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Supervisor’s Foreword

The cosmological perturbation theory has succeeded to describe state-of-the-art
cosmological observations. Cosmological perturbations can be decomposed into the
scalar, vector, and tensor modes. Current observations are precisely described by
the scalar mode, while the vector and tensor modes have not been observed yet. It is
known that the vector mode does not arise from the linear perturbation theory in the
standard cosmology. In this thesis, Dr. Shohei Saga focuses on the vector mode
induced from the second-order perturbation theory.

The vector mode inevitably appears from nonlinear couplings of first-order
scalar modes. The aim of this thesis is to reveal a role of the second-order vector
mode in observational cosmology. In order to give precise predictions of the
second-order vector mode, Dr. Saga investigated the second-order Boltzmann
equation together with the tight-coupling approximation in the radiation dominated
era.

By using the second-order Boltzmann code, Dr. Saga applied the second-order
vector mode to the generation of cosmological magnetic fields in the early universe.
Resultant magnetic fields can be a good candidate of cosmological magnetic fields
when the details of the dynamo mechanism on cosmological scales are clarified.
Dr. Saga also applied the second-order vector mode to observations of weak
gravitational lensing. The detectability of the second-order vector mode is discussed
by assuming the ongoing and forthcoming weak lensing observations.

In the course of further developments of precision cosmology, the vector mode
can be one of the promising tools in studying cosmological physics. A number of
results in this thesis by Dr. Saga are truly important in this respect.

Tsukuba, Japan Prof. Takahiko Matsubara
April 2017
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Chapter 1
Introduction

Abstract Recentdevelopment of various cosmological observations plays an impor-
tantrole in establishing the standard cosmology. Here, the standard cosmology means
the theory that the universe begins with the extreme high temperature, called the hot
big-bang model, and with the initial conditions seeded in the inflationary era. The
universe based on the standard cosmology contains a dark energy, dark matters, and
baryons. In this section, we introduce the history and development of the cosmolog-
ical perturbation theory and clarify the standpoint of this thesis.

Keywords Cosmological perturbation theory + Cosmic microwave background
radiation + Non-gaussianity

1.1 General Introduction

1.1.1 Background Cosmology

When we study the universe as a target of physics, we follow the cosmological
principle. The cosmological principle says that the universe is homogeneous and
isotropic only on sufficiently large scales. Although the cosmological principle is
correct only on large scales, it can explain the universe well on sufficiently large
scales. By applying the cosmological principle to the general relativity, the evolution
of the universe can be expressed only by one time-dependent parameter, i.e., the
scale factor. As a result, the universe is no longer static, but dynamic. A. Einstein
originally introduced a cosmological constant to realize the static universe. However,
the Hubble’s law was found in 1929 [1]. We could confirm the expansion of the
universe from the Hubble’s law and subsequently, the static universe was denied.
(Note that, although Lemeitre has discovered the same law in 1927, the expansion
law of the universe was not named the Lemeitre’s law. This is because Lemeitre
reported the discovery of the expansion in the minor journal written in French [2].)

Moreover, A. A. Penzias and R. W. Wilson accidentally discovered the cosmic
microwave background (CMB) in 1965 [3]. The temperature of the CMB is the same
everywhere with an almost black body spectrum. This result shows the universe
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2 1 Introduction

is isotropic. The discovery of the CMB also supports the hot big-bang universe.
Nowadays, the fact of the hot big-bang universe reaches the consensus. The Hubble
constant, namely the current expansion speed of the universe, is determined with
5-10% statistical accuracy.

1.1.2 Linear Perturbation Theory

Although the cosmological principle is correct on large scales, we can trivially see
that the universe is not locally isotropic, e.g., there exist the distribution of galaxies,
the CMB fluctuations, and so on. In order to explain the observed inhomogeneous
and anisotropic universe, we use the perturbation theory in the standard cosmology,
that is, the cosmological perturbation theory.

In 1946, E. Lifshitz introduced the linear perturbation to the homogeneous and
isotropic universe for the first time [4]. The analysis performed by E. Lifshitz con-
tained some misunderstandings due to the lack of the knowledge about the relativistic
cosmology. Afterward, E. Lifshitz and I. Khalatnikov corrected the previous study
with more detailed analysis in 1963 [5]. The early studies of the cosmological per-
turbation theory focus on the structure formation of the universe, corresponding to
the density fluctuations on super-horizon scales. This is because, we have been able
to observe the cosmological perturbations only through the distribution of galax-
ies before discovering the CMB anisotropy. Although the relativistic cosmological
perturbation theory has been gradually developed, there was a little understanding
about the gauge choice. There is uncertainty of the global coordinate choice how we
determine the background universe. This freedom of the coordinate choice is called
the gauge degrees of freedom. According to the freedom of the coordinate choice,
the solution of the cosmological perturbations on super-horizon scales includes the
unphysical degrees of freedom. In Ref. [4], Lifshitz had worked in the synchronous
gauge, in which a gauge mode appears as an unphysical solution due to the gauge
freedom. Many studies tackled to remove the unphysical degrees of freedom. For
example, in 1967, E. R. Harrison found that when we work in the Newtonian gauge,
there is no residual gauge freedom [6]. Furthermore, Bardeen [7] in 1980 and Kodama
and Sasaki [8] in 1984 developed a formalism which does not depend on the gauge
choice, i.e., the gauge-invariant cosmological perturbation theory. These studies pro-
vide understandings about the linear-order cosmological perturbation theory. Owing
to the above studies, when we perform the cosmological perturbation theory, we need
to treat carefully about the gauge choice or to formulate by using the gauge-invariant
variables.

During the advance of the cosmological perturbation theory to explain the den-
sity perturbation, P. J. E. Peebles and J. T. Yu applied the cosmological perturbation
theory to the CMB physics in 1970 [9]. They discussed the evolution of the adiabatic
perturbations in the hot big-bang model and estimated the contribution of the adi-
abatic perturbations on the CMB temperature fluctuations. That was the first result
to give the numerical calculation of the realistic universe including photons and
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baryons. Compared with the detection of the CMB fluctuations in 1992 by COBE
satellite [10], this early study would be the pioneering work. As some observations
show the evidence of cold dark matters, e.g., the measurements of galaxy rotation
curves [11], the cosmological perturbation theory included the dark matter compo-
nent in 1984 [12, 13]. Moreover, many studies have developed the theory for CMB
fluctuations from qualitative and quantitative aspects as follows. R. K. Sachs and
A. M. Wolfe succeeded to estimate the contribution of the gravitational potential
on the CMB temperature fluctuation [14], what we call the Sachs-Wolfe effect. The
Sachs-Wolfe effect is caused by the gravitational redshift. J. Silk found that the
CMB fluctuation is exponentially suppressed due to the diffusion of photons during
the epoch of recombination [15]. According to an analytic approach provided by
W. Hu and N. Sugiyama in 1995 [16], the features of the CMB fluctuation was well
understood. These pioneering works and observations bring us to the discovery of
the inhomogeneous and anisotropic universe.

The discovery phase of the CMB anisotropy study is currently almost finished. By
using the state-of-the-art observations, the new era of precision cosmology has begun.
We can subsequently acquire rich information about the nature of the universe. At the
moment, we can measure several cosmological observations with a high precision,
for example, the CMB temperature anisotropy, CMB E-mode polarization, galaxy
clustering, etc., [17-20]. However, even if the cosmological observation becomes
high precision measurement, we know only about the information of the linear-order
scalar mode. Our knowledge of the standard cosmology would be only the tip of the
iceberg.

1.1.3 Cosmological Seed

In the previous subsection, the seed of fluctuations is not mentioned. In the standard
cosmology, we believe that the scalar mode is generated in the inflationary epoch
from the quantum fluctuations of the scalar field, called the inflaton, which drives the
accelerating expansion at the early stage of the universe. The inflationary scenario
can not only resolve the problems of the standard big-bang model (i.e., the Horizon
problem, monopole problem, and flatness problem) but also generate the seed of
fluctuations.

In the very early universe with accelerating expansion, the physical law is obeyed
by the unknown model of particle physics which can explain the physics of the Planck
scale. Although the Planck scale physics has not been build yet, we can study the
inflation mechanism phenomenologically by introducing the scalar field. Following
the cosmological principle, the universe does not have the particular direction. We
therefore assign the scalar field as the source of the accelerating expansion. Note that,
however, the observational evidence of the scalar field has not been existed until the
discovery of the scalar particle with spin-0 by CERN in 2013 [21, 22]. Although it is
known that the Higgs inflation model cannot work, the detection of the scalar particle
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is highly suggestive for the inflation driven by the scalar field. Thus, the origin of
cosmological perturbations would be a key probe for the particle physics.

1.1.4 Scalar, Vector, and Tensor Modes

In the context of the cosmological perturbation theory, we can decompose the per-
turbations into the scalar, vector, and tensor modes with respect to the rotational
symmetry. As long as we work in the linear-order perturbation theory, each mode
evolves independently. In the universe, the dominant mode is the scalar one. For
example, the CMB temperature fluctuations are explained by the scalar mode. As
we stressed before, it has been succeeded to explain many phenomena by only the
scalar mode, but the vector and tensor modes. The liner-order scalar mode brings
the success of the precision cosmology. Under the current situation of cosmological
observations, where should we go next? One of the directions would be focusing on
the vector and tensor modes. Although the vector and tensor modes have not been
detected yet, the strong support for the tensor mode appeared in 1975 and 2015. The
introduction of the tensor mode is shown in the next section.

1.1.5 Gravitational Waves—Tensor Mode

In the context of the cosmological perturbation theory, the degrees of freedom of
gravitational waves (GWs) correspond to the tensor mode. The detection of GWs
has been the key subject to confirm accuracy of general relativity, that is, the standard
model of cosmology.

As soon as the completion of general relativity by Einstein in 1916, GWs were
predicted as waves propagating in the space-time with the light velocity. The first
indirect detection of GWs was done by R. A. Hulse and J. H. Taylor in 1975 [23].
They found that the orbital period of the binary pulser (PSR B1913+16) is decreasing.
Accounting for the decreasing rate of the orbital period due to emissions of GWs,
they estimated the energy decreasing rate of the binary pulser. The decreasing rate
of the orbital period determined from general relativity can completely explain the
observed data. In this way, GWs were indirectly observed and used to test general
relativity [24, 25]. Note that the binary pulser PSR B1913+16 is currently called the
Hulse-Taylor binary.

After the indirect detection of GWs by observing the Hulse-Taylor binary in
1975, the next target of the GWs observation becomes the direct detection. While
many observations attempt to detect GWs emitted from astronomical events for
a long time, we had not been able to detect GWs directly. This is because the
amplitude of GWs is extremely small. However, at last in 2015 (last year), it was
reported that GWs are directly detected by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) team [26]. This detected first GWs source was named
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GW150914. GW150914 confirms general relativity and is the first direct evidence
of GWs. GW150914 is the signal from the binary black hole merger with masses
of about 35 times and 30 times the mass of the Sun and subsequently releases the
energy as GWs about 3 times the mass of Sun. Owing to this event, we can also
give a strong constraint on general relativity [27, 28]. Thus, the era of gravitational
wave astronomy begins. Further ground- and space-based observations of GW's are
planned, such as, eLISA [29], BBO [30], and KAGRA [31]. We expect that many
events related to the GW emission would be observed in the near future.

Some observations have the sensitivity to GWs originated from not astronomical
events but a primordial origin, that is, primordial gravitational waves. In the infla-
tionary era, we expect that GWs are also generated from the quantum fluctuations
of the space-time metric, and it is called primordial GWs. In principle, it is possible
to confirm the existence of primordial GWs by using the CMB B-mode polarization
[32, 33]. However, the amplitude of primordial GWs strongly depends on the infla-
tion models, e.g., the potential of the inflaton, the interaction of the inflaton, and so
on. The simplest inflation model: the single-field slow-roll inflation, is expected to
result in a small amplitude of primordial GWs. Therefore, even in the state-of-the-
art observations, we have not caught any hint of primordial GWs yet [34-38]. The
detection of primordial GWs will become a next breakthrough since primordial GWs
can directly relate to the inflation mechanism, that is, the high energy physics.

Although the CMB fluctuations are the strong probe to study the high energy
physics, we cannot see the universe beyond the CMB last scattering surface. On the
other hand, primordial GWs are transparent rather than CMB photons even if the
universe is in the hot plasma. Therefore, the observation of primordial GWs is the
quite important subject to seek the early universe.

1.1.6 Minor Mode—Vector Mode

Contrary to the scalar and tensor modes, the vector mode is quite unusual. The vector
mode is never generated in the inflationary era if we assume the inflation model driven
by the scalar field. Even if the vector mode is generated in the inflationary era by
introducing some new interactions between the scalar and vector sectors, after all,
the vector mode must decay with the expansion of the universe. In many literatures
of the cosmological perturbation theory, therefore they has not been regarded the
vector mode as an important one. However, as well as the tensor mode, the vector
mode leads to the characteristic signal in the cosmological observations, e.g., the
CMB B-mode polarization. Furthermore, some inflation models or exotic matters
generate not only the tensor mode but also the vector mode. The vector mode can
become the probe of beyond the standard cosmology.

In the linear perturbation theory, the vector mode never arises. If we expand
the cosmological perturbation up to the second order, the scalar, vector and tensor
modes are no longer independent modes. Because of the mode coupling among scalar,
vector, and tensor perturbations, the product of two first-order scalar perturbations
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can induce the vector and tensor perturbations at second-order. The worth of the
second-order cosmological perturbation theory is not only in the improvement of
accuracy of the theory but also in the appearance of new effects which do not arise
in the first-order cosmological perturbation theory, such as, the second-order vector
and tensor modes. In this thesis, we focus on the second-order vector mode from the
coupling of first-order scalar modes. Before moving the introduction of the second-
order vector mode, we see the history of the second-order cosmological perturbation
theory in the following sections.

1.2 Second Order Perturbation Theory

1.2.1 History and Development

Here, we review the history and development of the second-order cosmological per-
turbation theory. The standard cosmology is based on the Einstein equation and
Boltzmann equation, i.e., the Einstein-Boltzmann system. The Einstein and Boltz-
mann equations provide the evolutions of the space-time metric and of the fluid
components, respectively, and which coevolve. The full treatment of this system is
quite difficult and some earlier studies focus on estimating the part of contributions.
J. P. Ostriker and E. T. Vishniac estimate the second-order effects on the CMB tem-
perature fluctuation in 1986 [39], what is called the Ostriker-Vishniac effect. After
the reionization epoch, the density perturbation of free electrons generated by the
reionization and CMB photons interact with each other due to the inverse Comp-
ton scattering. According to this process, the energy of free electrons turns into the
energy of CMB photons. J. P. Ostriker and E. T. Vishniac found that the second-order
CMB temperature fluctuations generated by the inverse Compton scattering is larger
than the primary one around 6 ~ 1’ scales. Although the second-order fluctuations
have been believed to be smaller than the primary fluctuations, they found that the
second-order fluctuations can dominate on small scales. This is because the Silk
damping washes out the primary fluctuations on small scales.

The Ostriker-Vishniac effect is only a part of the effects of the second-order
CMB fluctuations. Further studies have shown the other contributions on the second-
order CMB fluctuations. In 1994, W. Hu et al. derived the full second-order CMB
fluctuation induced from the scattering between photons and electrons without the
polarization of photons [40]. Although the interaction terms between photons and
electrons up to the second order are quite complicated, they gave interpretations
of each contribution. Furthermore, they estimated the CMB temperature fluctuation
coming from the most dominant term. Before performing this study, we cannot deny
the possibility that the Ostriker-Vishniac effect cancels out with other second-order
terms. However, W. Hu et al. showed that the Ostriker-Vishniac does not vanish even
if we consider all second-order terms.
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The above study focused on only the interaction term between photons and elec-
trons. However, we should provide second-order gravitational effects to complete
the second-order perturbation theory. In the early 2000s, the second-order Einstein-
Boltzmann system has been well studied including second-order gravitational terms
[41-44]. In particular, not only the Boltzmann equation for photons but also that
for baryons and dark matters was formulated up to the second order. Although the
effect of the gravitational lensing was also formulated with the unified treatment, it
has been known that the gravitational lensing induces the CMB B-mode polarization
which becomes the noise to detect primordial GWs. Therefore, the formulation of the
gravitational lensing had been performed independently as the remapping approach
to calculate the angular power spectrum of CMB B-mode polarizations induced by
the gravitational lensing in 2000 [45].

The formulation of the second-order Einstein-Boltzmann system has been pro-
gressed by including the polarization of photons into the Compton scattering term
[46—49]. These formulations allow us to compute the second-order CMB fluctuations
including polarizations of photons. However, there is a difficulty of the numerical
calculation. In the first-order perturbation theory, in order to calculate the angular
power spectrum of CMB fluctuations, we can use the line-of-sight integration devel-
oped by U. Seljak in 1996 [50]. This formula can powerfully reduce the cost of
numerical calculations. On the other hand, this formula is no longer available in the
second-order perturbation theory. Related to the fact, the theoretical aspect of the
second-order CMB fluctuations has been developed. For example, some formulae
to reduce the numerical cost are proposed, e.g., the transport operator formalism by
Fidler et al. [51] and the curve-of-sight formalism by Saito et al. [52]. These for-
malisms correspond to the second-order version of the line-of-sight integration in
the first-order perturbation theory.

The gauge dependence of the second-order perturbation theory was quite non-
trivial. For example, although the first-order tensor mode is a gauge invariant variable
itself, the second-order tensor mode depends on the gauge choice. A. Naruko et al.
showed the gauge-invariant Boltzmann equation up to the second order in Ref. [53].
Owing to these efforts, it is possible to estimate the CMB B-mode polarization
from the second-order vector and tensor modes. The current estimation shows that
the CMB B-mode polarization from the second-order vector and tensor modes is
negligibly small. The amplitude of the second-order CMB B-mode polarization is
recast as the tensor-to-scalar ratio as r &~ 1077 ~ 107° [49, 54, 55]. From this
result, we can conclude that the second-order CMB B-mode polarization from the
second-order vector and tensor modes would not affect in the future observations.

There is another interesting topic about the second-order perturbation theory, what
is called the intrinsic bispectrum. The Gaussianity of primordial fluctuations is quite
important to constrain the inflation model. The simplest inflation model, i.e., the
single-field slow-roll inflation, predicts almost Gaussian fluctuations [56]. Contrary
to the single-field slow-roll inflation, some exotic models result in non-Gaussian
fluctuations due to the non-linearity of the interaction terms in the Lagrangian [57].
We can explore the non-Gaussianity of fluctuations by using the bispectrum as a cos-
mological probe. When the nature of fluctuations is non-Gaussian, the bispectrum
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has a non-zero value. If we believe the simplest inflation model, fluctuations gen-
erated in the inflationary era are almost Gaussian. The current CMB observations
show that the non-Gaussian signature is consistent with zero [58]. Therefore, the
single-field slow-roll inflation is well motivated from the observation of the CMB
bispectrum. However, even if the primordial non-Gaussianity is absent, the second-
order perturbations induce the intrinsic non-Gaussianity (or the intrinsic bispectrum)
in the CMB bispectrum due to the non-linear evolution of the fluctuations. D. Nitta
et al. estimated the intrinsic non-Gaussianity from the coupling of first-order scalar
modes in 2009 [43]. They showed that the intrinsic bispectrum has a peak at the
shape of the local-type non-Gaussianity. Furthermore, the other second-order effects
were included in the calculation of the intrinsic non-Gaussianity by Pettinari [59].
The intrinsic bispectrum has been currently constructed.

Thus, the second-order perturbation theory has been applied to the CMB fluctua-
tions in many respects. Here, we would strongly stress that the above developments
of the second-order perturbation theory are just for the CMB fluctuations. Many
phenomena from the second-order perturbation theory, not limited for the CMB
fluctuations, should be paid attention complementarily.

1.2.2 Example—Second-Order Tensor Mode

The second-order tensor mode is a good example to see further applications of the
second-order perturbation theory. Although the signal of the second-order tensor
mode is imprinted on the CMB B-mode polarization, we can also observe the second-
order tensor mode as second-order GWs. Even if the primordial GWs have negligible
amplitude, the second-order GWs must appear from the non-linear coupling of the
scalar modes. Estimation of the second-order GWs has been well studied as follows
[60-64].

On the horizon scales at the matter-radiation equality, the amplitude of the second-
order GWs exceeds that of primordial GWs with the tensor-to-scalar ratio r ~ 0.1
at the present time. On small scales, second-order GWs have larger amplitude than
primordial GWs with r < 1074 According to this fact, second-order GWs become
relevant in direct detection experiments, e.g., DECIGO [65] and the atomic gravita-
tional wave interferometric sensors [66]. By using these future experiments, second-
order GWs would be expected to be observed directly. Thus, we can test the standard
cosmology complementarily not limited CMB fluctuations.

Before closing this section, we emphasize again that the second-order pertur-
bation theory does not have free parameters since second-order perturbations are
induced from the first-order scalar modes which are well determined by the current
cosmological observations.
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1.3 This Thesis

1.3.1 Aim of This Thesis—Second-Order Vector Mode

Under the above mentioned history, we focus on cosmological probes induced from
the second-order vector mode except for the CMB fluctuations in this thesis. The
second-order scalar and tensor modes have been studied well because these first-
order modes have been paid much attention. On the other hand, there has been less
interest in the cosmological vector mode. We explore the second-order vector mode
by using the cosmological probes throughout this thesis.

We should be careful to choose the observable to explore the (second-order) vector
mode. For example, the CMB temperature fluctuation and E-mode polarization are
dominated by the first-order scalar mode. In order to obtain the pure effect of the
second-order vector mode, we need to focus on appropriate observables like the CMB
B-mode polarization which only coming from not the scalar but vector and tensor
modes. Due to the above reason, we mainly tackle three observables to reveal the
role of the second-order vector mode in the context of the observational cosmology
[67-69].

First, we study the generation of cosmological magnetic fields. The origin of
magnetic fields with large coherent length, called cosmological magnetic fields, has
been an open question, although many models are proposed to generate magnetic
fields. In the first-order perturbation theory, magnetic fields never arise from the
standard cosmology. On the other hand, it is possible to lead cosmological magnetic
fields by expanding perturbations up to the second order. We consider the generation
mechanism from the second-order perturbation theory.

Second, photons emitted from the CMB last scattering surface and galaxies are
deflected by foreground perturbations including the scalar, vector, and tensor modes,
called CMB lensing and cosmic shear, respectively. The CMB lensing and cosmic
shear induced from the scalar mode are well studied by current observations. On
the other hand, the vector and tensor modes result in the characteristic signature in
the deflection angle of emitted photons from each source. Analysis of the second-
order vector or tensor mode in the weak lensing has not been studied yet. We give
the predictions of weak lensing signal from the second-order perturbation theory
and discuss the detectability of these signals by assuming ongoing and forthcoming
experiments.

Third, we focus on the 21 cm photons emitted by a neutral hydrogen atom. Phys-
ical mechanism is the same as the CMB lensing but different from the luminous
source. Before the reionization, there are large amount of neutral hydrogen atoms
which emit photons due to the hyperfine structure, what we call the 21 cm radiation.
21cm photons are also deflected and therefore they induce the weak lensing sig-
nals, i.e., the 21 cm lensing. In spite that we have not observed the 21 cm radiation
yet, it is important to discuss the detectability and meaning of outcomes before the
21 cm observations launch. This study makes us possible to access more precision
cosmology.
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1.3.2 Structure of This Thesis

This thesis is organized as follows. In Chap. 2, we review the cosmological pertur-
bation theory up to the second order. Since the first-order perturbation theory in the
standard cosmology is well established by many authors, we do not discuss the details
in this thesis. We formulate the perturbed Einstein and Boltzmann equations up to the
second order. The scalar, vector, and tensor decomposition is performed. In Chap. 3,
we apply the second-order vector mode to the generation of cosmological magnetic
fields. In order to generate cosmological magnetic fields, we rely on the Harrison
mechanism in the primordial plasma. We also review the Harrison mechanism based
on the Boltzmann equations for electrons, protons, and photons. Finally, we show the
magnetic power spectrum at cosmological recombination. In Chap. 4, in order to for-
mulate the weak lensing signal, we need to solve the perturbed geodesic equation and
the geodesic deviation equation for the CMB lensing and cosmic shear, respectively.
By using the parity symmetry, we can decompose the lensing signals into the parity-
even and parity-odd signal. The parity-odd signal is coming only from the vector and
tensor modes. We provide the parity-odd signal from the second-order vector and
tensor modes. Furthermore, we discuss the detectability of the second-order vector
and tensor modes in the weak lensing experiments. In Chap. 5, we discuss the 21 cm
radiation in the dark ages. We formulate the Boltzmann equation for the 21 cm pho-
tons and derive the 21 cm angular power spectrum. We apply the 21 cm signal to the
weak lensing effect and discuss the detectability of the second-order vector mode in
the 21 cm lensing experiments. In Chap. 6, in order to close this thesis, we conclude
the role of the second-order vector mode in the context of the observational cosmol-
ogy. Moreover, we also devote the future direction and possibility of the presented
studies.
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Chapter 2
Basics of Cosmological Perturbation Theory

Abstract Although the cosmological principle is correct on large enough scales,
observed universe is not trivially homogeneous and isotropic. According to the per-
turbation theory, we try to explain the inhomogeneous and anisotropic universe,
that is, the cosmological perturbation theory. The cosmological perturbation theory
is based on the Einstein-Boltzmann system. Therefore, we focus on the perturbed
Einstein-Boltzmann system. In the background level, we introduce dark energy which
causes the accelerating expansion at the present time. The relativistic and non rela-
tivistic fluids in the universe are assumed photons, massless neutrinos, baryons, and
dark matters. Consequently, we obtain the second-order Einstein-Boltzmann sys-
tem. In particular, as an example, we show the feature of the second-order vector
perturbation.

Keywords Scalar, vector, and tensor decomposition
Einstein-Boltzmann system - Cosmological vector mode

In this part, we review the cosmological perturbation theory up to the second
order. Throughout this thesis, we work in the Poisson gauge (see e.g., [1]) whose
metric is given by

ds* = a*(n) [—e*Vdn® + 2w;dndx’ + (e *®6;; + hij) dx'dx/] | (2.1)

where the gauge conditions w' ; = h"/ ; = 0 and the traceless condition A’; = 0 are
imposed on w; and h;;.

Owing to the gauge conditions and the traceless condition, w; and 4;; contain only
the vector and tensor modes themselves, respectively. a(n) is a scale factor and 7 is
the conformal time which related to the cosmological time as dz = adn. Note that a
dot [J and a comma [J; denote the derivative with respect to the coordinate x' and
the conformal time 7, respectively. Raising or lowering indices of perturbations are
done by 6;;.

The physical meanings of W, ®, w;, and h;; are the perturbation of the time
shift (what we call the lapse function or the Newtonian potential), that of the spacial
volume, that of the displacement vector, and the anisotropy of the space, respectively.
In this part, the definition of the Fourier transformation is as follows:
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&Pk . .
Fx) = / rICTaE 22)

Note that throughout this part, we use the units in which ¢ = i, = 1. We obey
the rule that the subscripts and superscripts of the Greek characters and alphabets
run from 0O to 3 and from 1 to 3, respectively.

Before performing the cosmological perturbation theory, we summarize the back-
ground universe. The spatially-flat Friedmann-Lemaitre-Robertson-Walker metric in
the conformal time is given by

ds® = a*(n) [—dn* + dx?] . (2.3)

We assume the energy-momentum tensor in the homogeneous and isotropic universe
as

T", = diag (—p, p, p, p) . 2.4)

Under the above condition and the Einstein equation with a cosmological constant,
we determine the evolution of the scale factor and fluids as

87G a’A
2 2 .
H? = —=a IZpL+—3 , (2.5)
. 4G al
H=—— aZ(pi+pi>+T, (2.6)
pi = =3H(pi + pi) , 2.7)

where H = a/a. In the case of nonrelativistic particles, p = 0 and relativistic
particles, p = 1/3. Here, we do not discuss the first-order perturbation theory since
that is well discussed in large amount of previous studies.

