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Supervisor’s Foreword

This is an exciting time to be working in subatomic physics. With the discovery
of the Higgs Boson at CERN, the last major piece of the Standard Model of nuclear
and particle physics is in place. Yet the vast majority of physicists working in the
field regard the Standard Model as unsatisfactory. There are too many parameters
that have to be supplied from outside the model in addition to requiring subtle
cancellations that are far from what anyone would regard as natural. In short, almost
everyone believes that the Standard Model must live within some deeper and more
satisfying framework which would supply natural explanations for these short-
comings. Finding a hint of the so-called “new physics” which is expected beyond
the Standard Model drives the research efforts of thousands of physicists
worldwide.

Of course, a great deal of attention is focused on the Large Hadron Collider and
the possibility that its next run at higher energy and luminosity may reveal a hint
of the new physics. Yet, there are other more subtle ways to search for new physics
and while they will not actually allow us to directly produce particles which are not
part of the Standard Model, they may nevertheless reveal signatures of their exis-
tence. In the past the discovery of neutral currents at energies far below those
needed to actually make a Z-boson in the laboratory, nevertheless convinced the
community of their existence.

This thesis primarily addresses tests of the Standard Model using parity violating
electron scattering (PVES). In particular, the Qyeax experiment at the US Department
of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) had as
its goal to measure the famous Weinberg angle with an accuracy sufficient to
determine the weak charge of the proton to 4 %. In order to achieve this goal it is
crucial that the required radiative corrections are under control and one of these,
namely the box diagram in which both a Z-boson and a photon are exchanged
between the incident electron and the target proton, was proving extremely con-
troversial when the work on this thesis began. Dr. Hall’s work resolved this con-
troversy beautifully, establishing clearly that the error on this crucial correction was
within the range needed in order for the experiment to succeed.
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viii Supervisor’s Foreword

The thesis begins with a review of the Standard Model before turning to pre-
cision tests, such as PVES. In order to evaluate the radiative correction using
dispersion theory one needs experimental input in terms of structure functions and
the next chapter reviews the state of the art in this area. Since that data is purely
electromagnetic, one needs a model to convert the data so it can be applied to the
photon-Z box diagram and this is fully developed in the chapter dealing with the
Adelaide-Jefferson-Manitoba (AJM) model. Finally, this model is used in Chap. 6
to evaluate the radiative correction at the energy of the Qyeax €xperiment. The
discussion pays particular attention to all potential sources of error, eventually
resulting in the conclusion that one can indeed calculate the photon-Z box suffi-
ciently accurately that the experiment can achieve its goal.

The same model is also extended to a necessary background correction for an
ambitious future experiment at Jefferson Lab in which the Standard Model will be
tested in a different way by an accurate determination of the weak charge of the
electron in Moller scattering. The thesis also deals with the calculation of the
electric and magnetic polarisabilities of the proton, a test of the AJM model against
very recent parity-violating electron-proton and electron-deuteron parity violating
deep inelastic scattering.

This thesis is a rewarding read, as well as a very valuable source of information
concerning nucleon structure functions and their applications in dispersion theory.
It is a pleasure to invite you to dip into it.

Adelaide, Australia Prof. Anthony W. Thomas
March 2015
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Abstract

Precision measurements offer important, low-energy tests of the Standard Model.
The Qyeax and (proposed) MOLLER experiments at Jefferson Lab are two such
measurements. Since the interpretation of the experimental results depends on the
precision of the theory prediction, radiative corrections need to be properly
accounted for. In this thesis we examine the yZ box correction to the weak charge
of the proton. Previously poorly understood, by using phenomenological infor-
mation to constrain the input structure functions, we determine this important
correction at Qyex kinematics to a precision more than twice that of the previous
best estimate. The yZ box is also evaluated at energies relevant to the MOLLER
experiment for the first time.

The constructed Adelaide-Jefferson Lab-Manitoba model structure functions
may also be used to study other low-energy phenomena. The electromagnetic
parametrisations of the cross sections are utilised in the context of the generalised
Baldin sum rule to investigate the momentum transfer dependence of the electric
and magnetic polarisabilities. Additionally, both the electromagnetic and interfer-
ence structure functions’ moments were calculated in order to determine the
higher-twist contributions to the structure functions. These results serve to increase
our understanding of the internal structure of the nucleon.
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Chapter 1
Motivation and Outline

The Standard Model (SM) of particle physics currently provides the best account of
the properties and interactions of the elementary particles which make up matter. It
combines quantum chromodynamics (QCD), which governs the strong force between
quarks and gluons inside the nucleon, with electroweak theory—the unified theory
of weak and electromagnetic interactions. Since its inception, the SM has enjoyed
an exceptional degree of success, accurately explaining and predicting a wide range
of experimental phenomena. Nevertheless, a growing body of evidence suggests that
it is in fact, a low-energy, effective theory of a deeper, underlying description.

Because of the fundamental importance of the SM, new experiments are contin-
ually being designed which extend current empirical limits—with respect to either
the energy scale, the precision level, or both—in order to test further the agreement
between theory and nature. Experiments such as those being performed at the Large
Hadron Collider (LHC) in CERN study particle collisions at energies never pre-
viously achieved, whereas parity-violating (PV) measurements like Qyeax provide
precision checks of SM observables. In this thesis we are specifically interested in
low-energy precision tests of the SM.

In 2012, the Qweak collaboration completed the data collection stage of their PV
experiment measuring the weak charge of the proton—the weak force’s analogue
of the electric charge. An early analysis that included four percent of the total data
revealed good agreement with the SM prediction. Results for the full data set are
expected later this year. The aim, ultimately, is to determine the proton’s weak charge,
Q7 to a precision of 4 %. This is equivalent to measuring the weak mixing angle,
sin? Ay, to 0.3 % and would give the most precise determination of sin® Ay away
from the Z-pole. To achieve such a goal, radiative corrections to the theory value of
Qﬁ, must be reliably estimated and their uncertainties fully understood.

Although most of the radiative corrections to the proton’s weak charge are indeed
well understood, the vZ ‘box’ diagram, arising from the interference between the
photon and Z-boson exchanges, remains subject to considerable debate. Much of
this controversy stems from a lack of empirical data on the interference structure
functions—used as inputs in the dispersion calculation. An accurate experimental

© Springer International Publishing Switzerland 2016 1
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2 1 Motivation and Outline

knowledge of the interference structure functions would remove any significant doubt
in the vZ box determination. However, as it currently stands, various models of the
structure functions are employed. It is therefore necessary to quantify and minimise of
the uncertainties resulting from these models. In constructing the Adelaide-Jefferson
Lab-Manitoba (AJM) model—presented in this work—we make use of the excellent
understanding of parton distribution functions (PDFs) to constrain the input vZ
structure functions. This is the first time this has been done in the literature, all
previous work having relied primarily on the accuracy of the models themselves to
obtain a good estimate of the uncertainty.

Since this work is done in the context of the SM, in Chap. 2 we begin with a brief
overview of the theory. An introduction to electroweak theory and a more detailed
discussion of PV in the SM will also be included in this chapter. As one of the
principal aims of the Qweak €xperiment is to search for physics beyond the Standard
Model (BSM), in Sect. 2.3 we present some of the main reasons why many physicists
expect that there may be a more fundamental theory. This is followed by a listing of
some of the leading candidates for new physics (NP).

Most of the results based on the AJM model apply directly to the Qweax
experiment. There are, however, a number of other relevant low-energy mea-
surements. The EO8-011 experiment—another PV experiment at Jefferson Lab—
measured the asymmetry which arises in electron—deuteron scattering and its results
will be used as an important check of the AJM model methodology. Additionally,
the proposed MOLLER experiment contains backgrounds which we may estimate
using the AJM structure functions. The details of these experiments are covered
in Sect.3.2, where we have also included a discussion on past measurements and
planned, future experiments. Following this, Sect. 3.3 examines the radiative correc-
tions to Q’v’v, while the final section of Chap. 3 looks specifically at the [,z correction.
The dispersion formalism needed for the calculation will be introduced here.

It will become evident that the most important inputs in the [,z calculation are
the interference structure functions and as a result, the entire Chap.4 is devoted to
these objects. Here we investigate the models of the electromagnetic and vZ structure
functions that have been used in the literature. Since we are not only interested in the
central values of the vZ box obtained by the different groups but would also like to
know how the uncertainties arise, we will include brief error analyses of the various
models. Additional attention will be given to the model which has the largest errors.

Having completed the review of earlier work, the next chapter presents the
Adelaide-Jefferson Lab-Manitoba model. The construction of the interference struc-
ture functions begins with the electromagnetic parametrisations, which we introduce
in Sect.5.1. A description of the vZ structure function follows, along with a detailed
explanation of the method used to constrain the structure functions. Although the
constraints provided by the parton distributions should suffice, it would be useful to
check our approach empirically. As mentioned previously, this is possible using the
data from the E08-011 experiment and therefore, in the last part of Chap. 5, we test
the AJM model asymmetry predictions against these experimental results.
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1 Motivation and Outline 3

The determination of the vector hadron part of the L1,z correction using the AJM
model is laid out in Chap. 6. Since the hadronic axial-vector contribution has been
calculated to sufficient precision previously, we concentrate largely on the [J XZ term.
A small exception to this occurs in the results on the MOLLER backgrounds where
the Df/‘z value must be included in the total vZ box correction. Section6.1 gives

the results for the DXZ term relevant for Qyeax energies, while Sect. 6.3 examines
the contribution at the higher energies associated with the MOLLER experiment. In
between, we make further comparisons of the AJM model asymmetry predictions
with those values recently released by the E08-011 experiment. These new results
differ from the previous ones in that the kinematics they examine are no longer
in the nucleon resonance region, but the deep inelastic scattering (DIS) region. An
evaluation of the inelastic proton asymmetry—one of the significant backgrounds in
the MOLLER experiment—concludes this chapter.

Although the primary motivation for the AJM model comes from the need to
accurately determine the DVZ contribution, the uses for these structure functions
are much more wide-reaching. In the rest of this thesis we address some of these
additional applications.

In Chap.7 we utilise the F; electromagnetic structure function to calculate the
momentum transfer (Q?) dependence of the proton’s electric and magnetic polaris-
abilities. Following a brief discussion of earlier work, the generalised Baldin sum rule
is used to show the Q%-evolution of the polarisabilites down to much lower momen-
tum than previously attained. Several experimental efforts have been involved in
studying these observables and a comparison (Sect.7.2) between the data and the
AJM parametrisation shows good agreement between the two, re-emphasising the
reliability of our construction.

Quark-hadron duality is the observation that the averaged resonance region struc-
ture functions closely resemble those given by partonic description. Although intu-
itive to some degree, the level of agreement and the kinematic range over which it
occurs is surprising. Furthermore, the theoretical framework used to describe this
phenomena, the operator product expansion (OPE), fails to explain physically how
the transition from resonances to scaling takes place. One of the principal ways of
studying duality is through the structure function moments. In Chap. 8 we include a
summary of the OPE and the necessary formalism before considering the moments
of the electromagnetic and interference F> structure functions.

Our motivation for studying duality is twofold: firstly, a comparison of the total
structure function moments with the leading-twist moments allows one to extract the
higher-twist contributions to the structure functions. Secondly, should we observe
duality in the vZ structure functions moments, it will help confirm the estimates of the
DXZ correction obtained earlier. Section 8.2 includes AJM model results for the M,
moment, where we also show the calculations of the neutron moments. Although
these incorporate larger errors, they are important when considering higher-twist
contributions to the electron—deuteron asymmetries.
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4 1 Motivation and Outline

The final chapter of this thesis summarises the discussion of the preceding chap-
ters, while also revisiting some of the main conclusions. Further avenues for extend-
ing the work presented here are also included.



Chapter 2
Introduction to the Standard Model
and Beyond

The Qweak €xperiment is a precision test of the Standard Model. In this chapter we
give an introduction to the SM, concentrating particularly on electroweak theory.
Problems with the SM are reviewed, which leads naturally into a discussion on
possible BSM physics and their experimental searches.

2.1 The Standard Model

Based on the SU(3), x SU(2)1, x U(1)y gauge group, the SM successfully predicts
the behaviour of three out of the four observed forces. The only one not included
in this description is gravity. The strong interactions are a result of SU(3) colour
(hence ‘c’) symmetry, whereas the unified electromagnetic and weak interactions
are accounted for by the SU (2); x U(1)y factor. The subscript L refers to the fact
that the SU (2) part acts only on left-handed fermions, while the Y factor is the weak
hypercharge.

Interactions between the leptons and quarks which make up nuclear matter occur
via the exchange of vector bosons. In the case of QCD, massless gluons are respon-
sible for the strong force experienced by quarks, while the weak force is mediated
by the massive W* and Z° bosons. The photon completes the force-carrier sector
and mediates the familiar electromagnetic interactions.

Both leptons and quarks may be divided into three generations according to
their mass and electric charge (cf. Table2.1). Quarks, under the influence of the
strong force, combine to form mesons (quark-antiquark pairs) and baryons (three
quark systems). These hadrons in turn, form multiplets, whose structure is largely—
since SU (3) flavour is not exact—governed by the irreducible representations of
SU (3). The leptons on the other hand, experience only the weak and electromagnetic
interactions. Completing the particle content of the SM is the recently discovered
[1, 2] Higgs boson associated with the Higgs field, responsible for generating mass
in the SM.

© Springer International Publishing Switzerland 2016 5
N.L. Hall, Hadron Structure in Electroweak Precision Measurements,
Springer Theses, DOI 10.1007/978-3-319-20221-1_2
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Table 2.1 Properties of the three generations of SM matter particles

Gen. Quark Charge Mass Lepton Charge Mass
(MeV) (MeV)
I u 2/3 1.8-3.0 e -1 0.511
d —1/3 45-53 Ve 0 <2 x107°
Il s -1/3 90-100 I -1 106
c 2/3 1.28 x 10° |, 0 <0.19
111 ! 2/3 1.73 x 10° |7 -1 1.78 x 103
b —1/3 4.18 x 10° | v, 0 <18.2

The data is taken from the Particle Data Group [3]

From these fundamental building blocks the rest of nuclear matter in the universe
is presently understood to be constructed.

2.2 Electroweak Theory

The theoretical footings for the unification of the SM electroweak theory were first
introduced by Glashow [4] in 1961. The massless vector bosons associated with
this SU(2) x U(1) gauge symmetry are W;L (where i = 1,2, 3) and B, whilst the
couplings are g and ¢’. These gauge bosons are included in the SM in the kinetic
terms of the Lagrangian,

Lo
L= = W, W — 2B B", @2.1)

where the field strength tensors are,

Wi, = 0,W), — 0, W) — gegWIWE, i, jk=1,2,3; (2.2)
By, = 9,B, — 0,B,,.

Under SU (2) ‘weak isospin’ the left-handed fermions transform as doublets. The
U (1) gauge group acts on both left- and right-handed components of the fermion
fields and is associated with a phase symmetry [5]. In order to generate the masses
of the physical particles, the SU(2) x U(1) symmetry is spontaneously broken
[6, 7] when minimising a potential,

Ao
V(@) =p¢"o+ S (0'0)7,
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involving a complex scalar doublet,

+
¢ = (ZZ;O) : (2.3)

This is known as the Higgs mechanism [8—11].

After spontaneous symmetry breaking, the U (1) group is the only remaining
unbroken symmetry. Additionally, the weak mediators end up acquiring mass leaving
the photon as the sole massless vector boson. Quantum electrodynamics (QED) is
based on this U(1)g group. Proof of the renormalisability of such spontaneously
broken gauge theories by t’Hooft and Veltman [12—14] in the early 1970s completed
the theoretical development of electroweak theory. Experimentally, however, there
still remained some puzzling issues.

Parity Violation in EW Theory

In 1956 Lee and Yang [15] put forward the idea of parity non-conservation in weak
interactions. An exceptionally radical thought at the time, this was soon verified
experimentally by Wu et al. [16] and confirmed by a group lead by Lederman [17].
Both of these experiments involved charged current reactions; however, Glashow’s
theory also predicted a small amount of parity violation through the neutral current
(NC) interaction term

g
Tt = 3 aqs o N t®) Zu(x). 24

where, B . '
Jex) = Zwi(xw“(g’v — g4y (x), (2.5)

and Z,,(x) is the Z 0_boson field. The fermion (anti-fermion) fields are given by v;
(Ei), and the vector and axial-vector couplings,

gt =1, —2g;sin’ Oy, (2.6)
gy=t,, 2.7)

where té 1 is the weak isospin of the fermion i and ¢; the charge.

After several conflicting experimental results [18—20], PV in neutral currents was
finally confirmed by Prescott et al. [21] in 1978 using electron—deuterium scatter-
ing and reaffirmed by a second experiment the following year [22]. The measured
asymmetries are shown in Fig.2.1. Together with the indirect [23-25] and direct
[26, 27] observations of the Z9-boson at CERN, these results firmly established the
SU (2) x U(1) theory as the principal description of the unified weak and electro-
magnetic interactions.

Since then the theory has proven to be extremely robust, successfully predicting the
values of physical observables to unprecedented levels of precision. Advancements
in technologies has meant that it is now possible to search for deviation between
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Fig. 2.1 Parity violation in e—d scattering as observed by Prescott et al. [21, 22]. On the left-hand
plot, the dashed line represents the same ‘Hybrid” model shown in the right-hand figure. Both
asymmetries (A) are normalised by the momentum transfer (Q2) and plotted against the fraction of
energy lost by the incoming electron (y)

experiments and theory at the parts per billion (ppb) level. In Sects. 3.1 and 3.2 we
will discuss these developments in more detail.

The Weak Mixing Angle

Mixing of the four vector fields, Wl‘; and B,,, gives,

1
Wit = % (W; - W,f) , (2.8)
_ 3
Z” o 92 +g/2 (gW“ g BM) ’
3
AN = = (g/Wll«+gBN)’

g+

where the Wlf and Z,, are the mediator fields of the weak interactions and A, is the
photon field of the electromagnetic force.

Alternatively, one can define the weak mixing angle (also referred to as the
Weinberg angle) in terms of the coupling constants,

/

g

/92_’_9/2’

. g
sinQy = cosfy = ———, 2.9)
/92 + g/2
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such that,
Z, = cos Oy W, — sinfy By, (2.10)
Ay

sin Oy W;’ + cos Oy B,,.

In order to verify experimentally, a renormalised definition of sin® @y is required.
At lowest order in perturbation theory,

M2
sinfy =1 - —%
z

@2.11)

and this expression was used extensively earlier on. However, it also induced mislead-
ing radiative corrections involving the top quark mass which meant that an alternative
definition was needed [28].

Today, the most commonly used definition of the weak mixing angle comes from
the modified minimal subtraction (MS) renormalisation scheme where,

sin® Ow (Wyis = €* (Wyis/9” (Wi (2.12)

with p representing the sliding energy scale. Theoretically motivated, this defini-
tion is, however, unphysical and requires global fits to data in order to obtain an
experimental value [5].

The running of sin® @y with respect to the energy, allows for straightforward
testing of the SM. By measuring the weak mixing angle at different energies, one
directly examines the accuracy of the SM’s predictions. In Fig. 2.2 we show a number
of past, present and future low-energy experiments, whose aim is to check the running
of sin? Oy .! (Note that in this case sin? @y is shown as a function of the momentum
transfer Q as opposed to p.)

2.3 Beyond the SM

Perhaps one of the most famous examples of agreement between the SM and exper-
iment is the anomalous magnetic moment of the electron where,

a.(Exp) = 11596521807.6 £2.7 x 10713,
a,(SM) = 11596521817.8 7.7 x 10713,

and the a,(SM) [35] is the theory prediction. We, however, are primarily interested
in those observables which relate to PV in the SM. In Table 2.2 we show the current

I'The final value for sin? Oy extracted from the NuTeV experiment [29] is the subject of consider-
able debate [30-33]. Despite being shown to lie significantly above the SM prediction in Fig.2.2,
additional corrections such as sea-quark effects result in agreement with theory [28].
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Fig. 2.2 The running of sin” fy and the current experimental status [28]. Black data points rep-
resent published results, while the blue and red points are projections for future experiments. The
uncertainty on the theory prediction is of order the thickness of the curve, where at low energies
this corresponds to +7 x 1075 [3, 34]

Table2.2 Standard Model parity-violating parameters compared with their experimental values [3]

Observable Experimental value SM prediction
Ciy + Cia 0.1537 £ 0.0011 0.1530(1)
Ciu —Cia —-0.516+0.014 —0.5300(3)
Coy + Coy —0.21 £0.57 —0.0089

Cay — Caq —0.077 £ 0.044 —0.0627(5)
oy —0.0403 £ 0.0053 —0.0474(5)

v 1s the weak charge of the electron

state-of-the-art for a number of these measurements, where Cy; and Cy; are defined
in terms of the effective four-point interactions,

Lo =—=£ X [Cutnnedina + Cudnedn'Va].  @13)

GF
\/E i=u,d

1
with G r the Fermi coupling constant. At tree level,
Cii =2¢5dy, Cau=24%d", (2.14)

where g4 = —1/2and g, = —(1 — 4 sin? Ay ) /2. The quark couplings,
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1 4 1
u : 2 u
- ___ Ow , =,
v 2 3 St Ja 2
1 2 1
d s 2 d
gV—_§+§Sln 6W7 gA—_z’

are the same as those in Eq. (2.7).

