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Foreword

I first “met” Dr. A. Terry Bahill in 2005 while researching aerodynamic character-
istics of batted baseballs as part of a personal project that would become the ESPN
Home Run Tracker. I did not speak to him at the time (that would come later), but
rather downloaded and read many of the papers which he had posted on his website.
Dr. Bahill’s explanations and calculations were a great help to me at a time when
my career in baseball analytics was just beginning, but as we have corresponded
over the years, my admiration for his work, particularly his gift for communicating
ideas, has only increased. His latest publication, The Science of Baseball: Modeling
Bat-Ball Collisions and the Flight of the Ball, is a worthy contribution to his
prodigious body of baseball research, compiled over four decades and presented
with extraordinary clarity. It will serve as a valuable reference for scholarly fans, as
well as baseball analysts who aspire to compete at the highest level.

Major League Baseball (MLB) clubs are, as of early 2017, in the midst of a
revolution. The ranks of analysts employed by Major League Baseball clubs have
swelled in recent years, as teams try to realize competitive advantages through the
creative use of the data that is being generated and presented to teams at an
unprecedented rate. Every MLB front office now employs people who scrutinize
not only traditional statistics such as batting averages and home run totals but also
metrics like pitch speed or batted-ball exit speed. The most analytically enthusiastic
clubs study ball- and player-tracking data collected at rates as high as 100 data
points per second, and disseminated by commercial vendors such as Baseball Info
Solutions, Sportvision, Trackman, MLB Advanced Media and others. MLB’s
demand for new forms of baseball analysis has inspired a large and rapidly growing
pool of independent analysts who conduct research via publicly available sources,
hoping to earn the opportunity to offer their services as consultants to or employees
of Major League front offices. More people and companies are doing more
baseball-related analytical work than ever before.
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Throughout my dozen years of baseball-related work, both as an individual and
in my current role as an analyst with the Boston Red Sox, I have found that the best
research originated with people who possessed not only thorough baseball knowl-
edge but also a solid understanding and a proper deference to the other governing
principles of the situation under study. For contract and compensation issues, these
principles are those of economics; for discretionary tactical moves such as stolen
base or bunt attempts, or for pitch type selection, these principles are those of game
theory; for issues related to the movement of the baseball, these principles are those
of physics.

Unfortunately, too often these days we see analytical work that neglects, or even
runs counter to, the underlying principles, because the analyst’s mastery of the
relevant principles is faulty or incomplete. For some, analysis of baseball data
consists of arranging it in columns and performing statistical tests on it until
something “pops.” I was once offered a detailed analysis that rated elite closer
Koji Uehara as the 16th best pitcher on the Red Sox roster, and further opined that
his devastating splitter was among the weaker individual pitches on the entire team.
After I stopped laughing, I asked a few questions and learned that these dubious
results could be traced to a faulty premise about the value of pitch locations. It was,
essentially, a lack of understanding of one of the most important elements of
pitching analysis: how to judge the results of a pitch.

More knowledgeable analysts who are familiar with the applicable principles
can better detect and avoid bad data, more efficiently set up and perform the most
promising statistical tests, and can more reliably interpret the results. Dr. Bahill’s
expert dissection of the bat-ball collision (Chaps. 1, 2, 3, 4 and 5) and the flight of
pitched and batted baseballs through the air (Chap. 7) should be read by all who
wish to enhance their expertise at analysis of ball-tracking data by first understand-
ing why the baseball moves the way it does. Complete derivations have been
provided for those who wish to delve deeply into the equations, but they need not
present a persistent barrier to those readers who prefer to skim the line-by-line
mathematics and skip ahead to the conclusions. A prime example is the sensitivity
analysis presented in Chap. 7, which describes the change in batted-ball range
which follows a given change in various inputs such as batted-ball speed, batted-
ball spin or air density.

Baseball analysts past, present and future are indebted to Dr. Bahill for the
efforts he has made to make understanding of the complex underlying physics of
baseball accessible to all at each person’s chosen level of detail. His precise yet
eminently accessible explanations of the physics of the bat-ball collision and the
flight of the ball are more useful than ever in an era when MLBAM’s Statcast
system tells 30 and 100 times per second what has happened, but leaves to the
observer the task of figuring out why it happened (which is, of course, the key to
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predicting what will happen in the future, the ultimate objective of all analysts). If
you wish not only to understand the game of baseball better but to contribute to the
body of knowledge of the game of baseball, read this book carefully, and then read
it again. For the moment, knowledge of baseball physics can still differentiate an
analyst from his or her peers, but in the field of baseball analytics, no competitive
advantage persists for long.

Baseball Operations Analyst, Greg Rybarczyk
Boston Red Sox,

Creator of ESPN HR Tracker

Southborough, MA, USA
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ISLAMORADA, FLORIDA KEYS
33036
January 23, 1984

Prof. A. Terry Bahill

Electrical & Computer Engineering
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dear Mr. Bahill:

Received your letter and have also had a chance to read your research,
and I fully agree with your findings.

I always said I couldn't see a ball hit the bat except on very, very
rare occasions and that was a slow pitch thet I swung on at shoulder
height. I cam very close to seeing the ball hit the bat on those
occasions.

As to participating in your other experiments; at this time, I can't
tell you that I can comply with your regquest.

Regarding the current theories of some of the present batting coaches
(with which I absolutely disagree) to watch the ball go into the
catcher's mitt - by doing that, you don't give yourself a chance to
swing and open up properly. Try it yourself - look down at the plate
and try to make a full swing. I hope you don't throw your back out
of jointl

In any event, good luck with your projects.

Sin ely, LS

Ted Williams

Tw/shg



Preface

Collisions between baseballs, softballs and bats are complex and therefore their
models are complex. The first purpose of this book is to show how complex these
collisions can be, while still being modeled using only Newton’s principles and the
conservation laws of physics. This book presents models for the speed and spin of
balls and bats. These models and equations for bat-ball collisions are intended for
use by high school and college physics students, engineering students, the baseball
analytics community and most importantly students of the science of baseball.
Unlike models in previous books and papers, these models use only simple New-
tonian principles and the conservation laws to explain simple bat-ball collision
configurations. It is hoped that this book will help readers develop an understanding
of the modeling of bat-ball collisions. The second purpose of this book is to help
batters select or create baseball or softball bats that would be optimal for them. The
third purpose is to show what affects air density and how air density affects the
flight of the ball.
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Chapter 1 lays the groundwork for analyzing bat-ball collisions.

Chapter 2 introduces nine basic configurations of bat-ball collisions using words
and figures.

Chapter 3 starts developing the equations for these configurations. It starts with
the simple configurations having the ball collide with the center of mass of the bat.
Then it moves on to configurations that are more complex using the same equations
and development. The notation developed here will be used throughout the book.

Chapter 4 is the pinnacle of this book. It contains our most comprehensive
model. It models a collision at the sweet spot of the bat with spin on the pitch. It
has five equations and five unknowns. It develops equations for the bat and ball
linear and angular velocities after the collision in terms of those same four param-
eters before the collision. This chapter contains a sensitivity analysis of the model
that shows which parameters are the most important. It also has advice for selecting
the optimal bat. Such a bat does not have its barrel end cupped out. This chapter is
unique in the science of baseball literature. It is also self-contained. You need not
read previous chapters in order to understand it. In other words, a teacher could use
this chapter in a physics or engineering course and the students would only have to
buy this one chapter.

This is a big deal. The BaConLaw model also describes the motion of the bat
after the collision. Many models describe the motion of the ball after the collision,
but few (if any) describe the motion of the bat. When you see a batter hit a ball, do
you see the recoil of the bat? Can you describe it? Well these equations do.

Chapter 5 contains four alternative models for bat-ball collisions. Their purposes
are different and are based on different fundamental principles. The Effective Mass
model was created by physicists independent of the author of this book. Therefore,
comparisons to it are important for validating the model of Chap. 4. The second and
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third models are data-based, not theory-based. They use a different approach and
use a different type of data. The fourth model considers friction during the collision.
It is shown that this type of collision cannot be modeled thoroughly using only the
conservation laws. Our modeling technique could not handle the Collision with
Friction model because our model is only good for a point in time before the
collision and a point after the collision: it cannot handle behavior during the
collision. Chapter 4 fulfilled part of the first purpose of this book. It showed a
complex configuration for which our technique did work. Chapter 5 completed the
fulfillment of this purpose by showing a configuration for which our technique was
too simple.

Nothing in Chaps. 1, 2, 3, 4 and 5 is controversial. There are no unstated
assumptions. Important equations have been derived with at least two techniques.
In Chaps. 2, 3, 4 and 5, the equation numbers are the same. In other words, Eq. (2.3)
is the same as Eq. (3.3) is the same as Eq. (4.3) and is the same as Eq. (5.3). The
equations in Chaps. 2, 3, 4 and 5 were derived using only Newton’s principles and
the conservation laws of physics. The equations in Chap. 7 for the drag and Magnus
forces are original and are based on far more than Newton’s principles.

Chapter 6 summarizes and discusses Chaps. 1,2, 3,4 and 5. Chapters 1,2, 3,4, 5
and 6 deal with bat-ball collisions. They solve equations in closed form. There are
no approximations. Chapter 7 deals with messy real systems. It uses experimental
data and only gives approximations.

Chapter 7 contains derivations for equations governing the flight of the ball. It
shows what affects air density and how air density affects the flight of the ball. It
shows that a home run ball might go 26 feet farther in San Francisco than in Denver.
It also answers the question, “Which can be thrown farther a baseball or a tennis
ball?” This chapter can be read independently from the rest of the book.

We need people who can explain this book to baseball managers and general
managers.

£y
7
t‘((ﬂﬂ.u‘ \
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Tucson, AZ, USA A. Terry Bahill
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Chapter 1
Types of Bat-Ball Collisions

1.1 Introduction

Purpose: This book has three primary purposes: first, to create models for bat-ball
collisions using only fundamental principles of Newtonian mechanics, second, to
help a batter select or create an optimal baseball or softball bat and third, to show
what affects air density and how air density affects the flight of the ball.

1.2 Newton’s Principles

Even though Newton formulated his principles over 300 years ago, his principles
still provide the best explanations for collisions between baseballs and baseball
bats. Although they are presented as equations in this book, math phobic readers
can just skip the equations and read the words without loss of continuity. Newton’s
principles of motion can be written as follows.

I. Inertia or uniform motion. Every object either remains at rest or continues to
move at a constant velocity, unless acted upon by an external force.

Y F=0 = dv/dt=0

Note that force, velocity, acceleration, impulse and momentum are all vector
quantities, although we do not specifically mark them as such (Table 1.1). There-
fore, in the text (but not in the underlying models) we will treat ball speed and ball
velocity as the synonymous terms.

© Springer International Publishing AG 2018 1
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Table 1.1 List of variables and parameters and their abbreviations

1

Types of Bat-Ball Collisions

Typical values for a C243

Abbreviation pro stock wooden bat and a
Symbol: This ball = 1 professional major-league
table is arranged | bat =2 Description, if specific, then | baseball player
alphabetically by | before = b for configuration 2b unless Baseball
the symbol after = a otherwise noted SI® units units
Proat - knob p Angular velocity of a bat rad/s rpm
about the knob in configu-
ration 2¢
CoE Conservation of energy Joules
CoM Conservation of momentum | kg-m/s
CoAM Conservation of angular kg - m?/s
momentum
CoR Coefficient of restitution of | 0.466 0.466
a high-speed bat-ball
collision
dpar Length of a bat 0.863 m 34 inch
Ayai - cm - cop dem - cop Distance from the center of |0.119 m 4.7 in
mass (cm) to the sweet spot,
which we define as the
Center of Percussion (cop)
dypat - knob - cm dy - em Distance from the center of | 0.568 m 22.4 in
the knob to the center of
mass
yat - knob - cop dx - cop Distance from the center of |0.687 m 27.0 in
the knob to the center of
percussion
dspine - cm Distance from the batter’s 1.05m 41 in
spine to the center of mass
of a bat, an experimentally
measured value
dpat - em - end Distance from the center of |0.281 m 11.1 in
mass to the barrel end of a
bat
yai - cop -end Distance from the center of |0.162 m 6.4 in
percussion to the barrel end
of a bat
g earth’s gravitational con- 9.718 m/s>
stant (at the University of
Arizona)
Toan 1, Moment of inertia of a 0.000079 4.3 oz in*
baseball with respect to its | kg m?
center of mass
Toat-em L=1I Moment of inertia of a bat 0.0511 kg m? |2792
with respect to rotations oz in®
about its center of mass
Tbat - knob Iy Moment of inertia of a bat 0.335 kg m’ 18,315
with respect to rotations oz in®
about the knob

(continued)



1.2 Newton’s Principles

Table 1.1 (continued)

Typical values for a C243

Abbreviation pro stock wooden bat and a
Symbol: This ball = 1 professional major-league
table is arranged | bat =2 Description, if specific, then | baseball player
alphabetically by | before = b for configuration 2b unless Baseball
the symbol after = a otherwise noted SI® units units
KEpetore Kinetic energy of abatanda | 370 J
ball before the collision
KE ser Kinetic energy of abatanda | 17517
ball after the collision
KE st Kinetic energy lost or 1957
transformed in the collision
Mpanl m Mass of a baseball 0.145 kg 5.125 oz
Mpat my Mass of a baseball bat 0.88 kg 31 oz
m i = —oall bt 0.124 kg 4.4 oz
Mball + Mbat
M ¢ Mass of a portion of the bat | 0.707 kg 25 oz
in the effective mass model
My Dynamic coefficient of fric- | 0.5
tion for a baseball sliding on
a wooden bat
Tpall r Radius of a baseball 0.037 m 1.45 in
T'bat > Radius of a baseball bat 0.031 m 1.3in
Pitch speed Speed of a ball at the —41 m/s —92* mph
pitcher’s release point
Vball - before Vib Velocity of a ball immedi- —37 m/s —83* mph
ately before the collision,
90% of pitch speed
Vball - after Via Velocity of a ball after the 42 m/s 93 mph
collision, often called the
launch velocity or the bat-
ted-ball speed.
Vbat v Velocity of a bat. If a spe-
cific place or time is
intended then the subscript
may contain cm (center of
mass), ip (impact point),
before (b) or after (a).
Vpat - em - before Voemb Velocity of the center of 23 m/s 51 mph
mass of a bat before the
bat-ball collision.
Vbat - cm - after Voema Velocity of the center of 11 m/s 25 mph
mass of a bat after the
collision.
Vtpat-ip - before Vaipb Total velocity of the impact |27 m/s 60" mph
point of a bat before the
collision.

(continued)



4 1 Types of Bat-Ball Collisions

Table 1.1 (continued)

Typical values for a C243

Abbreviation pro stock wooden bat and a

Symbol: This ball = 1 professional major-league
table is arranged | bat =2 Description, if specific, then baseball player
alphabetically by |before =b for configuration 2b unless Baseball
the symbol after = a otherwise noted ST® units units
Vlyat-ip - after Vaipa Total velocity of the impact | 11 m/s 25 mph

point of a bat after the

collision.
Whall - before W1y Angular velocity of a ball +209 rad/s 42000 rpm

about its center of mass
before the collision. This
spin rate depends on the
particular type of pitch.

Whall - after Wia Angular velocity of a ball 4209 rad/s +2000 rpm
about its center of mass after
the collision

Whpat - before Wop Angular velocity of a bat 32 rad/s 309 rpm
about its center of mass
before the collision

What - after Woa Angular velocity of a bat 6 rad/s 56 rpm
about its center of mass after
the collision

Ogpine - before Angular velocity of the bat- | 21 rad/s 201 rpm

ter’s arms about the spine

“The equations of this book concern parameters right before and right after the collision, not at
other times. For example, a pitcher could release a fastball with a speed of 92 mph, by the time it
got to the collision zone it would have slowed down by 10% to 83 mph. Therefore, in our
simulations we used 83 mph for vy - pefore

"SI stands for the International System of Units

I1. Impulse and Momentum.

Applying a force changes the momentum of a body. The rate of change of
momentum is directly proportional to the force applied and is in the direction of the
applied force.

dp d(mv)

F = — = F =
dt dt - md
Stated differently, the amount of change in momentum of a body is proportional to
the impulse applied to the body and is in the direction of the impulse. An impulse
J occurs when a force F acts over an interval of time A¢, and it is given by

J = [Fdt. Since force is the time derivative of momentum, p, it follows that
At
J=Ap=mAv. Finally, for rotational systems, applying an impulsive torque

changes the angular momentum about the torque axis.



1.3 Characterizing Bat-Ball Collisions 5

I1I. Action/reaction. For every action there is an equal and opposite reaction.

1V. Restitution. The coefficient of restitution (CoR) is defined as the ratio of the
relative speeds of two objects after and before a collision. This holds whether
one object or the other is initially at rest or the objects are approaching each
other. The CoR models the energy lost in a collision.

relative speed after the collision
CoR = - —
relative speed before the collision

In this book, we will use these four principles of Newton. But more importantly,
we will also use the overarching conservation laws that state: energy, linear
momentum and angular momentum cannot be created or destroyed. These laws
are more general than the principles and apply in all circumstances. Because our
model is based on these Conservation Laws of physics applied to Baseball, we call
it the BaConLaw model.

1.2.1 Variables and Parameters

The terms parameter and variable are often used interchangeably. Nevertheless, in
this book we will try to distinguish between the terms. Our variables have equations
that give them values. Our variables contain parameters that will produce different
sets of equations. In this book, we will treat the following as variables: the
iHPUtS Vball - before » Whall - before > Vbat - cm - before > @bat - before and C0R9 the out-
PUtS Vipail-after» @ball - after > Vbat -cm - after » - @bat - after and KElosta the forces on the
ball, launch velocity, launch angle and launch spin rate. The following are param-
eters of our equations: the dimensions, mass and moment of inertia of the bat and
ball, the air density, the drag coefficient, the Magnus coefficient, the Reynolds
number, and collision speed. For each invocation of an equation, they will have a
fixed value. Sometimes we will refer to variables and parameters together as
properties of the model. The following are constants that always have the same
values: z and the earth’s gravitational constant at the University of Arizona, g.

1.3 Characterizing Bat-Ball Collisions

A collision can be elastic or inelastic. In an elastic collision (such as a steel ball, or a
superball, bouncing off a large steel plate), there is practically no energy lost or
transformed. Whereas, in an inelastic collision (such as a bat-ball collision) energy is
transformed. Most authors call this the energy lost, but it is not lost: it is merely
transformed into a different form, such as heat in the ball, vibrations in the bat,
acoustic energy in the ‘crack of the bat,” friction and permanent deformations of the
bat and ball. This book considers only inelastic collisions where kinetic energy is lost.
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1.3.1 Collision Taxonomy

There are many kinds of collisions between two rigid bodies. One kind, where the
duration of the collision is short and the area of the collision is small, is called an
impact. Bat-ball impacts are described with the following three characteristics:
dimension, location and direction. The following definitions, involving these char-
acteristics, hold before and after the collision.

1.3.1.1 Dimension

If the equations of motion can be described in a two-dimensional (2D) plane, then
the impact is planar. For example, the game of billiards is, for the most part, planar.
Otherwise, if the equations of motion require description in three-dimensional
(3D) space, then the impact is nonplanar.

1.3.1.2 Line of Impact

For an impact between two objects, there is a common tangent plane that is
perpendicular to the radius of curvature of each object at the point of contact. The
vector that is perpendicular to this plane at this point is called the /ine of impact.

1.3.1.3 Location

An impact is central if the centers of mass of both bodies are on the line of impact,
otherwise the impact is eccentric.

1.3.1.4 Direction

An impact is direct if the directions of motion of the both bodies are on the line of
impact; it is parallel if the direction of the center of mass one body is on the line of
impact and the other is on a parallel line, otherwise the impact is oblique.

These terms are useful because they predict the complexity of the equations of
motion. Planar-central-direct impacts are the simplest because all motions are along
the same axis and there are no impulsive torques. Nonplanar-eccentric-oblique
impacts have the most complicated equations. These terms also help a person to
determine the type of analysis that will be necessary to study a certain collision
configuration. If you are going to simulate a collision, then your first decisions
involve these terms, Table 1.2.
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Table 1.2 Top-level decisions for simulating bat-ball collisions

Characteristic Allowable set of values {legal values}

Dimension of analysis planar, nonplanar}

Location of collision central, eccentric}

{
{
Direction of motion {direct, parallel, oblique}
{
{

Spin on the pitch yes, no}
Point of contact center of mass, sweet spot}

1.4 Models for a Batter Swinging a Bat

In the top panel of Fig. 1.1, the batter swings the bat with translational and
rotational motions. In the middle panel, the rotation has two components, one
about the batters spine @poqy and another about the pivot point between the
hands, @y,iss- In the bottom panel, the movement of the bat before the collision is
modeled as the sum of Vpa-cm-before and a line tangent to the wyyarc, which is
centered at a pivot point between the hands. This straight-line velocity was mea-
sured in our experiments and it is called the bat speed before the collision. It is a
combination of translation and rotation. These alternative models emphasize dif-
ferent aspects of the swing of the bat. We will primarily use the bottom model.

Modeling philosophy note. Having several alternative models helps ensure that
you understand the physical system. No model is more correct than another. They
just emphasize different aspects of the physical system.

1.5 Summary

This chapter presented Newton’s laws of motion, our table of abbreviations and
nomenclature for describing collisions. It also gave three simple models for a
person swinging a bat.
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Fig. 1.1 Three different
models for the swing of
the bat

Rotation

Position A

Vbat-cm-before



Chapter 2
Configurations of Bat-Ball Collisions

2.1 Introduction

Purpose: The purpose of this chapter is to present many possible configurations of
bat-ball collisions. Then to explain the configurations that we can model and those
that we cannot.

This chapter presents several configurations of bat-ball collisions. For each of these
configurations, we model the state of the bat and the ball at a point in time right
before the collision and at another point just after the collision. We are not modeling
the behavior (1) during the collision, (2) long before the collision (the pitched ball)
or (3) long after the collision (the batted-ball). The flight of the pitch and the batted-
ball are modeled in Chap. 7.

2.2 Collisions at the Center of Mass

2.2.1 Configuration la

Configuration la is a head-on collision at the center of mass of the bat, as shown in
Fig. 2.1. Spin on the ball and bat are not considered. This simple type of analysis
was done by Bahill and Karnavas (1989). It uses Conservation of Linear Momen-
tum (CoM) and the Coefficient of Restitution (CoR).

Configurations la and 1b are planar, central, direct impacts.

The impact is planar because the governing equations are in the x-y plane. This
collision can be drawn on a flat piece of paper.

The impact is central because the line of impact passes through the centers of mass
of both the ball and the bat.

© Springer International Publishing AG 2018 9
A.T. Bahill, The Science of Baseball, https://doi.org/10.1007/978-3-319-67032-4_2
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Fig. 2.1 Configurations la and 1b are head-on collisions at the center of mass (cm) of the bat. All
figures in this book are for right-handed batters
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Fig. 2.2 Configuration lc is a collision at the center of mass (cm) of the bat, but vertically it is
above the long axis of the bat

The impact is direct because the centers of mass of both the bat and the ball are
moving along the line of impact. This means that the initial tangential (y-axis
and z-axis) velocity components are zero.

In this model, the bat does not rotate.

This type of collision would produce a line drive back to the pitcher.

2.2.2 Configuration 1b

Configuration 1b is the same as configuration la, except that it adds KE).s and
Conservation of Energy as checks on the derivations. Planar, central, direct colli-
sions (like configurations la and 1b) are called head-on collisions.

2.2.3 Configuration Ic

Configuration 1c is a collision at the center of mass of the bat along the y-axis, but
vertically it is above or below the long axis of the bat, as shown in Fig. 2.2. This is
the same as configuration la, except that there is a vertical offset between the
directions of motion of the bat and ball at the collision (the bat hits the bottom part
of the ball) and the equations allow spin on the ball. Nathan et al. (2012 and
Kensrud, Nathan and Smith 2016) have presented experimental data for the spin
on the ball after such a collision.
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Fig. 2.3 The sweet spot of the bat is centered about six inches away from the barrel end of the bat

Configuration 1c is a planar, central, oblique impact.

The impact is planar because the impact is in the x-z plane: the bat and ball will both
have x- and z-axis motion after the impact, but no motion in the y direction.
The impact is central because the line of impact passes through the centers of mass

of both the ball and the bat.
The impact is oblique because in the x-z plane the motion of the bat and ball are not
parallel to the line of impact.

This type of collision would typically produce a flyball to center field, or maybe
a pop-up. The equations for this type of impact will be considered in a future paper.
Configuration 1c will not be mentioned again in this book.

2.3 Collisions at the Sweet Spot

The term sweet spot is a layman’s term for a general area of the bat about two inches
wide and one-third of an inch high centered about six inches away from the barrel
end of the bat, as shown in Fig. 2.3. Section 3.3.1.1 gives nine possible definitions
for the sweet spot of the bat. This is nebulous. Therefore, when we are writing about
a general area of the bat, or when we are reporting on papers that used the term, we
will use the term sweet spot. However, in our figures, we need to be more specific.
Hence, we adopt the first definition in Sect. 3.3.1.1 of the sweet spot, namely the
center of percussion (cop). In our simulations, we need to specify a particular point
on the bat for the collision: therefore, we also use the center of percussion in our
simulations. Finally, in our equations we do not restrict the collision to be at any
particular point on the bat: Therefore, in equations, we state that the collision occurs
at the impact point (ip).

Configurations 2 are head-on collisions at the sweet spot of the bat, which we
define to be the center of percussion (Bahill 2004). This type of analysis was done
by Watts and Bahill (1990). Compared to Configurations 1, they move the collision
from the center of mass of the bat to the sweet spot of the bat.

2.3.1 Configurations 2a and 2b

Configuration 2a is a head-on collision at the sweet spot {center of percussion
(cop)} of the bat. Compared to Configuration la, it adds an equation based on
Newton’s second principle and it adds rotation of the bat about its center of mass.
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Fig. 2.4 Configurations 2 are collisions at the sweet spot {center of percussion (cop)} of the bat

Configuration 2a is a planar, eccentric, parallel impact.

The impact is planar because the equations are in the x-y plane. This collision can
be drawn on a flat piece of paper.

The impact is eccentric because the line of impact does not pass through the center
of mass of the bat in the x-y plane. It could be noted that the line of impact passes
through the center of mass of the bat in the x-z plane. But that is irrelevant. Once
the line of impact misses the center of mass in any plane, the impact is eccentric.

The impact is parallel because the line of impact is parallel to the x-axis, the ball is
moving along the x-axis and the bat’s center of mass is moving parallel to the
X-axis.

Configuration 2a would produce a line drive back to the pitcher.

Configuration 2b is a collision at the sweet spot of the bat. It is similar to
configuration 2a, except that it adds Conservation of Energy as a consistency
check, Conservation of Angular Momentum, spin on the ball and kinetic energy
lost. Configuration 2b is the pinnacle of this book.

For configurations 2, planar, eccentric, parallel collisions are called head-on.

For collisions 2a and 2b, which are described with Fig. 2.4, there is no torque on
the ball. Therefore, there will be no change in angular velocity of the ball. For these
head-on collisions, the angular velocity of the ball before the collision is the same as
the angular velocity of the ball after the collision.

2.3.2 Configuration 2c

Configuration 2c is a collision at the sweet spot of the bat with spin on the pitch.
Conservation of Angular Momentum about the z-axis was successfully used. It
replaces rotation about the center of mass with rotation about the knob of the bat,
identified with Sy,
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2.3.3 Configuration 2d

Configuration 2d is a collision at the sweet spot of the bat with spin on the pitch and
friction between the bat and ball, as will be shown later in Fig. 5.2. As an obvious
example of what spin can do, consider a tennis player putting sidespin on a tennis
ball, the ball certainly will move sideways when it hits the ground Cross (2011).
Likewise, when a spinning baseball collides with a bat there will be a friction force
that changes the rate of spin of the ball. This configuration uses conservation of
momentum and Newton’s second principle. It adds friction at the contact point and
a momentum moment.

2.3.4 Configuration 3

Configuration 3 is a collision at the sweet spot of the bat, but above or below the
long axis of the bat as shown in Fig. 2.5. This is the same as configuration 2b, except
it adds offset to the bat-ball collision and bat twist. Nathan et al. (2012, Kensrud,
Nathan and Smith 2016) gave experimental data for the spin of a baseball after
collisions in this type of an impact and Sawicki, Hubbard and Stronge (2003) gave
simulation results.

Configuration 3 is a nonplanar, eccentric, oblique impact.

If spin on the ball causes motion in the y-axis direction, then the impact is nonplanar
because the bat and ball will both have x-, y- and z-axis motion after the impact.

The impact is eccentric because the line of impact misses the center of mass of the
bat in the x-y plane.

The impact is oblique because in the x-z plane the motion of the bat and ball are not
parallel to the line of impact.

This type of collision would typically produce a flyball to center field. Config-
uration 3 will not be mentioned again in this book.

knob Top View cm 10
J : P I z
| - : a1 { }
_ (o 3&“ i = _VE:} C X
s Gknob-cm :l=dcm—cop= 4dcup—end.; Side View
dknob-cop b
< s «
cop

Fig. 2.5 Configuration 3 is a collision at the sweet spot (cop) of the bat, but above the horizontal
axis of the bat
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z
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Fig. 2.6 Configuration 4 is an oblique collision at the sweet spot (cop) and above the horizontal
axis of the bat

2.3.5 Configuration 4

Configuration 4 is an oblique collision at the sweet spot, but above or below the
horizontal (long) axis of the bat as shown in Fig. 2.6. This is the same as config-
uration 3, except that it adds the bat being rotated short of (or beyond) a line parallel
to the y-axis at the time of the collision.

Configuration 4 is a nonplanar, eccentric, oblique impact.

This impact is nonplanar because the bat and ball will both have x-, y- and z-axis
motion after the impact.

The impact is eccentric because the line of impact misses the center of mass of the
bat in the x-y plane.

The impact is oblique because the bat is not moving along the x-axis at the time of
impact. This means that there will be tangential (y-axis) velocity components.

This type of collision would typically produce a flyball to right (or left) field.
Configuration 4 will not be mentioned again in this book.

2.4 Summary

Abbreviations used in Table 2.1.

Abbreviation Name

CoE Conservation of energy

CoM Conservation of momentum

CoAM Conservation of angular momentum

CoR Coefficient of restitution

Cm Center of mass

KE\ s The kinetic energy lost or transformed during the collision
My Coefficient of friction

e Coefficient of moment restitution
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Table 2.2 Equations and constraints for some of the configurations

Characteristic Configuration

la | 1b |[2a [2b [2¢ [2d
Location
Is the collision at the center of mass (cm) or the impact point cm |cm |ip |ip |ip |ip
(ip)?
Equations
Conservation of linear momentum y y y |y |y
Coefficient of restitution y y y |y |y
Newton’s second principle y |y |y |y
Conservation of energy y y
Kinetic energy lost y y
Conservation of angular momentum y |y |y
Number of equations used 2 |3 |3 |5 |4 |2
Number of unknowns (outputs) 2 5 3 1
Constraints
Principles of physiology y y y |y |y |y
Is wpy used? y |y |y
IS @y, used? y 1y
IS fpac used? y
Is friction used? y

Table 2.1 shows the history of the development of the nine configurations
mentioned in this book. It also shows how the details of the models differ. In
configurations lab and 2abc spin is allowed, but it is not included in the equations,
because in Chap. 4 we show that spin has no effect in head-on collisions.

Table 2.2 shows the equations and constraints that were used in each model. For
example, configuration 2b for a collision at the sweet spot, used equations for
Conservation of Linear Momentum, Coefficient of Restitution, Newton’s second
principle, Conservation of Energy, kinetic energy lost and Conservation of Angular
Momentum. It used five equations and had five outputs (unknowns). It used
principles of physiology, spin on the ball and rotation of the bat about its center
of mass.

Modeling philosophy note. This chapter presented alternative models. They
emphasize different aspects of the physical system. In this chapter, they got more
and more complicated as they tried to cover larger and larger aspects of the real
system. This chapter sets the structure for the rest of the book. In Chap. 3, we will
follow this structure except that we will add equations. But once again, we will start
with baby steps and then get more complicated.
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Chapter 3
Equations for Bat-Ball Collisions

3.1 Introduction

Purpose: The purpose of this chapter is to start presenting the incipient equations
that we will use to model selected configurations of Chap. 2. We will allow the
reader to progress slowly through the equations: take baby steps first.

Each of the next six sections in this chapter starts with a table that describes the
inputs, outputs and equations that will be used in that section.

3.2 Collisions at the Center of Mass

For configurations 1a, 1b and lc, the model for bat motion is a linear translation of
the bat.

3.2.1 Configuration la

Configuration la is a head-on collision at the center of mass of the bat, as shown in
Fig. 1.1 (bottom) and Fig. 2.1. This section uses a linear model (meaning there is no
Wpar OF Wpg) With two equations in two unknowns (Bahill and Karnavas 1989,
1991), which are given in Table 3.1.

We will now derive the equations for a head-on (planar, central, direct) collision
at the center of mass (cm) of the bat. The abbreviations used in the following
equations are described in Table 1.1. Many authors, for example (Bahill and
Karnavas 1989, 1991; Watts and Bahill 1990, 2000; Brach 2007), have previously
studied collisions using the Newtonian concepts of

Conservation of Momentum

© Springer International Publishing AG 2018 19
A.T. Bahill, The Science of Baseball, https://doi.org/10.1007/978-3-319-67032-4_3



20 3 Equations for Bat-Ball Collisions

Table 3.1 Equations for configuration la, two equations and two unknowns

Inputs Vball - before > Vbat - cm - before
OUtPUtS (unknowns) Vball - after » Vbat - cm - after
Equations
Conservation of Linear MpallVball - before T MbatVbat - cm - before = MballVball - after + ?batVbat -
Momentum em - after
Definition of CoR CoRy. — — Vball-after — Vbat-cm-after

la —

Vball-before — Vbat-cm-before

MpallVball-before T MbatVbat-cm-before = Mball Vball-after T MlbatVbat-cm-after
and the Kinematic Coefficient of Restitution (CoR)

Vball-after — Vbat-cm-after
CORla = —

Vball-before — Vbat-cm-before

to derive the following equations for the velocities of the ball and bat after the
collision, which were presented in Bahill and Karnavas (1989):

Vball-before (mball - CORlambat) + Vbat-cm-before mbat(1 + CORla)
Mpall + Mpat

Vball-after =

Vball-before’nball(1 + CORla) + Vpat-cm-before (mbal - mballCORla)
Mpall + Mbat

Vbat-cm-after —

After rearranging, we have the canonical form

(Vbat-cm-before - Vball-before)mbat(l + CORla)

Vball-after = Vball-before T

Mpall + Mpat
- (Vbat-cm-before - Vball-before)Wlball(1 + CORIa)
Vbat-cm-after — Vbat-cm-before — T+ m
ball bat

Historically, these derivations started with the two-rotation model for the swing of a
baseball or a softball bat (Fig. 1.1, middle) and linearized the model by finding
tangents to the circular motion (Fig. 1.1, bottom). Bahill and Karnavas (1989)
expanded this model by measuring the speed of the swing for a few hundred
baseball and softball players and used this experimental data and model, to derive
equations for the batted-ball speed for each individual person.

This derivation used the following assumptions:

1. Neglect permanent deformation of the bat and ball.

2. Assume a head-on (planar, direct, central) collision at the center of mass of
the bat.

3. Ignore the change in the rotational kinetic energy of the ball: the energy stored in
the spin of the ball is less than 1% of the translational energy (Bahill and
Baldwin 2008). For a curveball hitting the sweet spot of the bat, the initial
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9]

kinetic energy stored in the bat and the ball is 375 J, of which 1.7 J is stored in the
spin of the ball: so neglecting it seems reasonable. In the section for configura-
tion 2b, we show that for a head on collision (without considering friction) there
will be no change in the ball’s angular rotation.

. Assume that there are no tangential forces during the collision.
. Neglect the moment of inertia of the batter’s arms.
. We assumed a free-end collision. The velocity of the bat reaches its peak at or

before the collision. This means that the batters hands and arms are no longer
applying acceleration forces. Hence, we neglected forces from the batters hands
during the collision.

The reason for considering collisions at the center of mass is to allow the reader

to progress slowly through the derivations. Take baby steps first. Configuration la
in Chap. 3 takes two pages of easy equations. The BaConLaw model of Chap. 4
takes 40 pages of detailed equations.

This is the end of the Bahill and Karnavas (1989, 1991) model derivation.

3.2.1.1 Alternative Bat Effective Mass Model

The bat effective mass bat-ball collision modeling community, established by
Nathan (2003), derives the batted-ball speed equation as follows. Fig. 2.1 and the
equation for conservation of linear momentum give us

MpallVball-before + MbatVbat-cm-before = Mball Vball-after 1 Mbat Vbat-cm-after

We can solve this for V- em - after

Vbat-cm-after = {Vbat-cm-before +

Mpall Vball-before — mballvball—afler}
Mpat

and substitute this into thier equation for the coefficient of restitution.

Vball-after — Vbat-cm-after

Vball-before — Vbat-cm-before
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Mpall Vball-before — Mball Vball-after
Vball-after — § Vbat-cm-before 1

Npat
e=—
Vball-before — Vbat-cm-before
o Mpall (Vball-before - Vball-after)
e(vball-before - Vbal-cm-before) = —Vpall-after — Vbat-cm-before T
Mpat
collecting the Vp1-afier terms on the left side yields
Mpall Vball-after Mpall Vball-before
Vball-after + ——————— = —Vpat-cm-before +—————————— — e(Vball-before - Vbal-cm-before)
Mpat Mpat
grouping the terms on the right
Mpall Vball-after _ Mpall Vball-before
Vball-after 1 = —Vbat-cm-before + €Vbat-cm-before 1 — €Vball-before
Mpat Mpat
Mol __
" l—e
Viall-after = +Vball-before | 7= | — Vbat-cm-before T
all-after all-before | 7 - Pbal at-cm-before 1 4 M
Mpat Mpat

Multiply top and bottom by my,, and we get the Bahill and Karnavas equation
presented above and repeated here.

Vball-before (mball - mbatCORla) - Vbat—cm-bet'()re”nbat(1 - CORla)
Mgl + Mpat

Vball-after =

iy
M(’
InSect. 5.2 we deﬁneq = <1+’;’b{/1) and then Vball - after = ¢ Vball - before T (1 + q)that - before*
of
The purpose of presenting this model here is to emphasize that it is important to
consider alternative models. If their main results agree, then that validates both
models. We will return to this bat Effective Mass model in Sect. 5.2.

3.2.2 Configuration 1b

Configuration 1b is a head-on collision at the center of mass of the bat, as shown in
Fig. 2.1. Spin on the ball and bat are not considered. This is the same as configu-
ration la, but it adds Conservation of Energy. It has three equations and two
unknowns as shown in Table 3.2.

Although an additional equation is not needed, we will now present the Conser-
vation of Energy equation as a consistency check. There is nothing in the system
that will release energy during the collision (loaded springs or explosives). The bat
swing is level so there will be no change in potential energy.

Before the collision, there is kinetic energy in the ball and the bat.
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Table 3.2 Equations for configuration 1b, which adds Conservation of Energy (CoE). It has three
equations and two unknowns

IIlplltS Vball - before s Vbat - cm - before
OUtPUtS Vball - after > Vbat - cm - after
Equations
1 1 2 1 2
Conservation of Energy 3 Mball Vpall-before T 2 Mbat Vpat-cm-before

_m

2 2\
2 (Vball-before — Vbat-cm-before ) (1 - CORlb) =
1 2 1 2
45 Mball Viai-after + 2 7MbatVoat-cm-after

Conservation of Linear Mpal1Vpall - before T MbatVbat - cm - before = MballVball - after + batVbat - cm - after
Momentum

iti Vball-after — Vbat-cm-after
Definition of CoR CoRypy = —

Vball-before — Vbat-cm-before

1 1
_ 2 2
KEvefore = 5 MballVpall-before + Emba‘vbat—cm-before

2
We modeled the bat velocity as a linear term comprising a translation and two
rotations (See Fig. 1.1). This linear velocity is what we measured in our
experiments.

1
_ 2 2
KEqfier = 5 Mball Viali-after + Embalvbat-cm-after

KEpetore = KEafter + KE ot (31)

Kinetic energy will be transformed to heat in the ball, vibrations in the bat and
deformations of the bat and ball. The Coefficient of Restitution (CoR) models the
energy that is transformed in a frictionless head-on collision between two objects.
Such a collision will have no tangential velocity components. The equation for the
kinetic energy lost in a bat-ball collision of configuration 1b (Dadouriam 1913,
Eq. (XI), p. 248; Ferreira da Silva 2007, Eq. 23; Brach 2007, Eq. 3.7) is

KE\ st = %(collision Velocity)2(1 — COR%b)

_ Mpal1Mpat
where m = ———.
Mpall + Mbag
m 2 2
KE o5t = E (Vball-before - Vbat-cm-before) (1 - C0R1b) (32)

This equation will be derived in the configuration 2b section. Combining these three
equations (KEpefores KEafier and KE,,s) yields the equation for Conservation of
Energy for configuration 1b
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Table 3.3 Simulation values ‘ SI units Baseball units
for bat-ball collisions at the

center of mass, Inputs
configuration 1b Vball - before =37 m/s —83 mph
Vbat - cm - before 23 m/s 52 mph
CollisionSpeed 135 mph
CoR 0.475
Outputs
Vball - after 40 m/s 89 mph
Vbat - em - after 11 m/s 25 mph
T,abl? 34 Cpnﬁguration 1b KE ball linear velocity before= 100
Kinetic energies, J KE bat linear velocity before= 246
KE before total= 346
KE ball linear velocity after= 114
KE bat linear velocity after= 55
KE after= 169
KE lost = 177
KE after + KE lost= 346
1 ) 1 2 m 2 2
Emballvball-before + Embalvbat-cm-before - E (Vball—before - Vbal—cm—before) (1 - CORlb)
= +1mba11V2 atter + 5MbatVeat-em-af
2 ball-after ) at ¥ bat-cm-after
(3.3)

This assumes that there is no spin on the ball or the bat, meaning that we have
ignored angular momentum. Using the numbers in Table 1.1 produces the results
shown in Table 3.3.

3.2.3 Simulation Results

Table 3.4 shows the kinetic energies for the same simulation.

A batted-ball velocity, Vpa-afiers Of 89 mph is reasonable. The fact that
KEpetore = KE apier + KE 1,5, = 346 J shows that this set of equations is consistent.
As a reality check, we note that the average kinetic energy in the swings of
28 members of the San Francisco Giants baseball team was 292 J (Bahill and
Karnavas 1991). Given human variability and the different circumstances for the
experiments, these numbers are compatible.
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Let us now consider the consequences of neglecting the spin of the ball. A
typical spin rate for a curveball is 2000 rpm. So the rotational kinetic energy in the
ball will be about 0.5/ a1 @?,1-perore = 1.7 J. This is small compared to the transla-
tional kinetic energies.

This is the end of the equations for configuration 1b. In the rest of this book, we
will use Newtonian mechanics, to derive equations for the velocity of the bat and
the ball after their collision, for collisions that do not occur at the center of mass of
the bat.

3.2.4 The Coefficient of Restitution

The Coefficient of Restitution (CoR) models the energy lost in a collision between
two objects. It is commonly defined as the ratio of the relative speed between the
two objects after a collision to the relative speed before the collision. Here are the
CoR definitions for some of our configuration types. The subscripts refer to the
collision type given in Chap. 2.

Vball-after — Vbat-cm-after

COR]a, = COR]b = —

Vball-before — Vbat-cm-before

Vball-after — Vbat-cm-after — dcm-ipwbat-afler

CORza = COR2b = —
Vball-before — Vbat-cm-before — dcm-ipwbat-before

Vball-after — Vknob-after — dknob-i ﬂ ft
Co RZC — _ P after

Vball-before — Vknob-before — dknob-ipﬂbefore

These equations will be explained later when they are used.

The CoR is used to model the energy lost during a bat-ball collision. If the CoR
were 1.0, then all the original energy would be recovered in the motion of the
system after impact. However, if there were losses due to energy dissipation or
energy storage, then the CoR would be between 0 and 1.0. In a bat-ball collision
there is energy dissipation: both the bat and the ball increase in temperature. Also
both the bat and the ball store energy in vibrations. This energy is not available to be
transferred to the ball and therefore the ball velocity is smaller.

The CoR depends on the speed of the collision. Our simulations use the follow-
ing equation for a wooden bat and a baseball CoR = 0.61-0.001 CollisionSpeed,
where CollisionSpeed (the sum of the ball speed and the bat speed) is in mph. This
equation came from unpublished data provided by Jess Heald of Worth Sports
Co. and they assume a collision at the sweet spot of the bat. Table 3.5 gives CoRs
measured in seven experimental studies.

Most of the data points for 60 mph collisions against flat walls show that
baseballs are in conformance with the rules of major league baseball. However,
for high speeds and wooden bats, there is a lot of variation in the data. Some studies
say that the CoR of a collision between a ball and flat wooden wall is higher than the
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Table 3.5 Experimental CoR values for colliding baseballs

Baseball CoR
collides CoR value at | value at
Source with Equation 60 mph 120 mph
Jess Heald President of Worth | Flat CoR =0.61 —0.001 0.550 0.490
Sports Co. 1986, reported in wooden | CollisionSpeed
Watts and Bahill (1990) wall
Crisco, Greenwald, Blume Wooden |CoR = 0.67-0.0015 0.580 0.490
and Penna (2002) bat CollisionSpeed
Fallon and Sherwood (2000) Flat 0.548
wooden
wall
Fallon and Sherwood (2000) Wooden | *At 140 mph 0.504*
bat
Drane et al. (2008) Flat 0.546
wooden
wall
Drane et al. (2008) Wooden | *At 90 mph 0.537 0.503*
bat
Major League Baseball rules | Flat *At 58 mph 0.514-0.568*
wooden
wall
Nathan et al. (2011) Flat steel | CoR =0.64 —0.0014 | 0.556 0.472
plate CollisionSpeed
Cross (2011), Fig. 8.5 Flat CoR =0.67—0.0021 |0.544 0.418
wooden | CollisionSpeed
wall

CoR of a collision between a ball and a wooden bat, and some say that it is lower.
The CoR depends on the shape of the object that the ball is colliding with. When a
baseball is shot out of an air cannon onto a flat wooden wall, most of the ball’s
deformation is restricted to the outer layers: the cowhide cover and the four yarn
shells. However, in a high-speed collision between a baseball and a cylindrical bat,
the deformation penetrates into the cushioned cork center. This allows more energy
to be stored and released in the ball and the CoR might be higher.

The CoR also depends on where the ball hits the bat, the speed of the collision,
the relative humidity, the temperature, the deformation of the objects, the surface
texture and the configuration of the collision.

Figure 3.1 shows that the CoR for baseballs is a function of the collision speed,
the temperature and the relative humidity. The experiments reported in Table 3.5
did not state the temperature or humidity in which their experiments were
performed. Therefore, the data in Table 3.5 must be taken with a grain of salt.
The data point at 140 mph, from Fallon and Sherwood (2000), was based on
140 valid collisions with major league baseballs: so it is probably accurate. It is
given to emphasize the fact that we do not know what the CoR is for high-speed
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Fig. 3.1 Coefficients of Restitution (CoR) for major league baseballs as functions of temperature,
collision speed and relative humidity. Data are from Nathan et al. (2011). The point at 140 mph is
from Fallon and Sherwood (2000). The red line shows the major league baseball rule for a collision
at 58 mph

collisions. Meaning that we cannot extrapolate the Nathan, Smith, Faber and
Russell (2011) curve to speeds above 120 mph.

Therefore, for the simulations of this book, we will use the following equation
from Worth Sports Co.

CoR = 0.61 — 0.001 CollisionSpeed

and we will be cautious about using its values for speeds above 120 mph. Using this
equation means that we are ignoring the effects of where the ball hits the bat
(we assume that it is at the center of mass or at the sweet spot), the relative
humidity, the temperature, the shape of the objects (we assume that the baseball
is colliding with a flat wooden wall), the deformation of the objects and the surface
texture (seams). We only consider major league baseballs.

