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Supervisors’ Foreword

It was a real pleasure to supervise Mark Barber’s Ph.D. research. Mark came to
St Andrews in 2012 with excellent qualifications from the University of Cambridge,
and his exceptional abilities soon became clear to us. When set a high-level research
task, Mark quickly understands on his own what is needed and almost always
returns with solutions rather than further questions.

Mark quickly began to make major contributions to the main theme of the
group’s work at that time, the development of a new technique for the application of
uniaxial pressure. In those early stages, calculations were required in order to
understand how to achieve the most homogeneous strain fields in the samples.
Rather than try to purchase commercial software, Mark wrote a package to perform
finite element calculations from scratch. He not only achieved this very quickly but
also designed the package so that it was adaptable and easy for him to use on a host
of related problems. The calculations strongly influenced the way that the samples
were mounted for the 2013 and 2014 experiments, hence making a major contri-
bution to their success.

After this excellent start to his research, he faced what most graduate students
would regard as an unwelcome disruption, as we relocated our group from
St Andrews to the Max Planck Institute for Chemical Physics of Solids in Dresden,
Germany. Given the choice to stay working with existing equipment in St Andrews
or come to the new environment, he was clear both that he wanted to move and that
he would like to take on a major experimental task. We had the funds to purchase
two new cryostats, to be installed in a brand new laboratory in Dresden. Mark asked
to be involved in the specification at the prepurchase stage but also to be given the
responsibility to commission the cryostats and associated electronics. This is a big
job, especially when one includes the demands of designing and writing a full data
acquisition package, but such is Mark’s ability that we agreed, as long as we could
monitor his progress. Needless to say, what he produced exceeded any reasonable
expectations. Within less than a year from an empty laboratory, he was simulta-
neously performing experiments on both cryostats, having written more or less
autonomous software that took data, performed initial online analysis of it, and used
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the information to “decide” on the next run. If human intervention was needed, it
sent him a message telling him what was required.

The semiautonomous software was a nice touch, but nothing that Mark does is
purely for show. It enabled him to build up two major data sets in an incredibly
short space of time. The first, on the unconventional superconductor Sr2RuO4, he
showed both that it is possible to drive it through a topological transition of its
Fermi surface with uniaxial pressure, and that its superconducting transition tem-
perature peaks sharply at approximately the same strain. These were world first
results, leading to the publication of several papers. In his second piece of original
research, he demonstrated the sensitivity to uniaxial pressure of the novel magnetic
and possibly nematic order in the related material Sr3Ru2O7. Mark also contributed
strongly to research on the high-temperature superconductor YBa2Cu3O6+x under
uniaxial stress, a notable effort as it required detailed collaboration with other
groups.

For parts of the Sr2RuO4 research, the high purity of the single crystals led to
difficulties in measuring their extremely low resistances accurately. Mark and a
colleague noted that this was due to a deficiency in standard current sources, and
designed and built a new one, described in the thesis, to overcome the problem.
This quiet determination, coupled with high ability and creativity, are Mark’s
defining characteristics as a scientist. Like most really good researchers, he is also
unselfish and always willing to help others, both within the group and beyond. We
have had a string of visitors, keen to learn the tricks of the new techniques. Mark is
always willing to help them, and having seen him at work, they regularly tell us
how impressed they are with quality of what he does. Having explained his work
many times in person, he realized the importance of the didactic part of his thesis,
and took considerable care to write a document that would help others around the
world who wish to set up similar experiments.

In summary, Mark has been an outstanding graduate student, with whom it has
been a pleasure to work, and this is in our opinion an outstanding thesis.

Dresden, Germany A. P. Mackenzie
March 2018 C. W. Hicks
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Abstract

In the repertoire of an experimental condensed matter physicist, the ability to tune
continuously through features in the electronic structure and to selectively break
point-group symmetries are both valuable techniques. The experimental technique
at the heart of this dissertation, uniaxial stress, can do both such things.

The thesis will start with a thorough discussion of our new technique, which was
continually developed over the course of this work, presenting both its unique
capabilities and also some guidance on the best working practices, before moving
on to describe results obtained on two different strongly correlated electron
materials.

The first, Sr2RuO4, is an unconventional superconductor, whose order parameter
has long been speculated to be odd-parity. Of interest to us is the close proximity of
one of its three Fermi surfaces to a Van Hove singularity (VHs). Our results
strongly suggest that we have been able to traverse the VHs, inducing a topological
Lifshitz transition. Tc is enhanced by a factor � 2.3 and measurements of Hc2 open
the possibility that optimally strained Sr2RuO4 has an even-parity, rather than
odd-parity, order parameter. Measurements of the normal state properties show that
quasiparticle scattering is increased across all the bands and in all directions, and
effects of quantum criticality are observed around the suspected Lifshitz transition.

Sr3Ru2O7 has a metamagnetic quantum critical endpoint, which in highly pure
samples is masked by a novel phase. Weak in-plane magnetic fields are well-known
to induce strong resistive anisotropy in the novel phase, leading to speculation that a
spontaneous, electronically driven lowering of symmetry occurs. Using magnetic
susceptibility and resistivity measurements, we can show that in-plane anisotropic
strain also reveals the strong susceptibility to electronic anisotropy. However, the
phase diagram that these pressure measurements reveal is consistent only with large
but finite susceptibility, and not with spontaneous symmetry reduction.
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Chapter 1
Introduction

The interactions between particles in nature can present a bewildering array of exotic
states and phenomena, each fascinating in their own right, but also in terms of their
potential applications. Condensed matter systems with as many as 1022 atoms in a
single cubic centimetre are a prime example. Of interest for this thesis are a group
of materials in which the interactions between electrons are particularly strong, such
that onemust consider the behaviour of the electrons as correlated. These interactions
can drive the formation of states such as superconductors, strangemetals and a variety
of different magnetic states, to name just a few.

To understand the behaviour of a complex system one often turns to the individ-
ual building blocks. In condensed matter physics these are the atoms making up the
solid. When considering metals we are concerned with the positive ions which form
the crystal lattice and the conduction electrons that move through it. The positive
ions comprise the nuclei of the constituent atoms plus the core electrons. The con-
duction electrons are the outer most electrons which can lower their kinetic energy
by travelling through the lattice. This energy benefit is key to the cohesion of atoms
in metals [1].

It is simple to account for the motion of each of the individual building blocks
and the Coulomb interactions between them but this fully reductionist approach runs
into complications [2]. The equations can describe a vast number of properties in
condensed matter but the interaction terms put exact solutions for all but the simplest
systems out of reach. Instead we must simplify the situation and look for ‘emergent’
phenomena. As experimentalists we can try to understand these emergent states by
measuring their physical properties, but given the ability to perturb the systems we
can play with the underlying interactions and make the best tests of theories.

In this thesis I will present measurements on two materials, the first Sr2RuO4,
known for its unconventional superconductivity, and the second Sr3Ru2O7, for its
quantum critical behaviour and large nematic-like susceptibility, and show how their
properties can be manipulated through carefully applied uniaxial stress. Both mate-
rials are exquisitely clean, so to perturb them without destroying the fragile nature of

© Springer International Publishing AG, part of Springer Nature 2018
M. E. Barber, Uniaxial Stress Technique and Investigations of Correlated Electron
Systems, Springer Theses, https://doi.org/10.1007/978-3-319-93973-5_1
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2 1 Introduction

Hamiltonian describing simple metals. Hi
describes the positive ion subsystem with masses
Mi and charges Zi . Pi is the momentum of ion i .
He similarly describes the electron subsystem and
He−i accounts for the coulomb potential between
the electrons and positive ions at positions r and
R, respectively.

H = Hi + He + He−i

Hi =
∑

i

P2
i

2Mi
+ 1

2

∑

i �= j

Zi Z j e2∣∣Ri − R j

∣∣

He =
∑

i

p2i
2me

+ 1

2

∑

i �= j

e2∣∣ri − r j

∣∣

He−i = −
∑

i

∑

j

Z j e2∣∣ri − R j

∣∣

the emergent phenomena a suitably clean tuning parameter is required. Significant
technical development was needed to be able to apply a sufficiently homogeneous
uniaxial pressure, so as well as the results a thorough discussion on the improvements
to the technique that made this work possible will be given. Before this, though, I will
start by briefly introducing how we describe the behaviour of electrons in metals,
which will later form the basis for the specific discussions of each material presented
in their respective chapters.

1.1 Electrons in Metals

To start the discussion of electron correlations in metals it is intuitive to begin with
the free non-interacting case and then slowly introduce the correlations. In adopting
this procedure, one must trust that reintroducing electron correlations later will not
render the insights from the non-interacting case meaningless. In fact there are good
reasons for this and a proper justification will be given in the section on Fermi
liquids. Now also leaving the lattice of ions behind briefly, or better assuming a
uniform positive background charge to maintain charge neutrality, we begin with the
free Fermi gas and follow the Sommerfeld model. Conduction electron densities in
metals are typically of the order 1022 cm−3 at room temperature [3]. At these densities
the interparticle separations are less than the thermal de Broglie wavelength of the
electrons. So to correctly describe the nature of this gas of electrons, quantum effects
must be included and the electron gas will obey Fermi-Dirac statistics. Electrons
occupy quantised energy states and obey the Pauli exclusion principle. Imagining
a gas of electrons in a box of side L with periodic boundary conditions, the wave-
functions of the electrons are plane waves with energy

εk = �
2k2

2me
(1.1)
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Fig. 1.1 Free electron Fermi surface. Each k point within the sphere is occupied by one up-
and one down-spin electron

with quantised values of the wave-vector k in units of (2π/L). The ground state is
built up by filling up from the lowest energy state to the N th lowest state where N
is the number of electrons. The highest occupied energy is called the Fermi energy
εF with the corresponding Fermi wave-number kF. In reciprocal space the surface
separating the volume containing all the filled states from the unoccupied states is
called the Fermi surface, see Fig. 1.1 [3–5].

At non-zero temperature the population of states follows the Fermi-Dirac distri-
bution. Thermal energy can excite an electron from within the filled Fermi surface
to a state just outside creating an electron-hole pair. In a ‘free electron metal’ the
typical Fermi temperature, εF/kB ∼ 3 × 104 K, is much much higher than ambient
temperature so only a small number of states within an energy of ∼kBT of the Fermi
energy are ever excited. The Pauli exclusion principle prevents the excitation of the
lower states since there are no unoccupied final states within ∼kBT . This leads to
a T linear specific heat, unlike the constant value for a classical gas, and a temper-
ature independent magnetic susceptibility unlike the Curie-Weiss behaviour of the
classical gas, both of which can be observed in real materials.

Reintroducing the periodic lattice, the wave-functions for the electrons are no
longer plane waves but instead are described by Bloch waves [5]. The wave-vector
or momentum used in the free electron picture no longer makes sense for the Bloch
states because of the translational symmetry breaking. Instead, the electron states
can be described by a quantity called crystal momentum.

The real space crystal structure is completely defined within the definition of
the primitive unit cell. This irreducible volume can map out the whole structure by
copying it along each of the translation vectors of the lattice. The same periodicity
must exist in reciprocal spacewhere the irreducible volume is nowcalled theBrillouin
zone. All momentum states can be mapped back to the first Brillouin zone through
the reciprocal lattice vectors giving us the first idea of an electronic band structure,
i.e. multiple bands of the electron dispersion, each at higher energy, within the first
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Fig. 1.2 Nearly-free electron dispersion.The free electron dispersion, dashed line, transforms
into a set of discrete bandswith energygaps in betweenwhen aperiodic potentialwith lattice constant
a is weakly introduced

Brillouin zone. Each band has its own dispersion relationship, E = E(k), but the
number of possible states in each band is always equal to the number of allowed
crystal momenta in the first Brillouin zone. This is always two times the number of
primitive unit cells in the crystal, with the factor of two for spin degeneracy. Filling
the allowed states proceeds as in the free electron gas and Sommerfeldmodel; starting
from the lowest energy but now filling a new bandwhen it is the next lowest in energy
(Fig. 1.2).

Between each of the bands an energy gap develops, i.e. there are regions of
energywhere noBlochwave solutions exist [4]. Atwave-vectors satisfying theBragg
reflection condition of the lattice, the two left and right travelling wave-functions
combine to form two different standingwaves. The two standingwaves have different
probability densities, with one having higher probability at the lattice sites, and the
other between lattice sites. There is therefore a difference in potential energy between
the two solutions and this is the origin of the energy gap.

From the idea of Bloch waves we can extract a mean velocity for each of the
electron states. At the Fermi energy we define the Fermi velocity

υF = 1

�
∇kε|kF , (1.2)

and from this we can identity a band mass

m∗ =
(

1

�2kF
∇kε|kF

)−1

. (1.3)

This measures the impact of the lattice on the motion of the electrons by how much
it differs from the bare electron mass me. We will see later that electron correlations
can also enhance the effective mass further above the band mass.

When filling up states up to the Fermi level we can think of filling up to a surface
with electrons but if only a few empty states remain close to the top of the band it
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is equally sensible to describe the band in terms of only the unoccupied states, or
holes, at the top of the band. A hole is the absence of an electron so carries opposite
charge and momenta to the electron states they are replacing.

There are two common limiting cases when continuing this discussion further;
the periodic potential can be added to the free electron gas as a weak perturbation in
a model called the nearly-free electron model, or we can start with atomic orbitals
and slowly bring the lattice closer together allowing the electrons to hop between
atomic sites described by the tight-binding model [5]. In this case, the itineracy is a
perturbation on the atomic limit. The nearly-free electron model works very well for
the alkali metals [5]. Although the Coulomb attraction to the lattice should at first
sight be large, the Pauli exclusion principle keeps the conduction electrons in higher
orbitals, further away from the ion cores on average, where the interaction is lower
and the core electrons can additionally screen the ion’s charge. So in some scenarios
the nearly-free electron model is entirely valid. For the alkali metals, with only one
valence electron per atom, it is particularly good, because the Fermi surface fills only
half of the first Brillouin zone, well away from the zone boundaries, thus avoiding
the distortions of the band due to the band gaps [3].

For the materials we will be discussing later, Sr2RuO4 and Sr3Ru2O7, both tran-
sition metal oxides, we are mainly concerned with the d-electron shell. For example,
at the normal valencies for strontium and oxygen in Sr2RuO4, Sr2+ and O2−, the
ruthenium ion with a valency of Ru4+ is left in a 4d4 electronic configuration [6].
The d-electron shells have small orbital radii meaning the interatomic overlap of the
orbitals will be small and there will be a large potential penalty for double occupancy
[7]. These factors take us away from the nearly-free electron limit. Many d-electron
systems remain localized, forming a magnetic insulating state as opposed to a metal-
lic one, especially in the 3d series [7]. The strontium ruthenate series is an exception
and each remains metallic, but it is constructive to view them in a tight-binding fash-
ion. I will now continue with a more formal description of the tight-binding model
which will be useful for the derivations of the Fermi surfaces for both materials later.

In the tight-binding descriptionwe build theBlochwavefunctions for the electrons
from the atomic orbitals [3].We assume the extent of the atomic orbitals,φ(r), is close
to or smaller than the interatomic separation so they are mostly unperturbed when
assembled into the lattice. The tight-binding wavefunction is a linear combination
of approximately atomic orbitals [5]

Ψk(r) =
∑

R

eik·Rφ(r − R) . (1.4)

The real space positions of the atoms determine how the bands develop. To illustrate
this I will start with a simple cubic lattice, lattice constant a, of s states. We take a
small perturbation, V (r), to the atomic Hamiltonian which captures the periodicity
of the lattice and look for the first-order corrections to the energy.1

1The wavefunctions are assumed to already be normalised here 〈Ψk|Ψk〉 = 1.
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�E =〈Ψk|V |Ψk〉 (1.5)

=
∑

n

∑

m

eik·(Rn−Rm )

∫
φ∗(r − Rm)Vφ(r − Rn)dV (1.6)

=
∑

m

e−ik·am
∫

φ∗(r − am)Vφ(r)dV (1.7)

where am = Rm − Rn . The integral is dominated by the on-site terms, am = 0, and
the six nearest neighbour terms, am = ±ax̂, ±aŷ, ±aẑ. We can drop all other terms
because the atomic orbital overlap will be negligible. Thus we end up with

E(k) = Eφ − B − 2t (cos(kxa) + cos(kya) + cos(kza)) , (1.8)

where

B = −
∫

φ∗(r)Vφ(r)dV (1.9)

t = −
∫

φ∗(r − a)Vφ(r)dV . (1.10)

The parameter t is known as the transfer integral, a measure of the ease of hopping
from one atom to the next. In general, starting from n atomic levels on each atom,
these will combine to form n separate bands. The bandwidth of the band is directly
related to the transfer integral. A smaller atomic overlap, with a correspondingly
smaller transfer integral, has a narrower bandwidth and a higher effective mass. In
this way the effects of the real-space crystal structure are seen in the band structure;
if in a certain direction the atoms are further apart, the bandwidth will be narrower
for motion along that direction as is expected. The shape of the bands will also reflect
the character of atomic orbitals they are made up from [5].

We have just seen two extreme cases for electrons in a metal; a scenario where
the periodic potential is only a very weak perturbation to otherwise free electrons
and the opposite extreme where the potential is so strong the electrons can hardly
hop from one atom to the next. Both cases give rise to bands with corresponding
gaps between them but crucially they are qualitatively similar. This implies that real
materials, which will fall somewhere in between these two extremes, must also have
qualitatively similar band structures.

1.2 Landau’s Fermi Liquid

Up until now we have been ignoring the electron-electron Coulomb interaction but
without foresight this should not have seemed like a sensible thing to do. By nomeans
is theCoulomb interactionweak. Justmaking a quick back of the envelope calculation
we can compare the scale of the Coulomb interaction with the kinetic energy of the
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electrons, which is the other important energy scale. From the electron densitywe can
define a characteristic length, the radius of a sphere occupied by one electron, which
sets the approximate kinetic energy EK ≈ �

2/8mer2s and the Coulomb repulsion
between two electrons EC ≈ e2/8πε0rs . The ratio gives us the importance of the
electron-electronCoulomb interaction EC/EK ≈ rsmee2/πε0�

2 = 4rs/a0, where a0
is the Bohr radius. For typical metallic densities rs is order Ångströms [3] whereas
a0 is half an Ångström. The electron-electron Coulomb interaction is not weak so
how did we get on so well when we ignored it? The answer comes from Landau
and his notion of a Fermi liquid [8–10]. If we start from a Fermi gas and turn on a
mutual repulsion between all the electrons the Fermi gas turns into a Fermi liquid.
The naming is in analogy to classical gases and liquids whereby introducing inter-
particle interactions condenses the gas to a liquid. The beauty is that the Fermi liquid
retains some of the key properties of the Fermi gas.

By allowing the electrons to interact and exchange momentum the Fermi sur-
face, in its original state, is no longer stable [11]. The insight of Landau was rather
than caring about the individual electron states, to instead see what happens to the
excitations of the Fermi gas as the electron-electron interaction is ‘turned on’. An
electron excited above the Fermi level can now Coulomb scatter with another below
the Fermi level resulting in an additional electron-hole pair. This process can con-
tinue creating additional electron-hole pairs until some equilibrium is reached. This
original excitation can now be described as the superposition of the bare electron,
the bare electron and an electron-hole pair, the bare electron and two electron-hole
pairs, and so forth [12].

|Ψqp〉 = √
Z |φel〉 + |particle-hole excitations〉 + . . . (1.11)

The insight of Landau was that if we turn on the interaction slowly enough we
can evolve smoothly from one picture to the other as the strength of the Coulomb
interaction is increased. This concept is referred to as adiabatic continuity andwe call
the excited states of the interacting systemLandau quasiparticles to remind us that the
wavefunctions and energies are different from the corresponding electrons in the non-
interacting problem. The quasiparticles do however retain the same charge and spin
as the bare electron but neither the mass nor the interactions between quasiparticles
need to remain the same. This one-to-onemapping of the interacting states with those
of the non-interacting Fermi gas retains the picture of Fermi particles and a Fermi
surface but one that is now stable since the Coulomb interaction has already been
taken into account.

By producing the quasiparticles in this way they are made out of states which
are no longer exact eigenstates of the system. Thus they cannot be infinitely long
lived and the quasiparticles can scatter off one another. Their inverse lifetime can be
calculated from Fermi’s golden rule. Making reference to Fig. 1.3, a quasiparticle at
energy ε scatters off one in the Fermi sea and looses energy ω. The total decay rate
1/τε for these processes is
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Fig. 1.3 Quasiparticle scattering. A quasiparticle with energy ε above the Fermi surface can
scatter off another from within the Fermi sea to create an additional particle-hole pair

1

τε
= 2π

�

∑

f

∣∣Vi f

∣∣2 δ(ε − ε f ) (1.12)

where the sum is over all possible final states. We assume the scattering matrix
elements

∣∣Vi f

∣∣ are constant and make use of conservation of energy and momentum
to restrict the possible final states. The Pauli exclusion principle also puts strict phase
space restraints on the possible scatterings. There must be an unoccupied final state
for the electron to scatter into so ω must be less than ε and the second electron must
be within ω of the Fermi energy such that is can also reach an unoccupied state with
the promotion of energy ω. Using the density of states at the Fermi level, gF, to turn
this into an integral

1

τε
∼ 2π

�
|V |2

∫ ε

0
gFdω

∫ ω

0
gFdε′

∫ ∞

−∞
δ(ε − ω − ε′ + ε′′)gFdε′′ (1.13)

1

τε
∝ g3Fε

2 . (1.14)

We can now see that at sufficiently small energies close to the Fermi surface the
quasiparticle is well defined. Here the quasiparticle’s decay rate, ∝ ε2, is much less
than its excitation energy ε. Further from the Fermi surface adiabatic continuity no
longer holds, i.e. the quasiparticles scatter before the interaction can be completely
turned on. Quasiparticles are therefore only well defined around the Fermi energy.

We are now in a position to see why the non-interacting case worked so well. The
same phenomenology of electron-hole excitations from an electron Fermi sea applies
for the Fermi liquid, but now the excitations are quasiparticle-quasihole excitations
from the quasiparticle Fermi sea, and we recover the same qualitative predictions
as those of the Sommerfeld model. Figure1.4 shows how we can schematically
think of this transformation. The electron probability distribution is modified under
the presence of a weak mutual interaction but the sharp discontinuity at the Fermi
wavevector survives. If instead we talk of the quasiparticles we recover the ordinary
Fermi-Dirac distribution but as the quasiparticles are onlywell defined near the Fermi
surface, we can only talk of small excitations from the Fermi energy.
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(a) (b) (c)

Fig. 1.4 Particle probability distributions. a The probability that any given energy state is occu-
pied by an electron at T = 0 in a Fermi gas, the Fermi-Dirac distribution. b The probability dis-
tribution of electrons at T = 0 in a Fermi liquid, the discontinuity at kF remains. c The probability
distribution of quasiparticles in the Fermi liquid recovers the Fermi-Dirac distribution

Calculating the total energy of the interacting system by just summing up the
contributions from each of the individual excitations will not now in general yield
the total energy of the system. A quasiparticle’s energy will also depend on the
distribution of the other quasiparticles. The energy can be written as a function of
the quasiparticle distribution δnk,σ [12]

E =
∑

kσ

�kF
m∗ (|k| − kF)δnkσ +

∑

kσ,k′σ′
fkσ,k′σ′δnkσδnk′σ′ . (1.15)

The Fermi liquid is described by a number of parameters. Its effective mass m∗, a
measure of how easily quasiparticles can move, and Landau’s f functions. In an
isotropic system, a circular Fermi surface in 2D or a spherical Fermi surface in 3D,
these can be expanded as Legendre polynomials and quantify the angular dependence
of the interactions of the quasiparticle system. Using this terminology the specific
heat and magnetic susceptibility can be re-expressed as [12].

CV = m∗kF
3�2

k2BT = m∗

me
CV,Fermi gas (1.16)

χ = m∗kF
π2

1

1 + Fa
0

μ2
B = m∗

me

1

1 + Fa
0

χFermi gas . (1.17)

The Fermi liquid’s specific heat and susceptibility are both enhanced over the Fermi
gas values by the effective mass, and for the susceptibility also the Wilson ratio
1/(1 + Fa

0 ). Both these are measures of the strength of the correlations.2

The electrical resistivity of a Fermi liquid has a characteristic T 2 dependence [13,
14].We saw from Eq.1.14 that the decay rate of quasiparticles goes like the square of
their energymeasured from the Fermi energy.At finite temperature the excitations are
of order kBT so the decay rate is proportional to the temperature squared. However
in Eq.1.14 we originally discussed normal quasiparticle-quasiparticle interactions

2Fa
0 is a Landau parameter.
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that conserve momentum so do not produce a finite resistivity, but the decay rate for
quasiparticle-quasiparticle umklapp scattering, which can relax the momentum to
the lattice, has similar phase space constraints so produces the same T 2 dependence
of the decay rate and the T 2 resistivity in the simplest picture.

Although it is a phenomenological theory, Landau’s Fermi liquid theory works
remarkably well. Experimental verification has been seen in a whole variety of sys-
tems, including those where you might suspect interactions to be too strong. An
example is UPt3 which shows particularly strong correlations with effective masses
enhanced in the range 10 to 30 above the band mass, yet still follows the predictions
from Landau’s Fermi liquid theory [15–18]. However, Fermi liquid theory does not
always work and because of the robustness of the theory the cases where it fails are
all the more interesting.

If the interparticle interactions are long range the idea of adiabatic continuity
breaks down; a finite speed of propagation means the interaction takes infinite time
to ‘turn on’ so there can be no stable quasiparticles. The bare Coulomb interac-
tion is long range but in metals the Fermi liquid is saved by screening. Electron
screening means that at large distances, greater than the Thomas-Fermi screening
length k2TF = 4πe2N0, only the background charge level is felt. In special cases long
range interactions can still be observed which break apart the Fermi liquid. Near to
a continuous phase transition order parameter fluctuations slow down and become
increasingly long range. One quasiparticle can then quite easily affect a large number
of other quasiparticles increasing the scattering cross section. If the continuous phase
transition can be suppressed to zero temperature by a non-thermal tuning parameter
such as pressure or chemical doping, the quasiparticle interaction range can grow
without limit.We call such a zero temperature continuous phase transition a quantum
critical point and in the vicinity of the quantum critical point the quantumfluctuations
cause a break-down of the Landau Fermi liquid phenomenology.