2.1 Scalar, Vector, and Tensor Decomposition

In this section, we will see the scalar, vector, and tensor decomposition by using the
difference of the rotational transformation. First of all, we define the polarization
vector with respect to the unit wave vector k as

. 1re oa oon
eN (k) = E[ex (k) + z)\ey(k)] , 2.8)

where A = *1 represents for the helicity states. Note that, for simplicity, the wave
vector sets the same direction to the z-axis, namely, k || z. The polarization vector
obeys following relations:
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keN k) =0, (2.9)
eV () = eV (k) = eV (—k) . 2.10)
e ()N () =05 - - @.11)

Moreover, we also define the polarization tensor by using the polarization vector as

¢S (k) = \Eegﬂ(z})egﬂ k) . (2.12)

According to the above definition, the polarization vector and tensor are transformed
by the rotational transformation around the z-axis with the rotational angle ¢ as

&V (k) — EED (k) = €D (ke | (2.13)
57 (k) — 257 (k) = 5,7 (ke . (2.14)

The polarization vector and tensor are used to perform the scalar, vector, and tensor
decomposition. We define the projection tensors for the mode decomposition by
using the polarization vector and tensor as

0 k) = —ik, . (2.15)
O (k) = (2.16)
0N (k) = ixeV (k) 2.17)
0% () = (k ) + e B ) 2.18)
09 (k) = e<") (k) (2.19)

where individual projection tensors of different modes are orthogonal by definition.
By using the projection tensors defined in Egs. (2.15)—(2.19), we define the scalar,
vector, and tensor modes as

wak) =wp() 0L (k) + Y wik) O () (2.20)
A==1
hap (k) = hio (k)00 + ho () 0% (k) + Y ha(k) 0% (k) + Y o (k) O (k) .
A==%1 o=%2
2.21)

where wy, hiso, and hg are corresponding to the scalar mode. wy and &, are the vector
mode. &, is the tensor mode. If we assume that w, and &, are the metric perturbations
in the Poisson gauge, some variables vanish as wy = hjso = hg = h) = 0 due to the
gauge conditions. In other word, w, and %, in the Poisson gauge include the vector
and tensor modes only, respectively. By using the orthogonality of the projection
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tensors, the inverses of the decompositions (2.20) and (2.21) can be given by

wo(k) = — 0 (kywq (k) | (2.22)

wy(k) = 0 (k)w, (k) , (2.23)
3 ~

ho(k) = 505? (K)hap (k) | (2.24)

hy(k) = — 205 (k)hay (k) (2.25)
2 oo

hy (k) = 5021, ) (k)hap (k) . (2.26)

2.2 Einstein Equation

In this subsection, we will see the perturbed Einstein equation up to the second order:
G, =8rGT" D", (2.27)

We need to know the first- and second-order Einstein tensor and energy-momentum
tensor. Throughout this thesis, we ignore the first-order vector and tensor modes.
This is because the vector mode never arise from the first-order perturbation theory
in the standard cosmology. In addition, the first-order tensor mode would have a
small amplitude, namely, tensor-to-scalar ratio r < 0.12 [2].

2.2.1 Einstein Tensor

First, we show the perturbation of the Einstein tensor which is in the left-hand side
of the Einstein equation. The metric perturbations can be expanded as

o= 4 %q,m , (2.28)
v w4 %\p@) , (2.29)
o = %wi@) , (2.30)
by = % . 2.31)

It is convenient to move to Fourier space. Second-order terms can be written in
Fourier space as

X(x)Y(x) = /kf((kl)f(kz) ; (2.32)
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where we define

Note that 513)(k — k1 — k) is the Dirac delta function.
In Appendix A, we summarize the formulae of Riemannian geometry in the
Poisson gauge, e.g., the Einstein tensor. By using Eqgs. (2.22)-(2.26), the scalar,

vector, and tensor modes of the Einstein tensor (A.27)—(A.30) can be expressed in

Fourier space.
The scalar mode of the Einstein tensor:

a’G® =3H*W D (k) + 3HOP (k) + k> @ (k)
+ / [360 )&V o) — 6H2W D k)W (k) + 4kF D (k) k)|
k

+ / (120D k)W O k) — ko RV ek ] (234)
k

(_ 0 l@) %aszoi —k (d><2> k) + H¥® (k))

/ [451 (60 4 D) D ka) + 2600 1) k)] | 2 Tk,
(2.35)

(_Oi«») %az(;(z)io - —k (q’>(2> (k) + HW® (k)>

= [+ (80 + 1o ) d) oDk - 200 )V ] Tyl
k 3
(2.36)

300\ 2o La(g0 ®
(EOU 502GV = — 2k (9@ — v (h)

+fk1k [ (k) (k) - ‘1’“)(161)‘1’(“(1@)*243(1)(161)‘1’“)(@)]\/ S Vot
k

+/k <1><”<k1><1>“>(kz> ‘I’(l)(kl)‘l’(l)(kz)]\/ 5 Yiok) (2.37)
k
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1 . . . .
550’ G; =3 (6@t + HI@ @0 +2HE 0]

412 (<1><2> k) — w® (k)) +3 (2H + HZ) v )

g/

-
/ [ 120D (k) (<1>(” +HBD +2H<D(”) (kz)]
[

/ +4k? <d>“) \J/“’) (k|)<1>“’(kz)]

6 (27 + 1) w0 v (k)|

+ / [90D U tka) = 69 (k)b (k) — 3kikahr - k)W D (k)W ko) |
k

+ / kika Gy - k) [~ 0D (k) @D ho) + 9D )W (k) + 20D (k)W O k)]
k
(2.38)

The vector mode of the Einstein tensor:
1 1
(=) 2 ~(2)0 2 (2)
(oi )Ea G<)I-=—Zk ()

= [ ks (&0 + 2000 69V k) + 2009 ) 6V k) | v,
(2.39)

! : .
(0/7) 3a*6@ = <H2 ~H+ Zkz) W@ (k)

- f ki [46D U@V k) + 4HW D kD (k) = 20D kDD (k) | TYI Ak
k
(2.40)

oy k.
(—2057) 502G =3 (& () + 21 )

+/k1k[<1>“)(k1)¢“)(kz)—‘I’“)(kl)‘l’“)(kz) 2<1>“><k1>w(“<kz>],/ S Y

/[kz D k)dD (k) + WD (k, )\w”(kz)],/ Y5,k 241

The tensor mode of the Einstein tensor:

2 o\ o _ 1 ;) 2,

(30,.j )2(1 G = (h(, (k) + 2HR® (k) + k2h¢ (k))
+ [ 38 {00000 + 86w )] | E1, ).

(2.42)

For the sake of brevity, we omit the time dependence of all variables. We set k || Z
in the above expression. The first-order scalar mode depends on only the amplitude
of the wave vector since evolution equations for the first-order scalar mode do not
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depend on the direction of the wave vector. On the other hand, the second-order
modes depend on not only the amplitude of the wave vector but also the direction
of that one. Therefore, we denote that arguments of the second-order modes are
indicated the direction of the wave vector.

2.2.2 Energy-Momentum Tensor

Second, the right-hand side in the Einstein equation, that is, the energy-momentum
tensor, is perturbed up to the second order here. Although there are some definitions of
the energy-momentum tensor, we start from the distribution function of each particle
in this thesis. The energy-momentum tensor can be defined by using the distribution
function as

d3Pl

P'P,f 2.43
@m)* | Pol / 49

= [V

where P* is the canonical momentum in the generalized coordinate (here, corre-
sponding to the Poisson gauge). There is a relation for the Jacobian of the generalized
coordinate as

d3pi B d3P,
1Pl /=g |P°|

V=g (2.44)

The integral in Eq. (2.43) must be done in the Poisson gauge since the distribution
function is defined in the Poisson gauge. However, we can easily perform the integral
explicitly by moving to the Local Inertial Frame Instantaneously at Rest with respect
to Comoving Observer. Following Ref. [3], indices in the Poisson gauge are used as
the Greek characters p, v, --- = 0, 1,2, 3 and those in the local inertial frame are
usedas A, B,C--- =0, 1, 2, 3. We relate the four-momentum in the Poisson gauge
P* and the local inertial frame p# by using the tetrad. The tetrad obeys following
relation:

leal"les]’ g = nap - (2.45)
Consequently, four-momenta in each coordinate can relate as
"= lealpt (2.46)

The components of the tetrad in the Poisson gauge can be explicitly written down as
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-V

) — (2.47)
a
1 1 .
[e;]° = - [e‘”“/(s' i— Eh’ ,] w! (2.48)
[eo] =0, (2.49)
i1 . 1 . 3. 1 3 .
[ej] = ; |:€d>(5lj — Ehlj — Ecbhlj — Ew,-wj + ghlkhkj:| . (250)

where the tetrad is not unique since it is possible to change the different local inertial
frames by using the Lorentz transformation. The general discussion is presented in
Ref. [3].

From the relation Eq. (2.46), we can write down the relation between the four-
momentum in the Poisson gauge and the local inertial frame as

E :
po_ £ v (1 n Bwiﬁz) , 2.51)
a E
i _ P o 1
P'==e"n/ (0, — <h'; ), 2.52
PR ( iT5 J) (2.52)
Py = go, P"
= —aEeY, (2.53)
P; zgiuPH
— a0 ® . . 1 . pk
=ae™ ( i+ Ewi + 3hup" ) . (2.54)
where we define p® = E and p' = pi'. The Einstein relation is also held in

Eqgs. (2.51)-(2.54), namely, P¥P,, = —E? + p'p; = —m?. From here, we proceed
the calculation of the energy-momentum tensor in Eq. (2.43). The determinant of the
metric tensor metric and Jacobian are given by

V=g =a*e? 3, (2.55)
3pi e’® 3
d*P'=—d’p. (2.56)
P

Finally, the energy-momentum tensor can be written in terms of the local inertial
frame as

d3p PP,

T, = | ——
Qm? E

(2.57)
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In order to proceed the derivation of the energy-momentum tensor, we perturb the
distribution function as

i Al ) (€)) i Al 1 2) i Al
f(nv-x9pan)=f (nsp)—‘f_f (nsxapsn)+§f (nJC,P,n)’ (258)

where only the distribution function of the zeroth order depends on the time and
amplitude of the momentum since the zeroth-order distribution function of photons
is a Planckian distribution.

The description of the distribution function is a microscopic picture. It is pos-
sible to relate the macroscopic components, that is, the average density p, density
perturbation 4, velocity v;, and anisotropic stress IT'; as

/ (‘21371)’3 pfO = O (2.59)
(‘;Tl;pifa) — gpm)v(l)i , (2.61)
(d;Tl)’Spié @ _ gp(O)%v(Z)i + gp(o)(;(l)v(l)i , (2.62)
(‘;’)’3 % f=p01m; + %p%f j [1 + 60 + %5@} , (2.63)

where we used the following formulae:

/ nd2 =0, (2.64)

/ ninmdQ =0, (265)
47

/nindeZ = ?5,‘]‘ . (266)
47

/ninjnkn[dgz = E (5ij5kl + 5ik5jl + 5i15jk) . (2.67)

The energy-momentum tensor is corresponding to massless particles, e.g., photons
and massless neutrinos.

On the other hand, in the case of massive particles, e.g., dark matters or baryons,
we adopt the Maxwell-Boltzmann distribution function with a mass m and a mean
velocity vy, as

2 \32 vy
9 (@) = nm <%> exp [—%] . (2.68)
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Moreover, the moments of this distribution function are evaluated as

d3
/ ﬁgm(cn - (2.69)
d3
/ (2753 qigm(q) =My Uy (= pmvmi) , (2.70)
d3 i
f Gt £ 9 (@) = v @71
dq j 2 i
2 1 g (@) =m N VmiVmj + mnmTnd'; (2.72)
d*q qiq’ T
(27_(_)3 EEgm(q) =NmVm;VUmj + nm;mé Jj- (273)

Thus, the energy-momentum tensor for massless particles and massive particles can
be derived.
The energy-momentum tensor for massless particles:

1
T% = —p© (1 +60 4 55(2’) : (2.74)
o _4 o e |0, Lo o
T = gp e v, + Evi +0V 7 ) fwi| (2.75)
i 4 o orw (i, L M, (i
To=—§p e v +§v + 6% , (2.76)
i i 1 o, 1

The energy-momentum tensor for massive particles:

1
% = —p¥ (1 +060 + 55(2)> : (2.78)
T =@+ 0 [(v,-(l) oo+ 5<1>v§”) + w,} : (2.79)
Ti() - _ e<1>+\l/p(0) (v(l)i + %U(Z)i + §(l)v(1)i> , (2.80)
i _ oo, Tng
T, =pl|v v; ~|——5/' . (2.81)
ol

As well as the Einstein tensor, the energy-momentum tensor can be decomposed into
the scalar, vector, and tensor modes. Hereafter, we indicate massless particles and
massive particles as s = vy and s = m, respectively.
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The energy-momentum tensor of the scalar mode:

1 1
ETS@)OO =—p® (55;” (k)) : (2.82)

(_ Oi((») %TSQ)OI' _ ( 0 4 p«») ( @ (k))

+ (b + ) /k [0 60 (80 = 01 — w1 (1) \/? Vo).

(2.83)

( 0(0)) 2T(2)1 (0) (0) ( (2)(k)>
<0> <0> fk (1)(/(1) s q><”+w“)>(k2)],/ 3Y10(k1)
(2.84)
300\ i _ ol o 2.85
50 )37 =ry TOAz,o( ) (2.85)

3 (0) l (2) (0) (]) (1) 471' ~ 47T % ~ 1 ~ ~
(EO,J 51w '} =Pm A ok vyo(k2) ?Yl*.o(kl) 7Y1,0(k2)—§(k1-k2) )

(2.86)
51,/,%%(2)1'], — <0)< 6<2>(k)> er<0>/ [55,1)(,(1)5;1)(,(2)] ’ (2.87)
6w%ﬂ§2”’j = - / [t - Ryl ol (2.88)

The energy-momentum tensor of the vector mode:
_0) 1
<0i( A)) ETS(Z)Oi _ <p§0) +p§0)>( (2)(k)+ (2)(k))
+ (v <°>+p<°>)/[v§5)(k1)(5§‘> — o —wh) )],/ Yy, (k)
k
(2.89)
_ 1 ;
(Oi( A)) ETS(Z)LO _ (0) <0) < (2)(k)>

47 ~
(b + “”f [05) k) (387 + @0 + w0 ) || S )

(2.90)
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1 1
(2057) 317 =" 0. (291)
1
(~205) 575 =0 [ [2utcnntotin] 5 prothoy v
(2.92)
The energy-momentum tensor of the tensor mode:
2 o\ 1.0 1
(30(1 )> 517 = P§0)15A§23,(k) (2.93)
250\ _ o o) (ko) .
50,-,- 5Tw" i =P AR 0 (k1) v (k2) Y1/\(k1) M(kz)
(2.94)

Note that the quantity A, , (k) is the perturbed brightness function expanded by the
spherical harmonics. More detailed definition is shown in Sect. 2.3.

We derived the perturbed Einstein and energy-momentum tensors up to the second
order. By substituting these results into Eq. (2.27), we can determine evolutions of
the metric perturbations. However, we need to formulate the Boltzmann equation
which describes evolutions of fluids. In the following subsection, we formulate the
perturbed Boltzmann equation up to the second order.

2.3 Boltzmann Equation—Basics

In this subsection, we formulate the second-order Boltzmann equation. It is possible
to trace the evolution of fluids by using the Boltzmann equation. The Boltzmann
equation draws the evolution of the distribution function in the phase space includ-
ing arbitrary interactions. In the standard cosmology, fluids in the universe are pho-
tons, massless neutrinos, baryons, and dark matters. In the early universe before the
recombination, photons and electrons interact with each other through the Compton
scattering. On the other hand, massless neutrinos do not interact with any matters
after the neutrino decoupling. Consequently, the difference between photons and
massless neutrinos is the interaction term only. This discussion is same in the case of
baryons and dark matters. In this subsection, we derive the Boltzmann equation for
photons and baryons following Refs. [3-6]. In this thesis, we ignore the polarization
of photons which would be small effects.
The Boltzmann equation for photons can be written as

df -
0 =CI[f], (2.95)
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where A and C [ f] are the affine parameter and the generalized collision term due
to the Compton scattering, respectively. The generalized collision term due to the
Compton scattering can be given by

Clfl= / I, dT, AT, 27)* 68 (g, + pu — q), — P},)

x IMP [g:(@) f (A + f(p) = 9@ fF(PYA+ F(P')] . (2.96)

where dITg, IM|?, 9ge(q), and f(p) are the Lorentz-invariant momentum volume,
scattering amplitude, distribution function of electrons, and distribution function of
photons, respectively. The delta function in the collision term enforces the energy
and momentum conservations. Throughout this thesis, we have dropped the Pauli
blocking factor (1 — g.). The Pauli blocking factor can be always omitted safely in
the epoch of interest, because g, is very small after electron-positron annihilations.

The Lorentz-invariant momentum volume in the local inertial frame becomes
more simple form as

dq

Mo = ommeg

(2.97)

We rewrite the left-hand side of the Boltzmann equation in Eq. (2.95) by using the
conformal time as

Pl ¢, (2.98)

o e
3 |~

where we use the definition of the four-momentum:

_dn

pPO=_— 2.99
m (2.99)

By using the tetrad, we can work in the local inertial frame. The distribution function
f(n, x', p,n") obeys the Boltzmann equation as

Of dx'df dpdf dildf 1 -
L A P Y G, 2.100
on  dn ox*  dndp dnont PO 71 ( )

where the collision term is the first-order itself. Therefore, by using Eq. (2.51), the
right-hand side is rewritten as

i = 2 e = every (2.101)
poCll=gclil=ercll. -
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Consequently, the explicit form of the redefined collision term C[ f] becomes

. a d3p' d3q d3q, 44 m i 1
ctr ]‘E<p>/ @OREG) GrP2Eg) GryaEdg) o DU TP at = rD
x IMP [9ea) F(P) (1 + f(P) = ge(@ f(P)(1+ F(')] - (2.102)

Next, we evaluate the left-hand side in Eq. (2.100), that is, the streaming term.

2.4 Boltzmann Equation—Streaming Term

From here, we focus on the streaming term, that is, the left-hand side of the Boltzmann
equation. The streaming term is consist of the three contributions, i.e., the coordinate
velocity term %, redshift term g—';, and lensing term %.

First, the coordinate velocity term is easily derived from the definitions of the
four-momentum in Egs. (2.51) and (2.52) as

dx' P
dg —~ PO
P, P . 1
= En1g<b+\l‘ |:5ij (1 — Ewknk) — Ehi'i] . (2.103)

Note that this term is also used to derive the redshift and lensing terms.
Second, the redshift and lensing terms are derived from the perturbed geodesic
equation. Here we consider the geodesic equation in terms of the conformal time as

dpr . P°PP
W_FF ap PO

=0. (2.104)

Note that, the derivative of four-momentum with respect to the conformal time is the
total derivative. Hence the total derivative should be calculated as

a0 _ o0 dxt o0
dyp  on  dn Oxk
=0+ ge““’ﬁkm,k . (2.105)

The perturbed geodesic equation for © = 0 component is given as
E . 1d E .di’ . E E ,
(1 + —w'n,) ~°P + Zo o H+d— —d'n; — e P20 ;7
p pdn  p  dpy p p

p E LYY
+ E—Z; Hw;n —Eh,-jnn . (2.1006)



2.4 Boltzmann Equation—Streaming Term 29
In the same way, the perturbed geodesic equation for ;x = i component is given as

i i j1dp dn/ _ vai L (i i )i i Ry
<5 —7h )[ pdq+d—n]_—(H—cb)n —§<h]—th)n — W —wi DA

_ DoV (w + MW +2 P o+ (tbdﬁjﬁt _ <I>")
p

|
+Z (W — h it + Eh_;k”fz/fzk> , (2.107)

where we use the fact that £ = pp/E. By multiplying Eq. (2.106) by
(1 — (E/p)wiﬁ,-), and Eq. (2.107) by (5l~j + h,-j/2), we derive

1 dp E .di’ . E
+—w—=—H+Dd- Zdin;

pdy ' p o dp p

E ) E 1. :

_ _e\I/+<I>2\IIi},’i1 + (B — 2—> le‘;ll — _h[mﬁlﬁm ’
P ’ E p 2
(2.108)

d"i ] d 1.. . ;
i =L - b - St — g — )R
dn pdn 2

_ _e<I>+\ll\I,,t _ _(wz +le)+£e<l>+\l/ (q)j’\j"l — P )
p p E

(H g -h’,mW'"Jr L m) . (2.109)

By combining Eqgs. (2.106) and (2.109), we derive the redshift term as

ld E E m? 1. ...
P Hrd— Euin - Eetrvy i —Hw, “hyAiAl, (2.110)
pdn p p 2
where we use the relation p/E — E/p = —m?/(Ep). Finally, by substituting
Eq. (2.110) into Eq. (2.109), we derive the lensing term as
da’ P E
=—" =) | =W+ =D | . 2.111
dn ( n)|:E ’1+P ’j:| ( :

Moreover, by combining Eq. (2.109), we also derive the time-derivative of the photon
momentum as
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1dpt NV B . .. E A .
p _ —(H—Cb)n’ _ 5sznk _(Wl,k —wk”)nk _ Ee®+\ll\y,l _ ;(wl +sz)

p dn
i . , 1 . ia 1 o

+ %QCD-HI/ (CD’jnJ i_ q>,1> 4 % (sz _ 5le’mn]nm + 5ij,zn]nm) )

2.112)

Note that the above expression is the case of massive particles with a mass m. If we
assume the massless particles, we set m = 0. The next thing to do is the derivation
of the collision term. In the following section, we derive the collision term up to the
second order.

2.5 Boltzmann Equation—Collision Term

Let us now evaluate the collision term due to the Compton scattering. In the limit
of completely elastic collisions between photons and electrons, this term vanishes.
Typically, in the regime of interest in this thesis, very little energy is transferred
between electrons and photons in Compton scatterings. Owing to this fact, itis a good
approximation to expand the collision term systematically in powers of the energy
transfer. Let us demonstrate this specifically. We consider the collision process

V(P + e (g") = v(p") + e (g") . (2.113)

where the quantities in the parentheses denote the particle momenta. To calculate
this process, we evaluate the collision term in the Boltzmann equation of photons in
Eq. (2.102).

Integrating over ¢’, we obtain

CLf] = a d3p’ d3q 27
pJ (2m)32p 2m)32E.(q) 2E.(lg + p — p'l)

x |M|? 5D[p —p' +E(q) —E(lg+p— p’l)]

x (9@ +p =PSB+ () = 0@ F D)1+ (D))
(2.114)

In the regime of our interest, energy transfer through the Compton scattering is small
and can be ignored in the first order density perturbations. The expansion parameter
is the energy transfer,

P-p-q @-p)

me 2me

E(q) —Ec(lg+p—p'D) = (2.115)
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over the temperature of the universe. Employing p ~ T, we can estimate the order
of this expansion parameter as (9(%) ~ O(anc)’ which is small when electrons
are nonrelativistic. Note that, in the cosmological Thomson regime, electrons in the
thermal bath of photons are nonrelativistic, p ~ %, and the energy of photons is
much smaller than the rest mass of a electron, p < m,. Thus, it also holds that
q ~ /2mep > p, and the second term in Eq. (2.115) is usually smaller than the
first one.

Now let us divide the collision integral into four parts, i.e., the denominators
of the Lorentz invariant volume, the scattering amplitude, the delta function, and
the distribution functions, and expand them due to the expansion parameter defined
above.

2.5.1 Lorentz Invariant Volume

First of all, the denominator in the Lorentz invariant volume can be expanded to

| ) e
= \me+ me + lg+p—pl
Ed@)E(q+p—p ( © " om. ! T o ITPTP

1
v (1= Eap = &y — Ear] (2.116)
’/ne e mg e
where
2
Eap="1 2117
(,,‘fe)z mg ( )
— ’ .
Ecry) = (”m# , (2.118)
a2
Sy = (”2—2’) . (2.119)

2.5.2 Scattering Amplitude

Second, we consider the scattering amplitude. Fortunately, it has been known that
the leading term (zeroth order term), obtained by multiplying together the first term
in the delta function and the zeroth-order distribution functions, is zero. It means
that we only have to keep up to the first order terms when we expand the scattering
amplitude and the energies, in order to keep the collision term up to the second order
[7]. The scattering amplitude for Compton scattering in the rest frame of the electron
is given by,
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|M|2=67Tm p—N—l———smzﬁ
4
cosB=p-p, (2.120)

<

where p and p’ are the energies of incident and scattered photons, 1:7 and p are
the unit vectors of p and 1;', respectively, denoting the directions of the photons
in this frame. The Lorentz transformation with electron’s velocity (g/m.) gives the
following relations,

B vV 1 - (Q/me
p 1—p-q/(pme)’
Pu=p"Dp - (2.122)

(2.121)
p"

Using these relations, we evaluate the scattering amplitude in the CMB frame as [5]

IMP = 6mmior [Mo+ Mg, | (2.123)

where
Mo =1+cos*3, (2.124)
M)y = —2cos (1 — cos 3) |:me (n —l—ﬁ')} ) (2.125)

Here 72 and i’ are the unit vectors of p and p’, respectively.

2.5.3 Delta Function

Third, we expand the delta function to

96p [p — p' + Ec(q) — Ec(q)]
op

oo [p— P + Ec(q) — Ec(q))] ~op(p — p') + (Ee(q) — Ec(q))

q=q’
1 0%6p [p — P’ + Ee(q) — Ee(q)] 2
Z Ee(q) — Ee(q’
+ 3 o ,( (@) @)
q=q
. dpp—p
:5D(P - P ) + %D(L)
»
dop(p — p') 1, &p-p)
+ TD%) + ED&XJT ’ (2.126)
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where
J— ’ .
Doy =P =P 0 (2.127)
a2
Do _-prr (2.128)
me zme

2.5.4 Distribution Function of Electrons

Finally, the distribution of the electron can be expanded to

N A 696 ’ 1 i /i 8298 Jj i
9el@+p—p) R ge(@)+—— - (p—p)+5(p' =) 57— = p7). (2.129)
0q 2 0q'0q/
We assume that the electrons are kept in thermal equilibrium and in the Boltzmann
distribution: 3 ,
/e (q — MeVe)
= -, 2.130
9e(q) = ne <meTe> exp [ T } ( )

where v, is the bulk velocity of electrons. The first- and second-derivatives of the
distribution function with respect to the momentum are given as

0ge qi — MV
= fe———— 2.131
aq g o ( )
82 R o . i_ . i 5ij
g _ 09 d TMebe . (2.132)
0q'0q’ dq’  m.T, meTe

By substituting the above equation, Eq. (2.129) is written as

1
ge(g+p—p) = g(q) I:I—F(”;Ie)-i-if(zrz)—f(ml’e)} , (2.133)
where
Foay =12 (p_p, (2.134)
e meTe
1 a2
Fry = 1e-py (2.135)
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Therefore, we have

9e(q+p—p)f(PHA+ f(P) = ge(@) f(P)(L+ f(P)
=9:(@) [f(P) = ()] = F(P)ge(@) F 1
1 1
— f(Pge(@) [f%) - E“T?mi)} +9e() f(P) f(P) [—f%) + §f<2,3 - Fa ] :
(2.136)

2.5.5 Summary of Collision Terms (q’-Integral)

Combining altogether, we obtain the collision term expanded with respect to the
energy transfer as (note that this expansion is not with respect to the density pertur-
bations)

3 zaUT d3 !