Modeling philosophy note. George Box wrote, “All models are wrong, but some
are useful (Box 1981).” In this section, we wrote that the coefficient of restitution
for collisions is between zero and one, 0 < CoR < 1. But these are not theoretical
limits. For example, a baseball thrown through a window screen will have a
negative CoR. Whereas a ball that releases energy on every bounce, for example
one that is coated with an explosive or one that contains a spring and an escapement
like a watch, can have a CoR greater than one. A model is a simplified represen-
tation of a particular view or aspect of a real system. No model can represent all
views.
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Table 3.6 Equations for configuration 2a, three equations and three unknowns

Inputs Vball - before > Vbat - cm - before > @bat - before and COR
Outputs Vball - after
Equations

Conservation of Linear Momentum, MpaliVball - before T MbatVbat - cm - before = MballVball -
Eq (34) after T MlbatVbat - cm - after
Definition of CoR, Eq. (3.5)

Vball-after — Vbat-cm-after — dcm-ipwbat—afler

CORza = — 4
Vball-before — Vbat-cm-before — @cm-ip @bat-before

Newton’s Second PrinCiplev Eq (36) dcm - ipmball(vball - after — Vball -bel‘ore) = - [bal(wbal -
after — @bat - before)

3.3 Collisions at the Sweet Spot

3.3.1 Configuration 2a

Configuration 2a is a head-on (planar, parallel) collision at the sweet spot of the bat,
which we define to be the Center of Percussion (CoP). Watts and Bahill (1990)
expanded the Bahill and Karnavas (1989) model to create configuration 2a. They
introduced a third unknown, the rotation of the bat, wy,, after the collision and a
third equation, which was based on Newton’s second principle. Therefore, this
section has three equations, shown in Table 3.6, but we only solved for one
unknown. The model for bat movement is that of a translation and a rotation
about its center of mass.

This section considers collisions for impact points (ip) that are not at the center
of mass of the bat. Our objective was to derive an equation for the velocity of the
ball after its collision with the bat. We expanded the previous linear model to the
combined rotation plus translation model with the bat-ball impact point off of the
center of mass, at the sweet spot (see Fig. 2.3). There are about a dozen definitions
for the sweet spot of the bat (Bahill 2004). We will use the symbols defined in
Table 1.1. Figure 2.3 is appropriate for these collisions. In the Coefficient of
Restitution (CoR) equation, the bat speed is a combination of the bat translation
before the collision and the rotation about the center of mass caused by rotations
about the batter’s spine and wrists. This velocity is what we measured in our
experiments.

3.3.1.1 Definition of the Sweet Spot

For skilled batters, we assume that most bat-ball collisions occur near the sweet spot
of the bat, which is, however, difficult to define precisely. The horizontal sweet spot
of the bat has been defined as the center of percussion, the node of the fundamental
vibrational mode, the antinode of the hoop mode, the maximum energy transfer
area, the maximum-batted-ball speed area, the maximum coefficient of restitution
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area, the minimum energy loss area, the minimum sensation area and the joy spot.
Let us now examine each of these definitions. This section is based on Bahill and
Baldwin (2008).

1. Center of Percussion. For most collision points, when the ball hits the bat it
produces a translation of the bat and a rotation of the bat. However, if the ball
hits the bat at the center of mass there will be a translation but no rotation.
Whereas, if the bat is fixed at a pivot point and the ball hits the bat at the Center
of Percussion (CoP) for that pivot point, then there will be a rotation about that
pivot point but no translation (and therefore no sting on the hands). The pivot
point and the CoP for that pivot point are conjugate points, because if instead the
bat is fixed at the CoP and the ball hits the pivot point then there will be a pure
rotation about the CoP. The CoP and its pivot point are related by the following
equation derived by Sears et al. (1976), where the parameters are defined in
Fig. 3.1.

_ I pivot
dpivot-cop - d
Mpatpivot-cm

The CoP is not one fixed point on the bat. There is a different CoP for every
pivot point. If the batter chokes up on the bat, the pivot point (and consequently the
CoP) will change. In fact, the pivot point might even change during an individual
swing. In this section, we assume that the pivot point is 6 inches (15 cm) from the
knob, because that is where the batter’s hands are. We could assume that the pivot
point is at the end of the knob (Milanovich and Nesbit 2014). This produces a
different CoP.

There are three common experimental methods for determining the CoP of a bat.
(Method 1) Pendular motion: Hang a bat at a point 6 inches (15 cm) from the knob
with 2 or 3 feet (1 m) of string. Hit the bat with an impact hammer. Hitting it off the
CoP will make it flop like a fish out of water, because there is a translational force
and a rotational force at the pivot point. Hitting it near the CoP will make it swing
like a pendulum. (Method 2) Toothpick pivot: Alternatively, you can pivot the bat
on a toothpick through a hole at the pivot point and strike the bat at various places.
When struck near the CoP for that pivot point the toothpick will not break. At other
places, the translational forces will break the toothpick. (Method 3) Equivalent
pendulum: A third method for measuring the distance between the pivot point and
the CoP is to make a pendulum by putting a mass equal to the bat’s mass on a string
and adjusting its length until the pendulum’s period and the bat’s period are the
same. This method has the smallest variability.

2. Node of the fundamental mode. The node of the fundamental bending vibra-
tional mode is the area where this vibrational mode (roughly between 150 and
200 Hz for a wooden bat) of the bat has a null point. To find this node, with your
fingers and thumb grip a bat about 6 inches from the knob. Lightly tap the barrel
at various points with an impact hammer. The area where you feel no vibration
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and hear almost nothing (except the secondary vibrational crack or ping at 500 to
800 Hz) is the node. A rubber mallet could be used in place of an impact
hammer: the point is, the hammer itself should not produce any noise. The
antinode of the third bending vibrational mode may also be important.

. Antinode of the hoop mode. For hollow metal and composite baseball and
softball bats, there is another type of vibration, called a hoop vibration. The walls
of a hollow bat deform during a bat-ball collision. The walls are crushed in and
then bounce back out. This vibration can be modeled as a hoop or a ring around
the bat; this ring deforms like the vertical cross-sectional area of a water drop
falling from a faucet; first the water drop is tall and skinny, in free fall it is round
and when it hits the ground it becomes short and fat. The location of the antinode
of the first hoop mode is another definition of the sweet spot.

. Maximum-batted-ball speed point. There is a point on the bat that produces
the maximum-batted-ball speed. Section 4.10 shows this point to be 9.2 cm
(3.6 inches) from the center of mass, or 25.4 cm (10 inches) from the end of the
barrel. This point can be computed theoretically as follows. Start with an
equations for Vi, - afiers SUch as Eq. (4.8). Take the derivative with respect to d.
Set this equal to zero and solve for d. This value will depend on vy, - pefore Which
you obtain from, for example, Table 4.2.

. Maximum coefficient of restitution area. The coefficient of restitution (CoR)
is commonly defined as the ratio of the relative speed after a collision to the
relative speed before the collision. In our studies, the CoR is used to model the
energy transferred to the ball in a collision with a bat. If the CoR were 1.0, then
all the original energy would be recovered in the motion of the system after
impact. But if there were losses due to energy dissipation or energy storage, then
the CoR would be less than 1.0. For example, in a bat-ball collision there is
energy dissipation: both the bat and the ball increase slightly in temperature. In
one experiment, 100 bat-ball collisions in rapid succession raised the tempera-
ture of a softball by 10 °F (Duris and Smith 2004). Also both the bat and the ball
store energy in vibrations. Not all of this energy will be transferred to the ball.
(For now, we ignore the kinetic energy stored in the ball’s spin.) The maximum
coefficient of restitution area is the area that produces the maximum CoR for a
bat-ball collision. This area can be computed theoretically using Eq. (4.5) as
described in definition (4) above.

. Maximum energy transfer area. A collision at the maximum energy transfer
area transfers the most energy to the ball. This definition says that the best
contact area on the bat is that which loses the least amount of energy to bat
translation, rotation, vibration, etc. This area can be computed theoretically
using Eq. (4.11) as described in definition (4).

. Minimum energy loss area. There is an area that minimizes the total (translation
plus rotation plus vibration) energy lost in the bat. This area depends on the
fundamental bending mode, the second mode and the center of percussion. This
area can be approximated theoretically using Eq. (4.11) as described in definition (4).
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8. Minimum sensation area. For most humans, the sense of touch is most sensi-
tive to vibrations between 200 and 400 Hz. For each person there is a collision
area on the bat that would minimize these sensations in the hands.

9. Joy spot. Finally, Ted Williams and Underwood (1982) stated that hitting the
ball at the joy spot makes you the happiest. His joy spot was centered 5 inches
(13 cm) from the end of the barrel.

These nine areas are different, but they are close together. We group them
together and refer to this region as the sweet spot. We measured a large number
of bats (youth, adult, wood, aluminum, ceramic, titanium, etc.) and found that the
sweet spot was 15-20% of the bat length from the barrel end of the bat. In our Ideal
Bat Weight experiments (Bahill and Karnavas 1989, 1991) and our variable
moment of inertia experiments (Bahill 2004) for adult bats the center of the sweet
spot was defined to be 5 inches (13 cm) from the barrel end of the bat.

It does not make sense to try getting greater precision in the definition of the
sweet spot, because the concept of a sweet spot is a human concept, and it probably
changes from human to human. For one example, in calculating the center of
percussion, the pivot point of the bat must be known and this changes from batter
to batter, and it may even change during the swing of an individual batter
(Milanovich and Nesbit 2014).

Table 3.7 shows general properties for a standard Hillerich and Bradbury
Louisville Slugger wooden C243 pro stock 34-inch (86 cm) bat with the barrel
end cupped out to reduce weight. This is a different bat than that described in
Table 1.1. These modern scientific methods of calculating the center of the sweet
spot of the bat are all only a few centimeters above the true value given by Ted
Williams four decades ago.

Table 3.7 Parameters for a C243 wooden bat, assuming a pivot point 6 inches from knob

SI units Baseball units
Length 0.863 34
Mass 0.880 31
Period (sec) 1.65 1.65
enon (kg-m?) 0.335
I (kg-m?) 0.0511
Measured dypnob-cm 0.57 22.4
Measured dinob-cop 0.69 27.2
Calculated dynob-cop 0.69 27.2
Measured dpiyor-cop 0.55 21.7
Calculated dpivor-cop 0.54 21.3
Calculated dpivor-cm 0.42 16.5
Measured dyob-firstNode 0.67 26.4
Calculated dynob - cop TOr @ pivot point in the knob (cm) 0.66 26.0
Distance from the center of percussion to the end of the bat 0.162 6.38
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There is no sweet spot of the bat: however, there is a sweet area and for a 34-inch
wooden bat, it is 5—7inches (13—18 cm) from the barrel end of the bat. We presented
nine definitions for the sweet spot of the bat. Some of these definitions had a small
range of experimentally measured values (e.g. 1 cm for the node of the fundamental
vibration mode), whereas others had a large range of experimentally measured
values (e. g. 10 cm for the maximum batted-ball speed area). But of course, none of
these definitions has square sides. They are all bowl shaped. So the width depends
on how far you allow the parameter to decline before you say that you are out of the
sweet area. In general, the sweet area is about 2 inches wide. Our survey of retired
major league batters confirmed that the sweet spot of the bat is about 2 inches
(5 cm) wide. Therefore, most of the sweet-spot definitions of this chapter fall within
this region. In summary, recent scientific analyses have validated Ted William’s
statement that the sweet spot of the bat is an area 57 inches from the end of the
barrel.

For completeness, we note that the vertical component of the sweet spot is
one-third of an inch high (Baldwin and Bahill 2004). See Fig. 4.4.

3.3.1.2 Coordinate System

We will use a right-handed coordinate system with the x-axis pointing from home
plate to the pitching rubber, the y-axis points from first base to third base, and the
z-axis points straight up. A torque rotating from the x-axis to the y-axis would be
positive upward. Previously, in other papers describing only the pitch, we defined
the x-axis as pointing from the pitching rubber to home plate and then the y-axis
went from third to first base (Bahill and Baldwin 2007). Over the plate, the ball
comes downward at a 10° angle and the bat usually moves upward at about 10°, so
later the z-axis will be rotated back 10°.

3.3.1.3 Assumptions

Al. The swing of the bat is as modeled in Fig. 3.1.

A2. Collisions at the Center of Percussion will produce a rotation about the center
of mass, but no translation of the bat.

A3. For configurations la, 1b and 2a, we will not include the kinetic energy stored
in the rotation of the baseball. That is, we assume that the pitch is a knuckleball
with no spin. In later sections, we will consider a fastball and a curveball.

AS. The collision duration is short, for example, one millisecond.

A6. Because the collision duration is short and the swing is level, we can ignore the
effects of gravity during the collision.

A7. We neglect permanent deformations of the bat and ball.

A8. The Coefficient of Restitution (CoR) for a baseball wooden-bat collision at
major-league speeds starts at about 0.55 and decreases with collision speed.
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A9. For configuration 2d, Coulomb friction is a good model for a bat-ball collision.
When colliding objects slide relative to each other, a friction force is generated,
whose direction is tangential to the surface of contact and whose magnitude is
proportional to the normal force at the point of contact. We assume that during
impact the ball slides and does not roll on the bat, but the sliding halts before
separation. The dynamic coefficient of friction, y, is used to model these losses.
This is called a Coulomb model. In contrast, a Coulomb model would not be
appropriate for a pool cue hitting a ball of clay: a more complex model would be
needed. A Coulomb model will be used in configuration 2d.

A10. The dynamic coefficient of friction has been measured by Bahill at y;=0.5.

Al1l. We write about kinetic energy losses during a collision: that is the way is it is
described in the literature. However, we should call these transformations,
because, for example, kinetic energy is not lost during a collision. It might be
transformed into heat in the ball, vibrations in the bat, acoustic energy in the
“crack of the bat” or deformations of the bat or ball.

A12. In this book, we do not model the moment of inertia of the batter’s arms.

A13. Pictures of bats in this book are for wooden bats. However, the equations and
conclusions are the same for wooden and aluminum bats. The differences would
be in the mass, moment of inertia and dimensions.

Al4. We do not differentiate between day games and night games. We know that
when the shadow of the stadium is between the pitcher and the batter, the batter’s
performance is reduced. We ignore this effect.

A15. Assume free-end collisions. For impacts at the sweet spot of the bat, the
momentum transfer to the ball is complete by the time the elastic wave arrives at
the handle. Therefore, any action by the hands will affect the bat at the impact
point only after the ball and bat have separated, Nathan (2000).

3.3.1.4 Conservation of Linear Momentum

The law of Conservation of Linear Momentum states that linear momentum will be
conserved in a collision if there are no external forces. We will approximate the
bat’s motion before the collision with the tangent to the curve of its arc. For a
collision anywhere on the bat, every point on the bat has the same angular velocity,
but the linear velocities will be different, which means that v, - pefore 1S @ cOmbi-
nation of translations and rotations unique for each point on the bat. Conservation of
momentum in the direction of the x-axis states that the momentum before plus the
external impulse will equal the momentum after the collision. There are no external
impulses during the ball-bat collision: therefore, this is the equation for Conserva-
tion of Linear Momentum.

Mpall Vball-before + MbatVbat-cm-before = Mball Vball-after T ?batVbat-cm-after (34)



34 3 Equations for Bat-Ball Collisions

Tvball-aﬂer
Top View { C

*Vball-before

Wpat

Vtoat-cop-bef
Vbat-cm-before ai-cop-delore

Fig. 3.2 This figure shows Vpay - before » Vbat - cm - before » Vball - after 1A de - ip®pat, Which are used to
define the Coefficient of Restitution for configurations 2

3.3.1.5 Definition of the Coefficient of Restitution

The kinematic Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as
the ratio of the relative velocity of the two objects after the collision to the relative
velocity before the collision at the point of impact.

In our models, for a collision at any impact point (ip) we have

Vball-after — Vbat-cm-after — @em-ip@bat-after
CoRy, = — L (3.5)
Vball-before — Vbat-cm-before — dcm-ipa)bal-before

These variables and parameters are illustrated in Fig. 3.2. A note on notation:
Wypa 18 the angular velocity of the bat about its center of mass, Vpy; - cm 1S the linear
velocity of the center of mass of the bat in the x-direction and dcp-jp is the
distance between the center of mass and the point of impact. We measured
Vpat - cm - before T em - ip@bat - befores Which is experimental data that depends on our
model formulation (Fig. 3.2) and the kinematics of the person swinging the bat.

3.3.1.6 Newton’s Second Principle

Watts and Bahill (1990) derived the following equation from Newton’s second
principle that states that a force acting on an object produces acceleration in
accordance with the equation F =ma. If an object is accelerating, then its velocity
and momentum is increasing. This principle is often stated as; applying an impul-
sive force to an object will change its momentum. According to Newton’s third
principle, when a ball hits a bat at the impact point there will be a force on the bat in
the direction of the negative x-axis, let us call this —F';, and an equal but opposite
force on the ball, called F;. This force will be applied during the duration of the
collision, called z. . When a force is applied for a short period of time, it is called an
impulse. According to Newton’s second principle, an impulse will change
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momentum. The force on the bat will create a torque of —d.p,.ipf"; around the
center of mass of the bat. An impulsive torque will produce a change in angular
momentum of the bat.

_dcm-ipFltc = [bat(wbat-after - wbat-before)
Now this impulse will also change the linear momentum of the ball.
Fite = mball(vball-after - Vball-before)

Multiply both sides of this equation by d.p, -ip and add these two equations to get the
equation for
Newton’s Second principle.

dcm-ipmball(vball-after - Vball-before) - _Ibat (a)bat-after - 6')bat-before) (36)

These equations were derived for the bat-ball system. Therefore, there were no
external impulses (If the collision is at the sweet spot then the batters arms do not
apply an impulse.) Equations (3.4), (3.5) and (3.6) produce the following equation
for the batted-ball velocity (Watts and Bahill 1990, 2000). Its derivation will be
given in the next chapter.

2
Vhall-before (mballl bat —Mbatl bat COR 22 +Mpan Mipard oy, - ip)

+Vbat-cm-before mbatlbal ( 1 + C0R2a) +mbatdcm-ip(Ubat-beforelbat

Vball-after = 7 ] 7
Mialt bat +Mbacl bat +Mball Mbat @ oy -ip

or

Vball-after = Vball-before

(Vball-before — Vbat-cm-before )mballbat (1 + C0R2a) + mbatdcm-ipwbat-before]bat
o 2
cm-ip

Mpaitd bat + Mpatl bat + Mpall Mpard

The output for the above equation, for typical inputs, is given in Table 3.8.
Equations for Vi, - cm - after A0d @py - afer Were not derived by Watts and Bahill (1990,
2000). They will be derived in the next chapter.

3.3.1.7 Simulation Values Configuration 2a

Figure 1.1 (bottom) is appropriate for configurations la and 1b, if the bat
translation and rotation are measured and modeled with one vector, vy, - cm. With
a change from the center of mass to the sweet spot, again Fig. 1.1 (bottom) is
appropriate for configurations 2a and 2b, if the bat translation and rotation are
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Table 3.8 Simulation values for bat-ball collisions at the sweet spot, configuration 2a

‘ ST units (m/s, rad/s) Baseball units (mph, rpm)

Inputs

Vball - before =37 —83

Vbat - cm - before 23 52

@pat - before 32 309

Vlpat - cop - before 28 62

CoR», 0.465 0.465

Output

Vball - after ‘ 41 | 92

measured and modeled with two vectors, Vi, -cm and @y, Later it will be shown
that Fig. 1.1 (bottom) is also appropriate for configuration 2c, if the bat translation
and rotation are measured and modeled with two vectors, Vinep- trans aNd Ppar-

This is the end of the Watts and Bahill (1990, 2000) derivation, called config-
uration 2a. This chapter gave background, a literature review and the overarching
organization of bat-ball collision configurations. The next chapter will drill into
configuration 2b.

3.4 Bat Speeds

In our simulation for configuration 2a, whose results are given in Table 3.8, we used
an impact point speed of 62 mph (28 m/s). Where did that number come from?
Table 3.9 shows the results of several studies performed over the last few decades
that have measured the speed of the baseball bat. These studies are listed in
chronological order. For now, we only give the results for male collegiate and
professional baseball players. This table gives the average speed of the sweet spot,
which was usually defined as the center of percussion. This is the total speed of the
sweet spot meaning the translational plus rotational velocities.

Table 3.9 gives average sweet-spot speeds for eight studies of male college and
professional batters. When multiple bats were used, we chose the bat closest to that
described in Table 1.1. In our simulations, we used 62 mph for the total bat speed,
which we defined to be the linear plus rotational speed of the sweet spot of the bat.

Some studies in the literature filtered their data and only included selected
batters, usually the fastest. Internet sites that are trying to sell their equipment
and services typically cite bat speeds between 70 and 90 mph (3140 m/s). We
think that these numbers are bogus. The big web sites such as mlb.com, espn.com/
mlb/ and hittrackeronline.com give the leaders in many categories, meaning that
they a have selected, for example, the 20 fastest players out of 750. This would be
misleading if the reader thought that these numbers were representative of major
league batters. In Table 3.9 we give average values for sweet-spot speeds.


http://mlb.com
http://espn.com/mlb
http://espn.com/mlb
http://hittrackeronline.com
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Table 3.9 Average total sweet-spot speed before a collision, chronological order
Average speed of | Average speed of
the sweet spot, the sweet spot,
m/s mph Subjects, only males Reference
26 58 28 San Francisco giants Database of
Bahill and
Karnavas (1989)
31 69 7 selected professional baseball Welch et al.
players (1995)
30 68 19 baseball players Crisco et al.
(2002)
27 60 16 college baseball players Fleisig et al.
(2002)
26 58 7 college baseball players Koenig et al.
(2004)
32 71 One subject King et al. (2012)
27 60 10 collegiate baseball players Higuchi et al.
(2016)
28 62 700 swings of major league base- | Willman® (2017)

ball players where the outcome
was a hit

“This source did not state whether these swing speeds were at the center of mass, the sweet spot or
the impact point, but we assumed the impact point

120

Batted-ball speed (mph)
N 2 8 8 B8

o

Speed needed for a homerun

Average for major
league batters

o

10 20

30 40 50 60

Total bat speed (mph)

Fig. 3.3 Batted-ball speed as a function of total bat speed

70

80

Next, we wanted to know how these laboratory measurements compare to major
league batters in actual games. Figure 3.3 shows the batted-ball speed as a function
of the total bat speed before the collision. Using the data of Willman (2017) for the
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year 2016, we found that for 15,000 base hits in major league baseball the average
batted-ball speed was 91 mph. This figure shows that, given physiological variation,
the average major league batter has a high enough bat speed to occasionally hit a
home run, when the batted-ball has the ideal spin and launch angle. However, most
major league batters seldom hit home runs. Indeed, of the 2200 active players listed
by MLB.com half of them have never hit a home run in their major league careers.
The simulation summarized in Table 3.8 shows that a typical ball velocity
before the collision, Vpai-pefore, Of 83 mph (37 m/s) and an average bat speed,
Vlpat - cop - befores Of 62 mph (28 m/s) would produce an average batted-ball speed,
Vpat - afters Of 92 mph (41 m/s), which would not be enough for a home run in any
major league stadium. Our rule of thumb is that it takes a batted-ball speed of
100 mph (45 m/s), under optimal conditions, to produce a home run.

Most recent studies of bat speed have used multiple video cameras and com-
mercial prepackaged software to measure and compute bat speed (Willman 2017).
Unfortunately, these systems have no calibration tests. On television, the batted-
ball speed is often called the exit speed, the exit velocity or the launch speed.

The studies of Fleisig et al. (2001, 2002), Cross (2009), Milanovich and Nesbit
(2014) and King et al. (2012) decomposed the center of percussion speed into
two components: the linear translation velocity and the angular rotation velocity,
Vtpat - cop - before = Yem + dem - cop@em - before- A consensus of these four databases
produced

Vipat-cop-before = 2340.134 x 32 =28 m/s = 62 mph

which we used in our simulations.

Well, if the average bat speed is only 62 mph and, according to Fig. 3.3, a bat
speed of 68 mph is needed for a home run, then how can anyone ever hit a home
run? The answer is that 62 mph is an average for a particular batter. All of his
swings are not at that speed: some of his swings will be faster and some will be
slower. The distribution of the individual swing speeds will follow a curve as in
Fig. 3.4. This curve shows that this batter’s average bat speed is 62 mph. 34.1% of
his swings will be between 62 and 64 mph. 13.6% will be between 64 and 66 mph.

Fig. 3.4 Distribution of bat
speeds for an individual
batter (The standard
deviation was estimated
from Watts and Bahill
(2000) Fig. 43, Bahill
(2004) and unpublished
data)

136% | 34.1% | 34.1% | 13.6%
0.1% _~75 9% 2.2%50.1%

-30 -20 -l Mean 1o 20 30
Total bat speed, mph 62 64 66 68
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2.2% will be between 66 and 68 mph. Finally, the group we want, 0.1% will be
faster than 68 mph, the speed needed for a home run. Thus, for this batter, 0.1% or
one in a thousand of his swings would be fast enough to produce a home run, if he
launched the ball at an angle of 34° with backspin of 2000 rpm.

A similar analysis could be done for all batters in a group instead of just one
batter. The analysis would be the same except that the standard deviation would be
larger, as shown in Table 5.1.

3.5 Spin on the Ball

In this section, we will prove that in head-on collisions without friction
(e.g. configurations la, 1b, 2a, 2b and 2c), for a pitch of any spin, there will be
no change in the spin of the ball. First, for such collisions, simple inspection of the
figures shows that there are no torques on the ball. Therefore, there should be no
changes in the momenta.

Next, let us use the law of Conservation of Angular Momentum about the center
of mass of the bat. When the ball contacts the bat, as shown in Fig. 3.5, the ball has
linear momentum of My, Viall - before- HOWever, the ball does not know if it is
translating or if it is tied on a string and rotating about the center of mass of the
bat. Therefore, following conventional practice in physics for Conservation of
Angular Momentum analyses, we will model the ball as also rotating about the
bat’s center of mass at a distance d = d., - ip. In effect, the ball has an initial angular
momentum of MMpaidem - ipVball - before AboUt an axis through the bat’s center of mass.
In addition, it is possible to throw a curveball so that it spins about the vertical,
z-axis, as also shown in Fig. 3.5. We call this a purely horizontal curveball
(although it will still drop more due to gravity, than it will curve horizontally).
The curveball will have angular momentum of Iy,,;@pai - before abOUL an axis parallel
to the z-axis. However, this is its momentum about its center of mass and we want
the momentum about the axis through the center of mass of the bat. Therefore, we
use the parallel axis theorem, producing (/. + Mpanid®) Dbl - before-

Top View
X
(Wpat :
z
( »__-__— ..... _._‘1 C a
Voat-before Side View

Fig. 3.5 The variables and parameters Vo -before s Vbat-befores @pall» dem-ip aNd Wpy that are
used in the Conservation of Angular Momentum equation for a bat-ball collision system
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Now, the bat has an initial angular momentum of Iy, @pa; - pefore- 1t also has an
angular momentum about the bat’s center of mass due to the bat translational
momentum My dVpai - before, NOWeVer, in this case d =0 because the center of
mass of the bat is passing through its center of mass. L is the symbol used for
angular momentum. I guess all the cool letters (like F, m, a, v, I, o, d, etc.) were
already taken, so gray-bearded physicists were stuck with the blah symbol L.
Therefore, the initial angular momentum about an axis through the center of mass
of the bat is

2
Linitial = MpaVoali-befored + (Toail + Mpand” ) vali-before + Ibat@vat-before

All of these momenta are positive, pointing out of the page.

For the angular momentum after the collision, we will treat the ball, as before, as
an object rotating around the axis of the center of mass of the bat with angular
MOMENLUM, MpgiVoall - afterdem - ip- NOW we could treat the bat as a long slender rod
with a moment of inertia of nyydz, /12, where dy,, is the bat length. However, this
is only an approximation and we have actual experimental data for the bat moment
of inertia. Therefore, the bat angular momentum is /@y - afier- LHUS, our final
angular momentum about an axis through the center of mass of the bat is

2
Lﬁna/ = mballvball-afterd + (Iball + mballd )a)ball-after + Ibatwbat-after

The law of Conservation of Angular Momentum states that when no external
torque acts on an object the initial angular momentum about some axis equals the
final angular momentum about that axis.

Linitial = Leinal
2
MaiVoali-befored + (Toal + Moanid”) ali-before + Ibat@oat-before =
2
mballvball-afterd + (Iball + mballd )wball-after + Ibata)bat—after

Newton’s second law states that applying an impulsive torque changes the
angular momentum about the torque axis. Here the impulsive torque is caused by
the change in linear momenta. Therefore,

dmball(vball-after - Vball-before) = -1 bat(wbat-after - a)bat-before)

dmpan

—(Vball-after - Vball-before) }
I bat

What-after — {a)bal-before -

Let us substitute this @pa-afer into our Conservation of Angular Momentum
equation above.



3.6 Summary 41

2
M Voait-befored + (Ioatl + Mand”) Wvali-before

2
o @pat-before = MoaliVhail-atierd + (Tall + Mpad”) Opai-aeer

dmpa
+par { What-before —

(Vball-after - Vball—before) }
I bat

We want to solve this for the angular velocity of the ball after the collision, @y - after

2 —
(Iball + My d )a)ball—aﬁcr =

2
TV d+ ([ vail T My ) Opaivetore T Lo Prarcveore

ball-before

My Voaiatird — Lot Dvatvotore Aot (Voaiiatier = Voativefore)

Cancel the terms in color and we get

2 2
(Tban + Mband”) wvan-atier = (Toant + Mband”) Wpait-vefore
| Whpall-after — @ball-before |

We have now proven that for head-on collisions, for a pitch with any spin about
the z-axis, the spin of the ball before and after is the same. What about a pitch that
has spin about the z-axis and also about the y-axis, like most pitches? The collision
will not change ball rotation. As shown above, it will not change the spin about the
z-axis. We could write another set of equations for angular momentum about the
y-axis. However, the bat has no angular momentum about the y-axis, so there is
nothing to affect the ball spin about the y-axis. In conclusion, a head-on collision
between a bat and a ball will not change the spin on the ball. Some papers have
shown a relationship between the ball spin before and the ball spin after, but they
were using oblique collisions as in configuration 3 (Nathan et al. 2012; Kensrud
et al. 2017). We have not considered friction in this section. It will not be covered
until Sect. 5.5.

3.6 Summary

This chapter presented the equations for a collision at the center of mass of the bat
and for a simple collision at the sweet spot. For configurations 1a and 1b, it gave the
velocity of the bat and the ball after the collision. For configuration 1b, it also gave
the equation for the kinetic energy lost in the collision. It showed how the definition
of the coefficient of restitution would change, as our models got more complex. It
gave nine common definitions of the sweet spot of the bat. It stated general
assumptions that we will use throughout this book. It gave an equation for the
velocity of the ball after the collision. Finally, it proved that for head-on collisions
without friction @y - after = @bt - before-
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Chapter 4
The BaConLaw Model for Bat-Ball Collisions

4.1 Introduction

Purpose: The purpose of this chapter is to explain bat-ball collisions with a
complete, precise, correct set of equations, without jargon. The BaConLaw model
describes head-on bat-ball collisions at the sweet spot of the bat. It gives the speed
and spin of the bat and ball before and after collisions. It also gives advice for
selecting the optimal bat.

Configuration 2b is our most comprehensive model. It models a collision at the
sweet spot of the bat with spin on the pitch. The model for the movement of the bat
is a translation and a rotation about its center of mass. To configuration 2a, it adds
Conservation of Energy, Conservation of Angular Momentum, KE and ball spin.
It has five equations and five unknowns, which are shown in Table 4.1. It is named
the BaConLaw model because it is based on the Conservation Laws of physics
applied to Baseball. This chapter is unique in the science of baseball literature,
because no one before has derived the post-collision equations for ball speed, bat
speed and bat angular velocity from basic Newtonian principles. It is also unusual in
the field of mathematical modeling, because all of the intermediary steps are given.
This was done to increase replicability.

One of our assumptions is that the bat-ball collision is a free-end collision. That
means that the bat acts as if no one is holding onto its knob. To visualize this,
imagine that the bat is laying on a sheet of ice and you are looking down on top of it,
as in Fig. 4.1. Then a baseball slams into the bat at 80 mph. This collision produces
a translation and a rotation of the bat about its center of mass.

A note on notation. Nothing in this chapter requires the collision be at the sweet spot
of the bat. Therefore, in our equations we use the general symbol ‘ip’ to indicate the
impact point as in, dcy, - i to denote the distance between the center of mass and the
impact point. However, in our simulations we require the parameters of a particular
bat. Therefore, when presenting the results of our simulations we use ‘cop’ to
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4 The BaConLaw Model for Bat-Ball Collisions

Table 4.1 Equations for the BaConLaw model, five equations and five unknowns

Inputs Vball - before > @ball - before > Vbat - cm - before » Wbat - before and CoR
OutletS Vball - after »  @ball - after> Vbat-cm-afters  ®bat - after » and KElosl
(unknowns)

Equations

Conservation of
Energy, Eq. (4.3)

1 1 1 1

2 2 2 2 _
Embﬂll Vball-before T EI ball @pgi-before T Embalvbat-cm-bcforc + EI bat@pa-pefore —
1 1 1 1

2 2 2 2
Embﬂllvball-afler + zlbﬂ“wball-afler + Embﬂtvbal-cm-afler + Elbalwbal-afler + KEjoy

Conservation of
Linear Momen-
tum, Eq. (4.4)

MpaliVball - before T MbatVbat - cm - before = MballVball - after T MbatVbat - cm - after

Definition of CoR,
Eq. (4.5)

CoRyy = — Voall=after —Vbat=cm=after —@em=ip @bat-after
b Vball=before —Vbat=cm=before ~dem=ip Pbat=before

Newton’s Second
Law, Eq. (4.6)

dcm - ssmball(vball -after — Vball - before) = - Ibal(wbal - after — @bat - before)

Conservation of
Angular Momen-
tum, Eq. (4.7s)

Lball-before + Lbal-before = Lball-aftezr + Lbat-after

Mg Voali-befored & (Thall + Mbaid” ) ati-before + Toar@pat-before
2

= MyatVoati-atterd + (Tbatl + Moan1d” ) Watt-ater + Ioavat-afier

Tvbal-aﬂﬂ
Top View { C
(obaf Mal-belua X

Side View

Fig. 4.1 The BaConLaw model for configuration 2b

denote the center of percussion. For example, the symbol dy,-cop indicates the
distance between the center of mass and the center of percussion.

The BaConLaw model comprises a translation and a rotation of the bat about its
center of mass. Because a bat is a rigid object, every spot on a bat will have the same
linear translational velocity and the same angular rotational velocity.

Wpat-knob = Wbat-cm — Wbat-ip and

Vbat-knob-trans — Vbat-cm-trans — Vbat-ip-trans

However, each spot on the bat will have a different fotal velocity that depends on
its distance from the pivot point. We will use v¢ to indicate total velocity of the bat.
The BaConLaw model is described with this equation.
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that-ip = Vbat-cm + dcm-ipwbat

The velocity of the sweet spot is given the symbol vty - ¢s to emphasize that it is
the fotal velocity of the sweet spot meaning the vector sum of the linear transla-
tional velocity and the angular rotational velocity. If we had measured the velocity
of a bat at a particular point and that bat was being swung by a human, then we
measured the total of linear velocity and angular rotational velocity. Hence, we
measured Vi, Or Vt.m,. In our equations we use the linear components, Vo, and vep,
but in our experiments we actually measure the total velocities, V¢, and Vi,

4.2 Definition of Variables and Parameters

Inputs Vpaii-befores  @ball-befores Vbat-cm-befores  @bat-before aNd COR

Vpall - before 18 the linear velocity of the ball in the x-direction (from home plate to the
pitcher’s rubber) before the collision.

@pall - before 18 the angular velocity of the ball about its center of mass before the
collision.

Vpat - em - before 18 the linear velocity of the center of mass of the bat in the x-direction
before the collision.

Wpat-vefore 18 the angular velocity of the bat about its center of mass before the
collision.

CoR,y, is the coefficient of restitution for configuration 2b.

Outputs Vpaii-afters @ball-afters Vbat-cm-afters @bat-after ANd KEjog

Vpall - after 18 the linear velocity of the ball in the x-direction after the collision.

@pall - afier 18 the angular velocity of the ball about its center of mass after the
collision.

Vbat - em - after 1S the linear velocity of the center of mass of the bat in the x-direction
after the collision.

Wpat - after 18 the angular velocity of the bat about its center of mass after the collision.

KE\ is the kinetic energy lost or transformed in the collision.

We want to solve for Vball - after > Wball - after > Vbat - cm - after » Pbat - after and KElost'

We will use the following fundamental equations of physics: Conservation of
Energy, Conservation of Linear Momentum, the Definition of Kinematic CoR,
Newton’s Second Principle and the Conservation of Angular Momentum.
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4.2.1 Condensing the Notation for the Equations

First, we want to simplify the notation by making the following substitutions. These
abbreviations are contained in Table 1.1, but by repeating them here, it makes this
chapter independent from the rest of the book.

dcm—ip =d
Toa = I = Ien
Mpanl = Ny
Mpat = Mo

Vball-before = Vib
Vball-after = V1a
Vbat-cm-before = V2b
Vbat-cm-after = V2a
What-before = W2b
What-after = W2a

These substitutions produce the following equations
Conservation of Energy

1 1

2 2 2 2 _
Embauvball-before + EI ball Opaii-before T Embalvbat-cm-before + zl bat Dpat-before — (4 3)
1 1 1 ’

2 2 2 2
Emballvball—after + EI ball Opyi-afier T Embatvbat-cm—afler + EI bat@pyi-afier T KE o

2 2 2 2 2 2

myvy, + mavyy + Loy, = +mvi, + mavs, + Los, + 2KEey (4.3s)

In the label (4.3s), “s” stands for short.

Conservation of Linear Momentum

Assume that the bat and ball are point masses with all of their mass concentrated
at the center of mass.

Mpal]Vball-before + MbatVbat-cm-before = Mball Vball-after T MlbatVbat-cm-after (44)

mMVip -+ MaVop = M Vi + MoV, (4.4s)

Definition of the Coefficient of Restitution (CoR)

Vpall-after — Vbat-em-after — @cme-ip@bat-after
CoRyp, = — P (4.5)
Vball-before — Vbat-cm-before — dcm-ipwbat-before
Via — V2a — dwo;
CoRy, = —4 = = (4.5S)

Vib — Vap — dwap

Newton’s second principle states that applying an impulsive torque changes the
angular momentum about the torque axis. Therefore,
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dcm-ipmball(vball-after - Vball-before) - _Ibat (wbat-after - wbat-before) (46)

dmi(vig — viv) = =2 (@22 — @) (4.6s)

We have ignored the angular velocity of the ball because in Sect. 3.4 we proved that
for head-on collisions without friction @yay - afier = @pall - before-

Conservation of Angular Momentum

The initial and final angular momenta comprise ball translation, ball rotation, bat
translation and bat rotation about its center of mass.

Linitial = Leinal
mpvind + (It +md®)wyp + Lo, =

4.7s
+mivid + (I + md®) w1, + Lo, (475)

Summary of simplifications, with units

A— (Vlb — Vo — deb)(l + COsz) 1
myly + myly + m1m2d2 kgzm .S

B = (vip — vap — dway ) (1 + CoRyy) m/s
C:\l]b—Vzb—da)zb m/s

d2
D = m unitless

2
G = V2me12(1 + COsz) + wzbf’ﬂzdlz(l + COsz) kg2m3/s
G = (vab + @d)(1 + CoRyp)mal,  kg?m?/s
K = (m1[2 + moly + mli’)12d2) kg2m2
_ mynip
m=———

my + ny

Note that none of these simplifications contains the outputs Vi -afer» @pall-
after>  Vbat-cm - after » @pat-after ANd KEjo. The most useful simplifications are the
ones that are constants, independent of velocities after the collision. Using these
simplifications allows us to print these long equations in a book. These simplifica-
tions are only used during the derivations. They are removed from the output
equations. We will now use the Newtonian principles in Eqs. (4.4), (4.5) and
(46) to find Vball-after > Vbat - cm - after » and What - after-

4.3 Finding Ball Velocity After the Collision

First, we will solve for the velocity of the ball after the collision, vy - after-
Start with Eq. (4.6) and solve for the angular velocity of the bat after the
collision, w;,
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dmi(via — viv) = =L (@22 — @)

dm1
W2 = 02— —— (Via — Viv)
2

This equation was derived from Eq. (4.6). We will use it repeatedly. Next, we use
Eq. (4.5) and solve for the velocity of the bat after the collision, v;,

Via — V2a — dea
CoRyy = —————
Vib — Vap — dwap
CoR, (Vib — Vap — dwap) = —Via + V2a + dwn,

V2a = Via + CoRo(Vip — Vab — dwny) — dan,

This equation was derived from Eq. (4.5). We will use this expression repeatedly.
Next, substitute w,, into this v,, equation. We put the substitution in squiggly
braces {} to make it obvious what has been inserted.

dm1

Vaa = Via + CoRz, (Vib — vap — dwap) — d{wzb - T(Vla - Vlb)}

Let D = ™% and C = {vyp — vap — d
€ 7, an {(vib —vap @2}

v2a = Via + {D}(Via — viv) + CoRn{C} — dwny,
Vya = V]a(l +D) — V]bD + CORZbC — deb

Prepare to substitute this v,, into Eq. (4.4) by multiplying by the mass of the bat, m,
mMyvo, = {mzvla(l +D) — mayDvip + maCoRy, C — In2da)2b}
Now substitute this m,v,, into Eq. (4.4)

MVip + MaVoy, = M Via + MoV, (4.4)

nmvip + MoV, = mvi, + {mzvla(l —|—D) — myDvyy + mpCoRy, C — mgda)zb}
Put all v, terms on the left.
mivia + m2V1a<1 + D) = mVip + Mavay, + maDvyy, — maCoRyy C + madwoy,

Replace the dummy variables C and D and we get
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m|d2 m|d2
mvig +myviay 1+ =mvip + mavap + my 7 (Ve myCoRyy,
2 2
{Vib — vab — dwap } + madwny,
grouping with respect to vi,, Vip,
Vb and W7p yields
d2 d2
Via [ﬂh +my + m”;qz ] = Vip [m1 TR myCoRyy, ]
2 2

+ vapma (1 + CoRy,)  + wopmad (1 + CoRyy)

Multiply by the moment of inertia of the bat, /,.

Via [m112 + lez + m1m2d2] = Vip [mllz + m1m2d2 — MQCORZbIQ]
+ vaumpls (1 4 CoRap) 4 wopmadl (1 + CoRyy)

Rearrange

Vib (m112 —mpl, CORZb =+ mﬂ’}’l2d2) + V2me]2(1 + COsz) =+ da)mezlz(l =+ CORZb)

mllz + I’I12[2 + m1m2d2

Via =

Expanding the abbreviations gives

2
(mpandbar — Myatdbar CORap + Mg Mg d”)

Vball-after = Vball-before )
Mpallbar + Moadvar + Moall Mpacd

Mpaclvat (1 + CoRp)
Miaitlva + Madvat + Mg Mpad”
Mpatlpar (1 + CoRap)

3
Mpail bar + Mpatlvar + MoallMpacd

+ Vbat-cm-before

+ dwbat-before

This equation was derived from Egs. (4.4), (4.5) and (4.6).
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Now we want to rearrange this normal form equation into its canonical form.
Let K = (milp + maly + mymyd®)
G = V2me12(1 + COR2b) + wgmedlz(l + COsz)

Vib (m112 — mpl,CoRyp, + mlmzdz) n g
K K

Via =

K
add (vlb — V%) to the right side

Vib (m112 — mz[zCOsz + mﬂ?’lzdz) {_Vlb (m112 + lez + mlmzdz)} G
Via = {Vlb} + 4+ =
K K
Simplify
Vib (m112 — mpl,CoRyy, + m1m2d2 —ml, —mpl, — mlmzdz) G
Via = V1b + =
K
Vig = Vib + V]b(*n’lzlz ;mQICORZb) %
—vipmalr (1 + CoRyy) + G
Vie = Vi + 167712 2( < 2b)
v —_— *Vlbn’ulz(l -+ COsz) -+ Vzbmzlz(l + COR2b) -+ a)2bm2d12(1 -+ COR2b)
la = VIb

K

Finally, we get the canonical form for the linear velocity of the ball after the
collision:

(Vib — vab — dwaw) (1 + CoRap)mal,
mily + moly + mymyd®

(4.8¢c)

Via = Vib —

This equation was derived from Egs. (4.4), (4.5) and (4.6). Expanding the abbrevi-
ations gives

(Vball-before — Vbat-cm-before — wbar-befored)(l + C0R2b>mbat[bat
2
Miaitd bar + Moatd bar + Mol Moard

Vball-after = Vball-before —

Please note that nothing in this section required the collision to be at the sweet
spot of the bat. In these equations dcp,-jp could be replaced with any positive
distance to the point of impact. That is why we usually used the letter d without a
subscript.

If the collision is at the center of mass of the bat instead of at the sweet spot, then
d=d.m-ip=0. Now we replace CoR,, with CoR, and the above equation reduces
to
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(V2b — Vlb)(l + CORla)mzlz
m112 + m212
cancelling I, yields
(V2b - V]b)(l + COR]a)WZQ
my + myp
(Vball—before - Vbal—cm-before)(1 + CORla)mbal
Mpall + Mpat

Via = Vib +

Via = Vip +

Vball-after = Vball-before —

We derived this equation previously in the section entitled “Collisions at the center
of mass, Configuration 1a.” The subscripts of CoR refer to the collision configura-
tion names not to the ball and bat before and after.

4.4 Finding Bat Velocity After the Collision

As before, we start with Eq. (4.6) and solve for the angular velocity of the bat after
the collision, w,,

dmi(via — viv) = =l (w2, — @)
dm,
W2 = W2~~~ (Via = Vib)
2

We will use this expression repeatedly. Next use Eq. (4.5) and solve for the velocity
of the bat after the collision, v,,

Vig — V2a — dwaa
CoRypy = ——F——
Vib — Vap — dwap
CoRo,(Vib — Vap — dwap) = —Via + Vaa + dwn,

V2a = Via + CoRpw(Vib — Vb — dway) — dwn,

Substitute w,, into this v,, equation. I put the substitution in squiggly braces { }
to make it obvious what has been inserted.

a'm1
V2a = Via + CoRay (vip — Voo — dawgy) — d{wzb - I—(Vla - Vlb)}
2
So far, this derivation is identical to that in the previous section.
NOW, let C= Vib — V2p — da)Zb

m1d2
Voa = Vig + 7 (via — vib) + CoR{C} — wand
2

Eq. (4.8) derived in the previous section is
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(vib — vab — dwap) (1 + CoRap)mial
myly + mol, + m1m2d2

Via = Vib —

As before, let K= (m112 + WI2[2 + mlmzdz)

(vib — vap — dwap) (1 + CoRap)mal,

Via = Vib — K
Let B = (Vlb — Vyp — da)zb)(l + CORZh)

{ BWQ[Q}
Via = {Vib — K

Put this into both places for v, in the v,, equation above.

Blez
V2a = §Vib — K

+m1d2 Bmzlz
Vib — -V
12 1b K 1b

+COR2b C— a)zbd

Now multiply by K
Bm,l
v, K = {Vle _% }

m1d2 Bm,I,
+——| v, K —KT—V]bK

2
+CoR,, CK - w, dK
v, K =v,K—Bm,I,
mlal2
[v,K=Bm,I,—v, K]
I,

+

+CoR,, CK — o, dK
Cancel the terms in color
v, K =v,K—Bm,I,

mla’2
+ [_Bmzlz]

12

+CCoR,, K — w, dK

Substitute B = (v, — vap — dawnp) (1 + CoRyp)

va K - VieK — {(vip = vap — dwap) (1 4 CoRyy )yl
myd

— {1y — vap — dwp) (1 + CoRap) ymal]

I
+CCOR2b K — a)zbd[(

Let us write this as three variables vy,, Vv,,, and dw,, with their associated
coefficients.
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v2uK = vipK — vipmials (1 4+ CoRyp) + vapmalz(1 + CoRyy)
+awamadlr (1 + CoRy) — vlbmlmzdz(l + CoRy)
+vapmimad* (1 + CoRay) + wapmimad® (1 + CoRyy)
+vi,CoRoy, K — vopCoRypy K — wadK(l + COR)

Rearrange

VzaK = Vle — Vlmelz(l + COR2b) — Vlbmll’)’I2d2(1 + COsz) + VleORgb K
+ Vszng(l + COR2b) + v2bm1m2d2(l + CORZb) —vo,CoRy, K
+ a)zbmzdlz(l + COR2b) + waM]m2d3(1 + COsz) — a)zbdK(l + COR)

Now let us break up the (1 +CoR,,) terms.

