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Foreword

I first “met” Dr. A. Terry Bahill in 2005 while researching aerodynamic character-

istics of batted baseballs as part of a personal project that would become the ESPN

Home Run Tracker. I did not speak to him at the time (that would come later), but

rather downloaded and read many of the papers which he had posted on his website.

Dr. Bahill’s explanations and calculations were a great help to me at a time when

my career in baseball analytics was just beginning, but as we have corresponded

over the years, my admiration for his work, particularly his gift for communicating

ideas, has only increased. His latest publication, The Science of Baseball: Modeling
Bat-Ball Collisions and the Flight of the Ball, is a worthy contribution to his

prodigious body of baseball research, compiled over four decades and presented

with extraordinary clarity. It will serve as a valuable reference for scholarly fans, as

well as baseball analysts who aspire to compete at the highest level.

Major League Baseball (MLB) clubs are, as of early 2017, in the midst of a

revolution. The ranks of analysts employed by Major League Baseball clubs have

swelled in recent years, as teams try to realize competitive advantages through the

creative use of the data that is being generated and presented to teams at an

unprecedented rate. Every MLB front office now employs people who scrutinize

not only traditional statistics such as batting averages and home run totals but also

metrics like pitch speed or batted-ball exit speed. The most analytically enthusiastic

clubs study ball- and player-tracking data collected at rates as high as 100 data

points per second, and disseminated by commercial vendors such as Baseball Info

Solutions, Sportvision, Trackman, MLB Advanced Media and others. MLB’s
demand for new forms of baseball analysis has inspired a large and rapidly growing

pool of independent analysts who conduct research via publicly available sources,

hoping to earn the opportunity to offer their services as consultants to or employees

of Major League front offices. More people and companies are doing more

baseball-related analytical work than ever before.
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Throughout my dozen years of baseball-related work, both as an individual and

in my current role as an analyst with the Boston Red Sox, I have found that the best

research originated with people who possessed not only thorough baseball knowl-

edge but also a solid understanding and a proper deference to the other governing

principles of the situation under study. For contract and compensation issues, these

principles are those of economics; for discretionary tactical moves such as stolen

base or bunt attempts, or for pitch type selection, these principles are those of game

theory; for issues related to the movement of the baseball, these principles are those

of physics.

Unfortunately, too often these days we see analytical work that neglects, or even

runs counter to, the underlying principles, because the analyst’s mastery of the

relevant principles is faulty or incomplete. For some, analysis of baseball data

consists of arranging it in columns and performing statistical tests on it until

something “pops.” I was once offered a detailed analysis that rated elite closer

Koji Uehara as the 16th best pitcher on the Red Sox roster, and further opined that

his devastating splitter was among the weaker individual pitches on the entire team.

After I stopped laughing, I asked a few questions and learned that these dubious

results could be traced to a faulty premise about the value of pitch locations. It was,

essentially, a lack of understanding of one of the most important elements of

pitching analysis: how to judge the results of a pitch.

More knowledgeable analysts who are familiar with the applicable principles

can better detect and avoid bad data, more efficiently set up and perform the most

promising statistical tests, and can more reliably interpret the results. Dr. Bahill’s
expert dissection of the bat-ball collision (Chaps. 1, 2, 3, 4 and 5) and the flight of

pitched and batted baseballs through the air (Chap. 7) should be read by all who

wish to enhance their expertise at analysis of ball-tracking data by first understand-

ing why the baseball moves the way it does. Complete derivations have been

provided for those who wish to delve deeply into the equations, but they need not

present a persistent barrier to those readers who prefer to skim the line-by-line

mathematics and skip ahead to the conclusions. A prime example is the sensitivity

analysis presented in Chap. 7, which describes the change in batted-ball range

which follows a given change in various inputs such as batted-ball speed, batted-

ball spin or air density.

Baseball analysts past, present and future are indebted to Dr. Bahill for the

efforts he has made to make understanding of the complex underlying physics of

baseball accessible to all at each person’s chosen level of detail. His precise yet

eminently accessible explanations of the physics of the bat-ball collision and the

flight of the ball are more useful than ever in an era when MLBAM’s Statcast

system tells 30 and 100 times per second what has happened, but leaves to the

observer the task of figuring out why it happened (which is, of course, the key to
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predicting what will happen in the future, the ultimate objective of all analysts). If

you wish not only to understand the game of baseball better but to contribute to the

body of knowledge of the game of baseball, read this book carefully, and then read

it again. For the moment, knowledge of baseball physics can still differentiate an

analyst from his or her peers, but in the field of baseball analytics, no competitive

advantage persists for long.

Baseball Operations Analyst,

Boston Red Sox,

Creator of ESPN HR Tracker

Southborough, MA, USA

Greg Rybarczyk
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Preface

Collisions between baseballs, softballs and bats are complex and therefore their

models are complex. The first purpose of this book is to show how complex these

collisions can be, while still being modeled using only Newton’s principles and the
conservation laws of physics. This book presents models for the speed and spin of

balls and bats. These models and equations for bat-ball collisions are intended for

use by high school and college physics students, engineering students, the baseball

analytics community and most importantly students of the science of baseball.

Unlike models in previous books and papers, these models use only simple New-

tonian principles and the conservation laws to explain simple bat-ball collision

configurations. It is hoped that this book will help readers develop an understanding

of the modeling of bat-ball collisions. The second purpose of this book is to help

batters select or create baseball or softball bats that would be optimal for them. The

third purpose is to show what affects air density and how air density affects the

flight of the ball.
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Chapter 1 lays the groundwork for analyzing bat-ball collisions.

Chapter 2 introduces nine basic configurations of bat-ball collisions using words

and figures.

Chapter 3 starts developing the equations for these configurations. It starts with

the simple configurations having the ball collide with the center of mass of the bat.

Then it moves on to configurations that are more complex using the same equations

and development. The notation developed here will be used throughout the book.

Chapter 4 is the pinnacle of this book. It contains our most comprehensive

model. It models a collision at the sweet spot of the bat with spin on the pitch. It

has five equations and five unknowns. It develops equations for the bat and ball

linear and angular velocities after the collision in terms of those same four param-

eters before the collision. This chapter contains a sensitivity analysis of the model

that shows which parameters are the most important. It also has advice for selecting

the optimal bat. Such a bat does not have its barrel end cupped out. This chapter is

unique in the science of baseball literature. It is also self-contained. You need not

read previous chapters in order to understand it. In other words, a teacher could use

this chapter in a physics or engineering course and the students would only have to

buy this one chapter.

This is a big deal. The BaConLaw model also describes the motion of the bat

after the collision. Many models describe the motion of the ball after the collision,

but few (if any) describe the motion of the bat. When you see a batter hit a ball, do

you see the recoil of the bat? Can you describe it? Well these equations do.

Chapter 5 contains four alternative models for bat-ball collisions. Their purposes

are different and are based on different fundamental principles. The Effective Mass

model was created by physicists independent of the author of this book. Therefore,

comparisons to it are important for validating the model of Chap. 4. The second and
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third models are data-based, not theory-based. They use a different approach and

use a different type of data. The fourth model considers friction during the collision.

It is shown that this type of collision cannot be modeled thoroughly using only the

conservation laws. Our modeling technique could not handle the Collision with

Friction model because our model is only good for a point in time before the

collision and a point after the collision: it cannot handle behavior during the

collision. Chapter 4 fulfilled part of the first purpose of this book. It showed a

complex configuration for which our technique did work. Chapter 5 completed the

fulfillment of this purpose by showing a configuration for which our technique was

too simple.

Nothing in Chaps. 1, 2, 3, 4 and 5 is controversial. There are no unstated

assumptions. Important equations have been derived with at least two techniques.

In Chaps. 2, 3, 4 and 5, the equation numbers are the same. In other words, Eq. (2.3)

is the same as Eq. (3.3) is the same as Eq. (4.3) and is the same as Eq. (5.3). The

equations in Chaps. 2, 3, 4 and 5 were derived using only Newton’s principles and
the conservation laws of physics. The equations in Chap. 7 for the drag and Magnus

forces are original and are based on far more than Newton’s principles.
Chapter 6 summarizes and discusses Chaps. 1, 2, 3, 4 and 5. Chapters 1, 2, 3, 4, 5

and 6 deal with bat-ball collisions. They solve equations in closed form. There are

no approximations. Chapter 7 deals with messy real systems. It uses experimental

data and only gives approximations.

Chapter 7 contains derivations for equations governing the flight of the ball. It

shows what affects air density and how air density affects the flight of the ball. It

shows that a home run ball might go 26 feet farther in San Francisco than in Denver.

It also answers the question, “Which can be thrown farther a baseball or a tennis

ball?” This chapter can be read independently from the rest of the book.

We need people who can explain this book to baseball managers and general

managers.

Tucson, AZ, USA A. Terry Bahill
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Chapter 1

Types of Bat-Ball Collisions

1.1 Introduction

Purpose: This book has three primary purposes: first, to create models for bat-ball

collisions using only fundamental principles of Newtonian mechanics, second, to

help a batter select or create an optimal baseball or softball bat and third, to show

what affects air density and how air density affects the flight of the ball.

1.2 Newton’s Principles

Even though Newton formulated his principles over 300 years ago, his principles

still provide the best explanations for collisions between baseballs and baseball

bats. Although they are presented as equations in this book, math phobic readers

can just skip the equations and read the words without loss of continuity. Newton’s

principles of motion can be written as follows.

I. Inertia or uniform motion. Every object either remains at rest or continues to

move at a constant velocity, unless acted upon by an external force.

X
F ¼ 0 ) dv=dt ¼ 0

Note that force, velocity, acceleration, impulse and momentum are all vector

quantities, although we do not specifically mark them as such (Table 1.1). There-

fore, in the text (but not in the underlying models) we will treat ball speed and ball

velocity as the synonymous terms.

© Springer International Publishing AG 2018
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Table 1.1 List of variables and parameters and their abbreviations

Symbol: This

table is arranged

alphabetically by

the symbol

Abbreviation

ball ¼ 1

bat ¼ 2

before ¼ b

after ¼ a

Description, if specific, then

for configuration 2b unless

otherwise noted

Typical values for a C243

pro stock wooden bat and a

professional major-league

baseball player

SIb units

Baseball

units

βbat ‐ knob β Angular velocity of a bat

about the knob in configu-

ration 2c

rad/s rpm

CoE Conservation of energy Joules

CoM Conservation of momentum kg �m/s

CoAM Conservation of angular

momentum

kg �m2/s

CoR Coefficient of restitution of

a high-speed bat-ball

collision

0.466 0.466

dbat Length of a bat 0.863 m 34 inch

dbat ‐ cm ‐ cop dcm ‐ cop Distance from the center of

mass (cm) to the sweet spot,

which we define as the

Center of Percussion (cop)

0.119 m 4.7 in

dbat ‐ knob ‐ cm dk ‐ cm Distance from the center of

the knob to the center of

mass

0.568 m 22.4 in

dbat ‐ knob ‐ cop dk ‐ cop Distance from the center of

the knob to the center of

percussion

0.687 m 27.0 in

dspine ‐ cm Distance from the batter’s
spine to the center of mass

of a bat, an experimentally

measured value

1.05 m 41 in

dbat ‐ cm ‐ end Distance from the center of

mass to the barrel end of a

bat

0.281 m 11.1 in

dbat ‐ cop ‐ end Distance from the center of

percussion to the barrel end

of a bat

0.162 m 6.4 in

g earth’s gravitational con-
stant (at the University of

Arizona)

9.718 m/s2

Iball I1 Moment of inertia of a

baseball with respect to its

center of mass

0.000079

kg m2
4.3 oz in2

Ibat ‐ cm I2¼ Icm Moment of inertia of a bat

with respect to rotations

about its center of mass

0.0511 kg m2 2792

oz in2

Ibat ‐ knob Ik Moment of inertia of a bat

with respect to rotations

about the knob

0.335 kg m2 18,315

oz in2

(continued)
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Table 1.1 (continued)

Symbol: This

table is arranged

alphabetically by

the symbol

Abbreviation

ball ¼ 1

bat ¼ 2

before ¼ b

after ¼ a

Description, if specific, then

for configuration 2b unless

otherwise noted

Typical values for a C243

pro stock wooden bat and a

professional major-league

baseball player

SIb units

Baseball

units

KEbefore Kinetic energy of a bat and a

ball before the collision

370 J

KEafter Kinetic energy of a bat and a

ball after the collision

175 J

KElost Kinetic energy lost or

transformed in the collision

195 J

mball m1 Mass of a baseball 0.145 kg 5.125 oz

mbat m2 Mass of a baseball bat 0.88 kg 31 oz

�m �m ¼ mballmbat

mball þ mbat

0.124 kg 4.4 oz

Meff Mass of a portion of the bat

in the effective mass model

0.707 kg 25 oz

μf Dynamic coefficient of fric-

tion for a baseball sliding on

a wooden bat

0.5

rball r1 Radius of a baseball 0.037 m 1.45 in

rbat r2 Radius of a baseball bat 0.031 m 1.3 in

Pitch speed Speed of a ball at the

pitcher’s release point
�41 m/s �92a mph

vball ‐ before v1b Velocity of a ball immedi-

ately before the collision,

90% of pitch speed

�37 m/s �83a mph

vball ‐ after v1a Velocity of a ball after the

collision, often called the

launch velocity or the bat-
ted-ball speed.

42 m/s 93 mph

vbat v2 Velocity of a bat. If a spe-

cific place or time is

intended then the subscript

may contain cm (center of

mass), ip (impact point),

before (b) or after (a).

vbat ‐ cm ‐ before v2cmb Velocity of the center of

mass of a bat before the

bat-ball collision.

23 m/s 51 mph

vbat ‐ cm ‐ after v2cma Velocity of the center of

mass of a bat after the

collision.

11 m/s 25 mph

vtbat ‐ ip ‐ before v2ipb Total velocity of the impact

point of a bat before the

collision.

27 m/s 60a mph

(continued)
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II. Impulse and Momentum.

Applying a force changes the momentum of a body. The rate of change of

momentum is directly proportional to the force applied and is in the direction of the

applied force.

F ¼ dp

dt
¼ d mvð Þ

dt
) F ¼ ma

Stated differently, the amount of change in momentum of a body is proportional to

the impulse applied to the body and is in the direction of the impulse. An impulse

J occurs when a force F acts over an interval of time Δt, and it is given by

J ¼ R
Δt

Fdt. Since force is the time derivative of momentum, p, it follows that

J¼Δp¼mΔv. Finally, for rotational systems, applying an impulsive torque

changes the angular momentum about the torque axis.

Table 1.1 (continued)

Symbol: This

table is arranged

alphabetically by

the symbol

Abbreviation

ball ¼ 1

bat ¼ 2

before ¼ b

after ¼ a

Description, if specific, then

for configuration 2b unless

otherwise noted

Typical values for a C243

pro stock wooden bat and a

professional major-league

baseball player

SIb units

Baseball

units

vtbat ‐ ip ‐ after v2ipa Total velocity of the impact

point of a bat after the

collision.

11 m/s 25 mph

ωball ‐ before ω1b Angular velocity of a ball

about its center of mass

before the collision. This

spin rate depends on the

particular type of pitch.

�209 rad/s �2000 rpm

ωball ‐ after ω1a Angular velocity of a ball

about its center of mass after

the collision

�209 rad/s �2000 rpm

ωbat ‐ before ω2b Angular velocity of a bat

about its center of mass

before the collision

32 rad/s 309 rpm

ωbat ‐ after ω2a Angular velocity of a bat

about its center of mass after

the collision

6 rad/s 56 rpm

ωspine ‐ before Angular velocity of the bat-

ter’s arms about the spine

21 rad/s 201 rpm

aThe equations of this book concern parameters right before and right after the collision, not at

other times. For example, a pitcher could release a fastball with a speed of 92 mph, by the time it

got to the collision zone it would have slowed down by 10% to 83 mph. Therefore, in our

simulations we used 83 mph for vball ‐ before
bSI stands for the International System of Units

4 1 Types of Bat-Ball Collisions



III. Action/reaction. For every action there is an equal and opposite reaction.

IV. Restitution. The coefficient of restitution (CoR) is defined as the ratio of the

relative speeds of two objects after and before a collision. This holds whether

one object or the other is initially at rest or the objects are approaching each

other. The CoR models the energy lost in a collision.

CoR ¼ relative speed after the collision

relative speed before the collision

In this book, we will use these four principles of Newton. But more importantly,

we will also use the overarching conservation laws that state: energy, linear

momentum and angular momentum cannot be created or destroyed. These laws

are more general than the principles and apply in all circumstances. Because our

model is based on these Conservation Laws of physics applied to Baseball, we call

it the BaConLaw model.

1.2.1 Variables and Parameters

The terms parameter and variable are often used interchangeably. Nevertheless, in

this book we will try to distinguish between the terms. Our variables have equations

that give them values. Our variables contain parameters that will produce different

sets of equations. In this book, we will treat the following as variables: the

inputs vball ‐ before , ωball ‐ before , vbat ‐ cm ‐ before , ωbat ‐ before and CoR, the out-

puts vball ‐ after , ωball ‐ after , vbat ‐ cm ‐ after , ωbat ‐ after and KElost, the forces on the

ball, launch velocity, launch angle and launch spin rate. The following are param-
eters of our equations: the dimensions, mass and moment of inertia of the bat and

ball, the air density, the drag coefficient, the Magnus coefficient, the Reynolds

number, and collision speed. For each invocation of an equation, they will have a

fixed value. Sometimes we will refer to variables and parameters together as

properties of the model. The following are constants that always have the same

values: π and the earth’s gravitational constant at the University of Arizona, g.

1.3 Characterizing Bat-Ball Collisions

A collision can be elastic or inelastic. In an elastic collision (such as a steel ball, or a
superball, bouncing off a large steel plate), there is practically no energy lost or

transformed. Whereas, in an inelastic collision (such as a bat-ball collision) energy is

transformed. Most authors call this the energy lost, but it is not lost: it is merely

transformed into a different form, such as heat in the ball, vibrations in the bat,

acoustic energy in the ‘crack of the bat,’ friction and permanent deformations of the

bat and ball. This book considers only inelastic collisions where kinetic energy is lost.

1.3 Characterizing Bat-Ball Collisions 5



1.3.1 Collision Taxonomy

There are many kinds of collisions between two rigid bodies. One kind, where the

duration of the collision is short and the area of the collision is small, is called an

impact. Bat-ball impacts are described with the following three characteristics:

dimension, location and direction. The following definitions, involving these char-

acteristics, hold before and after the collision.

1.3.1.1 Dimension

If the equations of motion can be described in a two-dimensional (2D) plane, then

the impact is planar. For example, the game of billiards is, for the most part, planar.

Otherwise, if the equations of motion require description in three-dimensional

(3D) space, then the impact is nonplanar.

1.3.1.2 Line of Impact

For an impact between two objects, there is a common tangent plane that is

perpendicular to the radius of curvature of each object at the point of contact. The

vector that is perpendicular to this plane at this point is called the line of impact.

1.3.1.3 Location

An impact is central if the centers of mass of both bodies are on the line of impact,

otherwise the impact is eccentric.

1.3.1.4 Direction

An impact is direct if the directions of motion of the both bodies are on the line of

impact; it is parallel if the direction of the center of mass one body is on the line of

impact and the other is on a parallel line, otherwise the impact is oblique.
These terms are useful because they predict the complexity of the equations of

motion. Planar-central-direct impacts are the simplest because all motions are along

the same axis and there are no impulsive torques. Nonplanar-eccentric-oblique

impacts have the most complicated equations. These terms also help a person to

determine the type of analysis that will be necessary to study a certain collision

configuration. If you are going to simulate a collision, then your first decisions

involve these terms, Table 1.2.
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1.4 Models for a Batter Swinging a Bat

In the top panel of Fig. 1.1, the batter swings the bat with translational and

rotational motions. In the middle panel, the rotation has two components, one

about the batters spine ωbody and another about the pivot point between the

hands, ωwrists. In the bottom panel, the movement of the bat before the collision is

modeled as the sum of vbat ‐ cm ‐ before and a line tangent to the ωbatarc, which is

centered at a pivot point between the hands. This straight-line velocity was mea-

sured in our experiments and it is called the bat speed before the collision. It is a

combination of translation and rotation. These alternative models emphasize dif-

ferent aspects of the swing of the bat. We will primarily use the bottom model.

Modeling philosophy note. Having several alternative models helps ensure that

you understand the physical system. No model is more correct than another. They

just emphasize different aspects of the physical system.

1.5 Summary

This chapter presented Newton’s laws of motion, our table of abbreviations and

nomenclature for describing collisions. It also gave three simple models for a

person swinging a bat.

Table 1.2 Top-level decisions for simulating bat-ball collisions

Characteristic Allowable set of values {legal values}

Dimension of analysis {planar, nonplanar}

Location of collision {central, eccentric}

Direction of motion {direct, parallel, oblique}

Spin on the pitch {yes, no}

Point of contact {center of mass, sweet spot}

1.5 Summary 7



Fig. 1.1 Three different

models for the swing of

the bat
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Chapter 2

Configurations of Bat-Ball Collisions

2.1 Introduction

Purpose: The purpose of this chapter is to present many possible configurations of

bat-ball collisions. Then to explain the configurations that we can model and those

that we cannot.

This chapter presents several configurations of bat-ball collisions. For each of these

configurations, we model the state of the bat and the ball at a point in time right

before the collision and at another point just after the collision. We are not modeling

the behavior (1) during the collision, (2) long before the collision (the pitched ball)

or (3) long after the collision (the batted-ball). The flight of the pitch and the batted-

ball are modeled in Chap. 7.

2.2 Collisions at the Center of Mass

2.2.1 Configuration 1a

Configuration 1a is a head-on collision at the center of mass of the bat, as shown in

Fig. 2.1. Spin on the ball and bat are not considered. This simple type of analysis

was done by Bahill and Karnavas (1989). It uses Conservation of Linear Momen-

tum (CoM) and the Coefficient of Restitution (CoR).
Configurations 1a and 1b are planar, central, direct impacts.

The impact is planar because the governing equations are in the x-y plane. This

collision can be drawn on a flat piece of paper.

The impact is central because the line of impact passes through the centers of mass

of both the ball and the bat.

© Springer International Publishing AG 2018
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The impact is direct because the centers of mass of both the bat and the ball are

moving along the line of impact. This means that the initial tangential (y-axis

and z-axis) velocity components are zero.

In this model, the bat does not rotate.

This type of collision would produce a line drive back to the pitcher.

2.2.2 Configuration 1b

Configuration 1b is the same as configuration 1a, except that it adds KElost and

Conservation of Energy as checks on the derivations. Planar, central, direct colli-

sions (like configurations 1a and 1b) are called head-on collisions.

2.2.3 Configuration 1c

Configuration 1c is a collision at the center of mass of the bat along the y-axis, but

vertically it is above or below the long axis of the bat, as shown in Fig. 2.2. This is

the same as configuration 1a, except that there is a vertical offset between the

directions of motion of the bat and ball at the collision (the bat hits the bottom part

of the ball) and the equations allow spin on the ball. Nathan et al. (2012 and

Kensrud, Nathan and Smith 2016) have presented experimental data for the spin

on the ball after such a collision.

Fig. 2.1 Configurations 1a and 1b are head-on collisions at the center of mass (cm) of the bat. All

figures in this book are for right-handed batters

Fig. 2.2 Configuration 1c is a collision at the center of mass (cm) of the bat, but vertically it is

above the long axis of the bat
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Configuration 1c is a planar, central, oblique impact.

The impact is planar because the impact is in the x-z plane: the bat and ball will both

have x- and z-axis motion after the impact, but no motion in the y direction.

The impact is central because the line of impact passes through the centers of mass

of both the ball and the bat.

The impact is oblique because in the x-z plane the motion of the bat and ball are not

parallel to the line of impact.

This type of collision would typically produce a flyball to center field, or maybe

a pop-up. The equations for this type of impact will be considered in a future paper.

Configuration 1c will not be mentioned again in this book.

2.3 Collisions at the Sweet Spot

The term sweet spot is a layman’s term for a general area of the bat about two inches

wide and one-third of an inch high centered about six inches away from the barrel

end of the bat, as shown in Fig. 2.3. Section 3.3.1.1 gives nine possible definitions

for the sweet spot of the bat. This is nebulous. Therefore, when we are writing about

a general area of the bat, or when we are reporting on papers that used the term, we

will use the term sweet spot. However, in our figures, we need to be more specific.

Hence, we adopt the first definition in Sect. 3.3.1.1 of the sweet spot, namely the

center of percussion (cop). In our simulations, we need to specify a particular point

on the bat for the collision: therefore, we also use the center of percussion in our

simulations. Finally, in our equations we do not restrict the collision to be at any

particular point on the bat: Therefore, in equations, we state that the collision occurs

at the impact point (ip).

Configurations 2 are head-on collisions at the sweet spot of the bat, which we

define to be the center of percussion (Bahill 2004). This type of analysis was done

by Watts and Bahill (1990). Compared to Configurations 1, they move the collision

from the center of mass of the bat to the sweet spot of the bat.

2.3.1 Configurations 2a and 2b

Configuration 2a is a head-on collision at the sweet spot {center of percussion

(cop)} of the bat. Compared to Configuration 1a, it adds an equation based on

Newton’s second principle and it adds rotation of the bat about its center of mass.

Fig. 2.3 The sweet spot of the bat is centered about six inches away from the barrel end of the bat
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Configuration 2a is a planar, eccentric, parallel impact.

The impact is planar because the equations are in the x-y plane. This collision can

be drawn on a flat piece of paper.

The impact is eccentric because the line of impact does not pass through the center

of mass of the bat in the x-y plane. It could be noted that the line of impact passes

through the center of mass of the bat in the x-z plane. But that is irrelevant. Once

the line of impact misses the center of mass in any plane, the impact is eccentric.

The impact is parallel because the line of impact is parallel to the x-axis, the ball is

moving along the x-axis and the bat’s center of mass is moving parallel to the

x-axis.

Configuration 2a would produce a line drive back to the pitcher.

Configuration 2b is a collision at the sweet spot of the bat. It is similar to

configuration 2a, except that it adds Conservation of Energy as a consistency

check, Conservation of Angular Momentum, spin on the ball and kinetic energy

lost. Configuration 2b is the pinnacle of this book.

For configurations 2, planar, eccentric, parallel collisions are called head-on.
For collisions 2a and 2b, which are described with Fig. 2.4, there is no torque on

the ball. Therefore, there will be no change in angular velocity of the ball. For these

head-on collisions, the angular velocity of the ball before the collision is the same as

the angular velocity of the ball after the collision.

2.3.2 Configuration 2c

Configuration 2c is a collision at the sweet spot of the bat with spin on the pitch.

Conservation of Angular Momentum about the z-axis was successfully used. It

replaces rotation about the center of mass with rotation about the knob of the bat,

identified with βbat.

Fig. 2.4 Configurations 2 are collisions at the sweet spot {center of percussion (cop)} of the bat
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2.3.3 Configuration 2d

Configuration 2d is a collision at the sweet spot of the bat with spin on the pitch and

friction between the bat and ball, as will be shown later in Fig. 5.2. As an obvious

example of what spin can do, consider a tennis player putting sidespin on a tennis

ball, the ball certainly will move sideways when it hits the ground Cross (2011).

Likewise, when a spinning baseball collides with a bat there will be a friction force

that changes the rate of spin of the ball. This configuration uses conservation of

momentum and Newton’s second principle. It adds friction at the contact point and

a momentum moment.

2.3.4 Configuration 3

Configuration 3 is a collision at the sweet spot of the bat, but above or below the

long axis of the bat as shown in Fig. 2.5. This is the same as configuration 2b, except

it adds offset to the bat-ball collision and bat twist. Nathan et al. (2012, Kensrud,

Nathan and Smith 2016) gave experimental data for the spin of a baseball after

collisions in this type of an impact and Sawicki, Hubbard and Stronge (2003) gave

simulation results.

Configuration 3 is a nonplanar, eccentric, oblique impact.

If spin on the ball causes motion in the y-axis direction, then the impact is nonplanar

because the bat and ball will both have x-, y- and z-axis motion after the impact.

The impact is eccentric because the line of impact misses the center of mass of the

bat in the x-y plane.

The impact is oblique because in the x-z plane the motion of the bat and ball are not

parallel to the line of impact.

This type of collision would typically produce a flyball to center field. Config-

uration 3 will not be mentioned again in this book.

Fig. 2.5 Configuration 3 is a collision at the sweet spot (cop) of the bat, but above the horizontal

axis of the bat
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2.3.5 Configuration 4

Configuration 4 is an oblique collision at the sweet spot, but above or below the

horizontal (long) axis of the bat as shown in Fig. 2.6. This is the same as config-

uration 3, except that it adds the bat being rotated short of (or beyond) a line parallel

to the y-axis at the time of the collision.

Configuration 4 is a nonplanar, eccentric, oblique impact.

This impact is nonplanar because the bat and ball will both have x-, y- and z-axis

motion after the impact.

The impact is eccentric because the line of impact misses the center of mass of the

bat in the x-y plane.

The impact is oblique because the bat is not moving along the x-axis at the time of

impact. This means that there will be tangential (y-axis) velocity components.

This type of collision would typically produce a flyball to right (or left) field.

Configuration 4 will not be mentioned again in this book.

2.4 Summary

Abbreviations used in Table 2.1.

Abbreviation Name

CoE Conservation of energy

CoM Conservation of momentum

CoAM Conservation of angular momentum

CoR Coefficient of restitution

Cm Center of mass

KElost The kinetic energy lost or transformed during the collision

μf Coefficient of friction

em Coefficient of moment restitution

Fig. 2.6 Configuration 4 is an oblique collision at the sweet spot (cop) and above the horizontal

axis of the bat
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Table 2.1 shows the history of the development of the nine configurations

mentioned in this book. It also shows how the details of the models differ. In

configurations 1ab and 2abc spin is allowed, but it is not included in the equations,

because in Chap. 4 we show that spin has no effect in head-on collisions.

Table 2.2 shows the equations and constraints that were used in each model. For

example, configuration 2b for a collision at the sweet spot, used equations for

Conservation of Linear Momentum, Coefficient of Restitution, Newton’s second
principle, Conservation of Energy, kinetic energy lost and Conservation of Angular

Momentum. It used five equations and had five outputs (unknowns). It used

principles of physiology, spin on the ball and rotation of the bat about its center

of mass.

Modeling philosophy note. This chapter presented alternative models. They

emphasize different aspects of the physical system. In this chapter, they got more

and more complicated as they tried to cover larger and larger aspects of the real

system. This chapter sets the structure for the rest of the book. In Chap. 3, we will

follow this structure except that we will add equations. But once again, we will start

with baby steps and then get more complicated.

Table 2.2 Equations and constraints for some of the configurations

Characteristic Configuration

1a 1b 2a 2b 2c 2d

Location

Is the collision at the center of mass (cm) or the impact point

(ip)?

cm cm ip ip ip ip

Equations

Conservation of linear momentum y y y y y

Coefficient of restitution y y y y y

Newton’s second principle y y y y

Conservation of energy y y

Kinetic energy lost y y

Conservation of angular momentum y y y

Number of equations used 2 3 3 5 4 2

Number of unknowns (outputs) 2 2 1 5 3 1

Constraints

Principles of physiology y y y y y y

Is ωball used? y y y

Is ωbat used? y y

Is βbat used? y

Is friction used? y

16 2 Configurations of Bat-Ball Collisions
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Chapter 3

Equations for Bat-Ball Collisions

3.1 Introduction

Purpose: The purpose of this chapter is to start presenting the incipient equations

that we will use to model selected configurations of Chap. 2. We will allow the

reader to progress slowly through the equations: take baby steps first.

Each of the next six sections in this chapter starts with a table that describes the

inputs, outputs and equations that will be used in that section.

3.2 Collisions at the Center of Mass

For configurations 1a, 1b and 1c, the model for bat motion is a linear translation of

the bat.

3.2.1 Configuration 1a

Configuration 1a is a head-on collision at the center of mass of the bat, as shown in

Fig. 1.1 (bottom) and Fig. 2.1. This section uses a linear model (meaning there is no

ωbat or ωball) with two equations in two unknowns (Bahill and Karnavas 1989,

1991), which are given in Table 3.1.

We will now derive the equations for a head-on (planar, central, direct) collision

at the center of mass (cm) of the bat. The abbreviations used in the following

equations are described in Table 1.1. Many authors, for example (Bahill and

Karnavas 1989, 1991; Watts and Bahill 1990, 2000; Brach 2007), have previously

studied collisions using the Newtonian concepts of

Conservation of Momentum
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mballvball-before þ mbatvbat-cm-before ¼ mballvball-after þ mbatvbat-cm-after

and the Kinematic Coefficient of Restitution (CoR)

CoR1a ¼ � vball-after � vbat-cm-after
vball-before � vbat-cm-before

to derive the following equations for the velocities of the ball and bat after the

collision, which were presented in Bahill and Karnavas (1989):

vball-after ¼ vball-before mball � CoR1ambatð Þ þ vbat-cm-beforembat 1þ CoR1að Þ
mball þ mbat

vbat-cm-after ¼ vball-beforemball 1þ CoR1að Þ þ vbat-cm-before mbat � mballCoR1að Þ
mball þ mbat

After rearranging, we have the canonical form

vball-after ¼ vball-before þ vbat-cm-before � vball-beforeð Þmbat 1þ CoR1að Þ
mball þ mbat

vbat-cm-after ¼ vbat-cm-before � vbat-cm-before � vball-beforeð Þmball 1þ CoR1að Þ
mball þ mbat

Historically, these derivations started with the two-rotation model for the swing of a

baseball or a softball bat (Fig. 1.1, middle) and linearized the model by finding

tangents to the circular motion (Fig. 1.1, bottom). Bahill and Karnavas (1989)

expanded this model by measuring the speed of the swing for a few hundred

baseball and softball players and used this experimental data and model, to derive

equations for the batted-ball speed for each individual person.

This derivation used the following assumptions:

1. Neglect permanent deformation of the bat and ball.

2. Assume a head-on (planar, direct, central) collision at the center of mass of

the bat.

3. Ignore the change in the rotational kinetic energy of the ball: the energy stored in

the spin of the ball is less than 1% of the translational energy (Bahill and

Baldwin 2008). For a curveball hitting the sweet spot of the bat, the initial

Table 3.1 Equations for configuration 1a, two equations and two unknowns

Inputs vball ‐ before , vbat ‐ cm ‐ before

Outputs (unknowns) vball ‐ after , vbat ‐ cm ‐ after

Equations

Conservation of Linear

Momentum

mballvball ‐ before +mbatvbat ‐ cm ‐ before¼mballvball ‐ after +mbatvbat ‐
cm ‐ after

Definition of CoR CoR1a ¼ � vball-after � vbat-cm-after
vball-before � vbat-cm-before
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kinetic energy stored in the bat and the ball is 375 J, of which 1.7 J is stored in the

spin of the ball: so neglecting it seems reasonable. In the section for configura-

tion 2b, we show that for a head on collision (without considering friction) there

will be no change in the ball’s angular rotation.
4. Assume that there are no tangential forces during the collision.

5. Neglect the moment of inertia of the batter’s arms.

6. We assumed a free-end collision. The velocity of the bat reaches its peak at or

before the collision. This means that the batters hands and arms are no longer

applying acceleration forces. Hence, we neglected forces from the batters hands

during the collision.

The reason for considering collisions at the center of mass is to allow the reader

to progress slowly through the derivations. Take baby steps first. Configuration 1a

in Chap. 3 takes two pages of easy equations. The BaConLaw model of Chap. 4

takes 40 pages of detailed equations.

This is the end of the Bahill and Karnavas (1989, 1991) model derivation.

3.2.1.1 Alternative Bat Effective Mass Model

The bat effective mass bat-ball collision modeling community, established by

Nathan (2003), derives the batted-ball speed equation as follows. Fig. 2.1 and the

equation for conservation of linear momentum give us

mballvball-before þ mbatvbat-cm-before ¼ mballvball-after þ mbatvbat-cm-after

We can solve this for vbat ‐ cm ‐ after

vbat-cm-after ¼ vbat-cm-before þ mballvball-before � mballvball-after
mbat

� �

and substitute this into thier equation for the coefficient of restitution.

e ¼ � vball-after � vbat-cm-after
vball-before � vbat-cm-before
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e¼�
vball-after� vbat-cm-beforeþmballvball-before�mballvball-after

mbat

� �
vball-before� vbat-cm-before

e vball-before� vbat-cm-beforeð Þ¼�vball-after� vbat-cm-beforeþmball vball-before� vball-afterð Þ
mbat

collecting the vball-after terms on the left side yields

vball-afterþmballvball-after
mbat

¼�vbat-cm-beforeþmballvball-before
mbat

� e vball-before� vbat-cm-beforeð Þ

grouping the terms on the right

vball-afterþmballvball-after
mbat

¼�vbat-cm-beforeþ evbat-cm-beforeþmballvball-before
mbat

� evball-before

vball-after ¼ þvball-before

mball

mbat
� e

1þ mball

mbat

 !
� vbat-cm-before

1� e

1þ mball

mbat

Multiply top and bottom by mbat and we get the Bahill and Karnavas equation

presented above and repeated here.

vball-after ¼ vball-before mball � mbatCoR1að Þ � vbat-cm-beforembat 1� CoR1að Þ
mball þ mbat

In Sect. 5.2wedefineq ¼ e�mball
Meff

1þmball
Meff

� �
and then vball ‐ after¼ qvball ‐before + (1 + q)vtbat ‐ before.

The purpose of presenting this model here is to emphasize that it is important to

consider alternative models. If their main results agree, then that validates both

models. We will return to this bat Effective Mass model in Sect. 5.2.

3.2.2 Configuration 1b

Configuration 1b is a head-on collision at the center of mass of the bat, as shown in

Fig. 2.1. Spin on the ball and bat are not considered. This is the same as configu-

ration 1a, but it adds Conservation of Energy. It has three equations and two

unknowns as shown in Table 3.2.

Although an additional equation is not needed, we will now present the Conser-

vation of Energy equation as a consistency check. There is nothing in the system

that will release energy during the collision (loaded springs or explosives). The bat

swing is level so there will be no change in potential energy.

Before the collision, there is kinetic energy in the ball and the bat.
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KEbefore ¼ 1

2
mballv

2
ball-before þ

1

2
mbatv

2
bat-cm-before

We modeled the bat velocity as a linear term comprising a translation and two

rotations (See Fig. 1.1). This linear velocity is what we measured in our

experiments.

KEafter ¼ 1

2
mballv

2
ball-after þ

1

2
mbatv

2
bat-cm-after

KEbefore ¼ KEafter þ KElost ð3:1Þ

Kinetic energy will be transformed to heat in the ball, vibrations in the bat and

deformations of the bat and ball. The Coefficient of Restitution (CoR) models the

energy that is transformed in a frictionless head-on collision between two objects.

Such a collision will have no tangential velocity components. The equation for the

kinetic energy lost in a bat-ball collision of configuration 1b (Dadouriam 1913,

Eq. (XI), p. 248; Ferreira da Silva 2007, Eq. 23; Brach 2007, Eq. 3.7) is

KElost ¼ �m

2
collision velocityð Þ2 1� CoR2

1b

� �

where �m ¼ mballmbat

mball þ mbat

.

KElost ¼ �m

2
vball-before � vbat-cm-beforeð Þ2 1� CoR2

1b

� � ð3:2Þ

This equation will be derived in the configuration 2b section. Combining these three

equations (KEbefore,KEafter and KElost) yields the equation for Conservation of

Energy for configuration 1b

Table 3.2 Equations for configuration 1b, which adds Conservation of Energy (CoE). It has three

equations and two unknowns

Inputs vball ‐ before , vbat ‐ cm ‐ before

Outputs vball ‐ after , vbat ‐ cm ‐ after

Equations

Conservation of Energy 1
2
mballv

2
ball-before þ 1

2
mbatv

2
bat-cm-before

� �m
2
vball-before � vbat-cm-beforeð Þ2 1� CoR2

1b

� � ¼
þ1

2
mballv

2
ball-after þ 1

2
mbatv

2
bat-cm-after

Conservation of Linear

Momentum

mballvball ‐before +mbatvbat ‐ cm ‐before¼mballvball ‐ after +mbatvbat ‐ cm ‐ after

Definition of CoR CoR1b ¼ � vball-after � vbat-cm-after
vball-before � vbat-cm-before
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1

2
mballv

2
ball-before þ

1

2
mbatv

2
bat-cm-before �

�m

2
vball-before � vbat-cm-beforeð Þ2 1� CoR2

1b

� �
¼ þ1

2
mballv

2
ball-after þ

1

2
mbatv

2
bat-cm-after

ð3:3Þ

This assumes that there is no spin on the ball or the bat, meaning that we have

ignored angular momentum. Using the numbers in Table 1.1 produces the results

shown in Table 3.3.

3.2.3 Simulation Results

Table 3.4 shows the kinetic energies for the same simulation.

A batted-ball velocity, vball ‐ after, of 89 mph is reasonable. The fact that

KEbefore¼KEafter +KElost¼ 346 J shows that this set of equations is consistent.

As a reality check, we note that the average kinetic energy in the swings of

28 members of the San Francisco Giants baseball team was 292 J (Bahill and

Karnavas 1991). Given human variability and the different circumstances for the

experiments, these numbers are compatible.

Table 3.3 Simulation values

for bat-ball collisions at the

center of mass,

configuration 1b

SI units Baseball units

Inputs

vball ‐ before �37 m/s �83 mph

vbat ‐ cm ‐ before 23 m/s 52 mph

CollisionSpeed 135 mph

CoR1b 0.475

Outputs

vball ‐ after 40 m/s 89 mph

vbat ‐ cm ‐ after 11 m/s 25 mph

Table 3.4 Configuration 1b

kinetic energies, J
KE ball linear velocity before¼ 100

KE bat linear velocity before¼ 246

KE before total¼ 346

KE ball linear velocity after¼ 114

KE bat linear velocity after¼ 55

KE after¼ 169

KE lost ¼ 177

KE after + KE lost¼ 346
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Let us now consider the consequences of neglecting the spin of the ball. A

typical spin rate for a curveball is 2000 rpm. So the rotational kinetic energy in the

ball will be about 0:5Iballω
2
ball-before ¼ 1:7 J. This is small compared to the transla-

tional kinetic energies.

This is the end of the equations for configuration 1b. In the rest of this book, we

will use Newtonian mechanics, to derive equations for the velocity of the bat and

the ball after their collision, for collisions that do not occur at the center of mass of

the bat.

3.2.4 The Coefficient of Restitution

The Coefficient of Restitution (CoR) models the energy lost in a collision between

two objects. It is commonly defined as the ratio of the relative speed between the

two objects after a collision to the relative speed before the collision. Here are the

CoR definitions for some of our configuration types. The subscripts refer to the

collision type given in Chap. 2.

CoR1a, ¼ CoR1b ¼ � vball-after � vbat-cm-after
vball-before � vbat-cm-before

CoR2a ¼ CoR2b ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before

CoR2c ¼ � vball-after � vknob-after � dknob-ipβafter
vball-before � vknob-before � dknob-ipβbefore

These equations will be explained later when they are used.

The CoR is used to model the energy lost during a bat-ball collision. If the CoR
were 1.0, then all the original energy would be recovered in the motion of the

system after impact. However, if there were losses due to energy dissipation or

energy storage, then the CoR would be between 0 and 1.0. In a bat-ball collision

there is energy dissipation: both the bat and the ball increase in temperature. Also

both the bat and the ball store energy in vibrations. This energy is not available to be

transferred to the ball and therefore the ball velocity is smaller.

The CoR depends on the speed of the collision. Our simulations use the follow-

ing equation for a wooden bat and a baseball CoR ¼ 0.61–0.001 CollisionSpeed,
where CollisionSpeed (the sum of the ball speed and the bat speed) is in mph. This

equation came from unpublished data provided by Jess Heald of Worth Sports

Co. and they assume a collision at the sweet spot of the bat. Table 3.5 gives CoRs

measured in seven experimental studies.

Most of the data points for 60 mph collisions against flat walls show that

baseballs are in conformance with the rules of major league baseball. However,

for high speeds and wooden bats, there is a lot of variation in the data. Some studies

say that the CoR of a collision between a ball and flat wooden wall is higher than the
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CoR of a collision between a ball and a wooden bat, and some say that it is lower.

The CoR depends on the shape of the object that the ball is colliding with. When a

baseball is shot out of an air cannon onto a flat wooden wall, most of the ball’s
deformation is restricted to the outer layers: the cowhide cover and the four yarn

shells. However, in a high-speed collision between a baseball and a cylindrical bat,

the deformation penetrates into the cushioned cork center. This allows more energy

to be stored and released in the ball and the CoR might be higher.

The CoR also depends on where the ball hits the bat, the speed of the collision,

the relative humidity, the temperature, the deformation of the objects, the surface

texture and the configuration of the collision.

Figure 3.1 shows that the CoR for baseballs is a function of the collision speed,

the temperature and the relative humidity. The experiments reported in Table 3.5

did not state the temperature or humidity in which their experiments were

performed. Therefore, the data in Table 3.5 must be taken with a grain of salt.

The data point at 140 mph, from Fallon and Sherwood (2000), was based on

140 valid collisions with major league baseballs: so it is probably accurate. It is

given to emphasize the fact that we do not know what the CoR is for high-speed

Table 3.5 Experimental CoR values for colliding baseballs

Source

Baseball

collides

with Equation

CoR value at

60 mph

CoR

value at

120 mph

Jess Heald President of Worth

Sports Co. 1986, reported in

Watts and Bahill (1990)

Flat

wooden

wall

CoR¼ 0.61� 0.001

CollisionSpeed
0.550 0.490

Crisco, Greenwald, Blume

and Penna (2002)

Wooden

bat

CoR ¼ 0.67–0.0015

CollisionSpeed
0.580 0.490

Fallon and Sherwood (2000) Flat

wooden

wall

0.548

Fallon and Sherwood (2000) Wooden

bat

*At 140 mph 0.504*

Drane et al. (2008) Flat

wooden

wall

0.546

Drane et al. (2008) Wooden

bat

*At 90 mph 0.537 0.503*

Major League Baseball rules Flat

wooden

wall

*At 58 mph 0.514–0.568*

Nathan et al. (2011) Flat steel

plate

CoR¼ 0.64� 0.0014

CollisionSpeed
0.556 0.472

Cross (2011), Fig. 8.5 Flat

wooden

wall

CoR¼ 0.67� 0.0021

CollisionSpeed
0.544 0.418
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collisions. Meaning that we cannot extrapolate the Nathan, Smith, Faber and

Russell (2011) curve to speeds above 120 mph.

Therefore, for the simulations of this book, we will use the following equation

from Worth Sports Co.

CoR ¼ 0:61� 0:001 CollisionSpeed

and we will be cautious about using its values for speeds above 120 mph. Using this

equation means that we are ignoring the effects of where the ball hits the bat

(we assume that it is at the center of mass or at the sweet spot), the relative

humidity, the temperature, the shape of the objects (we assume that the baseball

is colliding with a flat wooden wall), the deformation of the objects and the surface

texture (seams). We only consider major league baseballs.

Modeling philosophy note. George Box wrote, “All models are wrong, but some

are useful (Box 1981).” In this section, we wrote that the coefficient of restitution

for collisions is between zero and one, 0�CoR� 1. But these are not theoretical

limits. For example, a baseball thrown through a window screen will have a

negative CoR. Whereas a ball that releases energy on every bounce, for example

one that is coated with an explosive or one that contains a spring and an escapement

like a watch, can have a CoR greater than one. A model is a simplified represen-

tation of a particular view or aspect of a real system. No model can represent all

views.

Fig. 3.1 Coefficients of Restitution (CoR) for major league baseballs as functions of temperature,

collision speed and relative humidity. Data are from Nathan et al. (2011). The point at 140 mph is

from Fallon and Sherwood (2000). The red line shows the major league baseball rule for a collision

at 58 mph
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3.3 Collisions at the Sweet Spot

3.3.1 Configuration 2a

Configuration 2a is a head-on (planar, parallel) collision at the sweet spot of the bat,

which we define to be the Center of Percussion (CoP). Watts and Bahill (1990)

expanded the Bahill and Karnavas (1989) model to create configuration 2a. They

introduced a third unknown, the rotation of the bat, ωbat, after the collision and a

third equation, which was based on Newton’s second principle. Therefore, this

section has three equations, shown in Table 3.6, but we only solved for one

unknown. The model for bat movement is that of a translation and a rotation

about its center of mass.

This section considers collisions for impact points (ip) that are not at the center

of mass of the bat. Our objective was to derive an equation for the velocity of the

ball after its collision with the bat. We expanded the previous linear model to the

combined rotation plus translation model with the bat-ball impact point off of the

center of mass, at the sweet spot (see Fig. 2.3). There are about a dozen definitions

for the sweet spot of the bat (Bahill 2004). We will use the symbols defined in

Table 1.1. Figure 2.3 is appropriate for these collisions. In the Coefficient of

Restitution (CoR) equation, the bat speed is a combination of the bat translation

before the collision and the rotation about the center of mass caused by rotations

about the batter’s spine and wrists. This velocity is what we measured in our

experiments.