Weakly repulsive interactions in the metallic phase are well accounted for by
Fermi liquid theory, but if the interparticle interactions are attractive Fermi liquid
theory can become invalid as bound states of quasiparticles can be stabilised. An
example is the retarded electron-phonon interaction which is attractive and below a
critical temperature the Fermi surface is unstable to forming bound states of electrons.
These bound states of two fermions can then condense into a newground state, namely
superconductivity.

Thematerials being studied in this thesis both havewell characterised Fermi liquid
phases but are unstable to different instabilities. Sr2RuO4 develops an unconventional
superconducting state at low temperatures but onewhere the paring symmetry has not
yet been unambiguously determined. Sr3Ru2O7 can be tuned to a quantumcritical end
point with appliedmagnetic field and there a novel phase with suspected spontaneous
C4 to C2 symmetry breaking develops. Further discussions of the physics of both
systems is presented in their respective Chaps. 3 and 4, but in the next chapter I will
switch gears and first discuss the experimental technique that my research so heavily
relied on.
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Chapter 2
Uniaxial Stress Technique

2.1 Introduction

Advances in condensed matter physics come, often, from new material discoveries.
The field of superconductivity is one such example, marked by the discovery of each
new family of superconductors. Since the first observation of superconductivity in
mercury by Onnes in 1911 [1] there was a gradual increase in the highest critical
temperature for over 50 years, up to what was thought at the time to be a theoretical
limit of ∼30 K [2]. These superconductors are now termed conventional supercon-
ductors. Then in 1986 the first high temperature cuprate was discovered [3] leading
to a flurry of material discoveries bringing Tc at ambient pressure up to ∼133K [4].
Similar developments occurred when the families of heavy fermion superconduc-
tors [5–7] and iron-based superconductors were found [8–11]. In parallel to these
material discoveries, experimental techniques were continually improving and new
techniques developed. For instance stronger magnetic fields allowed the Fermi sur-
face of the underdoped high temperature cuprate superconductors to be seen with
quantum oscillations measurements for the first time [12–14] and ever increasing
hydrostatic pressures have produced superconductivity at 203K in H2S at a pressure
of ∼150 GPa [15]. These advances in experimental techniques allow us to probe
deeper into the physics of both new and old materials, guiding the way for future
developments.

Here I will discuss one such development. The technique of uniaxial pressure has
been employed in condensedmatter physics for a long time but it appears to bewholly
underused, especially in comparison to its hydrostatic counterpart. This could chiefly
be due to the extreme technical challenges associated with traditional methods for
applying uniaxial pressure. However this technique was recently reenvisioned by
Clifford Hicks et al. in a landmark experiment on Sr2RuO4 [16, 17]. By moving
away from the typical sample measurement geometries and instead shaping samples
into long thin bars, that are fixed across the jaws of a vice, exceptional homogeneity,
tunability and precision of the applied strain can be achieved.

© Springer International Publishing AG, part of Springer Nature 2018
M. E. Barber, Uniaxial Stress Technique and Investigations of Correlated Electron
Systems, Springer Theses, https://doi.org/10.1007/978-3-319-93973-5_2
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Uniaxial strain or pressure can be a powerful tool for investigating the electronic
properties of correlated matter. In the simplest picture the crystal lattice is deformed
anisotropically influencing the overlap between atomic orbitals on neighbouring
sites. For a correlated electron system the effect can be particularly strong since the
overlap integral is very important for electron hoppings between neighbouring sites.

This effect can be much larger in uniaxial pressure compared to equal hydrostatic
pressures. Uniaxial pressure is also a directional technique so different lattice distor-
tions can be selected and compared. It can also be used to lift point-group symmetries
of the crystal and perturb finely balanced systems. In this sense it is a combination
between an experimental technique and something that creates new materials that
are not available to equilibrium chemistry under ambient conditions.

In this chapter I will start by introducing the stress and strain formalism then
describe the finite element method (FEM) used for carrying out realistic simulations.
In the next section I will describe existing uniaxial stress and strain techniques before
introducing our new uniaxial pressure cell. I will use simple analytic expressions
accompanied by in-depth finite element simulations to highlight the improvements
of this technique and provide readily achievable guidelines for experiments.

2.2 Stress and Strain

The deformation an object undergoes when subject to a load can be described in
terms of two quantities; the stress and the strain within the object. These are both
tensor fields over the extent of the object. Stress is a measure of how the force is
distributed internally throughout the object in units ofN/m2 and strain is a dimension-
less quantity that measures the relative displacements within the object referenced to
the original size. Stress and strain are in a way analogous to pressure and volume, a
thermodynamic conjugate pair for a non-viscous fluid, but are applicable for viscous
fluids and elastic solids where the stress tensor can be thought of as a generalisation
of the pressure and the strain tensor as a generalisation of the change in volume.

For any given plane in the object the internal forces acting on that plane can be
decomposed into a normal component and two in-plane components. These forces,
divided by the original area of the plane, define the engineering normal and shear
stresses respectively (see Fig. 2.1 for a schematic representation). Engineering strain
is defined in a similar manner; displacement divided by original object size. A more
general representation of the strain field can be obtained from the displacement field
u, where u is a three component vector field defining the displacement at any point
within the object. The different components of the strain tensor are given by,

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (2.1)

where x is the coordinate and the two indices label the three orthogonal coordinate
directions.
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Fig. 2.1 Stress and Strain.Definitions of engineering normal stress and strain, and engineering
shear stress and strain

The six components of the strain tensor explicitly are:

εxx = ∂u

∂x
εyz = 1

2

(
∂w

∂y
+ ∂v

∂z

)
= 1

2
γyz

εyy = ∂v

∂y
εzx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
= 1

2
γzx

εzz = ∂w

∂z
εxy = 1

2

(
∂v

∂x
+ ∂u

∂y

)
= 1

2
γxy

(2.2)

where u, v and w are the three components of the displacement field u in the x , y
and z directions respectively.

The full tensor is given by:

ε =
⎛
⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ , (2.3)

in which, by symmetry, the off-diagonal components εi j = ε j i .
Stress and strain are intimately linked. At low strains where the response is still

elastic, stress and strain are directly proportional. For a uniaxially loaded object the
relationship is

σ = Eε . (2.4)

This is just Hooke’s Lawwhere E is the Young’sModulus of the material. The analo-
gous equation for shear stress and strain is τ = Gγ where G is the shear modulus. In
three dimensions E and G generalise to a 6 by 6 tensor, C, called the stiffness tensor;
σi = Ci jε j . The stiffness tensor is symmetric so at most there can be 21 independent
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components, but if the material possess further symmetries this number is reduced.
One example, for instance, is the tetragonal lattice

⎛
⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σyz

σzx

σxy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11 − C12)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2εyz

2εzx

2εxy

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.5)

Since this is no longer an isotropic system, the Young’s modulus is direction-
dependent and takes on a different value along each of the high-symmetry directions;
Ex = σxx/εxx and Ez = σzz/εzz . Poisson’s ratio must be defined in a similar manner.
Poisson’s ratio is the coefficient of transverse expansion, i.e. it is the ratio of trans-
verse strain to longitudinal strain for a longitudinal loading. In the tetragonal lattice
Poisson’s ratio is defined along the high symmetry directions as νxy = −εyy/εxx

and νzx = −εzz/εxx when σxx �= 0 and all other σi j = 0. The Young’s moduli and
Poisson’s ratios are included in the stiffness tensor in the following way:

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

Ex
−νyx

Ex
−νzx

Ez
0 0 0

−νxy

Ex

1

Ex
−νzx

Ez
0 0 0

−νxz

Ex
−νxz

Ex

1

Ez
0 0 0

0 0 0
1

G yz
0 0

0 0 0 0
1

G yz
0

0 0 0 0 0
2(1 + νxy)

Ex

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.6)

When applying these ideas to real life models the analytical equations introduced
above quickly become very complex. In all but only the very simplest cases approxi-
mations must be made. I will show later on in this chapter some ways a model can be
simplified but more often than not it is necessary to move away from analytics and
turn to numerical simulations. In the next section I will introduce one such method
for numerical simulations and outline how to use it to solve for the stress and strain
of a complex geometry.
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2.3 Finite Element Method

In its most general form, the finite element method is a framework for calculating
approximate numerical solutions to boundary value problems for partial differential
equations. A key feature is the subdivision of the problem into simpler parts called
finite elements [18]. By doing this we can easily represent a complex geometry with
simple standardised building blocks, see Fig. 2.2. It also allows us to keep track
of different material properties for different parts of the geometry. For each finite
element an approximate solution to the global differential equation is found, built
from linear combinations of the nodal values using approximating functions. The
relationships between the nodes are then used to assemble all the elemental solutions
into a solution over the whole domain.

I will now outline briefly how this procedure works for linear elasticity and cal-
culating stresses and strains for objects under load. See Reddy [18] or Cook [19] for
a more in-depth discussion of the theory behind this technique.

The potential energy associated with elastic deformation is

U = 1

2

∫
V

εT σdV , (2.7)

where ε and σ are the strain and stress vectors, respectively, and the integral is over
the volume of the object. When the deformation is due to external forces acting on
the surfaces of the object the contribution to the total potential energy due to the
work done by the external forces F is given by

U = −
∫

S
uT Fd S , (2.8)

Domain, V

Boundary, S

Discetised
domain

Subdomain
(finite element)

Node

Fig. 2.2 Discretisation of a domain. The domain V is discretised by tessellating triangular
elements
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where this time the integration is over the surfaces of the object and u is the displace-
ment. The stationary solution for the unknown displacements is found byminimising
the total potential energy with respect to the displacements.

As per the FEM formalism we represent the displacement at any given point by
interpolating from the nodal displacements for each element. Within a given element
the displacement vector, ue, is calculated by

ue(x, y, z) ≈ Nqe

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

N e
i (x, y, z) qe

i,x

n∑
i=1

N e
i (x, y, z) qe

i,y

n∑
i=1

N e
i (x, y, z) qe

i,z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎝

N e
1 0 0 N e

2 0

0 N e
1 0 0 · · · 0

0 0 N e
1 0 N e

n

⎞
⎟⎠ qe .

(2.9)

Ni are the shape functions for the element and they specify how to interpolate between
the nodal displacements qe. The shape functions depend on the type of element used;
see Fig. 2.3 for an example using tetrahedral elements. Figure2.3 also shows the
transformation to the natural coordinates of the element which makes processing
easier.

Turning back to the equations for potential energy we can now represent ε in
terms of the nodal displacements
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(2.10)
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Fig. 2.3 Natural coordinates and shape functions. Natural coordinates of a linear tetrahe-
dral element and the shape functions for this element

from which we can then minimise the total potential energy with respect to displace-
ment to find the equilibrium equation

U e
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2
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V e

εT σdV e −
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Se

uT Fed Se

U e
T = 1
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V e
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qe
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BT CBqedV e −
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(
qe

)T
NT Fed Se

∂U e
T

∂qe
=

∫
V e

BT CBqedV e −
∫

Se

NT Fed Se = 0

0 = keqe − f e .

(2.11)

ke is known as the element stiffness matrix

ke =
∫

V e

BT CBdV e . (2.12)

The global stiffnessmatrix, K , is obtained by adding the individual coefficients in the
elemental stiffness matrices ke

i j to K kl in such a way that the subscripts i j , indicating
the nodal displacements qe

i and q
e
j , matchwith the global nodal displacement indices.

The components of the force vector are added in a similar way and this leads to the
final equation

Kq = f . (2.13)

So in practice the first step is to divide the object up into small elements, then calculate
the stiffness matrix for each. The integration can be performed efficiently by making
use of Gaussian quadrature rules and the Jacobian to perform the integration in
the natural coordinates. The elemental stiffness matrices are combined to form the
global stiffness matrix and the boundary conditions are applied to the problem by
generating the force vector before solving Eq.2.13 for q with any of the variety of
suitable algorithms.
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Commercial software is available for finite element analysis, but it is either too
restrictive to be applied to the full range of problems relevant to the research described
in this thesis, or prohibitively expensive. I therefore wrote a program to perform the
calculation myself with the desired level of flexibility. Using MATLAB® [20] this
could be achieved in under 500 lines of code.

2.4 Uniaxial Stress and Strain Techniques

Uniaxial pressure studies have presented themselves in many forms. Here I will
outline some of the techniques that have been developed as well as their accomplish-
ments and pitfalls that motivated the development of a new technique.

2.4.1 Indirect Determination Using Ehrenfest Relations

The fragile nature of some materials makes direct uniaxial pressure measurements
challenging. Fortunately information about the pressure derivatives of transition tem-
peratures can be obtained indirectly from thermal expansion and heat capacity mea-
surements combined with the thermodynamic Ehrenfest relation. In the Ehrenfest
classification of phase transitions a first-order transition exhibits a discontinuity in the
first derivative of the free energy. An example is the liquid-gas transition, which has
a discontinuity in the density between the liquid and gas phases. The density relates
to the first derivative of free energy with respect to pressure, ρ = m(∂G/∂ p)−1

T .1 A
second order phase transition shows no discontinuity in the first derivative of free
energy. The order parameter of the transition, which is related to the first derivative
of free energy, is continuous across the transition. However quantities that depend
on the second derivatives of the free energy show discontinuities. The differential
form of the Gibbs free energy is

dG = V dp − SdT (2.14)

so at a second-order phase transition

dG1 = V1dp − S1dT = V2dp − S2dT = dG2 (2.15)

were 1 and 2 indicate the two phases. Substituting in the values for the volume
thermal expansion coefficient, β, and the heat capacity, CP ,

β = 1

V

(
∂V

∂T

)
p

, CP = T

(
∂S

∂T

)
p

(2.16)

1Where m is the mass, G the Gibbs free energy, p pressure and T temperature.
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this can be written
(

∂V1

∂T

)
p

dp −
(

∂S1
∂T

)
p

dT =
(

∂V2

∂T

)
p

dp −
(

∂S2
∂T

)
p

dT (2.17)

V1β1dp − CP,1

T1
dT = V2β2dp − CP,2

T2
dT (2.18)

�CP

T
dT = V �βdp . (2.19)

At the transition temperature, where there is a jump in β and CP ,

dTc

dp
= �βTcV

�CP
, (2.20)

or for uniaxial pressure
dTc

dpi
= �αi TcV

�CP
(2.21)

were pi now denotes a uniaxial pressure direction and αi is the linear thermal expan-
sion coefficient along that direction. These are the Ehrenfest relations which can be
used to calculate the zero-pressure limit of the derivative of Tc with pressure from
the size of the discontinuities in thermal expansion and heat capacity.

One example where this technique has been put to good use is cuprate high-
temperature superconductors. Meingast et al. [21, 22] used an ultrahigh resolu-
tion capacitive dilatometer to measure the lattice response as superconductivity sets
in, in the YBa2Cu3O7−δ system, see (Fig. 2.4). They found a highly anisotropic

Fig. 2.4 Temperature dependence of thermal expansivities. Change in expansivities for
YBa2Cu3O7−δ near the superconducting transition temperature. Based on original data from [21]
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response of the expansivities in the CuO2 plane, and very little effect out of plane.
YBa2Cu3O7−δ has an orthorhombic crystal structure and the derived pressure deriva-
tives of Tc suggest a more tetragonal lattice is favourable for superconductivity. The
uniaxial pressure dependence has opposite sign along the two in-plane crystal axes,
dTc/dpa = −1.9K/GPa and dTc/dpb = +2.2K/GPa, and almost no response along
the c-axis, dTc/dpc ≈ 0 K/GPa. The a- and b-uniaxial pressure dependences almost
cancel out for hydrostatic pressure, which is in good agreement with measurements
[23].

Thermal expansion measurements are relatively simple to carry out, especially
once the infrastructure has been built up, and sample turn around time can be very
quick [24]. The sample also remains intact and can be reused but direct observation
of any changes in Tc cannot be seen. This makes for a good first indication of whether
uniaxial pressuremight have an interesting effect, except for systemswhere a possible
nonlinear response would be missed in this zero-pressure limit, and so to actually
influence the material, and make changes to its properties, pressure needs to be
applied.

2.4.2 Anvil-Based Pressure Cells

The most obvious way to uniaxially pressurise a sample is to just squeeze it between
two anvils, and hence this is also the most common way to apply uniaxial pressure.
However, this technique does need to be performed with care if the pressure is to be
homogeneously distributed across the sample. The sample faces are in direct contact
with the anvil faces. A typical samplemight have aYoung’smodulus of 100–200GPa
and a thickness of hundreds of microns to millimetres. Typically achieved pressures
are in the kbar range, so for a 0.5mm thick samplewith aYoung’smodulus of 200GPa
pressurised to 1kbar the anvils should be compressed250nm. In order for the pressure
to be equally distributed across the sample the sample faces and the anvil faces must
both be parallel, smooth, and flat on a scale well below this displacement. Some
surface irregularities can be smoothed out by using soft interface layers between
the sample and anvil but this is still no easy feat, and for many interesting materials
these constraints are especially challenging to achieve because of small or irregularly
shaped samples, and or poor mechanical properties for fine polishing.

However, even when this can be achieved it does not solve the homogeneity prob-
lem completely. When the sample is compressed it will try to expand transversely
according to its own Poisson’s ratio, but the faces of the sample will be friction-
ally locked to the anvils introducing a strain inhomogeneity once more. The strain
homogeneity is improved if samples with either a large or small aspect ratio are
used. For small aspect ratio samples the transverse expansion will be locked to the
anvils and for large aspect ratio samples the effect of the sample-anvil locking will
die away towards the centre giving a homogeneous centre. The soft metal films that
can be added between the sample and anvils to reduce the effect of surface defects
can also help to reduce frictional locking to some extent. Despite these efforts the
effects of strain inhomogeneity are still apparent in many experimental studies; some
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Fig. 2.5 La1.64Eu0.2Sr0.16CuO4 temperature dependence of magnetization under
[110] uniaxial pressures. [110] oriented pressure destabilises stipe order relieving the com-
petition with superconductivity and a strong Tc enhancement is seen. Based on original data from
[26]

Fig. 2.6 Susceptibility against temperature for CeCoIn5 under c-axis uniaxial pres-
sure. The transition width �Tc is strongly pressure dependent, whereas the onset temperature Tc
is not. Based on original data from [27]

typical results are shown in Figs. 2.5, 2.6 and 2.7. The role of inhomogeneity is not
particularly emphasised by the respective authors. However, the increasing transition
widths, at least in part, allow us to infer inhomogeneity is a problem.2

In a typical uniaxial pressure cell the pressure is set at room temperature and locked
in place with a nut. The pressure is then fixed for the duration of the measurement
and the experiment must be thermal cycled to make adjustments. Implementations
that offer in situ adjustment have been achieved by using helium-activated bellows
to set the pressure [28] but this adds additional complications.

Despite the complications of anvil based uniaxial pressure cells they have been
successfully incorporatedwith awide range ofmeasurement techniques. Toname just
a few:ACmagnetic susceptibility andDCmagnetisation are possiblewhen the device

2There are a few honourable exceptions achieving less broadening than the typical examples I
reproduced here, for instance the work of Welp et al. [25].
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Fig. 2.7 Heat capacity for CeIrIn5 under a - andc-axis uniaxial pressure. Uniaxial pres-
sure causes a linear change in Tc with opposite slope for a- and c-axis pressures. Based on original
data from [28]

is made from a material with a suitably low magnetic background signal [11, 27];
electrical resistivity is possible with access to the sides of the sample [29]; heat
capacity when the sample is thermally isolated from the pressure cell, for instance
by making some or all of the cell from a superconductor [28, 30]; and neutron
scattering when the pressure cell is made from a material sufficiently transparent to
neutrons [31, 32].

2.4.3 Sample on Piezo Stack

Another common technique to apply uniaxial pressure, or more strictly in this case
anisotropic biaxial strain, is to fix the sample directly to a piezoelectric actuator.
This offers a much simpler route for in situ strain adjustment. This technique was
originally developed for low temperature strain tuning of semiconductors [33] but
has also been used with great success for correlated electron systems after the work
of Fisher et al. [71].

In this technique samples are prepared as thin slabs and glued to the side wall
of a piezoelectric lead zirconate titanate (PZT) stack, in Fisher et al’s work with a
5-minute epoxy. Strain is applied to the sample as the piezo actuator deforms when
subjected to a bias voltage. For a positive bias voltage the stack extends along its
poling direction and contracts in the transverse direction. The strain in the sample
is typically measured by affixing a resistive strain gauge to the upper surface of
the sample or estimated from a strain gauge on the piezoelectric stack itself. The
achievable strain range with this technique is not very large. For a typical PZT
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stack at room temperature the strain within the stack can reach ∼0.1%.3 However,
as the temperature is lowered the displacement per volt is severely reduced and at
cryogenic temperatures these piezoelectric actuators can only achieve 10–15% of
the room temperature value. The coercive field strength does however increase with
cooling, so it is possible to operate the stacks at higher voltages and against the
poling direction without depoling the stack [36]. For a stack with the manufacturer’s
recommended voltage limits of −20 to 120V we found we could repeatably and
reliably operate between −400 and 600V at 1 K.

Another concern for measurements with the sample fixed directly on the piezo
stack is differential thermal expansion. The thermal expansion coefficient of PZT
along its poling direction is approximately −2.5 10−6 K−1, i.e. the stack lengthens
as it is cooled [36, 37] and (Fig. 2.8). This is in contrast to typical materials which
contract by 0.1–0.5% between room temperature and 4 K. If there is no plastic
deformation of the epoxy layer, a typical sample will be severely tensioned as it
is cooled down, and beyond the range that could be brought back to zero strain
by operating the piezo stack. In reality plastic deformation with 5-minute epoxy is
observed and the strain is not well transmitted above about 100 K [33, 71].

By fixing the sample to the piezo’s surface the sample is constrained to follow
the deformation of the stack, but in reality the epoxy is nearly always softer than the
sample and stack, so significant strain can be lost in the epoxy layer. A typical mea-
surement for this apparatus is differential longitudinal elastoresistance. For this two
separate samples, cut into bars for transport measurements, are mounted perpendicu-
larly to one another on the stack [38]. This allows the longitudinal elastoresistivities
to be measured in both directions, parallel and perpendicular to the applied stress,
and the differential longitudinal elastoresistance to be determined from the differ-
ence. However, an accurate measurement relies on equal strain transmission, which
is not trivial to achieve. A simulation of the strain transmission is shown in Fig. 2.9

Fig. 2.8 PZT thermal expansion. The thermal expansion of PZT measured both parallel and
normal to the poling direction. Based on original data from [37]

3Part number P-885.51 from PI CeramicGmbH, taken from the specification sheet [35] and checked
with an interferometer.
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(a)

(b)

Fig. 2.9 Sample on piezo stack finite element simulations. Finite element simulations of
the strain transmitted to samples mounted parallel and perpendicular to the poling direction of the
piezo stack. Samples are 800 × 200 × 20µmwith a Young’s modulus of 50GPa and Poisson’s ratio
of 0.35. The epoxy is 20µm thick and has a Young’s modulus and Poisson’s ratio of 10GPa and
0.3, respectively. The stack is strained to +0.1% and has a Poisson’s ratio of 0.45. Deformations
are exaggerated 200

for a bar sample mounted parallel and perpendicular to the poling direction of the
stack. The strain is not transmitted over the full area of the sample. For instance with
the specific dimensions and parameters used in this simulation, the strain builds up
over about the first 20% of the ends of the sample mounted parallel to the poling
direction but is homogeneous in the middle portion. However the sample mounted
perpendicular to the poling direction is much shorter along the strained direction and
not long enough to give a homogeneous region in the middle.

This technique is therefore best suited for making measurements where the resis-
tive response is linearwith strain and can bemeasuredwith small strain perturbations.
Strain offsets due to differential thermal expansion are not important when the deriva-
tive with strain is taken and the response is linear. Strain homogeneity is always an
issue, however, particularly for bar shaped samples such as those shown in Fig. 2.9.
An alternative mounting method is to use a square shaped sample and measure using
the Montgomery method [18]. This gives the same strain transmission in both direc-
tions but neither would be as homogeneous as that in a parallel-mounted bar sample.
Information about the nematic susceptibility can also be obtain more directly using
a single sample and a transverse resistivity configuration as set out by Shapiro et al.
in [40].

The simplicity and compactness of this technique mean it is particular straight-
forward to implement. Overall this technique has proved particularly fruitful for
the Fe-based superconductors. Ubiquitous nematic behaviour has been seen and
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nematic quantum criticality has been observed in the optimal doping regime of these
materials [18].

2.4.4 Other Techniques

There are still other techniques for applying uniaxial or biaxial strain and I will
mention just two more here. Thin film samples are nearly always prepared on a
substrate. This gives the opportunity to strain the sample byfirst straining the substrate
either by stretching or bending. Since the sample is very thin the strain homogeneity
can be very high. One such example is graphene prepared on a PET substrate where
∼0.8% tensile strains were achieved and provided a way to experimentally tune the
band gap of single-layer graphene [41, 42].

Another way to achieve strain for thin films is to grow the film using molecular
beam epitaxy on a substrate with a mismatched lattice constant. By choosing the
right substrate a certain amount of strain can be selected, however, usually only
biaxial. This techniquewasused to double the superconducting critical temperature of
La1.9Sr0.1CuO4 [43]. By growing the sample on SrLaAlO4 the sample is compressed
in-plane and expanded out of plane, providing the largest Tc enhancement.