V2K = vipK — vipmals — vigmal2CoRpy — vipmimad?
—Vlbm1m2d2C0R2b + V]bCOsz K+ Vme212
+vopmIlCoRy, + Vzbmlmzdz + VzbmlmdeCORZb
—Vv2pCoRK + wapmadly + wrpmadl2CoRoy
+a)2bm1m2d3 + wzbm1m2d3C0R2b — wydK
—wzbdKCOsz

Are any of these terms the same? No. OK, now let’s substitute
K = (m112 + molr + mlmzdz)
and hope for cancellations.

v, K =v, (m]12 +m,l, + m‘mzdz)— Vi, —vym,1,CoR,,
—vmiyd® = v mm,d’CoR,, +v,,CoR,, (m]]2 +m,l, + m]mzdz)
+vy iy L, + vy, [L,CoR,, +vymm,d” +vymm,d”CoR,,
—,,CoR,, (mll2 +m,l, + mlmzdz)
@y, dl, + @ym,dl,CoR,, + @y mm,d’ -, (m,a']2 +mydl, + m,m2d3)
—ay, (mydl, +mdl, )CoR,,
The terms in color cancel, leaving
VzaK = vlbm112(1 + COR2b )
“+Vop (—m112C0R2b + molr + mlmzdz)
— a)gbmldlz(l + COsz)

Continuing this simplification
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distribute the second term and add — v, m /, + v, m 1,
v, K =+v,m I, (1+CoR, ) —v,mI,CoR, (v, mI, +v,ml, }+v,ml, + \)2bm1m20/2 —aw,mdl,(1+CoR,,)
=V Vo), L, (1+CoRy ) + v, m [, +vym, I, + Vmelmzd2 —aw,mdl,(1+CoR,,)
=y, =V )M, (1+ CoR, ) + v, K — w, mdl,(1+ CoR,)
=V, K+, = vy, )mI,(1+ CoR, )~ c, mdl,(1+ CoR,,)

Finally divide by K to get the velocity of the bat after the collision in canonical
form.

(Vlb — Vo — da)zb)(l + COsz)mllz
(mllz + molr + mlmzdz)

Voa = Vop +

This equation was derived from Egs. (4.4), (4.5), (4.6) and (4.8). Expanding our
abbreviations, we get

Vbat-cm-after — Vbat-cm-before

+ (Vball—before — Vbat-cm-before — wbal—befored)(l + C0R2b>mballl bat

Miaitlva + Malva + Mg Mpad”
(4.9)

We can change this into our normal form by first combining the two terms over one
common denominator.

S (mllz + mayly + m1m2d2) (vib — vab — dawap ) (1 4+ CoRap )y 1,
(m112 +maly + m1m2d2) (m112 + mply + mlm2d2)
vy (mily + maly + mymad®) + (vip — vay — doay) (1 + CoRoy)mi 15
(ml]2 + maply + mlmzdz)

and then simplifying

. Vap (—m112C0R2b + mpl, + mlmgdz) =+ V]bm1[2(1 + COsz) — a)gbmldlz(l =+ CORQb)

Voa =
¢ (m|12+m212+m1m2d2)

Expanding our abbreviations, we get

Mpandpai (1 + CoRay)

2
Myaitlbat + Moarlvat + MpanPipad )
(—mpanlbatCoRob + Miatlbar  + Mg Miad”)

Vbat-cm-after = Vball-before

~+ Vbat-cm-before )
Mialtlvat + Mbatlbat + MoanMpard

Miaitlbat (1 + CoR2p)

7
Mpaid bat + Mparlbar + MpatMpard

- da)bat-before
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4.5 Alternative Derivation of Bat Velocity After
the Collision

This time, let us start with the normal form for Eq. (4.8).

V]b(mllz — WI212 COsz + mlmzdz) + VZbWIzlz(l + CORZb) + waI’I’Izdlz(l + COR2b)

myly + maly + mymyd>

Via =

Let
C = (vib — vap — doay)
m1d2
I
0= (m112 —mply, CoRyy, + mlmzdz)
R = myly(1 + CoRy,)
S = myadIl (1 + CoRy)

D= K= (m|[2 +m2[2 + m|m2d2)

making these substitutions yields

~ vibQ + vaoR + oS
B K

la

In the previous section we used Eq. (4.5) and solved for the velocity of the bat after
the collision, v,,

V2a = Via + CoRo(Vip — Voo — dway) — dwn,

Now we need to get rid of anything with a subscript of after, like w,,. Therefore,
take Eq. (4.6) and solve for the angular velocity of the bat after the collision, @,,.

dm1
W, = { W — ?(Vla — Vib)

Now, substitute this into the above v,, equation to get

dm

1
V2a = Via + CoRa(Vip — von — dawoy) — d{wzb - T(Vla - Vlb)}
2

Vv2a = Via(1 +D) — Dvip + CoRz, (Vip — Voo — dawgy) — dwyy

Substitute vy, into this v,, equation

{Vle + VR + w2, S
V2a =

X }(1 +D) — Dviy, + CoRy, (vip — vap — dwny) — wapd
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vibQ + VvauR + @S | vipOD + vapRD + w2 SD
= +
K K
— Dvip + CoRyy (vip — vap — dway) — wan d
V2K = vipQ + vapR + @268 + visOD + vpRD + w2, SD
— DvipK + vipCoRyy K — vop, CoRyy K — a)zbdK(l + COR2b>

V2a

Collect similar terms.

V2K = vipQ + vieOD — DvipK + vipCoR2, K + vapR + vopoRD — vopCoRa, K
+ wS + wwSD — a)gbdl((l + COsz)

Now replace D, K and Q in the vy, term.

[ +(m112 —mply, CoRy, + mlm2d2>

md?
+ ! (m|12 — m212 CORZb + m1m2d2)
2
vaaK = +vip 2
m
— 11 (m112+m212—|—m1m2d2)
2

| +CoRyp (mlIZ + moly + mlmZdz) ]
+ V2b[R 4+ RD — CoR»y, K] + a)Qb{S +SD — dK(l + CoR»y) }

Simplity

V0. K = +v1bm112(1 + CORZb)
+V2b[R + RD — CoR»y, K]
+ a)zb(S + SD — dK(l + C0R2b) )

Now replace D, K, R and S.

v, K =+v,ml,(1+CoR,)

167771
md’
vy, |:+m, I, (1+ CoR, ) +m, L, (1+ CORZb)}— —CoR,, (m1, +m,I, +mm,d’ )}
2
md’ 3
+0,, | mydl,(1+ CoR,, )+ m,dI,(1+ CoRZb)}—— (mdl, +m,dl, + mm,d”)(1+ CoR,,)

2
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The terms in color cancel.

v, K =+v,, [mI,(1+CoR,)]
+Vy [+m2]2 + m]mzd2 + 177‘1172(/1’2C()RZb —CoR,, (mI, + nqud2 ):|

2
md

+a,, (1+ CORZb)[mza’l2 +mydl, —(mdl, +m,dl, + m]/112d3 )]

5

And now these terms in color cancel.

V2K = 4vip[mil2(1 + CoRyy)]
+ vp [+m212 + m1m2d2 — m1]2C0R2b]
— wamldlg(l + CORZb)

Simplity

V0. K = +vop [—mIIQCOsz + molr, + mln’l2d2]
—|—v1bm1]2(1 + COsz)
—a)2bm1d12(1 + COR)

Expanding our abbreviations gives

Mipaitlbai (1 + CoR2yp)

7
Mpailvar + Moarlvar + Moall Mpacd

Vbat-cm-after = Vball-before

2
(—mvanlvaCoRo, + Mualvar -+ Mpamyad”)
2
Mpaitdvas + Mpadbar + MpallMpacd
Mpailvat (1 + CoR )

2
Mpaitdvar + Mpadbar + MpallMpard

+ Vbat-cm-before

— d®pat-before

This is the same equation that we derived before.

4.6 Finding Bat Angular Velocity After the Collision

Now we want to find w,, (the angular velocity of the bat after the collision) in terms
of the input variables and parameters. The following equation gives the velocity of
the ball after the collision, vy, from the canonical form of Eq. (4.8).

{ (Vlb — Vop — da)Zb)(l + C0R2b)m112}
Via = §Vib — )
milr + moly + mymod

From Eq. (4.6) we solve for the angular velocity of the bat after the collision, w,,
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mld
@ = @2 == (Via — Vib)

Substitute vy, into this @,, equation

d —v, —d 1+ CoR 1 d
0, =y m, - (V= Vo, —d ) )( 0 ot ymI, Lm .
I, m I, +m,l, + mm,d I,

cancel the terms in red

—w +m_1d (Vi = Vo —d @y, )1+ CoR, )my 1,
| m L, +m,l, +mm,d’

W,
2

and finally we get

(Vlb — Vop — da)zb)(l + C0R2b)m112
mily + moly + mymyd?

Woa = Wyp + (410)

This equation was derived from Eqgs. (4.6) and (4.8). We can change this into our
normal form by first combining the two terms over one common denominator.

m L, +m, I, +mm,d’ N (Vy, = Vo, —d ey, )(1+CoRy )m I,

O = O T ml a2 I +ml a2
ml 2+m2 2+m1m2 ml 2+m2 2+m1m2

a

@, (m Ly +myl, + mm,d’ )+ (Vi — Vo ) mymyd (14 CoR) — mm,d’ o, (1+CoR,,)

2
mI, +m,I, + mm,d

Cancel duplicate terms and we get the normal form

(O3 (m112 + mol, — Wlll’i’lzd2C0R2b) + (Vlb — V2b)mln’lzd(1 + CORZb)

(1)} =
2 myly + mpl, +m1m2d2

4.7 Three Output Equations in Three Formats

We will now summarize by giving equations for V- afiers Vbat - em - after @A Dpag - after
in all three formats. First, we give the equation for the velocity of the ball after the
collision in normal form
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2
(mpandbar — Madbar CORap + Mg Mg d”)

Vball-after = Vball-before )
Mpailbat + Mpardvar + Mpall Mpacd

Madvac (1 + CoRayp)
Miaitlbar + Mbalbar + Mg Mpad”
Ml par (1 + CoRap)

2
Mpaitd bat + Mpatdbat + MpatMpard

~+ Vbat-cm-before

+ dwbal-before

in canonical form

(Vball-before — Vbat-cm-before — dwbar-before)(l + C0R2b>mbat[bat
2
Miaitl bar + Moardbar + Moall Moard

Vball-after = Vball-before —

and in reduced canonical form

(Vball—before — Vbat-cm-before — dwbal—before)(l + CORZb)

2
Miaitlvat + Moaclvat + MoanMpard
Vball-after = Vball-before — AMpatlpat

LetA =

Now, we give the equation for the linear velocity of the bat after the collision in
normal form

Miaitd bat (1 + CoR2p)

2
Mpaitvas + Mpadbar + MpallMpacd

Vbat-after = Vball-before

2
(—myaulbatCOR2, + Myl bt + Mpanmpad”)

=+ Vbat-cm-before 5
Mpatlvar + Moarlvar + MoallMpacd

Mpandvat (1 + CoR )

%)
Mpaid bac + Mpacdbar + MpaMpard

- dwbal-before

in canonical form

(Vball—before — Vbat-cm-before — dwbat—before) (1 + C0R2b)mballlbat
2
Miaitdbar + Mbaclvar + Mbanpad

Vbat-after = Vbat-before 1

and in reduced canonical form
Vbat-after = Vbat-before T Amballl bat

Finally, we give the equation for the angular velocity of the bat after the collision in
normal form
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MiaiMbad (1 + CoRap)
Miaitlvar + Miadvar + Mg Mg d”
MpanMbad (1 + CoRayp)

7
Mpaidbae + Mpadbar + MpanMpard

What-after — Vball-before

— Vbat-cm-before

2
(myaudvar + Mbadbar — MpanMoad” CoRop )

+ @hpat-before )
Mpaid bat + Mpatlvar + MpalMpacd

in canonical form

What-after — @bat-before

(Vball—before — Vbat-cm-before — dwbal—before)(1 + CORZb)mballmbatd
2
Miaitlvat + Moarlvar + Mpati Mpard

+

and in reduced canonical form
Whpat-after — Dbat-before +Amballmbald

We now want to add the equation for Conservation of Energy, Eq. (4.3).

4.8 Adding Conservation of Energy and Finding KE)

This approach, of adding Conservation of Energy to the set of bat-ball collision
equations, is unique in the science of baseball literature. From configuration 1b, we
had that before the collision there is kinetic energy in the ball and kinetic energy in
the bat.

1 1
_ 2 2
KEvefore = 5 Mball Voaii-before T Embﬂtvbat—cm—before

And after the collision, there is also kinetic energy in the ball and bat system.

1
_ 2 2
KEqfier = 5 Mball Voaii-afier + Embalvbat-cm-aﬂer

However, they are not equal. In bat-ball collisions, some kinetic energy is
transformed into heat, vibrations and deformations. This is called the kinetic energy
lost or transformed. It is modeled with the CoR.

KE st = KEpefore — KEafter

In the configuration 1b section, we stated that
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Y]

KEost-config-1o = - (collision velocity)® (1 — CoR?,)
MpallMpat

where m = ———.
Mpa + Mpat

m 2 2
KElost-conﬁg-lb = E (Vball-before - Vbal-cm-before) (1 - CORlb)

This is Eq. (3.2).

However, this equation for kinetic energy lost is not valid for the BaConLaw
model because we now also have angular kinetic energy in the rotation of the bat.
There are no springs in the system and the bat swing is level, therefore there is no
change in potential energy. Before the collision, there is kinetic energy in the bat
created by rotation of the batter’s body and arms plus the translational kinetic
energy of the ball.

1 1
_ 2 2 2 2
KEvefore = 5 Mball Vpall-before T 7 Mbat Vbat-em-before T 51 ball Dpaii-pefore + 51 bat@py-before

2 2 2
As always, @ means rotation about the center of mass of the object. The collision
will make the bat spin about its center of mass. If the collision is at the Center of
Percussion for the pivot point, then it will produce a rotation about the center of
mass, but no translation.

1 1
_ 2 2 2 2
KE fier = 5 Mball Vpati-after T 75 Mbat Vpat-em-atter T _]baua)ball-after +5 lbatwbat-aﬁer

2 2 2

KEbefore = KEafler + KElost
1 2 1 2 I 2 I 2
Emba”vball-before + Embalvbat-cm-before + E ball Dpgli-before T 5 bat Dp,-before

_1 2 V2 + l1 2 l1 2 KE

= 2mballvball-after + 2mbatvbal-cm-after ) ball Opal-after ) batWpae-after lost
In our reduced notation
1 2 1 2 1 2 1 2 1 2
MV, + zmavsy + oy, + Zlws, = —myvy,
211b 222b 211b 22 2b 21114 . |

Jrzmy/%a + 51 1w%a + EI 2w%a + KEos

The KEpefore and the KE g, are easy to find. It is the KFE).g that is hard to find.

In Sect. 3.4, we proved that for head-on collisions without friction
Wpall-before = @pall-after- L herefore, the ball spin terms in these Conservation of
Energy equations cancel resulting in


https://doi.org/10.1007/978-3-319-67032-4_3#Equ2
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2 2 2 2 2 2
0 = mvyy, + movy, + Loy, — mvy, — mav;y, — hws, — 2KEj4q
From before, we have

(vib — vap — dwgy) (1 + CoRyp)
mily + moly + mymyd®

A=

Via = vip — Amal,
Vaa = Vop +Amyl,

Wiy = wop + Amimyd

Substituting A, the linear velocity of the ball after the collision, vy,, the linear
velocity of the bat after the collision, v,, and the angular velocity of the bat after the
collision, w,, into the new Conservation of Energy equation yields
[ miviy, + mavay + Lasy, — my(vip —Am212)2
2KElost - 2 2
—mZ(VZb + Am112) — Iz(a)zb + Amlmgd)

Now we want to put this into the form that we had for Eq. (3.2) in the section for
configuration 1b. The following derivation is original. First, we expand the squared
terms.

2KE, = myvi, + myvy + Loy, —m (v: =2v Am, 1, + A’m;13)
—my(v3y + 2vy Am L, + A’ml 1) = I, (@), + 20, Amm,d + A’mim;d*)
cancel terms in the same color
2KE,, =-m(=2v,,Am,I, + A’m}I})
—my(+2v, Am I, + A*ml1}) -1, (2w, Amm,d + Azmlzmzzdz)
distribute the leading terms
2KE,, =2v,,Amm,1, — A’mmil;
—2vy Amm,l, — A’mim, I} = 2w, Amm,dl, — A’m}m;d*1,}
Rearrange

2KE o5 = 2vipAmimaly — 2vanAmyimaly — A2mimall — A2mym3l3 — 20a,Amimadl,
— A’m2m3d?l,
factor
2KEjo5 = Amimyly2(viy — van) — A2 mymaly (mily + maly + mimpd®) — 2w0Amymydl,
factor out Amimnl,

2KE\oss = Amymyl, [2(\/“3 — V2b) — A(mllz + myl, + mlmzdz) — 20)2};.61’}


https://doi.org/10.1007/978-3-319-67032-4_3#Equ2
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Substitute for A

(Vlb —Vp — da)Zb)(l +C0R2b)
mily +mpl; +m1m2d2

2KE o5 = Amymal, |:2(V1b — VZb) — { } (m112 +mol> +m1m2d2)

— 2w2bd}

2KEo5t = Amnal2[2(vip — vap) — (Vib — vab) (1 + CoRap ) + dwan (1 + CoRap ) — 220

factor (v — vap ) out of the first two terms and combine the last two terms

2KEot = Amimalz[(vip — vap) (1 — CoRap) — dwan (1 — CoRap)]

factor (1 — CoRyp)

2KE) st = Amimapla (1 — CoRap ) (vip — vap — dwap)

substitute for A

(Vib — vap — dwap ) (1 + CoRyp)
mily + moly + mymyd®

2KE o5 = { }mlmzlz(l — CORZb)

X (Vib — vap — dawnp)

I
2KE oy = ke

Vib — Vap — dwoy
m1[2+m212+m1m2d2( )

X (1 + COsz)(l — COsz)(Vlb — Vop — da)zb)

Finally we get

1 mymaly 2
2

KElost == ) (Vlb — Vop — da)Zb) (l - COsz)

2 mil, + moly, + mymyd
or

2 2
KE 1 mballmballbal(Vball-before — Vbat-cm-before — wbat-befored) (1 - C0R2b)
lost = &

2 Miailvae + Madva + Mg Mpad”
(4.11)

This is a general result for the BaConLaw model. It is original and unique.
Now for a collision at the center of mass of the bat, like configurations 1a and 1b,
d =0. Therefore,

1 mymy 2 )
KElost = 5 m (Vlb — V2b) (1 — CORlb)
When we substitute, m = i we get

my + ny
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m
KEoq =~ (vib — van)* (1 — CoR},)

This is the same as Eq. (3.2) that we gave in the Sect. 3.2.2 for configuration 1b
where we mentioned that this is an old, well-known equation that is hard to derive.

m 2 2
KElost = E (Vball—before - Vbat—cm—before) (1 - C0R1b)

Likewise, if the spin of the bat about its center of mass is zero before the collision
@y, =0, then our KE,;, equation Eq. (4.11) also reduces to that given for config-
uration 1b, Eq. (3.2).

In this section, we derived a general equation and showed that if the collision
were at the center of mass (d =0) or the bat had no spin @w,, =0, then the general
equation reduced to the simple equation of configuration 1b. We conclude that
adding an equation for Conservation of Energy to the model proved the consistency
of our set of equations.

4.9 Adding Conservation of Angular Momentum

In this section, which is almost the same as Sect. 3.5, we will prove that for a head-on
collision, without friction, for a pitch of any spin there will be no change in the spin
of the ball. To do this we will use the law of Conservation of Angular Momentum
about the center of mass of the bat. When the ball contacts the bat, as shown in
Fig. 4.1, the ball has linear momentum of #,,11Vpal - before- HOWever, the ball does not
know if it is translating or if it is tied on a string and rotating about the center of mass
of the bat. Following conventional practice in physics, we will model the ball as
rotating about the bat’s center of mass at a distance d = d.p, - jp. Therefore, the ball
has an initial angular momentum of Mpaydem - ipVball - before @boUt an axis through the
bat’s center of mass. In addition, it is possible to throw a curveball so that it spins
about the vertical, z-axis, as also shown in Fig. 4.1. We call this a purely horizontal
curveball (although it will still drop more due to gravity, than it will curve horizon-
tally). The curveball will have angular momentum of /i, 1®pai - before @DOUL aN axis
parallel to the z-axis. However, this is its momentum about its center of mass and we
want the momentum about the axis through the center of mass of the bat. Therefore,
we use the parallel axis theorem producing ([, + Maid>) Dbl - before-

The bat has an initial angular momentum of p, @y - before- 1t also has an angular
momentum about the bat’s center of mass due to the bat translation momentum
MpatVbat - before» NOWeVer, in this case d =0 because the center of mass of the bat is
passing through its center of mass. L is the symbol used for angular momentum.
I guess all the cool letters (like F, m, a, v, I, w, d, etc.) were already taken, so
old-time physicists were stuck with the blah symbol L. Therefore, the initial angular
momentum about the center of mass of the bat is


https://doi.org/10.1007/978-3-319-67032-4_3#Equ2
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Top View

(Wpat

z :

X .

Side View

Fig' 4.2 This ﬁgure shows Vball - before > Vball - after > @ball » dcm-ip and WDpat, which are used in the
Conservation of Angular Momentum equation for the BaConLaw model

Lisiia = mvipd + (I + mid*) o1, + Loy,

All of these momenta are positive, pointing out of the page (Fig. 4.2). (Remem-
ber that vy, is a negative number.)

For the final angular momentum, we will treat the ball, as before, as an object
rotating around the axis of the center of mass of the bat with angular momentum,
MpalVoall - afterdem -ip- INOW we could treat the bat as a long slender rod with a
moment of inertia of mpyds, /12, Where dyy is the bat length. However, this is
only an approximation and we have actual experimental data for the bat moment of
inertia. Therefore, the bat angular momentum iS /[, @pyq-afier- 1hus, our final
angular momentum about the center of mass of the bat is

2
Liinat = myviad + (I + md®)w1a + hon,
The law of Conservation of Angular Momentum states that when no external

torque acts on an object the initial angular momentum about some axis equals the
final angular momentum about that axis.

Linitiat = Lfinal
mvivd + (I + md*) o1, + how, = mpyviad + (I} + md*) w1, + Lo,

Previously we used Eq. (4.6), Newton’s second principle and solved for the
angular velocity of the bat after the collision, @,,.

dmi(vig — vip) = =l (@22 — @) (4.6)

dm1
Wy = § Wb — T(Vla - Vlb)

So let us substitute this into our Conservation of Angular Momentum equation
above.
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mivipd + Loy, + mopd + Loy = mvid + Loy, + mod*
dm
+ Iz{a)zb + Tl(Vn) - Vla)}
2

We want to solve this for the angular velocity of the ball after the collision, @,

2 2
-lo,-mod =-myv,d-1o,-1,0,-mo,d +my, d+],o, +dn(, —v,)
Cancel the terms in color and rearrange

o, (I, +mld2) =, +m1d2)

®1a = @1b (4.12)

Whall-after = Wball-before

For the BaConLaw model, we have now proven that for a pitch with any spin
about the z-axis, the spin before and after is the same. What about a pitch that has
spin about the z-axis and also about the y-axis, like most pitches? The collision will
not change ball rotation. As shown above, it will not change the spin about the
z-axis. We could write another set of equations for angular momentum about the
y-axis. However, the bat has no angular momentum about the y-axis, so there is
nothing to affect the ball spin about the y-axis. {We are neglecting bat swings
described as chops or uppercuts and friction. The effects of friction will be
examined in Sect. 5.5, Collision with Friction.} In conclusion, a head-on collision
between a bat and a ball will not change the spin on the ball (Table 4.2). Some
papers have shown a relationship between ball spin before and ball spin after, but
they were using oblique collisions as in configuration 3 (Nathan et al. 2012;
Kensrud et al. 2017).

4.10 Simulation Results

The Excel simulation satisfies the following checks: (1) Conservation of Energy,
(2) Kinetic energy lost, (3) Conservation of Linear Momentum, (4) Coefficient of
Restitution, (5) Newton’s second principle, namely an impulse changes momentum
and (6) Conservation of Angular Momentum. Table 4.3 shows the kinetic energies
for the same simulation.

We note that the total kinetic before (372 J) equals the kinetic energy after
(176 J) plus the kinetic energy lost (196 J). However, if we set dcp-ip =0 in the
simulation so that the impact point is at the center of mass of the bat, then Tables 4.2
and 4.3 change and produce the results of Tables 3.3 and 3.4 for configuration 1b,
where the total kinetic before (346 J) equaled the kinetic energy after (169 J) plus
the kinetic energy lost (177 J). This means that the whole BaConLaw model
(equations, simulations, sensitivity analyses, etc.) can be reduced to be appropriate
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Table 4.2 Simulation values
for bat-ball collisions at the
sweet spot, the BaConLaw
model

Table 4.3 The BaConLaw
model kinetic energies, J

69

‘ SI units Baseball units
Inputs
Vball - before —37 m/s —83 mph
Whall - before 209 rad/s 2000 rpm
Vbat - cm - before 23 m/s 52 mph
What - before 32 rad/s 309 rpm
Vlbat - cop - before 28 m/s 62 mph
Collision speed 65 m/s 145 mph
CoR5y, 0.465 0.465
Outputs
Vball - after 41 m/s 92 mph
Dball - after =®ball - before
Vbat - cm - after 11 m/s 24 mph
What - after 1 rad/s 7 rpm
KE ot 196 J
KE ball linear velocity before= 100
KE bat linear velocity before= 246
KE ball angular velocity before= 1.7
KE bat angular velocity before= 25
KE before total= 372
KE ball linear velocity after= 122
KE bat linear velocity after= 53
KE ball angular velocity after 1.7
KE bat angular velocity after= 0.01
KE after= 176
KE lost = 196
KE after + KE lost= 372

for configurations 2a, 1a and 1b by zeroing appropriate values. This is an important

validation point.

4.11 Sensitivity Analysis

This section contains equations and it can be skipped without loss of continuity.
This book is about the science of baseball. So why does it have this section on
sensitivity analysis? In order to understand the science of baseball, we make

models. In order to validate these models we do sensitivity analyses.

A second purpose of this book is to show how the batter can buy or make an
optimal baseball or softball bat. From the viewpoint of the batter, an optimum bat
would produce the maximum batted-ball velocity. The larger the batted-ball
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velocity, the more likely the batter will get on base safely (Baldwin and Bahill
2004). Therefore, we made the batted-ball velocity our performance criterion.
We will now find the sensitivity of the batted-ball velocity, Vpa-afer, With
respect to the eight model variables and parameters, namely Vpay-pefores Mball »

Ibat > Mpart C0R2b } dcm-ip > Vbat - cm - before and @pat - before- We will start with the
equation for the ball velocity after the collision, v,, Eq. (4.8).

(Vlb — Vop — wad)(l + COR2b)m212

Via = Vib — I I d2
myly + mply + myny

In order to perform an analytic sensitivity analysis we need the partial deriva-
tives of vy, with respect to the eight variables and parameters. These partial
derivatives are often called the absolute sensitivity functions.

Let
B = (V]b — Vop — a)zbd)(l + COsz)
K = (m112 + moly + mll’l‘lzdz)

Therefore,
B lel 2

Via = Vib —

The following partial derivatives with respect to the variables are easy to derive.
8vla -1 (1 + COsz)mZIQ

=1———=—""==unitless
avlb K
avla (1 + C0R2b)m2[2 .

= unitless
ava K
8vla B (1 + C0R2b)dm212
awa o K

Ovia  (vip — vap — wapd)mal
=— m/s

aCOsz K

In the above partial derivatives, units on the left and right sides of the equations
are the same. This is a simple, but important accuracy check. We perform such a
dimensional analysis on all of our equations.

For the following partial derivatives with respect to the parameters, we will need
the derivative of a quotient, defined as

‘(1) ) — ) ()

dx\g(x) l2(x)

g(x)
Using this differential equation we get the following partial derivatives.
5v1a Ka)zb(l + Cosz)mglz + 2Blzm1m%d

od — K’ s
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avla . Bm212 (12 —+ mzdz)

omi K2 m/kg - s
avla mellz

om~ k2 e

0 Bmymd*

4.11.1 Semirelative Sensitivity Functions

Now that we have the partial derivatives, we want to form the semirelative-
sensitivity functions, which are defined as

. OF
S(fza o

NOP

where NOP and the subscript 0 mean that all variables and parameters assume their
nominal operating point values (Smith, Szidarovszky, Karnavas and Bahill 2008).

SF _ OF
Sa = Salnop®0
Ve (1+CoRp)mal»
Sip =1 - (il
~V1 _ (1+C()R2b)mz[2
Sin = K Nop 2™
Vi — 1+CoRyp ) madl,
Sy — ( K) @2,
2 NOP
Vi —(Vip—vap—wad)mal
SLCIZR — (vib—vab—wapd)mals COR()
NOP
vam _ Kawon(14CoRa, ) malr +2Bmylamymad d
d = K2 0
NOP
~ Bm212(12+m2d2)
Via —
Sm? - K2 my,
NOP
oy —Bm 2
S = —>2 my
" LS I \(o) I
S‘,Vlu _ Bmﬂ:l%dz :
& (SN

Table 4.4 gives the nominal values, along with the range of physically realistic
values for collegiate and professional baseball batters, and the semirelative sensi-
tivity values computed analytically. The bigger the sensitivity is, the more impor-
tant the variable or parameter is for maximizing batted-ball velocity.

The right column of Table 4.4 shows that the most important property (the
largest value), in terms of maximizing batted-ball velocity, is the linear velocity of
the center of mass of the bat before the collision, Vi - cm - before- This 1S certainly no
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Table 4.4 Typical values and first-order sensitivities with respect to the batted-ball velocity for
the BaConLaw model

Nominal values Range of realistic values SF_ 8_F u
“ Oalyop !
Variables semirelative
and Baseball Baseball sensitivity
parameters | SI units units SI units units values
Inputs
Vball - before | —37 m/s —83 mph —27 to —40 m/s —60 to —90 mph 8
Woall -before | 209 rad/s 2000 rpm 209 + 21 rad/s 2000 =+ 200 rpm 0
Vbat - cm - 23 m/s 52 mph 23 + 5m/s 52 £ 10 mph 28
before
Wpat-before | 32 1ad/s 309 rpm 32 + 11 rad/s 300 £ 100 rpm 5
Vtoat - cop- 28 m/s 62 mph
before
Parameters
CoRyy, 0.465 0.465 £+ 0.05 25
Aem - cop 0.134 m 5.3 in 0.134 £ 0.05 m 53+2in -2
Mipyal 0.145 kg 5.125 oz 0.145 £ 0.004 kg |5.125 £0.1250z | —14
Pliyat 0.905 kg 320z 0.709-0.964 kg 25-34 oz 10
Toat-em 0.048 kg m”> | 2624 oz in> | 0.036-0.06 kg m*> | 1968-3280 oz in’ 3

surprise. The second most important property is the coefficient of restitution,
CoR,y,. The least important properties are the angular velocity of the ball, @y -
before> the distance between the center of mass and the impact point, dep, -ip, and the
moment of inertia of the bat, I,,,. The sensitivities to the distance between the center
of mass and the impact point, d., -ip, and the mass of the ball, my,;, are negative,
which merely means that as they increase the batted-ball speed decreases. Cross
(2011) wrote that in his model the most sensitive properties were also the bat speed
followed by the CoR. His sensitivity to the mass of the ball was also negative.

For this operating point {meaning the nominal values given in Table 4.4 where
dem-ip=0.134 m}, the sensitivity of the batted-ball speed with respect to the
impact point, the distance dcn,-ip, Was negative. This means that as the impact
point gets farther away from the center of mass the batted-ball speed falls off. This
is true for all values where dcp-ip > 0.1 m. For smaller values, the sensitivity
coefficient is positive. This means that there is a point of impact that produces the
maximum batted-ball speed. This is not surprising and is a well-known fact
Nathan (2003).

4.11.2 Interactions

We will now discuss interactions, or second-order partial derivatives. Once my
Mother cleaned the toilet with Clorox bleach. She was pleased with the result. The
next week she cleaned the toilet with ammonia. She was even happier. So then, she
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decided that if bleach by itself worked so well and ammonia by itself worked so
well, then surely both of them together would be wonderful. She created chloramine
gas and we had to get out of the house and spend the rest of the day in the desert,
because this gas kills people (https://www.thoughtco.com/bleach-and-ammonia-
chemical-reaction-609280). Next, don’t drink ethyl alcohol and take barbiturates
or acetaminophen (Tylenol) at the same time, unless you are trying to commit
suicide. Finally, because grapefruit juice contains furanocoumarins it increases the
absorption rate of cholesterol-lowering statins such as Zocor, which could lead to
serious side effects. Interactions can amplify or attenuate the effects of drugs and
chemicals. Now let us look at some interactions in the BaConLaw model.

aVla

amz

Vi .
and —— contains both nz, and v,
ol
5vla
aVzb

Because contains both 7, and vy,

and contains both m, and 1>,

we see that there are interactions. How important are they? To find out, let us
calculate the second-order, interaction functions for the three terms above. The first
two are easy.

azvla (1 +C0R2b)12[K—m2(12+m1d2)]

_ 1/k

avaamZ K2 / :
3

O _ (1+ CoRmmalK = hlm ma)] o

O0vo, Ol K

Here, we choose the interactions of the bat mass, the moment of inertia and the bat
speed, because they were expected to be large based on principles of physiology.
Additionally, the forthcoming discussion on optimizing the bat suggests an inter-
action between the bat mass and its moment of inertia. The above two second-order
partial derivatives were easy to calculate. However, it will take a bit more work to
get the third part of this triad. We will now derive the interaction between bat mass
and its moment of inertia, my, and I, . From before, we had

aVla _ BI, [—K + ny (]2 + mldz)]

8m2 K2

To find aiéim we must first simplify g‘—m‘z We will be dealing with I, so let us

isolate it. But first replace K in the numerator and we get
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2 OV,

Pl (m 1, +my, +mm,d’)BI, + Bm,I, (I, +md®)

2
= —B[(mll2 +myl, +mmyd’ Y1, —m,1, (I, + md’ )J

5

= —B[mllz2 + mzlz2 + mlmza'zl2 —m,l, mlmzdzlzJ

Cancel the terms in color

kP gy

om,
ov, -BmlI}
om, K
Expand B and this simplification results.
My~ =V~ @, d)(1+ CoR, ym,I;
om K’

2

Now, we will take the partial derivative of this function with respect to /5.

v, —K2Bml,+BmI;2K (m, +m,)

al,0m, K*

2Bm K[ K +1,(m,+m,)]
= o
substitute for the second K in the numerator

ZBmllzK[—{mlI2 +myl, +mmyd’ Y+ 1, (m, +m, )J
= o
ZBmllzK[fmll2 -m,l, 7m]m2d2 +ml, + m212:|
= o
cancel the terms in color
~2Bm}m,d’1,K
Tk
finally substitute B and K
2V v — yd)(1+ COsz)mlzmzdzlz

Y

la

- 1/(kg’ emes)
o1,0m, m L, +m,l, +mm,d”

This demonstrates that if we have equations for the functions, then we can do an
analytic sensitivity analysis. However, for some functions it may take some effort.
Fortunately, it takes no effort to calculate the following interaction terms using the
partial derivatives in the previous section.
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Ovia _ - (14 CoRap)mal>
avlb B K
0y, moly )
= unitless
0vi,0CoR K
and

8vla o (1 + COsz)lelz

a\/zb o K
0%v1a mal, "
= unitiess
5vzb aCOR K

These two partial derivatives are the same, but their semirelative sensitivity func-
tions will be different. Let us derive one more second-order partial derivative.

5v1a - *(Vlb — Vop — (Dzbd)(l —+ Cosz)mﬂ%

8m2 B K2
2
0 Via _ — (Vi — vap — wapd)my I3
0CoR 0Omy K?

This function does not look interesting.
Now for the above five second-order partial derivatives we can form the follow-
ing semirelative sensitivity functions for interactions.

~ (14CoRay )12 [K—my (L +md?) |
Vla p—
S = e Va2,
NOP
Qv 1+C0R2h)m2 [K*[z(/ﬂ]#’"’lz)]

S, =1 > Vo l2
vap—I2 K NOP 0" 20
Svla o —2(v1b—v2b—w2bd)(1+C0R2b)mfmzd212 I

IL,—mp, — K3 2,M2,
NOP
< maly
Vi —
v]:fCoR - vlbOCORO
NOP
and
~ mzlz
Via —
Sva_COR = T VzbOCOR()
NOP

Table 4.5 shows values for a few of the 28 possible second-order interaction
functions. They are small, which means that the model is well behaved. However,
let’s ask again, “What exactly what are interaction terms?” It means that the
numerical value of the sensitivity of a function f to parameter @ depends on the
numerical value of parameter f. Often the interaction can be seen in the sensitivity
function equations. In the BaConLaw model, the sensitivity of the batted-ball
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Table 4.5 Interaction sensitivities with respect to the batted-ball velocity for the BaConLaw
model computed numerically for +1% variable and parameter changes

Voataer WD | VoalLafier with | AV e Voall-afier R il
Interacting variables and the first the second | 4+ AVE, | with both “ Oalor ’
parameters parameter | Pparameter | gum of | parameters | Semirclative
aincreased | Bincreased | columns | increased | Sensitvity
by 1%, m/s | by 1%, m/s | 2&3 | by 1%, mys | Values
Nominal batted-ball velocity v, .. = 41.079 m/s = 91.89 mph
Viallberore iNteracting with CoR,, 41.156 41.327 41.405 14
Voattatternominat — Voattafierpertrbed TS 0.077 0.248 0.325 0.326
Voawbetore iNtEracting with CoR,, 41.361 41.327 41.610 9
Viall-after-nominal ~ Vball-after-perturbed m/s 0.282 0.248 0.530 -
Vearseroe iNteracting with m, 41156 40.942 41.017 -8
Voatan |~ Vislatierpernbed /S 0.077 -0.137 -0.060 -0.062
m,, interacting with m, 41.182 40.942 41.044 7
Vouttatier-nominal — Voallatier-pesturbed TS 0.103 -0.137 -0.034 -0.035
m,,, interacting with /7, 41.182 41.114 41.216 1
Veattas |~ Vittaterperursed VS | 0,103 0.035 0.138 0.137
Voallbefore INETaCting with vy, o1 41.156 41.361 41.438 0
Voatkatiernominat — Voattatierperumsed V5 | 0.077 0.282 0.359 0.359
d,,.. interacting with 7, 41.061 41.114 41.097 7
Vouttatiermominat — Voallatiemperunbea VS | -0.018 0.035 0.017 0.018
CoR interacting with m, 41.327 40.942 41.189 -4
Veatiat |~ Voattatierperused /S | -0.248 0.137 0.111 -0.110

velocity to the mass of the bat depends on the numeric value of the moment of
inertia of the bat, because it appears in the numerator of this sensitivity function.

*(Vlb — Vop — a)Zbd)(l =+ CORQ]_—,)H’Z]I%
K2 NoOpP

CVia —
sz = nmy,

However, from Table 4.5, the numeric value of my,,, interacting with I, is only 1,
which is smaller than the magnitude of the sensitivity of the batted-ball velocity to
the mass of the bat by itself, which is 10 (from Table 4.4), or to the magnitude of the
sensitivity of the batted-ball velocity to the moment of inertia of the bat by itself,
which is 3. Thus, this interaction is unexpectedly not important. This model has
many interactions, but fortunately, most of them are small. Interactions are hard to
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detect. And if they are big, they can ruin a system or a model. The most and least
important interaction functions of this model are shown in Table 4.5.

Can we use this information to increase bat performance? For wooden bats, it is
legal to drill a one to 2 inch hole into the barrel end of the bat up to 1% inches deep.
It is also legal to taper the last 3 inches of the barrel say from 2.61 inches (6.6 cm)
down to 1% of an inch (4.4 cm). Both of these modifications would decrease the bat
weight, decrease the moment of inertia about the center of mass and would move
the sweet spot closer to the knob. According to Table 4.4, the first two changes
would decrease batted-ball speed, whereas the third would increase batted-ball
speed. So, what is the right answer? We will not know until after we consider
physiology in Sect. 4.12.4.

To complete this section on sensitivity analysis, we will now look at interactions
using semirelative sensitivity functions that we will compute with numerical
techniques instead of using the analytic equations derived above.

4.11.2.1 Empirical (or Numerical) Sensitivity Analysis

If you do not have equations for the model’s functions {or for heuristic reasons as in
this section}, then you can do a sensitivity analysis using numerical techniques. To
estimate values for the second-partial derivatives we start with

O’f (a0, Bo) _ fla, ) — f(ao, ) — fla, fo) + (a0, Bo)

~
~

0adp Aadp

from Bahill and Madni (2017). Then for a 1% increase in the parameter a
Aa=0.01ag. Likewise A =0.01p,. Therefore

0°f(a0,B0) _ fla.p) —flao, B) — fla By) +f (a0, Bo)
adp 0.01ay x 0.015,

Now to get the semirelative-sensitivity function we multiply this mixed-second-
partial derivative by the nominal values oy and f,

. o°*f
;oo
Sat = Gaop| PP
NOP
& flap)—f(a0.B)—f(aBo)+f (a0.fo)
Sap = 0.[())lag><0401(}30 — NOPO’Oﬂo

Sy~ |f(@,B) = f (a0, B) = f (a. Bo) + (0. o) |yop * 10,000

We used this equation to get the values for Table 4.5. The column heading Avy, ;. sier
+Avfau_aﬁer means find the change in the velocity of the batted ball after the
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perturbation of the parameter @ and add to it the change in the velocity of the ball
after the perturbation of the parameter /.

To form Table 4.5, we defined the performance criterion, chose a pair of
parameters, changed the first by a fixed percentage, calculated the new performance
criterion value, calculated the change in the performance criterion value, reset the
first parameter, changed the second parameter by the same percentage, calculated
the new performance criterion value, calculated the change in the performance
criterion value, added these two changes in the performance criterion values
together, then changed both parameters at the same time, calculated the perfor-
mance criterion value and calculated the change in the performance criterion value.

Let us now explain the top rows of Table 4.5, the interaction of vy, -
before With CoRyyp,. If you increase vy - pefore (€all it ) by 1%, then the batted-ball
speed will increase from its nominal value of 41.079 m/s to its modified value of
41.156 m/s. This is an increase of 0.077 m/s. Now reset Vi, - pefore and then increase
CoR,y, (call it ) by 1%. The batted-ball speed will increase from the nominal value
to its modified value of 41.327 m/s. This is an increase of 0.248 m/s. Therefore,
these two changes, when performed individually, produce a total change of 0.325,
highlighted in blue in Table 4.5. Now comes the important part, if you increase both
Vpall - before ald CoR,p, by 1% at the same time, then the batted-ball speed increases
from the nominal value to a modified value of 41.405 m/s. This is an increase of
0.326 m/s, highlighted in green in Table 4.5. Therefore, we can see that when these
two changes are performed individually they produce a total increase of 0.325,
however when performed together they produce an increase of 0.326 m/s. The whole
is greater than the sum of its parts.

However, interactions do not always accentuate changes. Here is one that goes in
the opposite direction; the interaction of my,,, with Ip,.Suppose that someone tells
you that Eq. (4.8) shows that increasing bat mass will increase batted-ball speed.
And someone else tells you that increasing the bat moment of inertia will increase
your batted-ball speed. Well if each is good by itself why not do both? For instance,
if you increase my,,, by 1%, then the batted-ball speed will increase from its nominal
value of 41.079 m/s to its modified value of 41.182 m/s. This is an increase of
0.103 m/s. Now reset my,, and then increase I, by 1%. The batted-ball speed will
increase from the nominal value to its modified value of 41.114 m/s. This is an
increase of 0.035 m/s. Therefore, these two changes, when performed individually,
produce a total increase of 0.138, highlighted in blue. Now comes the important part,
if you increase both m,,, and Iy, by 1% at the same time, then the batted-ball speed
increases from the nominal value to a modified value of 41.216 m/s. This is an
increase of 0.137 m/s, highlighted in green. Therefore, we can see that when these
two changes are performed individually they produce a total increase of 0.138,
however when performed together they produce an increase of 0.137 m/s. The whole
is less than the sum of its parts. Here the interaction attenuates the individual
changes.

Figure 4.3 shows the interaction of bat weight and bat moment of inertia (Mol)
graphically. If you increase the bat weight, the batted-ball speed goes up. However,
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Interaction of bat mass and bat moment of inertia
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Fig. 4.3 Interaction of bat mass and bat moment of inertia

these six curves do not have the same shape. The curve for Mol = 0.4 starts to
saturate at the right side. However, the curve for Mol = 0.9 does not flatten as much
at the right side. This is the effect of the interaction. The difference in spacing of the
lines is not the effect of the interaction. That is merely the dependence of the batted-
ball speed on the moment of inertia (Mol).

4.11.2.2 Humidor

The Colorado Rockies store their baseballs in a humidor at 50% relative humidity
and 70 °F. According to the appendix of Chap. 7, on a typical July afternoon in
Denver the relative humidity is 34% and the average temperature is 88 °F.
According to Alan Nathan (http://www.baseballprospectus.com/article.php?
articleid=13057), compared to storing the balls in an outdoor environment, storing
the balls in a humidor decreases the coefficient of restitution (because the balls get
mushier, see Fig. 3.1) and increases the weight of the balls (because they absorb
water): these two effects reduce the number of home runs in this stadium by 25%.
However, this conclusion must be tempered, because there is an interaction
between changes in CoR and my,,;. You cannot just say if CoR| , vpa - ager] and if
Mpait] > Voall - after ) therefore ifCoR |and nipay T , then voay - ater! -


http://www.baseballprospectus.com/article.php?articleid=13057
http://www.baseballprospectus.com/article.php?articleid=13057
http://www.baseballprospectus.com/article.php?articleid=13057
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In our sensitivity analysis, we increased the value of each parameter by 1%. It
told us that if you increase the CoR by 1%, then, according to the bottom rows of
Table 4.5, the batted-ball speed will increase from its nominal value of 41.079 m/s
to its modified value of 41.327 m/s. This is an increase of 0.248 m/s. Now if you
increase my, by 1%, then the batted-ball speed will decrease from the nominal
value to its modified value of 40.942 m/s. This is a decrease of 0.137 m/s.
Therefore, these two changes, when performed individually, produce a total
increase of ().111, highlighted in blue in Table 4.5. Now comes the important

part, if you increase both CoR and m,; by 1% at the same time, then the batted-ball
speed increases from the nominal value to a modified value of 41.189 m/s. This is
an increase of (),1 10 m/s, highlighted in green. Therefore, when these two changes

are performed individually they produce a total increase of ().111, however when
performed together they produce an increase of only (),1 10 m/s. The whole is less

than the sum of its parts. Here the interaction attenuates the changes.

Therefore, to do a proper analysis, you cannot change one parameter, change the
other parameter and then add the results. In your simulation, you must change both
parameters at the same time.

Okay, that is the end of the sensitivity analysis of the BaConLaw model. Now
let’s go back to Coors Field in Denver. From the appendix in Chap. 7, we see that
the relative humidity on an average July afternoon in Denver is 34%. Alan Nathan
wrote that the difference between the 50% relative humidity in the humidor and the
outside air in Denver causes a decrease of 3.7% in the CoR and an increase of 1.6%
in the weight of the ball.

