encoded in the values of the radi-
ation multipole moments c’, which become unknown parameters in the analysis.
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In Sect.2.4 we will show how the ¢/”’s enter the likelihood function of PTA
timing residuals, and how an arbitrary angular distribution affects the correlation
of radiation at any two pulsars timed by an array. This provides a way of measuring
the multipole moments. In the remainder of this section we provide an estimate of
the expected level of anisotropy in a background generated by the population of
SMBHB systems.

In order to gain some insight into this problem, let us consider an idealized
situation, constructed as follows. Let us assume that the universe is populated
by identical sources with number density n. If we want to estimate the level
of anisotropy, we need to estimate the expected value of the energy density in
GWs coming from sources in a solid angle dS2 centred on a direction Q and
compare it to the energy density produced by sources in a cone centred on a
different direction €’. For this example we consider a Euclidean, static universe
(or equivalently sufficiently nearby sources, such that we do not take into account
effects of expansion and redshift).

In a conical volume dV = D?dDdS2 within the solid angle dQ2 and at distance
between D and D + dD, the expected number of sources which contribute to the
background is:

dN = nD*dDdS2 . (2.3)

The actual number of sources is then governed by Poisson statistics, with mean
i = dN and variance 0> = dN. If the volume dV is sufficiently small that dN < 1,
then the probability of finding one source is

P(1) = dNe™™ ~ dN. (2.4)

Since the probability of having more than one source within this volume is
negligible, the probability of finding no sources is simply 1 — P(1) = 1 —dN.

The expected total number of sources, [y, present in the whole volume within
a solid angle d<2 between the minimum and maximum distance, D,, and Dy,
respectively (to be discussed later), is given by the sum of the contributions from
each slice in the cone. Similarly, the variance 01%, is the sum of the variances from
each conical slice. We therefore obtain

Dy
Uy = 0% = f nD*dDdS2 , (2.52)
Dm

() E)-G)] e

We now want to compute the expected contribution to the GW energy density
per frequency interval and its variance. The GW energy density of each source
scales as 1/D?. If we assume that all the sources are identical—the generalization
to a distribution of masses is straightforward, but is not needed to explain the key
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points—we can write (with slight abuse of notation) the contribution to the energy
density per source simply as

dpgw _ A

dN D?

: (2.6)

where A is an appropriate constant factor, equal for all sources.

The expected GW energy density from sources in a small conical volume dV at
distance D, again chosen so that it has a vanishingly small probability of having
more than one source, dN < 1, see Egs. (2.3) and (2.4), is

dpgw A
digw (D) ~ P(l)W ~ dNﬁ = nAdDdS2 , 2.7)
The variance of the energy density from sources in this conical volume is

dp'w 2 2 nA2
dogw(mw(l)(ﬁ) ~ (A D) ~ " dDa. 29

where the last equality relies on the consistent application of the condition dN « 1
(which can always be satisfied by choosing a sufficiently small shell thickness dD).

We can now compute the expected contribution to the GW energy density [lgy
and its variance ogzw from all sources in a solid angle d<2. The mean energy density
and variance are given by the sum of contributions from all slices of thickness dD;
using Eqs. (2.7) and (2.8), this yields:

DM dpigy (D)
How = / ——dbD, (2.9a)
£ b,  dD
Dy
= nAdQ/ dD, (2.9b)
Dy,
M

and, using the fact that the variance of a sum is the sum of variances,

Dy do? (D)
2 gw
Ugw = / T dD, (210&)
Pu gp
= nA%dQ [ —. (2.10b)
b, D

Dy — D,
= nA? [M—} ds. (2.10¢)
DuD,,
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We define the level of anisotropy as the ratio of the standard deviation in the GW
power emanating from a given solid angle to the expected power from that angle:

0 _ _
& = (nd2)""*[(Dy — Dy)DuDy]™"?

Hegw
- D\ D77
= (nD},dQ) ‘/2[(1—D )D—} . @2.11)
M M

We can now return to the choice of the minimal and maximal distance, D,, and
Dy,. The maximal distance at which sources can be located is set by cosmology
and the history of SMBH formation. Meanwhile, the minimal distance of interest
to us, D,,, corresponds to the maximal distance at which individual binaries can
be resolved. Individually resolvable binaries can be subtracted from the data, and
are treated separately from the stochastic background. An individual source can be
efficiently searched for with matched filtering techniques, see e.g. Babak and Sesana
(2012), Ellis et al. (2012a,b), and Petiteau et al. (2013). Therefore, we expect the
power necessary to detect a single SMBH binary to be significantly less than the
power necessary to measure a stochastic background. Thus, in order for a stochastic
background to be detectable after all individual sources that are presumed to be
detectable up to distance D,, are removed, the total power in the background must
be significantly greater than the power in the weakest individually resolvable source:

Dﬂl A
i| > (2.12)

m

Another way to interpret the preceding condition is to consider the idealized
situation when the stochastic background provides the dominant noise source:
optimal matched filtering would make it possible to individually resolve and subtract
coalescing SMBH binaries with signal power far below the noise (background)
levels.

We can recast the condition on the detectability of a stochastic background,

Eq. (2.12), as
s\ (P \'[, (D
(nDM) (DM) [1 (—DM)] > 1. (2.13)

If we define y = D,,,/ Dy, where 0 < y < 1, this condition yields

(nDy) y* (1—y) > 1, (2.14)

where nD3, is the total number of sources in the universe, modulo a factor of order
unity. We can now rewrite the level of anisotropy (2.11) in the following form:
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1/2
! y
(d_sz) [m}} (2.15a)

1/2
_ [(3_?2) O‘N_(;V)] , (2.15b)

where Ny = (47/3)nD3,(1—y?) is the total number of sources that contribute to the
background and a(y) = (y*> + y + 1)/(3y). Note that by virtue of condition (2.14),
the second term in Eq. (2.15a) is always smaller than unity whenever the stochastic
background is detectable, and is actually < 1. The level of anisotropy scales
as N, 1 2, and increases by going to small angular scales d€2. However, there is
an observational limit on the angular resolution of PTAs which will prevent very
small angular scales from being probed. Furthermore, at smaller angular scales, the
signal will be progressively dominated by a smaller number of, possibly individually
unresolvable, sources. The number of sources in a cone of solid angle d2 is

anwdQ|: (Dmﬂ
Uy = 1—(==) |, (2.16a)

Ogw

Hgw

3 Dy

= ? (nD;;) (1 —y%), (2.16b)

= (@) No. (2.16¢)
4

When this quantity is larger but not much larger than unity, we expect to be in
the middle ground between searches for individual sources and standard stochastic-
background searches. If this occurs on resolvable angular scales where anisotropy
is significant (cf. Egs. (2.15a) and (2.18) below), it will be interesting to check the
efficiency of current search pipelines in this regime.

Using the results from e.g. Sesana et al. (2008) we can provide an order-
of-magnitude estimate of the expected level of anisotropy that characterizes the
SMBHB background. From Fig. 4 of Sesana et al. (2008), reproduced in Fig. 1.4
we can see that the total number of sources that contribute in a frequency interval of
width T, Wwhere Tops is the observation time, can be approximated as:

f —173 5year
No ~ 5x10° , 2.17
0o (10—8 Hz Ton @17)

where we used the fact that, during a SMBHB inspiral, the time the binary spends in
a given frequency band scales as dt/df oc f~'1/3, Eq. (1.71). Substituting Eqs. (2.17)
into (2.15b) and converting between the average angular scale d€2 and the multipole
moment index [ using d2 = 4 /2l, we obtain:
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Ugw(f) ~3X10—3 f 11/6 Syear —1/2 i 1/2(:(1/2
Megw (f) 10-8 Hz Tobs 2 '

1/6 /5 —1/2 £\ 1/2
~02(—L year 2) o2, (2.18)
10~ Hz Tore 2

There will be few SMBHBs beyond redshift ~5, and individual sources are
likely to be resolvable up to redshift ~1, so sources that contribute to the stochastic
background are within redshift range ~1-5, see e.g. Sesana et al. (2008) and
Fig. 1.4. Therefore, both y and o will be factors of order unity. We have confirmed
this with a more careful calculation that takes cosmology and the redshifting of
gravitational waves into account; however, we note that our simplified treatment
relied on a constant density (rate) of coalescing SMBHBs in the Universe, and on
a fixed amplitude at a given frequency for all sources, which corresponds to the
assumption of a fixed source mass.

As expected, the level of anisotropy at low frequencies and large angular scales
is small. However, it can become non-negligible, at the tens of percent level, at
frequencies ~10~7 Hz.

2.3 Anisotropic Stochastic Backgrounds

For an anisotropic background, whose angular power spectrum is unknown, P(Q) is
a function of the unknown angular power distribution on the sky. We can generalize
the concept of the overlap reduction function, Eq. (1.164), by decomposing P(Q)
on the basis of spherical harmonic functions according to Eq. (2.1). The weight of
each of the components is given by an unknown coefficient ¢;', which needs to
be determined by the analysis. The overlap reduction function (1.164) therefore
becomes

COT(f) =D e “OT() (2.19)
Im
where
@ rm(fy = / dQY™ Q)i (f, Q) [Z Ff(Q)FQ(SAZ)i| (2.20)
A

are the (complex-form) generalized overlap reduction functions. Given an array of
pulsars on the sky, the functions () I'/* are uniquely defined and known.

The generalization of e.g. the standard Bayesian analysis for an isotropic
stochastic background such as the one reported in van Haasteren et al. (2009) to
the case in which the assumption of isotropy is relaxed is, at least conceptually,
straightforward. The model parameters that describe the stochastic background are
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not only those that enter the frequency spectrum H(f)—for example the overall
level and spectral index in the common case of a power-law parametrization of
H(f), appropriate for the background from SMBHBs—but also the coefficients
that describe the angular distribution on the sky, that is, how much power is
associated to each spherical harmonic decomposition of the overall signal. An initial
implementation of this analysis is reported in Taylor and Gair (2013).

Before we compute the expressions for the generalized overlap reduction func-
tions, it is important to consider the function x(f, fZ), defined in Eq. (1.165) and
present in Egs. (1.164) and (2.20), which introduces the frequency dependence of
the overlap reduction functions. From a physical point of view k(f, fZ) encodes
the fact that the correlation of the timing residuals carries information about both
the Earth and pulsar terms for the two pulsars whose timing residuals are correlated.
The relevant scale in the function k4 (f, Q) is

2nfL(1+§2-;3)=6.5x103( f )(

- 1+ Q-p), 2.21
oo () 0+ 2en @2

1kpc
which introduces rapid oscillations around unity, cf. Anholm et al. (2009), that
depend on the distance and location to the pulsars. For all astrophysically relevant
situations fL >> 1, see Eq. (2.21), and when one computes the integral in Eq. (2.20)
the frequency dependent contributions to the integral rapidly average out to zero as
the angle between the pulsar pairs, ¢, increases. The generalized overlap reduction
function Eq. (2.20) is therefore well approximated by

@ ~ (1 + 84) / dQ Y1) [Z Fﬁ(Q)Fﬁ(SAZ):|, (2.22)
A

where 8, is the Kronecker delta. We will provide some more details in Sect. 2.4.3.
Here we note that the approximation (2.22) is equivalent to considering only
the correlation of the Earth-term for two distinct pulsars. As we are considering
many sources over the whole sky then the pulsar terms will only contribute to the
correlation if the distance between two pulsars is of the order of one wavelength
or less, and for the frequencies and pulsars being considered this is only true for
auto-correlation. The auto-correlation term carries contributions from the Earth and
pulsar terms, and therefore the value of the integral is multiplied by a factor of 2.
Note also, that the generalized overlap reduction function (2.22) does not depend on
frequency.

The decompositions (2.19), (2.20) and (2.22) are based on the usual complex-
basis spherical harmonic functions Y Z’”(SAZ), whose definitions are given in
Sect. 2.4.2. One can alternatively consider a decomposition on a real basis Ylm(fZ),
that are defined in terms of their complex analogs by?:

2Here we adopt the convention that the real-form spherical harmonic functions and generalized
overlap reduction functions are written with indices / and m in the subscript, whereas in the
complex-from, m is raised as a superscript.
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7 [+ 0my] m>0
Yim=131Y, m=0 (2.23)
P AL VR m<0

Consequently, the real-form generalized overlap reduction functions are:

)y ) v IR

@)y, = 3 @) m=0 (2.24)
#ﬁ [(ah) Fl—m _ (_1)m (ah)l'*lm] m<0

In the next section we compute the ) I'/’s for a generic pulsar pair and discuss
their properties.