2.5 New Uniaxial Stress Cell

I have shown there are a large variety of techniques for applying uniaxial stress and
strain. However, to test a specific hypothesis for thematerial Sr2RuO4, CliffordHicks
was motivated to propose a new technique. Sr2RuO4 is an unconventional supercon-
ductor but of particular significance since it may host a unique superconducting state.
A body of accumulated evidence has led to the proposal that the pairing in Sr2RuO4 is
spin-triplet with an odd-parity chiral order parameter, px ± i py [44]. This would be a
superconducting analog of the A-phase of superfluid 3He. Sr2RuO4 has a tetragonal
lattice so the two components px and py would have the same transition tempera-
tures, but this degeneracy could be lifted by breaking the symmetry between the x
and y directions. This can be achieved using in-plane uniaxial strain. Based purely
on symmetry considerations the phase diagram in Fig. 2.10 was predicted for the Tc

dependence on anisotropic strain [45, 46].
To test this hypothesis a device capable of applying both tension and compression

is needed. High homogeneity and continuous in situ adjustability were also among
the aims. The implementation devised by Clifford Hicks is described in detail in
reference [17]. My personal contribution to that ‘phase 1’ development was a series
of finite element calculations that enabled the calibration of the sample strain and
helped optimise the strain homogeneity by changing the way samples were mounted
(see Sect. 2.5.1). Here I will only discuss the salient features and mention some
improvements implemented to the original device for my main PhD research. A
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Fig. 2.10 Hypothesis for px ± ipy superconductivity. General phase diagram expected for
px ± i py superconductivity in a tetragonal crystal subject to a small, volume-preserving, but
symmetry-breaking strain εxx − εyy

(a) (b) (c)

Fig. 2.11 Principle of operation. a The sample is compressed by extending the middle piezo-
electric actuator.bSample at zero strain. cThe sample is tensioned by extending both outer actuators
and pushing the bridge piece out

schematic of the device is shown in Fig. 2.11, and the principle of operation is also
detailed.

For this technique the sample is first shaped into a long thin bar and then firmly
fixed across the gap between the two sample plates using epoxy. One end is fixed
stationary to the main body of the device while the other is movable. The position of
themovable sample plate is controlled by the three piezoelectric actuators. A positive
voltage to the central actuator causes it to extend, compressing the sample. Tensioning
the sample is achieved by applying a positive voltage on the outer two stacks, pushing
the bridge piece out, and pulling on the sample through the central stack. All three
stacks have equal lengths so, in principle, since they are offset from the sample, their
thermal expansion should not affect the sample while the temperature of the rig is
varied. In practice differences between stacks mean that this is considerably reduced
but not completely eliminated.

Since the piezo stacks are much longer than the sample a large sample strain can
be achieved. This was the first improvement made over the original device for the
work I report. In the first iteration of the device 4mm stacks were used, but now
we have a cryostat with a much large bore and we upgraded to 18mm stacks. In
addition to the longer stacks I first used a fibre-based interferometer to compare
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the performance of an alternative manufacturer of piezoelectric actuators at cryo-
genic temperatures, where there is generally no technical data specified, and found
significant improvement with actuators from PI Ceramic GmbH.

The sample strain is given by the stroke length of the stack divided by the strained
length of the sample. The ‘strained length’ of the sample will be described in detail
later but because the sample is held with a soft epoxy the length over which the strain
is applied is not exactly the same as the gap between the sample plates. Typically the
strained length is ∼1mm, and at 1K with 18mm stacks4 the stroke length is up to
∼50µm (−400 to +600V), so a strain range of 5% is possible if the sample and
epoxy mounting are able to withstand this. In practice I have achieved tensile strains
of ∼0.25% before the sample breaks, and compressive strains up to 1% before the
epoxy starts to give way.

A few other improvements were made to the device for the work in this thesis.
The main body of the device is now made from one piece of titanium as opposed
to many pieces held together with screws and epoxy as in the first iteration. Making
the device in this way makes it overall much stiffer and easier to assemble; how-
ever, differential thermal expansion between the sample and the device is now an
important consideration. Titanium has an atypically small thermal expansion for a
metal. Between 4 and 300K it is only∼0.15% [47], much less than that of the typical
samples we have measured. The consequence of this is that even though the sample
is mounted at zero strain at room temperature, by the time the rig is cooled down to
cryogenic temperatures the sample is put under severe tension. In the original device
copper foils were incorporated to try and match the thermal expansion of the device
to that of Sr2RuO4.With the device nowmade as one solid block, incorporating addi-
tional foils to compensate the differential thermal expansion is no longer possible.
Instead, the piezo actuators must be used to actively compensate the differential ther-
mal expansion and maintain the sample close to zero strain while cooling the device
to cryogenic temperatures. With the larger range of the longer stacks the sample can
still always be brought back to zero strain.

Since the piezo stacks are very hysteretic an independent measure of the strain is
required. The resistive strain gauge used in the first generation device has now been
replaced by a capacitive strain gauge. The capacitor is a parallel plate capacitor in line
with and underneath the sample. To check the linearity and accuracy of the capacitive
sensor a fibre-based interferometer was adapted for use in our cryostat to make
an accurate calibration. The calibration of the capacitor against the interferometer
is shown in Fig. 2.12. The characteristic inverse plate separation dependence can
clearly be seen. By incorporating a capacitive strain gauge instead of a resistive one
the applied strain is known to much higher precision. With the capacitive gauge the
resolution is ∼0.1nm compared to ∼2nm with the resistive gauge. The capacitive
strain gauge is also much less sensitive to temperature and magnetic field, which
was important for this work. It is well known that piezoelectric actuators creep;
after a step change in voltage the displacement changes with time even with an
unchanging drive voltage. The amount of creep decreases logarithmically with time

4Part number P-885.51 from PI Ceramic GmbH.
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Fig. 2.12 Capacitor calibration. A hermetic feedthough at the top of the cryostat brings the
fibre heads of the attocube FPS3010 interferometer down to low temperatures. The FPS3010 inter-
ferometer is a Fabry-Pérot type and takes the first reflection from the sensor head itself and the
second from mirrors attached to the uniaxial stress device. By using multiple fibres and mirrors
placed at different points on the device an accurate calibration of the capacitive displacement sensor
was achieved

and is well characterised by the form�L(t) ≈ �Lt=0.1 s(1 + γ ln(t/0.1 s)) [36, 37].
γ is the creep factor and can range from tens of seconds to weeks [37]. The relaxation
mechanisms responsible for creep slow down significantly at low temperatures but
it is still necessary to use the capacitor in a feedback loop to keep the strain in the
sample constant throughout a measurement.

An assembled device used for the work in this thesis is shown in Fig. 2.13. This
whole part can be detached from the cryostat and worked on separately while prepar-
ing the sample.

When a sample is uniaxially loaded it is characterised as being under uniaxial
stress.With the contact only on two opposing end faces it will not deform completely
uniaxially since, in its central section, the sample is free to expand in the transverse
direction according to its own Poisson’s ratio. To achieve strictly uniaxial strain the
transverse expansion would have to be held at zero.

Our device, that has the sample supported only at the ends, therefore puts the
sample under conditions of uniaxial stress. However, the device is not a controlled
stress device. The whole device is much stiffer than the sample, including the piezos,
and the force applied to the sample is typically less than 50 N. What is controlled is
the displacement of one end of the sample. A voltage is dialled in, the piezos deform,
and the sample must comply or give up the ghost. We therefore have a sample under
conditions of uniaxial stress but, in general, we know the strain along the pressure
axis more accurately than the stress.

This new technique gives many opportunities for measurements. The sample is
exposed and visible once mounted in the device and can have an unobstructed upper
surface. This makes the device compatible with a large number of experimental
techniques. I have concentrated on resistivity and AC magnetic susceptibility but it
would also be possible to measure many other properties such as Seebeck and Nernst
effect, thermal conductivity, heat capacity using anAC technique or the 3ω technique,



2.5 New Uniaxial Stress Cell 31

(a)

(b) (c)

Fig. 2.13 Uniaxial stress cell. a Overview of the whole device including frame and wiring. b
Detailed section of the main body of the device. cA typical sample mounted for electrical resistivity
measurements

Raman spectroscopy, optical conductivity and nuclear magnetic resonance (NMR).
The accessible upper surface should allow in principle surface sensitive techniques to
bemeasured such as angle-resolved photoemission spectroscopy (ARPES), scanning
tunnellingmicroscopy (STM) and scanning squid or hall probemeasurements. Addi-
tionally in a cleverly designed rig with access from both sides, scattering techniques
such as soft and hard X-ray scattering are possible.

2.5.1 Sample Mounting

One of the key improvements of this device is the sample mounting. Relative to the
other techniques discussed in Sect. 2.4, it is the sample mounting which, in principle,
allows significantly better strain homogeneity to be achieved. The sample is held
in the device using epoxy such that it can be put under tension or compression.
The epoxy is important as it conforms to the shape of the sample and sample plates,
which alleviates the need for precise polishing. However the sample should still have
a constant cross-section. The epoxy prevents the sample ends from pivoting, which
increases the buckling limit of the sample, allowing higher strains to be achieved
or higher length-to-width aspect ratios to be used. And as I will show later a softer
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epoxy is beneficial for strain transmission as it deforms over a certain length of the
sample, reducing stress concentration at the mounting points and hence minimises
the possibility of sample failure.

The sample should always be mounted as symmetrically as possible to eliminate
bending. This is best achieved by using two sample plates sandwiching the sample.
A spacer needs to be included at the back of the sample plates, behind the sample, to
prevent the sample being crushed during assembly but also to set the correct epoxy
thickness. See Fig. 2.14 for a schematic of the sample mounting.

Figure2.15 shows the effect of suboptimal sample mounting. Superconducting
transitions for two different samples of Sr2RuO4 are shown at zero strain and at 0.12%
tension. The first sample was mounted by embedding the ends of the sample in an
epoxy droplet only and it can be seen that this led to significantly more broadening
of the transition as the sample is strained compared to a sample mounted more
symmetrically with a capping foil. Since the epoxy is quite soft, the load is mostly
transmitted by the lower side of the epoxy droplet, as indicated by the red shading in
the figure, and this causes the sample to bend inducing a strain gradient though the
whole sample.

The epoxy is nearly always going to be softer than the typical samples and the
sample plates. This means the displacement of the sample plates, as measured by the
strain gauge, is not all applied to the sample since the epoxy is also deforming. An
approximation for the load transfer length, the length over which the epoxy deforms
and the force is transmitted to the sample, can be calculated analytically after a few
assumptions. Starting from the geometry set out in Fig. 2.14b we make the following
approximations. The sample’s width, w, is much greater than its thickness, t , such
that bonding on the side walls of the sample is insignificant. We also assume the
epoxy has much lower elastic constants than both the sample and sample plates.
After this approximation we can take the sample plates to be perfectly rigid and also
neglect any shear strains in the sample. This simplification sets εxx to be constant in
both y and z. After these approximations the force at any point in the sample, given
by Hooke’s Law, is

F(x) = Ewtεxx , (2.22)

(a) (b)

Fig. 2.14 Model for the effective sample length. a Schematic of the symmetric sample
mounting. b When a force F is applied to the sample, the load is transferred through the epoxy to
the sample plates over a characteristic length scale λ. See text for further details
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Fig. 2.15 Effect of strain
inhomogeneity. A
comparison of two mounting
conditions on the
superconducting transition of
Sr2RuO4. At zero strain the
sample mounted
asymmetrically in a soft
epoxy droplet (blue curves)
has a much sharper transition
than the sample mounted
more symmetrically with a
cap foil (black curves).
However, despite the
asymmetrically mounted
sample being the cleaner of
the two, under strain it
broadens significantly more
and has a larger transition
width than the less
broadened but dirty
symmetrically mounted
sample. Based on original
data from [48]

where E is the Young’s modulus of the sample. Additionally, we know how the force
varies along the length of the sample due to the shearing of the epoxy layers as

d F(x)

dx
= 2wσxz(x) ≈ 2wG

D(x)

d
, (2.23)

where σxz is the shear stress of the epoxy layer, G the shear modulus of the epoxy,
and d and D(x) are the epoxy thickness and displacement of the sample at position
x from its unloaded position, respectively, as defined in the figure. Equating these
two, we can solve for the displacement, D(x), of the sample

d F

dx
= Ewt

dεxx

dx
= 2wG

D(x)

d
d2D(x)

dx2
= 2G

Etd
D(x)

(2.24)

D(x) = D(0) exp(−x/λ) , λ =
√

Etd

2G
. (2.25)

The strain therefore decays exponentially into the epoxymounts with a characteristic
length scale λ. For an epoxy we work with Stycast® 2850FT5 with catalyst 23LV.
The elastic properties of Stycast 2850FT do not appear to have been measured at
cryogenic temperatures. Ojeda et al. used dynamic mechanical analysis (DMA) to

5Henkel Loctite, formally Emerson and Cuming.
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study the viscoelastic properties of Stycast 2850FT hardened with catalysts 24LV
and 9 [49]. They carried out measurements down to −130 ◦C looking for the glass
transition temperature and to determine the complexmodulus. For both hardeners the
storage modulus, E ′, increases as the temperature is lowered but begins to saturate at
lower temperatures after the glass transition temperature at ∼ −40 ◦C. By −130 ◦C
the storage modulus for the Stycast cured with catalyst 24LV reached ∼11.7GPa
and for catalyst 9 ∼16.2 GPa.

The elastic properties of Stycast 1266, an unfilled version of 2850FT, have been
measured at cryogenic temperatures [50]. It has similar behaviour; the Young’s mod-
ulus increases with decreasing temperature before starting to saturate, this time at
around 100 K. The low temperature value, approximately constant below 77 K, is
∼4.5 GPa.

If Stycast 2850FT cured with catalyst 23LV behaves similarly, we can expect
a Young’s modulus of approximately 15–20GPa at low temperatures. The shear
modulus, G, is related to the Young’s modulus, E , and Poisson’s ratio, ν, of an
isotropic material by G = E/2(1 + ν). Taking the Young’s modulus of Stycast to
be 15 GPa and the Poisson’s ratio as 0.3 the shear modulus would be ∼6 GPa.

Using a typical sample as an example, in this case Sr2RuO4 with E = 176GPa
[76], and dimensions t = 100µm and d = 25µm the characteristic length is λ ∼
200µm. The strain falls to ∼1/e of the average value of the exposed portion of the
sample in the first 200µm of the epoxy. Therefore it is best to mount the sample
with an overlap between the sample and sample plates of at least 2–3×λ to ensure
enough epoxy length for proper strain transmission to the sample.

From Eq.2.25 we can also calculate the shear stress in the epoxy layer. The largest
shear will be at the end of the sample plates

σxz(0) = G
D(0)

d
. (2.26)

In order to optimise the mounting we want to compare the maximum shear stress in
the epoxy for a given amount of strain achieved in the sample. In this approximation
scheme the strain achieved in the sample is the same as the strain at the edge of the
mounts

εxx (x) = d D(x)

dx
= − D(0)

λ
exp

(
− x

λ

)
, (2.27)

εsample = εxx (0) = − D(0)

λ
. (2.28)

So the maximum stress in the epoxy is given by

σxz,max = G
εsampleλ

d
= εsample

√
EtG

2d
. (2.29)

The shear strength of Stycast 2850FT has been measured, for instance by Camp et
al. [52] and Ojeda et al. [49]. It is found to be in the range of 10–50MPa increasing
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slightly towards lower temperatures. But the results show quite some deviationwhich
is likely to dowith the exact care in the preparation of the Stycast. These tests typically
usedmuch thicker layers, up to 3mm, and so it is easier to include air bubbles leading
to a failure point [52]. By carefully preparing the Stycast, i.e. making sure to use
the exact mix ratio, mixing thoroughly, then degassing the epoxy before baking at
elevated temperatures to achieve the strongest bond, we have reliably been able to
achieve strains of−1% for a sample cross section of 100× 300µm, corresponding to
a pressure of ∼1.8GPa and a shear stress in the epoxy of ∼500MPa. This value was
not actually the limit of the Stycast but was the limit of motion of the device before
the capacitor plates shorted,meaning even higher strains should still be possible. This
shear stress is significantly higher than previously measured values but the very thin
layer and the very low temperatures may well increase the yield stress of the epoxy.
The response of the Stycast was not completely elastic up to these highest strains,
in fact we quite regularly saw the epoxy start to slip around a strain of ∼−0.3% (a
shear stress of ∼150MPa). This can be seen during a strain increase; the voltage is
smoothly ramped up but there is a sudden jump in the capacitance when the epoxy
slips, see Fig. 2.16. The slippage in the epoxy, however, is not fatal. Instead, it seems
to find a stronger bonding point further back in themount.Weknow this by comparing
the sample properties before and after the slip and each time we go to a new highest
strain the sample length must be redetermined by comparing to the initial properties
of the sample at low strains before the epoxy slipped for the first time.

As well as the sample failing due to the limit of the epoxy, the sample can also
fail if you reach the intrinsic buckling limit. The critical load for buckling a beam is
given by Euler’s formula

Fcr = π2E I

(K L)2
, (2.30)

where E is the Young’s modulus of the material, I is the minium area moment of
inertia of the cross section of the beam, L is the length of the beam and K is an

Fig. 2.16 Epoxy slippage. With the strain increasing steadily a jump in the capacitance is
observed whenever the epoxy slips
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effective length factor for the beam to take into account the constraints at the ends.
For our sample mounting, both the rotational and translational motion of both ends
of the sample are fixed. This makes the K factor equal to 0.5. The area moment of
inertia of a beam with rectangular cross-section, width and thickness, w and t , is
I = t3w/12. So the critical strain for buckling, εcr , is

εcr = π2t2

3L2
. (2.31)

This depends on the aspect ratio (t :L) squared and for the typical dimensions I used
earlier, L/t = 10.5, the theoretical critical strain for bucking is 3%.

So far I have shown only analytical estimations of the strain transmission, but for
a complete analysis a finite element simulation was programmed to determine the
strain transmission more precisely. This will be the subject of the next section.

2.5.2 Sample Mounting Models

In order to optimise the sample mounting scheme I used finite element analysis to
investigate the possible mounting scenarios. For each I will quantify once more the
load transfer length and assess each in terms of the strain homogeneity and the sample
bending.

Here I will discuss four models for the sample mounts, all depicted in Fig. 2.17.
They are: (1) “Rigid:” here the sample is fixed with hard, perfectly rigid epoxy on
its top and bottom surfaces at both ends. (2) “Symmetric epoxy:” a softer epoxy
bonded on both the top and bottom surfaces to perfectly rigid sample plates. (3)
“Asymmetric epoxy:” the same soft layer of epoxy but only the bottom surface is
bonded to a sample plate. (4) “Symmetric thick epoxy:” the same as model 2 but
with thicker layers of epoxy on both sides. For all the models the sample and epoxy
are taken to be isotropic. We set the Young’s modulus of the sample to be 10× that
of the epoxy, and the sample and epoxy to both have a Poisson’s ratio of 0.3. We use
aspect ratios close to those of the typically mounted samples: the sample’s width,
w, is set to 3× the sample’s thickness, t , and the length (gap between the sample
plates) to 3.5w. The thin layers of epoxy are 0.25t and the thick layers in model 4
are equal to the sample’s thickness. The sample plates are not directly modelled but
the boundary conditions imposed on the models are such to sufficiently capture their
effect. Only the faces of the epoxy that would make contact with the sample plates, or
the end portions of the sample in the rigid epoxy model, have applied displacement
constraints; the constrained faces are illustrated in Fig. 2.17. The bulk of the epoxy
and sample is not constrained. Displacement rather than force constants are used
since it is the strain that is controlled by the device, not the stress. These faces have
constrained x , y and z displacements. Their y and z displacements are held at zero,
i.e. we assume the sample plates are not expanding or contracting transversely. The x
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Fig. 2.17 Mounting
models. Mounting models
used in the finite element
analysis. Red faces have
applied displacement
constraints, and blue
volumes are epoxy

displacement sets the applied strain, and for a model with an applied strain of−0.1%
the constrained faces are displaced towards each other by 0.05% ×L.

For these calculations I programmed a custom FEA simulation incorporating the
meshing capabilities of Gmsh [53] and matrix solvers in MATLAB® [20]. Each
model had on the order of 106 elements, all linear tetrahedrons. The end portions of
the sample were always made much longer than the load transfer length λ to negate
effects due to only partial transmission of the load. No effects of differential thermal
expansion are included in the models presented in this thesis.

The simulation results of the models in Fig. 2.17 are shown in Figs. 2.18 and
2.19. Figure2.18 shows the strain εxx . The thick red lines mark the constrained faces
which were moved towards each other by 0.1% of L and the deformations have been
exaggerated 200 times. The three plots in part A of Fig. 2.18 show cuts in the centre
xz-plane of the sample for mounting models 1, 2 and 3. The plot in panel B shows
a cut the centre xy-plane for mount model 2.

Figure2.19 shows the εxx strain along the centreline of the sample for all the
mounting models. Here one can clearly see the exponential decay of the strain into
the mount as well as the highly homogeneous region in the centre of the sample. The
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(b)

(a)

Fig. 2.18 Fea simulations. Strain εxx for samples mounted as in the models of Fig. 2.17. In all
the models the sample plates, represented by the thick red lines, were moved towards each other by
0.1% of L . The deformations have been exaggerated 200 times. a Cuts through the centre xz-plane
of the sample. b Cut through the centre xy-plane of the sample for mounting model 2

load transfer length, λ, is shown for each model and is taken from a fit to the strain
along the centreline of the sample in region of the sample within the mount.

The load transfer length is shortest for the rigid epoxy model and correspondingly
the highest strain is achieved in this sample, but the cross-section through the xz-
plane in Fig. 2.18 clearly shows very high stress concentration right at the edge of
the mounts. This would be the failure point for a sample mounted with this scheme.
In the models with the layers of soft epoxy the stress concentration is reduced and,
we expect, higher strains can ultimately be achieved. However, the exact thickness
of the epoxy leads to some uncertainty in the exact amount of strain achieved in the
sample; take note of the range of strains seen at the middle of the sample for the
models with soft epoxy in Fig. 2.19.
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Fig. 2.19 Strain along the centreline of the sample. Strain εxx along the centreline of the
sample for the mounting models in Fig. 2.17. The legend includes the load transfer lengths, λ, from
fits to the portion of the sample inside the mounts. Negative x/t corresponds to where there is
epoxy, the scale is the same as in Fig. 2.18

For samples mounted in symmetrical mounts the strain homogeneity is very high,
see both Figs. 2.18b and 2.19. The inhomogeneity dies away moving towards the
sample centre so measurements should be designed to be sensitive only to the central
region of the sample. A guide for the length of sample to exclude from both ends of
the sample is given in Table2.1. This length says that after excluding this amount at
the ends of the sample, the strain εxx across the rest of the volume of the sample does
not differ from the average strain at the centre of the sample by more than the given
percentage. So to achieve a strain inhomogeneity less than 5% for a sample mounted
using model 2, a length equal to 0.2w of the sample needs to be excluded from both
ends of the sample. With suitable sample mounts it is therefore possible to achieve
very high strain homogeneity over almost the entire exposed region of the sample.

Any asymmetry in mounting causes the sample to bend as shown in Fig. 2.18a(3)
and this introduces further strain inhomogeneity; there is a clear strain gradient
between the bottom and top of the sample. This inhomogeneity can be quantified by

Table 2.1 Guide for the end portions of the sample to exclude from measurements.
Length at the end of the sample to exclude in order to achieve a given level of strain homogeneity.
Mounting models and dimensions as per Fig. 2.17

Mounting model % Inhomogeneity

5% 1%

1 0.5w 0.9w

2 0.2w 0.5w

4 0.1w 0.4w
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taking the difference in strain between the top and bottom divided by the average
strain across the central plane of the sample. This quantity is plotted in Fig. 2.20 for
a range of sample aspect ratios and three different asymmetric mounting models.
The inhomogeneity is worst for a sample mounted with rigid epoxy from a single
side. There is improvement with a softer epoxy but the inhomogeneity is still large.
For example with an aspect ratio (L/t) of 20, not far below the buckling limit, the
inhomogeneity is still above 10%. It is clear then that symmetric sample mounting
should always be aimed for. The final curve in Fig. 2.20 shows a problem that might
occur when symmetrical mounting is aimed for but the sample ends up off centre in
the mount. Here the total space between the mounting plates encasing the sample is
1.5t so a symmetrically mounted sample would have layers of epoxy 0.25t thick on
each side but here the bending induced inhomogeneity is shown for the case when
the sample moves half this distance off centre. The inhomogeneity is still better than
the sample mounted only from a single side, but for small aspect ratio (L/t) samples
the inhomogeneity can still be quite significant.

2.6 Recommended Working Parameters

Throughout the work for this thesis we were aiming to push the limit of achievable
strain. With the longer stacks of the new devices, the range of motion of the device is
no longer the limiting factor in terms of the achievable strain and we had to consider
the other possible modes of failure carefully. As a summary, I will outline these
considerations in a step by step recipe for preparing and mounting samples to reach
high strains.

(a)

(b)

(c)

Fig. 2.20 Bending induced strain inhomogeneity. The difference in strain between the top
and bottom of a bent sample at the centre divided by the average strain across the central plane
of the sample plotted against the sample’s aspect ratio. The three cases from top to bottom are: a
rigid epoxy holding only the lower sample face; b soft epoxy on the under side of the sample with
a thickness equal to 0.25t ; c a sample mounted asymmetrically between top and bottom sample
plates. The sample is off centre by 0.125t and the total space between the two plates is 1.5t
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Three main modes of failure can limit the applied strain. First, if the stress within
the sample reaches the yield strength, permanent deformation will occur. This is an
intrinsic limit of the sample and cannot be controlled, thus setting an upper limit
of strain. It is important however to ensure that the sample surfaces are prepared as
well as possible, free from chips and cracks in the surface, as these lead to points
of stress concentration and premature failure. The sample must also be of uniform
cross section to achieve a homogeneous strain distribution. During measurement it
is necessary periodically to release the strain and check to see if the elastic limit
has been exceeded. If it has, the sample’s properties will not return to the previous
values once it has been brought back to a lower strain. During my measurements on
Sr2RuO4 and Sr3Ru2O7 presented in the following chapters I never observed such
effects and thus always remained within the elastic limit, for these measurements the
yield strength was not yet the limiting factor.