3.3.1.1 Definition of the Sweet Spot

For skilled batters, we assume that most bat-ball collisions occur near the sweet spot

of the bat, which is, however, difficult to define precisely. The horizontal sweet spot

of the bat has been defined as the center of percussion, the node of the fundamental

vibrational mode, the antinode of the hoop mode, the maximum energy transfer

area, the maximum-batted-ball speed area, the maximum coefficient of restitution

Table 3.6 Equations for configuration 2a, three equations and three unknowns

Inputs vball ‐ before , vbat ‐ cm ‐ before ,ωbat ‐ before and COR

Outputs vball ‐ after
Equations

Conservation of Linear Momentum,

Eq. (3.4)

mballvball ‐ before +mbatvbat ‐ cm ‐ before¼mballvball ‐
after +mbatvbat ‐ cm ‐ after

Definition of CoR, Eq. (3.5)
CoR2a ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before

Newton’s Second Principle, Eq. (3.6) dcm ‐ ipmball(vball ‐ after� vball ‐ before)¼ � Ibat(ωbat ‐

after�ωbat ‐ before)
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area, the minimum energy loss area, the minimum sensation area and the joy spot.

Let us now examine each of these definitions. This section is based on Bahill and

Baldwin (2008).

1. Center of Percussion. For most collision points, when the ball hits the bat it

produces a translation of the bat and a rotation of the bat. However, if the ball

hits the bat at the center of mass there will be a translation but no rotation.

Whereas, if the bat is fixed at a pivot point and the ball hits the bat at the Center

of Percussion (CoP) for that pivot point, then there will be a rotation about that

pivot point but no translation (and therefore no sting on the hands). The pivot

point and the CoP for that pivot point are conjugate points, because if instead the

bat is fixed at the CoP and the ball hits the pivot point then there will be a pure

rotation about the CoP. The CoP and its pivot point are related by the following

equation derived by Sears et al. (1976), where the parameters are defined in

Fig. 3.1.

dpivot-cop ¼ Ipivot
mbatdpivot-cm

The CoP is not one fixed point on the bat. There is a different CoP for every

pivot point. If the batter chokes up on the bat, the pivot point (and consequently the

CoP) will change. In fact, the pivot point might even change during an individual

swing. In this section, we assume that the pivot point is 6 inches (15 cm) from the

knob, because that is where the batter’s hands are. We could assume that the pivot

point is at the end of the knob (Milanovich and Nesbit 2014). This produces a

different CoP.

There are three common experimental methods for determining the CoP of a bat.

(Method 1) Pendular motion: Hang a bat at a point 6 inches (15 cm) from the knob

with 2 or 3 feet (1 m) of string. Hit the bat with an impact hammer. Hitting it off the

CoP will make it flop like a fish out of water, because there is a translational force

and a rotational force at the pivot point. Hitting it near the CoP will make it swing

like a pendulum. (Method 2) Toothpick pivot: Alternatively, you can pivot the bat

on a toothpick through a hole at the pivot point and strike the bat at various places.

When struck near the CoP for that pivot point the toothpick will not break. At other

places, the translational forces will break the toothpick. (Method 3) Equivalent
pendulum: A third method for measuring the distance between the pivot point and

the CoP is to make a pendulum by putting a mass equal to the bat’s mass on a string

and adjusting its length until the pendulum’s period and the bat’s period are the

same. This method has the smallest variability.

2. Node of the fundamental mode. The node of the fundamental bending vibra-

tional mode is the area where this vibrational mode (roughly between 150 and

200 Hz for a wooden bat) of the bat has a null point. To find this node, with your

fingers and thumb grip a bat about 6 inches from the knob. Lightly tap the barrel

at various points with an impact hammer. The area where you feel no vibration
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and hear almost nothing (except the secondary vibrational crack or ping at 500 to

800 Hz) is the node. A rubber mallet could be used in place of an impact

hammer: the point is, the hammer itself should not produce any noise. The

antinode of the third bending vibrational mode may also be important.

3. Antinode of the hoop mode. For hollow metal and composite baseball and

softball bats, there is another type of vibration, called a hoop vibration. The walls

of a hollow bat deform during a bat-ball collision. The walls are crushed in and

then bounce back out. This vibration can be modeled as a hoop or a ring around

the bat; this ring deforms like the vertical cross-sectional area of a water drop

falling from a faucet; first the water drop is tall and skinny, in free fall it is round

and when it hits the ground it becomes short and fat. The location of the antinode

of the first hoop mode is another definition of the sweet spot.

4. Maximum-batted-ball speed point. There is a point on the bat that produces

the maximum-batted-ball speed. Section 4.10 shows this point to be 9.2 cm

(3.6 inches) from the center of mass, or 25.4 cm (10 inches) from the end of the

barrel. This point can be computed theoretically as follows. Start with an

equations for vball ‐ after, such as Eq. (4.8). Take the derivative with respect to d.
Set this equal to zero and solve for d. This value will depend on vball ‐ before which
you obtain from, for example, Table 4.2.

5. Maximum coefficient of restitution area. The coefficient of restitution (CoR)
is commonly defined as the ratio of the relative speed after a collision to the

relative speed before the collision. In our studies, the CoR is used to model the

energy transferred to the ball in a collision with a bat. If the CoR were 1.0, then

all the original energy would be recovered in the motion of the system after

impact. But if there were losses due to energy dissipation or energy storage, then

the CoR would be less than 1.0. For example, in a bat-ball collision there is

energy dissipation: both the bat and the ball increase slightly in temperature. In

one experiment, 100 bat-ball collisions in rapid succession raised the tempera-

ture of a softball by 10 �F (Duris and Smith 2004). Also both the bat and the ball

store energy in vibrations. Not all of this energy will be transferred to the ball.

(For now, we ignore the kinetic energy stored in the ball’s spin.) The maximum

coefficient of restitution area is the area that produces the maximum CoR for a

bat-ball collision. This area can be computed theoretically using Eq. (4.5) as

described in definition (4) above.

6. Maximum energy transfer area. A collision at the maximum energy transfer

area transfers the most energy to the ball. This definition says that the best

contact area on the bat is that which loses the least amount of energy to bat

translation, rotation, vibration, etc. This area can be computed theoretically

using Eq. (4.11) as described in definition (4).

7. Minimum energy loss area. There is an area that minimizes the total (translation

plus rotation plus vibration) energy lost in the bat. This area depends on the

fundamental bending mode, the second mode and the center of percussion. This

area can be approximated theoretically usingEq. (4.11) as described in definition (4).
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8. Minimum sensation area. For most humans, the sense of touch is most sensi-

tive to vibrations between 200 and 400 Hz. For each person there is a collision

area on the bat that would minimize these sensations in the hands.

9. Joy spot. Finally, Ted Williams and Underwood (1982) stated that hitting the

ball at the joy spot makes you the happiest. His joy spot was centered 5 inches

(13 cm) from the end of the barrel.

These nine areas are different, but they are close together. We group them

together and refer to this region as the sweet spot. We measured a large number

of bats (youth, adult, wood, aluminum, ceramic, titanium, etc.) and found that the

sweet spot was 15–20% of the bat length from the barrel end of the bat. In our Ideal

Bat Weight experiments (Bahill and Karnavas 1989, 1991) and our variable

moment of inertia experiments (Bahill 2004) for adult bats the center of the sweet

spot was defined to be 5 inches (13 cm) from the barrel end of the bat.

It does not make sense to try getting greater precision in the definition of the

sweet spot, because the concept of a sweet spot is a human concept, and it probably

changes from human to human. For one example, in calculating the center of

percussion, the pivot point of the bat must be known and this changes from batter

to batter, and it may even change during the swing of an individual batter

(Milanovich and Nesbit 2014).

Table 3.7 shows general properties for a standard Hillerich and Bradbury

Louisville Slugger wooden C243 pro stock 34-inch (86 cm) bat with the barrel

end cupped out to reduce weight. This is a different bat than that described in

Table 1.1. These modern scientific methods of calculating the center of the sweet

spot of the bat are all only a few centimeters above the true value given by Ted

Williams four decades ago.

Table 3.7 Parameters for a C243 wooden bat, assuming a pivot point 6 inches from knob

SI units Baseball units

Length 0.863 34

Mass 0.880 31

Period (sec) 1.65 1.65

Iknob (kg-m
2) 0.335

Icm (kg-m2) 0.0511

Measured dknob-cm 0.57 22.4

Measured dknob-cop 0.69 27.2

Calculated dknob-cop 0.69 27.2

Measured dpivot-cop 0.55 21.7

Calculated dpivot-cop 0.54 21.3

Calculated dpivot-cm 0.42 16.5

Measured dknob-firstNode 0.67 26.4

Calculated dknob ‐ cop for a pivot point in the knob (cm) 0.66 26.0

Distance from the center of percussion to the end of the bat 0.162 6.38
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There is no sweet spot of the bat: however, there is a sweet area and for a 34-inch

wooden bat, it is 5–7inches (13–18 cm) from the barrel end of the bat. We presented

nine definitions for the sweet spot of the bat. Some of these definitions had a small

range of experimentally measured values (e.g. 1 cm for the node of the fundamental

vibration mode), whereas others had a large range of experimentally measured

values (e. g. 10 cm for the maximum batted-ball speed area). But of course, none of

these definitions has square sides. They are all bowl shaped. So the width depends

on how far you allow the parameter to decline before you say that you are out of the

sweet area. In general, the sweet area is about 2 inches wide. Our survey of retired

major league batters confirmed that the sweet spot of the bat is about 2 inches

(5 cm) wide. Therefore, most of the sweet-spot definitions of this chapter fall within

this region. In summary, recent scientific analyses have validated Ted William’s
statement that the sweet spot of the bat is an area 5–7 inches from the end of the

barrel.

For completeness, we note that the vertical component of the sweet spot is

one-third of an inch high (Baldwin and Bahill 2004). See Fig. 4.4.

3.3.1.2 Coordinate System

We will use a right-handed coordinate system with the x-axis pointing from home

plate to the pitching rubber, the y-axis points from first base to third base, and the

z-axis points straight up. A torque rotating from the x-axis to the y-axis would be

positive upward. Previously, in other papers describing only the pitch, we defined

the x-axis as pointing from the pitching rubber to home plate and then the y-axis

went from third to first base (Bahill and Baldwin 2007). Over the plate, the ball

comes downward at a 10� angle and the bat usually moves upward at about 10�, so
later the z-axis will be rotated back 10�.

3.3.1.3 Assumptions

A1. The swing of the bat is as modeled in Fig. 3.1.

A2. Collisions at the Center of Percussion will produce a rotation about the center

of mass, but no translation of the bat.

A3. For configurations 1a, 1b and 2a, we will not include the kinetic energy stored

in the rotation of the baseball. That is, we assume that the pitch is a knuckleball

with no spin. In later sections, we will consider a fastball and a curveball.

A5. The collision duration is short, for example, one millisecond.

A6. Because the collision duration is short and the swing is level, we can ignore the

effects of gravity during the collision.

A7. We neglect permanent deformations of the bat and ball.

A8. The Coefficient of Restitution (CoR) for a baseball wooden-bat collision at

major-league speeds starts at about 0.55 and decreases with collision speed.
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A9. For configuration 2d, Coulomb friction is a good model for a bat-ball collision.

When colliding objects slide relative to each other, a friction force is generated,

whose direction is tangential to the surface of contact and whose magnitude is

proportional to the normal force at the point of contact. We assume that during

impact the ball slides and does not roll on the bat, but the sliding halts before

separation. The dynamic coefficient of friction, μf, is used to model these losses.

This is called a Coulomb model. In contrast, a Coulomb model would not be

appropriate for a pool cue hitting a ball of clay: a more complex model would be

needed. A Coulomb model will be used in configuration 2d.

A10. The dynamic coefficient of friction has been measured by Bahill at μf¼ 0.5.

A11. We write about kinetic energy losses during a collision: that is the way is it is

described in the literature. However, we should call these transformations,

because, for example, kinetic energy is not lost during a collision. It might be

transformed into heat in the ball, vibrations in the bat, acoustic energy in the

“crack of the bat” or deformations of the bat or ball.

A12. In this book, we do not model the moment of inertia of the batter’s arms.

A13. Pictures of bats in this book are for wooden bats. However, the equations and

conclusions are the same for wooden and aluminum bats. The differences would

be in the mass, moment of inertia and dimensions.

A14. We do not differentiate between day games and night games. We know that

when the shadow of the stadium is between the pitcher and the batter, the batter’s
performance is reduced. We ignore this effect.

A15. Assume free-end collisions. For impacts at the sweet spot of the bat, the

momentum transfer to the ball is complete by the time the elastic wave arrives at

the handle. Therefore, any action by the hands will affect the bat at the impact

point only after the ball and bat have separated, Nathan (2000).

3.3.1.4 Conservation of Linear Momentum

The law of Conservation of Linear Momentum states that linear momentum will be

conserved in a collision if there are no external forces. We will approximate the

bat’s motion before the collision with the tangent to the curve of its arc. For a

collision anywhere on the bat, every point on the bat has the same angular velocity,

but the linear velocities will be different, which means that vtbat ‐ before is a combi-

nation of translations and rotations unique for each point on the bat. Conservation of

momentum in the direction of the x-axis states that the momentum before plus the

external impulse will equal the momentum after the collision. There are no external

impulses during the ball-bat collision: therefore, this is the equation for Conserva-

tion of Linear Momentum.

mballvball-before þ mbatvbat-cm-before ¼ mballvball-after þ mbatvbat-cm-after ð3:4Þ
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3.3.1.5 Definition of the Coefficient of Restitution

The kinematic Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as
the ratio of the relative velocity of the two objects after the collision to the relative

velocity before the collision at the point of impact.

In our models, for a collision at any impact point (ip) we have

CoR2a ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before
ð3:5Þ

These variables and parameters are illustrated in Fig. 3.2. A note on notation:

ωbat is the angular velocity of the bat about its center of mass, vbat ‐ cm is the linear

velocity of the center of mass of the bat in the x-direction and dcm ‐ ip is the

distance between the center of mass and the point of impact. We measured

vbat ‐ cm ‐ before + dcm ‐ ipωbat ‐ before, which is experimental data that depends on our

model formulation (Fig. 3.2) and the kinematics of the person swinging the bat.

3.3.1.6 Newton’s Second Principle

Watts and Bahill (1990) derived the following equation from Newton’s second

principle that states that a force acting on an object produces acceleration in

accordance with the equation F¼ma. If an object is accelerating, then its velocity

and momentum is increasing. This principle is often stated as; applying an impul-

sive force to an object will change its momentum. According to Newton’s third

principle, when a ball hits a bat at the impact point there will be a force on the bat in

the direction of the negative x-axis, let us call this �F1, and an equal but opposite

force on the ball, called F1. This force will be applied during the duration of the

collision, called tc . When a force is applied for a short period of time, it is called an

impulse. According to Newton’s second principle, an impulse will change

Fig. 3.2 This figure shows vball ‐ before , vbat ‐ cm ‐ before , vball ‐ after and dcm ‐ ipωbat, which are used to

define the Coefficient of Restitution for configurations 2
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momentum. The force on the bat will create a torque of �dcm ‐ ipF1 around the

center of mass of the bat. An impulsive torque will produce a change in angular

momentum of the bat.

�dcm-ipF1tc ¼ Ibat ωbat-after � ωbat-beforeð Þ

Now this impulse will also change the linear momentum of the ball.

F1tc ¼ mball vball-after � vball-beforeð Þ

Multiply both sides of this equation by dcm ‐ ip and add these two equations to get the

equation for

Newton’s Second principle.

dcm-ipmball vball-after � vball-beforeð Þ ¼ �Ibat ωbat-after � ωbat-beforeð Þ ð3:6Þ

These equations were derived for the bat-ball system. Therefore, there were no

external impulses (If the collision is at the sweet spot then the batters arms do not

apply an impulse.) Equations (3.4), (3.5) and (3.6) produce the following equation

for the batted-ball velocity (Watts and Bahill 1990, 2000). Its derivation will be

given in the next chapter.

vball-after¼

vball-before mballIbat�mbatIbatCoR2aþmballmbatd
2
cm-ip

� 	
þvbat-cm-beforembatIbat 1þCoR2að Þþmbatdcm-ipωbat-beforeIbat

mballIbatþmbatIbatþmballmbatd
2
cm-ip

or

vball-after¼ vball-before

� vball-before�vbat-cm-beforeð ÞmbatIbat 1þCoR2að Þþmbatdcm-ipωbat-beforeIbat

mballIbatþmbatIbatþmballmbatd
2
cm-ip

The output for the above equation, for typical inputs, is given in Table 3.8.

Equations for vbat ‐ cm ‐ after and ωbat ‐ after were not derived byWatts and Bahill (1990,

2000). They will be derived in the next chapter.

3.3.1.7 Simulation Values Configuration 2a

Figure 1.1 (bottom) is appropriate for configurations 1a and 1b, if the bat

translation and rotation are measured and modeled with one vector, vbat ‐ cm. With

a change from the center of mass to the sweet spot, again Fig. 1.1 (bottom) is

appropriate for configurations 2a and 2b, if the bat translation and rotation are
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measured and modeled with two vectors, vbat ‐ cm and ωbat. Later it will be shown

that Fig. 1.1 (bottom) is also appropriate for configuration 2c, if the bat translation

and rotation are measured and modeled with two vectors, vknob ‐ trans and βbat.
This is the end of the Watts and Bahill (1990, 2000) derivation, called config-

uration 2a. This chapter gave background, a literature review and the overarching

organization of bat-ball collision configurations. The next chapter will drill into

configuration 2b.

3.4 Bat Speeds

In our simulation for configuration 2a, whose results are given in Table 3.8, we used

an impact point speed of 62 mph (28 m/s). Where did that number come from?

Table 3.9 shows the results of several studies performed over the last few decades

that have measured the speed of the baseball bat. These studies are listed in

chronological order. For now, we only give the results for male collegiate and

professional baseball players. This table gives the average speed of the sweet spot,

which was usually defined as the center of percussion. This is the total speed of the

sweet spot meaning the translational plus rotational velocities.

Table 3.9 gives average sweet-spot speeds for eight studies of male college and

professional batters. When multiple bats were used, we chose the bat closest to that

described in Table 1.1. In our simulations, we used 62 mph for the total bat speed,

which we defined to be the linear plus rotational speed of the sweet spot of the bat.

Some studies in the literature filtered their data and only included selected

batters, usually the fastest. Internet sites that are trying to sell their equipment

and services typically cite bat speeds between 70 and 90 mph (31–40 m/s). We

think that these numbers are bogus. The big web sites such as mlb.com, espn.com/

mlb/ and hittrackeronline.com give the leaders in many categories, meaning that

they a have selected, for example, the 20 fastest players out of 750. This would be

misleading if the reader thought that these numbers were representative of major

league batters. In Table 3.9 we give average values for sweet-spot speeds.

Table 3.8 Simulation values for bat-ball collisions at the sweet spot, configuration 2a

SI units (m/s, rad/s) Baseball units (mph, rpm)

Inputs

vball ‐ before �37 �83

vbat ‐ cm ‐ before 23 52

ωbat ‐ before 32 309

vtbat ‐ cop ‐ before 28 62

CoR2a 0.465 0.465

Output

vball ‐ after 41 92
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Next, we wanted to know how these laboratory measurements compare to major

league batters in actual games. Figure 3.3 shows the batted-ball speed as a function

of the total bat speed before the collision. Using the data of Willman (2017) for the

Table 3.9 Average total sweet-spot speed before a collision, chronological order

Average speed of

the sweet spot,

m/s

Average speed of

the sweet spot,

mph Subjects, only males Reference

26 58 28 San Francisco giants Database of

Bahill and

Karnavas (1989)

31 69 7 selected professional baseball

players

Welch et al.

(1995)

30 68 19 baseball players Crisco et al.

(2002)

27 60 16 college baseball players Fleisig et al.

(2002)

26 58 7 college baseball players Koenig et al.

(2004)

32 71 One subject King et al. (2012)

27 60 10 collegiate baseball players Higuchi et al.

(2016)

28 62 700 swings of major league base-

ball players where the outcome

was a hit

Willmana (2017)

aThis source did not state whether these swing speeds were at the center of mass, the sweet spot or

the impact point, but we assumed the impact point

Fig. 3.3 Batted-ball speed as a function of total bat speed
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year 2016, we found that for 15,000 base hits in major league baseball the average

batted-ball speed was 91 mph. This figure shows that, given physiological variation,

the average major league batter has a high enough bat speed to occasionally hit a

home run, when the batted-ball has the ideal spin and launch angle. However, most

major league batters seldom hit home runs. Indeed, of the 2200 active players listed

by MLB.com half of them have never hit a home run in their major league careers.

The simulation summarized in Table 3.8 shows that a typical ball velocity

before the collision, vball ‐ before, of 83 mph (37 m/s) and an average bat speed,

vtbat ‐ cop ‐ before, of 62 mph (28 m/s) would produce an average batted-ball speed,

vbat ‐ after, of 92 mph (41 m/s), which would not be enough for a home run in any

major league stadium. Our rule of thumb is that it takes a batted-ball speed of

100 mph (45 m/s), under optimal conditions, to produce a home run.

Most recent studies of bat speed have used multiple video cameras and com-

mercial prepackaged software to measure and compute bat speed (Willman 2017).

Unfortunately, these systems have no calibration tests. On television, the batted-

ball speed is often called the exit speed, the exit velocity or the launch speed.

The studies of Fleisig et al. (2001, 2002), Cross (2009), Milanovich and Nesbit

(2014) and King et al. (2012) decomposed the center of percussion speed into

two components: the linear translation velocity and the angular rotation velocity,

vtbat ‐ cop ‐ before¼ vcm + dcm ‐ copωcm ‐ before. A consensus of these four databases

produced

vtbat-cop-before ¼ 23þ 0:134� 32 ¼ 28 m=s ¼ 62 mph

which we used in our simulations.

Well, if the average bat speed is only 62 mph and, according to Fig. 3.3, a bat

speed of 68 mph is needed for a home run, then how can anyone ever hit a home

run? The answer is that 62 mph is an average for a particular batter. All of his

swings are not at that speed: some of his swings will be faster and some will be

slower. The distribution of the individual swing speeds will follow a curve as in

Fig. 3.4. This curve shows that this batter’s average bat speed is 62 mph. 34.1% of

his swings will be between 62 and 64 mph. 13.6% will be between 64 and 66 mph.

Fig. 3.4 Distribution of bat

speeds for an individual

batter (The standard

deviation was estimated

from Watts and Bahill

(2000) Fig. 43, Bahill

(2004) and unpublished

data)
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2.2% will be between 66 and 68 mph. Finally, the group we want, 0.1% will be

faster than 68 mph, the speed needed for a home run. Thus, for this batter, 0.1% or

one in a thousand of his swings would be fast enough to produce a home run, if he

launched the ball at an angle of 34� with backspin of 2000 rpm.

A similar analysis could be done for all batters in a group instead of just one

batter. The analysis would be the same except that the standard deviation would be

larger, as shown in Table 5.1.

3.5 Spin on the Ball

In this section, we will prove that in head-on collisions without friction

(e.g. configurations 1a, 1b, 2a, 2b and 2c), for a pitch of any spin, there will be

no change in the spin of the ball. First, for such collisions, simple inspection of the

figures shows that there are no torques on the ball. Therefore, there should be no

changes in the momenta.

Next, let us use the law of Conservation of Angular Momentum about the center

of mass of the bat. When the ball contacts the bat, as shown in Fig. 3.5, the ball has

linear momentum of mballvball ‐ before. However, the ball does not know if it is

translating or if it is tied on a string and rotating about the center of mass of the

bat. Therefore, following conventional practice in physics for Conservation of

Angular Momentum analyses, we will model the ball as also rotating about the

bat’s center of mass at a distance d¼ dcm ‐ ip. In effect, the ball has an initial angular

momentum of mballdcm ‐ ipvball ‐ before about an axis through the bat’s center of mass.

In addition, it is possible to throw a curveball so that it spins about the vertical,

z-axis, as also shown in Fig. 3.5. We call this a purely horizontal curveball

(although it will still drop more due to gravity, than it will curve horizontally).

The curveball will have angular momentum of Iballωball ‐ before about an axis parallel

to the z-axis. However, this is its momentum about its center of mass and we want

the momentum about the axis through the center of mass of the bat. Therefore, we
use the parallel axis theorem, producing (Iball +mballd

2)ωball ‐ before.

Fig. 3.5 The variables and parameters vball ‐ before , vbat ‐ before , ωball , dcm ‐ ip and ωbat that are

used in the Conservation of Angular Momentum equation for a bat-ball collision system
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Now, the bat has an initial angular momentum of Ibatωbat ‐ before. It also has an

angular momentum about the bat’s center of mass due to the bat translational

momentum mbatdvbat ‐ before, however, in this case d¼ 0 because the center of

mass of the bat is passing through its center of mass. L is the symbol used for

angular momentum. I guess all the cool letters (like F, m, a, v, I, ω, d, etc.) were
already taken, so gray-bearded physicists were stuck with the blah symbol L.
Therefore, the initial angular momentum about an axis through the center of mass

of the bat is

Linitial ¼ mballvball-befored þ Iball þ mballd
2

� �
ωball-before þ Ibatωbat-before

All of these momenta are positive, pointing out of the page.

For the angular momentum after the collision, we will treat the ball, as before, as

an object rotating around the axis of the center of mass of the bat with angular

momentum, mballvball ‐ afterdcm ‐ ip. Now we could treat the bat as a long slender rod

with a moment of inertia of mbatd
2
bat=12, where dbat is the bat length. However, this

is only an approximation and we have actual experimental data for the bat moment

of inertia. Therefore, the bat angular momentum is Ibatωbat ‐ after. Thus, our final

angular momentum about an axis through the center of mass of the bat is

Lfinal ¼ mballvball-afterd þ Iball þ mballd
2

� �
ωball-after þ Ibatωbat-after

The law of Conservation of Angular Momentum states that when no external

torque acts on an object the initial angular momentum about some axis equals the

final angular momentum about that axis.

Linitial ¼ Lfinal
mballvball-befored þ Iball þ mballd

2
� �

ωball-before þ Ibatωbat-before ¼
mballvball-afterd þ Iball þ mballd

2
� �

ωball-after þ Ibatωbat-after

Newton’s second law states that applying an impulsive torque changes the

angular momentum about the torque axis. Here the impulsive torque is caused by

the change in linear momenta. Therefore,

dmball vball-after � vball-beforeð Þ ¼ �Ibat ωbat-after � ωbat-beforeð Þ

ωbat-after ¼ ωbat-before � dmball

Ibat
vball-after � vball-beforeð Þ

� �

Let us substitute this ωbat ‐ after into our Conservation of Angular Momentum

equation above.
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mballvball-befored þ Iball þ mballd
2

� �
ωball-before

þIbatωbat-before ¼ mballvball-afterd þ Iball þ mballd
2

� �
ωball-after

þIbat ωbat-before � dmball

Ibat
vball-after � vball-beforeð Þ

� �

Wewant to solve this for the angular velocity of the ball after the collision,ωball ‐ after

( )
( ) bat bat-b

2
ball b

efore

all ball-

ball ball-after ball ball-

ball ball-before

ball-before

after

2
ball ball ba

bat bat-before aft

ll-before

er )(

m

I m

m v d d

d

v d I

m v

I

I v

m d w

w

w

w-

+ =

+ + +

--

+

+

Cancel the terms in color and we get

Iball þ mballd
2

� �
ωball-after ¼ Iball þ mballd

2
� �

ωball-before
ωball-after ¼ ωball-before

We have now proven that for head-on collisions, for a pitch with any spin about

the z-axis, the spin of the ball before and after is the same. What about a pitch that

has spin about the z-axis and also about the y-axis, like most pitches? The collision

will not change ball rotation. As shown above, it will not change the spin about the

z-axis. We could write another set of equations for angular momentum about the

y-axis. However, the bat has no angular momentum about the y-axis, so there is

nothing to affect the ball spin about the y-axis. In conclusion, a head-on collision

between a bat and a ball will not change the spin on the ball. Some papers have

shown a relationship between the ball spin before and the ball spin after, but they

were using oblique collisions as in configuration 3 (Nathan et al. 2012; Kensrud

et al. 2017). We have not considered friction in this section. It will not be covered

until Sect. 5.5.

3.6 Summary

This chapter presented the equations for a collision at the center of mass of the bat

and for a simple collision at the sweet spot. For configurations 1a and 1b, it gave the

velocity of the bat and the ball after the collision. For configuration 1b, it also gave

the equation for the kinetic energy lost in the collision. It showed how the definition

of the coefficient of restitution would change, as our models got more complex. It

gave nine common definitions of the sweet spot of the bat. It stated general

assumptions that we will use throughout this book. It gave an equation for the

velocity of the ball after the collision. Finally, it proved that for head-on collisions

without friction ωball ‐ after¼ωball ‐ before.
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Chapter 4

The BaConLaw Model for Bat-Ball Collisions

4.1 Introduction

Purpose: The purpose of this chapter is to explain bat-ball collisions with a

complete, precise, correct set of equations, without jargon. The BaConLaw model

describes head-on bat-ball collisions at the sweet spot of the bat. It gives the speed

and spin of the bat and ball before and after collisions. It also gives advice for

selecting the optimal bat.

Configuration 2b is our most comprehensive model. It models a collision at the

sweet spot of the bat with spin on the pitch. The model for the movement of the bat

is a translation and a rotation about its center of mass. To configuration 2a, it adds

Conservation of Energy, Conservation of Angular Momentum, KElost and ball spin.

It has five equations and five unknowns, which are shown in Table 4.1. It is named

the BaConLaw model because it is based on the Conservation Laws of physics

applied to Baseball. This chapter is unique in the science of baseball literature,

because no one before has derived the post-collision equations for ball speed, bat

speed and bat angular velocity from basic Newtonian principles. It is also unusual in

the field of mathematical modeling, because all of the intermediary steps are given.

This was done to increase replicability.

One of our assumptions is that the bat-ball collision is a free-end collision. That

means that the bat acts as if no one is holding onto its knob. To visualize this,

imagine that the bat is laying on a sheet of ice and you are looking down on top of it,

as in Fig. 4.1. Then a baseball slams into the bat at 80 mph. This collision produces

a translation and a rotation of the bat about its center of mass.

A note on notation. Nothing in this chapter requires the collision be at the sweet spot
of the bat. Therefore, in our equations we use the general symbol ‘ip’ to indicate the
impact point as in, dcm ‐ ip to denote the distance between the center of mass and the

impact point. However, in our simulations we require the parameters of a particular

bat. Therefore, when presenting the results of our simulations we use ‘cop’ to
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denote the center of percussion. For example, the symbol dcm ‐ cop indicates the

distance between the center of mass and the center of percussion.

The BaConLaw model comprises a translation and a rotation of the bat about its

center of mass. Because a bat is a rigid object, every spot on a bat will have the same

linear translational velocity and the same angular rotational velocity.

ωbat-knob ¼ ωbat-cm ¼ ωbat-ip and

vbat-knob-trans ¼ vbat-cm-trans ¼ vbat-ip-trans

However, each spot on the bat will have a different total velocity that depends on
its distance from the pivot point. We will use vt to indicate total velocity of the bat.
The BaConLaw model is described with this equation.

Table 4.1 Equations for the BaConLaw model, five equations and five unknowns

Inputs vball ‐ before , ωball ‐ before , vbat ‐ cm ‐ before ,ωbat ‐ before and CoR

Outputs

(unknowns)

vball ‐ after , ωball ‐ after , vbat ‐ cm ‐ after , ωbat ‐ after , and KElost

Equations

Conservation of

Energy, Eq. (4.3)

1

2
mballv

2
ball-before þ

1

2
Iballω

2
ball-before þ

1

2
mbatv

2
bat-cm-before þ

1

2
Ibatω

2
bat-before ¼

1

2
mballv

2
ball-after þ

1

2
Iballω

2
ball-after þ

1

2
mbatv

2
bat-cm-after þ

1

2
Ibatω

2
bat-after þ KElost

Conservation of

Linear Momen-

tum, Eq. (4.4)

mballvball ‐ before +mbatvbat ‐ cm ‐ before¼mballvball ‐ after +mbatvbat ‐ cm ‐ after

Definition of CoR,
Eq. (4.5)

CoR2b ¼ � vball-after�vbat-cm-after�dcm-ipωbat-after
vball-before�vbat-cm-before�dcm-ipωbat-before

Newton’s Second
Law, Eq. (4.6)

dcm ‐ ssmball(vball ‐ after� vball ‐ before)¼ � Ibat(ωbat ‐ after�ωbat ‐ before)

Conservation of

Angular Momen-

tum, Eq. (4.7s)

Lball-before þ Lbat-before ¼ Lball-after þ Lbat-after
mballvball-befored þ Iball þ mballd

2
� �

ωball-before þ Ibatωbat-before
¼ mballvball-afterd þ Iball þ mballd

2
� �

ωball-after þ Ibatωbat-after

Fig. 4.1 The BaConLaw model for configuration 2b
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vtbat-ip ¼ vbat-cm þ dcm-ipωbat

The velocity of the sweet spot is given the symbol vtbat ‐ ss to emphasize that it is

the total velocity of the sweet spot meaning the vector sum of the linear transla-

tional velocity and the angular rotational velocity. If we had measured the velocity

of a bat at a particular point and that bat was being swung by a human, then we

measured the total of linear velocity and angular rotational velocity. Hence, we

measured vtcop or vtcm. In our equations we use the linear components, vcop and vcm,
but in our experiments we actually measure the total velocities, vtcop and vtcm.

4.2 Definition of Variables and Parameters

Inputs vball-before, ωball-before, vbat-cm-before, ωbat-before and CoR

vball ‐ before is the linear velocity of the ball in the x-direction (from home plate to the

pitcher’s rubber) before the collision.
ωball ‐ before is the angular velocity of the ball about its center of mass before the

collision.

vbat ‐ cm ‐ before is the linear velocity of the center of mass of the bat in the x-direction
before the collision.

ωbat ‐ before is the angular velocity of the bat about its center of mass before the

collision.

CoR2b is the coefficient of restitution for configuration 2b.

Outputs vball-after, ωball-after, vbat-cm-after, ωbat-after and KElost

vball ‐ after is the linear velocity of the ball in the x-direction after the collision.

ωball ‐ after is the angular velocity of the ball about its center of mass after the

collision.

vbat ‐ cm ‐ after is the linear velocity of the center of mass of the bat in the x-direction

after the collision.

ωbat ‐ after is the angular velocity of the bat about its center of mass after the collision.
KElost is the kinetic energy lost or transformed in the collision.

We want to solve for vball ‐ after , ωball ‐ after , vbat ‐ cm ‐ after ,ωbat ‐ after and KElost.

We will use the following fundamental equations of physics: Conservation of

Energy, Conservation of Linear Momentum, the Definition of Kinematic CoR,
Newton’s Second Principle and the Conservation of Angular Momentum.

4.2 Definition of Variables and Parameters 47



4.2.1 Condensing the Notation for the Equations

First, we want to simplify the notation by making the following substitutions. These

abbreviations are contained in Table 1.1, but by repeating them here, it makes this

chapter independent from the rest of the book.

dcm-ip ¼ d
Ibat ¼ I2 ¼ Icm
mball ¼ m1

mbat ¼ m2

vball-before ¼ v1b
vball-after ¼ v1a
vbat-cm-before ¼ v2b
vbat-cm-after ¼ v2a
ωbat-before ¼ ω2b

ωbat-after ¼ ω2a

These substitutions produce the following equations

Conservation of Energy

1

2
mballv

2
ball-before þ

1

2
Iballω

2
ball-before þ

1

2
mbatv

2
bat-cm-before þ

1

2
Ibatω

2
bat-before ¼

1

2
mballv

2
ball-after þ

1

2
Iballω

2
ball-after þ

1

2
mbatv

2
bat-cm-after þ

1

2
Ibatω

2
bat-after þ KElost

ð4:3Þ

m1v
2
1b þ m2v

2
2b þ I2ω

2
2b ¼ þm1v

2
1a þ m2v

2
2a þ I2ω

2
2a þ 2KElost ð4:3sÞ

In the label (4.3s), “s” stands for short.

Conservation of Linear Momentum

Assume that the bat and ball are point masses with all of their mass concentrated

at the center of mass.

mballvball-before þ mbatvbat-cm-before ¼ mballvball-after þ mbatvbat-cm-after ð4:4Þ
m1v1b þ m2v2b ¼ m1v1a þ m2v2a ð4:4sÞ

Definition of the Coefficient of Restitution (CoR)

CoR2b ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before
ð4:5Þ

CoR2b ¼ � v1a � v2a � dω2a

v1b � v2b � dω2b

ð4:5sÞ

Newton’s second principle states that applying an impulsive torque changes the

angular momentum about the torque axis. Therefore,
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dcm-ipmball vball-after � vball-beforeð Þ ¼ �Ibat ωbat-after � ωbat-beforeð Þ ð4:6Þ
dm1 v1a � v1bð Þ ¼ �I2 ω2a � ω2bð Þ ð4:6sÞ

We have ignored the angular velocity of the ball because in Sect. 3.4 we proved that

for head-on collisions without friction ωball ‐ after¼ωball ‐ before.

Conservation of Angular Momentum

The initial and final angular momenta comprise ball translation, ball rotation, bat

translation and bat rotation about its center of mass.

Linitial ¼ Lfinal

m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b ¼

þm1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a

ð4:7sÞ

Summary of simplifications, with units

A ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ
m1I2 þ m2I2 þ m1m2d

2

1

kg2m � s
B ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ m=s
C ¼ v1b � v2b � dω2b m=s

D ¼ m1d
2

I2
unitless

G ¼ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ kg2m3=s
G ¼ v2b þ ω2bdð Þ 1þ CoR2bð Þm2I2 kg2m3=s

K ¼ m1I2 þ m2I2 þ m1m2d
2

� �
kg2m2

�m ¼ m1m2

m1 þ m2

kg

Note that none of these simplifications contains the outputs vball ‐ after , ωball ‐

after , vbat ‐ cm ‐ after , ωbat ‐ after and KElost. The most useful simplifications are the

ones that are constants, independent of velocities after the collision. Using these

simplifications allows us to print these long equations in a book. These simplifica-

tions are only used during the derivations. They are removed from the output

equations. We will now use the Newtonian principles in Eqs. (4.4), (4.5) and

(4.6) to find vball‐after , vbat ‐ cm ‐ after , and ωbat ‐ after.

4.3 Finding Ball Velocity After the Collision

First, we will solve for the velocity of the ball after the collision, vball ‐ after.
Start with Eq. (4.6) and solve for the angular velocity of the bat after the

collision, ω2a
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dm1 v1a � v1bð Þ ¼ �I2 ω2a � ω2bð Þ

ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ

This equation was derived from Eq. (4.6). We will use it repeatedly. Next, we use

Eq. (4.5) and solve for the velocity of the bat after the collision, v2a

CoR2b ¼ � v1a � v2a � dω2a

v1b � v2b � dω2b

CoR2b v1b � v2b � dω2bð Þ ¼ �v1a þ v2a þ dω2a

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � dω2a

This equation was derived from Eq. (4.5). We will use this expression repeatedly.

Next, substitute ω2a into this v2a equation. We put the substitution in squiggly

braces {} to make it obvious what has been inserted.

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � d ω2b � dm1

I2
v1a � v1bð Þ

� �

Let D ¼ m1d
2

I2
and C¼ {v1b� v2b� dω2b}

v2a ¼ v1a þ Df g v1a � v1bð Þ þ CoR2b Cf g � dω2b

v2a ¼ v1a 1þ Dð Þ � v1bDþ CoR2bC � dω2b

Prepare to substitute this v2a into Eq. (4.4) by multiplying by the mass of the bat, m2

m2v2a ¼ m2v1a 1þ Dð Þ � m2Dv1b þ m2CoR2b C� m2dω2bf g

Now substitute this m2v2a into Eq. (4.4)

m1v1b þ m2v2b ¼ m1v1a þ m2v2a ð4:4Þ
m1v1b þ m2v2b ¼ m1v1a þ m2v1a 1þ Dð Þ � m2Dv1b þ m2CoR2b C� m2dω2bf g

Put all v1a terms on the left.

m1v1a þ m2v1a 1þ Dð Þ ¼ m1v1b þ m2v2b þ m2Dv1b � m2CoR2b Cþ m2dω2b

Replace the dummy variables C and D and we get
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m1v1a þ m2v1a 1þ m1d
2

I2

� �
¼ m1v1b þ m2v2b þ m2

m1d
2

I2

� �
v1b � m2CoR2b

v1b � v2b � dω2bf g þ m2dω2b

grouping with respect to v1a, v1b,

v2b and ω2b yields

v1a m1 þ m2 þ m1m2d
2

I2

� �
¼ v1b m1 þ m1m2d

2

I2
� m2CoR2b

� �
þ v2bm2 1þ CoR2bð Þ þ ω2bm2d 1þ CoR2bð Þ

Multiply by the moment of inertia of the bat, I2.

v1a m1I2 þ m2I2 þ m1m2d
2

� 	 ¼ v1b m1I2 þ m1m2d
2 � m2CoR2bI2

� 	
þ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ

Rearrange

v1a ¼
v1b m1I2 � m2I2 CoR2b þ m1m2d

2
� �þ v2bm2I2 1þ CoR2bð Þ þ dω2bm2I2 1þ CoR2bð Þ

m1I2 þ m2I2 þ m1m2d
2

Expanding the abbreviations gives

vball-after ¼ vball-before
mballIbat � mbatIbat CoR2b þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ dωbat-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

ð4:8Þ

This equation was derived from Eqs. (4.4), (4.5) and (4.6).
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Now we want to rearrange this normal form equation into its canonical form:

Let K ¼ m1I2 þ m2I2 þ m1m2d
2

� �
G ¼ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ

v1a ¼
v1b m1I2 � m2I2CoR2b þ m1m2d

2
� �

K
þ G

K

add v1b � v1bK

K


 �
to the right side

v1a ¼ v1bf g þ v1b m1I2 � m2I2CoR2b þ m1m2d
2

� � �v1b m1I2 þ m2I2 þ m1m2d
2

� �� 

K

þ G

K

Simplify

v1a ¼ v1b þ
v1b m1I2 � m2I2CoR2b þ m1m2d

2 � m1I2 � m2I2 � m1m2d
2

� �
K

þ G

K

v1a ¼ v1b þ v1b �m2I2 � m2ICoR2bð Þ
K

þ G

K

v1a ¼ v1b þ�v1bm2I2 1þ CoR2bð Þ þ G

K

v1a ¼ v1b þ�v1bm2I2 1þ CoR2bð Þ þ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ
K

Finally, we get the canonical form for the linear velocity of the ball after the

collision:

v1a ¼ v1b � v1b � v2b � dω2bð Þ 1þ CoR2bð Þm2I2

m1I2 þ m2I2 þ m1m2d
2

ð4:8cÞ

This equation was derived from Eqs. (4.4), (4.5) and (4.6). Expanding the abbrevi-

ations gives

vball-after ¼ vball-before � vball-before � vbat-cm-before � ωbat-beforedð Þ 1þ CoR2bð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2

Please note that nothing in this section required the collision to be at the sweet

spot of the bat. In these equations dcm ‐ ip could be replaced with any positive

distance to the point of impact. That is why we usually used the letter d without a

subscript.

If the collision is at the center of mass of the bat instead of at the sweet spot, then

d¼ dcm ‐ ip¼ 0. Now we replace CoR2b with CoR1a and the above equation reduces

to
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v1a ¼ v1b þ v2b � v1bð Þ 1þ CoR1að Þm2I2
m1I2 þ m2I2

cancelling I2 yields

v1a ¼ v1b þ v2b � v1bð Þ 1þ CoR1að Þm2

m1 þ m2

vball-after ¼ vball-before � vball-before � vbat-cm-beforeð Þ 1þ CoR1að Þmbat

mball þ mbat

We derived this equation previously in the section entitled “Collisions at the center

of mass, Configuration 1a.” The subscripts of CoR refer to the collision configura-

tion names not to the ball and bat before and after.

4.4 Finding Bat Velocity After the Collision

As before, we start with Eq. (4.6) and solve for the angular velocity of the bat after

the collision, ω2a

dm1 v1a � v1bð Þ ¼ �I2 ω2a � ω2bð Þ

ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ

We will use this expression repeatedly. Next use Eq. (4.5) and solve for the velocity

of the bat after the collision, v2a

CoR2b ¼ � v1a � v2a � dω2a

v1b � v2b � dω2b

CoR2b v1b � v2b � dω2bð Þ ¼ �v1a þ v2a þ dω2a

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � dω2a

Substitute ω2a into this v2a equation. I put the substitution in squiggly braces {}

to make it obvious what has been inserted.

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � d ω2b � dm1

I2
v1a � v1bð Þ

� �

So far, this derivation is identical to that in the previous section.

Now, let C¼ v1b� v2b� dω2b

v2a ¼ v1a þ m1d
2

I2
v1a � v1bð Þ þ CoR2b Cf g � ω2bd

Eq. (4.8) derived in the previous section is
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v1a ¼ v1b � v1b � v2b � dω2bð Þ 1þ CoR2bð Þm2I2

m1I2 þ m2I2 þ m1m2d
2

As before, let K¼ (m1I2 +m2I2 +m1m2d
2)

v1a ¼ v1b � v1b � v2b � dω2bð Þ 1þ CoR2bð Þm2I2
K

Let B ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ
v1a ¼ v1b � Bm2I2

K

� �

Put this into both places for v1a in the v2a equation above.

v2a ¼ v1b � Bm2I2
K

� �

þm1d
2

I2
v1b � Bm2I2

K

� �
� v1b


 �
þCoR2b C� ω2bd

Now multiply by K

[ ]

[ ]

1

2 2
2a 1b

2
1 2 2

1b 1b
2

2b 2b

2a 1b 2 2

2
1

2 2
2

2b 2b

2a 1b 2 2

2
1

2 2
2

2b

b 1

b

b

2

Cancel the terms in color

v K

Bm I
v K v K K

K

m d Bm I
v K K v K

I K

CoR CK dK

v K v K Bm I

m d
Bm I

I

CoR CK dK

v K v K Bm I

m d
Bm

v K

I
I

CCoR K dK

w

w

w

ì ü
= -í ý
î þ

é ù+ - -ê úë û

+ -

= -

+ -

+ -

= -

+ -

+ -

-

Substitute B ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ
v2aK ¼ v1bK � v1b � v2b � dω2bð Þ 1þ CoR2bð Þf gm2I2

�m1d
2

I2
v1b � v2b � dω2bð Þ 1þ CoR2bð Þf gm2I2½ �

þCCoR2b K � ω2bdK

Let us write this as three variables v1b , v2b , and dω2b with their associated

coefficients.
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v2aK ¼ v1bK � v1bm2I2 1þ CoR2bð Þ þ v2bm2I2 1þ CoR2bð Þ
þω2bm2dI2 1þ CoR2bð Þ � v1bm1m2d

2 1þ CoR2bð Þ
þv2bm1m2d

2 1þ CoR2bð Þ þ ω2bm1m2d
3 1þ CoR2bð Þ

þv1bCoR2b K � v2bCoR2b K � ω2bdK 1þ CoRð Þ

Rearrange

v2aK ¼ v1bK � v1bm2I2 1þ CoR2bð Þ � v1bm1m2d
2 1þ CoR2bð Þ þ v1bCoR2b K

þ v2bm2I2 1þ CoR2bð Þ þ v2bm1m2d
2 1þ CoR2bð Þ � v2bCoR2b K

þ ω2bm2dI2 1þ CoR2bð Þ þ ω2bm1m2d
3 1þ CoR2bð Þ � ω2bdK 1þ CoRð Þ

Now let us break up the (1 +CoR2b) terms.

v2aK ¼ v1bK � v1bm2I2 � v1bm2I2CoR2b � v1bm1m2d
2

�v1bm1m2d
2CoR2b þ v1bCoR2b K þ v2bm2I2

þv2bm2ICoR2b þ v2bm1m2d
2 þ v2bm1m2d

2CoR2b

�v2bCoR2bK þ ω2bm2dI2 þ ω2bm2dI2CoR2b

þω2bm1m2d
3 þ ω2bm1m2d

3CoR2b � ω2bdK
�ω2bdKCoR2b

Are any of these terms the same? No. OK, now let’s substitute

K ¼ m1I2 þ m2I2 þ m1m2d
2

� �
and hope for cancellations.