2.4 Generalised Overlap Reduction Functions

In this section we compute the generalized overlap-reduction functions, Eq. (2.22)
for a generic pulsar pair and explore their properties. Anholm et al. (2009)
considered the particular case of the overlap-reduction function between two pulsars
for radiation described by dipole anisotropy. Here we go beyond, and consider
an arbitrary angular distribution of the background. Our approach is based on
decomposing the power of the GW background at different angular scales onto
spherical harmonics, cf. Eq.(2.1) and for the specific case of a dipole distribution
we show that our result is equivalent to the one presented in Anholm et al. (2009).
In the case of an isotropic background, pulsar pairs timed by a PTA map uniquely
into the Hellings and Downs curve. That is to say, any pulsar pair is uniquely
identified by an angular separation, which in turn corresponds to a value of the
overlap reduction function. This is no longer the case for an anisotropic distribution.
For a given distribution of the GW power on the sky, the generalized overlap
reduction functions depend on the angular separation between two pulsars and their
specific location in the sky with respect to the background radiation. Equivalently,
if one considers two different pulsar pairs with the same angular separation but
different sky locations, the overlap reduction function that describes the correlation
between the two pulsars will be different. To illustrate this, we show a selection of
the best pulsars currently being timed by the European Pulsar Timing Array (EPTA),
see EPTA (2013),% in Fig.2.1, where we plot the real-valued overlap reduction

3These are J0613—0200; J1012+45307; J1022+1001; J1024—0719; J1600—3053; J1640+2224;
J1643—1224; J1713+0747; J1730—2304; J1744—1134; J1853+1303; J1857+0943;
J1909—3744; J1911+1347; 11918—0642; J1939+2134; J2145—0750 and J2317+14309.

These are the current EPTA “Priority 17 pulsars, however the prioritization is subject to change.
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Fig. 2.1 The real-value overlap reduction functions gy and I';; for 18 EPTA pulsars in the
cosmic rest-frame. Note that for illustrative purposes, we have not included the autocorrelation
term (¢ = 0). Figure reproduced from Mingarelli et al. (2013)

functions, using Eq. (2.24), for the isotropic case and for / = 2 and m = 1. It
can clearly be seen that the overlap reduction function no longer fits a single curve
in the anisotropic case.

In our analysis we will closely follow the approach considered by Allen and
Ottewill (1997), who considered the equivalent problem in the case of ground-based
laser interferometers.

2.4.1 Choice of Coordinate Frames

We introduce a “cosmic rest-frame” where the angular dependency of the anisotropy
is described, and a “computational frame”, in which some of the key expressions
take a particularly simple form, and provide some intuitive clues into the problem,
cf. Eq. (1.167). Given any two pulsars, say pulsars a and b, we define the computa-
tional frame as the frame in which pulsar a is on the z-axis, pulsar b is in the x — z
plane, and their angular separation is denoted by ¢. This is the standard frame that is
used in e.g. Anholm et al. (2009) to compute the Hellings and Downs curve for the
isotropic case. Therefore, overlap reduction functions in the computational frame
only depend on the pulsar pair’s angular separation, {. We now outline a method
where one can rotate from the cosmic rest-frame to the computational frame, and
vice versa, by means of rotation matrices.
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Let us consider a generic vector U, and let v* (unprimed) be the component in
the cosmic rest-frame and v* (primed) the component in the computational frame,
which will be different for every pulsar pair. The components of the vector in the
two different frames are related by:

v = R.(y) Ry(B) R.()v",
= R(a, B,y) V", (2.25)

where R(w, B, y) is the rotation matrix given by:

R(a,B,y) = (2.26)
cosy siny 0\/cosB 0—sinf\/ cosa sina 0
—siny cosy 0 01 O —sina cosa 0
0 0 1/\sinB 0 cosp 0 0 1

Indeed, we must carry out three rotations to go from the cosmic rest-frame to the

computational frame. If the pulsars P, and P, in the cosmic rest-frame have polar

coordinates (6, ¢,) and (6, ¢5), respectively, the three angles of the rotations are:
o=, (2.27a)
B =0, (2.27b)

sin 6, sin(¢, — ¢,)
cos 0, sin B}, cos(¢, — ¢p) — sin B, cos O

tany = (2.27¢)

The condition on y has two solutions within the range [0,27r] and we choose the one
that gives a positive x’ coordinate in the computational frame for P,,.

Having calculated the relevant angles we can apply these to the rotation of
spherical harmonics, where we know from Eq. (4.260) in Arfken (1985):

1
Y(Q) =) Dia, B, )Y(RQ), (2.28)
k=—1
and
1
YQ) = Y [Dhyle. B, 0)] Y@, (2.29)
k=—1

where Egs. (2.28) and (2.29) rotate from the computational frame into the cos-
mic rest-frame, and back to the computational frame, respectively. The matrix
D!, (a, B,y) is given by Eq. (4.12) in Rose (1957)
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Dl (e, B.y) = e7™d, (B)e™™ (2.30)

and form > k

=R+ m)!]l/Z (cos §)21+k—m(_ sin é)m—k

1 —
(B = |:(l+k)!(l—m)! (m —k)!

x oF} (m—l,—k—l;m—k—i—l;—tanzg), (2.31)

where ,F] is the hypergeometric Gaussian function. For m < k, d', can be derived
from the unitary property, and yields

d'(B) = di,,(—B) = (=1)"*d.,.(B), (2.32)

as in Eq. (4.15) in Rose (1957). We also note that the dfnk(ﬂ)’s are real. Since (¥ re
in Eq. (2.20) is a function of Y;", we can now write the generalized overlap reduction
function in the cosmic rest-frame as

l

TP(f) = Y [Dhyle BT (2.33)

k=—1

where “YT/"(f) (primed) is the generalized overlap reduction function in the
computational frame.

2.4.2 Generalized Overlap Reduction Functions
in the Computational Frame

In order to compute the generalized overlap reduction function in the cosmic rest-
frame, Eq.(2.20) or (2.24), one needs to compute the relevant function in the
computational frame then rotate it via Eq. (2.33) using the matrix (2.30). Here we
compute the generalized overlap reduction functions in the computational frame.
For ease of notation, we drop the primes, but it understood that in this section all the
analysis is done in the primed, computational frame.

The spherical harmonic function Y;"(0, ¢) of order m and degree [, 0 < m < [is

defined as
2[4+ 1) (I —m)! .
Y0, ¢) = ,/( o )((l+:11))‘PT(COSG)e’m¢, (2.34)

= N}"P}'(cos )™, (2.35)
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where 0 < 0 < 7 is the azimuthal angle and 0 < ¢ < 27 is the polar angle and the
P}(cos 0) are the associated Legendre polynomials

—n" dIer
Pl'(x) = (211)! (1—x2)m/2m(x2—1)’, (2.36a)
P (x) = (=D)" (= m)! Pl'(x), (2.36b)

(I + m)!

W e+ —m)
Ni Ve (2.37)

is the normalization. The Hellings and Downs curve—or equivalently the overlap
reduction function for an isotropic background—can be derived (up to a normaliza-
tion constant) setting [ = m = 0, i.e. Y] = 1/+/4x.

For each pair of pulsars, the computational frame is defined by the geometry
given in Eq. (1.167), and in this reference frame Eq. (2.22) reduces to

and

@M — (1 4 8,4) / dQ YMQ)FF(Q)F (). (2.38)
SZ

With this choice of frame, the generalized overlap reduction functions can be
easily computed. It is worth pointing out that in this frame the I'["’s are real
Vi, m, and therefore T;™ = (—1)"T}" since ¥, = (—1)"(¥")", where the
star here denotes the complex conjugate. One then need only take into account
the transformation properties of the associated Legendre polynomials defined in
Eq. (2.36).

In Appendix A.1 we provide comprehensive details of the derivations, whereas
here we will just show the main results. For the case [ = m = 0, Eq.(2.38), we
obtain the overlap reduction function for the case of an isotropic background, which
was derived in Eq. (1.179), up to a multiplicative factor 4./7 /3. In fact the Hellings
and Downs curve is normalized in such a way that is unity when one considers
the auto-correlation of the timing residuals form the same pulsar (¢ = b and
therefore { = 0). Note that for the isotropic case the rotation from the computational
frame into the cosmic frame has no effect.

More generally, it is rather straightforward to compute analytical expressions for
the case of a dipole (/ = 1) anisotropy. In this case the generalized overlap reduction
functions in the computational frame read (cf. Appendix A.1.2):

(ab)]"l—lz_% \/gsinf % 14+3(1—cos¢) [l—l—ﬁ In (sin %)]} (146ap),

(2.392)
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(ab)r?:_% \/g { (14 cos ¢)+3(1—cos¢) |:(1+cos O)+41n (sin %):|} (146up),

(2.39b)
@pl—_a)p-t (2.39¢)
and are shown in Fig.2.2b. The generalized functions for m = =1 satisfy

;7! = —T/, since m is odd.
Equation (2.39) are equivalent to the result obtained in Anholm et al. (2009),
where the dipole overlap reduction function is derived for a dipole in the direction:

~

D = (sinw, cos 1, sina, sinn, cos ) , (2.40)
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Fig. 2.2 The Earth-term only, generalized overlap reduction functions I';" in the computational
frame for/ = 0, 1,2, 3 as a function of the angular separation of pulsar pairs. In the computational
frame, T, = (—1)"T}". For the I = 0 case, I'] is the Hellings and downs curve up to the
multiplicative constant 4./7 /3. Figure reproduced from Mingarelli et al. (2013)
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where
b-ﬁa = CcOos i, ﬁ-ﬁb = COS tp, (2.41)
and so

D-pp = cosa, cos ¢ + sinay sin ¢ cos 1. (2.42)

In this case the function that describes the angular distribution in the sky is P(Q) =
D - Q, therefore:

P(S2) = cos oy cos O + sin o sin 6 cos(¢p — 7). (2.43)

Following our approach we can decompose P(fZ) onto the basis of spherical
harmonic functions and we obtain:

A 27 A
2,/ % cos oY1 () — 4/ ?(sin o8 1) — i sina,sin ) Y1 (Q)

12 R
+ TH (sin o, cos i + isin o, sin ) YI_I(Q)

P()

2, % {COS 0¥ 10(§2) —sin @,c0s Y11 () +sinaysin Y, (Q)}

(2.44)

The dipole overlap reduction function derived in Anholm et al. (2009) (see Eq.
(C23) in Appendix 2), can therefore be written in terms of a linear combination of
the generalized overlap reduction functions “bFl_ 1 ab F? and ”bfll, or the analogous
real expressions, and the actual values of the coefficients cl_l, c‘l) and ci returned by
the analysis provide the direction of the dipole moment that describes the radiation.

It is sufficiently straightforward to derive analytical expressions for the gen-
eralized overlap reduction function describing a quadrupole (I = 2) anisotropy
(cf. Appendix A.1.3):

ab -2 2
( )l =T ,
ab —1 1
( )l — r ,

(ah)l"g = %\/g{cosg‘ﬂ—%s(l —cos{) |:(1 + cos ¢)(cos £ +3) —|—81n(sin g)]}(l ~+ Sab),

(2.45a)

1 /2 11—
(“b)I‘zl = Z,/1—7;siné’{5v30s2§—|—15005§—21—60(70084')ln(sin%)} (14 8ap),

(14 cos?)
(2.45b)



2.4 Generalised Overlap Reduction Functions 65

(“b>r22 =—i %% [(1 +cos £)(cos? £ +4 cos L — 9)—24(1—cos {) ln(sin %)]
X (1+38ap) (2.45¢)

which are shown in Fig. 2.2c. For higher order / the integrals become sufficiently
complex that we have not tried to derive analytical expressions. It is however easy
to derive numerically the results, and an example for / = 3 is shown in Fig. 2.2d.

2.4.3 The Pulsar Term for Generalised Overlap Reduction
Functions

In our analysis we have approximated the generalized overlap reduction function,
Eq. (2.20), as (2.22) because current PTA analysis operates in the regime in which
fL > 1. In other words, we have only considered the Earth-term contribution of
the background in correlating data from different pulsars. At any given frequency,
Kap (f, Q) introduces rapid oscillations that depend on the distance and location to
the pulsars and the frequency of the gravitational radiation. When one integrates
over the whole sky, all the possible directions of propagation of the background,
the oscillations average to 1. Physically, this is a consequence of the fact that PTAs
operate in the short-wavelength regime, that is the gravitational wavelength is much
smaller than the distance to the pulsars.

In Anholm et al. (2009) it was shown that Eq.(2.22) is an excellent approxi-
mation for fL. > 1 for the isotropic (or monopole) case. The same is true for all
the higher order moments /, and here we provide some examples. Let us consider
I = 0,1,2 and the generalized overlap reduction functions which are non-zero at
zero angular separation, that is I'J, '}, and T'S. The functions which are zero at
¢ = 0 have a very weak pulsar term dependence and are therefore not considered
here. We will also make the assumption that the distance to both pulsars is the same.