= p J @m)ip

/ ) [(Oth order) + (1st order) + (2nd order)] ,

(2.137)
where

Oth order term:
Modp(p — pge(@) [f(P) = f(P)]. (2.138)

1st order terms:

1) -p
Moge(q) [fén(p - F ey + % [f(p) - f(p)] D%)]

+ M9 (p = P [f () = F(P)], (2.139)

2nd order terms:

Moge(q) [—%(p -pNfpH (7:(,;’ ]:(24 )

me

19%5
) 2% 2 L) = 1)

Aop(p — p’ b (p —
+ PRELID L [0 - £)] - %D%)ﬂp’)?%)]
, , ol -7 ,
+ Mae(@) [—5D<p = PN Fg + TS [0 - f(p)]]
) _
+ Mose(@) 1) 1) |~ E I Do+ (572, = Fp ) oot = )]
= 9@ S (P) [ (PYM (1) F(2)0p(p = P) . (2.140)

The above result is performed by the ¢’-integral. To derive the perturbed Boltzmann
equation, we need to integrate p’ and ¢q. Hereafter, we proceed these integrals.
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2.5.6 Collision Term (q- and p’-Integral)

The g-integral is performed straightforwardly as

2 aneor dp’
Clf]l= 2y [(Oth order) + (1st order) + (2nd order)]
3an UT / /
(2.141)
where

Oth order terms:

(1 +cos* Bop(p — P [F () — f(P)] . (2.142)

1st order terms:

(1 + cos B)M[f(p) F@] (= p) - ve

— 2cos (1 — cos ﬁ)(ﬁa(p - [f) - )@+ v, (2.143)
2nd order terms:

2 M L) v+ Lo (p— 2

(1 + cos* ) op? [f(p")— f(p)][z((p p) - ve) T om 6(1’ 1’)}
00 -p

(1 + cos? m% £ +2f DV F () + F(p)] u

€

+ 2c0s B(1 — cos B)op(p — p) F(PH + f(p))(”n:—”) A+ )

99 Y
— 2008501 = cos L2 1) — o] (0 = B+ ve) (G )00
—p T, ’ ~ ~y
— 2cos 3(1 — cosﬁ)% [f(p) — f(p)] [m(p -p)-(+n )]
(2.144)
From here, we do not expand the cosmological perturbation but the smallness of the

energy transfer in Eq. (2.115). To complete the derivation of the Boltzmann equation,
we expand the distribution function up to the second order as

1
) =r%p + rOp + Ef(z)(p) , (2.145)
ve =v) 4 %ug) ) (2.146)

After substituting Eqgs. (2.145) and (2.146) into Eq. (2.141), we can derive the
expanded collision terms as
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3anech/ /‘ m(p p)

3anem/ / [ L. )+ 2@, p)+ R, 0+ Dp, )+ (p. p’))} :

(2.147)
where

D (p, p’) =1+ cos® B)

(S _ /
< [300 =) (500 = 1O w) + PEEZE (100 - 1) =95l
(2.148)
1 /
C(Az)(P, pH =50+ cos® Adn(p — p) (F2 @) = [P (p) (2.149)
1 9op(p — p) '
(2)(1) P =5 (1 +cos’ B) === (£ = fOp) (b — ) - 0.
(2.150)
2w = (06~ 1)
x [(1 +cos? ﬂ)%p,"’/)@ = p') - ve = 2c0s (1 = cos Hdp(p — p)Gi + i) - ve] :
(2.151)
22w = (F00) ~ 10D (- )
’ 2 o — p
X [(l + cos? ) (p=p")-ve p —p) 2cos B(1 —cos B + 1) - vem} .
2 apa ap/
(2.152)

(p—p')*

2me

Pop(p — p' dop(p —p'
x [(.f‘(’)(p’)—f‘”)(p)) 7, P ZL) (10 4210 (1O )+ 1O py) PR ”)]
ap ap

& p.p) = +cos* )

N 2(p — p')cos B(1 — cos? 3)

me

x [6D<p =) O+ O =T (FOW) = O p)

060(17717’)]
ap' ’
(2.153)

where we use the relation (p — p') - (i +#1') = (p — p’)(1 + cos 3). The prefactor
ne appeared in Eq. (2.147) must be expanded as n. = n” (1 + 6{V).
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We expand the distribution function by using the Legendre polynomials P, (u) for
the first order as

V@ pay =)+ D & p) P, (2.154)
l

where we define = n- 0 and i/ = n’ - 0. This is because the first-order distribution
function does not depend on the azimuthal angle. The second-order distribution
function is expanded by the spherical harmonics Y, ,, (77') as

Ay / . 4
0D, pli )—ZZ “”(:c,p)(—z)‘,/%+ Yen@®). (2155

t m=—t

We can relate the first-order distribution function expanded by the Legendre poly-
nomials and spherical harmonics as

I e, pIomo = (=) QU+ Do f (x, p) . (2.156)

Finally, we can proceed the p’-integral as

1
C(p) = ancor [cm(p) +5 (@ +cP i+l + R+ (p))] ,

(2.157)

where
V) =f"(p) + %fz(')(P)Pz(u) — ) - p%;(p)uv . (2158)
39 %[ 2 - 1w -5 iﬁ 3 (DY 2,,,(,1)} (2.159)
%Cff)(p) = - %p%jjmuvm : (2.160)

(1 €]
2 1 f (p) A 1 (1 f (p)
—C( ) (p) = [f(”(p) V) - "ap ~ 13" () + 3 P2 <f2< '(p) — P )}
8f1( )(P)

v[zfl“)(p) s

| o 0 0
+ g (f,“’(p>+p Ty 6Dy 2 p PP } 2.161)
p dp
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©} 2 £(0) (V] 2 £(0)
L@ ) =y |:u2 <p<9f P 1,0 (p)>+p8f » 3 ,0f <p>]

2w op 20 op? op 20 op?
(2.162)
leo o b 0| 4] 0f%) | o ©)
2R ) =5 - {p =g 0w (1 1YW | (2.163)
where in order to derive the above result, we used the following formulae:
l+cos’B=1+(-n)
4 1+ 1P (n-n)
=— —Py(n-n
3 22
4 P
_ ANk oA
=3 (1 +5 ;2 You()Y5,, (R )) , (2.164)
—cosfB(l —cosB) = — @ -n"Y1 — (- -n"))
1 A~y 2 . A
:g—Pl(n'n)—{-ng(n%), (2.165)
dq¢’ A A R
/—¢Pn(n~n’)=Pn(n~v)Pn(n"v)
27
=P, () Py(1) . (2.166)

We explain the meanings of each term. C is the ordinal collision term in the first-
order perturbation theory. When we study the first-order CMB fluctuations, it is
sufficient to include this term. C (Az) is the purely second-order collision term which
contributes on the second-order fluctuation as well as the ordinal first-order collision
term. C? is the purely second-order velocity contribution. This term causes the
second-order quadratic doppler effect. C (Azg is the coupling of photons and velocity
perturbations. C,S%) is the quadratic term of the velocity. And c}? is the Kompaneets
term which induces the spectral distortion of the CMB spectrum. The Kompaneets
term does not affect the anisotropy of the fluctuations and therefore which is ignored
in this part.

2.5.7 Perturbed Boltzmann Equation

From here, let us combine the perturbed streaming term and collision term. It is
convenient to define the brightness function to remove the amplitude of momentum
dependence which is given by
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. [dp pPfP, x, poi)

1,2
AV (n,x,n) = Tap 270G p) (2.167)

where the denominator of the right-hand side is proportional to the mean energy
density of photons.

The angle dependence of the brightness function is expanded by the spherical
harmonics as

14
AP, x i) =y Y ALY 0,0 (=D)'

t m=—{

g ~
Yim(@) . 2.168
TG (n) ( )

The coefficients A,(Zl)

. arerelated to the density perturbation, velocity, and anisotropic

stress for photons as A(% = 55,1), A% = 40" and A;lz) = 51'[212), respectively. The

70
Boltzmann equation of photons in terms of Ag},ﬂz) at first- and second-order is written
as
2 (1,2) Cetim , (1,2) Ce.m 1,2) 01,2
Alf,m + k I:ZE + 3AK+|,m - 26 _ lAl—l,ij - S(f,m ’ (2169)

where ¢, = /02 — m2.

Here, we have translated from real space to Fourier space. The source term Sﬁn
can be expressed as

(k,n) =C) (k,n) + G2 (k,m) (2.170)

L,m l,m

S(Z)

l.m

Here, Cﬁ; is the collision term that is proportional to 7, where 7, is the differential

optical depth which is defined by the number density of the electron n("’, scale factor
a, and the Thomson scattering cross-section o as 7. = —ango) oT, and gﬁ denotes
the gravitational effects, i.e., the lensing and the redshift terms. The collision term

Cﬁn is related to Eq. (2.137) as

[dp p’CP(n, k, p, i)
[dp P3O, p)

, (2.171)

2041 R

et = [ agui [
, 47 ’

where C® (1, k, p, i) is the Fourier transformation of Eq. (2.137), while the gravi-

tational effect gf,; is coming from the perturbed streaming terms (2.103), (2.110),

and (2.111) with the same procedure as obtaining C® (1, k, p, ii). In this thesis, we
call Cy , and Gy ,, the scattering term and the gravitational term, respectively.



40 2 Basics of Cosmological Perturbation Theory

The explicit form of Cz(zr)n and G, ) are given as

C(Z) = CA(Z) (A( )55 09,0 +4vb 2 de.1 EA(Z) o 2)

=26+ W) )0l (k2) — 4k - koo ) g k)] 8e.00m.0

=20k - kp)ug ) vl k) | 6e.00m.0

4
[ 200 g UMy ko) |/ ST oo,
o [ [-sesadn@ + D) — o wna w ] Tt G

~n0 w06+ 0Dk Tz, s

4 .
[2A(” )G + )V k|| 52 7, o)

L af(areN(o 1 o¢

£y myp,mp

(1) ™
></k[(2+5e1,2)A oknvy <k2>]‘/% " o0\ ST R

) B " 11 1
+ i) =D e+ Y (008) (ml my fm)

miy,m2

x [ [ataennsoe) — o] i, G, )

(2.172)
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G = 40@5000,0 — Y 400 00.10mn + VP00 10m0 — > 2P 60 20m.0
A==1 o=%2

. 4
M & M m
+ 4k‘/k [\I/ (ki)Ww (kz)] 0¢,16m.0 + /k [SALO(IQ)CD (kz)] T Yy m(kl)
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(2.173)
where Fourier wavevectors k, k1, arld k, satisfy the relation k = k| + k.
In Eq. (2.173), we have defined AZU as
Ay = QU +3ALL, + QU DAY s+, (2.174)

which comes from the lensing term [8]. We can see that the lensing term contains
higher multipole moments. The source term of the first-order Boltzmann equation
vanish when m # 0, because we consider only the scalar mode in the first order
perturbations. However for the second-order perturbations, not only the scalar mode
(m = 0), but also the vector (m = \) and tensor (m = o) modes arise due to non-
linear coupling, where A = +1 and o = £2, respectively. Note that in the Einstein
gravity, there is no source of the modes with |m| > 3.

When considering massless neutrinos, one can set 7. = 0 in the above equation
because massless neutrinos interact with the other fluids only through gravity. We do
not write down the hierarchical equation of massless neutrinos here since it is trivial.
The distribution function of neutrinos is also expanded by the spherical harmonics
and we write the expansion coefficients as ./\/e(’l,;f).

2.6 Nonrelativistic Particles

In this section, we derive the Boltzmann equation for the nonrelativistic particles
such as baryons and dark matters. Although the Boltzmann equation for relativistic
particles is the hierarchical equation as shown in Eq. (2.169), the nonrelativistic
particles can be truncate its hierarchical equation since the nonrelativistic particles
do not have a pressure and an anisotropic stress.

The Boltzmann equation for the nonrelativistic particles reduces to the two fun-
damental equations, namely, the continuity equation and Euler equation. We show
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the derivations of the continuous and Euler equations from the Boltzmann equa-
tion. Here, we assume that protons and electrons couple strongly by the Coulomb
interaction, in other words, o, = 0. = 6 and vy, = v, = v,,.

At first, we consider the Boltzmann equation for massive particles:

dg

I =Clg] . (2.175)

By using the conformal time, we can express the Boltzmann equation as

Og dx' dg dq 99 _ ae”

24 =2 =—Clgl=¢YClg] . 2.176
an " dn ox dnaq Z [9]1=e"Clyg] ( )

By using Egs. (2.103) and (2.110), the left-hand side of the Boltzmann equation
(2.176) is rewritten as

dg 9g9 | ¢ Py q 4\ ! dg
d777 67] + 0;j (l — gl ) SXij ol
+ [—(H = d)g' = J¥ka" = @k —wDg — BTV — E@ 4+ HW)
1 ooy oy 1 P . 1 o dg
+tpe + (<1>,/q’q’ —q <I>") +z Hg ' — Ex’j,mq’q’” + Exj-m”q’q’” o
2.177)

Second, let us focus on the collision term in the Boltzmann equation for massive
particles. The Boltzmann equations for electrons and protons are given by

d
ﬁ(n, X.q) = (cep) 00 + (Ce) pprgr - (2.178)

gP (77’ X, Q) (Cep qq' Q' » (2179)

where
( > _ d3p d3 p/ d3q/
=] end ] @nd ) @n)?

(2.180)
The collision term between protons and photons can be neglected since the scattering
amplitude is suppressed by the factor (me / mp)2 ~ 0(1077).

2.6.1 Zeroth Moment—Continuity Equation

By taking the zeroth moment of the Boltzmann equation for electrons (2.178), the
left-hand side of Eq. (2.178) becomes
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dg on ; . ;
d; )y = a_ne + e (nevl) , +3 (H — &) ne + ™ (W, =20 ) nev; .

(2.181)

We can easily see that the zeroth moment of the collision term in Eq. (2.178) vanishes
as follows. After taking the zeroth order moment, the right-hand side is given as
(Cey) ppraq’ T (Cep) 00rqq'- The collision term is the anti-symmetric form under the
exchange of ¢ <> ¢’ and p <> p’. Therefore, the collision terms are evaluated as

(cer)ppraq’ + (Cep) 00aq = — ({€er) prparq + (Cep) 00479)

== (<Cev>Pp’qq’ + (CEP>QQ’qq’)
=0, (2.182)

where we use the exchange of the dummy variables, namely, integration variables.
In conclusion, the zeroth order moment of the Boltzmann equation is not contributed
from the collision terms. The continuity equation from the Boltzmann equation is
written as

one

o T "™ (nev)) ; + 3(H — )ne + eV (VU — 2@ ;) nevl =0.  (2.183)
n

We can derive the continuity equation up to the second order as

A +3Hn =0, (2.184)
80 (k) — 30D (k) + kvl (k) =0, (2.185)

5 () =36 () + koD k) =6 /k (6D ol )]
2 /k [la ey - ey (57 + 00 —200) ko]

—2 [ o + o+ w D)kl o]
(2.186)
Note that the vector-mode of the Boltzmann equation for photons does not need the

second-order continuity equation for baryons. We only use the first-order continuity
equation to solve the Boltzmann equation for photons.
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2.6.2 First Moment—Euler Equation

The first moment of the Boltzmann equation is corresponding to the Euler equation.
The left-hand side of the Boltzmann equation (2.178) can be written as

qg'dg. 0 Sy, ki orw (T
<Ed77>q_877(m))+e v V') +e nm

+ 4(H — D)nv' + VY Win + (O + Hw'n . (2.187)

Furthermore, when we combine the first moment of the Boltzmann equations for
electrons and protons, the dominant contribution on the left-hand side is protons
one. On the other hand, the right-hand side can be written as

(Cep(@ + 0N 00gq + (€rd) ppraar - (2.188)

The first term vanishes due to the momentum conservation &3, (¢’ + Q' — ¢ — Q™).
Moreover, the second term is rewritten by using the momentum conservation as

(ceyq") pprag =

cen
= /(2 7 p'Cifl] . (2.189)

Thus, we can use the result of the collision term for photons in Eq. (2.157). By using
Eq. (2.157), we can easily perform the above integral as

(Ce'yqi>pp’qq’ = - / (2 )3 C[f]]

4 1 1
. 1)i i 2)i i
[’%(v() u" p”(z() 2§Z)>

+o, vbl)j 1—[(1),] + p (5(1) 5O + \P(l))(vt(,l)i . v§1)5)1| )
(2.190)
Finally, the Euler equation for baryons is given by

vy, ki oW
377 + VpVpk + € o

T, Wi i Lo 1 L@
— E[(vb — )+<§vb 3

3 () i ;
+ Zv]()mn;l)zj _'_(5571) +5él) _5](31) _}_\Ij(l))(vl()l) _

Ti o . : ,
—b> + (H — ®)vf + PV + (@ + Hw)

<‘>’)] , (2.191)

”/
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where R = 3p(0) / (4p£70) ) and we can set . = dp due to the Coulomb scattering.
Furthermore, the term including 7, is suppressed by the proton mass and hereafter,
we neglect this term. Finally, we derive the Euler equation up to the second order as

B0 (6) + Hugly k) — kD k) = — —6 Vo (2.192)
Dy () + Hug s, () — kWP (k)G 0 = — —5 0y, — 0P k) — HwP (k)

—Z/k [k ko ‘i‘\fz)v(l)(kl)v(l)(kz)}\/ ve, ()
2 [ [st0d ] Sy,
+2 / k1w @ +‘I’(1))(k2)]\/? Vi)
-2 f [50Rokn @ + w2 | 57 o)
Te 3
- ﬂ/[(k kzmﬁ'z)(kl)ug'g(kz)} fylm(kl)
1
/[vﬁ%(kl)n“g(kz)] ‘/ Y7 ),
k

(2.193)

where we define the relative velocity dv,, = v, — vp. The evolution equation for
dark matters is derived by assuming 7, = 0 in the above equation.

2.7 Example—Vector Mode

In this section, we will see an example of the second-order perturbation theory. In
particular, we consider the second-order vector mode since this thesis focuses on
observables induced from the second-order vector mode.

2.7.1 Vector-Mode Einstein Equation

In the case of the Einstein equation, from Eqgs. (2.41), (2.91), and (2.92), the evolution
equation for the vector mode is given as

Pk + 2Ho P (k) = S (k) (2.194)
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where Sf\z) denotes the second-order source terms defined as

2 1
(2) 0) A (2 2 (0) A/ (2)
Sy (k) = fk (877Ga ,0( DA /\(k) + 81Ga p( )/\/ (k))

+ [t [0V 0¥ k] 7o

k
} ; [<1>“>(k1)<1><”<k2)+w<“(k1)w<”(kz>],/ Y5

+ Y 87rGa2pfg)/[k vl kg )v(l)(kz)] \/>Y1o(k1)1/ R (SF

m=b,dm
(2.195)

We can find that the second-order vector mode is sourced by the anisotropic stresses
of photons and massless neutrinos and the coupling of the first-order scalar modes.
We find that the anisotropic stress does not strongly affect the second-order vector
mode [9]. When we consider the evolution equation up to the first order in the standard
cosmology with perfect fluids, the right-hand side of Eq. (2.195) becomes zero. As a
result, the vector mode has only a decaying solution, which is neglected in the linear
theory.

2.7.2 Vector-Mode Boltzmann Equation

Here, we discuss the tight-coupling approximation of the vector mode which is
also partially discussed in the second-order theory [10—13]. In order to solve the
second-order equations numerically, we should set up the initial condition of each
perturbation variable. Thus we first solve the equations analytically with kn <« 1 and
using the tight coupling approximation, and find the initial condition at sufficiently
early time for our numerical calculation.

Deep in the radiation dominated era, photon and baryon fluids are tightly coupled
because the opacity 7, is large. Although the photon and baryon fluids would behave
as a single fluid, there is a small difference in motion between photon and baryon
fluids. For this reason, we can expand the perturbation variables using the tight-
coupling parameter which is given by

k T+2\ 72/ ph?\
~ 102 , 2.196
<1Mpc—1>< 104 ) <0.02) ( )

where €2y, is the baryon density normalized by the critical density, and # is the
normalized Hubble constant. In what follows, we derive the tight-coupling solution
up to the first order to set the initial condition of photon and baryon fluids at the second

€=

Te
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order in cosmological perturbations and to calculate the evolution of perturbations
in a numerically stable manner.

We expand the cosmological perturbation variables using the tight-coupling
parameter € up to the first order as

ACPT=12) _ A(CPT=I2TCA=) 4 A(CPT=I2TCA=D) 4 . (2.197)

where the Arabic number and the Roman number represent orders in the cosmological
perturbation and the tight coupling expansion, respectively.

First, the solutions at zeroth order in the tight-coupling expansion, namely, in the
tight-coupling limit, are given as

vy (k) =0, (2.198)
APt =20 [ [l teel)y e ] 1o By 2199)
AZD (k) =0, (2.200)

2k, ky) as

171

01,0, AL m IR ZW4 by b (L
Vit k) = (—D"e+ 1) Y (0 0 0) (m1 o~ _m)

mip,ny

ATy (ky) ATy (ky) (2.201)
X P — S —— . .
20+ 1 0m U 20y 4 e

In the tight-coupling limit, the relative velocity between photons and baryons van-
ishes as well as in the first-order cosmological perturbation theory. However, the

anisotropic stress of photons is present due to the quadratic of the photon velocity.
Second, the solutions at the first order in the tight-coupling expansion are given
as

1+ R
20w = £0< )A(Q;\(k) ( )(wf\z)(k)Jruﬁ(k))
[~200 Pyt + 68 + w0k ] 57 o
[ vé%(kwﬂ(l())(kz)}/ T VaG)
1 1
+/k[ ”<k1>6v§b’0(kz>],/ vy k)

[26va)0<k1><5“> lv“))(kz)},/ vy \Gkr)

+ (’;1)[_§5§,1>(k1><w<1>+<p<l>><k2) \P(l)(kl)&(”(kz)],/ Yy Gkr)

Tc

where k, = k — ky in Eq. (2.199). We define the function y
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AL () = (T ) 2‘FA§2§ +15 / [n“g<k1)v<”<kz)] NANCGIN DR
(2.204)
AL (k) =0. (2.205)

In order to derive the above solution, the time derivative of the first-order curvature
perturbation @ is ignored due to the conservation of the curvature perturbation on
large scales. In the right-hand side of Egs. (2.202), (2.203), and (2.204), for simplicity,
we omit the superscript for the order of the tight-coupling parameter. Note that the
octopole does not vanish and higher multipoles than £ = 3 are equal to zero at this
order [14].
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2.7.3 Configuration in Fourier Space

When we solve the second-order perturbation equation, we usually move to Fourier
space. In Fourier space, there are two types of the wave vector. One is the physical
wave vector related to the second-order perturbations denoted as k. And another is
the dummy wave vector appeared in the convolution and denoted as k| and k. These
wave vectors satisfies the triangle condition k = k| + k. In this section, we present
the configuration of these wave vector.

To calculate the second-order power spectrum, we decompose the second-order
variable into the transfer function and the primordial amplitude [15] as

AP, k) = / AP, ke, ke, k) D (k) D (k) (2.206)
k

where A(Tz ) and @ are the second-order transfer function and the primordial ampli-
tude, respectively. The ensemble average of the variance of the primordial amplitude
can be expressed as (®*(k;)®(ky)) = (2m)3Po(ky)d(ky — k), where Py (k) is
the primordial power spectrum determined from cosmological observations such as
CMB and large scales structure. In this thesis, we use the power-law spectrum as

S 4 (k\"!
7 Py (k) = 9AS (ko) , (2.207)
where the parameters, A, and ng, are the amplitude and the spectral index of pri-
mordial perturbations, respectively. We set A, = 2.4 x 107° from the WMAP
nine-year results [16], and for simplicity, we consider a scale-invariant spectrum,
namely, n; = 1.0.

In this decomposition, the second-order power spectrum can be written as

2
Pav(n, k) =2 / (AP k. ki k)| Pothn) Poth) (2.208)
k

where we can use the symmetry under the exchange of k| and k, without loss of gener-
ality to derive the above relation. Note that k = k| + k, should be satisfied implicitly,
namely, A (0, k, k1, ko) = AP (), k, ki, k — ky) and Py (ky) = Po(lk — k1), as
is mentioned before.

We need to solve the Einstein-Boltzmann system in (k, kj, k») space. Note that
the transfer function is transformed under the rotation of ¢ as

AP,k Ky ko) — AP0,k Ky, kp)e™ (2.209)

In practice, we take ¢ = 0 = 0, ¢; = 0, and ¢, = 7 for k, k|, and k,, respectively.
In other words, the transfer function under the exchange of k; and k, transforms as
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2 _ o 1yn A
Ak ki, k) = (D" A (0, k, ka, ky) (2.210)

It is very interesting that for the case of the scalar and tensor modes, the dominant
contribution comes from near the k ~ k; ~ k,. Because the transfer functions of the
scalar (m = 0) and tensor (m = £2) modes are symmetric under the exchange of
ki and k,. On the other hand, the vector mode does not have dominant contribution
near the k ~ k; ~ k; since the transfer function of the vector mode is antisymmetric
under the exchange of k; and k.

In the vector mode, we can naively consider three configurations of the triangle
k = k,+k; that contribute to the power spectrum on superhorizon scales, namely, the
one where both k; and k, are on superhorizon scales, where k; (k;) is at superhorizon
scales while k, (k1) is at subhorizon scales, and where both k; and k, are at subhorizon
scales. When both k; and k, are at subhorizon scales, the square of the primordial
power spectrum in Eq. (2.208) does not contribute on the power spectrum because
of the antisymmetric nature of the vector transfer function. In the vector mode, we
therefore need a careful treatment of how to sample wave numbers in (k, k1, k»)
space. This difficulty does not arise in the second-order scalar and tensor modes
calculations because the transfer functions of the scalar and tensor modes have a
symmetry under the exchange of k; and k.
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Chapter 3
Generation of Magnetic Fields

Abstract The origin of magnetic fields with large coherent length, called cosmolog-
ical magnetic fields, has been an open question, although many models are proposed.
It has been believed that cosmological magnetic fields are the resultant of amplifica-
tion by the dynamo mechanism. If we believe the dynamo mechanism, we need to
set seed fields in the early universe, that is, before the cosmological recombination
epoch. This is because the dynamo mechanism cannot create magnetic fields from
the absence of seed fields. In this part, we apply the second-order vector mode in the
cosmological perturbation theory to generate seed magnetic fields. The estimation
of the second-order magnetic fields has not been accomplished because there is a
discrepancy between previous results with the incomplete analysis. We reproduce
the previous results by the original Boltzmann code and identify the cause of the
discrepancy. Consequently, we provide the fully-considered results of second-order
magnetic fields.

Keywords Second-order perturbation theory - Cosmological magnetic fields
Harrison mechanism

3.1 Introduction

The presence of magnetic fields on large scales is established by current observa-
tions [1-5]. Such cosmological magnetic fields coevolve with the Universe, e.g.,
astrophysical objects, cosmic microwave background radiation (CMB), large scale
structure, and inflation. Recent observations indicate that cosmological magnetic
fields have the strength about micro-Gauss on Mpc scales (see, e.g., Refs. [1, 2, 5—
8], and references therein). Moreover, the pair-echo method [9-13] determines the
lower bound of strength in the intergalactic magnetic fields as B 2> O (10~%2) Gauss.
The remarkable progress of observations indicates that cosmological magnetic fields
appear everywhere even in the cosmic voids. Furthermore, the future experiments
of the radio telescope such as Square Kilometer Array can survey much deeper and
wider regions, and give us rich information about coevolution between cosmologi-
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cal magnetic fields and baryonic matters. However, very interestingly, the origin of
cosmological magnetic fields is not entirely revealed.