The second mode of failure is through sample buckling. The sample is a long
thin bar only supported at the ends so after a certain level of compressive strain the
sample is susceptible to buckling as described in Sect. 2.5.1 and see Fig. 2.21. The
critical load for buckling is given by Euler’s formula. For a sample fixed without
allowing rotation or translation of both ends and with a rectangular cross-section,
width and thickness, w and t , the theoretical critical strain is εcr = π2t2/3L2, where
L is the length of the strained part of the sample. The recommended useable range,
however, is only 60% of this [54]. A shorter sample therefore is better for reaching
the absolute highest strains, but the strain homogeneity also needs to be kept in mind.
The portions of the sample inside the epoxymounts are not strained so between these
and the middle of the sample there are regions of inhomogeneous strain. Through
guidance from my simulations we know it is best to leave a length roughly equal
to the width of the sample at each end and try to measure exclusively in the central
portion of the sample. For my measurements I chose to use a width of 300 µm and
make the sample length, the gap between the sample plates, 1mm. This gives a large
enough measurement region where the strain should be homogeneous and leaves
enough space for all the wires to the sample and some space for susceptibility coils.
For the measurements on Sr2RuO4 I was aiming for a maximum strain of −1.5%,
requiring that the sample’s thickness be at least 90–100 µm.

The third failure point is the epoxy holding the sample to the sample plates. The
thickness of the epoxy layer between the sample and sample plates can be varied to

Fig. 2.21 Buckled
sample. Photograph
showing the stumps of the
sample that remain after the
sample buckles and the
central portion breaks away
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Fig. 2.22 Effect of epoxy
depth and shear
modulus. a A thin layer of
epoxy with a large shear
modulus leads to stress
concentration in the sample
and epoxy near the edge of
the sample plate. b By
increasing the depth of the
epoxy layer the shear stress
in the epoxy is reduced and
the length over which the
strain transmission occurs is
increased. However the depth
of the epoxy should not be
increased so far that the
transmission length exceeds
the size of the sample plates
else only partial transmission
will occur. c Reducing the
shear modulus of the epoxy
also reduces the shear stress
in the epoxy and the stress
concentration at the sample
ends but the shear strain in
the epoxy is increased so
care must be taken to stay
within the limits of the epoxy

(a)

(b)

(c)

limit the shear stress in the epoxy, see Sect. 2.5.1 and Fig. 2.22. The maximum shear
stress in the epoxy, when there are sample plates above and below to transmit the
applied force, is approximately τmax = εsample

√
EtG/2d, where E is the sample’s

Young’s modulus, G is the shear modulus of the epoxy, d is the epoxy depth. It is
therefore best to increase the depth of the epoxy to limit the maximum shear stress,
but one must also bear in mind that the length of sample that needs to be embedded
in the epoxy to ensure adequate strain transmission also increases as the epoxy depth
is increased. This means the epoxy depth should only be increased while there is
a long enough length of spare sample at each end held in the epoxy. Increasing
the epoxy depth further reduces the amount of strain transmitted. The shear stress
decays roughly exponentially with the distance from the end of the mount with a
characteristic length scale of λ = √

Etd/2G, so a distance of 2 − 3 × λ is desirable
to achieve adequate strain transmission.
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As first mentioned in Sect. 2.5.1, for my measurements I used Stycast 2850FT
with catalyst 23LV as the epoxy as it is well suited to cryogenic temperatures and
has a relatively high shear strength. Stycast is much softer than the sample with a
shear modulus estimated to be ∼6GPa at low temperatures. The sample plates used
in our strain device offer up to 400–500 µm of overlap with the ends of the sample
so by fixing the epoxy depth to 25 µm this space is utilised to its full potential.
To achieve this separation accurately a foil was fixed to one of the sample plates,
further back on the plate than the sample, and polished to 150 µm thick so that when
it was combined with the second sample plate sandwiching the sample the correct
separation was achieved, see Fig. 2.14. There still is some uncertainty in making sure
the sample sits in the centre between the sample plates above and below the sample
but I found in practice that careful application of the epoxy with equal distribution
above and below the sample without excess meant the sample naturally found the
centre as the epoxy cured. Stycast 2850FT is also a filled epoxy with specified
particle diameters up to 45 µm, but in practice, probably due to our preparation and
application method, the larger particles tended to be absent but the smaller particles
may have been helping to centre the sample. It was difficult to verify if the sample
was centred directly after the mounting stage since there was no line of sight to the
side of the sample in our device, but after samples were removed from the rig this
was always checked.

The shear stress in the epoxy can also be reduced by using a softer epoxy but at
the expense of also increasing the shear strain in the epoxy. A softer epoxy needs to
have a proportionally larger yield strain in order to achieve the same sample strains.
Stycast 2850FT appears to be ideally suited in this range with a low enough shear
modulus to prevent serious stress concentration in the sample, but a large enough
yield strength to reach high sample strains. For most epoxies the elastic properties
are only known close to room temperature but even comparing these values Stycast
is well suited, see Table2.2. Some caution should be taken though when comparing
these results directly since the shear tests on which this data are based can be strongly
affected by surface preparation, material choice, and epoxy thickness. However once
coupled with fact that Stycast’s thermal expansion is matched to that of brass it seems
an ideal epoxy for our purpose and perhaps had another epoxy been chosen instead
during the initial tests of the first uniaxial stress device, a premature failure may have
written off the whole idea.

2.7 Conclusions

Traditional uniaxial pressure measurements are technically challenging and extreme
care must be taken to ensure high strain homogeneity. The technique described here,
where a long narrow bar is strained across a vice, offers significant improvements
and can achieve very high strain homogeneity in the central portion of the sample.
When experiments are designed to be sensitive to this central portion of the sample
this is then a very effective technique.
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Table 2.2 Mechanical properties of select epoxies. Shear modulus and lap shear strength of
several epoxies tested at room temperature. Where the shear modulus was unknown, the measured
Young’s modulus with an assumed Poisson’s ratio of 0.3 was used to calculate the shear modulus

Shear modulus Lap shear strength

Stycast® 2850FT [52] ∼4GPa ∼40 MPa (Blasted stainless steel)

EPO-TEK® H74 [55] ∼2 GPa ∼11 MPa (Unknown)

EPO-TEK® H20E [56] ∼2 GPa ∼10 MPa (Unknown)

Araldite® [57] ∼1 GPa ∼18 MPa (Blasted stainless steel)

MasterBond® EP29LPSP [58] ∼1 GPa ∼15 MPa (Aluminium)

Fig. 2.23 YBa2Cu3O6.92
susceptibility against
temperature. Real part of
the susceptibility χ against
temperature for a sample of
YBa2Cu3O6.92 compressed
along the b-axis

The strain range now achievable is no longer a weak perturbation but can be a very
significant energy scale. To put it in perspective, one would expect that a strain of 1%
can change the Fermi level by approximately 1% of the band width. For Sr2RuO4

and straining along the [100] direction the band width in this direction for the γ
band is∼3eV [66]. The energy scale of the achievable strain range is therefore order
∼30meV equivalent to a temperature of ∼300 K or a magnetic field of ∼600 T.

Figure2.23 shows preliminary measurements on the high temperature supercon-
ductor YBa2Cu3O7−δ made with this uniaxial stress technique. Small concentric
coils with diameters 250 µm for the pick-up coil and 1.5mm excitation coil were
placed above the centre of the sample to measure AC magnetic susceptibility. Over
a strain range of close to 1%, an equivalent pressure range of ∼1.6 GPa [60], there
is very little broadening of the superconducting transition, rather just a rigid shift of
Tc to higher temperatures.

After carrying out some simple analytic approximations for the strain transmis-
sion and further detailed FEA simulations we can provide some guidelines, readily
achievable in experiments, for the best procedure for mounting samples. High strain
is best achieved by using soft and moderately thick layers of epoxy, bonding a thin
sample to rigid sample plates, encasing the sample from above and below. The inho-
mogeneity from these sample mounts decays over a distance roughly equal to the
width of the sample, so length to width aspect ratios greater than ∼3:1 should be
used to provide a large enough homogeneous portion in the centre of the sample.
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Any asymmetry in the sample mounting causes the sample to bend when strained,
creating a strain gradient across the sample’s thickness. The strain inhomogeneity
can be large if the correct care is not taken but the bending inhomogeneity can be
minimised by using long, thin samples. Care must still be taken to stay below the
bucking limit however. The soft epoxy leads to some uncertainty in the exact sam-
ple strain achieved so a finite element simulation is required to determine the strain
transmission more precisely.
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Chapter 3
The Physics of Sr2RuO4 Approaching
a Van Hove Singularity

3.1 Introduction

Materials with strong electron-electron correlations are of particular importance in
the study of condensed matter physics as it is here where conventional theories are
often seen to be violated and exotic phases such as superconductivity and magnetism
emerge. The transition metal oxide Sr2RuO4 shares the same layered perovskite
crystal structure as the parent compound of the prototypical high-Tc superconductor
La2−xSrxCuO4 and attracted considerable interest after superconductivity was also
found here byMaeno et al. in 1994, albeit at much lower temperatures [1]. Since then
the superconductivity has been established to be unconventional in nature, but many
open questions remain regarding the microscopic origin of the superconductivity and
the exact pairing symmetry. What is known is that the superconductivity condenses
from a firmly established and well characterised Fermi liquid [2].

To better understandmysteries such as the order parameter symmetry of an uncon-
ventional superconductor it can be beneficial to venture into neighbouring phase
space. Hydrostatic pressure is often used, but in Sr2RuO4 its effects are disappoint-
ing. It is known to suppress the superconducting transition temperature and at the
same time reduce the quasiparticle mass enhancements [3]. What may prove to be
of particular importance in Sr2RuO4 is the close proximity of one of its three con-
duction bands to a Van Hove singularity. This is a special point in the band structure
where the group velocity of the quasiparticles goes to zero and the density of states
diverges (in 2D systems). Tuning towards a Van Hove singularity is of interest not
just in terms of superconductivity but also for the study of a more general problem.
Strong quasiparticle renormalization and quasiparticle-quasiparticle scattering can
occur near such singularities in the density of states and it has been postulated that
for the cuprate superconductors some of the unusual behaviour observed may be the
consequence of a Van Hove singularity close to the Fermi level. For Sr2RuO4 the
Fermi level can be made to traverse the Van Hove singularity by electron doping,
heterovalent substitution of La3+ for Sr2+ [4, 5], or by introducing biaxial strain
though lattice mismatch of epitaxially grown thin films [6]. These experiments pro-
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vided useful information about the metallic properties, but the extreme sensitivity of
the superconductivity of Sr2RuO4 to disorder meant that no superconductivity could
be observed in either study.

Applying uniaxial stress to bulk samples has also demonstrated the importance of
the VanHove singularity in Sr2RuO4 [7]. An applied strain of∼−0.2%was shown to
cause an enhancement of the superconducting critical temperature by ∼40%, which
was argued to be caused predominately by the increase in density of states as the Van
Hove singularity is brought closer to the Fermi energy.

Uniaxial stress is particular well suited, at least in principle, for tuning towards
VanHove singularities compared to hydrostatic pressure or even biaxial stress. Under
uniaxial stress a smaller volume change takes place so it is a lower-energy distortion,
and crucially a circular Fermi surface becomes elliptical extending out towards the
zone boundaries in two opposite directions. In comparison, any distortions to the
Fermi surface on a square lattice under biaxial stress must be four-fold symmetric.
Without a significant volume change of the Fermi surface, the only way for the Fermi
surface to get closer to the zone boundary is for four lobes to grow out in a cross
shape, overall a much higher energy configuration than the two fold distortion under
uniaxial stress. In terms of hopping integrals, uniaxial pressure directly affects the
ratios of nearest-neighbour hoppings, whereas biaxial stress or hydrostatic pressure
can only alter the balance between nearest- and next-nearest-neighbour hopping,
which has a generally weaker effect.

As stressed earlier in this thesis, uniaxial stress has the benefits that it is both a
clean and continuous tuning parameter. We are now in the situation where we can
achieve much larger uniaxial stresses motivating a continuation and extension of the
previous study. We extended the strain range all the way to −1%, higher than was
thought possible for this rather brittle metal oxide.

At a strain of −0.55%, I observe a maximum in Tc of ∼3.5 K after which Tc

decreases again rapidly with higher strains. I have also measured resistivity, magne-
toresistance andHall effect, all of which are consistent with the Fermi level traversing
the Van Hove singularity, producing a Lifshitz transition. We observe signatures of
quantum criticality as the transition is approached, thus providing the unique oppor-
tunity to study a topological Lifshitz transition in a system which is exquisitely clean
and with a continuous tuning parameter that introduces minimal disorder. We see
that the density of states changes in a very restricted part of the Brillouin zone due
to the Van Hove singularity affect the temperature-dependent scattering of all the
quasiparticles.

This chapter will continue with an introduction to the salient features of Sr2RuO4

relevant to the discussion of the results later on along with the necessary back-
ground physics. Section3.3 will detail the experimental methods and measurements
undertaken before the results are presented in Sect. 3.4 along with complementary
discussions.
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3.2 Background Physics for Sr2RuO4

3.2.1 Fermi Liquid Properties of Sr2RuO4

The majority of the work on Sr2RuO4 has focused on the unconventional nature
of the superconducting state. However the normal state has also been extensively
studied and firmly established as a quasi-two-dimensional strongly correlated Fermi
liquid [2].

As was first introduced in Sect. 1.1, the nominal valence of the ruthenium ion in
Sr2RuO4 is Ru4+, leaving four remaining electrons in the 4d shell. In the layered
perovskite structure of Sr2RuO4, shown in Fig. 3.1, the ruthenium ions are at the
centres of RuO6 octahedra. The crystal field of the oxygen ions splits the five degen-
erate 4d states into a low-lying triplet, namely the t2g levels dxy , dxz , and dyz , and a
higher doublet, the eg states dx2−y2 and dz2 . The four valence electrons are distributed
amongst the three bands formed from the t2g levels [9].

The large interplane separation of this layered structure means there is very little
overlap of the orbitals along the c-axis and therefore very little dispersion along the c-
axis, so the band structure is approximately two dimensional. The dxz atomic orbitals
are mostly oriented in the xz-plane, giving a significant overlap between nearest
neighbours along the x-axis but not along the y-axis. The band formed from these
orbitals is therefore expected to be almost one dimensional; an open sheet roughly
perpendicular to the x-axis. Similarly, the dyz states produce a sheet perpendicular

Fig. 3.1 Crystal
structure of Sr2RuO4.
Perovskite structure with
RuO2 layers separated by
SrO spacer layers. Each Ru
ion is at the centre of a RuO6
octahedron. The low
temperature lattice constants
are a = 3.86 Å and c = 12.72
Å, tetragonal space group
I4/mmm [8]
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to the y-axis. The dxy orbitals on neighbouring rutheniums have a strong overlap
along both the x- and y-directions through their shared oxygens and also with the
next-nearest neighbours since their lobes are at 45◦ to the crystal axes. They combine
to produced an approximately cylindrical sheet.

Mixing between thedxy derived band and thedxz or dyz bandswill beweak because
they have different parity under the reflection z → −z but the two one-dimensional
surfaces can hybridise and these combine to form an electron like cylinder, β, around
the centre of the zone and a hole like cylinder, α, centred around the zone corners,
see Fig. 3.2b, c. The dxy derived band is also electron like and is centred in the zone
[2]. It is given the name γ .

This simple tight-binding picture matches qualitatively and semi-quantitatively
with the measured band structure [2]. Angle-resolved photoemission spectroscopy
by Damascelli et al. [10] confirmed the k-space structure of the Fermi surfaces and
extensive quantum oscillation [2, 9, 11–13] and angle-dependent magnetoresistance
oscillations (AMRO) measurements [12, 14] have provided an extremely detailed
experimental determination of the Fermi surface, including the interlayer disper-
sions [2]. While the simple picture described above and shown in Fig. 3.2 provides a
good starting point for the electronic structure of Sr2RuO4, in order to quantitatively
understand the behaviour and unconventional superconductivity of Sr2RuO4, more
detailed knowledge was required. Further details can be found in the comprehensive
compilation of results given by Bergemann et al. [2] where they also discuss the
intricate peculiarities of the Fermi surface which are thought to be responsible for
some of the competing instabilities.

(a)

(b)

(c)

Fig. 3.2 Fermi surfaces of Sr2RuO4. a In-plane Fermi surface cross sections obtained from
an εF intensity map in an ARPES study by Damascelli et al. [10]. The first Brillouin zone is shown
and the naming of the three surfaces α, β and γ . b and c The dxz and dyz bands hybridise to form
the α and β surfaces
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The first indications of Fermi liquid behaviour in Sr2RuO4 came from measure-
ments of the specific heat, Pauli spin susceptibility and resistivity [15]. The T -linear
part of the specific heat γ is quite large at 38 mJ mol−1K−2 [15] and so is the T -
independent spin susceptibility χs at 1.7 × 10−4 [16]. The ratio of these two is the
Wilson ratio RW = (π2k2

BNAV/6μ0μ
2
B) × (χs/γ ) = m∗

susc/m∗, and is equal to 1.5.
For a free electron gas RW is unity. In Sr2RuO4 RW is larger but still suggests a
common origin for the enhancements of the electronic specific heat and the spin
susceptibility [15].

At low temperatures the resistivity follows the characteristic ρ0 + AT 2 form,
suggesting that the low temperature T dependence is dominated by the quasiparticle-
quasiparticle umklapp processes of the Fermi liquid. T 2 behaviour is seen up to
almost 25K in both the in-plane resistivity ρab and the out-of-plane resistivity ρc

with A-coefficients of Aab ∼ 6n	 cm/K2 and Ac ∼ 5.5µ	 cm/K2 [2], see Fig. 3.3.
The resistivity is highly anisotropic, as expected from the crystal structure, with a
low temperature anisotropy as high as ρ0,c/ρ0,ab ∼ 4000 [18].

Themost definitive evidence for the Fermi liquid state comes from quantum oscil-
lation measurements [9] which were also used to refine the experimentally deter-
mined Fermi surfaces. In a sufficiently large magnetic field quasiparticles can be
driven around the Fermi surfaces by the Lorentz force. The cyclotron orbits of the
quasiparticles are quantised due to the wave-like nature of the quasiparticle wave-
functions and the quasiparticles reside on a series of discrete cylinders in k-space
called Landau levels. The radius of a Landau level is inversely proportional to the
strength of the magnetic field and as the field is swept these Landau levels pass suc-
cessively through the Fermi energy, causing oscillations in the material’s properties.
The Shubnikov-de Haas effect refers to quantum oscillations in the resistivity and
the de Haas-van Alphen effect refers to oscillations in the magnetization but virtually
all properties dependent on the density of states at the Fermi level should show some
level of oscillation.

Fig. 3.3 Resistivity
against temperature.
In-plane ρab and
out-of-plane ρc resistivity for
Sr2RuO4. The inset show the
T 2 dependence at low
temperatures, the dashed line
is a linear guide for the eye.
Based on original data from
[17]
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Theoscillation frequencies yield the areas of extremal Fermi surface cross sections
normal to the applied field direction. From the amplitudes of the oscillation more
information can also be extracted including the quasiparticle masses [19]. Fermi
liquid theory predicts a particular form for how the oscillation amplitude is attenu-
ated with increasing temperature. The Fermi surface becomes more smeared out at
higher temperatures due to thermal excitations and the amplitude of the oscillations
is exponentially reduced. By fitting to the temperature dependence of the osculatory
amplitude, the mass can be extracted for each band individually.

For Sr2RuO4 the cyclotron masses are determined as m∗
α/me = 3.3, m∗

β/me =
7.0 and m∗

γ /me = 16 where me is the bare electron mass [2]. From the quasiparticle
masses the individual specific heat contributions of the three Fermi surfaces can be
calculated and their sum provides another consistency check which matches well
with bulk measurements [9]. The accumulation of all this evidence leads logically
to the conclusion that the normal state of Sr2RuO4 is well described by Fermi liquid
theory and strong correlations lead to moderately heavy Landau quasiparticles, with
masses enhanced in all bands by a factor of 3–4 [9].

3.2.2 Superconductivity of Sr2RuO4

In Sr2RuO4 the Fermi liquid is unstable to the formation of a superconducting state
below 1.5K in the clean limit [20]. Here the low lying excitations are no longer the
Landau quasiparticles but instead bound states of Cooper pairs are formed at the
Fermi energy.

After superconductivity was first discovered in mercury by Onnes in 1911 [21]
two defining characteristics became apparent: firstly the superconductor is a zero
resistance state and secondly the superconductor expels magnetic field, not as con-
sequence of the zero resistance but a defining property though an effect known as the
Meissner-Ochsenfeld effect which showed that the superconducting state must be a
new equilibrium thermodynamic phase, accessible only through a phase transition. A
phenomenological model of superconductivity was first proposed by Ginzburg and
Landau [22] in 1950. Then just a few years later Bardeen, Cooper, and Schrieffer
jointly proposed the first microscopic theory for superconductivity; their BCS theory
[23]. The essence of their ingenuity was to move away from the independent electron
thinking of the day and consider a state where the electrons acted together as one
inseparable entity. BCS theory is a beautiful example of emergence where something
so simple can emerge from the complexities of the many particle soup.

Cooper first attacked the problem by showing that two electrons above a filled
Fermi sea are unstable towards pairing up in the presence of any arbitrarily small
attractive interaction, see Fig. 3.4. The two particle wave function for these extra
electrons can be written in terms of Bloch waves as
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Fig. 3.4 Cooper Pairs.
The Cooper problem with
two electrons outside a filled
Fermi sea and an interaction
that is attractive while the
electron energies are within
�ωD of the Fermi energy

�(r1, r2) = 1√
2
(| ↑1↓2〉 − | ↓1↑2〉)

∑

|k|≥kF

ϕkeik·(r1−r2) (3.1)

where a zero total momentum state has been chosen as it seems most likely to be
lowest in energy. The spin part of the wavefunction is antisymmetric with respect
to particle exchange and the spatial part is symmetric, maintaining an overall anti-
symmetric state for these two fermions. Subject to a weak attractive interaction
V (r1 − r2) the eigenvalues of the Schrödinger equation become

[
− �

2

2m∗ ∇2
1 − �

2

2m∗ ∇2
2 + V (r1 − r2)

]
�(r1, r2) = E�(r1, r2) (3.2)

∑

|k|≥kF

(2εk + V (r))ϕkeik·r = E
∑

|k|≥kF

ϕkeik·r1 (3.3)

2εkϕk +
∑

k′
Vk′−kϕk′ = Eϕk . (3.4)

We assume a weak attractive interaction in only a thin shell around the Fermi surface
such that

Vk′−k =
{

−|V0| εF < εk < εF + �ωD

0 otherwise
. (3.5)

Then solving 3.4 self-consistently

−|V0|
∑

k′
ϕk′ = (E − 2εk)ϕk (3.6)

1 = −|V0|
∑

k

1

E − 2εk
(3.7)

1 = −|V0|
εF+�ωD∫

εF

1

E − 2εk
g(εF)dε (3.8)

E = 2εk − 2�ωDe−2/|V0|g(εF) . (3.9)
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The energy as a pair is lowered compared to the two independent states; a bound
state exists. We call these bound states of two electrons Cooper pairs.

The question still remains how there can be an attractive iteration to facilitate
paring upwhen naivelywe think of the electrons repelling each other due to Coulomb
repulsion?BCS found the answer in the couplingbetween the electrons and the lattice.
In a metal the ions forming the lattice are not stationary, in reality they can vibrate
and oscillate about their minimum energy positions. Collective excitations of the
ions exist, waves that move though the lattice, called phonons and each phonon will
produce a modulation in the charge density. An electron moving through the lattice is
therefore subject to these periodic potential modulations and can undergo diffraction.
When an electron scatters off a phonon the momentum of the Bloch wave changes as
it exchanges momentum with the lattice but importantly the total crystal momentum
is still conserved. In this way two electrons can indirectly interact. One electron
can scatter producing a phonon which propagates for a while before it is absorbed
by a second electron. The electrons exchange momentum though the creation and
annihilation of phonons. The effective iteration that exists turns out to be attractive
at small energies and is just what we were looking for to facilitate paring.

A simplified but more intuitive picture is sketched in Fig. 3.5. The electrons not
only repel each other but they are also attracted to the positively charged ions making
up the lattice. As an electron passes through the lattice the ions in the lattice are pulled
towards the electron. The electrons are travelling relatively fast and the ions are much
heavier so it takes longer for the disturbance of the ions to relax and a tube of excess
positive charge follows behind the electron. A second electron can be attracted to the
first by the retarded distortion of the lattice.

The importance of the electron-phonon interaction and confirmation of BCS’s
ideas came from the isotope effect. It is seen experimentally that for many super-
conductors the superconducting transition temperature depends on the mass of the
crystal lattice, Tc ∝ M−1/2. The superconducting critical temperature depends on
the binding energy of the Cooper pairs and for the electron-phonon interaction this
depends on the Debye energy ωD which not coincidentally has the same dependence

Fig. 3.5 Electron phonon
interaction. An electron
travelling though the lattice
disturbs the ions’ positions
creating an excess positive
charge behind the electron
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on the isotope mass. It also helps explain why the inherently worse conductors are
better superconductors. The strong electron-phonon interactions that increase the
resistivity in the normal state also increase the superconducting binding energy and
transition temperature.