The Earth term is always real for overlap reduction functions calculated in
the computational frame. By introducing the pulsar term, the overlap reduction
functions are in general complex; in fact, only I} is real for all /. The pulsar term
adds oscillations which are at most twice the value of the Earth term for { = 0 and
are quickly attenuated as ¢ increases. These oscillations can be seen in Fig.2.3a,
which shows the difference between the exact solutions of Eq. (2.20) for I'’, where
I = 0,1,2, and the Earth-term only solutions Eq. (2.20), where we approximate
ka» ~ 1. Note that these oscillations have almost converged to zero at { = 60° for
fL = 10. For larger values of fL, the pulsar term oscillations, such as the ones seen
in Fig. 2.3a, become tighter and move to the left.

The imaginary part behaves in a similar oscillatory fashion. The oscillations in
Fig. 2.3b are at least an order of magnitude smaller than those of the real part, and
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Fig. 2.3 Generalized overlap reduction functions (ORF) with the pulsar term. (a) The difference
between the exact solution and the Earth term-only solution for fL = 10 in the computational
frame. These oscillations are already quite small for { = 60° and rapidly converge to zero for
larger values of ¢. (b) The value of the complex component of the pulsar term for fL = 10 in the
computational frame. Recall that the Earth-term only solution is always real, but introducing the
pulsar term gives rise to complex-valued overlap reduction functions, even in the computational
frame. Notice that these oscillations induced by the pulsar term are at least an order of magnitude
smaller than the real part but do not, however, converge as quickly as the real component. The I'{
function has no imaginary component. Figure reproduced from Mingarelli et al. (2013)

can be thought of as a small change in phase. These oscillations converge much
more slowly and in the case of F? they go to zero only at considerable angular
separations.

2.5 Conclusions

We have considered how an arbitrary level of anisotropy in the GW energy of a
stochastic background affects the correlations of the data from pulsars in PTAs
and the implications for analysis. In fact the characterization of the GW power at
different angular scales carries important information about the signal.

We have considered the relevant case of the background from SMBHB systems.
We have estimated that the level of anisotropy is small, as one would expect, and
likely undetectable at present/near future sensitivity in the low-frequency region,
where PTAs have optimal sensitivity. The level of anisotropy increases as one goes
to higher frequencies, due to the fact that the effective number of sources which
dominate the signal decreases. Anisotropy may therefore become important in a
regime in which the sources are still individually unresolvable (with the exception
of possibly a few), but the total number may not be sufficiently large to generate
a smooth, diffuse background. This raises interesting questions regarding what is
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the optimal analysis strategy in this regime, which needs to be addressed. Sesana is
currently carrying out a detailed study of the anisotropy level that can be expected
from astrophysically realistic populations of SMBHBs.

We have then shown that the present analysis techniques to search for isotropic
stochastic backgrounds can be generalized to arbitrary levels of anisotropy by
decomposing the angular distribution of the GW power on the sky into multipole
moments. We have introduced the generalized overlap reduction functions I'}" that
describe the correlation from the timing residuals from two pulsars for every (I, m)
anisotropy multipole. We have provided ready to use expressions for the I'/"’s that
can be used in the analysis of the data of the PTAs currently in operation and
that are an essential element of an analysis pipeline aimed at this type of signal.
A Bayesian analysis approach based on the formalism that we have presented
has been developed by Taylor and Gair (2013). It is also important to note that
some data analysis methods currently use “compression” algorithms to speed up
the processing of the data, see van Haasteren (2013). As a result of this, the high
frequency sensitivity is compromised. This is the frequency band where anisotropy
is more significant, and therefore future development of data analysis techniques
will need to take this into account.
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Chapter 3

Effect of Small Pulsar Distance Variations
in Stochastic GW Background Searches
with PTAs

This chapter was published in a slightly modified form as Chiara M.F. Mingarelli
and Trevor Sidery, “Effect of small inter-pulsar distance variations in stochastic
gravitational wave background searches with Pulsar Timing Arrays”, Phys. Rev.
D 90, 062011 (2014). I calculated the magnitude of the overlap reduction functions
presented here, the Taylor series expansion, wrote and executed all the numerical
codes used to make Table 3.1 and all the figures except for the contour plots. I wrote
the draft of this paper, and all the text included here.

3.1 Introduction

Einstein’s theory of gravity has been challenged and tested for almost a century.
Many aspects of the theory have been exhaustively tested but the gravitational
wave (GW) prediction remains extremely challenging to verify directly, although
indirect evidence supports their existence (Ade et al. 2014; Hulse and Taylor 1975;
Kramer and Wex 2009; Kramer et al. 2006; Taylor and Weisberg 1982). To this
end, Hellings and Downs (1983), who built on ideas proposed by Sazhin (1978),
Detweiler (1979), Estabrook and Wahlquist (1975), put forward the idea of a Pulsar
Timing Array (PTA). A PTA is a type of GW detector which uses one or more radio
telescopes to regularly monitor a selection of ultra-stable millisecond pulsars: the
propagation time of radio waves from each pulsar to the Earth is affected by the
GW-induced space-time perturbations along its path. The difference between the
expected and actual time-of-arrival of the radio pulses, called the timing residual,
carries information about the GWs which can be extracted by correlating the
residuals from pulsar pairs in the PTA. The signal received at the Earth is in fact
a linear combination of the GW perturbation at the time when the GW transits at the
pulsar, the so-called “pulsar term”, and then when the GW passes the Earth, called
the “Earth term”.
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The sensitivity of a PTA to gravitational radiation is set by the total observation
time, normally 10 years, yielding a lower frequency bound of 1/10 year™' ~
107°Hz. The cadence of observation, typically a few months, gives an upper
frequency bound of ~1077Hz. A promising class of sources in this frequency
band are supermassive black hole binary (SMBHB) systems with masses in the
range of ~107-10° M during their slow, adiabatic inspiral phase, cf. Rajagopal
and Romani (1995), Wyithe and Loeb (2003), Jaffe and Backer (2003), Sesana et al.
(2008, 2009), Wen et al. (2011), and Sesana (2012). Other more speculative sources
from the early Universe, including cosmic strings (Kuroyanagi et al. 2013; Pshirkov
and Tuntsov 2010; Sanidas et al. 2012) and relic GWs, see e.g. Zhao (2011), are
also expected to be found in this frequency band. Searches of increasing sensitivity
are currently ongoing in the European PTA (EPTA), e.g. Ferdman et al. (2010),
the Parkes PTA, e.g. Verbiest et al. (2010), and the North American Nanohertz
Gravitational Wave Observatory (NANOGrav), e.g. Jenet et al. (2009), which
together form the International PTA (IPTA), e.g. Hobbs et al. (2010).

In stochastic GW background searches, the cross-correlated timing residuals
enter into the likelihood function through the evaluation of the overlap reduction
function (ORF)—a dimensionless function which quantifies the response of the
pulsar pairs to the stochastic GW background. The ORF is in turn a function of
the frequency of the GW background, the distance to each pulsar, and the angular
separation of each pulsar pair and is usually normalized such that pulsar pairs with
zero angular separation have a maximal detector response of 1 for an isotropic
distribution of GW energy density.

Current searches assume that many GW wavelengths, or radiation wavelengths,
separate the pulsars from the Earth and from each other. The number of radiation
wavelengths is calculated by taking the product of the GW background frequency f
and the distance to the pulsar L. When this product is large, fL > 1, the pulsar term
is only evaluated for the autocorrelation term. This is called the “short-wavelength
approximation”, and is used in all stochastic GW background searches to date.
However, as PTAs become more densely populated with millisecond pulsars, either
by dedicated pulsar searches with current radio telescopes (e.g. Barr et al. 2013;
Keith et al. 2010; Stovall et al. 2013) or by future radio telescopes currently under
development such as the Five Hundred Meter Aperture Spherical Radio Telescope
(FAST, e.g. Nan 2008) and/or the Square Kilometre Array (SKA, e.g. Lazio
2013), pulsars in a PTA may no longer lie many radiation wavelengths apart.
Moreover, Sesana’s new models of the stochastic GW background—generated by
the cosmic population of SMBHBs which include additional environmental effects,
such as eccentricity at the moment of pairing—predict an ultra-low frequency GW
background, f < 3 x 1077, see Sesana (2013). A low frequency GW background
paired with nearby pulsars such as J0437—4715, which is only 160pc away
(see ATNF 2014), yield a minimum fL value of order 10. Hence, in a low frequency
GW background, J0437—4715 is 10 radiation wavelengths away from the Earth.

In this paper we investigate the importance of the additional correlated phase
terms arising from the GW transiting at the pulsar—modelled by the pulsar term—
by systematically exploring how the angular separation and distance variations
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of pulsars in a PTA affect the ORF in stochastic GW background searches.
The correlated phase changes introduce imaginary components into the ORFs.
Therefore, we investigate the magnitude of each ORF instead of separately examin-
ing the real and imaginary parts. For the purposes of this study, we restrict ourselves
to the isotropic, dipole and quadrupole ORFs, derived in Mingarelli et al. (2013).
Pulsars from the IPTA mock data challenge are used throughout to give concrete
examples of how and when additional phase terms should be included in the ORFs.

An overview of stochastic GW backgrounds is given in Sect.1.6 and an
introduction to the PTA ORF can be found in Sect. 1.9. In Sect. 3.2 we illustrate how
relaxing the assumption that all the pulsars in a PTA are at the same distance from
the Earth affects the magnitude of the ORFs. We also calculate the strong pulsar term
region around a pulsar, where substantial contributions from the pulsar term may be
present. In Sect. 3.3, we approximate the pulsar term for pulsar pairs separated by
a sufficiently small angle as to have significant pulsar term contributions. We show
that this approximation captures the most important behaviour of the pulsar term.
For completeness, we further investigate the behaviour of the pulsar term when a
pulsar is within one radiation wavelength from the Earth in Sect. 3.4. Moreover, we
give an exact solution to a piece of the ORF which includes the pulsar term, in an
effort to accurately compute the autocorrelation term. Conclusions are presented in
Sect. 3.5.

3.2 Correlated Phase Changes from Small Variations
in Pulsar Distances

Consider the behaviour of the function k(f, Q), defined in Eq. (1.165) and present
in Eq.(1.164), which introduces the frequency and distance-dependence of the
ORFs. When correlating the timing residuals from pulsars in a PTA, one can think
of kqp(f, Q) as the term which encodes the information about both the pulsar terms.
Assuming L, = L, = L, the typical scale of k,(f,2) for the current pulsar
population and PTA sensitivity is:

fL(1+Q-ﬁ)=1O3( f )(

=T ) (1+$-p). (3.1)

1 kpc

Large values of fL introduce rapid oscillations to the ORF that depend on the
distance and location of the pulsars, as well as the frequency of the GW background.
Inspecting Eq. (1.165), one can see that the pulsar term oscillations are produced
by the nested cosines (which give rise to Bessel Functions) that appear when
one expands the square brackets of Eq. (1.165). For most astrophysically relevant
situations to date fL >> 1, therefore, when one computes the integral in Eq. (1.164)
the frequency dependent contributions to the integral rapidly average out to zero
as the angle between the pulsar pairs increases, details in Anholm et al. (2009)
and Mingarelli et al. (2013). In the fL > 1 case, the ORF Eq. (1.164) is therefore
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well approximated by Eq. (2.22). Note that the approximation (2.22) is equivalent
to considering the pulsar term for the autocorrelation only (i.e. when a = b), and is
otherwise an Earth term only expression.

3.2.1 Low Frequency GW Backgrounds

Oscillations introduced to the ORF by the pulsar term are very tight, and very small
for pulsars at ~1kpc in GW backgrounds of f ~ 1078 Hz, cf. Eq. (3.1) or Mingarelli
etal. (2013), Taylor and Gair (2013), Anholm et al. (2009). However, nearby pulsars
such as J0437—4715, J1856—3754 and J2144—3933 lie at 160 pc from the Earth,
see ATNF (2014). Nearby pulsars in a low frequency GW background, generated
for example by eccentric SMBHBs, detailed in Sesana (2013), would lie at ~10
radiation wavelengths from the Earth:

. f L .
L1+ Q-p) = 10(10—9Hz)(100pc) (14+Q-p). (3.2)

We now explore how relaxing the assumption that all pulsars in a PTA are at the
same distance from the Earth,! i.e. L, = L,, affects the ORFs for nearby pulsars in
the current low frequency limit of PTAs. Since we have a concrete lower bound of
fL = 10, we fix the dimensionless product fL, = 10 and vary fL, from 10 to 14.
Larger values of fL, were computed, up to fL, = 20 for all the ORFs, however the
oscillations converged to zero increasingly rapidly as fL increased. Therefore these
curves were omitted from Figs. 3.2 and 3.3. The analysis was also carried out for
Ly fixed varying fL, with analogous results, and is therefore not reported here.