The key process related to evolution of magnetic fields is the dynamo mechanism
[7, 14-16], which is the amplification mechanism of magnetic fields in the nonlinear
magnetohydrodynamics. In the stars, galaxies, and galaxy clusters, their nonlinear
evolution can amplify seed magnetic fields, and the strength of seed fields is about
1072% ~ 1073 Gauss [17]. Generally, the dynamo mechanism cannot generate
magnetic fields from the absence of seed fields but amplify the seed fields, which
should be set before the dynamo mechanism works. Therefore, when we believe
that the origin of cosmological magnetic fields is as a result of amplification of seed
fields by the dynamo mechanism, seed fields must be created in the early stage of
the universe, namely before cosmological recombination.

One of the candidates to create seed fields is the quantum fluctuations of the elec-
tromagnetic fields in the inflation era. During the inflation era, the scale of fluctuations
is extended beyond the Hubble horizon due to the nearly exponential expansion. At
first glance, it is possible to rely on this scenario to generate large-scale magnetic
fields. However, this scenario does not work since the standard Maxwell theory has
the symmetry under the conformal transformation. Under this symmetry, the vector
fields, such as magnetic fields, undergo decaying only and become negligible. In
other words, when the conformal invariance is broken, inflationary magnetogenesis
possibly works. In many of the previous studies [18-22], the authors have intro-
duced interaction between the electromagnetic fields and the dilaton-like scalar field
to break conformal invariance. However, even in this case, there are other problems
in the inflationary magnetogenesis, i.e., strong-coupling and backreaction problems
[23, 24]. These problems make the situation worse. Therefore we can conclude that
it is difficult to generate seed fields during the inflation era alone. In the more recent
studies [25-27], a new interaction between electromagnetic fields and axion-like
pseudoscalar field is added in the context of dilaton-like magnetogenesis. This inter-
action ends up with generation of helical magnetic fields on small scales. The inverse
cascade can transfer helical magnetic fields from smaller scales to much larger scales
owing to conservation of the magnetic helicity. We therefore expect the existence of
magnetic fields on all scales in later epochs although the detailed numerical estima-
tion is needed [28, 29].

The cosmological phase transition is another possibility to generate seed fields
(e.g., Refs. [7, 8]). In general, phase transitions release the free energy and electric
charges. The released free energy is converted into the electric currents. If these
electric currents have rotational components, cosmological seed fields are induced
at epochs of phase transitions. However, the coherent length of seed fields generated
in the cosmological phase transitions cannot exceed the Hubble horizon scale at that
time due to the causality. Therefore phase transitions alone are not able to explain
observed large-scale magnetic fields [30].

Another category of generation mechanism is originated from astrophysical phe-
nomena. For example, the Biermann battery is one of the candidates of generation
mechanism after the recombination epoch. The gravitational force can be described
as a gradient of the scalar potential and hence cannot generate vorticity. However,
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the Biermann battery, which is non-adiabatic phenomena such as shocks, can gen-
erate vorticity and subsequently, seed fields are induced with the amplitude about
10~ Gauss in protogalaxies [31], 10717 ~ 10~ Gaussin supernova remnants [32],
and ~1072! Gauss in galaxies [33]. The Weibel instability, which is microscopic
instability in the plasma, can amplify tiny seed fields at the epoch of structure forma-
tion [34, 35]. When the velocity distribution of plasma particles has an anisotropy
in the phase space, the isotropized process of the velocity distribution releases the
energy, and subsequently, the energy is converted into magnetic fields. Accordingly,
magnetic fields amplified by the Weibel instability have a quite large amplitude of
about 10~7 Gauss [34, 35]. However, the Biermann battery and Weibel instability can
only work with the existence of baryonic matters or astrophysical objects. Therefore
it is difficult to explain the origin of intergalactic magnetic fields or magnetic fields
in the voids.

Yet another interesting mechanism of generating magnetic fields is the Harrison
mechanism [36] in which magnetic fields are generated via vorticity of the primordial
plasma. In Ref. [37], the authors have formulated the Harrison mechanism based on
the cosmological perturbation theory in the primordial plasma which is a multicom-
ponent system composed of photons, electrons, protons, dark matters, and neutrinos.
In this system, photons and electrons or protons interact with each other through
the Compton scattering. However, photons push electrons more frequently than pro-
tons because of the difference of scattering rates. Accordingly, the charge separation
takes place. If there exist rotation-type electric fields, magnetic fields are generated.
However, in the linear perturbation theory, the Harrison mechanism does not work
because there is no growing mode solution for the vector-mode perturbations which
induce rotation-type electric fields. In other words, the models including the active
vector mode supplied by external sources, i.e., free-streaming neutrinos [38—40],
cosmic defects [41, 42], and modified gravity with vector fields [43], can generate
magnetic fields via the Harrison mechanism.

Moreover, it turns out that even standard cosmological perturbations can generate
magnetic fields if we take into account contributions from higher-order perturbations.
In fact, it is known that the second-order perturbation theory has not only the scalar
mode but also the vector and tensor modes through the product of the first-order
scalar perturbations. Recently, the second-order cosmological perturbation theory is
well established in the context of the CMB formalisms [44-55]. For example, the B-
mode polarization is calculated based on the second-order perturbation theory while
there is no B-mode polarization in linear scalar perturbations.

Recently, generation of magnetic fields via the second-order perturbation has
been studied in detail [56—60]. In these studies, the tight-coupling approximation is
employed to estimate the amplitude of magnetic fields analytically. Each study has
shown that the amplitude of generated magnetic fields is about 1073° ~ 10727 Gauss
at recombination on Mpc scales. However, it is difficult to know the detail of the
magnetic power spectrum since the tight-coupling approximation breaks down inside
the horizon scale at recombination. By solving perturbation equations up to the
second order without employing the tight-coupling approximation, it is possible
to analyze the power spectrum of magnetic fields. In Ref. [61], the authors have
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evaluated the spectrum generated by the vorticity of charged particles, which are
induced by the nonlinear coupling between the first-order density perturbations.
And they have found that resultant comoving magnetic fields have the amplitude of
about 1072’ Gauss at recombination on Mpc scales. Subsequently, in Refs. [62, 63],
the authors have studied the Harrison mechanism including the anisotropic stress of
photons. They have found that the amplitude of magnetic fields has 1072° Gauss at
recombination on Mpc scales. However, they ignore the purely second-order velocity
difference between charged particles and photons in their analysis. In Ref. [64], the
authors include the purely second-order effects for the first time and analyze the
spectrum of magnetic fields on superhorizon scales. In these studies, however, there
are some discrepancies which have to be clarified.

In the following sections, we numerically solve the vector mode of cosmological
Einstein-Boltzmann equations at the second order including all the effects relevant
to the generation of magnetic fields, with a newly developed numerical code. In
addition we present analytic interpretations of the shapes and time evolutions of the
power spectrum of magnetic fields on sub- and superhorizon scales, and make it clear
what has caused the discrepancies among the previous studies.

3.2 Harrison Mechanism

In this section, we review basic equations for the generation of magnetic fields [37,
62], i.e., perturbation equations of photon, proton, and electron fluids. While protons
and electrons are conventionally treated as a single fluid, however, it is necessary to
deal with proton and electron fluids separately in order to discuss the generation of
magnetic fields.

Let us begin with the Euler equations. Although the Euler equation for baryons
are derived in Chap. 2, we need to include the electromagnetic fields in the Euler
equations for charged particles. It is convenient to start from the Euler equation in
terms of the four-velocity. Those are given by

mpnul’o"upi;u - enuij’F,-H = Cpie + Cpl_v’ (3.1
menubue., + enull Fy, = Ce[p +C, (3.2)
where m () is the proton (electron) mass, up,) is the bulk velocity of protons (elec-

trons), F,; is the usual Maxwell tensor. The interaction term is defined by using the
collision term in the Boltzmann equation as

. &
Y = f (2;3) piCY [f ()] . (33)

where we denote x and y as species of interaction particles. The thermal pressures
of proton and electron fluids are neglected. The right-hand side of Eqs. (3.1) and
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(3.2) represent the collision terms. The first terms in Egs. (3.1) and (3.2) are collision
terms for the Coulomb scattering between protons and electrons, which are given by
[56]

CF = —C" = —(ui — ue)®n’n . G4
where 12 32
2 1 - In A
= e me InA ~9.4x 10 sec te na ) (3.5)
(kpTe)*/? 10° 10

is the resistivity of the plasma and In A ~ O(1) is the Coulomb logarithm, which is
the almost constant parameter. As is well known, this term acts as the diffusion term
in the evolution equation of magnetic field. The importance of the diffusion effect
can be estimated by the diffusion scale,

1/2
T
)\diff = T ™~ 100 (F) AU, (36)

0

above which magnetic field cannot diffuse in the time-scale 7. Here Hy, =
100/ km/s/Mpc is the present Hubble parameter with / being the normalized Hub-
ble parameter. Thus, at cosmological scales considered here, this term can be safely
neglected.

The other terms expressed by C,P(e)7 are the collision terms for Compton scattering
of protons (electrons) with photons. Since photons scatter off electrons preferentially
compared with protons by a factor of (. /m,)?, we can safely drop the term C",’ from
the Euler equation of protons. This difference in collision terms between protons and
electrons ensures that small difference in velocity between protons and electrons,
that is, electric current, is indeed generated once the Compton scattering becomes
effective. And finally, we have only to do is to derive the expression of C;”. The
collision term between photons and electrons is already given in Eq. (2.157) and
calculated as

S
' (2m)

< piCLf]

dan.o 3 .
=- ; pr |:(vei — Vy) + Zvejn'yi]i| , 3.7

where the product of the velocity of electrons and anisotropic stress of photons
in Eq. (3.7) is the anisotropic part of radiation drag in the context of the radiation
hydrodynamics. The radiation drag is originated by the electron motion in anisotropic
radiation fields with absorptions and emissions. The velocity of electrons v,; obeys
the Euler equation, and the velocity and anisotropic stress of photons, v,; and IT.;/,
obey the Boltzmann equation.
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Now we obtain the Euler equations for protons and electrons as

mpnugu,,im — enugF,-/,, =0, (3.8)

dorpan 3 .
menué‘uei;u + enué‘Fm = % |:6v'ybi - Zvejl'lwi’] s 3.9)

where m,, is the proton mass. Here, we ignore the pressures of proton and elec-
tron fluids. In addition, the Coulomb collision term is neglected as explained below
Eq. (3.6). Note that the collision term was not evaluated in a manifestly covariant
way. Here the left-hand side in Egs. (3.8) and (3.9) should be evaluated in a confor-
mal coordinate system. We also assumed the local charge neutrality: n = n. ~ n,.
In the case without electromagnetic fields (F;, = 0), the sum of the Egs. (3.8) and
(3.9) gives the Euler equation for the baryons in the standard perturbation theory. On
the other hand, subtracting Eq. (3.8) multiplied by m. from Eq. (3.9) multiplied by
mp, we obtain

mpm ji mp — Me Jj;
e |:nu“ (%’) + j* (gj—l — ui) j| +en(mp + me)ut Fiyy — (mp — me) j* Fiy
K NG

4mppyanor 3 .
= % |:5U7bi - ZUejnqij]s

(3.10)

where u' and j* are the center-of-mass 4-velocity of the proton and electron fluids
and the net electric current, respectively, defined as

i i
= MpUp + Melle

, 3.11
. (3.11)

jt= en(ui)‘ —ul). (3.12)

Employing the Maxwell equations F*., = j*, we see that the quantities in the
square bracket in the left-hand side of Eq. (3.10) is suppressed at the recombination
epoch, compared to the second term, by a factor [65]

2 10°cm 3\ ( IMpc '\’
¢ ~3><10—4°< cm )( pC), (3.13)

szg n L

where c is the speed of light, L is a characteristic length of the system and w, =
J4mne?/m. is the plasma frequency.

The third term in the left-hand side of Eq. (3.10), i.e., (m, — m.) j* F;,,, is the Hall
term which can also be neglected because the Coulomb coupling between protons
and electrons is so tight that [u’| 3> |ui, — u{|. Then we obtain a generalized Ohm’s
law:

4 , 3 ;
MNFZ,# — ngwa |:5U7bi — Zvejl'lv'i’] = C,' . (314)
e
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Now we derive the evolution equation for the magnetic field, which can be obtained
from the Bianchi identities Fj,, ») = 0, as

3 ..
0= Eel'wuﬂF[jk’u]

, N u’ , u® .
=u'B , — €t (c,,»,k + u—gck) — ' ;B —u! B+ —L B~ B,
(3.15)

where €% is the Levi-Civita tensor and B' = (a®B’) = €% F};/2 is the magnetic
field in the comoving frame [66]. We will now expand the photon energy density,
fluid velocities, and photon anisotropic stress with respect to the density perturbation
as

py(t.xi) = pV () + p\P (1. xi) + -
Wt x;) = at)” 1+u<“°(r,x,~>+--- :
. . 1 .
ul(t, x;) = uV(t, x) + 5“(2)'(& X))+,
1
vi(t, x;) = vl.(l)(t,xi) + Evi(z)(t,xi) 4+,
Y@, x) =07 @x0) + -+ (3.16)

where the superscripts (0), (1), and (2) denote the order of expansion and 7 is the
cosmic time. Remembering that B is a second-order quantity, we see that all terms
involving B’ in Eq. (3.15), other than the first term, can be neglected. Thus we obtain

dBi . u® .
— ~ €k (Cj’k + —’()’Ck)
u

dt
4orpPa . T1 3
€ 2 1 ¢ (1) @O !
SR [Eévvbj,k o) vl - 5 (vm) )J (3.17)
where we used the density contrast of photons, 55/1,){ = p“) / p(O) Further, we

employed the fact that there is no vorticity in the first order: €/fv ( ) = 0. It should
be noted that the velocity of electron fluid can be approx1mated to the center-of-
mass velocity at this order, v{"’" ~ v{"". The physical meaning of this equation is
that electrons gain (or lose) their momentum through scatterings due to the relative
velocity to photons, and the anisotropic stress of photons. The momentum transfer
from the photons ensures the velocity difference between electrons and protons, and
thus eventually generates magnetic fields. We found that the contribution from the
curvature perturbation is always much smaller than that from the density contrast of

photons. Furthermore the tensor perturbation, i.e., primordial gravitational waves,
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is subdominant comparing with the scalar perturbation in the current observations
[67-69]. Therefore, we have omitted the curvature perturbation and the tensor per-
turbation in Eq. (3.17) when considering the evolution of magnetic fields. Equation
(3.17) shows that the magnetic field cannot be generated in the first order. The right-
hand side of Eq. (3.17) contains two types of source terms, i.e., a purely second-order
term and those that consist of the products of first order quantities.

The first term in Eq. (3.17) is exactly the same as that discussed in [59]. They have
estimated the amplitude of magnetic fields from these terms by considering typical
values at recombination. Here, we solve the equation numerically and obtain a robust
prediction of the amplitude of magnetic fields in the standard ACDM cosmology.
In the cosmological perturbation theory, we usually decompose the perturbations
into the scalar, vector, and tensor modes. Following Sect. 2.1, we split the evolution
equation of magnetic fields in Eq. (3.17) into the scalar and vector parts, i.e., B; =
By 01-(0) +> 1 B Oi()‘). When we pull out the scalar mode from Eq. (3.17), we
find that the right hand side of Eq. (3.17) vanishes, namely,

dBy
—=0. 3.18
7 (3.18)

This is because magnetic fields consist of rotation of the vector potential, or in other
words, magnetic fields do not have the scalar component. In contrast, the vector mode
for Eq. (3.17) is given by

dB)y (k) _4O'Tp£/0)a
dt — 3e
4 - A A

+ fk NI CINRS IR —vff&(kl)nE,%(kz)y};i(kl,k2>] :

(3.19)

2
(Ak)[—;s NG

where ygl -2 (k 1, k2) is defined in Eq. (2.201). To estimate resultant magnetic fields,
we solve the second-order Boltzmann equation for photons (2.169), Einstein equation
of the vector mode (2.195), and Eq. (3.17) at the same time. In the next section, we
show the result of generated magnetic fields and some discussions.

3.3 Results: Cosmological Magnetic Fields

In this section, we show the evolutions and spectra of magnetic fields driven by
the Harrison mechanism. In the previous studies [60, 61, 63, 64, 70], generated
magnetic fields are partially estimated by numerical or analytical ways, and there is
a small discrepancy between in Refs. [63, 64]. In this paper, we build on Ref. [63] and
expand the work by including all contributions numerically. The source terms of the
magnetic fields consist of three contributions, i.e., 55”5 vi,{)), v](jl) I"IEI,'), and § v%), which
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hereafter we call “the slip term”, “the anisotropic stress term” and “the second-order
slip term”, respectively.

In this paper, we focus on three issues on the generation of magnetic fields
at recombination. First, we consider how large is the contribution of the second-
order slip term on magnetic fields compared with the contributions of the slip and
the anisotropic stress terms. Second, to evaluate the total spectrum of magnetic
fields we need to include the cross-correlation terms between the sources, namely,

Py ~ <(and stip + Bsiip + BAnis)2>. The cross terms can be negative and it has the

possibility to cancel the generated magnetic fields from each of the source terms.
Third, we try to find the cause of the small discrepancy between Refs. [63, 64]. In
the following subsections, we show the evolutions and spectra of magnetic fields and
the answers of the above three considerable questions.

3.3.1 Evolutions of Magnetic Fields

In Fig.3.1, we show the evolutions of magnetic fields induced by the slip, the
anisotropic stress, and the second-order slip terms. First, we focus on the evolutions
of magnetic fields before the horizon crossing. The time evolutions of magnetic fields
can be approximated by a power law, and the powers of the slip and the anisotropic
stress terms are Bgjjp & 771'5 and Bay;s 770‘5, respectively. These results correspond
to the previous study [63]. Furthermore, the second-order slip term is proportional to
13 on superhorizon scales. We can explain the coincidence of the powers between
the anisotropic stress and the second-order slip terms as follows. In Eq. (2.202), the
dominant terms in early times can be estimated by using the superhorizon solutions
at the first order. At first glance, the term (" x ® in Eq. (2.202) seems to give
a dominant contribution to the second-order slip term. However, because both 6@1)

and ® are scale invariant in the Poisson gauge and according to the formula of
spherical harmonics, k; %”Y ' (121) + kz\/g Ye, (122) = kom0, this scale invariant
term vanishes in the vector mode. As a result, we find that the most dominant term in
Eq. (2.202) is that proportional to vél) HE,D, which is the same form as the anisotropic
stress term. Therefore, the powers of the time evolutions of the anisotropic stress and
second-order slip terms coincide.

Next, we discuss the evolutions of magnetic fields after the horizon crossing. We
can see that the magnetic fields from the slip and the anisotropic stress terms start
to decay adiabatically as o« a2, after the horizon crossing since their sources also
diminish after the horizon crossing. On the other hand, magnetic fields induced by
the second-order slip term do not decay adiabatically even after the horizon cross-
ing. This arises from the fact that the second-order slip term & vfi) continues to grow
even after the source terms from the first-order perturbations become negligible,
until the corresponding scale reaches the Silk damping scale. Therefore, the purely
second-order perturbations can contribute to the magnetic field generation even if
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Fig. 3.1 Evolutions of generated magnetic fields sourced by the slip term (top left), the anisotropic
stress term (top right), and the second-order slip term (bottom). We show evolutions of generated
magnetic fields for wavenumbers k = 1072 hMpc~!, 10~! AMpc~!, and 10° 2-Mpc~! as indicated
in the above panel. We can see that magnetic fields at smaller scales generated earlier and their
amplitudes are larger

the product of the first-order perturbations is absent. When we neglect the product
of the first-order perturbations, the evolution equations for magnetic fields are cor-
responding to the case of the first-order magnetic fields generation [39]. The relative
velocity between photons and baryons, § vfi) \ contributes to the generation of mag-
netic fields after the horizon crossing. This additional enhancement can be seen in
the bottom of Fig.3.1 at k = 10° ”Mpc~'. However, magnetic fields induced by
the additional enhancement undergo nontrivial cancellation after the Silk damping
epoch and magnetic fields decay faster than the adiabatic decay that it is proportional
to a2 [39]. The final amplitude of magnetic fields is consequently determined by
the initial amplitude around horizon crossing.

3.3.2 Spectra of Magnetic Fields

Next, we show the spectra of magnetic fields induced by the slip, the anisotropic
stress, and the second-order slip terms in Fig. 3.2. From Fig. 3.2, resultant magnetic
fields are dominated by the anisotropic stress and second-order slip terms on smaller
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Fig. 3.2 Spectra of generated magnetic fields sourced by the slip term (fop left), the anisotropic
stress term (fop right), and the second-order slip term (bottom). We show spectra of generated
magnetic fields for redshifts z = 1.1 x 10%, 1.1 x 10*, and 1.1 x 10° as indicated in the above panel

scales, i.e., k > 1.0 htMpc~!, at 1 4 z = 1100. Conversely, on these scales, the slip
term is a subdominant source for magnetic fields.

On superhorizon scales, we can see that the spectra of magnetic fields are propor-
tional to k>, which also corresponds to the results about the slip and the anisotropic
stress terms in Ref. [63]. This power is also consistent with the power spectrum for
causal magnetic fields [71]. From Ref. [63], the magnetic power on superhorizon
scales can be estimated as below. For example, we focus on magnetic fields induced
by the slip term. We can integrate the evolution equation for the second-order mag-
netic fields (3.19) and take the ensemble average as

K3 k
o Pa)] ok [ (1 43) ot Potio [Sz(kz, kD) = ZES (ki k) S(ho, ko] :
2 Slip k2
(3.20)
where p; = cos 6 and S(ky, k;) is defined as
St k) = [ dna* e oG miotle . G2D

where for simplicity, we omit the time dependence of S(ky, k). To proceed the
estimation of the magnetic power, we take the limit k/k; — 0. This approximation
can include the contributions from subhorizon scales. In this limit,
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k 2
ky =4k |1— o + O ((k/k)?) | - (3.22)
1

Furthermore, we can approximate the integrated source term as S(ky, k) =~ S(ka, k1)
~ T (k) since S(ky, k) can be treated as k independent in the above limit. Then by
using the fact that Py (k) o< k™, Eq. (3.20) can be rewritten as

K3 o k
— Py (k) cka/kfdkl fdul (1— )k ry <1 - —1> T2 (k) ,
27 Slip kz
(3.23)
x k. (3.24)

This nonlinear power law can be seen in Fig. 3.2. Note that if we use the superhorizon
solution only, namely, 5f’,,1) o (kn)? and & v;,t) o & k31, the magnetic power is returned
as oc k8. This superhorizon power does not match for our numerical results.

By using our numerical code, we trace a possible cause of the discrepancies
between the results in previous studies. As we noted in Sect. 2.7.3, the transfer
function of the vector mode is antisymmetric under the exchange of k; and k,, and
therefore, the isosceles configuration such that k; = k, in Fourier space does not
contribute in the calculation of the power spectrum. However, to achieve the result
correctly, contributions from the configurations of k1 < k, and k, < k; should be
included. When these contributions are not included in the numerical calculation,
the power spectrum of magnetic fields on superhorizon scales shows o< k*, which
corresponds to the result obtained in Ref. [64].

On subhorizon scales, we can find that the spectra of magnetic fields induced by
the slip, the anisotropic stress, and the second-order slip terms are proportional to k*2,
k' and k', respectively. The spectra induced by the slip and the anisotropic stress
terms are consistent with Ref. [63]. A noticeable feature in the spectrum induced by
the second-order slip term is the additional amplification at k &~ 5.0 x 10~! AMpc~!
at z = 1100. As discussed in Sect. 3.3.1, this additional amplification is due to
the second-order relative velocity between photons and baryons after the horizon
crossing. However, this amplification is a temporary effect and the amplified magnetic
fields by this effect had been erased by the epoch of Silk damping [39]. Therefore,
the amplification cannot be seen for scales k > 1.0 AMpc ..

The above discussion and result in this subsection are valid only for the auto-
power spectra of the magnetic fields from the slip, the anisotropic stress, and the
second-order slip terms. In the following subsection, we focus on the total power
spectrum induced by all the contributions including the cross spectra.
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Fig.3.3 Magnetic spectra generated from the slip term, the anisotropic stress term, the second-order
slip term, and all terms included the cross terms at recombination (1 + z >~ 1100)

3.3.3 The Second-Order Magnetic Fields

We depict the total power spectrum at recombination in Fig.3.3. It is clear that the
second-order slip term gives a dominant contribution to the total magnetic fields.
The amplitude of magnetic fields from the second-order slip term is 10 times larger
than without the second-order slip term. However, we find that the magnetic fields
from the second-order slip term are canceled out by the magnetic fields from the
anisotropic stress term on small scales.

By using the tight coupling solution given by Eq. (2.202), this cancellation is
easily understood analytically. As we mentioned in Sect. 3.3.1, the dominant term
in Eq. (2.202) is the anisotropic stress term given by

1 5 PRI
e A [—Enf,%(kl)vglé(kg} Vit k) (3.25)

while any other terms related to the anisotropic stress are subdominant with the
baryon-photon ratio R o 3p"/ (4p\) as a suppression factor. By substituting this
expression into Eq. (3.19), the evolution of magnetic fields from the second-order
slip and the anisotropic stress terms is given as
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dB, [5 1 51 .o ) _—
e [ZH—R_Z} STV )V 2 k), (326)

where the first and the last terms in the parentheses are coming from the second-order
slip term and the anisotropic stress term, respectively. We can see that the two terms
in the parentheses in Eq. (3.26) are canceled in the radiation dominated era, where R
is negligibly small. However, in the matter dominated era, the baryon-photon ratio
has large value and this cancellation does not occur.

The dominant contribution from the second-order slip term is canceled out by
the contribution from the anisotropic stress term in the radiation dominated era.
Conversely, there still remain some contributions from the second-order slip term
as shown in Fig.3.3 and discussed below using the tight-coupling solution. The
sub-leading contribution from the second-order slip term can be written as

1
= g LI 2008 k)6 en) | Y. G2

Then, the evolution equation of magnetic fields induced by the slip and the second-
order slip terms can be rewritten as

dB [4m
d—tA o [1 " }51)‘{30@1)5“)(1(2) — Yk (3.28)

where the first and the last terms in the parentheses are coming from the second-
order slip term and the slip term, respectively. From Eq. (3.28), we find that the total
amplitude of the spectrum of magnetic fields is twice as large as the case only with
the slip term. This tendency can be seen in Fig. 3.3.

Next, let us discuss the evolution of magnetic fields through the epoch of recombi-
nation. As the process of recombination proceeds, electrons form neutral hydrogen
atoms with protons and the number of free electrons rapidly decreases. Accord-
ingly the effect of the Compton scattering on generation of magnetic fields becomes
negligible and magnetic fields are no longer generated through the Harrison mecha-
nism. We show the power spectrum of second-order magnetic fields after the recom-
bination epoch at z >~ 500 in Fig.3.4. In Fig.3.4, one can find new features in
the spectrum different from one at recombination on intermediate scales such as
1072 hMpc™' < k < 1.0 hMpc~'. These features are nearly consistent with
Ref. [64]. For instance, magnetic fields induced by the slip term decrease on inter-
mediate scales. On the other hand, magnetic fields induced by the second-order slip
term are enhanced at cosmological recombination since the relative velocity is also
enhanced at that era. We furthermore extend the magnetic spectrum to much smaller
scales. On scales where 1.0 A-Mpc~! > k, magnetic fields induced by the slip, the
anisotropic stress, and the second-order slip terms have the same structures as the
magnetic spectrum at recombination shown in Fig.3.3. As a result, the spectrum of
second-order magnetic fields has a slightly blue tilt on small scales.
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3.3.4 Nonhelical Magnetic Fields

Before closing this section, we investigate the possibility whether helical magnetic
fields are generated in the Harrison mechanism or not since the helicity may play
important roles in the cosmological observations [72—76]. In fact, in Ref. [77], the
authors found the evidence of existence of helical magnetic fields on a few Mpc
scales. It is believed that helical magnetic fields can only be generated through the
process of parity violation. Because helicity is conserved in the standard magnetohy-
drodynamics, it is a good indicator to probe the generation mechanism of magnetic
fields. We will show below that the Harrison mechanism does not induce helical mag-
netic fields since this mechanism relies on the standard Compton scattering which
does not break the parity symmetry.