In spite of the SM’s many achievements it is seen as incomplete. A number
of subatomic and astrophysical observables have lead to the notion that there is a
deeper, more fundamental theory, of which the SM is but a low-energy effective
theory. Neutrino masses, the rotational speed of galaxies, and the inexplicably low
mass of the Higgs boson are all problematic in the SM, and give strength to this
understanding. In the following section we expand on some of these difficulties.

Motivating New Physics

Although the list below is by no means complete, it contains many of the most
important motivating factors of searches for NP. For a more comprehensive set, see
for example, Refs. [5, 36, 37].

Gravity

Unlike the strong, weak and electromagnetic forces that can all be described at the
quantum level, gravity is currently only successfully realised classically. Attempts
to quantise general relativity run into the problem that the resulting theory is non-
renormalisable. Furthermore, while it may be possible to combine general relativity
to the SM by hand, gravity does not unify with the other three interactions at a
fundamental level. It is expected that a more complete theory would include the
correct quantum description of gravity as well as unifying it with the SM forces.

Hierarchy Problem

The mass-generating Higgs mechanism results in a neutral scalar boson of spin 0.
Experimental results from the LHC give the mass of the Higgs boson to be ~125 GeV
[1, 2]. Theoretically, however, such a light mass can only be obtained by an artificially
large amount of fine tuning.

We may write the Higgs mass as,

my; = my pare + O\, g%, K A?, (2.15)

where )\ is Higgs self-coupling and g and % are the couplings to the gauge bosons
and fermions. The bare Higgs mass receives corrections from higher order loop
diagrams some of which are shown in Fig.2.3. These diagrams are proportional to
A—the scale at which the ultraviolet divergences are cut off—and are quadratically
divergent. Should there be no physics between the electroweak scale (A ~ 103 GeV)
and the Planck scale (A ~ 10' GeV), the cancellation required to get a Higgs mass
of 125 GeV must occur to 30 decimal places [5]. Such fine tuning is seen as highly
unnatural and any BSM physics which might provide a solution to this problem is
considered to be worth examining.
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Fig. 2.3 Examples of one loop corrections to the physical Higgs mass

Neutrino Masses

At the time when the SM was originally formulated there was no empirical evidence
for massive neutrinos. They were therefore incorporated in the SM as massless parti-
cles. Since then however, experimental data [38—40] indicates that neutrinos oscillate,
i.e. they change flavour as they propagate. This means that in fact the neutrinos must
have some mass, albeit very small. Although masses for neutrinos may be incor-
porated into the SM by either adding extra right-handed states, or by the ‘seesaw
mechanism’ [41-43], there is still no experimental evidence to decide between the
two scenarios. Since these additions are not a part of the original SM, NP is still
needed to offer a more satisfactory solution.

Another question which the SM fails to answer is whether neutrinos are Dirac or
Majorana particles.

Gauge Coupling Unification

In the SM, the effective gauge couplings—corresponding to the strength of the
forces—may be written as functions of the energy scale. If the running of couplings
are plotted together as shown in Fig.2.4, it is clear that they do not meet at a single
point. The failure of the coupling constants to unify is seen as a drawback of the SM
and NP is required to obtain such unification.

Dark Matter

Gravitational lensing, star velocities in spiral galaxies and large-scale cosmological
structure all suggest that the universe contains additional non-nuclear matter. Invisible
electromagnetically, thus ‘dark’, it is thought to make up ~22 % of the total energy
content of the universe [5]. Although its presence is currently inferred only from
gravitational interactions, it is also possible that dark matter (DM) interacts weakly.

While there have been several SM based explanations for dark matter, such as
neutrinos, or ‘MACHOs’, (Massive Compact Halo Objects) most of these candidates
fail to explain the full range of current observations. In the case of neutrinos, their
masses are too light to give the correct relic density and their velocities too high to
allow for formation of the observed large scale structures. MACHOs on the other
hand, lack a credible mechanism for creating the amount of objects needed to account
for the masses of the galaxies.
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The failure of the SM to offer a suitable solution for DM, has left physicists little
option but to look outside the SM. A number of candidates e.g. axions, gravitinos,
even non-Newtonian gravity have all at various points been considered as possible
explanations. The leading candidate, however, remains weakly interacting massive
particles (WIMPs) and to be given serious attention most BSM theories require such
a particle.

Candidates for BSM Physics

Given the range of issues with the SM, it is perhaps not surprising that there is no
shortage of contenders for alternative physics models. Although there is yet to be
any experimental verification of any of these theories—either via direct or indirect
detection—there remains a large body of work devoted to studying their implications.
This next section looks at some of the more prominent BSM theories.

Supersymmetry

One of the best theoretically motivated extensions of the SM is supersymmetry
(SUSY). Originally introduced by Wess and Zumino [45], SUSY works by extending
the Poincaré algebra [46] to include spinor generators. This successfully negotiates
the Coleman-Mandula No-go theorem [47], which states that the most general sym-
metry group of the S-Matrix is the cross product of the spacetime transformations
and an internal symmetry (such as a gauge theory).
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The spinor generators Q,, act on fermions (bosons) transforming them to bosons
(fermions),

Qalf) = |b),
Qalb) = If).

This means that each particle acquires an additional superpartner—the fermions a
bosonic partner, and the bosons a fermionic partner. The Higgs sector is, moreover,
extended to two doublets.

One of the most attractive properties of SUSY is that it provides a natural DM
particle. WIMPs are considered prime candidates for dark matter because they are
both heavy enough (~10?~103 GeV [5]), to allow for the observed rotation speeds of
the stars and only weakly interacting, accounting for inability to detect it through the
electromagnetic spectrum. With the addition of so-called R-parity—necessary for
proton stability—the lightest supersymmetric particle (LSP) becomes stable making
it an ideal DM possibility.

SUSY theories may also help solve the hierarchy problem. The Higgs self-energy
loops containing additional supersymmetric particles cancel out those that appear
in the SM (cf. Fig.2.3), removing the need for artificial fine tuning. In combination
with grand unified theories, SUSY also allows for the unification of the coupling
constants. Another attractive quality of SUSY is that it opens up the possibility of a
quantum description of gravity.

Because SUSY provides solutions to many of the SM’s problems, it is one of
the most extensively studied BSM theories. Experimentally, there are a considerable
number of searches under way at the LHC. In detectors such as ATLAS and CMS,
the LSP may be inferred from missing energy signatures. Other astrophysical exper-
iments hope to see signs of SUSY particles indirectly by measuring self-annihilation
products such as gamma rays.

Extra Dimensions

The LHC currently looks for signs of extra spatial dimensions also. The simplest
extension to the standard four-dimensional spacetime involves a fifth, circular spatial
dimension [48, 49]. Given that this additional dimension has not yet been observed,
its radius should be small. This extra dimension then results in a tower of massive
states called a Kaluza-Klein tower. These momentum states may be searched for in
modern detectors.

Theoretical motivation for extra dimensions comes from both string theory and
the ability to incorporate gravity with the three other forces. As of today, there is yet
to be any experimental evidence for extra dimensions.

Technicolour

Finally, we mention technicolour. In these types of theories electroweak symmetry
is broken by an additional non-abelian gauge interaction removing the need for a
scalar (Higgs) field and the associated hierarchy problem. This is attractive since it
removes the fine tuning that might otherwise appear.
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Experimental Searches

The LHC is just one of a multitude of experiments currently under way, whose goal is
to discover new physics. These searches are often divided into three ‘frontiers’—the
Energy, Intensity, and Cosmic frontiers. Although they incorporate more than just
BSM experiments these divisions are still useful classification tools. In this section
we give a broad overview of these NP searches, for a more complete review see
Refs. [5, 28].

Energy Frontier

This category is dominated by the Large Hadron Collider. With four detectors
(ATLAS, CMS, ALICE and LHCb) and an anticipated final centre-of-mass energy
of 14 TeV, the LHC is the largest and most powerful particle accelerator yet created.
Its range of NP searches includes all those previously discussed i.e. supersymmetry
[50], extra dimensions [51] and technicolour [52], as well as others like microscopic
black holes [53]. Although they have yet to observe any of these phenomena, these
experiments have placed new constraints on the energy scales of BSM physics. With
the upgrade of the LHC almost complete, a new range of experiments will begin
which will continue to increase these limits. Other planned experiments at the energy
frontier include the International Linear Collider and the Future Circular Collider.

Unfortunately, the nature of the LHC experiments means that it would be difficult
to discover the precise properties of any NP observed. To do this requires experiments
at the intensity frontier.

Intensity Frontier

This technique provides an alternative approach to the ‘brute-force’ method discussed
above. In these types of experiments, beams of high intensity are focused on a target
resulting in measurements which are repeated many times over. By building up the
statistics and ensuring that the systematic errors are under control, these experiments
make precision measurements of SM observables with hope of detecting ‘smoking-
gun’ signals of new physics.

The previously mentioned Qyeax experiment [54], MOLLER [55] and the E08-
011 experiment [56], all fall under this category. Further examples include the pro-
posed 11 GeV PVDIS [57] experiment, the measurement of the proton radius [58]
and those involving the neutrino mixing parameters [59].

Another important field of research which falls within this grouping is the
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [60, 61]. One of the
main aims of flavour physics is to precisely determine the CKM matrix elements.
Experiments such as those at Belle [62], BaBar [63] and LHCb [64] all play signifi-
cant roles in this area.

Cosmic Frontier

In this category, observations are done on the cosmos. Optical, radio and even ‘neu-
trino’ telescopes such as ICECUBE are used to provide a better picture of the Uni-
verse. Techniques such as gravitational lensing have delivered key evidence [65] for
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dark matter and further observations may well answer remaining questions on the
nature of DM. Additionally, studies of cosmic rays [66, 67] provide windows into
particle collisions at energies many orders of magnitude greater than those currently
available at modern accelerators.
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Chapter 3
Precision Tests of the SM

While in some sense any experiment performed is a test of the Standard Model,
precision tests refer specifically to those whose uncertainties are significantly smaller
than previous measurements in the field. It is of course, also necessary that the theory
prediction be known very precisely. Several examples have already been mentioned
in the previous two chapters and although the range of experiments which fall under
this category is too large to fully account for in this chapter, here we briefly point out
some of the key findings.

Following the establishment of the basic structure of the SM in the 1980s, the
next decade saw precision measurements involving Z physics at the Large Electron-
Position Collider (LEP) and Stanford Linear Collider (SLC). These experiments
confirmed the validity of the SM to the one-loop level [1]. The 2000s saw precision
measurements of the top quark mass [2], the W-boson mass [3], as well as the muon
anomalous magnetic moment [4] and the Fermi constant [5]. More recently, the mass
generating mechanism in the SM has been confirmed with the discovery of the Higgs
boson [6, 7].

In the next two sections we present additional details on the precision experiments
relevant to calculations performed later on in this thesis. For further information on
electroweak tests, the reviews [8—11] are particularly helpful.

3.1 Atomic Parity Violation

Neutral current PV experiments may be separated into a number of categories. Atomic
parity violation (APV), parity-violating electron scattering (PVES) and neutrino
scattering measurements are three of the main kinds of experiments used in this field.
For the purposes of this thesis we concentrate on the former two. In APV, electron—
nucleus interactions mediated by the Z-boson resultin PV transitions between energy
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states of the atom. By measuring the amplitude for this transition, one is sensitive to
the value of the weak charge,

Ow(Z,N) = Z(1 —4sinOy) — N, 3.1)

where Z is the number of protons and N, neutrons. One of the benefits of APV mea-
surements is that they avoid the difficulty scattering experiments face where the need
for high statistics is hindered by the target over heating. While the required atomic
theory calculations are still technically challenging, experimentally, this makes it
more straightforward to determine sin® @y at lower energies in APV.

The earliest efforts to observe PV in neutral currents attempted to measure APV
in bismuth-209 [12, 13] and although these experiments failed to give a definitive
answer, since then, PV has been observed in 209Bi and other nuclei at the expected
level [14-17]. The most precise measurement of APV to date, however, comes
from the highly forbidden 65 — 7S transition in cesium-133 [18-20], where they
determined,

Qw = —72.06(28)exp (34 theor (3.2

a value more than two standard deviations away from the SM prediction at the
time. Since then, the extracted value of the weak mixing angle has shifted as new
corrections [7, 21, 22] have been taken into account and it is currently considered
to be

sin? Oy = 0.2212(19), (3.3)

which sits 1.5 ¢ away from the SM value (shown in Fig.2.2).

3.2 Parity-Violating Electron Scattering

Parity-violating scattering experiments involve a beam of polarised leptons (usually
electrons) on some stationary, nuclear target. The cross sections for the left- and
right-handed polarised leptons are measured and the difference—normalised by the
total—gives an asymmetry which is sensitive to sin’ fy. The advantage of these
experiments is that the ambiguities surrounding atomic theory corrections in APV
measurements are no longer present. Following the original work of Prescott et al.
[23, 24], there have been many further PVES experiments [25-30]. Of these, the
Mgller scattering E158 experiment [26] at the Stanford Linear Accelerator Center
(SLAC), provides the best measurement of sin> Ay away from the Z-pole. Many of
the other experimental results will be useful, in conjunction with Qyeax, in further
constraining the proton’s weak charge.
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Q weak

Precision measurements of Q’Vj‘, are particularly well suited to searches for NP
since ad hoc cancellations suppress the weak charge’s value in the SM [31].
Furthermore, previous PVES experiments [25, 27-30] may be used to reduce
remaining hadronic uncertainties which might otherwise be difficult to estimate the-
oretically.

Of principal interest to this work is the Qeax experiment [25] at JLab. Like those
mentioned above, itis a PVES experiment and has recently completed the data taking
stage. Longitudinally polarised electrons with energy E = 1.165GeV are elastically
scattered off a fixed proton (liquid hydrogen) target. The resulting four-momentum
transfer is Q% = 0.025GeV?.

The difference in the helicity-dependent cross sections is measured by the
asymmetry,

Apy = 22 (3.4)
V= o +o~ '
where o) is the cross section for a right-hand (A = +1) or left-hand (A = —1)

electron. With its aim of measuring the proton’s weak charge to 4 %, Qyeax Would
determine sin® @y to ~0.3 %, a precision approaching those of the Z-pole measure-
ments (0.1 %). Should Qeak reach this goal, it would supplant the E158 experiment
as the most precise value of the weak mixing angle at Q% <« m2Z

Oweak recently released a value of QIV’V following an analysis of 4 % of the data.
Using results presented in this thesis [32], they found Q{,’V = 0.0710 £ 0.0007 [33].
The analysis of the full data set is expected to be completed by late 2015. Should this
value agree with SM prediction, it will constrain new physics at the 1-5TeV scale
[34]. In Sects.3.3 and 3.4 we will look more closely at how higher order radiative
corrections, especially the U, 7 correction, effect the SM prediction of Qﬁ,. We will
find that when trying to place constraints, the magnitude of the uncertainty of the
[,z correction is particularly important.

PVDIS at 6 GeV

This is an e—d scattering experiment similar to the Prescott’s earlier set up [23, 24].
In fact, it is the first experiment since then to measure the inelastic asymmetry in the
DIS region. Using JLab’s 6 GeV beam it measured Apy over a range of kinematics
with the primary aim of determining the poorly known axial-vector quark couplings
which were defined in Sect. 2.2. Later on, we will use the results from this experiment
[35, 36] to test the consistency of the AJM model.

MOLLER

Of a similar nature to the E158 experiment, MOLLER [37] aims to measure the
electron’s weak charge to 2.3 %—equivalent to measuring sin” @y to ~0.1 %—
placing it on par with the two measurements done by LEP at the Z-pole. In order
to reach this precision, it will need to be able to detect scattered electrons at very
forward angles, as well as ensuring high enough statistics.
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As in the SLAC measurement, longitudinally polarised electrons will scatter off
the atomic electrons in hydrogen. One additional benefit is that it will include, in its
backgrounds, a 4 % measurement of the proton’s weak charge [38]. MOLLER will
also measure the proton’s inelastic asymmetry at low momentum transfer [39], which
will provide additional constraints on the proton’s interference structure functions.

Further Measurements

In addition to those above, there are several other planned experiments which aim to
measure the weak mixing angle to even higher levels of precision. SoLID [40] is a
proposed update of the 6 GeV PVDIS experiment which will run after the completion
of the 12GeV energy upgrade to JLab’s Continuous Electron Accelerator Facility
(CEBAF). Improving on the earlier experiment, it will included a larger number
of Apy values as well as increasing the precision to 0.5-1% with the goal of more
precisely determining the neutral current vector and axial-vector quark couplings [8].
As in previous cases, this will also provide an independent low-energy measurement
of sin? Oy .

Another proposed experiment is the P2 at the Mainz Energy-recovering Super-
conducting Accelerator (MESA) facility. P2 hopes to measure the proton’s weak
charge using a beam energy of ~0.2GeV which would reduce theoretical contro-
versies regarding hadronic box corrections such as the [,z . Perhaps even more
optimistically, as a part of the proposed Electron-Ion Collider (EIC) plans, sin® Ay
could be measured at several values of Q with the possible (red) data points shown in
Fig.2.2. This would clearly be an excellent test of the slope of the curve of sin? fyy.

Having presented an overview of PV experiments in the above section, the rest of
the chapter focuses solely on the theoretical aspects of the Qweax €Xxperiment. Since
we are specifically interested in the [, 7 radiative correction to the proton’s weak
charge, the next two sections are dedicated to introducing this topic. In Sect. 3.3 gen-
eral radiative corrections to Q’V’V are discussed, while in Sect. 3.4 we look exclusively
at the [,z contribution. It is important to remember, however, that a number of the
experiments mentioned above will play a crucial role in any future determination of

Oy
3.3 Radiative Corrections to O},

Many of the radiative corrections discussed in this section were originally calculated
in the context of APV experiments. The work of Marciano and Sirlin [41, 42] provides
the basis for the more modern calculations [43] which look specifically at PV in
electron scattering. Indeed, part of the recent confusion surrounding the [, 7 diagram
stemmed from the fact that APV and PVES experiments are characterised by different
energies. As the individual components of the [,z diagram each exhibit distinct
energy dependence, it is imperative to ensure that this is correctly determined.
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Beginning again with the asymmetry in Eq. (3.4), Qweak measures the difference
between the left- and right-handed electron cross sections. Given that these cross
sections are proportional to the square of the amplitude, | M|?, where,

IMP? = | My + Mz (3-5)
= M2 +2Re (M MzZ) + 1Mz,

and M., is the electromagnetic Born amplitude, while M7 is the Born Z exchange

amplitude, it is clear that the PV part comes predominantly from the 2R e (MZ“/M z)
term. This is because the | M, |2 will cancel in the numerator of Eq.(3.4) while | Mz 2
is negligible at the kinematics of Qyeax. The denominator, on the other hand, will
be dominated by the |Mv|2 piece.

In the case where the momentum transfer squared ¢, is small, Apy is related to

the proton’s weak charge by [9]

oL (3.6)

Apy =

A2

where « is the fine structure constant and G f is the Fermi constant. Further, the weak
charge and the Weinberg angle are related at tree level by the expression,

Oh = 1—4sin’ Oy. (3.7)

At the level of precision required by Qyeak, however, radiative corrections must also
be included, giving [43],

0 = 1+ Ap+ A0 (1= 4sin? 0w (0) + A, ) + Oww + Dz + 0 200),
(3.8)

where sin? 0y (0) is the weak mixing angle at zero momentum and [1,7z(0) is the
vZ box diagram at E = 0. Almost all the additional corrective terms have been
calculated to the levels of precision necessary for Qeak. The only term currently
subject to debate is the [,z box diagram.

Looking at the individual corrections in Eq. (3.8), the A p term gives the correction
to the relative normalisation of the neutral and charged current amplitudes. Both
higher order QCD corrections and the electroweak equivalents have been included
in its evaluation. Marciano and Sirlin give A, = —a/27, while the electron’s anapole

momentA;is,
A L 1—42) |1 M7 41 (3.9)
=——U—4s n{ — =1, .
¢ 3p W m2 |6
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where s%,[, = sin? Oy [41, 42]. These are relatively small corrections to the axial-
vector Zee and ~yee couplings [43].

The electroweak box diagrams Uy w and Oz have been computed by the authors
of Refs. [41, 42, 44] who found,

Ta
Oww = —» (3.10)
47TSW
and 9
«
Ozz = ——— | = —5s% ) (1 — 4s%, + 8s2), 3.11
Y4 47Ts%,c%v (4 W) ( w W) ( )

where c%[, = cos? Ow and here, both « and 6y take their Z-pole values and have
been renormalised in the modified minimal subtraction scheme. Given that the Ly w
diagram contributes ~26 % to Q7 , it is particularly important that this contribution
be well understood. The [z diagram on the other hand accounts for a much smaller
~3 %.

In both the Uy w and Uz 7 diagrams, the majority of the contribution comes from
the DIS region [43] where perturbation theory may be used. For lower kinematics
where this is no longer the case, the diagrams carry suppression factors involving
(p/Myw.z)? (where p is the incoming momentum) and may thus be neglected [43].
This combination of factors results in values for ww and [0z which are well
within Qyeak uncertainty limits.