We first study the magnitude of the isotropic ORF @) TY(fL, ¢), which in the short
wavelength approximation and with normalization 8 = 3/(4./7) is the Hellings
and Downs (1983) curve. The normalization ensures that the Hellings and Downs
curve is identically equal to 1 for zero angular separation (the autocorrelation term).
Since this normalization is applied to the isotropic OREF, it is also applied to the
dipole and quadrupole ORFs for consistency. The analysis continues with the study
of the dipole, / = 1, m = 0,1 and quadrupole / = 2, m = 0,1,2 ORFs
for completeness, though as indicated in Eq. (2.18), we expect the stochastic GW
background to be largely isotropic at low frequencies.

The —m values of the ORFs are not explicitly shown, since in our reference
frame, described in Eq. (1.167),

(ab) F/m(fL, &) = (_l)m(ab) Flm(fL, ¢). (3.3)

IFor data analysis purposes, pulsar TOAs are shifted to the solar system barycentre. We refer to
distances from the Earth for simplicity and clarity.
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Fig. 3.1 Geometry of pulsar
in the “strong pulsar term
regime”. Here L, is the pulsar b
distance to pulsar x from the
solar system barycentre
(SSB) and ¢ is the angular
separation of the pulsars.

The dimensionless product
fL, is the number of
gravitational radiation
wavelengths from the SSB to
each pulsar. The geometry
indicates two possible
movements: pulsar b is
moved azimuthally by {fL,
radiation wavelengths from a,
or b is moved radially away
from the origin by fL, — fL,.
Figure reproduced from
Mingarelli et al. (2014)

One may be surprised that all the ORFs are evaluated, since previous studies by
Mingarelli et al. (2013) indicated that the m = 0 ORFs were the most sensitive to
the pulsar term. That study, however, only considered pulsars at the same distance
from the Earth. Small pulsar-to-pulsar distance variations will introduce correlated
phase changes which are important for all the ORFs, as we show in Figs. 3.2 and 3.3.

We probe the strong pulsar term regime—where the pulsars are separated by
less than a few radiation wavelengths—by continuously moving pulsar b towards or
away from pulsar a along the z-axis. This change in distance is given by fL, — fL,,
as shown in Fig. 3.1. Pulsar b is also moved radially away from a by an angle ¢, and
therefore b lies at {fL, radiation wavelengths from « in this geometry. The effect
of these continuous movements on the magnitude of the ORFs is shown in the
contour plots in Figs.3.2 and 3.3. The overall shape of the ORFs in the strong
pulsar term regime is a function of the geometry of the pulsars and how they are
aligned with the GW energy density, which is in turn described by the standard
spherical harmonics Y;". A detailed explanation of the features seen in the contours
in Figs.3.2 and 3.3 is given in Appendix B and the most significant differences
between the complete ORF, Eq. (1.164), and the Earth-term-only ORF, Eq. (2.22),
are highlighted in Table 3.1.

3.2.2 The Hellings and Downs Curve

Firstly, we explore the behaviour of the isotropic overlap reduction function when
the pulsars are separated from each other by a few radiation wavelengths, either
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radially or in the z-direction, cf. Fig.3.1. The contour plot Fig.3.2b complements
Fig. 3.2a as it shows the continuous displacement of pulsar b from pulsar a. We find
that for a fixed pulsar a with fL, = 10, the largest value of the ORF is achieved
for { = 0 and fL, — fL, = 0, see Table 3.1, as expected. Moreover, we find that
the strongest pulsar term effects occur when pulsar b located less than a radiation
wavelength away from a, with the strongest correlations occurring when pulsar b is
less than half a radiation wavelength from a. The magnitude of the oscillations drops
dramatically when pulsar b is moved one radiation wavelength away from pulsar
a. Moreover, the peak of the oscillations moves to the right as fL, increases, and
the period of the oscillations increases. This behaviour is present in all the ORFs,
cf. Table 3.1 and Figs. 3.2, 3.3. Indeed, it is clear that as fL, increases, the ORF
converges to the Earth-term only solution, the solid (blue) line in Fig. 3.2a.

Our analysis of the isotropic ORF therefore indicates that the pulsar term only
adds a significant additional piece to the standard, Earth-term only ORF for pulsars
within 10 radiation wavelengths from the Earth, separated by no more than half a
GW wavelength. This corresponds to a strong pulsar-term induced ORF response
when ¢ < 3° in agreement with Fig. 3.2a, with fL, = 10.

3.2.3 The Dipole Overlap Reduction Function

In Mingarelli et al. (2013), we claimed that out of the dipole ORFs, (“b)F? is the
most sensitive to the pulsar term, since it is the only dipole ORF with a non-zero
value at zero angular separation. This claim was based on the assumption that the
pulsars were equidistant from the Earth. Relaxing this assumption and including the
pulsar term, we find that all of the dipole ORFs show strong pulsar term behaviour,
when separated by less than a radiation wavelength. This behaviour is clearly shown
in Fig. 3.2c-f.

For the I'Y(fL, {) OREF, the largest contribution from the pulsar term arises from
the scenario where fL, = fL, = 10, seen in both Fig.3.2¢c, d. In Fig.3.2c,
one can see that by moving pulsar b one radiation wavelength to fL, = 11, the
dashed-dot (red) curve, the additional contribution of the pulsar term is negligible.
As fL,, increases by one for each subsequent curve, it is clear that the pulsar term
contribution converges to zero. Therefore the ORF becomes essentially an Earth-
term only expression as the pulsars are separated by many radiation wavelengths.
We then study the strong pulsar term regime of I'Y(fL,¢), Fig.3.2d, using the
geometry detailed in Fig. 3.1 to draw a circle of influence around pulsar a. Here
we find that the strong pulsar term region is extended in the fL, — fL, direction,
indicating that the pulsar term is important when pulsar b is up to one radiation
wavelength away (in the z direction) from pulsar a. This strong pulsar term range
is twice that of the isotropic ORF in the z-direction, but in terms of radial radiation
wavelengths, {fL,, the sensitivity is very similar to that of the isotropic ORF. The
shape is due to a combination of geometric effects and the transverse nature of GWs,
described in Appendix B.
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For the T'| (fL, {) OREF, the largest contribution from the pulsar term arises from
the scenario where fL, = fL;, as shown in Fig. 3.2f, but the maximum is achieved
at a non-zero angular separation of { = 1.9°. Note that the fractional difference
between the full ORF and the Earth-term-only ORF at { = 1.9° is 49! This ORF
also differs from the previous ones in that the relatively large oscillatory behaviour is
present up to ¢ < 20°. Moving pulsar b one radiation wavelength to fL, = 11—the
dashed-dot (red) curve in Fig. 3.2e—the additional contribution of the pulsar term
is still remarkable, with its peak at {n.x = 3.5°, and a fractional difference between
the full and Earth-term only ORF of 7.

The strong pulsar term region is extended in the fL, — fL, direction, as it was
for TY(fL, ), with the exception of having no response at { = 0, see Fig.3.2f.
The peak is centered on {fL, ~ 0.5 and extends to {fL, ~ 1, which translates into
important pulsars term features for pulsars separated by 0° < ¢ < 6°, in agreement
with Fig. 3.2e and Table 3.1. The oscillations are slower to converge for this ORF,
and therefore one may wish to include these additional correlated phase changes
in stochastic GW background searches, up to ¢ ~ 15° when fL, ~ 10 — 12, see
Fig.3.2e.

3.2.4 The Quadrupole Overlap Reduction Function

Here we examine how varying the distances to pulsars in a PTA affects the behaviour
of the I = 2, m = 0, 1,2 quadrupole ORFs “YT4(fL, ¢). The key figures for this
analysis are given in Fig. 3.3. As before, we fix fL, = 10 and vary fL;, from 10 to
14. The values of fL, up to 20, however as before, these additional curves converged
to zero very quickly, providing little insight. The roles of fL; and fL, were switched
and the analysis carried out again, yielding nearly identical results.

Starting with the “?TJ(fL, {) ORF, Fig.3.3a, the two main curves of interest
are the fL, = 10 and fL, = 11 curves. This ORF displays a feature which was
previously seen in the '] (fL, {)—the maximum value of the ORF for equidistant
pulsars occurs when ¢ # 0. Although the ORF is twice the Earth-term for fL, =
fLy, = 10 at ¢ = 0, as expected, the maximum value of the ORF is at 2.4°, where
it is triple the value of the Earth term, with a fractional difference of 2. It is also
interesting to note that by moving pulsar b a radiation wavelength away from pulsar
a, corresponding to fL, = 11, the autocorrelation term is also three times larger than
the Earth term, see Table 3.1. Moreover, for fL, = 11, the autocorrelation term is
larger than the fL, = fL, = 10 case.

The full m = 1 and m = 2 quadrupole ORFs also feature a remarkable departure
from the Earth-term only expression for pulsars separated by less than a radiation
wavelength, and converge more slowly to the Earth-term-only ORF (solid blue line),
Fig. 3.3c—f. The largest fractional difference between the full and Earth-term ORFs
occurs in the “PTY(fL, {) ORF for fL, = fL, = 10 at { = 3.1°: here the maximum
fractional difference is 188!
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3.2.5 Summary

From Table 3.1, one can note that the largest values for the magnitude of the
ORFs is achieved when equidistant pulses are separated by small angles. However,
pulsars separated by up to two radiation wavelengths (denoted below as A = 2)
could contribute additional correlated phase terms to the ORF which may need to
be modelled, depending on the magnitude of the error bars for each point on the
curve, which in turn depend on the observations. The correlated phase changes are
therefore important for pulsars separated by

A -1
|L, — Ly| = 19 (5) (10_]; Hz) pc. (3.4)

One can also use the Law of Cosines to estimate when the pulsar term should
be included. As above, let A be the number of radiation wavelengths separating a
pulsar pair. Then by the Law of Cosines,

A% < (fLa)” + (fLy)* — 2(fLa) (fLy) cos £ , (3.5)

or

cos¢ <

1 2 2
S (L0 + () = 27] . (3.6)

For an isotropic stochastic GW background, we found that the pulsar term should
be considered for pulsars separated by half a radiation wavelength or less, see
Fig.3.2a, b and Table 3.1. Therefore by Egs. (3.5) and (3.6) with fL, = fL, = 10
and A = 1/2, the pulsar term should be considered for angular separations less than

¢ < arccos(799/800) rads ~ 2.86°. (3.7)

Note that the non-linearity of Eq. (3.6) prevents us from writing down a straightfor-
ward scaling relation as a function of fL,, fL, and A.

3.3 Small Angle Approximation

In Sect. 3.2 we showed that the pulsar term is important to include in the evaluation
of most of the ORFs if the pulsars are separated by less than a radiation wavelength,
see Table 3.1 for details. Motivated by the possibility of having pulsars separated
by such a small angle, we give a small angle approximation of the pulsar term for
the ORFs, up to O(£?) which closely follows the true behaviour of the complete
isotropic ORF. Since the pulsar term, Eq.(1.165), is not a function of angular
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Eq. (3.15) for fL = 10 (online blue), fL = 51.2 (green), and fL = 100 (magenta). Empirically, we
find that the approximation holds for { < 2.3°(fL/10), Eq. (3.16). Afterward the ORF reverts to
the Earth-term only solution which, due to its slowly varying initial slope, appears to be flat over
0° < ¢ < 3°. Figure reproduced from Mingarelli et al. (2014)

distribution of the GW energy density, this approximation can be used for all PTA
ORFs, however it is advised to extend the approximation to O(¢3) for I > 1.
We show how this approximation compares to the full isotropic ORF for fL,—;, =
10,51.2, 100, see Fig.3.4.

Without loss of generality, we work in the “computational frame”, described in
Eq. (1.167). This is indeed a convenient choice of geometry, as in this reference
frame F* = 0. For anisotropic ORFs, one will need to rotate the pulsars back into
the cosmic rest frame from this “computational frame” using Wigner D matrices
given in Allen and Ottewill (1997), Mingarelli et al. (2013).

For the isotropic case, YJ = 1/ /47 and therefore Eq. (1.164) reduces to

1 A ‘ 5 s , 5 R R
(ab)0 a1 = 27fLa(14+2pa) | | | — = 20/Lo(1+20) | F+(OVFT(E )
Omfsz [1- Jlr- Jrr@r@
(3.8)
We define
M = 2xnfL,(1 + cos0), (3.9
N = 2xfLy(1 4 cos @ cos ¢ + sin O sin { cos @) , (3.10)
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in order to write k. (f, 2) in terms of sine and cosine functions, separating the
function into real and imaginary components:

Kap(f, Q) = (1 —eM)(1 — V), (3.11)
= cos(M — N) —cosM —cosN + 1
+i[sin(M — N) — sin M + sin N]. (3.12)
The contour plots in Figs. 3.2 and 3.3 indicate that an approximation which allows

fL, and fL;, to vary is best for anisotropic ORFs, hence, we first present a Taylor

series expansion of kg (f, €2) for small ¢ for any fL, and fL, and then set L, =
L, = L as a special case.