( )
( )

( )

2a 1b 1 2 1b 1b

1b 1b 1b 2b 1 2

2
2b 2 2 2b 2b 1 2 2b

2b 2b 1 2

2 2
1 2 2b

2 2

2b 2b 2b

2
2

1 2

2
1 2

2
1 2 2b

2
1 2

3
1

1 2

2

2 2 2

2 2 2b

2 2

2 2

2b

2 2

22 2b

m I m I

m I Co

v K v m I v v

v v v CoR m I

v m I v v m m d v

v CoR m

m m d

m m d

m m d CoR

m m d

R

m I

m d m

m m d CoR m m d

m dI

m I

mC

CoR

m I

o dI

I

Rw w w

= - -

- - +

+

+

+ + +

-

+ +

+

+

+

+

+

+ + ( )
( )

3
12b 1 2

2b 1 2

3
2b 1 2 2b

2b
3

1 22

2 22

2

mm

m

m dI

m dI

m dI

d

d

I

m m d CoR

m m d CoR

w

w

w +

+

-

+-

+

The terms in color cancel, leaving

v2aK ¼ v1bm1I2 1þ CoR2bð Þ
þv2b �m1I2CoR2b þ m2I2 þ m1m2d

2
� �

� ω2bm1dI2 1þ CoR2bð Þ

Continuing this simplification
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{ }

( )

2b 1 2 2b 1 2

2b 1 2 2b 1 2
2

2a 1b 1 2 2b 2b 1 2 2b 2b 2 2 2b 1 2 2b 1 2 2b

2
1b 2b 2b 2 2 22b 1 2 2b b 1 2 2b 1 2 21 2

distribute the second term and add

(1 ) (1 )

(1 ) (1

v K v m I CoR v m I CoR v m I v m m d

v m I v m I

v m I v m I

v m I v m

m dI CoR

v CoR v m I v m m d m dI CoRI

w

w

- +

- += + + - + + - +

= + + + - +- + b

1b 2b 1 2 2b 2b 2b 1 2 2b

2b 1b 2b 1 2 2b 2b 1 2 2b

)

( ) (1 ) (1 )

( ) (1 ) (1 )

v v m I CoR v K m dI CoR

v K v v m I CoR m dI CoR

w

w

= - + + - +

= + - + - +

Finally divide by K to get the velocity of the bat after the collision in canonical

form.

v2a ¼ v2b þ v1b � v2b � dω2bð Þ 1þ CoR2bð Þm1I2

m1I2 þ m2I2 þ m1m2d
2

� �
This equation was derived from Eqs. (4.4), (4.5), (4.6) and (4.8). Expanding our

abbreviations, we get

vbat-cm-after ¼ vbat-cm-before

þ vball-before � vbat-cm-before � ωbat-beforedð Þ 1þ CoR2bð ÞmballIbat

mballIbat þ mbatIbat þ mballmbatd
2

ð4:9Þ

We can change this into our normal form by first combining the two terms over one

common denominator.

v2a ¼ v2b
m1I2 þ m2I2 þ m1m2d

2
� �
m1I2 þ m2I2 þ m1m2d

2
� �þ v1b � v2b � dω2bð Þ 1þ CoR2bð Þm1I2

m1I2 þ m2I2 þ m1m2d
2

� �
¼ v2b m1I2 þ m2I2 þ m1m2d

2
� �þ v1b � v2b � dω2bð Þ 1þ CoR2bð Þm1I2

m1I2 þ m2I2 þ m1m2d
2

� �
and then simplifying

v2a ¼
v2b �m1I2CoR2b þ m2I2 þ m1m2d

2
� �þ v1bm1I2 1þ CoR2bð Þ � ω2bm1dI2 1þ CoR2bð Þ

m1I2 þ m2I2 þ m1m2d
2

� �

Expanding our abbreviations, we get

vbat-cm-after ¼ vball-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
�mballIbatCoR2b þ mbatIbat þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

� dωbat-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2
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4.5 Alternative Derivation of Bat Velocity After
the Collision

This time, let us start with the normal form for Eq. (4.8).

v1a ¼
v1b m1I2 � m2I2 CoR2b þ m1m2d

2
� �þ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ

m1I2 þ m2I2 þ m1m2d
2

Let

C ¼ v1b � v2b � dω2bð Þ

D ¼ m1d
2

I2
K ¼ m1I2 þ m2I2 þ m1m2d

2
� �

Q ¼ m1I2 � m2I2 CoR2b þ m1m2d
2

� �
R ¼ m2I2 1þ CoR2bð Þ
S ¼ m2dI2 1þ CoR2bð Þ
making these substitutions yields

v1a ¼ v1bQþ v2bRþ ω2bS

K

In the previous section we used Eq. (4.5) and solved for the velocity of the bat after

the collision, v2a

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � dω2a

Now we need to get rid of anything with a subscript of after, like ω2a. Therefore,

take Eq. (4.6) and solve for the angular velocity of the bat after the collision, ω2a.

ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ

� �

Now, substitute this into the above v2a equation to get

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � d ω2b � dm1

I2
v1a � v1bð Þ

� �
v2a ¼ v1a 1þ Dð Þ � Dv1b þ CoR2b v1b � v2b � dω2bð Þ � dω2b

Substitute v1a into this v2a equation

v2a ¼ v1bQþ v2bRþ ω2bS

K

� �
1þ Dð Þ � Dv1b þ CoR2b v1b � v2b � dω2bð Þ � ω2bd
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v2a ¼ v1bQþ v2bRþ ω2bS

K
þ v1bQDþ v2bRDþ ω2bSD

K

� Dv1b þ CoR2b v1b � v2b � dω2bð Þ � ω2b d

v2aK ¼ v1bQþ v2bRþ ω2bSþ v1bQDþ v2bRDþ ω2bSD

� Dv1bK þ v1bCoR2b K � v2bCoR2b K � ω2bdK 1þ CoR2bð Þ

Collect similar terms.

v2aK ¼ v1bQþ v1bQD � Dv1bK þ v1bCoR2b K þ v2bRþ v2bRD� v2bCoR2b K
þ ω2bSþ ω2bSD� ω2bdK 1þ CoR2bð Þ

Now replace D, K and Q in the v1b term.

v2aK ¼ þv1b

þ m1I2 � m2I2 CoR2b þ m1m2d
2

� �
þm1d

2

I2
m1I2 � m2I2 CoR2b þ m1m2d

2
� �

�m1d
2

I2
m1I2 þ m2I2 þ m1m2d

2
� �

þCoR2b m1I2 þ m2I2 þ m1m2d
2

� �

2
6666666664

3
7777777775

þ v2b Rþ RD� CoR2b K½ � þ ω2b Sþ SD� dK 1þ CoR2bð Þf g

Simplify

v2aK ¼ þv1bm1I2 1þ CoR2bð Þ
þv2b Rþ RD� CoR2b K½ �
þ ω2b Sþ SD� dK 1þ CoR2bð Þð Þ

Now replace D, K, R and S.

( ) ( ) ( )

( )

2a 1b 1 2 2b

2
21

2b 2 2 2b 1 2 1 2
2

2
31

2b 2 2 2b 2 2 2b 1 2 2 2

2

1 2 2b
2

2 2b 2b 2 2

(1 )

1 1

(1 ) (1 ) (1 )

v K v m I CoR

m d
v m I CoR m I m m d

I

m d
m dI CoR m dI CoR m dI m dI m m d CoR

I

m I CoR CoR m I

w

= + +

é
- +

ù
+ + + + + +ê ú

ë û

æ ö
+ + + + - + + +ç ÷

è ø
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The terms in color cancel.

[ ]

( )

( )

2a 1b 1 2 2b

2
2b 2 2

2
3

1 2 1 2

2b
1

2b 1 22 2

2 2
1 2 2b 2b 1 2

2 2 2 2 1 2
2

(1 )

(1 )

mm d CoR CoR m m d

m

v K v m I CoR

v m

m d
mdI m ddI m

I

m

m m d m I

CoR m dI I d
I

w

= + +

é ù+ + -+ +ë û

æ ö
+ + -ç ÷

è
++ +

ø

+

And now these terms in color cancel.

v2aK ¼ þv1b m1I2 1þ CoR2bð Þ½ �
þ v2b þm2I2 þ m1m2d

2 � m1I2CoR2b

� 	
� ω2bm1dI2 1þ CoR2bð Þ

Simplify

v2aK ¼ þv2b �m1I2CoR2b þ m2I2 þ m1m2d
2

� 	
þv1bm1I2 1þ CoR2bð Þ
�ω2bm1dI2 1þ CoRð Þ

Expanding our abbreviations gives

vbat-cm-after ¼ vball-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
�mballIbatCoR2b þ mbatIbat þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

� dωbat-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

This is the same equation that we derived before.

4.6 Finding Bat Angular Velocity After the Collision

Now we want to find ω2a (the angular velocity of the bat after the collision) in terms

of the input variables and parameters. The following equation gives the velocity of

the ball after the collision, v1a from the canonical form of Eq. (4.8).

v1a ¼ v1b � v1b � v2b � dω2bð Þ 1þ CoR2bð Þm1I2

m1I2 þ m2I2 þ m1m2d
2

� �

From Eq. (4.6) we solve for the angular velocity of the bat after the collision, ω2a
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ω2a ¼ ω2b � m1d

I2
v1a � v1bð Þ

Substitute v1a into this ω2a equation

1b 2b 2b 2b 1 2
2a 2b 2

1 2 2 2 1 2

1 1b 2b 2b 2b 1 2
2a 2b 2

2 1

1 1
1b 1b

2 2

2 2 2 1 2

( )(1 )

cancel the terms in

(

 re

) 1

d

( )

m d m dv v v d CoR m I
m I m I m m d

m d v v d CoR m I
I m I m I m m d

v
I I

w
w w

w
w w

ì ü- - +
= -í ý+ +î þ

é ù- - +
= +

-

+

+

ê ú+ë û

and finally we get

ω2a ¼ ω2b þ v1b � v2b � dω2bð Þ 1þ CoR2bð Þm1I2

m1I2 þ m2I2 þ m1m2d
2

ð4:10Þ

This equation was derived from Eqs. (4.6) and (4.8). We can change this into our

normal form by first combining the two terms over one common denominator.

( ) ( ) ( )

2
1 2 2 2 1 2 1b 2b 2b 2b 1 2

2a 2b 2 2
1 2 2 2 1 2 1 2 2 2 1 2

1 2 2 2
2 2

2b 1 2 1 2 2b1b 2b 1 2 2b
2

1 2 2 2 1 2

( )(1 )

1 ( )1m

m I m I m m d v v d CoR m I
m I m I m m d m I m I m m d

m I m I v v m m d CoR CoRm d m m
I m m d

d
m I m

w
w w

w w

+ + - - +
= +

+ + + +

+ + -

+

-+ +
=

+

+

Cancel duplicate terms and we get the normal form

ω2a ¼
ω2b m1I2 þ m2I2 � m1m2d

2CoR2b

� �þ v1b � v2bð Þm1m2d 1þ CoR2bð Þ
m1I2 þ m2I2 þ m1m2d

2

4.7 Three Output Equations in Three Formats

Wewill now summarize by giving equations for vball ‐ after , vbat ‐ cm ‐ after and ωbat ‐ after

in all three formats. First, we give the equation for the velocity of the ball after the

collision in normal form
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vball-after ¼ vball-before
mballIbat � mbatIbat CoR2b þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ dωbat-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

in canonical form

vball-after ¼ vball-before � vball-before � vbat-cm-before � dωbat-beforeð Þ 1þ CoR2bð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2

and in reduced canonical form

Let A ¼ vball-before � vbat-cm-before � dωbat-beforeð Þ 1þ CoR2bð Þ
mballIbat þ mbatIbat þ mballmbatd

2

vball-after ¼ vball-before � AmbatIbat

Now, we give the equation for the linear velocity of the bat after the collision in

normal form

vbat-after ¼ vball-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
�mballIbatCoR2b þ mbatIbat þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

� dωbat-before
mballIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

in canonical form

vbat-after ¼ vbat-before þ vball-before � vbat-cm-before � dωbat-beforeð Þ 1þ CoR2bð ÞmballIbat

mballIbat þ mbatIbat þ mballmbatd
2

and in reduced canonical form

vbat-after ¼ vbat-before þ AmballIbat

Finally, we give the equation for the angular velocity of the bat after the collision in

normal form
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ωbat-after ¼ vball-before
mballmbatd 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

� vbat-cm-before
mballmbatd 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ ωbat-before
mballIbat þ mbatIbat � mballmbatd

2CoR2b

� �
mballIbat þ mbatIbat þ mballmbatd

2

in canonical form

ωbat-after ¼ ωbat-before

þ vball-before � vbat-cm-before � dωbat-beforeð Þ 1þ CoR2bð Þmballmbatd

mballIbat þ mbatIbat þ mballmbatd
2

and in reduced canonical form

ωbat-after ¼ ωbat-before þ Amballmbatd

We now want to add the equation for Conservation of Energy, Eq. (4.3).

4.8 Adding Conservation of Energy and Finding KElost

This approach, of adding Conservation of Energy to the set of bat-ball collision

equations, is unique in the science of baseball literature. From configuration 1b, we

had that before the collision there is kinetic energy in the ball and kinetic energy in

the bat.

KEbefore ¼ 1

2
mballv

2
ball-before þ

1

2
mbatv

2
bat-cm-before

And after the collision, there is also kinetic energy in the ball and bat system.

KEafter ¼ 1

2
mballv

2
ball-after þ

1

2
mbatv

2
bat-cm-after

However, they are not equal. In bat-ball collisions, some kinetic energy is

transformed into heat, vibrations and deformations. This is called the kinetic energy

lost or transformed. It is modeled with the CoR.

KElost ¼ KEbefore � KEafter

In the configuration 1b section, we stated that
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KElost-config-1b ¼ �m

2
collision velocityð Þ2 1� CoR2

1b

� �

where �m ¼ mballmbat

mball þ mbat

:

KElost-config-1b ¼ �m

2
vball-before � vbat-cm-beforeð Þ2 1� CoR2

1b

� �
This is Eq. (3.2).

However, this equation for kinetic energy lost is not valid for the BaConLaw

model because we now also have angular kinetic energy in the rotation of the bat.

There are no springs in the system and the bat swing is level, therefore there is no

change in potential energy. Before the collision, there is kinetic energy in the bat

created by rotation of the batter’s body and arms plus the translational kinetic

energy of the ball.

KEbefore ¼ 1

2
mballv

2
ball-before þ

1

2
mbatv

2
bat-cm-before þ

1

2
Iballω

2
ball-before þ

1

2
Ibatω

2
bat-before

As always, ω means rotation about the center of mass of the object. The collision

will make the bat spin about its center of mass. If the collision is at the Center of

Percussion for the pivot point, then it will produce a rotation about the center of

mass, but no translation.

KEafter ¼ 1

2
mballv

2
ball-after þ

1

2
mbatv

2
bat-cm-after þ

1

2
Iballω

2
ball-after þ

1

2
Ibatω

2
bat-after

KEbefore ¼ KEafter þ KElost

1

2
mballv

2
ball-before þ

1

2
mbatv

2
bat-cm-before þ

1

2
Iballω

2
ball-before þ

1

2
Ibatω

2
bat-before

¼ 1

2
mballv

2
ball-after þ

1

2
mbatv

2
bat-cm-after þ

1

2
Iballω

2
ball-after þ

1

2
Ibatω

2
bat-after þ KElost

In our reduced notation

1

2
m1v

2
1b þ

1

2
m2v

2
2b þ

1

2
I1ω

2
1b þ

1

2
I2ω

2
2b ¼

1

2
m1v

2
1a

þ1

2
m2v

2
2a þ

1

2
I1ω

2
1a þ

1

2
I2ω

2
2a þ KElost

The KEbefore and the KEafter are easy to find: It is the KElost that is hard to find:

In Sect. 3.4, we proved that for head-on collisions without friction

ωball‐before¼ωball‐after. Therefore, the ball spin terms in these Conservation of

Energy equations cancel resulting in
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0 ¼ m1v
2
1b þ m2v

2
2b þ I2ω

2
2b � m1v

2
1a � m2v

2
2a � I2ω

2
2a � 2KElost

From before, we have

A ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ
m1I2 þ m2I2 þ m1m2d

2

v1a ¼ v1b � Am2I2

v2a ¼ v2b þ Am1I2

ω2a ¼ ω2b þ Am1m2d

Substituting A, the linear velocity of the ball after the collision, v1a, the linear

velocity of the bat after the collision, v2a and the angular velocity of the bat after the
collision, ω2a into the new Conservation of Energy equation yields

2KElost ¼ m1v
2
1b þ m2v

2
2b þ I2ω2

2b � m1 v1b � Am2I2ð Þ2
�m2 v2b þ Am1I2ð Þ2 � I2 ω2b þ Am1m2dð Þ2

� �

Now we want to put this into the form that we had for Eq. (3.2) in the section for

configuration 1b. The following derivation is original. First, we expand the squared

terms.

( )
1b

2 2 2
lost 1 1b 2 2 2 2

2 2 2 2 2 2 2
2 2b 1 2 1 2 2 2b 1 2

2
2 2b

2
1 2

2 2 2
lost 1 1b 2 2 2 2

2 2 2
2 2b 1 2 1 2

2
2 2b

2

2 2
1 1

b

b

b2 2

2 ( 2 )

( 2 ) 2

cancel terms in the same color
2 ( 2 )

( 2 )

m v vKE m v Am I A m I

m v Am I A m I I Am m d A m m d

KE m v Am I A m I

m v A

m v

v

I m I

I

m A

w

w

w

= - - +

- + + - + +

= -

+

-

+

+

+

- + - ( )2 2 2 2
2 2b 1 2 1 2

2 2 2
lost 1b 1 2 2 1 2 2

2 2 2 2 2 2 2 2
2b 1 2 2 1 2 2 2b 1 2 2 1 2 2

2

distribute the leading terms
2 2

2 2

I Am m d A m m d

KE v Am m I A m m I
v Am m I A m m I Am m dI A m m d I

w

w

+

= -

- - - -

Rearrange

2KElost ¼ 2v1bAm1m2I2 � 2v2bAm1m2I2 � A2m2
1m2I

2
2 � A2m1m

2
2I

2
2 � 2ω2bAm1m2dI2

� A2m2
1m

2
2d

2I2

factor

2KElost ¼ Am1m2I22 v1b � v2bð Þ � A2m1m2I2 m1I2 þ m2I2 þ m1m2d
2

� �� 2ω2bAm1m2dI2

factor out Am1m2I2

2KElost ¼ Am1m2I2 2 v1b � v2bð Þ � A m1I2 þ m2I2 þ m1m2d
2

� �� 2ω2bd
� 	
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Substitute for A

2KElost ¼Am1m2I2 2 v1b� v2bð Þ� v1b� v2b�dω2bð Þ 1þCoR2bð Þ
m1I2þm2I2þm1m2d

2

� �
m1I2þm2I2þm1m2d

2
� ��

�2ω2bd

�
2KElost ¼Am1m2I2 2 v1b� v2bð Þ� v1b� v2bð Þ 1þCoR2bð Þþdω2b 1þCoR2bð Þ�2ω2bd½ �
factor v1b� v2bð Þ out of the first two terms and combine the last two terms

2KElost ¼Am1m2I2 v1b� v2bð Þ 1�CoR2bð Þ�dω2b 1�CoR2bð Þ½ �
factor 1�CoR2bð Þ
2KElost ¼Am1m2I2 1�CoR2bð Þ v1b� v2b�dω2bð Þ
substitute forA

2KElost ¼ v1b � v2b � dω2bð Þ 1þ CoR2bð Þ
m1I2 þ m2I2 þ m1m2d

2

� �
m1m2I2 1� CoR2bð Þ

� v1b � v2b � dω2bð Þ

2KElost ¼ m1m2I2

m1I2 þ m2I2 þ m1m2d
2
v1b � v2b � dω2bð Þ

� 1þ CoR2bð Þ 1� CoR2bð Þ v1b � v2b � dω2bð Þ

Finally we get

KElost ¼ 1

2

m1m2I2

m1I2 þ m2I2 þ m1m2d
2
v1b � v2b � dω2bð Þ2 1� CoR2

2b

� �

or

KElost ¼ 1

2

mballmbatIbat vball-before � vbat-cm-before � ωbat-beforedð Þ2 1� CoR2
2b

� �
mballIbat þ mbatIbat þ mballmbatd

2

ð4:11Þ

This is a general result for the BaConLaw model. It is original and unique.

Now for a collision at the center of mass of the bat, like configurations 1a and 1b,

d¼ 0. Therefore,

KElost ¼ 1

2

m1m2

m1 þ m2

v1b � v2bð Þ2 1� CoR2
1b

� �

When we substitute, �m ¼ m1m2

m1 þ m2

we get
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KElost ¼ �m

2
v1b � v2bð Þ2 1� CoR2

1b

� �
This is the same as Eq. (3.2) that we gave in the Sect. 3.2.2 for configuration 1b

where we mentioned that this is an old, well-known equation that is hard to derive.

KElost ¼ �m

2
vball-before � vbat-cm-beforeð Þ2 1� CoR2

1b

� �
Likewise, if the spin of the bat about its center of mass is zero before the collision

ω2b¼ 0, then our KElost equation Eq. (4.11) also reduces to that given for config-

uration 1b, Eq. (3.2).

In this section, we derived a general equation and showed that if the collision

were at the center of mass (d¼ 0) or the bat had no spin ω2b¼ 0, then the general

equation reduced to the simple equation of configuration 1b. We conclude that

adding an equation for Conservation of Energy to the model proved the consistency

of our set of equations.

4.9 Adding Conservation of Angular Momentum

In this section, which is almost the same as Sect. 3.5, we will prove that for a head-on

collision, without friction, for a pitch of any spin there will be no change in the spin

of the ball. To do this we will use the law of Conservation of Angular Momentum

about the center of mass of the bat. When the ball contacts the bat, as shown in

Fig. 4.1, the ball has linear momentum ofmballvball ‐ before. However, the ball does not
know if it is translating or if it is tied on a string and rotating about the center of mass

of the bat. Following conventional practice in physics, we will model the ball as

rotating about the bat’s center of mass at a distance d¼ dcm ‐ ip. Therefore, the ball

has an initial angular momentum of mballdcm ‐ ipvball ‐ before about an axis through the

bat’s center of mass. In addition, it is possible to throw a curveball so that it spins

about the vertical, z-axis, as also shown in Fig. 4.1. We call this a purely horizontal

curveball (although it will still drop more due to gravity, than it will curve horizon-

tally). The curveball will have angular momentum of Iballωball ‐ before about an axis

parallel to the z-axis. However, this is its momentum about its center of mass and we

want the momentum about the axis through the center of mass of the bat. Therefore,
we use the parallel axis theorem producing (Iball +mballd

2)ωball ‐ before.

The bat has an initial angular momentum of Ibatωbat ‐ before. It also has an angular

momentum about the bat’s center of mass due to the bat translation momentum

mbatvbat ‐ before, however, in this case d¼ 0 because the center of mass of the bat is

passing through its center of mass. L is the symbol used for angular momentum.

I guess all the cool letters (like F, m, a, v, I, ω, d, etc.) were already taken, so

old-time physicists were stuck with the blah symbol L. Therefore, the initial angular
momentum about the center of mass of the bat is
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Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b

All of these momenta are positive, pointing out of the page (Fig. 4.2). (Remem-

ber that v1b is a negative number.)

For the final angular momentum, we will treat the ball, as before, as an object

rotating around the axis of the center of mass of the bat with angular momentum,

mballvball ‐ afterdcm ‐ ip. Now we could treat the bat as a long slender rod with a

moment of inertia of mbatd
2
bat=12, where dbat is the bat length. However, this is

only an approximation and we have actual experimental data for the bat moment of

inertia. Therefore, the bat angular momentum is Ibatωbat ‐ after. Thus, our final

angular momentum about the center of mass of the bat is

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a

The law of Conservation of Angular Momentum states that when no external

torque acts on an object the initial angular momentum about some axis equals the

final angular momentum about that axis.

Linitial ¼ Lfinal
m1v1bd þ I1 þ m1d

2
� �

ω1b þ I2ω2b ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a

Previously we used Eq. (4.6), Newton’s second principle and solved for the

angular velocity of the bat after the collision, ω2a.

dm1 v1a � v1bð Þ ¼ �I2 ω2a � ω2bð Þ ð4:6Þ

ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ

� �

So let us substitute this into our Conservation of Angular Momentum equation

above.

Fig. 4.2 This figure shows vball ‐ before , vball ‐ after , ωball , dcm ‐ ip and ωbat, which are used in the

Conservation of Angular Momentum equation for the BaConLaw model

4.9 Adding Conservation of Angular Momentum 67



m1v1bd þ I1ω1b þ m1ω1bd
2 þ I2ω2b ¼ m1v1ad þ I1ω1a þ m1ω1ad

2

þ I2 ω2b þ dm1

I2
v1b � v1að Þ

� �

We want to solve this for the angular velocity of the ball after the collision, ω1a

1 1a 1a
2 2

1 1a 1 1a 1 11 1b 11 1 12 2 2 2b b

2 2
1a 1 1 1 1 1

( )
Cancel the terms in color and rearrange

( ) ( )

bb b

b

m v d vm v d vI m d I m d dm

I m d I m d

I Iw ww w w w

w w

- -- - = - - - +

+ = +

+ +

ω1a ¼ ω1b

ωball-after ¼ ωball-before
ð4:12Þ

For the BaConLaw model, we have now proven that for a pitch with any spin

about the z-axis, the spin before and after is the same. What about a pitch that has

spin about the z-axis and also about the y-axis, like most pitches? The collision will

not change ball rotation. As shown above, it will not change the spin about the

z-axis. We could write another set of equations for angular momentum about the

y-axis. However, the bat has no angular momentum about the y-axis, so there is

nothing to affect the ball spin about the y-axis. {We are neglecting bat swings

described as chops or uppercuts and friction. The effects of friction will be

examined in Sect. 5.5, Collision with Friction.} In conclusion, a head-on collision

between a bat and a ball will not change the spin on the ball (Table 4.2). Some

papers have shown a relationship between ball spin before and ball spin after, but

they were using oblique collisions as in configuration 3 (Nathan et al. 2012;

Kensrud et al. 2017).

4.10 Simulation Results

The Excel simulation satisfies the following checks: (1) Conservation of Energy,

(2) Kinetic energy lost, (3) Conservation of Linear Momentum, (4) Coefficient of

Restitution, (5) Newton’s second principle, namely an impulse changes momentum

and (6) Conservation of Angular Momentum. Table 4.3 shows the kinetic energies

for the same simulation.

We note that the total kinetic before (372 J) equals the kinetic energy after

(176 J) plus the kinetic energy lost (196 J). However, if we set dcm ‐ ip¼ 0 in the

simulation so that the impact point is at the center of mass of the bat, then Tables 4.2

and 4.3 change and produce the results of Tables 3.3 and 3.4 for configuration 1b,

where the total kinetic before (346 J) equaled the kinetic energy after (169 J) plus

the kinetic energy lost (177 J). This means that the whole BaConLaw model

(equations, simulations, sensitivity analyses, etc.) can be reduced to be appropriate
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for configurations 2a, 1a and 1b by zeroing appropriate values. This is an important

validation point.

4.11 Sensitivity Analysis

This section contains equations and it can be skipped without loss of continuity.

This book is about the science of baseball. So why does it have this section on

sensitivity analysis? In order to understand the science of baseball, we make

models. In order to validate these models we do sensitivity analyses.

A second purpose of this book is to show how the batter can buy or make an

optimal baseball or softball bat. From the viewpoint of the batter, an optimum bat

would produce the maximum batted-ball velocity. The larger the batted-ball

Table 4.2 Simulation values

for bat-ball collisions at the

sweet spot, the BaConLaw

model

SI units Baseball units

Inputs

vball ‐ before �37 m/s �83 mph

ωball ‐ before 209 rad/s 2000 rpm

vbat ‐ cm ‐ before 23 m/s 52 mph

ωbat ‐ before 32 rad/s 309 rpm

vtbat ‐ cop ‐ before 28 m/s 62 mph

Collision speed 65 m/s 145 mph

CoR2b 0.465 0.465

Outputs

vball ‐ after 41 m/s 92 mph

ωball ‐ after ¼ωball ‐ before

vbat ‐ cm ‐ after 11 m/s 24 mph

ωbat ‐ after 1 rad/s 7 rpm

KElost 196 J

Table 4.3 The BaConLaw

model kinetic energies, J
KE ball linear velocity before¼ 100

KE bat linear velocity before¼ 246

KE ball angular velocity before¼ 1.7

KE bat angular velocity before¼ 25

KE before total¼ 372

KE ball linear velocity after¼ 122

KE bat linear velocity after¼ 53

KE ball angular velocity after 1.7

KE bat angular velocity after¼ 0.01

KE after¼ 176

KE lost ¼ 196

KE after + KE lost¼ 372
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velocity, the more likely the batter will get on base safely (Baldwin and Bahill

2004). Therefore, we made the batted-ball velocity our performance criterion.

We will now find the sensitivity of the batted-ball velocity, vball ‐ after, with

respect to the eight model variables and parameters, namely vball ‐ before , mball ,

Ibat , mbat , CoR2b , dcm ‐ ip , vbat ‐ cm ‐ before and ωbat ‐ before. We will start with the

equation for the ball velocity after the collision, v1a, Eq. (4.8).

v1a ¼ v1b � v1b � v2b � ω2bdð Þ 1þ CoR2bð Þm2I2

m1I2 þ m2I2 þ m1m2d
2

In order to perform an analytic sensitivity analysis we need the partial deriva-

tives of v1a with respect to the eight variables and parameters. These partial

derivatives are often called the absolute sensitivity functions.

Let

B ¼ v1b � v2b � ω2bdð Þ 1þ CoR2bð Þ
K ¼ m1I2 þ m2I2 þ m1m2d

2
� �

Therefore,

v1a ¼ v1b � Bm2I2
K

The following partial derivatives with respect to the variables are easy to derive:
∂v1a
∂v1b

¼ 1� 1þ CoR2bð Þm2I2
K

unitless

∂v1a
∂v2b

¼ 1þ CoR2bð Þm2I2
K

unitless

∂v1a
∂ω2b

¼ 1þ CoR2bð Þdm2I2
K

m

∂v1a
∂CoR2b

¼ � v1b � v2b � ω2bdð Þm2I2
K

m=s

In the above partial derivatives, units on the left and right sides of the equations

are the same. This is a simple, but important accuracy check. We perform such a

dimensional analysis on all of our equations.

For the following partial derivatives with respect to the parameters, we will need

the derivative of a quotient, defined as

d

dx

f xð Þ
g xð Þ


 �
¼

g xð Þ d
dx
f xð Þ � f xð Þ d

dx
g xð Þ

g xð Þ½ �2
Using this differential equation we get the following partial derivatives:
∂v1a
∂d

¼ Kω2b 1þ CoR2bð Þm2I2 þ 2BI2m1m
2
2d

K2
1=s
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∂v1a
∂m1

¼ Bm2I2 I2 þ m2d
2

� �
K2

m=kg � s
∂v1a
∂m2

¼ �Bm1I
2
2

K2
m=kg � s

∂v1a
∂I2

¼ Bm1m
2
2d

2

K2
1=kg �m � s

4.11.1 Semirelative Sensitivity Functions

Now that we have the partial derivatives, we want to form the semirelative-
sensitivity functions, which are defined as

~S F
α ¼ ∂F

∂α

����
NOP

α0

where NOP and the subscript 0 mean that all variables and parameters assume their

nominal operating point values (Smith, Szidarovszky, Karnavas and Bahill 2008).

~S F
α ¼ ∂F

∂α

��
NOP

α0
~Sv1av1b

¼ 1� 1þCoR2bð Þm2I2
K

���
NOP

v1b0

~Sv1av2b
¼ 1þCoR2bð Þm2I2

K

���
NOP

v2b0

~Sv1aω2b
¼ 1þCoR2bð Þm2dI2

K

���
NOP

ω2b0

~Sv1aCoR ¼ � v1b�v2b�ω2bdð Þm2I2
K

���
NOP

CoR0

~Sv1ad ¼ Kω2b 1þCoR2bð Þm2I2þ2Bm2I2m1m2d

K2

���
NOP

d0

~Sv1am1
¼ Bm2I2 I2þm2d

2ð Þ
K2

����
NOP

m10

~Sv1am2
¼ �Bm1I

2
2

K2

���
NOP

m20

~Sv1aI2
¼ Bm1m

2
2
d2

K2

���
NOP

I20

Table 4.4 gives the nominal values, along with the range of physically realistic

values for collegiate and professional baseball batters, and the semirelative sensi-

tivity values computed analytically. The bigger the sensitivity is, the more impor-

tant the variable or parameter is for maximizing batted-ball velocity.

The right column of Table 4.4 shows that the most important property (the

largest value), in terms of maximizing batted-ball velocity, is the linear velocity of

the center of mass of the bat before the collision, vbat ‐ cm ‐ before. This is certainly no
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surprise. The second most important property is the coefficient of restitution,

CoR2b. The least important properties are the angular velocity of the ball, ωball ‐

before, the distance between the center of mass and the impact point, dcm ‐ ip, and the

moment of inertia of the bat, Ibat. The sensitivities to the distance between the center
of mass and the impact point, dcm ‐ ip, and the mass of the ball, mball, are negative,

which merely means that as they increase the batted-ball speed decreases. Cross

(2011) wrote that in his model the most sensitive properties were also the bat speed

followed by the CoR. His sensitivity to the mass of the ball was also negative.

For this operating point {meaning the nominal values given in Table 4.4 where

dcm ‐ ip¼ 0.134 m}, the sensitivity of the batted-ball speed with respect to the

impact point, the distance dcm ‐ ip, was negative. This means that as the impact

point gets farther away from the center of mass the batted-ball speed falls off. This

is true for all values where dcm ‐ ip> 0.1 m. For smaller values, the sensitivity

coefficient is positive. This means that there is a point of impact that produces the

maximum batted-ball speed. This is not surprising and is a well-known fact

Nathan (2003).

4.11.2 Interactions

We will now discuss interactions, or second-order partial derivatives. Once my

Mother cleaned the toilet with Clorox bleach. She was pleased with the result. The

next week she cleaned the toilet with ammonia. She was even happier. So then, she

Table 4.4 Typical values and first-order sensitivities with respect to the batted-ball velocity for

the BaConLaw model

Variables
and
parameters

Nominal values Range of realistic values ~S F
α ¼ ∂F

∂α

����
NOP

α0

semirelative
sensitivity
valuesSI units

Baseball
units SI units

Baseball
units

Inputs

vball ‐ before �37 m/s �83 mph �27 to �40 m/s �60 to �90 mph 8

ωball ‐ before 209 rad/s 2000 rpm 209 � 21 rad/s 2000 � 200 rpm 0

vbat ‐ cm ‐

before

23 m/s 52 mph 23 � 5 m/s 52 � 10 mph 28

ωbat ‐ before 32 rad/s 309 rpm 32 � 11 rad/s 300 � 100 rpm 5

vtbat ‐ cop ‐
before

28 m/s 62 mph

Parameters

CoR2b 0.465 0.465 � 0.05 25

dcm ‐ cop 0.134 m 5.3 in 0.134 � 0.05 m 5.3 � 2 in �2

mball 0.145 kg 5.125 oz 0.145 � 0.004 kg 5.125 � 0.125 oz �14

mbat 0.905 kg 32 oz 0.709–0.964 kg 25–34 oz 10

Ibat ‐ cm 0.048 kg m2 2624 oz in2 0.036–0.06 kg m2 1968–3280 oz in2 3

72 4 The BaConLaw Model for Bat-Ball Collisions



decided that if bleach by itself worked so well and ammonia by itself worked so

well, then surely both of them together would be wonderful. She created chloramine

gas and we had to get out of the house and spend the rest of the day in the desert,

because this gas kills people (https://www.thoughtco.com/bleach-and-ammonia-

chemical-reaction-609280). Next, don’t drink ethyl alcohol and take barbiturates

or acetaminophen (Tylenol) at the same time, unless you are trying to commit

suicide. Finally, because grapefruit juice contains furanocoumarins it increases the

absorption rate of cholesterol-lowering statins such as Zocor, which could lead to

serious side effects. Interactions can amplify or attenuate the effects of drugs and

chemicals. Now let us look at some interactions in the BaConLaw model.

Because
∂v1a
∂m2

contains both I2 and v2b,

and
∂v1a
∂I2

contains both m2 and v2b,

and
∂v1a
∂v2b

contains both m2 and I2,

we see that there are interactions. How important are they? To find out, let us

calculate the second-order, interaction functions for the three terms above. The first

two are easy.

∂2
v1a

∂v2b∂m2

¼ 1þ CoR2bð ÞI2 K � m2 I2 þ m1d
2

� �� 	
K2

1=kg

∂2
v1a

∂v2b∂I2
¼ 1þ CoR2bð Þm2 K � I2 m1 þ m2ð Þ½ �

K2
1=kg �m2

Here, we choose the interactions of the bat mass, the moment of inertia and the bat

speed, because they were expected to be large based on principles of physiology.

Additionally, the forthcoming discussion on optimizing the bat suggests an inter-

action between the bat mass and its moment of inertia. The above two second-order

partial derivatives were easy to calculate. However, it will take a bit more work to

get the third part of this triad. We will now derive the interaction between bat mass

and its moment of inertia, mbat and Ibat. From before, we had

∂v1a
∂m2

¼ BI2 �K þ m2 I2 þ m1d
2

� �� 	
K2

To find ∂2
v1a

∂I2∂m2
we must first simplify ∂v1a

∂m2
: We will be dealing with I2 so let us

isolate it. But first replace K in the numerator and we get
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Now, we will take the partial derivative of this function with respect to I2.
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This demonstrates that if we have equations for the functions, then we can do an

analytic sensitivity analysis. However, for some functions it may take some effort.

Fortunately, it takes no effort to calculate the following interaction terms using the

partial derivatives in the previous section.
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∂v1a
∂v1b

¼ 1� 1þ CoR2bð Þm2I2
K

∂2
v1a

∂v1b∂CoR
¼ m2I2

K
unitless

and

∂v1a
∂v2b

¼ 1þ CoR2bð Þm2I2
K

∂2
v1a

∂v2b∂CoR
¼ m2I2

K
unitless

These two partial derivatives are the same, but their semirelative sensitivity func-

tions will be different. Let us derive one more second-order partial derivative.

∂v1a
∂m2

¼ � v1b � v2b � ω2bdð Þ 1þ CoR2bð Þm1I
2
2

K2

∂2
v1a

∂CoR ∂m2

¼ � v1b � v2b � ω2bdð Þm1I
2
2

K2

This function does not look interesting.

Now for the above five second-order partial derivatives we can form the follow-

ing semirelative sensitivity functions for interactions.

~Sv1av2b�m2
¼ 1þCoR2bð ÞI2 K�m2 I2þm1d

2ð Þ½ �
K2

����
NOP

v2b0m20

~Sv1av2b�I2
¼ 1þCoR2bð Þm2 K�I2 m1þm2ð Þ½ �

K2

���
NOP

v2b0 I20

~Sv1aI2�m2
¼ �2 v1b�v2b�ω2bdð Þ 1þCoR2bð Þm2

1
m2d

2I2
K3

���
NOP

I20m20

~Sv1av1b�CoR¼
m2I2
K

����
NOP

v1b0CoR0

and

~Sv1av2b�CoR ¼ m2I2
K

����
NOP

v2b0CoR0

Table 4.5 shows values for a few of the 28 possible second-order interaction

functions. They are small, which means that the model is well behaved. However,

let’s ask again, “What exactly what are interaction terms?” It means that the

numerical value of the sensitivity of a function f to parameter α depends on the

numerical value of parameter β. Often the interaction can be seen in the sensitivity

function equations. In the BaConLaw model, the sensitivity of the batted-ball
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velocity to the mass of the bat depends on the numeric value of the moment of

inertia of the bat, because it appears in the numerator of this sensitivity function.

~Sv1am2
¼ � v1b � v2b � ω2bdð Þ 1þ CoR2bð Þm1I

2
2

K2

����
NOP

m20

However, from Table 4.5, the numeric value ofmbat interacting with Ibat is only 1,
which is smaller than the magnitude of the sensitivity of the batted-ball velocity to

the mass of the bat by itself, which is 10 (from Table 4.4), or to the magnitude of the

sensitivity of the batted-ball velocity to the moment of inertia of the bat by itself,

which is 3. Thus, this interaction is unexpectedly not important. This model has

many interactions, but fortunately, most of them are small. Interactions are hard to

Table 4.5 Interaction sensitivities with respect to the batted-ball velocity for the BaConLaw

model computed numerically for +1% variable and parameter changes

Interacting variables and 
parameters

ball-afterv with 
the first 

parameter 
a increased
by 1%, m/s

ball-afterv with 
the second 
parameter 
b increased
by 1%, m/s

α
ball-after

ball-after

v
vb

D

+D
Sum of 
columns 

2 & 3

ball-afterv
with both 

parameters 
increased

by 1%, m/s

0
NOP

F FSa a
a
¶

=
¶

�

semirelative
sensitivity 

values

Nominal batted-ball velocity ball-afterv = 41.079 m/s = 91.89 mph

ball-before 2b interacting with v CoR 41.156 41.327 41.405 14

ball-after-nominal ball-after-perturbedv v- m/s 0.077 0.248 0.325 0.326

bat-before 2b interacting with v CoR 41.361 41.327 41.610 9

ball-after-nominal ball-after-perturbedv v- m/s 0.282 0.248 0.530 0.531

ball-before ball interacting with v m 41.156 40.942 41.017 -8

ball-after-nominal ball-after-perturbedv v- m/s 0.077 -0.137 -0.060 -0.062

bat ball interacting with m m 41.182 40.942 41.044 7

ball-after-nominal ball-after-perturbedv v- m/s 0.103 -0.137 -0.034 -0.035

bat bat interacting with m I 41.182 41.114 41.216 1

ball-after-nominal ball-after-perturbedv v- m/s 0.103 0.035 0.138 0.137

ball-before bat-before interacting with v v 41.156 41.361 41.438 0

ball-after-nominal ball-after-perturbedv v- m/s 0.077 0.282 0.359 0.359

cm-ss batd  interacting with I 41.061 41.114 41.097 7

ball-after-nominal ball-after-perturbedv v- m/s -0.018 0.035 0.017 0.018

ball interacting with mCoR 41.327 40.942 41.189 -4

ball-after-nominal ball-after-perturbedv v- m/s -0.248 0.137 -0.111 -0.110
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detect. And if they are big, they can ruin a system or a model. The most and least

important interaction functions of this model are shown in Table 4.5.

Can we use this information to increase bat performance? For wooden bats, it is

legal to drill a one to 2 inch hole into the barrel end of the bat up to 1¼ inches deep.

It is also legal to taper the last 3 inches of the barrel say from 2.61 inches (6.6 cm)

down to 1¾ of an inch (4.4 cm). Both of these modifications would decrease the bat

weight, decrease the moment of inertia about the center of mass and would move

the sweet spot closer to the knob. According to Table 4.4, the first two changes

would decrease batted-ball speed, whereas the third would increase batted-ball

speed. So, what is the right answer? We will not know until after we consider

physiology in Sect. 4.12.4.

To complete this section on sensitivity analysis, we will now look at interactions

using semirelative sensitivity functions that we will compute with numerical
techniques instead of using the analytic equations derived above.

4.11.2.1 Empirical (or Numerical) Sensitivity Analysis

If you do not have equations for the model’s functions {or for heuristic reasons as in
this section}, then you can do a sensitivity analysis using numerical techniques. To

estimate values for the second-partial derivatives we start with

∂2
f α0; β0ð Þ
∂α∂β

� f α; βð Þ � f α0; βð Þ � f α; β0ð Þ þ f α0; β0ð Þ
ΔαΔβ

from Bahill and Madni (2017). Then for a 1% increase in the parameter α
Δα¼ 0.01α0. Likewise Δβ¼ 0.01β0. Therefore

∂2
f α0; β0ð Þ
∂α∂β

� f α; βð Þ � f α0; βð Þ � f α; β0ð Þ þ f α0; β0ð Þ
0:01α0 � 0:01β0

Now to get the semirelative-sensitivity function we multiply this mixed-second-

partial derivative by the nominal values α0 and β0

~S f
α�β ¼

∂2
f

∂α∂β

�����
NOP

α0β0

~S f
α�β � f α;βð Þ�f α0;βð Þ�f α;β0ð Þþf α0;β0ð Þ

0:01α0�0:01β0

���
NOP

α0β0
~S f
α�β � f α; βð Þ � f

�
α0; β

�� f
�
α; β0

�þ f
�
α0; β0

��� ��
NOP

� 10, 000

We used this equation to get the values for Table 4.5. The column headingΔvαball-after
þΔv βball-after means find the change in the velocity of the batted ball after the
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perturbation of the parameter α and add to it the change in the velocity of the ball

after the perturbation of the parameter β.
To form Table 4.5, we defined the performance criterion, chose a pair of

parameters, changed the first by a fixed percentage, calculated the new performance

criterion value, calculated the change in the performance criterion value, reset the

first parameter, changed the second parameter by the same percentage, calculated

the new performance criterion value, calculated the change in the performance

criterion value, added these two changes in the performance criterion values

together, then changed both parameters at the same time, calculated the perfor-

mance criterion value and calculated the change in the performance criterion value.

Let us now explain the top rows of Table 4.5, the interaction of vball ‐
before with CoR2b. If you increase vball ‐ before (call it α) by 1%, then the batted-ball

speed will increase from its nominal value of 41.079 m/s to its modified value of

41.156 m/s. This is an increase of 0.077 m/s. Now reset vball ‐ before and then increase
CoR2b (call it β) by 1%. The batted-ball speed will increase from the nominal value

to its modified value of 41.327 m/s. This is an increase of 0.248 m/s. Therefore,

these two changes, when performed individually, produce a total change of 0.325,
highlighted in blue in Table 4.5. Now comes the important part, if you increase both

vball ‐ before and CoR2b by 1% at the same time, then the batted-ball speed increases

from the nominal value to a modified value of 41.405 m/s. This is an increase of

0.326 m/s, highlighted in green in Table 4.5. Therefore, we can see that when these

two changes are performed individually they produce a total increase of 0.325 ,
however when performed together they produce an increase of 0.326 m/s. The whole

is greater than the sum of its parts.

However, interactions do not always accentuate changes. Here is one that goes in

the opposite direction; the interaction of mbat with Ibat.Suppose that someone tells

you that Eq. (4.8) shows that increasing bat mass will increase batted-ball speed.

And someone else tells you that increasing the bat moment of inertia will increase

your batted-ball speed. Well if each is good by itself why not do both? For instance,

if you increase mbat by 1%, then the batted-ball speed will increase from its nominal

value of 41.079 m/s to its modified value of 41.182 m/s. This is an increase of

0.103 m/s. Now reset mbat and then increase Ibat by 1%. The batted-ball speed will

increase from the nominal value to its modified value of 41.114 m/s. This is an

increase of 0.035 m/s. Therefore, these two changes, when performed individually,

produce a total increase of 0.138, highlighted in blue. Now comes the important part,

if you increase both mbat and Ibat by 1% at the same time, then the batted-ball speed

increases from the nominal value to a modified value of 41.216 m/s. This is an

increase of 0.137 m/s, highlighted in green. Therefore, we can see that when these

two changes are performed individually they produce a total increase of 0.138 ,
however when performed together they produce an increase of 0.137 m/s. The whole

is less than the sum of its parts. Here the interaction attenuates the individual

changes.

Figure 4.3 shows the interaction of bat weight and bat moment of inertia (MoI)
graphically. If you increase the bat weight, the batted-ball speed goes up. However,
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these six curves do not have the same shape. The curve for MoI ¼ 0.4 starts to

saturate at the right side. However, the curve forMoI¼ 0.9 does not flatten as much

at the right side. This is the effect of the interaction. The difference in spacing of the

lines is not the effect of the interaction. That is merely the dependence of the batted-

ball speed on the moment of inertia (MoI).

4.11.2.2 Humidor

The Colorado Rockies store their baseballs in a humidor at 50% relative humidity

and 70 �F. According to the appendix of Chap. 7, on a typical July afternoon in

Denver the relative humidity is 34% and the average temperature is 88 �F.
According to Alan Nathan (http://www.baseballprospectus.com/article.php?

articleid¼13057), compared to storing the balls in an outdoor environment, storing

the balls in a humidor decreases the coefficient of restitution (because the balls get

mushier, see Fig. 3.1) and increases the weight of the balls (because they absorb

water): these two effects reduce the number of home runs in this stadium by 25%.

However, this conclusion must be tempered, because there is an interaction

between changes in CoR and mball. You cannot just say if CoR# , vball ‐ after# and if

mball" , vball ‐ after# therefore ifCoR#and mball" , then vball ‐ after#.

Fig. 4.3 Interaction of bat mass and bat moment of inertia
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In our sensitivity analysis, we increased the value of each parameter by 1%. It

told us that if you increase the CoR by 1%, then, according to the bottom rows of

Table 4.5, the batted-ball speed will increase from its nominal value of 41.079 m/s

to its modified value of 41.327 m/s. This is an increase of 0.248 m/s. Now if you

increase mball by 1%, then the batted-ball speed will decrease from the nominal

value to its modified value of 40.942 m/s. This is a decrease of 0.137 m/s.

Therefore, these two changes, when performed individually, produce a total

increase of 0.111, highlighted in blue in Table 4.5. Now comes the important

part, if you increase both CoR and mball by 1% at the same time, then the batted-ball

speed increases from the nominal value to a modified value of 41.189 m/s. This is

an increase of 0.110 m/s, highlighted in green. Therefore, when these two changes

are performed individually they produce a total increase of 0.111 , however when

performed together they produce an increase of only 0.110 m/s. The whole is less

than the sum of its parts. Here the interaction attenuates the changes.

Therefore, to do a proper analysis, you cannot change one parameter, change the

other parameter and then add the results. In your simulation, you must change both

parameters at the same time.

Okay, that is the end of the sensitivity analysis of the BaConLaw model. Now

let’s go back to Coors Field in Denver. From the appendix in Chap. 7, we see that

the relative humidity on an average July afternoon in Denver is 34%. Alan Nathan

wrote that the difference between the 50% relative humidity in the humidor and the

outside air in Denver causes a decrease of 3.7% in the CoR and an increase of 1.6%

in the weight of the ball.