At first, under the existence of helical magnetic fields, the correlation of magnetic
fields can be written as

+ iGijkkk

Pg (k)
2

~ n Py (k
(Bi(k)B; (k")) = (2m)*6(k — k') |:(5ij —kikj)—— HZ( )

i| , (3.29)
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where Pp(k) and Py (k) are the spectra of nonhelical and helical magnetic fields,
respectively. The power spectrum of helical magnetic fields can be pulled by the
subtraction as <Bi (k)B; (k' )) — <B i (k)B; (K )). In the Harrison mechanism that is
given by Eq. (3.17), generated magnetic fields can be symbolically expressed as

B; (k) o €jqpk” / ko f (ky, k) XDl ) YD (k) (3.30)
X

where f (ki, k») is an arbitrary real function of k; and k,, and X (k) and YV (k»)
are the time integrals of first-order scalar perturbations. The scalar perturbations can
be decomposed into the primordial perturbation ® (k) and the transfer function
XT(kl) or YT(kz) as X(l) (k] )Y(l) (kz) = (I)(l)(kl )q)(l) (kz)XT(kl )YT(kz) Note that
we use the fact that the purely second-order variables, e.g., dv-4;, are composed the
product of the first-order scalar perturbations.

Finally, we evaluate the helical part of the power spectrum as

(Bi(k)B;(K')) — (B; (k) B; (k")) oc2m)*6(k — k') (€1av€jar — €javCiar) kK"
x /k F(ky ) X (k) Yo (k) P (k1) Pa (k)
x [JERY £ Ky, o) X () Y (k)

1 /ainy  npng,
+ 5 (R + R&Y ) f Gea. e) Xn G Yo (k) |
=0, (3.31)

where we symmetrize about b <> b’ in the square bracket by using the nature of the
symmetry under the exchange of k; and k,. In conclusion, the Harrison mechanism
cannot induce helical magnetic fields. This result is coming from the fact that gen-
eral relativity and the standard Maxwell theory do not violate the parity symmetry.
Therefore, the observed helical magnetic fields call for other mechanisms to explain.

3.4 Conclusion

In this section, we reinvestigate the spectrum of magnetic fields induced by cosmolog-
ical perturbations through the Harrison mechanism. If we consider the cosmological
perturbation theory up to the first order, the Harrison mechanism does not work since
the vector mode, which is needed for this mechanism, has only a decaying solution.
However, when we expand the cosmological perturbation up to the second order,
the regular solution of the vector mode is excited by the first-order scalar mode. The
Harrison mechanism works in the higher-order cosmological perturbation theory.
In previous studies, the spectrum of magnetic fields induced by this mechanism
has been estimated. In Ref. [63], the authors show the spectrum of second-order
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magnetic fields induced by the product of the first-order perturbations, namely, the
slip and anisotropic stress terms. Subsequently, in Ref. [64], the purely second-order
slip term is included. By comparing these works, however, it is found that there
are some discrepancies in the product of first-order perturbations. For example, the
power law tails of the spectrum induced by the slip and anisotropic stress terms on
large scales have different k-dependences in Refs. [63, 64]. Furthermore, the scale-
dependences of the spectrum are slightly different from each other. We find that the
discrepancy can be explained by the lack of sampling in the Fourier modes at k; =~ k;
of the first-order scaler perturbations in Ref. [64], and our results agree with the ones
of Ref. [63].

Let us summarize features of the magnetic fields induced by the second-order
magnetic fields at cosmological recombination as follows.

e The scale dependence of magnetic fields on large scales is o k3, which is con-
sistent with the result in Ref. [63]. Note that magnetic fields generated by causal
processes have the same power [71].

e On small scales, the spectra of magnetic fields induced by the slip, the anisotropic
stress, and the second-order slip terms have the power of k%2, k', and k'©,
respectively. In particular, the spectra of magnetic fields induced by the slip and
anisotropic stress terms are consistent with the result in Ref. [63].

e The cancellation occurs between the anisotropic stress term and the second-order
slip term on small scales in the tight coupling regime in the radiation dominated
era, and the power of magnetic field spectrum becomes oc k%2, This result indicates
that the spectrum of magnetic fields cannot have the large amplitude as argued in
Ref. [63].

e The spectrum of magnetic fields at cosmological recombination has a bump at k ~
5.0 x 107" hMpc~! owing to extra amplification after the horizon crossing, where
the amplitude of magnetic fields is By &~ 5.0 x 10~2* Gauss. However, after all,
this amplification vanishes by nontrivial flipping of the relative velocity between
photons and baryons discussed in Ref. [39]. This cancellation creates characteristic
diffusion scales in the magnetic fields spectrum around k &~ 10° hMpc~".

e The Harrison mechanism does not work efficiency below the scale of Silk damping
at the electron-positron pair creation epoch as ke, & 10° hMpc™!, as discussed
in Ref. [63]. Even if we extrapolate our numerical result toward smaller scales by
using the power of o« k*2 up to the cutoff scale, the amplitude of the magnetic
fields at that scale cannot be larger than 10723 Gauss, assuming that the linear
density perturbations are scale invariant.

Finally, we discuss implications of the cosmological seed fields. The derived
amplitude of magnetic fields at recombination has a peak about 5.0 x 10~2* Gauss,
which is sufficient for a candidate of the seed of galactic magnetic fields [17]. How-
ever, this amplitude seems to be somewhat small to explain the intergalactic magnetic
fields [10, 11]. Note that, the above amplitude is derived assuming that the primordial
perturbations are scale-invariant, while primordial perturbations with a blue tilt lead
a larger amplitude of the magnetic fields on smaller scales.
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The magnetic fields induced by the second-order perturbation must be inevitably
generated in the standard cosmology, and it is possibly that the magnetic fields act as
seed fields for the turbulent dynamo during the structure formation of the universe.
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Chapter 4
Weak Lensing

Abstract The vector mode imprints on the characteristic signal in the large-scale
structure, i.e., the weak lensing measurements. Photons emitted from the CMB last
scattering surface or galaxies are deflected by the foreground perturbations, called
CMB lensing and cosmic shear, respectively. We can split the weak lensing signals
into the parity-even and parity-odd signals. The parity-odd signal is induced from
not the scalar mode but the vector and tensor modes. Although the parity-odd signal
has not been detected yet, the parity-odd signal in the weak lensing observations
will be a good probe for the second-order vector mode. In this section, we apply
the second-order vector mode in the cosmological perturbation theory to the weak
lensing observations. We use the full-sky formula for the weak lensing effect to
predict the second-order parity-odd signal. In this part, we discuss the detectability
of the second-order vector mode. Moreover, we compare the signals from primordial
gravitational waves if we consider the weak lensing measurements.

Keywords Second-order perturbation theory - CMB lensing + Cosmic shear

4.1 Introduction

The recent remarkable developments of cosmological observations such as the cos-
mic microwave background (CMB) or large-scale structure help us to build the stan-
dard ACDM cosmology. The new era of high precision cosmology makes it possible
to acquire rich information about the expansion history of the Universe or the fea-
tures of density perturbations [1-4]. It is very important to combine several types
of observations to reduce degeneracies between cosmological parameters. The weak
lensing effect is a key observable for revealing the late-time evolution of density
perturbations. For this purpose, in this section, we focus on the weak lensing effect.

The weak lensing effect can be roughly classified into two observables (for
reviews, see e.g., [5, 6]). One is called CMB lensing, which is the gravitational deflec-
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tion by the foreground large-scale structure. In CMB experiments, we can measure
the deflection angle of CMB photons from observed CMB maps through the recon-
struction technique [7—10]. The CMB lensing signals have been precisely detected
by the Planck satellite [11] and are available to constrain cosmological parameters.
Next-generation CMB observations are planned [12, 13], and CMB lensing will
become a more important observable in the near future [14]. The other observable
is called the cosmic shear, which can be measured by observing deformed galaxy
images. The photons emitted from galaxies are deflected by forward density pertur-
bations, deforming the intrinsic shape of galaxies. Ongoing and upcoming imaging
surveys such as the Dark Energy Survey (DES) [15], Subaru Hyper Suprime-Cam
(HSC) [16], Square Kilometre Array (SKA) [17], and Large Synoptic Survey Tele-
scope (LSST) [18], can provide us with high-precision cosmic shear data. Thus, the
weak lensing survey is becoming a more interesting and active area of measurement.

The first-order cosmological perturbation theory includes three independent
modes: scalar, vector, and tensor. Among them, the scalar mode is the dominant
component in the Universe and has been well determined by cosmological observa-
tions. Conversely, the vector and tensor modes are subdominant and have not been
observed by current observations. In particular, the vector mode is often treated as
the negligible component since it rapidly decays in the standard first-order cosmo-
logical perturbation theory with perfect fluids. Nearly all inflation models predict
primordial gravitational waves (PGW). With a non-vanishing amplitude, namely a
nonzero tensor-to-scalar ratio r, primordial gravitational waves correspond to the
tensor mode. On the basis of current observations, primordial gravitational waves
have the small tensor-to-scalar ratio of r < 0.1 [1, 19]. In the context of scalar,
vector, and tensor decompositions, the weak lensing effect also can be associated
with each mode. The deflection angle for CMB lensing can be written in the gradient
of the scalar lensing potential (gradient-mode) and the rotation of the pseudoscalar
lensing potential (curl-mode). The deformation of the shape of galaxies is described
by the Jacobi map, which can be decomposed into even and odd-parity modes (E- and
B-modes, respectively). The vector and tensor modes, rather than the scalar mode,
induce the curl- and B-modes. Therefore, the weak lensing curl- and B-modes are
key observables for exploring subdominant modes.

Some possible sources for the vector and tensor modes in extensions of the stan-
dard ACDM cosmology are available. The weak lensing induced by the primor-
dial gravitational waves has been well studied [20, 21]. The primordial gravitational
waves withr = O(0.1) do not have detectable amplitudes for the curl- and B-modes,
even under the assumption of ideal experiments. Cosmic defects are also possible
sources of the vector and tensor modes. The weak lensing effect induced by cosmic
strings has been studied, and weak lensing measurements can constrain parameters
related to cosmic defects [22, 23]. However, in the first-order cosmological pertur-
bation theory, the vector and tensor modes must have model parameters, e.g., the
tensor-to-scalar ratio or the strength of the cosmic string tension. The amplitudes of
the weak lensing signal induced by the above model depend on the model parameters
and the generated weak lensing signal has uncertainties.
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In the second-order cosmological perturbation theory, the second-order vector and
tensor modes are naturally induced by the product of the first-order scalar modes.
These modes do not have free parameters, since the first-order scalar mode is well
determined by current observations. The second-order CMB polarization anisotropy
induced by these modes has been discussed in the literature [24—28]. The application
of these modes to the weak lensing is also possible and quite interesting. The contri-
butions of the second-order vector and tensor modes to the gradient- and E-modes
are investigated in [29-32]. As the first-order scalar mode can induce the gradient-
and E-modes, the contribution from the second-order vector and tensor modes to the
gradient- and E-modes must be smaller than that from the first-order scalar mode. In
Ref. [33], the authors estimated the curl- and B-mode signals induced by the second-
order tensor mode for the first time. The effect of the second-order tensor mode on
the B-mode signal is comparable with that of the primordial gravitational waves with
r = 0.4 and dominates on small scales, 10 < £. However, the second-order tensor
mode tends to have a smaller contribution than the second-order vector mode [24,
29-32]. Therefore, the weak lensing signal from the second-order vector mode is
expected to exceed that from the second-order tensor mode.

In this section, we focus on the weak lensing curl- and B-modes induced by the
second-order vector mode. The weak lensing curl- and B-modes are generated not
by the scalar mode but by the vector and tensor modes. Therefore, the curl- and
B-modes are good tracers of the subdominant mode in the current Universe. As the
second-order vector mode must have a larger amplitude than the second-order tensor
mode, it is important to estimate the weak lensing signal induced by the vector mode.

4.2 Formulation of Weak Lensing

In this section, we present a short review of the full-sky formalism for the weak
lensing induced by the vector and tensor modes following Refs. [10, 22, 23]. The
weak lensing can roughly be classified into two observed objects.

First, the CMB photons emitted from the last scattering surface are deflected by
the gravitational potentials related to the large-scale structure, which is called CMB
lensing. The CMB lensing is mainly caused by the scalar gravitational potential.
However, vector and tensor perturbations can also affect the deflection angle of
photons, and the vector and tensor modes imprint characteristic deflection patterns
on the CMB lensing. The deflection angle of the CMB photons can be written as the
gradient of the scalar potential (gradient-mode) and the rotation of the pseudo-scalar
potential (curl-mode). By using the nature of the parity these lensing potentials can
be reconstructed independently, even when the gradient mode dominates the CMB
lensing signals [10].

Second, photons emitted from galaxies are lensed by the large-scale structure,
causing the shapes of galaxies to be deformed. This is known as cosmic shear. By
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studying the deformation pattern statistically, we can distinguish traces of the scalar,
vector, and tensor perturbations. The deformation pattern of the shapes of galaxies
can be decomposed into parity-even (E-mode) and parity-odd (B-mode) components.

In the followings, we present the full-sky formalism for the deflection angle and
the deformation pattern, which are related to the geodesic equation and the Jacobi
map, respectively. Note that it is sufficient to work without the Hubble expansion,
namely, a(n) = 1. This is because the geodesic equation is invariant under the
conformal transformation.

4.2.1 Preliminary

Here, we present the mathematical tools to formulate the weak lensing. In this section,
we adopt the line element in a spherical coordinate system as

gudxdx” = — dn? + dx® + X*wapdfde’ (4.1)

where  is the comoving distance, and w,,d6¢d#® = d#? + sin? Ady? is the metric
on the unit sphere. Only this section, a, b - - - denote the components of the spherical
coordinate , e.g.,a, b = 6 or ¢.

We consider a null geodesic x*(v), where v is the affine parameter. As null
geodesic is invariant under the conformal transformation, dv = a%d)\, we can con-
sider null geodesic without expansion of universe.

Here, we define the tangent vector k*(\) along the geodesic x/ (), namely,

dx#  dx*
k" (v) = aZE =90 (4.2)
This tangent vector satisfies following equations as
guk"k" =0, 4.3)
Kk :dzx” u dx® dx? _0 4.4

o Tlegyan =Y

where the covariant derivative k*.,, and the Christoffel symbols are associated with
the unperturbed metric g,,. Note that, Eqs. (4.3) and (4.4) are the null condition for
photons and the geodesic equation, respectively.

We solve the geodesic equation in the unperturbed geometry with the condition
where observer is set at origin of the coordinate, namely, (k’ = k¥ = 0). We can
easily find the incoming radial solution as

(779 X 9! ¢) = (E>\s E()‘O - )‘)s 0’ O) P (45)
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where Ao and E are the affine parameter at origin and the photon energy, respectively.
Moreover, we obtain more general expression of Eq. (4.5) by rotating the spherical
coordinate as

XM =E (A (Ao —Ne) . (4.6)

where the unit vector e;'( is the direction of the photon propagation measured from
the observer at the origin.

Hereafter, we use y = E(Ap — ) as the affine parameter. In terms of this affine
parameter, the wave vector, k*(y) = dx*/dy is rewritten as

&L “.7)
dX_ ,e) . .

We introduce the orthogonal space like basis along the light ray, e}, as

~i

n' = e;(fz) = (sinfcosp , sinfsiny , cosb) ,
eé(ﬁ) = (cosfcosp ,cosfsinp , —sinb) ,

e;(ﬁ) = (—sinfsing ,sinfcos ¢y, 0), (4.8)

where the above basis is corresponding to the basis on the background space-time

in the Cartesian coordinate. The basis e}, satisfies g, ele] = wq, and g, k'e’ =

guwite;, = 0. In other words, the basis ¢! can be read as the tetrad. Furthermore,

these tetrads obey as

i i 1 i 1
exa,- = 6)( s 6961' = ;89 s 6998,' = ;399 . (49)
The above relation leads to the following relation:
Xel e, 0;0ke, = —wape’ . (4.10)

‘When we derive the above relation, we use the derivative of the basis:

dyep = dyel, =0, 4.11)
Due, =€, , (4.12)
Opepy = —e (4.13)
Dgey = Oypel, = cot bel, , (4.14)
(')We; = —sind [sin 9e; + cos fe] . 4.15)

Furthermore, we define the covariant derivative of a two-vector on the unit sphere,
X, =X [eﬁl, in terms of the polarization basis as
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Xa = 0 Xo = DT wXe | (4.16)

where we define the connection coefficient on the two sphere as

o |
(2)Fcab = eiabez = Ewcc (wac’,b + Whe',a — wab,c’) . (417)

Next, we define the polarization basis which is used with the spin operators, e
with sy = £1, as

e; (1) = eiAe? = |:eé,(fz) + %e;] e/, :Spin-1 variable (4.18)
sin

where this polarization vectors are projected on the two-sphere by multiplying e .
The components of this polarization vector are

el (k) = (1,is),0), (4.19)
e";k(ft) = (cosfcos p — is) sinp, cos O sin p + isy cos @, —sinf) , (4.20)
A@)y=1, ¢f ()= —> 4.21)
2 2 sin 0

where, throughout this note, we set the coordinate system k = Z, which is cor-
responding to my notation and [22, 23]. Furthermore, by using these polarization
vectors, the two-dimensional metric w® and the two-dimensional Levi-Civita tensor
€% can be expressed as

w =% e =elte” (4.22)

By using the e, the spin-s function can be expanded by this basis as

s X =Xgayq,05 €L €y (s > 0), (4.23)
X =Xoayay el e e (s < 0). (4.24)

Furthermore, the spin basis have the following relations,
xeiﬁjeit = cot Ge; , Xeiaje; = —26; — cot 19(22F , (4.25)

where in order to derive the above relation, we use Eqs. (4.13), (4.14), and (4.15).
We take contraction of Eq. (4.25) by using ef, we can get

e’ el = 55 cot e . (4.26)

And by using the above relation (4.26), we can derive the following relations.



4.2 Formulation of Weak Lensing 81

(0X).q ei ==D0X), X).el=-D0X), (4.27)
Xapel e+ - GX), Xapel e =-d(X), (4.28)
0X).ap e+e+ =P X)), (X)apete? =8 (X) , (4.29)
0X).ap €4" = 8D (1X) = DD (1X) , (4.30)

where @ and @ are the spin lowering and raising operators defined as

D, (0, ¢) = —sin’ 0[O + i csc 00, sin ™ 0, £ (0, ¢) 4.31)
ds f (0, p) =—sin"" 6 [89 —icsc 9(%] sin® 0, (0, ¢) . (4.32)

4.2.2 CMB Lensing

CMB lensing effect is described by the perturbed geodesic equation since we can
study the deflection angle of the CMB photons. The deflection angel from the last-
scattering surface is

We consider two null geodesics x*(x) and x*(x) = x*(x) + £*(x), where £*(x)
is the deviation vector field,

dzxr =, dx dx?
—— =0, 4.33
07 + T ax dx (4.33)
d2xr 4 dx® dx”
=0. (4.34)

o T a e

The geodesic equation of the deviation vector up to the first order can be written as

dzen 4 dx® dx? , dx® dgﬁ
2 af 30 A + aﬁ (435)
dx? dy dx dy dx
The equation for ;+ = 0 component is
d [de° ,
L S P (4.36)
dx Ldx *
where |
T=—-—W+d)— o,e + Zh” " X , 4.37)

and the equation for ;. = i components are

— d—gl—zep —ol thijel|=— W+ o) - ~"'j+lh-"'jk (4.38)
dX dX 6‘ (T 6‘ = O'] €X 2 Jjk EXEX. .
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By multiplying the basis e/, with a = 6, ¢ to Eq.(4.38), and using Egs. (4.9) and
(4.12)
e 1, d
— = =W Ty — — (X2 | , 4.39
o2 Y [ 27 Iy (x b)i| (4.39)

where we define o
Qa = (—O’,' =+ /’l,‘j€§<) 6; . (440)

Equation (4.39) can be integrated by parts with initial conditions, £*(0) = 0 and
dg?/dx(0) = 665, as

a Xs X2
Xs 0 0

1 d -
|:T:b -— (XQb)i| (x")
XsX1 dx
1

= 66% 4+ w® Xsd Xsd 1, — L e |G
= ot X1 X2 b (x£2) | (x*)
0 » XsX1 dx

Xs — d
= 505+ w / dy, X [m - (xszb)} ()
0 XsX1 dx

Xs —
~ 605 + w“bf dXXS X
0 XsX

d
[T;b T i (XQh)] "), (4.41)

where s is the conformal distance at the source (e.g., for the cosmic shear: the
conformal distance at the light emitted, the CMB lensing: xs corresponding to the
last-scattering surface) and we use the Born approximation from the third line to the
fourth line in the above equation. Finally, we can define the deflection angle on the

two-sphere as
a

A%(n) = f— — 665 . 4.42)
Xs

This deflection angle can be decomposed into a gradient of scalar lensing potential
¢ (gradient-mode) and a rotation of pseudo-scalar lensing potential w (curl-mode)
as

Do) = Gia () + wip ()’ . (4.43)

where €”,, is the covariant two-dimensional Levi-Civita tensor. These potentials can
be pulled as

Xs _ ) d
¢ () =N () = / dy X=X [T - — (xsz”:a)} . (444
0 XsX dx
. A A\ b xs xs—x|[ d b
() =Ny ()€’ = —/ dx — (xQ€%) | - (4.45)
0 xsx Ldx

According to the above relation, we can see that the vector and tensor perturbations
induce not only the gradient-mode but also curl-mode. On the other hand, the scalar
perturbation does not contribute the curl-mode.
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The spin-0 component on the two-sphere such as the scalar ¢ and pseudo-scalar
w potentials can be expanded by the spherical harmonics as

X@) =Y xXenYen(R) , (4.46)
{,m

where x = ¢, w. The angular power spectrum of these potentials is defined as

¢
) = Z XF g X2,0m) - (4.47)

Next, we rewrite Eqgs.(4.44) and (4.45) in terms of the polarization basis and
spin-raising/lowering operators defined in Eqs. (4.31) and (4.32) as

_ Xs _ _ 1 d _
D= | a5 =X [$$T+——{X($+1Q+é91§2)}:| : (4.48)
0 XsX 2dx
2 i xs—xd 2
Do =——/ d — D —90_12)| , 4.49
“ 2J0 sy dx[X( - )] (449

where Q2 = Q,e¢. In order to derive the above equation, we used Eqgs. (4.28) and
(4.30).

We decompose the T and €2, into the scalar, vector, and tensor modes in Fourier
space as

3k +2 .
Tl =X = | s 2 X0 = X KnGimin @™, (450
+2
Q0o — x, xi) = / @ Z sQ (00 = X )G (e ™5 (4.51)

where we define ;G , () as

XGK,m (ﬁ) = (_i)g 4n SYZ,m(ﬁ) . (452)
2041

Moreover, we also define

1
’Y‘(O) — _(\Ij + CI)) s T()‘) = —0), T(U) = Ehg 5 (453)

and

3
Q0 =0, 9% =250y, 90 = ‘\/;”” ' (39
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To proceed the calculation, we expand the left-hand side of Egs. (4.44) and (4.45)
by the basis functions as

d3 a(m —ik-x
2= | Goy D #"0Gome™* (4.55)

x=0

Note that m > 3 have zero only due to the orthogonality of the basis function.
Moreover, substituting Egs. (4.50), (4.51), and (4.55) into Egs. (4.48) and (4.49), we
can derive

7 (m) Xs
e _ XS_X[ (m) (Iml,m)
= dy——=|7T -,k k
21 /0 X ox (Mo — X K)o€y (kx)

* Jzz(zlen % b (12 = x o™ ko) | (4.56)

& 0m) Xs
.- : f X=X d (m) (Im|,m)
= = | T —— Q —x. k ot
20+ 1 Z(Z T 1) 0 X YsX dX [X [Jrl (770 X )1ﬁg ( X)}:I
(4.57)

where we use the relation 11 Q™ = (—1)_; Q. The radial functions Se(f’m) (x) and
s ﬂg’m)(x) are defined by using the spherical Bessel function j,;(x) as

[l ) + isgn(s), B (0]

=Z(—i)‘“f<2j+1>(—1)”'"<“ L )(E / L)jj(x>. (4.58)
J

mO0 —m —s0s

Note that the radial functions are the real functions and do not depend on the signature
of 5.
Finally, we rewrite Eqgs. (4.56) and (4.57) as

~(m)

'CZ s (m) (m)
20 1 /(; X I:g ( 0 X ) x0 ( , X)] s ( )

where we define £ and 7.’} as

1
€0 — WD), V= gy, £ =3, (4.60)
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and
7.9 = ZXSX—:X éoef‘” (kx) , 4.61)
7ol = é [XSX; Ko Vo) - 2 :;ile?”(kx)] SR
7O = % [% XSX; Xoef’”) (ky) — ZEE; 3: 1622’0)(kX):|
+ ﬁ@z,z%(kx) , (4.63)
79, =0, (4.64)

» =DV 1T gy

TN = - /2(z+ i 0. (4.65)
; [te—nr1 ,,

T = - XSG 7 (kx) (4.66)

where we used the asymptotic behavior of the spherical Bessel function, namely,

€

Jo(x) — m (x — 0). (4.67)

The unequal-time correlator is needed to proceed the formulation of the angular
power spectrum, and which is defined as

(€ (o — X, OE™ (o — X', k) = 270 Gy 6, (k — k') Py (ks 100 — 0 = X)
(4.68)
furthermore the angular power spectrum can be calculated as

(;e;‘("” (k);%}'"”(k’)> = 1) m 03 (k — K20+ DM k), (4.69)
where

(m Xs Xs - "
M (k) = / kdy / kdxX' T (k, )T (s XY Py (ks 110 — X 10 — X) -
0 0

/ (4.70)
As a result, we finally relate the C;* and M* ™ as
2 [ :
=2 Ak Y M) 471
&= /0 > M (k) (4.71)

m=-2
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4.2.3 Cosmic Shear

Contrary to the formulation of the CMB lensing, to derive the full-sky formulae
for the cosmic shear, we need to trace the light bundle. This is because the cosmic
shear measurements observes the shape of each galaxy. The light bundle obeys the
geodesic deviation equation which describes the evolution of the Jacobi map. Before
moving the derivation of the Jacobi map, we comment about the difference between
the derivation of deflection angle and the Jacobi map. The deflection angle is, at
first, assumed that the metric perturbation and we solve the geodesic equation in
the perturbed universe (4.35). Then we can derive the light path in the perturbed
universe (4.41). On the other hand, the derivation of Jacobi map is needed to two null
geodesics without any assumptions about the metric perturbations. We only need to
the deviation vector (or connection vector) equation in the general universe.

First, we derive the geodesic derivation equation on the two-sphere. This equation
is quite different from Eq. (4.35) as we mentioned before. Without any assumptions
for the space-time, the two null geodesics x* and x* 4 £ can be written as

d2 I dx@ d 1)
5+ T o =0, 4.72)
X dx dx
d2 XM 4 EH d(x® + £@ d X‘B“r‘ 3
FEHED) | p ey d@FDAETTE) g
dy dy dx

where we do not assume any space-time in the above equation. We can derive the
geodesic derivation equation by subtracting the above equation as

D2 i "
> i =Tr¢, (4.74)
X

where we define the absolute derivative and the symmetric optical tidal matrix as

D¢&r o dx” dgr dx”

_5 = Lgu_ﬁ = i + [‘uwgai , (4.75)

Dy —dx " dx dx

~ ~ dx® dx”

T, = =RV g —— . (4.76)
dy dyx

Note that the basis vectors defined in Eq. (4.8) behaves as a constant respect to the
derivative D /Dy, namely,

D
—e'=0. 4.77)
Dx

We can project the geodesic deviation equation onto the two-sphere by using the

basis e/ as

d2€a "
=T%¢&, 4.78
02 b€ (4.78)
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where we define 7¢ » as
fj—ab — _R,uw/()’ etwef , (4.79)
X

where we use T jx(x) = 0 by choosing x* as the unperturbed space-time, namely,
D/Dx =d/dy.