When those changes (and the parameters of a perfect home run ball) are put into
the BaConLaw model and the Ball in Flight model of Chap. 7, we find that
decreasing the CoR by 3.7% percent decreases the range of the batted ball by
8.5 feet. Increasing the weight of the ball by 1.6% increases the range of the batted
ball by 1.6 feet. Summing these two changes gives a range decrease of 6.9 feet. But
if the changes are made in the models at the same time the result is a range decrease
of 9.1 feet. The whole is greater than the sum of its parts.

The Arizona Diamondbacks are considering installing a similar humidor in their
stadium in Phoenix. Therefore, we should do a similar analysis for them. In
addition, we should also do an analysis for the temperature differences. We should
analyze the effects of storing the balls at 70 °F versus storing them at the average
daily high temperature in Phoenix in July of 104 °F. But of course, this depends on
where the balls are stored if they are not in a humidor and whether the dome is open
or closed.

Interactions can amplify or attenuate the effects of drugs, chemicals and param-
eters in a model. Interactions mean that the numerical value of the sensitivity of a
function to a particular parameter depends on the numerical value of another
parameter. In a well-behaved model, the interaction terms are small. If the interac-
tion terms are large, they warn that in your analysis you cannot change one
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parameter, change another and then sum the results. You must have a model and
simulation. And in it you must change both parameters at the same time.

4.11.3 Accuracy

An important point about this section is that we computed the semirelative sensi-
tivity values with two techniques: analytic equations and empirical (or numerical)
estimates. To compare these two techniques, we note that using the empirical
method the estimate for the +1% increment of the bat speed is

Svla _ (1 + CORQb)mZIQ

v Vap, = 28.203485470404
2b K

NOP

Whereas, the analytic method as in Table 4.4 gives the following exact value.

(1 + CORQb)leIZ
vab K

Via —

Vb, = 28.203485470399
NOP

With a 10% change in the variable values, the match would be worse. With a 0.1%
change, the match would be better.

This analysis has only included the equations of physics. Later, in Sect. 4.12, we
will consider principles of physiology. In that section we will recommend that
batters choose lightweight end-loaded bats.

A second purpose of this book is to show how the batter can buy or make an
optimal baseball or softball bat. From the viewpoint of the batter, the batted-ball
speed is the most important output. The larger it is the more likely the batter will get
on base safely (Baldwin and Bahill 2004).

4.11.4 Optimizing with Commercial Software

We applied What’sBest!, a subset of the LINGO solvers, to our model. We
constrained each variable to stay within physically realistic limits under natural
conditions. Such values are shown in Table 4.4. We have previously gotten good
results using this technique when doing empirical sensitivity analyses (Bahill et al.
2009). Then we asked the optimizer to give us the set of values that would
maximize batted-ball speed. The optimizer applied a nonlinear optimization pro-
gram. Surprisingly, the results were almost the same as in Table 4.4! That is, for
variables and parameters with positive sensitivities, the optimizer chose the max-
imum values. For variables and parameters with negative sensitivities, the
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Table 4.6 Sensitivities with nominal and optimal values for the variables and parameters

Semirelative sensitives of the batted-ball velocity with | With nominal With optimal
respect to values values
Inputs

Vball - before 8 12
Dhall - before 0 0
Vbat - cm - before 28 36
Wpat - before 5 5
Parameters

CoR5y, 25 32
e -ip -2 +0.4
Mpall —14 —13
Mpay 10 12

/ bat -cm 3 1

optimizer chose the minimum values. For the parameter with both negative and
positive sensitivities, the optimizer chose the optimal value.

Using all of the optimal values at the same time increased the batted-ball speed

from 92 to 117 mph (41-52 m/s). Using this optimal set of values changed the
sensitivities, as shown in Table 4.6.

1.

The numerical sensitivity values mostly increased. This is a direct result of the
definition of the semirelative sensitivity function where the partial derivative is
multiplied by the variable or parameter value. If the variable or parameter value
increases, then the sensitivity value also increases.

. The rank order stayed the same except that the output became more sensitive to

the linear velocity of the ball before the collision, Vi - pefore than to the mass of
the bat, my,,. In the optimal set, both of these sensitivities increased, but because
the value of the linear velocity of the ball before the collision, Viay - pefore changed
from 37 to 40 m/s (Table 4.4) whereas the value of the mass of the bat, m,,, only
changed from 0.905 to 0.964 kg, the change in the sensitivity to the linear
velocity of the ball before the collision, Vi, - pefore PECamMe bigger.

. The optimizer found the optimum value for d.p, - i, to be 10 cm (4 inches). Above

this value, the semirelative sensitivity was negative; below this value, the
sensitivity was positive. This is important. We could have found the same result
if we had used the partial derivative of the batted-ball velocity with respect to the
distance d, taken the derivative with respect to d and set it equal to zero, as in the
following derivation by Ferenc Szidarovszky. We start with Eq. (4.8).

(vib—vab—wand) (14+CoRap ) mal,

Via = Vib = myL+mply+mymyd®

Let

E =(1+CoRy,)m>l> and F = ml, + m»l,
Then

Via = Vip — (vib—va—wand)E

F+mmyd®
and the
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numerator of {aa‘(;} =—-E [mlmdeCUZb + 2mimad(viy — vap) + szb]

Now we set this equal to zero and solve for diax - velocity-

2
_ (vib—van) (vib—vap) myly+myl
dmax—velocity - + B

w2 w2 mymy

The batted-ball velocity has a maximum or a minimum at this value of d. To
determine which, we derive the second partial derivative. The

2

2
0 Via w2

od*
This is negative. Therefore, this value of d.y, -, gives the maximum batted-

ball velocity, not the minimum. Using the numbers in Table 1.1, the optimum
value for dep,-ip 18 9.2 cm (3.6 inches).

numerator of <0

F
=-E [m%mgd%% — 2Fmymadway, —

This all means that the sensitivity analysis is robust. Its results remain basically
the same after big changes in the variables and parameters.

We then tried a different optimization technique. Instead of constraining each
variable to stay within realistic physical limits, we allowed the optimizer to change
each variable by at most +10% and then give us the set of values that maximized
batted-ball speed. The numerical values of the sensitivities changed but the rank
order stayed the same, except for vy, - pefore AN M2y, just as it did with the realistic
values technique.

Both empirical sensitivity analyses and optimization can constrain each variable
to stay within specified realistic physical limits or change each variable by a certain
percentage. Both techniques gave the same results. However, we prefer the former
technique (Babhill et al. 2009).

We found an interesting relationship between the sensitivity analyses and opti-
mization: they gave the same results! Because the interaction terms are small, for
variables and parameters with positive sensitivities, the optimizer chose the max-
imum values and for variables and parameters with negative sensitivities, the
optimizer chose the minimum values. Where the sensitivity function had both
positive and negative slopes, it found the optimal value. But of course, this finding
is not original. Sensitivity analyses are commonly used in optimization studies
(Choi and Kim 2005). These studies typically apply sensitivity analysis after
optimization. They try to find values or limits for the objective function or the
right-hand sides of the constraints that would change the decisions. However, in our
study, we applied optimization after the sensitivity analysis and we had only one
variable in our objective function. Therefore, our problem was much simpler than
sensitivity analyses in the optimization literature.
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4.12 Optimizing the Bat

The following paragraphs are from Major League Baseball 2016 Official Baseball
Rules.
3.02 (1.10) The Bat

(a) The bat shall be a smooth, round stick not more than 2.61 inches in diameter at
the thickest part and not more than 42 inches in length. The bat shall be one
piece of solid wood.

(b) Cupped Bats. An indentation in the end of the bat up to 1% inches in depth is
permitted and may be no wider than 2 inches and no less than 1 inch in
diameter. The indentation must be curved with no foreign substance added.

(c) The bat handle, for not more than 18 inches from its end, may be covered or
treated with any material or substance. Any such material or substance that
extends past the 18-inch limitation shall cause the bat to be removed from
the game.

(d) No colored bat may be used in a professional game unless approved by the
Rules Commiittee.

The second purpose of this chapter is to help the batter acquire an optimal
baseball or softball bat. Therefore, we ask, “How can the batter use these sensitivity
and optimization results to select or customize a bat that would be optimal for him
or herself?” First, it is no surprise that the speed of the bat before the collision is the
most important variable in Table 4.4. Its effect is shown in Fig. 4.4, where the slope
of the line is the absolute sensitivity.

For Fig. 4.4, we computed the batted-ball velocity with Va1 - after = Voall -
before — AMpadpa and then we plotted the batted-ball speed as a function of the
total bat speed before the collision. Remember that A is not a constant, it depends on

The most important variable
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Fig. 4.4 Total bat speed before the collision is the most important variable in the BaConLaw
model
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the three inputs: the velocity of the ball and bat before the collision and the angular
velocity of the bat before the collision. Figure 4.4 is for a pitch speed of 92 mph {a
ball speed at contact of 83 mph}. This figure shows that an average hit is not a
home run.

For decades, Little League coaches have taught their boys to practice and gain
strength so that they could increase their bat speeds. They also said that it is very
important to reduce the variability in the bat swings: Every swing should be the
same. “Don’t try to kill the ball.” Given our new information, we now recommend
that Little League coaches continue to give the same advice: increase bat speed and
reduce variation. Practice is the key. Dave Baldwin (2007), a major-league pitcher
with a career 3.08 ERA, sagaciously wrote that if you lose a game, don’t blame the
umpire or your teammates; just go home and practice harder.

Using the Bat Chooser™, our measurements of over 300 batters showed that
variability in the speed of the swing decreases as level of performance increases
from Little League to Major League Baseball. For major leaguers the bat speed
standard deviations were typically around £5% (Bahill and Karnavas 1989), which
is a small value for physiological data.

The variable with the second largest sensitivity is the coefficient of restitution
(CoR). The CoR of a bat-ball collision depends on where the ball hits the bat. It is
difficult, but absolutely essential, for the batter to control this. He or she must
consistently hit the ball with the sweet spot of the bat. The CoR also depends on the
manufacturing process. The NCAA now measures the Bat-ball Coefficient of
Restitution (BBCOR) for sample lots coming off the manufacturing line. Therefore,
amateurs are all going to get similar BBCORs. However, a lot can still be done with
the CoR for aluminum and composite bats during their useful life. For example, the
performance of composite bats typically improves with age because of the break-in
process; repeatedly hitting the bat eventually breaks down the bat’s composite
fibers and resinous glues. ‘Rolling’ the bat also increases its flexibility. Rolling
the bat stretches the composite fibers and accelerates the natural break-in process
simulating a break-in period of hitting, say, 500 balls.

For wooden bats, the batter could try to influence the CoR by choosing the type
of wood that the bat is made of. Throughout history, the most popular woods have
been white ash, sugar maple and hickory. However, hickory is heavy, so most
professionals now use ash or maple. A new finding about bat manufacturing is that
the slope of the grain has an effect on the strength and elasticity of the bat. As a
result, the wood with the straightest grain is reserved for professionals and wood
with the grain up to five degrees off from the long-axis of the bat is relegated to
amateurs. Furthermore, the manufacturer’s emblem is stamped on the flat grain side
of ash bats so that balls collide with edge grain as shown in Fig. 4.1, whereas the
emblem is stamped on the edge grain side of maple wood bats (Fig. 4.6) because
they are stronger when the collision is on the flat grain side.

The next largest sensitivities are for the mass of the ball and its velocity before
the collision, m,,; and vy - pefore- HOWever, the batter can do nothing to influence
the mass of the ball or the ball velocity before the collision, so we will not
concern ourselves with them. Likewise, the batter has no control over the ball
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SPIN, @Wpay-pefores SO We Will ignore it when selecting bats. Now if this discussion
were being written from the perspective of the pitcher (Baldwin 2007), then these
three parameters would be important.

The next most important variable in Table 4.4 is the mass of the bat. Therefore,
we will now consider the mass and other related properties of the bat. The
sensitivity of the batted-ball speed with respect to the mass of the bat is positive,
meaning (if everything else is held constant) as the mass goes up so does the batted-
ball speed. However, the heavier bat cannot be swung as fast (Bahill and Karnavas
1989) due to the force-velocity relationship of human muscle, to be discussed in
conjunction with Fig. 4.10. This physiological relationship was not included so far
in the equations of this book because so far we only modeled the physics of the
collision, notwithstanding physiology trumping physics in this case. The net result
of physics in conjunction with physiology is that lighter bats are better for almost all
batters (Bahill 2004).

Perhaps due to this general feeling that lighter bats are better, many professionals
have ‘corked’ their bats. This reduced the mass of the bat, but because it also
reduced the moment of inertia, it did not improve performance significantly
(Nathan et al. 2011). However, it is now legal to make a one to two-inch diameter
hole 1% inches deep into the barrel end of the bat (see Fig. 4.6). Most batters do this
because it makes the bat lighter with few adverse effects. Other bat parameters that
are being studied include the type of wood (density, strength, elasticity, straightness
of the grain, etc.) and type of materials (density, strength, elasticity, break-in
period, durability, type of Al alloy, etc.).

For an aluminum bat, some batters reduce the thickness of the barrel wall by
shaving the inside of the barrel. This reduces the bat mass, which according to
physics and physiology, increases batted-ball speed. However, it also reduces
durability.

The distance between the center of mass of the bat and the center of percussion,
dem - cop» 18 the next most important parameter. We presumed that the sweet spot of
the bat was the center of percussion (CoP) of the bat. All batters try to hit the ball on
the sweet spot of the bat. To help the batter, manufacturers of aluminum bats have
been moving the CoP by moving the internal weight from the end of the bat toward
the knob http://www.acs.psu.edu/drussell/bats/cop.html. It is now an annual game
of cat and mouse. The manufacturers move the CoP, then the rule makers change
their rules, then the manufacturers move . .. etc.

Finally, we come to the moment of inertia of the bat, I, with respect to its
center of mass. The physics, revealed with the sensitivity analysis, states that
although the moment of inertia is one of the least important parameters, it would
help to increase its value. More importantly, physiology showed that all batters
would profit from using end-loaded bats (Bahill 2004). There are many ways to
change the moment of inertia of a bat. Most aluminum bats start with a common
shell and then the manufacturer adds a weight inside to bring the bat up to its
labeled weight. The important question then becomes, where should the weight be
added? It has been suggested that they add weight in the knob because this would
comply with the regulations and would not decrease bat speed (Brancazio 1984).


http://www.acs.psu.edu/drussell/bats/cop.html
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However, the results of Bahill (2004) show that they should add the weight in the
barrel end of the bat making it end-loaded. This will increase the batted-ball speed.
For a wooden bat, the moment of inertia can be changed by cupping out the barrel
end, adding weight to the knob or tapering the barrel end. Assume that the end of the
barrel of a bat is only used to “protect” the outside edge of the plate: no one hits
home runs on the end of the bat. Therefore, a professional could use a bat where the
last 3 in (7 cm) were tapered from 2.61 inches (6.6 cm) down to 1% of an inch
(4.4 cm). This would decrease the weight, decrease the moment of inertia about the
knob and would move the center of mass closer to the knob: these changes would
probably benefit some batters. However, such modifications would have to be
individually designed for each player.

At this point, it may be useful to reiterate that an end-loaded bat is not a normal
bat with a weight attached to its end. Adding a weight to the end of a normal bat
would increase both the weight and the moment of inertia. This would not be likely
to help anyone. In the design and manufacture of an end-loaded bat, the weight is
distributed so that the bat has a normal weight but a larger than normal moment of
inertia.

Most people can feel the difference between bats with different moments of
inertia. A coach with the San Francisco Giants showed us a legal custom-made bat
with a large moment of inertia created by leaving it with a huge knob. He presumed
that his players already understood the influence of bat weight on bat speed so he
was trying to expand their understanding to the influence of bat moment of inertia
on the speed of the swing. One of our University of Arizona softball players
described our biggest moment of inertia bat with, “That’s the one that pulls your
arms out.”

Our best generalization is that almost all batters would profit from using
end-loaded bats. Smith and Kensrud (2014) concluded their paper with “Batter
swing speed decreased with increasing bat inertia, while ... the hit-ball speed
increases with bat inertia.”

Summarizing, these are the most important factors for understanding bat perfor-
mance: bat weight, the coefficient of restitution, the moment of inertia and charac-
teristics of humans swinging the bats.

In the future, once equations for configurations 3 and 4 have been derived, it will
be possible to see how the coefficient of friction uy affects the batted-ball speed.
Then we will be able to decide if the varnish or paint on the bat should be made
rough-textured or smooth, or if bats should be rubbed or oiled in order to improve
bat performance.

To confuse fielders who are trying to locate the bat-ball collision point, perhaps
the bat could be painted white with random thin red lines. Or perhaps bats could be
painted pink supposedly to promote breast cancer research.

Figure 4.5 shows the outcomes of hitting the ball at different places on the front
surface of the bat. We used this figure to help determine the size of the vertical
sweet spot of the bat. It also suggests that putting oil on the top surface of the bat
could change short pop-ups (sure outs) into innocuous foul tips.
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Fig. 4.5 Direction of the batted-ball as a result of hitting the ball at different places on the front
surface of the bat

Fig. 4.6 Bat with an
exaggerated flat front side.
The actual size of the flat
surface should not be larger
than the vertical sweet spot,
which is one-third of an
inch high

What if the front side of the bat were flat, as in Fig. 4.6, instead of round? Then
fly balls and grounders would be line drives instead. What could make the front side
of the bat flat? Using sandpaper or a plane on the front side of a bat would make that
front surface flat. Figure 4.7 shows that if the front of the bat were flat then a fly ball
(black lines) would be changed into a line drive (red lines). This would increase
performance. Most umpires would probably not notice or might accept a bat whose
front surface had been sanded or planed. This would also reduce the variability in
the batted-ball trajectories, because plus or minus 1 mm would yield the same result
every time.

To improve bat performance manufacturers could reduce the variability of bat
and ball parameters. Major-league bats were custom made for us by Hillerich and
Bradsby Co. The manufacturing instructions were “Professional Baseball Bat,
R161, Clear Lacquer, 34 inch, 320z, make as close to exact as possible, end
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brand - genuine model R161 pro stock, watch weights” emphasis added. The result
was six bats with an average weight of 32.1 ounces and a standard deviation of 0.5!
This large standard deviation surprised us. We assume there is the same variability
in bats used by major-league players.

There is also variability in the ball. We might assume that the center of mass of
the ball is coincident with the geometric center of the ball. However, put a baseball
or softball in a bowl of water. Let the movement subside. Then put an X on the top
the ball. Now spin it and let the motion subside again. The X will be on top again.
This shows that for most baseballs and softballs the center of mass is not coincident
with the geometric center of the ball.

4.12.1 Summary of Bat Selection

These sensitivity and optimality analyses showed that the most important variable,
in terms of increasing batted-ball speed, is bat speed before the collision. This is in
concert with ages of baseball folklore and principles of physiology. Therefore,
batters should develop strength, increase coordination and practice so that their
swings are fast and with low variability.

These analyses showed that the next most important variable is the coefficient of
restitution, the CoR. Engineers and bat regulators are free to play their annual cat
and mouse game of increasing CoR then writing rules and making tests that inhibit
these changes. Indeed, most recent bat research has gone into increasing the CoR of
bat-ball collisions.

Pitch speed, ball spin and the mass of the ball are important. However, the batter
cannot control them. Therefore, they cannot help the batter to choose or modify
a bat.

The next most important parameter is the bat mass, my,. However, physics
recommends heavy bats, whereas the force-velocity relationship of muscle recom-
mends light bats. In this case, physiology trumps physics. Each person’s preferred
bat should be as light as possible while still fitting within baseball needs, regulations
and availability.

The last interesting parameter from the sensitivity analysis and the optimization
study is the bat moment of inertia, /. The sensitivity analysis suggested that a
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larger bat moment of inertia would be better. However, old studies in the physics of
baseball literature recommended smaller moments of inertia. An experimental
physiology study stated that all players would profit from using end-loaded bats
(Bahill 2004). Since then most studies have recommended bats with higher
moments of inertia (Cross 2011; Smith and Kensrud 2014; Crisco et al. 2014).

The second purpose of this book is to show what the batter can do to achieve
optimal bat performance. The most important thing is practice. Next, batters should
select lightweight bats. They should then select bats that increase the CoR by all
legal means. Finally, they should choose end-loaded bats.

4.12.2 The Ideal Bat Weight

So far, the equations in this book were equations of physics. However, we repeat-
edly mentioned physiology. Now it is time to look at physiology. This section is
based on Bahill and Karnavas (1991).

Our instrument for measuring bat speed, the' Bat Chooser™, had two vertical
laser beams, each with associated light detectors. Our subjects swung bats through
the laser beams. A computer recorded the time between interruptions of the light
beams. Knowing the distance between the light beams and the time required for the
bat to travel that distance, the computer calculated the speed of the sweet spot,
which we defined as the center of percussion.

The computer told the batters to swing each bat as fast as they could while still
maintaining control. It said, “Pretend you are trying to hit a Nolan Ryan fastball.”

In our experiments, each batter swung six bats through the light beams. The bats
ran the gamut from super-light to super-heavy; yet they had similar lengths and
weight distributions. In our developmental experiments, we tried about four dozen
bats. We used aluminum bats, wooden bats, plastic bats, heavy metal warm-up bats,
bats with holes in them, bats with lead in them, major league bats, college bats,
softball bats, Little League bats, brand-new bats and bats made in the 1950s.

In one of our first set of experiments (Bahill and Karnavas 1989), we used six
bats of significantly different weights but which were all about 34 inches (89 cm)
long, with a center of mass about 23 inches (58 cm) from the end of the handle.
They are described in Table 4.7 and Fig. 4.8.

In a 20-min time interval, each subject swung each bat through the instrument
five times. The order of presentation was randomized. The selected bat was
announced by a speech synthesizer, for example: “Please swing bat Hank Aaron,
that is, bat A.” (We named our bats after famous baseball players who had names
starting with the letter assigned to the bat.)

"Bat Chooser and Ideal Bat Weight are trademarks of Bahill Intelligent Computer Systems.
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Table 4.7 Test bats used by the major league batters

Average
Distance | Distance |sweet-spot | Average
from from speed sweet-
knob to knob to (mph) also | spot
Weight | Mass | center of |center of |given in speed Description
Name | (0z) (kg) mass (in) | mass (m) |Fig. 4.10 (m/s) of the bat
D 49.0 1.39 225 0.57 60 27 Aluminum bat
filled with water
C 42.8 1.21 24.7 0.63 61 27 Wooden bat
with lead in the
barrel
A 33.0 094 |23.6 0.60 65 29 Wooded bat
B 30.6 0.87 [233 0.59 65 29 Wooden bat
E 23.6 0.67 |23.6 0.60 74 33 Wooden fungo
bat
F 17.9 0.51 21.7 0.55 88 40 Wooden handle
mounted on a
light steel pipe
with a six ounce
weight at the end

Fig. 4.8 Our first set of
experimental bats (Photo
credit Richard Harding)

For each swing, we recorded the bat weight and the speed of the center of mass,
which we converted to the speed of the center of percussion. That was as far as
physics could take us; we then had to look to the principles of physiology.
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Fig. 4.9 Hill’s original force-velocity relationship figure. He fit the following equation to his data:
(P+14.35)(v+1.03) = 87.6 where P is the load in grams and v is the velocity in cm/s (Hill 1938)

Physiologists have long known that muscle speed decreases with increasing load
as shown in Fig. 4.9. This is why bicycles have gears; gears enable riders to
maintain the muscle speed that imparts maximum power through the pedals,
while the load, as reflected by the bicycle speed, varies greatly. To discover how
the muscle properties of individual baseball players affect their Ideal Bat Weights,
for each batter, we plotted bat speed as a function of bat weight to produce a
graphical model known as a muscle force-velocity relationship as shown in
Fig. 4.10. The red Xs represent the average of the five swings of each bat; the
standard deviations were small for physiological data (smaller than the red Xs).
These standard deviations were shown in Bahill and Karnavas (1991).

Traditionally, physiologists have used three types of equations to describe the
force-velocity relationship of muscles: straight lines, hyperbolas and exponentials.
Each type of equation has produced the best fit for some experimenters, under
certain conditions and with certain muscles. However, usually the hyperbola fits the
data best. In our experiments, we tried all three equations and chose the one that had
the best fit to the data of each batter’s 30 swings. For the data of the force-velocity
relationship illustrated in Fig. 4.10, we found that a hyperbola provided the best fit.

These curves indicate how bat speed varies with bat weight. We now want to find
the bat weight that will make the ball leave the bat with the highest speed and thus
have the greatest chance of eluding the fielders (Baldwin and Bahill 2004). We call
this the maximum-batted-ball-speed bat weight. To calculate this bat weight we
must couple the muscle force-velocity relationships to the equations of physics.
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For the major league batter whose data are shown in Fig. 4.10, the best fit for his
force-velocity data was the hyperbola, (Mpy+11) X (Vpac- before — 36) =
1350 units are ounces and mph, that is shown with blue dots. This batter had
some of the fastest swing speeds on the team. When we substituted this equation
into the batted-ball velocity equation, Eq. (4.8), we were able to plot the ball speed
after a collision as a function of bat weight, shown with black triangles in Fig. 4.10.

(mbat + 11) X (Vbat-before - 36) = 1350

Solve for the bat velocity

36mpy + 1746
Vbat-before = W
at

Now we substitute this into Eq. (4.8)

Vib (mllz — m212 CORZb + mlmzdz) —+ v2bm212(1 + COR2b) =+ w2bm2d12(1 + CORZb)
mily + myly + mymyd>

Via =

to get the batted-ball velocity

2
(mballl em — Moadem CoRay + mballmbatdcm_ip)
K

{ 36mbat + 1746} mbatlcm ( 1 + C0R2b) mbatdlcm( 1 + CORZb)
Wpat-before
NMpat + 11

Vball-after = Vball-before

K + K

In this equation, /., is also a function of my,,.

This equation produced the curve composed of black triangles in Fig. 4.10. This
curve shows that the maximum-batted-ball-speed bat weight for this batter is about
45 ounces, which is heavier than that used by most batters. However, this batted-ball
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speed curve is almost flat between 30 and 49 ounces. Notably, this player normally
used a 32-ounce bat. Evidently the greater control permitted by the 32-ounce bat
outweighed the 1% increase in speed that could be achieved with the 45-ounce bat.

The maximum-batted-ball-speed bat weight is not the best bat weight for any
player because a lighter bat will give a batter better control and more accuracy.
Obviously, a trade-off must be made between batted-ball speed and control.
Because the batted-ball speed curve is so flat around the point of the maximum-
batter-ball-speed, we believe there is little advantage in using a bat as heavy as the
maximum-batter-ball-speed bat weight. Therefore, we defined the 'Ideal Bat
Weight™ to be the weight where the ball speed curve drops 1% below the
maximum-batted-ball speed. Using this criterion, the Ideal Bat Weight for this
batter is 31.75 ounces. We believe this gives a good trade-off between batted-ball
speed and accuracy. For this batter, the batted-ball speed is nearly flat around the
ideal bat weight. So it does not seem to be critical. But for most other batters this
was not true, as is shown in Fig. 4.11.

The Ideal Bat Weight is specific to each individual; it is not correlated with
height, weight, age, circumference of the upper arm, or any combination of these
factors, nor is it correlated with any other obvious physical factors. Nevertheless,
Bahill and Morna Freitas (1995) mined their database of 163 subjects and 36 factors
and determined some rules of thumb that could make suggestions. For example, for
a general 9 or 10 year old Little Leaguer, the recommended bat weight in ounces
would be height in inches divided by three plus four ounces,
recommended bat weight = h‘g—gh’ + 4. Table 4.8 shows their recommendations.

In conclusion, there is an ideal bat weight for each batter. It can be measured in a
laboratory or it can be estimated using rules of thumb like those in Table 4.8.
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Table 4.8 Simple integer models for recommending bat weights

Group Recommended bat weight (0z)
Baseball, major league Height/3 + 7

Baseball, amateur Height/3 + 6

Softball, fast pitch Height/7 + 20

Softball, slow pitch Weight/115 + 24

Junior league (13 & 15 years) Height/3 + 1

Little league (11 & 12 years) Weight/18 + 16

Little league (9 & 10 years) Height/3 + 4

Little league (7 & 8 years) Age*2 +4

Age (years); height (inches); body weight (pounds)

4.12.3 Bat Moment of Inertia

The bat moment of inertia is an enigma because for most, but not all, batters as the
bat moment of inertia goes up the bat speed goes down (Bahill 2004; Cross 2011;
Smith and Kensrud 2014; Crisco et al. 2014). For Bahill’s (2004) women softball
batters, 80% had negative slopes for bat speed versus the moment of inertia.

Now we need a model for these data. Because of the positive and negative
slopes, averaging the data makes no sense. Therefore, we chose one of the All
Americans in our database as our model. Her data were fit with the equation

Visweet spot-before — _221bat-cenler of mass T 30 (4 12)

where the bat velocity has units of m/s and the inertia has units of kg - m”. The eight
bats in our variable inertia experiments had moments of inertia about the center of
mass in the range of 0.03-0.09 kg - m”. Typical bats used by players on this team
had moments of inertia of around 0.05.

In these experiments, we used the bats described in Table 4.9. They decoupled
the mass and moment of inertia, because they had nearly identical masses but
different moments of inertia. That is, in each set the masses were close to the
same value, although the moments of inertia varied widely.

4.12.4 Modifying the Bat

Previously we mentioned that for wooden bats, it is legal to taper the last 3 inches of
the barrel from 2.61 inches (6.6 cm) down to 1% of an inch (4.4 cm). This
modification would decrease the bat weight, decrease the moment of inertia and
move the center of mass closer to the knob.
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Table 4.9 Properties of the variable moment of inertia bats

Moment of
Distance from | inertia Moment of inertia
Period of knob to center | with respect with respect to the
oscillation Mass of mass, dy..m | the knob, Ii,op center of mass, /.,
Name (sec) (kg) (m) (kg—mz) (kg—mz)
Aluminum bat set
A 1.648 0.824 0.496 0.275 0.072
B 1.682 0.824 0.494 0.286 0.085
C 1.689 0.824 0.520 0.303 0.080
D 1.702 0.833 0.526 0.316 0.086
Bats with a wooden handle and a brass disk mounted on a threaded rod, similar to bat F in Fig. 4.8
Red bat | 1.443 0.799 0.427 0.176 0.030
Blue bat | 1.493 0.807 0.458 0.204 0.035
Green 1.563 0.801 0.493 0.239 0.044
bat
Yellow | 1.631 0.805 0.509 0.270 0.061
bat

4.12.4.1 The R161 Bats

Hillerich and Bradbury made six such R161 Louisville Slugger wooden bats for
us. When we compared these six bats to six of their unmodified R161 bats, we found
that, on average, this modification reduced the mass by 5%, reduced the moment of
inertia about the center of mass by 5.2% and reduced the distance from the knob to
the center of mass by 1.6%.

That last paragraph described the measured physical changes to the bat. Next, we
wanted to see how those changes coupled with human physiology to affect the bat
speed. First, we used the data of Fig. 4.10 at its nominal bat weight of 31.75 ounces
and found that a 5% decrease in bat mass increased the bat speed by 1.7%. Next, we
used Eq. (4.12) and found that a 5.2% decrease in the moment of inertia about the
center of mass increased the bat speed by 0.2%. Summing these changes gave a
total increase in bat speed of 1.9%. Figure 4.12 shows these numbers.

That takes care of the physical changes of the bat and how those changes couple
with physiology to affect bat speed. Now, we are finally ready to use the physics
captured in the BaConLaw model.

According to the sensitivity analysis of the BaConLaw model summarized in
Table 4.4, decreasing my, and I, would decrease batted-ball speed, whereas
decreasing the distance between the center of mass and the center of percussion
(the sweet spot) would increase batted-ball speed.

Semirelative sensitivity values from Table 4.4

Mpat 10 mbatl > Vball »aﬂerl

[bat-cm 3 Ibakcml > Vball »aflerl

dcm - cop -2 dcm - copl > Vball - afterT
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Fig. 4.12 Analysis process and numerical values for the tapered R161 Bat

To see the changes in bat speed, we modified the inputs to the BaConLaw model
for the modified R161 bat. We decreased the mass by 5%, decreased the moment of
inertia about the center of mass by 5.2% and increased the bat speed by 1.9%. This
gave us a new smaller batted-ball speed. We will now show how the distance
between the knob and the center of mass affects this smaller batted-ball speed. We
know that the distance from the knob to the center of mass decreased by 1.6%.
However, we do not have data for the change in distance from the center of mass to
the center of percussion as wood is removed from the barrel end of the bat.
However, we can bracket that change. If we assume that the distance from the
center of mass to the center of percussion stays fixed, then the batted-ball speed
decreases by 0.55%. On the other hand, if we assume that the center of percussion
stays fixed, while the distance from the knob to the center of mass decreases by
1.6%, then the distance between the center of mass and the center of percussion
increases by 6.7% and the batted-ball speed decreases by 0.9%. Let us average the
results of those two assumptions, and say that the new batted-ball speed decreases
by an additional 0.73%.

When we put this decreased batted-ball speed into the Ball in Flight model of
Chap. 7, we found that the distance of a perfectly hit home run ball decreased by
three feet!

Vedula and Sherwood (2004) performed a finite element analysis of wooden
baseball bats. They found that if they reduced the mass in the barrel end of the bat
by 10%, then the distance between the center of mass and the center of percussion
increases by 5% and the batted-ball speed decreases by 1.7%. This matches our
results quite well.

This is a very surprising result. It states that tapering the last 3 inches of the
barrel will not increase the batted-ball speed or the ball’s range.
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4.12.4.2 The C243 Bat

Because this result was so surprising, we repeated the analysis with another bat that
had its barrel end cupped out, as shown in Fig. 4.6. We measured the volume of the
cupped out hole in the end of a Louisville Slugger C243 bat. It was 25 cc. The density
of white ash is 0.6 that of water. Therefore, cupping the bat reduced its mass by 15 g,
or 1.7%. Theoretically, using Iem-afier-cupping = {cm-before-cupping _mCupdgm-end’ this
should reduce the inertia at the center of mass by 0.0012 kg - m? or 2.2%. Finally,
the last of the three parameters changed by cupping, the measured distance from the
knob to the center of mass, was reduced by 1.7%.

That last paragraph described the measured physical changes to the bat. Now we
want to see how those changes couple with physiology to affect the bat speed. First,
we used the data of Fig. 4.10 at its nominal operating point of 31.75 ounces, and
found that an 1.7% decrease in bat mass increased the bat speed by 0.57%. Next, we
used Eq. (4.12) and found that a 2.3% decrease in the moment of inertia about the
center of mass produced an 0.1% increase in bat speed. Summing these increases
gives a total increase in bat speed of 0.67%. This is probably why bat manufactures
cup the ends of their bats. Because they know that cupping the end of the bat
increases the bat speed.

That takes care of the physical changes of the bat and how those changes couple
with physiology to effect bat speed. Now, we are finally ready to use the physics
captured in the BaConLaw model. To see the changes in bat speed, we modified the
inputs to the BaConLaw model for the C243 bat. We decreased the mass by 1.7%,
decreased the moment of inertia about the center of mass by 2.3% and increased the
bat speed by 0.67%. The measured distance from the center of mass to the center of
percussion increased by 4.3%. When we changed these four parameters in the
BaConLaw model, the batted-ball speed decreased by 0.25%.

Finally, when we put this decreased batted-ball speed into the Ball in Flight
model of Chap. 7, we found that the distance of a perfectly hit home run ball
decreased by one foot. Figure 4.13 shows our process and captures these numbers.

Both of the bat modifications described here {tapering the barrel and cupping the
barrel end}, remove wood from the end of the bat. This decreases the bat mass,
moment of inertia and distance from the knob to the center of mass. This should be
true for any wooden bat. Physiology shows that the first two changes {reducing the
mass and the moment of inertia} increase the bat speed. This is the main reason for
making these modifications. Increasing the bat speed will increase the batted-ball
speed.

For the tapered bat, decreasing the distance from the knob to the center of mass
by 1.6% increased the distance between the center of mass and the center of
percussion somewhere between zero and 6.7%. For the cupped bat, this distance
was measured as an increase of 4.3%. Both methods increased the distance between
the center of mass and the center of percussion. We are satisfied with these
approximations, because the model is not very sensitive to this distance. Changing
this distance by £4% only changed the batted-ball speed by, on average, +0.08 % .
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Fig. 4.13 Analysis process and numerical values for the modified C243 Bat

There are four inputs to the BaConLaw model. When wood is removed from the
end of the bat the first two (my,, and Iy, - .,) decrease, which decreases the batted-
ball speed. However, the bat speed increases, which increases the batted-ball speed.
The last input, the distance from the center of mass to the center of percussion,
probably increases, which also decreases the batted-ball speed. Which of these four
changes wins? We can only tell by deriving values for the parameters and using
those in the equations of the BaConLaw model.

In the two modified bat examples that we examined in this section, the modified
bats caused the batted-ball speed and therefore the ball’s range to go down.

In conclusion, both tapering the barrel and cupping the barrel end of the bat
decrease the batted-ball speed and subsequently decreases the range of the batted-
ball. Why then would batters choose bats with the end cupped out? Perhaps it is
because they are more comfortable with the cupped bat, they don’t understand the
interaction of the parameters or the decrease in performance is small.

4.13 Outline of the BaConLaw Model Derivations

We started with Eq. (4.6) and solved for the bat angular velocity after the collision

dmi(via — viv) = —I2 (w24 — @)



100 4 The BaConLaw Model for Bat-Ball Collisions
dm1
@2 = W2 — ——(Via — V1v)
I
Next we used Eq. (4.5) and solved for the bat linear velocity after the collision

Vig — V2a — dwn,
CoRypy = ———F——
Vip — Vab — dway

V2a = Via + CoRp(Vib — Vb — dway) — dwn,

Then we substituted w,, into the above v,, equation to get
dml
V2a = Via + CoR2p (Vip — vap — dwap) — d{a)zb - I—(Vla - Vlb)}
2

Finally, we used this v,, in Eq. (4.4) to get Eq. (4.8) for the ball linear velocity after
the collision, in terms of only the before collision variables and parameters. The
linear velocity of the ball after the collision is

Vball-after = Vball-before

(Vball-before — Vbat-cm-before — CObat-beforedcm-ip) (1 + CORZb)mbathal

7
Mpaitlvat + Moalvat + MbalMbatd o -ip

Then we solved Eqgs. (4.4), (4.5) and (4.6) for the velocity of the bat after the
collision in terms of only the before collision variables and parameters. The linear
velocity of the bat after the collision is

Vbat-cm-after = Vbat-cm-before

(Vball-before — Vbat-cm-before — wbat-beforedcm-ip) (1 + CORZb)mballIbat

2
Miattlbat + Moatlvar + MpanMoatdem-ip

Lastly, we solved Egs. (4.4), (4.5) and (4.6) for the angular velocity of the bat after
the collision, w,,, in terms of only the before collision variables and parameters.
The angular velocity of the bat after the collision is

Wbat-after =  @bat-before
(Vball-before — Vbat-cm-before — dcm-ipwbat-before) (1 + CORZb)mballmbatdcm-ip

2
cm-ip

Ml var + Mpad pat + MpalMpard,

To get a final equation for the angular velocity of the ball after the collision, w,, we

put @z, = @ — d]"%(vla —vyp) into the Conservation of Angular Momentum

equation, Eq. (4.7s), and showed that for a head-on collision (with no friction or
external forces) like this BaConLaw model, @y, - after = @ball - before-
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4.14 Summary

In this chapter, we successfully incorporated Conservation of Energy into the set of
bat-ball collision equations for the BaConLaw model. This Conservation of Energy
equation confirmed the consistency of our set of derived equations. We also used
Conservation of Energy to derive an equation for the kinetic energy lost in the
collision. We derived a general equation for KE)., Eq. (4.11), and showed that if
the collision were at the center of mass (dcm-ip =0), then this general equation
reduced to an old well-known result, Eq. (3.2).

We did a sensitivity analysis on the set of equations for the BaConLaw model. It
showed that the most important variable, in terms of increasing batted-ball speed, is
the bat speed before the collision. Today in the sporting world, the coefficient of
restitution and the bat mass are experiencing the most experimentation for improv-
ing bat performance. However, in the future, bat moments of inertia allow for the
most improvement of bat performance. Most importantly, future studies must
include physics in conjunction with physiology.

The following equations comprise our BaConLaw model for bat-ball collisions.
First, the kinetic energy lost or transformed.

2 2
KE 1 mpanMpac var (Vball-before — Vbat-cm-before — wbat-beforedcm-ip) (l - C0R2b>
lost = 5 5
2 Maitlvar + Moatlvat + MoaitMoard iy

where d., -ip is the distance between the bat’s center of mass and the impact point.
The linear velocity of the ball after the collision is
Vball-after = Vball-before

(Vball-before — Vbat-cm-before — wbat-beforedcm-ip) (14 CoRap )muarl var

2
Mpaitlvat + Moatlvat + MoalMoatd iy

The linear velocity of the bat after the collision is

Vbat-cm-after — Vbat-cm-before

(Vball—before — Vbat-cm-before — wbat—beforedcm-ip) (14 CoRap ) manlpar

+
2
Miaitlvar + Moalvat + MoaitMoad gy iy

The angular velocity of the bat after the collision is

What-after — bat-before
Vball-before — Vbat-cm-before — dcm-ipwbat-before) (1 + CORZb)mballmbatdcm-ip
2

cm-ip

Mpallvat + Muacdbat + MpallMpacd,

Our most succinct formulation of the BaConLaw model is


https://doi.org/10.1007/978-3-319-67032-4_3#Equ2
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Fig. 4.14 Linear and
angular velocities of the ball
and bat
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Whall-after = Wball-before
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Vbat-after = Vbat-before + AMbailbat

Wbat-after = Dbat-before 1 Amballmbaldcm-ip
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The BaConLaw model describes the motion of the bat after the collision. This is
a big deal. Many models describe the motion of the ball after the collision, but few
(if any) describe the motion of the bat. When you see a batter hit a ball, do you see
the jerk of the bat? Can you describe it? Well these equations do, as shown in

Fig. 4.14.

This model for bat-ball collisions gives the linear and angular velocity of the bat
and ball after the collision in terms of the linear and angular velocity of the bat and
ball before the collision. It uses only the fundamental principles of Newtonian
mechanics and the conservation laws. This chapter also fulfills the second purpose
of this book, namely to show what the batter can do to achieve an optimally
performing bat, namely select lightweight, end-loaded bats. Finally, cupping the
barrel end of the bat does not increase the ball’s range.
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Chapter 5
Alternative Models

5.1 Introduction

Purpose: The purpose of this chapter is to present four alternatives to the
BaConLaw model, explain their different purposes and explain why each might
be used for a different purpose.

This chapter contains four models that are more complicated than our
BaConLaw model of Chap. 4. The first one, the Effective Mass model, is an analog
to the BaConLaw model. The bat Effective Mass model and the BaConLaw model
both start with Newton’s principles: then they diverge. They are different: however,
they yield the same rule of thumb for the batted-ball speed! This should strengthen
and give people more confidence in both models. The second and third models in
this chapter allow movement of the knob. The Spiral Center of Mass model shows
the movement of the center of mass of the bat before the collision. The Sliding Pin
model analyzes the movement of the bat with a translation and a rotation about its
knob. It illustrates the concept of using different models for different purposes. The
fourth model challenges our simple technique of using only Newton’s principles
and the conservation laws. It is for a collision at the center of percussion of the bat
with spin on the pitch and with consideration of friction between the bat and ball. Its
purpose is to show a situation that cannot be modeled using only the
conservation laws.

Modeling philosophy note Having several alternative models helps ensure that you
understand the physical system. No model is more correct than another. They just
emphasize different aspects of the physical system. They are not competing models
they are synergetic.
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5.2 Bat Effective Mass Model

Purpose: The purpose of this section is to present the bat Effective Mass model.
Presently, it is the most popular physics of baseball model for bat-ball collisions. It
will be compared to the BaConLaw model.

The bat effective mass bat-ball collision modeling community, established by
Nathan (2003) and summarized nicely by Cross (2011), base their model on the
concept of the effective mass of a bat. This section on the Effective Mass model is
excerpted from Cross (2011). Consider Fig. 5.1 where a ball of mass my,, collides
with a stationary bat at a distance B from the center of mass (cm) of the bat.
{Previously in this book, we have used the symbol d., -, to represent the distance
between the center of mass and the impact point, or d., - if the collision were at
the sweet spot. However, in this section, to avoid confusion with the derivative
operator used by Cross, we will use the letter B, as was done by Watts and Bahill
(1990).} Let the mass of the bat be my, and suppose that the bat is initially at rest
and freely supported: that is, no one is holding the handle. In that case, the ball will
bounce off the bat and the bat will be set in motion. The center of mass of the bat
and the impact point on the bat both recoil. Because a bat is a rigid object, every
spot on a bat will have the same linear translational velocity and the same angular
rotational velocity. But each spot will have a different fotal velocity that depends on
its distance from the pivot point. We define that total velocity of the bat as the sum
of its linear translational velocity and its weighted angular rotation velocity:
Vtpar = Vem + Bopy. We have used the symbol v¢ to represent the total velocity,
€.8. Vlpat-impact - afiers 10 differentiate from it from Vyai-cm - asier Used in the rest of
this book to indicate only the translational component of velocity. Because the bat
rotates about its center of mass when it is struck by the ball, the speed of the impact
point will be greater than the speed of the center of mass, Vfimpact > Vem. The impact
point therefore accelerates faster than the center of mass of the bat, as if it were an
isolated mass separate from the rest of the bat.

The whole bat is involved in the collision, but the effect on the ball is equivalent
to a collision with an isolated effective mass Mg that is less than the mass of the
whole bat. Additionally, the impact point recoils as if it were a mass of Mg In other
words, we can treat the collision as being equivalent to one between a ball of

4
-":'_ 2 A X

Side View

Fig. 5.1 The Effective Mass model for bat-ball collisions
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mass My, and an object of mass M.y We will now derive a formula for the
effective mass of a bat.

Let M. be the effective mass of the bat at the impact point. A force F acting at
the impact point will cause this point and the center of mass to accelerate according
to these relationships F = Meffw and F = mbatdvb;‘;“" respectively. The torque

F x B causes the whole bat to rotate about its center of mass according to F X B

@bat-cm

= Ibat-cm dT where @y, -cm 1S the angular velocity of the bat about its center of
mass. Therefore,

dViyat_impact - dVoat-cm o Ibar-cm d®rat_cm

F=M -
M Mo 4 B dr

The impact point rotates at a speed of By, - .m With respect to the bat’s center of
mass. So now, the impact point has a linear translational motion and an angular
rotational motion. Hence, Vfpar-impact = Vbat-cm T B®par-em. Taking the derivative with
respect to time, we get

thbat-impact o AVpat-cm i Bda)bm-cm
dt dt dt

which can be written as

F F B*F

Mee mpa Tvaeem

Dividing by F produces

1 B?

1
Mgt Myt Toat-em

which can be rearranged to give

Mpat

M = (5.1)

1 + mmez

Tvat-cm

In summary, Fig. 5.1 suggests that a ball impacting a stationary bat, at distance
B from the center of mass of the bat will cause the bat to rotate about the center of
mass. However, the speed and acceleration of the impact point is greater than that
for the bat’s center of mass, so the effective mass at the impact point is less than the
mass of the whole bat. For the bat of Table 1.1 M= 0.707 kg.

There are three important differences between this model and the BaConLaw
model developed in Chap. 4. (1) In Fig. 5.1, Vpai - before 1S pointing down and it is
positive in that direction: for the rest of the book Vi -peforeWas positive in the
x-direction. { However, Vi - afer 18 still defined to be positive in the direction of the
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x-axis.} That is why there is a minus sign in front of the 7. Vpal - before terM in
conservation of momentum Eq. (5.2). (2) In this model, vf;npac is the total velocity
of the impact point. That is, it is the sum of the translational velocity and the
velocity due to rotation about the center of mass. (3) Because Vfimpac is the sum of
the translational and rotational velocities, the coefficient of restitution equation has
only two terms on top and bottom, that ise = %, instead of three as in
Egs. (3.5) and (4.5).

Our next task is to get an equation for the velocity of the ball after the collision.
We will start with an equation for the conservation of momentum. From here on,
we no longer require a stationary bat before the collision.

M et Vivat-before — Mball Voall-before = Meft Vivat-after & Mlball Vball-after (5.2)

Note this is different from the conservation of momentum equation used in the rest
of this book because of the different definition of the direction of the ball before the
collision.