For small ¢, one can write down an approximation of the x(f, Q) as:
Kap (f, Q)real ~ 1—cosM —cosN + cos(M — N)
+¢27fLy sin 6 cos ¢ [sin N + sin(M — N)]
+22nfL, {anLh sin” @ cos® ¢ [cos N — cos(M — N)]
—cos @ [sin(N) + sin(M — N)]} , (3.13)

and

Kap(f Q)imag ~ —sinM + sin N + sin(M — N)

+827fLy, sin B cos ¢ [cos N — cos(M — N)]

+¢ {=27°f2L; sin” 6 cos” ¢ [sin N + sin(M — N)]

—nfL,cos 0 [cos N — cos(M — N)]} . (3.14)

When L, = L, = L we find this reduces to

Kap (f, Q) ~2—2cosN + 2¢mfLsin N cos ¢ sin 0
+2fL[—cos @ sin N + 2rfL(cos N — 1) sin® § cos® ¢]
+i¢2mfLsin 6 cos ¢p(cos N — 1)
+i¢?mfL[cos O(1 — cos N) — 2xfLsin N sin® @ cos® ¢] .
(3.15)

Numerically, we find that Eq. (3.15) is a good approximation for to Eq. (1.165) for
when evaluating the isotropic ORF for

ofJL
{523 (E) , (3.16)
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as seen in Fig.3.4. When ¢ = 0, Eq.(3.15) simplifies to 2 — 2cos M, where
M = N = 2afL(1 + cosf). One may safely ignore the —2cos M term since it
is suppressed by a factor of at least 1/fL. Sect. 3.4 gives more details on this. As one
may expect, the imaginary part of k,(f, Q) vanishes for the L, = L,, isotropic case
but is otherwise non-vanishing. This fact is somewhat masked by the use of the
magnitude of the ORFs, instead of the individual real and imaginary components.
Using the pulsars found in the IPTA Mock Data Challenge 1, see IPTA (2012),
we found that the smallest separation between pulsar pairs was { ~ 3.5° for pulsars
J1853+1303 and J1857+0943. Although this angle is indeed small, and according
to Table 3.1 puts the pulsars in the strong pulsar term regime for anisotropic ORFs,
the distances to these pulsars found in the ATNF (2014) catalogue, are 1.6 kpc
and 0.9 kpc, respectively. Therefore, their fL values in the low frequency limit are
168 and 90, respectively. The Earth-term only ORF is therefore still a reasonable
approximation for pulsar pairs in the IPTA mock data challenge (Fig. 3.5).

3.4 Correlated Phase Changes for Pulsars Within
a Radiation Wavelength of Earth

The ATNF (2014) pulsar catalogue lists 107 pulsars which are less than 1 kpc away,
16 of which are closer than 300 pc, and three which are only 160 pc away. Our
results suggest that one can ignore the pulsar term (except for the autocorrelation) if
the distance between the pulsars L, — L, in the z-direction is larger than a radiation
wavelength, and/or {fL > 1, cf. Figs. 3.2 and 3.3, depending on the ORF.

The last assumption we relax in this study is that many radiation wavelengths
separate the Earth from the pulsars. Although current astrophysical constraints place
a lower limit of fL. = 10, this limit may decrease as more pulsars are found and
added to PTAs. Therefore for completeness, we investigate the behaviour of the
ORFs when fL. ~ 1, i.e. when the Earth and the pulsar are separated by only one
radiation wavelength.

Previously, we assumed that the —2cos M contribution to the isotropic ORF
integral was small as it would be suppressed by at least 1/fL, see Sect.3.3.
Here we investigate if this argument holds for fL = 1. We therefore calculate the
exact expression for the product of —2 cos M, the antenna beam pattern and the
fundamental harmonic as an example. Analogous calculations may be carried out
for higher multipole moments.

Let M = 27fL(1 + cos 8). We look to solve

@rO(fL.¢ =0) =B /S2 s Z(z —2cos M)YJF2F. (3.17)
A

The product of the antenna beam pattern, F* F}, the harmonic Y} (or any harmonic)
and the factor of 2 yields the usual doubling of PTA ORFs when { = 0, normally
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Fig. 3.5 In both panels “YTY (1L, ¢) is the solid curve, “TY(fL, ¢) is the dashed curve (blue) and
(ab) Fg (fL, ¢) is the dotted curve (red). These functions are the most sensitive to the pulsar term, as
they have non-zero values at { = 0. (a) The behaviour of the pulsar term only for ““T(fL, ¢),
@I, ¢) and “DTI(fL, &) when L, = L, = L and fL = 1. This is found by subtracting the
Earth term from the numerically integrated overlap reduction function. (b) The imaginary part
only of @TQ(fL, ), “IY(fL, ¢) and “WTI(fL, £) when fL = 1. As there is no imaginary part
in the computational frame where the Earth term is calculated, we cannot display the difference
as done is (a). Note that these imaginary values are only a factor a few smaller than their real
counterparts, with the exception of “YT{(fL, {) where the imaginary part is zero. Moreover, they
do not quickly converge to zero as in previous cases for fL. > 10. (a) Real part, Pulsar term—
Earth term ORF. (b) Imaginary part of the ORFs. (¢) Magnitude of the overlap reduction functions.
Figure reproduced from Mingarelli et al. (2014)

modelled by a delta function (1 + 8,). The 8 = 3/(44/7) is the normalization
applied to all ORFs, which guarantees that the isotropic ORF yields a value of 1 for
the autocorrelation term.

We now write down a solution for the product of —2cosM, the antenna
beam pattern and the spherical harmonic Yg =1/ VAar, integrated over the sky.
We decompose the overlap reduction function into the sum of two components:
(ab) I = 1/4B(Q" + R}"), as in Anholm et al. (2009) and Mingarelli et al. (2013).
We carry out this computation in the reference frame described by Eq.(1.167).
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Using Eq. (A29) with [ = 0 from the Appendix of Mingarelli et al. (2013) completes
the integration in ¢, leaving the integration in 6:

4 T .
Qg = _\/T_n | df sin O(1 — cos 0)? cos[2fL(1 + cos 6)], (3.18)

and write the solutions using spherical Bessel functions of the first kind, specifically
Jo(x) = sin(x)/x:

Q) =— mﬂ)g [47fL — sindnfL], (3.19)

= (27rfL)2 (1 —Jjo(4mfL)]. (3.20)

To evaluate Rg we make use of Eq. (A30) from the Appendix of Mingarelli et al.
(2013) where the integral in ¢ is already solved:

(1 —cosB)>cos M

sin 6

=t
R = 8+/7(1 —cos ;‘)/ do
0

+ 8/ (1 + cos g)/ d6 sin 6 cos M (3.21)
¢
=0. (3.22)

Since ¢ = 0 there is no contribution from the above equation, as the first piece is
pre-multiplied by 0, and the second piece is integrated from [, 7].

Therefore, the product of —2cosM with the antenna beam pattern and the
fundamental harmonic, evaluated at { = 0, is:

—2,3/ dS2 cos[2fL(14cos 0)|YIFA F) = — [1—jo(4rfL)]. (3.23)
SZ

3
8m2(fL)?
The prefactor in Eq. (3.23) scales as

-2
3.8x 10” (flL) , (3.24)

which suppresses the contribution from this function for any value of fL > 1. It
is now clear that when ¢ = 0, it is adequate to approximate the pulsar term by
multiplying the ORF by 2, and neglect the small oscillatory piece in Eq. (3.23).
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3.5 Conclusion

In this paper we have allowed the pulsar distances in a PTA to vary in the evaluation
of the magnitude of the isotropic, dipole and quadrupole overlap reduction func-
tions. For the first time, an in-depth study of the behaviour of the pulsar term has
been carried out, focussing on when pulsar pairs are separated by a few radiation
wavelengths or less, see Figs. 3.2 and 3.3. Although the stochastic GW background
is expected to be largely isotropic at 107" Hz, we have included the anisotropic
overlap reduction functions for completeness.

In Sect.3.2, we found that in a f ~ 107° Hz stochastic GW background, and
for pulsars 100 pc from the solar system barycentre, the pulsar term is the most
important for equidistant pulsars. We calculated the fractional differences between
the full and Earth-term-only ORFs, reported in Table 3.1, for ORFs up to [ = 2.
Interestingly, we find that the most significant fractional differences between the full
and Earth-term only ORFs are found in the anisotropic ORFs, with the maximum
value of the magnitude of the ORF achieved at non-zero pulsar separations. For
example, for “Y'T2(fL, {), the maximum fractional difference between the full and
Earth-term ORF is 188 for pulsars separated by 3.1°.

More relevant to current stochastic GW background searches is the fractional
difference between the magnitude of the full and Earth-term-only isotropic ORF,
which is most important for pulsars separated by less than a radiation wavelength,
see Table 3.1 and Fig.3.2a, b. Therefore a Taylor expansion of the pulsar term
was calculated in Sect.3.3, and this expression can be readily input into GW
data analysis pipelines. We find the approximation should be used for pulsar pairs
separated by ¢ < 2.3°. In this range, the Taylor series expansion closely follows the
form of the full ORF.

Looking to the future, we reported the behaviour of the isotropic, dipole and
quadrupole ORFs when the pulsars are within a radiation wavelength of the SSB in
Sect. 3.4. We found there would be strong deviations from the usual delta-function
like behaviour of the pulsar term, which is currently used in searches.

It is clear from this study that the Earth-term only approximation of the overlap
reduction function is still very good for the current millisecond pulsar population
timed by PTAs. However, as more millisecond pulsars are added to PTAs, one
should be careful to check that all the conditions for using the Earth-term only
overlap reduction function still hold.
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Chapter 4
Observing the Dynamics of Supermassive Black
Hole Binaries with Pulsar Timing Arrays

This chapter is based on C.M.F. Mingarelli, K. Grover, R.J.E. Smith, T. Sidery,
A. Vecchio, “Observing the dynamical evolution of a super massive black hole
binary using Pulsar Timing Arrays”, Physical Review Letters, Volume 109, Issue
8 (2012), cited as Mingarelli et al. (2012). Minor modifications here have been
made to the paper: Figs.4.1 and 4.2 have been added to clarify the geometry and
the importance of the precession effects respectively, and equations which were
previously inline are now in standard form. These changes are meant to improve the
readability of the text, and were not possible in the published version due to word
restrictions form the Journal. Equations which were derived in the introduction are
referenced and not repeated. I calculated the precession rate of the orbital angular
momentum, the orbital evolution timescale and velocity of the binaries and wrote
the draft of the paper.

4.1 Introduction

Gravitational waves (GWs) provide a new means for studying black holes and
addressing open questions in astrophysics and fundamental physics: from their for-
mation, evolution and demographics, to the assembly history of galactic structures
and the dynamical behaviour of gravitational fields in the strong non-linear regime.
Specifically, GW observations through a network of radio pulsars used as ultra-
stable clocks—Pulsar Timing Arrays (PTAs), e.g. Estabrook and Wahlquist (1975),
Sazhin (1978), Detweiler (1979)—represent the only direct observational avenue for
the study of supermassive black hole binary (SMBHB) systems in the ~10%-10° Mg,
mass range, with orbital periods between ~1 month and a few years, see e.g. Sesana
(2012), Volonteri (2010) and references therein. Ongoing observations, cf. Verbiest
etal. (2010), Ferdman et al. (2010), Jenet et al. (2009), Hobbs et al. (2010) and future
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instruments, e.g. the Square Kilometre Array—SKA (2014)—are expected to yield
the necessary timing precision to observe the diffuse GW background, cf. Verbiest
et al. (2009), Liu et al. (2011) .

This background is likely dominated by the incoherent superposition of radiation
from the cosmic population of massive black holes, e.g. Hellings and Downs (1983),
Rajagopal and Romani (1995), Wyithe and Loeb (2003), Sesana et al. (2004), Jaffe
and Backer (2003), Jenet et al. (2006), Sesana et al. (2008), van Haasteren et al.
(2011), Demorest et al. (2013) and within it, we expect a handful of sources that
are sufficiently close, massive and high-frequency to be individually resolvable, cf.
Jenet et al. (2004), Sesana et al. (2009), Sesana and Vecchio (2010), Yardley et al.
(2010), Wen et al. (2011), Lee et al. (2011), Babak and Sesana (2012), Ellis et al.
(2012a,b).

Massive black hole formation and evolution scenarios predict the existence
of a large number of SMBHBs e.g. Volonteri et al. (2003), Koushiappas and
Zentner (2006), Malbon et al. (2007), and Yoo et al. (2007). Furthermore, SMBHs
are expected to be (possibly rapidly) spinning, according to studies carried out
by Merritt and Ekers (2002), Hughes and Blandford (2003). In fact the dynamics
of such systems—which according to general relativity are entirely determined by
the masses and spins of the black holes, e.g. Misner et al. (1973)—leave a direct
imprint on the emitted gravitational waveforms. From these, one could measure
SMBHB masses and their distribution, yielding new insights into the assembly of
galaxies and the dynamical processes in galactic nuclei, e.g. Wen et al. (2011).
Moreover, measuring the magnitude and/or orientation of spins in SMBHBs would
provide new information on the role of accretion processes, cf. Gammie et al.
(2004), Volonteri et al. (2005), Berti and Volonteri (2008), Perego et al. (2009),
and Dotti et al. (2010). Finally, detections of SMBHBs could allow us to probe
general relativistic effects in the non-linear regime in an astrophysical context not
directly accessible by other means, see Stairs (2003), Will (2006), Psaltis (2008)
and references therein.