So far all that was said above applied only to two electrons above a filled Fermi sea
so these ideas still needed to be extended to real metals with many electrons. The last
piece of the puzzle came fromSchrieffer and his idea of amacroscopic wavefunction.
Continuing from Cooper’s findings the true ground state is expected to involve some
coherent state ofCooper pairs. Looking for uniform translationally invariant solutions
it is more convenient to work in k space and continue with second quantised notation.
The pair creation operator P̂†

k = c†k↑c†−k↓ creates a pair of fermions with zero total
crystalmomentumand total spin zero. The operators c† and c satisfy the commutation
rules for fermions. The conjecture of Schrieffer was that the ground state should be
a coherent state of Cooper pairs

|�BCS〉 ∝ exp

(
∑

k

αk P̂†
k

)
|0〉 (3.10)

where |0〉 is the empty vacuum state. Using the fact that the operators commute and
c†k↑c†k↑ = 0 it is more straight forward to write

|�BCS〉 ∝
∏

k

(
1 + αk P̂†

k

)
|0〉 (3.11)

and after normalising we end up with the BCS wavefunction

|�BCS〉 =
∏

k

(
u∗
k + v∗

k P̂†
k

)
|0〉 , |uk|2 + |vk|2 = 1 . (3.12)

The BCS wavefunction is based on a variational method where the parameters u∗
k

and v∗
k are found by minimising the total energy. The relevant Hamiltonian, for this,

including the attractive interaction between the Cooper pairs is

Ĥ =
∑

k,σ

εkc†kσ ckσ − |V |
∑

k,k′
c†k′↑c†−k′↓c−k↓ck↑ . (3.13)

Instead of minimising E = 〈�BCS|Ĥ |�BCS〉 we can apply an approximation and
look for the mean-field ground state which, although not the exact solution, is almost
exact in the limit of weak coupling. After the substitution

c†k↑c†−k↓c−k↓ck↑ ≈ 〈c†k↑c†−k↓〉c−k↓ck↑ + c†k↑c†−k↓〈c−k↓ck↑〉 (3.14)
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the Hamiltonian becomes

Ĥ =
∑

k,σ

(εk − μ)c†kσ ckσ −
∑

k

(
�c†k↑c†−k↓ + �∗c−k↓ck↑

)
(3.15)

and we see the gap function for the first time

� = |V |
∑

k

〈c−k↓ck↑〉 . (3.16)

The Hamiltonian is quadratic and can thus be solved exactly by a suitable change
of basis to diagonalise the Hamiltonian. In this case it is a Bogoliubov transformation
bkσ = ukakσ + vka†

−k−σ . The energy eigenvalues for the states created by these new
operators are ±Ek where

Ek =
√

(εk − μ)2 + |�|2 . (3.17)

Making reference to Fig. 3.6 we now have the following situation. Above the the
critical temperature, in the normal state, � = 0. Here the quasiparticle excitations
are the normal particle and hole excitations from the Fermi sea, the dashed lines in the
figure. But below the superconducting transition temperature the excitation spectrum
is modified to ±Ek and there is now a minimum energy of 2� for excitations. This
is the energy gap of the superconductor. The Bogoliubov quasiparticles are slightly
strange; they are a mixture of the electron creation and annihilation operators. Each
state can be thought of as a quantum superposition of both electrons and holeswithout
a fixed number. The fermionweights for these states are plotted in panel B of Fig. 3.6.

Fig. 3.6 Energy Gap.
a Energy eigenvalues ±Ek
of the BCS wavefunction
near the Fermi energy. The
dashed lines show the
electron and hole energies in
the normal metal. b BCS
quasiparticle weights, |vk|2
for electrons and |uk|2 for
holes

(a)

(b)
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Fig. 3.7 BCS gap. The
BCS gap as a function of
temperature. Based on
original data from [26]

At finite temperature the quasiparticle energy levels have occupations according
to the Fermi-Dirac distribution 〈b†

kbk〉 = f (Ek). The gap function, Eq.3.16, can thus
be rewritten in terms of these new quasiparticles to find the finite temperature value
of the BCS gap. A plot of the temperature dependent gap is shown in Fig. 3.7. The
gap grows continuously from zero at Tc to its maximum value of �(0) = 1.76kBTc

at zero temperature. The gap is a representation of the condensed phase, and its
growth is loosely analogous to that of the superconducting order parameter below a
continuous phase transition at Tc.

For most simple metallic superconductors the predictions of BCS theory such
as the ratio of the zero temperature gap to Tc and the magnitude of the jump in
specific heat at Tc are strikingly accurate, but this is not yet the end of the story.
As it was introduced above BCS theory applies and works extraordinarily well for
phononmediatedweak coupling superconductors.However, formaterialswith strong
electron-electron correlations the larger Coulomb repulsion precludes the pairing by
exchange of phonons. Superconductivity is, however, still observed in some cases and
extensions to BCS’s original ideas are needed to describe these new superconductors.

When writing down the wavefunction of the Cooper pairs, Eq. 3.1, a spin singlet
state was chosen but this was with some foresight and is not in general a requirement.
A more general wavefunction can be written as the product of the pair’s orbital and
spin wavefunctions

�(r1, σ1, r2, σ2) = f (r1 − r2)χ(σ1, σ2) . (3.18)

We only need to be sure to maintain overall anticommutation of the two fermions.
The spin part χ(σ1, σ2) can have total spin S = 0, a singlet, or S = 1, a triplet state.
The orbital part can be expanded in Laplace’s spherical harmonics Y m

l and the orbital
parity is then (−1)l . The antisymmetric spin-singlet state must be accompanied by a
symmetric orbital wavefunction, L = 0 (s wave), 2 (d wave), etc., where the names
are in analogy to those of the atomic orbitals. The spin-triplet state must take L = 1
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(p wave), 3 ( f wave), etc.1 Decomposing the wavefunction into spin and orbital
parts, although instructive here, is in general not always possible due to the presence
of spin-orbit coupling. Strictly speaking it is better, rather than talking about a spin-
singlet or spin-triplet state, to describe the parity of the state as this still remains
after the addition of spin-orbit coupling. However despite this, the convention of
describing an odd-parity superconductor as spin-triplet and an even-parity state as
spin-singlet is still widely used.

Strongly interacting electron systems are characterised by large on-site Coulomb
repulsion, so naively wavefunctions with a high probability of the electrons being
close together are unfavourable and the wavefunctions with finite orbital angular
momentum are expected.

By extending BCS theory like this it can be used to describe more general inter-
action terms with both k- and spin-dependence. The gap structure needs no longer
to be isotropic, instead it can vary around the Fermi surface. There can be phase
and amplitude changes as well as nodes in the gap structure. Nodes in the gap struc-
ture mean there are excitations at specific k states that do not possess a gap even
at zero temperature. In the first 70 years after the discovery of superconductivity
all new superconductors were spin-singlet s-wave superconductors, and so after the
discovery of something different, these superconductors with higher orbital angu-
lar momentum were termed unconventional. Nowadays a more precise definition of
unconventional superconductivity is one where the gap averages to zero over the
Fermi surface ∑

k

�(k) = 0 . (3.19)

There is considerable evidence that the superconducting state in Sr2RuO4, a
strongly interacting Fermi liquid, is indeed unconventional. Non-magnetic impurities
lead to a strong suppression of Tc [27]. In a conventional s-wave superconductivity
Tc is unaffected by elastic impurity scattering as shown by Anderson [28]. Elastic
impurity scattering acts to mix all the different k states and so for a conventional
superconductor with an uniform gap the superconductivity is not affected. However
for an unconventional superconductor this averaging drives the gap to zero as per
Eq.3.19. Sr2RuO4 is perhaps the most disorder-sensitive of all known superconduc-
tors; a residual resistivity of less than 1µ	 cm is required to observe superconductiv-
ity, a corresponding mean free path of ∼0.1µm, Fig. 3.8. The extreme sensitivity of
the superconductivity to disorder prompted the growth of exquisitely clean samples
which can now have mean free paths as long as several microns [20].

Since the establishment of the unconventional nature of the superconductivity
there has been considerable speculation as to the exact pairing symmetry but after
more than two decades of research this has still not been nailed down with certainty.
At first, the similarity of the enhancements of specific heat and spin susceptibility in
Sr2RuO4 to that of 3He led to the exciting suggestion that superconductivity could

1In the presence of a crystal lattice one cannot strictly expand in terms of these spherical harmonics
anymore but this has become the convention for the naming scheme so I stick with it here.
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Fig. 3.8 Impurity effect on superconductivity in Sr2RuO4. The superconducting transition
temperature as function of residual resistivity for a variety of samples with different purity levels.
The solid line is a fit of theAbrikosov-Gor’kov pair-breaking function to the data. Superconductivity
is destroyed when the mean free path becomes similar to the superconducting coherence length.
The extreme sensitivity of the superconductivity to non-magnetic impurities is expected only for
unconventional pairing. Based on original data from [27]

be spin-triplet, an electron analogue of superfluid 3He [29]. Much work has focused
on this possibility, but the results thus far are still not definitive [20].

A study of the superconducting properties of Sr2RuO4 was not the primary aim
of the work in this thesis. Therefore I do not wish to dwell too much longer on the
current state of established superconducting properties but only give perhaps the
most important results to date. For further background on the superconductivity in
Sr2RuO4 readers are referred to one of the many extensive reviews on the topic [20,
30–32].

To test the prediction of spin-triplet superconductivity measurements can either
look for an odd parity orbital part of the wave function and then infer the spin part
must be triplet or measurements can directly tackle the spin part. It is now known,
however, that spin-orbit coupling is important in Sr2RuO4. The fact that it is important
means that the orbital and spin parts cannot strictly be separated like this, however,
this language is still widely used for Sr2RuO4 as it is helpful with interpretation, so
I will continue with it here but some level of caution should be kept in mind.

The Meissner effect normally precludes measurements of the spin susceptibility
in the superconducting state but nuclear magnetic resonance (NMR) still has access
to the spin susceptibility within the superconducting state. In an itinerant system spin
susceptibility in a magnetic field is due to the Zeeman splitting of the Fermi surface.
The Fermi surface splits into a spin-up surface lowered in energy by µBH and an
spin-down surface raised in energy by µBH but overall the free energy is lowered by
1
2χs H 2. Shifting of the Fermi surfaces mean the states k↑ and −k↓ no longer exist
together at the Fermi level. The singlet Cooper pair cannot form unless the gain in
free energy from superconductivity condensation overcomes this spin splitting. In a
weak field this is typically possible and the spin susceptibility is reduced to zero as
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Fig. 3.9 Knight Shift
against temperature. The
temperature dependence of
the Knight shift measured at
the two different oxygen
sites as the sample is cooled
through Tc. The dashed lines
are the expected form should
the Cooper pairs be spin
singlet paired as dx2−y2 . The
independence of the Knight
shift on temperature is strong
evidence for triplet pairing.
Based on original data from
[33]

temperature goes to zero. For spin-triplet Cooper pairs the components with equal
spin paring are unaffected by the spin polarisation of the Fermi surface so the spin
susceptibility is typically unaffected at Tc. The exact response depends on the type
of p-wave order parameter but the change can be predicted. Ishida et al. [33] used
the Knight shift measured by NMR to determine the spin susceptibility. As direct
evidence against singlet superconductivity they observe no change in the Knight
shift as the temperature is lowered through Tc, see Fig. 3.9. Complementary results
from polarized neutron scattering by Duffy et al. [34] confirm the unchanging spin
susceptibility as superconductivity sets in, suggesting a spin-triplet state and hence
an odd parity state.

Evidence from parity sensitive measurements also seems to corroborate these
results.Nelson et al. [35] joinedSr2RuO4 to a conventional superconductorAu0.5In0.5.
The interface between two superconductors makes a Josephson junction, a device in
which a supercurrent flows between the two superconductors because of any differ-
ences in the phase of the superconducting wave function from one superconductor
to the next. Even though the parity of the Cooper pairs is expected to be different
in Sr2RuO4 and conventional superconductors the tunnelling of Cooper pairs is still
possible in the presence of spin-orbit coupling [36, 37]. Nelson et al. put one such
junction on opposite ac-faces of a Sr2RuO4 single crystal. For a spin-triplet super-
conductor the orbital part of the Cooper pair wavefunction must be antisymmetric,
i.e. it changes phase by π through a rotation of 180◦. By placing two Josephson
junctions on opposite faces and connecting them with an additional superconducting
link there is a overall phase shift of π when traversing the ring. There must then be
an accompanying supercurrent and this type of junction is known as a π -junction. By
measuring the magnetic field dependence of the current that can be passed through
such a device the parity of the superconductor can be identified. The results of Nelson
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et al. suggest an odd parity orbital wavefunction in agreement with the NMR and
polarized neutron scattering, although the presence of domains in the junction could
complicate the analysis.

If Sr2RuO4 is a spin-triplet superconductor the orbital part of the pairwavefunction
needs to be specified for each of the three triplet states. The same is true for the gap
function and this is typically done by introducing some additional notation

�(k) =
(

�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
= i(�k I + d(k) · σ )σy (3.20)

where σ = (σx , σy, σz) is a vector of Pauli matrices, I is the 2×2 unit matrix, �k is
a scalar and d(k) is a three component complex vector. A singlet superconductor is
described by setting �↑↑ = �↓↓ = 0 and �↑↓ = −�↓↑ = �k, equivalently setting
d(k) to zero and leaving �k finite. In the triplet case �↑↓ = �↓↑ = �0 and �k is
zero. In full

(
�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
=

(−dx (k) + idy(k) dz(k)

dz(k) dx (k) + idy(k)

)
. (3.21)

The d-vector notation introduced by Balian and Werthamer [38] as above is useful
since it now transforms just like a vector under spin rotations. The d-vector fully
describes the triplet superconducting state including all symmetries, spin and orbital
angular momentum and the nodes in the gap structure. In a crystalline environment
the d-vector must match the point group symmetry of the crystal but for Sr2RuO4

there are still numerous choices remaining, a list of which can be found in [20], and
it is left up to experimental determination to identity the exact order parameter.

One of the most promising candidates is the d-vector

d = �0ẑ(kx ± iky) . (3.22)

ẑ points along the normal to the ab-plane, see Fig. 3.10 for a visualisation. The spin
is zero along the direction of d so the spins of the Cooper pair are confined to the ab-
plane and are both in a spin aligned state. The orbital part has angular moment l = 1
with both orientations Lz = ±1 possible. This implies the relative orbital motion of
the electrons forming the Cooper pair can be either clockwise or anticlockwise. The
two orientations are degenerate but within a given domain all the Cooper pairs have
the same rotation direction. This state is termed chiral because picking out a specific
direction breaks another symmetry, namely time-reversal symmetry.

Some experimental probes are sensitive to the effects of broken time-reversal
symmetry and the results suggest that Sr2RuO4 may indeed be a chiral supercon-
ductor. The chiral Cooper pair wavefunction has an overall magnetic moment but no
bulk magnetic moment is expected since there must still be a Meissner effect and a
screening current should be set up. However in the vicinity of impurities and domain
edges the Meissner screening may not always be perfect and small local fields are
expected. In the technique of muon spin rotation a muon is incident on the sample,
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Fig. 3.10 d Vector. A
sketch of the Cooper pair
d-vector d = �0ẑ(kx ± iky)

showing the pairs angular
momentum L and the spins
of the electrons in the pair s

Fig. 3.11 Muon
spin-relaxation rate. The
muon-spin relaxation rate
shows an abrupt change on
cooling at Tc in zero applied
magnetic field. Two different
samples with different Tc’s
show it is a feature of the
superconductivity suggesting
the development of
spontaneous magnetic fields
breaking time-reversal
symmetry. Based on original
data from [39]

it comes to rest, interacts with the local magnetic field, and then decays emitting
a positron in a direction correlated with the spin’s direction, and so is sensitive to
local magnetic field distribution. The first studies of μSR on Sr2RuO4 by Luke et
al. [40] in 1998 found the appearance of spontaneous magnetic fields coinciding with
the onset of Tc. This was verified by looking at samples with varying Tc’s [39], see
Fig. 3.11.

Evidence for broken time-reversal symmetry has also been seen in measurements
of the polar Kerr effect. The polar Kerr angle measures the polarisation rotation
between incoming and reflected linearly polarised light. A non zero angle occurs
when right and left circularly polarized light are reflected with a different phase
shift. The magnitude and direction of rotation depend on the magnetisation of the
surface. Polar Kerr effect measurements on Sr2RuO4 see an increase of rotation
coinciding with Tc increasing to approximately 100 nrad at zero temperature [41],
see Fig. 3.12.
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Fig. 3.12 Polar Kerr
effect. The polar Kerr angle
versus temperature in zero
applied magnetic field along
with the samples electrical
resistance showing that the
increase in rotation coincides
with Tc. The non zero
rotation angle below Tc is
further evidence for
time-reversal symmetry
breaking. Based on original
data from [42]

Fig. 3.13 Electronic
specific heat of
Sr2RuO4. The electronic
specific heat divided by
temperature. The specific
heat varies linearly with
temperature over a large
range, inconsistent with a
fully gapped superconductor.
Based on original data from
[47]

Although these measurements give strong evidence for broken time-reversal sym-
metry, the story is not so clear. The currents thought responsible for the additional
muon relaxation rate should be detectable with other local magnetisation measure-
ments. Scanning SQUID and Hall probe microscopy have not be able to identify
these fields at the level of even 1% of the predicted values by theory, and by μSR
[43–46].

Other physical properties also add to the puzzle. The electronic specific heat
of Sr2RuO4 gives a clear signature of unconventional superconductivity [47]. The
specific heat of a conventional superconductor, which depends on the quasiparticle
density at low temperatures, grows exponentially from zero at low temperatures.
The specific heat of Sr2RuO4 on the other hand clearly shows linear behaviour down
to below 100 mK, see Fig. 3.13. This, in combination with several other results,
including thermal conductivity [48–50], NQR [51], London penetration depth [52,
53] and ultrasound attenuation [54], all point towards a quasiparticle density that
varies linearly in temperature from Tc/2 to at least 100 mK. This suggests that there
may well be nodes in the gap structure or at the very least zeros or very deep minima,
but no consensus has been reached about where and in what direction these nodes
might be.
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The superconducting phase diagram for Sr2RuO4 in applied magnetic fields also
adds to the mystery. Increasing magnetic field, at some point, will destroy the super-
conducting state. For a spin singlet superconductor this can happenwhen the Zeeman
energy from spin polarizing the Fermi surface, as discussed earlier in relation to the
spin susceptibility, outweighs the condensation energy gain. For spin triplet super-
conductors certain Cooper pairs with equal spin pairing should be exempt from this
breakdown, known as the Pauli limit. The d-vectormost commonly used for Sr2RuO4

is one such example. The alternative mechanism for the eventual destruction of the
superconducting state involves the creation of vortices in the superconducting state.
In a type of superconductor, known as a type-II superconductor, above a certain
critical field strength it becomes energetically unfavourable to keep screening the
entirety of the magnetic field and some magnetic field enters the superconductor in
concentrated lines called vortices. The core of a vortex returns to the normal metallic
state and superconducting screening currents flow around the vortex. Each vortex
concentrates one flux quantum of magnetic field and as the applied field is increased
further, more and more vortices enter the material until the entire material returns to
the normal state at the upper critical field, also known as the orbital limiting field.

Sr2RuO4 is a type-II superconductor but the anisotropy of the upper critical field
is highly unusual. The critical field for field applied along the c-axis is 0.07T and
increases as the field is rotated towards the ab-plane. From Ginzburg-Landau theory
the upper critical field is given by Hc2 = �0/2πξ 2, where the coherence length ξ

depends on the effective mass as ξ ∝ 1/
√

m∗. The two dimensional band structure
of Sr2RuO4 has a much larger effective mass along the out of plane direction so there
should also be an anisotropy of the upper critical field [56]. For angles larger than 2◦
from the ab-plane this Ginzburg-Landau theory with an anisotropic effective mass
fits the data well [55], see Fig. 3.14, although the fitted anisotropy is smaller than that
obtained in the dHvA band structure measurements [2]. Within 2◦ of the ab-plane
the increase of the critical field is cut-off and the transition turns first order below
∼0.8 K suggesting something else is at play rather than normal orbital limiting.

Fig. 3.14 Field angle
dependence of the
upper critical field. The
upper critical field Hc2 is
limited for fields close to the
ab-place compared to the
predictions from
Ginzburg-Landau theory
with an anisotropic effective
mass. Based on original data
from [55]
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One last experiment which is of direct importance to the work being presented
in this thesis is the first uniaxial strain study by Hicks et al. [7]. In the tetragonal
crystal symmetry of Sr2RuO4 the d-vectord = �0ẑ(kx ± iky) is degenerate but upon
breaking the symmetry by applying an orthorhombic distortion, the degeneracy is
lifted and either the d = �0ẑkx or �0ẑky state is favoured [57, 58]. Hicks et al. set
out with the aim to apply an orthorhombic distortion and search for the predicted
discontinuity in dTc/dε of the superconducting Tc at zero strain (see Fig. 2.10), a
v-shaped kink between the px and py states. No such kink was observed as can be
seen in Fig. 3.15, but the strong increase in Tc for [100] oriented strain was part of the
motivation for this work. Almost no change in Tc is observed for [110] oriented strain.
After comparison to band structure calculations it appeared that the dominant effect
increasing Tc is the change in density of states as the γ band approaches a Van Hove
singularity when the strain is applied along a [100] direction. The importance of Van
Hove singularities in Sr2RuO4 will be further discussed in the following section.

In conclusion, after extensive experimental efforts there is still no consensus on
a pairing symmetry compatible with all the experimental results. Some key exper-
iments point towards a spin-triplet paired state but even these can be put under
scrutiny. Knight shift measurements of spin susceptibility see no change though Tc

when the field is in the ab-plane but no change is also seen when the field is along
the sample’s c-axis and this is not expected for the d = �0ẑ(kx ± iky) state where
the spins lie in the ab-plane. It was proposed that the probing field may have been
strong enough to rotate the d-vector but several arguments against this have been
laid out by Zutić and Mazin and once the NMR measurements have been put under
question they point out that a spin-triplet state is not the only compatible choice but
also the chiral spin-singlet �0(k) ∝ (kx + iky)kz is equally consistent with many
experimental results [59].

Fig. 3.15 The
superconductivity of
Sr2RuO4 under strain. Tc
versus strain for strain
applied along the [100]
direction and [110] direction.
The strong increase in Tc for
both [100] oriented
compression and tension is
thought to be due to
increased density of states at
the Fermi level as the γ band
approaches a Van Hove
singularity in the band
structure. Based on original
data from [7]
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Much work has focused on the superconducting properties of Sr2RuO4 as they
appear very unusual and confirmation of the usual triplet pairing state would be
a worthy accomplishment in its own right but if the preferred chiral p-wave state
is confirmed there could also be important practical applications. A chiral p-wave
superconductor should host quasiparticle excitations which are Majorana fermions,
a quasiparticle which is also its own hole, in analogy toMajorana fermions in particle
physics which are their own antiparticles. The unusual particle statistics associated
with Majorana fermions offers a route to quantum computing if there are no nodes
in the gap function and they are suspected to be especially well suited for low-
decoherence quantum information processing [60, 61].

3.2.3 Van Hove Singularities and Lifshitz Transitions and
Their Connection to Sr2RuO4

The density of states as a function of energy of a material is a key quantity for
determining its electronic properties. The number of available states constrains the
possible excitations, but when large enough, it can be a facilitator for a number
of instabilities of the Fermi liquid. We saw the example of superconductivity in
Sect. 3.2.2 and later, in Sect. 4.2.1, we will come across the Stoner criterion in rela-
tion to the instability to magnetic ordering as well as forming charge and spin density
waves. With a high density of states at the Fermi level a small perturbation lower-
ing the energy of the occupied states can contribute a significant energy saving,
overcoming the competing penalties of ordering.

The density of states is the number of allowed wave vectors per unit energy at
each energy of the system. Mathematically this is

g(ε) =
∫

S(ε)

1

4π3

1

|∇ε(k)|d S , (3.23)

where S(ε) is the contour of constant energy ε, the integral is over this surface
and a continuum approximation is justified. The density of states in energy depends
inversely on the gradient of the band’s dispersion, |∇ε(k)|. For a simple free electron
like band this point is also easy to see using the notion of the Fermi velocity as
introduced in Sect. 1.1

g(εF)3D = k2
F

π2�vF
, g(εF)2D = kF

π�vF
. (3.24)

In non-free electron like bands the density of states is largest at points were the
dispersion is flat. These critical points can be maxima, minima or saddle points
in the band structure and are called Van Hove singularities (VHs) after their first
identification by Van Hove in 1953 for the case of the phonon density of states [62].



3.2 Background Physics for Sr2RuO4 69

(a)

(b)

Fig. 3.16 Van Hove singularities in Sr2RuO4. The γ band in Sr2RuO4 lies very close to a
saddle point Van Hove singularity. a Tight binding model of the band structure at energies close
to the Fermi level. The tight-binding parametrisation is from a fit to the experimentally determined
band structure by Bergemann et al. [2] with the correct many-body renormalization from Shen et al.
[5]. b With this tight-binding description the density of states peaks at ∼14 meV above the Fermi
energy where the γ band changes character from electron like to hole like

In three dimensions the singularity in the integrand is integrable, yielding a finite
density of states but with a kink where the density of states is not differentiable [63].
In two dimensions the density of states diverges logarithmically at a saddle point
VHs.

A two dimensional tight-binding model on a square lattice, side a, with nearest
and next-nearest neighbour hoppings, t and t ′, has saddle points at the M points of
the Brillouin zone (±π/a, 0) and (0,±π/a).2

E(k) = E0 − 2t (cos(kx a) + cos(kya)) − 4t ′cos(kx a)cos(kya) . (3.25)

2When counting the number of VHs’s language complications can lead to some confusion. The M
points at the edge of the zone are shared with the adjacent zones so strictly speaking this means
there are a total of two equivalent Van Hove points per tetragonal zone which would become two
non-equivalent points if the lattice was distorted orthorhombically.
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This is the scenario for the γ band in Sr2RuO4, and a plot of the energy landscape for
the two dimensional approximation of the γ band is shown in Fig. 3.16. The natural
filling level of the band lies very near to the VHs and the properties of Sr2RuO4 are
expected to be influenced by this proximity to a diverging density of states.

If the filling of the band can be raised, bringing the Fermi level to higher energy,
the density of states will diverge as the Van Hove singularity is approached and
the band will change character from electron like to hole like as the Van Hove
singularity is passed. The Fermi surfaces before and after passing the Van Hove
singularity are topologically distinct. They cannot be transformed into one another
by only continuous deformations alone, such as stretching and bending. Instead, a
hole/neck must be opened in the surface. This type of topological transition of the
Fermi surface is known as a Lifshitz transition and it occurs concomitant with the
Fermi level traversing a VHs [64]. Lifshitz classified two such types of transition;
in a three dimensional system the collapse/join of a neck in the Fermi surface or the
appearance/disappearance of a detached region of the Fermi surface, see Fig. 3.17.

A cornerstone for understanding classical phase transitions was the concept of
symmetry. The ordering in a particular phase can be described by the symmetry
properties it possesses and to change into another distinct phase at least one of
the symmetries must change. Landau developed a general theory for continuous

(a)

(b)

Fig. 3.17 Lifshitz transitions. a The collapse of a neck in a Fermi surface. b Appear-
ance/disappearance of a new detached region of Fermi surface
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transitions between phases with different symmetries and showed that one must
encounter a singularity in the free energy density at the phase transition [65]. The
symmetry that is broken between the two phases describes an order parameter for the
phase transition; zero in one phase and growing continuously in the other, starting
from zero at the phase transition. The low energy properties of a system can also
be described as the consequence of broken symmetries; well-known examples are
phonons and spin waves [66].