3.4 The L1,z Correction

Until more recently, the interference yZ contribution shown in Fig.3.1 was also
thought to be known within the required precision of the Qyeax €xperiment. In terms
of the electroweak amplitudes, it is defined as [45]

e (Mzm$))

W’ (3.12)

0,2(0) = QY

where Mg)v) and ./\/lg,PZV) are the parity-violating parts of the Z and yZ interference
amplitudes.
The U, 7 diagram may be decomposed into two separate pieces,

O,2(E) = O4,(E) + OY,(E), (3.13)

with D?Z coming from the vector electron, axial-vector hadron coupling to the Z

boson and DXZ from the axial-vector electron, vector hadron coupling to the Z.
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k kK k

Fig. 3.1 Interference yZ box (left) and crossed box (right) diagrams. The wavy and dashed lines
represent the exchanged « and Z bosons, with the hadron, electron and virtual photon momenta
labelled by p, k, and ¢, respectively

At typical APV energies O(MeV), the hadronic axial-vector correction domi-
nates, since DVZ — 0 as the energy decreases and is therefore negligible in such
experiments. For Qyeax on the other hand, £ = 1.165GeV which is approximately
three orders of magnitude larger. At these energies DVZ is no longer negligible, thus
both terms need to be taken into account. Although the majority of our analysis will
focus on the vector hadron correction, in the next few paragraphs we give a brief

summary of the current state of the D?Z contribution.

Marciano and Sirlin’s (MS) original calculations separated D?Z into a high and
low energy part [41-43],

5 M?
D?z = i(l — 4s3) {ln Tf + Cyz(/\)}. (3.14)

The parameter A ~ 1GeV represents the scale of separation, while C, 7 gives the low-
energy contribution and the log factor, the high-energy contribution. MS estimated
the low-energy contribution using the Born term for the vZ interference diagram
that is, instead of including all the states represented in Fig. 3.1, they only calculated
the contribution from the diagram with the proton as the intermediate state. For the
short distance contribution, the quark parton model was used.

Blunden et al. (BMT) [46, 47] have recently updated this calculation using the
dispersion formalism. While (slightly) improving the precision, they found that the
central values remained in good agreement with the Refs. [41, 42]:

04, =0.0052(5);  MS
0, = 0.0044(4);  BMT

where the above values are being compared at E = 0.

There is little argument over the axial-vector hadron contribution at Qweak
energies—mostly because the majority of the contribution comes from the DIS
region where perturbative QCD can still be used. This is in contrast to the DVZ term,
where the long distance physics plays a much more important role. Finally, the
D,’?Z correction has now been calculated [48, 49] up to the MOLLER experiment’s
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energy of 11GeV and its uncertainty remains well within the error budget of both
Oweak and MOLLER.
Aside from including the dispersion expressions for the D?Z for completeness’

sake, the rest of this analysis will now focus on the DA‘// - contribution whose uncer-
tainty has been subject to much wider debate. Note that since the elastic contribution
has already been evaluated previously Refs. [41, 42, 50, 51] we will not spend any
more time on it here. Additionally, since it is suppressed by an extra QIVJV factor, the
elastic part is significantly smaller than the inelastic DVZ values determined here.

Gorchtein and Horowitz [52] first applied the dispersion framework to the
0,z term and showed that because of its strong energy dependence, its contribu-
tion at Qweak energies was much larger than previously thought [43]. Moreover,
they found that the uncertainty on this term was much larger than Marciano and Sir-
lin’s earlier estimate. Since this would affect the precision aims of Qeak it resulted
in considerable concern.

A follow-up calculation by Sibirtsev et al. [53] agreed within errors with the
central value, but showed that Ref. [52] suffered from a number of mistakes including
a missing factor of two. The authors of Ref. [53] also argued that the errors had
been overestimated and that it was more reasonable to assume smaller uncertainties.
Rislow and Carlson (in Ref. [54]) again confirmed the magnitude of the overall
value of Gorchtein and Horowitz, but agreed with the smaller values of uncertainty
of Ref. [53].

Since then, Gorchtein et al. [55] revisited their earlier calculation, including a more
robust discussion of the role of model dependence in U,z . They also corrected the
errors in their previous work. However, in regards to the uncertainty they maintained
that this was still more than twice that of those found in Refs. [53, 54]. As a result
of this wide range of uncertainty values, a detailed analysis of the evaluations was
needed in order to move past the confusion. Before moving on to discuss the different
models that have been used in the literature, the rest of this chapter will be used to
introduce the dispersion formalism.

At forward angles, the real part of the D;/ZA corrections can be calculated from
the imaginary part using the dispersion relations,

oy 1% 2E * / 1 ~ \4 /
Ne D",Z(E) = ?P 0 dE m ~Sm D’)/Z(E ), (315)

/

2y A 2 o !/ E ~x A /
Ne D’}/Z(E) = ;P 0 dE m Sm D’}/Z(E ), (316)

where P refers to the Cauchy principal value integral and the crossed terms are
included in the above integrals. Note also that from Eq.(3.15) it is clear why this
contribution vanishes as E — 0 and, conversely, why the axial hadron term remains
finite at zero energy thus dominating the APV calculations.

From the optical theorem—illustrated diagrammatically in Fig.3.2—the imagi-
nary part of the interference amplitude may be written in terms of the leptonic (L ;)
and hadronic (W,,,)) tensor [45, 52, 53],
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P 28 Py Py
2 Im = ; f dI1, s s
P 2 Py PI

Fig. 3.2 Optical theorem which states that the imaginary part of the forward amplitude is equal to
the sum of all possible intermediate states [56]

317
-~ PV) d’k 4o 1 7 #,,
23 = —4V2TMG — | — )| —— L W 3.17
smM,yZ fﬂ— F( (27’[’)32Ek/ ( Q2)1 Q2/ 2 #V ( )

where k' = k — ¢ is the outgoing electron momentum. The yZ lepton tensor is
defined to be,

L)L = itk N) (957 — 957u75) K ulk, V), (3.18)

and we remind the reader that gf, = —(1—4 sin® Oy ) /2 (at tree level) and g4 =-1/2
are the vector and axial-vector couplings of the electron to the weak current, while
A is the lepton helicity. The nucleon initial state hadronic tensor is

z  P'PY oz Pxdp vz
MW!) = —g" F]” + g F)* — szp ZF” (3.19)

where the F ,.VZ are the interference structure functions and e*** is the totally anti-
symmetric tensor. These structure functions are analogues of the better experimen-
tally determined electromagnetic structure functions.

Equations (3.18) and (3.19) can be combined to give the imaginary parts of the
hadron vector and axial-vector amplitudes in terms of the yZ structure functions
[45, 52, 53],

o~ \%4 2 2 a(QZ)
\stA/Z(E) M2)2 /Wde / 1+Q2/M2
Z s (Qmax - Q2) Z
x |:F1V + 0 (W — M + 0 F) ] (3.20)
and [45-47],

1 s O 0, (0H(Q?)

|:| 2/ 2 Ye
Smz(B) = Sz /wgdW A 02/ M2

U pp? 321
w2 G2
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where ve(Qz) =1- 4s%,(Q2), the square of the total centre-of-mass energy is
s = M?>+2ME, W? = (M +m;)? is the invariant mass at pion-production threshold
and Q% = 2ME(1 — W?/s). As in Ref. [46] we include the Q2-dependence of
the fine structure constant a(Q2).

As it turns out, the most important aspect of the DYZ calculation revolves around
the yZ structure function inputs. A complete knowledge of these structure functions
would allow for a precise determination of the correction leaving little room for
debate. This is not the case, however, for although the electromagnetic structure
functions have been determined accurately in the crucial low-Q?, low-W? regions
by experiments like E94-110 [57, 58] at JLab, there is no such data for the vZ
structure functions. There have been extractions of F;Z and xF; “ at much larger
values of Q2 and W2 by the H1 collaboration [59], but this region contributes only
a small amount to the total box correction. Given the lack of empirical data, one
must instead use models of these structure functions as inputs into the expression for
DXZ . As it is difficult to distinguish between models, the debate surrounding this
correction is perhaps not surprising.

In the next chapter we will review the current set of structure function models
used to determine the DYZ correction. Included in this analysis is a discussion of the
uncertainties which arise and particular attention will be paid to the models used by
Gorchtein et al. [55] since this is where the largest quoted uncertainty comes from.
Following this we present the AJM model and the method used to construct these
structure functions.

The aim ultimately will be to understand why the uncertainties are as large or
as small as they are given and to use phenomenological information such as parton
distribution functions—which are well understood—to constrain these uncertainties.
Furthermore, as there is new data on PV electron—deuteron scattering, we will be
able to test the reliability of those constrained structure functions. By using a consis-
tent approach to the construction of the interference structure functions we hope to
minimise any model dependence which may affect the final value of D;/Z . This work
also provides motivation for further experimental efforts in studying these important
phenomena. Should the structure functions be measured, a much more precise value
of the [J,, 7z correction would be possible, improving the theoretical determination of
sin® @y and therefore providing an even more stringent test of the SM.
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Chapter 4
Structure Functions

Quantum chromodynamics is responsible for some of the most complex and
interesting phenomena observed in nuclear physics. Two which stand out in particular
are confinement and asymptotic freedom. The structure of the colour SU (3) gauge
group means that as the energy scale increases, the quark-gluon coupling vanishes.
This is asymptotic freedom and it results in hadrons appearing to consist of essentially
free, point-like particles at large momenta. At the other end of the scale, confinement
occurs. The quark-gluon coupling grows with decreasing energy—equivalent to large
distances—causing the potential between quarks to increase. At large separation, the
energy required to break the bond between quarks is sufficient to create a gg pair out
of the vacuum. Consequently, quarks and gluons cannot be observed in isolation, but
only in the form of bound, ‘colour-singlet’ states. Figure 4.1 illustrates the behaviour
of the strong coupling constant, &, as a function of momentum transfer.

As a result of these properties of «, it is difficult to study the internal structure
of hadrons since perturbation theory can only be used at large energies. Below these
energies, the series fails to converge.! One particularly useful tool for understanding
the structure of the nucleon which spans both the perturbative and nonperturbative
regimes are structure functions. First measured [1, 2] in the late 1960s, these functions
generalise the form factors found from elastic scattering. In fact, the results from these
SLAC experiments were essential in the modern acceptance of QCD as they showed
the structure functions’ independence of momentum transfer for large Q?>—a direct
manifestation of asymptotic freedom.

In this chapter we introduce the formalism of structure functions and their related
phenomena. Following a discussion of the deep inelastic scattering region, we
describe the parton model before looking at some general parametrisations used
in the Regge region. For the purposes of this thesis, a robust description of both the
electromagnetic (yy) and interference (y Z) structure functions is needed over all

IThe boundary between the perturbative and nonperturbative regions is somewhat loosely defined
and later discussions in Chap. 8 on the moments of structure function will touch on this issue.
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Fig. 4.1 The strong coupling, o, as a function of momentum transfer [3]. The plotted points
includes data with next-to-leading order (NLO) and next-to-next-to-leading (NNLO) theoretical
corrections. The three curves represent alternative choices of the QCD scale parameter A

kinematic regions. Having reviewed those models previously used in literature we
proceed with an account of the constrained Adelaide-Jefferson Lab-Manitoba model
in Chap. 5.

4.1 Deep Inelastic Scattering

The physical process we are concerned with here is shown in Fig.4.2. In inclusive
scattering, a lepton (for example) with four-momentum k scatters off a nucleon target.
It transfers momentum ¢, before entering the experiment’s detectors. The resulting
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Fig. 4.2 Deep inelastic [N — I’ X scattering process

p

hadronic products, denoted X, are left unidentified. (Exclusive scattering occurs
when all the final products are known, while in semi-exclusive scattering some are
and some are not.) In such an event there are a number of frequently used kinematic
quantities which we list together here. Unless otherwise stated, we will be working
in the target reference frame:

0: scattering angle of the lepton relative to the incoming beam.

M mass of the proton.

E': energy of the incoming lepton.

E’: energy of the outgoing lepton.

V= % = E — E’: energy transfer of the electron to the target.

0% = —¢?: momentum transfer of the electron.

W? = A 2 4+ 2p-q — Q7 invariant mass squared of the final system.

0

x = 5 fraction of the nucleon’s momentum carried by the parton.
pq

y=0% = £ fraction of the energy lost by the lepton.

For the deep inelastic scattering event of Fig.4.2 the cross section is given by,

d?*c o’ E vy
where €2 is the solid angle, « is the fine structure constant, L ,, is leptonic tensor, and
W the hadronic analogue. Note that we have already seen these two tensors in the
specific case where y—Z interference arises (cf. Egs. (3.17-3.19) and the surrounding
discussion). Although we are primarily interested in neutral current processes in this
thesis, for completeness, we also include the charge current term for interactions
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involving the W*. The sum in Eq. (4.1) is thus over j = y, W, Z and y Z where the
coefficients 7; are,

o _( GrMg 02
= "2 = \ovama )\ @2+ M2 )

2
1{GrM2 02
_ 2 _ w
Nz =ny,z, nw = 5( e Q4D ) 4.2)

Depending on the mediating boson(s) involved, the leptonic tensor is given by,

LY, =2(kuk, —k -k guy — ireuapk®k P),
LI = (gy +erg{LY,.

VA 2
Ly, = (gy +ergy) L},

LY, =1 +en’L),, (4.3)

where g7, and g¢ are the vector and axial-vector couplings from earlier. We note that
here and elsewhere we follow the Particle Data Group (PDG) [4] conventions.
The hadronic tensor may be written as,

1% 1 v
WP, @) = 50— D (N(DIFOIX (px)) (X (px)IJ] OIN(p))

2M
X
x(27)*6W (g + p — px). (4.4)
where,
J —%ﬁ “u—l(& "d + 5yts) (4.5)
j=y = 317 5y y .

is the electromagnetic quark current,

1 4 1
J]’.‘:Z =uyt (5 ~3 sin” Oy — 5)/5) u

+dyH (—l+%sin29w+ly5)d+(d—>s) (4.6)
2 3 2

the weak quark current and we have dropped the larger mass quarks ¢, b and ¢.
Equation (4.6) is in fact equivalent to Eq.(2.5), only here the quark fields have
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been included explicitly. Using completeness (Xx|X)(X| = 1) the hadronic ten-
sor becomes,

y 1 oo )
Wit (p.@) = —47,M/d4zeq (NP} ()] OIN(p))
1 oo )
- 471M/d4zeq (N(p)l I:JJH(Z)’JJ' (0)] IN(p)). @47

The constraints of Lorentz and gauge invariance require that the hadronic tensor be
proportional to g,,,, p, and g, thus in general,

qu4q
Wuv = (_guv + Z_zv) Fi(x, Q2)

1 P-q )( P-q ) 2
+ Pu — q Pv— —qv | F2(x, O7)
p~q(“ @ M\ 2

— it _2(121.7;) F3(x, 0%

qSp—

+ ieWP—pq* (Sp g, 05+ 2

EALRZNES QZ)) (48)
: q
where g/ is the spacetime metric, €*V** is the anti-symmetric tensor and g; the
polarised structure functions. The unpolarised structure functions are denoted F;.
There is no F3(x, Q?) for the electromagnetic case as the photon has only a vector
coupling to the electron. Since the Bjorken scaling variable, x, can be written,

2 2
X = Q = Q
2Mv 2p-q
Q2
= Wiy g7 @

the structure functions may alternatively be written as a function of W2 and Q2.
For later reference it will be useful to write the structure functions F; in terms of
the transverse (o7) and longitudinal (o) cross sections:

2 g2
F1<W2,Q2)=(—W M )aT<W2,Q2), (4.10)
814
w2 — M? v
2 A2y ) )
Fz(W,Q)—( — )M(HUZ/QQ) [or (W2, 0% + o (W2, 01|

@11

These relations hold for both the electromagnetic and interference structure func-
tions. Additionally, one may also define the longitudinal structure function as the
combination of F| and F, structure functions,
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Q2
Fr = (l + —2> F, — 2xFy,
%

452 M2
= 1+7 F, — 2xF;. (4.12)

Thus Eq. (4.1) may be written in terms of structure functions as,

d*o o? 2 '29F(W2 Q2)+1 29F(W2 oY
= — SN~ — s — COS™ — 5 s
dQ4E ~ 4E%sin* & \M " 2 ! v 2?2

(4.13)
where, 6 is the laboratory scattering angle.

The physical interpretation of the structure functions depends on the kinematic
region in which the scattering event is taking place. In the DIS region where the
strong coupling constant is small, the quark-parton model may be used. This is not
the case for the lower Q2 region, however, where large o, prevents cross sections from
being calculated using perturbation theory. Instead, phenomenological models are
employed. Given that resonance structure is present at low Q2, these parametrisations
must necessarily include such structure also.

4.2 Quark-Parton Model

At large momentum transfer and invariant mass (DIS region), the nucleon may be
modelled as a collection of quasi-free, point-like quarks and gluons—generically
referred to as partons [5]. In this picture, when an electron collides with a proton,
the virtual photon interacts with the partons individually. In order to calculate the
total cross section for the electron—proton scattering process, one must sum over the
cross section for each parton. Moreover, since the density of partons in the proton
differs according to their flavour, and each parton carries distinct fractions of the total
momentum, the cross sections for the quarks and gluons will be a function of both
their flavour and their momentum fraction x. In Fig. 4.3 we show what takes place
diagrammatically.

The structure functions F; can be expressed in terms of these number densities,
or ‘parton distribution functions’. For the neutral current structure functions relevant
to this work, we have,

V4
(A7 | = a3 2 260 98] - atx. 02,
q

[F3VV,F3VZ] = x> [0.2¢, 4] - q(x. 0. (4.14)
q
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where ¢ = u,d,s,c,b,t are the quark distribution functions. Because the cross
section for the longitudinally polarized photon, o7, disappears at high energies,
from Egs. (4.10) and (4.11) it is clear that the F; and F> are now both proportional
simply to the cross section of the transverse photon. Thus,

Fr(x) =2xF1(x) 4.15)
and by substituting Eq. (4.14), into Eq. (4.15) we see that the F 1’ are given as,

[Flyy’FlyZ] = %Z[ﬁfw%q 93] -q(x, Q7). (4.16)
q

Equation (4.15) is known as the Callan-Gross relation [6].
In Fig. 4.4 we show an example of the parton densities for the quarks, antiquarks
and gluons in the proton at a particular Q2.

4.3 Modelling Structure Functions

While the quark-parton model works well in the DIS region, for low momentum
transfer (Q? < 2.5 GeV?) alternative models are needed. In fact, the low-Q? region
may itself be divided further into a resonance and Regge part. The rest of this section
will describe some of the more commonly used models for the electromagnetic
structure functions. These form the basis of later constructions of the interference
structure functions.

Christy—Bosted Parametrisation

In the resonance region, Christy and Bosted (CB) have parametrised the precision
electromagnetic inclusive cross section data from Jefferson Lab’s E94-110 experi-
ment [8]. For the proton this is described in Ref. [9], and the deuteron, Ref. [10].
When modelling the structure functions, the transverse and longitudinal cross sec-
tions may be separated into aresonance piece and a smooth, underlying nonresonance
background,

orL =0y +ops?. 4.17)

The o(reg) term involves a sum over the seven dominant resonances: P33(1232),
P (1440) D13(1520) S11(1535), S15(1650), F15(1680) and an additional I = 3
state with mass 1934 MeV. The shape of the background piece was found by fitting
to the scattering data. It is important to point out that this separation into a resonance
and nonresonant part is inherently model dependent since experiments are only able
to determine the total cross section.

The Christy—Bosted proton structure functions are in good agreement with the
data, with almost all the experimental points differing from the fit by less than 5 % [9].
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Although the deuteron and neutron structure functions are not quite so precise, still
less than 4 % of the points deviate by more than 10 % [10]. Kinematically, the proton
fit is valid for 0 < Q2 <8GeV2and 1.1 < W < 3.1 GeV, with similar bounds for
the deuteron. Since this covers a significant portion of the DIS region, it allows for
valuable comparisons between the PDFs and CB’s parametrisation.

Asaresult of its accuracy, the CB fit has been used as the basis for most of the other
models utilised. In their construction of the y Z structure functions, Gorchtein et al.
(GHRM) use CB’s resonance cross section in both their ‘ModelI” and ‘Model IT’.
(Some modifications to the parameters were needed to better match their background,
however [11].) Carlson and Rislow (CR) on the other hand, use the complete cross
section for their low 02, low W2 region [12, 13]. In contrast Sibirtsev et al. (SBMT)
perform their own fit of the data, incorporating the four resonances Pz3(1232),
D13(1520), F15(1680) and F37(1950) [14]. They also obtain a good description
of the data.

Colour Dipole Model

Initially formulated [15—17] in the 1990s, the dipole picture provides a valid descrip-
tion of y p scattering ranging from Q2 ~ 0.25 GeV? all the way upto Q2 of order
hundreds of GeV? [18]. The W? region extends even further, reaching as high as
~60000 GeV? [18]. Scattering in the colour dipole (CDP) model may be thought
of as taking place in three distinct stages; first, the virtual photon fluctuates into a
qq pair, then the quark-antiquark dipole interacts with the proton, before finally it
reforms into a virtual photon again. This process is illustrated in Fig.4.5.
The cross section for the y* p interaction may be written as [19],

2
ofb = [dz [@rlult (re @) ounp o @as)

where y1'L (r, z, Q%) is the transition amplitude y* — ¢ for transversely and
longitudinally polarised photons. (The asterisk in y* refers to the fact that we are
considering only virtual photons.) The forward direction is given by z, while r is the
transverse distance between the gq pair and 0,4, (7, 5) is the cross section for the

proton proton

Fig. 4.5 The interaction of a virtual photon with a proton in the CDP model
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interaction between the dipole and the proton. Note that as the transverse spacing
between quarks goes to zero, so does the cross section for the (¢q) p reaction [18].