The observation of GWs with PTAs relies on the detection of the small
deviation induced by gravitational radiation in the times of arrival (TOAs) of radio
pulses from millisecond pulsars that function as ultra-stable reference clocks. This
deviation, called the residual, is the difference between the expected (without GW
contribution) and actual TOAs once all the other physical effects are taken into
account. The imprint of GWs on the timing residuals is the result of how the
propagation of radio waves is affected by the GW-induced space-time perturbations
along the travel path. It is a linear combination of the GW perturbation at the time
when the radiation transits at a pulsar, the so-called “pulsar term”, and then when it
passes at the radio receiver, the “Earth term”, cf. Estabrook and Wahlquist (1975),
Sazhin (1978), and Detweiler (1979). The two terms reflect the state of a GW source
at two different times of its evolution separated by

. A L
t=(1+R-p)L,~33x10°(1+K-p) ?_ ) year, 4.1
1 kpe
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where € and P are the unit vectors that identify the GW propagation direction and
the pulsar sky location at a distance L, from the Earth, respectively, see e.g. Sesana
and Vecchio (2010). (We use geometrical units in which G = ¢ = 1.) In a network
(array) of pulsars all the perturbations at the Earth add coherently and therefore
boost the signal-to-noise ratio (S/N) of the signal. Each pulsar term is at a slightly
different frequency since the orbital period of the binary evolves over the time 7.

Measuring the key physics of SMBHBs is hampered by the short (typically 7 =
10 year) observation time compared to the typical orbital evolution timescale [cf.
Egs. (1.71) and (1.72)]

—5/3 —-8/3
fow _ 1 6x100 (M Jow year, 4.2)
Fow 10° Mo 50 nHz

of binaries that are still in the weak field adiabatic inspiral regime, with an orbital
velocity v, cf Eq. (1.13),

M 1/3 1/3
v =0.12 fow . 4.3)
10° Mg 50nHz

Here M = my + my, it = mymy/M and M = M?/°113/5 are the total, reduced
and chirp mass, respectively, of a binary with component masses m; », and fgw is the
GW emission frequency at the leading quadrupole order. The chirp mass determines
the frequency evolution at the leading Newtonian order. In the post-Newtonian (pN)
expansion of the binary evolution, e.g. Blanchet (2006) in terms of v < 1, the
second mass parameter enters at p'N order (O(v?) correction); spins contribute at
p'°N order and above (O(v?)) causing the orbital plane to precess through spin-
orbit coupling, at leading order. These contributions are therefore seemingly out of
observational reach.

The GW effect at the pulsar—the pulsar term—may be detectable in future
surveys, and for selected pulsars their distance could be determined to sub-parsec
precision, see e.g. Lee et al. (2011), Smits et al. (2011), and Deller et al. (2008).
If this is indeed the case, it opens the opportunity to coherently connect the signal
observed at the Earth and at pulsars, therefore providing snapshots of the binary
evolution over ~10% year. These observations would drastically change the ability
to infer SMBHB dynamics, and study the relevant astrophysical process and
fundamental physics.

In this Letter we show that for SMBHBs at the high end of the mass and
frequency spectrum observable by PTAs, say m;» = 10° Mg and fgw = 1077 Hz,
the observations of a source still in the weak-field regime become sensitive to post-
Newtonian contributions up to p'°N, including spin-orbit effects, if both the pulsar
and Earth term can be detected. This in principle enables the measurement of the two
mass parameters and a combination of the spin’s magnitude and relative orientation.
We also show that the Earth-term only can still be sensitive to spin-orbit coupling
due to geometrical effects produced by precession. We discuss the key factors that
enable these measurements, and future observational prospects and limitations.
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4.2 Signals from SMBHBs

Consider a radio pulsar emitting radio pulses at frequency vy in the source rest-
frame. GWs modify the rate at which the radio signals are received at the Earth, see
e.g. Estabrook and Wahlquist (1975), Sazhin (1978), Detweiler (1979), inducing a
relative frequency shift §v(r)/vy = h(t — t) — h(t), where k() is the GW strain.
The quantities that are actually produced at the end of the data reduction process of
a PTA are the timing residuals, [ dr’ §v(t')/vo, although without loss of generality,
we will base the discussion on /(). The perturbation induced by GWs is repeated
twice, and carries information about the source at time ¢, the “Earth term”, and at
past time ¢ — 7 the “pulsar term”.

We model the radiation from a SMBHB using the so-called restricted pN
approximation, in which pN corrections are included only in the phase and the
amplitude is retained at the leading Newtonian order, but we include the leading
order modulation effects produced by spin-orbit coupling. The strain is given by

(1) = —Agw (DA (1) cos[P(1) + ¢p(1) + @r(D)] (4.4)

where
Aen(D) = = [efaw (O M @)

is the Newtonian order GW amplitude, ®(¢) is the GW phase, see e.g. Egs. (232),
(234) in Blanchet (2006) and Eq. (8.4) in Blanchet et al. (2006), and D is the distance
to the GW source. A, (7) and ¢, (¢) are the time-dependent polarisation amplitude and
phase and ¢r(f) is an additional phase term, analogous to Thomas precession, see
Eq. (29) in Apostolatos et al. (1994).

The physical parameters leave different observational signatures in the GW strain
h(z) and are therefore found in the TOA residuals. At the leading Newtonian order,
M drives the frequency and therefore the phase ®(f) evolution, with the second
independent mass parameter entering from the p'N onwards. SMBHs are believed
to be rapidly spinning, and the spins are responsible for three distinctive imprints in
the waveform:

* they alter the phase evolution through spin-orbit coupling and spin-spin coupling
at p'°N and p’N order, respectively, cf. Kidder et al. (1993),

* they cause the orbital plane to precess due to (at lowest order) spin-orbit coupling
and therefore induce amplitude and phase modulations in the waveform through
A, (1) and @, (1); and

« through orbital precession they introduce an additional secular contribution ¢(¢)
to the waveform phase.

Astrophysically we expect PTAs to detect SMBHBs of comparable component
masses, cf. Sesana and Vecchio (2010). We therefore model the spin-orbit preces-
sion using the simple precession approximation, see e.g, Apostolatos et al. (1994),
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Fig. 4.1 Precession geometry for a spinning binary: here A/, is the angle of the precession cone,
« is the precession angle, and the total spin S = S; + S, and the orbital angular momentum L
precess around the (essentially) constant direction of the total angular momentum, J =S + L at a
rate do/dt, given by Eq. (4.6)

which formally applies when m; = my, or when one of the two spins is negligible
with respect to the other. Let S|, and L be the black holes’ spins and the orbital
angular momentum, respectively. Then both S = S; + S, and L precess around the
(essentially) constant direction of the total angular momentum, J = S + L, at the
same rate

2
do — 2 (2 4 %) (1L + SDfGw(® ’ 4.6)

dt 2my M
as in Apostolatos et al. (1994), where « is the precession angle, while preserving
the angle of the precession cone, A7, see Fig.4.1. This approximation is adequate
to conceptually explore these effects, however in the case of real observations, one
will need to consider the exact expressions, cf. Kidder (1995).

The detection and particularly the measurement of the aforementioned param-
eters relies on coherently matching the signal with a template that faithfully
reproduces its amplitude and, importantly, its phase evolution. We therefore consider
the contribution to the total number of wave cycles a proxy for the significance of
a specific parameter. Individual terms that contribute ~1 GW cycle or more mean
that the effect is in principle detectable, hence one can infer information about the
associated parameter(s).

We show that information about the parameters can only be inferred for SMBHBs
at the high end of the mass spectrum and PTA observational frequency range.
Having a sufficiently high-mass and high-frequency GW source is also essential
to ensure sufficient frequency evolution over the time 7, so that the Earth and
pulsar term are clearly separated in frequency space cf. Table 4.1. We therefore
take fiducial source parameters of m; = m, = 10° Mg, frequency at the Earth
at the beginning of the observation fgwg = 1077 Hz and an observational time
T = 10 years to illustrate the main results. We provide scaling relations as a function
of the relevant quantities, allowing the reader to rescale the results for different
astrophysical and/or observational values.
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4.3 Observations Using the Earth-Term Only

We start by considering analyses that rely only on the Earth-term contribution to
the residuals, as done in Lommen and Backer (2001), Yardley et al. (2010). The
case of a coherent analysis based both on the Earth- and pulsar-term, introduced
in Jenet et al. (2004), is discussed later in this Letter. Table 4.1 shows that, in
general, the frequency change over 10 years is small compared to the frequency
bin width, 3.2(10year/T) nHz, e.g. Lee et al. (2011), Sesana and Vecchio (2010).
The observed signal is effectively monochromatic, making the dynamics of the
system impossible to infer. However, the presence of spins affects the waveform
not only through the GW phase evolution, but also via the modulations of A, (¥)
and ¢,(7) that are periodic over the precession period, and also introduces the
secular contribution ¢r(¢). For m;, = 10° Mg and fgw g = 1077 Hz the orbital
angular momentum precesses by Ao = 2rad (for dimensionless spin parameter
a=S/M?*=0.1)and Ao = 3rad (for a = 0.98), as seen in Fig. 4.2, and therefore
the additional modulation effect on A, () and ¢, (¢) is small, and likely undetectable.
However, the overall change of ¢t (f) over 10 years could be appreciable: the average
contribution for each precession cycle of this additional phase term is (Apr) = 4m
or 47 (1 — cos A1), depending on whether € lies inside or outside the precession
cone, respectively, cf. Apostolatos et al. (1994). If € lies inside the precession
cone, and given that the observation will cover between a third and a half of a
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Fig. 4.2 The precession angle « = 0 at the Earth, as a reference. The red line highlights a distance
of 1kpc, the blue line is the beginning of the observation at the Earth and the green line is after a 10
year observation, hence is closer to coalescence. For the a dimensionless spin parameter a = 0.98
(a = 0.10), the solid (dashed) line is the change in « for a 10° Mg, SMBHB . Over 10 years,
Aa ~ —3rads (—2rads), however, over 1 kpc, Ao =~ 213 rads (154 rads)
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full precession cycle, then (A@t) ~ m, which could surely indicate the presence
of spins. On the other hand, the precession cone will be small in general since

S M M M N\ 173
Zleav= ~0la— Jow , 4.7
L I w \10° Mg 100 nHz

where L = puM'/?r!/2. Therefore the likelihood of Q lying inside the precession
cone is small, assuming an isotropic distribution and orientation of sources. In this
case the Thomas precession contribution (per precession cycle) is suppressed by a
factor

M\? M \2? 2/3
(1—cosAy) ~A2/2~5%x107%a* | — fow ,
I 10° Mo 100nHz
(4.8)

which will produce a negligible contribution Agr(f) < 1. However unlikely, spins
may still introduce observable effects that need to be taken into account.

4.4 Measuring SMBHB Evolution Using the Earth
and Pulsar Term

With more sensitive observations and the increasing possibility of precisely deter-
mining L, see e.g. Smits et al. (2011), the prospect of also observing the contribution
from the pulsar-term from one or more pulsars becomes more realistic. We show
below that if at least one of the pulsar terms can be observed together with the Earth-
term, this opens opportunities to study the dynamical evolution of SMBHBs and, in
principle, to measure their masses and spins. This is a straightforward consequence
of the fact that PTAs become sensitive to ~10° year of SMBHB evolutionary history,
in “snippets” of length T <« L, that can be coherently concatenated.

The signal from each pulsar term will be at a S/N which is significantly smaller
than the Earth-term by a factor ~ /N,, where N, is the number of pulsars
that effectively contribute to the S/N of the array. For example, if the Earth-term
yields an S/N of ~36,/N, /20, then each individual pulsar term would give an
S/N ~ 8. The possibility of coherently connecting the Earth-term signal with
each pulsar term becomes therefore a question of S/N, prior information about
the pulsar-Earth baseline and how accurately the SMBHB location in the sky can
be reconstructed, as part of a “global fit”, e.g. Lee et al. (2011). Assuming for
simplicity that the uncertainties on L, and € are uncorrelated, this requires that
the distance to the pulsar and the location of the GW source are known with errors
< 0.01(100nHz/fgw) pc and < 3(100nHz/fow)(1kpe/L,) arcsec, respectively.
These are very stringent constraints, see e.g. Smits et al. (2011), Sesana and Vecchio
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(2010), Babak and Sesana (2012), and a detailed analysis is needed in order to assess
the feasibility of reaching this precision. Clearly if an electromagnetic counterpart to
the GW source were to be found, e.g. Sesana et al. (2012) and Tanaka et al. (2012),
it would enable the identification of the source location in the sky, making the latter
constraint unnecessary.