When those changes (and the parameters of a perfect home run ball) are put into

the BaConLaw model and the Ball in Flight model of Chap. 7, we find that

decreasing the CoR by 3.7% percent decreases the range of the batted ball by

8.5 feet. Increasing the weight of the ball by 1.6% increases the range of the batted

ball by 1.6 feet. Summing these two changes gives a range decrease of 6.9 feet. But

if the changes are made in the models at the same time the result is a range decrease

of 9.1 feet. The whole is greater than the sum of its parts.

The Arizona Diamondbacks are considering installing a similar humidor in their

stadium in Phoenix. Therefore, we should do a similar analysis for them. In

addition, we should also do an analysis for the temperature differences. We should

analyze the effects of storing the balls at 70 �F versus storing them at the average

daily high temperature in Phoenix in July of 104 �F. But of course, this depends on
where the balls are stored if they are not in a humidor and whether the dome is open

or closed.

Interactions can amplify or attenuate the effects of drugs, chemicals and param-

eters in a model. Interactions mean that the numerical value of the sensitivity of a

function to a particular parameter depends on the numerical value of another

parameter. In a well-behaved model, the interaction terms are small. If the interac-

tion terms are large, they warn that in your analysis you cannot change one
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parameter, change another and then sum the results. You must have a model and

simulation. And in it you must change both parameters at the same time.

4.11.3 Accuracy

An important point about this section is that we computed the semirelative sensi-

tivity values with two techniques: analytic equations and empirical (or numerical)

estimates. To compare these two techniques, we note that using the empirical

method the estimate for the +1% increment of the bat speed is

~Sv1av2b
¼ 1þ CoR2bð Þm2I2

K

����
NOP

v2b0 ¼ 28:203485470404

Whereas, the analytic method as in Table 4.4 gives the following exact value.

~Sv1av2b
¼ 1þ CoR2bð Þm2I2

K

����
NOP

v2b0 ¼ 28:203485470399

With a 10% change in the variable values, the match would be worse. With a 0.1%

change, the match would be better.

This analysis has only included the equations of physics. Later, in Sect. 4.12, we

will consider principles of physiology. In that section we will recommend that

batters choose lightweight end-loaded bats.

A second purpose of this book is to show how the batter can buy or make an

optimal baseball or softball bat. From the viewpoint of the batter, the batted-ball

speed is the most important output. The larger it is the more likely the batter will get

on base safely (Baldwin and Bahill 2004).

4.11.4 Optimizing with Commercial Software

We applied What’sBest!, a subset of the LINGO solvers, to our model. We

constrained each variable to stay within physically realistic limits under natural

conditions. Such values are shown in Table 4.4. We have previously gotten good

results using this technique when doing empirical sensitivity analyses (Bahill et al.

2009). Then we asked the optimizer to give us the set of values that would

maximize batted-ball speed. The optimizer applied a nonlinear optimization pro-

gram. Surprisingly, the results were almost the same as in Table 4.4! That is, for

variables and parameters with positive sensitivities, the optimizer chose the max-

imum values. For variables and parameters with negative sensitivities, the
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optimizer chose the minimum values. For the parameter with both negative and

positive sensitivities, the optimizer chose the optimal value.

Using all of the optimal values at the same time increased the batted-ball speed

from 92 to 117 mph (41–52 m/s). Using this optimal set of values changed the

sensitivities, as shown in Table 4.6.

1. The numerical sensitivity values mostly increased. This is a direct result of the

definition of the semirelative sensitivity function where the partial derivative is

multiplied by the variable or parameter value. If the variable or parameter value

increases, then the sensitivity value also increases.

2. The rank order stayed the same except that the output became more sensitive to

the linear velocity of the ball before the collision, vball ‐ before than to the mass of

the bat, mbat. In the optimal set, both of these sensitivities increased, but because

the value of the linear velocity of the ball before the collision, vball ‐ before changed
from 37 to 40 m/s (Table 4.4) whereas the value of the mass of the bat, mbat only

changed from 0.905 to 0.964 kg, the change in the sensitivity to the linear

velocity of the ball before the collision, vball ‐ before became bigger.

3. The optimizer found the optimum value for dcm ‐ ip to be 10 cm (4 inches). Above

this value, the semirelative sensitivity was negative; below this value, the

sensitivity was positive. This is important. We could have found the same result

if we had used the partial derivative of the batted-ball velocity with respect to the

distance d, taken the derivative with respect to d and set it equal to zero, as in the
following derivation by Ferenc Szidarovszky. We start with Eq. (4.8).

v1a ¼ v1b � v1b�v2b�ω2bdð Þ 1þCoR2bð Þm2I2
m1I2þm2I2þm1m2d

2

Let

E¼ (1 +CoR2b)m2I2 and F¼m1I2 +m2I2
Then

v1a ¼ v1b � v1b�v2b�ω2bdð ÞE
Fþm1m2d

2

and the

Table 4.6 Sensitivities with nominal and optimal values for the variables and parameters

Semirelative sensitives of the batted-ball velocity with

respect to

With nominal

values

With optimal

values

Inputs

vball ‐ before 8 12

ωball ‐ before 0 0

vbat ‐ cm ‐ before 28 36

ωbat ‐ before 5 5

Parameters

CoR2b 25 32

dcm ‐ ip �2 +0.4

mball �14 �13

mbat 10 12

Ibat ‐ cm 3 1
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numerator of ∂v1a
∂d

n o
¼ �E m1m2d

2ω2b þ 2m1m2d v1b � v2bð Þ þ Bω2b

� 	
Now we set this equal to zero and solve for dmax ‐ velocity.

dmax-velocity ¼ v1b�v2bð Þ
ω2b

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1b�v2bð Þ
ω2b

h i2
þ m1I2þm2I2

m1m2

r
The batted-ball velocity has a maximum or a minimum at this value of d. To

determine which, we derive the second partial derivative. The

numerator of
∂2

v1a

∂d2

( )
¼ �E m2

1m
2
2d

3ω2b � 2Fm1m2dω2b � F2ω2b

d

� �
< 0

This is negative. Therefore, this value of dcm ‐ ip gives the maximum batted-

ball velocity, not the minimum. Using the numbers in Table 1.1, the optimum

value for dcm ‐ ip is 9.2 cm (3.6 inches).

This all means that the sensitivity analysis is robust. Its results remain basically

the same after big changes in the variables and parameters.

We then tried a different optimization technique. Instead of constraining each

variable to stay within realistic physical limits, we allowed the optimizer to change

each variable by at most �10% and then give us the set of values that maximized

batted-ball speed. The numerical values of the sensitivities changed but the rank

order stayed the same, except for vball ‐ before and mbat just as it did with the realistic

values technique.

Both empirical sensitivity analyses and optimization can constrain each variable

to stay within specified realistic physical limits or change each variable by a certain

percentage. Both techniques gave the same results. However, we prefer the former

technique (Bahill et al. 2009).

We found an interesting relationship between the sensitivity analyses and opti-

mization: they gave the same results! Because the interaction terms are small, for

variables and parameters with positive sensitivities, the optimizer chose the max-

imum values and for variables and parameters with negative sensitivities, the

optimizer chose the minimum values. Where the sensitivity function had both

positive and negative slopes, it found the optimal value. But of course, this finding

is not original. Sensitivity analyses are commonly used in optimization studies

(Choi and Kim 2005). These studies typically apply sensitivity analysis after

optimization. They try to find values or limits for the objective function or the

right-hand sides of the constraints that would change the decisions. However, in our

study, we applied optimization after the sensitivity analysis and we had only one

variable in our objective function. Therefore, our problem was much simpler than

sensitivity analyses in the optimization literature.
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4.12 Optimizing the Bat

The following paragraphs are from Major League Baseball 2016 Official Baseball
Rules.

3.02 (1.10) The Bat

(a) The bat shall be a smooth, round stick not more than 2.61 inches in diameter at

the thickest part and not more than 42 inches in length. The bat shall be one

piece of solid wood.

(b) Cupped Bats. An indentation in the end of the bat up to 1¼ inches in depth is

permitted and may be no wider than 2 inches and no less than 1 inch in

diameter. The indentation must be curved with no foreign substance added.

(c) The bat handle, for not more than 18 inches from its end, may be covered or

treated with any material or substance. Any such material or substance that

extends past the 18-inch limitation shall cause the bat to be removed from

the game.

(d) No colored bat may be used in a professional game unless approved by the

Rules Committee.

The second purpose of this chapter is to help the batter acquire an optimal

baseball or softball bat. Therefore, we ask, “How can the batter use these sensitivity

and optimization results to select or customize a bat that would be optimal for him

or herself?” First, it is no surprise that the speed of the bat before the collision is the

most important variable in Table 4.4. Its effect is shown in Fig. 4.4, where the slope

of the line is the absolute sensitivity.

For Fig. 4.4, we computed the batted-ball velocity with vball ‐ after¼ vball ‐
before�AmbatIbat and then we plotted the batted-ball speed as a function of the

total bat speed before the collision. Remember that A is not a constant, it depends on

Fig. 4.4 Total bat speed before the collision is the most important variable in the BaConLaw

model
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the three inputs: the velocity of the ball and bat before the collision and the angular

velocity of the bat before the collision. Figure 4.4 is for a pitch speed of 92 mph {a

ball speed at contact of 83 mph}. This figure shows that an average hit is not a

home run.

For decades, Little League coaches have taught their boys to practice and gain

strength so that they could increase their bat speeds. They also said that it is very

important to reduce the variability in the bat swings: Every swing should be the

same. “Don’t try to kill the ball.” Given our new information, we now recommend

that Little League coaches continue to give the same advice: increase bat speed and

reduce variation. Practice is the key. Dave Baldwin (2007), a major-league pitcher

with a career 3.08 ERA, sagaciously wrote that if you lose a game, don’t blame the

umpire or your teammates; just go home and practice harder.

Using the Bat Chooser™, our measurements of over 300 batters showed that

variability in the speed of the swing decreases as level of performance increases

from Little League to Major League Baseball. For major leaguers the bat speed

standard deviations were typically around�5% (Bahill and Karnavas 1989), which

is a small value for physiological data.

The variable with the second largest sensitivity is the coefficient of restitution

(CoR). The CoR of a bat-ball collision depends on where the ball hits the bat. It is

difficult, but absolutely essential, for the batter to control this. He or she must

consistently hit the ball with the sweet spot of the bat. The CoR also depends on the

manufacturing process. The NCAA now measures the Bat-ball Coefficient of

Restitution (BBCOR) for sample lots coming off the manufacturing line. Therefore,

amateurs are all going to get similar BBCORs. However, a lot can still be done with

the CoR for aluminum and composite bats during their useful life. For example, the

performance of composite bats typically improves with age because of the break-in

process; repeatedly hitting the bat eventually breaks down the bat’s composite

fibers and resinous glues. ‘Rolling’ the bat also increases its flexibility. Rolling

the bat stretches the composite fibers and accelerates the natural break-in process

simulating a break-in period of hitting, say, 500 balls.

For wooden bats, the batter could try to influence the CoR by choosing the type

of wood that the bat is made of. Throughout history, the most popular woods have

been white ash, sugar maple and hickory. However, hickory is heavy, so most

professionals now use ash or maple. A new finding about bat manufacturing is that

the slope of the grain has an effect on the strength and elasticity of the bat. As a

result, the wood with the straightest grain is reserved for professionals and wood

with the grain up to five degrees off from the long-axis of the bat is relegated to

amateurs. Furthermore, the manufacturer’s emblem is stamped on the flat grain side

of ash bats so that balls collide with edge grain as shown in Fig. 4.1, whereas the

emblem is stamped on the edge grain side of maple wood bats (Fig. 4.6) because

they are stronger when the collision is on the flat grain side.

The next largest sensitivities are for the mass of the ball and its velocity before

the collision, mball and vball ‐ before. However, the batter can do nothing to influence

the mass of the ball or the ball velocity before the collision, so we will not

concern ourselves with them. Likewise, the batter has no control over the ball

4.12 Optimizing the Bat 85



spin, ωball ‐ before, so we will ignore it when selecting bats. Now if this discussion

were being written from the perspective of the pitcher (Baldwin 2007), then these

three parameters would be important.

The next most important variable in Table 4.4 is the mass of the bat. Therefore,

we will now consider the mass and other related properties of the bat. The

sensitivity of the batted-ball speed with respect to the mass of the bat is positive,

meaning (if everything else is held constant) as the mass goes up so does the batted-

ball speed. However, the heavier bat cannot be swung as fast (Bahill and Karnavas

1989) due to the force-velocity relationship of human muscle, to be discussed in

conjunction with Fig. 4.10. This physiological relationship was not included so far

in the equations of this book because so far we only modeled the physics of the
collision, notwithstanding physiology trumping physics in this case. The net result

of physics in conjunction with physiology is that lighter bats are better for almost all

batters (Bahill 2004).

Perhaps due to this general feeling that lighter bats are better, many professionals

have ‘corked’ their bats. This reduced the mass of the bat, but because it also

reduced the moment of inertia, it did not improve performance significantly

(Nathan et al. 2011). However, it is now legal to make a one to two-inch diameter

hole 1¼ inches deep into the barrel end of the bat (see Fig. 4.6). Most batters do this

because it makes the bat lighter with few adverse effects. Other bat parameters that

are being studied include the type of wood (density, strength, elasticity, straightness

of the grain, etc.) and type of materials (density, strength, elasticity, break-in

period, durability, type of Al alloy, etc.).

For an aluminum bat, some batters reduce the thickness of the barrel wall by

shaving the inside of the barrel. This reduces the bat mass, which according to

physics and physiology, increases batted-ball speed. However, it also reduces

durability.

The distance between the center of mass of the bat and the center of percussion,

dcm ‐ cop, is the next most important parameter. We presumed that the sweet spot of

the bat was the center of percussion (CoP) of the bat. All batters try to hit the ball on

the sweet spot of the bat. To help the batter, manufacturers of aluminum bats have

been moving the CoP by moving the internal weight from the end of the bat toward

the knob http://www.acs.psu.edu/drussell/bats/cop.html. It is now an annual game

of cat and mouse. The manufacturers move the CoP, then the rule makers change

their rules, then the manufacturers move . . . etc.
Finally, we come to the moment of inertia of the bat, Ibat, with respect to its

center of mass. The physics, revealed with the sensitivity analysis, states that

although the moment of inertia is one of the least important parameters, it would

help to increase its value. More importantly, physiology showed that all batters

would profit from using end-loaded bats (Bahill 2004). There are many ways to

change the moment of inertia of a bat. Most aluminum bats start with a common

shell and then the manufacturer adds a weight inside to bring the bat up to its

labeled weight. The important question then becomes, where should the weight be

added? It has been suggested that they add weight in the knob because this would

comply with the regulations and would not decrease bat speed (Brancazio 1984).
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However, the results of Bahill (2004) show that they should add the weight in the

barrel end of the bat making it end-loaded. This will increase the batted-ball speed.
For a wooden bat, the moment of inertia can be changed by cupping out the barrel

end, adding weight to the knob or tapering the barrel end. Assume that the end of the

barrel of a bat is only used to “protect” the outside edge of the plate: no one hits

home runs on the end of the bat. Therefore, a professional could use a bat where the

last 3 in (7 cm) were tapered from 2.61 inches (6.6 cm) down to 1¾ of an inch

(4.4 cm). This would decrease the weight, decrease the moment of inertia about the

knob and would move the center of mass closer to the knob: these changes would

probably benefit some batters. However, such modifications would have to be

individually designed for each player.

At this point, it may be useful to reiterate that an end-loaded bat is not a normal

bat with a weight attached to its end. Adding a weight to the end of a normal bat

would increase both the weight and the moment of inertia. This would not be likely
to help anyone. In the design and manufacture of an end-loaded bat, the weight is

distributed so that the bat has a normal weight but a larger than normal moment of

inertia.

Most people can feel the difference between bats with different moments of

inertia. A coach with the San Francisco Giants showed us a legal custom-made bat

with a large moment of inertia created by leaving it with a huge knob. He presumed

that his players already understood the influence of bat weight on bat speed so he

was trying to expand their understanding to the influence of bat moment of inertia

on the speed of the swing. One of our University of Arizona softball players

described our biggest moment of inertia bat with, “That’s the one that pulls your

arms out.”

Our best generalization is that almost all batters would profit from using

end-loaded bats. Smith and Kensrud (2014) concluded their paper with “Batter

swing speed decreased with increasing bat inertia, while . . . the hit-ball speed

increases with bat inertia.”

Summarizing, these are the most important factors for understanding bat perfor-

mance: bat weight, the coefficient of restitution, the moment of inertia and charac-

teristics of humans swinging the bats.

In the future, once equations for configurations 3 and 4 have been derived, it will

be possible to see how the coefficient of friction μf affects the batted-ball speed.

Then we will be able to decide if the varnish or paint on the bat should be made

rough-textured or smooth, or if bats should be rubbed or oiled in order to improve

bat performance.

To confuse fielders who are trying to locate the bat-ball collision point, perhaps

the bat could be painted white with random thin red lines. Or perhaps bats could be

painted pink supposedly to promote breast cancer research.

Figure 4.5 shows the outcomes of hitting the ball at different places on the front

surface of the bat. We used this figure to help determine the size of the vertical

sweet spot of the bat. It also suggests that putting oil on the top surface of the bat

could change short pop-ups (sure outs) into innocuous foul tips.
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What if the front side of the bat were flat, as in Fig. 4.6, instead of round? Then

fly balls and grounders would be line drives instead. What could make the front side

of the bat flat? Using sandpaper or a plane on the front side of a bat would make that

front surface flat. Figure 4.7 shows that if the front of the bat were flat then a fly ball

(black lines) would be changed into a line drive (red lines). This would increase

performance. Most umpires would probably not notice or might accept a bat whose

front surface had been sanded or planed. This would also reduce the variability in

the batted-ball trajectories, because plus or minus 1 mm would yield the same result

every time.

To improve bat performance manufacturers could reduce the variability of bat

and ball parameters. Major-league bats were custom made for us by Hillerich and

Bradsby Co. The manufacturing instructions were “Professional Baseball Bat,

R161, Clear Lacquer, 34 inch, 32oz, make as close to exact as possible, end

Fig. 4.5 Direction of the batted-ball as a result of hitting the ball at different places on the front

surface of the bat

Fig. 4.6 Bat with an

exaggerated flat front side.

The actual size of the flat

surface should not be larger

than the vertical sweet spot,

which is one-third of an

inch high
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brand - genuine model R161 pro stock, watch weights” emphasis added. The result

was six bats with an average weight of 32.1 ounces and a standard deviation of 0.5!

This large standard deviation surprised us. We assume there is the same variability

in bats used by major-league players.

There is also variability in the ball. We might assume that the center of mass of

the ball is coincident with the geometric center of the ball. However, put a baseball

or softball in a bowl of water. Let the movement subside. Then put an X on the top

the ball. Now spin it and let the motion subside again. The X will be on top again.

This shows that for most baseballs and softballs the center of mass is not coincident
with the geometric center of the ball.

4.12.1 Summary of Bat Selection

These sensitivity and optimality analyses showed that the most important variable,

in terms of increasing batted-ball speed, is bat speed before the collision. This is in

concert with ages of baseball folklore and principles of physiology. Therefore,

batters should develop strength, increase coordination and practice so that their

swings are fast and with low variability.

These analyses showed that the next most important variable is the coefficient of

restitution, the CoR. Engineers and bat regulators are free to play their annual cat

and mouse game of increasing CoR then writing rules and making tests that inhibit

these changes. Indeed, most recent bat research has gone into increasing the CoR of

bat-ball collisions.

Pitch speed, ball spin and the mass of the ball are important. However, the batter

cannot control them. Therefore, they cannot help the batter to choose or modify

a bat.

The next most important parameter is the bat mass, mbat. However, physics

recommends heavy bats, whereas the force-velocity relationship of muscle recom-

mends light bats. In this case, physiology trumps physics. Each person’s preferred
bat should be as light as possible while still fitting within baseball needs, regulations

and availability.

The last interesting parameter from the sensitivity analysis and the optimization

study is the bat moment of inertia, Ibat. The sensitivity analysis suggested that a

Fig. 4.7 Enlarged

schematic view of a bat with

a flat front and resulting ball

trajectories
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larger bat moment of inertia would be better. However, old studies in the physics of

baseball literature recommended smaller moments of inertia. An experimental

physiology study stated that all players would profit from using end-loaded bats

(Bahill 2004). Since then most studies have recommended bats with higher

moments of inertia (Cross 2011; Smith and Kensrud 2014; Crisco et al. 2014).

The second purpose of this book is to show what the batter can do to achieve

optimal bat performance. The most important thing is practice. Next, batters should

select lightweight bats. They should then select bats that increase the CoR by all

legal means. Finally, they should choose end-loaded bats.

4.12.2 The Ideal Bat Weight

So far, the equations in this book were equations of physics. However, we repeat-

edly mentioned physiology. Now it is time to look at physiology. This section is

based on Bahill and Karnavas (1991).

Our instrument for measuring bat speed, the1 Bat Chooser™, had two vertical

laser beams, each with associated light detectors. Our subjects swung bats through

the laser beams. A computer recorded the time between interruptions of the light

beams. Knowing the distance between the light beams and the time required for the

bat to travel that distance, the computer calculated the speed of the sweet spot,

which we defined as the center of percussion.

The computer told the batters to swing each bat as fast as they could while still

maintaining control. It said, “Pretend you are trying to hit a Nolan Ryan fastball.”

In our experiments, each batter swung six bats through the light beams. The bats

ran the gamut from super-light to super-heavy; yet they had similar lengths and

weight distributions. In our developmental experiments, we tried about four dozen

bats. We used aluminum bats, wooden bats, plastic bats, heavy metal warm-up bats,

bats with holes in them, bats with lead in them, major league bats, college bats,

softball bats, Little League bats, brand-new bats and bats made in the 1950s.

In one of our first set of experiments (Bahill and Karnavas 1989), we used six

bats of significantly different weights but which were all about 34 inches (89 cm)

long, with a center of mass about 23 inches (58 cm) from the end of the handle.

They are described in Table 4.7 and Fig. 4.8.

In a 20-min time interval, each subject swung each bat through the instrument

five times. The order of presentation was randomized. The selected bat was

announced by a speech synthesizer, for example: “Please swing bat Hank Aaron,

that is, bat A.” (We named our bats after famous baseball players who had names

starting with the letter assigned to the bat.)

1Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.
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For each swing, we recorded the bat weight and the speed of the center of mass,

which we converted to the speed of the center of percussion. That was as far as

physics could take us; we then had to look to the principles of physiology.

Table 4.7 Test bats used by the major league batters

Name

Weight

(oz)

Mass

(kg)

Distance

from

knob to

center of

mass (in)

Distance

from

knob to

center of

mass (m)

Average

sweet-spot

speed

(mph) also

given in

Fig. 4.10

Average

sweet-

spot

speed

(m/s)

Description

of the bat

D 49.0 1.39 22.5 0.57 60 27 Aluminum bat

filled with water

C 42.8 1.21 24.7 0.63 61 27 Wooden bat

with lead in the

barrel

A 33.0 0.94 23.6 0.60 65 29 Wooded bat

B 30.6 0.87 23.3 0.59 65 29 Wooden bat

E 23.6 0.67 23.6 0.60 74 33 Wooden fungo

bat

F 17.9 0.51 21.7 0.55 88 40 Wooden handle

mounted on a

light steel pipe

with a six ounce

weight at the end

Fig. 4.8 Our first set of

experimental bats (Photo

credit Richard Harding)
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Physiologists have long known that muscle speed decreases with increasing load

as shown in Fig. 4.9. This is why bicycles have gears; gears enable riders to

maintain the muscle speed that imparts maximum power through the pedals,

while the load, as reflected by the bicycle speed, varies greatly. To discover how

the muscle properties of individual baseball players affect their Ideal Bat Weights,

for each batter, we plotted bat speed as a function of bat weight to produce a

graphical model known as a muscle force-velocity relationship as shown in

Fig. 4.10. The red Xs represent the average of the five swings of each bat; the

standard deviations were small for physiological data (smaller than the red Xs).

These standard deviations were shown in Bahill and Karnavas (1991).

Traditionally, physiologists have used three types of equations to describe the

force-velocity relationship of muscles: straight lines, hyperbolas and exponentials.

Each type of equation has produced the best fit for some experimenters, under

certain conditions and with certain muscles. However, usually the hyperbola fits the

data best. In our experiments, we tried all three equations and chose the one that had

the best fit to the data of each batter’s 30 swings. For the data of the force-velocity

relationship illustrated in Fig. 4.10, we found that a hyperbola provided the best fit.

These curves indicate how bat speed varies with bat weight. We now want to find

the bat weight that will make the ball leave the bat with the highest speed and thus

have the greatest chance of eluding the fielders (Baldwin and Bahill 2004). We call

this the maximum-batted-ball-speed bat weight. To calculate this bat weight we

must couple the muscle force-velocity relationships to the equations of physics.
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Fig. 4.9 Hill’s original force-velocity relationship figure. He fit the following equation to his data:
(P + 14.35)(v + 1.03)¼ 87.6 where P is the load in grams and v is the velocity in cm/s (Hill 1938)
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For the major league batter whose data are shown in Fig. 4.10, the best fit for his

force-velocity data was the hyperbola, (mbat + 11)� (vbat ‐ before� 36)¼
1350 units are ounces and mph, that is shown with blue dots. This batter had

some of the fastest swing speeds on the team. When we substituted this equation

into the batted-ball velocity equation, Eq. (4.8), we were able to plot the ball speed

after a collision as a function of bat weight, shown with black triangles in Fig. 4.10.

mbat þ 11ð Þ � vbat-before � 36ð Þ ¼ 1350

Solve for the bat velocity

vbat-before ¼ 36mbat þ 1746

mbat þ 11

� �

Now we substitute this into Eq. (4.8)

v1a ¼
v1b m1I2 � m2I2 CoR2b þ m1m2d

2
� �þ v2bm2I2 1þ CoR2bð Þ þ ω2bm2dI2 1þ CoR2bð Þ

m1I2 þ m2I2 þ m1m2d
2

to get the batted-ball velocity

vball-after ¼ vball-before
mballIcm � mbatIcm CoR2b þ mballmbatd

2
cm-ip

� �
K

þ 36mbat þ 1746

mbat þ 11

� �
mbatIcm 1þ CoR2bð Þ

K
þ ωbat-before

mbatdIcm 1þ CoR2bð Þ
K

In this equation, Icm is also a function of mbat.

This equation produced the curve composed of black triangles in Fig. 4.10. This

curve shows that the maximum-batted-ball-speed bat weight for this batter is about

45 ounces, which is heavier than that used by most batters. However, this batted-ball

Fig. 4.10 Measured bat

speed (red Xs), a hyperbolic

fit to these data (blue dots)

and the calculated batted-

ball speed (black triangles)

for a 90 mph pitch to one of

the fastest San Francisco

Giants
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speed curve is almost flat between 30 and 49 ounces. Notably, this player normally

used a 32-ounce bat. Evidently the greater control permitted by the 32-ounce bat

outweighed the 1% increase in speed that could be achieved with the 45-ounce bat.

The maximum-batted-ball-speed bat weight is not the best bat weight for any

player because a lighter bat will give a batter better control and more accuracy.

Obviously, a trade-off must be made between batted-ball speed and control.

Because the batted-ball speed curve is so flat around the point of the maximum-

batter-ball-speed, we believe there is little advantage in using a bat as heavy as the

maximum-batter-ball-speed bat weight. Therefore, we defined the 1Ideal Bat
Weight™ to be the weight where the ball speed curve drops 1% below the

maximum-batted-ball speed. Using this criterion, the Ideal Bat Weight for this

batter is 31.75 ounces. We believe this gives a good trade-off between batted-ball

speed and accuracy. For this batter, the batted-ball speed is nearly flat around the

ideal bat weight. So it does not seem to be critical. But for most other batters this

was not true, as is shown in Fig. 4.11.

The Ideal Bat Weight is specific to each individual; it is not correlated with

height, weight, age, circumference of the upper arm, or any combination of these

factors, nor is it correlated with any other obvious physical factors. Nevertheless,

Bahill and Morna Freitas (1995) mined their database of 163 subjects and 36 factors

and determined some rules of thumb that could make suggestions. For example, for

a general 9 or 10 year old Little Leaguer, the recommended bat weight in ounces

would be height in inches divided by three plus four ounces,

recommended bat weight ¼ height
3

þ 4. Table 4.8 shows their recommendations.

In conclusion, there is an ideal bat weight for each batter. It can be measured in a

laboratory or it can be estimated using rules of thumb like those in Table 4.8.

Fig. 4.11 Bat speed and

calculated batted-ball speed

after the collision both as

functions of bat weight for a

40 mph pitch to Alex, a

10-year old Little League

player. The dots represent

the average of the five

swings of each bat; the

vertical bars on each dot

represent the standard

deviations
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4.12.3 Bat Moment of Inertia

The bat moment of inertia is an enigma because for most, but not all, batters as the

bat moment of inertia goes up the bat speed goes down (Bahill 2004; Cross 2011;

Smith and Kensrud 2014; Crisco et al. 2014). For Bahill’s (2004) women softball

batters, 80% had negative slopes for bat speed versus the moment of inertia.

Now we need a model for these data. Because of the positive and negative

slopes, averaging the data makes no sense. Therefore, we chose one of the All

Americans in our database as our model. Her data were fit with the equation

vtsweet spot-before ¼ �22Ibat-center of mass þ 30 ð4:12Þ

where the bat velocity has units of m/s and the inertia has units of kg �m2. The eight

bats in our variable inertia experiments had moments of inertia about the center of

mass in the range of 0.03–0.09 kg �m2. Typical bats used by players on this team

had moments of inertia of around 0.05.

In these experiments, we used the bats described in Table 4.9. They decoupled

the mass and moment of inertia, because they had nearly identical masses but

different moments of inertia. That is, in each set the masses were close to the

same value, although the moments of inertia varied widely.

4.12.4 Modifying the Bat

Previously we mentioned that for wooden bats, it is legal to taper the last 3 inches of

the barrel from 2.61 inches (6.6 cm) down to 1¾ of an inch (4.4 cm). This

modification would decrease the bat weight, decrease the moment of inertia and

move the center of mass closer to the knob.

Table 4.8 Simple integer models for recommending bat weights

Group Recommended bat weight (oz)

Baseball, major league Height/3 + 7

Baseball, amateur Height/3 + 6

Softball, fast pitch Height/7 + 20

Softball, slow pitch Weight/115 + 24

Junior league (13 & 15 years) Height/3 + 1

Little league (11 & 12 years) Weight/18 + 16

Little league (9 & 10 years) Height/3 + 4

Little league (7 & 8 years) Age*2 + 4

Age (years); height (inches); body weight (pounds)
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4.12.4.1 The R161 Bats

Hillerich and Bradbury made six such R161 Louisville Slugger wooden bats for

us. When we compared these six bats to six of their unmodified R161 bats, we found

that, on average, this modification reduced the mass by 5%, reduced the moment of

inertia about the center of mass by 5.2% and reduced the distance from the knob to

the center of mass by 1.6%.

That last paragraph described the measured physical changes to the bat. Next, we

wanted to see how those changes coupled with human physiology to affect the bat

speed. First, we used the data of Fig. 4.10 at its nominal bat weight of 31.75 ounces

and found that a 5% decrease in bat mass increased the bat speed by 1.7%. Next, we

used Eq. (4.12) and found that a 5.2% decrease in the moment of inertia about the

center of mass increased the bat speed by 0.2%. Summing these changes gave a

total increase in bat speed of 1.9%. Figure 4.12 shows these numbers.

That takes care of the physical changes of the bat and how those changes couple

with physiology to affect bat speed. Now, we are finally ready to use the physics

captured in the BaConLaw model.

According to the sensitivity analysis of the BaConLaw model summarized in

Table 4.4, decreasing mbat and Icm would decrease batted-ball speed, whereas

decreasing the distance between the center of mass and the center of percussion

(the sweet spot) would increase batted-ball speed.

Semirelative sensitivity values from Table 4.4

mbat 10 mbat# , vball ‐ after#
Ibat ‐ cm 3 Ibat ‐ cm# , vball ‐ after#
dcm ‐ cop �2 dcm ‐ cop# , vball ‐ after"

Table 4.9 Properties of the variable moment of inertia bats

Name

Period of

oscillation

(sec)

Mass

(kg)

Distance from

knob to center

of mass, dk ‐ cm
(m)

Moment of

inertia

with respect

the knob, Iknob
(kg-m2)

Moment of inertia

with respect to the

center of mass, Icm
(kg-m2)

Aluminum bat set

A 1.648 0.824 0.496 0.275 0.072

B 1.682 0.824 0.494 0.286 0.085

C 1.689 0.824 0.520 0.303 0.080

D 1.702 0.833 0.526 0.316 0.086

Bats with a wooden handle and a brass disk mounted on a threaded rod, similar to bat F in Fig. 4.8

Red bat 1.443 0.799 0.427 0.176 0.030

Blue bat 1.493 0.807 0.458 0.204 0.035

Green

bat

1.563 0.801 0.493 0.239 0.044

Yellow

bat

1.631 0.805 0.509 0.270 0.061
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To see the changes in bat speed, we modified the inputs to the BaConLaw model

for the modified R161 bat. We decreased the mass by 5%, decreased the moment of

inertia about the center of mass by 5.2% and increased the bat speed by 1.9%. This

gave us a new smaller batted-ball speed. We will now show how the distance

between the knob and the center of mass affects this smaller batted-ball speed. We

know that the distance from the knob to the center of mass decreased by 1.6%.

However, we do not have data for the change in distance from the center of mass to

the center of percussion as wood is removed from the barrel end of the bat.

However, we can bracket that change. If we assume that the distance from the

center of mass to the center of percussion stays fixed, then the batted-ball speed

decreases by 0.55%. On the other hand, if we assume that the center of percussion
stays fixed, while the distance from the knob to the center of mass decreases by

1.6%, then the distance between the center of mass and the center of percussion

increases by 6.7% and the batted-ball speed decreases by 0.9%. Let us average the

results of those two assumptions, and say that the new batted-ball speed decreases

by an additional 0.73%.

When we put this decreased batted-ball speed into the Ball in Flight model of

Chap. 7, we found that the distance of a perfectly hit home run ball decreased by
three feet!

Vedula and Sherwood (2004) performed a finite element analysis of wooden

baseball bats. They found that if they reduced the mass in the barrel end of the bat

by 10%, then the distance between the center of mass and the center of percussion

increases by 5% and the batted-ball speed decreases by 1.7%. This matches our

results quite well.

This is a very surprising result. It states that tapering the last 3 inches of the

barrel will not increase the batted-ball speed or the ball’s range.

Fig. 4.12 Analysis process and numerical values for the tapered R161 Bat
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4.12.4.2 The C243 Bat

Because this result was so surprising, we repeated the analysis with another bat that

had its barrel end cupped out, as shown in Fig. 4.6. We measured the volume of the

cupped out hole in the end of a Louisville Slugger C243 bat. It was 25 cc. The density

of white ash is 0.6 that of water. Therefore, cupping the bat reduced its mass by 15 g,

or 1.7%. Theoretically, using Icm-after-cupping ¼ Icm-before-cupping �mcupd
2
cm-end, this

should reduce the inertia at the center of mass by 0.0012 kg �m2 or 2.2%. Finally,

the last of the three parameters changed by cupping, the measured distance from the

knob to the center of mass, was reduced by 1.7%.

That last paragraph described the measured physical changes to the bat. Now we

want to see how those changes couple with physiology to affect the bat speed. First,

we used the data of Fig. 4.10 at its nominal operating point of 31.75 ounces, and

found that an 1.7% decrease in bat mass increased the bat speed by 0.57%. Next, we

used Eq. (4.12) and found that a 2.3% decrease in the moment of inertia about the

center of mass produced an 0.1% increase in bat speed. Summing these increases

gives a total increase in bat speed of 0.67%. This is probably why bat manufactures

cup the ends of their bats. Because they know that cupping the end of the bat

increases the bat speed.

That takes care of the physical changes of the bat and how those changes couple

with physiology to effect bat speed. Now, we are finally ready to use the physics

captured in the BaConLaw model. To see the changes in bat speed, we modified the

inputs to the BaConLaw model for the C243 bat. We decreased the mass by 1.7%,

decreased the moment of inertia about the center of mass by 2.3% and increased the

bat speed by 0.67%. The measured distance from the center of mass to the center of

percussion increased by 4.3%. When we changed these four parameters in the

BaConLaw model, the batted-ball speed decreased by 0.25%.

Finally, when we put this decreased batted-ball speed into the Ball in Flight

model of Chap. 7, we found that the distance of a perfectly hit home run ball

decreased by one foot. Figure 4.13 shows our process and captures these numbers.

Both of the bat modifications described here {tapering the barrel and cupping the

barrel end}, remove wood from the end of the bat. This decreases the bat mass,

moment of inertia and distance from the knob to the center of mass. This should be

true for any wooden bat. Physiology shows that the first two changes {reducing the

mass and the moment of inertia} increase the bat speed. This is the main reason for

making these modifications. Increasing the bat speed will increase the batted-ball

speed.

For the tapered bat, decreasing the distance from the knob to the center of mass

by 1.6% increased the distance between the center of mass and the center of

percussion somewhere between zero and 6.7%. For the cupped bat, this distance

was measured as an increase of 4.3%. Both methods increased the distance between

the center of mass and the center of percussion. We are satisfied with these

approximations, because the model is not very sensitive to this distance. Changing

this distance by �4% only changed the batted-ball speed by, on average, �0.08% .

98 4 The BaConLaw Model for Bat-Ball Collisions



There are four inputs to the BaConLaw model. When wood is removed from the

end of the bat the first two (mbat and Ibat ‐ cm) decrease, which decreases the batted-

ball speed. However, the bat speed increases, which increases the batted-ball speed.

The last input, the distance from the center of mass to the center of percussion,

probably increases, which also decreases the batted-ball speed. Which of these four

changes wins? We can only tell by deriving values for the parameters and using

those in the equations of the BaConLaw model.

In the two modified bat examples that we examined in this section, the modified

bats caused the batted-ball speed and therefore the ball’s range to go down.

In conclusion, both tapering the barrel and cupping the barrel end of the bat

decrease the batted-ball speed and subsequently decreases the range of the batted-

ball. Why then would batters choose bats with the end cupped out? Perhaps it is

because they are more comfortable with the cupped bat, they don’t understand the

interaction of the parameters or the decrease in performance is small.

4.13 Outline of the BaConLaw Model Derivations

We started with Eq. (4.6) and solved for the bat angular velocity after the collision

dm1 v1a � v1bð Þ ¼ �I2 ω2a � ω2bð Þ

Fig. 4.13 Analysis process and numerical values for the modified C243 Bat
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ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ

� �

Next we used Eq. (4.5) and solved for the bat linear velocity after the collision

CoR2b ¼ � v1a � v2a � dω2a

v1b � v2b � dω2b

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � dω2a

Then we substituted ω2a into the above v2a equation to get

v2a ¼ v1a þ CoR2b v1b � v2b � dω2bð Þ � d ω2b � dm1

I2
v1a � v1bð Þ

� �

Finally, we used this v2a in Eq. (4.4) to get Eq. (4.8) for the ball linear velocity after
the collision, in terms of only the before collision variables and parameters. The

linear velocity of the ball after the collision is

vball-after ¼ vball-before

� vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �

1þ CoR2bð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

Then we solved Eqs. (4.4), (4.5) and (4.6) for the velocity of the bat after the

collision in terms of only the before collision variables and parameters. The linear

velocity of the bat after the collision is

vbat-cm-after ¼ vbat-cm-before

þ vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �

1þ CoR2bð ÞmballIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

Lastly, we solved Eqs. (4.4), (4.5) and (4.6) for the angular velocity of the bat after

the collision, ω2a, in terms of only the before collision variables and parameters.

The angular velocity of the bat after the collision is

ωbat-after ¼ ωbat-before

þ vball-before � vbat-cm-before � dcm-ipωbat-before
� �

1þ CoR2bð Þmballmbatdcm-ip

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

To get a final equation for the angular velocity of the ball after the collision, ω1a, we

put ω2a ¼ ω2b � dm1

I2
v1a � v1bð Þ into the Conservation of Angular Momentum

equation, Eq. (4.7s), and showed that for a head-on collision (with no friction or

external forces) like this BaConLaw model, ωball ‐ after¼ωball ‐ before.
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4.14 Summary

In this chapter, we successfully incorporated Conservation of Energy into the set of

bat-ball collision equations for the BaConLaw model. This Conservation of Energy

equation confirmed the consistency of our set of derived equations. We also used

Conservation of Energy to derive an equation for the kinetic energy lost in the

collision. We derived a general equation for KElost, Eq. (4.11), and showed that if

the collision were at the center of mass (dcm ‐ ip¼ 0), then this general equation

reduced to an old well-known result, Eq. (3.2).

We did a sensitivity analysis on the set of equations for the BaConLaw model. It

showed that the most important variable, in terms of increasing batted-ball speed, is

the bat speed before the collision. Today in the sporting world, the coefficient of

restitution and the bat mass are experiencing the most experimentation for improv-

ing bat performance. However, in the future, bat moments of inertia allow for the

most improvement of bat performance. Most importantly, future studies must

include physics in conjunction with physiology.

The following equations comprise our BaConLaw model for bat-ball collisions.

First, the kinetic energy lost or transformed.

KElost ¼ 1

2

mballmbatIbat vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �2

1� CoR2
2b

� �
mballIbat þ mbatIbat þ mballmbatd

2
cm-ip

where dcm ‐ ip is the distance between the bat’s center of mass and the impact point.

The linear velocity of the ball after the collision is

vball-after ¼ vball-before

� vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �

1þ CoR2bð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

The linear velocity of the bat after the collision is

vbat-cm-after ¼ vbat-cm-before

þ vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �

1þ CoR2bð ÞmballIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

The angular velocity of the bat after the collision is

ωbat-after ¼ ωbat-before

þ vball-before � vbat-cm-before � dcm-ipωbat-before
� �

1þ CoR2bð Þmballmbatdcm-ip

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

Our most succinct formulation of the BaConLaw model is
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A ¼ vball-before � vbat-cm-before � dcm-ipωbat-before
� �

1þ CoR2bð Þ
mballIbat þ mbatIbat þ mballmbatd

2
cm-ip

CoR2b ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before
vball-after ¼ vball-before � AmbatIbat
vbat-after ¼ vbat-before þ AmballIbat
ωbat-after ¼ ωbat-before þ Amballmbatdcm-ip
ωball-after ¼ ωball-before

The BaConLaw model describes the motion of the bat after the collision. This is

a big deal. Many models describe the motion of the ball after the collision, but few

(if any) describe the motion of the bat. When you see a batter hit a ball, do you see

the jerk of the bat? Can you describe it? Well these equations do, as shown in

Fig. 4.14.

This model for bat-ball collisions gives the linear and angular velocity of the bat

and ball after the collision in terms of the linear and angular velocity of the bat and

ball before the collision. It uses only the fundamental principles of Newtonian

mechanics and the conservation laws. This chapter also fulfills the second purpose

of this book, namely to show what the batter can do to achieve an optimally

performing bat, namely select lightweight, end-loaded bats. Finally, cupping the

barrel end of the bat does not increase the ball’s range.

Fig. 4.14 Linear and

angular velocities of the ball

and bat
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Chapter 5

Alternative Models

5.1 Introduction

Purpose: The purpose of this chapter is to present four alternatives to the

BaConLaw model, explain their different purposes and explain why each might

be used for a different purpose.

This chapter contains four models that are more complicated than our

BaConLaw model of Chap. 4. The first one, the Effective Mass model, is an analog

to the BaConLaw model. The bat Effective Mass model and the BaConLaw model

both start with Newton’s principles: then they diverge. They are different: however,
they yield the same rule of thumb for the batted-ball speed! This should strengthen

and give people more confidence in both models. The second and third models in

this chapter allow movement of the knob. The Spiral Center of Mass model shows

the movement of the center of mass of the bat before the collision. The Sliding Pin

model analyzes the movement of the bat with a translation and a rotation about its

knob. It illustrates the concept of using different models for different purposes. The

fourth model challenges our simple technique of using only Newton’s principles
and the conservation laws. It is for a collision at the center of percussion of the bat

with spin on the pitch and with consideration of friction between the bat and ball. Its

purpose is to show a situation that cannot be modeled using only the

conservation laws.

Modeling philosophy note Having several alternative models helps ensure that you

understand the physical system. No model is more correct than another. They just

emphasize different aspects of the physical system. They are not competing models

they are synergetic.

© Springer International Publishing AG 2018
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5.2 Bat Effective Mass Model

Purpose: The purpose of this section is to present the bat Effective Mass model.

Presently, it is the most popular physics of baseball model for bat-ball collisions. It

will be compared to the BaConLaw model.

The bat effective mass bat-ball collision modeling community, established by

Nathan (2003) and summarized nicely by Cross (2011), base their model on the

concept of the effective mass of a bat. This section on the Effective Mass model is

excerpted from Cross (2011). Consider Fig. 5.1 where a ball of mass mball collides

with a stationary bat at a distance B from the center of mass (cm) of the bat.

{Previously in this book, we have used the symbol dcm ‐ ip to represent the distance

between the center of mass and the impact point, or dcm ‐ ss if the collision were at

the sweet spot. However, in this section, to avoid confusion with the derivative

operator used by Cross, we will use the letter B, as was done by Watts and Bahill

(1990).} Let the mass of the bat be mbat and suppose that the bat is initially at rest

and freely supported: that is, no one is holding the handle. In that case, the ball will

bounce off the bat and the bat will be set in motion. The center of mass of the bat

and the impact point on the bat both recoil. Because a bat is a rigid object, every

spot on a bat will have the same linear translational velocity and the same angular

rotational velocity. But each spot will have a different total velocity that depends on
its distance from the pivot point. We define that total velocity of the bat as the sum

of its linear translational velocity and its weighted angular rotation velocity:

vtbat¼ vcm +Bωbat. We have used the symbol vt to represent the total velocity,

e.g. vtbat ‐ impact ‐ after, to differentiate from it from vbat ‐ cm ‐ after used in the rest of

this book to indicate only the translational component of velocity. Because the bat

rotates about its center of mass when it is struck by the ball, the speed of the impact

point will be greater than the speed of the center of mass, vtimpact> vcm. The impact

point therefore accelerates faster than the center of mass of the bat, as if it were an

isolated mass separate from the rest of the bat.

The whole bat is involved in the collision, but the effect on the ball is equivalent

to a collision with an isolated effective mass Meff that is less than the mass of the

whole bat. Additionally, the impact point recoils as if it were a mass ofMeff. In other

words, we can treat the collision as being equivalent to one between a ball of

Fig. 5.1 The Effective Mass model for bat-ball collisions
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mass mball and an object of mass Meff. We will now derive a formula for the

effective mass of a bat.

Let Meff be the effective mass of the bat at the impact point. A force F acting at

the impact point will cause this point and the center of mass to accelerate according

to these relationships F ¼ Meff
dvtbat-impact

dt and F ¼ mbat
dvbat-cm

dt respectively. The torque

F�B causes the whole bat to rotate about its center of mass according to F� B

¼ Ibat-cm
dωbat-cm

dt where ωbat ‐ cm is the angular velocity of the bat about its center of

mass. Therefore,

F ¼ Meff

dvtbat-impact

dt
¼ mbat

dvbat-cm
dt

¼ Ibat-cm
B

dωbat-cm

dt

The impact point rotates at a speed of Bωbat ‐ cm with respect to the bat’s center of
mass. So now, the impact point has a linear translational motion and an angular

rotational motion. Hence, vtbat‐impact¼ vbat‐cm +Bωbat‐cm. Taking the derivative with

respect to time, we get

dvtbat-impact

dt
¼ dvbat-cm

dt
þ B

dωbat-cm

dt

which can be written as

F

Meff

¼ F

mbat

þ B2F

Ibat-cm

Dividing by F produces

1

Meff

¼ 1

mbat

þ B2

Ibat-cm

which can be rearranged to give

Meff ¼ mbat

1þ mbatB
2

Ibat-cm

ð5:1Þ

In summary, Fig. 5.1 suggests that a ball impacting a stationary bat, at distance

B from the center of mass of the bat will cause the bat to rotate about the center of

mass. However, the speed and acceleration of the impact point is greater than that

for the bat’s center of mass, so the effective mass at the impact point is less than the

mass of the whole bat. For the bat of Table 1.1 Meff¼ 0.707 kg.

There are three important differences between this model and the BaConLaw

model developed in Chap. 4. (1) In Fig. 5.1, vball ‐ before is pointing down and it is

positive in that direction: for the rest of the book vball ‐ beforewas positive in the

x-direction. {However, vball ‐ after is still defined to be positive in the direction of the
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x-axis.} That is why there is a minus sign in front of the mballvball ‐ before term in

conservation of momentum Eq. (5.2). (2) In this model, vtimpact is the total velocity
of the impact point. That is, it is the sum of the translational velocity and the

velocity due to rotation about the center of mass. (3) Because vtimpact is the sum of

the translational and rotational velocities, the coefficient of restitution equation has

only two terms on top and bottom, that is e ¼ vball-after�vtbat-after
vball-beforeþvtbat-before

, instead of three as in

Eqs. (3.5) and (4.5).

Our next task is to get an equation for the velocity of the ball after the collision.

We will start with an equation for the conservation of momentum. From here on,

we no longer require a stationary bat before the collision.

Meffvtbat-before � mballvball-before ¼ Meffvtbat-after þ mballvball-after ð5:2Þ

Note this is different from the conservation of momentum equation used in the rest

of this book because of the different definition of the direction of the ball before the

collision.