Landau’s symmetry breaking theory proved very successful and has had a pro-
found impact on the understanding of phase transitions, but it cannot describe the
type of transition identified by Lifshitz. A Lifshitz transition is not connected with
any broken symmetry or associated long-range order. The distinction between the
phases is rather described by their topology. The idea is that a phase transition can
exist not only between states with different symmetry but also between states that
have different topological order but still maintain the same symmetries. For a system
of free fermions, like the free electron gas, the topological order is the topology of
the Fermi surface.

A Lifshitz transition, strictly speaking, can only take place at zero temperature.
Only here can the Fermi surface itself can be defined precisely. As such a Lifshitz
transition cannot be connected to any finite temperature transition, however, since
usually T � εF/kB the effects of such a transition can still be apparent at finite
temperatures but with the singularity slightly smoothed out.

A continuous phase transition at zero temperature is a quantum phase transition.
At zero temperature the energy density of the ground state plays the role of the free
energy density in Landau’s theory. And just as a singularity in the free energymarks a
symmetry breaking phase transition, a singularity in the ground state energy density
as a function of the tuning parameters of the Hamiltonian of the system, such as the
chemical potential, signifies a quantum phase transition.

Lifshitz transitions provide an exciting benchmark for modern physics highlight-
ing the need for an understanding of physics beyond the paradigm of Landau’s theo-
ries, both of non-symmetry breaking continuous phase transitions and the breakdown
of Fermi liquid theory. They have been used to explain anomalous pressure depen-
dencies of superconductivity in a variety ofmaterials including, for example, thallium
[67–69], rhenium [70] and niobium [71]. In each of these materials the non-linear
dependence of Tc on pressure was explained due to a varying density of states due
to the Fermi level crossing critical points in the band structure associated with the
appearance or disappearance of new parts of the Fermi surface. Some features of
the high-Tc cuprate phase diagram can also be attributed to Lifshitz transitions. Ben-
habib et al. [72] could follow the closing of the unusual normal-state pseudogap state
with doping on the highly overdoped side of the superconducting dome. A Lifshitz
transition was argued to coincide with the closing of the pseudogap where the active
hole-like Fermi surface becomes electron-like at a Van Hove singularity. In high
magnetic field a change in sign of the Hall coefficient with doping was observed by
LeBoeuf et al. [73] and is attributed to another Lifshitz transition, this time on the far
underdoped side of the phase diagram. The metal-insulator crossover was argued to
coincide with this transition and to be due to the emergence of an electron pocket in
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the Fermi surface at low temperature. The complexity of the cuprate phase diagram,
however, especially once including doping, temperature, field and different material
specific peculiarities, means there is not yet an accepted consensus across the whole
phase diagram for the variety of competing phases present.

The Lifshitz transition in Sr2RuO4 can be induced by heterovalent substitution
of La3+ for Sr2+ in Sr2−yLayRuO4. Each lanthanum adds one extra electron, raising
the filling of the Fermi level. Quantum oscillation measurements showed that the
effect is a rigid band shift up to at least y = 0.06, which was the limit for observing
the oscillations due to the increased disorder with further substitution [5, 74]. Angle
resolved photoemission spectroscopy (APRES) measurements on the substitution
series show that the Lifshitz transition, where the γ band changes from electron-like
to hole-like, occurs between y = 0.18 and 0.27 [5].

Biaxial strain can also be used to reach the Van Hove singularity. By tuning the
balance between the nearest and next-nearest neighbour hopping terms the shape of
the Fermi surface can be adjusted. Reducing the relative strength of the next-nearest
neighbour hopping term decreases the circularity of the γ Fermi surface and the
band approaches closer to the M points of the Brillouin zone. The multiband nature
of Sr2RuO4 also allows interorbital electron transfer from the dxz and dyz orbitals
into the dxy orbital changing the relative filling of the three bands. Biaxial strain is
possible by growing thin films of Sr2RuO4 using molecular beam epitaxy (MBE) on
a substrate with a mismatched lattice constant. Burganov et al. [6] used APRES to
study such films and track the approach to the Van Hove singularity. They found it

(a)

(b)

Fig. 3.18 Resistivity of Sr2-y LayRuO4. a In-plane resistivity against T 2 for y = 0 to 0.27. The
inset shows ρ versus T 1.4 for y = 0.20, the doping closest to the VanHove singularity. bResistivity
temperature exponent, α, for a nominal temperature dependence ρ = ρ0 + AT α calculated from
the logarithmic derivative of the resistivity. Based on original data from [4]
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was only possible to grow Sr2RuO4 on a substrate with a mismatched lattice constant
of up to 1.0% before the films relaxed but by exchanging Sr for Ba, a larger ion, the
strain range could be increased. The Ba2RuO4 films were found to be isostructural
and isoelectronic to Sr2RuO4 and the Van Hove point was reached almost exactly
for Ba2RuO4 on SrTiO3.

The tuning method at the heart of this thesis, uniaxial stress, should also be
capable of inducing the Lifshitz transition. It directly affects the nearest neighbour
hoppings, enhancing the hopping along the pressurised direction and suppressing it
along the perpendicular direction. This decreases the bandwidth along the direction
perpendicular to the pressure axis and increases it parallel to the pressure axis, thus
extending the Fermi surface out towards the M points perpendicular to the direction
of the applied pressure. The Lifshitz transition induced by uniaxial stress changes the
Fermi surface from a closed electron-like surface to an open one as the band passes
through only one of the two, now non-equivalent, pairs of Van Hove singularities
at the M points of the zone. Even though these methods for reaching the Van Hove
singularities are different, it is still beneficial to make comparisons between the three
techniques.

Even in the presence of disorder for both the substitution series and the thin films,
resistivity measurements suggest a breakdown of Fermi liquid behaviour as the Van
Hove singularity is approached. Away from the Van Hove singularity, on both the
high and low side, a T 2 dependence of the resistivity is observed but close to the
Van Hove singularity T 1.4 behaviour is observed for both techniques (see Figs. 3.18
and 3.19). However, the level of disorder in both these samples is rather high, such
that the impurity scattering accounts for a large proportion of the resistivity. At
its most in the lanthanum series it is almost two times as large as the temperature
dependent contribution even over this already quite large temperature range, and
therefore any detailed analysis based on the exact temperature dependent resistivity
exponent should be sceptical.

For the lanthanum substituted samples an enhancement of the linear term in the
specific heat is also observed, and it peaks at the same doping as the largest deviation
from Fermi liquid behaviour in the resistivity [4]. ARPES measurements on the

Fig. 3.19 Resistivity of
biaxial strained thin
films. Temperature
dependence of resistivity for
a set of Sr2RuO4 and
Ba2RuO4 films. The inset
shows the film closest to the
Van Hove singularity with a
low temperature fit to the
Fermi liquid model with
weak localisation scattering
in 2D. Based on original
data from [6]
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lanthanum substituted samples show that the large mass renormalisation in Sr2RuO4

is mostly unaffected by the doping but biaxially strained films show a monotonically
increasing mass enhancement with increasing Ru-O bond distance. The difference
here is chiefly due to the way the γ band is brought towards the Van Hove singularity
but the key point from both measurements is that the system can be tuned to a
quantum critical regime where deviations from Fermi liquid theory are observable
at the topological Lifshitz transition of the γ band.

Uniaxial stress is ideally suited for continuing this study of Sr2RuO4 tuned to the
Van Hove singularity. As stressed earlier, uniaxial stress is both a continuous tuning
parameter and one that does not add additional disorder, so should add valuable
insight to this intriguing problem not only of the normal state physics but also for
the first time the superconducting properties.

3.3 Experimental Methods

We use uniaxial stress as our method of choice for tuning electronic properties. The
apparatus, and the modifications made for this work, were thoroughly described in
Chap.2 of this thesis. The method for mounting a sample is also described in detail
in Chap.2 so here I just refer the reader to Fig. 3.22 where a schematic diagram
highlights the key features.

Guided by the first uniaxial strain study and band structure calculations, the Van
Hove singularity is expected to be reached with a strain of 0.5–1% applied along a
[100] direction [7]. This is a very large strain, especially for something as brittle as the
oxide Sr2RuO4. There seemed to be no chance of reaching the Van Hove singularity
through tensioning the sample, as it was seen that samples break at significantly lower
strains than this in tension, but we believed that with careful preparation compressive
strains of this magnitude may be viable.

As was highlighted in Chap.2 precise sample preparation is key for reaching high
strain. The samples used in this study, grown by Alexandra Gibbs in St. Andrews
and Yoshi Maeno’s group in Kyoto, were first aligned using the back-reflection Laue
method, see Fig. 3.20, before being moved to a lapping saw to be cut to size. The
samples were then finished using fine mechanical polishing to bring them to their
final dimensions and produce the highest quality surfaces. This accuracy in cutting
and polishing is essential in order to reach high strain. See Fig. 3.21 for an example of
a finished sample. It was suggested that the cutting and polishing steps can introduce
unwanted dislocations at the edges and that post cutting and polishing the samples
should be annealed to relieve these stresses. This was carried out for one sample,
annealing at 500◦Cfor 2days in air, however nonoticeable differenceswere observed.

When aiming for very high strains the sample dimensions andmounting procedure
need to be carefully considered. The procedure to follow when deciding on these
dimensions is laid out in Sect. 2.6. With the aim of reaching compressive strains
up to −1.5%, the sample needed to be at least 90–100 µm thick to prevent buckling
when the sample is 1mm long, a length chosen to leave enough space for all the
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Fig. 3.20 Sample alignment. Pictures of X-ray back-reflection Laue diffraction patterns with
simulated fits from OrientExpress [75] overlaid in red. a c-axis aligned with the X-ray beam, b
a-axis and c the [110] direction

Fig. 3.21 Cut and
polished sample. Sample
3 before attaching electrical
contacts and mounting in the
rig. Square millimetre paper
for scale

(a)

(b)

measurement wires and AC susceptibility coils. Stycast 2850FT was used to secure
the sample to the sample plates. An epoxy thickness of 25µmwas used such that the
full length of the sample plates was utilised for transmitting the strain and therefore
reducing the stress concentration at the edges of the sample plates asmuch as possible.

The main aim of this investigation was to observe what effect passing though the
Van Hove singularity has on the resistivity, but since the resistive signature of super-
conductivity can be unreliable in Sr2RuO4, due to percolating paths that appear to be
especially present in strained samples shorting out the contacts, I also measured the
magnetic response of superconductivity. With careful planning both measurements
can be incorporated into the strain rig simultaneously.

AC magnetic susceptibility was used to detect the superconducting Tc. Two con-
centric coils were wound and mounted on a flexible cantilever so they could be posi-
tioned exactly above the centre of the sample, see Fig. 3.22 panels C andD. The larger
of the two coils, used for the driving field, was made from superconducting NbTi
wire to introduce minimal heating and had a diameter of∼600µm. Fixed within this
coil was the pick-up coil, made from 15µmdiameter copper wire, with a diameter of
∼300µm. Bymeasuring the mutual inductance between these two coils the sample’s
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(a)

(b)

(c)

(d)

Fig. 3.22 Mounted Sample. a Mounting schematic showing the epoxy holding the sample
between the sample plates and the numbering of electrical contacts. b Electrical resistivity setup
for sample 3. c and d AC magnetic susceptibility setup. Concentric coils of diameter ∼300 and
∼600 µm are mounted on a flexible cantilever and positioned above the sample
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magnetic susceptibility can be determined. There is no counter-wound compensa-
tion coil here and the uncertainty in the exact geometry means that this technique is
only sensitive to relative changes in susceptibility and cannot easily be calibrated.
The large offset voltage present is not a problem for measurement when a lock-in
amplifier with a high enough resolution is used. Depending on the dynamic reserve
in use, something with a 16 bit or higher analog-to-digital converter is desirable.
The superconducting transitions are then resolvable without noticeable quantization
noise. The standard method for low noise AC susceptibility measurements is to use
an impedance matching transformer mounted at low temperatures. Unfortunately the
cryostat used for this study cannot incorporate such low temperature transformers so
all amplification had to be carried out at room temperature.When using anACdriving
current, amplitude I , the measured voltage across the pick-up coil is V = 2π M f I
with a 90◦ phase lag. M is the mutual inductance between the two coils and f is the
AC driving frequency. When the frequency dependence of the measurements is not
significant, running at higher frequencies can increase the signal-to-noise ratio back
to what is possible with the best low temperature transformers which are themselves
frequency limited. The typical excitation field was ∼0.2 Oe RMS, mostly parallel to
the sample’s c-axis, at a frequency between 1 and 10 kHz.

To measure the resistivity six electrical contacts where made to the sample. The
standard procedure for Sr2RuO4 is to use high temperature curing silver loaded
epoxy 6838 fromDuPontwhich produces reliably low resistance contacts. Six 25µm
diameter gold wires were joined to the sample with the silver epoxy before curing
at 450◦C for 5 min. All contacts were verified <0.3 	. All the wires are added to
the sample before it is mounted in the rig because the device cannot be heated above
150◦C. Once the sample was loaded into the rig the other end of the gold wires were
soldered to bonding pads on the device.

The restrictions put on the sample’s geometry from the buckling limit and the
strain homogeneity are particularly unfavourable for resistivity measurements. The
sample has to be quite thick and the contacts must be placed close together in the
homogeneously strained region. This is the exact opposite of the normal procedure
for high-sensitivity resistivity measurements. The resistivity of Sr2RuO4 is also very
highly anisotropic,ρ0,c/ρ0,ab ∼ 4000, someticulous caremust be takenwhenplacing
the contacts. Any asymmetry in the current contacts leads to inhomogeneous current
flow with a component along the sample’s c-axis, and this becomes much easier
to inadvertently include as the samples get thicker. The scale of this problem is
best pictured in a simple geometrical representation. For an equivalent sample with
isotropic resistivity to possess the same value of c-axis resistance, its thickness along
the c-axis needs to be bigger by the square root of the resistive anisotropy,∼√

4000.A
homogeneous current is only achieved if the contacts inject current uniformly over the
entire end faces of the sample and the challenge in achieving this is clearly apparent
in the geometrical representation where the sample is now notably thicker than its
own length. For isotropic samples typically one just places the voltage contacts a
distance greater than one width from the end of the sample and any inhomogeneity
in the current distribution is ignored. The inclusion of a c-axis component to the
measurement is easy to identify in Sr2RuO4. The overall magnitude of the measured
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voltage will be too large and in addition the temperature profiles for the in-plane
and c-axis resistivity are quite different, noticeably there is a turn over in the c-axis
resistivity around 100 K. For the first sample measured in this study this feature was
observed so only the susceptibility data is analysed for sample 1.

The resistivity measurements are further complicated by the extremely high qual-
ity of the samples. The samples used in this study had residual-resistivity ratios up to
1200, a low temperature resistivity of ∼0.1 µ	cm. Once a thicker sample is used
and the contacts are placed close together in the middle, the voltage signal is signifi-
cantly reduced. In fact the effect is so drastic that it puts the measurement outside the
capabilities of most standard measurement systems. A typical single-ended current
source combined with a modern high performance preamplifier and lock-in amplifier
can only provide 100 dB of common mode rejection. If the end of the sample could
be held only 1 	 from ground a CMRR of at least 120 dB is still required to bring
the common mode signal down to 10% of the real signal and in a real cryostat with
long wires coming out to room temperature the resistance to ground is typically in
the range 20–50 	. Here the signal from the common mode that is added by the
preamplifiers alone is ∼20–50 times larger than the signal from the sample.

To overcome these limitations I designed and built a custom dual end current
source with active common mode rejection. This is capable of keeping the common
mode signal to less than ∼0.5% compared to the signal from the residual resistivity
alone. Details of the design can be found in Appendix A.

Noise was always going to be an important consideration for these measurements
of a highly conducting sample with an unfavourable geometry. As for the suscepti-
bility measurements the use of low temperature transformers was excluded because
none could be mounted in the cryostat used for the measurements. Normally the
next best choice for amplification is a room temperature transformer, but the cryostat
presents a relatively large source impedance due to beryllium-copper wiring and this
influences the gain of the transformer as well as the noise. Instead, active pream-
plifiers were used and once combined with a lock-in amplifier noise levels slightly
better than 2 nV/

√
Hz at the input to the preamp could be achieved, a corresponding

RMS noise of ∼0.7 nV with a 1 s 12 dB/octave phase sensitive detector. At its worst
the corresponding signal-to-noise ratio was slightly better than 20, and therefore still
adequate for these measurements.

In total three samples were measured during this study, each from a different crys-
tal growth. The first sample suffered from inhomogeneous current flow, asmentioned
above, so only the susceptibility data are presented.

For the second sample, in addition to the regular longitudinal resistivity measure-
ment, I measured the transverse resistivity. Making reference to Fig. 3.22, if instead
of passing the current along the bar between contacts 1 and 2 and current is passed
between contacts 3 and 5, a qualitative measure of the transverse resistivity can be
obtained from the voltage across contacts 4 and 6. This is only a qualitative measure
of the transverse resistivity since it is not independent of the longitudinal resistivity
which determines the spreading out of the current stream lines across the sample. The
voltage measured between contacts 4 and 6 decreases exponentially as the contact
separation, 3 to 4, increases. Placing the contacts closer together is therefore better
for the transverse measurement, but the longitudinal measurement signal decreases
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linearly if this is done so a balance between the two must be picked. I chose to use
a separation of 300 µm, biasing the measurement towards the longitudinal response
since optimising the signal-to-noise ratio for the longitudinal resistivitymeasurement
was my main priority. Double wiring was used for all contacts, providing twisted
pairs for both the longitudinal and transverse geometries. This also facilitates the
simultaneous measurement of magnetresistance and Hall effect in magnetic field. A
computer controlled switch was installed and programmed to automatically change
between all three measurement geometries during operation allowing for almost
simultaneous measurements of longitudinal and transverse resistance as well as Hall
effect in the presence of an external magnetic field.

For the third sample the contacts were placed further apart at 500 µm and the
sample was made 100 µm longer to keep the contacts one width from the ends.
This was to achieve still cleaner measurements of the longitudinal resistivity and the
transverse measurements were not attempted. The same wiring was however still
used so that the Hall effect could also be measured.

The strain device used for this study uses a parallel plate capacitor to monitor the
applied strain. From the capacitance we can determine the applied displacement to
the sample plates but two further pieces of information are required to convert this to
a strain. The first is the zero position of the scale. Even if in principle the sample is
mounted at zero strain at room temperature the corresponding capacitance value will
not be that of zero strain at cryogenic temperatures because there will nearly always
be a differential thermal contraction between the sample and the titanium device
(see Sect. 2.5). A separate determination of the zero strain position is required. This
can typically be identified from a feature that is symmetric with applied strain or a
quantity that is isotropic at zero strain but not at finite strain. For Sr2RuO4 we can
use the fact that Tc is highly symmetric with applied strain to identify a zero position
of the sensor.

The second piece of information is the strained length of the sample. Dividing
the measured displacement by this length gives the sample strain. As described in
Chap.2 the strained length of the sample is not the same as the gap between the
sample plates, as the soft epoxy holding the sample to the plates also deforms. I
used finite element simulations to estimate the magnitude of the displacement lost
in the epoxy. However due to uncertainties in the elastic properties of the epoxy all
quoted strains have an uncertainty of∼20% (a systematic error affecting allmeasured
strains equally). Table3.1 lists all the sample dimensions necessary for implementing

Table 3.1 Sample dimensions. Relevant parameters for calculating the strain transmission to
the sample through the epoxy. The strain of the peak in Tc for each sample is also listed

Number Growth w (µm) t (µm) Lgap
(µm)

depoxy
(µm)

Transmission
(%)

εxx,peak
(%)

1 WDO3 295 100 1000 ≈25 70 −0.50

2 A1 310 100 1000 ≈25 70 −0.59

3 C362 320 90 1100 ≈25 73 −0.56
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these finite element simulations and the calculated strain transmission values. The
elastic properties of Sr2RuO4 were taken from Paglione et al. [76] and the epoxy was
assumed to have a Young’s modulus of 15 GPa and Poisson’s ratio of 0.3.

Allmeasurementswere carried outwith the sample in vacuum, thermally anchored
to a 1K pot. By pumping on a small pot of liquid helium evaporative cooling reduces
the temperature of the liquid helium below its atmospheric pressure boiling point of
4.2 K. A small flow is allowed between the main helium reservoir and the 1K pot
to continuously replenish the helium pumped away and a stable base temperature of
1.2K can be reached. By using resistive heaters to work against the cooling power of
the 1K pot the temperature of the cryostat can then be varied. With this system it is
possible to operate up to almost 100 K. At the higher temperatures there is obviously
no longer liquid helium in the 1K pot but it just acts as a heat exchanger with the
helium gas flowing though. One notable design feature of the cryostat is the large
internal space, a diameter of 75 mm. This was useful for incorporating large strain
rigs. The cryostat sits within a large bore superconducting magnet producing fields
up to ±6 T. Figure3.23 shows the inside of the vacuum can. This cryostat was used
for the majority of the measurements but in addition to installing this cryostat and the
accompanying measurement rack I also set up a second cryostat with an adiabatic
demagnetisation cooling stage and this was used for the initial characterisation of
the samples before cutting using AC susceptibility.

In our laboratory the type ofmeasurements and themeasurement protocols change
quite frequently so I programmed a computer control system that could straightfor-
wardly accommodate these changes with no hindrance to flexibility. This flexibility
also allows the software to be employed for different cryostats straightforwardly and
is currently running on at least four cryostats. The software suite uses a modular
structure to accomplish this goal. There are three main parts. First each instrument
requires its own class file which acts as an interpreter between the instrument and
the core codebase. Mnemonics can also be used here to help recall common message
strings for each instrument. Secondly a set of functions implementing common rou-
tines such as PID control, data recording and live plotting are implemented and these
make for easy control of the temperature, magnetic field, sample strain, etc. Lastly
all the parts of the suite are linked together through a graphical user interface (GUI).
The GUI allows a user to take immediate control of the cryostat or programmeasure-
ment scripts which can be scheduled as the user requires, enabling easy continuous
operation. The flexibility remains in the scripting language as well, because the full
programming syntax of Matlab is at the users disposal; for and while loops, if and
else statements, local variable creation, etc. This allows for both quick and simple
measurement scripts but also scripts as complex as can be imagined. New features
can easily be added without having to modify any existing parts of the program. For
instance a new instrument only needs its own class file and none of the existing code
needs to be modified to begin using the instrument and recording data.

The software allows for automatic control of the experiment for several days at
a time, with measurement only needing to be interrupted to keep the level of liquid
helium in the main bath topped up. Data analysis scripts can also be run from within
the GUI on the measured data and given a set of rules, there is nothing in principle
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Fig. 3.23 Low
temperature cryostat.
Business end of a 1K pot
sample in vacuum cryostat.
This cryostat has a large
75mm internal diameter to
accommodate large uniaxial
stress cells

preventing the computer from making a measurement, running the data analysis
script, and then determining the next step of the measurement from the result. This
type of procedure could be used, for instance, to locate the peak in Tc with strain
without requiring any human interaction.
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3.4 Results and Discussions

The results for Sr2RuO4 under uniaxial stress will be presented in two parts. First I
will describe the effect of uniaxial stress on the superconductivity, presenting mea-
surements of magnetic susceptibility and showing the dependence of Tc on strain and
the upper critical field at strain. Then a second part will be dedicated to the normal
state properties under strain, focusing on the resistivity, magnetoresistance and Hall
effect measurements.

3.4.1 Superconducting Properties Under Strain

3.4.1.1 Change in Tc with strain

Figure3.24 shows AC susceptibility measurements against temperature at a series
of compressive strains. When the sample is subject to either uniaxial compression
or tension the superconducting transition temperature is enhanced, corroborating the
results of Hicks et al. [7]. As can be seen from the figure the transitions become
somewhat broader as the transition temperature moves to higher temperature with
increasing strain. The amount and shape of this broadening varies from sample to
sample, see Figs.B.1 and B.2 in Appendix B for comparison, so it is likely this effect
is extrinsic and is most probably due to differing strain homogeneity. As described in
detail in Sect. 2.5, imperfections in mounting can cause the sample to bend, imposing
a strain gradient across the thickness of the sample when it is strained. The presence
of dislocations or ruthenium inclusions in Sr2RuO4 could also present some local
strain disorder producing variations between samples. However it is clearly apparent
that the transition temperature reaches a maximum with applied strain and that as
the maximum Tc is approached the transitions become very sharp. The maximum
Tc is enhanced by a factor of ∼2.3 over the unstrained value. Compressing beyond
this maximum causes a rapid suppression of Tc, causing it to fall below even its zero
strain value, and the transitions broaden substantially once more. For broadening as
the result of strain inhomogeneity the width of a particular transition at strain should
be related to the slope of the Tc versus strain curve at that strain. Qualitatively this
is in agreement with the observed broadening, suggesting the dominant cause of the
broadening is indeed strain inhomogeneity.

The response to applied strain was fully elastic. In fact the curves in Fig. 3.24 are
not from one single sequence with increasing strain but rather are only a small subset
of the total number of measurements where the strain was cycled four times over the
maximum and back to zero, measuring both while increasing and releasing the strain,
and each time reproducing the same results. This is in contrast to measurements by
Taniguchi et al. [77]where there is strong evidence for plastic deformation in samples
pressurised at room temperature in traditional uniaxial pressure cells.Dislocations are
known to induce local higher-Tc superconductivity [78] so by applying strain at low
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Fig. 3.24 Susceptibility
against temperature.
Real part of the susceptibility
χ for sample 3 against
temperature. a Strains below
the peak Tc, b above the
peak. No normalisation or
offsets are applied to the
curves

(a)

(b)

temperatures we reduced the risk of plastic deformation. The stringent requirements
on sample preparation for traditional uniaxial pressure cells, as described in Sect. 2.4,
may also be playing a role in the Taniguchi measurements.