Next, we need the coefficient of restitution.

Vball-after — Vlbat-after

Vball-before T Vbat-before

We use this expression to eliminate vy, - aper in Eq. (5.2). Substitute the coefficient
of restitution into Eq. (5.2) and we get

__ Mipan

_ Mest l+e
Vball-after = 1+ Miall Vball-before + 1+ ball Vlpat-before
Mest Mest
Plug in M
e — —mi—
B
Vball-after = e Viall-before + e VHyat-bef
all-after — - all-before - at-before
[+ [+ R
HlmmeZ 1 +I"1mez
bat=cm bat=cm

Ten algebraic steps yield our final expression for the batted-ball velocity.

2
Mpaitlbat-cm — Mbatd bat-cm€ + Mpa1MpaB )
2
Mpaitd bat-cm + Moadbat-cm + +Mball MparB
Mpat! bat-cm ( 14 e) >
2
mballlbat—cm + mbatlbat—cm + +mballmbatB

Vball-after = — Vball-before (
(5.3)

+ Vipat-before (

This is the end of the derivation of the batted-ball velocity equation using the
Effective Mass model. Now, compare Eq. (5.3) to Eq. (4.8) from our BaConLaw
model.


https://doi.org/10.1007/978-3-319-67032-4_3#Equ4
https://doi.org/10.1007/978-3-319-67032-4_4#Equ5
https://doi.org/10.1007/978-3-319-67032-4_4#Equ11
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2
(mandbar — Mbadbar CORap + Mg Mg d”)

Vball-after = Vball-before 5
Mpaidba + Mpacdbar + Mpan Mpard

Mpadvac (1 + CoRayp)
Miaitlvae + Miadba + MpaMpad”
Miat@lbac (1 + CoRayp)

7
Mpaitd bat + Mpatlbat + MpatMpard

~+ Vbat-cm-before

+ Wpat-before

The differences are that in the Effective Mass model, the first term on the right of
Eq. (5.3) has a minus sign because the initial ball velocity was defined to be positive
downward in Fig. 5.1. (2) In the Effective Mass model, the second term on the right
is equivalent to two terms in the BaConLaw model because of the definition
Vibat - impact - before — Vbat - cm - before + Bwbat - cm - before- (3) Because of that deﬁnition,
e # C 0R2b.

Returning to the exposition of Cross (2011), he then states that if a ball with
velocity Vpay - vefore COllides with a stationary bat and bounces back with a velocity
Vball - after then

_ Vball-after

Vball-before

Now, and most importantly,

__ Mpan

: 1+e
MC J—
q= —1_’_"/%‘; andl—i_q_—l‘*‘%

Using this new symbol, Eq. (5.3) for vpay - afer bECOMes
Vball-after = @Vball-before T (1 + @) Vevat_before

This equation holds for bats that are freely suspended and rotate about their centers
of mass, as shown in Fig. 5.1. Rod Cross continues with, “This is the primary
physics equation that describes the outgoing speed of a struck ball, regardless of
whether the ball is struck by a bat or a racquet or a club. The performance of any
given striking implement depends mainly on the value of g for that implement.”
However, Vpa-pefore and Vipac - peforel€quire some considerations. For example,
Vtpat - before depends on the impact point, the mass of the ball, the mass of the bat,
the moment of inertia of the bat and characteristics of the person swinging the bat.
In addition, the coefficient of restitution, e, is not a constant. It depends on the
impact point and the pivot point, as well as the speed of the collision, the relative
humidity, the temperature, the deformation of the objects, the surface texture and
the type of ball. However, in spite of these variabilities, Nathan (2003) and Cross
(2011) found that for most baseball collisions
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Vball-after — 0~2Vball-before + 1-2that-bef0re

On the other hand, the following is Eq. (4.8), the batted-ball velocity equation from
the BaConLaw model.

2
(mandbar — Madbar CORap + Mg Mg d”)

Vball-after = Vball-before 5
Mpaidbac + Mpadbar + MpanMpard

Mpatlvat (1 + CoRop)
Miaiilvar + Miaclvar ~+ Mgl Mo
Mpatlpar (1 + CoRap)

7
Mpail bar + Mpatlvar + MpalMpacd

+ Vbat-cm-before

+ dcm- ip@bat-before

If we substitute parameter values for a major league wooden bat, as described in
Table 1.1, into this equation, then the velocity of the ball after the collision becomes

Voall-atter = —0.217Vpaii_before + 1.217 { Vbat-cm-before + dem- ip@bat-before }

where the units are m/s and rad/s. Remember that the velocity of the ball before the
collision is a negative number. So far, we have made no approximations; everything
has been exactly according to Newton’s principles and the conservation laws. In
contrast, we will now create our rule of thumb by using pitch speed instead of the
ball-collision speed and using total bat speed instead of its two components.

batted-ball speed =- 0.19 pitch speed + 1.22 total bat speed

The units could be m/s or mph. The pitch speed would be that determined by a radar
gun focused near the pitcher’s release point and announced on television. The bat
speed would come from Tables such as 3.9 and 4.2. Using our typical data of
Table 4.2, we have an average pitch speed of —92 mph and a total bat speed of
62 mph. Putting these numbers into our rule of thumb yields

batted-ball speed = 0.19 x 92 4 1.22 x 62 = 93 mph

which is just about the average for major league hits. Using the data of Willman
(2017), we found that for the 15,000 base hits in major league baseball in 2016, the
average batted-ball speed was 91 mph.

The bat Effective Mass model and the BaConLaw model both start with New-
ton’s principles: then they diverge. They are different: however, they yield the same
rule of thumb for the batted-ball speed! This should strengthen and give people
more confidence in both models.

Modeling philosophy note Having several alternative models helps ensure that you
understand the physical system. No model is more correct than another. They just


https://doi.org/10.1007/978-3-319-67032-4_4#Equ11
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emphasize different aspects of the physical system. They are not competing models
they are synergetic.

5.3 The Sliding Pin Model

Purpose: The purpose of this section is to present the Sliding Pin model, the
moving pivot point data and the Spiral Center of Mass model. These all use a
different fype of data from the rest of the book, namely translation of the knob and
rotation about the knob.

With the advent of low-cost multiple-video-camera systems for making three-
dimensional (3D) measurements of the movement of bats and balls, a new source
of data became available. Using these data, the Sliding Pin model models the
movement of the bat with a translation and a rotation about its knob. It is shown
in Fig. 5.2. The bat is pinned through the knob, so it is forced to rotate about the
knob. But the pin is allowed to slide along the x-axis (up and down in Fig. 5.3) to
allow for the translational velocity of the bat.

Consider a bat that is pinned through its knob, but the pinned point is allowed to
slide up and down, as in Fig. 5.3. Because the bat is a rigid body, every spot on the
bat will have the same linear translational velocity and the same angular rotational
velocity.

Vbat-knob-trans — Vbat-cm-trans — Vbat-cop-trans
and Sua_knob = Ppat-em = Prat- cop

However, each spot on the bat will have a different fotal velocity that depends on
the location of the pivot point and the spot’s distance from the pivot point.

Vlem = Vknob 1 dknob-cmﬂbat

Vlcop = Vknob + dknob-copﬂbat

5.3.1 Moving Pivot Point Data

Table 3.9 gave the bat sweet-spot speeds as numbers that combined the speed of the
center of mass and the rotation of the bat about that point. However, data by from
(Fleisig et al. 2001, 2002; Cross 2009; Milanovich and Nesbit 2014; King et al.
2012) gave us a new type of data to model. They gave us simultaneous independent
measurements of linear velocity and angular rotational velocity.

Milanovich and Nesbit (2014) studied 14 female collegiate softball players.
They used multiple video cameras to collect data and they created three-
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Top View
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Side View

Fig. 5.2 Sliding Pin model for a bat pivoting about its knob

Fig. 5.3 Detail of a sliding
pin joint

dimensional reconstructions of bat swings. Using their Table II, which averages the
data of all subjects and all swings of their aluminum bat, we will now solve for the
velocity of the center of mass.

Using data from their measurements at the pivot point (the knob)

ﬁbefore =29.6
Vtcm = Vknob + dknOb—Cmﬂbefore
Viem = 3.6 +0.48 X 29.6 = 17.8 m/s

Using data from their measurements at the sweet spot (the center of percussion)

Vicop = Vknob + dk-copﬂbefore

k-cm
Vigm = vtcopd—
k-cop

Viem = 159 m/s

Finally, using data from their measurements at the center of mass
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Vtem = 16.1 m/s

So their data for vt ,, 17.8, 15.9 and 16.1 m/s, are reasonably consistent.

Now, let us move on to other studies that made simultaneous independent
measurements of the linear translational velocity and the angular rotational veloc-
ity. The average sweet-spot speeds from the study of Fleisig et al. (2001, 2002) for
16 male baseball players were

v =27 m/s and f = 38 rad/s

Cross (2009) had a single male subject with
Vem = 16.5m/sand f =33 1/s

King et al. (2012) had one male subject with
Vknob = 6 m/s and f = 3671/s

There are several reasons for differences in the experimental values. (1) Men
swing the bat faster than women do. The average sweet-spot speed at impact of
Milanovich and Nesbit (2014) was 20 m/s. Table 3.9 shows that male baseball
players typically have higher speeds than this. Fleisig et al. (2002) measured
17 college women at 21 m/s and 16 college men at 27 m/s. Bahill (2004) measured
20 university women at 21 m/s and 28 major leaguers at 26 m/s. (2) The aluminum
bat swung by the Milanovich and Nesbit (2014) subjects was lighter than the
wooden bats used in the other studies. (3) Averaging data from many subjects
produced slower results, particularly when the women were not elite athletes.
(4) The low frame rate of the motion capture cameras low-pass filtered the data
and attenuated the velocities. Further smoothing and processing reduced the veloc-
ities even more. (5) The bat rotates about a point in or nearby the knob, but there is
variability in this point. Indeed, in early phases of the swing the pivot point is
outside of the knob. But when the bat reaches the collision point, the pivot point has
come inside the knob. (6) They gave data for the movement of the grip, which was
6 inches away from the knob. (7) Configuration 2c is not a free-end collision. The
hands are still holding the bat at the collision point and they might be applying
forces to the bat. However, all of their variables (yaw, pitch, roll and vy,,) reach
their peak values before the collision point. Therefore, if the hands were applying
forces, these forces were not accelerating the bat in the x-direction. Furthermore, if
the collision were at the center of percussion, then the collision would not create
forces at the pivot point. (8) Experimental data are always subject to noise and
measurement error.

Our most comprehensive data for bat swings come from William Clark, Founder
of Diamond Kinetics (personal communication, 2017). Table 5.1 shows their data
for 200 male professional baseball players swinging 33-inch wooden bats.
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Table 5.1 Linear, angular and total bat speeds for 20,000 swings by male professional batters

Variable SI units Baseball units

Linear knob speed, Vb - knob - before 4.5 m/s, 10.1 mph,
oc=1.7 c=3.9

Angular rotation speed, By - before 41 rad/s, 387 rpm,
c=5 c=>51

Total speed at the center of mass vt - before = Vknob - 27.9 m/s, 62.3 mph,

before T dknob - cmﬂbal - before c=3.7 =282

Total speed at the sweet SPOt Vicop - before = Vknob - before + dknob- | 33.3 m/s, 74.5 mph,

copﬁbat - before c=43 6=9.6

In this table, the variance in the angular velocity of the center of mass and sweet
spot was small, smaller than the variance in the linear speed of the knob.
These data produced this equation Viyy-cop-before = Vinob + dk - copflo = 4.5+
0.7 x 41 =33 m/s=74 mph, which we used in our simulations, whose outputs
are shown in Tables 5.3 and 5.4. This equation has the same six to one ratio of
dy - copProetore and Viyyop as our frame-by-frame analysis of the swing of a major league
batter.

5.3.2 Spiral Center of Mass Model

Cross (2009) developed an intriguing model for the swing of the bat. It is based on
data from a video-camera system that measured the translation and rotation about
the center of mass for a collision at the sweet spot. The pivot point of the bat moved
during the swing. In the Cross Spiral Center of Mass model, the center of mass of
the bat followed a logarithmic spiral pathway described with this equation
R =0.25¢"%°, Figure 5.4 shows this movement.

5.3.3 Back to the Sliding Pin Model

Purpose: The purpose of the Sliding Pin model is to model a new type of data
different from the rest of the book. Previously the input data for our models were the
translational and rotational velocities at the center of mass of the bat. The Sliding
Pin model will use the translational and rotational velocities at the knob.
The Sliding Pin model is unique in the science of baseball literature. It has four
equations and four unknowns. This new model is described in Fig. 5.5 and Table 5.2.
Its purposes are (1) to show the limits of the conservation law modeling technique
and (2) to model some unique new experimental data. Unlike the BaConLaw model
and the Effective Mass model, it is data-driven not theory-driven.

At the beginning of this section, we must emphasize that the BaConLaw model
given in Fig. 4.1 and Table 4.1 is not equivalent to the Sliding Pin model of Fig. 5.5
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Top View

% Start of swing

i o
#+3Collision

Fig. 5.4 The Spiral Center of Mass model of Cross (2009). In this top view, the batter’s head is at
the intersection of the x- and y-axes and his left foot is to the right

Vbail-after
Top View | Q —_
=
ﬂ bat | dlmoh—cm i)
g - v Vball-before
= | aisleboe3
le‘nnb—hcl'tm'
\_I“/ i

Fig. 5.5 The Sliding Pin model for bat-ball collisions

and Table 5.2. Although the equations may look analogous, many of them are
different, because they are modeling different things. The BaConLaw model is for a
free-end collision of an unsupported bat that will translate and rotate about its center
of mass. The Sliding Pin model is for the collision of a restrained bat. The bat is
being forced to rotate about its knob. The human is doing the restraining by
applying forces on the handle during the swing. To make this perfectly clear, let
us simplify the situation by ignoring translations and consider only rotations. The
bat of Fig. 4.1 will rotate about its center of mass with an initial angular velocity of
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Table 5.2 Synopsis of equations for the Sliding Pin, four equations and four unknowns

InPUtS Vball - before > @ball - before > Vknob - before » ﬂknob - before and CURZC
Outputs Vball - after 5 @ball - after » Vbat - ip - after » ﬂknob - after and KElost
Equations

Conservation of Linear Mpal1Vball - before T MlbatVbat - before = MballVball - after T PlbatVbat - after
Momentum, Eq. (5.4)

Definition of CoR,

Vball-after — Vknob-after — dknob-ipﬁbefore

CORZC = —
Eq. (5.5) Vball-before — Vknob-before — dknob—ipﬁaﬂer
Newton’s Second Lan dk -ip’nhall(vball -after — Vball - before) = - Iknob(ﬂafler - ﬁbefore)
Eq. (5.6)
i - 2
Conservation of Angu Mialldi-ipVball-before + (1ball + mbulldk-ip>wball—before + (Tknob) Poctore =
lar Momentum about the
z-axis, Eq. (5.7s) ~+Mpandi-ip Vball-atter + (1 ball + mballdi—ip>mball-after + (Ixnob ) Pater
. . . . e . . Icmwgat-before
@pat - before- 1his Will give it an initial kinetic energy of — Whereas, the

bat of Fig. 5.5 will rotate about its knob with an initial angular velocity of Bpefore-
I 2
This will give it a kinetic energy of %. If the models were equivalent then

1 0)2, I 2
o bdzt'bemre = kmbgbef‘“. By the parallel axis theorem lynop = lem + Mpads_ o,y

Which  means that this equation would have to be true

2 _ 2 2 . .
Tem®iy_pefore = (Icm + mbatdk_cm> Prefore- This would require

2
mbaldk-cm

2
@bat-before — ﬂ before . Clear 1}’, What - before 7& ﬂ before and therefore the

cm
BaConLaw model is not equivalent to the Sliding Pin model. The cause of this
difference is that the BaConLaw model is for a free-end collision. Whereas in the
Sliding Pin model the batter is applying forces to the handle during the swing.
The Sliding Pin model is more complicated that the BaConLaw model. Therefore,
the Sliding Pin model takes our bat-ball collision modeling community a baby step
upwards.

Configuration 2c is for a collision at the sweet spot of the bat with spin on the
pitch. It adds a new model for bat motion: the movement of the bat comprises a
translation and a rotation about its knob. Because of this, we need a different
equation for the CoR. This model is original. Our previous configurations, 2a and
2b, measured and used the total velocity (translational plus angular velocity) for the
velocity of the sweet spot before and after the collision. However, the experimental
studies examined in the previous sections gave independent linear and angular
speeds of the bat about the knob right before the collision. We will now see if our
modeling approach can accommodate this new data.

Modeling philosophy note In general, there are two common techniques for
modeling systems: the first is theory-based and the second is data-based. Here are
some steps for theory-based system models. Find appropriate physical and/or
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physiological principles, then design, build and test a model. Design experiments to
collect new data. Use these data to verify and validate the model. Use the model to
make predictions and guide future data collection activities. The BaConLaw model
was theory-based. The theories were the conservation laws. We found the theories
first and then we gathered experimental data to support the model. The second
technique for modeling a system is data-based. With this technique, the modeler
starts with collecting and organizing the data and then he or she makes a model that
fits that measured data. The Sliding Pin and Spiral Center of Mass models are data-
based. We found the experimental data first and then we created the model to match
the data. In Chap. 5, we give four different models for bat-ball collisions. They have
different purposes and different outputs. The point is to explain to the reader that it
is good to have alternative models.

5.3.4 Coefficient of Restitution

The Coefficient of Restitution (CoR) was defined by Sir Isaac Newton as the ratio of
the relative velocity of the two objects after a collision to the relative velocity
before the collision. The CoR models the energy lost in the collision.

In our models for a collision at the sweet spot (ss) of the bat we have

relative velocity after collision

CoR = — - - —
relative velocity before collision

For the Sliding Pin model, we define the CoR with this equation (Fig. 5.4).

Vball-after — Vknob-after — dknob-ipﬂafter

C0R2C = —
Vball-before — Vknob-before — dknob-ipﬁbefore

This CoR is a variation of the CoRs that we have used in previous sections.
Definition of variables

IHPUtS Vball-before;  @ball-before> Vbat-before» ﬂbar-before and CORZC

Vpall - before 15 the linear velocity of the ball in the x-direction before the collision.

Wpall - before 1S the angular velocity of the ball about its center of mass before the
collision.

Vpat - before 15 the linear translational velocity of the knob of the bat in the x-direction
before the collision.

Proat - vefore 15 the angular velocity of the bat about its knob before the collision.

CoR,. is the coefficient of restitution for this configuration.

OUtPUtS Vball-afters Vbat-afters ﬂbat- after

Vpall - after 18 the linear velocity of the ball in the x-direction after the collision.
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Wpall - after 18 the angular velocity of the ball about its center of mass after the
collision.

Vpat - after 1S the translational velocity of the knob of the bat in the x-direction after the
collision.

Droat - atrer 1 the angular velocity of the bat about its knob after the collision.

We want to solve for Vball - after 5 @ball - after > Vbat - after » ﬁbat-after

We will use the following fundamental equations of physics: Conservation of
Linear Momentum, the Definition of CoR, Newton’s Second Principle and the
Conservation of Angular Momentum.

5.3.5 Condensing Equation Notation

First, we want to simplify our notation. We will make the following substitutions.

dknob-impac[-poim = dk-ip
dknob—cm = dk-cm

Toan = 1)

Loatecem = 1o = e
Tbar-knob = Ik

Ixnob — Mady_oy = I
Mpall = My

Mpar = My

Vball-before = V1b
Vball-after = Via

Vbat-knob-before = V2b
Vbat-after = V2a
B bat-before — B b

ﬁbat— after — ﬁa

These substitutions produce the following equations.

5.3.5.1 Conservation of Linear Momentum

Assume that the bat and ball are point masses with all of their mass concentrated at
the centers of mass. For now, neglect angular rotations.

Mpal]Vball-before T MbatVbat-cm-before = Mball Vball-after T MbatVbat-cm-after (54)

However, from Sect. 5.3, for the linear velocity, we have



5.3 The Sliding Pin Model 119

Vbat-cm = Vbat-knob = Vbat = V2
Therefore,

mvip + mMpVvyy = MV, + mMovy, (545)

5.3.5.2 Definition of Coefficient of Restitution (CoR)

Vball-after — Vbat-knob-after — @knob-ip/f; Vit
CoRye = — P atter

Vball-before — Vbat-knob-before — dknob-ipﬁbefore
Via = V2a — dicipBy
Vib — Vab — di-ipP

C0R2C = —

5.3.5.3 Newton’s Second Principle

If we were following the development in Chap. 4, we would now apply Newton’s
Second Principle, which states that applying an impulsive torque about an axis of
rotation changes the angular momentum about that axis. However, the Sliding Pin
model is not a theory-based model: it is data-based and right now we need some
experimental data because the batter’s hands might be applying a torque to the
handle. Although, the Sliding Pin model of Fig. 5.5 shows that at the point of impact
the force applied by the batters hands is perpendicular to the direction of motion
(Cross 2009). Therefore, the hands would not apply a torque to the bat. Further-
more, Milanovich and Nesbit (2014) showed that the bat’s linear velocity (Fig. 6),
angular velocity their (Fig. 7) and forces (Fig. 9) were all decreasing at the time of
impact. Moreover, the torques had already reached zero by the time of impact
(Fig. 9). In summary, because of the experimental data, we will ignore the possi-
bility of the hands applying a torque to the bat at the time of impact and we will
continue our derivation with Newton’s second principle.

Newton’s Second Principle states that applying an impulsive torque about an
axis of rotation changes the angular momentum about that axis. We can apply this
principle to a collision at the sweet spot with rotation about the knob of the bat.

dinob-ipMball (Vbal-after — Vball-before) = —Tknob (Basier — Poefore) (5.6)
diipmi (Via — viv) = —Ik(By — Py) (5.6s)

Solve for g,
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(Via — vib)midiip
I
(Vball-before - Vbat-cm-before)mballdk-ip

ﬁa:ﬂb_

ﬂafter = ﬂbefore - I
knob

5.3.5.4 Abbreviations

For simplicity (especially when doing derivations by hand), the following tempo-
rary simplifications will be used in the derivations. Because they are analogous to
the abbreviation used in Chap. 4, these will have a bar over the letter.

A (vib — vab — di-ipBp) (1 + CoRy.) 1
ﬁ—ip

myly + moly + mimyd kgzm .S

C=vipb—vap —diipfy m/s
unitless

G = +vamali(1 + CoRy.) + fymalidi_ip(1 + CoRy)  kg’m? /s

K= (mllk + mpl + mlmzdi_ip) kg2m2

The units are for dimensional analysis. Note that none of these constants
contains the outputs Vi -afrers Vbat-after OF Ppat-after- ONE of the purposes of this
book is to show how complex these collisions can be, while still being modeled
using only Newton’s principles and the conservation laws. The most useful simpli-
fications are the ones that are constants independent of velocities after the collision.
These simplifications are only used during the derivations. They are removed from
the output equations. We will now use the Newtonian principles in equations (5.4),
(5.5) and (5.6) and the conservation laws to find Vi - afier » Voat - after a0d Ppat - after-

5.3.5.5 Conservation of Angular Momentum

We will now use the law of Conservation of Angular Momentum about the axis
through the knob of the bat. When the ball contacts the bat, as shown in Fig. 5.2, the
ball has linear momentum of #,,11Vpaii - before- 1 Nerefore, following tradition, we will
model the ball as rotating about the bat’s knob at a distance d = dy _jp,. Thus, the ball
has an initial angular momentum of 7ya1dinob - ipVball - before- I addition, it is possi-
ble to throw a curveball so that it spins about the vertical, z-axis, as also shown in
Fig. 5.5. We call this a purely horizontal curveball (although it will still drop due to
gravity, more than it will curve horizontally). The curveball will have angular
momentum of Iy, 1@par - vefore abOUL an axis parallel to the z-axis. However, this is
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momentum about the center of mass of the ball and we want the equivalent
momentum about the knob of the bat. So we use the parallel axis theorem producing

2
(1 ball + Mbandy_ ip) Wpall-before-
The bat has an initial angular momentum reflecting the rotation about the knob.

The symbol used for angular momentum is L. Therefore, the initial angular
momentum for the bat-ball system about the axis through the knob of the bat is

Linitial = midi_ipVip + (11 + mldl%-ip)wlb + Iknob Py,

All of these momenta are positive, pointing out of the page. (Remember that vy},
is a negative number.) Please refer to Fig. 5.5 now.

For the final angular momentum, we will treat the ball, as before, as an object
rotating around the axis through the knob of the bat with angular momentum,
Mpaiidy - ipVball - before: INOW we could treat the bat as a long slender rod with a
moment of inertia of mbatdfmt /12 where d,,, is the bat length. However, this is
only an approximation and we have actual experimental data for the bat moment of
inertia. Thus, our final angular momentum about the knob of the bat is

Liinat = mydy_ipVia + (11 + mldi—ip>a)1a + IknobPa

As we did in the section on Newton’s Second Principle, we will ignore the
possibility of the hands applying a torque to the bat handle at the time of impact. So
now, we apply the law of Conservation of Angular Momentum, which states that
when no external torque acts on an object the initial angular momentum about some
axis equals the final angular momentum about that axis.

Linitial = Lfinai
mydi_ipvip + (11 + mldi_ip)wlb + Ikp, =

) (5.7s)
+mydi_ipVia + (11 + mldk_ip)wla + Ik p,

Now, we solve this Conservation of Angular Momentum equation for the
angular velocity about the knob after the collision, f,.

—If, =midy_ipvia + (11 erldﬁ_ip)wla —mydy_ipVip — (11 +m1di_ip)wlb —Ipy
divide by minus I
—mydi_ipVia — (11 +m1d§_ip)w1a +mydy_ipVip + (11 +m1di_ip>w1b + 1By,
Ik
mydi_ip(Via — Viv) + <11 erldﬁ_ip) (@12 —w1p)
Ik

b=

ﬂa:ﬂb_




122 5 Alternative Models

This equation was derived from Eq. (5.7s) Conservation of Angular Momentum.
In Sect. 4.9, we showed that for a head-on bat-ball collision the ball spin before the
collision is the same as the ball spin after the collision. Well, this is a head-on
collision. Therefore (w1, = @;,,) and the above equation reduces to

(Via — vib)midicip
I
(Vball-before - Vbat—cm—before)mballdk—ip

ﬂa:ﬂh_

ﬁafter = ﬁbefore - I
knob

which is the same equation that we derived from Eq. (5.6), Newton’s Second
Principle.

5.3.6 Ball Velocity After the Collision

We will now find the ball velocity after the collision. We start with Eq. (5.5) and
solve for the bat translational velocity after the collision, v,,

Via — V2a — dk-ipﬂa

CORZC = —
Vib — Vab — di-ipfy

Let C = vip — vap — diipfo
V2a = Via t+ C0R2CC - dk—ipﬂa
Now we substitute the j, that we just derived.

dy_ipmy (Via — Vip)
Iy

V24 = Via + CoRy.C — dk_ip{ﬁh -

mldﬁ_ip(Vla — Vib)

V2a = Via + COchC + 7 - dk—ipﬂh
k
mldﬁ; mldi_‘ Vib =

Vaa = Via (1 i 1") o T+ CoRacC — dif

k k

_ omd>
LetD — ﬂ
Iy

Vo = Vla(l —|—D_) — VlbD_ + CORQCC - dk-ipﬁb

Use this v,,in Eq. (5.4) to get the ball velocity after the collision, v ,.
Prepare to substitute this v,y, into Eq. (5.4) by multiplying by the bat mass, m,



5.3 The Sliding Pin Model 123

Voahly = V]amz(l + D) — V]bsz_ =+ mgCochC_‘ — ﬂbmzdk_ip
Now substitute this v,,m, into Eq. (5.4)

M Vip + MaVop = MVig + M2V2a ~ ~ -
Vi + Vopiipy = ViaMy + {Vlamz(l +D) — vipheD + mpCoRy. C — ﬂbm2dk-ip}

Rearrange

+Vviamy + V]amg(l +D) = +Vvipm +7V1bn12[) + vapny — myCoR,.C + Bpmady_ip
Replace the dummy variables C and D

mldz_ip
FViai + viama | 1+ 7 (]=
k

2
mldk_ip
+Vviemy + Viphio§ ———

Iy
+vaphny
—myCoRy {vip — vab — di-ipPy }
+ppmady_ip
Rearrange

Via

myd?
m +m2<1+ {—' k'“’})] -
Iy

mldl%-ip
+Vvip |y + 1My 7 — mrCoRy.

k
+V2me(1 + CORZC)
+/5bm2dk_ip(1 + CORZC)

Multiply by the moment of inertia of the bat, /.
Via [mllk + myly + mlmzdﬁ_ip} =
+V1b [mllk — mzlkCORZC -+ mlmzdﬁ_ip]
+V2melk(1 + CORZC)
+ﬁbm2[kdk-ip(1 + CORZC)

Vib [mllk — malyCoRoe + mlmzdi_ip] +vapmaly (14 CoRae) + Bymalidyip(1 + CoRac)

2
k-ip

Via=

mllk +mzlk+m1m2d

This is the normal form of the equation for v,. However, we now want to rearrange
this equation into our canonical form. Let
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k = mllk + }’HQlk + mlmZdi-ip)

G = +vaymal(1 + CoRy.) + Pymalidy_ip(1 4+ CoRy.)

Then

Vib [mllk — mplCoRy. + mll712dﬁ_ip:| +G

Via = =

K

K
add {vlb — H%}to the right side

V]b(mllk — malCoRye +m1m2di_ip> Vlb(’"llk + maly +m1m2di_ip> G
Via = {vin} + 7 - 7 + 7
Vib (mllk — M21C0ch + mlmzdﬁ_ip) — Vib (mllk + M21k + mﬂﬂzdi_ip> G
Via = Vip + Fa + z
Vib mllk - mzlkCOch + mlmzdi_ip - mllk - lek - mlmzdﬁ_ip> G
Via = Vip + 7 + 7
Vib —mzlk - mZIkCORz G
Via = Vib + ( % c) %
—vipmali (1 4 CoRy) + G
Via = Vip + 16112 k( z Zc)

Replace the dummy variable G and we get the following equation.

(V]b — v2b)mzlk(1 + COR) — ﬂmeIkdk-ip(l + CORZC)
myl, + moly + I’}’I1M2dﬁ_ip

Via = Vib —

Simplify and our final equation for the batted-ball velocity becomes

b (vib = vab — Bydi-ip) (1 + CoRac)maly
fa o myly + mol, + mlmgdﬁ_ip

(Vball-before — Vbat-before — ﬂbeforedk-ip) (1 =+ C0R2C)mbatl knob

3
Miaitlnob + Mbatlxnob + MoatMbardy i,

Vball-after = Vball-before —

or if we let

_ — —dy_; 1 + CoR _
i (vib — vab — di-ipBy) ( O0R).) b — i — Aol

myly + moly + mlmzdi_ip

Nothing in this derivation depended on the collision being at the sweet spot of
the bat. Therefore, dy -j;, could be replaced with the distance from the knob to any
arbitrary impact point. This equation was derived from Eqgs. (5.4), (5.5) and (5.6).
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This A differs from the A of the BaConLaw model in that it uses /. instead of I,
dy - Instead of d, - and CoR,.instead of CoR,y,.

5.3.7 Bat Translational Velocity After the Collision

Now, we will derive an equation for the translational velocity of the bat after the
collision. We start with Eq. (5.5) and solve for the bat translational velocity after the
collision, vy,

Via — V2a — dk-ipﬂa
Vib — V2b — di-ipPy

V2a = Via + CoRze (Vi — vab — diipBy) — di-ipPa

CORZC = —

First, get rid of f, by substituting this j3, that we derived above.

di_ipmi (Via — Vip)
I

ﬁa:ﬁb_

V2a = Via + CoRzc (Vib — vav — dicipB) — dk-ip{ﬂb -

mldi_ip(vla — Vip)

di-ipmi (Via — Viv)
Iy

V2a = Via + CoRze (Vi — vao — dicipfBy) + I — dx-ipPyp
m d2 . m d2 .
Vo = Vg [ 1+ — ) oy [ 2 CoRy,
I I
— VszOch — dk—ipﬂh(l + CORzC)
_ mydr.
LetD = T1%-ip
k

Vo, = Vla(l +D) — Vip (D — CORzC) — v2pCoRy¢
— dk-ipﬁb(l + CORzC)

Now get rid of v, by substituting this v, that we derived above.

N (vib = vab — dicipB) (1 + CoRae)mal
fa b myly + mol + mlmzdi_ip

U (vib = vab — dicipB) (1 + CoRae)mal (1+D)
8 . mli + moly + mymyd;,_,

— Vib (D — C0R2C) — VZbCORZC — dk_ipﬂb(l + CORZC)
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kvza = valb(_l —|:D_) — (Vlb — V2p - dk-ipﬂb)(l + CO_RQC)(I —|—D_)l7121k
— V]bK(D — CORZC) — VszCOch — dk_ipﬂbK(l =+ COch)

Kvay = vip[K(1 4+ D) — MM(1 + D) — KD + KCoR»|
+ vy [MM (1 + D) — KCoR|
+d_ipfy [MM (1 + D) — K(1 + CoRy.)]
kVQa = Vb [K — MM(I + D) + kC()ch]
+vap[MM (1 + D) — KCoRy|
+ Podicip [MM (1 + D) — K(1 4 CoRx)]
Kvya = vip [K(1 + CoRye) — MM (1 + D)]
— vop [KCoRye — MM (1 + D)) .
— dyipPpy [K(1 + CoRy) — MM (1 + D) ]

Add {+vK — v»K} to the right side

Kvya = vip[K(1 + CoRye) —MM (1 +D)] )
— V2p [KCO_R2C MM(l + D)] + {Vzb_[{ - Vsz}
— di_ipPy [K(1 + CoRx) — MM (1 + D)
Kvaa = vip [K(1 + CoRyc) — MM (1 +D)]
— vy [K(1 4 CoRye) — MM(l +D ] + vk
— di_ipPy [K(1 + CoRx) — MM (1 + D)|
Let Q = K(1 + CoRy.) — MM (1 + D)
Kvay = varK + vipQ — vanQ — Prdi-ipQ
divide byK
(vib — vab — di-ipy) O
K

Voa = Vob +

That looks good. So, let’s work on Q for a while.
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0 = K(1 4 CoRy) — MM(1 + D)
MM = MQIk(l + CORzC)
mldl%-ip

Iy

_ mldﬁ_ip
MM (1 + D) = moIi(1 + CoRx) | 1 + —
k

ol

MM(1 + D) = [mzu.(l + CoRac) + mymad}_j, (1 + Coch)]

0= K(l + CORZC) — |:m21k(1 + CORZC) -+ mlmzdﬁ_ip(l + C()ch)]

k = mllk + lek + mll’l’lzdﬁ_ip

0 = (mili+ mali + mimadi ) (1+ CoRoe) = [mali(1 4 CoRac) + mymad?, (14 CoRac)]

cancel equal terms
0 = mili(1 + CoRy)

Vvaa = vab + (Vib — vab — diipBy)muli (1 + CoRyc)

K
(Vlb — Vb — dk-ipﬂb)mllk(l + CoR».)
V2a = Vob + 5
mly + moly + M1m2dk_ip
If we let

i (vib — vab — di-ipBy) (1 + CoRxe)
ml + moly + mlmzdﬁ_ip

Voa = Vop + Amyly

(Vhall-before — Vbat-before — Boefore@k-ip) Mbattlknob (1 + CoRac)

2
Miatt/knob + Mbatlknob + MoaMoardic_i,

Vbat-after = Vbat-before

5.3.8 Bat Angular Velocity After the Collision

Now, we will derive an equation for the rotational velocity of the bat after the
collision. We start with the previously derived equation for f,.

di_ipm1 (Via — Vib)
Iy

ﬁa:ﬁb_

Now we must get rid of the term with the after subscript. Multiply by Iy
Pl = Pyl — di_ipmi(Via — Viv)

Substitute the previously derived expression for vy,.
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, {Vlb — (vib = vab — Bydieip) (1 + COch)mzlk}
’la = —
K

v, — Vo, — B.d. . Y1+ CoR, Ym,I
ﬂalk_ﬁhlk_dk-ipml[{vlb_( "V~ klp[?)( 2% k}“’]h]

Cancel (v,, —v,,) and multiply by K
ﬂa[kl? = ﬁhlk[? - dk—ipml (i =V — ﬂbdkfip)(l + CoR, )m, 1, )
Distribute the —d, ,,

ﬂa]kf = ﬁblk[? T (Vi =V — ﬂbdk-ip )dk-ssmlmzlk (1+CoR,,)

m, term

Collect similar terms

ﬂalkl? = ﬁhlkE

I,(1+CoR,.)
k_iplk(l +CoR,.)
=B, mmyd, 1, (1+ CoR,.)

+v1bm1m2dk—ip
=V My,
k-ip

Divide by I K

ﬁa :ﬂb

1 + CoRy.)mmydy_;
+V1b( 2c)mimady_ip

K
(1 + CORQC)MImzdk_ip

— V2b

K
~ Bodiin (1 + CoRae)mimadicip

K
B =, + (Vib — Vab — Ppdi-ss) (1 + CoRy)mymydy_ip
a b myly, + moly + mlmzdi_ip

Let

A— (vib — vab — Bydi-ip) (1 + CoRx.)

mllk + m21k + mlmzdlz(_ip
Pa = Py + Amimady_ip

5.3.9 Conservation of Energy

The following equation is for the kinetic energy lost.
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2 2 2 2 2 2
0 = mvyy, + movy, + Ly — myvi, — movy, — [y — 2KE o
These are our equations for the outputs.

Via = Vip — Amaly

Vaa = vau + Amyly

Pa = Pp + Amimady_ip
W1a = W1p

Substituting the linear velocity of the ball after the collision, vy,, the linear velocity
of the bat after the collision, v,, and the angular velocity of the bat after the
collision, w,, into this Conservation of Energy equation yields
KE . — 1) mviy + movd, + LBy — my (viy — Amzlk)z
lost — & — 2 - 2
2 | —ma(vap + AmiI)” — I (By + Amimady_ip)

Substitute for A
i (vib — vab — diipBy) (1 + CoRxc)

= 2
k-ip

myly + maly + mymyd

After a little bit of algebra that follows the development in chapter 4 we get

1 mymoly 2 2
KEost = = [ Vib — Vab — Prdi.i 1 —CoR }
lost 2m11k + WZQIk + mll’}’szi_ip ( o 2 ﬁb « 1p) ( 2C)

or expanding the abbreviations gives

1 MpallMbatlknob
KElost =5

2 myandxnob + Miatlknob + MbatMoady._,
(] - COR%C):I

2
|:(Vball-bef0re — Vbat-before — ﬂ beforedk-ip)

5.3.10 Summary: The Output Equations

Our final equation for the batted-ball velocity is

(vib — vab — Bydicip) (1 + CoRo)mal
myl, + mol, + mlmzdﬁ_ip

Via = Vib —

Expanding the subscripts, we get
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(Vball-before — Vbat-before — ﬁbefOredk-ip)mbatIknob ( 1 + C0R2c)

7
Maitlknob + Mbatlknob + MbaMoatdy i

Vball-after = Vball-before —

Our final equation for the translational bat velocity after the collision is

(vib — vab — dicipBy) (1 + CoRze)myly

myly + mol, + I’i’lﬂ’ﬂzdi_ip

Voa = Vop +

or

(Vhali-before = Vbat-before — Bpefore@i-ip) (1 + COR2e)Miatilinob

2
Maitlinob + Mbatlknob + MoaMoardy_ip,

Vbat-after = Vbat-before 1

Our final equation for the rotational velocity of the bat after the collision is

(vib — vab — Bydi-ip) (1 + CoRae)mymady_ip

2
k-ip

(Voall-before — Vbat-before — Breforedi-ip) (1 + CORe) Manmyadi-ip

2
Mpaitlknob + Mbatlknob + MbatMvardy_,

ﬁa:ﬂb+

myly + mply + mymyd

ﬁbal-afler = ﬂbal-before

These three equations have a common term

A (Vball-before — Vbat-before — ﬂbeforedk-ip) (1 + Coch)

= 2
Mpaitlknob + Mbatlknob + MoatMbardy_ip,

We can summarize with the following.

If we let
i (vib — vab — di-ipfy) (1 + CoRye)
mllk + mzlk + mlmzdﬁ_ip
Then our set of equations becomes
CoRy, = — Via — V2a — di_ipfy
Vib — Vab — dicipPy
Via = Vib — Anpalk
Voa = Vap + Anpanlx
Ba = Po + Ampanmpady_ip
@12 = Db
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5.4 Differences Between the BaConLaw and Sliding Pin
Models

The purpose of Chap. 4 was to develop the BaConLaw model that explains bat-ball
collisions with precise, correct equations, without jargon. The BaConLaw model
described head-on bat-ball collisions at the sweet spot of the bat. It gave the speed
and spin of the bat and ball before and after collisions. The purpose of the Sliding
Pin model of Chap. 5 was to model a new type of data. Previously the input data for
our models were the translational and rotational velocities at the center of mass of
the bat. However, the Sliding Pin model used the translational and rotational
velocities at the knob. The experimental data produced different nominal values
for the inputs. Because these two models had different purposes and inputs, we
would not expect them to be equivalent. And they are not. Here are some of the
differences between these two models.

The BaConLaw model If you toss a bat into the air, it will have linear motion and it
will rotate about its center of mass. Because a bat is a rigid object, every spot on a
bat will have the same linear translational velocity and the same angular rotational
velocity.

Vbat-knob-trans — Vbat-cm-trans — Vbat-cop-trans and
What-knob = Wbat-cm = Wbat-cop

However, each spot on the bat will have a different fotal velocity that depends on
the pivot point and the spot’s distance from that pivot point.

Vicop = Vem + dcm-copwbat

If a bat tossed into the air were hit by a ball, it would be a free-end collision because
there are no other forces acting on the bat. The BaConLaw model uses a free-end
collision because of the simplicity. We need not search for other forces on the bat,
because there are none. The BaConLaw model and the Effective Mass model both
assume free-end collisions, with no external forces and rotations about the center
of mass.

The Sliding Pin model Now imagine a bat that is pinned through its knob, but the
pinned point is allowed to slide along the x-axis, as in Fig. 5.2. This bat will have
linear motion and it will rotate about its knob. Because a bat is a rigid object, every
spot on a bat will have the same linear translational velocity and the same angular
rotational velocity.

Vbat-knob-trans = Vbat-cm-trans = Vbat-cop-trans
and Sy _knob = Pratem = Poar- cop
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However, each spot on the bat will have a different fotal velocity that depends on
the pivot point and the spot’s distance from that pivot point.

Viem = Vknob T dknob-cmﬂbat

Vlcop = Vknob + dknob-copﬂbat

If the pinned bat were hit by a ball, it would produce forces on the pin. This makes
the Sliding Pin model more complicated than the BaConLaw model. Forces in the
x-direction are not worrisome: they are known to be small (Milanovich and Nesbit
2014) and they would merely accelerate the bat in the x-direction. Two of the forces
on the pin will be along the y-axis. The centrifugal force due to the bats rotation
about the pin will be in the negative y-direction. The human will be applying an
approximately equal and opposite centripetal force in the positive y-direction, as
shown in Fig. 5.3. But at the time of the collision these forces will not affect the
bat’s velocity v, because they are perpendicular to it. The Sliding Pin model
assumes negligible forces on the pin and rotations about the knob.

Consider the BaConLaw model of Fig. 4.1 and the Sliding Pin model of Fig. 5.2.
For the time being let us ignore the translational movements and consider only
rotational movements. Suppose you want to move the sweet spot forward a distance
x. The BaConLaw model of Fig. 4.1 would require a rotation through an angle 6.,
where the tan 6., = m Whereas, the Sliding Pin model of Fig. 5.2 would require

—~—_ Now the angular

a rotation through an angle 6y, where the tan &y, = y—
nob—ip

velocity of the BaConLaw model is @y, = d?;;“ whereas the angular velocity of the
_ dbnov

Sliding Pin model is S, = <k, Clearly wpa; # Poar-
The Sliding Pin model is analogous to the BaConLaw model, but it is not

equivalent.

A#A

(Vlb — Vb — de—ipw2b> (1 + COsz)

2
cm-ip

(vib — vab — di-ipBy) (1 4+ CoRxe)
mlxnob + Malxnob + mlmZdi_ip

mllbat-cm + m21bat-cm + mlmZd

A=

Therefore, the two Vi - afier €quations yield different numerical values. From the
BaConLaw model of Chap. 4 we have

Vball-after = Vball-before — AmbatI bat-cm

And from the Sliding Pin model of this chapter we have
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Vball-after = Vball-before — Ambatl knob

Because Ampadpa_cm 7 Aipadinob the vy, of the BaConLaw model is not the same
as the Vpy) - afeer Of the Sliding Pin model.

For the angular momentum L;,;;a = Lgna for both models, but the numerical
values are different. Numerically the CoRs are the same although their equations
are different.

Vpall-after — Vbat-cm-after — Qem-ip@bat-after
COsz P

Vball-before — Vbat-cm-before — dcm-ipwbal-before

CoR Vball-after — Vknob-after — dknob-ipﬂafter
2c -
Vball-before — Vknob-before — dknob-ipﬂbefore

where the subscript ‘ip’ stands for the impact point.

Inputs and outputs for the BaConLaw model from Table 4.1

Il'lplltS Vball - before 5 @ball - before > Vbat - cm - before » @bat - before and C0R2b

OUtPUtS Vball - after s @ball - after »  Vbat - ip - after » Dpat - after » and KElost

Inputs and outputs for the Sliding Pin model from Table 5.1

Inputs Vball - before s @ball - before » Vknob - before » ﬂknob - before and C0R2C
OUtPUtS Vball - after > @ball - after » Vbat - ip - after » ﬁknob - after and KEIOS[

The BaConLaw and Sliding Pin models are analogous, but they are not equivalent.
The derivations followed the same processes and the outputs have similar forms but
the numbers are different.

The BaConLaw model states that the maximum batted-ball speed will occur for
a collision 0.66 m from the knob, while the Sliding Pin model states that the
maximum batted-ball speed will occur for a collision 0.68 m from the knob.
Once again, the models are different.

For the BaConLaw model

2 72
OVia o Bmlmchm-cop

ol K?
For the Sliding Pin model

20
Oviy  Bmumydi s,

oIy K?
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5.4.1 Simulation Results

Tables 5.3 and 5.4 show the results of our Excel simulation of the Sliding Pin model
equations using the Diamond Kinetics input data from Table 5.1. These results are
similar to those in Tables 4.2 and 4.3 for the BaConLaw model except that the
batted-ball speed vy - afeer 1S smaller, 83 mph (37.2 m/s) versus 92 mph (41 m/s).
The probable cause is that the BaConLaw model used input values that were
appropriate for major leaguers, whereas the Diamond Kinetics data were for pro-
fessionals, but not major leaguers.

The kinetic energies of the bat linear velocity and the bat angular velocity in
Table 5.4 are different from those in Table 4.3, because the experimental data for

Table 5.3 Simulation values for bat-ball collisions of the Sliding Pin model

‘ SI units (m/s, rad/s) Baseball units (mph, rpm)
Inputs
Vball - before -37.1 —83.0
@pall - before 209 2000
Vknob - before 4.5 10
Prefore 41 387
CoR. 0.453 0.453
Outputs
Vball - after 37.2 83.4
Dhall - after =®ball - before
Vknob - after —7 ~17
Patter 18 175

Table 5.4 Comparison of Sliding Pin model
inputs and outputs of the

Sliding Pin model and the Inputs

BaConLaw model Vknob - before 4.5 10
Prefore 41 387
Vlpat - ip - before 334 m/s 75 mph
Outputs
Vknob - after -7 -17
Batter 18 175
BaConLaw model
Inputs
Vbat - cm - before 23 m/s 52 mph
Wyt - before 32 rad/s 309 rpm
Vtvai -ip - before 28 m/s 62 mph
Outputs
Vbat - cm - after 11 m/s 24 mph

What - after 1 rad/s 7 rpm
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Table 5.5 Kinetic energies for the Sliding Pin model collision, Joules

KE of ball linear velocity before, vy - before 100
KE of bat linear translational velocity before, Vi - trans - before 9
KE of ball angular velocity before, @paj - before 1.7
KE of bat angular velocity before, f, 280
KE before, total 391
KE of ball linear velocity after, vy - afer 100
KE of bat linear translational velocity after, vy - ans - after 25
KE of ball angular velocity after, @y - after 1.7
KE of bat angular velocity after, f, 57
KE after, total 184
KE lost 207
KE before minus (KE after plus KE lost) 391

It is just a coincidence that the KE of the ball linear velocity before and after are nearly the same

these variables are different. Otherwise, the numbers in Table 5.4 are comparable to
those of Table 4.3. This shows that our analysis and equations are consistent.