Next, we need the coefficient of restitution.

e ¼ vball-after � vtbat-after
vball-before þ vtbat-before

We use this expression to eliminate vtbat ‐ after in Eq. (5.2). Substitute the coefficient
of restitution into Eq. (5.2) and we get

vball-after ¼
e� mball

Meff

1þ mball

Meff

 !
vball-before þ

1þ e

1þ mball

Meff

 !
vtbat-before

Plug in Meff

vball-after ¼
e� mball

mbat

1þ mbatB
2

Ibat-cm
1þ mball

mbat

1þmbatB
2

Ibat-cm

0
BBB@

1
CCCAvball-before þ

1þ e

1þ mball
mbat

1þ mbatB
2

Ibat-cm

0
BB@

1
CCAvtbat-before

Ten algebraic steps yield our final expression for the batted-ball velocity.

vball-after ¼ �vball-before
mballIbat-cm � mbatIbat-cmeþ mballmbatB

2

mballIbat-cm þ mbatIbat-cm þþmballmbatB
2

� �

þ vtbat-before
mbatIbat-cm 1þ eð Þ

mballIbat-cm þ mbatIbat-cm þþmballmbatB
2

� � ð5:3Þ

This is the end of the derivation of the batted-ball velocity equation using the

Effective Mass model. Now, compare Eq. (5.3) to Eq. (4.8) from our BaConLaw

model.
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vball-after ¼ vball-before
mballIbat � mbatIbat CoR2b þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ ωbat-before
mbatdIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

The differences are that in the Effective Mass model, the first term on the right of

Eq. (5.3) has a minus sign because the initial ball velocity was defined to be positive

downward in Fig. 5.1. (2) In the Effective Mass model, the second term on the right

is equivalent to two terms in the BaConLaw model because of the definition

vtbat ‐ impact ‐ before¼ vbat ‐ cm ‐ before +Bωbat ‐ cm ‐ before. (3) Because of that definition,

e 6¼CoR2b.

Returning to the exposition of Cross (2011), he then states that if a ball with

velocity vball ‐ before collides with a stationary bat and bounces back with a velocity

vball ‐ after then

q ¼ vball-after
vball-before

Now, and most importantly,

q ¼ e� mball

Meff

1þ mball

Meff

 !
and 1þ q ¼ 1þ e

1þ mball

Meff

Using this new symbol, Eq. (5.3) for vball ‐ after becomes

vball-after ¼ qvball-before þ 1þ qð Þvtbat-before

This equation holds for bats that are freely suspended and rotate about their centers

of mass, as shown in Fig. 5.1. Rod Cross continues with, “This is the primary

physics equation that describes the outgoing speed of a struck ball, regardless of

whether the ball is struck by a bat or a racquet or a club. The performance of any

given striking implement depends mainly on the value of q for that implement.”

However, vball ‐ before and vtbat ‐ beforerequire some considerations. For example,

vtbat ‐ before depends on the impact point, the mass of the ball, the mass of the bat,

the moment of inertia of the bat and characteristics of the person swinging the bat.

In addition, the coefficient of restitution, e, is not a constant. It depends on the

impact point and the pivot point, as well as the speed of the collision, the relative

humidity, the temperature, the deformation of the objects, the surface texture and

the type of ball. However, in spite of these variabilities, Nathan (2003) and Cross

(2011) found that for most baseball collisions
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vball-after ¼ 0:2vball-before þ 1:2vtbat-before

On the other hand, the following is Eq. (4.8), the batted-ball velocity equation from

the BaConLaw model.

vball-after ¼ vball-before
mballIbat � mbatIbat CoR2b þ mballmbatd

2
� �

mballIbat þ mbatIbat þ mballmbatd
2

þ vbat-cm-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

þ dcm-ipωbat-before
mbatIbat 1þ CoR2bð Þ

mballIbat þ mbatIbat þ mballmbatd
2

If we substitute parameter values for a major league wooden bat, as described in

Table 1.1, into this equation, then the velocity of the ball after the collision becomes

vball-after ¼ �0:217vball-before þ 1:217 vbat-cm-before þ dcm-ipωbat-before
� �

where the units are m/s and rad/s. Remember that the velocity of the ball before the

collision is a negative number. So far, we have made no approximations; everything

has been exactly according to Newton’s principles and the conservation laws. In

contrast, we will now create our rule of thumb by using pitch speed instead of the

ball-collision speed and using total bat speed instead of its two components.

batted-ball speed ¼- 0:19 pitch speedþ 1:22 total bat speed

The units could be m/s or mph. The pitch speed would be that determined by a radar

gun focused near the pitcher’s release point and announced on television. The bat

speed would come from Tables such as 3.9 and 4.2. Using our typical data of

Table 4.2, we have an average pitch speed of �92 mph and a total bat speed of

62 mph. Putting these numbers into our rule of thumb yields

batted-ball speed ¼ 0:19� 92þ 1:22� 62 ¼ 93 mph

which is just about the average for major league hits. Using the data of Willman

(2017), we found that for the 15,000 base hits in major league baseball in 2016, the

average batted-ball speed was 91 mph.

The bat Effective Mass model and the BaConLaw model both start with New-

ton’s principles: then they diverge. They are different: however, they yield the same

rule of thumb for the batted-ball speed! This should strengthen and give people

more confidence in both models.

Modeling philosophy note Having several alternative models helps ensure that you

understand the physical system. No model is more correct than another. They just
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emphasize different aspects of the physical system. They are not competing models

they are synergetic.

5.3 The Sliding Pin Model

Purpose: The purpose of this section is to present the Sliding Pin model, the

moving pivot point data and the Spiral Center of Mass model. These all use a

different type of data from the rest of the book, namely translation of the knob and

rotation about the knob.

With the advent of low-cost multiple-video-camera systems for making three-

dimensional (3D) measurements of the movement of bats and balls, a new source

of data became available. Using these data, the Sliding Pin model models the

movement of the bat with a translation and a rotation about its knob. It is shown
in Fig. 5.2. The bat is pinned through the knob, so it is forced to rotate about the

knob. But the pin is allowed to slide along the x-axis (up and down in Fig. 5.3) to

allow for the translational velocity of the bat.

Consider a bat that is pinned through its knob, but the pinned point is allowed to

slide up and down, as in Fig. 5.3. Because the bat is a rigid body, every spot on the

bat will have the same linear translational velocity and the same angular rotational

velocity.

vbat-knob-trans ¼ vbat-cm-trans ¼ vbat-cop-trans
and βbat-knob ¼ βbat-cm ¼ βbat-cop

However, each spot on the bat will have a different total velocity that depends on

the location of the pivot point and the spot’s distance from the pivot point.

vtcm ¼ vknob þ dknob-cmβbat

vtcop ¼ vknob þ dknob-copβbat

5.3.1 Moving Pivot Point Data

Table 3.9 gave the bat sweet-spot speeds as numbers that combined the speed of the

center of mass and the rotation of the bat about that point. However, data by from

(Fleisig et al. 2001, 2002; Cross 2009; Milanovich and Nesbit 2014; King et al.

2012) gave us a new type of data to model. They gave us simultaneous independent

measurements of linear velocity and angular rotational velocity.

Milanovich and Nesbit (2014) studied 14 female collegiate softball players.

They used multiple video cameras to collect data and they created three-
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dimensional reconstructions of bat swings. Using their Table II, which averages the

data of all subjects and all swings of their aluminum bat, we will now solve for the

velocity of the center of mass.

Using data from their measurements at the pivot point (the knob)

βbefore ¼ 29:6
vtcm ¼ vknob þ dknob-cmβbefore
vtcm ¼ 3:6þ 0:48� 29:6 ¼ 17:8 m=s

Using data from their measurements at the sweet spot (the center of percussion)

vtcop ¼ vknob þ dk-copβbefore

vtcm ¼ vtcop
dk-cm
dk-cop

vtcm ¼ 15:9 m=s

Finally, using data from their measurements at the center of mass

Fig. 5.2 Sliding Pin model for a bat pivoting about its knob

Fig. 5.3 Detail of a sliding

pin joint
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vtcm ¼ 16:1 m=s

So their data for vtcm, 17.8, 15.9 and 16.1 m/s, are reasonably consistent.

Now, let us move on to other studies that made simultaneous independent

measurements of the linear translational velocity and the angular rotational veloc-

ity. The average sweet-spot speeds from the study of Fleisig et al. (2001, 2002) for

16 male baseball players were

vss ¼ 27 m=s and β ¼ 38 rad=s

Cross (2009) had a single male subject with

vcm ¼ 16:5 m=s and β ¼ 33 r=s

King et al. (2012) had one male subject with

vknob ¼ 6 m=s and β ¼ 36 r=s

There are several reasons for differences in the experimental values. (1) Men

swing the bat faster than women do. The average sweet-spot speed at impact of

Milanovich and Nesbit (2014) was 20 m/s. Table 3.9 shows that male baseball

players typically have higher speeds than this. Fleisig et al. (2002) measured

17 college women at 21 m/s and 16 college men at 27 m/s. Bahill (2004) measured

20 university women at 21 m/s and 28 major leaguers at 26 m/s. (2) The aluminum

bat swung by the Milanovich and Nesbit (2014) subjects was lighter than the

wooden bats used in the other studies. (3) Averaging data from many subjects

produced slower results, particularly when the women were not elite athletes.

(4) The low frame rate of the motion capture cameras low-pass filtered the data

and attenuated the velocities. Further smoothing and processing reduced the veloc-

ities even more. (5) The bat rotates about a point in or nearby the knob, but there is

variability in this point. Indeed, in early phases of the swing the pivot point is

outside of the knob. But when the bat reaches the collision point, the pivot point has

come inside the knob. (6) They gave data for the movement of the grip, which was

6 inches away from the knob. (7) Configuration 2c is not a free-end collision. The

hands are still holding the bat at the collision point and they might be applying

forces to the bat. However, all of their variables (yaw, pitch, roll and vknob) reach
their peak values before the collision point. Therefore, if the hands were applying

forces, these forces were not accelerating the bat in the x-direction. Furthermore, if

the collision were at the center of percussion, then the collision would not create

forces at the pivot point. (8) Experimental data are always subject to noise and

measurement error.

Our most comprehensive data for bat swings come fromWilliam Clark, Founder

of Diamond Kinetics (personal communication, 2017). Table 5.1 shows their data

for 200 male professional baseball players swinging 33-inch wooden bats.
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In this table, the variance in the angular velocity of the center of mass and sweet

spot was small, smaller than the variance in the linear speed of the knob.

These data produced this equation vtbat ‐ cop ‐ before¼ vknob + dk ‐ copβb¼ 4.5 +

0.7� 41¼ 33 m/s¼ 74 mph, which we used in our simulations, whose outputs

are shown in Tables 5.3 and 5.4. This equation has the same six to one ratio of

dk ‐ copβbefore and vtknob as our frame-by-frame analysis of the swing of a major league

batter.

5.3.2 Spiral Center of Mass Model

Cross (2009) developed an intriguing model for the swing of the bat. It is based on

data from a video-camera system that measured the translation and rotation about

the center of mass for a collision at the sweet spot. The pivot point of the bat moved

during the swing. In the Cross Spiral Center of Mass model, the center of mass of

the bat followed a logarithmic spiral pathway described with this equation

R¼ 0.25e0.23θ. Figure 5.4 shows this movement.

5.3.3 Back to the Sliding Pin Model

Purpose: The purpose of the Sliding Pin model is to model a new type of data

different from the rest of the book. Previously the input data for our models were the

translational and rotational velocities at the center of mass of the bat. The Sliding

Pin model will use the translational and rotational velocities at the knob.
The Sliding Pin model is unique in the science of baseball literature. It has four

equations and four unknowns. This newmodel is described in Fig. 5.5 and Table 5.2.

Its purposes are (1) to show the limits of the conservation law modeling technique

and (2) to model some unique new experimental data. Unlike the BaConLaw model

and the Effective Mass model, it is data-driven not theory-driven.

At the beginning of this section, we must emphasize that the BaConLaw model

given in Fig. 4.1 and Table 4.1 is not equivalent to the Sliding Pin model of Fig. 5.5

Table 5.1 Linear, angular and total bat speeds for 20,000 swings by male professional batters

Variable SI units Baseball units

Linear knob speed,vbat ‐ knob ‐ before 4.5 m/s,

σ¼ 1.7

10.1 mph,

σ¼ 3.9

Angular rotation speed, βbat ‐ before 41 rad/s,

σ¼ 5

387 rpm,

σ¼ 51

Total speed at the center of mass vtcm ‐ before¼ vknob ‐
before + dknob ‐ cmβbat ‐ before

27.9 m/s,

σ¼ 3.7

62.3 mph,

σ¼ 8.2

Total speed at the sweet spot vtcop ‐ before¼ vknob ‐ before + dknob ‐
copβbat ‐ before

33.3 m/s,

σ¼ 4.3

74.5 mph,

σ¼ 9.6
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and Table 5.2. Although the equations may look analogous, many of them are

different, because they are modeling different things. The BaConLaw model is for a

free-end collision of an unsupported bat that will translate and rotate about its center

of mass. The Sliding Pin model is for the collision of a restrained bat. The bat is

being forced to rotate about its knob. The human is doing the restraining by

applying forces on the handle during the swing. To make this perfectly clear, let

us simplify the situation by ignoring translations and consider only rotations. The

bat of Fig. 4.1 will rotate about its center of mass with an initial angular velocity of

Fig. 5.4 The Spiral Center of Mass model of Cross (2009). In this top view, the batter’s head is at
the intersection of the x- and y-axes and his left foot is to the right

Fig. 5.5 The Sliding Pin model for bat-ball collisions
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ωbat ‐ before. This will give it an initial kinetic energy of
Icmω2

bat-before

2
. Whereas, the

bat of Fig. 5.5 will rotate about its knob with an initial angular velocity of βbefore.

This will give it a kinetic energy of
Iknobβ

2
before

2
. If the models were equivalent then

Icmω2
bat-before

2
¼ Iknobβ

2
before

2
. By the parallel axis theorem Iknob ¼ Icm þ mbatd

2
k-cm.

Which means that this equation would have to be true

Icmω
2
bat-before ¼ Icm þ mbatd

2
k-cm

� 	
β2before. This would require

ωbat-before ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2before þ

mbatd
2
k-cm

Icm

s
. Clearly, ωbat ‐ before 6¼ βbefore and therefore the

BaConLaw model is not equivalent to the Sliding Pin model. The cause of this

difference is that the BaConLaw model is for a free-end collision. Whereas in the

Sliding Pin model the batter is applying forces to the handle during the swing.

The Sliding Pin model is more complicated that the BaConLaw model. Therefore,

the Sliding Pin model takes our bat-ball collision modeling community a baby step

upwards.

Configuration 2c is for a collision at the sweet spot of the bat with spin on the

pitch. It adds a new model for bat motion: the movement of the bat comprises a

translation and a rotation about its knob. Because of this, we need a different

equation for the CoR. This model is original. Our previous configurations, 2a and

2b, measured and used the total velocity (translational plus angular velocity) for the

velocity of the sweet spot before and after the collision. However, the experimental

studies examined in the previous sections gave independent linear and angular

speeds of the bat about the knob right before the collision. We will now see if our

modeling approach can accommodate this new data.

Modeling philosophy note In general, there are two common techniques for

modeling systems: the first is theory-based and the second is data-based. Here are

some steps for theory-based system models. Find appropriate physical and/or

Table 5.2 Synopsis of equations for the Sliding Pin, four equations and four unknowns

Inputs vball ‐ before , ωball ‐ before , vknob ‐ before , βknob ‐ before and CoR2c

Outputs vball ‐ after , ωball ‐ after , vbat ‐ ip ‐ after , βknob ‐ after and KElost

Equations

Conservation of Linear

Momentum, Eq. (5.4)

mballvball ‐ before +mbatvbat ‐ before¼mballvball ‐ after +mbatvbat ‐ after

Definition of CoR,
Eq. (5.5)

CoR2c ¼ � vball-after � vknob-after � dknob-ipβbefore
vball-before � vknob-before � dknob-ipβafter

Newton’s Second Law,

Eq. (5.6)

dk ‐ ipmball(vball ‐ after� vball ‐ before)¼ � Iknob(βafter� βbefore)

Conservation of Angu-

lar Momentum about the

z-axis, Eq. (5.7s)

mballdk-ipvball-before þ Iball þ mballd
2
k-ip

� 	
ωball-before þ Iknobð Þβbefore ¼

þmballdk-ipvball-after þ Iball þ mballd
2
k-ip

� 	
ωball-after þ Iknobð Þβafter
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physiological principles, then design, build and test a model. Design experiments to

collect new data. Use these data to verify and validate the model. Use the model to

make predictions and guide future data collection activities. The BaConLaw model

was theory-based. The theories were the conservation laws. We found the theories

first and then we gathered experimental data to support the model. The second

technique for modeling a system is data-based. With this technique, the modeler

starts with collecting and organizing the data and then he or she makes a model that

fits that measured data. The Sliding Pin and Spiral Center of Mass models are data-

based. We found the experimental data first and then we created the model to match

the data. In Chap. 5, we give four different models for bat-ball collisions. They have

different purposes and different outputs. The point is to explain to the reader that it

is good to have alternative models.

5.3.4 Coefficient of Restitution

The Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as the ratio of
the relative velocity of the two objects after a collision to the relative velocity

before the collision. The CoR models the energy lost in the collision.

In our models for a collision at the sweet spot (ss) of the bat we have

CoR ¼ � relative velocity after collision

relative velocity before collision

For the Sliding Pin model, we define the CoR with this equation (Fig. 5.4).

CoR2c ¼ � vball-after � vknob-after � dknob-ipβafter
vball-before � vknob-before � dknob-ipβbefore

This CoR is a variation of the CoRs that we have used in previous sections.

Definition of variables

Inputs vball-before, ωball-before, vbat-before, βbat-before and CoR2c

vball ‐ before is the linear velocity of the ball in the x-direction before the collision.

ωball ‐ before is the angular velocity of the ball about its center of mass before the

collision.

vbat ‐ before is the linear translational velocity of the knob of the bat in the x-direction
before the collision.

βbat ‐ before is the angular velocity of the bat about its knob before the collision.

CoR2c is the coefficient of restitution for this configuration.

Outputs vball-after, vbat-after, βbat-after

vball ‐ after is the linear velocity of the ball in the x-direction after the collision.

5.3 The Sliding Pin Model 117



ωball ‐ after is the angular velocity of the ball about its center of mass after the

collision.

vbat ‐ after is the translational velocity of the knob of the bat in the x-direction after the
collision.

βbat ‐ after is the angular velocity of the bat about its knob after the collision.

We want to solve for vball ‐ after , ωball ‐ after , vbat ‐ after , βbat ‐ after.
We will use the following fundamental equations of physics: Conservation of

Linear Momentum, the Definition of CoR, Newton’s Second Principle and the

Conservation of Angular Momentum.

5.3.5 Condensing Equation Notation

First, we want to simplify our notation. We will make the following substitutions.

dknob-impact-point ¼ dk-ip
dknob-cm ¼ dk-cm
Iball ¼ I1
Ibat-cm ¼ I2 ¼ Icm
Ibat-knob ¼ Ik
Iknob � m2d

2
k-cm ¼ I2

mball ¼ m1

mbat ¼ m2

vball-before ¼ v1b
vball-after ¼ v1a

vbat-knob-before ¼ v2b
vbat-after ¼ v2a
βbat-before ¼ βb
βbat-after ¼ βa

These substitutions produce the following equations.

5.3.5.1 Conservation of Linear Momentum

Assume that the bat and ball are point masses with all of their mass concentrated at

the centers of mass. For now, neglect angular rotations.

mballvball-before þ mbatvbat-cm-before ¼ mballvball-after þ mbatvbat-cm-after ð5:4Þ

However, from Sect. 5.3, for the linear velocity, we have
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vbat-cm ¼ vbat-knob ¼ vbat ¼ v2

Therefore,

m1v1b þ m2v2b ¼ m1v1a þ m2v2a ð5:4sÞ

5.3.5.2 Definition of Coefficient of Restitution (CoR)

CoR2c ¼ � vball-after � vbat-knob-after � dknob-ipβafter
vball-before � vbat-knob-before � dknob-ipβbefore

ð5:5Þ

CoR2c ¼ � v1a � v2a � dk-ipβa
v1b � v2b � dk-ipβb

ð5:5sÞ

5.3.5.3 Newton’s Second Principle

If we were following the development in Chap. 4, we would now apply Newton’s
Second Principle, which states that applying an impulsive torque about an axis of

rotation changes the angular momentum about that axis. However, the Sliding Pin

model is not a theory-based model: it is data-based and right now we need some

experimental data because the batter’s hands might be applying a torque to the

handle. Although, the Sliding Pin model of Fig. 5.5 shows that at the point of impact

the force applied by the batters hands is perpendicular to the direction of motion

(Cross 2009). Therefore, the hands would not apply a torque to the bat. Further-

more, Milanovich and Nesbit (2014) showed that the bat’s linear velocity (Fig. 6),

angular velocity their (Fig. 7) and forces (Fig. 9) were all decreasing at the time of

impact. Moreover, the torques had already reached zero by the time of impact

(Fig. 9). In summary, because of the experimental data, we will ignore the possi-

bility of the hands applying a torque to the bat at the time of impact and we will

continue our derivation with Newton’s second principle.

Newton’s Second Principle states that applying an impulsive torque about an

axis of rotation changes the angular momentum about that axis. We can apply this

principle to a collision at the sweet spot with rotation about the knob of the bat.

dknob-ipmball vball-after � vball-beforeð Þ ¼ �Iknob βafter � βbeforeð Þ ð5:6Þ
dk-ipm1 v1a � v1bð Þ ¼ �Ik βa � βbð Þ ð5:6sÞ

Solve for βa
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βa ¼ βb �
v1a � v1bð Þm1dk-ip

Ik

βafter ¼ βbefore �
vball-before � vbat-cm-beforeð Þmballdk-ip

Iknob

5.3.5.4 Abbreviations

For simplicity (especially when doing derivations by hand), the following tempo-

rary simplifications will be used in the derivations. Because they are analogous to

the abbreviation used in Chap. 4, these will have a bar over the letter.

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

1

kg2m � s
�C ¼ v1b � v2b � dk-ipβb m=s

�D ¼ m1d
2
k-ip

Ik
unitless

�G ¼ þv2bm2Ik 1þ CoR2cð Þ þ βbm2Ikdk-ip 1þ CoR2cð Þ kg2m3=s

�K ¼ m1Ik þ m2Ik þ m1m2d
2
k-ip

� 	
kg2m2

The units are for dimensional analysis. Note that none of these constants

contains the outputs vball ‐ after , vbat ‐ after or βbat ‐ after. One of the purposes of this

book is to show how complex these collisions can be, while still being modeled

using only Newton’s principles and the conservation laws. The most useful simpli-

fications are the ones that are constants independent of velocities after the collision.

These simplifications are only used during the derivations. They are removed from

the output equations. We will now use the Newtonian principles in equations (5.4),

(5.5) and (5.6) and the conservation laws to find vball ‐ after , vbat ‐ after and βbat ‐ after.

5.3.5.5 Conservation of Angular Momentum

We will now use the law of Conservation of Angular Momentum about the axis

through the knob of the bat. When the ball contacts the bat, as shown in Fig. 5.2, the

ball has linear momentum ofmballvball ‐ before. Therefore, following tradition, we will
model the ball as rotating about the bat’s knob at a distance d¼ dk ‐ ip. Thus, the ball
has an initial angular momentum of mballdknob ‐ ipvball ‐ before. In addition, it is possi-

ble to throw a curveball so that it spins about the vertical, z-axis, as also shown in

Fig. 5.5. We call this a purely horizontal curveball (although it will still drop due to

gravity, more than it will curve horizontally). The curveball will have angular

momentum of Iballωball ‐ before about an axis parallel to the z-axis. However, this is
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momentum about the center of mass of the ball and we want the equivalent

momentum about the knob of the bat. So we use the parallel axis theorem producing

Iball þ mballd
2
k-ip

� 	
ωball-before.

The bat has an initial angular momentum reflecting the rotation about the knob.

The symbol used for angular momentum is L. Therefore, the initial angular

momentum for the bat-ball system about the axis through the knob of the bat is

Linitial ¼ m1dk-ipv1b þ I1 þ m1d
2
k-ip

� 	
ω1b þ Iknobβb

All of these momenta are positive, pointing out of the page. (Remember that v1b
is a negative number.) Please refer to Fig. 5.5 now.

For the final angular momentum, we will treat the ball, as before, as an object

rotating around the axis through the knob of the bat with angular momentum,

mballdk ‐ ipvball ‐ before. Now we could treat the bat as a long slender rod with a

moment of inertia of mbatd
2
bat=12 where dbat is the bat length. However, this is

only an approximation and we have actual experimental data for the bat moment of

inertia. Thus, our final angular momentum about the knob of the bat is

Lfinal ¼ m1dk-ipv1a þ I1 þ m1d
2
k-ip

� 	
ω1a þ Iknobβa

As we did in the section on Newton’s Second Principle, we will ignore the

possibility of the hands applying a torque to the bat handle at the time of impact. So

now, we apply the law of Conservation of Angular Momentum, which states that

when no external torque acts on an object the initial angular momentum about some

axis equals the final angular momentum about that axis.

Linitial ¼ Lfinal

m1dk-ipv1b þ I1 þ m1d
2
k-ip

� 	
ω1b þ Ikβb ¼

þm1dk-ipv1a þ I1 þ m1d
2
k-ip

� 	
ω1a þ Ikβa

ð5:7sÞ

Now, we solve this Conservation of Angular Momentum equation for the

angular velocity about the knob after the collision, βa.

�Ikβa ¼m1dk-ipv1aþ I1þm1d
2
k-ip

� 	
ω1a�m1dk-ipv1b� I1þm1d

2
k-ip

� 	
ω1b� Ikβb

divide byminus Ik

βa ¼
�m1dk-ipv1a� I1þm1d

2
k-ip

� 	
ω1aþm1dk-ipv1bþ I1þm1d

2
k-ip

� 	
ω1bþ Ikβb

Ik

βa ¼ βb�
m1dk-ip v1a� v1bð Þþ I1þm1d

2
k-ip

� 	
ω1a�ω1bð Þ

Ik

5.3 The Sliding Pin Model 121



This equation was derived from Eq. (5.7s) Conservation of Angular Momentum.

In Sect. 4.9, we showed that for a head-on bat-ball collision the ball spin before the

collision is the same as the ball spin after the collision. Well, this is a head-on

collision. Therefore (ω1a¼ω1b) and the above equation reduces to

βa ¼ βb �
v1a � v1bð Þm1dk-ip

Ik

βafter ¼ βbefore �
vball-before � vbat-cm-beforeð Þmballdk-ip

Iknob

which is the same equation that we derived from Eq. (5.6), Newton’s Second

Principle.

5.3.6 Ball Velocity After the Collision

We will now find the ball velocity after the collision. We start with Eq. (5.5) and

solve for the bat translational velocity after the collision, v2a

CoR2c ¼ � v1a � v2a � dk-ipβa
v1b � v2b � dk-ipβb

Let �C ¼ v1b � v2b � dk-ipβb

v2a ¼ v1a þ CoR2c
�C� dk-ipβa

Now we substitute the βa that we just derived.

v2a ¼ v1a þ CoR2c
�C� dk-ip βb �

dk-ipm1 v1a � v1bð Þ
Ik

� �

v2a ¼ v1a þ CoR2c
�Cþ m1d

2
k-ip v1a � v1bð Þ

Ik
� dk-ipβb

v2a ¼ v1a 1þ m1d
2
k-ip

Ik

 !
� m1d

2
k-ipv1b

Ik
þ CoR2c

�C� dk-ipβb

Let �D ¼ m1d
2
k-ip

Ik

v2a ¼ v1a
�
1þ �D

�� v1b �Dþ CoR2c
�C� dk-ipβb

Use this v2ain Eq. (5.4) to get the ball velocity after the collision, v1a.
Prepare to substitute this v2ka into Eq. (5.4) by multiplying by the bat mass, m2
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v2am2 ¼ v1am2

�
1þ �D

�� v1bm2
�Dþ m2CoR2c

�C� βbm2dk-ip

Now substitute this v2am2 into Eq. (5.4)

m1v1b þ m2v2b ¼ m1v1a þ m2v2a
v1bm1 þ v2bm2 ¼ v1am1 þ v1am2

�
1þ �D

�� v1bm2
�Dþ m2CoR2c

�C� βbm2dk-ip
� �

Rearrange

þv1am1 þ v1am2

�
1þ �D

� ¼ þv1bm1 þ v1bm2
�Dþ v2bm2 � m2CoR2c

�Cþ βbm2dk-ip
Replace the dummy variables �C and �D

þv1am1 þ v1am2 1þ m1d
2
k-ip

Ik

( ) !
¼

þv1bm1 þ v1bm2

m1d
2
k-ip

Ik

( )
þv2bm2

�m2CoR2c v1b � v2b � dk-ipβb
� �

þβbm2dk-ip
Rearrange

v1a m1 þ m2 1þ m1d
2
k-ip

Ik

( ) !" #
¼

þv1b m1 þ m2

m1d
2
k-ip

Ik

( )
� m2CoR2c

" #

þv2bm2 1þ CoR2cð Þ
þβbm2dk-ip 1þ CoR2cð Þ

Multiply by the moment of inertia of the bat, Ik.

v1a m1Ik þ m2Ik þ m1m2d
2
k-ip

h i
¼

þv1b m1Ik � m2IkCoR2c þ m1m2d
2
k-ip

h i
þv2bm2Ik 1þ CoR2cð Þ
þβbm2Ikdk-ip 1þ CoR2cð Þ

v1a ¼
v1b m1Ik�m2IkCoR2cþm1m2d

2
k-ip

h i
þ v2bm2Ik 1þCoR2cð Þþβbm2Ikdk-ip 1þCoR2cð Þ

m1Ikþm2Ikþm1m2d
2
k-ip

This is the normal form of the equation for v1a. However, we now want to rearrange

this equation into our canonical form. Let
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�K ¼ m1Ik þ m2Ik þ m1m2d
2
k-ip

� 	
�G ¼ þv2bm2Ik 1þ CoR2cð Þ þ βbm2Ikdk-ip 1þ CoR2cð Þ

Then

v1a ¼
v1b m1Ik � m2IkCoR2c þ m1m2d

2
k-ip

h i
þ �G

�K

add v1b � v1b �K
�K

� �
to the right side

v1a ¼ v1bf g þ
v1b m1Ik � m2IkCoR2c þ m1m2d

2
k-ip

� 	
�K

�
v1b m1Ik þ m2Ik þ m1m2d

2
k-ip

� 	
�K

8<
:

9=
;þ

�G
�K

v1a ¼ v1b þ
v1b m1Ik � m2ICoR2c þ m1m2d

2
k-ip

� 	
� v1b m1Ik þ m2Ik þ m1m2d

2
k-ip

� 	
�K

þ
�G
�K

v1a ¼ v1b þ
v1b m1Ik � m2IkCoR2c þ m1m2d

2
k-ip � m1Ik � m2Ik � m1m2d

2
k-ip

� 	
�K

þ
�G
�K

v1a ¼ v1b þ v1b �m2Ik � m2IkCoR2cð Þ
�K

þ
�G
�K

v1a ¼ v1b þ�v1bm2Ik 1þ CoR2cð Þ þ �G
�K

Replace the dummy variable �G and we get the following equation.

v1a ¼ v1b � v1b � v2bð Þm2Ik 1þ CoRð Þ � βbm2Ikdk-ip 1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

Simplify and our final equation for the batted-ball velocity becomes

v1a ¼ v1b �
v1b � v2b � βbdk-ip
� �

1þ CoR2cð Þm2Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

vball-after ¼ vball-before �
vball-before � vbat-before � βbeforedk-ip
� �

1þ CoR2cð ÞmbatIknob

mballIknob þ mbatIknob þ mballmbatd
2
k-ip

or if we let

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

v1a ¼ v1b � �Am2Ik

Nothing in this derivation depended on the collision being at the sweet spot of

the bat. Therefore, dk ‐ ip could be replaced with the distance from the knob to any

arbitrary impact point. This equation was derived from Eqs. (5.4), (5.5) and (5.6).
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This �A differs from the A of the BaConLaw model in that it uses Ik instead of I2,
dk ‐ ss instead of dcm ‐ ss and CoR2cinstead of CoR2b.

5.3.7 Bat Translational Velocity After the Collision

Now, we will derive an equation for the translational velocity of the bat after the

collision. We start with Eq. (5.5) and solve for the bat translational velocity after the

collision, v2a

CoR2c ¼ � v1a � v2a � dk-ipβa
v1b � v2b � dk-ipβb

v2a ¼ v1a þ CoR2c v1b � v2b � dk-ipβb
� �� dk-ipβa

First, get rid of βa by substituting this βa that we derived above.

βa ¼ βb �
dk-ipm1 v1a � v1bð Þ

Ik

v2a ¼ v1a þ CoR2c v1b � v2b � dk-ipβb
� �� dk-ip βb �

dk-ipm1 v1a � v1bð Þ
Ik

� �

v2a ¼ v1a þ CoR2c v1b � v2b � dk-ipβb
� �þ m1d

2
k-ip v1a � v1bð Þ

Ik
� dk-ipβb

v2a ¼ v1a 1þ m1d
2
k-ip

Ik

 !
� v1b

m1d
2
k-ip

Ik
� CoR2c

 !

� v2bCoR2c � dk-ipβb 1þ CoR2cð Þ
Let �D ¼ m1d

2
k-ip

Ik
v2a ¼ v1a

�
1þ �D

�� v1b
�
�D� CoR2c

�� v2bCoR2c

� dk-ipβb 1þ CoR2cð Þ

Now get rid of v1a by substituting this v1a that we derived above.

v1a ¼ v1b �
v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þm2Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

( )

v2a ¼ v1b �
v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þm2Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

( )�
1þ �D

�
� v1b

�
�D� CoR2c

�� v2bCoR2c � dk-ipβb 1þ CoR2cð Þ

5.3 The Sliding Pin Model 125



�Kv2a ¼ �Kv1b
�
1þ �D

�� v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ�1þ �D
�
m2Ik

� v1b �K
�
�D� CoR2c

�� v2b �KCoR2c � dk-ipβb �K 1þ CoR2cð Þ

�Kv2a ¼ v1b �K
�
1þ �D

��MM
�
1þ �D

�� �K �Dþ �KCoR2c


 �
þ v2b MM

�
1þ �D

�� �KCoR2c


 �
þdk-ipβb MM

�
1þ �D

�� �K 1þ CoR2cð Þ
 �
�Kv2a ¼ v1b �K �MM

�
1þ �D

�þ �KCoR2c


 �
þ v2b MM

�
1þ �D

�� �KCoR2c


 �
þ βbdk-ip MM

�
1þ �D

�� �K 1þ CoR2cð Þ
 �
�Kv2a ¼ v1b �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �
� v2b �KCoR2c �MM

�
1þ �D

�
 �
� dk-ipβb �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �
Add þv2b �K � v2b �Kf g to the right side

�Kv2a ¼ v1b �K 1þ CoR2cð Þ �MM
�
1þ �D

�
 �
� v2b �KCoR2c �MM

�
1þ �D

�
 �þ v2b �K � v2b �Kf g
� dk-ipβb �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �
�Kv2a ¼ v1b �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �
� v2b �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �þ v2b �K
� dk-ipβb �K 1þ CoR2cð Þ �MM

�
1þ �D

�
 �
Let Q ¼ �K 1þ CoR2cð Þ �MM

�
1þ �D

�
�Kv2a ¼ v2b �K þ v1bQ� v2bQ� βbdk-ipQ
divide by �K

v2a ¼ v2b þ
v1b � v2b � dk-ipβb
� �

Q
�K

That looks good. So, let’s work on Q for a while.
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Q ¼ �K 1þ CoR2cð Þ �MM
�
1þ �D

�
MM ¼ m2Ik 1þ CoR2cð Þ
�D ¼ m1d

2
k-ip

Ik

MM
�
1þ �D

� ¼ m2Ik 1þ CoR2cð Þ 1þ m1d
2
k-ip

Ik

 !

MM
�
1þ �D

� ¼ m2Ik 1þ CoR2cð Þ þ m1m2d
2
k-ip 1þ CoR2cð Þ

h i
Q ¼ �K 1þ CoR2cð Þ � m2Ik 1þ CoR2cð Þ þ m1m2d

2
k-ip 1þ CoR2cð Þ

h i
�K ¼ m1Ik þ m2Ik þ m1m2d

2
k-ip

Q ¼ m1Ik þ m2Ik þ m1m2d
2
k-ip

� 	
1þ CoR2cð Þ � m2Ik 1þ CoR2cð Þ þ m1m2d

2
k-ip 1þ CoR2cð Þ

h i
cancel equal terms

Q ¼ m1Ik 1þ CoR2cð Þ
v2a ¼ v2b þ v1b � v2b � dk-ipβb

� �
m1Ik 1þ CoR2cð Þ

�K

v2a ¼ v2b þ
v1b � v2b � dk-ipβb
� �

m1Ik 1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

If we let

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

v2a ¼ v2b þ �Am1Ik

vbat-after ¼ vbat-before þ
vball-before � vbat-before � βbeforedk-ip
� �

mballIknob 1þ CoR2cð Þ
mballIknob þ mbatIknob þ mballmbatd

2
k-ip

5.3.8 Bat Angular Velocity After the Collision

Now, we will derive an equation for the rotational velocity of the bat after the

collision. We start with the previously derived equation for βa.

βa ¼ βb �
dk-ipm1 v1a � v1bð Þ

Ik

Now we must get rid of the term with the after subscript. Multiply by Ik

βaIk ¼ βbIk � dk-ipm1 v1a � v1bð Þ

Substitute the previously derived expression for v1a.
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v1a ¼
v1b � v1b � v2b � βbdk-ip

� �
1þ CoR2cð Þm2Ik

�K

� �

( )

( )

( )( )

1b 2b b k-ip 2c 2
a k k k-ip 1

1b 1b

a k k k-ip 1 1b 2b b k-ip 2c 2

k-ip 1

1b 1b

a k k 1b 2b

(1 )

Cancel  and multiply by 

(1 )

Distribute the  term

k
b

b k

b

v v d CoR m I
I I d m

K

v v K

I K I K d m v v d CoR m I

d m

I K I K v

v v

v

b
b b

b b b

b b

æ ö- - +ì üï ï= - -ç ÷í ýç ÷ï ïî þè ø
-

= - - - - +

-

= + -

-

-( )b k-ip k-ss 1 2 2c

a k k

1b 1 2 k-ip 2c

2b 1 2 k-ip 2c

b k-ss 1 2 k-ip 2c

(1 )

Collect similar terms

(1 )

(1 )

(1 )

k

b

k

k

k

d d m m I CoR

I K I K
v m m d I CoR
v m m d I CoR
d m m d I CoR

b

b b

b

+

=
+ +

- +

- +

Divide by Ik �K

βa ¼ βb

þ v1b
1þ CoR2cð Þm1m2dk-ip

�K

� v2b
1þ CoR2cð Þm1m2dk-ip

�K

� βbdk-ip
1þ CoR2cð Þm1m2dk-ip

�K

βa ¼ βb þ
v1b � v2b � βbdk-ssð Þ 1þ CoR2cð Þm1m2dk-ip

m1Ik þ m2Ik þ m1m2d
2
k-ip

Let

�A ¼ v1b � v2b � βbdk-ip
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

βa ¼ βb þ �Am1m2dk-ip

5.3.9 Conservation of Energy

The following equation is for the kinetic energy lost.
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0 ¼ m1v
2
1b þ m2v

2
2b þ Ikβ

2
b � m1v

2
1a � m2v

2
2a � Ikβ

2
a � 2KElost

These are our equations for the outputs.

v1a ¼ v1b � �Am2Ik
v2a ¼ v2b þ �Am1Ik
βa ¼ βb þ �Am1m2dk-ip
ω1a ¼ ω1b

Substituting the linear velocity of the ball after the collision, v1a, the linear velocity
of the bat after the collision, v2a and the angular velocity of the bat after the

collision, ω2a into this Conservation of Energy equation yields

KElost ¼ 1

2

m1v
2
1b þ m2v

2
2b þ Ikβ

2
b � m1

�
v1b � �Am2Ik

�2
�m2

�
v2b þ �Am1Ik

�2 � Ik
�
βb þ �Am1m2dk-ip

�2
( )

Substitute for �A

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

After a little bit of algebra that follows the development in chapter 4 we get

KElost ¼ 1

2

m1m2Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

v1b � v2b � βbdk-ip
� �2

1� CoR2
2c

� �h i

or expanding the abbreviations gives

KElost ¼ 1

2

mballmbatIknob

mballIknob þ mbatIknob þ mballmbatd
2
k-ip

vball-before � vbat-before � βbeforedk-ip
� �2h

1� CoR2
2c

� ��

5.3.10 Summary: The Output Equations

Our final equation for the batted-ball velocity is

v1a ¼ v1b �
v1b � v2b � βbdk-ip
� �

1þ CoR2cð Þm2Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

Expanding the subscripts, we get
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vball-after ¼ vball-before �
vball-before � vbat-before � βbeforedk-ip
� �

mbatIknob 1þ CoR2cð Þ
mballIknob þ mbatIknob þ mballmbatd

2
k-ip

Our final equation for the translational bat velocity after the collision is

v2a ¼ v2b þ
v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þm1Ik

m1Ik þ m2Ik þ m1m2d
2
k-ip

or

vbat-after ¼ vbat-before þ
vball-before � vbat-before � βbeforedk-ip
� �

1þ CoR2cð ÞmballIknob

mballIknob þ mbatIknob þ mballmbatd
2
k-ip

Our final equation for the rotational velocity of the bat after the collision is

βa ¼ βb þ
v1b � v2b � βbdk-ip
� �

1þ CoR2cð Þm1m2dk-ip

m1Ik þ m2Ik þ m1m2d
2
k-ip

βbat-after ¼ βbat-before þ
vball-before � vbat-before � βbeforedk-ip
� �

1þ CoR2cð Þmballmbatdk-ip

mballIknob þ mbatIknob þ mballmbatd
2
k-ip

These three equations have a common term

�A ¼ vball-before � vbat-before � βbeforedk-ip
� �

1þ CoR2cð Þ
mballIknob þ mbatIknob þ mballmbatd

2
k-ip

We can summarize with the following.

If we let

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Ik þ m2Ik þ m1m2d

2
k-ip

Then our set of equations becomes

CoR2c ¼ � v1a � v2a � dk-ipβa
v1b � v2b � dk-ipβb

v1a ¼ v1b � �AmbatIk
v2a ¼ v2b þ �AmballIk
βa ¼ βb þ �Amballmbatdk-ip
ω1a ¼ ω1b
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5.4 Differences Between the BaConLaw and Sliding Pin
Models

The purpose of Chap. 4 was to develop the BaConLaw model that explains bat-ball

collisions with precise, correct equations, without jargon. The BaConLaw model

described head-on bat-ball collisions at the sweet spot of the bat. It gave the speed

and spin of the bat and ball before and after collisions. The purpose of the Sliding

Pin model of Chap. 5 was to model a new type of data. Previously the input data for

our models were the translational and rotational velocities at the center of mass of
the bat. However, the Sliding Pin model used the translational and rotational

velocities at the knob. The experimental data produced different nominal values

for the inputs. Because these two models had different purposes and inputs, we

would not expect them to be equivalent. And they are not. Here are some of the

differences between these two models.

The BaConLaw model If you toss a bat into the air, it will have linear motion and it

will rotate about its center of mass. Because a bat is a rigid object, every spot on a

bat will have the same linear translational velocity and the same angular rotational

velocity.

vbat-knob-trans ¼ vbat-cm-trans ¼ vbat-cop-trans and
ωbat-knob ¼ ωbat-cm ¼ ωbat-cop

However, each spot on the bat will have a different total velocity that depends on

the pivot point and the spot’s distance from that pivot point.

vtcop ¼ vcm þ dcm-copωbat

If a bat tossed into the air were hit by a ball, it would be a free-end collision because

there are no other forces acting on the bat. The BaConLaw model uses a free-end

collision because of the simplicity. We need not search for other forces on the bat,

because there are none. The BaConLaw model and the Effective Mass model both

assume free-end collisions, with no external forces and rotations about the center

of mass.

The Sliding Pin model Now imagine a bat that is pinned through its knob, but the

pinned point is allowed to slide along the x-axis, as in Fig. 5.2. This bat will have

linear motion and it will rotate about its knob. Because a bat is a rigid object, every

spot on a bat will have the same linear translational velocity and the same angular

rotational velocity.

vbat-knob-trans ¼ vbat-cm-trans ¼ vbat-cop-trans
and βbat-knob ¼ βbat-cm ¼ βbat-cop
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However, each spot on the bat will have a different total velocity that depends on

the pivot point and the spot’s distance from that pivot point.

vtcm ¼ vknob þ dknob-cmβbat

vtcop ¼ vknob þ dknob-copβbat

If the pinned bat were hit by a ball, it would produce forces on the pin. This makes

the Sliding Pin model more complicated than the BaConLaw model. Forces in the

x-direction are not worrisome: they are known to be small (Milanovich and Nesbit

2014) and they would merely accelerate the bat in the x-direction. Two of the forces

on the pin will be along the y-axis. The centrifugal force due to the bats rotation

about the pin will be in the negative y-direction. The human will be applying an

approximately equal and opposite centripetal force in the positive y-direction, as

shown in Fig. 5.3. But at the time of the collision these forces will not affect the

bat’s velocity �vbat because they are perpendicular to it. The Sliding Pin model

assumes negligible forces on the pin and rotations about the knob.

Consider the BaConLaw model of Fig. 4.1 and the Sliding Pin model of Fig. 5.2.

For the time being let us ignore the translational movements and consider only

rotational movements. Suppose you want to move the sweet spot forward a distance

x. The BaConLaw model of Fig. 4.1 would require a rotation through an angle θcm
where the tan θcm ¼ x

dcm-ip
. Whereas, the Sliding Pin model of Fig. 5.2 would require

a rotation through an angle θknob where the tan θknob ¼ x
dknob-ip

. Now the angular

velocity of the BaConLaw model is ωbat ¼ dθcm
dt whereas the angular velocity of the

Sliding Pin model is βbat ¼ dθknob
dt . Clearly ωbat 6¼ βbat.

The Sliding Pin model is analogous to the BaConLaw model, but it is not

equivalent.

A 6¼ �A

A ¼ v1b � v2b � dcm-ipω2b

� �
1þ CoR2bð Þ

m1Ibat-cm þ m2Ibat-cm þ m1m2d
2
cm-ip

�A ¼ v1b � v2b � dk-ipβb
� �

1þ CoR2cð Þ
m1Iknob þ m2Iknob þ m1m2d

2
k-ip

Therefore, the two vball ‐ after equations yield different numerical values. From the

BaConLaw model of Chap. 4 we have

vball-after ¼ vball-before � AmbatIbat-cm

And from the Sliding Pin model of this chapter we have
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vball-after ¼ vball-before � �AmbatIknob

Because AmbatIbat-cm 6¼ �AmbatIknob the v1a of the BaConLaw model is not the same

as the vball ‐ after of the Sliding Pin model.

For the angular momentum Linitial¼ Lfinal for both models, but the numerical

values are different. Numerically the CoRs are the same although their equations

are different.

CoR2b ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before

CoR2c ¼ � vball-after � vknob-after � dknob-ipβafter
vball-before � vknob-before � dknob-ipβbefore

where the subscript ‘ip’ stands for the impact point.

Inputs and outputs for the BaConLaw model from Table 4.1

Inputs vball ‐ before , ωball ‐ before , vbat ‐ cm ‐ before ,ωbat ‐ before and CoR2b

Outputs vball ‐ after , ωball ‐ after , vbat ‐ ip ‐ after , ωbat ‐ after , and KElost

Inputs and outputs for the Sliding Pin model from Table 5.1

Inputs vball ‐ before , ωball ‐ before , vknob ‐ before , βknob ‐ before and CoR2c

Outputs vball ‐ after , ωball ‐ after , vbat ‐ ip ‐ after , βknob ‐ after and KElost

The BaConLaw and Sliding Pin models are analogous, but they are not equivalent.

The derivations followed the same processes and the outputs have similar forms but

the numbers are different.

The BaConLaw model states that the maximum batted-ball speed will occur for

a collision 0.66 m from the knob, while the Sliding Pin model states that the

maximum batted-ball speed will occur for a collision 0.68 m from the knob.

Once again, the models are different.

For the BaConLaw model

∂v1a
∂I2

¼ Bm1m
2
2d

2
cm-cop

K2

For the Sliding Pin model

∂v1a
∂Ik

¼ Bm1m
2
2d

2
k-ip

�K2
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5.4.1 Simulation Results

Tables 5.3 and 5.4 show the results of our Excel simulation of the Sliding Pin model

equations using the Diamond Kinetics input data from Table 5.1. These results are

similar to those in Tables 4.2 and 4.3 for the BaConLaw model except that the

batted-ball speed vball ‐ after is smaller, 83 mph (37.2 m/s) versus 92 mph (41 m/s).

The probable cause is that the BaConLaw model used input values that were

appropriate for major leaguers, whereas the Diamond Kinetics data were for pro-

fessionals, but not major leaguers.