The nominal strain at which the peak in Tc was observed varied slightly between
the three samples, see Table3.1, but within our uncertainty in determining the strain
scale. The profile of Tc against strain for all three samples is plotted in Fig. 3.25.
Here the strain scales have been normalised so that the peaks in Tc all coincide at
their average value of εxx =(−0.55 ± 0.06)%.

The combined strain data from these three new strained samples of Sr2RuO4,
and from measurements on Sr3Ru2O7 presented in the next chapter, suggest that
the strains determined by Hicks et al. in Ref. [7] are ∼30% too low. This is most
probably due to the technique used to measure the strain. In Ref. [7] a resistive
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Fig. 3.25 Tc against
strain for all three
samples. The points are the
mid points (50% levels) of
the transitions shown in
Figs.B.1, B.2 and 3.24. The
20 and 80% levels of the
transitions are shown as lines
to give a measure of the
transition width. Here the
strain scales have been
normalised so the peaks in
Tc coincide at their average
value of (−0.55 ± 0.06)%

strain gauge was used to monitor the displacement of the device but it now seems
likely that this may have imposed some mechanical resistance on the motion of the
device. Additionally, a temperature dependence of the gauge coefficient could have
skewed results. The capacitive sensor used in this new strain rig is less affected by
temperature and imposes no mechanical resistance so more confidence can be placed
in the results presented here.

Band structure calculations show that anisotropic strain will drive the γ -band
towards the Van Hove singularity and increase the density of states at the Fermi
level. This can also be seen in a simple tight-binding model which incorporates the
effects of anisotropic strain through strain dependent hopping parameters. To first
approximation at low strains the hopping parameters can be taken to change linearly
with applied strain. Using the tight-binding parametrisation by Bergemann et al.
[2] from fits to the experimentally determined band structure and the correct band
renormalization from Shen et al. [5] as a starting point, the effects of anisotropic
strain can be included by scaling all hoppings along the pressurised direction by
(1 − αεxx ) and along the transverse direction by (1 + ανxyεxx ). νxy is the in-plane
Poisson’s ratio which has been experimentally determined by Paglione et al. [76]
and α is an adjustable parameter to scale the effect of applied strain. In this model
the chemical potential must also be adjusted slightly with strain to keep the total
electron count constant. A plot of the density of states at the Fermi level against
strain in this model is shown in Fig. 3.26 along with the Fermi surfaces predicted as
the γ -band reaches the Van Hove point and at a much higher strain beyond the Van
Hove point. The density of states diverges for the γ -band as the Van Hove singularity
is approached and the band changes character from a closed electron pocket to an
open orbit running along ky in the Brillouin zone at the Lifshitz transition.

In BCS theory the BCS gap, |�|, grows with increasing density of states at the
Fermi level. Tc is related to the size of the BCS gap and in a material with a k-
dependent gap it is proportional to the k-space average of |�(k)|. The experimental
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Fig. 3.26 Density of states and Fermi surface calculations. The density of states at the
Fermi energy as a function of applied anisotropic strain as calculated from a tight-binding model
including strain dependent hopping terms, see main text for details. Three representative Fermi
surfaces show the effects of applied strain on the band structure and highlight the Lifshitz transition
as the γ -band reaches the Van Hove point

observation of an enhanced Tc is therefore qualitatively expected as the density of
states grows with applied strain. However, for the widely favoured p-wave pairing
symmetry the gap must change phase by π under inversion. This leads to frustration
as the γ -band approaches the Van Hove point which is inversion invariant, and
therefore the gap must locally be zero at the Van Hove point. In contrast, an even-
parity pairing symmetry is not subject to the same frustration constraints and one
might expect a stronger enhancement of Tc for an even-parity state as the density of
states is increased by the Van Hove point.3

3BCS estimates are expected to be accurate for a single band metal with a small gap but in a
multiband system like Sr2RuO4 these estimates refer only to the average gap which can already be
a big approximation when, like in Sr2RuO4, there are large changes around the Fermi surface. This
analysis also completely overlooks the potential for interband coupling, so it should only be taken
as a guide.
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Bearing this in mind, the peak in Tc may be a result of the peaking density of
states and coincide with the Lifshitz transition or frustration may take over before
the Van Hove singularity is reached and the enhancement could be cut off at a lower
strain. The calculations were performed by T. Scaffidi [79] on a similar tight-binding
parametrisation of the strained Fermi surface suggest that, even in the presence of
this frustration, odd-parity order is still enhanced and Tc peaks as the Van Hove
singularity is surpassed. The slow fluctuations associated with the proximity of the
γ -band to the Van Hove singularity are seen to contribute to superconductivity on the
α andβ bands through inter-orbital interaction terms. Further evidence supporting the
coincidence of the peak in Tc and the Van Hove singularity comes from normal state
resistivity measurements which will be presented in the next part of this section. One
other alternative proposed by Liu et al. [80] is competition with a spin density wave
state that is predicted to be stabilized with compressive strain, and whose formation
cuts off the increase in Tc. However, the transport data in the next section seems to be
inconsistent with this and together with the resistivity results about to be presented
it seems most likely that the peak in Tc does coincide with the Van Hove singularity.

3.4.1.2 Upper Critical Field at the Peak in Tc

Valuable information on the density of states related effects on the superconduc-
tivity can also be extracted from the upper critical field. For all my measurements
the sample was aligned with its c-axis parallel to the applied field direction, mainly
to facilitate transverse magnetoresistance and Hall effect measurements, but I also
measured Hc2‖c(T ). Following the suppression of Tc with applied magnetic field is
quite easy for optimally strained Sr2RuO4. Since the transitions are so sharp, the clear
kink can be identified as the onset temperature, see Figs. 3.27 and B.3. Figure3.28
shows the curve Hc2‖c(T ) for Sr2RuO4 strained to its peak Tc. There is a clear upward
curvature of Hc2‖c(T ), with a slope |d Hc2‖c/dT | increasing down to the lowest tem-
peratures measured. This is in contrast to a typical BCS type superconductor where
a downward curvature is expected but similar behaviour has been observed in other
materials which have multicomponent order parameters with significantly different
gap magnitudes on different parts of the Fermi surfaces [81, 82]. For reference the
critical field of unstrained Sr2RuO4 is shown in Fig. 3.29 and there is very little to
no upward curvature.

For an orbitally limited type-II superconductor, the field that completely fills
the sample with vortices and destroys superconductivity depends on the coherence
length, Hc2 = �0/2πξ 2. From BCS theory we know that the coherence length is
proportional to the ratio of the Fermi velocity and the magnitude of the supercon-
ducting gap; ξ = �vF/π�. Relating vF to the density of states using Eq.3.24 it can
be seen that the upper critical field depends on the product of the density of states and
the gap magnitude squared (|�|g(EF))

2, averaged around the Fermi surface. Tc, on
the other hand, is proportional to the average of the gap. Therefore if Hc2 increases
more than linearly with T 2

c this amounts to further evidence for the importance of the
diverging density of states for the superconductivity and that the regions of Fermi
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Fig. 3.27 Susceptibility
measured at the peak in
Tc at various applied
fields H ‖ c. Real part of the
susceptibility χ measured as
the temperature is swept up
and down for sample 1. The
y axis is the mutual
inductance between the two
coils of the susceptibility
sensor. The field was
incremented at the bottom of
each temperature ramp, in
the superconducting phase.
This disrupts the vortex
lattice and is responsible for
the apparent hysteresis

Fig. 3.28 Hc2 against
temperature at the peak
in Tc. Hc2‖c against
temperature for samples 1
and 2 compressed to the peak
in Tc together with Hc2‖a at
the peak in Tc with
compressive strain applied
along a measured by
Steppke [79]

surfacewhere the density of states is largemust coincidemorewith the regions where
the gap also has a large magnitude.

From Fig. 3.28, extrapolating Hc2‖c(T ) to zero temperature shows that Hc2‖c is
enhanced by more than a factor of twenty relative to its unstrained value of ∼0.07 T.
Tc itself is only enhanced by a factor of ∼2.3 so Hc2‖c increases significantly more
than linearly with T 2

c . In fact Hc2‖c/T 2
c is enhanced by a almost a factor four. The

shape of the critical field line Hc2‖c(T ) is quite different between unstrained and
strained Sr2RuO4 so in case different field limiting mechanisms are playing a role
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Fig. 3.29 c-axis critical
field of unstrained
Sr2RuO4. Based on
original data from [83]

another check is to compare the initial slopes d Hc2‖c/dT right at Tc. Extrapolating
this slope to zero temperature for unstrained Sr2RuO4 yields a field of ∼0.09 T and
for optimally strained Sr2RuO4 a field of∼1.0 T. Even using this criterion the critical
field is enhanced over T 2

c by a factor of 2.
It seems then, by either method of comparison, that the locally diverging density

of states, which is restricted to the M point of the Brillouin zone, is helping to boost
the upper critical field. But for a odd-parity superconducting state, where the gap
must go to zero at the M point of the zone, this statement seems contradictory and
opens the question of whether optimally strained Sr2RuO4 could be even-parity.

For an orbitally limited superconductor, an increase in the zero temperature critical
field by a factor of twenty implies a decrease in the coherence length by a factor of√
20. Sr2RuO4 is such a disorder sensitive superconductor that this should have

implications on the Abrikosov-Gor’kov disorder-induced pair breaking at optimal
strain. We observe that quantitatively these predictions do agree within experimental
error. The Tc of the slightly disordered sample 1 is 0.18K lower than that of sample
3 at zero strain. At the optimal strain, where the coherence length is shorter and
the sensitivity to disorder is accordingly reduced, the two Tc’s should come closer
together, which indeed they do; sample 1 has a Tc lower than sample 3 by only 0.11K.

Concurrently with my critical field measurements, another group member, A.
Steppke, was working on additionally measuring the in-plane critical field at strain.
By using a dilution fridgemounted in a three axis vectormagnet the in-plane direction
could be accurately found and the critical field followed to the lowest temperatures.
Steppke’s data for the in-plane field direction additionally support the possibility of
an even-parity state in strained Sr2RuO4 so I will discuss them briefly here.

Figure3.28 also includes the data of Hc2‖a(T ). The in-plane critical field is
also larger in optimally strained Sr2RuO4, but rather unusually, the enhancement
is not as substantial as for the out of plane direction. The Hc2‖a critical field is
only enhanced by a factor of ∼3, from 1.5 to 4.7 T. The critical field in opti-
mally strained Sr2RuO4 is therefore significantly less anisotropic than in unstrained
Sr2RuO4. � = Hc2‖c/Hc2‖a ≈ 20 in unstrained Sr2RuO4 is reduced to ∼3 in opti-
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mally strained Sr2RuO4. This reduction in anisotropy is difficult to reconcile with
only orbital limiting effects due to a reduction of the mass anisotropy. DFT calcu-
lations show there is still a strong 2D character to the band structure under strain
[79] and the initial slope of Hc2 at Tc, d Hc2/dT , does still show a much stronger
deviation between the in-plane and out-of-place field directions compared to the zero
temperature values.

The first order nature of the transition, present in unstrained samples at low tem-
peratures, is also seen in optimally strained Sr2RuO4, and persists to higher temper-
atures. The mechanism responsible for this change to a first order transition must
therefore be promoted in optimally strained Sr2RuO4, allowing it to take over at
higher energy scales. The observed change to first order suggests Pauli limiting
effects. Quantitatively the measured in-plane critical field enhancements also agree
with Pauli limiting. Both the Pauli limited critical field and Tc should scale linearly
with the gap magnitude. So in unstrained Sr2RuO4 where Hc2‖a/Tc ≈ 1 T/K, a value
of Hc2‖a/Tc ≈ 1.3 T/K in optimally strained Sr2RuO4 is consistent with a Pauli
limited critical field.

In a perfectly 2D odd-parity superconductor with a d-vector along the c-axis the
in-plane critical field should be infinite. So after taking all these observations together
there is a strong case for the possibility that optimally strained Sr2RuO4 could be
even-parity. This possibility is further discussed in Steppke et al. [79] where the
authors use weak-coupling calculations to compare different gap symmetries and
determine the expected Tc and Hc2‖c variationswith strain. The calculations indicated
that a strong enhancement of Hc2/T 2

c is indeed expected for an even-parity state
strained to the Van Hove singularity but the same enhancement is not observed for
an odd-parity state where the density of states increasesmost strongly at points where
the gap is held at zero by symmetry.

Additional limiting mechanisms could also be responsible for the unusual critical
fields. Ramires et al. [84, 85] have proposed that interorbital effects in the presence
of strong spin orbit coupling can in principle lead to limiting of the in-plane critical
field, which might reconcile the observed critical fields with an odd-parity state.
However, the magnitude of the proposed effect still needs to be investigated by
microscopic calculations, and it still does not help to explain the contradiction of the
density of states diverging where the gap must be zero by symmetry but somehow
still producing a substantial enhancement of the c-axis critical field.

This new strain study may also shed some light on the peculiar ‘3 K phase’ found
in eutectic crystals containing embedded ruthenium microdomains [86]. The 3K
phase is spatially non-uniform superconductivity that onsets at around 3K near the
interface between bulk Sr2RuO4 and ruthenium inclusions [87–89]. The similarities
of the observed Tc’s (amaximumof 3.5K is also seen in the eutectic crystals [88]), the
fact that that transitions are always very broad, and that the critical fields of the 3-K
phase are similar to those shown in Fig. 3.28 [87] suggest it may well be the result of
local internal strain around the inclusions. However, direct observation of the strain
field around the inclusions would be needed to fully confirm this hypothesis.

To summarise, a strong enhancement of the Tc of Sr2RuO4 is observed with
compressive strain and Tc peaks at close to half a percent strain before falling off
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again rapidly. The maximum Tc is enhanced by factor of ∼2.3 and the c-axis critical
field by more than a factor of twenty. The substantially larger enhancement of Hc2‖c

than of T 2
c signifies the importance of the density of states change at the Van Hove

singularity for the superconductivity. An odd-parity superconductor must have a
parametrically small gap in the vicinity of the Van Hove point so this raises the
possibility that optimally strained Sr2RuO4 might be even-parity. In the optimally
strained sample a reduced critical field anisotropy further evidences this possibility,
because Pauli limiting is a natural mechanism to explain the lower than expected
in-plane critical field. However, multiband effects may mean that this analysis is too
naive, and still allow the observations to be reconciled with an odd parity state.

If a even-parity state is indeed realised in optimally strained Sr2RuO4 two pos-
sibilities for the connection to the superconductivity of unstrained Sr2RuO4 exist.
Either the evolution is continuous with strain and unstrained Sr2RuO4 is also even-
parity, in which case a significant accumulation of results acquired in over twenty
years of experimental study will require an alternative explanation, or there may be
a transition at intermediate strain between the odd- and even-parity states. If this is
the case a kink should exist in Tc versus strain at the transition, however this may
possibly be weak, and a similar kink or even a jump in Hc2‖c should also be present.
Investigating this should be a priority for future work, although strain inhomogeneity
remains as an important complication for analysing data at intermediate values of Tc.

3.4.2 Normal State Properties Under Strain

3.4.2.1 Resistivity Temperature Dependence

In Fig. 3.30 I show the principal normal state measurement results; a set of resistivity
measurements over long temperature ramps from ∼1.3 to 40K at a series of applied
strains. These measurements were repeated in two samples and are consistent with
each other, see Fig.B.4 for the results from the second sample. Figures3.31 and 3.32
represent the same data in alternative forms to help visualise the changes. In Fig. 3.31
a 3D surface map of the resistivity against strain and temperature is made by interpo-
lating between all the measured temperature ramps. Figure3.32 is a surface map of
the elastoresistance, (ρxx (εxx , T ) − ρxx (0, T ))/ρxx (0, T ), made by subtracting the
measurement at zero strain from all the others and then interpolating between each
of the curves.

The inset to panel A of Fig. 3.30 highlights the zero strain T 2 Fermi liquid
behaviour which is resolved up to almost ∼20 K, in agreement with the literature.
Under compression the extent of the quadratic temperature dependence is reduced
and a lower temperature exponent is observed in the vicinity of the peak in Tc. T 2

behaviour is recovered on the high compression side and is observed over a larger
temperature range than previously at zero strain.
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Fig. 3.30 Resistivity
against temperature.
a Longitudinal resistivity
against temperature at strains
below the peak in resistivity
for sample 3. The inset
shows the resistivity plotted
against T 2 at zero strain,
highlighting the Fermi liquid
behaviour with a straight line
as a guide to the eye, and for
the strain where the lowest
temperature exponent is
observed. b At strains above
the maximum in the
resistivity, T 2 behaviour is
recovered at high
compression. The inset
shows the larger extent of the
T 2 region for the highest
strain measured

(a)

(b)

3.4.2.2 Resistivity Strain Dependence

The change in resistivity with strain at a fixed temperature is shown in Figs. 3.33
and 3.34. The curves in Fig. 3.33 are cuts through the surface plot in Fig. 3.32 at
select temperatureswhereas themeasurements in Fig. 3.34 are from continuous strain
ramps at fixed temperatures. Figure3.34 shows both the longitudinal and transverse
measurements as depicted in the top corners of the figure panels.

The resistivity at a given temperature peaks in the vicinity of the peak in Tc before
falling again rapidly at higher strains even below its zero strain value, similar to
the observed behaviour of Tc. This is seen in both the longitudinal and transverse
resistivity measurements. Metallic behaviour is observed over the full range of strain
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Fig. 3.31 Resistivity
against temperature and
strain. Longitudinal
resistivity for sample 3
plotted against temperature
and strain

Fig. 3.32 Elastoresistance
against temperature and
strain. Elastoresistance
(ρxx (εxx , T ) −
ρxx (0, T ))/ρxx (0, T ) of
sample 3 plotted against
temperature and strain

Fig. 3.33 Elastoresistance
against strain. Change in
longitudinal resistivity with
strain at various temperatures
for sample 3. Values are
calculated by interpolating
between separate
temperature ramps at a series
of constant strains except for
4.5K where the strain was
swept continuously
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Fig. 3.34 Longitudinal
and transverse
resistivity against strain.
Strain sweeps at constant
temperatures for sample 2.
a Longitudinal resistivity
measured in the traditional
geometry. b A qualitative
measure of the transverse
resistivity, see text for further
details. This measurement
geometry over exaggerates
the intrinsic anisotropy

(a)

(b)

tested. There are no signatures associated with competition from a spin density wave
phase, as suggested byLiu et al. [80],where the opening of a gap is generally expected
to increase the resistivity sharply.

The increase in ρxx with strain closely resembles the increase in Tc, see Fig. 3.35.
Much as Tc is enhanced by the increasing density of states at the Fermi level, inelastic
scattering in the normal state is also expected to scale with the density of states at
the Fermi level, thus resulting in a peak in resistivity at the Lifshitz transition. ρxx is
increased by ∼40–50% at the peak, with a slight variation between the two samples.
The two samples have slightly different residual resistivities, sample 2 being the
cleaner with a resistivity at 4.5K of ∼0.12 µ	cm and sample 3 ∼0.19 µ	cm, but
both resistivities increase by approximately the same amount ∼0.07 µ	cm at the
peak.

The resistivity measured in a direction transverse to the direction of applied strain
is expected to increase as a result of the geometric change but a clear peak is also
apparent with applied strain. The quasiparticle scattering is therefore affected in all
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Fig. 3.35 Comparison
between Tc and
resistivity
enhancements.
Normalised change with
strain of Tc, ρxx at 4.5K and
transverse resistivity at
4.5 K, e.g. (Tc(εxx ) −
Tc(0))/(Tc(max) − Tc(0)).
The strain scales of the two
samples have been adjusted
so that their peaks in Tc
coincide at the same strain,
the resistivity data is also
adjusted accordingly

directions by the approach to the Van Hove singularity of only the γ band at just the
(0,±π/a) point of the Brillouin zone. Intriguingly the maximum in the transverse
resistivity does not seem to coincide exactly with the peak in ρxx , instead occur-
ring at a slightly higher strain. However, it is important to bear in mind what is
being measured in the transverse geometry. The current is passed between two of
the voltage contacts on opposite sides of the sample and the remaining two contacts,
also opposite each other, are used to measure the voltage drop. This means there is
always some component of ρxx in the measurement since this sets how far the cur-
rent spreads out along the sample. The meaning of transverse is to describe a current
direction predominately perpendicular to the direction of applied strain but here it
does not necessarily imply the current is flowing purely in the ab-plane. The extreme
resistive anisotropy in Sr2RuO4, ρ0,c/ρ0,ab ∼ 4000, means that any slight vertical
misalignment of the contacts on each side of the sample will lead to a small c-axis
component of the current but a significant voltage because of the much higher out of
plane resistivity. Finite element simulations show that the voltage actually measured
for the transverse geometry of sample 2 at low temperature is approximately ten
times larger than expected for when the current is fully within the ab-plane, and the
measured RRR also shows this discrepancy. A contact misalignment of only ∼5 µm
in opposite directions on each side of the sample is enough to provide a ten fold
increase of the simulated voltage so over a 100 µm thick sample this is entirely
feasible, especially as the silver paint may be physically contacting the full height
of the sample but the electrical contact resistance might be varying slightly across
each contact. At room temperature where the resistive anisotropy is only ∼120 the
finite element simulation and measured voltage match well, but at low temperatures
a significant contribution of the c-axis resistivity is expected to be contributing to the
measured transverse resistivity. To compare the longitudinal and transverse resis-
tivities quantitatively, the Fermi surfaces must in principle be considered in three
dimensions. The slight warpings of the Fermi surfaces in the kz direction mean the
VanHove singularity is actually reached over a range of strain as different parts of the
Fermi surface reach the Brillouin zone boundary at slightly different strain, however,
DFT calculations suggest this width is less than the discrepancy observed here [79].



3.4 Results and Discussions 95

At elevated temperatures the peak in the longitudinal resistivity is flattened out as
one would expect when thermal population of higher energy states above the Fermi
surface smooths out the discontinuity in the density of states but a strong decrease
in resistivity is still observed at strains above the suspected Lifshitz transition. The
position of the peak also moves slightly with temperature, but extrapolating to find
the zero temperature position still leaves a discrepancy with the strain of the Tc peak.

The peak in ρxx is also much narrower than that of Tc. This is not so surprising,
because Tc can be affected by more than just the change in density of states. If for
instance the pairing strength is also modified as the Fermi surface is distorted, this
could result in a variation between the ρxx (εxx ) and Tc(εxx ) curves. It is then perhaps
more likely that the peak in ρxx would coincide with the Lifshitz transition and Tc

may peak close to but be extended around the Lifshitz transition.

3.4.2.3 Resistivity Temperature Exponent

So far we have good evidence we are seeing a clean Lifshitz transition in a multiband
system that we can study with resistivity, arguably for the first time, but certainly
for the first time at this level of purity. Because we have such a clean system, it is
important to try and see how much physical significance we can give to the changes
in resistivity. When the resistivity starts to deviate from the expected Fermi liquid T 2

temperature dependence it is usual to inspect the new temperature exponent to try and
help interpret the results. A fit of the form ρ = a + bT c can be made to data where
a, b and c are fitting parameters and a log derivative plot of the resistivity minus the
residual resistivity can be made to inspect the change in temperature exponent. This
plot can be seen in Fig. 3.36. Here the change in temperature exponent is presented
more straightforwardly; Fermi liquid like T 2 behaviour is observed at both strains
below and above the peak in ρxx but a lower power is observed in the vicinity of the
resistivity peak, reducing to ∼1.5 at the lowest point.

Fig. 3.36 Resistivity
temperature exponent.
The resistivity exponent, α,
for sample 3 plotted against
temperature and strain. ρ0
was first extracted from fits
of the type ρ = ρ0 + AT α

and then α is calculated as a
function of temperature by
d ln(ρ − ρ0)/d ln T . The
figure is cut off below 4 K,
due to percolating
superconducting paths that
can affect the resistivity
strongly
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Qualitatively similar behaviour is observed when the Lifshitz transition is induced
by either La doping or epitaxial biaxial strain in thin films. However the power
observed in both these experiments decreases to ∼1.4, lower than that observed at
first sight here. This differencemight be intrinsic. TheVanHove singularity is reached
simultaneously in both the x and y directions of the Brillouin zone for the other two
techniqueswhereas uniaxial pressure only approaches theVanHove singularity along
one direction. Significantly higher levels of disorder are also present in both the La
doped system and theMBE films. To be vigilant however, it is worthwhile examining
the quality of the fit used for extracting the exponent presented in Fig. 3.36 before
addressing alternative interpretations. For reasons given in Appendix B.1 regarding
the possible effects of strain inhomogeneity and comparing with alternative trial
fitting functions, at present we can only put an error of 0.1 on the exponent of 1.5
close to the suspected Lifshitz transition.

It is remarkable that for this multiband system in which only one out of its three
Fermi surfaces passes through the Van Hove singularity, which itself is only one
critical point on the surface at (0, ±π /a), such large changes in the temperature
dependent resistivity occur. This shows that the ‘hot’ regions of the Fermi surface
are not just shorted out by the unaffected sections and large regions of the Fermi
surface must be affected by the approach to the Van Hove singularity.

Qualitatively a T 1.5 power law resistivity is also observed in polycrystalline
spin-glass systems once the disorder has been frozen in [90]. The single crystals
of Sr2RuO4 used here are not expected to exhibit this sort of behaviour, we note
the particular low residual resistivity, ρ0 ∼ 0.1 μ	cm, and that at zero pressure in
comparably clean samples large quantum oscillation signals have been seen. A tem-
perature dependence of the resistivity ρ(T ) − ρ0 ∝ T α with α < 2 is evidence for
anomalous quasiparticle scattering not captured by the conventional quasiparticle
interactions of Fermi liquid theory.

One such example is when a long range interactions increase the cross section
for quasiparticle scattering. When I introduced Fermi liquid theory back in Sect. 1.2
I used Fermi’s golden rule to show that the lifetime of the quasiparticles goes like
their energy squared so they are stable and well defined. In deriving this I made
the assumption that the scattering matrix element is constant. This, however, is not
always the case. For example near to a second-order phase transition fluctuations
slow down as well as becoming increasingly long range, enhancing the scattering
cross section. At a quantum critical point these fluctuations can grow without limit
and the form of the scattering matrix element becomes important for determining
the exact quasiparticle decay processes.