We can now consider the contribution from the different terms in the pN expan-
sion to the total number of cycles in observations that cover the GW source evolution
over the time 7 that are encoded in the simultaneous analysis of the Earth and pulsar
terms. The results are summarised in Table 4.1, for selected values of m; », and fow g
and for a fiducial value T = 1kpc. The wavecycle contributions from the spin-orbit
parameter are normalized to 8 as per Eq. (1.76). Contributions from the p?N order
spin-spin terms are negligible. The results clearly show that despite the fact that the
source is in the weak field regime the extended Earth-pulsar baseline requires the
p'°N, and in some rare cases the p>N contribution, to accurately (i.e. within ~1 GW
cycle) reproduce the full phase evolution.

For mi, = 10° Mg and fowg = 1077 Hz there is a total of 4305 GW cycles
over a 1kpc light travel time evolution, with the majority (4267) accounted for
by the leading order Newtonian term, providing information about the chirp mass,
and tens of cycles due to the p'N and p'°N terms (77 and 45, respectively), that
provide information about a second independent mass parameter. Spins contribute
to phasing at p'>N with ~38 cycles. Therefore their total contribution is smaller
than the p'*N mass contribution by a factor between a few and ~10. The additional
Thomas precession phase contribution may become comparable to the p'N mass
contribution in some cases. In fact, for @ = 0.1(0.98) the binary undergoes 24 (34)
precession cycles. This corresponds to a total Thomas precession phase contribution
of 306 (426) rad if R lies outside the precession cone.

The modulations of A,(7) and ¢,(¢) are characterised by a small Ay, because for
most of the inspiral S < L, and are likely to leave a smaller imprint on the waveform
than those discussed so far. We can indeed estimate the importance of this effect for
the most favourable parameter combinations. The value of ¢, () oscillates over time
with an amplitude which depends on the time to coalescence, S, L, Q and p. We
choose the orientation of S such that A 1 is maximised, and we vary Q and p, each
of which is drawn from a uniform distribution on the two-sphere.

In Fig.4.3 we show that for rapidly spinning (¢ = 0.98) SMBHBs this effect
could introduce modulations larger than /2 in ¢,(f) over 30 % of the parameter
space of possible {2 and P geometries. The amplitude would correspondingly change
over the same portion of the parameter space by at most 60 % with respect to
its unmodulated value. Since these effects are modulated, they will not be easily
identifiable.
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Fig. 4.3 The fraction of parameter space in  and p for which the maximum excursion of ¢, over

the time L, (1 + ) -p) for L, = 1 kpc exceeds a certain value, shown on the horizontal axis. Several
values of m », a and fgw g are considered (see legend) . Figure reproduced from Mingarelli et al.
(2012)

4.5 Conclusions

We have established that the coherent observation of both the Earth and pulsar term
provides information about the dynamical evolution of a GW source. The question
now is whether they can be unambiguously identified. A rigorous analysis would
require extensive simulations based on the actual analysis of synthetic data sets.
We can however gain the key information with a much simpler order of magnitude
calculation. The phase (or number of cycles) error scales as ~1/(S/N). Assuming
S/N ~ 40 means that the total number of wave cycles over the Earth-pulsar baseline
can be determined with an error ~ 4300/40 ~ 100 wave cycles. This is comparable
to the p'N contribution to the GW phase and, in very favourable circumstances, to
the Thomas precession phase contribution, and larger by a factor of a few or more
than all the other contributions. It may therefore be possible to measure the chirp
mass and, say, the symmetric mass ratio of a SMBHB, and possibly a combination
of the spin parameters. Effects due to the p'°>N and higher phase terms are likely
to remain unobservable, as well as amplitude and phase modulations. Correlations
between the parameters, in particular masses and spins, will further degrade the
measurements. The details will depend on the actual S/N of the observations, the
GW source parameters, and the accuracy with which the source location and the
pulsar distance can be determined. We plan to explore these issues in detail in a
future study.
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Chapter 5
Conclusions

5.1 Anisotropic Stochastic GW Background Searches

Searches for the stochastic GW background are currently ongoing in NANOGrav,
EPTA, PPTA and the IPTA. Within the EPTA, I am co-leading the search for
an anisotropic stochastic GW background, based on the formalism introduced in
Mingarelli et al. (2013) (equivalently Chap. 2). Indeed, in Mingarelli et al. (2013)
we show that the stochastic GWB may have a fractional degree of anisotropy of
around 20 % at high frequencies, while Taylor and Gair (2013) show the effect of
background-finiteness on the angular power-spectrum of the GWB. Expanding the
standard search for an isotropic background to an anisotropic background allows one
to place constraints on its degree of anisotropy, if any. In this project, we will search
over anisotropy coefficients, the ¢;"’s in Eq. (2.19), within the power-law model of
the strain-spectrum. At the lowest order, this will necessarily include an upper limit
on the monopole, which should be consistent with the isotropic working group (in
prep). Furthermore, we will see how much the isotropic limit is affected by inclusion
of different numbers of anisotropy coefficients in the search. We will then explore
the current angular resolution of the EPTA which depends on the number of pulsars
used. This will allow us to set a upper limit on the multipole moment, I,x, we
should use. We may find, on the other hand, that the upper limit on the amplitude
converges once we reach a certain order, and there is no need to extend the analysis
t0 Imax-

Following this, our approach we will be to parametrize anisotropy-coefficients to
be a function of frequency. We propose using the “hybrid time-frequency domain”
technique introduced in Lentati et al. (2013) to follow the frequency-dependence
(if any) of the background anisotropy. The motivation of this derives from the
fact that the stochasticity of the strain-spectrum begins to break down at higher
frequencies, as also shown in Sesana et al. (2008), such that the contribution to the
signal becomes dominated by a handful of bright sources.

This analysis will then be carried out again the IPTA data set, currently in prep.
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5.2 CMB-Like Stochastic GW Background Searches

Currently, I am working with Jon Gair, Steve Taylor and Joseph Romano on a project
with the aim to describe how the formalism used to characterize the polarization of
the cosmic microwave background (CMB), see e.g. Kamionkowski et al. (1997),
can be applied to the analysis of GW backgrounds. An arbitrary background can
be decomposed into modes whose angular dependence on the sky is given by
gradients and curls of spherical harmonics. We derive the pulsar timing overlap
reduction function for individual modes and show how these can be used to recover
the components of the background. An isotropic, uncorrelated background can be
accurately recovered using only three components and therefore this search will
be almost as sensitive as a direct search using the Hellings and Downs overlap
reduction function, see e.g. Hellings and Downs (1983), Anholm et al. (2009),
Mingarelli et al. (2013). My contribution to this work is to provide a description of
known anisotropic ORFs in this new representation of the GW backgrounds. Note
that in this approach each individual mode on its own describes a background that is
correlated between different points on the sky. A measurement of these components
that is inconsistent with the expected values for an uncorrelated background would
indicate new physics.

5.3 Future Work

In June 2014, I will commence a new project in collaboration with researchers at
Caltech and NASA’s Jet Propulsion Laboratory. The aim of the project is to find the
first ever direct evidence for GWs with PTAs by means of a new interdisciplinary
collaboration in radio and infrared astronomy, data analysis and astrophysics. I will
lead a team, coordinating my efforts with my mentors—Tom Prince, Joseph Lazio
and Michael Kramer—and colleagues, which will search for candidate SMBHBs
using galaxy catalogues. Having obtained the merger candidates, we will populate
them with SMBHB candidates, according to an appropriate BH mass distribution
function. The result will be a realistic synthetic map, based on the spatial distribution
and masses of the merger candidates, which can be used to predict the level of
anisotropy in the local universe. I will apply the resulting anisotropy map to an
extended GW search which implements the anisotropy formalism introduced in
Chap.2 or equivalently (Mingarelli et al. 2013), using it to constrain the priors
used to evaluate the likelihood function. We will then apply a novel extension of
this formalism to the single source searches via a new hybridized method. In this
approach, we search for GW hotspots—regions where we probabilistically believe
one or more GW sources to be concentrated—using the anisotropic formulation,
and then search within those hotspots for single sources using methods optimized
for single source detection.
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Appendix A
Derivation of the Generalized Overlap
Reduction Functions

A.1 Derivation of the Generalized Overlap Reduction
Function

In this Appendix we provide details for the derivation of the analytical expres-
sions of the generalized overlap reduction functions in the computational frame,
Eq. (1.167), whose expressions are presented in Sect.1.9. We begin by deriving
identities and properties of integrals that will be used later in the derivations. Further
comments on the isotropic solution are provided in Sect. A.1.1, the [ = 1 (dipole)
ORFs are derived in Sect. A.1.2, and the /[ = 2 ORFs are derived in Sect. A.1.3.

In the computational frame, the antenna beam patterns for pulsar a and b are
given by Eq. (1.169). Substituting Eq. (1.169) into Eq. (2.38), the overlap reduction
functions become:

1 b4 2
(@)pm — —Z(l +8ab)/d0 sin 0 x/ deoy)"
0 0

(1 —cosh) [(sin ¢ sin &)>— (sin £cos Hcos ¢ — sin Hcos é‘)z]

Al

14cos 6 cos ¢ + sin @ sin ¢ cos ¢ @

One can write Eq. (A.1) as the sum of two integrals:
@pm — Leom o pmyg s A2

I —Z(Qz‘*‘Rz)( + ), (A2)

where
Q' =N/ / d6 sin 6(1—cos 0)P}"'(cos 6)
0
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2r
x/ dep(1—cos cos @ —sin Lsin O cos ¢)e™®
0

and

T
R'=—N/"2sin’ Z/ d sin (1 —cos 0)P}"(cos 6)1,,
0

2 eim¢ Sil’l2 ¢
Im = d¢ B . ’
0 1 4 cos ¢cos 6 + sin {sin 6 cos ¢

(A.3)

(A.4)

(A.5)

and the constant N} is given by Eq. (2.37). The Q}" portion of the overlap reduction

function, Eq. (A.3), is only non-zero for m = 0, £1:
O'#0 ifftm=0,%£1 (V).

This can be shown via integration by parts of the integral in ¢:
2 )
/ dep(1—cos cos @ —sin Csin O cos ¢p)e™?
0
2 )
=— / de¢ sin Csin 6 cos gpe™?
0
2 )
= —sin{sin 6 / dge™? cos ¢
0
= sin{sinf——— (™" —1) =0 (jm| = 2).
m? —1

For m = 0, 1, the integral in ¢ is handled as a special case:

2
/ dep(1—cos cos § —sin Lsin O cos ¢)e™
0

_{2m(1 —cosicosB), m=0
a —m sin ¢ sin 6, m= 41

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

Note that the non-zero solutions given here are real-valued. We can now show that
the generalised overlap reduction functions in the computational frame, given by

Eq.(A.1) arereal VI, m.

We have just shown that the Qf' are real, therefore it remains to prove that
R}", Eq.(A.4), is also real VI, m. The complex component is introduced via the

¢ dependence in Eq. (A.5),

2w eim¢ Sil’lz ¢
Im = d¢ . B ’
0 1 + cos ¢cos 6 + sin {sin 6 cos ¢

(A.11)
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/ 2 cos me sin” ¢
= d —
0 1 + cos {cos 8 + sin {sin 6 cos ¢

+i /2” di sin me sin® ¢ (A.12)
1 . .
0 1 4+ cos ¢cos 6 + sin ¢sin 6 cos ¢

The final integral which is a function of i can be written as an odd function over
a symmetric interval for any value of m, hence it vanishes leaving only first, the
real-valued, integral. Equation (A.5) can therefore be written as

2

L= | d¢
0

cos me sin’ ¢
1 + cos¢cos® + sin¢sinf cos¢’

(A.13)

which is real-valued V [/, m in the computational reference frame.

Lastly we introduce an identity which helps one to readily solve a common
integral involving Legendre polynomials. Formally, we show that for any n-times
differentiable function g(x) and Legendre polynomial P,(x), the following equality
holds:

(="
2!

1
/ dx g(x)P,(x) = f dx (x* — 1)"g"™ (x). (A.14)
—1 —

Using repeated applications of integration by parts, and using Rodrigues’ formula
for Legendre polynomials

1

Px) = 5 ((*=1"), (A.15)

where D" is the nth derivative with respect to x, the left-hand side of Eq. (A.14) can
be written as:

[ dreP0) = 60 56 = 1) - g ) DA - 1Y)

_|_( l)n 1 (n l)(x) D(n n)[(x l)n]

4 / dx(~1)'g"(x) - —— 62— 1Y']. (A.16)

2"n!
We then evaluate Eq. (A.16) over [—1, 1] and note that in every boundary term, after
the differentiations are performed, there is always a remaining term of the form
(x> —1)™, for some m. Thus, this term vanishes at the end-points [—1, 1] leaving only
the final integral term, thus proving Eq. (A.14). We will make use of this identity
regularly in the following sections describing dipole and quadrupole anisotropies.
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A.1.1 Note on the Isotropic Solution

The derivation of the isotropic solution is given in Sect. 1.9. However, it is useful to
note that when one sets m = 0 and solves the Q and R integrals, one does so for any
higher harmonic with m = 0. We can therefore write that for any m = 0

Q? = 271N,0 f df sin8(1 — cos 0)(1 — cos ¢ cos ) Py(cos 0), (A.17)
0

1 2 b4
R) = —47N)B / %Pl(cos 0) — 4N o / df sin 6P;(cos 6).