GHRM [11] used a hybrid model of the CDP with the generalised vector domi-
nance model [18, 20] for the background part of the ModelI electromagnetic cross
section. This was then combined with the resonance piece using Eq. (4.17) to obtain
the total cross section.

Regge Models

With decreasing energies, the increasing size of the strong coupling, o, prevents
perturbation theory from being a viable technique for describing strong interactions.
Historically, phenomenological models such as Regge theory or S-matrix theory
were used as an alternative way of gaining physical insight into the reactions that
took place. Provided one remained in the appropriate kinematic region, these models
gave a good description of the data. As Regge parametrisations underlie a number of
the models discussed in this work, we give a brief description of the relevant features
here. For more complete accounts we refer the reader to Refs. [21, 22].
In Regge theory the cross sections are given generally as [23],

Otot = As€ + Bs ™" (4.19)

where oy is the total cross section and s centre-of-mass energy squared. The first
term on the right-hand side originates from pomeron exchange, while the second
comes from exchanging the p, w and f mesons. The rest of the parameters, A, B, €
and n are all found by fitting to data. (Note that although the values for € and 7 are
given here as constants in actual fact they will vary slowly with s [23].) An example
of a Regge fit to data from Ref. [23] is shown in Fig.4.6 giving a good description
of data over a large range of \/s.

The authors of Ref. [11] use a similar Regge parametrisation, in combination with
the vector meson dominance model, to give the background part of their electromag-
netic cross section of Model II. This combination is also used in our model. Sibirtsev
et al. on the other hand, base their background piece on the Regge parametrisation
of Ref. [24].

Vector Meson Dominance Model

Strongly related to the dipole model discussed previously, the vector meson dom-
inance model (VMD) approximates the photon state as the sum of vector mesons
which carry the same quantum numbers,

|y>=co|yo>+zfiw>, (4.20)
v \%4

where fy are the decay constants and the sum is over the p, w and ¢ mesons. The |yy)
term represents the electromagnetic part of the photon, while hadronic interactions
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Fig. 4.6 A Regge fit to pp and pp cross sections from Ref. [23]

are given by the fiv|V) terms. This model leads to an expression for the virtual
transverse cross section of the form [25, 26],

2
4o m2
or —z e ( 4 2) ovp, 4.21)
\%4 V

where my is the mass of the vector meson V and oy, is the cross section for the Vp
interaction.

However, the above expression accounts for only 80 % of the experimental cross
section. Because of this, another ‘continuum’ piece,

5 L (W2 m2, m™ym?
UTC(WZ, 0% :/ dm*dm" pT’Lz( T rtlz " ’2”
m2 (m=+ 0-)(m'= + 0°)

”
, (4.22)

0

is added to form the so-called generalised vector meson dominance model. This extra
factor accounts for the higher mass hadronic contributions to the photon. In practice,
the off-diagonal m # m’ terms are dropped leaving,

2 2
oTC(W2,Q2)=/m dm 2%. (4.23)

0
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The full expressions for the transverse and longitudinal cross sections then become
[25, 26],

VMD __ 1 1 }
T GVN[ZV: Vv oymr T Tr oyma | @29
Q*/mj
VMD __ \4
or _GVN[ZV:rvgv—(1+Q2/m%,)2

+rcéc m—%ln(l—{—Qz/mz)—; ] (4.25)
0? v oymd )l

where ry ~ 1/ f‘% gives the fractional contribution from each meson” and

re=1- er. (4.26)

1%

The cross section o),y is for the y—N interaction and takes the Regge form of
Eq.(4.19) i.e. it is proportional to As€ + Bs~", while &y and &c account for any
difference in the transverse and longitudinal components of the vector mesons. In
most cases, however, these are simply taken to be equal, £y = &c.

In constructing the interference structure functions the continuum piece in
Eqgs. (4.24) and (4.25) plays a critical role in quantifying the size of the cross sections’
uncertainties. The VMD model is used for the background term in both Model II of
Ref. [11] and in our model. (Strictly speaking, this should be referred to as the gen-
eralised vector meson dominance model, however, in order to avoid confusion, we
follow the convention of Gorchtein et al. and simply refer to it as the vector meson
dominance model, or ‘VMD’.)

4.4 y Z Interference Structure Functions

In general, constructing the y Z structure functions from their electromagnetic coun-
terparts involves first transforming the resonance piece, followed by a separate mod-
ification to the background part. In the next section we discuss the interference struc-
ture functions models which have been used and the uncertainties they generate. A
summary of the results for the D}‘,/Z correction found using these parametrisations is
given in Table4.1.

2 Although there appears to be a 1/Q? dependence in the second term of Eq. (4.25), by expanding
out the logarithm one can check that the cross section vanishes as Q% — 0.
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Table 4.1 Summary of the vector hadron correction results presented in the literature and the
models on which they are based

Authors | e D;/ 7z (X 1073) Models Ref.
GHRM 546+2.0 CB, Colour dipole, VMD [11]
SBMT 4.7 f(l):i Capella, Regge [14]
CR 57+£09 CB, Capella, PDFs [12]

Gorchtein, Horowitz and Ramsey-Musolf

Each resonance in the CB parametrisation is modified by a ratio that incorporates the
differences between the electromagnetic and weak neutral amplitudes. Beginning
with the matrix elements of the proton, isospin symmetry allows the vector part of
the Z current to be written in terms of the electromagnetic current as follows,

(RIJY1p) = (1 —4sin® Ow)(R|J} | p) — (R|J}|n), (4.27)

with R referring to the specific resonance. Although there is also a contribution from
the strange quarks, for most purposes considered here, it is negligible. Since the cross
sections are proportional to the square of the amplitudes, the transverse y y /y Z ratio
may be defined as [11],

vZ
o2
Er = —o = (1 —4sin®6y) — yg, (4.28)
or R
where » i » .
n n
AR,% AR,% + AR,% AR.%
yR_ |Ap |2+}Ap |2 1) (429)
R.3 R.3

and A% ,, 18 the transition amplitude from the proton or neutron to a resonance with

helicity A = % or % The uncertainties for the yg ratios given by the PDG [27] and
shown in Chap.5, are considered by GHRM to be large enough to account for any
Q? dependence which is therefore set to zero. GHRM also take the longitudinal and
transverse ratios to be equal for both ModelsI and II.

The construction of the y Z background follows in a similar manner to the reso-
nance section. As before, the electromagnetic part needs to be modified by the ratio
o1 % Jorh, . In Model Il of Ref. [11] the denominator is given by the VMD, while for
the numerator, each term is scaled by the ratio «y of weak and electric charges,

zV Vv
ot 5" = ey a7V, (4.30)
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where
Kp =2 — 4sin® Oy, (4.31a)
Ky = —4sin’ Oy, (4.31b)
Ky =3 —4sin® Oy . (4.31c)

From Egs. (4.30) and (4.31) the total ratio of the y Z and y y cross sections may
be written,

o%’i Kp + ko RDE(Q?) + kg qu’L(QZ) + /cg’L Rg’L(Qz)
o= T.L, 2 T.L, 2 T.L, 2 ’ (4.32)
or.L 1+ R, (Q%) + Ry (Q%) + R (Q9)

T L . . .
where Ry~ is the vector meson cross sections normalised by the o meson cross
section,

)
RDL = i
Vi _vvip)
or,.L
2 /14 02/m2\
= f_,; —Qz/ 2. (4.33)
Sy \1+0 /mv
and the analogous ratios for the continuum pieces are,
r 1+ Q%/m? ?
Rg - < —‘2’ , (4.34)
Tp 1+ Q2/m()
2 2 /2
re | my 2, 2 1 Q" /my
RE="C120ma + @¥/md) — / . @35
C o |:Q2 ( Q / ()) 1+Q2/m(2):| |:(1+Q2/m/2])2 ( )

with the mass parameter mg set to 1.5GeV [11].

The ratios of the yZ and yy continuum contributions are represented by the
Kg L parameters for which there is no straightforward method of prescribing values
to these numbers—unlike the discrete meson ratios. As a result, GHRM equate the
electromagnetic and interference continuum term and assign a 100 % uncertainty to
this contribution.

Modification of the background in Modell of Ref. [11] again uses the general
form of Eq.(4.32), however here, the R€’L are no longer functions of Q2 and are
instead given by the squares of the quark electric charges. The continuum piece is
approximated by the J /¢ meson [11],

prw:d:J/P}=1{1:1/9:2/9:8/9}. (4.36)

In a similar manner to before, the J /v piece is assigned a 100 % uncertainty.
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Although Gorchtein et al. use two different parametrisations to examine the model
dependence of the [, 7 contribution, the final quoted value is an average of the two
[11]. The uncertainty is dominated by the background error which accounts for about
90% of the total uncertainty.> Model dependence makes up for ~2 % of the total
uncertainty, while the remainder (~8 %) comes from the resonances.

Sibirtsev, Blunden, Melnitchouk and Thomas

To transform the resonances, SBMT use the SU(6) quark model wave functions
to obtain an estimate for the ratio of the couplings of the isospin-1/2 resonances.
Given the similarity between the weak and electromagnetic couplings, these ratios
are set to one. The 3/2 resonances’ ratios on the other hand, are approximated as
1+ Q{ZV) ~ (2-— 4 sin? fw) using isospin symmetry and conservation of vector
current.

Based on the approximate flavour independence of the sea quark distributions and
the fact that the ratio of the sum of the electroweak couplings are almost equal [28],

(Zeq g%)/(Ze;) =2 — 4sin® Oy
q q

~ 1 4.37)

at low x, Sibirtsev et al. assume the electromagnetic and y Z structure functions to
be equal in this region. For larger x where this approximation no longer holds, they

use the ratio,
LT
Fr%
Flﬂ - (l_) F7, (4.38)

where LT refers to the leading twist structure functions—given, in this case, by
the MRST parton distribution functions [29]. Since the electromagnetic structure
functions are ~40 % larger than the interference function, the F. l.yy may be considered
an upper limit on Fl.yZ.

The estimated errors on the [1,, 7 correction by SBMT, arising from the uncertain-
ties in the fit parameters [14], are significantly smaller than GHRM’s [11]. Averaging
the upper and lower errors in Table4.1 results in an error more than two and half
times less than those in Ref. [11].

Carlson and Rislow

Resonances in Carlson and Rislow’s structure functions are modified by a similar
relation to Eq. (4.28). However, their ratio (labelled Cg) improves upon the above
two models by including an additional Q2 dependence which is incorporated using

3In their analysis, GHRM take the background uncertainty from the model which gives the largest
error i.e., Model I1.
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the MAID model of Ref. [30]. The transition amplitudes in Eq. (4.29) are calculated
using the constituent quark model [12, 13].
For the background, Carlson and Rislow scale CB’s background cross section by

the ratio Fl.yz / FiW averaged over the high energy limit where
F'?JF =2 —4sin® 6y (4.39)
and the SU(6) quark limit where,
F'?/FYY =5/3 — 4sin’ 0. (4.40)

In the Regge region, CR use Eq. (4.38) to modify a background given by Capella et
al. [24], while the DIS region structure functions are given by the PDFs of Ref. [31].

In low-QZ, low-W?2 region, CR assign a conservative 10 % error to allow for
the (small) error in CB’s fit and the modifications of the resonances. The error for
the background is given by the extremes of the high energy and the SU(6) quark
limits. Once more the uncertainties are substantially lower than GHRM’s. Although
marginally larger than those found by Sibirtsev et al., CR’s errors remain less than
half of the estimates of Gorchtein et al.
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Chapter 5
Adelaide-Jefferson Lab-Manitoba Model

Before proceeding with the Da‘//z evaluation, we present the details of the AJM model.
By combining the strongest features of previous work with the constraints available
from parton distributions, we are able to construct yZ structure functions with signif-
icantly reduced uncertainties. Since none of the prior models employed this method,
we argue that the AJM uncertainties most realistically reflect the currently avail-
able knowledge on the F?Z. Further tests provided by e—d PVDIS data confirm the
robustness of this model.

As for earlier vZ models, the AJM structure functions may be developed in two
steps: the first deals with the foundational electromagnetic structure functions, and
the second, with the transformation into the interference cross sections. In Sect. 5.1
we describe the 4~y structure functions used for the entire Q>~W? plane. This is
followed by a section on the vZ construction. The rest of the chapter is devoted to
an account of the procedure used to constrain the cross sections and will involve
constraints from PDFs and PVES data, as well as a comparison of the two.

5.1 Electromagnetic Parametrisation

In the AJM model, the parametrisation of the electromagnetic structure functions
used depends on the kinematic region being studied. For the purposes of our work
we follow Carlson and Rislow [1-3] and divide the Q>~W? plane into separate
kinematic areas.' The regions are shown diagrammatically in Fig.5.1:

Region I:  Identified by the blue shading, this area is dominated by the resonance
region—roughly given by the bounds Q% < 2GeV? and W? < 4GeV?. (While
there remains some resonance structure outside of this region, their contributions

INote that these divisions differ from CR whose resonance region is given by W < 2.5GeV, the
Regge region by, 02 < 5GeVZand W > 2.5GeV and the DIS by 02 > 5GeVZand W > 2.5GeV
[1].
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become increasingly modest.) The outer boundaries of this region overlap with
both the Regge and DIS regimes.

Region II: ~ This red shaded area is best described using Regge theory.

Region III:  The structure functions at kinematics within this green area are given
by the parton distribution functions discussed in the previous section. Although
the outer boundaries of this region are infinite, in practice, we are constrained by
the energy limits of the PDF parametrisations.

In addition to the above named regions, Fig.5.1 also contains unlabelled grey
(0% > 0GeV?, M? < W? < (M + m;)?>GeV?) and white (0> > 10GeV?,
(M + my)? < W? < 4GeV?) sections. (M is the mass of the proton, and m the
pion mass.) The former represents the elastic region, while the latter strictly speaking,
is the resonance regime. However, since the resonances die off as a factor of 1/ Q4, the
white region’s contribution to the structure functions is negligible. The background
piece in this section is also negligible. Although the various kinematic regimes have
been given well defined boundaries, physically, there is clearly overlap between

0? (GeV?)

W? (GeV?)

Fig. 5.1 Separation of the Q2—~W? plane into the resonance, Regge and DIS regions [4]
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regions. It will be necessary later to show that the calculation of the DXZ correction
is not dependent upon these ‘hard’ boundaries.

For the low-Q?, low-W? region (Region I), we use Christy and Bosted’s para-
metrisation of the electromagnetic structure functions described in Sect.4.3. The
limits of their parametrisation extend from Q% = 0 up to 10GeV? and for W2,
between (M + m,)> and 9 GeV?. For larger W2, the background quickly dies off
and the parametrisation is no longer a good description of the data. Although for
our model we do not directly use the Q% > 2.5GeV?, W? > 4GeV? section of the
parametrisation—instead incorporating it into the DIS region—the fact that multiple
models are valid in the same region means useful comparisons can be made. Indeed,
this is what allows the resonance region of the vZ structure functions to be con-
strained by the PDFs. Even though the resonances contribute to the entire Region I,
in practice, the resonance form factors are strongly suppressed as Q2 increases. Thus
beyond Q2 ~ 2GeV? these contributions are negligible.

Regge theory is valid for moderate Q% and up to large W2, and thus most applicable
to Region II. For this region, the VMD+Regge description of Alwall and Ingelman
[5] is combined with the resonance part of CB to give the full cross section over
Q? < 2.5GeV? and W? > 9GeV?. Note also that the resonance parameters of CB
have been slightly adjusted in order to better match the background of Ref. [5]. (The
modified values are given in Table II of Ref. [6].) As in the large-Q? area above
Region I, however, the contribution from the resonances will be small. In addition,
we point out that this VMD+Regge parametrisation is the Model II used by GHRM,
although in their case, it was extended to incorporate the entire kinematic region of
the dispersion integral.

In the top half of Fig.5.2 we show the matching at the boundaries between Re-
gions I and II, of the CB and VMD+Regge parametrisations for several values of
Q7?. 1t is clear from these plots that there is excellent agreement between the CB
and VMD+Regge parametrisations. We follow CB in assigning a 5 % error to the
Region I electromagnetic structure functions. Comparing the VMD+Regge para-
metrisation with data reveals that a 5 % error on these structure functions is sufficient
to account for any variation between model and experiment.

Structure functions in the remaining large- Q2, large-W? region (Region III) are
computed from PDFs given by Alekhin et al. (ABM11) [7]. These global fits are cal-
culated up to next-to-next-to-leading order and include both leading-twist and twist-4
contributions. Target mass corrections were also accounted for in their constructions.
In Chap. 8 we will more closely examine the size of higher-twist contributions to the
moments of the structure functions, here however, we employ the full structure func-
tions in the DXZ expression. Although the range of these PDFs extends further down

in Q2 and W2 than shown here, the lack of resonance structure means that the para-
metrisation of CB more accurately exhibits the physics behind these functions. Of
course, alternative PDF fits such as those used in Refs. [8—12] could also be used
instead. (An evaluation of [,z using the structure functions from Ref. [12] yielded
similar results.)
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Fig. 5.2 Proton F;w structure function versus W2 at various fixed Q2 values for the low-W CB
fit [13] (blue solid), the high-W VMD+Regge [5] (red dashed) and ABM11 [7] (green dotted)
parametrisations. The boundaries between the Regions I, II and III are indicated by the vertical
lines at W2 = 4 and 9 GeV?
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Fig. 5.3 As in Fig. 5.2 but with the proton F;’W structure functions held fixed at W2 = 4, 6, 9 and
12GeV? and plotted against Q>

Just as it was important that the CB and VMD+Regge parametrisations matched at
their boundaries, so is the case with the DIS structure functions. In the bottom half of
Fig.5.2 we plot the DIS F; 7 structure function along with the CB and VMD+Regge
parametrisations.” As before, the overlap between the different regions is very good.

In addition to plotting F,” as a function of W>—while holding Q2 fixed—it is
helpful to see the transition between regions as Q7 varies. Figure 5.3 illustrates this
for several values of W2 and shows that along this section of the Q?~W? plane, the
structure functions of Alekhin et al. and CB match exceptionally well. In the low W?
region where all three are valid there is also good agreement. However, at higher W2
(W? > 10GeV?), the VMD+Regge model deviates from the DIS structure functions
at the boundary between Regions II and III. Nevertheless since the contribution to
the OJ x , correction at these W? values is small, the effect is negligible.

5.2 AJM ~Z Interference Structure Functions

The next step in the procedure involves modifying the above model structure func-
tions to obtain expressions for their interference analogues. In this section we begin
by transforming the CB parametrisation, before following with the construction of the

2We may include the VMD+Regge structure function at 9 = 2.5 GeV? since it is still valid at this
momentum.
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VMD+Regge model interference structure functions. Having laid out these details
we discuss the PDFs used in the DIS region of the dispersion integral.

For the resonance part, J(Trez), of Regions I and II, where the total cross section is
(131,

or.L =0y + oy, 4.17)

we use the ratio {g given by Eq.(4.28) and yr defined in terms of the nucleon
transition amplitudes (as in Eq.(4.29)), to modify each of the seven resonances
present in the fit. Although this method follows that of GHRM [6], the assignment of
uncertainties to g for each of these resonances differs significantly. In Ref. [6] the
errors on the yg parameters are found by taking the extremal values of the helicity
amplitudes AJI\{’ - This assumes that the distribution is uniform which is in marked
contrast to the more conventional Gaussian distribution. By adding the uncertainties
linearly, GHRM overestimate the errors on £g and thus for the AJM model, we use
the standard Gaussian approach, adding the errors in quadrature. Note, however,
that when GHRM combine the overall errors from different segments for the final
Ne DX » value, they add them in quadrature.

A comparison between the two methods for adding the total helicity amplitude
errors is shown in Table5.1. In this table we present the calculated yg for the pro-
ton, neutron and deuteron. (Only the errors added in quadrature are shown for the
latter two.) Although it is just the proton’s yr values which are needed in the
DXZ calculation, for the evaluation of the PVDIS asymmetry, the deuteron’s will

also be required. While the PDG [14] assigns zero uncertainty to the (isospin-%)
P33(1232) and F37(1950) resonances’ helicity amplitudes, in order to be conservative

Table 5.1 Electromagnetic to yZ resonance cross section transformation ratios yg from Eq. (4.29)
for the proton, neutron and deuteron in the AJM model, compared with the proton ratio in the
GHRM model [6]

P33(1232) Py1(1440) D)3(1520)
p (AIM) ~1.0£0.1 —0.67 £0.17 —0.84 £0.17
(—0.62 £ 0.16) (—0.77 £ 0.08)
p (GHRM) ~1.0£0.1 —0.62530 07775122 &)
n (AIM) ~1.0£0.1 ~1.50£0.39 ~0.85£0.15
d (AIM) ~1.0£0.1 —0.92 £ 0.27 —0.85+0.14
S11(1535) 511(1665) Fi5(1680) F37(1950)
—0.51 £0.35 —0.28 +£0.41 —0.27 £0.08 —1%1
~0.51703 ~0.281045 ¢ ~0.27*019 —1£1
—1.96 £ 1.32 ~3.53 £5.06 ~2.50 £ 1.01 —1+1
—0.81+0.64 —0.52£0.78 —0.49£0.14 —1£1

The AJM model values in parentheses use helicity amplitudes from the earlier 2010 PDG [15], as
utilized by GHRM. The errors labeled with the asterisks () are values corrected [16] from those
in Ref. [6]
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we follow GHRM [6] in placing a 10 % error on the P33(1232) amplitude and a 100 %
error on the F37(1950) resonance.