The kinetic energies of the bat linear velocity and the bat angular velocity in

Table 5.4 are different from those in Table 4.3, because the experimental data for

Table 5.3 Simulation values for bat-ball collisions of the Sliding Pin model

SI units (m/s, rad/s) Baseball units (mph, rpm)

Inputs

vball ‐ before �37.1 �83.0

ωball ‐ before 209 2000

vknob ‐ before 4.5 10

βbefore 41 387

CoR2c 0.453 0.453

Outputs

vball ‐ after 37.2 83.4

ωball ‐ after ¼ωball ‐ before

vknob ‐ after �7 �17

βafter 18 175

Table 5.4 Comparison of

inputs and outputs of the

Sliding Pin model and the

BaConLaw model

Sliding Pin model

Inputs

vknob ‐ before 4.5 10

βbefore 41 387

vtbat ‐ ip ‐ before 33.4 m/s 75 mph

Outputs

vknob ‐ after �7 �17

βafter 18 175

BaConLaw model

Inputs

vbat ‐ cm ‐ before 23 m/s 52 mph

ωbat ‐ before 32 rad/s 309 rpm

vtbat ‐ ip ‐ before 28 m/s 62 mph

Outputs

vbat ‐ cm ‐ after 11 m/s 24 mph

ωbat ‐ after 1 rad/s 7 rpm
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these variables are different. Otherwise, the numbers in Table 5.4 are comparable to

those of Table 4.3. This shows that our analysis and equations are consistent.

Modeling philosophy note Earlier we noted that, if we set dcm ‐ ip¼ 0 in the

simulation of the BaConLaw model so that the impact point was at the center of

mass of the bat, then Tables 4.2 and 4.3 changed and produced the results of

Tables 3.3 and 3.4 for configuration 1b. This means that the whole BaConLaw

model (equations, simulations, sensitivity analyses, results, etc.) can be reduced to

be appropriate for configurations 1a, 1b and 2a by zeroing appropriate values.

However, this does not work for all models. For example, we cannot set variables

and parameters in the Sliding Pin model so that it is equivalent to the BaConLaw

model or the Effective Mass model. The Sliding Pin model is analogous to the

BaConLaw model, but it is not equivalent.

5.5 Collisions with Friction

Purpose: The purpose of this section is to present the Collision with Friction

model. Our modeling technique could not handle this configuration because

our model is only good for a point before the collision and a point after the collision.

It cannot handle behavior during the collision. The BaConLaw model of Chap. 4

fulfilled part of the first purpose of this book. It showed a complex configuration

for which our technique did work. This section completes the fulfillment of this

purpose by showing a configuration for which our technique is too simple.

One of the purposes of this book is to find how complicated our configurations

can be and still be solvable using only Newton’s principles and the conservation

laws. The BaConLawmodel passed this test. So now, let us try configuration 2d, the

Table 5.5 Kinetic energies for the Sliding Pin model collision, Joules

KE of ball linear velocity before, vball ‐ before 100

KE of bat linear translational velocity before, vbat ‐ trans ‐ before 9

KE of ball angular velocity before, ωball ‐ before 1.7

KE of bat angular velocity before, βb 280

KE before, total 391

KE of ball linear velocity after, vball ‐ after 100

KE of bat linear translational velocity after, vbat ‐ trans ‐ after 25

KE of ball angular velocity after, ωball ‐ after 1.7

KE of bat angular velocity after, βa 57

KE after, total 184

KE lost 207

KE before minus (KE after plus KE lost) 391

It is just a coincidence that the KE of the ball linear velocity before and after are nearly the same
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Collision with Friction model. This model is for a collision at the sweet spot of the

bat with spin on the pitch and with consideration of friction between the bat and

ball, as shown in Fig. 5.6. The inputs, outputs and equations are given in Table 5.6.

5.5.1 Using Newton’s Principles

During the collision, the ball velocity changes fromvball ‐ before to vball ‐ after. Assume

that the ball velocity reaches zero somewhere in the middle of the collision. There-

fore, during this first part of the collision the velocity changes from vball ‐ before to 0. By
Newton’s second principle, we can write the force that the ball exerts on the bat

normal to the tangent plane of the collision is Fnormal ¼ mballvball-before
Δt . We postulate that

during the first part of the collision the ball is sliding across the bat. Therefore the

friction force acting on the ball is

Ffriction ¼ Fnormalμf

Ffriction ¼
m1v1bμf

Δt

��� ���

Fig. 5.6 Model of the bat-ball collision with the addition of friction between the bat and ball. The

arrows show that angular momenta are positive when pointing out of the page

Table 5.6 Equations for the Collision with Friction model, two equations and one unknown

Inputs vball ‐ before , ωball ‐ before , vtbat ‐ ss ‐ before ,ωbat ‐ ip ‐ before

Outputs ωball ‐ after

Equations

Newton’s Second
Law, Eq. (5.6)

Δt
0
(rball�Ffriction)¼ � (Iballωball ‐ after� Iballωball ‐ before)

Conservation of

Angular Momen-

tum, Eq. (5.7s)

Linitial ¼ Lfinal
m1v1bd þ I1 þ m1d

2
� �

ω1b þ I2ω2b � 0:1μf m1r1 v1bj j þ m1d
2ω1b

¼ þm1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ 0:1μf m1r1 v1aj j � m1d

2ω1a
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The absolute value sign is necessary because friction always opposes motion. I

experimentally measured the dynamic coefficient of friction between a wooden

baseball bat and a baseball to be μf¼ 0.5. We will use this numerical value in the

simulation. According to Newton’s second law, this friction force, shown in

Fig. 5.6, creates a torque that reduces the angular momentum of the ball. The

amount depends on how long we apply the torque, Δt
0
.

Δt0 rball � Ffrictionð Þ ¼ � I1ω1a � I1ω1bð Þ

As always, omega, ω, stands for the rotational velocity of an object about its

center of mass. This friction force only exists when the ball is sliding across the

surface of the bat, not when it is rolling or griping. Figure 5.7 shows how the ball is

deformed during the collision. This suggests that the ball is sliding on the bat during

only a short part of the collision (maybe the first 10% of the total collision duration),

then it grips the bat tightly.

We can solve the above equation for ω0
1a. This omega has a prime symbol on it

because it is not the omega after the whole collision. It is the omega after only the

first part of the collision where the ball is sliding on the bat. LetΔt
0
be the duration of

sliding and Δt be the duration of this part of the collision.

I1ω0
1a ¼ I1ω1b � Δt0Ffrictionrball

I1ω0
1a ¼ I1ω1b � Δt0

m1v1bμf
Δt

��� ���r1
Assume that Δt0 ¼ Δt=10

I1ω0
1a ¼ I1ω1b � 0:1m1v1bμf r1

�� ��
ω0
1a ¼ ω1b �

0:1μf m1r1

I1
v1bj j

Fig. 5.7 A bat-ball

collision showing how

much the baseball is

deformed during a collision.

The collision lasts about

1 ms (Photo Credit: UMass

Lowell Baseball Research

Center. From https://

student.societyforscience.

org/sites/student.

societyforscience.org/files/

main/articles/ballbat.jpg)
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This result does not depend on Δt. Near the end of the collision the friction force
rearises, but in the opposite direction (Cross 2011; Kensrud et al. 2017). This

increases the ball spin.

Fnormal ¼ m1v1a
Δt

Ffriction ¼
m1v1aμf

Δt

��� ���
This time the ω0

1b has the prime symbol because it is not the omega before the

whole collision. It is the omega before only this part of the collision.

I1ω1a ¼ I1ω0
1b þ Δt0Ffrictionrball

I1ω1a ¼ I1ω0
1b þ Δt0

m1v1aμf
Δt

��� ���r1
Again assume Δt0 ¼ Δt=10

I1ω1a ¼ I1ω0
1b þ 0:1m1v1aμf r1

�� ��
ω1a ¼ ω0

1b þ
0:1μf m1r1

I1
v1aj j

Now, we ignore all of the time when the ball is not sliding across the bat andω0
1a

becomes ω0
1b and we can combine these equations to get

ω1a ¼ ω1b þ
μf m1r1

10I1
v1aj j � v1bj jð Þ

or by expanding the subscripts

ωball-after ¼ ωball-before þ
μfrictionmballrball

10Iball
vball-afterj j � vball-beforej jð Þ

However, this whole analysis depends on how long the ball slides on the bat

before it switches to rolling or griping.
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5.5.2 Conservation of Angular Momentum

Most of the equations for the BaConLaw model also apply to the Collision with

Friction model. The exceptions are Conservation of Energy and kinetic energy lost.
As in the BaConLaw model, at the instant when the ball contacts the bat, as shown

in Fig. 5.2, the ball has a linear translational velocity of vball ‐ before that, as before,
we model as the ball rotating about the bat’s center of mass at a distanced¼ dcm ‐ ip.

When it comes time to substitute a value for d we will use either d¼ dcm ‐ ip or

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2dm-ip þ r2bat

q
. However, the sensitivity analysis has shown that this is one of

the least significant parameters in the model. Therefore, which we use is not

important. The ball also has angular momentum because of its spin: we use the

parallel axis theorem to compute the moment of inertia with respect to the center of

mass of the bat, (Iball +mballd
2)ωball ‐ before. The bat has initial angular momentum,

I2ω2b. Now we add a new term due to the friction between the bat and ball,

rball�Ffriction. This term exists during the collision, not before. Nevertheless, we

will lump it in with the initial angular momentum. Therefore, we can write the sum

of the initial angular momenta of the bat-ball system about an axis through the

center of mass of the bat parallel to the z-axis. In Fig. 5.2, positive moments will be

pointing out of the page.

Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � Ffrictionr1Δt

Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � 0:1μf m1v1br1

�� ��
Assume that the last term is-I1ω1b about the center of mass of the ball:
To relate it to an axis through the center of mass of the bat,

use the parallel axis theorem:

Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � I1 � m1d

2
� �

ω1b

Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � I1ωb þ m1d

2ω1b

Linitial ¼ m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � 0:1μf m1v1br1

�� ��þ m1d
2ω1b

For the final angular momentum after the collision, we will treat the ball, as before,

as an object orbiting the center of mass of the bat with angular momentum,

mballvball ‐ afterdcm ‐ ip. The ball also has angular momentum because of its spin: we

use the parallel axis theorem to compute the moment of inertia with respect to an

axis through the center of mass of the bat, (Iball +mballd
2)ωball ‐ after. The bat angular

momentum is Ibatωbat ‐ after.The sum of the angular momenta after the collision is

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ Ffrictionr1Δt

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ 0:1μf m1v1ar1

�� ��
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Assume that the last term is I1ω1b about the center of mass of the ball:
To relate it to an axis through the center of mass of the bat,

use the parallel axis theorem:

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ Iz � m1d

2
� �

ω1a

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ Izωa � m1d

2ω1a

Lfinal ¼ m1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ 0:1μf m1v1ar1

�� ��� m1d
2ω1a

Now for the whole bat-ball collision, we know that the initial angular momentum

must equal the final angular momentum.

Linitial ¼ Lfinal

m1v1bd þ I1 þ m1d
2

� �
ω1b þ I2ω2b � 0:1μf m1r1 v1bj j þ m1d

2ω1b

¼ þm1v1ad þ I1 þ m1d
2

� �
ω1a þ I2ω2a þ 0:1μf m1r1 v1aj j � m1d

2ω1a

Previously we used Newton’s Second Law, dm1(v1a� v1b)¼ � I2(ω2a�ω2b), and

solved for ω2a, ω2a ¼ ω2b þ dm1

I2
v1b � v1að Þ. So let us substitute this into our

Conservation of Angular Momentum equation above.

m1v1bdþ I1þm1d
2

� �
ω1bþ I2ω2b� μf m1v1br1

�� ��
þm1d

2ω1b ¼m1v1adþ I1þm1d
2

� �
ω1aþ I2 ω2bþdm1

I2
v1b� v1að Þ

� �
þ μf m1v1ar1
�� ��

�m1d
2ω1a

Table 5.7 Simulation values

for bat-ball collisions at the

sweet spot for the Collision

with Friction model

SI units (m/s or rad/s) mph or rpm

Inputs

vball ‐ before �37 �83

vtbat ‐ ip ‐ before 28 62

Results

ωball ‐ before 209 2000

ωball ‐ after 222 2126

ωball ‐ before 0 0

ωball ‐ after 13 126

ωball ‐ before �209 �2000

ωball ‐ after �196 �1874
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We want to solve this for the angular velocity of the ball after the collision, ω1a

( )
( )

2 2
1 1 1 1 1

2 2
1 1 1 1 1b 1 1 1

1 1 1

2 21

21 1a 1a2b a 1

2 2 2
1 1 1 1 1 1 1

1

1b

1

b 0.1

( ) 0.1

Cancel the terms in color, multiply by -1  and rearrange

( ) ( ) 0.1

a a

b f b

f

a a b f

bI

I m d m d

I m d m v r m d

dm m v r

I m d m d

m v d

I m d m

m vIv d v

w w

w m w

m

w w w

w

w

m

- + +

= - + - - +

+ +

+ = + +

-

-

+ + -

( )

2
1 1b 1 1 1 1 1a 1

2 2
1 1 1 1 1 1 1b 1 1 1 1 1a 1

1 1 1 1 1 1b 1 1 1a 1

1 1
1a 1b 1a 1b

1

0.1

( ) 0.1 0.1

0.1 0.1

10

b f

a b f b f

a b f f

f

v r m d m v r

I I m d m v r m d m v r

I I m v r m v r

m r
v v

I

w m

w w m w m

w w m m

m
w w

- -

= + + - -

= + -

= + -

This is the same equation that we derived earlier using Newton’s principles. This
result does not depend on d. Table 5.7 shows the simulation results using this

equation. The top two rows show the nominal input values. The next two rows show

before and after values for an initial ball spin of 209 rad/s. The next two rows show

before and after values for an initial ball spin of 0 rad/s. The final two rows show

before and after values for an initial ball spin of �209 rad/s. We know that these

numbers are not exact, but they are probably within an order of magnitude. If we put

ωball¼ � 1874 rpm into the simulation for Fig. 7.13, we find that the difference in

range is 1%. The purpose of this table is to estimate the magnitude of error

introduced by our Sect. 3.5 derivation of ωball ‐ after¼ωball ‐ before.
The equations for (1) vball ‐ after the linear velocity of the ball after the collision,

(2) vbat ‐ ss ‐ after the linear velocity of the sweet spot of the bat after the collision,

(3) ωbat ‐ after the angular velocity of the bat about its center of mass after the

collision and (4) CoR the coefficient of restitution are the same as those derived

for the BaConLaw model.

This section on the Collision with Friction model assumed that the ball slides

(does not roll) across the surface of the bat during the collision. However, that is a

bad assumption because the ball could slip, slide, roll or grip, or flip from one mode

to another during the collision (Cross 2011; Kensrud et al. 2017). To make matters

even worst, Rod Cross (personal communication 2016) pointed out that when a ball

grips the bat as in Fig. 5.7 there is a large static friction force acting and it can even

reverse direction during the impact. Furthermore, presently, the behavior of the bat

and ball at game speeds is not known. Therefore, although the equations are

consistent, we are going to say that the analysis is not valid because we know so

little about the actual bat and ball behavior during the collision.

Modeling philosophy note The Collision with Friction model includes friction

during the collision. Our modeling technique cannot handle this configuration

because our model is only good for a point before the collision and a point after
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the collision. It cannot handle behavior during the collision. Chapter 4 fulfilled part
of the first purpose of this book. It showed a complex configuration for which our

technique did work. Chapter 5 completed the fulfillment of this purpose by showing

a configuration for which our technique was too simple. From a modeling perspec-

tive, this is an important section because few studies show failures. In this section, I

show a failure. I tried to model an event, but was unsuccessful. Then I explain why I

was unsuccessful.

5.6 Summary

The bat Effective Mass model and the BaConLaw model both start with Newton’s
principles: then they diverge. They are different: however, they yield the same rule

of thumb for the batted-ball speed! This should strengthen and give people more

confidence in both models.

Modeling philosophy note Having several alternative models helps ensure that you

understand the physical system. No model is more correct than another. They just

emphasize different aspects of the physical system. They are not competing models

they are synergetic.

This chapter presented alternative models. The Effective Mass model (Fig. 5.1)

was similar to the BaConLaw model of Chap. 4, except that it did not have the

algebraic equations. The fundamental model for both was that of a free-end

collision of a bat and ball that produced a translation and a rotation of the bat

about its center of mass. They produced the same rule of thumb for the speed of the

batted ball. For a major league wooden baseball bat the speed of the ball after the

collision is

batted-ball speed ¼ �0:19 pitch speedþ 1:22 total bat speed

The units could be either m/s or mph.

The next two alternative models in this chapter were data-based models. They

allowed forces on the bat handle. The Spiral Center of Mass model (Fig. 5.3)

matched data for the swing of the bat where the center of mass of the bat followed

a spiral trajectory. The Sliding Pin model (Fig. 5.5) used a translation and a rotation

about the knob of the bat. It also allowed the batter to apply forces on the handle

during the swing. These three models modeled different aspects of the swing and

collision. Therefore, they gave different results for outputs such as batted-ball

speed.

The last model in this chapter included friction during the collision. Our model-

ing technique could not handle this configuration because our model is only good

for a point before the collision and a point after the collision. It cannot handle

behavior during the collision.
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Chapter 4 fulfilled part of the first purpose of this book. It showed a complex

configuration for which our technique did work. Chapter 5 completed the fulfill-

ment of this purpose by showing a configuration for which our technique was too

simple.

References

Bahill, A.T.: The ideal moment of inertia for a baseball or softball bat. IEEE Trans. Sys. Man

Cybern. Part A Syst. Hum. 34(2), 197–204 (2004)

Cross, R.: Physics of Baseball and Softball. Springer, New York (2011)

Cross, R. Mechanics of swinging a bat, Am. J. Physics, 77(1): 36–43 (2009).

Fleisig, G.S., Zheng, N., Stodden, D.F., Andrews, J.R.: Relationship between bat mass properties

and bat velocity. Biomechanics Symposia, University of San Francisco, San Francisco 2001

Fleisig, G.S., Zheng, N., Stodden, D.F., Andrews, J.R.: Relationship between bat mass properties

and bat velocity. Sports Eng. 5, 1–8 (2002)

Kensrud, J.R., Nathan, A.M., Smith, L.V.: Oblique collisions of baseballs and softballs with a bat.

Am. J. Phys. 85(7), 503–509 (2017)

King, K., Hough, J., McGinnis, R.: A new technology for resolving the dynamics of a swinging

bat. Sports Eng. 15, 41–52 (2012)

Milanovich, M., Nesbit, S.M.: A three-dimensional kinematic and kinetic study of the college-

level female softball swing. J. Sports Sci. Med. 13(1), 180–191 (2014). PMCID: PMC3918556

Nathan, A. M., Characterizing the performance of baseball bats, Am. J. Phys. 71, 134–143 (2003).

Watts, R. G. and Bahill, A. T., Keep Your Eye on the Ball: Curveballs, Knuckleballs, and Fallacies

of Baseball, W. H. Freeman and Co., New York, first edition, 1990, second edition (2000)

Willman, D., BaseballSavant, https://baseballsavant.mlb.com/statcast_search, 2017, last accessed

March (2017).

References 143

https://baseballsavant.mlb.com/statcast_search


Chapter 6

Synopsis of Chapters 1 to 5

6.1 Introduction

Purpose: The purpose of this chapter is to compare the models presented in the

first five chapters, show links to other studies in the physics of baseball literature

and answer the question, “Could Ted Williams see his bat hit the ball?”

Chapter 1 presented Newton’s principles and laid the groundwork for analyzing

bat-ball collisions. Using text and figures, Chap. 2 explained nine common config-

urations of bat-ball collisions. In Chap. 3, we started developing sets of equations

for those configurations. Configuration 1b was for a very simple collision at the

center of mass of a translating bat. Configuration 2a added a rotation of the bat and

moved the collision point to the sweet spot of the bat.

In Chap. 4, we developed our complete model for bat-ball collisions. The

following equations comprise our BaConLaw model for bat-ball collisions.

KElost ¼ 1

2

mballmbatIbat vball-before � vbat-cm-before � ωbat-beforedcm-ip
� �2

1� CoR2
2b

� �

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

A ¼ vball-before � vbat-cm-before � dcm-ipωbat-before
� �

1þ CoR2bð ÞmbatIbat

mballIbat þ mbatIbat þ mballmbatd
2
cm-ip

CoR2b ¼ � vball-after � vbat-cm-after � dcm-ipωbat-after

vball-before � vbat-cm-before � dcm-ipωbat-before
vball-after ¼ vball-before � AmbatIbat
vbat-after ¼ vbat-before þ AmballIbat
ωbat-after ¼ ωbat-before þ Amballmbatdcm-ip
ωball-after ¼ ωball-before

This BaConLaw model for bat-ball collisions gives the linear and angular velocity

of the bat and ball after the collision in terms of these same variables before the

collision. Its development used only Newtonian mechanics and the conservation
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laws. It was assumed that there are no external forces and no friction. The funda-

mental principle and limiting condition for the BaConLaw model was our assump-

tion that the bat-ball collision is a free-end collision. That means that the bat acts as

if no one is holding onto its knob. To visualize this, imagine that the bat is laying on

a sheet of ice and you are looking down on top of it, as in Fig. 4.1. Then a baseball

slams into the bat at 80 mph. This collision produces a translation and a rotation of

the bat about its center of mass.

Chapter 5 contained four alternative models for bat-ball collisions. The bat

Effective Mass model used the same fundamental principles of Newtonian mechan-

ics as the BaConLaw model and the same limiting assumption that the bat-ball

collision is a free-end collision. Therefore, its equation and results are similar to the

BaConLaw model. For the BaConLaw model the inputs, outputs and states are the

same: namely the linear velocity of the bat, the angular rotational velocity of the bat

and the velocity of the ball. Whereas, for the bat Effective Mass model the input is

the total velocity (meaning translation plus rotation) of the bat and the output is

usually only the velocity of the ball.

The Spiral Center of Mass model and the Sliding Pin model are data-based, not

theory-based. They use a different type of data from the previous models. The

inputs to these models are the independently calculated translations and rotations

about a specified point on the bat during the swing. They allow rotation about the

knob of the bat. Most distinctively, they do not assume a free-end collision. The

Spiral Center of Mass model represents the movement of the bat through three-

dimensional space during the swing. This motion is not the simple translation and

rotation about the center of mass used by the BaConLaw and Effective Mass

models. The Spiral Center of Mass model stops when the collision begins. The

Sliding Pin model starts when the collision begins.

The purpose of the BaConLaw model was to describe head-on bat-ball collisions

at the sweet spot of the bat. It gave the speed and spin of the bat and the ball before

and after collisions. The inputs for the BaConLaw model were the translational and

rotational velocities at the center of mass of the bat. The purpose of the Sliding Pin

model was to model a new type of data. The Sliding Pin model used the transla-

tional and rotational velocities at the knob. Because these two models had different

purposes and different inputs, they are not equivalent.

Finally, the Collision with Friction model considered friction during the collision.

It was shown that this type of collision cannot be modeled precisely using only the

conservation laws. Therefore, this model completes the fulfillment of the first purpose

of this book, to show a configuration that is too complex for our simple technique.

6.2 Limitations

We showed that the BaConLaw model for bat-ball collisions could be modeled

using only Newton’s principles and the conservation laws. Whereas, configurations

2d, 3 and 4 will have to use additional details such as those presented in physics of
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baseball papers: Adair (2002), Branch (2007), Cross (2011), Hubbard (http://fac

ulty.engineering.ucdavis.edu/hubbard/), Nathan (http://baseball.physics.illinois.

edu/), Russell (http://www.acs.psu.edu/drussell/), Sherwood (https://www.uml.

edu/Engineering/Mechanical/faculty/sherwood-james.aspx), and Smith (http://

www.mme.wsu.edu/people/faculty/faculty.html?smith). This current book is at a

higher level of abstraction (Bahill et al. 2008) than those physics of baseball papers,

because it ignores details during the collision, such as (1) the ball can slip, slide, roll

or grip the bat and the ball switches between these modes, (2) the coefficient of

friction can change from dynamic to static, (3) the bat and ball deform (Mustone

and Sherwood 2003) (4) the collision has normal and tangential components and

(5) the bat has a twist or a rotation about its long axis. This book ignores the

difference between a half-dozen parameters that have commonly been used for

collision analysis such as the kinetic coefficient of restitution, the energetic coef-

ficient of restitution, μ or eT that models the energy loss due to tangential forces,

and em that models the losses in angular momentum. This book grouped all of the

energy losses into one parameter, the kinematic Coefficient of Restitution (CoR).
This book models the variables of the bat and ball at a time just before the collision

and at a time just after the collision, not during the collision.

The authors mentioned in the previous paragraph are, for the most part, members

of the bat Effective Mass modeling community. The bat Effective Mass model for

bat-ball collisions was developed by Al Nathan. The people in this community

think that it is an intuitive model. It was presented at the beginning of Chap. 5. The

bat Effective Mass model usually produces only the batted-ball speed, whereas the

BaConLaw model also gives equations for the bat linear and angular velocities after

the collision. However, I come from a different background. I am an engineer and a

modeler. Back in the 1970s, we engineers would not design with integrated circuits

that did not have a second source. Therefore, integrated circuit manufacturers gave
their masks to their competitors! That way there would be a second source for the

integrated circuits in case the first manufacturer’s process went sour. From that

experience, I learned to cherish alternative models. Chapters 1 to 5 of this book

provide alternative models for bat-ball collisions. The BaConLaw model of Chap. 4

was based on the conservation laws. Its derivations are completely different, yet it

yields similar results to the bat Effective Mass model. This should allow people to

put more faith in both models. They are not competing models: they are synergistic.

A model is a simplified representation of a particular view of a real system. No

model matches all views of its real system perfectly. If it did, then there would be no

advantage to using the model. In modeling theory, there is never one correct model.

Good modelers always embrace alternative models. This enhances the probability

of the models being useful.

The terms in Table 1.1 should be understandable by high-school students,

undergraduates and all other students of the science of baseball. These terms are

all you need to know to understand this book. This book does not obfuscate with

jargon, rules of thumb or esoteric terms such as swing weight (moment of inertia

about a pivot point 6 in. from the knob), swing speed (the angular velocity of the

bat), the trampoline effect (hollow aluminum and composite bats are more elastic

6.2 Limitations 147

http://faculty.engineering.ucdavis.edu/hubbard/
http://faculty.engineering.ucdavis.edu/hubbard/
http://baseball.physics.illinois.edu/
http://baseball.physics.illinois.edu/
http://www.acs.psu.edu/drussell/
https://www.uml.edu/Engineering/Mechanical/faculty/sherwood-james.aspx
https://www.uml.edu/Engineering/Mechanical/faculty/sherwood-james.aspx
http://www.mme.wsu.edu/people/faculty/faculty.html?smith
http://www.mme.wsu.edu/people/faculty/faculty.html?smith


than wooden bats), hoop frequency (vibration of the barrel), the ball-bat coefficient
of restitution (BBCOR), collision efficiency, rebound power, intrinsic power,

bounce factor and recoil factor. By using only fundamental principles and no

jargon, it is hoped that the reader will gain intuition about the behavior of the bat

and ball before and after collisions.

6.2.1 Seeing the Collision

When a baseball bat moving at 62 mph (28 m/s) hits a baseball traveling in the

opposite direction at 83 mph (37 m/s) there is a violent collision, which was shown

in Fig. 5.7. Table 4.3 showed that during the collision the kinetic energy in the

motion of the bat changed by 218 Joules (J): a loss of 193 J in linear translational

kinetic energy and a loss of 25 J in angular kinetic energy. Notably, 218 J is
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equivalent to dropping a 50-pound (24 kg) weight from your waist onto your toe or

having a one-pound rock (0.5 kg) hit your windshield while you are driving down a

highway at 70 mph (113 km/h).

Frame-by-frame analysis of a high-speed video of a major-league batter showed

that at the beginning of the collision there was (1) a big abrupt change in the ball

velocity as it swung from negative to positive, (2) a sudden drop in the linear

velocity of the sweet spot of the bat and (3) a sharp change in the angle of the bat, β.
These last two changes can be measured in a frame-by-frame analysis, but they

cannot be visualized well, even in slow motion, because of the limited frame rate

and resolution of the cameras.

Now, imagine a film of Ted Williams hitting a baseball. His swing is smooth and

graceful although the kinetic energy of his bat changes by 218 Joules during a

collision. The reason his swing seems so smooth is that we mainly visualize the

movement of his body, arms, hands and the bat. We model this movement with the

bat’s angular rotation about the knob, β. The change in this angular motion is not

visually obvious because it is just a short small jerk in the middle of a big swinging

motion. Hence, what we see does not change much. On the other hand, the bat’s
linear translational motion, vbat ‐ cm, decreases from 52 to 24 mph (23 to 11 m/s).

However, we do not visualize this translational motion well, because his swing

looks like a big rotation: it does not look like a translation. As a result, the

movement that we visualize well, β, does not change much. Whereas, the move-

ment that changes a lot, vbat ‐ cm, is not visualized well. This explains why people do
not perceive an abrupt jerk when the bat and ball collide.

What about the batter? Would he be able to see the effects of this violent

collision? Probably not. Bahill and LaRitz (1984) showed that no batter could

keep his eye on the ball from the pitcher’s release point to the bat-ball collision.

Their graduate students fell behind when the ball was 9 feet (2.7 m) in front of the

plate. Comparatively, their major-league baseball player was able to keep his

position error below two degrees until the ball was 5.5 feet (1.7 m) from the

plate. Then he fell behind. This finding runs contrary to baseball’s hoary urban

legend that Ted Williams could see the ball hit his bat. However, in reality, Ted

Williams could not see the ball hit his bat. In a letter that he sent to Bahill dated

January 23, 1984 he wrote,

“Received your letter and have also had a chance to read your research, and I fully agree

with your findings.

I always said I couldn’t see a ball hit the bat except on very, very rare occasions and that
was a slow pitch that I swung on at shoulder height. I cam[e] very close to seeing the ball hit

the bat on those occasions.”

In summary, the bat-ball collision is violent. Everyone can see its effect on the

ball: the ball is squashed (Fig. 5.3) and changes it velocity by 175 mph. However,

no one sees the collision’s effect on the bat. Because, first of all, the bat-ball

collision only lasts one millisecond, which is much too fast for visual pattern

recognition. Second, even in slow motion, the spectator only sees the smooth

movement of the batters body, arms, hands and bat, which glide continuously.
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The spectator cannot see movements that change abruptly, such as the bat’s linear
translational velocity, vbat ‐ cm. Finally, the batter is not able to see the bat-ball

collision at all. This explains why nobody sees an abrupt jerk of the bat when the bat

hits the ball, not even Ted Williams.

6.3 Summary

One purpose of this book was to show how complicated bat-ball collisions could be

while still being modeled using only Newton’s principles and the conservation

laws. We were successful. The BaConLaw model was the pinnacle of our models.

Whereas, the Collision with Friction model involved actions during the collision.

Because our technique is only valid for points before and after the collision, we

concluded that the Collision with Friction model is inappropriate for our simple

Newtonian technique. Therefore, the BaConLaw model is the most complex con-

figuration for which our technique, based only on Newton’s principles and the

conservation laws, are valid. Our configurations were explained in Chap. 2. The five

equations that we used were listed in Table 4.1. These equations were used for

configurations 2a, 2b, 2c and 2d. Additionally, all of these results can be simplified

to be appropriate for previous configurations. We derived these equations for the

BaConLaw model of configuration 2b. But most importantly, if we set the initial

ball spin equal to zero, then they satisfy configuration 2a. If we let dcm ‐ ip¼ 0 the

resultant equations are the same as those we derived for configurations 1a and 1b.

A second purpose of this book was to show how the individual batter could select

or create the optimal baseball or softball bat for him or herself. The sensitivity

analysis and optimization study of this book showed that the most important

variable, in terms of increasing batted-ball speed, is bat speed before the collision.

However, in today’s world, the coefficient of restitution and the bat mass are

experiencing the most experimentation in trying to improve bat performance.

Although, the bat moment of inertia provides more room for future improvement.

Above all, future studies must include physics in conjunction with physiology in

order to improve bat performance.

Finally, we noted that, “You can’t keep your eye on the bat.”
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Chapter 7

The Ball in Flight Model

7.1 Introduction

Purpose: One purpose of this chapter was to derive equations and develop the Ball

in Flight model. This model was then used to show how altitude, temperature,

barometric pressure and relative humidity affect air density and consequently how

air density affects the flight of the ball.

7.2 Movement of the Ball in Flight

Baseball batters say that the pitch hops, drops, curves, breaks, rises, sails or tails

away. Baseball pitchers say that they throw fastballs, screwballs, curveballs, drop

curves, flat curves, knuckle curveballs, sliders, change ups, palm balls, split

fingered fastballs, splitters, forkballs, sinkers, cutters, two-seam fastballs and

four-seam fastballs. This sounds like a lot of variation. However, no matter how

the pitcher grips or throws the ball, once it is in the air its motion depends only on

gravity, its velocity and its spin. In engineering notation, these pitch characteristics

are described respectively by a gravity vector, a linear velocity vector and an

angular velocity vector, each with magnitude and direction. The magnitude of the

linear velocity vector is called pitch speed and the magnitude of the angular

velocity vector is called the spin rate. These vectors produce a force acting on the

ball that causes a deflection of the ball’s trajectory. This chapter is based on Bahill,
Baldwin and Ramberg, (2009).

Figures 7.1 and 7.2 show the effects of spin on the pitch. During the pitch of a

major-league baseball, the ball falls about 3 feet due to gravity (d ¼ ½ at2).
However, the fastball has backspin that opposes gravity and the curveball has top

spin that aids the fall due to gravity. The simulations for these figures were run at

standard temperature and pressure (STP).
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Fig. 7.1 A 90 mph (40 m/s) overhand fastball launched 1� downward with 1200 rpm of backspin

Fig. 7.2 An 80 mph (36 m/s) overhand curveball launched 2� upward with 2000 rpm of topspin
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In the simulations of Figs. 7.1 and 7.2, the pitcher releases the ball 5 feet (1.5 m)

in front of the pitcher’s rubber at a height of 6 feet (1.8 m). The batter hits the ball

1.5 feet (0.5 m) in front of home plate. These figures also show what the batter’s
brain is doing during the pitch. During the first third of the pitch, he is gathering

sensory information (mostly with his eyes) about the velocity and spin of the pitch.

During the middle third of the pitch, he is computing where and when the ball will

cross the plate. During the last third, he is swinging the bat and can do little to alter

its trajectory.

For a half-century, our models were hampered by limited data for the spin of the

ball. The best, published experimental data for the spin rate of different pitched

baseballs came from Selin’s cinematic measurements of baseball pitches (Selin

1959). But now there is a plethora of data. The two biggest surprises from these new

data were that the average fastball has a bigger spin rate than the average curveball

and that the change up is not really slow.

Table 7.1 presents data for pitches thrown in 2016 in the Arizona Diamond-

back’s stadium. These numbers came from Willman (2017) BaseballSavant. The

numbers for the changeup were surprising because their glossary states, “A

changeup is one of the slowest pitches thrown in baseball. . .” Therefore, I com-

puted several datasets and consulted several sources. The numbers were similar.

However, please note that the standard deviations for both the velocity and the spin

rate are large.

For readers who are familiar with statistics, please allow me this aside for those

that are not. By using the term standard deviation in Table 7.1, I assumed that, for

example, the velocity data for curve balls were normally distributed. This means

that 68% of the data points were within plus or minus one standard deviation of the

average, 79 mph: meaning that 68% of the curve ball velocities were between

83 mph and 75 mph. However, this also means that 16% of major league curveballs

had velocities below 75 mph.

The number of pitches column shows the relative popularity of each type of

pitch. Of the dozen types of pitches listed in Willman (2017), Table 7.1 only gives

data for five. The two-seam and the four-seam fastballs are both listed, just to show

Table 7.1 Values for representative major-league pitches from Willman (2017)

Type of

pitch

Speed of the pitch at the pitcher’s
release point

Pitch spin rate, absolute

values

Number of

pitches

Average,

mph

Standard

deviation

Average,

m/s

Average,

rpm

Standard

deviation

4-seam

fastball

93.6 2.3 41.8 2169 363 10,215

2-seam

fastball

92.7 2.4 41.4 2148 321 2959

Slider 85 3.1 38 745 346 4072

Changeup 85 3.5 38 1714 419 2370

Curveball 79 3.8 35 1286 461 1865
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that there is little physical difference between the two. The difference must be

psychological (meaning visual) (Bahill et al. 2005).

Figure 7.3 shows photographs of spinning baseballs. The simulated four-seam

fastball in the top of Fig. 7.3 appears to be a grey blur with thin vertical red lines

about 1/7 of an inch apart. These are the individual stitches of the baseball. In

contrast, the two-seam fastball (bottom) seems to exhibit two big red vertical stripes

about 3/8 of an inch wide. These stripes are evident because they represent seams

rather than individual stitches. They provide easily perceived information to the

batter for determining the angle of the spin and the direction of the resultant

deflection. In an experiment with 104 laypeople, our subjects could distinguish

the pink stripes of the two-seam fastball on average 43 feet from the ball, whereas

they could only see the pink lines of the four-seam fastball on average 17 feet away.

In the bottom of Fig. 7.3, the red stripes are vertical. Were the stripes at an angle,

they would indicate the horizontal direction in which the ball would curve. There-

fore, the big difference between four-seam and two-seam fastballs is that (because

Fig. 7.3 Photographs of

spinning balls simulating a

fastball thrown with (top) a
four-seam grip and (bottom)
a two-seam grip. The balls

are being rotated at

1200 rpm (20 times per

second). The camera

exposures are about 0.25 s
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of the visibility of vertical red stripes) the batter may be able to perceive the spin on

the two-seam fastball. Videos of these simulated fastballs are available at http://

sysengr.engr.arizona.edu/baseball/index.html.

Table 7.2 presents 2015 data from the Statcast system (Petriello 2016). It has

higher spin rates for the slider and the curveball than Table 7.1. This reiterates the

fact that the numbers given in Tables 7.1 and 7.2 are still just estimated values

subject to theoretical and measurement errors. We presume that these systems

measured the air density and wind speed at field level for every pitch.

7.3 Right-Hand Rules for a Spinning Ball in Flight

We will now apply the right-hand rules to the linear velocity vector and the angular

velocity vector in order to describe the direction of the spin-induced deflection of

the a spinning ball in flight. First, we use the angular right-hand rule to find the

direction of the spin axis. As shown in Fig. 7.4, if you curl the fingers of your right

hand in the direction of spin, your extended thumb will point in the direction of the

spin axis.

Next, we use the coordinate right-hand rule to determine the direction of the

spin-induced deflection force. Point the thumb of your right hand in the direction of

the spin axis (as determined from the angular right-hand rule), and point your index

finger in the direction of forward motion (Fig. 7.4). Bend your middle finger so that

it is perpendicular to your index finger. Your middle finger will be pointing in the

direction of the spin-induced deflection (of course, the ball also drops due to

gravity). The spin-induced deflection force will be in a direction represented by

the cross product of the angular velocity vector (the spin axis) and the linear

velocity vector of the ball: Angular velocity � Linear velocity ¼ Spin-induced

deflection force. Or mnemonically, Spin axis � Direction ¼ Spin-induced deflec-

tion (SaD Sid). This acronym only gives the direction of spin-induced deflection.

The equations yielding the magnitude of the spin-induced deflection force are

discussed in Sect. 7.6.

The right-hand rules apply to all spinning balls whether thrown by a right-

handed pitcher or a left-handed pitcher. They apply to baseballs, softballs, golf

balls, soccer balls, tennis balls and even bocce balls.

Table 7.2 Major league averages from Statcast

Type of pitch Average, speed at the release point, mph Average spin rate, rpm

4-seam fastball 92.9 2226

2-seam fastball 91.9 2123

Slider 84.6 2090

Changeup 83.9 1746

Curveball 78.2 2308
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7.4 Direction of Forces on Specific Pitches

Figures 7.5 and 7.6 show the directions of spin (circular red arrows) and spin axes

(straight black arrows) of some common pitches from the perspective of a camera in

center field or the pitcher (Fig. 7.5 represents a right-hander’s view and Fig. 7.6 a

left-hander’s view). We will now consider the direction of the spin-induced deflec-

tion of each of these pitches.

The spin on the ball is produced by the grip of the fingers and the motion of the

pitcher’s arm and wrist. This is the difference between all types of pitches (Kindall

1983). When a layperson throws a ball, the fingers are the last part of the hand to

touch the ball. If the ball is thrown with an overhand motion, then the fingertips

touching the bottom of the ball will impart backspin to the ball. The overhand

fastball shown in Fig. 7.6 has predominantly backspin, which gives it lift, thereby

decreasing its fall due to gravity as shown in Fig. 7.1. However, most pitchers throw

the fastball with a three-quarter arm delivery, which means the arm does not come

straight over-the-top, but rather it is in between over-the-top and sidearm. This

delivery rotates the spin axis from the horizontal as shown for the fastball in

Fig. 7.5. This rotation of the axis reduces the lift and also introduces lateral

deflection, to the right for a right-handed pitcher.

The curveball can also be thrown with an overhand delivery, but this time the

pitcher rolls his wrist and causes the fingers to sweep in front of the ball. This

produces a spin axis as shown for the overhand curveball of Fig. 7.5. This pitch will

curve at an angle from upper right to lower left as seen by a right-handed pitcher or

a camera in center field. Thus, the ball curves diagonally. The advantage of the drop

Fig. 7.4 The angular right-hand rule (left). When the fingers are curled in the direction of rotation,

the thumb points in the direction of the spin axis. The coordinate right-hand rule (right). If the

thumb points in the direction of the spin axis and the index finger points in the direction of forward

motion, then the middle finger will point in the direction of the spin-induced deflection (Photo-

graphs by Zach Bahill)
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in a pitch is that the sweet area of the bat is about 2 inches long (5 cm), see

Sect. 3.3.1.1 (Bahill 2004) but only one-third of an inch (8 mm) high, see Fig. 4.5

(Bahill and Baldwin 2003; Baldwin and Bahill 2004). Thus, when the bat is swung

in a horizontal plane, a vertical drop is more effective than a horizontal curve at

taking the ball away from the bat’s sweet area.

Fig. 7.6 The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand

fastball, an overhand curveball, a slider and a screwball thrown by a left-handed pitcher. The ball

would be moving into the page

Fig. 7.5 The direction of spin (circular red arrows) and the spin axes (straight black arrows) of a

three-quarter arm fastball, an overhand curveball and a slider, all from the perspective of a right-

handed pitcher, meaning the ball is moving into the page. VaSa is the angle between the Vertical

axis and the Spin axis (VaSa). The spin axes could be labelled spin vectors, because they suggest

both direction and magnitude from Table 7.2
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The slider is an enigmatic pitch. It is thrown somewhat like a football. Unlike the

fastball and curveball, the spin axis of the slider is not perpendicular to the direction

of forward motion. As the angle between the spin axis and the direction of motion

decreases, the magnitude of deflection decreases, but the direction of deflection

remains the same. If the spin axis is coincident with the direction of motion, as for

the backup slider (Bahill and Baldwin 2007, footnote 3), the ball spins like a bullet

and experiences no deflection. Therefore, a right-handed pitcher usually throws the

slider so that he sees the axis of rotation pointed up and to the left. This causes the

ball to drop and curve from the right to the left. Rotation about this axis allows some

batters to see a red dot at the spin axis on the upper-right-side of the ball (See

Fig. 7.7). Baldwin et, Bahill and Nathan (2007) and Bahill et al. (2005) show

pictures of this spinning red dot. Videos of this spinning red dot are on Bahill’s
web site http://sysengr.engr.arizona.edu/baseball/index.html. Seeing this red dot is

important — if the batter can see this red dot, then he will know the pitch is a slider

and he can better predict its trajectory.

7.5 Magnitude of Forces on a Spinning Ball in Flight

Watts and Baroni (1989) proposed that three forces affect the ball in flight, as

shown in Fig. 7.8: gravity pulls the ball downward, air resistance or drag operates in

the opposite direction of the ball’s motion and, if the ball is spinning, there is a

Magnus force perpendicular to the direction of motion. Equations for these forces

are often written as (Fig. 7.9)

Fgravity ¼ mballg
Fdrag ¼ 0:5πρr2ballv2ballCD

FMagnus ¼ 0:5πρr3ballωballvballCM

Fig. 7.7 The batter’s view
of a slider thrown by a right-

handed pitcher: the ball is

coming out of the page. The

red dot alerts the batter that

the pitch is a slider
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7.5.1 The Force of Gravity

The force of gravity is downward, Fgravity¼mballg, where mball is the mass of the

ball and g is the acceleration due to gravity (9.718 m/s2 at the University of

Arizona): the magnitude of Fgravityis the ball’s weight, as in Table 7.3a.

Our tactics are to use baseball units (e. g. feet, mph and pounds, Table 7.3a) for

inputs, SI units (e. g. meters, kilograms and seconds, Table 7.3b) for computations,

and baseball units for outputs.

7.5.2 The Magnus Force

In 1671, Sir Isaac Newton (1671) noted that spinning tennis balls experienced a

lateral deflection mutually perpendicular to the direction of flight and to the

direction of spin. Later, in 1742, Benjamin Robins (1742) bent the barrel of a

musket to produce spinning musket balls and also noted that the spinning balls

experienced a lateral deflection perpendicular to the direction of flight and to the

direction of spin. In 1853, Gustav Magnus studied spinning artillery shells fired

from rifled artillery pieces and found that the range depended on crosswinds. A

crosswind from the right lifted the shell and gave it a longer range: a crosswind

from the left made it drop short. In 1902, the Polish born Martin Kutta and

independently in 1906 Nikolai Joukowski studied cylinders spinning in an airflow.

They were the first to model this force with an equation. Although these four

experiments sound quite different (and they did not know about each other’s

Fig. 7.8 The forces acting

on a spinning ball flying

through the air
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work), they were all investigating the same underlying force. This force, now

commonly called the Magnus force, operates when a spinning object (like a

baseball) moves through a fluid (like air) which results in it being pushed sideways.

The earliest empirical equation for this transverse force on a spinning object

moving in a fluid is the Kutta-Joukowski Lift Theorem.

L ¼ ρU� Γ ð7:1Þ

where L is the lift force per unit length of a cylinder, ρ is the fluid density, U is the

fluid velocity and Γ is the circulation around the cylinder, which is analogous to the

angular velocity. The boldface font indicates that L , U andΓare vectors. The

original Sikorsky and Lightfoot 1949 lift and circulation data were given in

Fig. 7.9 A Sydney Harris (1986) cartoon (© ScienceCartoonsPlus.com, used with permission)
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Alaways (2008). A little bit of mathematics can change this equation for the force

on a cylinder to the force on a sphere [NASA https://www.grc.nasa.gov/WWW/K-

12/airplane/beach.html] FMagnus ¼ 0:5πρr3ball ωball � vballð ÞCM, where CM is a con-

stant. This is an experimental, not a theoretical equation. This is the form that is

given in Watts and Ferrer (1987), Watts and Bahill (2000 p. 80) and

Sarafian (2015).

A second approach for deriving an equation for the force on a spinning object in

a moving fluid stream is to use balls thrown through the air or spun in a wind tunnel.

This approach usually starts with an equation of the form Flift ¼ 0:5πρr2ballv
2
ballClift.

Then the experimenters try to find relationships between the parameters by mea-

suring forces on a ball in a wind tunnel or by measuring the trajectory of a ball in

free flight with cameras and then estimating the forces. From these forces, the lift

coefficient can be calculated, if you know the air density. The lift coefficient is

usually plotted as a function of the spin parameter. The spin parameter is defined as

Table 7.3a Typical baseball and softball parameters for line drives using baseball units (Bahill

and Baldwin 2007)

Major-league

Baseball

Little

League

aNCAA

Softball

Ball type Baseball Baseball Softball

Ball weight (oz) 5.125 5.125 6.75

Ball weight, Fgravity, (lb) 0.32 0.32 0.42

Ball radius (in) 1.45 1.45 1.9

Ball radius, rball (ft) 0.12 0.12 0.16

Pitch speed (mph) 85 50 65

Pitch speed, vball (ft/s) 125 73 95

Distance from front of rubber to tip of plate (ft) 60.5 46 43

Pitcher’s release point: (distance from tip of

plate, height), (ft)

(54.5, 6)b (42.5, 5) (40.5, 2.5)

Bat-ball collision point: (distance from tip of

plate, height), (ft)

(3, 3) (3, 3) (3, 3)

Bat type Wooden C243 Aluminum Aluminum

Typical bat weight (oz) 32 23 25

Maximum bat radius (in) 1.3 1.125 1.125

Speed of sweet spot (mph) 57–69c 45 50

Backspin of batted-ball (rpm) 1800–2500c 1800–2500 1800–2500

Launch angle (degrees) 8–20c 8–20 8–20

Initial batted-ball velocity, vball (mph) 85–100c 70–80 70–80

Coefficient of Restitution (CoR) 0.55–0.49 0.5 0.44

Desired ground contact point from the plate (ft) 120–240 80–140 80–150
dAir mass density, ρ (lb-s2/ft4) 0.0023 0.0023 0.0023
aNCAA stands for the National Collegiate Athletic Association, which is the governing body for

university sports in the United States
bhttp://m.mlb.com/statcast/leaderboard#avg-pitch-velo calls this point the “extension”
cFrom Willman (2017)
dAir density depends on altitude, temperature, barometric pressure and humidity
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the ratio of the spin velocity to the linear velocity,SP ¼ rballωball

vball

��� ���. We use the symbol

SP for the spin parameter, whereas some other authors use the symbol S. Using

typical values from Tables 7.1 and 7.2 the spin parameters for a major-league

fastball and curveball are respectively SP¼ 0.2 and SP¼ 0.25. Table 7.4 shows

spin parameters for other flying baseballs.