(A.18)

A.1.2 Dipole Anisotropy

The dipole anisotropy is described by the / = 1 and m = 0, =1 spherical harmonic
functions.We therefore have non-zero solutions for all Q}" and R}". Here we derive
the expressions for I ? and Flil. Beginning with I'?, one may easily compute
NY = /3/4m and P = cosf. Since m = 0, the integral in ¢ is identical to
that in the isotropic case for both Q! and R). We can also use (A.14) to easily solve
the integral in 6, with x = cos 0 and @’ = cos ¢:

Q) = v37r/ dfsin6(1 —cos0)(1 —cos 6 cos)cosb
0

+1
v37t/ dx[d'x* —x(d + 1) + 1]x (A.19)
-1

_ —2\/§a. (A20)

To evaluate R(l), we substitute / = 1 into Eq. (A.18)

[3 7=t (1—cos 6)? r
—4 ] — /3/ d@ﬂcos@ +a/d95in90059 ,
4 0 sin 6 -t

—2/378 [a +41n (sin g)} , (A.21)

0
Rl

so we can finally write

@) po — —%\E {a +38 [a +41In (sin %)“ (1 + 8a). (A.22)
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To evaluate (“b)Fll, we calculate N| = /3/87 and P}(cos ) = —sin 6 so that we
can easily write

3 g 2 )
0| = ,/8—[ df(— sin’ 9)(1—cos@)/ dpe' (1—cos Lcos §—sin sin 6 cos ¢)
T Jo 0

3 T
= n‘/—siné‘/ df sin® 6(1—cos 6)
8w 0
2w .
= T sin ; (A23)

Note that the solution of the integration in ¢ is valid for any /:
T
Q,l = —an' sin {/ df sin® 6(1 — cos Q)P,1 (cos 0). (A.24)
0

We now turn our attention to R} and simplify the expression by substituting

g=1+cosfcosg,

r =sinfsin¢,

noting that /g% — r2 = | cos 6 + cos ¢|. It follows that

3 b
R{ = —2‘/8—sin2§/d9 sin 6(1—cos 8)(—sin 0)1;, (A.25)
T 0
2T cos ¢ sin’ ¢
I = dp———. A26
1 /(; ¢q+rcos¢ (A.26)

_ 7 (=2¢’—r| cos 0 +cos {| +2¢r* +247| cos 6 + cos {|) (A.27)
= r3|cos 6 + cos (| . |

As before, the value of Eq. (A.27) depends on where we are evaluating the integral
in 0: cos € + cos ¢ is positive for 0 < § < 7 — ¢ and negative form — ¢ < 6 < 7.
We now factor Eq. (A.27) considering (cos 6 + cos{) > 0:

_ 7[g —(cos § + cos )
r ’
T (1—cos 0)(1—cos &)

Y sin¢ (1+cos 0)(1 + cos ) (A.29)

I =

(A.28)

The case where (cos 0 + cos {) < 0 is analogous. The complete expression for [ is
therefore
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(1—cos 0)(1—cos {)
I = T { 8160833816088’ 0<0<m—¢ (A.30)
H : cos cos .
sin 0 Sll’lé‘ (1—cos 0)(1—cos ) ’ T _é' <fO<m

Therefore, any R} can be written as:

1— 2
R} =+ 27N}~ sm§/ ( cos 09) P} (cos 6)
n 2an1% sin¢ / d9(1 + cos 0)P! (cos 0) . (A31)
7§

Form = 1,1 = 1, it is now straightforward to write

3 ¢ (1 —cosf)?sin@
R% = —é —nsiné‘[ d@—( cos §)” sin
alV 2 0 1+ cosf

—z,/ 3 siné‘/n dfsin6(1 + cos 0), (A.32)
:8 2 7=
:2,3,/377Tsin§|:1 +2ln (sing)]. (A.33)

Combining Egs. (A.23) and (A.33) one finds the final expression for 1"11:

(“”)1"11 = %\/%siné‘ %1 + 38 |:1 + — 4 In (sin g)]} 1+ 6uwp), (A.34)

and recalling that @Y™ = @) T(—1)" one obtains @[ = —@)T],

A.1.3 Quadrupole Anisotropy

Quadrupole anisotropy is described in terms of the [ = 2, m = 0, =1, £2 spherical
harmonic functions. Two of these solutions are found immediately: since / = 2,

@)prm = @m We now evaluate @) Fim‘, beginning with “YT'9, where NJ =
V/5/47 and P§ = 1/2(3 cos? § — 1). Firstly we find QY using (A.17) with [ = 2

0) = ‘/ /d9 sin #(1—cos 8)(1—cos ¢ cos 0)(3cos> 6 — 1)

= 3 \/;cos Z, (A.35)
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and Rg can be found with (A.18) with [ = 2:

5, ("¢ (1—cos)?
R = —zn,/—ﬁ/ a0 0= 3 2o 1)
47 sin 6
—27”/ /d@ sin@(3cos> 0 — 1), (A.36)

= ﬁm[coszé‘+4cos§+3+81n (sin %)i| . (A.37)

Combining these solutions we obtain:

(”b)I‘g = %\/g {cos Z—i—% |:a(cos +3) +81n(sin %)]} (1 +6w). (A38)

Using analogous techniques, we can find an expression for I'). Here N} =

V/5/247 and P} = —3cosfsinf, so Q) is given by substituting / = 2 into
Eq. (A.24):
5 b
Qé = 3my/ 7= sin{ /d@ sin’® 6 cos A(1 — cos 6) (A.39)
241w 0
2
—_ 1’; sin¢. (A.40)

Equation (A.31) is again used with / = 2 to write R}:

/ (1 —cosf)%cos @ siné
smé‘
1 +cosf

5 T
—671‘/—g sin¢ | dO(1 4+ cosB)cos6sinf (A.41)
24w ﬂ Tt

= 2;3 e sm§ |:oe(cos§ 4+4)+ 12In (sin %)} . (A.42)

o

Hence we write the final solution as:

1 2w
(“b)l“zl 4,/ T st%Scos {+15cos¢— 21—60'3 ln(sin g)} 1+ 6uw).

(A.43)
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Finally we write down the exact expression for “” T2, Recall that form = 2, 03 = 0

as shown in the introduction to this appendix. Here N% = /5/96m and P% =
3sin? § and using ¢ and r as previously defined we first write down the integral I:

2 202
/ do cos 2¢ sin” ¢ (A.44)
0

0] ,
q—+rcos¢

27(cos 0 ’
_ 2m(cosf + cos§) [2g] cos 8 4-cos ¢|—(cos 8 4-cos £)* —¢?].
r*| cos 0 +cos ¢|

(A.45)

This expression must be evaluated in 2 separate regimes, as before, where cos 6 +
cos ¢ is positive for 0 < 8 < 7 — ¢ and negative form — ¢ < 6 < m, i.e.

—(cos 4cos §)
L =2 (14cos 6)2(1+cos £)2 0<b<m—¢ (A.46)
2 = 24T (cos O+cos §) —t<0< -
(1—cos #)2(1—cos £)?* T T

Therefore:

3 /57 ¢ sin® @(1 — cos 0)(cos O + cos {)
@ = =/ = sin? / do 1436
2= 3V ¢ 0 aZ(1 + cos 0)? (1+ dar)

3 /57 ., T sin’® A(cos 6 + cos ¢)
)= 1
2V " Z[,_gdg Bl —cosg) T o)

= 1 S—ﬂﬁ {oz(coszé‘+4c0s§—9) —24B1n (sing)} (1 4 6ap)
4V 6 « 2

(A.47)



Appendix B
Features of the Overlap Reduction Functions

B.1 Strong Pulsar-Term Effects

Stochastic GW background searches all assume that many GWs separate pulsar
pairs from each other and the SSB. However, when the pulsars are separated by a few
radiation wavelengths or less, there is a coherent addition of the GW phase between
neighbouring pulsars, cf. Figs. 3.2 and 3.3. In Sect. 3.2, we probed the strong pulsar
term regime by fixing pulsar @ and moving pulsar b azimuthally by ¢fL, and radially
by 8fL = fL,—fL,. This geometry is illustrated in Fig. 3.1. Some of the contour plots
in Figs. 3.2 and 3.3 showed new and interesting behaviour in the strong pulsar term
regime, including large fractional difference between the magnitude of the ORF
with respect to the Earth-term-only ORF, for pulsars separated by a few degrees, cf.
Table 3.1.

Here we explain these features by considering the interplay between the geom-
etry of the pulsar-Earth system and its alignment with the GW energy density
decomposed over the basis of spherical harmonics. The doubling of the ORF at
¢ = 0is a known feature, cf. Eq.(3.15). In the following geometry, pulsar a is
aligned with the z-axis.

Take for example the Y9 (6, ¢) spherical harmonic, see Fig. B.1. In Fig. B.1, we
show that the Y (6, ¢) spherical harmonic has both positive and negative regions
which contribute positively and negatively to the ORF respectively. The product of
the positive/negative correlation introduced by the pulsar term (which is in turn a
function of the separation of the pulsars and the direction of the incoming wave,
0) and the sign of the spherical harmonic in a particular region of the sky, gives
the overall sign of the ORF in that region. By studying how the correlated phase
changes interact with the distribution of the GW energy density, we will gain some
insight into the general features of the strong pulsar-term regime.

First we examine how moving pulsar b in the z-direction affects the ORF in the
strong pulsar term regime. When the pulsar pair is separated by §fL(1 + cos 8) <
0.25 the pulsar terms introduce a positive correlated phase change. This comes
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The Y(6, ¢) spherical harmonic Contributions to the ORF

Fig. B.1 (a) The energy density distribution for Yg (6, ¢). The red and blue regions are positive
and negative, respectively. (b) The Earth (green, equivalently the SSB) is at the centre with the two
pulsars above. The magnitude of the “”T'J(fL, {) ORF is enhanced by small 0 < §fL < 1 pulsar
b displacements, over the §fL = 0 case. The arrow shows the direction of a GW propagating with
incoming angle 6. The lighter shaded regions of the diagram show the regions of the sky from
which the signal will contribute positively to the ORF. The darker shaded regions will contribute
negatively to the ORF, though their size depends on 8fL. The brackets indicate the [sign of the
pulsar term correlation, sign of the background energy density]. Figure reproduced from Mingarelli
and Sidery (2014)

from considering the difference in the number of GWs that the pulse from pulsar
b will traverse as compared to the pulse from pulsar a. If this is less than 1/4 of a
radiation wavelength, then the pulsar terms will be correlated. Since the pulsars are
embedded in a Y9 (6, ¢)-type GW background, sign of the GW energy density in the
cos~'(—1/+/3) < 6 < 7 region is also positive. Therefore the sign of the ORF here
is positive. In Fig. B.1, this region is denoted by the topmost [+,+].

The pulsar terms are again positively correlated when 0.75 < §fL(1 + cos 0) <
1.25, i.e. the pulses from the 2 pulsars differ in the number of GWs they traverse
by between 3/4 and 5/4 of a wavelength. Moreover, when 6 < cos™'(1/+/3), the
contribution from the Y3(6, ¢) distributed GW energy density is also positive. This
region is denoted in Fig. B.1 by the lower [+,+].

When pulsar b is between 0.25 < §fL < 0.75 radiation wavelengths from a,
the pulsar term phases will be anti-correlated. However, this region coincides with
the region where the GW energy density is also negative, and therefore the overall
contribution to the ORF is positive. This region is denoted in Fig.B.1 by [-,-].
However, for overlapping pulsars, or §fL = 0, the pulsar terms would be positively
correlated. In this case, the aforementioned region would contribute negatively to
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the ORF. This explains why some large ORF values are observed for pulsars which
are separated by a small §fL or equivalent angle, cf. Table 3.1, though it should be
noted that for the particularly favourable setup that resembles the region sizes shown
in Fig. B.1 would require §fL ~ 1/2.

Analogous arguments hold when moving pulsar b azimuthally, separating the
pulsars by {fL, radiation wavelengths, though the difference in the number of GWs
the pulses from the 2 pulsars traverse is now given by ~ fL{ sin 6. These arguments
are also important for explaining features seen in the other anisotropic ORFs, though
not always so straightforwardly as the energy density distributions do not all have
rotational symmetry around the z-axis.
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