In the course of this work the determinations of the helicity amplitudes in the
PDG were updated, which allowed us to use these latest values in our numerical
calculations. To compare with GHRM, however, we also computed yg and its un-
certainties using the earlier 2010 PDG values [15]. Since the only resonances whose
values differ across the two versions are the D3(1520) and P;{(1440) resonances
the overall effect is minimal. In order to be complete we include the earlier values in
parentheses in Table 5.1 where the errors have again been added in quadrature.

For the background piece in Eq.(4.17) the electromagnetic cross sections are
transformed to their vZ analogues via the ratio in Eq.(4.32)—as in Model II of
Ref. [6]. This ratio is used for both the kinematic region where the CB background
is valid, and the VMD+Regge region. The distinction between the AJM description
and Models I and Il lies in the fact that here, instead of assuming the H(Y;’L parameters

to be the same for the v and vZ continuum pieces, we determine /qg‘L by insisting
that the v Z structure functions match at the borders between the different regions. As
illustrated in Fig. 5.1, these boundaries occur at Q2 =2.5GeV? and W2 = 9GeVZ2.
By making this assumption, we will see that strong constraints are placed on /%’L
and results in the uncertainties of the background contribution being much smaller
than those determined previously.

To complete the AJM model we use the PDF structure functions of Alekhin et al.
[7, 17] in the region where Q2 > 2.5GeV? and W? > 4GeV?2. At the parton level,
the modification to the vZ case is much more straightforward and is implemented by
replacing the quark electric charges, e, (present in the PDF expressions of the Fi’w),
by the weak vector charges, g‘\z, ie. eé — 2e4 g"], as in Eq. (4.14).3 Since there is no
data for the interference structure functions at low Q2, the values for the higher-twist
contributions to Fﬁz were taken to be the same as those in Fl.w [17]. In order to
account for this lack of empirical knowledge, we assign a 5% uncertainty to the
F;”Z in the DIS region. Note, however, that because of the nature of the longitudinal
structure function which is expressed as a difference between the F; Z and F 17 z

structure functions, the FZZ relative uncertainties will necessarily be larger.

5.3 Phenomenological Constraints

In Sect. 4.4 we pointed out that the central value of Jie D;{Z quoted in Ref. [6] is given
by averaging Models I and II. With regards to the uncertainty, the background error is
taken from the model with the larger of the two errors—in this case Model II. Since the
background uncertainty is almost four times larger than the resonances uncertainty
and dominates GHRM’s final error, any reduction here would significantly lower the

3The additional factor of 2 takes into account the definitions of the g“’, used here.
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total e D}:Z uncertainty value. In order to do so, we examine background errors in
Ref. [6] more closely.

Gorchtein et al. transform their nonresonant background by multiplying the
VMD+Regge background with a yy/yZ cross section ratio,

vZ
o
YZ(bgd) T,L VMD
orr . =\—=)orL - S.1
or.L

where a}’}\gD has been previously defined in Egs.(4.24) and (4.25). The ratio

(cr%ZL / oll) used to rescale the electromagnetic cross section was defined in
Eq.(4.32), with the uncertainties for ky (V = w and ¢), estimated by compar-
ing the ratios Ra’l‘ with the values obtained using HERA’s data on vector meson
electroproduction [18]. The difference between the two was taken as the uncertainty.
Since, as shown in Fig. 13 of Ref. [6], there is good agreement between the data and
the VMD ratios, these uncertainties are small.

The final contribution to the background error comes from the continuum parame-
ters /@E‘L in Eq. (4.32). Because the VMD model provides no method for estimating

/%’L as it did for the K€’L values, GHRM equate the vZ and v~y parameters before
assigning a 100 % uncertainty to yZ continuum parameters. In Fig. 5.4 we compare
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Fig. 5.4 Comparison of the proton F2"/ Z structure function in the VMD+Regge model (Model II)
of GHRM [6] (red dashed) with the ABM11 global parametrisation [7] (green dotted), for fixed
0?2 (top panels) and fixed W2 (bottom panels). Note that the VMD+Regge model only includes
uncertainties from the continuum part of the background, while the ABM 11 parametrisation includes
an overall 5 % error
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the resulting F;Z structure functions with those given by the ABM11 parton distri-
bution functions [7]. It is clear that the uncertainty on GHRM’s structure function is
significantly overestimated when compared with the global fits. Indeed, in Fig.5.4
we have only included the uncertainty which comes from the /@E’L values, should
the full set of uncertainties be incorporated, this effect would be even greater. In the
region where both GHRM’s model and the PDF parametrisation are valid, one would
not expect such a difference in magnitude between the two uncertainties. Addition-
ally, the central curves for the model lie significantly above those given by Alekhin
et al.

In spite of the fact that the VMD description offers no insight into the true values
of ng’L, we will see how parton distribution functions may be used to constrain the
continuum term. Furthermore, the recent PV data from the Jefferson Lab E08-011
electron—deuteron scattering experiment [19, 20] will be used to provide additional
checks on these constraints. By the end of this analysis we will show that these
constraints help to significantly reduce the uncertainty on the Fﬁz structure functions.

Constraints from PDFs

At high Q% and W? DIS structure functions are well described by the leading-
twist PDFs. Additional corrections such as those coming from the target mass or
higher twists can also be included to account for any remaining 1/Q?-suppressed
effects. However, as one moves into the low-Q2, low-W? region nonperturbative
physics begins to take over and the parton description breaks down. Nevertheless
there remains a region in the Q°>~W? plane where the CB fit to data overlaps with
global PDFs [7-12]. It is in this region where, by demanding that the CB-based
parametrisation and the PDFs match, we may constrain the background contribution
to the interference structure functions.

The AJM values for /%’L are calculated by equating the cross section ratios

a}ZL /o7, in Eq.(4.32) with those given by the DIS structure functions,

Z z z z

op” _F a F

—_ = = = = == 5.2)

o7 F ) o7 F ’ :
T 1 Ip1s L L Ip1s

where we use the ABM11 parametrisation [7] for the PDF structure functions. (From
Eqgs. (4.10) and (4.11) and the expression for the longitudinal structure function in
terms of Fj and F», it is relatively straightforward to show that left- and right-hand
sides of the above equations are equivalent.) The uncertainties assigned to the PDFs
are, 5 % uncertainty for the F ?/Z and 40 % uncertainty for FZZ, where as explained
earlier, the larger error in the longitudinal structure function comes from that fact that
it involves a difference between the F 17 Z and F; % To be conservative these errors
were chosen in spite of the fact that they are larger than those quoted by Alekhin
et al. in Ref. [7].

Fitting for the continuum values required taking the minimum x> over a number
of kinematic points in the Q?~W? region where the descriptions overlapped. In order
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to check any dependence of the fitted m(T;’L parameters on Q% and W2, we held the
momentum transfer fixed at Q2 = 2.5, 6 and 10 GeV? and considered several values
of W? ranging from 4 to 13 GeV? for each Q2 value. As can be seen from Fig.5.5,
although there is some dependence on the kinematics it is relatively small and for
/ﬁg decreases significantly with larger Q2. The longitudinal piece on the other hand
has, as might be expected, larger dependence on W2 as Q2 is increased.

The quoted values of the /@E’L parameters were determined by taking the average
over the complete set of Q2 and W? points, with the final value shown by the black
horizontal line in Fig. 5.5. The error bars were calculated by combining uncertainties
of the parton distributions with those coming from the W? dependence of ng’l‘. As
the continuum parameters are correlated for each set of Q2 values, a conventional X2
fit would underestimate the errors. Instead we add in quadrature the values coming
from the above mentioned uncertainties.

To estimate the W2 dependence, we averaged the difference of the maximum
and minimum Kjg central values for the Q2 set which showed the largest variation
over W2. For the transverse case this was Q2 = 2.5GeV?2, while for né the largest
variation occurred at Q% = 10GeV2. The second set of errors comes from the PDFs
and is given by the ‘data’ point which had the largest uncertainties. For both ng and
kL this occurred at Q% = 2.5GeV?.

Using this method for constraining the continuum parameters we found,

ke =0.65+0.14, ke =—13+17. (5.3)
Comparing with those from Gorchtein et al., our uncertainty on K(Y; is approximately
5 times smaller. Interestingly, the /{é parameter is larger than GHRM’s by ~160 %.
However, because the longitudinal part of the structure function only contributes a
small amount to the final fe DXZ correction, this large error does not have an adverse

effect on the final 9te OJ x 7 uncertainty.

In Fig. 5.6 we plot the F; % structure function which results from constraining the
K)g and Hlé for Q2 values ranging from Q% = 0.05 to 10GeV?. As can be seen, the
descriptions for the three regions agree remarkably well over the entire Q2 range.
Not only is there good overlap of the uncertainties, but the central values themselves
show excellent matching at the boundaries. As in Fig. 5.4, the uncertainties shown
here are only those which stem from the continuum parameters. This is so that we may
compare directly with those errors estimated by GHRM. It is evident from Figs. 5.4
and 5.6 that the constraints placed on the continuum parameters have significantly
reduced the uncertainty on the resulting vZ structure functions. This is also seen in
Fig. 5.7 where we hold W? fixed and plot the structure functions as a function of Q2.

For the total background uncertainty the errors coming from the vector meson
ratios, Rg*L and RG,{’L, in Eq. (4.32) must also be included. As in Ref. [6] we deter-
mine the uncertainties for these values by taking the difference between the HERA
experimental data [18] and the VMD model prediction. It is also assumed that the
transverse and longitudinal ratios are equal, i.e. R) = RL and R; = R(I/;. By adding
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Fig. 5.5 Continuum parameters ng (top) and né (bottom) fitted to the DIS data, parametrised by
the ABM11 global QCD fit [7], as a function of W2 for fixed Q% = 2.5GeV? (red triangles),
6GeV? (blue squares), and 10GeV? (green circles). The average values (ng’l‘) are indicated by the
solid lines, with the shaded band giving their uncertainty. Note that some of the points have been
slightly offset for clarity
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Fig. 5.6 Proton F; Z Structure function versus W2 at various fixed 0? values for the low-W CB
fit [13] (blue solid), the high-W VMD+Regge [5] (red dashed) and ABM11 [7] (green dotted)
parametrisations. The boundaries between the Regions I, II and III are indicated by the vertical
lines at W2 = 4 and 9 Ge V>
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Fig. 5.7 Proton Fg/ z structure function versus Q2 at fixed W2 = 4, 6,9 and 12 GeV? for the CB fit
[13] (blue solid), the ABM11 PDF parametrisation [7] (green dotted), and the VMD+Regge model
[5] (red dashed), with the boundaries between Regions I, II and III indicated by the vertical lines
at fixed Q2

these uncertainties in quadrature with those coming from the continuum parameters
and the resonances, we obtain the total error for the vZ structure functions.

The difference between the total uncertainties of the AJM model and GHRM’s
Model II may be further compared by evaluating the inelastic parity-violating asym-
metry. Since there is data, albeit a small amount, on this phenomenon for both the
proton and deuteron it is important to test both these models with the available ex-
perimental values. The asymmetry may be written as,

Apy =
22102 e
272 Xy M vz | 9v 2 vZ
xy“F +(1 — )F + = y ) xF
ge(Gng) : 2 )2 "4\ 2 ’
A 22172 ’
221 , x“y°M y
”2’”7”(1‘%7) i
5.4)

where F37 z is the axial-vector structure function.

As before, the cross section for the F37 Z s separated into a background part and
a resonance part. For the resonances we use the parametrisation of Lalakulich et al.
[21-23] who give expressions for the axial-vector transition form factors, while the
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background part of the cross section follows CR’s example [2] and uses a scaled
version of the electromagnetic cross section. This is done by taking the average of
the x — 0 limit, where F?:’/Z = 0 and the quark model limit, where F;’ Z 10 /3 F 17 K

thus giving, F;’/Z =5/3F IW [2]. In the case of the deuteron, the rescaling factor

becomes, Fy* = 9/5F]" . Since the contribution to the overall asymmetry from
the axial-vector structure function is small ( ~10 %) the 100 % uncertainty assigned
to this structure function will not have an overly large effect on the total asymmetry.

In Fig.5.8 we compare the AIM and GHRM models’ determination of the in-
elastic asymmetry with the value measured by the GO experiment at JLab [24]. With
a beam energy of E = 0.69GeV and momentum transfer Q% = 0.34 GeV?, this
data point sits in the kinematic area of the A resonance region. Although the central
values show good agreement with the data, the large uncertainty prevents any ad-
ditional constraints from being placed on the yZ structure functions. As expected,
the uncertainties on the constrained AJM model predictions are smaller than those
predicted using Model II of Ref. [6]. This is especially so in the higher W region. The
asymmetry in the errors follows from the fact that we use the upper and lower values
of the F?Z structure functions in Eq. (5.4) in order to compute the Apy uncertainty.

At larger Q% where JLab experiments more commonly explore, Fig.5.9 shows
that for the kinematics, E = 6 GeV and Q2 = 2.5GeV?, the difference between the
uncertainties of the two models is even more pronounced. In this kinematic region the
errors computed using the GHRM model are ~4 times greater than those calculated
using the constrained AJM structure functions. Further comparison between the PDF
[7] asymmetry is given by the dotted green line—shown only as far as W = 2 GeV,
since below this region the perturbation theory is no longer a good description of the
physics.

While the AJM model’s error is certainly larger than that of the PDF parametri-
sation, it remains of a compatible magnitude. The GHRM model on the other hand
clearly overestimates the asymmetries errors in the kinematic region where the DIS
structure functions are also valid. Although the PDF parametrisations are not of
themselves accurate descriptions of the structure functions in the resonance region,
we emphasise that the constraints which are placed by the boundary matching con-
ditions mean that the errors on the interference structure functions in the low-QZ,
low-W? region must also be significantly constrained. In the next section we test the
AJM model further by comparing with recent PVDIS data from electron—deuteron
scattering.

Deuteron Asymmetry

In 2013, the EO8-011 experiment released results for PV electron—deuteron inelastic
scattering in the resonance region [19]. This was followed by DIS asymmetries
published earlier this year [20]. While the DIS data was unavailable at the time,
we were able to use the resonance data to independently check the accuracy of the
~Z structure functions constructed using our procedure. Given the large dependence
of Ne DVZ on the resonance region, the investigation of the resonance structure
functions is particularly important. Furthermore, the AJM model could still be used



5.3 Phenomenological Constraints 63

—40 . . |
— — — GHRM
L —60} -
O
) ; s\

- AN
£ -80f , S P |
R /
”g—wo-%/’ .
N
T 120} -
15 2.0 2.5 3.0
W (GeV)

_40- T T T
a . — AIM

—60+ ]
> .
O .
= 80
o, I
&
‘S -100] ]
N -
T _120) ]

15 20 25 30

W (GeV)

Fig. 5.8 Proton parity-violating inelastic asymmetry Apy/Q?, measured in parts per million (ppm)
GeV~—2, as a function of W, at fixed incident energy E = 0.69 GeV and Q% = 0.34 GeV?, for the
GHRM Model II [6] (top) and the AJM model (bottom). The data point at W = 1.18 GeV (black
circle) is from the Jefferson Lab GO experiment [24]

to predict the DIS asymmetries of which the numerical values are shown in Table 5.2.
In Chap. 6 we compare these predictions with the experimental results.

The asymmetry was measured at W = 1.26, 1.59, 1.86 and 1.98 GeV, with the Q2
values extending from as low as 0.76 GeV? and up to as much as 1.47 GeV?>. These


http://dx.doi.org/10.1007/978-3-319-20221-1_6

64 5 Adelaide-Jefferson Lab-Manitoba Model

. _40 - = GHRM
L
St o0 L
g v
8. N
& —80¢ =T N e mm == —-
‘D N
% —100}
<
120 15 2.0 25 3.0
W (GeV)
_40f — AIM ABM11 ]

|
D
S

Apy/Q” (ppm GeV ™)
I
(]
S

15 20 25 30
W (GeV)

I I
[ —_—
[\ S
S e}

Fig. 5.9 Proton parity-violating inelastic asymmetry Apy/Q? as a function of W, at fixed incident
energy E = 6GeV and Q2 = 2.5GeV?, for the GHRM Model II [6] (fop) and the AJM model
(bottom). The asymmetry computed directly from PDFs [7] is represented by the green band

data points are compared with the AJM model determinations in Fig. 5.10. (Dividing
the deuteron PV asymmetry, Agv, by Q2 allows the various experimental values to
be displayed on the same plot.) As before, the input deuteron structure functions
have been constrained by using the parton description [7], where Fl.d is simply,
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Table 5.2 Parity-violating deuteron asymmetries in the AJM model at the kinematics of the EO8-
011 experiment [19]

Apv/Q? (ppm GeV~?)

E (GeV) W (GeV) 0% (GeV?) PDF constrained | E08-011

constrained
4.9 1.26 0.95 —93.7+58 -93.1758
4.9 1.59 0.83 —82.71%: ~80.17104
4.9 1.86 0.76 —86.2787 —82.4170
6.1 1.98 1.47 —84.7162 ~79.218¢
6.1 2.03 1.28 ~84.976:2 () ~79.7784
6.1 2.07 1.09 —85.21%3 ™ —80.3753 ™
6.1 233 1.90 —82.7183 ~76.5T93

The asymmetries are computed with the continuum parameters /@E’L (d) constrained by the E08-011
data, or by matching to the DIS region described in terms of PDFs. Note that the points marked
with asterisks (*) are predictions

F!=F'+F"; i=121L (5.5)

and this is true for both the electromagnetic and interference structure functions.
For the deuteron, the constraints from PDFs give n(T: (d) = 0.79 £ 0.05 for the
continuum parameter of the transverse cross section. The resulting asymmetry is for
the most part, in excellent in agreement with the experimental data [19], although at
0% = 0.95GeV? where the A resonance dominates there is a small difference.

Itis difficult to understand theoretically the variation between the model prediction
and the E08-011 A resonance data point since the theory value depends only on
isospin symmetry and the assumption that vector current is conserved. Perhaps the
discrepancy is a result of the nonresonant background having a stronger isospin
dependence [25] than previously estimated. However, the difference is still <20.
Furthermore, from Fig. 5.8 it is clear that the models agree well with the A resonance
GO data [24] point even though the errors are significantly larger.

For the longitudinal continuum parameter, the matching with the global PDF
structure functions of Ref. [7] give I{é (d) = 0.2 £ 3.4. The propagation of this
error into the total Agv uncertainty is problematic as a result of the nature of the CB

parametrisation [13], we may, however, use the uncertainties of the proton ng’ L values
to take into account the errors from the longitudinal continuum parameter instead.
The uncertainties for both ng and mé have been included in Fig. 5.10. For comparison,
we also include in the plot an estimate of the error using a 100 % uncertainty for the
continuum parameters as in Ref. [6]. By following GHRM’s example, the uncertainty
for the PV asymmetry at W 2 1.8GeV is approximately 6 times larger than those
from the AJM prediction. Even with a 25 % error, the total uncertainty on Agv is
larger than the AJM model’s, although they are more compatible than GHRM’s.
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Fig. 5.10 Deuteron parity-violating asymmetry Agv /Q? as a function of W for incident electron
energy E = 4.9GeV (top) and E = 6.1GeV (bottom). The data points from the Jefferson Lab
E08-011 experiment [19] at W = 1.26 (green square), 1.59 (red circle), 1.86 (blue triangle) and
1.98 GeV (black diamond) correspond to average values of Q2 =0.95, 0.83, 0.76 and 1.47 GeV?2,
respectively. The AJM model uncertainties (inner dashed band) are constrained by matching the
continuum parameters ng’L (d) to the DIS region «yZ structure functions [7], and are compared

with those computed with errors on k=" (d) of 100 % (outer dotted bands) and 25 % (inner dotted

bands)
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Fig. 5.11 As in Fig.5.10, but with the AJM model asymmetries (solid) and their uncertainties
(dashed) constrained by the E08-011 data [19]. Note the different scale on the y-axis to that in

Fig.5.10

In the same way that the continuum parameters were constrained using the PDFs,
as a check, we constrain the /{E (d) by fitting to the E08-011 data points instead. Such
a fit results in H{: (d) = 0.69 £ 0.13, which agrees well with the PDF constraints
within errors. (Alternatively, one may omit the discrepant A point from the fit and
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obtain a slightly greater value, mg (d) = 0.72 £0.13.) Since the CB parametrisation
provides only the F f’ 7 deuteron structure function explicitly—the longitudinal F Z 7
is obtained by the ratio R = O’Z’y/ J}” which is assumed to be the same for the
deuteron as the proton—it is not possible to use the experimental data points to
directly constrain the longitudinal continuum parameter as previously. Nevertheless,
the longitudinal structure function errors may still be propagated through to the

asymmetry by including the uncertainties of the /@g’L values for the proton in the

analogous azz/ O’;Z ratio. Ideally, a parametrisation of the deuteron FZW would be
constructed explicitly which would allow for a more accurate determination of mé )
and straightforward propagation of errors.