Modeling philosophy note Earlier we noted that, if we set dey-ip=0 in the
simulation of the BaConLaw model so that the impact point was at the center of
mass of the bat, then Tables 4.2 and 4.3 changed and produced the results of
Tables 3.3 and 3.4 for configuration 1b. This means that the whole BaConLaw
model (equations, simulations, sensitivity analyses, results, etc.) can be reduced to
be appropriate for configurations la, 1b and 2a by zeroing appropriate values.
However, this does not work for all models. For example, we cannot set variables
and parameters in the Sliding Pin model so that it is equivalent to the BaConLaw
model or the Effective Mass model. The Sliding Pin model is analogous to the
BaConLaw model, but it is not equivalent.

5.5 Collisions with Friction

Purpose: The purpose of this section is to present the Collision with Friction
model. Our modeling technique could not handle this configuration because
our model is only good for a point before the collision and a point after the collision.
It cannot handle behavior during the collision. The BaConLaw model of Chap. 4
fulfilled part of the first purpose of this book. It showed a complex configuration
for which our technique did work. This section completes the fulfillment of this
purpose by showing a configuration for which our technique is too simple.

One of the purposes of this book is to find how complicated our configurations
can be and still be solvable using only Newton’s principles and the conservation
laws. The BaConLaw model passed this test. So now, let us try configuration 2d, the
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Top View pall - X
] F{ic’non <
orce ”

S
Side View

Fig. 5.6 Model of the bat-ball collision with the addition of friction between the bat and ball. The
arrows show that angular momenta are positive when pointing out of the page

Table 5.6 Equations for the Collision with Friction model, two equations and one unknown

Inputs Vball - before s @ball - before > Vbat - ss - before » @bat - ip - before

Outputs Dbvall - after

Equations

Newton’s Second Af,(’” ball X Firiction) = — (Ibati®ball - after — Ibati®ball - before)

Law, Eq. (5.6)

Conservation of Linitial = Litinal

Angular Momen- mlvlbd + (11 + mldz)wlb + Iza)z}, — 0.1ﬂf-m11‘1 |V1b| + m1d2w1b

tum, Eq. (5.7s) = +mpid + (I + md*) o1, + hoxn + 0.1upmyry|via| — mid* o1,

Collision with Friction model. This model is for a collision at the sweet spot of the
bat with spin on the pitch and with consideration of friction between the bat and
ball, as shown in Fig. 5.6. The inputs, outputs and equations are given in Table 5.6.

5.5.1 Using Newton’s Principles

During the collision, the ball velocity changes fromvy - pefore tO Vpatl - after- ASSUME
that the ball velocity reaches zero somewhere in the middle of the collision. There-
fore, during this first part of the collision the velocity changes from vy - pefore t0 0. By
Newton’s second principle, we can write the force that the ball exerts on the bat
normal to the tangent plane of the collision is Fopma = m"“ﬂw. We postulate that
during the first part of the collision the ball is sliding across the bat. Therefore the

friction force acting on the ball is

Friction = F normal

miVivhys
At

Friiction = ‘



5.5 Collisions with Friction 137

Fig. 5.7 A bat-ball
collision showing how
much the baseball is
deformed during a collision.
The collision lasts about

1 ms (Photo Credit: UMass
Lowell Baseball Research
Center. From https://
student.societyforscience.
org/sites/student.
societyforscience.org/files/
main/articles/ballbat.jpg)

The absolute value sign is necessary because friction always opposes motion. I
experimentally measured the dynamic coefficient of friction between a wooden
baseball bat and a baseball to be y=0.5. We will use this numerical value in the
simulation. According to Newton’s second law, this friction force, shown in
Fig. 5.6, creates a torque that reduces the angular momentum of the ball. The
amount depends on how long we apply the torque, Af.

A? (roan X Friction) = —(l1w1a — [1o1p)

As always, omega, o, stands for the rotational velocity of an object about its
center of mass. This friction force only exists when the ball is sliding across the
surface of the bat, not when it is rolling or griping. Figure 5.7 shows how the ball is
deformed during the collision. This suggests that the ball is sliding on the bat during
only a short part of the collision (maybe the first 10% of the total collision duration),
then it grips the bat tightly.

We can solve the above equation for ,. This omega has a prime symbol on it
because it is not the omega after the whole collision. It is the omega after only the
first part of the collision where the ball is sliding on the bat. Let Ar'be the duration of
sliding and At be the duration of this part of the collision.

/ -
Lo\, = Lo — At Fricionvall
miVivH
[1a)la = [1a)1b — Atl‘if‘

Assume that Af' = At/10

Ila)’la = Ilwlb — }O.lmlvlb,ufrl‘


https://student.societyforscience.org/sites/student.societyforscience.org/files/main/articles/ballbat.jpg
https://student.societyforscience.org/sites/student.societyforscience.org/files/main/articles/ballbat.jpg
https://student.societyforscience.org/sites/student.societyforscience.org/files/main/articles/ballbat.jpg
https://student.societyforscience.org/sites/student.societyforscience.org/files/main/articles/ballbat.jpg
https://student.societyforscience.org/sites/student.societyforscience.org/files/main/articles/ballbat.jpg
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This result does not depend on At. Near the end of the collision the friction force
rearises, but in the opposite direction (Cross 2011; Kensrud et al. 2017). This
increases the ball spin.

mivia
Fromal =
norma. At

miViafy
Ftriction = ‘7‘

This time the @), has the prime symbol because it is not the omega before the
whole collision. It is the omega before only this part of the collision.

/
Ilwla = Ilwlb + Aszfrictionrball

Vla
Ilwla*]lw1b+AlJ‘ : 1ﬂf’

Again assume A = Az/10
Loy, = Loy, + [0.1mvigur|

O.lyfmlrl

11 |V1a|

Wiy = (Ullb +
Now, we ignore all of the time when the ball is not sliding across the bat and @/,
becomes ), and we can combine these equations to get

,Ll mry
107,

W1y = W1p + ([vial = [vib])

or by expanding the subscripts

Hirictionball"ball
Whall-after = @ball-before T T (‘Vball-afler| - |Vball-before|)
ball

However, this whole analysis depends on how long the ball slides on the bat
before it switches to rolling or griping.
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5.5.2 Conservation of Angular Momentum

Most of the equations for the BaConLaw model also apply to the Collision with
Friction model. The exceptions are Conservation of Energy and kinetic energy lost.
As in the BaConLaw model, at the instant when the ball contacts the bat, as shown
in Fig. 5.2, the ball has a linear translational velocity of Vi - pefore that, as before,
we model as the ball rotating about the bat’s center of mass at a distanced = d¢yy, - ip.
When it comes time to substitute a value for d we will use either d =d.y, i, Or

d =\ /dﬁm_ip + r2,,. However, the sensitivity analysis has shown that this is one of

the least significant parameters in the model. Therefore, which we use is not
important. The ball also has angular momentum because of its spin: we use the
parallel axis theorem to compute the moment of inertia with respect to the center of
mass of the bat, (Tpay + Mpand”)@pall - before. The bat has initial angular momentum,
L,w,,. Now we add a new term due to the friction between the bat and ball,
Tball X Friction- This term exists during the collision, not before. Nevertheless, we
will lump it in with the initial angular momentum. Therefore, we can write the sum
of the initial angular momenta of the bat-ball system about an axis through the
center of mass of the bat parallel to the z-axis. In Fig. 5.2, positive moments will be
pointing out of the page.

Liitia = mvipd + (It + mid®) @1y + Losy — Frriction?1 At

Linitiar = mvipd + (I + myd®) w1y + Lwoy — |0.1pmyvipry

Assume that the last term is-/{w;, about the center of mass of the ball.
To relate it to an axis through the center of mass of the bat,
use the parallel axis theorem.

Linisiar = mvipd + (I + mid®) w1y + Ly, — (I} — myd*)wy

Liniia = mvipd + (I} + md*) o1y + Lo, — Ly, + md oy

Linisiar = myvivd + (I + mid®)wyp + Lany, — |0.1umyvipri| + mid> oy,

For the final angular momentum after the collision, we will treat the ball, as before,
as an object orbiting the center of mass of the bat with angular momentum,
MpaliVball - afterfem -ip- 1he ball also has angular momentum because of its spin: we
use the parallel axis theorem to compute the moment of inertia with respect to an
axis through the center of mass of the bat, (/. + mballdz)wban -after- The bat angular
momentum iS Iy @pa - afeer- L€ sum of the angular momenta after the collision is
Liina = mviad + (I + mid*) w1, + oo + Ficionr'1 AL

Leina = miviad + (It + mid®) w14 + Loyg + |0.1pmyviary
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Table 5.7 Simulation values | SI units (m/s or rad/s) ‘ mph or rpm
for bat-ball collisions at the

sweet spot for the Collision Inputs

with Friction model Vball - before -37 —83
Vlbat - ip - before 28 62
Results
@ball - before 209 2000
@hall - after 222 2126
@hall - before 0 0
@hball - after 13 126
@hall - before —209 —2000
Whall - after —196 —1874

Assume that the last term is /,w;;, about the center of mass of the ball.
To relate it to an axis through the center of mass of the bat,
use the parallel axis theorem.

Liina = mviad + (I + mid*) w1, + hang + (I. — myd*) w1,
Lfinal = mlvlad + (11 + mldz)wla +12a)2a + Izwa - mldzwla
Leina = myviad + (It + md®) 014 + hong + |0.1gmyviary | — myd* o,

Now for the whole bat-ball collision, we know that the initial angular momentum
must equal the final angular momentum.

Linitial = Lfinal
mvipd + (11 + mldz)wlb + Lawap — 0. 1ppmyry [vi| + myd* oy,

= +mviad + (It + md*)w1a + Loz, + 0.1ugmyri|via| — mid*wy,

Previously we used Newton’s Second Law, dm(vi, — vip) = — (w2, — @2p), and

solved for w,,, Wi = wa +d%(v1b —v1a). So let us substitute this into our

Conservation of Angular Momentum equation above.
myvivd + (It +myd® o1, + Ly, — |upmivipry |
2 2 dm
+mid* oy, =myvid+ (I +mid*) o1, + 1 o +T(Vlb —Via) ¢+ [upmiviar
2

—n dza)]a
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We want to solve this for the angular velocity of the ball after the collision, @,

2 2
_(]1 +m,d )a)]a +md o,
= ﬂnlvlhd—(ll +m]dz)a)”7 -1L,m,, —’0.ly/mlvlbrl’+mldza)1b

+myvd + Lo, +dm (v, —v,)+ |O‘1,u/’m1V1ar1

Cancel the terms in color, multiply by -1 and rearrange
o, +md*)-md’o,, =, +md")+ ‘O.l,ufm,v,br] ‘ -md’w, - ’0. lumy, i

o1, =, +m1d2)+
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This is the same equation that we derived earlier using Newton’s principles. This
result does not depend on d. Table 5.7 shows the simulation results using this
equation. The top two rows show the nominal input values. The next two rows show
before and after values for an initial ball spin of 209 rad/s. The next two rows show
before and after values for an initial ball spin of O rad/s. The final two rows show
before and after values for an initial ball spin of —209 rad/s. We know that these
numbers are not exact, but they are probably within an order of magnitude. If we put
@pa = — 1874 rpm into the simulation for Fig. 7.13, we find that the difference in
range is 1%. The purpose of this table is to estimate the magnitude of error
introduced by our Sect. 3.5 derivation of @paj1 - after = @ball - before -

The equations for (1) Vpay - afier the linear velocity of the ball after the collision,
(2) Vpar-ss-afier the linear velocity of the sweet spot of the bat after the collision,
(3) ®pat-afier the angular velocity of the bat about its center of mass after the
collision and (4) CoR the coefficient of restitution are the same as those derived
for the BaConLaw model.

This section on the Collision with Friction model assumed that the ball slides
(does not roll) across the surface of the bat during the collision. However, that is a
bad assumption because the ball could slip, slide, roll or grip, or flip from one mode
to another during the collision (Cross 2011; Kensrud et al. 2017). To make matters
even worst, Rod Cross (personal communication 2016) pointed out that when a ball
grips the bat as in Fig. 5.7 there is a large static friction force acting and it can even
reverse direction during the impact. Furthermore, presently, the behavior of the bat
and ball at game speeds is not known. Therefore, although the equations are
consistent, we are going to say that the analysis is not valid because we know so
little about the actual bat and ball behavior during the collision.

Modeling philosophy note The Collision with Friction model includes friction
during the collision. Our modeling technique cannot handle this configuration
because our model is only good for a point before the collision and a point after



142 5 Alternative Models

the collision. It cannot handle behavior during the collision. Chapter 4 fulfilled part
of the first purpose of this book. It showed a complex configuration for which our
technique did work. Chapter 5 completed the fulfillment of this purpose by showing
a configuration for which our technique was too simple. From a modeling perspec-
tive, this is an important section because few studies show failures. In this section, I
show a failure. I tried to model an event, but was unsuccessful. Then I explain why I
was unsuccessful.

5.6 Summary

The bat Effective Mass model and the BaConLaw model both start with Newton’s
principles: then they diverge. They are different: however, they yield the same rule
of thumb for the batted-ball speed! This should strengthen and give people more
confidence in both models.

Modeling philosophy note Having several alternative models helps ensure that you
understand the physical system. No model is more correct than another. They just
emphasize different aspects of the physical system. They are not competing models
they are synergetic.

This chapter presented alternative models. The Effective Mass model (Fig. 5.1)
was similar to the BaConLaw model of Chap. 4, except that it did not have the
algebraic equations. The fundamental model for both was that of a free-end
collision of a bat and ball that produced a translation and a rotation of the bat
about its center of mass. They produced the same rule of thumb for the speed of the
batted ball. For a major league wooden baseball bat the speed of the ball after the
collision is

batted-ball speed = —0.19 pitch speed + 1.22 total bat speed

The units could be either m/s or mph.

The next two alternative models in this chapter were data-based models. They
allowed forces on the bat handle. The Spiral Center of Mass model (Fig. 5.3)
matched data for the swing of the bat where the center of mass of the bat followed
a spiral trajectory. The Sliding Pin model (Fig. 5.5) used a translation and a rotation
about the knob of the bat. It also allowed the batter to apply forces on the handle
during the swing. These three models modeled different aspects of the swing and
collision. Therefore, they gave different results for outputs such as batted-ball
speed.

The last model in this chapter included friction during the collision. Our model-
ing technique could not handle this configuration because our model is only good
for a point before the collision and a point after the collision. It cannot handle
behavior during the collision.
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Chapter 4 fulfilled part of the first purpose of this book. It showed a complex
configuration for which our technique did work. Chapter 5 completed the fulfill-
ment of this purpose by showing a configuration for which our technique was too
simple.
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Chapter 6
Synopsis of Chapters 1 to 5

6.1 Introduction

Purpose: The purpose of this chapter is to compare the models presented in the
first five chapters, show links to other studies in the physics of baseball literature
and answer the question, “Could Ted Williams see his bat hit the ball?”
Chapter 1 presented Newton’s principles and laid the groundwork for analyzing
bat-ball collisions. Using text and figures, Chap. 2 explained nine common config-
urations of bat-ball collisions. In Chap. 3, we started developing sets of equations
for those configurations. Configuration 1b was for a very simple collision at the
center of mass of a translating bat. Configuration 2a added a rotation of the bat and
moved the collision point to the sweet spot of the bat.

In Chap. 4, we developed our complete model for bat-ball collisions. The
following equations comprise our BaConLaw model for bat-ball collisions.

2 2
1 mballmbatlbat (Vball—before — Vbat-cm-before — wbat—beforedcm-ip) (1 - CORz};)

KE s = 5 2
Myaitlvar + Moalvat + MbaiMbaid gy iy
A— (Vball-before — Vbat-cm-before — dcm-ipwbat-before) (1 + C0R2b)mballbat
- 2
Matilbat + Moatlvar + MpanMoard i,
Vpall-after — Vbat-em-after — @cme-ip@bat-after
COsz = — p

Vball-before — Vbat-cm-before — dcm-ipwbat-before
Vball-after = Vball-before — AMbat! bat
Vbat-after = Vbat-before + AMbaltlat
@bat-after = Dbat-before Amballmbaldcm-ip
Whall-after — Wball-before

This BaConLaw model for bat-ball collisions gives the linear and angular velocity
of the bat and ball after the collision in terms of these same variables before the
collision. Its development used only Newtonian mechanics and the conservation
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laws. It was assumed that there are no external forces and no friction. The funda-
mental principle and limiting condition for the BaConLaw model was our assump-
tion that the bat-ball collision is a free-end collision. That means that the bat acts as
if no one is holding onto its knob. To visualize this, imagine that the bat is laying on
a sheet of ice and you are looking down on top of it, as in Fig. 4.1. Then a baseball
slams into the bat at 80 mph. This collision produces a translation and a rotation of
the bat about its center of mass.

Chapter 5 contained four alternative models for bat-ball collisions. The bat
Effective Mass model used the same fundamental principles of Newtonian mechan-
ics as the BaConLaw model and the same limiting assumption that the bat-ball
collision is a free-end collision. Therefore, its equation and results are similar to the
BaConLaw model. For the BaConLaw model the inputs, outputs and states are the
same: namely the linear velocity of the bat, the angular rotational velocity of the bat
and the velocity of the ball. Whereas, for the bat Effective Mass model the input is
the total velocity (meaning translation plus rotation) of the bat and the output is
usually only the velocity of the ball.

The Spiral Center of Mass model and the Sliding Pin model are data-based, not
theory-based. They use a different type of data from the previous models. The
inputs to these models are the independently calculated translations and rotations
about a specified point on the bat during the swing. They allow rotation about the
knob of the bat. Most distinctively, they do not assume a free-end collision. The
Spiral Center of Mass model represents the movement of the bat through three-
dimensional space during the swing. This motion is not the simple translation and
rotation about the center of mass used by the BaConLaw and Effective Mass
models. The Spiral Center of Mass model stops when the collision begins. The
Sliding Pin model starts when the collision begins.

The purpose of the BaConLaw model was to describe head-on bat-ball collisions
at the sweet spot of the bat. It gave the speed and spin of the bat and the ball before
and after collisions. The inputs for the BaConLaw model were the translational and
rotational velocities at the center of mass of the bat. The purpose of the Sliding Pin
model was to model a new type of data. The Sliding Pin model used the transla-
tional and rotational velocities at the knob. Because these two models had different
purposes and different inputs, they are not equivalent.

Finally, the Collision with Friction model considered friction during the collision.
It was shown that this type of collision cannot be modeled precisely using only the
conservation laws. Therefore, this model completes the fulfillment of the first purpose
of this book, to show a configuration that is too complex for our simple technique.

6.2 Limitations

We showed that the BaConLaw model for bat-ball collisions could be modeled
using only Newton’s principles and the conservation laws. Whereas, configurations
2d, 3 and 4 will have to use additional details such as those presented in physics of
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baseball papers: Adair (2002), Branch (2007), Cross (2011), Hubbard (http://fac
ulty.engineering.ucdavis.edu/hubbard/), Nathan (http://baseball.physics.illinois.
edu/), Russell (http://www.acs.psu.edu/drussell/), Sherwood (https://www.uml.
edu/Engineering/Mechanical/faculty/sherwood-james.aspx), and Smith (http://
www.mme.wsu.edu/people/faculty/faculty.html?smith). This current book is at a
higher level of abstraction (Bahill et al. 2008) than those physics of baseball papers,
because it ignores details during the collision, such as (1) the ball can slip, slide, roll
or grip the bat and the ball switches between these modes, (2) the coefficient of
friction can change from dynamic to static, (3) the bat and ball deform (Mustone
and Sherwood 2003) (4) the collision has normal and tangential components and
(5) the bat has a twist or a rotation about its long axis. This book ignores the
difference between a half-dozen parameters that have commonly been used for
collision analysis such as the kinetic coefficient of restitution, the energetic coef-
ficient of restitution, u or et that models the energy loss due to tangential forces,
and e, that models the losses in angular momentum. This book grouped all of the
energy losses into one parameter, the kinematic Coefficient of Restitution (CoR).
This book models the variables of the bat and ball at a time just before the collision
and at a time just after the collision, not during the collision.

The authors mentioned in the previous paragraph are, for the most part, members
of the bat Effective Mass modeling community. The bat Effective Mass model for
bat-ball collisions was developed by Al Nathan. The people in this community
think that it is an intuitive model. It was presented at the beginning of Chap. 5. The
bat Effective Mass model usually produces only the batted-ball speed, whereas the
BaConLaw model also gives equations for the bat linear and angular velocities after
the collision. However, I come from a different background. I am an engineer and a
modeler. Back in the 1970s, we engineers would not design with integrated circuits
that did not have a second source. Therefore, integrated circuit manufacturers gave
their masks to their competitors! That way there would be a second source for the
integrated circuits in case the first manufacturer’s process went sour. From that
experience, I learned to cherish alternative models. Chapters 1 to 5 of this book
provide alternative models for bat-ball collisions. The BaConLaw model of Chap. 4
was based on the conservation laws. Its derivations are completely different, yet it
yields similar results to the bat Effective Mass model. This should allow people to
put more faith in both models. They are not competing models: they are synergistic.

A model is a simplified representation of a particular view of a real system. No
model matches all views of its real system perfectly. If it did, then there would be no
advantage to using the model. In modeling theory, there is never one correct model.
Good modelers always embrace alternative models. This enhances the probability
of the models being useful.

The terms in Table 1.1 should be understandable by high-school students,
undergraduates and all other students of the science of baseball. These terms are
all you need to know to understand this book. This book does not obfuscate with
jargon, rules of thumb or esoteric terms such as swing weight (moment of inertia
about a pivot point 6 in. from the knob), swing speed (the angular velocity of the
bat), the trampoline effect (hollow aluminum and composite bats are more elastic
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than wooden bats), hoop frequency (vibration of the barrel), the ball-bat coefficient
of restitution (BBCOR), collision efficiency, rebound power, intrinsic power,
bounce factor and recoil factor. By using only fundamental principles and no
jargon, it is hoped that the reader will gain intuition about the behavior of the bat
and ball before and after collisions.

6.2.1 Seeing the Collision

P. O. BOX 481
ISLAMORADA, FLORIDA KEYS
33036
January 23, 1984

Prof. A. Terry Bahill

Electrical & Computer Engineering
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

Dear Mr. Bahill:

Received your letter and have also had a chance to read your research,
and I fully agree with your findings.

I always said I couldn't see a ball hit the bat except on very, very
rare occasions and that was a slow pitch thet I swung on at shoulder
height. I cam very close to seeing the ball hit the bat on those
occasions.

As to participating in your other experiments; at this time, I can't
tell you that I can comply with your request.

Regarding the current theories of some of the present batting coaches
(with which I absolutely disagree) to watch the ball go into the
catcher's mitt - by doing that, you don't give yourself a chance to
swing and open up properly. Try it yourself - look down at the plate
and try to make a full swing. I hope you don't throw your back out
of jointl

In any event, good luck with your projects.

Sin ely, LS

Ted Williams

Tw/shg

When a baseball bat moving at 62 mph (28 m/s) hits a baseball traveling in the
opposite direction at 83 mph (37 m/s) there is a violent collision, which was shown
in Fig. 5.7. Table 4.3 showed that during the collision the kinetic energy in the
motion of the bat changed by 218 Joules (J): a loss of 193 J in linear translational
kinetic energy and a loss of 25 J in angular kinetic energy. Notably, 218 J is



6.2 Limitations 149

equivalent to dropping a 50-pound (24 kg) weight from your waist onto your toe or
having a one-pound rock (0.5 kg) hit your windshield while you are driving down a
highway at 70 mph (113 km/h).

Frame-by-frame analysis of a high-speed video of a major-league batter showed
that at the beginning of the collision there was (1) a big abrupt change in the ball
velocity as it swung from negative to positive, (2) a sudden drop in the linear
velocity of the sweet spot of the bat and (3) a sharp change in the angle of the bat, .
These last two changes can be measured in a frame-by-frame analysis, but they
cannot be visualized well, even in slow motion, because of the limited frame rate
and resolution of the cameras.

Now, imagine a film of Ted Williams hitting a baseball. His swing is smooth and
graceful although the kinetic energy of his bat changes by 218 Joules during a
collision. The reason his swing seems so smooth is that we mainly visualize the
movement of his body, arms, hands and the bat. We model this movement with the
bat’s angular rotation about the knob, . The change in this angular motion is not
visually obvious because it is just a short small jerk in the middle of a big swinging
motion. Hence, what we see does not change much. On the other hand, the bat’s
linear translational motion, Vyu-cm, decreases from 52 to 24 mph (23 to 11 m/s).
However, we do not visualize this translational motion well, because his swing
looks like a big rotation: it does not look like a translation. As a result, the
movement that we visualize well, 3, does not change much. Whereas, the move-
ment that changes a lot, vy - om, 1S nNot visualized well. This explains why people do
not perceive an abrupt jerk when the bat and ball collide.

What about the batter? Would he be able to see the effects of this violent
collision? Probably not. Bahill and LaRitz (1984) showed that no batter could
keep his eye on the ball from the pitcher’s release point to the bat-ball collision.
Their graduate students fell behind when the ball was 9 feet (2.7 m) in front of the
plate. Comparatively, their major-league baseball player was able to keep his
position error below two degrees until the ball was 5.5 feet (1.7 m) from the
plate. Then he fell behind. This finding runs contrary to baseball’s hoary urban
legend that Ted Williams could see the ball hit his bat. However, in reality, Ted
Williams could not see the ball hit his bat. In a letter that he sent to Bahill dated
January 23, 1984 he wrote,

“Received your letter and have also had a chance to read your research, and I fully agree
with your findings.

I always said I couldn’t see a ball hit the bat except on very, very rare occasions and that
was a slow pitch that I swung on at shoulder height. I cam[e] very close to seeing the ball hit
the bat on those occasions.”

In summary, the bat-ball collision is violent. Everyone can see its effect on the
ball: the ball is squashed (Fig. 5.3) and changes it velocity by 175 mph. However,
no one sees the collision’s effect on the bat. Because, first of all, the bat-ball
collision only lasts one millisecond, which is much too fast for visual pattern
recognition. Second, even in slow motion, the spectator only sees the smooth
movement of the batters body, arms, hands and bat, which glide continuously.
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The spectator cannot see movements that change abruptly, such as the bat’s linear
translational velocity, Vp.-cm. Finally, the batter is not able to see the bat-ball
collision at all. This explains why nobody sees an abrupt jerk of the bat when the bat
hits the ball, not even Ted Williams.

6.3 Summary

One purpose of this book was to show how complicated bat-ball collisions could be
while still being modeled using only Newton’s principles and the conservation
laws. We were successful. The BaConLaw model was the pinnacle of our models.
Whereas, the Collision with Friction model involved actions during the collision.
Because our technique is only valid for points before and after the collision, we
concluded that the Collision with Friction model is inappropriate for our simple
Newtonian technique. Therefore, the BaConLaw model is the most complex con-
figuration for which our technique, based only on Newton’s principles and the
conservation laws, are valid. Our configurations were explained in Chap. 2. The five
equations that we used were listed in Table 4.1. These equations were used for
configurations 2a, 2b, 2c and 2d. Additionally, all of these results can be simplified
to be appropriate for previous configurations. We derived these equations for the
BaConLaw model of configuration 2b. But most importantly, if we set the initial
ball spin equal to zero, then they satisfy configuration 2a. If we let dcp, i, =0 the
resultant equations are the same as those we derived for configurations la and 1b.

A second purpose of this book was to show how the individual batter could select
or create the optimal baseball or softball bat for him or herself. The sensitivity
analysis and optimization study of this book showed that the most important
variable, in terms of increasing batted-ball speed, is bat speed before the collision.
However, in today’s world, the coefficient of restitution and the bat mass are
experiencing the most experimentation in trying to improve bat performance.
Although, the bat moment of inertia provides more room for future improvement.
Above all, future studies must include physics in conjunction with physiology in
order to improve bat performance.

Finally, we noted that, “You can’t keep your eye on the bat.”
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Chapter 7
The Ball in Flight Model

7.1 Introduction

Purpose: One purpose of this chapter was to derive equations and develop the Ball
in Flight model. This model was then used to show how altitude, temperature,
barometric pressure and relative humidity affect air density and consequently how
air density affects the flight of the ball.

7.2 Movement of the Ball in Flight

Baseball batters say that the pitch hops, drops, curves, breaks, rises, sails or tails
away. Baseball pitchers say that they throw fastballs, screwballs, curveballs, drop
curves, flat curves, knuckle curveballs, sliders, change ups, palm balls, split
fingered fastballs, splitters, forkballs, sinkers, cutters, two-seam fastballs and
four-seam fastballs. This sounds like a lot of variation. However, no matter how
the pitcher grips or throws the ball, once it is in the air its motion depends only on
gravity, its velocity and its spin. In engineering notation, these pitch characteristics
are described respectively by a gravity vector, a linear velocity vector and an
angular velocity vector, each with magnitude and direction. The magnitude of the
linear velocity vector is called pitch speed and the magnitude of the angular
velocity vector is called the spin rate. These vectors produce a force acting on the
ball that causes a deflection of the ball’s trajectory. This chapter is based on Bahill,
Baldwin and Ramberg, (2009).

Figures 7.1 and 7.2 show the effects of spin on the pitch. During the pitch of a
major-league baseball, the ball falls about 3 feet due to gravity (d = Y% ar®).
However, the fastball has backspin that opposes gravity and the curveball has top
spin that aids the fall due to gravity. The simulations for these figures were run at
standard temperature and pressure (STP).
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Fig. 7.1 A 90 mph (40 m/s) overhand fastball launched 1° downward with 1200 rpm of backspin
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Fig. 7.2 An 80 mph (36 m/s) overhand curveball launched 2° upward with 2000 rpm of topspin
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Table 7.1 Values for representative major-league pitches from Willman (2017)

Speed of the pitch at the pitcher’s Pitch spin rate, absolute

release point values
Type of Average, | Standard Average, |Average, |Standard Number of
pitch mph deviation m/s rpm deviation pitches
4-seam 93.6 23 41.8 2169 363 10,215
fastball
2-seam 92.7 2.4 414 2148 321 2959
fastball
Slider 85 3.1 38 745 346 4072
Changeup |85 3.5 38 1714 419 2370
Curveball |79 3.8 35 1286 461 1865

In the simulations of Figs. 7.1 and 7.2, the pitcher releases the ball 5 feet (1.5 m)
in front of the pitcher’s rubber at a height of 6 feet (1.8 m). The batter hits the ball
1.5 feet (0.5 m) in front of home plate. These figures also show what the batter’s
brain is doing during the pitch. During the first third of the pitch, he is gathering
sensory information (mostly with his eyes) about the velocity and spin of the pitch.
During the middle third of the pitch, he is computing where and when the ball will
cross the plate. During the last third, he is swinging the bat and can do little to alter
its trajectory.

For a half-century, our models were hampered by limited data for the spin of the
ball. The best, published experimental data for the spin rate of different pitched
baseballs came from Selin’s cinematic measurements of baseball pitches (Selin
1959). But now there is a plethora of data. The two biggest surprises from these new
data were that the average fastball has a bigger spin rate than the average curveball
and that the change up is not really slow.

Table 7.1 presents data for pitches thrown in 2016 in the Arizona Diamond-
back’s stadium. These numbers came from Willman (2017) BaseballSavant. The
numbers for the changeup were surprising because their glossary states, “A
changeup is one of the slowest pitches thrown in baseball...” Therefore, I com-
puted several datasets and consulted several sources. The numbers were similar.
However, please note that the standard deviations for both the velocity and the spin
rate are large.

For readers who are familiar with statistics, please allow me this aside for those
that are not. By using the term standard deviation in Table 7.1, I assumed that, for
example, the velocity data for curve balls were normally distributed. This means
that 68% of the data points were within plus or minus one standard deviation of the
average, 79 mph: meaning that 68% of the curve ball velocities were between
83 mph and 75 mph. However, this also means that 16% of major league curveballs
had velocities below 75 mph.

The number of pitches column shows the relative popularity of each type of
pitch. Of the dozen types of pitches listed in Willman (2017), Table 7.1 only gives
data for five. The two-seam and the four-seam fastballs are both listed, just to show
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Fig. 7.3 Photographs of
spinning balls simulating a
fastball thrown with (fop) a
four-seam grip and (bottom)
a two-seam grip. The balls
are being rotated at

1200 rpm (20 times per
second). The camera
exposures are about 0.25 s

that there is little physical difference between the two. The difference must be
psychological (meaning visual) (Bahill et al. 2005).

Figure 7.3 shows photographs of spinning baseballs. The simulated four-seam
fastball in the top of Fig. 7.3 appears to be a grey blur with thin vertical red lines
about 1/7 of an inch apart. These are the individual stitches of the baseball. In
contrast, the two-seam fastball (bottom) seems to exhibit two big red vertical stripes
about 3/8 of an inch wide. These stripes are evident because they represent seams
rather than individual stitches. They provide easily perceived information to the
batter for determining the angle of the spin and the direction of the resultant
deflection. In an experiment with 104 laypeople, our subjects could distinguish
the pink stripes of the two-seam fastball on average 43 feet from the ball, whereas
they could only see the pink lines of the four-seam fastball on average 17 feet away.
In the bottom of Fig. 7.3, the red stripes are vertical. Were the stripes at an angle,
they would indicate the horizontal direction in which the ball would curve. There-
fore, the big difference between four-seam and two-seam fastballs is that (because
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Table 7.2 Major league averages from Statcast

Type of pitch Average, speed at the release point, mph Average spin rate, rpm
4-seam fastball 92.9 2226
2-seam fastball 91.9 2123
Slider 84.6 2090
Changeup 83.9 1746
Curveball 78.2 2308

of the visibility of vertical red stripes) the batter may be able to perceive the spin on
the two-seam fastball. Videos of these simulated fastballs are available at http://
sysengr.engr.arizona.edu/baseball/index.html.

Table 7.2 presents 2015 data from the Statcast system (Petriello 2016). It has
higher spin rates for the slider and the curveball than Table 7.1. This reiterates the
fact that the numbers given in Tables 7.1 and 7.2 are still just estimated values
subject to theoretical and measurement errors. We presume that these systems
measured the air density and wind speed at field level for every pitch.

7.3 Right-Hand Rules for a Spinning Ball in Flight

We will now apply the right-hand rules to the linear velocity vector and the angular
velocity vector in order to describe the direction of the spin-induced deflection of
the a spinning ball in flight. First, we use the angular right-hand rule to find the
direction of the spin axis. As shown in Fig. 7.4, if you curl the fingers of your right
hand in the direction of spin, your extended thumb will point in the direction of the
spin axis.

Next, we use the coordinate right-hand rule to determine the direction of the
spin-induced deflection force. Point the thumb of your right hand in the direction of
the spin axis (as determined from the angular right-hand rule), and point your index
finger in the direction of forward motion (Fig. 7.4). Bend your middle finger so that
it is perpendicular to your index finger. Your middle finger will be pointing in the
direction of the spin-induced deflection (of course, the ball also drops due to
gravity). The spin-induced deflection force will be in a direction represented by
the cross product of the angular velocity vector (the spin axis) and the linear
velocity vector of the ball: Angular velocity x Linear velocity = Spin-induced
deflection force. Or mnemonically, Spin axis x Direction = Spin-induced deflec-
tion (SaD Sid). This acronym only gives the direction of spin-induced deflection.
The equations yielding the magnitude of the spin-induced deflection force are
discussed in Sect. 7.6.

The right-hand rules apply to all spinning balls whether thrown by a right-
handed pitcher or a left-handed pitcher. They apply to baseballs, softballs, golf
balls, soccer balls, tennis balls and even bocce balls.


http://sysengr.engr.arizona.edu/baseball/index.html
http://sysengr.engr.arizona.edu/baseball/index.html
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Fig. 7.4 The angular right-hand rule (left). When the fingers are curled in the direction of rotation,
the thumb points in the direction of the spin axis. The coordinate right-hand rule (right). If the
thumb points in the direction of the spin axis and the index finger points in the direction of forward
motion, then the middle finger will point in the direction of the spin-induced deflection (Photo-
graphs by Zach Bahill)

7.4 Direction of Forces on Specific Pitches

Figures 7.5 and 7.6 show the directions of spin (circular red arrows) and spin axes
(straight black arrows) of some common pitches from the perspective of a camera in
center field or the pitcher (Fig. 7.5 represents a right-hander’s view and Fig. 7.6 a
left-hander’s view). We will now consider the direction of the spin-induced deflec-
tion of each of these pitches.

The spin on the ball is produced by the grip of the fingers and the motion of the
pitcher’s arm and wrist. This is the difference between all types of pitches (Kindall
1983). When a layperson throws a ball, the fingers are the last part of the hand to
touch the ball. If the ball is thrown with an overhand motion, then the fingertips
touching the bottom of the ball will impart backspin to the ball. The overhand
fastball shown in Fig. 7.6 has predominantly backspin, which gives it lift, thereby
decreasing its fall due to gravity as shown in Fig. 7.1. However, most pitchers throw
the fastball with a three-quarter arm delivery, which means the arm does not come
straight over-the-top, but rather it is in between over-the-top and sidearm. This
delivery rotates the spin axis from the horizontal as shown for the fastball in
Fig. 7.5. This rotation of the axis reduces the lift and also introduces lateral
deflection, to the right for a right-handed pitcher.

The curveball can also be thrown with an overhand delivery, but this time the
pitcher rolls his wrist and causes the fingers to sweep in front of the ball. This
produces a spin axis as shown for the overhand curveball of Fig. 7.5. This pitch will
curve at an angle from upper right to lower left as seen by a right-handed pitcher or
a camera in center field. Thus, the ball curves diagonally. The advantage of the drop
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View from center field camera

The back
side of the
red dot

% arm Fastball Curveball Slider

Fig. 7.5 The direction of spin (circular red arrows) and the spin axes (straight black arrows) of a
three-quarter arm fastball, an overhand curveball and a slider, all from the perspective of a right-
handed pitcher, meaning the ball is moving into the page. VaSa is the angle between the Vertical
axis and the Spin axis (VaSa). The spin axes could be labelled spin vectors, because they suggest
both direction and magnitude from Table 7.2

View from center field camera

Overarm
Fastball

The back side
of the red dot

Slider Screwball

Fig. 7.6 The direction of spin (circular arrows) and the spin axes (straight arrows) of an overhand
fastball, an overhand curveball, a slider and a screwball thrown by a left-handed pitcher. The ball
would be moving into the page

in a pitch is that the sweet area of the bat is about 2 inches long (5 cm), see
Sect. 3.3.1.1 (Bahill 2004) but only one-third of an inch (8 mm) high, see Fig. 4.5
(Bahill and Baldwin 2003; Baldwin and Bahill 2004). Thus, when the bat is swung
in a horizontal plane, a vertical drop is more effective than a horizontal curve at
taking the ball away from the bat’s sweet area.



https://doi.org/10.1007/978-3-319-67032-4_#Fig5
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Fig. 7.7 The batter’s view
of a slider thrown by a right-
handed pitcher: the ball is
coming out of the page. The
red dot alerts the batter that
the pitch is a slider

Slider

The slider is an enigmatic pitch. It is thrown somewhat like a football. Unlike the
fastball and curveball, the spin axis of the slider is not perpendicular to the direction
of forward motion. As the angle between the spin axis and the direction of motion
decreases, the magnitude of deflection decreases, but the direction of deflection
remains the same. If the spin axis is coincident with the direction of motion, as for
the backup slider (Bahill and Baldwin 2007, footnote 3), the ball spins like a bullet
and experiences no deflection. Therefore, a right-handed pitcher usually throws the
slider so that he sees the axis of rotation pointed up and to the left. This causes the
ball to drop and curve from the right to the left. Rotation about this axis allows some
batters to see a red dot at the spin axis on the upper-right-side of the ball (See
Fig. 7.7). Baldwin et, Bahill and Nathan (2007) and Bahill et al. (2005) show
pictures of this spinning red dot. Videos of this spinning red dot are on Bahill’s
web site http://sysengr.engr.arizona.edu/baseball/index.html. Seeing this red dot is
important — if the batter can see this red dot, then he will know the pitch is a slider
and he can better predict its trajectory.

7.5 Magnitude of Forces on a Spinning Ball in Flight

Watts and Baroni (1989) proposed that three forces affect the ball in flight, as
shown in Fig. 7.8: gravity pulls the ball downward, air resistance or drag operates in
the opposite direction of the ball’s motion and, if the ball is spinning, there is a
Magnus force perpendicular to the direction of motion. Equations for these forces
are often written as (Fig. 7.9)

Fgravily = Mpang

— -2 2
Frag = 0.5mpr ba113"bauCD
FMagnus = O-SEP"bauwballVballCM
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Fig. 7.8 The forces acting Direction
on a spinning ball flying f ti
through the air OoT motion

Gravit
force force g

v

7.5.1 The Force of Gravity

The force of gravity is downward, Fgravity = Mpang, Where myq is the mass of the
ball and g is the acceleration due to gravity (9.718 m/s® at the University of
Arizona): the magnitude of Fgy,yiyis the ball’s weight, as in Table 7.3a.

Our tactics are to use baseball units (e. g. feet, mph and pounds, Table 7.3a) for
inputs, SI units (e. g. meters, kilograms and seconds, Table 7.3b) for computations,
and baseball units for outputs.

7.5.2 The Magnus Force

In 1671, Sir Isaac Newton (1671) noted that spinning tennis balls experienced a
lateral deflection mutually perpendicular to the direction of flight and to the
direction of spin. Later, in 1742, Benjamin Robins (1742) bent the barrel of a
musket to produce spinning musket balls and also noted that the spinning balls
experienced a lateral deflection perpendicular to the direction of flight and to the
direction of spin. In 1853, Gustav Magnus studied spinning artillery shells fired
from rifled artillery pieces and found that the range depended on crosswinds. A
crosswind from the right lifted the shell and gave it a longer range: a crosswind
from the left made it drop short. In 1902, the Polish born Martin Kutta and
independently in 1906 Nikolai Joukowski studied cylinders spinning in an airflow.
They were the first to model this force with an equation. Although these four
experiments sound quite different (and they did not know about each other’s
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Fig. 7.9 A Sydney Harris (1986) cartoon (© ScienceCartoonsPlus.com, used with permission)

work), they were all investigating the same underlying force. This force, now
commonly called the Magnus force, operates when a spinning object (like a
baseball) moves through a fluid (like air) which results in it being pushed sideways.

The earliest empirical equation for this transverse force on a spinning object
moving in a fluid is the Kutta-Joukowski Lift Theorem.

L=pUxTI (7.1)

where L is the lift force per unit length of a cylinder, p is the fluid density, U is the
fluid velocity and I' is the circulation around the cylinder, which is analogous to the
angular velocity. The boldface font indicates that L, UandI'are vectors. The
original Sikorsky and Lightfoot 1949 lift and circulation data were given in
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Table 7.3a Typical baseball and softball parameters for line drives using baseball units (Bahill
and Baldwin 2007)

Major-league Little INCAA
Baseball League Softball
Ball type Baseball Baseball Softball
Ball weight (oz) 5.125 5.125 6.75
Ball weight, Fgravity, (Ib) 0.32 0.32 0.42
Ball radius (in) 1.45 1.45 1.9
Ball radius, .y (ft) 0.12 0.12 0.16
Pitch speed (mph) 85 50 65
Pitch speed, vy, (ft/s) 125 73 95
Distance from front of rubber to tip of plate (ft) | 60.5 46 43
Pitcher’s release point: (distance from tip of (54.5, 6)b (42.5,5) (40.5,2.5)
plate, height), (ft)
Bat-ball collision point: (distance from tip of 3,3) 3,3) 3,3)
plate, height), (ft)
Bat type Wooden C243 | Aluminum | Aluminum
Typical bat weight (0z) 32 23 25
Maximum bat radius (in) 1.3 1.125 1.125
Speed of sweet spot (mph) 57-69° 45 50
Backspin of batted-ball (rpm) 1800-2500° 1800-2500 | 1800-2500
Launch angle (degrees) 8-20° 8-20 8-20
Initial batted-ball velocity, vy, (mph) 85-100° 70-80 70-80
Coefficient of Restitution (CoR) 0.55-0.49 0.5 0.44
Desired ground contact point from the plate (ft) | 120-240 80-140 80-150
dAir mass density, p (Ib-s2/ft4) 0.0023 0.0023 0.0023

*NCAA stands for the National Collegiate Athletic Association, which is the governing body for
university sports in the United States

bhttp://m.mlb.com/statcast/lealderboalrd#avg—pitch—velo calls this point the “extension”

“From Willman (2017)

9Air density depends on altitude, temperature, barometric pressure and humidity

Alaways (2008). A little bit of mathematics can change this equation for the force
on a cylinder to the force on a sphere [NASA https://www.grc.nasa.gov/WWW/K-
12/airplane/beach.html] Fyagnus = O.SEpI‘ga"(wbau X ¥pan)Cm, where Cy; is a con-
stant. This is an experimental, not a theoretical equation. This is the form that is
given in Watts and Ferrer (1987), Watts and Bahill (2000 p. 80) and
Sarafian (2015).

A second approach for deriving an equation for the force on a spinning object in
a moving fluid stream is to use balls thrown through the air or spun in a wind tunnel.
This approach usually starts with an equation of the form Fyig, = 0.57pr2, Vi, Clitr-
Then the experimenters try to find relationships between the parameters by mea-
suring forces on a ball in a wind tunnel or by measuring the trajectory of a ball in
free flight with cameras and then estimating the forces. From these forces, the lift
coefficient can be calculated, if you know the air density. The lift coefficient is
usually plotted as a function of the spin parameter. The spin parameter is defined as


https://www.grc.nasa.gov/WWW/K-12/airplane/beach.html
https://www.grc.nasa.gov/WWW/K-12/airplane/beach.html
http://m.mlb.com/statcast/leaderboard#avg-pitch-velo

164 7 The Ball in Flight Model

Table 7.3b Typical baseball and softball parameters for line drives (SI units)

Major-

league Little NCAA

baseball League Softball
Ball type Baseball Baseball Softball
Ball mass, mp,(kg) 0.145 0.145 0.191
Ball radius, 4,y (m) 0.037 0.037 0.048
Pitch speed, vy, (m/s) 38 22 29
Distance from front of rubber to tip of plate (m) 18.4 14.0 13.1
Pitcher’s release point: distance from tip of plate and | 17 m out 13 m out 12 m out
height 2 m up 1.5 m up 0.8 m up
Bat-ball collision point: distance from tip of plate and | I m out 1 m out 1 m out
height 1 mup 1 mup 1 mup
Bat type Wooden Aluminum | Aluminum

C243
Typical bat mass (kg) 0.9 0.6 0.7
Maximum bat radius (m) 0.033 0.029 0.029
Speed of sweet spot (m/s) 25-31 20 22
Backspin of batted-ball, my,,y(rad/s) 188-262 188-262 188-262
Launch angle (degrees) 8-20 8-20 8-20
Initial batted-ball velocity, vy, (m/s) 38-45 31-36 31-36
CoR 0.55-0.49 0.5 0.44
Desired ground contact point: distance from the plate | 37-73 24-43 2446
(m)
Air density, p (kg/m®) This is the average air density | 1.045 1.045 1.045
for a game played in a major-league stadium on a July
afternoon.

Air density depends on altitude, temperature, barometric pressure and humidity

TI'ball Dball

the ratio of the spin velocity to the linear velocity, SP = -

. We use the symbol

SP for the spin parameter, whereas some other authors use the symbol S. Using
typical values from Tables 7.1 and 7.2 the spin parameters for a major-league
fastball and curveball are respectively SP=0.2 and SP =0.25. Table 7.4 shows
spin parameters for other flying baseballs.