Next we introduce the initial conditions at the observer, £4|, = 0 and d¢“/dx|, =
06, and introduce the Jacobi map as

¢ =D",00} (4.80)
and the Jacobi map is satisfied the following equation:

d2pe S
b — fape, 4.81)
dy?

with the initial condition for the Jacobi map as D%,| = 0 and dD?,/dx| = §%.
0 0

When we expand the D4, = D% + 6D% and T%, = 679, the solution can be
written as

Dfl Xs _ .
b =5+ / a XS X0X 570 0 iy | (4.82)
Xs 0 Xs

where we used the Born approximation. The explicit form of the symmetric optical
tidal matrix 67 ¢, is written as

d 1 a2 d . d?
2 _ . _
X 07ap = Yap — o (XQq@n) + 2 ag (Xhab) + XwWab [8XT - (Qle;) X3 d)] ;

dx ,
(4.83)

where h,, = hijele] and Q, = Q¢

From here, we decompose the Jacobi matrix into the spin-0 and spin-2 variables
as
oﬁ = ﬁabeie}i , iZﬁ = f)abeiei s (484)

furthermore, we define the reduced shear by the Jacobi map as
g=—"2, gf=-— (4.85)

Finally, at the lowest order, the reduced shear can be written as
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1 [ xs—Xx u
g=- 5/( dx Oox Yeap — —(an p) | el — — [havete])” . (4.86)

1
4
1 [ - 1
== / dx% [mb & (xsza:b)] el — < [haetel ] . (487)
0

Hereafter, we introduce the E and B modes for the cosmic shear and give the full
sky formalism. At first, we expand the reduced shears, which are the spin-2 variables
and we expand by the spin-2 spherical harmonics as

9@) =" (Etw +iBew) +2Yen (R) . (4.88)
L,m

9" (@) =) (Etn — iBum) 2Yim(R) (4.89)
L,m

where Ey,, and By, have the different parity, namely (—1)* and (—1)“*!, respectively.
The angular power spectrum of these modes are defined as

4
X1 X
ch¥ = 2£+1 Z X5 g Xo.tm) - (4.90)

Next, we rewrite Eqs.(4.86) and (4.87) in terms of the polarization basis and
spin-raising and lowering operators as

1 Xs
g:__/ = [a2T+—{x<@+19)}] -
0 XsX

g*=—%/OXSdXXS_X[592T+ d {x (@ Q)}}

XsX dx

1
2 [havete])’ . (491)

[hape“e? ]y . (4.92)

-Jkl'—-

where we used Egs. (4.28) and (4.29). To proceed the calculation, we expand the
left-hand side of Eqgs. (4.91) and (4.92) by the basis functions as

oo 42
/ (27r)3 Z Z (Eém) + iBém)) +2Gz,m€ﬂkx ) (4.93)
=2 m=-2 =0
d3k co 42 . '
g = )3 Z Z (E(m) Bém)) —ZGZ,meilk'x (4.94)
x=0

Furthermore, the last term appeared in Eqgs. (4.91) and (4.92) is given by

. d’k N
e hap (1o — X, XR) = f o D V6™ (g = X, k) £2Gam () HF . (4.95)
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And substituting Egs. (4.50), (4.51), (4.93), (4.94) and (4.95) into Eqgs. (4.91) and
(4.92), we can derive

(m)

E, 1 (5+2)!/XS Xs — X (Im].m)
== dx 22— Y (g — x, K)oey ™™ (k

il -V a—or )y Moy (o0 = x, Foe, " (kx)

+,/ W: 5 % {x (+1S2("')(770 - X k)) 162"""’")(kx)}]

Ve (m) @,m)Xs
+ b [ 0 = 2™ | (4.96)
B 1 fe+ie—1 x5 ys—x d . (mlm)
= T e [ (e - x5 )]
NG m)1Xs
+ b [ o0 = x 2B ] 4.97)

Finally, we summarize Eqs. (4.96) and (4.97) as

)’eém) B
2041

Xs
[ kax[gmn - xosgw ] 4.98)

Here, we take into account for the galaxy observations, namely, the imaging
survey, which cannot divide the redshift accurately. Therefore, we usually assume
the distribution of galaxies. The number distribution of galaxies N (x)/N,, where
N is defined as

Ng = / dxN(x) . (4.99)
0

Furthermore, we sum, in other words integrate, xs for each source of lensing. From
this procedure, we redefine the E- and B-modes as

N(xs)
Ng

oo
X - X" = / dysX" : (4.100)
0

and from Eq. (4.98), we exchange the order of the integral calculations as

oo Xs [ed] 00
f dXS/ dy =/ dx/ dys . (4.101)
0 0 0 X

Practically, the source term is converted as

m m o m N(X )
S§) = Sy = / dxsSY = (4.102)
X g

We assume a distribution of galaxies N (%), which can usually be taken to be (see,
e.g., Ref. [34])
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Table 4.1 The experimental specifications of DES, HSC, SKA, and LSST. It is shown that the sky
coverage fsky, the mean redshift zy,, and the number of the galaxies per square arc minute Ny

Ssky Zm Ng[arcmin~?]
DES 0.125 0.5 12
HSC 0.05 1.0 35
SKA 0.75 1.6 10
LSST 0.5 1.5 100
3/2
N(xs)dxs = gzm;—imp exp [— ( 0_6‘7’jzm) } dzs . (4.103)

where zy, is the mean redshift, and the number of galaxies per square arc-minute N,.
In this section, we focus on four survey designs: DES [15], HSC [16], SKA [17], and
LSST [18]. The experimental specifications of each survey design are summarized
in Table4.1.

Then the taking into account for the observation, Eq. (4.98) can be rewritten as

£
20+ 1

= [ ke [emam - sy ] (4.104)

where ¢ are defined in Eq. (4.60) and

o _ (5—2)!L/°° Xs — X (XS) (0.0

See=V@rain ), N Tn W, o ®0 (4.105)
o _ 1 (5—2)!i/°° N(xs) | xs=X axn, ., [,&=D! iRy
8”_2 €+ kx Jy dxs N, XS ocg (k) 2(e+1)v (kx)

(47106)
() -2 1 /Oo Nixs) | 1 xs=X o _ (Z — 1! 2.0
Spi= ,/ €+ 2) kx dxs N, | /5 s o€y (kx) ( T (kx)
1 (X) (20
8¢ 20p(k _— k) , 4.107
+10\/>52D(X)+ka € (kx) ( )
Sg})@ -0, (4.108)

W _ EWL/C’O NXS) a0

Sp = 26—+ Dk Jy sy = Ng 10 k) (4.109)
@ __1 EWLﬁO N(Xs) a0, I NOO eo

Spe = 2@t ik ), dxs N, 18 (kx )+2[ N, 28,77 (kx) -

(4.110)
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Finally, the angular power spectrum of E- and B-modes can be derived as

2
S22 (™ ,
(orts =—/ dkk® Y MM k) (4.111)
0

™
m=-2

where

oo [e9]
MEE (k) = / kdx / kdX'SY'y (k. X)SX' (k, X')Pyg (ks 110 = X 110 = X -
0 0
(4.112)

In the next section, we discuss the possible source of the curl and B modes including
not only the vector mode but also the tensor mode.

4.3 Models: Parity-Odd Signals

In this subsection, we study possible source to generate the curl and B modes. The
vector and tensor modes induce these modes. We focus on three models: the second-
order vector mode, second-order tensor mode, and primordial gravitational waves
with the tensor-to-scalar ratio » = 0.1.

4.3.1 Second-Order Vector Mode—Numerical Descriptions

Before evaluating the effect on the weak gravitational lensing, in this subsection
we show the resultant second-order vector mode by performing a fully numerical
calculation and we then discuss the feature of the power spectrum under some approx-
imations. To do this, let us define the unequal-time power spectrum for the vector
mode as

(5. K)o (7 K)) = )63 83 (k — K') Py (. k) (4.113)

where (- - -) is the ensemble average. We derive an expression for the power spectrum
by solving the evolution equation. Equations (2.194) and (2.195) is easily integrated

as
I
o, k) = =) /0 dry/ [az(n’)Sf)(nﬁk)]. (4.114)

a?

Hence we have

* , 1 n o * ,
(o2 b0 ' 00) = s [T [ amat e om (s . 05" m. ).
(4.115)
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Fig. 4.1 The evolution of the second-order vector metric perturbation for scales from k =
10=* hMpc~! to 10! AMpc—! as indicated in the figures

Once we obtain the brightness functions for photons and neutrinos by solving the
Boltzmann equation (2.169) and substitute the first-order results for the scalar metric
potentials into Eqgs. (2.194) and (2.195), we can obtain the power spectrum for the
second-order vector mode though Eq. (4.115). We now solve the evolution equations
for the vector mode by performing a fully numerical calculation. Figure4.1 shows
the equal-time power spectrum for the vector mode induced by the second-order
source terms.

For illustrative purposes to show the dependence on the wavenumber, we adopt
the wavenumbers as from k = 10~* AMpc~! to 10" A-Mpc~". The resultant power
spectrum for the second-order vector mode during the radiation-dominated era seems
to grow as  a on super-horizon scales, while it decays on small scales after it enters
the horizon scale. This is because the source of the second-order vector mode, namely
the scalar potential, decays during the radiation-dominated era on sub-horizon scales.
In contrast, during the matter-dominated era it always evolves as o a(n) for those
wavenumbers. Therefore the second-order vector modes that enter the horizon after
the matter-radiation equality time do not undergo the above suppression. In Fig.4.2,
we plot the dimensionless power spectrum with various values of the redshift. We
find that it scales as k' on large scales and k~* on small scales and its peak would be
determined by the time of the matter-radiation equality.

We study the analytical description of the power spectrum of second-order vector
modes in the next subsection.
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Fig. 4.2 The spectra of the second-order vector metric perturbation for redshifts from 1 4z = 10°
to 1, as indicated in the figure. Before matter-radiation equality, the feature of the second-order
vector metric perturbation was determined by the horizon scale at each time. On the other hand,
after matter-radiation equality, it was determined by the matter-radiation equality scale, namely,
keq & 1072 AMpc~!. We can see that the evolutions are same for all scales after matter-radiation
equality 1 4 zeq $ 3.3 x 103

4.3.2 Second-Order Vector Mode—Analytical Descriptions

In this subsection, we investigate the feature of the power spectrum for the second-
order vector mode analytically. It is difficult to estimate the second-order vector
mode analytically including the purely second-order quadrupole moments for pho-
tons and neutrinos. However, if we assume that the purely second-order quadrupole
moments for photons and neutrinos, Afl and J\/z(zl\), give negligible contributions,
the second-order vector metric perturbations are sourced only from the convolution
of the first-order scalar metric potentials. Indeed, numerical computations reveal that
the corrections of the purely second-order quadrupole moments to the vector mode
amount to only about < O(107*)% during the matter-dominated era, whereas, the
quadrupole moments contribute several tens percent to the vector mode during the
radiation-dominated era. Even in the radiation-dominated era, the scalar potentials
are still dominant in Eq.(2.195). In this section, we focus on the weak lensing sig-
nals, which are mainly determined by the contributions after the matter-radiation
equality, in which regime the quadrupole moments contribute at most O (1073)%.
Therefore, it is sufficient to consider only the scalar metric potentials and we ignore
the second-order quadrupole moments, if we give a rough estimation.

To simplify the analysis, we adopt the condition such that the two first-order
scalar metric potentials are equal, i.e., @V = W, While this is valid only if the
first-order quadrupole moments are negligibly small, we keep it just for a qualitative
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understanding about the behavior of the power spectrum for the vector mode. During
the radiation-dominated era, the scalar potentials are constant on super-horizon scales
while they decay on sub-horizon scales. On the other hand, they freeze on all scales
during the matter-dominated era (e.g., see [35]). We note that under this condition the
second term of the right-hand side in Eq.(2.195) should vanish. This is understood
as follows: The condition we impose here implies that k| and k, are interchangeable.
Moreover, the spherical harmonics has the following property:

. . 3
kaYi (k) + koY (ko) = [ —kbuo (4.116)

where we have imposed k = k| + k,. As a result, the second line in Eq.(2.195)
gives negligible contributions to the vector mode in the absence of the quadrupole
moments.

Let us evaluate the vector mode during the radiation-dominated era. Since the
fourth term in Eq. (2.195) is estimated through in the first-order perturbation theory
as

1 .
O ) 1 o)
Voo = 4—7rGa2p<0>8’ (@ +HwW) . 4.117)

Therefore, since we find that 87Ga’pPv2, ~ (p0/p@)®2, it is suppressed by

the factor p¥/p® « 1 compared with the third term. Therefore we found that the
third term gives a dominant contribution to the second-order vector mode. Using the
explicit expression for the spherical harmonics, the power spectrum for the vector
mode induced by the third term in Eq.(2.195) can be written as

k3
S5 P ok / &k Py k) Py ) T2,k , K2) [k;‘ sin? 0} cos? 0 — k2kZ sin 0 sin 0 cos 0 cos 92} ,

Yis
(4.118)

where k, = k — ky, k- l}i = cos 6;, and the integrated transfer function 7' (7, k; , k»)
is defined in terms of the transfer functions for the scalar potential & as

K
T,k ko) = az—(n)/o dif'a® () 1 (ki) Pr(kary) - (4.119)

With a help of the definition of k, and introducing the direction cosine 1, = cos 6y,
Eq. (4.118) can be reduced to

k3 00 1
53 P k/ dk / dpt k3 Py(ky) Py (ko) T2 (1, k., ko) Qkypy — k) py (1 — 1)
0 -1
(4.120)
To perform this integration analytically, we assume that the transfer function of the
scalar potential during the radiation-dominated era is approximated as [35]
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Or(kn) = (77 < neq) . 4.121)

1+ (kn)?

Substituting the above transfer function into Eq. (4.119), we have

1
T(n, ki ko) = 2 [kl arctan (kon) — k; arctan (km)] (1 < Neg) -
— K

n?kiky (k3
(4.122)

In order to evaluate the behavior of the power spectrum, we split the integral of
ki in Eq.(4.120) into two parts: the contributions from k; > k and k; < k for
given k. In the former case, the dummy variables k; and k, are related through
ky, = ki [1 — (k/ k) + 0((k/k1)2)] and the integrated transfer function can be
reduced to the following form:

kin
1+ (kin)?

T(n, ki ko) ~ [arctan(km) - } =n7ikin) (1<) -

(4.123)
Hence the contributions from the products of the first-order scalar potentials with
their wavelengths shorter than k are

2k3n?

K o !
a2 e ok / dky / dpa K P k) i (ra(e))? g (1= )
k -1

o kn) f dx; (71(x1))* = kn By (kn) | (4.124)
k

n

where we have used the scale-invariance of the primordial power spectrum Eq. (2.207)
and we have changed the variable k; to x; = k7. Since 71 (x) behaves as xVforx <« 1
and x 3 for x > 1, the integral of 3; in Eq.(4.124) can be evaluated as a function
of kn: B o (kn)° for kn <« 1, and 3 o (kn)~> for kn > 1. Substituting this into
Eq. (4.124), we calculate the contributions from modes with k; > k in Eq. (4.120):

3

k k' kn<1
—Pa(k<k1,77<77eq)o<{ g g

) 4.125
k)™ kn>1 ( )

272

We can reproduce the behavior of the power spectrum, namely o k' for super-
horizon scales and o k~* for sub-horizon scales, which can be seen in the numerical
calculations.

Following the same manner, we can analyze the opposite case, namely k; <
k. Expanding Eq.(4.120) in terms of the small quantity k;/k <« 1, we find that
the leading order term vanishes due to the angular integration. Furthermore, we
also find that the-next leading order term is suppressed by the power kf. Hence the
contributions from modes with their wavelengths longer than k are suppressed by the
factor ki /k and can be treated as subdominant components. Note that although the
above estimation does not work around k = ky, the results in Eq. (4.125) is expected
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to be still correct as long as we estimate the behavior roughly for the following
reasons. The integrand in Eq. (4.120) does not diverge at k = k. The estimations on
k < ky and k > k; are smoothly connected. Therefore, the contribution from k ~ k,
is at most same order as that from k < k;. Combining these results, we conclude that
the power spectrum for the second-order vector mode during the radiation-dominated
erais determined by the convolution of the scalar potentials with shorter wavelengths.

We discuss the peak shift of the second-order vector mode shown in Fig.4.2
from 1 + z = 10° to 10*. During the radiation-dominated era, the first-order scalar
potential remains constant on super-horizon scales while it decays on sub-horizon
scales. Therefore, the second-order vector mode can grow due to the constant scalar
potential on super-horizon scales. On sub-horizon scales, the second-order vector
mode conversely decays due to the decaying scalar potential. As a result, the peak of
the second-order vector mode is determined by the horizon scale at the corresponding
era and the peak keeps shifting until the matter-radiation equality.

We next consider the vector mode after the radiation-dominated era. The evolution
during this era can be easily understood through Eq. (4.114). Generally, when the

. . 2
second-order source term remains constant (i.e., Sy ) — const. ), the vector mode

evolves as 0'( ) n'. This condition is actually satisfied since the scalar potentials

during the matter—domlnated era freeze on all scales, as mentioned above. Hence the
evolution of the second-order vector mode is given by

3
%Pg o (o /(\2)) x n? ocal (for all scales) . (4.126)
During the matter-dominated era, the shape of the spectrum for the vector mode
does not dramatically change since the growing features are the same over all scales.
Therefore, the information about the power spectrum during the radiation-dominated
era propagates to one during the matter-dominated era, i.e., the dimensionless power
spectrum during the matter dominated era is still in proportion to k' for super-
horizon scales and k~* for sub-horizon scales, respectively. Although the global
feature can be understood as above, in more detail small shifts of the scalar potential
such as ® — 9/10® during the matter-radiation equality induce an additional small
suppression of the second-order vector mode, as seen in Fig.4.1. After the universe
is dominated by the dark energy, the scalar potentials begin to decay for all scales,
implying that the second-order vector mode generated by these potentials also decays.

Before closing this subsection, we introduce the analytic model of the power
spectrum, which is originally derived in [24] (hereafter referred to as MHM). The
explicit form of the approximate solution can be written as

—1
zkz MHED (o, n)— CVA (ko)kz(:> Wy(k/k)F()F (@) . (4.127)

where Cy & 0.026, Wy (x) = (1+5x +3x2) 72, and k, = Qmoh? Mpc_l with Q0
and h being the present cosmological parameter of the nonrelativistic matter and the
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Hubble constant Hy in unit of 100 [km s~' Mpc~'], respectively. The function of a
redshift F'(z) is given by

_ 2PQEQ@) [ (2 (2)

F(Z) Qm()H()(l + Z)2

, (4.128)

where E(z) = Quo(l +2)° + (I = Qmo), Qm(2) = Qmo(1 + 2)*/E*(z). We adopt
Qmo = 0.27 as the fiducial value. We denote f(£2,,(z)) and g(z) as the dimensionless
linear growth rate and the growth suppression factor, respectively. One can find that
f and g are well approximated as f & Q;M (z) and

9(2) % (D) [2Y(2) — Qu (@) + (1 + Qu(2)/2) (1 + Q5 (2)/70)] ', (4.129)

where Q4 (z) = (1 — Qmo) /E*(z) and we will normalize ¢ so that g(0) = 1 [24,
36, 37]. We find that the transfer functions derived in MHM and those determined
by the numerical calculation match after the matter-radiation equality. However, we
should emphasize that for the MHM approximate power spectrum the effect from the
evolution of the vector mode over all wave numbers during the radiation-dominated
era is assumed to be neglected. As we will see in the subsequent analysis, this
approximation leads to the non-negligible difference between the full-numerical and
analytic power spectrum.

4.3.3 Tensor Modes

As we mentioned, the curl mode of the CMB lensing and the B-mode shear can be
generated by not the scalar metric perturbations but the vector and/or tensor metric
perturbations. In this subsection, to compare with the second-order vector mode,
tensor modes are considered as alternative sources of the observables we focus on. In
particular, we consider primordial gravitational waves and second-order tensor mode
as intriguing examples for tensor metric perturbations. To describe the spectrum for
the tensor mode, we define the spin-12 operator Oi(jiz) in terms of the polarization
vectors defined in Eq. (2.19) as

~ 3 ~ ~
05 (k) = —\/;ei(i) (k)e'® (k). (4.130)

Since this operator obviously satisfies the transverse-traceless condition, the second-
order tensor metric perturbations can be expanded as

&k .
hij(n,x)zf Gy > ho(n k) O (ye . (4.131)
o=%2
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With these convention, we define the unequal-time power spectrum as
(Rz, hy (), K)) = 21) 65000 (k — k ) Ph .1, k). (4.132)

Primordial gravitational waves are generated in the very early Universe and the
representative sources for tensor mode. Its effect on the CMB lensing and the shear
measurement has been discussed in the literature [20, 21]. For the evolution of
primordial gravitational waves, we introduce the PGW transfer function 7, (PGW) (km),
which basically describes its sub-horizon evolution. In terms of this, we can write
the power spectrum as

2 2 h(PGW) (T] 77 k) — rAz (kO) ( 0) %(PGW)(kn)r];l(PGW)(kn/) . (4133)
In our analysis we adopt r = 0.1, n, = 0 as the fiducial values, and use ’Th(PGW) =
3j1(kn)/kn for simplicity. The corrections due to the effects during the radiation-
dominated era would be small and we neglect this small correction throughout this
section.

Similar to the case of the vector mode discussed in the previous section, the second-
order source terms induce the tensor metric perturbations, which are expected to be
one of the possible sources of the curl mode and B-mode shear signals [33]. The
analytic model of the power spectrum for the second-order tensor mode induced by
the product of the first order scalar metric potentials has been discussed in [24, 35].
The approximate form of the power spectrum derived in [24] is given by

K3 6 kN 7!
—PM™M k) = _Crak (ko)< ) Wr(k/ k) T ey 7, MM (k'
*

272 25
(4.134)

with Ct =~ 0.062 and Wr(x) = (l +7x + 5x2)73. The transfer function for the
second-order tensor mode is

Z,(MHM)(]CU) _ (1 N 3]1]{(](77)) ggo ) (4.135)
n

The correction factor g, attributed to the effect of dark energy is defined as g, =
lim,_, » g(z) & 1.3136. We note that this formula is valid only after matter-radiation
equality time. While the correction during the radiation-dominated era for the second-
order tensor mode has been considered in [35], for the purposes of comparing the
second-order vector and tensor modes, we will neglect such correction since it must
be small [33].
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4.3.4 Comparison of Each Model

For comparison, the power spectra for these models at the present time are shown
in Fig.4.3. The power spectrum for the second-order vector mode is larger than
that for the second-order tensor mode. Therefore, it is expected that the second-
order vector mode induces a larger lensing signal than the second-order tensor mode
on small scales. Furthermore, on small scales, the second-order vector mode has
a larger amplitude than the primordial gravitational waves with r = 0.1. In other
words, the second-order vector mode has the possibility of being detected by cos-
mological observations on small scales, unlike the primordial gravitational waves.
We explain the reason why the discrepancy between the exact vector model and the
analytical vector model appears. From Fig.4.3, we can see that the amplitude of the
exact model is smaller than that of the analytical vector model for k 2 k.q, where
keq A 10~2 hMpc~! is the horizon scale at the time of matter-radiation equality.
For k 2 keq, the analytical vector model does not consider the effect of the small
suppression around the matter-radiation equality time. The small suppression on
small scales arises because the first order scalar potentials, i.e., the source of the sec-
ond order vector metric perturbations, decay so rapidly in the radiation dominated
era that the source on those scales can sustain the vector perturbations and make
them grow proportional to the scale factor only after some time has passed since the
matter-radiation equality time (see the blue and magenta lines in Fig. 1). This small
suppression is not included in the analytical model. The exact model is about ten
times smaller than the analytical vector model for k 2 keq.

According to the above discussion, we can understand when the suppression
is determined. The analytical vector model does not change its peak since this
model is calculated in the flat ACDM model with matters and the cosmological
constant. Therefore, the difference between the analytical vector model and exact
one is appeared until the matter-radiation equality. In conclusion, the factor about 10
suppression is determined at the matter-radiation equality time.

The tendency for the second-order vector mode is quite similar to that for the
second-order tensor mode in Ref. [33]. In the next section, we will show the numerical
results of the weak lensing induced by the second-order vector perturbation.

4.4 Results and Discussions

We show our main results and discuss the size of the effect of second-order vector
modes. We now calculate the weak lensing signals from the second-order vector
mode by performing the numerical calculation (hereafter referred to as the exact
vector). For comparison, the results for the signals from the primordial gravitational
waves withr = 0.1, the second-order tensor mode (analytic tensor), the second-order
vector mode (analytic vector) are also shown.
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Fig. 4.3 The power spectrum of primordial gravitational waves with r = 0.1 (PGW), the second-
order tensor mode (Analytic tensor), the analytical approximate solution of the second-order vector
mode (Analytic vector), and the numerical solution of the second-order vector mode (Exact vector)
at the present time (14-z = 1). The second-order vector mode dominates on small scales rather than
the second-order tensor mode. The second-order vector mode derived by numerical calculation is
slightly smaller than that derived by analytic approximation on smaller scales

1 P(k)/(21°)

First, we show the angular power spectrum of the curl-mode in Fig.4.4 for the
CMB lensing measurement. The CMB lensing reconstruction technique can decom-
pose the lensing potential into the gradient and curl modes. Although the gradient
mode dominates the lensing signals, owing to this technique, the information about
the gradient and curl modes can be extracted independently. Even when we neglect
the instrumental noise, we need to take into account for the reconstruction noise only.
The noise estimated by the ideal CMB weak lensing measurement is determined by
a cosmic-variance limited reconstruction of the curl-mode [8, 10]. We found that the
curl-mode induced by the primordial gravitational waves dominates on large scales,
¢ < 200, while that by the second-order vector mode dominates on small scales,
£ 2 200. As seen in Fig.4.3, the power spectrum for the vector mode has a peak
at the scale corresponding to matter-radiation equality. On the other hand, those for
the primordial and second-order tensor modes have their peaks at the horizon scales.
Therefore, the second-order vector mode can affect smaller scales than the primordial
or the second-order tensor mode does. As expected, the second-order tensor mode
gives a subdominant contribution to the weak lensing curl-mode. This feature is sim-
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Fig. 4.4 The angular power spectrum of the weak lensing curl-mode. As we expected, the second-
order vector mode dominates on small scales. Furthermore, the second-order tensor mode becomes
a sub-dominant contribution to the weak lensing curl-mode. The expected noise from the cosmic
variance limit is also shown

ilar to the CMB polarization anisotropy [24] and the weak lensing gradient-mode
[32].