There is a large literature showing the lift coefficient for a variety of experimen-

tal conditions. We are only interested those that used spinning baseballs. Those with

cricket balls, golf balls, smooth balls or nonspinning baseballs are of little use to

us. Furthermore, we are only interested in data where the spin parameter was

between 0.1 and 0.3. Other values are outside our game of baseball. The knuckle

ball and the pop up are governed by effects that are not covered in this book. They

are covered respectively by Watts and Sawyer (1975) and McBeath et al. (2008).

Clanet (2015) analyzed both.

Experimental data for spinning major-league baseballs, with 0.1< SP< 0.3,

show Clift� 1.2� SP (Watts and Ferrer 1987; Sawicki et al. 2003; Nathan 2008;

Kensrud 2010). We called the numerical value in this equation CM. Therefore,

Table 7.3b Typical baseball and softball parameters for line drives (SI units)

Major-

league

baseball

Little

League

NCAA

Softball

Ball type Baseball Baseball Softball

Ball mass, mball(kg) 0.145 0.145 0.191

Ball radius, rball (m) 0.037 0.037 0.048

Pitch speed, vball (m/s) 38 22 29

Distance from front of rubber to tip of plate (m) 18.4 14.0 13.1

Pitcher’s release point: distance from tip of plate and

height

17 m out

2 m up

13 m out

1.5 m up

12 m out

0.8 m up

Bat-ball collision point: distance from tip of plate and

height

1 m out

1 m up

1 m out

1 m up

1 m out

1 m up

Bat type Wooden

C243

Aluminum Aluminum

Typical bat mass (kg) 0.9 0.6 0.7

Maximum bat radius (m) 0.033 0.029 0.029

Speed of sweet spot (m/s) 25–31 20 22

Backspin of batted-ball, ωball(rad/s) 188–262 188–262 188–262

Launch angle (degrees) 8–20 8–20 8–20

Initial batted-ball velocity, vball (m/s) 38–45 31–36 31–36

CoR 0.55–0.49 0.5 0.44

Desired ground contact point: distance from the plate

(m)

37–73 24–43 24–46

Air density, ρ (kg/m3) This is the average air density

for a game played in a major-league stadium on a July

afternoon.

1.045 1.045 1.045

Air density depends on altitude, temperature, barometric pressure and humidity
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Clift ¼ CMSP ¼ CMrballωball

vball
. Remember, we started with Flift ¼ 0:5πρr2ballv

2
ballClift.

These experiments contained primarily horizontal motions, so FMagnus�Flift.

Substituting Clift ¼ CMrballωball

vball
into this lift force equation produces

FMagnus ¼ 0:5πρr3ballωballvballCM ð7:2Þ

where CM is a constant around 1.2. This is the same equation that we derived above

from the Kutta-Joukowski Lift Theorem. This is our final equation for the Magnus

force.

7.5.3 The Drag Force

Figure 7.8 also shows a force directly opposite to the direction of motion. This force

is called the drag force, or air resistance. The magnitude of this drag force is

Fdrag ¼ 0:5πρr2ballv
2
ballCD ð7:3Þ

where ρis air mass density, vball is the ball velocity and rball is the radius of the ball
(Watts and Bahill 2000, p. 161). Typical values for these parameters are given in

Table 7.3a. For the aerodynamic drag coefficient, CD, we use a value of 0.4.

Kagan and Nathan (2014) analyzed data from the Pitchf/x system (the camera

computer system that overlays pitch trajectories on television replays.). For one

particular pitch that was analyzed in detail, they computed CD¼ 0.34. They stated

that Nathan’s website had Pitchf/x data for 8000 pitches. The CD values varied from

Table 7.4 Spin parameter and Reynolds number for average balls in flight

Type of launch

Initial

speed

(mph)

Spin rate (rpm),

absolute values

Spin

parameter,

SP

aReynolds

number,

Re, times 10�5

Fastball 93 2200 0.20 1.685

Slider 85 2000 0.20 1.540

Curveball 79 2300 0.25 1.431

Change-up 85 1700 0.17 1.540

Knuckle ball 65 30 0.00 1.178

Batted-ball, home run, initial

values

98 2000 0.18 1.776

Home run, ball hitting the ground 55 1760 0.28 0.996

Slow line drive 85 2500 0.25 1.540

Fast line drive 100 1800 0.16 1.812

Extreme pop-up 70 6000 0.74 1.268

NCAA softball pitch 65 1200 0.21 1.538
athe Reynolds number will be discussed in the next section
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0.28 to 0.58. Kensrud (2010), Figs. 4.35 and 4.38, showed spinning baseball CDs at

0.4 and 0.3 respectively. Kensrud et al. (2015) measured CD� 0.35 for a major

league baseball at 98 mph. There is a lot of variability in these data because the drag

coefficient depends on ball speed, ball spin, roughness of the ball surface, height of

the seams (Kensrud et al. 2015), orientation of the seams and for a golf ball the

shape and number of dimples.

Thrown and batted-balls can achieve speeds above 100 mph (147 m/s) and at

high speeds the drag coefficient gets smaller (Frohlich 1984; Watts and Bahill 2000,

p. 157; Adair 2002; Sawicki et al. 2003, 2004). There are no wind-tunnel data

showing the drag coefficient of spinning baseballs over the entire range of velocities

and spin rates that characterize major-league pitches and hits. Data taken from a

half-dozen studies of spinning baseballs, nonspinning baseballs and other balls

showed CD between 0.15 and 0.55 (Sawicki et al. 2003). In the data of Nathan

et al., (2006), the drag coefficient can be fit with a straight line of CD¼ 0.45,

although there is considerable scatter in these data. The drag force causes the ball

to lose about 10% of its speed en route to the plate. The simulations of Alaways

et al. (2001) also studied this loss in speed. Data shown in their figure 9 for the

speed lost en route to the plate can be nicely fit with PercentSpeedLost¼ 20CD,

which implies CD¼ 0.5. Clanet (2015).gives a value of 0.38 for baseballs. In

summary, the literature has a lot of variation in the coefficient of drag for a spinning

baseball. However, most of the numbers are between 0.3 and 0.5 (Fig. 7.10).

7.5.3.1 The Reynolds Number

The drag on an object in a moving airflow depends on how the air flows around the

object. For example, the boundary layer flow around the object could be laminar or

turbulent. The drag also depends on the points where the airflow separates from the

surface of the object. How the air flows around an object is a function of how fast

the air flows. More specifically, the drag is a function of the Reynolds number as

shown in Fig. 7.11.

The Reynolds number is defined as Re ¼ 2rballvball
ν where ν is the kinematic

viscosity of air. We use 1.8� 10�5 m2/s or 2� 10�4 ft2/s for a baseball at 85 �F.
The Reynolds number is also written as Re ¼ 2ρrballvball

μ where μ is the dynamic

viscosity of air inkg/m � s. The Reynolds number is used to assert whether a flow is

laminar or turbulent. Where the flow is laminar, viscous forces dominate and Re is
low. Where the flow is turbulent, inertial forces dominate and Re is high. The

Reynolds number is named after the British physicist and engineer Osborne Reyn-

olds who discovered the relationship in 1883. This might all sound complicated,

therefore, when I write, Reynolds number, you the reader should think scaled ball

velocity.

In Fig. 7.11, for smooth balls, the circles of Achenbach (1972), the drop

in CD starts at Re ¼ 3� 105and ends at 4� 105. This sharp change in drag is

bound to arouse curiosity. Frohlich (1984) wrote that if the pitch went through
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Fig. 7.11 The drag

coefficient varies with the

Reynolds number. The

circles and the line fit to

them are copies of

Achenbach’s original figure
(1972). The green circles

represent the initial ball

speeds at the pitcher’s
release point for a 95 mph

fastball and the red squares

show the final ball speeds

when the ball crosses the

plate. The gray box is then

the region for the flight of

the pitch

Fig. 7.10 He even dreams

about that stupid ball
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this ‘drag crisis,’ en route to the plate, then the ball would surely exhibit a strange

trajectory. Figure 7.11 also shows linearized drag coefficient data for seven other

data analyses. The Watts and Bahill (2000) analysis for spinning baseballs (Fig. 52,

data of Gonzalez) did not have a sharp drop in the drag coefficient. Metha and Pallis

(2001) showed a critical Reynolds number at Re¼ 1.7� 105 for nonspinning

baseballs in wind tunnels. Sawicki et al. (2004) referenced the flight of baseballs

in Olympic baseball games. Their calculated drag coefficient for a spinning base-

ball decreased precipitously atRe¼ 1.6� 105. Nathan, Hopkins, Chong and

Kaczmarski (2006) show drag coefficients around 0.45 for all Reynolds numbers.

Kensrud (2010, Fig. 4.50) shows the minimum drag coefficient for nonspining

MLB baseballs at Re¼ 2.3� 105. The newest experimental data, by Alam et al.

(2012), show the minimum drag coefficient for nonspining MLB baseballs at

Re¼ 2� 105. Sarafian (2015) has a theoretical curve with a minimum drag coeffi-

cient at Re¼ 2.6� 105. Good linear fits to these sets of data are given in Fig. 7.11.

Many studies have shown that roughening the surface of the ball or spinning the ball

moves the middle and the right parts of the Achenbach curve up and to the left.

Now comes the most important part of this analysis. How much would the drag

coefficient change during a variety of pitches? If a major-league fastball started

with a speed of 95 mph, then it would cross the plate with a speed of 85.5 mph.

(This 10% reduction in ball speed from the pitchers release point until the ball

crosses the plate is universal.) Parameters of such a pitch are displayed in Table 7.5

and in the gray box of Fig. 7.11.

The replication crisis The results shown in Fig. 7.11 and Table 7.5 are quite

different. Such failures to replicate previous findings are common in science,

particularly in the psychological literature, where half of the important findings

could not be replicated (https://en.wikipedia.org/wiki/Replication_crisis; also

Kahnemen 2014). This is called the replication crisis. However, in the physical

sciences, we would expect a much greater replication rate. Therefore, in this

physics of baseball endeavor, either some fundamental physical parameter is

misunderstood or there is no desire to replicate previous experimental results.

To enhance replicability, Stodden et al. (2016) recommended that we “share

data, software, workflows, and details of the computational environment that

generate published findings in open trusted repositories.” Details include things

like the treatment of outliers and missing data values. A good counter example to

this is the Major League Baseball database based on Pitchf/x etc. that not only does

not share data, software and workflows, but it also hides computations and calls

them proprietary. From the viewpoint of the scientific community, this is awful

behavior by Major League Baseball.

The papers cited in Fig. 7.11 and Table 7.5 generally reference the previous

papers, but they do not explain why their new results are different from the old

results. Maybe the physics of baseball is too immature to expect replicability. For

the most part, the experimental procedures are different and many fundamental

details, such as air density, are not even given.
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So far, this discussion of the drag coefficient has been in terms of the pitch.

During the pitch, the drag coefficient changes only by 9%, on average. Now we

want to consider the batted-ball. The home run is the batted-ball that will be

affected the most by changes in the drag coefficient, because it will be in the air

the longest, it will have the biggest changes in velocity and it will therefore have the

biggest changes in the drag coefficient.

Major League Baseball (MLB) is releasing many new data that show ball speeds

above 100 mph. In 2016, MLB measured over 700,000 pitches Willman (2017). Of

these 1400 or 0.2% had initial speeds over 100mph. It also had 140,000 balls hit into

play (30% of these were base hits). Of these batted-balls, 3.6% had initial batted-

ball speeds (exit velocities) greater than 100 mph. These comprise 0.2% of pitches

and 3.6% of batted-balls. To accommodate these high velocities we could consider

the following alternative models for the drag coefficient.

CD¼ 0.4 as a simple model or we could let

CD ¼ 0:5 for ball speed � 85 mph

0:3 for ball speed > 85 mph

�

Table 7.5 Range of drag coefficient values for a fastball

Authors

Characteristics

of the ball

CD for a 95 mph

fastball at the

pitcher’s release
point, green circles

CD when the ball

crosses home plate

at 85.5 mph, red

squares

Percent change

in drag

coefficient en

route to the plate

Achenbach

(1972)

Smooth,

nonspinning

balls

Watts and

Bahill

(1990),

Fig. 52

Nonspinning

baseballs

0.42 0.43 2%

Metha and

Pallis

(2001)

Nonspinning

baseballs

0.33 0.36 9%

Sawicki

et al. (2004)

Spinning

baseballs

0.20 0.25 25%

Kensrud,

Nathan and

Smith

(2017)

Spinning

baseballs

0.47 0.48 2%

Kensrud

(2010),

Fig. 7.50

Nonspinning

baseballs

0.38 0.40 5%

Alam et al.

(2012)

Nonspinning

baseballs

0.40 0.41 1%

Sarafian

(2015)

Theoretical

calculations

0.36 0.42 17%

The percent increases in drag the coefficient en route to the plate were small, averaging 9%
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A more complicated model following a gestalt of Fig. 7.11 would be

CD ¼
0:5 for vball � 60 mph

�0:005vball þ 0:8 for 60 < vball < 100 mph

0:3 for vball � 100 mph

8<
:

Another complicated model using the data of Alam et al. (2012) is

CD ¼
0:5 for vball � 30 mph

�0:004vball þ 0:6 for 30 < vball < 90 mph

0:25 for vball � 90 mph

8<
:

However, by Ockham’s razor, this added complexity without added validation is

useless (Jefferys and Berger 1992). Therefore, until we get better data, we will

continue to use CD¼ 0.4.

Figure 7.12 shows the drag coefficient as a function of the Reynolds number for

a simulated home run. The green circle in Fig. 7.12 represents the initial batted-ball

velocity at the launch point where vball¼ 97 mph and CD¼ 0.3. The red square

indicates the coordinates when the ball hits the ground with a Range¼ 380 feet ,

vball¼ 55 mph and CD¼ 0.5. Compared to pitches where the average change ofCD

was 9%, for this batted-ball the change of CD is 40%. Therefore, the change in the

drag coefficient during the pitch is not likely to be important, however for the

batted-ball, it might be more significant.

The BaConLaw model of Chap. 4 is linked to the Ball in Flight model of this

chapter. Eq. (4.8) from Chap. 4 showed that the batted-ball velocity depends on the

Fig. 7.12 Drag coefficient

as a function of the

Reynolds number for a

home run
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pitch speed, pitch spin and bat speed. Now this chapter shows that the distance that

the batted-ball will travel depends on the batted-ball velocity, the batted-ball spin

rate, the launch angle, the Magnus coefficient, the drag coefficient and air density.

7.6 Sensitivity Analysis

In Sect. 4.11, we performed both an analytic and an empirical (or numerical)

sensitivity analysis for the BaConLaw model. First, we chose our performance

criterion, the batted-ball speed. Then we calculated the partial derivatives of that

performance criterion with respect to the eight model parameters. Finally, we

multiplied the partial derivatives by the nominal values of those parameters and

evaluated those semirelative sensitivity functions. In that section, our performance

criteria, the batted-ball speed, was the result of one of our equations. Therefore, it

was easy to calculate the partial derivatives. However, in this chapter for our Ball in

Flight model, our chosen performance criterion, the range, is not a result of any

single equation. It would be possible but difficult to create such an equation.

Therefore, in this chapter, we run the model by simulation and we do an empirical

(or numerical) sensitivity analysis.

To do a sensitivity analysis of a model we first select a performance criterion.

For the Ball in Flight model, we chose the range, meaning how far the batted-ball

travels before it hits the ground. We used our standard pitch and swing of Chap. 4

that produced a batted-ball speed of 92 mph, a backspin rate of 2000 rpm, a launch

angle of 34� and a launch height of 3 feet. We used the midlevel or average air

density for major-league stadiums, ρ¼ 0.00205 lb-s2/ft4 (or slugs/ft3) or

ρ¼ 1.0582kg/m3. We changed each variable by +1% and computed the new

range. Our results are shown in Table 7.6. The range numbers are large because

our parameter values are for optimal athletes performing optimally. Few major-

league batting events would have values as large as these. Laypeople could not

come close.

The right column of Table 7.6 shows that the most important variable, in terms

of maximizing the batted-ball range, is the batted-ball speed. This is certainly no

surprise. The second most important variable is the diameter of the ball. The least

important parameters are the launch height and the launch angle. As you can

remember, we did not have very good data for the Magnus lift coefficient, so we

are happy that its sensitivity is small. The sensitivities to some of the variables and

parameters are negative, which merely means that as they increase the range

decreases. The results of this sensitivity analysis show that the model is well

behaved. The most and least important variables and parameters are as expected.

There are no unexpectedly large or small sensitivities. Comparing Tables 4.4 and

7.6, we see that the Ball in Flight model is more sensitive to its parameters than the

BaConLaw model is.

Of the 36 possible interaction sensitivities the most important are (1) the batted-

ball speed,v1a, and the ball diameter; (2) the ball weight and the drag coefficient, Cd;
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(3) the ball weight and air density, ρ; (4) and the ball weight and the Magnus

coefficient, CM.

The interaction of the ball spin and the launch angle is small. Figure 7.13 shows

its effect graphically. Because of the interactions, the three lines are not the same

shape and they peak at different values for the launch angle. These curves are very

Table 7.6 Results of a numerical sensitivity analysis of the Ball in Flight model for a +1%

increase in the parameter values

Parameters

Nominal

values

Nominal values

increased

by +1%

Altered

range, ft

Change

in range,

ft

Semirelative

sensitivity

values

Range, ft 384.87

Batted-ball speed, mph 91.9 92.819 389.56 4.69 469

Ball diameter, inches 2.90 2.9336 382.59 �2.28 �228

Drag coefficient, Cd 0.4 0.404 383.16 �1.71 �171

Ball weight, oz 5.125 5.1763 386.18 1.31 131

Air density, ρ, kg/m3 1.0582 1.0688 383.65 �1.22 �122

Slope of lift

coefficient curve, CM

1.2 1.212 385.37 0.50 50

Ball spin, rpm �2000 �2020 385.37 0.50 50

Ball spin, rpm �2000 �1980 384.37 �0.50 �50

Launch angle, � 34 34.34 384.39 �0.48 �48

Launch height, feet 3 3.03 384.90 0.03 3

Fig. 7.13 Interaction of spin rate and launch angle

172 7 The Ball in Flight Model



flat near their peak values, illustrating the small sensitivity to the launch angle at the

nominal operating point. For this figure, I choose to use the batted-ball spin rate and

the launch angle, because that matches Fig. 55 of Watts and Bahill (2000) and is

analogous to Nathan (2016).

Figure 7.13 shows the interaction of the spin rate and the vertical launch angle.

On the left side of this figure, when the launch angle increases, the range goes

up. However, these three curves do not have the same shape. The curve for

the2000 rpm spin rate has a steeper drop on the right side. This is the effect of

the interaction. The difference in spacing of the lines is not the effect of the

interaction. That is merely the dependence of the batted-ball speed on spin rate.

7.7 Numerical Values

This section presents numerical values for the three forces that act on the ball in

flight. Its purpose is merely to create familiarity with the numbers. If US customary

units are to be used in Eqs. (7.1) to (7.7), then ρshould be in lb-s2/ft4 (or slugs/ft3),

vball should be in ft/s, rball should be in ft, and ωball should be in rad/s, then

Fdragwould be in lb. Let us now present a simple numerical example. Let us use

the average fastball from Table 7.4. When the pitcher releases the ball is going

93 mph (136 ft/s) with 2200 rpm (230 rad/s) of backspin.

Fdrag ¼ 0:5πρr2ballv2ballCD

Fdrag ¼ 0:5ð Þ 3:14ð Þ 0:002ð Þ 0:12ð Þ2 136ð Þ2 0:4ð Þ ¼ 0:35 lb

Near the beginning of the pitch, the Magnus force will be straight up in the air,

that is, pure lift.

FMagnus ¼ 0:5πρr3ballωballvballCM

FMagnus ¼ 0:5ð Þ 3:14ð Þ 0:002ð Þ 0:12ð Þ3 230ð Þ 136ð Þ 1:2ð Þ ¼ 0:07 lb

The force of gravity is

Fgravity ¼ mballg ¼ 0:32 lb

For this fastball, the Magnus force is about one-fifth the force of gravity and

one-fifth of the drag force. This is consistent with Table 7.7a where the sixth

column shows the drop due to drag and spin. This drop is due to a combination of

Fdrag sin θ +FMagnus cos θ.
These simulations were run at standard temperature and pressure (STP). There-

fore, the numerical values are different from those in other tables.

Using SI units and Table 7.7b, produces
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Fdrag ¼ 0:5πρr2ballv2ballCD

Fdrag ¼ 0:5ð Þ 3:14ð Þ 1:06ð Þ 0:037ð Þ2 42ð Þ2 0:4ð Þ ¼ 1:56 N

and

FMagnus ¼ 0:5πρr3ballωballvballCM

FMagnus ¼ 0:5ð Þ 3:14ð Þ 1:06ð Þ 0:037ð Þ3 230ð Þ 42ð Þ 1:2ð Þ ¼ 0:32 N

For this fastball, the Magnus force is about one-fifth the force of gravity, which is

Fgravity ¼ mballg ¼ 0:145� 9:718 ¼ 1:41 N

As a rule of thumb, we offer the following, over a wide range of conditions, the drag

force and the force of gravity have about the same magnitude and the Magnus force

is about one-fifth as large.

Table 7.7a Gravity-induced and spin-induced drop for overhand pitches (with United States

customary units) (Bahill and Baldwin 2007)

Pitch speed

and type

Spin rate

(rpm)

Duration of

flight (msec)

Drop due to

gravity (ft)

Spin-induced

vertical drop (ft)

Total

drop (ft)

95 mph fastball �1200 404 2.63 �0.91 1.72

90 mph fastball �1200 426 2.92 �0.98 1.94

85 mph slider +1400 452 3.29 +0.74 4.03

80 mph curveball +2000 480 3.71 +1.40 5.11

75 mph curveball +2000 513 4.24 +1.46 5.70

Table 7.7b Gravity-induced and spin-induced drop for overhand pitches (with SI units)

Pitch speed

and type

Spin rate

(rad/s)

Duration of

flight (msec)

Drop due to

gravity (m)

Spin-induced

vertical drop (m)

Total

drop (m)

42.5 m/s fastball �126 404 0.80 �0.28 0.52

40.2 m/s fastball �126 426 0.89 �0.30 0.59

38.0 m/s slider +147 452 0.95 +0.23 1.23

35.8 m/s curveball +209 480 1.13 +0.43 1.56

33.5 m/s curveball +209 513 1.29 +0.45 1.74
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When the ball’s spin axis is not horizontal, the Magnus force should be

decomposed into a force lifting the ball up and a lateral force pushing it sideways.

Fupward ¼ 0:5πρr3ballωvballCM sinVaSa ð7:4Þ

where VaSa is the angle between the vertical axis and the spin axis (Fig. 7.5). The

magnitude of the lateral force is

Fsideways ¼ 0:5πρr3ballωvballCM cosVaSa ð7:5Þ

Finally, if the spin axis is not perpendicular to the direction of motion (as in the

case of the slider), the magnitude of the cross product of these two vectors will

depend on the angle between the Spin axis and Direction of motion, this angle is

called SaD (Fig. 7.14). In aeronautics, it is called the angle of attack. Finally, we get

Flift ¼ 0:5πρr3ballωvballCM sinVaSa sin SaD ð7:6Þ
Flateral ¼ 0:5πρr3ballωvballCM cosVaSa sin SaD ð7:7Þ

These equations comprise our Ball in Flight model.

The spin-induced force on the ball changes during the pitch. Its magnitude

decreases, because the drag force slows the ball down by about 10%. Its direction

changes, because gravity is continuously pulling the ball downward, which changes

the direction of motion of the ball by 5–10�. However, the ball acts like a gyro-

scope, so the spin axis does not change. This means that, for a slider, the angle SaD

increases and partially compensates for the drop in velocity in Eqs. (7.6) and (7.7).

The right-hand rules for the lateral deflection of a spinning ball and Eqs. (7.1) to

(7.7) apply to pitched and also batted-balls, except it is harder to make predictions

Fig. 7.14 The first-base

coach’s view of a slider

thrown by a right-handed

pitcher. This illustrates the

definition of the angle SaD
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about the magnitude of deflection of batted-balls, because the data about the spin of

batted-balls are poor. The right-hand rules and these equations can also be applied

to soccer, tennis and golf, where speeds, spins and deflections are similar to

baseball. However, the right-hand rules and these equations would be inappropriate

for American football, because the spin axis of a football is almost coincident with

the direction of motion. Therefore the angle SaD is near zero and consequently the

spin-induced deflections of a football are small (Rae 2004).

7.8 Effects of Air Density on a Spinning Ball in Flight

The distance that a fly ball travels is inversely related the air density. However, the

explanation for this is not straightforward. Equations (7.1) and (7.3) show that both

the drag and Magnus forces are directly proportional to the air density. Therefore, if

air density gets smaller, the drag force gets smaller, this allows the ball to go farther.

But at the same time, as air density gets smaller, the Magnus force also gets smaller,

which means that the ball will not be held aloft as long and will therefore not go as

far. So these two effects are in opposite directions. We have built a computer

simulation that implements the above equations. This simulation shows that the

change in the drag force has a greater influence on the trajectory of the ball than the

change in the Magnus force does; therefore, as air density goes down, the range of a

potential home run ball increases. A 10% decrease in air density produces a 4%

increase in the distance of a home run ball: however, the increase is less than this for

pop-ups and greater than this for line drives.

Air density is inversely related to altitude, temperature and humidity, and is

directly related to barometric air pressure. We derived an equation for these

relationships. It came from the WeatherLink Software (2017) and the CRC Hand-

book of Chemistry & Physics (1980–81) with a correction from Al Nathan (per-

sonal correspondence, 2016). It agrees with the results from Shelquist (2017).

Equation (7.8) shows how air density depends on altitude, temperature, humidity

and barometric air pressure.

Air Density ¼ ρ
¼ 1:2929

� 273

Tempþ 273
� Air Pres� 0:379 SVP� RH=100ð Þ

760
ð7:8Þ

where

Air Density is in kg/m3.

Temp is temperature in degrees Celsius.

Air Pres is the pressure of the air in mm of Hg and is given in Eq. (7.9).

SVP is saturation vapor pressure in mm Hg and is given in Eq. (7.10).

RH is relative humidity as a percentage.
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This equation uses the absolute (or actual) atmospheric air pressure, which is

also called station pressure because it is the air pressure at a particular weather

station. It can be computed from the U. S. Weather Service sea-level corrected

barometric pressure (which is given in newspapers, on television and on personal

computers) with the following formula.

Air Press ¼ Barometric Pressure e
�gM Altitude

R Tempþ273:15ð Þ
h i

ð7:9Þ

where

g is the Earth’s gravitational acceleration (9.80665 m/s2 at sea level)

M is the molecular mass of air (0.0289644 kg/mole)

R is the Universal Gas Constant (8.31447 joules/ �K mole)

Altitude is the altitude of the ballpark in meters

and Temp is the temperature in �C

However, what is Temp the temperature of? As a simple approximation in the

following examples, we have used the temperature of the baseball stadium. But the

above equation should be integrated with respect to the time-averaged temperature

from the baseball stadium to mean sea level. Because this is impossible, the

National Weather Service (2001) uses nine different approximations: about them

they write, “There is no single true, correct solution of Sea Level Pressure . . . only
estimates.” For any given time and place the most accurate measure of air pressure

for Eq. (7.8) would be a local barometer that is not corrected to sea level (i. e. with

its altitude set to 0), which is what a household barometer usually indicates.

Dozens of equations have been fit to the experimental saturation vapor pressure

(SVP) data. Here is one by Buck (1981), that was updated in 1996.

SVP ¼ 4:5841 e
18:687�Temp

234:5ð Þ∗Temp

257:14þTemp ð7:10Þ

As before, Temp is in degrees Celsius and SVP is in mmHg.

Air density is inversely related to altitude, temperature and humidity, and is

directly related to barometric pressure. For the range of values in major-league

ballparks, the altitude is the most important of the four input parameters. Table 7.8

gives values for a typical late-afternoon summer game, assuming that the stadium

roofs are open and there are no storms. For these examples, baseball units are used

instead of SI units. A more comprehensive table is given in the appendix.

Weather data such as these can be obtained from http://www.weather.com and

http://www.wunderground.com/. The multi-year average July afternoon relative

humidity and barometric pressure data came from internet databases that are no

longer accessible. Estimates of barometric pressure are also available at http://

www.usairnet.com/weather/maps/current/barometric-pressure/. The multi-year

average July maximum daily temperatures came from http://hurricane.ncdc.noaa.

gov/cgi-bin/climatenormals/climatenormals.pl?
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directive ¼ prod_select2&prodtype ¼ CLIM81&subrnum¼. Programs that calcu-

late air density can be downloaded from Linric Company (http://www.linric.com/)

or they can be used on-line at http://www.uigi.com/WebPsycH.html or https://

wahiduddin.net/calc/calc_da_rh.htm.

In physics, we typically reference constants at standard temperature and pressure

(STP). However, this reference point is not as a common a condition as one might

think. It is actually unusual. The density of dry air at STP of 0 �C (32 � F) and sea

level is 1.2754 kg/m3. At the International Standard Atmosphere, (dry air at 15 �C,
59 � F, at sea level) the density of air is 1.225 kg/m3. Both of these are bigger than for

any baseball game, as shown in Table 7.9. In our computer programs, the default air

density is that at midlevel in Table 7.9, namely 1.0582 kg/m3, or 0.00205 slug/ft3.

For a potential home run ball, both the drag and the lift (Magnus) forces are the

greatest in San Francisco, where the park is just at sea level, and smallest in the

“mile high” city of Denver. However, as previously stated, the drag force is more

important than the Magnus force. Therefore, if all collision parameters (e.g. pitch

speed, bat speed, collision point, etc.) are equal, a potential home run will travel the

farthest in Denver and the shortest in San Francisco.

These values were chosen to show realistic numbers with natural variation. On

any given afternoon in July, it is almost certain that baseball games will be played at

the high and low ends of all these ranges.

To understand how the four fundamental variables, altitude, temperature,

humidity and barometric pressure, determine the air density, these equations were

evaluated at eighty-one experimental points in an Excel spreadsheet. These points

were selected at the low, middle and high values of the fundamental variables, or at

34 or 81 points. An edited regression output is given in Table 7.10.

Surprisingly, a simple linear equation explains most of the changes, or variabil-

ity, in the air density values. The linear algebraic equation for air density obtained

by least squares analysis is

Table 7.8 Air density in some typical baseball stadiums

Altitude

(feet

above sea

level)

Average daily high

temperature

(degrees

Fahrenheit) in July

Relative

humidity, on an

average July

afternoon

Average

barometric

pressure in July

(inch of Hg)

Air

density

(kg/m3)

Denver 5190 88 34% 29.98 0.96

Houston 45 94 63% 29.97 1.11

Minneapolis 815 83 59% 29.96 1.11

Phoenix 1086 104 20% 29.81 1.07

San

Francisco

0 68 65% 29.99 1.19

Seattle 10 75 49% 30.04 1.18
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ΔAir density percent change from mean levelð Þ ¼
�0:0035 Altitude � 2600ð Þ
�0:2422 Temperature� 85ð Þ
�0:0480 Relative Humidity� 50ð Þ
þ 3:4223 Barometric Pressure � 29:92ð Þ

ð7:11Þ

whereΔAir density is stated as a percent change frommean level of 1.045, Altitude

is in feet, Temperature is in degrees Fahrenheit, Relative Humidity is in percent and

Barometric Pressure is in inches of Hg. The parameter estimates are taken from

Table 7.10. This equation can be re-expressed to give the air density in kg/m3

Air density ¼ ρ ¼ 1:045þ 0:01045
�

�0:0035 Altitude� 2600ð Þ
�0:2422 Temperature� 85ð Þ
�0:0480 Relative Humidity� 50ð Þ
þ3:4223 Barometric Pressure� 29:92ð Þ�

ð7:12Þ

This Air density is ρ in Table 7.2b and Eqs. (7.1) to (7.8).

Table 7.9 Values used in the simulations

Altitude

(feet

above

sea

level)

Temperature

(degrees

Fahrenheit)

Relative

Humidity

(percent)

Barometric

pressure

(inch Hg)

Air

density

(kg/m3)

Air

density,

percent

change

from

midlevel

Low altitude 0 85 50 29.92 1.16 9.4

Low

temperature

2600 70 50 29.92 1.09 2.9

Low humidity 2600 85 10 29.92 1.06 0.7

Low barometric

pressure

2600 85 50 29.33 1.04 �2.0

Lowest density 5200 100 90 29.33 0.91 �14.0

Midlevel 2600 85 50 29.92 1.06 0.0

Highest density 0 70 10 30.51 1.22 15.5

High barometric

pressure

2600 85 50 30.51 1.08 2.0

High humidity 2600 85 90 29.92 1.05 �0.7

High temperature 2600 100 50 29.92 1.03 �2.9

High altitude 5200 85 50 29.92 0.97 �8.6
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Note that the factors are in different dimensions with different ranges. Hence, the

magnitudes of the coefficients should be interpreted in this light. That is, a coeffi-

cient with a larger magnitude does not necessarily mean it has a greater impact on

the response. Also, keep in mind that the equations that yield the air density values

are deterministic. That is, there is no random variation. Hence, the sum of squares

residual is the variation remaining after predicting the response from the linear

approximation. There is no pure error, but rather simply lack of fit to the true model.

The least squares analysis differentiates between the variables for the range of the

81 observations as follows. Altitude explains 80% of the variation between the

equation and the 81 data points; temperature explains 13%, barometric pressure

accounts for 4% and relative humidity accounts for 3%.

Since Eq. (7.11) is linear, the impact of each factor can be shown graphically.

Figure 7.15 shows the changes in air density that should be expected over the range

of parameter values that would be typical for a baseball stadium on an afternoon in

July in North America. It shows that altitude is the most important factor, followed

by temperature, barometric pressure and relative humidity. Since the factor ranges

given are indicative of their natural variation, larger absolute slopes means stronger

effects. These results are for baseball and should not be used for other purposes,

such as calculating safe takeoff parameters for a small airplane.

The linear Eq. (7.11) explains 99.3%of the variation in air density across our

81 setting. However, the unexplained variation, as given by the prediction standard

error is 0.71%, suggesting that a further minor improvement is possible. (It is

Table 7.10 Edited regression

summary for linear

approximation (From JMP

and Excel)

Summary of fit

RSquare 0.993

RSquare adjusted 0.993

Root mean square eError 0.71

Observations (or sum weights) 81

Analysis of variance

Source DF Sum of squares Mean square F ratio

Model 4 5662 1415 2783

Error 76 39 0.51

C. Total 80 5701

Parameter estimates

Term Estimate

Standard

error

t
ratio

Intercept 0.0

Altitude (ft) – 2600 �0.0035 0.0000 �94

Temperature (�F) – 85 �0.2422 0.0065 �37

Relative humidity (%) – 50 �0.0480 0.0024 �20

Sea level corrected arometric

pressure (inch Hg) – 29.92

3.4223 0.1643 21
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possible to obtain a very high R2 and still have unexplained variability.) Figure 7.16

shows a quadratic pattern between the residuals and the predicted values of the

linear approximation, suggesting that second-order terms might be helpful. Since

altitude is the most important factor, the square of its value is a likely candidate.

After fitting a regression to the complete quadratic model, that also includes four

pure square terms and six cross product terms, the conjecture is confirmed, the

square of altitude does play a role. In addition, the cross product term between

altitude and temperature, is even more important, although they are a magnitude

smaller than the linear altitude and temperature terms in their effect.

Fig. 7.15 Air density depends on altitude, temperature, barometric pressure and relative humidity
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The impact of augmenting the model with these two second-order terms raises

the percentage of explained variation only slightly (from 99.3% to 99.5%), but it

decreases the unexplained variation, as measured by the prediction standard error

from 0.71 to 0.61. The corresponding model is given by Eq. (7.13).

Δ Air density percent change from mean levelð Þ ¼
�0:0035 Altitude� 2600ð Þ
�0:2422 Temperature� 85ð Þ
�0:0480 Relative Humidity� 50ð Þ
þ3:4223 Barometric Pressure � 29:92ð Þ
þ0:000000061 Altitude� 2600ð Þ2 � 4506667

n o

þ0:000012 Altitude� 2600ð Þ • Temperature� 85ð Þ ð7:13Þ

This is a confirmation of the correctness of our model. It shows that increasing

the complexity of our model, increases the accuracy of the model, slightly. This

should be true for all good models.

Please note that this section is not a traditional sensitivity analysis. In a sensi-

tivity analysis, each parameter would be changed by a certain percent and then the

resulting changes in the output would be calculated (Smith et al. 2008). For

baseball, if we change each parameter by 5% we find that the semirelative sensi-

tivity of air density with respect to barometric pressure, temperature, altitude and

relative humidity are respectively 1.07, �0.21, �0.1 and �0.02. The reason for the

different results is that the high, medium and low barometric pressures that could be

expected on a July afternoon in a major-league baseball stadium are 775, 760 and

745 mmHg. These changes are much less than 5%. Whereas, the high, medium and

low altitudes that could be expected in a major-league baseball stadium are 5200,

2600 and 0 feet. These changes are much more than 5%. Stated simply, there would

be a greater change in air density due to moving from San Francisco to Denver, than

there would be due to moving from fair weather to stormy weather.

Fig. 7.16 Residuals versus

predicted air density for the

linear approximation
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The range of a batted-ball is defined as the distance from home plate to the spot

where the ball first hits the ground. Table 7.11 shows the range for perfectly hit

simulated baseballs. The pitch, from Table 4.2, was a fastball with 1200 rpm

backspin that was going 85 mph (38 m/s) when it hit the sweet spot of the bat,

which was going 58 mph (26 m/s): the CoR was 0.55. From Table 4.2 we can see

that (if all other things were equal) such a collision could produce a home run ball

launched optimally at 34� at 97 mph with 2000 rpm of backspin. This is a potential

home run ball. Reducing the air density by 10% from 1.0 to 0.9 increased the range

of this potential home run ball by 12 feet or 3%.

For Table 7.11, the home run was launched at 97 mph (43 m/s) at an upward

angle of 34� with a backspin of 2000 rpm. The pop-up was launched at 70 mph

(31 m/s) at an upward angle of 70� with a backspin of 5000 rpm. The line drive was

launched at 90 mph (40 m/s) at an upward angle of 15� with a backspin of 2000 rpm.

Replication crisis To make our results more replicable, we should have deposited

our 81-point Excel spreadsheet into an on-line repository. The sources of our

weather data were given, but our workflows were not. We gave names of the

software packages we used for the statistical regression analysis of the 81-point

spreadsheet, namely JMP and Excel, but we did not give details. We gave atmo-

spheric conditions for most of our simulations.

In this section, average values were used. Of course, ball games are not played at

average values and the actual values are not constant throughout the game. In

particular, wind speed and direction could change on a minute-by-minute basis.

In this section, the effects of prevailing winds or height and distance of the outfield

walls were not modeled. Chambers et al. (2003) have written that for most games

played at Colorado Rockies stadium in Denver there was a light breeze (e. g. 5 mph,

2.2 m/s) blowing from center field toward home plate. They further stated that the

outfield walls at in Denver were farther back than in most stadiums. They concluded

that these two factors together reduced the number of home runs by 3–4%,

which nearly compensated for Denver’s high altitude. The greatest wind effects

in major-league stadiums are in San Francisco where the average is a gentle breeze

blowing from home plate into the right-center field stands at 10 mph (4.5 m/s).

Table 7.11 Range as a function of air density

Air density (kg/m3)

Range (ft) Range (m)

Home run Pop up Line drive Home run Pop up Line drive

1.3 372 59 266 113 18 81

1.2 382 67 268 117 20 82

1.1 394 75 269 120 23 82

1.0 406 84 271 124 26 83

0.9 418 94 272 128 29 83

0.8 432 104 274 132 32 84
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7.9 Vertical Deflections of Specific Pitches

The magnitude of the gravity and spin-induced drops for three kinds of pitches at

various speeds are shown in Table 7.3a. Our simulations included air density, the

force of gravity, the drag force and the vertical and horizontal spin-induced forces

(Bahill and Karnavas 1993; Watts and Bahill 2000; Bahill and Baldwin 2004).

Looking at one particular row of Table 7.3a, a 90 mph (40.2 m/s) fastball is in the

air for 426 msec, so it drops 2.92 feet (0.89 m) due to gravity (½ gt2, where the

gravitational constant g is 32.2 ft/sec2 or 9.8 m/sec2 and t is the time from release

until the point of bat-ball collision). But the backspin lifts this pitch 0.98 ft (0.3 m),

producing a total drop of 1.94 ft (0.59 m) as shown in Table 7.3a. In the spin rate

column, negative numbers are backspin and positive numbers are top spin. In the

spin-induced vertical drop column, negative numbers mean the ball is being lifted

up by the Magnus force. All of the pitches in Table 7.3a were launched horizontally

– that is, with a launch angle of zero: that is why they are different from the pitches

in Figs. 7.1 and 7.2. The angle VaSa was also set to zero (simulating an overhand

delivery): therefore pitches thrown with a three-quarter arm delivery would have

smaller spin-induced deflections than given in Table 7.3a.

A batter’s failure to hit safely is most likely caused by his fallibility in predicting

where and when the ball will reach the bat-ball contact point. Vertical misjudgment

of this potential bat-ball contact point is the most common cause of batters’ failure
(Bahill and Baldwin 2003; Baldwin and Bahill 2004). The vertical differences

between the curveballs and fastballs in Table 7.3a are greater than 3 feet (1 m),

whereas the difference produced by the two speeds of fastballs is around 3 inches

(7 cm) and the difference produced by the two speeds of curveballs is around

7 inches (18 cm). However, the batter is more likely to make a vertical error because

speed has been misjudged than because the kind of pitch has been misjudged

(Bahill and Baldwin 2003; Baldwin and Bahill 2004). A vertical error of as little

as one-third of an inch (8 mm) in the batter’s swing will generally result in a failure
to hit safely (Bahill and Baldwin 2003; Baldwin and Bahill 2004); see Fig. 4.5.

The spin on the pitch causes both vertical and horizontal deflections of the ball’s
path. When a batter is deciding whether to swing, the horizontal deflection is more

important than the vertical, because the umpire’s judgment with respect to the

distinct sides of the plate may have more precision than his or her judgment

regarding the fuzzy top and bottom of the strike zone. However, after the batter

has decided to swing and is trying to track and hit the ball, the vertical deflection

becomes more important, because the sweet spot of the bat is wider than it is tall.
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7.10 Effects of Air Density on Specific Pitches

A reduction in air density would reduce the drag and the Magnus forces on the

pitch. Table 7.12 shows the speed and the height of the ball when it crosses the front

edge of the plate for a 93 mph (42 m/s) fastball launched downward at 1.5� from a

point 6 feet high with 2200 rpm of backspin using an over arm delivery and for a

79 mph (35 m/s) curveball launched upward at 1� with 2300 rpm of pure top spin. In

Table 7.12 the speed is the vector velocity, meaning it is the sum of the horizontal

and vertical velocities.

A 10% decrease in air density, for example from 1.0 to 0.9, produces a fastball

that is 1% faster when it crosses the plate and 2% lower. Such a change in air

density produces a curve ball that is also 1% faster when it crosses the plate with a

drop that is 7% smaller. Earlier in this chapter we wrote, if all other things were

equal, a 10% decrease in air density would produce a 3% increase in the distance of

a home run ball. Now it can be seen that all other things will not be equal: the ball

collision speed will be larger (the bat speed will not change). Using the higher ball

collision speed increases the range of the home run ball by one foot.

Table 7.11 showed that decreasing the air density by 10%, for example from 1.0

to 0.9, could increase the distance of a home run ball by, for example, 12 feet. Now

Table 7.12 shows that decreasing the air density from 1.0 to 0.9, could allow the

fastball to retain more of its speed when it crosses the plate. This higher speed (86.5

compared to 85.7) allows the home run ball to travel one foot farther. Considering

both of these effects, reducing the air density from 1.0 to 0.9, would allow the home

run ball to travel 13 feet or 3% farther.

I hate to use extreme examples because people tend to latch onto them and

consider them typical. However, our readers might not relate to a 10%change in air

density. So regrettably, I will now present in Tables 7.13 and 7.14 the most extreme

example for major league stadiums.

For Table 7.14, we used an average major league home run as described by

Willman (2017): it was launched at 97 mph (43 m/s) at an upward angle of 28� with
a backspin of 2000 rpm. In 2016, the computed range of typical home runs

(meaning if the stands and the fans were not there) was between 340 and

430 feet, so the ranges in Table 7.14 are realistic.

Table 7.12 Pitch variations with air density

Air density

(kg/m3)

Fastball released at 93 mph Curveball released at 79 mph

Speed at the plate

(mph)

Height above

the plate (ft)

Speed at the plate

(mph)

Height above

the plate (ft)

1.3 83.5 3.18 71.3 1.84

1.2 84.2 3.08 71.9 1.97

1.1 84.9 2.98 72.5 2.1

1.0 85.7 2.93 73.1 2.24

0.9 86.5 2.86 73.7 2.39

0.8 87.3 2.81 74.6 2.52

7.10 Effects of Air Density on Specific Pitches 185



Because of the difference air densities, if all other things were equal, the

optimally launched home run ball would travel about 24 feet farther in Denver

than in San Francisco. However, in Denver the pitch would not slow down as much.

The difference in pitch speeds would add another 2 feet to the range in Denver. We

hope there is enough detail in this section to make our result replicable.

7.11 Modeling Philosophy

A model is a simplified representation of a particular view of a real system. No

model perfectly matches all views of its real system. If it did, then there would be no

advantage to using the model. Although the equations and numerical values in this

chapter might imply great confidence and precision in our numbers, it is important

to note that our equations are only models. The Kutta-Joukowski lift equation and

subsequent derivations are not theoretical equations, they are only approximations

fit to experimental data.

There are many models for the flight of the baseball. The models of Frohlich

(1984), Watts and Bahill (1990, 2000), Adair (2002, 2004), Sawicki et al. (2003,

2004), Nathan (2006), Bahill and Baldwin (2007), and McBeath et al. (2008) give

different numerical results. However, we believe, they all give the same compar-

ative results. Meaning they all should show that a 10% decrease in air density

produces about a 3% increase in the distance of a home run ball with the increase

being less for pop-ups and greater for line drives.

Our models only considered certain aspects of the baseball in flight. We ignored

the possibility that air flowing around certain areas of the ball (due to perhaps a

scuffmark) might change from laminar to turbulent flow en route to the plate. Our

Table 7.13 Two rows from Table 7.7a for an average July afternoon in two major league baseball

stadiums

City

Altitude

(feet above

sea level)

Average

daily high

temperature (�F)

Average

relative

humidity

Average

barometric

pressure

(inch of Hg)

Average

air density

(kg/m3)

Denver 5190 88 34% 29.98 0.96

San Francisco 0 68 65% 29.99 1.19

Table 7.14 A tale of two cities

City Air density (kg/m3)

Computed range in feet

for a home run ball

Computed range in meters

for a home run ball

Denver 0.96 423 129

San Francisco 1.19 399 122
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equations did not include effects of shifting the wake of turbulent air behind the ball
during the flight. En route to the plate, the ball loses 10% of its linear velocity

(Watts and Bahill 2000) and 2% of its angular velocity (McBeath et al. 2008): we

did not include this reduction in angular velocity in our simulation. We ignored the

stabilizing gyroscopic effect and the precession of the spin axis. Furthermore, we

ignored the difference between the center of mass and the geometrical center of the

baseball. We ignored possible differences in the moments of inertia of different

balls. In computing velocities due to bat-ball collisions, we ignored deformations of

the bat and ball, and energy dissipated when the ball grips the bat. Finally, as we

have already stated, we treated the drag coefficient as a constant.

The implied precision suggested by the home run trajectories shown byWillman

(2017) would need to answer all of the above issues as well accommodate wind

velocity and its changes with height and perhaps even temperature gradients.

Our numerical values were only estimates, because so many factors affect them.

For example, the outputs of the BaConLaw and Ball in Flight models vary with the

particular bat that was used. In Sect. 4.12.4, we discussed C243 and R161 bats.

They were similar in length, weight and moment of inertia, yet with our standard

pitch speed of 83 mph and swing speed of 61 mph, the C243 bat produced a batted

ball range of 387 feet whereas the R161 bat drove the ball 389 feet.

Table 4.12 was for head-on collisions. However, a launch angle of 34� would

require an oblique collision that would produce a lower launch speed (Kensrud et al.

2017). Consequently, producing a launch speed of 97 mph would require a higher

swing speed. Obligingly, Willman (2017) shows many swing speeds that are higher.

The importance of this present chapter lies in comparisons rather than in

absolute numbers. Our model emphasizes that the right-hand rules show the

direction of forces acting on a spinning ball in flight. The model provides predictive

power and comparative evaluations of the behavior of different types of pitches.