There is a large literature showing the lift coefficient for a variety of experimen-
tal conditions. We are only interested those that used spinning baseballs. Those with
cricket balls, golf balls, smooth balls or nonspinning baseballs are of little use to
us. Furthermore, we are only interested in data where the spin parameter was
between 0.1 and 0.3. Other values are outside our game of baseball. The knuckle
ball and the pop up are governed by effects that are not covered in this book. They
are covered respectively by Watts and Sawyer (1975) and McBeath et al. (2008).
Clanet (2015) analyzed both.

Experimental data for spinning major-league baseballs, with 0.1 <SP < 0.3,
show Cjp =~ 1.2 x SP (Watts and Ferrer 1987; Sawicki et al. 2003; Nathan 2008;
Kensrud 2010). We called the numerical value in this equation Cy;. Therefore,
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Table 7.4 Spin parameter and Reynolds number for average balls in flight

Initial Spin “Reynolds

speed | Spin rate (rpm), |parameter, |number,
Type of launch (mph) | absolute values | SP Re, times 1077
Fastball 93 2200 0.20 1.685
Slider 85 2000 0.20 1.540
Curveball 79 2300 0.25 1.431
Change-up 85 1700 0.17 1.540
Knuckle ball 65 30 0.00 1.178
Batted-ball, home run, initial 98 2000 0.18 1.776
values
Home run, ball hitting the ground | 55 1760 0.28 0.996
Slow line drive 85 2500 0.25 1.540
Fast line drive 100 1800 0.16 1.812
Extreme pop-up 70 6000 0.74 1.268
NCAA softball pitch 65 1200 0.21 1.538

“the Reynolds number will be discussed in the next section

Ciirt = CmSP = W Remember, we started with Fjp = O.SﬂprﬁauvﬁauCﬁﬁ.
al
These experiments contained primarily horizontal motions, s0 Fiiagnus = Fiist-

Substituting Cjir, = Winto this lift force equation produces
3
FMagnus = 0~5xﬂrballwballvballCM (72)

where Cy, is a constant around 1.2. This is the same equation that we derived above
from the Kutta-Joukowski Lift Theorem. This is our final equation for the Magnus
force.

7.5.3 The Drag Force

Figure 7.8 also shows a force directly opposite to the direction of motion. This force
is called the drag force, or air resistance. The magnitude of this drag force is

Firg = 0.57pry Ve Co (7.3)

where pis air mass density, vy is the ball velocity and 7,y is the radius of the ball
(Watts and Bahill 2000, p. 161). Typical values for these parameters are given in
Table 7.3a. For the aerodynamic drag coefficient, Cp, we use a value of 0.4.
Kagan and Nathan (2014) analyzed data from the Pitchf/x system (the camera
computer system that overlays pitch trajectories on television replays.). For one
particular pitch that was analyzed in detail, they computed Cp = 0.34. They stated
that Nathan’s website had Pitchf/x data for 8000 pitches. The Cp values varied from
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0.28 to 0.58. Kensrud (2010), Figs. 4.35 and 4.38, showed spinning baseball Cps at
0.4 and 0.3 respectively. Kensrud et al. (2015) measured Cp~0.35 for a major
league baseball at 98 mph. There is a lot of variability in these data because the drag
coefficient depends on ball speed, ball spin, roughness of the ball surface, height of
the seams (Kensrud et al. 2015), orientation of the seams and for a golf ball the
shape and number of dimples.

Thrown and batted-balls can achieve speeds above 100 mph (147 m/s) and at
high speeds the drag coefficient gets smaller (Frohlich 1984; Watts and Bahill 2000,
p. 157; Adair 2002; Sawicki et al. 2003, 2004). There are no wind-tunnel data
showing the drag coefficient of spinning baseballs over the entire range of velocities
and spin rates that characterize major-league pitches and hits. Data taken from a
half-dozen studies of spinning baseballs, nonspinning baseballs and other balls
showed Cp between 0.15 and 0.55 (Sawicki et al. 2003). In the data of Nathan
et al., (2006), the drag coefficient can be fit with a straight line of Cp=0.45,
although there is considerable scatter in these data. The drag force causes the ball
to lose about 10% of its speed en route to the plate. The simulations of Alaways
et al. (2001) also studied this loss in speed. Data shown in their figure 9 for the
speed lost en route to the plate can be nicely fit with PercentSpeedLost =20Cp,
which implies Cp=0.5. Clanet (2015).gives a value of 0.38 for baseballs. In
summary, the literature has a lot of variation in the coefficient of drag for a spinning
baseball. However, most of the numbers are between 0.3 and 0.5 (Fig. 7.10).

7.5.3.1 The Reynolds Number

The drag on an object in a moving airflow depends on how the air flows around the
object. For example, the boundary layer flow around the object could be laminar or
turbulent. The drag also depends on the points where the airflow separates from the
surface of the object. How the air flows around an object is a function of how fast
the air flows. More specifically, the drag is a function of the Reynolds number as
shown in Fig. 7.11.

The Reynolds number is defined as Re = w where v is the kinematic
viscosity of air. We use 1.8 x 107> m%/s or 2 x 10~ ft*/s for a baseball at 85 °F.
The Reynolds number is also written as Re = w where p is the dynamic

viscosity of air inkg/m - s. The Reynolds number is used to assert whether a flow is
laminar or turbulent. Where the flow is laminar, viscous forces dominate and Re is
low. Where the flow is turbulent, inertial forces dominate and Re is high. The
Reynolds number is named after the British physicist and engineer Osborne Reyn-
olds who discovered the relationship in 1883. This might all sound complicated,
therefore, when I write, Reynolds number, you the reader should think scaled ball
velocity.

In Fig. 7.11, for smooth balls, the circles of Achenbach (1972), the drop
in Cp starts atRe =3 x 10°and ends at 4 x 10°. This sharp change in drag is
bound to arouse curiosity. Frohlich (1984) wrote that if the pitch went through
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Fig. 7.10 He even dreams
about that stupid ball

Fig. 7.11 The drag
coefficient varies with the
Reynolds number. The
circles and the line fit to
them are copies of
Achenbach’s original figure
(1972). The green circles
represent the initial ball
speeds at the pitcher’s
release point for a 95 mph
fastball and the red squares
show the final ball speeds
when the ball crosses the
plate. The gray box is then
the region for the flight of
the pitch
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this ‘drag crisis,” en route to the plate, then the ball would surely exhibit a strange
trajectory. Figure 7.11 also shows linearized drag coefficient data for seven other
data analyses. The Watts and Bahill (2000) analysis for spinning baseballs (Fig. 52,
data of Gonzalez) did not have a sharp drop in the drag coefficient. Metha and Pallis
(2001) showed a critical Reynolds number at Re=1.7 x 10°> for nonspinning
baseballs in wind tunnels. Sawicki et al. (2004) referenced the flight of baseballs
in Olympic baseball games. Their calculated drag coefficient for a spinning base-
ball decreased precipitously atRe=1.6 x 10°. Nathan, Hopkins, Chong and
Kaczmarski (2006) show drag coefficients around 0.45 for all Reynolds numbers.
Kensrud (2010, Fig. 4.50) shows the minimum drag coefficient for nonspining
MLB baseballs at Re =2.3 x 10°. The newest experimental data, by Alam et al.
(2012), show the minimum drag coefficient for nonspining MLB baseballs at
Re =2 x 10°. Sarafian (2015) has a theoretical curve with a minimum drag coeffi-
cient at Re = 2.6 x 10°. Good linear fits to these sets of data are given in Fig. 7.11.
Many studies have shown that roughening the surface of the ball or spinning the ball
moves the middle and the right parts of the Achenbach curve up and to the left.

Now comes the most important part of this analysis. How much would the drag
coefficient change during a variety of pitches? If a major-league fastball started
with a speed of 95 mph, then it would cross the plate with a speed of 85.5 mph.
(This 10% reduction in ball speed from the pitchers release point until the ball
crosses the plate is universal.) Parameters of such a pitch are displayed in Table 7.5
and in the gray box of Fig. 7.11.

The replication crisis The results shown in Fig. 7.11 and Table 7.5 are quite
different. Such failures to replicate previous findings are common in science,
particularly in the psychological literature, where half of the important findings
could not be replicated (https://en.wikipedia.org/wiki/Replication_crisis; also
Kahnemen 2014). This is called the replication crisis. However, in the physical
sciences, we would expect a much greater replication rate. Therefore, in this
physics of baseball endeavor, either some fundamental physical parameter is
misunderstood or there is no desire to replicate previous experimental results.

To enhance replicability, Stodden et al. (2016) recommended that we “share
data, software, workflows, and details of the computational environment that
generate published findings in open trusted repositories.” Details include things
like the treatment of outliers and missing data values. A good counter example to
this is the Major League Baseball database based on Pitchf/x etc. that not only does
not share data, software and workflows, but it also hides computations and calls
them proprietary. From the viewpoint of the scientific community, this is awful
behavior by Major League Baseball.

The papers cited in Fig. 7.11 and Table 7.5 generally reference the previous
papers, but they do not explain why their new results are different from the old
results. Maybe the physics of baseball is too immature to expect replicability. For
the most part, the experimental procedures are different and many fundamental
details, such as air density, are not even given.
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Table 7.5 Range of drag coefficient values for a fastball

Cp for a 95 mph Cp when the ball Percent change
fastball at the crosses home plate | in drag
Characteristics | pitcher’s release at 85.5 mph, red coefficient en
Authors of the ball point, green circles squares route to the plate
Achenbach | Smooth,
(1972) nonspinning
balls
Watts and Nonspinning 0.42 0.43 2%
Bahill baseballs
(1990),
Fig. 52
Metha and | Nonspinning 0.33 0.36 9%
Pallis baseballs
(2001)
Sawicki Spinning 0.20 0.25 25%
etal. (2004) | baseballs
Kensrud, Spinning 0.47 0.48 2%
Nathan and | baseballs
Smith
(2017)
Kensrud Nonspinning 0.38 0.40 5%
(2010), baseballs
Fig. 7.50
Alam et al. | Nonspinning 0.40 0.41 1%
(2012) baseballs
Sarafian Theoretical 0.36 0.42 17%
(2015) calculations

The percent increases in drag the coefficient en route to the plate were small, averaging 9%

So far, this discussion of the drag coefficient has been in terms of the pitch.
During the pitch, the drag coefficient changes only by 9%, on average. Now we
want to consider the batted-ball. The home run is the batted-ball that will be
affected the most by changes in the drag coefficient, because it will be in the air
the longest, it will have the biggest changes in velocity and it will therefore have the
biggest changes in the drag coefficient.

Major League Baseball (MLB) is releasing many new data that show ball speeds
above 100 mph. In 2016, MLB measured over 700,000 pitches Willman (2017). Of
these 1400 or 0.2% had initial speeds over 100mph. It also had 140,000 balls hit into
play (30% of these were base hits). Of these batted-balls, 3.6% had initial batted-
ball speeds (exit velocities) greater than 100 mph. These comprise 0.2% of pitches
and 3.6% of batted-balls. To accommodate these high velocities we could consider
the following alternative models for the drag coefficient.

Cp=0.4 as a simple model or we could let

Cr— 0.5 for ball speed < 85 mph
D™ 70.3 for ball speed > 85 mph
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A more complicated model following a gestalt of Fig. 7.11 would be

0.5 for vy, < 60 mph
Cp =< —0.005vpy; + 0.8 for 60 < vy < 100 mph
0.3 for vpy; > 100 mph

Another complicated model using the data of Alam et al. (2012) is

0.5 for vy, < 30 mph
Cp = ¢ —0.004vp,; + 0.6 for 30 < vy < 90 mph
0.25 for Vpall > 90 mph

However, by Ockham’s razor, this added complexity without added validation is
useless (Jefferys and Berger 1992). Therefore, until we get better data, we will
continue to use Cp=0.4.

Figure 7.12 shows the drag coefficient as a function of the Reynolds number for
a simulated home run. The green circle in Fig. 7.12 represents the initial batted-ball
velocity at the launch point where vy,; =97 mph and Cp=0.3. The red square
indicates the coordinates when the ball hits the ground with a Range =380 feet,
Vpann = 35 mph and Cp =0.5. Compared to pitches where the average change ofCp
was 9%, for this batted-ball the change of Cp is 40%. Therefore, the change in the
drag coefficient during the pitch is not likely to be important, however for the
batted-ball, it might be more significant.

The BaConLaw model of Chap. 4 is linked to the Ball in Flight model of this
chapter. Eq. (4.8) from Chap. 4 showed that the batted-ball velocity depends on the

Fig. 7.12 Drag coefficient
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pitch speed, pitch spin and bat speed. Now this chapter shows that the distance that
the batted-ball will travel depends on the batted-ball velocity, the batted-ball spin
rate, the launch angle, the Magnus coefficient, the drag coefficient and air density.

7.6 Sensitivity Analysis

In Sect. 4.11, we performed both an analytic and an empirical (or numerical)
sensitivity analysis for the BaConLaw model. First, we chose our performance
criterion, the batted-ball speed. Then we calculated the partial derivatives of that
performance criterion with respect to the eight model parameters. Finally, we
multiplied the partial derivatives by the nominal values of those parameters and
evaluated those semirelative sensitivity functions. In that section, our performance
criteria, the batted-ball speed, was the result of one of our equations. Therefore, it
was easy to calculate the partial derivatives. However, in this chapter for our Ball in
Flight model, our chosen performance criterion, the range, is not a result of any
single equation. It would be possible but difficult to create such an equation.
Therefore, in this chapter, we run the model by simulation and we do an empirical
(or numerical) sensitivity analysis.

To do a sensitivity analysis of a model we first select a performance criterion.
For the Ball in Flight model, we chose the range, meaning how far the batted-ball
travels before it hits the ground. We used our standard pitch and swing of Chap. 4
that produced a batted-ball speed of 92 mph, a backspin rate of 2000 rpm, a launch
angle of 34° and a launch height of 3 feet. We used the midlevel or average air
density for major-league stadiums, p=0.00205 Ib-s*/ft* (or slugs/ft’) or
p=1.0582kg/m>. We changed each variable by +1% and computed the new
range. Our results are shown in Table 7.6. The range numbers are large because
our parameter values are for optimal athletes performing optimally. Few major-
league batting events would have values as large as these. Laypeople could not
come close.

The right column of Table 7.6 shows that the most important variable, in terms
of maximizing the batted-ball range, is the batted-ball speed. This is certainly no
surprise. The second most important variable is the diameter of the ball. The least
important parameters are the launch height and the launch angle. As you can
remember, we did not have very good data for the Magnus lift coefficient, so we
are happy that its sensitivity is small. The sensitivities to some of the variables and
parameters are negative, which merely means that as they increase the range
decreases. The results of this sensitivity analysis show that the model is well
behaved. The most and least important variables and parameters are as expected.
There are no unexpectedly large or small sensitivities. Comparing Tables 4.4 and
7.6, we see that the Ball in Flight model is more sensitive to its parameters than the
BaConLaw model is.

Of the 36 possible interaction sensitivities the most important are (1) the batted-
ball speed,v,, and the ball diameter; (2) the ball weight and the drag coefficient, Cg;
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Table 7.6 Results of a numerical sensitivity analysis of the Ball in Flight model for a +1%
increase in the parameter values

Nominal values Change | Semirelative

Nominal increased Altered | inrange, | sensitivity
Parameters values by +1% range, ft | ft values
Range, ft 384.87
Batted-ball speed, mph 91.9 92.819 389.56 4.69 469
Ball diameter, inches 2.90 2.9336 382.59 —2.28 —228
Drag coefficient, C4 0.4 0.404 383.16 | —1.71 —171
Ball weight, oz 5.125 5.1763 386.18 1.31 131
Air density, p, kg/m® 1.0582 1.0688 383.65 —1.22 —122
Slope of lift 1.2 1.212 385.37 0.50 50
coefficient curve, CM
Ball spin, rpm —2000 —2020 385.37 0.50 50
Ball spin, rpm —2000 —1980 384.37 —0.50 -50
Launch angle, ° 34 34.34 384.39 —0.48 —48
Launch height, feet 3 3.03 384.90 0.03 3

Interaction of Spin Rate and Launch Angle

390
380
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330
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25 30 35 40
Vertical launch angle, degrees

Fig. 7.13 Interaction of spin rate and launch angle

(3) the ball weight and air density, p; (4) and the ball weight and the Magnus
coefficient, CM.

The interaction of the ball spin and the launch angle is small. Figure 7.13 shows
its effect graphically. Because of the interactions, the three lines are not the same
shape and they peak at different values for the launch angle. These curves are very
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flat near their peak values, illustrating the small sensitivity to the launch angle at the
nominal operating point. For this figure, I choose to use the batted-ball spin rate and
the launch angle, because that matches Fig. 55 of Watts and Bahill (2000) and is
analogous to Nathan (2016).

Figure 7.13 shows the interaction of the spin rate and the vertical launch angle.
On the left side of this figure, when the launch angle increases, the range goes
up. However, these three curves do not have the same shape. The curve for
the2000 rpm spin rate has a steeper drop on the right side. This is the effect of
the interaction. The difference in spacing of the lines is not the effect of the
interaction. That is merely the dependence of the batted-ball speed on spin rate.

7.7 Numerical Values

This section presents numerical values for the three forces that act on the ball in
flight. Its purpose is merely to create familiarity with the numbers. If US customary
units are to be used in Eqgs. (7.1) to (7.7), then pshould be in 1b-s?/ft* (or slugs/ft3),
Vpann Should be in ft/s, ry,; should be in ft, and wy,; should be in rad/s, then
Fyragwould be in 1b. Let us now present a simple numerical example. Let us use
the average fastball from Table 7.4. When the pitcher releases the ball is going
93 mph (136 ft/s) with 2200 rpm (230 rad/s) of backspin.

Farg = 0.5p7 Va1 Co
Farag = (0.5)(3.14)(0.002)(0.12)*(136)*(0.4) = 0.35 Ib

Near the beginning of the pitch, the Magnus force will be straight up in the air,
that is, pure lift.

FMagnus = O-SRPrga]]wballvballCM
Ftagnus = (0.5)(3.14)(0.002)(0.12)* (230)(136)(1.2) = 0.07 Ib

The force of gravity is
Fgravity = Mpang = 0.321b

For this fastball, the Magnus force is about one-fifth the force of gravity and
one-fifth of the drag force. This is consistent with Table 7.7a where the sixth
column shows the drop due to drag and spin. This drop is due to a combination of
F drag SN 0 + Fyjagnus €OS 6.

These simulations were run at standard temperature and pressure (STP). There-
fore, the numerical values are different from those in other tables.

Using SI units and Table 7.7b, produces
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Table 7.7a Gravity-induced and spin-induced drop for overhand pitches (with United States
customary units) (Bahill and Baldwin 2007)

Pitch speed Spin rate | Duration of Drop due to | Spin-induced Total
and type (rpm) flight (msec) | gravity (ft) vertical drop (ft) | drop (ft)
95 mph fastball —1200 404 2.63 —0.91 1.72

90 mph fastball —1200 426 2.92 —0.98 1.94

85 mph slider +1400 452 3.29 +0.74 4.03

80 mph curveball | +2000 480 3.71 +1.40 5.11

75 mph curveball | +2000 513 4.24 +1.46 5.70

Table 7.7b Gravity-induced and spin-induced drop for overhand pitches (with SI units)

Pitch speed Spin rate | Duration of | Drop due to | Spin-induced Total
and type (rad/s) flight (msec) | gravity (m) vertical drop (m) | drop (m)
42.5 m/s fastball —126 404 0.80 —0.28 0.52
40.2 m/s fastball —126 426 0.89 —0.30 0.59
38.0 m/s slider +147 452 0.95 +0.23 1.23
35.8 m/s curveball | +209 480 1.13 +0.43 1.56
33.5 m/s curveball | +209 513 1.29 +0.45 1.74

— 2 2
Farag = 0.57p7 5,1V Co

Farag = (0.5)(3.14)(1.06)(0.037)*(42)*(0.4) = 1.56 N

and

FMagnus = O-SEP"gauwballVballCM
FMagnus = (0.5)(3.14)(1.06)(0.037)3(230)(42)(1.2) =032 N

For this fastball, the Magnus force is about one-fifth the force of gravity, which is

Foravity = Mpaug = 0.145 x 9.718 = 1.41 N

As arule of thumb, we offer the following, over a wide range of conditions, the drag
force and the force of gravity have about the same magnitude and the Magnus force
is about one-fifth as large.



7.7 Numerical Values 175

When the ball’s spin axis is not horizontal, the Magnus force should be
decomposed into a force lifting the ball up and a lateral force pushing it sideways.

Fupward = 0.57p17 @V Oy sin VaSa (7.4)

where VaSa is the angle between the vertical axis and the spin axis (Fig. 7.5). The
magnitude of the lateral force is

Fsidgeways = O.Snprial]a)vbanCM cos VaSa (7.3)

Finally, if the spin axis is not perpendicular to the direction of motion (as in the
case of the slider), the magnitude of the cross product of these two vectors will
depend on the angle between the Spin axis and Direction of motion, this angle is
called SaD (Fig. 7.14). In aeronautics, it is called the angle of attack. Finally, we get

Fiige = O.STtprga“a)vbanCM sin VaSa sin SaD (7.6)

Flateral = O.STtprga“wvbauC M cos VaSa sin SaD (7.7)

These equations comprise our Ball in Flight model.

The spin-induced force on the ball changes during the pitch. Its magnitude
decreases, because the drag force slows the ball down by about 10%. Its direction
changes, because gravity is continuously pulling the ball downward, which changes
the direction of motion of the ball by 5-10°. However, the ball acts like a gyro-
scope, so the spin axis does not change. This means that, for a slider, the angle SaD
increases and partially compensates for the drop in velocity in Egs. (7.6) and (7.7).

The right-hand rules for the lateral deflection of a spinning ball and Egs. (7.1) to
(7.7) apply to pitched and also batted-balls, except it is harder to make predictions

Fig. 7.14 The first-base
coach’s view of a slider

thrown by a right-handed Sa D
N

pitcher. This illustrates the
definition of the angle SaD

Direction \
of motion

First-base coach’s
view of a slider thrown by a
right-handed pitcher
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about the magnitude of deflection of batted-balls, because the data about the spin of
batted-balls are poor. The right-hand rules and these equations can also be applied
to soccer, tennis and golf, where speeds, spins and deflections are similar to
baseball. However, the right-hand rules and these equations would be inappropriate
for American football, because the spin axis of a football is almost coincident with
the direction of motion. Therefore the angle SaD is near zero and consequently the
spin-induced deflections of a football are small (Rae 2004).

7.8 Effects of Air Density on a Spinning Ball in Flight

The distance that a fly ball travels is inversely related the air density. However, the
explanation for this is not straightforward. Equations (7.1) and (7.3) show that both
the drag and Magnus forces are directly proportional to the air density. Therefore, if
air density gets smaller, the drag force gets smaller, this allows the ball to go farther.
But at the same time, as air density gets smaller, the Magnus force also gets smaller,
which means that the ball will not be held aloft as long and will therefore not go as
far. So these two effects are in opposite directions. We have built a computer
simulation that implements the above equations. This simulation shows that the
change in the drag force has a greater influence on the trajectory of the ball than the
change in the Magnus force does; therefore, as air density goes down, the range of a
potential home run ball increases. A 10% decrease in air density produces a 4%
increase in the distance of a home run ball: however, the increase is less than this for
pop-ups and greater than this for line drives.

Air density is inversely related to altitude, temperature and humidity, and is
directly related to barometric air pressure. We derived an equation for these
relationships. It came from the WeatherLink Software (2017) and the CRC Hand-
book of Chemistry & Physics (1980-81) with a correction from Al Nathan (per-
sonal correspondence, 2016). It agrees with the results from Shelquist (2017).
Equation (7.8) shows how air density depends on altitude, temperature, humidity
and barometric air pressure.

Air Density = p
= 1.2929

" 273 " Air Pres — 0.379(SVP x RH/100)
Temp + 273 760

where

Air Density is in kg/m®.

Temp is temperature in degrees Celsius.

Air Pres is the pressure of the air in mm of Hg and is given in Eq. (7.9).
SVP is saturation vapor pressure in mm Hg and is given in Eq. (7.10).
RH is relative humidity as a percentage.
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This equation uses the absolute (or actual) atmospheric air pressure, which is
also called station pressure because it is the air pressure at a particular weather
station. It can be computed from the U. S. Weather Service sea-level corrected
barometric pressure (which is given in newspapers, on television and on personal
computers) with the following formula.

—gM  Altitude i|

Air Press = Barometric Pressure [eR (Temp+273.13) (7.9)

where

g is the Earth’s gravitational acceleration (9.80665 m/s” at sea level)
M is the molecular mass of air (0.0289644 kg/mole)

R is the Universal Gas Constant (8.31447 joules/ °K mole)

Altitude is the altitude of the ballpark in meters

and Temp is the temperature in °C

However, what is Temp the temperature of? As a simple approximation in the
following examples, we have used the temperature of the baseball stadium. But the
above equation should be integrated with respect to the time-averaged temperature
from the baseball stadium to mean sea level. Because this is impossible, the
National Weather Service (2001) uses nine different approximations: about them
they write, “There is no single true, correct solution of Sea Level Pressure . .. only
estimates.” For any given time and place the most accurate measure of air pressure
for Eq. (7.8) would be a local barometer that is not corrected to sea level (i. e. with
its altitude set to 0), which is what a household barometer usually indicates.

Dozens of equations have been fit to the experimental saturation vapor pressure
(SVP) data. Here is one by Buck (1981), that was updated in 1996.

Temp\ *
18.687 7m) Temp

SVP = 45841 ¢ =msiton (7.10)

As before, Temp is in degrees Celsius and SVP is in mmHg.

Air density is inversely related to altitude, temperature and humidity, and is
directly related to barometric pressure. For the range of values in major-league
ballparks, the altitude is the most important of the four input parameters. Table 7.8
gives values for a typical late-afternoon summer game, assuming that the stadium
roofs are open and there are no storms. For these examples, baseball units are used
instead of SI units. A more comprehensive table is given in the appendix.

Weather data such as these can be obtained from http://www.weather.com and
http://www.wunderground.com/. The multi-year average July afternoon relative
humidity and barometric pressure data came from internet databases that are no
longer accessible. Estimates of barometric pressure are also available at http://
www.usairnet.com/weather/maps/current/barometric-pressure/. The multi-year
average July maximum daily temperatures came from http://hurricane.ncdc.noaa.
gov/cgi-bin/climatenormals/climatenormals.pl?


http://www.weather.com
http://www.wunderground.com/
http://www.usairnet.com/weather/maps/current/barometric-pressure/
http://www.usairnet.com/weather/maps/current/barometric-pressure/
http://hurricane.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?directive
http://hurricane.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?directive
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Table 7.8 Air density in some typical baseball stadiums

Altitude | Average daily high | Relative Average

(feet temperature humidity, on an | barometric Air

above sea | (degrees average July pressure in July | density

level) Fahrenheit) in July | afternoon (inch of Hg) (kg/m3)
Denver 5190 88 34% 29.98 0.96
Houston 45 94 63% 29.97 1.11
Minneapolis | 815 83 59% 29.96 1.11
Phoenix 1086 104 20% 29.81 1.07
San 0 68 65% 29.99 1.19
Francisco
Seattle 10 75 49% 30.04 1.18

directive = prod_select2&prodtype = CLIM81&subrnum=. Programs that calcu-
late air density can be downloaded from Linric Company (http://www.linric.com/)
or they can be used on-line at http://www.uigi.com/WebPsycH.html or https://
wahiduddin.net/calc/calc_da_rh.htm.

In physics, we typically reference constants at standard temperature and pressure
(STP). However, this reference point is not as a common a condition as one might
think. It is actually unusual. The density of dry air at STP of 0 °C (32 ° F) and sea
level is 1.2754 kg/m>. At the International Standard Atmosphere, (dry air at 15 °C,
59 ° F, at sea level) the density of air is 1.225 kg/m>. Both of these are bigger than for
any baseball game, as shown in Table 7.9. In our computer programs, the default air
density is that at midlevel in Table 7.9, namely 1.0582 kg/m?>, or 0.00205 slug/ft>.

For a potential home run ball, both the drag and the lift (Magnus) forces are the
greatest in San Francisco, where the park is just at sea level, and smallest in the
“mile high” city of Denver. However, as previously stated, the drag force is more
important than the Magnus force. Therefore, if all collision parameters (e.g. pitch
speed, bat speed, collision point, etc.) are equal, a potential home run will travel the
farthest in Denver and the shortest in San Francisco.

These values were chosen to show realistic numbers with natural variation. On
any given afternoon in July, it is almost certain that baseball games will be played at
the high and low ends of all these ranges.

To understand how the four fundamental variables, altitude, temperature,
humidity and barometric pressure, determine the air density, these equations were
evaluated at eighty-one experimental points in an Excel spreadsheet. These points
were selected at the low, middle and high values of the fundamental variables, or at
3% or 81 points. An edited regression output is given in Table 7.10.

Surprisingly, a simple linear equation explains most of the changes, or variabil-
ity, in the air density values. The linear algebraic equation for air density obtained
by least squares analysis is


http://hurricane.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl?directive
http://www.linric.com/
http://www.uigi.com/WebPsycH.html
https://wahiduddin.net/calc/calc_da_rh.htm
https://wahiduddin.net/calc/calc_da_rh.htm
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Table 7.9 Values used in the simulations
Air
Altitude density,
(feet percent
above Temperature | Relative Barometric | Air change
sea (degrees Humidity | pressure density | from
level) Fahrenheit) (percent) | (inch Hg) (kg/m*) | midlevel
Low altitude 0 85 50 29.92 1.16 9.4
Low 2600 70 50 29.92 1.09 29
temperature
Low humidity 2600 85 10 29.92 1.06 0.7
Low barometric 2600 85 50 29.33 1.04 -2.0
pressure
Lowest density 5200 100 90 29.33 0.91 —14.0
Midlevel 2600 85 50 29.92 1.06 0.0
Highest density 0 70 10 30.51 1.22 15.5
High barometric | 2600 85 50 30.51 1.08 2.0
pressure
High humidity 2600 85 90 29.92 1.05 —0.7
High temperature | 2600 100 50 29.92 1.03 -2.9
High altitude 5200 85 50 29.92 0.97 —8.6
A Air density(percent change from mean level) =
—0.0035 (Altitude — 2600)
—0.2422 (Temperature — 85) (7.11)

—0.0480 (Relative Humidity — 50)

+ 3.4223 (Barometric Pressure — 29.92)

where A Air density is stated as a percent change from mean level of 1.045, Altitude
is in feet, Temperature is in degrees Fahrenheit, Relative Humidity is in percent and
Barometric Pressure is in inches of Hg. The parameter estimates are taken from
Table 7.10. This equation can be re-expressed to give the air density in kg/m®

Air density = p = 1.045 + 0.01045{

—0.0035 (Altitude — 2600)

—0.2422 (Temperature — 85)
—0.0480 (Relative Humidity — 50)
+3.4223 (Barometric Pressure — 29.92)}

This Air density is p in Table 7.2b and Egs. (7.1) to (7.8).

(7.12)
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Table 7.10 Edited regression Summary of fit

s i R
and Excel) RSquare adjusted 0.993
Root mean square eError 0.71
Observations (or sum weights) 81
Analysis of variance
Source DF | Sum of squares | Mean square | F ratio
Model 4 5662 1415 2783
Error 76 39 0.51
C. Total |80 5701

Parameter estimates

Standard | ¢

Term Estimate | error ratio
Intercept 0.0

Altitude (ft) — 2600 —0.0035 |0.0000 —-94
Temperature (°F) — 85 —0.2422 | 0.0065 —37
Relative humidity (%) — 50 —0.0480 |0.0024 -20
Sea level corrected arometric 3.4223 |0.1643 21
pressure (inch Hg) —29.92

Note that the factors are in different dimensions with different ranges. Hence, the
magnitudes of the coefficients should be interpreted in this light. That is, a coeffi-
cient with a larger magnitude does not necessarily mean it has a greater impact on
the response. Also, keep in mind that the equations that yield the air density values
are deterministic. That is, there is no random variation. Hence, the sum of squares
residual is the variation remaining after predicting the response from the linear
approximation. There is no pure error, but rather simply lack of fit to the true model.
The least squares analysis differentiates between the variables for the range of the
81 observations as follows. Altitude explains 80% of the variation between the
equation and the 81 data points; temperature explains 13%, barometric pressure
accounts for 4% and relative humidity accounts for 3%.

Since Eq. (7.11) is linear, the impact of each factor can be shown graphically.
Figure 7.15 shows the changes in air density that should be expected over the range
of parameter values that would be typical for a baseball stadium on an afternoon in
July in North America. It shows that altitude is the most important factor, followed
by temperature, barometric pressure and relative humidity. Since the factor ranges
given are indicative of their natural variation, larger absolute slopes means stronger
effects. These results are for baseball and should not be used for other purposes,
such as calculating safe takeoff parameters for a small airplane.

The linear Eq. (7.11) explains 99.3%of the variation in air density across our
81 setting. However, the unexplained variation, as given by the prediction standard
error is 0.71%, suggesting that a further minor improvement is possible. (It is
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Percent Change in Air Density from midlevel

Altitude O ft Percent change in air
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Fig.7.15 Air density depends on altitude, temperature, barometric pressure and relative humidity

possible to obtain a very high R? and still have unexplained variability.) Figure 7.16
shows a quadratic pattern between the residuals and the predicted values of the
linear approximation, suggesting that second-order terms might be helpful. Since
altitude is the most important factor, the square of its value is a likely candidate.
After fitting a regression to the complete quadratic model, that also includes four
pure square terms and six cross product terms, the conjecture is confirmed, the
square of altitude does play a role. In addition, the cross product term between
altitude and temperature, is even more important, although they are a magnitude
smaller than the linear altitude and temperature terms in their effect.
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Fig. 7.16 Residuals versus
predicted air density for the
linear approximation
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The impact of augmenting the model with these two second-order terms raises
the percentage of explained variation only slightly (from 99.3% to 99.5%), but it
decreases the unexplained variation, as measured by the prediction standard error
from 0.71 to 0.61. The corresponding model is given by Eq. (7.13).

A Air density(percent change from mean level) =
—0.0035 (Altitude — 2600)

—0.2422 (Temperature — 85)

—0.0480 (Relative Humidity — 50)

+3.4223 (Barometric Pressure — 29.92)

+0.000000061 {(Altitude —2600)> — 4506667}
+0.000012 (Altitude — 2600) » (Temperature — 85) (7.13)

This is a confirmation of the correctness of our model. It shows that increasing
the complexity of our model, increases the accuracy of the model, slightly. This
should be true for all good models.

Please note that this section is not a traditional sensitivity analysis. In a sensi-
tivity analysis, each parameter would be changed by a certain percent and then the
resulting changes in the output would be calculated (Smith et al. 2008). For
baseball, if we change each parameter by 5% we find that the semirelative sensi-
tivity of air density with respect to barometric pressure, temperature, altitude and
relative humidity are respectively 1.07, —0.21, —0.1 and —0.02. The reason for the
different results is that the high, medium and low barometric pressures that could be
expected on a July afternoon in a major-league baseball stadium are 775, 760 and
745 mmHg. These changes are much less than 5%. Whereas, the high, medium and
low altitudes that could be expected in a major-league baseball stadium are 5200,
2600 and O feet. These changes are much more than 5%. Stated simply, there would
be a greater change in air density due to moving from San Francisco to Denver, than
there would be due to moving from fair weather to stormy weather.
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Table 7.11 Range as a function of air density

Range (ft) Range (m)
Air density (kg/m®) |Home run |Pop up |Line drive |Home run |Popup |Line drive
1.3 372 59 266 113 18 81
1.2 382 67 268 117 20 82
1.1 394 75 269 120 23 82
1.0 406 84 271 124 26 83
0.9 418 94 272 128 29 83
0.8 432 104 274 132 32 84

The range of a batted-ball is defined as the distance from home plate to the spot
where the ball first hits the ground. Table 7.11 shows the range for perfectly hit
simulated baseballs. The pitch, from Table 4.2, was a fastball with 1200 rpm
backspin that was going 85 mph (38 m/s) when it hit the sweet spot of the bat,
which was going 58 mph (26 m/s): the CoR was 0.55. From Table 4.2 we can see
that (if all other things were equal) such a collision could produce a home run ball
launched optimally at 34° at 97 mph with 2000 rpm of backspin. This is a potential
home run ball. Reducing the air density by 10% from 1.0 to 0.9 increased the range
of this potential home run ball by 12 feet or 3%.

For Table 7.11, the home run was launched at 97 mph (43 m/s) at an upward
angle of 34° with a backspin of 2000 rpm. The pop-up was launched at 70 mph
(31 m/s) at an upward angle of 70° with a backspin of 5000 rpm. The line drive was
launched at 90 mph (40 m/s) at an upward angle of 15° with a backspin of 2000 rpm.

Replication crisis To make our results more replicable, we should have deposited
our 81-point Excel spreadsheet into an on-line repository. The sources of our
weather data were given, but our workflows were not. We gave names of the
software packages we used for the statistical regression analysis of the 81-point
spreadsheet, namely JMP and Excel, but we did not give details. We gave atmo-
spheric conditions for most of our simulations.

In this section, average values were used. Of course, ball games are not played at
average values and the actual values are not constant throughout the game. In
particular, wind speed and direction could change on a minute-by-minute basis.
In this section, the effects of prevailing winds or height and distance of the outfield
walls were not modeled. Chambers et al. (2003) have written that for most games
played at Colorado Rockies stadium in Denver there was a light breeze (e. g. 5 mph,
2.2 m/s) blowing from center field toward home plate. They further stated that the
outfield walls at in Denver were farther back than in most stadiums. They concluded
that these two factors together reduced the number of home runs by 3—4%,
which nearly compensated for Denver’s high altitude. The greatest wind effects
in major-league stadiums are in San Francisco where the average is a gentle breeze
blowing from home plate into the right-center field stands at 10 mph (4.5 m/s).
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7.9 Vertical Deflections of Specific Pitches

The magnitude of the gravity and spin-induced drops for three kinds of pitches at
various speeds are shown in Table 7.3a. Our simulations included air density, the
force of gravity, the drag force and the vertical and horizontal spin-induced forces
(Bahill and Karnavas 1993; Watts and Bahill 2000; Bahill and Baldwin 2004).
Looking at one particular row of Table 7.3a, a 90 mph (40.2 m/s) fastball is in the
air for 426 msec, so it drops 2.92 feet (0.89 m) due to gravity (% gt’, where the
gravitational constant g is 32.2 ft/sec” or 9.8 m/sec” and ¢ is the time from release
until the point of bat-ball collision). But the backspin lifts this pitch 0.98 ft (0.3 m),
producing a total drop of 1.94 ft (0.59 m) as shown in Table 7.3a. In the spin rate
column, negative numbers are backspin and positive numbers are top spin. In the
spin-induced vertical drop column, negative numbers mean the ball is being lifted
up by the Magnus force. All of the pitches in Table 7.3a were launched horizontally
— that is, with a launch angle of zero: that is why they are different from the pitches
in Figs. 7.1 and 7.2. The angle VaSa was also set to zero (simulating an overhand
delivery): therefore pitches thrown with a three-quarter arm delivery would have
smaller spin-induced deflections than given in Table 7.3a.

A batter’s failure to hit safely is most likely caused by his fallibility in predicting
where and when the ball will reach the bat-ball contact point. Vertical misjudgment
of this potential bat-ball contact point is the most common cause of batters’ failure
(Bahill and Baldwin 2003; Baldwin and Bahill 2004). The vertical differences
between the curveballs and fastballs in Table 7.3a are greater than 3 feet (1 m),
whereas the difference produced by the two speeds of fastballs is around 3 inches
(7 cm) and the difference produced by the two speeds of curveballs is around
7 inches (18 cm). However, the batter is more likely to make a vertical error because
speed has been misjudged than because the kind of pitch has been misjudged
(Bahill and Baldwin 2003; Baldwin and Bahill 2004). A vertical error of as little
as one-third of an inch (8 mm) in the batter’s swing will generally result in a failure
to hit safely (Bahill and Baldwin 2003; Baldwin and Bahill 2004); see Fig. 4.5.

The spin on the pitch causes both vertical and horizontal deflections of the ball’s
path. When a batter is deciding whether to swing, the horizontal deflection is more
important than the vertical, because the umpire’s judgment with respect to the
distinct sides of the plate may have more precision than his or her judgment
regarding the fuzzy top and bottom of the strike zone. However, after the batter
has decided to swing and is trying to track and hit the ball, the vertical deflection
becomes more important, because the sweet spot of the bat is wider than it is tall.
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7.10 Effects of Air Density on Specific Pitches

A reduction in air density would reduce the drag and the Magnus forces on the
pitch. Table 7.12 shows the speed and the height of the ball when it crosses the front
edge of the plate for a 93 mph (42 m/s) fastball launched downward at 1.5° from a
point 6 feet high with 2200 rpm of backspin using an over arm delivery and for a
79 mph (35 m/s) curveball launched upward at 1° with 2300 rpm of pure top spin. In
Table 7.12 the speed is the vector velocity, meaning it is the sum of the horizontal
and vertical velocities.

A 10% decrease in air density, for example from 1.0 to 0.9, produces a fastball
that is 1% faster when it crosses the plate and 2% lower. Such a change in air
density produces a curve ball that is also 1% faster when it crosses the plate with a
drop that is 7% smaller. Earlier in this chapter we wrote, if all other things were
equal, a 10% decrease in air density would produce a 3% increase in the distance of
a home run ball. Now it can be seen that all other things will not be equal: the ball
collision speed will be larger (the bat speed will not change). Using the higher ball
collision speed increases the range of the home run ball by one foot.

Table 7.11 showed that decreasing the air density by 10%, for example from 1.0
to 0.9, could increase the distance of a home run ball by, for example, 12 feet. Now
Table 7.12 shows that decreasing the air density from 1.0 to 0.9, could allow the
fastball to retain more of its speed when it crosses the plate. This higher speed (86.5
compared to 85.7) allows the home run ball to travel one foot farther. Considering
both of these effects, reducing the air density from 1.0 to 0.9, would allow the home
run ball to travel 13 feet or 3% farther.

I hate to use extreme examples because people tend to latch onto them and
consider them typical. However, our readers might not relate to a 10%change in air
density. So regrettably, I will now present in Tables 7.13 and 7.14 the most extreme
example for major league stadiums.

For Table 7.14, we used an average major league home run as described by
Willman (2017): it was launched at 97 mph (43 m/s) at an upward angle of 28° with
a backspin of 2000 rpm. In 2016, the computed range of typical home runs
(meaning if the stands and the fans were not there) was between 340 and
430 feet, so the ranges in Table 7.14 are realistic.

Table 7.12 Pitch variations with air density

Fastball released at 93 mph Curveball released at 79 mph
Air density Speed at the plate Height above Speed at the plate Height above
(kg/m3) (mph) the plate (ft) (mph) the plate (ft)
1.3 83.5 3.18 71.3 1.84
1.2 84.2 3.08 71.9 1.97
1.1 84.9 2.98 72.5 2.1
1.0 85.7 2.93 73.1 2.24
0.9 86.5 2.86 73.7 2.39
0.8 87.3 2.81 74.6 2.52
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Table 7.13 Two rows from Table 7.7a for an average July afternoon in two major league baseball
stadiums

Average
Altitude Average Average barometric Average
(feet above | daily high relative pressure air density
City sea level) temperature (°F) | humidity | (inch of Hg) (kg/m3 )
Denver 5190 88 34% 29.98 0.96
San Francisco 0 68 65% 29.99 1.19

Table 7.14 A tale of two cities

Computed range in feet | Computed range in meters
City Air density (kg/m®) | for a home run ball for a home run ball
Denver 0.96 423 129
San Francisco |1.19 399 122

Because of the difference air densities, if all other things were equal, the
optimally launched home run ball would travel about 24 feet farther in Denver
than in San Francisco. However, in Denver the pitch would not slow down as much.
The difference in pitch speeds would add another 2 feet to the range in Denver. We
hope there is enough detail in this section to make our result replicable.

7.11 Modeling Philosophy

A model is a simplified representation of a particular view of a real system. No
model perfectly matches all views of its real system. If it did, then there would be no
advantage to using the model. Although the equations and numerical values in this
chapter might imply great confidence and precision in our numbers, it is important
to note that our equations are only models. The Kutta-Joukowski lift equation and
subsequent derivations are not theoretical equations, they are only approximations
fit to experimental data.

There are many models for the flight of the baseball. The models of Frohlich
(1984), Watts and Bahill (1990, 2000), Adair (2002, 2004), Sawicki et al. (2003,
2004), Nathan (2006), Bahill and Baldwin (2007), and McBeath et al. (2008) give
different numerical results. However, we believe, they all give the same compar-
ative results. Meaning they all should show that a 10% decrease in air density
produces about a 3% increase in the distance of a home run ball with the increase
being less for pop-ups and greater for line drives.

Our models only considered certain aspects of the baseball in flight. We ignored
the possibility that air flowing around certain areas of the ball (due to perhaps a
scuffmark) might change from laminar to turbulent flow en route to the plate. Our
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equations did not include effects of shifting the wake of turbulent air behind the ball
during the flight. En route to the plate, the ball loses 10% of its linear velocity
(Watts and Bahill 2000) and 2% of its angular velocity (McBeath et al. 2008): we
did not include this reduction in angular velocity in our simulation. We ignored the
stabilizing gyroscopic effect and the precession of the spin axis. Furthermore, we
ignored the difference between the center of mass and the geometrical center of the
baseball. We ignored possible differences in the moments of inertia of different
balls. In computing velocities due to bat-ball collisions, we ignored deformations of
the bat and ball, and energy dissipated when the ball grips the bat. Finally, as we
have already stated, we treated the drag coefficient as a constant.

The implied precision suggested by the home run trajectories shown by Willman
(2017) would need to answer all of the above issues as well accommodate wind
velocity and its changes with height and perhaps even temperature gradients.

Our numerical values were only estimates, because so many factors affect them.
For example, the outputs of the BaConLaw and Ball in Flight models vary with the
particular bat that was used. In Sect. 4.12.4, we discussed C243 and R161 bats.
They were similar in length, weight and moment of inertia, yet with our standard
pitch speed of 83 mph and swing speed of 61 mph, the C243 bat produced a batted
ball range of 387 feet whereas the R161 bat drove the ball 389 feet.

Table 4.12 was for head-on collisions. However, a launch angle of 34° would
require an oblique collision that would produce a lower launch speed (Kensrud et al.
2017). Consequently, producing a launch speed of 97 mph would require a higher
swing speed. Obligingly, Willman (2017) shows many swing speeds that are higher.

The importance of this present chapter lies in comparisons rather than in
absolute numbers. Our model emphasizes that the right-hand rules show the
direction of forces acting on a spinning ball in flight. The model provides predictive
power and comparative evaluations of the behavior of different types of pitches.

The Order of Determining Values Variables and parameters used in Chaps. 1 to
6, but not used in Chap. 7, include bat mass, bat inertia, ball inertia, CoR and the
location of the collision point. Outputs of Chaps. 1 to 6 that are inputs for Chap. 7
include launch velocity, launch angle and launch spin. Now we had to find
numerical values for the other Chap. 7 variables and parameters. The order of
determining them is important because it is impossible to correctly derive the
values in the wrong order. The correct order is shown in Table 7.15.

We first had to choose a default state: we used the midlevel values given in
Table 7.9. Of course, in our simulations, particular variables and parameters were
changed for particular stadiums or circumstances, but the default values were
usually used. The biggest mistake that we made in the last 30 years was using
standard temperature and pressure (STP) as the default for air density in the early
years. Next, we needed values for altitude, temperature, relative humidity and
barometric pressure; they were given in Tables 7.8 and 7.9 and the appendix of
this chapter. These values were then used to compute air density, the dynamic
viscosity of air (u) and the kinematic viscosity of air(v). The dynamic viscosity is
also called the absolute viscosity or just the viscosity: it depends on temperature.
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Table 7.15 The order of determining numerical values for the variables and parameters

Default state Midlevel Midlevel
Altitude 2600 ft 792 m
Temperature 294 °C 85°F
Relative 0 0
Humidity W I
Barometric 760 mm Hg 29.92 inch Hg
pressure

Diameter of a
baseball
Mass of a baseball

0.07366 m

0.145 kg

= multiply by 2.09x 107>
Dynamic viscosity #=1.922x10" . u= 4.017x107
of air kg/mes or Nes/m Ibfes/ft? U
g = multiply by 10.7638 s
2| [ 0=1816x10"m/s | v=1.955x10"fss | &
g_ down then right g
o v=1959x10"*ft’/s | ™
Kinematic i right then down é
viscosity of air é 8
&5 S
ot

The kinematic viscosity of air depends on both temperature and pressure. In the
early years, we used the kinematic viscosity of air, but it was difficult to get good
values for all stadiums, therefore we switched to the dynamic viscosity. We found
internet sites that gave authoritarian values for the dynamic viscosity of air. This is
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the statistical summary for the dynamic viscosity of air at 85 °F and
2600 feet altitude.