However, unfortunately, even if we consider ideal experiments, i.e., only the
cosmic-variance limited error, the weak lensing curl-mode signals do not exceed the
expected noise. Although the curl-mode induced by the second-order vector mode
dominates the signal of the curl-mode on small scales, it will be difficult to detect the
second-order vector and tensor weak lensing signals in future experiments. We con-
clude that the curl-mode induced by the second-order modes cannot be detected by
any CMB observations in the future because of the cosmic variance limit. On the other
hand, recently, a new possibility has emerged of detecting the weak lensing signals
in 21 cm observations [38, 39]. The angular power spectrum of 21 cm fluctuations
can be expanded up to £ ~ 107 since they do not have diffusion scales unlike CMB
fluctuations. Furthermore, the 21 cm fluctuations enable us to observe the fluctuation
at different frequencies which corresponding to the different distances. Therefore,
the signal-to-noise ratio can be substantially improved. For example, in Ref. [39],
the observable scalar-to-tensor ratio reaches r ~ 10~°. If this sensitivity is reached
in the future observations, the 21 cm curl-mode induced by the second-order vector
mode should be detected. The 21 cm fluctuations would be a good probe of the weak
lensing curl-mode.
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Second, we show the angular power spectrum of the B-mode shear with the four
representative imaging surveys, DES, HSC, SKA, and LSST, in Fig.4.5. Unlike the
CMB lensing, the statistical error in the cosmic shear measurements is determined
by the intrinsic ellipticity of each galaxy. In this section, we assume that the error
mainly originates from the intrinsic ellipticity of each galaxy as

NBB — 2 (’Viznt)
¢ (2€ + 1) fiky 3600N,(180/m)2 °

(4.136)

where (*yizm)l/ ? is the root-mean-square ellipticity of galaxies. In this section, we set
( izm)l/ ? = 0.3 derived in Ref. [40]. The error in the cosmic shear measurements
is mainly controlled by the sky coverage fuy, and the number of the galaxies per
square arc minute N, and we show the error expected by four survey designs in
Table4.1. From Fig.4.5, we can see that the B-mode induced by the second-order
vector mode dominates on all scales except for the largest scale. However, as is
the case with the CMB lensing curl-mode, the cosmic shear B-mode induced by the
second-order vector mode does not exceed the expected noise for each survey design.
From Eq.(4.136) and Fig.4.5, the combined survey design parameter appeared in
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Fig. 4.5 A angular power spectra of the weak lensing B-mode assumed four survey designs: LSST
(top left), SKA (top right), HSC (bottom left), and DES (bottom right). The second-order vector
mode dominates the expected signals on small scales. The black solid line shows the expected
statistical error for each survey
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Eq.(4.136), i.e., \/ fsky X Ng, should be improved about 10* compared with LSST
to detect the B-mode signal. Such an ultimate survey is quite unrealistic even in the
distant future in contrast with the 21 cm lensing observations.

We note that in this section, we focus on the standard cosmological model which
can characterize the primordial power spectrum by the primordial amplitude A% and
the spectral index n; in Eq. (2.207). However, the non-standard model may enhance
the primordial power spectrum on smaller scales (e.g., [41, 42]). The second-order
signals are sensitive to the enhancement on smaller scales since the mode mixing is
introduced by the convolution of the small- and large-scale fluctuations. The second-
order signals would be useful to probe the small-scale physics related to the inflation
model.

Let us consider the difference between the weak lensing induced by the second-
order vector and tensor modes. The equation of motion for the tensor metric pertur-
bation has the form of a wave equation. Therefore, the second-order tensor mode
induced by the products of the first-order scalar modes cannot be amplified when
the source remains constant in the matter-dominated era on sub-horizon scales [43].
On the other hand, the evolution of the vector metric perturbation is equivalent to
that of the vorticity. We can see that the vorticity with the source is well amplified in
Eq.(4.114) even in such an era. Therefore, the amplitude of the second-order vector
mode is larger than that of the second-order tensor mode.

To conclude this section, we remark on other second-order contributions to the
weak lensing curl- and B- modes. During photon propagation, there are some cor-
rections to the weak lensing formula induced by the geodesic effect [44, 45]. The
geodesic effect would have the possibility to enhance the curl- and B-mode signals.
However, this geodesic effect is induced not by the vector and tensor modes but by
the product of the first-order scalar perturbations such as the Weyl potential, which
we leave for future work.

4.5 Conclusion

In this section, we explored the weak lensing signals induced by the second-order
vector perturbation. The weak lensing effects are classified into two observables:
CMB lensing and cosmic shear. Both the signals of the CMB lensing and cosmic
shear can be decomposed into two modes by using parity, namely, the gradient-
and curl-modes for the CMB lensing and the E- and B-modes for the cosmic shear.
The curl- and B-modes are only induced by the vector and tensor modes. In the
standard cosmology, the vector mode is neglected and the source of the curl- and
B-modes is limited to the case of primordial gravitational waves, which have not
been observed yet. However, when we expand the cosmological perturbation theory
up to the second order, the vector and tensor modes are naturally induced by the
product of the first-order scalar perturbations. As the first-order scalar perturbation
theory is well established by a number of observations, the second-order vector and
tensor modes do not include free parameters and are well determined.
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We presented the effect of the second-order vector mode on the weak lensing for
the first time. The weak lensing induced by the second-order vector mode domi-
nates on smaller scales rather than the primordial gravitational waves with r = 0.1
and the second-order tensor mode. In particular, the cosmic shear induced by the
second-order vector mode dominates on almost all scales. This is because the second-
order vector mode can be enhanced when the source exists in the matter-dominated
epoch while the second-order tensor mode remains constant even if the source exists.
This difference also affects cosmological signatures such as the CMB polarization
anisotropy. However, the weak lensing signals induced by the second-order vector
mode cannot exceed the expected noise estimated by the cosmic-variance limit and
the shot-noise for the CMB lensing and cosmic shear, respectively. Therefore, unfor-
tunately, it seems difficult to detect the curl- and B-modes induced by not only the
second-order tensor mode but also the vector mode in the ongoing and forthcom-
ing weak lensing observations. However, the 21 cm observations can decrease the
expected noise and it may be possible that the 21 cm lensing observations can be
detect the 21 cm lensing curl-mode.

Throughout this section, we assume the standard cosmological model. In other
words, the primordial power spectrum is characterized by the amplitude and the spec-
tral index. However, non-standard cosmological models can enhance the primordial
power on much smaller scales. The weak lensing curl- and B-modes would become
the good probe to search for the small-scale power spectrum and we leave this to
future work.
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Chapter 5
21 cm Lensing in the Dark Ages

Abstract After the recombination epoch (z ~ 1100), free electrons couple to pro-
tons, and subsequently, neutral hydrogen atoms are formed. Before reionization
(z ~ 30), there has been no astronomical objects, what we called the dark ages.
During the dark ages, there are large amount of neutral hydrogen atoms. The neutral
hydrogen atom emits photons corresponding to the wavelength Ay ~ 21cm at the
rest frame due to the hyperfine structure. Therefore, we call this emission the “21 cm
radiation” or “21 cm (hydrogen) line”. It is possible to observe 21 cm radiation by
using the forthcoming radio telescope. The advantages of the 21 cm radiation as
follows. There is no damping mechanism such as the Silk damping in the CMB fluc-
tuations. In principle, we can pull information on very small scales from the 21 cm
fluctuations. Moreover, we observe the 21 cm fluctuations tomographically since we
observe the redshifted 21 cm radiation. The 21 cm radiation would become a new
probe to explore much smaller scales and bring a low signal-to-noise ratio. In this
part, we apply the second-order vector mode in the cosmological perturbation theory
to 21 cm lensing during the dark ages. In the previous study by Book (Phys Rev
Lett 108:211301 (2012), [1]), we can, in principle, detect the quite small tensor-to-
scalar ratio » &~ 107 by using the 21 cm radiation in the dark ages. However, when
we focus on the high-sensitivity experiments, the second-order vector mode cannot
neglect. We discuss the effect of the second-order vector mode on the 21 cm lensing
measurements. We also present the detectability of the second-order vector mode in
the future observations. Moreover, we mention the observable tensor-to-scalar ratio
in the 21 cm lensing measurements.

Keywords Second-order perturbation theory - 21 cm radiation - Weak lensing

5.1 Introduction

In our previous study [2], we discussed the detectability of the second-order curl
mode in the CMB lensing and cosmic shear. Unfortunately, because the signal from
the second-order curl mode is small, we concluded that we could not detect the
second-order curl mode even with an ideal experiment for the full sky without the

© Springer Nature Singapore Pte Ltd. 2018 107
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instrumental noise if we utilize the quadratic estimator method. However, we found
that the curl mode from the second-order vector mode is comparable to that from
PGWs with tensor-to-scalar ratio r < 0.1, especially so in lower redshifts because
the second-order vector mode is continuously generated, while PGWs always decay
in time. In other words, when there is an observation that enables us to detect PGWs
with 7 < 0.1 through lensing, we can also detect the second-order vector mode.

In previous studies [1, 3, 4], it was shown that the 21 cm lensing has a possibility,
in principle, to detect PGWs with a quite small tensor-to-scalar ratio. Long before
reionization begins, no astronomical objects exist, and this era is called the dark
ages. Neutral hydrogen atoms emit 21 cm line radiation that originates from the
hyperfine structure; see, e.g., Ref. [5]. In principle, we can observe the 21 cm radiation
from the redshift z ~ 200 to 30 in future experiments. 21 cm photons are deflected
by foreground scalar, vector, and tensor modes. Moreover, we can decompose the
deflection angle of the 21 cm photons into the gradient and curl modes depending on
the parity. Compared with CMB fluctuations, 21 cm radiation does not suffer from a
diffusion mechanism such as Silk dumping and the 21 cm fluctuations on small scales
remain until today. Consequently, the available information from 21 cm fluctuations
is dramatically improved compared with that from CMB fluctuations. Furthermore,
21cm radiation is emitted from each redshift and many maps are available. For
the above reason, 21 cm lensing reconstruction noise would become quite small
compared with CMB lensing reconstruction noise. Therefore, although second-order
vector and tensor signals tend to be small, there is a possibility to detect these second-
order signals in 21 cm lensing.

In this section, we focus on the 21 cm lensing curl mode induced from the second-
order vector mode. Our aim is to estimate the signal-to-noise ratio of the 21 cm
curl mode from the second-order vector mode in ideal experiments. In standard
cosmology, the first-order vector mode always decays and is neglected in linear
theory. The detection of the cosmological vector mode is quite important because it
would become a proof of the cosmological perturbation theory itself and the validity
of the scalar, vector, and tensor decomposition.

5.2 21 cm Radiation in the Dark Ages

Throughout this section, we focus on the redshift z = 30 since we are interested in
the weak lensing signals from the dark ages. During the dark ages, we can ignore the
effect of Lya photons emitted from astronomical objects. Neutral hydrogen atoms
form after the recombination epoch (z &~ 1100), and the effect of Lya photons from
stars dominates on the evolution of neutral hydrogen atoms after z ~ 30. However,
during 200 < z < 1100, thermal coupling between residual electrons and CMB
photons brings the spin temperature of hydrogen atoms to the CMB temperature,
and therefore no 21 cm signal comes from this period. Consequently, we can observe
21 cm radiation during 30 < z < 200. In this subsection, we review the 21 cm

~

physics following in Ref. [6].
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The Boltzmann equation for 21 cm photons f>;(n, x, €, i) can be written as

d
% = Culful, .1

where )\, €, and 71 are the affine parameter, the energy of 21cm photons, and the
direction of 21 cm photons, respectively. Cy[ f21] is the collision term due to the
21 cm interaction. The aim of this subsection, we derive the Boltzmann equation for
the 21 cm photons.

5.2.1 21cm Interaction

Here, we derive the collision term of the Boltzmann equation for 21 cm photons due
to the 21 cm interaction. At first, we work in the neutral hydrogen gas rest frame.
The number of 21 cm photons emitted per unit volume in a time interval df, within
solid angle d2 within energy dE can be written as

1
dny = = [n1 (Ao + Bioly) — no (Boi1,)] Grine (Eg — E21)dt,d EAS2
1
=1 [(n1 — 3n0) Ny + n11 Arg@iine (Eg — En1)dt,d EAQ (5.2)

where n1(n, x), no(n, x), Ao, Bio, and By are the number density of the neutral
hydrogen gas with the excited (triplet) state, that with the ground (singlet) state, and
the Einstein coefficients, respectively. And I, (n, x, p, it) is the energy intensity of
the radiative fields and N, (n, x, p, i) = CZ/(th]I/3)I,,(77, x, p, i) is the incident
photon number of the radiative fields. The ¢y (E — E3;) is the line profile and we
assume that the line profile is the Dirac delta function, ¢jpe[E — E21] = dp[E — Ea],
in other words, we neglect the velocity states, or we focus on larger scales than the
line width. Note that we do not need to consider the Einstein C-coefficient in the
collision term of the Boltzmann equation since the C-coefficient is related to the
excitation or de-excitation rates by the collision which is irrelevant to the emission
or absorption processes of 21 cm photons.

The incident photons distribution V,, can be decomposed into the CMB photons
and 21 cm photons as

Nll(nax’paﬁ)ZNCMB(nvxapvﬁ)+N21(n7xapvﬁ)
h -1
~ oo || i 53)

kg Tems (1, x, it)

where hp is the Planck constant. When we derive the above equation, we assume
that the CMB is perfectly black body spectrum. Furthermore, in the radio astronomy,
except for the very low temperature region (~O (10) K) or the higher frequency
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region than the millimeter waves (O(100) GHz), we can use the Rayleigh-Jeans
Law as

N kg Temp (1, X, 1) R
Nll(n’xypvn)%h— +N2l(777x5p7n)
pl¥ V=11

T ,X, 1 . .
=% + Noy(p, %, poi) (unitin kg = hy = 1) ,
21

(5.4)

where the condition ¥ = 1, is coming from the Delta function of the line profile.
Note that 75; = 0.068 K « Tc(g/)IB = 2.7(1 4+ z) K. The CMB temperature has
fluctuation itself and we can write this accounting for working in the gas rest frame
as

Tows (0. X, i) = T8 [1 + Oy (. x, 1) — A0V @, x)] .59

Next, we derive the changes of the distribution function by the 21 cm interaction
during the dark ages. The changes of the number density dn,; can be related the
changes of the distribution function as

df

3

2dN;

dnyr = 5 dQE*E = ——=dQ/ dv, (5.6)
C

where the factor 2 in the third equality is coming from the state of photons, namely,
the photon has two polarized states. Note that the relation between the number density
and the distribution function is written as

3

A hply2
I(t,x,v,n) = ft, x,p). (5.7)

n= 3
chpv c

We change from the gas rest frame time to the affine parameter as

dty = uydx,
= kyuydA
=E,d\. (5.8)
Before moving to write down the changes of the distribution function due to the

21 cm source, we write ng and n; as a function of the spin temperature Ty(7, x, 7).
The spin temperature is defined by the ratio of the number density in the upper states

to the lower ones as AE

n

M8 e <_ 10) , (5.9)
no g kg T

where ny, 81,0, and AE}, are the number density for each state, the number of
degenerate states for each state, and the energy difference between the upper and
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lower states, respectively. In the case of the hyperfine structure of neutral hydrogen
atoms, g1 = 3, go = 1, and AEy| = hya1em, Where v21em &~ 1420 MHz. The spin
temperature is determined by the evolution of the n| and ng. In other words, the spin
temperature depends on which physical process plays the excitation and deexcitation.
By using Eq. (5.9), we can write

— T/ Ts(n.x)

34 el/ T (5.10)

ni(n, x) — 3ng(n, x) = 3nu(n, x)

where we use the number density of the neutral hydrogen nyy is written by the sum
of the ny and n, namely, nyg; = ng + n;. By using Egs. (5.2), (5.4), (5.6), (5.8), and
(5.10), we can write

A Exr 3Aonui(n, x)
47TE%1 3 4 T2/ Ts(n.x)

T VX, 0N h3 . N
X |:(1 - eTZl/TS(”’x)) (CMB(n ) + ol fa1(n, x, p, n)) + 1 |éplEg — Ea1].

Tr1 2
(5.11)

Culfal =

Finally, we derive the collision term due to the 21 cm interaction. The left-hand side
of Eq. (5.1) is already derived in Sect. 2.4. In the next, we expand the Boltzmann
equation for 21 cm photons up to the first order.

5.2.2 Perturbed Boltzmann Equation for 21 cm Photons

Hereafter, we expand each variable:

nu(n, x) =ny () [1+ AL (1, 0)] (5.12)
T x) =10 [1+ AP0 x)] | (5.13)
Tews (1, %, ) = TS [ 1+ ORp . x. ) — v .0 | . (5.14)

fou(m,x, p,n) = 2(?)(77, D) [1 + A;lz)] n,x, p, ﬁ)]
= 100, p)+ 85, x, po i) . (5.15)

In addition, we assume that the spin temperature is higher than the 21 cm temperature,
that is, Tp; < TS(O). In other words, we leave the factor 7>,/ T up to the first order in
our calculation. This assumption is valid during the dark ages.
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Performing the first-order perturbation, we derive

3c’A|0n(0) 70 _ 7O
G — HI 1s CMB [1 AD (p x
Hlf21l = 167 Eay 7 + A (M%)
7O

1 ~ ~ 1
- (®(Cﬁ43(n, x. i) — v (. x) — AP (. x))
I — TCMB

Iy 121
2 Wﬁl)(n ) (1488 0%, p.i) = AP G0 + AL, 000 | DIy — B

Ty 7
(5.16)

Note that the E o a~! is the photon energy measured in the expanding universe.
The comoving photon energy e can be expressed as p = E = €/a. When we
treat the distribution function for 21 cm photons as the function of ¢, namely, f>; =
Jf21(n, x, €, ), the left-hand side of Eq. (5.1) becomes

Ofu  dx'Ofs  dedfu it Ofu _ 1
On T dy OxT T dn o 1
o dn Ox'  dn Oe dn on POCH[f21] (5.17)

Here, we focus only the expansion of the collision term, since the left-hand side is
well discussed in Sect. 2.4. By using Eqs. (2.51) and (5.17), finally, we can give the
right-hand side of Eq. (5.1) as

3C3A]0n(0) T‘(O) T(O)
HI O _—CMB {lw(” g (. x) + AG, (. %)

1
S0 Culf21l=a

2 0
P 16mE3, 7
T o (M M
_ ﬁ (@CMB(n,x,n) —i-vg (0, x) — Ap’ (1, x))
s~ 'CMB
3
hpl 1)

-(0 ~ 1
-5 sz(l)(n, p) (1+‘1’(1)—"'”é)(n,x)
Ty _TCMB
(1) € A~ (D)
+aD @, x, p, i) — A <n,x)+AnHI(n,x>)] [S(1=i-vg @) = En] .
(5.18)

where the delta function can be expanded as

5D E (1 -0, x)) - E21i| =dp [5 - E21} + €dcdp [5 - EZI} (=it vy (7. ) .
(5.19)
In the following section, we shoe the background equation and the first-order per-
turbation equation.
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5.2.3 Background Equation
From here, we focus on the background evolution by using Egs. (5.17) and (5.18). The
background evolution equation for the photon distribution function can be written as

97O 3341000, 7O — 7O n3 Ts1
b _ 3¢ Aoy CMB | _ Pli(o)f(o)(n, o | op [5 —Ezl} ;

an 16mE2, 70 2 10
(5.20)
furthermore, the above equation can be rewritten as
o f<0> . .
o= =ap®dp [M - EZI} —#0 LY. e . (5.21)
where we define
(0) )
p(o) (,'7) = 3C3A]OnHI TS(O) — TCMB (522)
s 1677E§1 T
. (0) . 3C3A10hgl Tglnl(_?l) €
T (’17, 6) =da © — L]
327E3 T, a(n)
=ar P [ o } , (5.23)
3C3A10h31T21n1(_(I)I)
TS(O) (n) = B i (5.24)
32nE3 T
Note that the relation between 7, and p? is
o T
(U] _ _P )
T M= ——5——0 P () - (5.25)
8 ) © s
2 Iy — TCMB

This differential optical depth 7+ defined in Eq. (5.24) can be formally integrated
by using the Heaviside step function ®g(x) as

3¢ Awohy  nlyy(no)
O, 6 = > — i Ou(n —nc)
32mks 5y T80 O H MO |y

=000 — 7o), (5.26)

where we define
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7_(()) _ 3C3A10hgl ’12)1 (776)
- L .
C ke BN TV 0O H MO |y,

(5.27)

When we derive the above solution, we use the property of the Dirac delta function:

1
S lf1=)" Ty ol — el (@) =0). (5.28)

By using these definitions, we can solve Eq. (5.20):

©) 1—e ™ [ p®
o E) = 7—6(0) |:_E21Hi|5 . (5.29)

The relation between the brightness temperature and the distribution function is

given by
3

STh ——f@lE f (5.30)
b_ZkB obs J21 » .

where, in our notation, the distribution function of 21 cm photons f5; are already
subtracted from the distribution function of the CMB photons. Consequently, by
using the above relation, we can get the net brightness temperature as a background
source of the CMB photons as

6Ty = Ty — Tems - (5.31)

Finally, we can get the back ground net brightness temperature as

7O _ 7O
6Tb(°) _ (1 _ e‘T(O)> [STCMB , (5.32)
Z

where we use the observed photon energy corresponds to the comoving energy,
namely, Eq,s = €. This solution does not close itself. We need to know the evolution
of the spin temperature. The evolution of the spin temperature can be derived by
using the detailed valance of the coupling. The discussion of the detailed valance is
shown in the next subsection.

5.2.4 Perturbed Equation

Next, we consider the first order perturbation. We can find that the definitions of the
physical variables, the angular dependence of the direction of photons is included
in @gK,IB (n, x, i). Other terms does not depend on the photon direction, namely, the
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monopole terms. Therefore we expand the CMB anisotropy for the scalar mode by
multipole expansion as

OB x| =000 0 i v 0+ 00 x i), (53

where we use the fact that Oﬁ o, x) = 4vf,12,(n, x) and we define higher multipoles

as
o0
47
(1) AN . (1) ~
O (1, x,n) = ;_2 (=" ,—26 1 Oy, x)Ye o) . (5.34)

Therefore, we define the first-order monopole source by using the above notation as

T(O)
1 1 CMB (D (1)
AD = AD 4 —JoME (ATS — @0,0) . (5.35)
Iy — Tovs

HL

From Egs. (5.17), (5.18), and (5.33), the first-order Boltzmann equation can be rewrit-
ten as

96 f<“ §190 f<“

+ 705 £ (n, x, €, i)
n

= ap” [Ai”(n, )+ WP i o, x)

Y . . €
-G [n : (vf,,”(n, x) — v (n, x)) +0L . x, n)]]&a [5 — E21]

10 10,
-0, (Aleﬂ)l (%) = AL (1, ) + 9O — -0V, x)>
~(0) () (0) ~ (1) O [y« 5 (1) dw®
e[aﬁf21 + 790, £y, ](—n~vg (1, %)) — €0, fr) (xp )+ @ _W) :
(5.36)
where to remove the derivative of the delta function, we use Eq. (5.21) as
a(p® =0 f)) 0o | = = Ear | = 0f) + 7001 (5.37)

If there is the residual photons or reionization photons, we need to consider the effects
from the Thomson scattering as

1 . 1 . 0 . 1 1 a .
ECT = TC(O) |:f2<]>(n, X, €, 01) + eaffz(l)(l], €)(n - vg)(y,, X)) — fz(h)mno(n, X, €) — §f2<1;uad(77’ X, €, n)

(5.38)
where 70 = —an® o1. Moreover, we define the monopole and quadruple parts of
fa V' a 2(]1 r)nono and fz(ll ();uad’ respectively. These can be rewritten as
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1 1 A A
2(lr)non0 = 2(1)0P0(n . Z)
= A ooVaTYoo(R) (5.39)

(D ) A A
Forquad =3 fa12P2(n - 2)

4
=(=i)%/ ?sz(ll)z,oyz,o(ﬁ) . (5.40)

Considering this effect, we can rewrite Eq. (5.36) (and hereafter for simplicity, we
remove the argument) as

(1) (D
PR OB | (o) 54

an oxt
T(O) (1) €
=ap” | AV + 0V —fi ) — R CMB(O) {fz . (vE,U - vg)) + 0] } op [f - EZI]
I = Tev “
. 0 1 . (0) | . 0 .
D (00 o) e[ 80 + 700) o)
0 [ . dw® . 0, 1 I a
— Sy (\IJ‘” + &0 — | 420 | 0f @ ) = 0 iono — 30 21quaa | -

(5.41)

As well as the formulation of the CMB fluctuations, we can use the line-of-sight
integration. By performing the line-of-sight integration, after a long but straightfor-
ward calculation, we derive the line-of-sight integrated solution:

(1 S 0 o N
3fs) (0. x0. €. ft0) =€ f§3[A§1><n, 0+ D@, x) +io - v (7. x)

©
T . 1 .
e U {no (0.0 = v 0) - L, x, no)}
I = Tems
(0) (1) (1)
r. dv'V(n, x . . . dv L X
R UL 2 U P N P S S L8.2)
He dn dn €

_0 —q (0) N
+ e fz(l_)lm[f‘ w(”(no,xo)—w<‘><n(,x(>+no-v;”(n(,x()]

_ o (0)
= Fiine / dn e (WO, + 000, %))
e
_+0 ~q 1 A
+ e B (r - 1) [Ai,{?] .x) = A (. %) + 9O (. %) + g - vg)(’r/,x)](
"o o[
7/ dn %C(O)ef’c |:Of2(]1r110n0(7),x, €)
e

i ! .
+ f3ne (0 0 0.0 = WO 0.2)) + 33 hag 0. . < no)} L (542

where we define the direction of the line-of-sight at the observer as i = —#ig and
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— ()
O

r = (5.43)

1—e "
The perturbed distribution function of 21 cm photons is expanded by spherical har-
monics as

ate™(z,) = f dQY;,, (s £) (o, xo0, €, 1) , (5.44)

where Yy, (f1) is the spin-0 spherical harmonics and z. is the redshift at which
the 21 cm photon was emitted. Finally, we define the angular power spectrum
Calcm(ze] ’ Zez) as

(@7 (ze)ag o (ze,)) = C7l™ (2e, 2 26) (= 1™ 6, 00y -, - (5.45)

2,12

In order to give the theoretical predictions, we need to formulate the evolution of the
spin temperature 7 and the number density of the hydrogens ny;.

5.2.5 Evolution of the Spin Temperature

At first, we consider the evolution of the neutral hydrogen of lower (singlet) state.
We write down the evolution of n( as

on 1 Ox,
6_0 = —ng (Co1 + 3A10No0) + 11 (Cro + Aro(1 + Noyp)) — —
Te 4 0T,

(nar +ne)

(5.46)

where we denote Cyo = CHH CeH 4 CP and AV, is the monopole part of the photon
phase space density integrated over the line profile. In more detail, the monopole part
is given in Ref. [6] as

(0)
T 1 . 1
Ny = JC((Iz/)lB (1 (")(()],())) ”2* (25(0) - 7c(i/)13> [1 +a +w® H (q><1) 3V'"g)>} ’

=18 (1+085) + 3 (% = Toum) (5.47)

Here, we focus on the case of reaching equilibrium, namely, the time derivative
in Eq. (5.46) becomes zero. In this case, the spin temperature is determined as

- Ao+ CioTa1/Tems | 1 1 1
T; =~ Tems + - Tsm Ao - ,
Ao+ CroT21/ Ty 2 CioT21/Tg+ Ao CroT21/Tems + Ao

(5.48)
where we expand with respect to 7,, and use the Oth order solution of 7. The zeroth
order solution of 7; with respective to 7,, can be rewritten as familiar form without
the Ly-« interaction as
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B Tous + T,

~1
) 5.49
s I+ x (5.49)
where we defined O T
x, = 102t (5.50)
AoTevs

All variables in the above equation is perturbable variables. In other words, we can
expand, for example, Ty = 7.9 (1 + A(Tt)).
From Eq. (5.48), we can derive the difference between A(Ti) and AV

Tows 38

(1) _ A © 0\ 50D 1 O (gOAD _ pO o0
AP — AP~ (RCMB — R >) sch 4 (Ré Al - RCMBG)O,O)

Tems

1 1/, 1
(0) O) [ A (1) 1 1) (1)
+ 57y A10C1g [A +w® 4 — (c1>< ) — gV.u;é ) +Ac)

2 nHI

(0)
T,
0) p(0) (1 0) (1) CMB (1) ()
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where we define

T,
R7'=Cp+ AIOE , (5.52)

and its Taylor expansion with the definition Cjy = Cfg) + (5Cf(1)) = Cfg) (1 + A(Cll)o)
as
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And note that by using R;, we ca rewrite Eq. (5.48) as

1 TR,
Roms (Ts — Tewms) = (TyRg — Tems Rems) + =7 A0—— (TyRy — Toms Rems)

(5.57)



5.2 21cm Radiation in the Dark Ages 119

this is useful form to derive Eq. (5.51). We can determine the evolution of the spin
temperature by using Eq. (5.51).