The Order of Determining Values Variables and parameters used in Chaps. 1 to

6, but not used in Chap. 7, include bat mass, bat inertia, ball inertia, CoR and the

location of the collision point. Outputs of Chaps. 1 to 6 that are inputs for Chap. 7

include launch velocity, launch angle and launch spin. Now we had to find

numerical values for the other Chap. 7 variables and parameters. The order of

determining them is important because it is impossible to correctly derive the

values in the wrong order. The correct order is shown in Table 7.15.

We first had to choose a default state: we used the midlevel values given in

Table 7.9. Of course, in our simulations, particular variables and parameters were

changed for particular stadiums or circumstances, but the default values were

usually used. The biggest mistake that we made in the last 30 years was using

standard temperature and pressure (STP) as the default for air density in the early

years. Next, we needed values for altitude, temperature, relative humidity and

barometric pressure; they were given in Tables 7.8 and 7.9 and the appendix of

this chapter. These values were then used to compute air density, the dynamic

viscosity of air (μ) and the kinematic viscosity of air(υ). The dynamic viscosity is

also called the absolute viscosity or just the viscosity: it depends on temperature.
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The kinematic viscosity of air depends on both temperature and pressure. In the

early years, we used the kinematic viscosity of air, but it was difficult to get good

values for all stadiums, therefore we switched to the dynamic viscosity. We found

internet sites that gave authoritarian values for the dynamic viscosity of air. This is

Table 7.15 The order of determining numerical values for the variables and parameters

Variable Value in SI units Value in US 
customary units

Default state Midlevel Midlevel
Altitude 2600 ft 792 m
Temperature 29.4 °C 85°F
Relative 
Humidity 50 % 50 %

Barometric 
pressure 760 mm Hg 29.92 inch Hg

divide by 515.4Þ

Air density
31.0582 kg/mr =

2 4
0.00205 

slugs/ft or lb s /ft  
r =

i
2multiply by 2.09 10-Þ ´

Dynamic viscosity 
of air

5

2
1.922 10

kg/m s or N s/m
m -= ´

i i
7

2
 4.017 10

lbf s/ft
m -= ´

i

multiply by 10.7638Þ

Kinematic 
viscosity of air

5 21.816 10 m /su -= ´ 4 2

4 2

1.955 10 ft /s
down then right

1.959 10 ft /s
right then down

u

u

-

-

= ´

= ´

Diameter of a 
baseball

0.07366 m 2.9 in

Mass of a baseball 0.145 kg 5.125 oz
Launch speed 43 m/s 97 mph
Launch angle 34 degrees 34 degrees
Launch spin -209 rad/s -2000 rpm
Reynolds number 5 510 Re 2 10< < ´
Spin parameter 0.1 0.3SP< <

MC 1.2

DC 0.4
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the statistical summary for the dynamic viscosity of air at 85 �F and

2600 feet altitude.

μ ¼ 1:922� 10�5 kg=m � s or N � s=m2

σ ¼ 0:13� 10�5

n ¼ 8

We used the official rules of major league baseball for the mass and diameter of

the ball, which were given in Table 1.1. Typical ball speeds and spins came from

Table 4.2. Now we had enough data to compute the spin parameter and the

Reynolds number for particular pitches and hits as given in Table 7.4. We deter-

mined that for major league pitches and hits (with the exception of knuckleballs and

extreme pop-ups) the

0:1 < SP < 0:3

and

105 < Re < 2� 105

We used these numbers to access the literature and find lift, drag and Magnus

coefficients, as given in Sect. 7.6. Although it was not important, we tried to get the

earth’s gravitational constant at each home plate. It would have been nice to also

have had the wind speed at home plate for each pitch.

The order in which these values were gathered is important because, for exam-

ple, the air density cannot be computed until after the altitude, temperature,

humidity and barometric pressure are known, furthermore small mistakes in the

beginning would propagate throughout the whole process. Once we had values for

the variables and parameters, we could start developing and running the model.

First, we needed input values for the launch velocity, lunch angle and launch spin.

For one of the longest possible batted-ball examples, we used the following inputs

from Table 4.12. The home run was launched at 97 mph (43 m/s) at an upward angle

of 34� with a backspin of 2000 rpm. The results are given in Table 7.11.

Not only are numerical values important, but their variability is also important.

For example, the variation in the earth’s gravitation constant is small between

stadiums, whereas the variation in the diameter of actual balls in play is compar-

atively large. Furthermore, the time scale of change is important. The wind speed

changes from pitch to pitch, the temperature and barometric pressure change from

inning to inning and the altitude and the earth’s gravitational constant vary on a

geological scale.

The numerical values used for the parameters in our equations have uncertainty.

However, the predictions of the equations match baseball trajectories quite well.

When better experimental data become available for parameters such as the drag

coefficient and spin rate, then the equations or the values of other parameters will

have to be adjusted to maintain the match between the equations and actual baseball
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trajectories. A well-developed model is an interconnected system. You should not

try to improve one parameter at a time.

So far, experimental data have driven the development of the model and the

simulation. However, as shown in Fig. 7.17, modeling is not a one-way street. The

theorists should be sending advice to the experimentalists. For example, the worst

data used in developing the model is probably that for determining values for the

drag coefficient, CD. The results of the seven studies shown in Fig. 7.11 are

different: none replicated earlier results. Therefore, there is a need for someone to

show the drag coefficient varying as a function of the Reynolds number for spinning

baseballs with the care and precision exhibited by Achenbach (1972). It is impor-

tant that they explicitly cover the realistic range of spin parameters, 0.1< SP< 0.3.

As a second example, modelers should point out that the huge Major League

Baseball databases contradict each other. In particular, the spin rates for curveballs

must be wrong. Table 7.1, using data from Willman (2017), gives an average spin

rate for the curveball of 1300 rpm with a standard deviation of 500: this is a huge

standard deviation. Whereas, Table 7.2, with data from Statcast (Petriello 2016),

gives an average spin rate of 2300 rpm for the curveball. Each of these databases

contains an entire year of data. Therefore, the differences are not due to an

inadequate sample size. Both of these are for the curveball, which should be easy

to identify and hard to confuse with other types of pitches. Therefore, the discrep-

ancy is significant. It suggests a fundamental flaw in the system.

As for replicability, we acknowledge that some areas of science are more

difficult to study and are less mature than other areas because of the lack of basic

theory to guide us. However, this is definitely not the case for the science of

baseball.

Larry Stark (1968) explained that models are ephemeral: they are created, they

explain a phenomenon, they stimulate discussion, they foment alternatives and then

they are replaced by new models. When there are better wind-tunnel data for the

forces on a spinning baseball, then our equations for the lift and drag forces on a

baseball might be updated with newer parameters. However, we think our models,

based on the right hand rules showing the direction of the spin-induced deflections,

will have permanence: they are not likely to be superseded.

Max Planck (1948) wrote, “A new scientific truth does not triumph by convinc-

ing its opponents and making them see the light, but rather because its opponents

eventually die, and a new generation grows up that is familiar with it.”

Fig. 7.17 The modeling process
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7.12 Which Can Be Thrown Farther a Baseball or a Tennis
Ball?

We now have all the tools necessary to analyze the different flight paths of heavy

and light balls. If you type, “Which can be thrown farther a heavy ball or a light

ball?” into a Google search box, you will get over a million answers: most of them

are probably wrong. So let’s try to answer this question now.

The force-velocity relationship of muscle shown in Fig. 4.9 does not suggest that
a light ball can be thrown farther than a heavy ball. For example, given a tennis ball,

a baseball, a softball, a bocce ball and a woman’s shot put, we suspect that the

baseball can be thrown the farthest. The tennis ball with a low weight would be at

the left side of a force-velocity diagram like Fig. 4.10. It would have a high speed,

but the force applied to it by the muscles would be small. Whereas, the shot put

would be at the right side of Fig. 4.10. It would have a large force applied to it, but

its speed would be small.

Figure 4.9 gives the force-velocity relationship for a single isolated muscle in a

laboratory. Fig. 4.10 gives the force-velocity relationship for a whole intact human

being swinging a bat. This similarity has been reproduced in many physiological

experiments. In Fig. 7.18, we apply it to humans throwing balls.

Physics textbooks state that an ideal projectile-launch on the moon at a 45� angle

would yield a maximum range of Rmax ¼ v20
g
, which does not depend on the mass of

the projectile. Therefore, let us see if we can be more realistic. The range of a

batted-ball is defined as the distance from home plate to the spot where the ball first

Fig. 7.18 Launch speed versus weight for different sports balls. The equation for the blue line is

(weigh + 12.5)� (speed� 24)¼ 1171 where weight is in ounces and speed is in mph. These five

balls are about the same size. Therefore, they could all be thrown with an overhand motion

producing backspin

7.12 Which Can Be Thrown Farther a Baseball or a Tennis Ball? 191



hits the ground. What determines the range of a batted-ball? In a major league

baseball stadium, the range depends on the time that the ball is in the air and that

depends on the vertical component of the velocity. The height of ball is given by

z ¼ z0 þ _z tþ 0:5€zt2 where _z means the derivative of z with respect to time,
dz

dt
,

the vertical velocity, and €z means the second derivative of z with respect to time,
d2z
dt2
, the vertical acceleration. Typical ball trajectories derived from equations like

this are shown in Fig. 7.19.

When the ball is going up, from Fig. 7.8, we have

Fdown ¼ �Flift þ Fgavity þ Fdrag sin θ

where θ is the angle between the direction of motion and the horizontal. The lift

force is the vertical component of the Magnus force. Therefore,

Fdown ¼ �FMagnus cos θ þ Fgavity þ Fdrag sin θ

From Sect. 7.6.2 we have

FMagnus ¼ 0:5πρr3ballωball vballCM

assuming that the spin axis is perpendicular to direction of motion, that is pure

backspin.
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Fig. 7.19 Simulated trajectories for balls thrown from the outfield by a Little Leaguer at various

launch velocities. The launch angle is 34�, but it does not look like that on the figure, because the

horizontal and vertical scales are not the same
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Fgravity ¼ mballg

Fdrag ¼ 0:5πρr2ballv
2
ballCdrag

Therefore,

Fdown ¼ �0:5πρr3ballωball vballCM cos θ þ mballgþ 0:5πρr2ballv
2
ballCD sin θ

Now the vertical acceleration is related to the downward force by

€z ¼ �Fdown

mball

Therefore,

z ¼ z0 þ _z t

� t2

2mball

�0:5πρr3ballωballvballCM cos θ þ mballgþ 0:5πρr2ballv
2
ballCD sin θ

� �

In order to simulate this equation we needed values for CD and CL. We took

these values from Fig. 7.20, which came from Clanet (2015). We also used

CM¼ 0.7.

Once we had values for these three constants, we ran our simulation and

produced the numbers in Table 7.16. We ran the simulation in dry air at 85 �F at

sea level, yielding ρ¼ 1.14 kg/m3. This detail aids replicability.

The weak link in this section is the launch speeds. The reliability of these data

decreases from baseballs to shot puts to softballs to bocce balls to tennis balls. We

have the most confidence in the launch speed of the baseball at 95 mph. Many

television viewer are familiar with this number. Many professional baseball players

can throw a baseball at this speed: few laypeople can. Regardless, we do not want

the average speed of a thousand random people, nor do we want outliers like Rocky

Colavito who routinely threw the baseball over 400 feet. To state it differently, we

are studying optimal athletes doing what they do optimally. This removes a lot of

variability. Therefore, we are comfortable with a 95 mph launch speed for a

baseball. With this speed, the baseball is in the low drag region of Fig. 7.11, around

0.38.

The data for the shot put are for Michelle Carter who won the gold medal in the

2016 Olympics with a throw of 20.63 m (68 feet). Using our simulation, we found

values that would produce the actual output of 20.63 m. These values were a 30.81

mph launch speed at a 43� angle. She could also have produced that throw with a

higher speed and a different launch angle. However, if this throw won the gold

medal, then it was probably close to optimal. The shot put has little spin and
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therefore little lift, but it does have drag (as indicated by the optimal launch angle of

43 instead of 45�). These numbers are not apocryphal or outliers. They represent an

optimal athlete performing optimally. Therefore, a launch speed of 31 mph is

realistic.

Premier women pitchers throwing the softball underhand have maximum speeds

that range between 70 and 75 mph. We ignore outliers like Eddie Feigner and Ty

Stofflet who supposedly threw the softball over 100 mph. Additionally there are

internet sites showing overhand softball throws of over 300 feet. Therefore, we

chose a launch speed of 85 mph for men throwing a softball overhand.

The size of the bocce ball is similar to the other balls, so we expect it to be

gripped the same. However, estimated speed and spin for the bocce ball are a wag.

The least reliable data are for the launch speed of the tennis ball. The 105 mph

value was derived from several internet videos and Clanet (2015). The tennis ball

has a fuzzy surface, which produces a high drag coefficient of 0.56 (Clanet 2015).
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This difference in drag may be the main reason that the baseball can be thrown

farther despite the tennis ball’s higher launch speed.

In summary, the baseball can be thrown farther than the tennis ball. This

conclusion depends on the force-velocity relationship of muscle and properties of

the ball such as mass, drag coefficient and coefficient of lift. However, that really

does not answer the original question, “Which can be thrown farther a heavy ball or

a light ball?” The sensitivity analysis of Table 7.5 suggested that a heavier ball

would go farther. To answer this question thoroughly we ran the simulation with

only the mass being different. The results in Table 7.16 show that the heavier ball

can go slightly farther.

How is it even possible for a heavy ball to go farther than a light ball? There are

two explanations based on physics. First, if the balls were launched with the same

velocity, then the heavier ball must have been given more energy. Therefore, it will

have more momentum and it will take more force and time to slow it down. Second,

the only terms in our equations that depend on mass are the acceleration terms. At

the beginning of motion, the ball with the bigger mass has smaller accelerations:

€z ¼ Fdown

mball

and €x ¼ Fretard

mball

Both of these will be smaller for the heavier ball. Which means that the

horizontal and vertical velocities will not slow down as fast. Both of these effects

will make the heavier ball go farther. However, the system is dynamic. Both the

horizontal and vertical velocities decrease with time. And both the Magnus and the

drag forces are functions of velocity. Therefore, for the rest of the trajectory we will

drop the textural argument and revert to the simulation. We increased the mass of

the baseball by 10% as shown in column 3 of Table 7.16. While we kept the launch

speed the same. The heavier ball traveled 384 instead of 372 feet.

Now it is time to look at physiology. Recall the force-velocity relationship of

muscle. Our muscles will produce a lower velocity for a heavier load than for a

lighter load. According to Fig. 7.18, the 10% heavier baseball will be launched at

93 mph instead of 95 mph. As shown in column 4 of Table 7.16, this reduced launch

velocity will reduce the range from 384 to 374 feet. In conclusion, increasing the

baseball’s mass by 10% increased the range by 12 feet. However, the subsequent

reduction in launch velocity caused by the force-velocity relationship of muscle

decreased the range by 10 feet. Therefore, if a human is throwing balls of about the

same mass, then the heavier ball might go slightly farther.
At this point in our experiments, someone objected and said, “Yah, but you

launched the normal ball and the heavy ball at the same angle. What if you were to

launch each at its optimal angle?” Therefore, we reran our simulations and found

the optimal angle for the normal ball was 34� producing a range of 372 feet.

Whereas the optimal angle for the heavy ball launched at 93 mph was 35�, which
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increased the range from 373.9 to 374.0. Our conclusion remained the same: if a

human is throwing balls of about the same mass, then they will go about the same

distance.

Of course, there are other physiological factors that could affect this conclusion,

such as the size of the hands, the size of the ball, the grip, the throwing motion and

familiarity. For example, most American males, who grew up playing baseball,

thought that they could throw a baseball farther than a tennis ball. Whereas most

others thought the opposite.

In conclusion, because of the difference in the drag coefficient, the baseball can

definitely be thrown farther that a tennis ball. In addition, if all other parameters are

held constant, a lighter ball cannot be thrown farther than a heavier ball.

7.13 Summary

According to our Ball in Flight Model, during its flight, the ball is subjected to the

following forces

Fgravity ¼ mballg

Fdrag ¼ 0:5πρr2ballv
2
ballCD

FMagnus ¼ 0:5πρr3ballωballvballCM

For major-league baseball stadiums, the air density is inversely related to

altitude, temperature and humidity, and is directly related to barometric pressure,

according to this equation.

Air density ¼ 1:045þ 0:01045
�� 0:0035 Altitude� 2600ð Þ

� 0:2422 Temperature� 85ð Þ
�0:0480 Relative Humidity� 50ð Þ þ 3:4223 Barometric Pressure� 29:92ð Þ�:

A plea was made for science of baseball experimentalists to try to replicate

previous experiments and explain the reasons if they cannot.

Both the drag force Eq. (7.3) and the Magnus force Eq. (7.2) are directly

proportional to the air density. Therefore, if air density gets smaller, the drag

force gets smaller, this allows the ball to go farther: But at the same time, as air

Table 7.17 Summary lines from Table 7.16

Parameter Baseball

Heavy

baseball Tennis ball Softball Bocce ball

Women’s
shot put

Launch speed, mph 95 93 105 85 55 31

Range, feet 372 374 250 297 186 68
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density gets smaller, the Magnus force also gets smaller, which means that the ball

will not be held aloft as long and will therefore not go as far. These two effects are

in opposite directions. Simulation shows that the change in the drag force affects the

trajectory of the ball more than the change in the Magnus force. Therefore, as air

density goes down, the range of a potential home run ball increases. On a typical

July afternoon in a major-league baseball stadium, a 10% decrease in air density

can produce a 3% increase in the distance of a home run ball. A home run ball might

go 26 feet farther in San Francisco then in Denver.

Finally, we note that a baseball can be thrown farther than a tennis ball.

Additionally, if a human is throwing balls of about the same mass, then the heavier

ball might go slightly farther.

Appendix. Weather Data for Major-League Baseball
Stadiums
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Chapter 8

Dénouement

8.1 Introduction

Purpose: This chapter consolidates the insights and wisdom in this book.

This book is about engineering the sport of baseball. It may have seemed to be about

physics, but we were always on the lookout for instances where physiology or

psychology should have come into play. For example, in Chap. 7 it was essential to

use physiology’s force-velocity relationship of muscle. We also continually looked

for fatigue and warm-up effects in data. Some of our studies like that of the rising

fastball, which were not included in this book, dealt with issues that could only be

explained using physiological psychology (Bahill and Karnavas 1993; Bahill and

Baldwin 2003 and 2004).

We made sure that we studied papers that used models that were different from

ours. We did not want confirmation bias to restrict the papers that we chose to

incorporate. Trying to hit a baseball with a bat is a task that is very attention

demanding. Therefore, we looked for effects of cognitive overload. We were also

on the alert for outliers that might challenge principles of physics that we used. For

example, when we stated that energy cannot be created or destroyed, we were aware

that in nuclear reactions mass can be converted into energy and vice versa. So we

contemplated possible effects in our baseball environment and decided that there

were none. The point of this paragraph is that while it might have seemed that we

were merely modeling the physics of baseball, we were, and you the reader should

have been, continually looking for seemingly extraneous factors that could have

affected our conclusions.

What does a person need to be a successful batter? Obviously, he or she must

have good coordination, excellent vision, athleticism, desire and a strong work

ethic. When concentrating on the pitch, he or she must be able to ignore peripheral

vision, the auditory system, the olfactory system and pain sensors. In addition,

tracking the ball from the pitcher’s release point to where it crosses the plate

requires suppression of the vestibulo –ocular reflex (Bahill and LaRitz 1984),
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above average smooth pursuit eye tracking capability (Bahill and LaRitz 1984), an

exemplary ability to learn to track unique smooth pursuit visual targets (McHugh

and Bahill 1985) and a tremendous amount of cognitive effort (Kahneman 2011).

In a classic psychology experiment summarized by (Kahneman 2011), four-year

old children were exposed to a cruel experiment. They were given a choice of one

Oreo cookie, which they could eat at any time, or two Oreo cookies if they could

wait 15 min for the reward. About half the children managed the task of waiting

15 min. A dozen years later, a large gap had opened between those who had resisted

temptation and those who had not. The resisters had higher measures of executive

functions in cognitive tasks and especially the ability to allocate their attention

efficiently (Mischel et al. 1989). My conjecture is that children who can control

their impulses and concentrate on the task at hand will have the potential to become

more successful baseball and softball players because they have and will develop

their executive functions more fully. This will allow them to be good at deciding

when to do what. The following poem, which is explained in the appendix, is

analogous to the third chapter of the book of Ecclesiastes, with apologies to Pete

Seeger.

There is a season for everything,

a time for every action under heaven:

a time for thinking, and a time for reacting;

a time for planning, and a time for executing plans;

a time for exercising, and a time for relaxing;

a time for dreaming, and a time for studying;

a time for chitchat, and a time for negotiation;

a time for playing, and a time for practice;

a time for cheers, and a time for tears.

In writing this book, we were aware of differences in human cognitive

processing. When we evaluated data in peer-reviewed journals, we strove to discern

the authors’ recognition of how these human differences affected the authors’
evaluation of their data. For example, we expected much less variability in the

data of major league baseball players compared to collegiate players. If this was not

apparent in the data, then the data were suspect.

In creating a model, we were always cognizant of the reader. We continually

worried about whether or not a reader could replicate our experiments and

equations.

Now, let us stop discussing what we were thinking while writing this book and

return to what was actually stated in the chapters of this book.

Collisions between baseballs, softballs and bats are complex and therefore their

models are complex. One purpose of this book was to show how complex these

collisions could be, while still being modeled using only Newton’s principles and
the conservation laws of physics. Accordingly, this book presented the BaConLaw

model for the speed and spin of balls and bats after the bat-ball collision in terms of

these same four variables before the collision.

Chapter 1 presented Newton’s laws and laid the groundwork for analyzing

bat-ball collisions. Using text and figures, Chap. 2 explained nine common
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configurations of bat-ball collisions. Chap. 3 started the development of the sets of

equations for these configurations.

The workhorse of this book, Chapter 4, contains our most comprehensive model,

the BaConLaw model. It models a collision at the sweet spot of the bat with spin on

the pitch. It has five equations and five unknowns. The equations are complete and

comprehensive. This chapter contains a sensitivity analysis of the complete model,

which shows that the most important variable in the model, in terms of maximizing

batted-ball speed, is the bat speed before the collision. This chapter starts the

fulfillment of the first purpose of this book by showing what may be the most

complex model that is compatible with our simple technique and Newtonian

physics. It also fulfills the second purpose of this book, namely, to help batters

select or create baseball or softball bats that would be the best for them. Cupping the

barrel end of the bat does not help. This chapter is unique in the science of baseball

literature.

This is a big deal. The BaConLawmodel describes the motion of the bat after the
collision. Many models describe the motion of the ball after the collision, but few

(if any) describe the motion of the bat. When you see a batter hit the ball, do you see

the jerk of the bat? Can you describe it? Well these equations do.

Chapter 5 contains four alternative models for bat-ball collisions. Their purposes

are different and are they are based on different fundamental principles. The

Effective Mass model was created by physicists independent of the author of this

book. Therefore, comparisons to it are important for validating the BaConLaw

model of Chapter 4. The Spiral Center of Mass model and the Sliding Pin model are

data-based, not theory-based. They use a different approach and they use a different

type of data. Finally, the Collision with Friction model considers friction during the

collision. It is shown that this type of collision cannot be modeled using only the

conservation laws. Therefore, this model completes the fulfillment of the first

purpose of this book, by showing a configuration that is too complex for our simple

technique.

Chapter 6 recapitulates Chaps. 1 to 5. These chapters are at a higher level of

abstraction than typical physics of baseball papers, because they ignored details of

the collision, such as (1) during the collision the ball can slip, slide, roll or grip the

bat, and the ball switches between these modes, (2) the coefficient of friction

changes from dynamic to static and back, (3) the bat and ball deform during the

collision (4) some collisions have normal and tangential velocity components and

(5) the bat has a twist or a rotation about its long axis. This book ignored the

difference between the kinetic, energetic and kinematic coefficients of restitution,

the energy loss due to tangential forces and losses in angular momentum: it grouped

all of the energy losses into one parameter, the kinematic Coefficient of Restitution.

We modeled the parameters of the bat and ball only at a time just before the

collision and at a time just after the collision. Because the equations are at a high

level, it was possible to verify each major equation by at least two techniques. This

book used simple terms that were presented in Table 1.1 that should be understand-

able by all students of the science of baseball. This book did not obfuscate with

jargon, rules of thumb or esoteric terms. By using only fundamental principles, it is
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hoped that the reader gained intuition about the behavior of the bat and ball before

and after collisions.

One purpose of the Ball in Flight model of Chap. 7 was to show how altitude,

temperature, barometric pressure and relative humidity affect air density and

consequently how air density affects the flight of the ball. To do this, we needed

equations for the flight of the ball that included air density. Therefore, the first

challenge of this chapter was to derive equations for the flight of the ball that

included the dependence on air density. These equations were not restricted to

Newton’s principles and they relied heavily on experimental data. Next, this

chapter showed that air density is inversely related to altitude, temperature and

humidity, and is directly related to barometric pressure. Air density affects how far

a batted-ball travels. As shown by this model, on a typical July afternoon in a major-

league baseball stadium, altitude is the most important factor, explaining 80% of

the variability. This is followed by temperature (13%), barometric pressure (4%)

and relative humidity (3%). A simple linear algebraic equation was presented that

predicts air density in terms of these four variables. A different model showed how

the batted-ball’s range depends on both the drag force and the Magnus force and

considered the relative importance of each. As an aside, this chapter answered the

question of whether a person could throw a heavy ball or a light ball farther. If all

other parameters are held constant, a heavier ball might be thrown slightly farther

than a lighter ball.

Chapters 1 to 6 modeled bat-ball collisions and Chap. 7 modeled the flight of the

ball, whether thrown, pitched or hit. Let’s see if we can bring our technique together
in one example.

To understand new puzzles we use physics first, then physiology and finally

psychology. As an example, let’s apply the lessons learned from this book to an

interesting anomaly in baseball statistics. In major league baseball (MLB), there

seems to have been more home runs in 2017 than in previous years. When

pondering a new problem, we first we try to solve it using physics. Physicists

have investigated the baseball’s contribution to the coefficient of restitution, but it

seems to have remained constant throughout recent years. Others have suggested

that the flatter seams on the major league baseball would reduce the drag coefficient

and thereby increase the range of the batted ball. However, at the same time, the

flatter seams would also decrease the Magnus lift force and thereby decrease the

range. Evidentially the effect of drag reduction is greater than the effect of Magnus

lift force reduction, because experiments have shown that MLB’s flatter seams

increase the range by about 20 feet. But this is all irrelevant, because MLB’s switch
to the flat seam ball occurred years ago, not in the summer of 2016. Therefore,

physics does not provide an answer for the increased number of home runs in 2017.

Accordingly, let’s try physiology. Today’s players are more athletic due to condi-

tioning and nutrition. So, they have higher bat swing speeds. But this did not happen

suddenly in 2016. So, physiology does not provide an answer. Okay, so let’s try
psychology. MLB has created game-changing new metrics for performance. For

example, pitchers are no longer evaluated solely on won-loss record and earned-run

average. Instead, everyone is talking about pitch speed. Pitchers seem to be

206 8 Dénouement



throwing faster with many of them throwing at 100 mph. This would produce more

home runs, because the faster the ball comes in, the faster the ball goes out. At the

same time, MLB and television are glamorizing the home run. Trajectories are

continually displayed on television and on the internet. This has probably caused

batters to decide to try hitting more home runs by swinging faster and launching the

ball at a higher angle. Therefore, psychology may be the reason for the increase in

home runs. Both the pitcher and the batter gain more publicity because of higher

pitch speeds and more home runs. Finally after pursuing physics, physiology and

psychology, we should “follow the money.” High-speed pitchers and prolific home

run hitters draw in the crowds (and their money) and hence are paid more. This

probably caused them to decide to throw harder and swing faster.

Appendix

We concluded our paragraph about the four-year old children resisting their urge to

eat the Oreo cookies with, “The resisters had higher measures of executive func-

tions in cognitive tasks and especially the ability to allocate their attention effi-

ciently.” Let us now analyze that sentence.

The field of cognitive neuroscience proposes that executive functions reside in a

particular area of the brain named the prefrontal cortex. The basic executive

functions include cognitive processes such as impulse control, use of working

memory, attention control, resistance to interference and cognitive flexibility.

The first two of these functions develop in early childhood. Impulse control, also
known as response inhibition, is an executive function that permits people to inhibit

their impulses in order to select behaviors that are more likely to satisfy their goals.

Use of working memory is an executive function that holds and processes informa-

tion for a short time.

The last three of these functions develop later in life. Attention control is an

executive function that allows people to allocate their attention, to choose what they

pay attention to and what they ignore. Attention control can be described as a

person’s ability to concentrate or focus. Resistance to interference is an executive

function that allows people to shutout stimuli that are irrelevant to the task at hand

or to the mind’s current state. Cognitive flexibility is an executive function that

allows people to switch between thinking about two different concepts and perhaps

to control multiple tasks concurrently.

Multiple basic executive functions create high-order executive functions, which

include planning, scheduling, negotiating, tradeoff studies and problem solving.

The executive functions that are most important for baseball players are argu-

ably impulse control, use of working memory, attention control, resistance to

interference and planning.

My conjecture is that children who can control their impulses and concentrate on

the task at hand will probably become better baseball and softball players because

they have and will develop their executive functions more fully. This will allow
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them to be good at deciding when to do what. The following poem is analogous to

the third chapter of the book of Ecclesiastes, with apologies to Pete Seeger.

There is a season for everything,

a time for every action under heaven:

a time for thinking, and a time for reacting;

a time for planning, and a time for executing plans;

a time for exercising, and a time for relaxing;

a time for dreaming, and a time for studying;

a time for chitchat, and a time for negotiation;

a time for playing, and a time for practice;

a time for cheers, and a time for tears.

A time for thinking, and a time for reacting.

It takes exceptional concentration for a batter to track a pitch and predict the ball’s
position at the time of the collision. The batter must shutout distractions. On the

other hand, the swing of the bat is merely a reaction. It is an over-practiced reaction

with little variability.

A time for planning, and a time for executing plans.

Before each pitch, every fielder plans what he or she will do for every contingency.

For instance, assume that the game is tied in the bottom of the sixth inning. There

are no balls, no strikes and no outs. There are runners on first and third. Each fielder

must formulate a plan. For example, on a deep flyball, an outfielder will throw the

ball to the cutoff man (the second baseman or the short stop depending on where the

ball was hit). On a lazy flyball, if the runner on third is tagging, the outfielder will

throw to home plate through the cutoff man. On a shallow hit, if the runner on third

is advancing, then the outfielder will throw to the catcher; if not, then the fielder

must throw to second base. All of these plans must be in the fielder’s working

memory before the pitch. Because, when the ball is hit, there is no time for thinking:

there is only time for executing the plan.

A time for exercising, and a time for relaxing.

Athletes must be in good physical shape. Regular planned exercise can help achieve

this. However, all work and no play makes Jack a dull boy.

A time for dreaming, and a time for studying.

There is no time for daydreaming during a game. Whereas, between games, there is

plenty of time for study; to study the opposition, to read books like this one and to

learn about the world around us.

A time for chitchat, and a time for negotiation.

Talking about personal lives helps players understand how their teammates will

react during a game. It is important that outfielders, for example, know each other

very well. On a line drive between them, one runs in and one runs out: this prevents
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broken bones. In contrast, most players will not talk with their agents during the

season because they do not want the distraction.

A time for playing, and a time for practice.

When you are playing a game, your brain must be totally engaged in the game. In

Chap. 4, we quoted Dave Baldwin as saying that if you lose a game, don’t blame the

umpire or your teammates; just go home and practice harder.

A time for cheers, and a time for tears.

After every win, all players cheer. However, when a team is eliminated from the

championship tournament, many players cry.
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Chapter 9

General Modeling Principles

9.1 Introduction

The following statement was on Richard Feynman’s white board when he died. By

create he meant derive equations mathematically, on a white board, in real-time, in

front of an audience, without notes.

Purpose: This chapter extracts the modeling lessons learned throughout this book

into one cohesive whole. It is based on Bahill (2016).

9.2 Why Model?

This book is about modeling and simulation of bat-ball collisions and the flight of

the ball. A model is a simplified representation of some aspect of a real system. A

simulation is an implementation of a model, often on a digital computer. Models are

ephemeral: they are created, they explain a phenomenon, they stimulate discussion,
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they foment alternatives and then they are replaced by new models. Everyone

knows how to make a model, but most researchers miss a few tasks. Therefore,

we wrote this chapter that presents a succinct description of the modeling process

shown in Fig. 9.1.

Most systems are impossible to study in their entirety, but they are made up of

hierarchies of smaller subsystems that can be studied. Nobel Laureate Herb Simon

(1962) explained the necessity for such hierarchies in complex systems. He wrote

that complex systems are decomposable, enabling subsystems to be studied outside

of the entire hierarchy. For example, when modeling the movement of a pitched

baseball, it is sufficient to apply Newtonian mechanics considering only gravity, the

ball’s velocity and the ball’s spin. One need not be concerned about electron orbits

in the cowhide cover or the motions of the sun and the moon. Forces that are

important when studying objects at one level seldom affect objects at another level.

When modeling baseball systems we are fortunate that we do not have to consider

how black holes form or entanglement, which Einstein mocked as “spooky action at

a distance.”

Table 9.1 shows a sampling of the levels of two of the hierarchies that were used

in this book. Items at the bottom of the table are at the lowest level considered in

this book. Items that are higher up in the table are at a higher level of abstraction.

The point is, in Chap. 7 for example, we studied altitude, temperature, humidity and

barometric pressure and derived equations for them. Later we studied the equations

for Fgravity, Fdrag and FMagnus. Later still, we studied the range of the batted ball. We

studied them independently. We never had them on the same page.

9.2.1 Purpose of Models

Models can be used for many reasons, such as understanding or improving an

existing system (done in this book), creating a new design or system, controlling a

system, suggesting new experiments, guiding data collection activities (done in this

book), allocating resources, identifying cost drivers, increasing return on invest-

ment, helping to sell the product, and reducing risk. Running business process

models clarifies requirements, reveals bottlenecks, reduces cost, identifies

fragmented activities and exposes duplication of efforts.

Fig. 9.1 The modeling process
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9.2.2 Kinds of Models

There are different kinds of models: there are models of behavior, of structure, of

performance and for analysis. Models of behavior describe how the system

responds to external excitation: that is, how the system-functions transform the

inputs into outputs. The BaConLaw model is a model of behavior. It describes the

linear and angular speed of the bat and the ball after the collision in terms of these

same parameters before the collision. Models of structure describe the components

and their interactions. Three-dimensional CAD/CAM images check the buildability

of structures. Models of performance describe units, values and tolerances for

properties such as weight, speed of response, power required, etc. These might be

captured in requirements. Typical baseball performance measures include batting

average, slugging percentage and safe on-base percentage. Models for analysis are
used to calculate properties of the whole system from the properties of its parts. For

example, the time for a car to accelerate from 0 to 60 mph can be calculated from

the mass of the car, the power of the drive train, the aerodynamic drag coefficient

and the friction of the tires on the pavement.

Table 9.1 Bat-ball modeling hierarchy

Chapter 7 the Ball in Flight model

What effects air density and what does air density effect?

Sensitivity analysis

Range of the batted-ball

The order of determining numerical values for the parameters (Table 7.15)

Fgravity¼mballg

Fdrag ¼ 0:5πρr2ballv
2
ballCD

FMagnus ¼ 0:5πρr3ballωballvballCM

The right-hand rules

Air density

Altitude, temperature, humidity and barometric pressure

Chapter 4 the BaConLaw model

Advice for choosing a bat

Sensitivity analysis

KElost, Eq. (4.11)

Output equations, Eqs. (4.8), (4.9), (4.10) and (4.12)

Conservation laws, Eqs. (4.3), (4.4) and (4.7s)

Newton’s principles, CoR, Eqs. (4.5) and (4.6)

vball-before, ωball-before, vbat-cm-before,ωbat-before,

vball-after, ωball-after, vbat-cm-after and ωbat-after
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9.2.3 Types of Models

There are many types of models. Most people use only a few and think that is all

there are. Here is a partial list of some of the most commonly used types of models:

physiological and physical laws and principles, differential equations, difference

equations, algebraic equations, geometric representations of physical structure,

computer simulations and animations, Laplace transforms, transfer functions, linear

systems theory, state space models e. g. _x ¼ Axþ Bu, state machine diagrams,

charts, graphs, drawings, pictures, functional flow block diagrams, object-oriented

models, UML and SysML diagrams, Markov processes, time-series models, phys-

ical analogs, Monte Carlo simulations, optimization equations, statistical distribu-

tions, mathematical programming, financial models, Pert charts, Gantt charts, risk

analyses, tradeoff studies, mental models, scenarios and use cases.

To understand how people think we would use the models confirmation bias,

attribute substitution, and representativeness. For biological domains, we must first

choose a virus, a bacterium0, a plant or an animal. Once we have chosen our

subject, we could then derive its genome. For social domains, we might use a novel,

an encyclical, a song, a poem, or perhaps even a joke.

Most models require a combination of these types. For example, in this book we

used Newton’s principles, the conservation laws of physics, algebraic equations,

Excel spreadsheets, figures, tables, simulations, an optimization package, design of

experiments and statistics. Hence, our BaConLaw model and our Ball in Flight

model used many types of models.

9.2.4 Tasks in the Modeling Process

The following checklist contains the principle tasks that should be performed in a

modeling study. The modelers should look at each item on the list and ask if they

have done that task. If not, they should state why they did not do it. In this checklist,

we describe {in squiggly braces} the parts of the BaConLaw model that implement

the individual tasks.

• Describe the system to be modeled {The BaConLaw model describes head-on

collisions between bats and balls. It gives the speed and spin of the bat and ball

before and after collisions. It does not describe the dynamics during the collision

nor the swing of the bat.}

• State the purpose of the model {To explain bat-ball collisions with precise,

correct equations, without jargon}. This includes defining the performance

criterion function.

• Determine the level of the model {The level for the BaConLaw model encom-

passes the ball speed, the bat speed and the bat angular velocity after the

collision in terms of those same parameters before the collision. The time

scale is in milliseconds.}
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• State the assumptions and at every review reassess the assumptions {Our

assumptions were stated in Sects. 3.2.1 and 3.3.1.3}.

• Investigate alternative models {Alternative collision configurations were

explained in Chaps. 2 and 3. The BaConLaw model was given in Chap. 4 and

alternative models were given in Chap. 5. Having alternative models helps

ensure that you understand the physical system. No model is more correct than

another. Alternative models just emphasize different aspects of the physical

system. They are not competing models they are synergetic.}

• Select a tool or language for the model and simulation {We used the

What’sBest! optimizer and Excel spreadsheets.} This should not be a casual

decision. You should not merely accept the default. You should use a tradeoff

study.

• Make the model {The BaConLaw model was created in Chap. 4.}

• Integrate with models for other systems {The outputs of the BaConLaw model

became inputs to the Ball in Flight model of Chap. 7 in order to show how the

range of batted-balls is affected by air density and by cupping the barrel end of

the bat.}

• Gather data describing system behavior {We used data from our internal data-

bases, from peer reviewed journal papers and from the following databases.}

http://www.hittrackeronline.com/

http://mlb.com/statcast/

https://baseballsavant.mlb.com/

• Show that the model behaves like the real system {The outputs of the simula-

tions were compared to the data listed in the above paragraph.}

• Verify and validate the model {Verification means, Did you build the system

right? For the BaConLaw model, the outputs of the simulations agree with data

listed in the above paragraph. The double checks in the simulation ensure

correctness of the spreadsheets. For example, the kinetic energy lost is computed

with Eq. (4.11) and also by summing individual kinetic energy components as

shown in Tables 4.3 and 5.3. The conservation laws were used in the derivations

and the final outputs of the simulation were inserted into the conservation law

equations to ensure consistency of the spreadsheet. The main output of the

BaConLaw model was compared to the output of the Effective Mass model of

Sect. 5.1. The physics was peer-reviewed by two anonymous physics professors.

Each of the main BaConLaw equations were derived using at least two tech-

niques. Finally, the equations were checked by an independent mathematician.

Validation means, Did you build the right system? Our customer wanted a

system that described head-on collisions between bats and balls. They wanted

a system that would give ball speed, bat speed and the bat angular velocity after

the collision in terms of those same parameters before the collision. This is what

our system does. Finally, we performed a sensitivity analysis, which is a

powerful validation tool (Smith et al. 2008). It warns if something is wrong

with the model.}

• Explain a discovery that was not planned in the model’s design {(1) We were

surprised when the equation for the kinetic energy lost in the collision,
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Eq. (4.11), fell right out of BaConLaw set of equations. (2) Before writing this

book, we did not expect to prove that cupping the barrel end of the bat does little

good. (3) Although it seems intuitive, we were surprised when the mathematics

showed that the baseball could be thrown farther that a tennis ball.}

• Perform a sensitivity analysis of the model {The most important parameters, in

terms of maximizing batted-ball speed, are the velocity of the center of mass of

the bat before the collision and the coefficient of restitution, CoR2b. The least

important parameters are the angular velocity of the ball and the distance

between the center of mass and the impact point. The second-order interaction

terms are small, which is good.}

• Perform a risk analysis {Risk to our publisher. The biggest risk is that people

might be reluctant to buy and read a book with equations in it. Also, Springer

would be disappointed if sales were low. Therefore, by writing with the reader in

mind, we tried to ensure that sales would not be below expectations. We

anticipate no copyright problems, because most of the material is original and

we have permissions for the two figures that are not. Risk to our reader.
Someone could modify their bat and hurt himself or herself working with tools

or they could be ejected from a game. Risk to the author. If our equations were
wrong, we would confuse our readers and tarnish our reputations. Risk to quality.
The book is produced in India. Typographical and editing mistakes that occur are

hard to correct because of poor communication channels. Risk to baseball
managers, general managers and umpires. It will put a burden on these people

to learn to understand the results of mathematical modeling. Risk to MLB. It
could embarrass MLB into disclosing their algorithms. Some of these risks may

seem trivial. But a risk analysis is supposed to uncover unlikely risks.}

• Analyze the performance of the model {This was described above in the

verification paragraph.}

• Re-evaluate and improve the model {In the future, we will derive equations for

configurations 3 and 4. We will explain why the curveball curves. We will also

investigate the cognitive processing and decisionmaking of the batter (Bahill and

Baldwin 2004; Bahill et al. 2005; McBeath et al. 2008; Bahill and Madni 2017).}

• Suggest new experiments and measurements for the real system that might

challenge existing models {Major League Baseball (MLB) is providing copious

amounts of new data. Next, scientists need MLB’s actual algorithms and mea-

surements for the spin on the batted-ball, particularly for the home run trajecto-

ries that are so popular. Another proposed area of measurement and display

involves the erratic meandering of fielders trying to catch pop-ups. This behavior

and the paper by McBeath et al. (2008) show that the ball’s trajectory must

contain bizarre loops and cusps. MLB should show these trajectories on the

television screen to help laypeople understand the fielders’ wanderings.}

Choose a cute name for your model. You want people to relate to the name of

your model. This will enhance financial support. In the following couplets, we give

the original model name and then an alternative name. Which do you think is best?
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Would you rather have had your taxpayer dollars

support research on the Big Bang or on a theory of the origin of the universe?

support research on dark energy or on the existence of transparent matter?

support the Superconducting Super Collider or the search for the God particle?

get rid of weapons of mass destruction or a tyrannical despot?

Would you rather

go to the opera The Marriage of Figaro or to Mozart’s opera in D major K€ochel
No 492?

listen to Beethoven’s Ode to Joy or his Symphony Number 9 in D minor, Opus

125?

listen to Mussorgsky’s Night on Bald Mountain or his musical picture in D

minor?

listen to Wagner’s Overture to Act III of Lohengrin or see the snow skiing scene

in the Beatles’ movie Help?

Would you rather

read an article about E¼mc2 or a paper about mass-energy equivalence?

study the DNA double helix or chromosomal structure?

see a grand slam or a bases-loaded home run in baseball?

see a Hail Mary or a fourth-quarter fourth-down forty-yard pass in football?

Are you more likely to

have wished for the fall of the Iron Curtain or of communism in eastern Europe?

order Baked Alaska or ice cream covered with roasted merengue?

watch the World Series or the MLB championship games?

watch the Super Bowl or the NFL championship game?

In Kahneman’s model for human thinking, which can you relate to easiest

System 1 or the fast, instinctive and emotional system?

System 2 or the slow, deliberative and logical system?

Are you more likely to say

Navy SEALs or navy sea air land forces?

SWAT team or special weapons and tactics team?

The point of this page is to convince you that a distinctive name for your model

will help people remember it and relate to it. This will be aided if your name is

iconic. Examples of iconic images include the flag of the United States of America,

the Statue of Liberty, a crucifix, a Star of David, the Nazi swastika, the Apple

Computer Company logo and the Mona Lisa. Examples of iconic smells include

Hydrogen Sulfide (rotten eggs) and Methyl Mercaptan (the odor in natural gas). Our

favorite perfume fragrances are eau de Wet Dog and Impending Desert Rain. You

want your name to be as memorable as the eight notes at the beginning of

Beethoven’s fifth symphony, the three dramatic notes in Neil Diamond’s Sweet

9.2 Why Model? 217



Caroline and the opening measures of Stanley Kubrick’s 1968 film 2001: A Space
Odyssey (aka Strauss’ Also sprach Zarathustra, opus 30, 1896).

9.2.5 Model-Based Design

There are two common techniques for designing a system or making a model: the

first is model-based or theory-based (Bahill and Szidarovszky 2009) and the second

is data-based (Bahill 2016). Here are some steps for model-based system design.

Find appropriate physical, physiological and psychological principles, then using

the tasks listed in the above section, design, build and test a model, then design and

conduct experiments to collect data. Use these data to verify and validate the model.

Use the model to make predictions and guide future data collection activities.

Example 1

Chapter 4 started with the following fundamental equations of physics: Conserva-

tion of Energy, Conservation of Linear Momentum, the Definition of the CoR,
Newton’s Second Principle and the Conservation of Angular Momentum. These

conservation laws are the models (or theories) that the BaConLaw model and the

Effective Mass model were based on.

Example 2

Chapter 7 started with the right-hand rules and the three forces that affect the ball in

flight: gravity pulls the ball downward, air resistance or drag operates in the

opposite direction of the ball’s motion and, if the ball is spinning, there is a Magnus

force perpendicular to the direction of motion. Watts and Bahill (1990) wrote

equations for these forces like this:

Fgravity ¼ mballg

Fdrag ¼ 0:5πρr2ballv
2
ballCD

FMagnus ¼ 0:5πρr3ballωballvballCM

These equations are the models (or theories) that the Ball in Flight model of

Chap. 7 was based on.

9.2.6 Data-Based Design

The second technique for designing a system or making a model is data-based. With

this technique, the modeler starts with measuring and organizing the data and then

he or she makes a model that fits that measured data. The Spiral Center of Mass and

the Sliding Pin models of Chap. 5 were data-based. We found the experimental data

first and then we created the model to match that data.

218 9 General Modeling Principles



The BaConLaw and the Effective Mass models started with the model of a free-

end collision involving the velocity of the center of mass of the bat and the bat’s
angular rotation about the center of mass. In contrast, for the Sliding Pin model, we

first found experimental studies that gave the linear velocity of the knob and the

angular velocity of the bat about the knob right before the collision. We then used

that data to make our model.

9.2.7 Second Sourcing

It is good practice to make sure that anything you buy has a second source. That

way if your first source disappears, you can continue to function.

Modelers should entice other scientists to create different models for the same

physical system. This will help validate their models.

Many fields of science are demanding replication of important experiments and

results. Failures to replicate previous findings are common in science, particularly

in the psychological literature, where half of the important findings cannot be

replicated [https://en.wikipedia.org/wiki/Replication_crisis].

If you are going to remodel your house, which faucet manufacturer are you

likely to specify, Moen or LightInTheBox? Think about repair and maintenance of

the system in 10 years.

Would you buy a chandelier with incandescent light bulbs and a dimmer

control? Keep in mind that they do not make incandescent replacement bulbs

anymore.

Missile manufacturers will not specify a part if there is not a second source. They

want to ensure that they can continue manufacturing even if their first source goes

bankrupt.

The atomic bombs dropped in WWII, Little Boy and Fat Man, were of different

designs and used different fissionable elements. If one design did not work, then

they still had a second source.

Apollo 13 was not a disaster because they had a second source of power: the

lunar lander.

The county directors of elections would like to have a second source for their

hardware and software. Because on Election Day, they only have one chance to get

it right. A second source would also ameliorate cyber-attacks.

Suppose your new medical doctor tells you that some test has just revealed

cancer and she recommends that you start radiation treatment immediately. Would

you ask for a second opinion?

When asking for driving directions to an event, it makes sense to ask for

alternative routes (perhaps the quickest, the shortest and also the cheapest, i. e. no

tolls), so that you have alternatives, in case of a massive traffic jam.

It is a good idea to have two e-mail accounts. That way if Comcast decides to

block one your correspondents because he or she fits their profile of a ‘bad person’
or if Microsoft is ‘upgrading’ their e-mail system, you can still communicate with

the world.
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I am sure that all readers of this book can access it from more than one place: you

have multiple sources for this book. I am also confident that you back up your hard

disk every day. So now, dear reader, please put down this book and go back up your

hard disk.
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