7=1922x 10 kg/m-sorN-s/m’
6=0.13x10"°
n=23_8

We used the official rules of major league baseball for the mass and diameter of
the ball, which were given in Table 1.1. Typical ball speeds and spins came from
Table 4.2. Now we had enough data to compute the spin parameter and the
Reynolds number for particular pitches and hits as given in Table 7.4. We deter-
mined that for major league pitches and hits (with the exception of knuckleballs and
extreme pop-ups) the

0.1 <SP<03
and

10° <Re <2 x 10°

We used these numbers to access the literature and find lift, drag and Magnus
coefficients, as given in Sect. 7.6. Although it was not important, we tried to get the
earth’s gravitational constant at each home plate. It would have been nice to also
have had the wind speed at home plate for each pitch.

The order in which these values were gathered is important because, for exam-
ple, the air density cannot be computed until after the altitude, temperature,
humidity and barometric pressure are known, furthermore small mistakes in the
beginning would propagate throughout the whole process. Once we had values for
the variables and parameters, we could start developing and running the model.
First, we needed input values for the launch velocity, lunch angle and launch spin.
For one of the longest possible batted-ball examples, we used the following inputs
from Table 4.12. The home run was launched at 97 mph (43 m/s) at an upward angle
of 34° with a backspin of 2000 rpm. The results are given in Table 7.11.

Not only are numerical values important, but their variability is also important.
For example, the variation in the earth’s gravitation constant is small between
stadiums, whereas the variation in the diameter of actual balls in play is compar-
atively large. Furthermore, the time scale of change is important. The wind speed
changes from pitch to pitch, the temperature and barometric pressure change from
inning to inning and the altitude and the earth’s gravitational constant vary on a
geological scale.

The numerical values used for the parameters in our equations have uncertainty.
However, the predictions of the equations match baseball trajectories quite well.
When better experimental data become available for parameters such as the drag
coefficient and spin rate, then the equations or the values of other parameters will
have to be adjusted to maintain the match between the equations and actual baseball


https://doi.org/10.1007/978-3-319-67032-4_4#Tab12

190 7 The Ball in Flight Model

% Real Modelers || Model of Modelers | Computer g
£ < System Good Real Good | Simulation > g
g Modelers L SYStM  [“Niodelers | Of Model 3

Fig. 7.17 The modeling process

trajectories. A well-developed model is an interconnected system. You should not
try to improve one parameter at a time.

So far, experimental data have driven the development of the model and the
simulation. However, as shown in Fig. 7.17, modeling is not a one-way street. The
theorists should be sending advice to the experimentalists. For example, the worst
data used in developing the model is probably that for determining values for the
drag coefficient, Cp. The results of the seven studies shown in Fig. 7.11 are
different: none replicated earlier results. Therefore, there is a need for someone to
show the drag coefficient varying as a function of the Reynolds number for spinning
baseballs with the care and precision exhibited by Achenbach (1972). It is impor-
tant that they explicitly cover the realistic range of spin parameters, 0.1 <SP < 0.3.
As a second example, modelers should point out that the huge Major League
Baseball databases contradict each other. In particular, the spin rates for curveballs
must be wrong. Table 7.1, using data from Willman (2017), gives an average spin
rate for the curveball of 1300 rpm with a standard deviation of 500: this is a huge
standard deviation. Whereas, Table 7.2, with data from Statcast (Petriello 2016),
gives an average spin rate of 2300 rpm for the curveball. Each of these databases
contains an entire year of data. Therefore, the differences are not due to an
inadequate sample size. Both of these are for the curveball, which should be easy
to identify and hard to confuse with other types of pitches. Therefore, the discrep-
ancy is significant. It suggests a fundamental flaw in the system.

As for replicability, we acknowledge that some areas of science are more
difficult to study and are less mature than other areas because of the lack of basic
theory to guide us. However, this is definitely not the case for the science of
baseball.

Larry Stark (1968) explained that models are ephemeral: they are created, they
explain a phenomenon, they stimulate discussion, they foment alternatives and then
they are replaced by new models. When there are better wind-tunnel data for the
forces on a spinning baseball, then our equations for the lift and drag forces on a
baseball might be updated with newer parameters. However, we think our models,
based on the right hand rules showing the direction of the spin-induced deflections,
will have permanence: they are not likely to be superseded.

Max Planck (1948) wrote, “A new scientific truth does not triumph by convinc-
ing its opponents and making them see the light, but rather because its opponents
eventually die, and a new generation grows up that is familiar with it.”
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7.12 Which Can Be Thrown Farther a Baseball or a Tennis
Ball?

We now have all the tools necessary to analyze the different flight paths of heavy
and light balls. If you type, “Which can be thrown farther a heavy ball or a light
ball?” into a Google search box, you will get over a million answers: most of them
are probably wrong. So let’s try to answer this question now.

The force-velocity relationship of muscle shown in Fig. 4.9 does not suggest that
a light ball can be thrown farther than a heavy ball. For example, given a tennis ball,
a baseball, a softball, a bocce ball and a woman’s shot put, we suspect that the
baseball can be thrown the farthest. The tennis ball with a low weight would be at
the left side of a force-velocity diagram like Fig. 4.10. It would have a high speed,
but the force applied to it by the muscles would be small. Whereas, the shot put
would be at the right side of Fig. 4.10. It would have a large force applied to it, but
its speed would be small.

Figure 4.9 gives the force-velocity relationship for a single isolated muscle in a
laboratory. Fig. 4.10 gives the force-velocity relationship for a whole intact human
being swinging a bat. This similarity has been reproduced in many physiological
experiments. In Fig. 7.18, we apply it to humans throwing balls.

Physics textbooks state that an ideal projectile-launch on the moon at a 45° angle

would yield a maximum range of Ry,.x = V—O, which does not depend on the mass of
8

the projectile. Therefore, let us see if we can be more realistic. The range of a
batted-ball is defined as the distance from home plate to the spot where the ball first

Force-velocity Relationship for Sports Balls
120 o
Tennis ball (2, 105)

S L 24 Baseball, (5, 95)
E g (i, Softall (7, 85)
o
g 0 i Bocce ball (32, 50)
2 2 ’ Shot put, (141, 31)
9D 40 :
©
m 20
0
0 50 100 150

Ball Weight, oz

Fig. 7.18 Launch speed versus weight for different sports balls. The equation for the blue line is
(weigh+12.5) x (speed — 24) = 1171 where weight is in ounces and speed is in mph. These five
balls are about the same size. Therefore, they could all be thrown with an overhand motion
producing backspin
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Fig. 7.19 Simulated trajectories for balls thrown from the outfield by a Little Leaguer at various
launch velocities. The launch angle is 34°, but it does not look like that on the figure, because the
horizontal and vertical scales are not the same

hits the ground. What determines the range of a batted-ball? In a major league
baseball stadium, the range depends on the time that the ball is in the air and that
depends on the vertical component of the velocity. The height of ball is given by

z=1z9+7t+ 0.5 where 7 means the derivative of z with respect to time, o
the vertical velocity, and Z means the second derivative of z with respect to time,
&’z
dfz’
this are shown in Fig. 7.19.

When the ball is going up, from Fig. 7.8, we have

the vertical acceleration. Typical ball trajectories derived from equations like

Faown = —Fiife + Fgavity + Fdrag sin@

where 0 is the angle between the direction of motion and the horizontal. The lift
force is the vertical component of the Magnus force. Therefore,

Fdown = _FMagnus cosf + Fgavity + Fdrag sinf
From Sect. 7.6.2 we have

3
FMagnus = 0.57p77 11 0pail Voatt Cm

assuming that the spin axis is perpendicular to direction of motion, that is pure
backspin.
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Therefore,
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Faown = —0.5mpr; ;,0pai Vhan Cm €08 8 + miyang + 0.57pr, v Co sin @

Now the vertical acceleration is related to the downward force by

—F down
Npall
Therefore,
z=1z0+2t
2

~m (fO.Sn:prga"wba“vba"CM cos 0 + My g + O.Sﬂprﬁa"vﬁa”CD sin 9)
ball

In order to simulate this equation we needed values for Cp and Cr. We took
these values from Fig. 7.20, which came from Clanet (2015). We also used

Once we had values for these three constants, we ran our simulation and
produced the numbers in Table 7.16. We ran the simulation in dry air at 85 °F at
sea level, yielding p = 1.14 kg/m’. This detail aids replicability.

The weak link in this section is the launch speeds. The reliability of these data
decreases from baseballs to shot puts to softballs to bocce balls to tennis balls. We
have the most confidence in the launch speed of the baseball at 95 mph. Many
television viewer are familiar with this number. Many professional baseball players
can throw a baseball at this speed: few laypeople can. Regardless, we do not want
the average speed of a thousand random people, nor do we want outliers like Rocky
Colavito who routinely threw the baseball over 400 feet. To state it differently, we
are studying optimal athletes doing what they do optimally. This removes a lot of
variability. Therefore, we are comfortable with a 95 mph launch speed for a
baseball. With this speed, the baseball is in the low drag region of Fig. 7.11, around
0.38.

The data for the shot put are for Michelle Carter who won the gold medal in the
2016 Olympics with a throw of 20.63 m (68 feet). Using our simulation, we found
values that would produce the actual output of 20.63 m. These values were a 30.81
mph launch speed at a 43° angle. She could also have produced that throw with a
higher speed and a different launch angle. However, if this throw won the gold
medal, then it was probably close to optimal. The shot put has little spin and
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Fig. 7.20 Normalized lift and drag coefficients for various sports balls (From Clanet (2015) ©.
Annual Reviews of Fluid Mechanics, used with permission)

therefore little lift, but it does have drag (as indicated by the optimal launch angle of
43 instead of 45°). These numbers are not apocryphal or outliers. They represent an
optimal athlete performing optimally. Therefore, a launch speed of 31 mph is
realistic.

Premier women pitchers throwing the softball underhand have maximum speeds
that range between 70 and 75 mph. We ignore outliers like Eddie Feigner and Ty
Stofflet who supposedly threw the softball over 100 mph. Additionally there are
internet sites showing overhand softball throws of over 300 feet. Therefore, we
chose a launch speed of 85 mph for men throwing a softball overhand.

The size of the bocce ball is similar to the other balls, so we expect it to be
gripped the same. However, estimated speed and spin for the bocce ball are a wag.

The least reliable data are for the launch speed of the tennis ball. The 105 mph
value was derived from several internet videos and Clanet (2015). The tennis ball
has a fuzzy surface, which produces a high drag coefficient of 0.56 (Clanet 2015).
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This difference in drag may be the main reason that the baseball can be thrown
farther despite the tennis ball’s higher launch speed.

In summary, the baseball can be thrown farther than the tennis ball. This
conclusion depends on the force-velocity relationship of muscle and properties of
the ball such as mass, drag coefficient and coefficient of lift. However, that really
does not answer the original question, “Which can be thrown farther a heavy ball or
a light ball?” The sensitivity analysis of Table 7.5 suggested that a heavier ball
would go farther. To answer this question thoroughly we ran the simulation with
only the mass being different. The results in Table 7.16 show that the heavier ball
can go slightly farther.

How is it even possible for a heavy ball to go farther than a light ball? There are
two explanations based on physics. First, if the balls were launched with the same
velocity, then the heavier ball must have been given more energy. Therefore, it will
have more momentum and it will take more force and time to slow it down. Second,
the only terms in our equations that depend on mass are the acceleration terms. At
the beginning of motion, the ball with the bigger mass has smaller accelerations:

. F down . F retard
7=——andXx =

Npall Mpall

Both of these will be smaller for the heavier ball. Which means that the
horizontal and vertical velocities will not slow down as fast. Both of these effects
will make the heavier ball go farther. However, the system is dynamic. Both the
horizontal and vertical velocities decrease with time. And both the Magnus and the
drag forces are functions of velocity. Therefore, for the rest of the trajectory we will
drop the textural argument and revert to the simulation. We increased the mass of
the baseball by 10% as shown in column 3 of Table 7.16. While we kept the launch
speed the same. The heavier ball traveled 384 instead of 372 feet.

Now it is time to look at physiology. Recall the force-velocity relationship of
muscle. Our muscles will produce a lower velocity for a heavier load than for a
lighter load. According to Fig. 7.18, the 10% heavier baseball will be launched at
93 mph instead of 95 mph. As shown in column 4 of Table 7.16, this reduced launch
velocity will reduce the range from 384 to 374 feet. In conclusion, increasing the
baseball’s mass by 10% increased the range by 12 feet. However, the subsequent
reduction in launch velocity caused by the force-velocity relationship of muscle
decreased the range by 10 feet. Therefore, if a human is throwing balls of about the
same mass, then the heavier ball might go slightly farther.

At this point in our experiments, someone objected and said, “Yah, but you
launched the normal ball and the heavy ball at the same angle. What if you were to
launch each at its optimal angle?” Therefore, we reran our simulations and found
the optimal angle for the normal ball was 34° producing a range of 372 feet.
Whereas the optimal angle for the heavy ball launched at 93 mph was 35°, which
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Table 7.17 Summary lines from Table 7.16

Heavy Women’s
Parameter Baseball |baseball | Tennisball | Softball | Bocce ball | shot put
Launch speed, mph 95 93 105 85 55 31
Range, feet 372 374 250 297 186 68

increased the range from 373.9 to 374.0. Our conclusion remained the same: if a
human is throwing balls of about the same mass, then they will go about the same
distance.

Of course, there are other physiological factors that could affect this conclusion,
such as the size of the hands, the size of the ball, the grip, the throwing motion and
familiarity. For example, most American males, who grew up playing baseball,
thought that they could throw a baseball farther than a tennis ball. Whereas most
others thought the opposite.

In conclusion, because of the difference in the drag coefficient, the baseball can
definitely be thrown farther that a tennis ball. In addition, if all other parameters are
held constant, a lighter ball cannot be thrown farther than a heavier ball.

7.13 Summary

According to our Ball in Flight Model, during its flight, the ball is subjected to the
following forces

F gravity — Mball§
— 2 2
Farag = 0.57p7 5V Co

3
FMagnus = 0.57p1 1 0vait Voatt Cm

For major-league baseball stadiums, the air density is inversely related to
altitude, temperature and humidity, and is directly related to barometric pressure,
according to this equation.

Air density = 1.045 + 0.01045{ — 0.0035 (Altitude — 2600)
— 0.2422(Temperature — 85)

—0.0480 (Relative Humidity — 50) + 3.4223(Barometric Pressure — 29.92) }.

A plea was made for science of baseball experimentalists to try to replicate
previous experiments and explain the reasons if they cannot.

Both the drag force Eq. (7.3) and the Magnus force Eq. (7.2) are directly
proportional to the air density. Therefore, if air density gets smaller, the drag
force gets smaller, this allows the ball to go farther: But at the same time, as air
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density gets smaller, the Magnus force also gets smaller, which means that the ball
will not be held aloft as long and will therefore not go as far. These two effects are
in opposite directions. Simulation shows that the change in the drag force affects the
trajectory of the ball more than the change in the Magnus force. Therefore, as air
density goes down, the range of a potential home run ball increases. On a typical
July afternoon in a major-league baseball stadium, a 10% decrease in air density
can produce a 3% increase in the distance of a home run ball. A home run ball might
go 26 feet farther in San Francisco then in Denver.

Finally, we note that a baseball can be thrown farther than a tennis ball.
Additionally, if a human is throwing balls of about the same mass, then the heavier
ball might go slightly farther.

Appendix. Weather Data for Major-League Baseball
Stadiums
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Chapter 8
Dénouement

8.1 Introduction

Purpose: This chapter consolidates the insights and wisdom in this book.

This book is about engineering the sport of baseball. It may have seemed to be about
physics, but we were always on the lookout for instances where physiology or
psychology should have come into play. For example, in Chap. 7 it was essential to
use physiology’s force-velocity relationship of muscle. We also continually looked
for fatigue and warm-up effects in data. Some of our studies like that of the rising
fastball, which were not included in this book, dealt with issues that could only be
explained using physiological psychology (Bahill and Karnavas 1993; Bahill and
Baldwin 2003 and 2004).

We made sure that we studied papers that used models that were different from
ours. We did not want confirmation bias to restrict the papers that we chose to
incorporate. Trying to hit a baseball with a bat is a task that is very attention
demanding. Therefore, we looked for effects of cognitive overload. We were also
on the alert for outliers that might challenge principles of physics that we used. For
example, when we stated that energy cannot be created or destroyed, we were aware
that in nuclear reactions mass can be converted into energy and vice versa. So we
contemplated possible effects in our baseball environment and decided that there
were none. The point of this paragraph is that while it might have seemed that we
were merely modeling the physics of baseball, we were, and you the reader should
have been, continually looking for seemingly extraneous factors that could have
affected our conclusions.

What does a person need to be a successful batter? Obviously, he or she must
have good coordination, excellent vision, athleticism, desire and a strong work
ethic. When concentrating on the pitch, he or she must be able to ignore peripheral
vision, the auditory system, the olfactory system and pain sensors. In addition,
tracking the ball from the pitcher’s release point to where it crosses the plate
requires suppression of the vestibulo —ocular reflex (Bahill and LaRitz 1984),

© Springer International Publishing AG 2018 203
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above average smooth pursuit eye tracking capability (Bahill and LaRitz 1984), an
exemplary ability to learn to track unique smooth pursuit visual targets (McHugh
and Bahill 1985) and a tremendous amount of cognitive effort (Kahneman 2011).

In a classic psychology experiment summarized by (Kahneman 2011), four-year
old children were exposed to a cruel experiment. They were given a choice of one
Oreo cookie, which they could eat at any time, or two Oreo cookies if they could
wait 15 min for the reward. About half the children managed the task of waiting
15 min. A dozen years later, a large gap had opened between those who had resisted
temptation and those who had not. The resisters had higher measures of executive
functions in cognitive tasks and especially the ability to allocate their attention
efficiently (Mischel et al. 1989). My conjecture is that children who can control
their impulses and concentrate on the task at hand will have the potential to become
more successful baseball and softball players because they have and will develop
their executive functions more fully. This will allow them to be good at deciding
when to do what. The following poem, which is explained in the appendix, is
analogous to the third chapter of the book of Ecclesiastes, with apologies to Pete
Seeger.

There is a season for everything,

a time for every action under heaven:

a time for thinking, and a time for reacting;

a time for planning, and a time for executing plans;
a time for exercising, and a time for relaxing;

a time for dreaming, and a time for studying;

a time for chitchat, and a time for negotiation;

a time for playing, and a time for practice;

a time for cheers, and a time for tears.

In writing this book, we were aware of differences in human cognitive
processing. When we evaluated data in peer-reviewed journals, we strove to discern
the authors’ recognition of how these human differences affected the authors’
evaluation of their data. For example, we expected much less variability in the
data of major league baseball players compared to collegiate players. If this was not
apparent in the data, then the data were suspect.

In creating a model, we were always cognizant of the reader. We continually
worried about whether or not a reader could replicate our experiments and
equations.

Now, let us stop discussing what we were thinking while writing this book and
return to what was actually stated in the chapters of this book.

Collisions between baseballs, softballs and bats are complex and therefore their
models are complex. One purpose of this book was to show how complex these
collisions could be, while still being modeled using only Newton’s principles and
the conservation laws of physics. Accordingly, this book presented the BaConLaw
model for the speed and spin of balls and bats after the bat-ball collision in terms of
these same four variables before the collision.

Chapter 1 presented Newton’s laws and laid the groundwork for analyzing
bat-ball collisions. Using text and figures, Chap. 2 explained nine common
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configurations of bat-ball collisions. Chap. 3 started the development of the sets of
equations for these configurations.

The workhorse of this book, Chapter 4, contains our most comprehensive model,
the BaConLaw model. It models a collision at the sweet spot of the bat with spin on
the pitch. It has five equations and five unknowns. The equations are complete and
comprehensive. This chapter contains a sensitivity analysis of the complete model,
which shows that the most important variable in the model, in terms of maximizing
batted-ball speed, is the bat speed before the collision. This chapter starts the
fulfillment of the first purpose of this book by showing what may be the most
complex model that is compatible with our simple technique and Newtonian
physics. It also fulfills the second purpose of this book, namely, to help batters
select or create baseball or softball bats that would be the best for them. Cupping the
barrel end of the bat does not help. This chapter is unique in the science of baseball
literature.

This is a big deal. The BaConLaw model describes the motion of the bar after the
collision. Many models describe the motion of the ball after the collision, but few
(if any) describe the motion of the bat. When you see a batter hit the ball, do you see
the jerk of the bat? Can you describe it? Well these equations do.

Chapter 5 contains four alternative models for bat-ball collisions. Their purposes
are different and are they are based on different fundamental principles. The
Effective Mass model was created by physicists independent of the author of this
book. Therefore, comparisons to it are important for validating the BaConLaw
model of Chapter 4. The Spiral Center of Mass model and the Sliding Pin model are
data-based, not theory-based. They use a different approach and they use a different
type of data. Finally, the Collision with Friction model considers friction during the
collision. It is shown that this type of collision cannot be modeled using only the
conservation laws. Therefore, this model completes the fulfillment of the first
purpose of this book, by showing a configuration that is too complex for our simple
technique.

Chapter 6 recapitulates Chaps. 1 to 5. These chapters are at a higher level of
abstraction than typical physics of baseball papers, because they ignored details of
the collision, such as (1) during the collision the ball can slip, slide, roll or grip the
bat, and the ball switches between these modes, (2) the coefficient of friction
changes from dynamic to static and back, (3) the bat and ball deform during the
collision (4) some collisions have normal and tangential velocity components and
(5) the bat has a twist or a rotation about its long axis. This book ignored the
difference between the kinetic, energetic and kinematic coefficients of restitution,
the energy loss due to tangential forces and losses in angular momentum: it grouped
all of the energy losses into one parameter, the kinematic Coefficient of Restitution.
We modeled the parameters of the bat and ball only at a time just before the
collision and at a time just after the collision. Because the equations are at a high
level, it was possible to verify each major equation by at least two techniques. This
book used simple terms that were presented in Table 1.1 that should be understand-
able by all students of the science of baseball. This book did not obfuscate with
jargon, rules of thumb or esoteric terms. By using only fundamental principles, it is
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hoped that the reader gained intuition about the behavior of the bat and ball before
and after collisions.

One purpose of the Ball in Flight model of Chap. 7 was to show how altitude,
temperature, barometric pressure and relative humidity affect air density and
consequently how air density affects the flight of the ball. To do this, we needed
equations for the flight of the ball that included air density. Therefore, the first
challenge of this chapter was to derive equations for the flight of the ball that
included the dependence on air density. These equations were not restricted to
Newton’s principles and they relied heavily on experimental data. Next, this
chapter showed that air density is inversely related to altitude, temperature and
humidity, and is directly related to barometric pressure. Air density affects how far
a batted-ball travels. As shown by this model, on a typical July afternoon in a major-
league baseball stadium, altitude is the most important factor, explaining 80% of
the variability. This is followed by temperature (13%), barometric pressure (4%)
and relative humidity (3%). A simple linear algebraic equation was presented that
predicts air density in terms of these four variables. A different model showed how
the batted-ball’s range depends on both the drag force and the Magnus force and
considered the relative importance of each. As an aside, this chapter answered the
question of whether a person could throw a heavy ball or a light ball farther. If all
other parameters are held constant, a heavier ball might be thrown slightly farther
than a lighter ball.

Chapters 1 to 6 modeled bat-ball collisions and Chap. 7 modeled the flight of the
ball, whether thrown, pitched or hit. Let’s see if we can bring our technique together
in one example.

To understand new puzzles we use physics first, then physiology and finally
psychology. As an example, let’s apply the lessons learned from this book to an
interesting anomaly in baseball statistics. In major league baseball (MLB), there
seems to have been more home runs in 2017 than in previous years. When
pondering a new problem, we first we try to solve it using physics. Physicists
have investigated the baseball’s contribution to the coefficient of restitution, but it
seems to have remained constant throughout recent years. Others have suggested
that the flatter seams on the major league baseball would reduce the drag coefficient
and thereby increase the range of the batted ball. However, at the same time, the
flatter seams would also decrease the Magnus lift force and thereby decrease the
range. Evidentially the effect of drag reduction is greater than the effect of Magnus
lift force reduction, because experiments have shown that MLB’s flatter seams
increase the range by about 20 feet. But this is all irrelevant, because MLB’s switch
to the flat seam ball occurred years ago, not in the summer of 2016. Therefore,
physics does not provide an answer for the increased number of home runs in 2017.
Accordingly, let’s try physiology. Today’s players are more athletic due to condi-
tioning and nutrition. So, they have higher bat swing speeds. But this did not happen
suddenly in 2016. So, physiology does not provide an answer. Okay, so let’s try
psychology. MLB has created game-changing new metrics for performance. For
example, pitchers are no longer evaluated solely on won-loss record and earned-run
average. Instead, everyone is talking about pitch speed. Pitchers seem to be
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throwing faster with many of them throwing at 100 mph. This would produce more
home runs, because the faster the ball comes in, the faster the ball goes out. At the
same time, MLB and television are glamorizing the home run. Trajectories are
continually displayed on television and on the internet. This has probably caused
batters to decide to try hitting more home runs by swinging faster and launching the
ball at a higher angle. Therefore, psychology may be the reason for the increase in
home runs. Both the pitcher and the batter gain more publicity because of higher
pitch speeds and more home runs. Finally after pursuing physics, physiology and
psychology, we should “follow the money.” High-speed pitchers and prolific home
run hitters draw in the crowds (and their money) and hence are paid more. This
probably caused them to decide to throw harder and swing faster.

Appendix

We concluded our paragraph about the four-year old children resisting their urge to
eat the Oreo cookies with, “The resisters had higher measures of executive func-
tions in cognitive tasks and especially the ability to allocate their attention effi-
ciently.” Let us now analyze that sentence.

The field of cognitive neuroscience proposes that executive functions reside in a
particular area of the brain named the prefrontal cortex. The basic executive
functions include cognitive processes such as impulse control, use of working
memory, attention control, resistance to interference and cognitive flexibility.

The first two of these functions develop in early childhood. Impulse control, also
known as response inhibition, is an executive function that permits people to inhibit
their impulses in order to select behaviors that are more likely to satisfy their goals.
Use of working memory is an executive function that holds and processes informa-
tion for a short time.

The last three of these functions develop later in life. Attention control is an
executive function that allows people to allocate their attention, to choose what they
pay attention to and what they ignore. Attention control can be described as a
person’s ability to concentrate or focus. Resistance to interference is an executive
function that allows people to shutout stimuli that are irrelevant to the task at hand
or to the mind’s current state. Cognitive flexibility is an executive function that
allows people to switch between thinking about two different concepts and perhaps
to control multiple tasks concurrently.

Multiple basic executive functions create high-order executive functions, which
include planning, scheduling, negotiating, tradeoff studies and problem solving.

The executive functions that are most important for baseball players are argu-
ably impulse control, use of working memory, attention control, resistance to
interference and planning.

My conjecture is that children who can control their impulses and concentrate on
the task at hand will probably become better baseball and softball players because
they have and will develop their executive functions more fully. This will allow
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them to be good at deciding when to do what. The following poem is analogous to
the third chapter of the book of Ecclesiastes, with apologies to Pete Seeger.

There is a season for everything,

a time for every action under heaven:

a time for thinking, and a time for reacting;

a time for planning, and a time for executing plans;
a time for exercising, and a time for relaxing;

a time for dreaming, and a time for studying;

a time for chitchat, and a time for negotiation;

a time for playing, and a time for practice;

a time for cheers, and a time for tears.

A time for thinking, and a time for reacting.

It takes exceptional concentration for a batter to track a pitch and predict the ball’s
position at the time of the collision. The batter must shutout distractions. On the
other hand, the swing of the bat is merely a reaction. It is an over-practiced reaction
with little variability.

A time for planning, and a time for executing plans.

Before each pitch, every fielder plans what he or she will do for every contingency.
For instance, assume that the game is tied in the bottom of the sixth inning. There
are no balls, no strikes and no outs. There are runners on first and third. Each fielder
must formulate a plan. For example, on a deep flyball, an outfielder will throw the
ball to the cutoff man (the second baseman or the short stop depending on where the
ball was hit). On a lazy flyball, if the runner on third is tagging, the outfielder will
throw to home plate through the cutoff man. On a shallow hit, if the runner on third
is advancing, then the outfielder will throw to the catcher; if not, then the fielder
must throw to second base. All of these plans must be in the fielder’s working
memory before the pitch. Because, when the ball is hit, there is no time for thinking:
there is only time for executing the plan.

A time for exercising, and a time for relaxing.

Athletes must be in good physical shape. Regular planned exercise can help achieve
this. However, all work and no play makes Jack a dull boy.

A time for dreaming, and a time for studying.

There is no time for daydreaming during a game. Whereas, between games, there is
plenty of time for study; to study the opposition, to read books like this one and to
learn about the world around us.

A time for chitchat, and a time for negotiation.

Talking about personal lives helps players understand how their teammates will
react during a game. It is important that outfielders, for example, know each other
very well. On a line drive between them, one runs in and one runs out: this prevents
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broken bones. In contrast, most players will not talk with their agents during the
season because they do not want the distraction.

A time for playing, and a time for practice.

When you are playing a game, your brain must be totally engaged in the game. In
Chap. 4, we quoted Dave Baldwin as saying that if you lose a game, don’t blame the
umpire or your teammates; just go home and practice harder.

A time for cheers, and a time for tears.

After every win, all players cheer. However, when a team is eliminated from the
championship tournament, many players cry.
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Chapter 9
General Modeling Principles

9.1 Introduction

The following statement was on Richard Feynman’s white board when he died. By
create he meant derive equations mathematically, on a white board, in real-time, in
front of an audience, without notes.

What | cannot create,
| do not understand.
Richard Feynman

What | cannot model,
| do not understand.
Terry Bahill

Purpose: This chapter extracts the modeling lessons learned throughout this book
into one cohesive whole. It is based on Bahill (2016).

9.2 Why Model?

This book is about modeling and simulation of bat-ball collisions and the flight of
the ball. A model is a simplified representation of some aspect of a real system. A
simulation is an implementation of a model, often on a digital computer. Models are
ephemeral: they are created, they explain a phenomenon, they stimulate discussion,
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Fig. 9.1 The modeling process

they foment alternatives and then they are replaced by new models. Everyone
knows how to make a model, but most researchers miss a few tasks. Therefore,
we wrote this chapter that presents a succinct description of the modeling process
shown in Fig. 9.1.

Most systems are impossible to study in their entirety, but they are made up of
hierarchies of smaller subsystems that can be studied. Nobel Laureate Herb Simon
(1962) explained the necessity for such hierarchies in complex systems. He wrote
that complex systems are decomposable, enabling subsystems to be studied outside
of the entire hierarchy. For example, when modeling the movement of a pitched
baseball, it is sufficient to apply Newtonian mechanics considering only gravity, the
ball’s velocity and the ball’s spin. One need not be concerned about electron orbits
in the cowhide cover or the motions of the sun and the moon. Forces that are
important when studying objects at one level seldom affect objects at another level.
When modeling baseball systems we are fortunate that we do not have to consider
how black holes form or entanglement, which Einstein mocked as “spooky action at
a distance.”

Table 9.1 shows a sampling of the levels of two of the hierarchies that were used
in this book. Items at the bottom of the table are at the lowest level considered in
this book. Items that are higher up in the table are at a higher level of abstraction.
The point is, in Chap. 7 for example, we studied altitude, temperature, humidity and
barometric pressure and derived equations for them. Later we studied the equations
for Fgravitys Farag and Fyagnus- Later still, we studied the range of the batted ball. We
studied them independently. We never had them on the same page.

9.2.1 Purpose of Models

Models can be used for many reasons, such as understanding or improving an
existing system (done in this book), creating a new design or system, controlling a
system, suggesting new experiments, guiding data collection activities (done in this
book), allocating resources, identifying cost drivers, increasing return on invest-
ment, helping to sell the product, and reducing risk. Running business process
models clarifies requirements, reveals bottlenecks, reduces cost, identifies
fragmented activities and exposes duplication of efforts.
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Table 9.1 Bat-ball modeling hierarchy

Chapter 7 the Ball in Flight model
What effects air density and what does air density effect?

Sensitivity analysis
Range of the batted-ball
The order of determining numerical values for the parameters (Table 7.15)

Fgravily = Mpang

Forg = O'Snp’%allvlz)alch
FMagnus = 0~5n/)rgallmballvballCM
The right-hand rules

Air density

Altitude, temperature, humidity and barometric pressure
Chapter 4 the BaConLaw model
Advice for choosing a bat

Sensitivity analysis

KE, Eq. (4.11)

Output equations, Eqgs. (4.8), (4.9), (4.10) and (4.12)
Conservation laws, Egs. (4.3), (4.4) and (4.7s)
Newton’s principles, CoR, Eqgs. (4.5) and (4.6)
Vpall-befores  @ball-before> Vbat-cm-before » Dbat-before
Vball-afters  @ball-after> Vbat-cm-after ANd_ pat-after

9.2.2 Kinds of Models

There are different kinds of models: there are models of behavior, of structure, of
performance and for analysis. Models of behavior describe how the system
responds to external excitation: that is, how the system-functions transform the
inputs into outputs. The BaConLaw model is a model of behavior. It describes the
linear and angular speed of the bat and the ball after the collision in terms of these
same parameters before the collision. Models of structure describe the components
and their interactions. Three-dimensional CAD/CAM images check the buildability
of structures. Models of performance describe units, values and tolerances for
properties such as weight, speed of response, power required, etc. These might be
captured in requirements. Typical baseball performance measures include batting
average, slugging percentage and safe on-base percentage. Models for analysis are
used to calculate properties of the whole system from the properties of its parts. For
example, the time for a car to accelerate from 0 to 60 mph can be calculated from
the mass of the car, the power of the drive train, the aerodynamic drag coefficient
and the friction of the tires on the pavement.


https://doi.org/10.1007/978-3-319-67032-4_4#Equ15
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9.2.3 Types of Models

There are many types of models. Most people use only a few and think that is all
there are. Here is a partial list of some of the most commonly used types of models:
physiological and physical laws and principles, differential equations, difference
equations, algebraic equations, geometric representations of physical structure,
computer simulations and animations, Laplace transforms, transfer functions, linear
systems theory, state space models e. g. X = Ax + Bu, state machine diagrams,
charts, graphs, drawings, pictures, functional flow block diagrams, object-oriented
models, UML and SysML diagrams, Markov processes, time-series models, phys-
ical analogs, Monte Carlo simulations, optimization equations, statistical distribu-
tions, mathematical programming, financial models, Pert charts, Gantt charts, risk
analyses, tradeoff studies, mental models, scenarios and use cases.

To understand how people think we would use the models confirmation bias,
attribute substitution, and representativeness. For biological domains, we must first
choose a virus, a bacterium0, a plant or an animal. Once we have chosen our
subject, we could then derive its genome. For social domains, we might use a novel,
an encyclical, a song, a poem, or perhaps even a joke.

Most models require a combination of these types. For example, in this book we
used Newton’s principles, the conservation laws of physics, algebraic equations,
Excel spreadsheets, figures, tables, simulations, an optimization package, design of
experiments and statistics. Hence, our BaConLaw model and our Ball in Flight
model used many types of models.

9.2.4 Tasks in the Modeling Process

The following checklist contains the principle tasks that should be performed in a
modeling study. The modelers should look at each item on the list and ask if they
have done that task. If not, they should state why they did not do it. In this checklist,
we describe {in squiggly braces} the parts of the BaConLaw model that implement
the individual tasks.

¢ Describe the system to be modeled { The BaConLaw model describes head-on
collisions between bats and balls. It gives the speed and spin of the bat and ball
before and after collisions. It does not describe the dynamics during the collision
nor the swing of the bat.}

o State the purpose of the model {To explain bat-ball collisions with precise,
correct equations, without jargon}. This includes defining the performance
criterion function.

e Determine the level of the model {The level for the BaConLaw model encom-
passes the ball speed, the bat speed and the bat angular velocity after the
collision in terms of those same parameters before the collision. The time
scale is in milliseconds. }
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o State the assumptions and at every review reassess the assumptions {Our
assumptions were stated in Sects. 3.2.1 and 3.3.1.3}.

» Investigate alternative models {Alternative collision configurations were
explained in Chaps. 2 and 3. The BaConLaw model was given in Chap. 4 and
alternative models were given in Chap. 5. Having alternative models helps
ensure that you understand the physical system. No model is more correct than
another. Alternative models just emphasize different aspects of the physical
system. They are not competing models they are synergetic. }

e Select a tool or language for the model and simulation {We used the
What’sBest! optimizer and Excel spreadsheets.} This should not be a casual
decision. You should not merely accept the default. You should use a tradeoff
study.

¢ Make the model {The BaConLaw model was created in Chap. 4.}

» Integrate with models for other systems {The outputs of the BaConLaw model
became inputs to the Ball in Flight model of Chap. 7 in order to show how the
range of batted-balls is affected by air density and by cupping the barrel end of
the bat. }

¢ Gather data describing system behavior {We used data from our internal data-
bases, from peer reviewed journal papers and from the following databases. }

http://www hittrackeronline.com/
http://mlb.com/statcast/
https://baseballsavant.mlb.com/

» Show that the model behaves like the real system {The outputs of the simula-
tions were compared to the data listed in the above paragraph.}

¢ Verify and validate the model {Verification means, Did you build the system
right? For the BaConLaw model, the outputs of the simulations agree with data
listed in the above paragraph. The double checks in the simulation ensure
correctness of the spreadsheets. For example, the kinetic energy lost is computed
with Eq. (4.11) and also by summing individual kinetic energy components as
shown in Tables 4.3 and 5.3. The conservation laws were used in the derivations
and the final outputs of the simulation were inserted into the conservation law
equations to ensure consistency of the spreadsheet. The main output of the
BaConLaw model was compared to the output of the Effective Mass model of
Sect. 5.1. The physics was peer-reviewed by two anonymous physics professors.
Each of the main BaConLaw equations were derived using at least two tech-
niques. Finally, the equations were checked by an independent mathematician.
Validation means, Did you build the right system? Our customer wanted a
system that described head-on collisions between bats and balls. They wanted
a system that would give ball speed, bat speed and the bat angular velocity after
the collision in terms of those same parameters before the collision. This is what
our system does. Finally, we performed a sensitivity analysis, which is a
powerful validation tool (Smith et al. 2008). It warns if something is wrong
with the model.}

» Explain a discovery that was not planned in the model’s design {(1) We were
surprised when the equation for the kinetic energy lost in the collision,


http://www.hittrackeronline.com/
http://mlb.com/statcast/
https://baseballsavant.mlb.com/
https://doi.org/10.1007/978-3-319-67032-4_4#Equ15
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Eq. (4.11), fell right out of BaConLaw set of equations. (2) Before writing this
book, we did not expect to prove that cupping the barrel end of the bat does little
good. (3) Although it seems intuitive, we were surprised when the mathematics
showed that the baseball could be thrown farther that a tennis ball. }

e Perform a sensitivity analysis of the model {The most important parameters, in
terms of maximizing batted-ball speed, are the velocity of the center of mass of
the bat before the collision and the coefficient of restitution, CoR,;,. The least
important parameters are the angular velocity of the ball and the distance
between the center of mass and the impact point. The second-order interaction
terms are small, which is good.}

e Perform a risk analysis {Risk to our publisher. The biggest risk is that people
might be reluctant to buy and read a book with equations in it. Also, Springer
would be disappointed if sales were low. Therefore, by writing with the reader in
mind, we tried to ensure that sales would not be below expectations. We
anticipate no copyright problems, because most of the material is original and
we have permissions for the two figures that are not. Risk to our reader.
Someone could modify their bat and hurt himself or herself working with tools
or they could be ejected from a game. Risk to the author. If our equations were
wrong, we would confuse our readers and tarnish our reputations. Risk to quality.
The book is produced in India. Typographical and editing mistakes that occur are
hard to correct because of poor communication channels. Risk to baseball
managers, general managers and umpires. It will put a burden on these people
to learn to understand the results of mathematical modeling. Risk to MLB. It
could embarrass MLB into disclosing their algorithms. Some of these risks may
seem trivial. But a risk analysis is supposed to uncover unlikely risks. }

e Analyze the performance of the model {This was described above in the
verification paragraph. }

¢ Re-evaluate and improve the model {In the future, we will derive equations for
configurations 3 and 4. We will explain why the curveball curves. We will also
investigate the cognitive processing and decision making of the batter (Bahill and
Baldwin 2004; Bahill et al. 2005; McBeath et al. 2008; Bahill and Madni 2017). }

* Suggest new experiments and measurements for the real system that might
challenge existing models { Major League Baseball (MLB) is providing copious
amounts of new data. Next, scientists need MLB’s actual algorithms and mea-
surements for the spin on the batted-ball, particularly for the home run trajecto-
ries that are so popular. Another proposed area of measurement and display
involves the erratic meandering of fielders trying to catch pop-ups. This behavior
and the paper by McBeath et al. (2008) show that the ball’s trajectory must
contain bizarre loops and cusps. MLB should show these trajectories on the
television screen to help laypeople understand the fielders’ wanderings. }

Choose a cute name for your model. You want people to relate to the name of
your model. This will enhance financial support. In the following couplets, we give
the original model name and then an alternative name. Which do you think is best?


https://doi.org/10.1007/978-3-319-67032-4_4#Equ15
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Would you rather have had your taxpayer dollars

support research on the Big Bang or on a theory of the origin of the universe?
support research on dark energy or on the existence of transparent matter?
support the Superconducting Super Collider or the search for the God particle?
get rid of weapons of mass destruction or a tyrannical despot?

Would you rather

go to the opera The Marriage of Figaro or to Mozart’s opera in D major Kochel
No 492?

listen to Beethoven’s Ode to Joy or his Symphony Number 9 in D minor, Opus
1257

listen to Mussorgsky’s Night on Bald Mountain or his musical picture in D
minor?

listen to Wagner’s Overture to Act III of Lohengrin or see the snow skiing scene
in the Beatles’ movie Help?

Would you rather

read an article about E = mc? or a paper about mass-energy equivalence?
study the DNA double helix or chromosomal structure?

see a grand slam or a bases-loaded home run in baseball?

see a Hail Mary or a fourth-quarter fourth-down forty-yard pass in football?

Are you more likely to

have wished for the fall of the Iron Curtain or of communism in eastern Europe?
order Baked Alaska or ice cream covered with roasted merengue?

watch the World Series or the MLB championship games?

watch the Super Bowl or the NFL championship game?

In Kahneman’s model for human thinking, which can you relate to easiest

System 1 or the fast, instinctive and emotional system?
System 2 or the slow, deliberative and logical system?

Are you more likely to say

Navy SEALSs or navy sea air land forces?
SWAT team or special weapons and tactics team?

The point of this page is to convince you that a distinctive name for your model
will help people remember it and relate to it. This will be aided if your name is
iconic. Examples of iconic images include the flag of the United States of America,
the Statue of Liberty, a crucifix, a Star of David, the Nazi swastika, the Apple
Computer Company logo and the Mona Lisa. Examples of iconic smells include
Hydrogen Sulfide (rotten eggs) and Methyl Mercaptan (the odor in natural gas). Our
favorite perfume fragrances are eau de Wet Dog and Impending Desert Rain. You
want your name to be as memorable as the eight notes at the beginning of
Beethoven’s fifth symphony, the three dramatic notes in Neil Diamond’s Sweet
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Caroline and the opening measures of Stanley Kubrick’s 1968 film 2001 : A Space
Odyssey (aka Strauss’ Also sprach Zarathustra, opus 30, 1896).

9.2.5 Model-Based Design

There are two common techniques for designing a system or making a model: the
first is model-based or theory-based (Bahill and Szidarovszky 2009) and the second
is data-based (Bahill 2016). Here are some steps for model-based system design.
Find appropriate physical, physiological and psychological principles, then using
the tasks listed in the above section, design, build and test a model, then design and
conduct experiments to collect data. Use these data to verify and validate the model.
Use the model to make predictions and guide future data collection activities.

Example 1

Chapter 4 started with the following fundamental equations of physics: Conserva-
tion of Energy, Conservation of Linear Momentum, the Definition of the CoR,
Newton’s Second Principle and the Conservation of Angular Momentum. These
conservation laws are the models (or theories) that the BaConLaw model and the
Effective Mass model were based on.

Example 2

Chapter 7 started with the right-hand rules and the three forces that affect the ball in
flight: gravity pulls the ball downward, air resistance or drag operates in the
opposite direction of the ball’s motion and, if the ball is spinning, there is a Magnus
force perpendicular to the direction of motion. Watts and Bahill (1990) wrote
equations for these forces like this:

Fgravity = Mpang
Frag = 0.5mpr2 v2  C
drag = Y-ITPT a1 Vpan & D
3
FMagnus = O-STEprbauwballVballCM

These equations are the models (or theories) that the Ball in Flight model of
Chap. 7 was based on.

9.2.6 Data-Based Design

The second technique for designing a system or making a model is data-based. With
this technique, the modeler starts with measuring and organizing the data and then
he or she makes a model that fits that measured data. The Spiral Center of Mass and
the Sliding Pin models of Chap. 5 were data-based. We found the experimental data
first and then we created the model to match that data.
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The BaConLaw and the Effective Mass models started with the model of a free-
end collision involving the velocity of the center of mass of the bat and the bat’s
angular rotation about the center of mass. In contrast, for the Sliding Pin model, we
first found experimental studies that gave the linear velocity of the knob and the
angular velocity of the bat about the knob right before the collision. We then used
that data to make our model.

9.2.7 Second Sourcing

It is good practice to make sure that anything you buy has a second source. That
way if your first source disappears, you can continue to function.

Modelers should entice other scientists to create different models for the same
physical system. This will help validate their models.

Many fields of science are demanding replication of important experiments and
results. Failures to replicate previous findings are common in science, particularly
in the psychological literature, where half of the important findings cannot be
replicated [https://en.wikipedia.org/wiki/Replication_crisis].

If you are going to remodel your house, which faucet manufacturer are you
likely to specify, Moen or LightInTheBox? Think about repair and maintenance of
the system in 10 years.

Would you buy a chandelier with incandescent light bulbs and a dimmer
control? Keep in mind that they do not make incandescent replacement bulbs
anymore.

Missile manufacturers will not specify a part if there is not a second source. They
want to ensure that they can continue manufacturing even if their first source goes
bankrupt.

The atomic bombs dropped in WWII, Little Boy and Fat Man, were of different
designs and used different fissionable elements. If one design did not work, then
they still had a second source.

Apollo 13 was not a disaster because they had a second source of power: the
lunar lander.

The county directors of elections would like to have a second source for their
hardware and software. Because on Election Day, they only have one chance to get
it right. A second source would also ameliorate cyber-attacks.

Suppose your new medical doctor tells you that some test has just revealed
cancer and she recommends that you start radiation treatment immediately. Would
you ask for a second opinion?

When asking for driving directions to an event, it makes sense to ask for
alternative routes (perhaps the quickest, the shortest and also the cheapest, i. e. no
tolls), so that you have alternatives, in case of a massive traffic jam.

It is a good idea to have two e-mail accounts. That way if Comcast decides to
block one your correspondents because he or she fits their profile of a “bad person’
or if Microsoft is ‘upgrading’ their e-mail system, you can still communicate with
the world.


https://en.wikipedia.org/wiki/Replication_crisis
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I am sure that all readers of this book can access it from more than one place: you
have multiple sources for this book. I am also confident that you back up your hard
disk every day. So now, dear reader, please put down this book and go back up your
hard disk.
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