Once more the predicted asymmetries are in good agreement with the e—d scat-
tering data. Comparing Fig.5.11 with Fig.5.10 it is also clear that the two methods
give very similar predictions, with the data constrained central A‘El,V values only mar-
ginally higher than those constrained by PDFs. Furthermore, the uncertainties which
result remain three to four times smaller for W 2> 1.8 GeV than those estimated
using the 100 % uncertainty. Even the 25 % errors give final asymmetry uncertainties
which are larger than those from data constraints. The agreement between the two
methods of prediction and the data points gives us confidence in the reliability of our
method for constraining the proton vZ structure functions in the low-Q?, low-W?>
region which dominates the Jie DVZ correction.

To complete this section, in Table 5.2 we show the determination of the deuteron
asymmetries and their uncertainties calculated using the constraints coming from
the PDFs and those from the E08-011 experiment. The AJM model’s prediction
(identified by asterisks) for the DIS asymmetries are also included in this table. Now
that we have a construction of the proton yZ structure functions, and successfully
shown the reliability of this model, the DVZ correction may be calculated. In the
following chapter we show the energy dependence of this contribution and determine
the size of its uncertainty for the Qyeax and MOLLER experiments.
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Chapter 6
The D,‘;Z Correction

Having constructed the AJM model using constraints from parton distributions and
having shown the reliability of this model by testing it with empirical data from the
PV electron—deuteron experiment, we are now in the position to calculate the D"y/Z
correction. Furthermore, since we have developed a good understanding of where
the uncertainties in the AJM model come from and why they differ from Model II of
Gorchtein et al. [ 1], it will be relatively straightforward to understand any differences
found in the estimated uncertainty of the yZ box. Given the recent debate surrounding
the D,‘Y/Z correction and the size of that uncertainty, this is particularly important.

In this chapter, the energy dependence of Je DXZ and its associated error are

examined in some detail. While the Jie DXZ correction needs to be determined for
both Qyeak and MOLLER, the variation in the experimental kinematics of the two
means that different aspects of the calculation need to be emphasised. These cal-
culations are therefore dealt with in separate sections. In Sect.6.1 we examine the
Ne DXZ correction to Qweak, While Sect. 6.3 contains the MOLLER analysis. A com-
parison with earlier work is possible for the Qweak €valuation, however, for the larger
energies, Nfe D;/Z has not yet been calculated and thus our work represents the first
determination of this important background correction to the MOLLER experiment
at ~11 GeV. In between these two sections, the parity-violating DIS asymmetries
which were predicted in Table5.2 of Chap.5 will be revisited and compared with
the results from Ref. [2]. We will also predict the proton inelastic asymmetry for a
possible Qweak measurement [3] in this section.

Because of the nature of the break up of the various regions’ contributions to
Ne D,‘Y/Z at MOLLER energies, additional checks on the model dependence will be

required. As we will see, Region II dominates the MOLLER e DVZ contribution
and by constructing a number of other models, we investigate the possible model
dependence of the Regge contribution and how this might affect the final uncertainty.
Another possible source of error lies in the kinematic dependence of the continuum
parameters; this issue is discussed for both Qyeax and MOLLER. Note that since
Hlé plays only a small role in the final uncertainty we may concentrate simply on
the transverse case. Finally, we examine what effects the ‘hard’ boundaries have on

© Springer International Publishing Switzerland 2016 71
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the determination of the vZ box. This analysis is necessary for both PV electron
scattering experiments.

6.1 +vZ Box Corrections for Qyeak

The Ne DXZ contribution, given by Eq. (3.16), is plotted as a function of beam
energy, E, in Fig. 6.1. In the upper panel, the contributions from Regions I, II and I1I
are presented in conjunction with the total correction, while in the lower panel, the
breakdown of the dominant Region I into its resonance and background components
is shown. A summary of these contributions and their uncertainties at Qyeak €nergy
is given in Table. 6.1.

From these plots it is clear that at low energy (E < 1GeV), by far the largest
contribution to the 7Z box comes from the low-Q2, low-W? Region I. This agrees
well with the earlier work of Refs. [1, 4-7]. The separation into the resonance and
background parts is also instructive, with their central values approximately equal
at Oyeak energies and their uncertainties compatible. The shapes of the two contri-
butions are, however, quite distinct with the (red dashed) resonance curve peaking
at approximately 0.7 GeV before tapering off as E increases, while the background
on the other hand, increases steadily with beam energy. Most of the resonance con-
tribution comes from the A(1232) resonance, with the others only accounting for
secondary amounts. The final contributions come from Regions II and III, with both
giving only minor additions to Ne D,‘Y/Z atlow energies. At E = 1.165GeV, Region II
accounts for approximately 10 %, while Region III accounts for even less at ~6%.
This emphasises the fact that for Quyeak it is most important to have an accurate
description of the structure functions in the resonance region.

Although Table 6.1 divides the uncertainties into regions, we may also separate the
e [ ;/  error into background and resonance components. This is especially useful
for comparing with the equivalent error breakdown in Ref. [1]. At Qyeak energy we
find,

e, = (5.57 £ 0.21 pga) + 0.29reg) £ 0.02pis)) x 1072, (6.1)

where ‘bgd’ refers to the background error, ‘res’ the resonances’ and ‘DIS’ the uncer-
tainty coming from the deep inelastic region. Comparing with GHRM’s calculation
(Eq.56 of Ref. [1]), the error on our resonances is about ~40 % smaller. This most
likely reflects the difference between taking the extremal errors of the helicity ampli-
tudes as GHRM have done, versus combining them in quadrature as we did. The
largest difference between this work and GHRM is seen, however, in the uncer-
tainty of the background, where the constrained continuum parameters have led to a
background error which is roughly 9 times smaller than those in Ref. [1].
Combining these errors in quadrature we have,
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Tablev6.1 Contri.butions.to Region e DVZ (x1073)
Ne Dwz from various regions I > 18 £ 0.29
in 0% and W2 in the AJM (res) : :
model (see Fig.5.1) at the I (bgd) 2.46 + 0.20
QOweak energy E = 1.165GeV I (total) 4.64 £+ 0.35

I 0.59 £ 0.05

1 0.35 £ 0.02

Total 5.57 £ 0.36

fe D), = (5.57 & 0.36) x 1077, 6.2)

where the relative uncertainty on Jie DXZ stays approximately constant with increas-
ing energy, even though at large E the contributions from Regions II and III become
more important. As the structure functions have been constrained using global PDF
fits, it is perhaps not surprising that the uncertainty remains largely energy indepen-
dent.

In Fig. 6.2 we plot the total D‘,/Z correction determined using the AJM model and
compare it with the values calculated by the previous groups shown in Table4.1 of
Chap.4. As can be seen, our central value agrees well with earlier determinations

GHRM | . ;
SBMT | . ;
CR f °
AIM | . 5
3 4 5 6 7 8

Re !, (x1073)

Fig. 6.2 Comparison of the AJM model e DII( 2 with earlier work
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of Ne D;/Z. The uncertainty of the AJM model is, on the other hand, significantly

smaller, with the next smallest error more than twice the size.!

Although the AJM model provides the most accurate and precise determination of
the vZ box correction, it is helpful to compare this value with an alternative version
of GHRM’s Model II. In this estimate, the structure functions of Region II of the
AJM model are extended to all kinematics—as in Model II of Ref. [1]. Remember,
however, that these extended structure functions have been constrained using the
PDFs [8], before being used as inputs to the dispersion integral to calculate fe DXZ.
The results for this constrained Model II are shown in Fig. 6.3 where at Q yeax €nergy
we have,

Re O, = (5.40 + 0.54) x 107, (6.3)

The uncertainty here is ~4 times smaller than those determined by Gorchtein et al.
Compared with the AJM model though, it is still slightly larger. Such a determination
suggests what might occur should the information available from PDF fits and e—d
PV scattering data be taken into account in the construction of GHRM’s Model II.

IWhile SBMT have a lower error on Jite Df// » which is approximately the same as that in Eq. (6.2),
the average of the SBMT’s upper and lower uncertainties is more than twice that of the AJM model.
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6.2 Predictions for Parity-Violating Asymmetries

The constrained deuteron yZ structure functions may be used to further determine
the parity-violating deep inelastic scattering asymmetry measured by the E08-011
experiment at JLab [2, 9]. The AJM predictions for the experiment’s Q° values
are plotted as a function of W in Fig.6.4. Since, as discussed previously, we may
constrain the structure functions using either the DIS parton distributions [8] or the
resonance E08-011 data, both are displayed in this figure. For the numerical values
of these predictions see Table 5.2 of Chap. 5. The experimental measurements from
Ref. [2] are represent by the solid data points. Note that the uncertainties on AJM
model curves include the total errors from the resonances and the background as
before.

Comparing the two predictions, we see that the central values for the E08-011 con-
strained asymmetries are slightly higher than those given by the PDF constraints. This
agrees with our previous findings in Figs.5.10 and 5.11 for the resonance asymme-
tries. Also similar is the fact that the uncertainties are larger for the data constrained
Apv(d). The unconstrained structure functions—that is, what would be expected
using the 100 % error assumptions of Ref. [1]—on the other hand, give predictions
approximately 4-5 times larger. Most importantly, both methods give asymmetries
which are in good agreement with the experimental results. Furthermore the PDF
constrained curves more closely match the data points, which further confirms the
reliability of our method in using parton distributions to restrict the vZ structure
functions.

An additional data point will be available from the Qyeak experiment which
will measure the inelastic asymmetry for the proton at an invariant mass of W =
2.23GeV. Since the Qyeak asymmetry involves the proton structure functions, this
will be particularly useful for constraining the fe D,‘V/ -, uncertainty. In Fig.6.5 we

plot the AJM model prediction for A{;V together with an estimate of its uncertainty.
Numerically we have,
Ab, = (=7.8 £ 0.6) ppm (6.4)

for momentum transfer Q> = 0.09 GeV?. The structure functions with constrained
mg’ L predict asymmetry uncertainties roughly two times smaller than those estimated
using GHRM’s model [1]. In order to be able to differentiate between the models, the
experimental uncertainty would need to significantly smaller than that of GHRM,
which is ~16 %.

In the resonance region where W ~ 1.5 GeV, the background contribution to the
cross sections is small and the large uncertainty in the GHRM model is a direct result
of taking extrema values for the helicity amplitudes rather than adding in quadrature.
Using the more conventional method for combining uncertainties, the GHRM errors
would almost be equal to the AJM model’s at this point. Needless to say, additional
measurements such as the Qweak inelastic measurement and higher energy deuteron
PV asymmetries, will be invaluable for further constraining the interference structure
functions and the Ne DXZ correction.


http://dx.doi.org/10.1007/978-3-319-20221-1_5
http://dx.doi.org/10.1007/978-3-319-20221-1_5
http://dx.doi.org/10.1007/978-3-319-20221-1_5

6.2 Predictions for Parity-Violating Asymmetries 77

— . PDF constrained
> —60f . . :
L 3 /% N
(D ,,";/ \\\
é —80 ;.___._/“_/"" 5 ~-----:;;;;;;;;;;;;;;;
& : jessait
3 100 — 0%2=1.09 GeV?
- [ — 0*=128GeV? — 02=1.90GeV? |
B T et e
1.2 1.4 1.6 1.8 20 22 24
W (GeV)
—40-'|"'|"'|"'|"|'|
—~ . E08-011 constrained
‘T‘> L
Q
o
g
o
R
S
<&
~
~120 b

12 14 16 1.8 20 22 24
W (GeV)

Fig. 6.4 Comparison of the predictions for the PV deuteron asymmetry A‘lﬁv /Q? as a function of
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Fig. 6.5 AJM model prediction for the proton parity-violating asymmetry A]’;V as a function of
W for the Qyeax inelastic measurement [3] at Q% = 0.09 GeV? (solid line and open symbol). The
AJM model uncertainties (dashed) are compared with those from the GHRM model with 100 %
uncertainty on the continuum parameters (dotted)

6.3 0}, at11 GeV

So far in this thesis, the AJM model has only been utilised for those experiments
performed using Jefferson Lab’s 6 GeV polarised electron beam. The results, com-
parisons and predictions have been limited to the kinematic regions associated with
this beam energy. Here we discuss some of the implications of the constrained struc-
ture functions relevant to a new range of measurements currently planned for the
12 GeV upgrade to the JLab accelerator. These new experiments (such as MOLLER
[11] and SoLID [12]) will result in even tighter constraints on the SM. In this section
we will look at the MOLLER experiment which proposes to measure the PV asym-
metry in elastic electron—electron scattering. What we are specifically interested in,
are the yZ corrections to the Q{,’V measurement—an important background arising
from electron—proton scattering. Since one of the main theoretical uncertainties in the
experiment is this Q[V,V measurement, care is needed to ensure the correct evaluation
of the D"y/Z contributions.

The experiment’s set up involves scattering longitudinally polarised electrons
from atomic electrons present in the energy shells of the (liquid) hydrogen target.
The aim is to measure the electron’s weak charge, Q¢,, to 2.3 % [11]. Such a deter-
mination would be equivalent to measuring the weak mixing angle, sin” Oy, to 0.1 %
and would equal the precision of the two (different) measurements made at the
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Fig. 6.6 Effects of BSM physics on the theoretical values of the proton’s and electron’s weak
charge [13]

Z-pole by LEP. Although the PDG value for sin® Ay is currently taken as the aver-
age of these two measurements, they in fact differ by 3 o and were the MOLLER
experiment to show either of these to be correct, the running of sin? Ay (with respect
to Q) would change markedly [11] from the SM expectation. Were the average at the
Z-pole shown to be correct, however, the new measurement would still be important
in constraining the possibility of new physics [11, 13, 14]. Given that the effects
of certain BSM physics differ in how they alter the theoretical predictions of the
proton’s and electron’s weak charge as illustrated in Fig. 6.6, this measurement is
highly complementary to the Qeak €xperiment [13].
As for Qyeak, the asymmetry may be written as,

(6.5)

Although here, o) is the cross section for the left-handed (A = —1) or right-handed
(A = +1) beam electron scattering from the atomic electrons instead of protons.
Once more the Apy is dominated by the interference between the exchanges of ~
and Z. From Ref. [15] we have,

E Gr 2y(1—y)
4
Nral+y*r+ 1 -

Apy = m, 05, . (6.6)
o DN

where we remind the reader that « is the electromagnetic structure constant, E is the
incoming electron’s energy and m, is the mass of the electron. At the Born level, the
electron’s weak charge is defined as,

Q™ = —1 + 4sin’ Oy . 6.7)
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However, for the precision required by the MOLLER experiment, radiative correc-
tions need to be included also. Unlike for Q% , there is little controversy over the
calculated [16-18] Q‘;V radiative corrections.

An unavoidable background of the MOLLER experiment comes from the use of
a hydrogen target. Not only will the incoming electrons scatter off the electrons, but
they will also collide with the protons of the target, resulting in a PV background
which depends on the proton’s weak charge. The Q yeak €xperiment should determine
Q"jv to an accuracy level of 4 % at a beam energy of 1.165 GeV. As we have pointed
out, the vZ box contribution is particularly important to the theoretical calculation
of Qﬁ,. Although for Qyeax the DI}(Z contributes an ~7 % correction, this grows
significantly with increasing energy and at the energy of MOLLER (E = 11GeV),
we therefore expect this contribution to be substantially larger.

Given the experimental error budget for the weak charge of the proton is <4 %, it
is imperative that the vZ box correction is accurately determined and any uncertain-
ties well accounted for at these much larger energies. While there has to date been
no determination of DXZ for these kinematics, by extending the work of previous
sections we have a reliable way of calculating this important correction.

In Fig. 6.7 we show the energy dependence of Ne DXZ up to 12GeV calculated
using the AJM model. As in Fig.6.1 the break down of the individual kinematic
regions’ contributions has also been included. In Table 6.2 these are compared with
the equivalent Qyeax values. Looking at the total correction for the MOLLER exper-
iment, the Ne DXZ correction is approximately twice that of Qyeakx and now, almost

a third of the tree level sin? Ow. Additionally, the contributions from each of the
individual kinematic regions differs dramatically. Before, at 1.165 GeV, Region 11
accounted for about 10 % of the total contribution, while now at £ = 11GeV, it is
close to 50 %. On the other hand, Region I which use to be more than 80 % of Ne D"y/Z
now accounts for only a third of the correction. Region III, while contributing more
here than for Qweax, remains relatively less important, yielding about the same as
the low—QZ, low-W?2 region.

Model Dependence

Although the AJM model gives the best determination of Sie DVZ and its uncertainties
currently available using constraints from PDFs and other experimental data, it is
necessary to ensure that any model dependence of the correction is accurately taken
into account. Here we examine the effects the choice of model might have on the
most important Region II contribution where the VMD+Regge description is used.
We also investigate the kinematic dependence of the continuum parameters nic and
how this might alter the calculation of Ne Df// 7

To find the kinematic regions most relevant to the evaluation, we divide the Q2—
W? plane into separate intervals in Q2 and W2. The results for these divisions
are illustrated in Fig.6.8. Similar plots examining different intervals specifically
within Region II are shown in Fig. 6.9. For the total contribution, at E < 1GeV, the
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line). The lower panel shows the break up of Region I into resonance and background contributions
as in Fig. 6.1. The vertical line indicates the energy at the MOLLER experiment

Q? < 1region tends to dominate. By the time E increases to 210 GeV, however, this
contribution makes up only ~50% of Ne DXZ. Alternatively, if we examine the W?

regions, most of contribution comes from below W? ~ 9GeV where the resonance



82 6 The EL‘,{Z Corrections

Tablev6.; Contributions to Region e DXZ (x 10—3)
Ne Dwz in the AJM model MOLLER
from Regions I, II and III at Queak
the kinematics of the Qweak I 4.64 + 0.35 3.04 £ 0.26
(E = 1.165GeV) and Il 0.59 + 0.05 5.26 £ 0.49
MOLLER (E = 11GeV) 1 0.35 + 0.02 3.18 £ 0.16
experiments

Total 5.57 + 0.36 11.5 £ 0.6

region lies. As the energy increases, the higher W2 region becomes significantly
more important. For example, the W2 > 10GeV? interval comprises almost two
thirds of the total box contribution at £ ~ 10GeV.

In order to test the model dependence of Region I, we examine several alternative
models for the vZ interference structure functions. Each of these models is based
on electromagnetic parametrisations of cross section data in the kinematic regions
relevant to Region II and rely on different physical mechanisms of the scattering
events. With the electromagnetic parametrisations mostly been discussed previously
in Chap. 4, we simply summarise here the vZ models used in the comparison.

Modified Regge Model (MRM)

While this follows Sibirtsev et al. [6] in the use of the Capella et al. parametrisation
[19] for the electromagnetic cross sections, for the interference structure functions,
we use the vZ /v ratio of Eq. (4.32) to modify the Fln”2 instead of the leading-
twist parton distributions that SBMT employ. Unlike previous models, where the
cross sections could be split into separate resonance and background components
and each part be modified independently, the Capella et al. structure functions can
only be transformed in their entirety. This may at first seem ad hoc, since each
individual resonance will be rotated by the same amount in this method, however,
as the resonance piece is negligible in Region II, the total cross sections ot are
effectively given by just their backgrounds, i.e.

bgd
or.L N ops. (6.8)

CDP Model

The colour dipole parametrisation of the electromagnetic cross sections [20, 21] has
been discussed in detail in Sect.4.3. As mentioned, this is the basis of MQdel Tused
in Gorchein et al. [1]. Instead of using the VMD to compute the sy and . values in
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Fig. 6.8 Contributions to Ne DXZ from various kinematic regions in 02 (top) and W2 (bottom),
as a function of the energy £

the ratio of Eq. (4.32), these are determined using the ratios of electric quark charges.
This results in a constant scaling factor for the 072 /o] ratio [1],

vZ

g; S 22

L = Z_4 Ow . 6.9
,'W 5 sin” Oy (6.9)
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In this work we use an updated version of the CDP parametrisation of the transverse
and longitudinal cross sections from Ref. [22].

CDP/VMD Model

Finally, we use the electromagnetic cross sections of Cvetic et al. [20, 21] and
modify them into their interference analogues using the vZ /v~ ratio of Eq. (4.32).
We point out that for both this model and the CDP parametrisation, the structure
functions have only been given for W? < 1000 GeV?. Since it is clear from Fig. 6.8
that the contribution to Re D,‘Y/Z from W2 > 1000GeV? is minimal this is not a
problem. However, in order to get as close as possible to the correct Region II
contribution, we scale the CDP and CDP/VMD results by the same amount in going
from W2 = 1000GeV? to W2 = oo using the ATM model i.e.,

Mod Mod AMo. (6.10)
O = Mo X —, .
00 1000 AJM]OOO

where ‘Mod’ refers to either the CDP or CDP/VMD model contribution to Region II
and the AJM contributions (to Region II) up to W? = 1000 GeV? and W? = oo are
given by AJMjog0 and AJM respectively.