5.2.6 Evolution of the Gas Temperature

In this section, we derive the gas kinetic temperature. There is no interaction between
the gas and any other components, the gas decays adiabatically, namely, T, o a 2.
The derivation is following Sect. 3.2 of Ref. [7].

At first, we start from the definition of the energy-momentum tensor defined in
Eq. (2.43) as

i

i P g P (5.58)

=2 [ et

The divergence of the energy-momentum tensor is given by

1 d3p L
1 =2 [ P, (5.59)

where we use the Boltzmann equation for g, and C.. is the Compton scattering
term for photons used in Egs. (2.95) and (2.96). Here, in order to derive the above
relation, we use the fact that the Compton scattering term for gases and photons is
only different from its sign, namely, the action-reaction law.

The energy momentum tensor for gases can be written as

T} = (pg + Py) uhuy + Pog"”, (5.60)

1 =2
pg =mng + Engmv

3
=mng + EnngTg

3
=mng + EP , (5.61)

P, =ngkgT, , (5.62)

where the four velocity can be written as

ul = ( (1—W), —vg> . (5.63)

By using Eq. (2.51), the right-hand side in Eq. (5.59) can be written as
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1—v®h r dp

(rh.s.in Eq. (5.59)) = — 2 2n)? Ce [ f1, (5.64)

from the above form, we can find that the non-vanishing term is only the monopole
part of the collision term. In other words, schematically, we can write the collision
term as Cey[ f1 = Cumono () +Ci(p, ). Due to the integration of the 72, the latter term
of this notation vanishes. Furthermore, the gas kinetic temperature is the second order
compared to the velocity perturbation. Therefore, we need to expand the collision
term up to the second order derived in Sect. 2.5. The non-vanishing part of the
collision term is perfectly corresponding to the Kompaneets term.
The Kompaneets term can be written in Eq. (2.163) as

1 0 4f..0fP)
_ Ty————
pme Op dp

+ Q) (14 f“”(p))H ., (5.65)

Cer)/ = Ne0T
K

where the zeroth order distribution function for photons is the Planckian as

© 1
o p) = o . (5.66)
exp [ p/ (ks T | — 1
By performing the p-integral in Eq. (5.64) as
1—-w®g
(th.s. in Eq. (5.59)) = — TP o (Tows — Ty) . (5.67)
a me

where we use pcvp = ap TéMB, where ag = ’/Tzké /15, and we use the integral as

1
F(x) = , (5.68)
e' —1
o0 0 OF (x) 4
/(; dX)Ca [X4Tg Ox + (kBT)F(X)(l + F(x)):| = EﬂA (TCMB — Tg) .
(5.69)
Finally, we can rewrite the right-hand side of Eq. (5.59) as
v 1 — ‘Il(l) 40TnepCMB
T, = — ke (Tems — Ty) (5.70)
a Me
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ao n
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From here, we calculate the left-hand side of Eq. (5.71). By using the geodesic
equation u”u”,,, = 0, the left-hand side of Eq. (5.71) can be written as

(Lh.s. in Eq. (5.71))° = (pg + Py) , uguy + Py,8” + (pg + Pe) ity

= | (=29 [+ (ot Pt (1490

(5.73)
where we define the volume expansion rate of gas:
aby = ul., =3 [H —HYD — o0 4 %ug”f,,} : (5.74)
By combining Egs. (5.71) and (5.73),
pe+ (pe + Pe) 3 (H — M 4 %v;”",) =—(14+w®) z—i : (5.75)

The evolution of the number density for gas can be derived from the Boltzmann
equation of zeroth-moment in Sect. 2.6.1 as

fig +ngvl i +3(H—®V)n, =0, (5.76)

and from this equation, the time derivative of the energy density for gas can be derived
as

) 3. . | R,
Pg = ng —3p, (H — oM 4 gvé]) i) , (5.77)
and finally by using these equation, the evolution equation for the pressure for gas
can be derived from Eq. (5.75) as

: 1 2
Byt 2P, (H— oW 4 —o0i ) = — (1 + wh) =€ (5.78)
3 3k

By using Egs. (5.62), (5.76), and (5.78), we finally derive the evolution equation for
the gas temperature:

. . 1 . ZEC
Ty + 2T, (H—dP + oW ) = — (1 +wD) — . 5.79
o g( T3% (t+ )3ngk§ ©-79)

The adiabatic decaying factor o« a2 is coming from two facts that 1. the matter
density is decaying with oc a3, and 2. the matter density and pressure (correspond-
ing to the gas temperature) are related to p; ~ mgng + 3/2ngkgT, due to the rest
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mass plus the internal energy term coming from the equipartition theorem with ideal
monoatomic molecule.

Hereafter, we perform the perturbation. The zeroth order evolution equation can
be written as

©) (0
7O 4o O — 8aoTpenpXe (T(O) _ T(0)> (5.80)
¢ : 3m (1 + £9 +x<0>> CMB- e )
€ He ¢

where we denote the number density for gas as
Ne = XeNy (5.81)
ng = (1+ fae +xe)np . (5.82)
And the first-order equation becomes
©) _(0)

8aoTpoypXe
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(5.83)

, 2 o .
AP = - gvé“’,i +29M 4

1+ fHe + xe

where we neglect the perturbation of the helium fraction.

By using Eq. (5.83), we can trace the temporal evolution of the spin temperature. In
order to calculate the angular power spectrum of brightness temperature fluctuations,
we use the public code subroutine: the CAMB sources [6]. The feature of the 21 cm
power spectrum Cflcm (z1, z2) 1s well discussed in [6], and it was found that there
is no dumping in the 21 cm power spectrum like the Silk dumping in the CMB
power spectrum. For this reason, the available maximum multipole in the 21 cm
power spectrum can reach ;. ~ 10 ~ 107, which corresponds to the Jeans scales.
Compared with the CMB temperature power spectrum, the available mode increases
by 10° ~ 10*. In addition to this fact, by varying the observing frequency, we can
take a number of redshift slices. These advantages in using the 21 cm power spectrum
help us to decrease 21 cm lensing reconstruction noise.

5.3 Results and Discussions

5.3.1 21cm Lensing Curl Mode

In this section, we present main results of the 21 cm lensing. In Fig.5.1, we show
the angular power spectra of the curl mode induced from PGWs with r = 0.1 and
the second-order vector mode. We can see that the lensing signal from PGWs is



5.3 Results and Discussions 123

8 3
10 10 T
10 10 z=200 ——
1070 b 1010 =30 e ]
12 [ 12 z=4 -
1072 10 ol

P(+1)* P 2m)
=
P+1°2m)

10 100
l /

Fig. 5.1 The angular power spectra of the curl mode induced by PGWs with r = 0.1 (left) and
the second-order vector mode (right) for redshifts from z = 200 to 0.6 as indicated in the figures.
The curl mode from PGWs is substantially suppressed on small scales compared with that from the
second-order vector mode

suppressed as the redshift decreases. On the other hand, the curl mode from the
second-order vector mode remains almost constant. We find that the redshift depen-
dence of the second-order vector mode is similar to that of the gradient mode from the
first-order scalar potential [8]. This is because the second-order vector mode is also
sourced from the first-order scalar potential. Therefore the amplitude of the second-
order vector mode can have a greater amplitude than the curl mode from PGWs.
The amplitude of the curl mode from the second-order vector mode is greater than
that from PGWs with » = 0.1 on smaller scales, such as £ = 20. Furthermore,
when the tensor-to-scalar ratio is quite small, e.g., r < 1072, the curl mode from the
second-order vector mode dominates over almost all scales. From this fact, we can
conclude that even if we consider ideal observations, it would be difficult to hunt the
tensor-to-scalar ratio » < 107> by using 21 cm lensing.

In the next section, we show the signal-to-noise ratio of the 21 cm curl mode.
Before moving the next section, we review the 21 cm lensing reconstruction for the
curl mode following Ref. [1]. Because of the difference in parity between the scalar
and pseudoscalar potentials (see Eq. (4.43)), we can reconstruct the gradient and
curl modes separately from the maps. Throughout this section, we assume that the
detectability of the curl mode is based on the quadratic estimator as was used by the
Planck collaboration. The accuracy of the quadratic estimator is limited by the cosmic
variance of the lensed CMB maps. In our study, by the term the ideal experiment,
we mean that the reconstruction noise is due to the quadratic estimator without the
instrumental noise.

First, as well as the CMB lensing reconstruction technique, we can reconstruct
the curl mode from a single redshift slice. In this case, the reconstruction noise is
given as [1, 9]
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2
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where f;% ;, and g7 ;. canbe expressed as follows:
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R Tol o
where C; and C; are the unlensed and lensed 21 cm angular power spectra, respec-
tively. Note that due to the property of the Wigner-3j symbol, ¢S77, , = 0, when
L + ¢ + ¢ = even. To discuss the detectability of the 21 cm lensing curl mode, we
introduce the signal-to-noise ratio as

S ww cm@ 2 1/2
<_> - 2:( f;w> , (5.88)
N, ~ | = \Ac

where we define the error as

2
ACP? = | —— (C7% + NF7¥) . 5.89
¢ Vs (CF™ + N77) (5.89)

Note that we assume an ideal experiment where the sky coverage fraction fy is
unity. The 21 cm angular power spectrum can extend up to the multipole moments
£ ~ 10° ~ 107 since there is no diffusion mechanism after the recombination epoch.
Therefore, even if we use a single redshift slice to reconstruct the 21 cm curl mode,
the noise spectrum from the 21 cm angular power spectrum becomes smaller than
that from the CMB angular power spectrum.

Moreover, we can further reduce the noise by coadding many redshift slices. Fol-
lowing Ref. [1], the number of the statistically independent redshift shells can be
estimated as below. The comoving distance between the neighboring statistically
independent maps J R is roughly related to the highest multipole moment £;,,,x used
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in the lensing reconstruction as R ~ R{,! , where R is the comoving distance cor-
responding to the source redshift. Therefore, the total number of available maps can
be estimated as AR/OR ~ 0.15£,,,«, where AR is the comoving distance between
Zmin and Zmax. If the lensing signal is mostly contributed from z < 30, the noise
spectrum is drastically reduced by the factor of 0.15£,,,,«. In this section, we call this
reduced noise power spectrum the coadded noise spectrum. In the following section,
we present our main results and discussions.

5.3.2 Detectability and Discussions

Here, we discuss the detectability of the second-order vector mode and estimate the
signal-to-noise ration based on the coadded noise spectrum. In Fig.5.2, we depict
the signal-to-noise ratio for two different values of £,,,x = 10° and 10°, which is
our main result. For reference, we also show the signal-to-noise ratio for the case of
PGWs with 7 = 107>. PGWs with » = 107> have almost the same amplitude of the
curl mode from the second-order vector mode at £ = 2. In the case of £y = 10°,
the signal-to-noise ratio reaches S/N ~ 0.11 for the PGWs and S/N ~ 0.46 for the
second-order vector mode and it would be difficult to detect the second-order vector
mode and PGWs with » = 107>. On the other hand, in the case of £,,,x = 10°, we
obtain S/N = 4.5 for the PGWs and S/N ~ 73 for the second-order vector mode.

108 \ \ 108 \ \
10 2nd order vector signal 10 2nd order vector signal
10771 PGWs: r= 107 ] 107" r PGWs: r= 107
:l::: 102t Coadded noise I, = T E g 10712 Coadded noise I, = T — E
a 10’16 \ a lO’16 \ i
X 10} X 10 o
al ol
— 10_2() | ~ 10-20 L
102 | 1 1072 | 1
10.0 ; + 100.0 ; f
B B
EY 10 €V 100} /
2 0.1 /—, 4 1.0 -
0.0 : - 0.1 . -
10 100 10 100

l [

Fig. 5.2 The angular power spectrum of curl modes from the second-order vector mode and the
coadded reconstruction noise by using £max = 10° (top left) and £max = 100 (topright). Bottom: The
signal-to-noise ratio estimated by Eq. (5.88). For reference, we also show the curl mode signal and
signal-to-noise ratio induced by PGWs with 7 = 10~ and which tensor-to-scalar ratio corresponds
to the same amplitude of the second-order curl mode at £ = 2
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The above signal-to-noise ratio is derived by adopting the reconstruction noise
spectrum from the quadratic estimator performed in Refs. [9, 10]. Reconstruction
noise from the quadratic estimator is limited by the cosmic variance of the lensed
CMB fluctuations. Ultimately, the iterative estimator proposed in Ref. [11] canreduce
the reconstruction noise to zero. Even in that case, the fact that the curl mode from
PGW with » < 1077 is concealed by that from the second-order vector mode does
not change.

The signal-to-noise ratio of the second-order vector mode can reach higher than
that of PGWs. PGWs do not induce the curl mode amplitude on smaller scales since
PGWs decay on subhorizon scales. On the other hand, the second-order curl mode
can remain large on smaller scales and at low redshift since the second-order vector
mode is continuously sourced by the first-order scalar gravitational potential. The
second-order vector mode grows on subhorizon scales. From this nature, the second-
order vector mode may be easier to detect than PGWs on small scales.

There is another source of the curl mode, that is, the lens-lens coupling examined in
Refs. [12—14]. The lens-lens coupling is sourced by the higher-order Born correction.
However, this correction mainly contributes the curl mode on small scales such as
£ > 10. The curl mode on large scales is important to distinguish the PGWs and the
second-order vector mode since the PGWSs and the second-order vector mode affect
the curl mode on large scales, that is, £ < 10. When we consider the curl mode on
all scales, the lens-lens coupling and the second-order vector mode should be taken
into account.

To close this section, we describe a feature of the second-order vector mode.
The second-order vector mode does not have the free parameter since its source,
that is, the first-order scalar mode, is well determined by the current cosmological
observations. Consequently, the prediction of the 21 cm lensing curl mode from the
second-order vector mode is quite robust.

5.4 Conclusion

In this section, we studied the detectability of the second-order vector mode by
using 21 cm radiation from the dark ages. 21 cm radiation during the dark ages is a
powerful tool to explore small signals such as second-order signatures since 21 cm
radiation anisotropy on small scales makes multipole moments available up to ~10°.
Furthermore, by multifrequency observations, we can use many redshift slices to
decrease the lensing reconstruction noise. We focused on the weak lensing signal
of the 21 cm radiation from the dark ages. As well as the CMB lensing, the 21 cm
photons are deflected by foreground scalar, vector, and tensor perturbations. The
deflection angle of the 21 cm photons can be decomposed into the scalar (gradient
mode) and pseudoscalar (curl mode) potentials depending on its parity. The curl mode
is a good tracer of the cosmological vector and tensor modes since the scalar mode
induces only the gradient mode. It is known that the second-order tensor mode is the
subdominant component in the large-scale structure signal such as weak lensing. On
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the other hand, the second-order vector mode can have a comparable contribution on
large-scale structure to primordial gravitational waves. Accordingly, the observation
that can detect PGW's with small tensor-to-scalar ratio can be also used to detect the
second-order vector mode with a high signal-to-noise ratio.

We discussed the detectability of the 21 cm lensing curl mode induced from the
second-order vector mode for the first time. If the available multipole is limited to
IS 10°, the 21 cm lensing curl mode from the second-order vector mode cannot be
detected. If we can extend the maximum multipole up to £;,,x &~ 10°, the signal-to-
noise ratio reaches 73. We conclude that, in principle, we can explore the second-order
vector mode by using 21 cm radiation from the dark ages. By comparing PGWs, it was
also found that the PGWs with a tensor-to-scalar ratio r &~ 10~ become subdominant
in the 21 cm lensing curl mode. In the previous study [1], they concluded that it is
possible to detect the PGWs with r &~ 10~°. However, when second-order effects are
included in their analysis, a tensor-to-scalar ratio smaller than » < 107> would be
difficult to detect by the 21 cm lensing curl mode. We can generalize this discussion
for any model, including the vector or tensor modes with model parameters. The
second-order vector mode is generated from the first-order scalar mode that has been
well determined by current observations. Therefore, the 21 cm curl mode from the
second-order vector mode always exists. Even if 21 cm lensing is induced by other
models, an amplitude smaller than the second-order vector mode is difficult to detect
with 21 cm lensing.

Throughout this section, we assumed the ideal and challenging experiment for
21 cm signals. There are some forthcoming observations for 21 cm signals after the
recombination epoch, e.g., from the Square Kilometer Array. Moreover, exploring
21 cm radiation must become an active topic in the near future. Before starting these
observations, exploring the potentials of 21 cm radiation is important and this work
gives one of the nontrivial solutions.
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Chapter 6
Summary of This Thesis

In this thesis, we studied the role of the second-order vector mode in the cosmolog-
ical perturbation theory. The vector mode has been paid less attention so far since
the vector mode has only decaying solution in the first-order perturbation theory.
Contrary to the linear theory, according to the non-linear coupling of the first-order
scalar modes, the vector mode inevitably appears in the second-order perturbation
theory. Here, the first-order scalar mode is determined with a high precision by the
current observations. Throughout this thesis, we discussed the observational effects
of the second-order vector mode as follows.

First, we demonstrated the second-order perturbation theory in Chap. 2. Cosmo-
logical perturbation theory is based on the Einstein-Boltzmann system. We formu-
lated the perturbed Einstein equation and Boltzmann equation worked in the Poisson
gauge without any lack of their consistency up to the second order. In the standard
cosmology after the neutrino decoupling, the fluids in the universe are assumed to
consist of photons, neutrinos, dark matters, and baryons with the interaction between
photons and baryons due to the Compton scattering. We derived the collision term
in the Boltzmann equation up to the second order. Moreover, as an example, we
showed the tight-coupling approximation of the second-order vector mode. Photons
and baryons had strongly coupled through the Compton scattering in the early uni-
verse. In this limit, we can treat these fluids as a single fluid and expand the perturba-
tion variables related to photons and baryons by using the tight-coupling parameter.
We derived the solution in the tight-coupling approximation to implement in our
Boltzmann code which makes us to rapidly solve the perturbed Einstein-Boltzmann
system. In addition, we also discussed about configurations of the wavevector in
Fourier space. Two Fourier modes couple, satisfying the triangle condition in the
second-order theory. In Fourier space, we showed that there is some symmetry of
the wavevector configuration.

Second, we applied the second-order vector mode to generation of magnetic fields
in Chap. 3. There are many evidences that there exists cosmological magnetic fields
on large scales. The origin of cosmological magnetic fields has not been figured
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out yet although many generation mechanisms have been proposed. In our study,
we tried to explain cosmological magnetic fields according to the vector mode in
the second-order perturbation theory. Two previous studies showed the spectrum of
second-order magnetic fields, their results are not consistent with each other. By
using our original Boltzmann code, we revealed the reason why the discrepancy
is appeared in the two previous studies. Moreover, we accurately determined the
power spectrum of second-order magnetic fields. The amplitude of the second-order
magnetic fields is about 107>Gauss at cosmological recombination (z &~ 1100).
Although it seems that the amplitude of the resultant magnetic fields is sufficient for
the seed of cosmological magnetic fields, we need to further understand about the
dynamo mechanism, namely, the amplification mechanism on cosmological scales.

Third, we applied the second-order vector mode to the CMB lensing and cosmic
shear in Chap. 4. Photons emitted from the CMB last scattering surface and galaxies
are deflected by the foreground perturbations. The deflection angle induced by the
vector mode includes an odd-parity mode which does not arise from the scalar mode.
We discuss the detectability of the parity-odd modes, named the curl mode for the
CMB lensing and the B-mode for the cosmic shear. Not only the second-order vector
mode but also the second-order tensor mode and primordial gravitational waves
induce the curl and B modes. We compared the angular power spectra induced from
these modes and found that the second-order vector mode dominates on small scales
inthe CMB lensing measurements when we assume the tensor-to-scalarratior ~ 0.1.
On the other hand, in the cosmic shear measurements, the second-order vector mode
dominates on almost all scales. However, unfortunately, ongoing and forthcoming
experiments cannot detect these parity-odd signals. In other words, the parity-odd
mode is available for the consistency check of the weak lensing measurements as
discussed in Ref. [1].

Fourth, we also applied the second-order vector mode to the 21cm lensing in
Chap. 5. After the recombination epoch, there are large amount of neutral hydrogen
atoms which emit the 21 cm radiation due to the hyperfine structure of a neutral
hydrogen atom. By using the 21 cm radiation, it is possible to reduce the amplitude
of the noise spectrum since the 21 cm radiation can be stacked many redshift slices.
Moreover, it is possible to use fluctuations on smaller scales compared with the CMB
lensing since the 21 cm fluctuations do not have the diffusion mechanism such as a
Silk dumping. We studied the detectability of the second-order vector mode by using
the 21 cm radiation, i.e., the high-sensitivity experiments. In the 21 cm lensing, it
is possible to detect the second-order vector mode with a high signal-to-noise ratio
about S/N ~ 0O(10). If we consider the effect of the second-order vector mode, it
becomes difficult to detect the primordial gravitational waves with r < 107> in the
21cm lensing experiments.

Finally, in closing this thesis, we mention the future direction of the cosmological
vector mode. As discussed in this thesis, the vector mode must appear in the early
universe due to the nonlinear effects. The absence of the vector mode in cosmology
is now old-fashioned ideas. For example, in the study of the large-scale structure,
the standard perturbation theory is well discussed. The standard perturbation theory
is based on the continuous and Euler equations in the non-relativistic limit. In this
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case, the vector mode does not appear even in the higher-order perturbation theory if
the initial vorticity is absent. However, it is possible to extrapolate the second-order
vector mode to the standard perturbation theory, which is not trivial. The connection
between the cosmological perturbation theory and the standard perturbation theory
of the large-scale structure would be interesting. Thus, after accomplishment of the
scalar mode cosmology, it will start the vector mode cosmology in the near future.
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Appendix A
Riemannian Geometry

In this section, we summarize the formulae of Riemannian geometry which are used
to derive the perturbed Einstein equation. Throughout this thesis, we work in the
Poisson gauge and the following formulae are written in the Poisson gauge.

First of all, the line element in the Poisson gauge is written as

ds® = a’(n) [—e*Vdn® + 2w;dndx’ + (e7>®0;; + hy;) dx'dx/] . (A.1)

According to this line element, the metric tensor can be expressed as

oo = —a*e’? (A2)
goi = a’w; (A.3)
gij = a* (7270 + hyj) . (A4

The inverse matrix components are derived up to the second order as

1

g = = [e +wwt] . (A5)
. 1 . . .

gOl — ; [e2(¢—\1’)wl _ h’jw-’] , (A'6)

g7 =a?[e*67 — *h + n'hM] . (A7)

Moreover, the determinant of the metric tensor is calculated as

1 .1 .
J—g=a*e?3® [1 - Zh,-jh’f + Ewiw’] ) (A.8)

Although we leave the first- and second-order terms of the scalar, vector, and ten-
sor modes here, we will neglect the first-order vector and tensor modes following
sections.
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A.1 Connection Coefficient

Hereafter, we ignore the first-order vector and tensor modes. The definition of the
connection coefficient is given by

1
Faﬂ’y = Egau (g/u’i,w + Gur.p — gﬂ’y,/:,) . (A9)

The connection coefficient in the Poisson gauge can be concretely expressed as

My =H+ ¥, (A.10)

I =W, + Huw; , (A.11)

Fi(]() — 62(‘D+\l})\y,i +u‘)l + Hwi , (A.12)

. 1 1.
FOij = 672(W+¢) (H — @) 5,‘1‘ — 5 (w,‘,]‘ + wj,i) + Hhij —+ Ehij s (A.13)
. L 1, . : 1..

Floj = (H=®)3+ 3 (& —wi) +3H5 (A.14)

IMjg=—®46"; =@ ;6" +P'0jx — Hw'd i + 5 (/’llj,k +h';— /’ljk’l) .
(A.15)

A.2 Ricci Tensor

By using the connection coefficients, we can derive the Ricci tensor. The definition
of the Ricci tensor is expressed by the contraction of the Riemann tensor as

R w = R nav
= Fa;w,a - Fal/a,,u + Faaarg,m/ - Faauroua . (A.16)
Note that, the Ricci tensor is symmetrical under the permutation of subscripts, namely

R,, = R,,. Consequently, the Ricci tensor in the Poisson gauge can be calculated
as

Rop = — 3H + 30 +3H (¥ + &) + VTP ; 30 — 392 + (W, — ;) W',
(A.17)

. . . 1
Roi =2 (b, +HY,;) — 20w, +2H%w; + Huy; — Fwias (A.18)
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Rij = 6_2(®+\P) (H + 2H2> 511
— e 2T [P 4 SHE + HP] 6 + (D) — Wij) + D 0y
+ [3<i>2 + YD+ o (W, — %)] Sij+ i — VW — (D0 + D W)
1

+ 'H[/’.l,'j +2Hhij — (wivj +wj-i)] + 2

[ij + 2Hhi; — (@i +@ji) = hij o] -
(A.19)

Furthermore, we can raise a index by the definition of the Ricci tensor, R*, = g"“R,,
as

a*RO =2V [3H = 3% — 3H (W + &)] — W ; + 30 + 307 — (W, — @ ;) W',

(A.20)
. . 1

a*R% = — 272 (d; + HY,) + 20w, + E“”"a*“ , (A.21)

@Rl =262® (d>” + H\w) — 20w+ 2K — 2P — S (A.22)

a’R'j =2 (H + 2H2> 5
— ¥ [d) + 5HD +'H\IJ] 5ij + 2® I:qyi'j — \I/’[,j + ¢,a’a5ij:|
+ [382 4 Wb+ 0 (W = 0) [0+ D0~ Wi — (0w 0w

+ H I:hij - (wi.j +Wj’i>] + % [Eij - (d}i,j +o:1_,"i) - hij’a.a:l . (A23)

A.3 Ricci Scalar

The definition of the Ricci scalar is expressed by the contraction of the Ricci tensor as
R=R", =g"R,, . (A.24)
Thus, the Ricci scalar in the Poisson gauge can be expressed as

a*R =6e>" [H+H*] — 672 [& + H¥ + 3HD]
+ 22 207 — W]+ 1207 + 60D + 2070, — 207D — 20,
(A.25)
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A.4 Einstein Tensor
Finally, the Einstein tensor is defined by using the Ricci tensor and Ricci scalar as
1
G#l/ = R#l/ - EaﬂuR - (A26)

We can calculate the Einstein tensor used in the Einstein equation (Eq. (2.27)) as

a2G% = e~2¥ [—3H2 T 6HD — 22TV 3§24 <1>-"q>,,-] , (A.27)
. . 1
azGOi = — 2672\1} (CD’,' + 'H\l/’,') +20V; + Ewi,a’a s (A28)
2 i 20 ( 4,0 i X i 20 ) 1 i,a
@Gl =2e (qw —|—H\IJ’)—2<I>\J/’ + 21— 2Hu - Sut (A.29)

Gy =eY (<27 = H2) o 4+ 272 [& + b+ 21 ) o
420 I:(D,i‘j SRR N \pva,a(;ij} T [-36{)2 —2¥d + \I!‘”\ll,a] &
+ O Wi — (010 4 )

+H [hfj - (wi,j +wj’i>] n % [h't',- - (af,,- +o>,»f) - h"_,-’”,a] . (A.30)
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