In Fig. 6.10 we show the results of using these additional models which incorpo-
rated different physics in the vy Z structure functions and compare with the AJM model
of Ref. [23] in Region II. Looking at the AJM and MRM model determinations, we
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- AIM A
0.005F _ \iew g
0.004 | - CDP/VMD Lo _:
SN ¥ S .
3 0.003F T CPP G _
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o i o
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Fig. 6.10 Contribution of Region II to Ne EI 7 as a function of energy using various models for
the vZ structure functions: AJM (red dashed line), MRM (green solid line), CDP/VDM (blue
dotted line), and CDP (gray dot-dashed line)
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can see that these show excellent agreement over the full range of energies given.
The CDP and CDP/VMD models’ contributions are, on the other hand, slightly less
than the AJM model’s. While the errors associated with the AJM model take into
account the MRM and CDP/VMD parametrisations, the CDP results fall just outside
the lower error band in Fig. 6.10. We take into account this model dependence in the
Regge region by including an additional uncertainty found by taking the difference
between the central value of the AJM model and the outer most CDP model. This is
then combined with the uncertainty arising from the AJM parametrisation by adding
the two contributions in quadrature.

A source of additional error to Jie Df// 7 could come from the continuum parame-
ters’ dependence on the invariant mass. In the AJM model, the fitted values took
into account possible W2 dependence by matching the Z/~~ ratio over the range
W2 = 4 to 13GeV?2. Any resulting variation was included in the final uncertainties.
If the W2 range is increased to 4 < W2 < 1000GeV?2, the fit gives,

ke = 0.86 + 0.24, Kb =-13£23, (6.11)

which within errors, agrees with the previous determinations of Iig =0.65 + 0.14
and nlc‘ = —1.3 £ 1.7 [23]. While the new values for nic result in structure functions
which differ from those used previously, the errors assigned to the AJM model
structure functions are large enough to cover these alternative F;"Z. As the additional
error associated with the W? dependence of /iic is negligible, no further error needs
to be added to our evaluation.

In a similar vein, the continuum parameters may also show some dependence
on the momentum transfer Q2. Since we constrain the nic at Q% > 2.5, the only
place where this Q?-dependence might occur is in the region 0 < Q% < 2.5GeV?2.
To estimate possible Q2-dependence, we use the AJM values for n’é for Q2 >
2.5GeV? while for Q% < 2.5 we linearly increase the uncertainties to 100 % at Q0 =
0. The energy dependence of these modified constraints is illustrated in Fig.6.11.
Numerically we find the error increases to & 0.59 x 1073 at the Quweak energy,
while for MOLLER there is a 200 % increase, with the total uncertainty becoming
+ 1.2 x 1073. Although these errors are still within the budgeted uncertainty, we
believe they are overly conservative and therefore in practice, take the errors on Ii(j;
to be Q2 independent.

One last area which may artificially effect the result of fie IZI;/,Z is the use of fixed
boundaries between the different regions. Figure 6.12 illustrates, however, the fact
that the dependence on the position of the boundaries is negligible. Although not
shown, we also tested the boundary-dependence of the Q2 borders by lowering the
DIS region limit from Q2 = 2.5GeV to Q% = 1 GeV and again, found no significant
change in the results.

Using the PDF-constrained AJM to calculate the Ne DXZ correction at MOLLER
energies, we see that the relative contributions from the various regions differ signifi-
cantly from those evaluated at the Qweax €xperiment’s energy. Particularly important
is the increase in the Region II contribution from about 10 to ~50 %. Including
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additional errors arising from the model dependence of the Region II contribution,
we estimate the total e IZI;/Z correction at 11 GeV, to be

feD), = (11.5 £ 0.6 & 0.6) x 1072, (6.12)

where the first error includes the previous uncertainties in the AJM model, and the
latter comes from the additional model dependence discussed in this section. Of
course, any future experiments would help to lower this uncertainty still further.

With the current level of precision available using the AJM model, the pro-
ton’s (effective) weak charge grows from 0.0757 £ 0.0007 at £ = 1.165GeV to
0.0814 + 0.0010 at E = 11 GeV. A necessary inclusion in these Q’V’V effective values
is the vector electron, axial-vector hadron coupling piece, D;‘Z. Extending the pre-
vious work of Refs. [24, 25], this term decreases from 0.0037(2) at E = 1.165GeV
to 0.0035(2) at E = 11 GeV [26]. Since the current background estimate from PV
electron—proton scattering is around 8 % for the MOLLER experiment, the uncer-
tainty from QpW is ~0.1 %. While still significant, this value is well within the
budgeted 0.3 % given in the MOLLER proposal.

6.4 Apvpis for the Proton at 11 GeV

As well as the background coming from elastic ep scattering, the MOLLER experi-
ment will measure the inelastic cross section. Although this cross section is smaller
than the elastic background by an order of magnitude, because it is not suppressed
by a factor of 1 — 4sin” @y as in the elastic case, it will still contribute a significant
amount to the overall asymmetry. In this section we use the AJM model to estimate
this important, additional background.

The proton parity-violating asymmetry given in Sect.5.3,

Apy =
22102 e
Z x“y"M z 9 1 z
ooy W (1o ) e (- 3) e
A
92( ) 2. 2102 ’
24/2ma Ay x“y M vy
xyzFl + 1_y_7 F2

5.4)

is plotted using the AJM model vZ structure functions in Fig.6.13, where for the
MOLLER experiment, the momentum transfer is Q% & 0.004 GeV2. As in the plots
of the vZ structure functions, the matching between Regions I and II is excellent.
For W < 2GeV, the resonance structure of the cross sections is clearly evident
in the asymmetry plotted. At larger W, the resonances become negligible and the
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Fig. 6.13 PV asymmetry A]fv for inelastic ep scattering, scaled by 1/Q?, at E = 11GeV in
the AJM model, showing the matching of the contributions from Region I (blue solid line) and
Region II (red dashed line). The typical momentum transfer relevant to the MOLLER experiment
is ~0.004 GeV?

asymmetry is mostly constant at &85 ppm/GeV?. Although the uncertainty grows
slightly with W, for the most part it stays at &7 % in our model.

In the previous section, we investigated what would happen to the magnitude of
the uncertainties were the continuum parameters mic to depend on Q7 in the region
0 < Q2 < 2.5GeV?. Here, increasing the uncertainties linearly from the AJIM
values at 2.5 GeV? to 100 % at the real photon point results in the relative error on
the inelastic Apy growing to approximately 25 % for the MOLLER experiment. In
such a scenario, additional data would be needed to further constrain the model, and
it will be necessary for the MOLLER experiment to do so directly within their own
setting. Given that the earlier SLAC E158 experiment was able to constrain their
background to better than 20 % [27], this should not be overly difficult.

Although PV inelastic scattering includes other standard radiative corrections
that have not been included here, but which might alter the W dependence shown
in Fig. 6.13 and would therefore also need to be included in the final estimate of the
background PV inelastic asymmetry, for the requirements of illustrating the char-
acteristics of the asymmetry (together with the magnitude of the uncertainty) our
analysis suffices. More detailed analyses would be necessary further along in the
experimental process.
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In summary, we have determined the energy dependence of the [,z radiative
correction to the elastic PV asymmetry to a precision level of about ~7 % needed
for the MOLLER experiment at £ = 11GeV. Unlike in the Qe €xperiment,
where the resonance region dominates the final box correction, at energies relevant
to MOLLER, the region with the largest contribution is Region II where Regge
physics is most appropriate. By examining additional uncertainties arising from the
model dependence of the interference structure functions in this region and including
them in the overall uncertainty we find the proton’s effective weak charge to be
0.0814 £ 0.0010 at 11 GeV. With these uncertainties, the Q[v’v background is known
precisely enough that it remains well within the experimental error budget.

Furthermore, we have used the AJM structure functions to calculate the magnitude
of the inelastic ep asymmetry and the size of its uncertainty. Although the errors
arising from the AJM model are small enough to remain within the experimental
budget, using a more conservative Q>-dependent ng results in the conclusion that
an experimental monitoring of this background will be needed for MOLLER. On
the other hand, such a measurement could also be used as an additional constraint
on the parameters of the AJM model, thus decreasing the uncertainties in the model
further.

In the next two chapters we make use of the AJM model of the structure functions
to study other nonperturbative effects. Chapter 7 uses the electromagnetic parametri-
sation to study the electric and magnetic polarisabilities of the proton, while in Chap. 8
we look at the higher-twist contributions to the nucleon structure function moments.
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Chapter 7
Electric and Magnetic Polarisabilities
of the Proton

The interference structure functions have been used in the analysis of the proton’s
‘weak’ properties. In a similar manner, the -~y structure functions can be utilised
to determine the electromagnetic character of the proton. In this chapter we use the
electromagnetic parametrisations upon which the AJM ~Z expressions are based
to determine the electric and magnetic polarisabilities of the proton. Although we
limit ourselves to the polarisabilities of the proton here [1], such a study could also
be done for the neutron.! Since the various models have already been addressed
in the development of the AJM model, we may proceed directly to the necessary
background formalism.

7.1 The Generalised Baldin Sum Rule

Polarisabilities occur in composite systems because the photon’s electric and mag-
netic fields alter the dynamics of the charged constituents resulting, even in neutral
targets, in current and charge multipoles [2]. The parameters which describe this
response in nucleons are the electric () and magnetic (/) polarisabilities. Intuitively,
« and (3 characterise the rigidity of the nucleon and encode information regarding the
electromagnetic charges and interactions of the internal constituents [2]. For struc-
tureless objects the values of o and § vanish. The spin-dependent polarisabilities
also play an important role in understanding the electromagnetic properties of the
proton.

The polarisabilities o and [ are defined in the context of the expansion of
the Compton amplitude at low energies, with the sum being the part of the elec-
tromagnetic polarisability which does not have its helicity flipped [3]. The static
polarisabilities are related to the unpolarised photoabsorption cross sections by the

IDifficulties arising from the (relative) instability of the neutron mean that experiments use
deuterium instead. This results in much larger uncertainties on the neutron’s electromagnetic
polarisabilities.

© Springer International Publishing Switzerland 2016 93
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Baldin sum rule—the unpolarised analogue of the Gerisamov-Drell-Hearn sum rule
[4, 5S]—which is given as [6, 7],

1 [®oip+o3n
adl_ﬁ:ml, le/, (71)

where o) is the cross section for the production of A = 1/2 and 3/2 helicity states, v
is the photon energy and v, the pion production threshold. The sum rule establishes
a relation between the static and dynamic properties of the nucleon and allows for
the extraction of o+ 3 from precision measurements of real Compton scattering [3].

Additional insight into the polarisation density is gained by studying the Q-
dependence of « and (3. Drechsel et al. used dispersion relations to extend Eq.(7.1)
to the case of virtual Compton scattering [8]. This generalised Baldin sum rule [8]
provides a way of determining the polarisabilities’ dependence on the momentum
transfer via radiative electron scattering. Explicitly, it is written [8],

8aemM
Q4

= 8aemM

(0% + B(QY) = / XF(x, Q%) dx,
0
00 F;/’Y(WZ’ QZ)

S dW?,
w2 (W2 — M2+ Q2)

(7.2)

where M is the mass of the proton, c.epy, is the fine structure constant, x = Q2 /( w2 —
M?4-(Q?)is the Bjorken scaling variable and W the invariant mass. F l“/’y is the proton’s
electromagnetic structure function and we also note that, in a similar manner to
Eq.(7.1), x; and W refer to the pion production threshold.

There has recently been considerable interest in precisely determining the Q>-
dependence of « and (3 both experimentally [3, 9, 10], and theoretically [11, 12].
Liang et al. used e—p scattering data from the JLab E94-110 experiment [13] to
measure the second moments of the F lw structure function. From these measure-
ments they extracted values for the generalised Baldin sum rule using Eq.(7.2).
The sum oz(Qz) + 0 (Qz) was obtained for a number of kinematic points over the
range 0.3 < Q% < 4GeV?. An additional feature of their analysis was the separa-
tion of the structure function integral into a resonance (W2 < 4GeV?) and a DIS
(W2 > 4GeV?) section. (For the DIS region the authors used the SLAC parametri-
sation of R = Fr /2x F and F» from Ref. [14].)

Theoretically, Sibirtsev and Blunden made use of updated data [15] from the
same E94-110 experiment to construct a parametrisation of the electromagnetic F 17 7
and FZW structure functions [11, 16]. As discussed in earlier chapters, this para-
metrisation was used as the basis of the interference structure function inputs in the
work on the vZ box contribution [16]. In Ref. [11], however, the electromagnetic
F 17 7 parametrisation was used in the Baldin integral to determine the sum of the
polarisabilities.
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The results of Sibirtsev and Blunden provide valuable information on the low-Q?
dependence of a(Q?) + £(Q?), with values determined as low as Q% = 0.225GeV?>
(cf. Fig.4 of Ref. [11]). Additionally, they were able to examine the purely resonance
contribution to the generalised Baldin integral, finding that for 0% < 1GeV? the
resonances dominate [11]. Since the parameters of their model were fit only to 0
data above 0.225GeV2, however, Sibirtsev and Blunden were unable to provide an
estimate of the static polarisabilities. In fact, an extrapolation of their results would
see them significantly overestimate o + —see Fig.7.2.

In the next section we improve upon the work of Sibirtsev and Blunden, exploiting
the AJM parametrisation of the F’ IW 7 electromagnetic structure function to evaluate
the generalised Baldin sum rule. Since this parametrisation is consistent down to
Q? = 0.06GeV? we will be able to show the momentum transfer dependence of
the electric and magnetic polarisabilities to much lower Q2 than that in Ref. [11].
Furthermore, extrapolating our results to the photoproduction point results in a good
estimate of o 4+ (3. Before proceeding to the evaluation of the sum rule, however,
the consistency of the structure functions at the boundaries between the different
regions must first be checked. To do so we plot F’ ? (W2, Q2) as a function of W2
for multiple values of Q0 ranging from Q% = 0.06 to 6.0 GeV?. Illustrated in Fig. 7.1,
these plots make it clear that as for F; 7, the descriptions of the structure functions
are in good agreement at the borders. As discussed in Chap. 5, for the (blue) Christy-
Bosted structure functions we assign a 5 % error. This is based on the fact that more
than half the data points differed from their fit by 3 % or less, and almost all by less
than 5 % [17]. For the (green) PDF structure functions the errors are those given by
Alekin et al. in Ref. [19], while for the Region II structure functions, comparing the
VMD+Regge model with data shows that assigning a 5 % error on this model should
suffice to account for any variance with experimental values.

7.2 Q? Dependence of o and 3

Since we would like to determine the Q%-evolution of the electromagnetic polar-
isabilities all the way to the real photon point, the behaviour of the F IW structure
function as Q% — 0 is particularly important. Christy and Bosted’s parametrisation
includes data down to Q2 = 0.06GeV? as well at Q2 = 0 and shows excellent
agreement with the empirical data in the regions where data exists. However, no
data exists for Q2 between 0 and 0.06GeV? and the fit fails to smoothly match
onto the real photon point. Difficulties arise in the second resonance region where,
although the overall magnitude of the transverse resonance is consistent with data,
the individual transition form factors of the fit are not (cf. Table III of Ref. [17])
and result in a discontinuity in the cross sections between the lowest finite momen-
tum transfer and the photoproduction point. In order to surmount this issue, we use
CB’s F|” structure functions to evaluate a(Q?) + 3(Q?) down to 0% = 0.06 GeV?,
before extrapolating to Q% = 0GeV?>. We estimate the uncertainty arising from this
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Fig. 7.1 Proton Fj structure function versus W2 at fixed Q2 = 0.06, 0.6, 1.0 and 1.5 GeV? for the
CB fit [17] at low W? (blue solid), VMD+Regge parametrisation [18] at high W? (red dashed) and
ABM11 [19] (green dotted) parametrisations. The boundaries between these regions are indicated
by the vertical dashed lines at W* = 4 and 9 GeV?
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Fig.7.2 The sum of the electric and magnetic polarisabilities as a function of Q2. The blue line (with
errors) represents our calculation for Q2 < 3.0GeV?, the green dotted line for Q2 > 2.0GeV?,
whilst the red dashed line is the earlier calculation of Ref. [11]. The grey, dot-dashed line denotes
the contributions to the polarisabilities from the W? < 4.0 GeV? region. On this scale the values of
o + (3 at the real photon point overlay each other and are given by the black triangle [20] and red

square [21]

extrapolation by using several different ranges to constrain the extension to zero
momentum transfer.

The results of our analysis are illustrated in Fig.7.2. We evaluate the Baldin
integral over the range 0.06 < Q% < 6GeV? and include in the plot the calculation
of Ref. [11] for comparison. In Fig. 7.3 we show a magnified version of the boundary
region, displaying good overlap between the two. Note that although Fig. 7.2 shows
the Q2-dependence up to 6 GeV?, the only limitation on the range is the validity of
the parton distributions. One could in principle show results up to LHC energies.



98 7 Electric and Magnetic Polarisabilities of the Proton

1071y

@+ B (107* fm?)

-2 . . .
10 2.0 2.5 3.0 3.5 4.0

0* (GeV?)

Fig. 7.3 As in Fig.7.2 but with the boundary region 2 < 0% < 4GeV? scaled up. The red dashed
line of Sibirtsev and Blunden has been dropped since here we are solely interested in the overlap
of the (blue) Q2 < 3.0GeV? and (green) Q2 > 2.0GeV? regions

From Fig.7.2 we see that the Q’-evolution of the AJM parametrisation dif-
fers significantly from that of Ref. [11]. Most importantly, as Q2 approaches zero,
a(0?) + 5(0?) converges towards the static polarisabilities, whereas an extrapola-
tion of Sibirtsev and Blunden’s results would considerably over estimate this value.
The difference between these two results may be understood by the fact that CB’s
fit of the cross sections includes data at much lower values of Q2. From the grey
dot-dashed curve in Fig.7.2 and the blue dashed line in Fig.4 of Ref. [11], it is,
however, seen that both models agree that the resonance contribution dominates the
Baldin integral. We also note that setting the boundary between Regions I and II at
different W2 has negligible effect on the final value. This is seen diagrammatically
in Fig.7.4.

For Q2 below 0.06 GeV2, we fitted the results of the generalised Baldin sum rule
to the inverse of a polynomial over four different ranges of Q:
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Fig. 7.4 The results for the electromagnetic polarisabilities using W2 = 4 (gray dot-dashed), 6

(red dashed) and 9GeV? (blue solid) as the boundary between Regions I and II. All three curves
sit directly above each other

I 0.04 < 0% < 0.10GeV?;
II: 0.04 < 0% <0.12GeV?;
III: 0.06 < 0% < 0.10GeV?;
IV: 0.06 < 0% < 0.12GeV2.

In order to obtain o + (3, each of these fits were extrapolated to Q2 = 0GeV2. The
extrapolations are illustrated in Fig. 7.5 and show minimal variation over the various
Q? ranges.

At the photoproduction point,

a+8=(137+0.7) x 107* fm?, (7.3)

where we use the fit over the Q2 ranges given in I1I for the final results. The uncertainty
+0.7 on a 4 (3 comes from the 5 % error assigned to the CB F’ 1” 7 structure function.
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Fig. 7.5 In this plot, the individual points are values extracted using the AJM parametrisation,
whilst the blue lines are fits to points over four distinct ranges in Q2. The values of a + 3 at

0? = 0GeV? have been offset slightly and are given by the black triangle [20] and red square [21]
(color figure online)

Our determination is in excellent agreement with the earlier evaluation of Babusci
et al. [20], who give,
a+ = (13.69+0.14) x 10~*fm?, (7.4)
and the more recent analysis,
a+f=(138+0.4) x 1074 fm’, (7.5)
of Ref. [21]. Although both data points have been included in Figs.7.5 and 7.2,

the latter is not only more recent, but stems from more conservative uncertainty
estimates [2].
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Finally, we may determine the ‘radius’ of the sum of the electric and magnetic

polarisabilities, i.e.,
—6 dH(Q*
(r?) = ——(Q2 ) : (7.6)
H (0) d Q Q2=0
where, H(Q?) = a(Q?) + 3(Q?). Using the same fit which gave the Q0 extrapola-
tion, we found,

(r2)s/ 5 = 0.98 4 0.05 fm, (7.7)
which agrees well with the heavy baryon chiral perturbation theory (HBxPT) value
of ~1.1fm given in Ref. [22].

The agreement of the AJM parametrisation with the earlier determinations of the
static electromagnetic polarisabilities, the good convergence to Q% = 0 point and
the compatibility with the HBxPT value of the radius gives further evidence of the
robustness of these structure functions.

* * * *

Utilising a parametrisation of the electromagnetic F f’ 7 structure function consistent
down to Q% = 0.06GeV?, we have shown that the Q?-dependence of the electro-
magnetic polarisabilities converges to the photoproduction point. While our results
at the real photon point agree well with the work of Refs. [20-22] the evolution of
a(Q?) + B(Q?) differs substantially from Sibirtsev and Blunden. The variation we
observe is accounted for by the fact that our parametrisation is fitted to much lower
Q2. On the other hand, the deviation at higher momentum transfer comes from the
difference between their parametrisation and Christy-Bosted’s.

Although the uncertainties on the sum of « and [ are similar to other determi-
nations, it would be useful to reduce them still further. Additional data in the very
low-Q? and low-W? region would remove the need for extrapolation and increase
the precision. Given the importance of understanding the nature of the electromag-
netic structure of the nucleon, there is a well motivated need for further experimental
efforts.
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Chapter 8
Quark-Hadron Duality

In spite of the apparent differences between the partonic and hadronic realisations of
QCD, at low energies there are instances where the averaged cross sections coincide
with those determined using the parton model. This behaviour is known as ‘quark-
hadron duality’, and in this chapter we make use of the AJM model to study this
phenomenon.

8.1 Duality in the SM

Quark-hadron duality in the Standard Model is the physical manifestation of the
relationship between confinement and asymptotic freedom, and marks the transition
between perturbative and nonperturbative QCD. Duality is observed in many dif-
ferent areas such as e™e™ annihilation, semi-leptonic decays and electron—nucleon
scattering. This latter field is what we are particularly interested in since it links the
physics surrounding resonance production with scaling. Given that structure func-
tions cover both of these regions, it is no surprise they are one of the tools used to
study this subject.

Historically, duality was observed even before the formulation of QCD and its
acceptance as the correct description of the strong interaction. Bloom and Gilman
found that resonance structure functions at low invariant mass averaged to the scaling
curve which accounted for the high-W values [1, 2]. After QCD was invented, duality
was expressed in terms of the operator product expansion [3, 4], and its violation was
seen as a consequence of higher-twist operators which described long range physics
[5]. The OPE, however, still failed to explain the physics of how the resonances
transitioned into the scaling regime and it was not until the advent of recent low-
energy precision measurements of structure functions that duality became an active
area of research once more. An example of modern evidence for duality in the proton
structure functions is illustrated in Fig.8.1.

At large energies, duality between the partonic and hadronic descriptions may
understandably be considered exact. What is perhaps not so expected, is the ‘local’
© Springer International Publishing Switzerland 2016 103
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Fig. 8.1 Example of duality in the sz structure function [5]. Target mass (TM) corrections are
included in the MRST and CTEQG6 parametrisations of the PDFs and the data points come from the
JLab E94-110 experiment [7, 8]

duality seen in the JLab precision data [6], where the averaged resonance and scaling
structure functions appear to match even in the individual resonance regions. This is
particularly puzzling since at these low Q7, the strong coupling constant is relatively
large and therefore perturbation theory is no longer valid. Additionally, the degree to
which duality holds and the kinematic range to which it applies is difficult to quantify.
All these questions have played a large role in motivating the renewed efforts—both
theoretically and experimentally—to study duality.

Recent work has looked at a number of aspects of duality including, its flavour,
spin and nuclear dependence [6, 9-12]. It has also been investigated in neutrino
scattering experiments [13]. Our own interest in the topic is twofold: firstly, since
in the AJM model we have a reliable description of both the vy and vZ structure
functions, we have the necessary tools to study and compare duality in both the
electromagnetic and interference cases; secondly, duality arguments may also be
used to further constrain the vZ structure functions. In electron—nucleon scattering,
duality has been observed as low as Q2 = 1 GeV?2 [5]. Should the ~Z resonance
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structure functions in this region behave similarly, their averaged curves will be
restricted to values close to the LT structure functions.

The rest of the chapter is arranged as follows: in the next section we begin by
briefly describing the formalism surrounding the twist expansion of the moments
of structure functions. The relationship between the Nachtmann moments which
include target mass corrections (TMCs), and the Cornwall-Norton moments are also
included in this section. After this we present results using the AJM model, before
finally in Sect. 8.3, we discuss the implications for the DXZ corrections.

8.2 Moments of Structure Functions

The OPE [14-16] is used to theoretically describe Bloom-Gilman duality in QCD.
Intuitively the OPE provides a way of separating out the nonperturbative physics
of parton correlation functions from the perturbative part of hard scattering. More
precisely, it involves expanding the product of two operators with small light-cone
separation into a sum of local operators [17]. Quantities most suited for study within
the framework of the OPE analysis are the structure function moments.

The Cornwall-Norton moments, are defined as [18],

1
M{'(QZ):/ dx " Fy(x, 07, 8.1)
0
1
M3 (0% = / dx x"2Fy(x, 0%). (8.2)
0

At 0% much greater than the QCD energy scale (A2QC p) these moments may be
expanded in powers of 1/Q? [5]. For example, the above M7 moment becomes,

o n 2
VAGCSESDY 40 () o4 (8.3)

T2
7=2,4... Q

where the twist T is defined as the difference between the mass dimension and the
spin of the operator. The coefficients A” are matrix elements of quark and gluon
operators [5]. The higher-twist (HT) terms (7 > 2) contribute at smaller Q2, whilst
at larger O the leading-twist terms dominate. In Fig.8.2 we give examples of LT
and HT diagrams which contribute to the structure functions.

Incorporating target mass corrections, the Nachtmann 45 moment may be written
[15, 19],

ug(Q%:/l gl {3+3(n+1)r+n(n+2)r2

2
0 (n+2)(n + 3) }vaQ ). (84
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Fig. 8.2 Leading- (left) and higher- (right) twist contributions to structure functions

where,

2x
- ) 8.5
¢ 1+ /1 +4M2x2/Q? (5

is the new scaling variable, r = /1 + 4M?x2/Q? and M (with no numerical sub-
script) is the mass of the nucleon. The two descriptions are related via [20],

n—1H)M
14(0%) = M5 (0% — —(+2)Q2 My (0%)
nm?>—DHM* . o nm*-1)MS
mgj% (Q)_TE]% ..., (8.6)
or inversely [20],
HM
M3 = (%) + (+2)Q2 (0%

nn?> —1)(n+2) M* W02
2013 +4) 0°"
n(n* —1)(n +2)(n +3) M° e

T st mt6 06"

(8.7)

Furthermore, as Q2 — 00, the two definitions of the moments coincide.

Electromagnetic Moments

Using the AJM electromagnetic parametrisations we determine the moments of the
nucleon’s F; 7 structure function. Since the integral over x (W?) contains the elastic
piece, the elastic structure functions must also be included [21],
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2 N 2 2
WmuQ%::f%gkmﬂQ%]a(u—f%) (8.8)
2
Wa(v, Q%) = (63" @)]' + “QW[G%(QZ)]Z(S o2 (8.9)
e 1+ 2, M '

where G}/ (0?) and G} (Q?) are the electric and magnetic form factors of the
nucleon, and

Fi(x, 0% = MW (v, 0% (8.10)
Fr(x, 0%) = vWa (v, 0%). (8.11)

For the form factors, we use the standard Kelly parametrisation [22] and assign a
conservative 5 % uncertainty to these elastic structure functions similar to previous
chapters.

The proton and neutron second moments are shown over the range 1 < Q? <
9 GeV? in Fig. 8.3.! Since QCD radiative corrections result in the LT structure func-
tions evolving logarithmically, we plot the moments against log Q2. Also note, that
as mentioned in Chap. 7 the larger uncertainty in the neutron plots are a result of the
difficulty in extracting the neutron structure functions from deuteron data.

In determining the yj Nachtmann moments, the CB parametrisation is utilised
in the range (My + mﬁ)2 < W2 < 6 GeV2, where My is the mass of the proton
(N = p) or neutron (N = n). For W? > 6 GeV?2, we use Alekhin’s full PDF
structure functions.” The term “full’ signifies that the structure functions include
leading twists , TMCs, and higher-twist contributions in its parametrisation. (Note
that here we use the ABM11 structure functions all the way to 1 GeV? as opposed to
2.5 GeV? for the DYZ analysis.) Combining these two parametrisations effectively
gives the total structure functions and is denoted in Fig. 8.3 by the solid black line.
The LT curve (red dashed line) also uses Alekhin’s PDF structure functions, however
only the LT contribution is included. For the LT structure functions, the Cornwall-
Norton moments must be used instead of the Nachtmann moments. Furthermore, the
PDFs are used over the entire kinematic region of the integral; although, since the
elastic piece is purely HT, the LT moment does not include contributions from the
form factors.

The results for the proton ,u% (p) moment—for which we know the structure func-
tions most accurately—show remarkable agreement between the total structure func-
tion moment and the LT contribution [23]. At Q2 = 1 GeV?, both the proton and
neutron LT moments are ~10% smaller than the full structure function moments. As
Q? increases, the difference becomes even less, eventually becoming negligible. (We
assigned a 10 % uncertainty to the neutron structure functions following Ref. [24].)

I As it is difficult to ascertain the reliability of the LT structure functions below 1 GeV? we limit the
comparison to the range given.

2A comparison of the moments using different values for the W2 boundary showed negligible
variation over the range of Q% considered.
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Fig. 8.3 u% (N) moments using the electromagnetic structure functions. The upper figure represents
the neutron Nachtmann moment, and the lower figure the proton Nachtmann moment

The HT contributions are given by this difference between the total structure func-
tion ,u%(N ) moment and the moment coming from the LT expressions. In Fig. 8.4
we plot the magnitude of the higher-twist contributions relative to the total structure
functions for the proton and neutron moments. Although the relative contribution
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Fig. 8.4 Relative HT contributions to the electromagnetic u% (N) moments

of the higher twists to the proton and neutron’s moments are roughly the same at
0% = 1 GeV?, the proton’s HT terms die off much more rapidly than the neutron’s,
becoming 221.5 % at O = 2.5 GeV?. At the same Q2, the neutron’s HT terms still
contribute ~5 % of the total moment.

Given that there is nothing in the physics of the interference cross sections to sug-
gest that the vZ moments will be any different, we also expect the HT contributions
there to be relatively small. This means that the averaged total yZ structure functions
should be very similar to the averaged leading-twist structure functions—at least to
Q? = 1GeV?. In the next section we test this claim by calculating the moments
determined using interference structure functions.

~Z Moments

Using the AJM interference structure functions we may determine the proton and
neutron’s second moments. As before, we need the elastic forms of the (in this case
~Z) structure functions,

, o>
F)? (w2, Q%) = =Gy G2 5 (W2 — M2) (8.12)
2
F)2 (W2, 0% = — +Q o (G 6 +arair)s(w-m?) (.13
pyves

where

Gy = (1 —4sin® 0y)G Yy — GYly — Gy (8.14)
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Fig. 8.5 ,LL% (N) moment using the yZ structure functions. The upper figure represents the neutron
Nachtmann moment, and the lower figure the proton Nachtmann moment

are the interference electric and magnetic form factors. In practice, the strangeness
contribution, G, ,,, is neglected and charge symmetry is assumed exact. We assign
5 % uncertainties to these elastic structure functions.
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Fig. 8.6 Relative HT contributions to the interference u% (N) moments

The calculation for the vZ moments follows in much the same manner as the
electromagnetic case. For the uncertainties, the proton’s vZ structure functions are
the same as those used in the DX  calculation. The neutron’s, however, are given

a 15% error since this takes into account what is known about the deuteron F?Z
uncertainties, while still incorporating the difficulties in determining the neutron
cross sections from them. In Fig.8.5 we show the resulting vZ moments, while
Fig. 8.6 gives the relative HT contributions.

As in the v+ structure function moments, the results for ,u%(N ) using the interfer-
ence structure functions show that HTs contribute only a small amount to the total
structure functions. While here the neutron’s HT terms appear to be negative for
Q? > 2 GeV?, for both the proton and neutron, the contributions from higher twists
still do not exceed 5 % for Q2 > 2.5 GeV2. This is consistent with our findings from
the electromagnetic moments.

8.3 Implications for the DXZ Correction

In order to better understand the effects of the moment results on the [, 7 calculation,
it is useful to have the DIS region moment expansion of the hadronic vector (and for
completeness the axial-vector) correction [25],
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From the results of the previous section, there are two conclusions that we may
draw. The first, is that duality between the scaling region and the resonance structure
functions to a large degree holds to O at least as low as 1 GeV?. This means that the
DIS region structure functions may be used to a lower Q2 than was done in the AJM
model (where Region III only began at Q> = 2.5 GeV?>.) This would decrease the
uncertainty in the final box correction since the PDFs are much better understood.
(Even though the parton distributions do not have any resonance structure in them, the
fact that the DVZ correction involves an integral means—because duality holds—that
the PDFs will still give a good approximation to the final result.)

The second conclusion that may be drawn relates to the continuum piece in the
transformation of the v~ cross section background to the vZ case. Again, look-
ing at Figs. 8.3 and 8.5, since the electromagnetic LT and total structure function
moments agree so well, it means that there is only a small amount of contribution
from HTs. Since the total structure function is then constrained to agree with the LT
within certain limits, and since the LT structure functions are precisely known, the
total structure functions are constrained to values within a certain range from the
LT structure functions. This means that the background contribution—and thus the
continuum parameter which modifies the background—is also constrained to within
a certain limit of the LT structure functions. As the results for the vZ moments them-
selves show good agreement with the LT, this confirms the conclusions drawn from
the electromagnetic moment.

It is thus clear from the results in this chapter that the uncertainties on the
Df:z correction given by the AJM, PDF constrained model are well based. The
results for the moments confirm our earlier argument, based on PDF constraints
and deuteron PV asymmetry results, that the uncertainties for the DA ', correction are
severely overestimated by GHRM.
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Chapter 9
Summary and Conclusion

In the preceding work we have investigated a number of aspects concerning Standard
Model calculations of low-energy observables of which, using current phenomeno-
logical knowledge of nucleon structure functions, we have been able to determine to
new levels of precision. The study of these structure functions both experimentally
and theoretically will continue to enhance our understanding of the nucleon’s internal
structure.

Motivating much of the discussion in this work is the [, 7 radiative correction
to the weak charge of the proton. As the Qyeax experiment is now in its analysis
stage, it is essential to have a good understanding of all radiative corrections to Q{,jv.
Utilising the Adelaide-Jefferson Lab-Manitoba model, we have calculated the energy
dependence of DXZ up to energies relevant to the proposed MOLLER experiment.
The proton and deuteron inelastic asymmetries were also determined.

After reviewing previous efforts in Chap.4, most of Chap.5 was devoted to the
construction of the AJM model’s interference structure functions. Starting with the
division of the dispersion integral into different kinematic regions depending on
the physics involved, we transformed the electromagnetic structure functions into
their interference analogues. By matching the structure functions at the boundaries
between the regions, we were able to constrain the interference cross sections using
parton distribution functions. Furthermore, in using the quadrature method used to
combine errors, we followed the standard conventions in the literature and had a
consistent way of dealing with any uncertainties which arose in the analysis. Using
the same method to construct deuteron structure functions, we tested the AJM model
predictions of the parity-violating inelastic asymmetries by comparing with empirical
data from electron—deuteron scattering. Within our quoted errors, those results were
in good agreement with the experimental data, confirming the reliability of the model.

Having constructed a robust model of the interference structure functions, we pro-
ceeded to calculate the DYZ correction in Chap. 6. Since this correction is important
in both the Q yeax measurement of the proton’s weak charge and the MOLLER exper-
iment, the initial low-energy calculation was extended upto 12 GeV. In both cases, the
AJM model’s determination of DVZ gave uncertainties well within the error budget.
In fact, at Qyeax energies, the vZ box was calculated to a precision more than twice
© Springer International Publishing Switzerland 2016 115

N.L. Hall, Hadron Structure in Electroweak Precision Measurements,
Springer Theses, DOI 10.1007/978-3-319-20221-1_9


http://dx.doi.org/10.1007/978-3-319-20221-1_4
http://dx.doi.org/10.1007/978-3-319-20221-1_5
http://dx.doi.org/10.1007/978-3-319-20221-1_6

116 9 Summary and Conclusion

that of previous best estimates. For the MOLLER experiment, the relative contribu-
tions to the DVZ correction from the various kinematic regions differed significantly
from the low-energy evaluation. In particular, the Regge region became the dominant
part of the total correction. In order to ensure that any model dependence from this
region was properly accounted for, we used a number of physically different mod-
els to compare with the AJM determination. Although the majority of these models
were in good agreement, an additional error needed to be included to account for this
model dependence. Nevertheless the final uncertainty remained within the experi-
mental budget. The more recent E08-011 results for the parity-violating deep inelastic
scattering asymmetry were also studied in this chapter, with the theory values again
in matching well with the data.

Although we have examined the energy dependence of the v Z box correction, both
the Qweak and the MOLLER experiment operate at finite Q2. Since the framework
used to calculate DXZ is the dispersion formalism, which has been used in the form

derived at zero momentum transfer, the additional Qz-dependence needs to be taken
into account. Future efforts in this area would prove valuable. Additional experiments
to measure the yZ structure functions would also help to further lower the current
uncertainty on the (1,7 correction.

While this work has given considerable attention to the vZ box correction, the
structure functions developed in the AJM model may also be used to study other
low energy phenomena. In Chap.7, we used the electromagnetic parametrisations
of the cross sections as inputs in the generalised Baldin sum rule, to determined
the momentum transfer dependence of the electric and magnetic polarisabilities.
Our results significantly improved upon the earlier findings of Sirbitsev and Bluden,
showing good convergence towards the real photon point. An extrapolation of our
results yielded a value for the static electromagnetic polarisabilities which was in
excellent agreement with previous determinations. We were also able to determine the
‘radius’ of these polarisabilities, making contact with estimates from heavy baryon
chiral perturbation theory.

In the future, this analysis would benefit from increased electron—nucleon cross
section data in the very low 0? region (0% < 0.06 GeV?), since this would remove
the need to extrapolate to the photoproduction point. Additionally, such data would
reduce the uncertainties currently present in the resonance region parametrisation,
resulting in smaller errors on the final estimates of both the Q2-evolution of the
polarisablities and their static values. To further enhance our understanding of the
internal structure of the nucleon, such efforts are invaluable.

Finally, by studying the moments of the electromagnetic and interference struc-
ture functions we showed that duality holds at an unexpected level of precision to
reasonably low momentum transfer, Q> ~ 1 GeV?. Comparing the (proton and
neutron) second moments of the total electromagnetic F, structure function with
the leading-twist moments, the close agreement between the two provided evidence
of small higher-twist contributions. While there was marginally greater variation
between the leading-twist and total structure function moments in the vZ moments,
the uncertainties in the interference parametrisations were also larger and the results
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remained consistent with the -y ¥ moments. The confirmation of duality further high-
lights the reliability of the AJM model: since the higher-twist contributions are small,
the averaged yZ structure functions are constrained to resemble the leading-twist
structure functions, preventing the uncertainty from becoming overly large.

An obvious extension to this analysis involves extracting the nucleon matrix ele-
ments from the higher-twist contributions. With the accuracy of the AJM model
structure functions, we are in a position to calculate these matrix elements to a better
precision than previous estimates [1, 2]. It would also be interesting to compare the
higher-twist results found using the AJM model with those determined using lattice
QCD [3] and other phenomenological models [4, 5].
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Appendix A
Further Determinations of e D,‘Y/Z

While the vZ box correction has been calculated at Qweax and MOLLER energies
in the main body of this thesis, in order to fit to the £ = 0 point, data from other
PVES experiments is also needed [1]. However, the [, 7 correction must be included
in each of these data points. In the following table we show the results for Ne sz
at the kinematics of these additional measurements, most of which were originally
tabulated in Ref. [2] (Table A.1).

Table A.1 The Ne EI,‘:Z correction evaluated for additional parity-violating elastic scattering

experiments
Collaboration | Q2 (GeV?) |6 E (GeV) Re DXZ Ref.
(x1073)
PVA4 0.23 353 0.85 461 £035 |[[3]
PVA4 0.108 354 0.57 3754029 |[4]
HAPPEX 0.477 12.3 3.35 7.81 £0.80 |[5]
HAPPEX 0.099 6.0 3.03 7.554+0.76 | [6]
GO 0.122 6.68 3.03 7.55+0.76 | [7]
GO 0.128 6.84 3.03 7.554+0.76 | [7]
GO 0.136 7.06 3.03 7.554+0.76 | [7]
GO 0.144 7.27 3.03 7.55+0.76 | [7]
GO 0.153 75 3.03 7.55+0.76 | [7]
GO 0.164 7.77 3.03 7.554+0.76 | [7]
GO 0.177 8.09 3.03 755+£0.76 |[7]
GO 0.192 8.43 3.03 7.55+0.76 | [7]
GO 0.21 8.84 3.03 7.554+0.76 | [7]
GO 0.232 9.31 3.03 7.554+0.76 | [7]
GO 0.262 9.92 3.03 7.55+£0.76 |[7]
GO 0.299 10.63 3.03 7.55+0.76 | [7]
(continued)
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Table A.1 (continued)

Collaboration | Q2 (GeV?) |6 E (GeV) Re va . Ref.
(x1073)

GO 0.344 11.45 3.03 7.55+£0.76 |[7]
GO 0.41 12.59 3.03 755+£0.76  |[7]
GO 0.511 14.2 3.03 7.55+£0.76 |[7]
GO 0.631 15.98 3.03 755+£0.76  |[7]
GO 0.788 18.16 3.03 7.55+£0.76  |[7]
GO 0.997 20.9 3.03 755+£0.76 |[7]
HAPPEX 0.109 6.0 3.18 7.68 £0.78 | [8]
HAPPEX 0.624 13.7 3.48 791+£0.82 |[[9]
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