Quasiparticle-quasiparticle interactions by themselves are unable to relax the total
momentum of the system which is required for a finite resistivity, and in normal
Fermi liquid theory it is the umklapp processes that provide this. In the presence of
critical fluctuations the scattering rate of fermions near the Fermi surface can still be
calculated but the temperature dependence of the scattering rate does not necessarily
straightforwardly translate to a temperature dependence of the resistivity [91]. In
some studies that specifically concentrated on the possible mechanisms for relaxing
the momentum, they found that the temperature exponents can be quite different for
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the momentum relaxing processes [92, 93]. Theory still remains unsettled on how
best to account for the quantum-critical fluctuations on the temperature dependent
resistivity, so instead this leaves us only to make empirical comparisons here.

Many intermetallic heavy fermion compounds host magnetic states at low temper-
atures and are also susceptible to pressure tuning. The Curie temperature of itinerant-
electron ferromagnets MnSi, ZrZn2 and Ni3Al can be suppressed to absolute zero
using hydrostatic pressure and near to the critical pressure power laws in the resis-
tivity lower than 2 are observed, ranging from 1.5 to 1.7 depending on the purity
and the material [94–98]. Some heavy fermion antiferromagnets also show simi-
lar behaviour. The Néel temperature of both CePd2Si2 and CeIn3 can be driven to
absolute zero using hydrostatic pressure whereupon non-Fermi liquid behaviour is
observed in the vicinity of the QCP [95, 99, 100]. CePd2Si2 shows an anomalously
low power amongst of these materials with a temperature exponent of 1.2 ± 0.1 for
over nearly two decades in temperature.

In NbFe2, a material reported to host a low temperature spin density wave near
stoichiometry, a QCP can be reached this time not by using hydrostatic pressure but
rather through varying its composition away from stoichiometry, suppressing the
SDW order before giving rise to a ferromagnetic phase [101]. At the slightly Nb-rich
FM-AFM QCP, a T 1.5 power law dependence of the resistivity on temperature was
also observed [102].

In Sr2RuO4 the quantum criticality evidenced by the lowered resistivity exponent
is suspected to coincide with the strain induced Lifshitz transition and hence the
additional scattering processes resulting in the breakdown of Fermi liquid theory
may well have their origin in the proximity of the Van Hove singularity to the Fermi
level. Band structure calculations of NbFe2 have also highlighted this possibility
as an explanation for the critical behaviour seen at the magnetic QCP in NbFe2.
Neal et al. [103] identified a critical point in the band structure and suggested that
the underlying origin of criticality at the magnetic QCP may also be a result of the
critical fluctuations associated with a vanishing quasiparticle velocity.

3.4.2.4 Magnetoresistance

The transversemagnetoresistance (H ‖c, I ‖a) measured at 5K for a series of applied
strains is shown in Fig. 3.37. The magnetoresistance grows the fastest at low fields,
almost proportional to the field squared, and crosses over to an approximately linear
dependence at higher fields but no saturation is reached within the 6T limit of the
magnet system used for this strain study. The magnetotransport properties also show
amarked change at the same strain as the resistivity peak. Compressive strain initially
decreases the observed magnetoresistance reaching a minimum at the same strain as
the peak in ρxx . Then at strains above the peak in ρxx themagnetoresistance increases
again, but not monotonically, and around −0.8% the shape of the magnetoresistance
curves changes slightly.

Magnetoresistance measurements can be used for Fermi surface determination,
not only from the Shubnikov-de Haas effect but also from saturation/non-saturation
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Fig. 3.37 Magnetoresistance.
a Transverse
magnetoresistance field
sweeps at strains below the
peak in resistivity for sample
3. b The same measurements
at strains above the peak in
resistivity

(a)

(b)

behaviour revealing open orbits in the Fermi surface. A classic example is that of cop-
per where the positions at which the approximately spherical Fermi surface touches
the Brillouin zone boundary can be identified by the field orientations that lead to
a non-saturating magnetoresistance [104]. A closed orbit in general leads to a satu-
ratedmagnetoresistance at sufficiently high fieldswhereas extended orbits drastically
increase the saturation field and for field directions with open orbits saturation is not
necessarily ever achieved [105].

In Sr2RuO4 the γ band is suspected to change from a closed electron orbit to
an open orbit with applied strain. With the field along the c-axis of the sample an
open orbit exists in the band structure only after the Lifshitz transition. However to
observe the possibility of a non-saturating magnetoresistance the current direction is
also important and when the open orbit lies along the y-axis in k-space, ρyy is expect
to increase quadratically without limit but ρxx still saturates. Compressive strain
leads to the γ band running along the ky direction and therefore saturation of ρxx
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magnetoresistance resistance is still expected. A sensible extension would be to try
and measure the transverse resistivity in field to see if the non-saturation behaviour
can be observed. However, complications with the uncertain current direction may
result in an inadvertent measurement of the longitudinal c-axis magnetoresistance
and additional Hall voltage contributions that can appear if the geometry of the four
contacts is not exactly square must be carefully subtracted.

3.4.2.5 Hall Effect

ThemeasuredHall effect is shown inFig. 3.38. The lowfieldHall coefficient ismostly
unchanged at low strain and the higher field Hall effect is only slightly reduced,
reaching a minimum once again at the same strain as the peak in ρxx . At higher
strain the Hall effect becomes larger and more negative, and is also non-monotonic,
showing a deviation around −0.8% strain.

Analysis of the weak-field Hall effect can conveniently be performed using the
geometrical interpretation realised by Ong [106]. However, in such a clean sample
the weak-field limit is small. Depending on what approximation one uses to calculate
the scattering time and how one averages the three bands, the point whereωcτ is unity
covers quite a range. However, making the simplest estimate using only the residual
resistivity and the electron density ωcτ = B/neρ0, ωcτ reaches unity at a field of
∼6 T. The weak-field limit is then when ωcτ � 1, i.e. B � 6T. The field needed to
suppress superconductivity at optimal strain, ∼1.5 T, is quite a large fraction of this
so to have a hope of measuring the weak-field limit at all strains the measurements
were carried out at 5K to avoid any effects of superconductivity. As best we can
tell the Hall effect is linear below ∼1 T so the data below this field were used to
calculate the weak-field Hall coefficient shown in Fig. 3.39. It is approximately flat
until ∼−0.5% strain then it decreases, becoming more electron like.

Naively onewould expect a discontinuity in theHall effect at theLifshitz transition
as one species of Fermi surface changes character. One approximation for carrying
out the Ong analysis is to use an isotropic scattering length � for all parts of the
Fermi surface. This approximation makes most sense for very low temperatures
where the resistivity is dominated by impurity scattering. As an illustration of the
Ong construction I will outline how this is realised.

Making reference to Fig. 3.40, we consider moving a point k around the Fermi
surface and track �(k) the scattering length at each point. The vector �(k)maps out a
closed area in the �x -�y plane and this area is directly proportional to the weak-field
Hall conductivity

σxy = e3

2π2�2
B ·

∫

FS

d�(k) × �(k)

2
. (3.26)

For Sr2RuO4 we must do this mapping for each Fermi surface separately and then it
is assumed that the conductivities of the three bands can be added in parallel. With a
k-independent scattering length the area mapped out by �(k) as the point k is moved
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Fig. 3.38 Hall Effect.
a Hall effect measurements
at strains below the peak in
resistivity for sample 3.
b The same measurements at
strains above the peak in
resistivity

(a)

(b)

Fig. 3.39 Weak-field Hall
coefficient against
strain. The Hall effect
coefficient below 1T for
sample 3 at 5K plotted
against strain. The star marks
the Hall coefficient
determined by Mackenzie et
al. [107] in a dirtier sample
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(a) (b)

(d)

(e)

(c)

Fig. 3.40 Isotropic-� analysis of the Hall effect. Using the geometric interpretation of the
Hall conductivity by Ong the area swept out by the scattering length �(k) as k is moved around the
Fermi surface defines the Hall conductivity. Pannel b shows this area for each of the three Fermi
surfaces of Sr2RuO4 at zero strain in the isotropic-� approximation. The circulation of the α band is
in the opposite direction to the other two bands and adds to the overall conductivity with the opposite
sign. Above the Lifshitz transition the γ band no longer contributes to the Hall conductivity and
the Hall coefficient is expected to fall to zero

around the Fermi surface is simply a circle with area π�2. But the circulation of
the hole pocket is in the opposite sense to the electron pockets, see Fig. 3.40. In the
isotropic-� approximation once the neck in the γ band is opened the area mapped out
by �(k) on the γ band falls to zero. One would therefore expect the Hall coefficient,
B RH ≈ σxy/(σxxσyy), to jump to zero at the Lifshitz transition in the approximation
of isotropic-� scattering.

The measurements reported here are at higher temperatures than those at which
the isotropic-� approximation should really be applicable. Another possible simpli-
fication is to assume an isotropic scattering time, τ , rather than length, �(k) = vkτk.
At sufficiently high temperatures this is expected to be realised.

Mackenzie et al. [107] achieved good consistency in applying the isotropic-�
approximation to mK data in the unstrained material but the partial compensation
of the three bands means that the interpretation of the Hall effect can be extremely
difficult. This can be seen from the multiple sign reversals between low temperature
and room temperature. The good agreement of the measured Hall coefficient and the
calculated value in the isotropic-� approximation by Mackenzie et al. does not still
hold in these much cleaner samples. It is clear then that detailed interpretation of the
Hall effect in Sr2RuO4 should be treated with scepticism. This is further evidenced
from the magnetotransport measurements on the La substitution series [108]. In a
similar vein to the uniaxial pressure effect, as the Lifshitz transition is reached with
heterovalent substitution the circulation of the �(k) area should change from positive
to negative for the γ band as it becomes a hole like orbit. This change of the Hall
effect was however not observed and the Hall coefficient was positive for all the La
doping levels measured.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.41 Isotropic-τ analysis of the Hall effect. Using the measured ρxx resistivity from
Fig. 3.34 an isotropic τ can be calculated and then used with the geometric interpretation by Ong
to calculate the Hall effect. Panel a shows the γ Fermi surface at a series of strains and the area
swept out by the scattering length �(k) around the Fermi surface at each strain is shown in panels
b and c, where in b the data has been scaled by τ at each strain. The α and β Fermi surfaces
are much less affected by uniaxial pressure and there is little change to the shape of the �(k)

curves. The contributions of all three bands to the conductivities σxx and σxy , within the isotopic-τ
approximation, are shown in panels d and e. The calculated weak-field Hall coefficient is shown in
panel F and shows very little change with strain within the isotopic-τ approximation

To show that the effect of uniaxial pressure on the Hall coefficient at higher
temperatures could be still more subtle I also show the results of a calculation of
the weak-field Hall effect in the isotropic-τ approximation. Using the measured ρxx

values to infer how τ could change with strain, the Ong construction can then be used
to calculate σxy , this time taking into account the k variation of vF in �(k) = vF(k)τ

based on the tight-binding model introduced in Sect. 3.4.1.1. The area swept out by
�(k) on the γ band at various strains is show in Fig. 3.41b, c. At zero strain the four
fold symmetry of the Fermi surface can be seen where the Fermi velocity is lowest
along the <100> directions. As the strain is increased the Fermi velocity close to
the M point in the y-direction is reduced and the area swept out by the �(k) curve
is pinched off at the Lifshitz transition. Above the Lifshitz transition two separate
lobes of the �(k) curve exist, one from each part of the open orbit. In panel B of
Fig. 3.41 the �(k) curves are scaled by τ at each strain so the pinching off can be
seen more clearly. However by including a strain dependent τ this also changes the
area of the �(k) curves and panel C shows the unscaled result. The calculated σxy for
each band is shown in panel E along with their sum, the overall conductance of the
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Fig. 3.42 Comparison of
isotropic-� and τ Hall
effect calculations. A
summary of isotropic-� and
isotropic-τ calculations
showing the weak-field Hall
coefficient variation with
strain

three bands. σxy decreases above the Lifshitz transition but since the Hall coefficient
is the ratio of σxy with σxxσyy which changes in the opposite direction, the resultant
Hall coefficient shows very little change.

The isotropic-τ approximation should become valid at sufficiently high temper-
atures. This may be reached when the resistivity is at least an order of magnitude
larger than its residual value. For the measurements presented here at 5 K, this ratio
varies from 2 to 6 depending on the strain. Our data can therefore be expected to lie
somewhere between the predictions of the two regimes that I have discussed, but be
extremely sensitive to details of the scattering not included in either model.

The two calculations highlight the complications in interpreting Hall effect mea-
surements in a multiband system, and show qualitatively that the picture can be quite
varied and detail sensitive, see Fig. 3.42. However the overall picture of the Hall mea-
surements is consistent with the other results. The most drastic change occurs at the
same strain as the maximum in resistivity which is also the strain where the lowest
temperature exponent is observed. This is also in close vicinity to the maximum in
Tc and is highly suggestive that a common origin for all these effects exists.

3.5 Conclusions

In this chapter I have demonstrated the usefulness and the unique capabilities of
the uniaxial stress technique. I reported achieving the highest yet attained strains
in Sr2RuO4, measuring magnetic susceptibility simultaneously with resistivity, both
longitudinal and transverse to the applied strain direction. Thesemeasurements firstly
confirm the enhancement of Tc under both in-plane compression and tension. By
extending the strain range I have also identified that a maximum Tc is reached after
which Tc drops steeply at higher strain. The highest Tc of ∼3.5 K is reached at
a strain of εxx = (−0.55 ± 0.06)%. Measurements of the upper critical field Hc2‖c

highlight the significance of the density of states increase at the Van Hove singularity
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for the superconductivity as it is even more strongly enhanced than T 2
c , raising the

possibility that optimally strained Sr2RuO4 is an even-parity, rather than an odd-
parity, superconductor. Detailed measurements at intermediate strains will be useful
for determining if such a change in order parameter occurs.

Measurements of the normal state properties show an apparent breakdown of
Fermi liquid behaviour as the sample is strained close to the peak in Tc and the
overall resistivity enhancement strongly suggests that we have indeed been able to
reach the VanHove singularity with uniaxial stress. The approach to the VHs appears
to affect all the quasiparticles, increasing the scattering for all current directions, and
affecting all the bands despite the density of states increase being localised to the
M points of the zone along only one direction and only for the γ band. In the
future, measurements of electronic heat capacity being pioneered by my colleagues
You-Sheng Li and Michael Nicklas may also provide important information on the
density of states increase as the sample is strained. Heat capacity measurements are
still possible despite the strong thermal connection through the sample mounts by
using AC methods at kilohertz frequencies.

Ultimate confirmation of the Lifshitz transition by experimental techniques
directly sensitive to the Fermi surface topology may also be possible in the future but
significant technical development will be necessary first. A miniaturised dHvA set
up with suitable amplification may enable quantum oscillation measurements under
strain or a significant increase in signal-to-noise ratio may allow Shubnikov-de Haas
oscillations to be observed. Additionally, since the upper surface of the sample can
remain exposed, ARPES measurements may also be possible, but the sensitivity of
this technique to electric fields would require a purely mechanical version of the
device (i.e. one in which piezoelectric actuators are not used) to be developed first.

In a wider perspective these measurements highlight the significance of uniaxial
stress as a new technique for tuning band structures, especially towards Van Hove
singularities. Our work demonstrates that uniaxial pressure offers a much cleaner
solution, for instance compared to chemical doping, and often a much more effective
one, for instance compared to hydrostatic pressure. Hopefully then, this technique
can be put into good use when applied to a whole host of other interesting materials.
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Chapter 4
Quantum Criticality and
Metamagnetism of Strained Sr3Ru2O7

4.1 Introduction

As outlined in Chap.1, the field of strongly correlated electrons is dominated by
emergent phenomena exhibiting exotic and intriguing properties. Identifying and
characterising these phases has been the challenge for condensed matter physicists
for the last few decades. One particularly fruitful avenue for discovering them has
been to search in the vicinity of quantum critical points. By suppressing a second-
order phase transition to absolute zero using a non-thermal tuning parameter, such
as pressure or chemical doping, a quantum phase transition at zero temperature
is produced. Here the effective electron-electron interactions become increasingly
strong as the strength of quantum critical fluctuations diverges and as such, quantum
critical points have become a breeding ground for new stable phases of matter.

The bilayer ruthenate, Sr3Ru2O7, possesses much of this interesting behaviour. At
low temperatures the properties are well described by Landau’s Fermi liquid theory,
a cornerstone of condensed matter physics, but strong interactions are clearly evident
by the enhanced quasi-particle masses, giving a large heat capacity of 110mJ/(Ru–
mol K2), and an even more strongly enhanced magnetic susceptibility with a Wilson
ratio of ∼10 [1]. Magnetic fields reveal metamagnetic behaviour between 5–8 T
depending on the orientation of the field [2]. At low temperatures quantum criticality
is observed with field applied along the crystallographic c direction [3]. In the purest
samples novel phase formation occurs, masking the quantum critical end point [4].
Two different spin density waves have been identified [5] and both are strongly sus-
ceptible to in-plane symmetry breaking magnetic fields, producing a large apparent
electron nematic susceptibility in transport measurements [6].

Maintaining extremely low levels of disorder is crucially important for Sr3Ru2O7

so any experiment designed to tune its properties must introduce no extra inho-
mogeneity at new scattering centres. For the first time we are able to use our new
experimental capabilities to apply precisely controlled homogeneous uniaxial in-
plane stress. It has previously been found that hydrostatic pressure increases the
metamagnetic transition fields for in-plane fields, ultimately reaching a QCEP at
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∼9.3 T for ∼14 kbar [7, 8]. Uniaxial pressure applied normal to the RuO2 layers
acts in the opposite direction, driving the metamagnetism to lower fields and ulti-
mately inducing ferromagnetism at a moderate pressure of 0.1 GPa [9]. With the new
uniaxial stress technique described in Chap. 2 of this thesis, samples are shaped into
long narrow bars and fixed across the jaws of a vice suitable for applying in-plane
pressure.

We investigate the effect of in-plane pressure on the metamagnetism and associ-
ated quantum criticality but also use the precisely applied anisotropic strain to make
detailed tests of the symmetry of the novel phases which are known to host orthogo-
nally oriented density waves. Using these results we address the question of whether
a spontaneous lowering of symmetry occurs at the formation of the novel phase
or microscopic coexistence of the orthogonally oriented density waves maintains a
weak C4 symmetry that is highly susceptible to C2 symmetry breaking fields.

The remainder of this chapter will be split into several sections, starting with an
introduction to the relevant properties of Sr3Ru2O7 and a discussion of the necessary
background physics. Following this, in Sect. 4.3, I will describe the experimental
technique and the measurements undertaken before presenting the results in Sect. 4.4
with accompanying discussions.

4.2 Background Physics for Sr3Ru2O7

The oxide strontium ruthenate has a layered perovskite structure built out of RuO4

octahedra layers interspersed with Sr spacer layers. The variety of stacking options
makes up a family following the Ruddlesden-Popper series [10, 11]. Sr3Ru2O7 is the
bilayer member of this series; n = 2 in the general formula Srn+1RunO3n+1. Here n
identifies the number of RuO4 octahedra in the unit cell and a higher n corresponds
to a more three-dimensional structure. The electrical properties are dominated by the
planes of RuO2 so as the crystal structure becomes more three-dimensional so does
the resistivity. The n = 1 member, Sr2RuO4, has a resistive anisotropy ρc/ρa ≈4000
at low temperatures [12], in Sr3Ru2O7 it is>500 [13], whilst in the n = ∞ material,
SrRuO3, the resistivity is isotropic [14]. The n = 1 member, the subject of the third
chapter of this thesis, is an unconventional superconductor but as the crystal structure
becomes more three dimensional there is a tendency towards magnetic ordering.
SrRuO3 is ferromagnetic with a Curie temperature of ∼160 K [15] and so is the
n = 3 member Sr4Ru3O10 which has a lower Curie temperature of ∼105 K [16–18].
Sr3Ru2O7 is not ferromagnetic but is a strongly enhanced paramagnet thought to be
in close proximity to a ferromagnetic instability [1]. This is evidenced by the large
Wilson ratio∼10 [1] and also when only moderate uniaxial pressure is applied along
the c-axis the ferromagnetic ordering that occurs below 80 K [9].

The crystal structure of Sr3Ru2O7 is shown in Fig. 4.1, in which the bilayers
of RuO4 octahedra can be seen. This is a tetragonal representation of the unit cell
but in reality each RuO4 octahedron is slightly rotated about the c-axis [19–21].
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Fig. 4.1 Crystal
structure of Sr3Ru2O7. A
tetragonal representation of
the layered perovskite
structure without including
any rotation of the RuO4
octahedra. The undistorted
unit cell belongs to the space
group I4/mmm with lattice
constants a ∼3.9 Å and c
∼20 Å [19]

The rotations are correlated within and between each layer of the bilayers. This
means that, although an individual bilayer would retain four fold rotation symmetry,
as a whole the cooperative rotations mean the unit cell is no longer C4 symmetric.
The new crystal structure has an orthorhombic unit cell with space group Bbcb and
the principle axes are rotated 45◦ from the tetragonal cell, see Fig. 4.2. The single
layer Sr2RuO4 does not possess the same rotation except at pristine cleaved surfaces
[22, 23]. The rotation has important consequences for the electronic band structure
but the orthorhombicity induces almost no anisotropybetween the twoRu-O-Rubond
directions. In practice no discernible difference is observed in the electronic transport
along the in-plane principle axes of the unit cell and to fairly high experimental
resolution the transport is isotropic within the ab-plane [24].
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(a) (b) (c)

Fig. 4.2 Fermi surfaces of Sr3Ru2O7. a Cooperative rotation of the RuO4 octahedra within
the plane about the c-axis leads to a doubling of the unit cell and a

√
2 × √

2 reconstruction of the
Fermi surfaces. b In-plane Fermi surface cross sections obtained in an ARPES study by Tamai et
al. [25]. Data was taken in the first quadrant of the larger tetragonal Brillouin zone and the Fermi
surface reconstruction can be clearly seen. c Fermi surface contours extracted from the ARPES data
and the naming scheme used throughout this thesis

The band structure can be intuitively derived following the ideas from Sr2RuO4.
At the normal valencies for strontium and oxygen the ruthenium ion is left in a 4d4

electronic configuration but once in the octahedral crystal field the lower lying states
come from the t2g manifold. The dxz and dyz orbitals form quasi-1D sheets running
along kx and ky in theBrillouin zone respectively and the dxy orbital leads to a circular
sheet. For Sr3Ru2O7 the number of bands is doubled and interlayer coupling leads
to substantial bilayer splitting for some parts of the Fermi surface. After including
the RuO4 octahedra rotations the size of the unit cell is doubled and the bands
are backfolded into the now smaller first Brillouin zone. Hybridizing the remaining
bands leads to a qualitative similarity with the measured band structure [26] although
the lowered symmetry also introduces a small dx2−y2 -derived pocket near the zone
centre. Neighbouring bilayers are only weakly coupled and the Fermi surfaces are
quasi-two-dimensional. The observed Fermi surfaces are shown in Fig. 4.2. In total
there are six distinct Fermi surfaces and the labels for each can be seen in the figure.
There is good agreement between the Fermi surface measured by ARPES and with
quantum oscillations [25, 26]. Combining traditional dHvA quantum oscillations
and bespoke magnetocaloric effect measurements, all the bands and their masses
can be measured. Once the multiplicity of some of the bands due to the bilayer
splitting is included, the Fermi surface areas satisfy the Luttinger count consistent
with observing all the bands, and more conclusively adding up the masses of each
band to find their contribution to the electronic specific heat gives good agreement
with the measured value [1]. I note here that although the γ2 band is the smallest in
area, it contributes almost half of the total electronic specific heat chiefly due to its
high multiplicity and quasiparticle mass.

The history of Sr3Ru2O7 is a classic example of how increasingmaterial purity can
be important to reveal new behaviour. A systematic crystal growth study by Perry et
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al. [27] produced single crystals with mean-free paths up to approximately 3000 Å as
revealed by dHvA measurements [26]. The result is a fairly complex phase diagram
with intertwined features resulting from strong electron-electron interactions, meta-
magnetism, quantum criticality, possible electronic nematicity and density waves. It
is therefore quite instructive to follow the discoveries chronologically as an intro-
duction to the material, as I will outline in the following sections.

4.2.1 Itinerant Metamagnetism

Initial characterisationmeasurements of the first single crystals of Sr3Ru2O7 revealed
a strongly correlated, quasi-two-dimensional Fermi liquid ground state with strongly
enhanced paramagnetism [1]. The electrical transport is metallic and below ∼10 K
a coherent Fermi liquid like T 2 dependence is observed for both the in-plane and
out-of-plane resistivity. Strong electron-electron correlations are suggested by the
rather large low temperature electronic specific heat γ = 110 mJ/(Ru–mol K2) and
the large Wilson ratio of ∼10. In high applied magnetic fields, itinerant electron
metamagnetism was observed by Perry et al. [28], see Fig. 4.3.

Metamagnetism is empirically defined as a super-linear rise in the magnetisation
occurring over only a short field range. Its origin can have quite different mechanisms
for different metamagnets. Quite often, staggered local-moment materials exhibit
metamagnetism when certain applied fields drive spin-flip or spin-flop transitions
causing the sudden change in magnetisation [29]. However, the effect can also be
observed in itinerant electron materials, such as Sr3Ru2O7, in which its origin is the
detailed structure of the density of states. Usually it is connected with a peak in the
density of states in close proximity to the Fermi level.

In an itinerant electron system each of the allowed Bloch states is doubly degen-
erate because of the electron’s spin, but in the presence of a magnetic field the states
are split, lowering the energy of those with spin aligned with the field and raising that

Fig. 4.3 Metamagnetism
in Sr3Ru2O7.
Magnetisation against
applied magnetic field in the
ab-plane. At low
temperatures there is a
sudden rise in the
magnetisation at
approximately 5 T; a
metamagnetic transition.
Based on original data from
[13]
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Fig. 4.4 Pauli
Paramagnetism. The
density of states of a band
spin-split by the presence of
a magnetic field B.

of the states that are anti-aligned to it. The chemical potential must remain constant
across the spin split bands, so a small surplus of electrons develops in one band,
as shown in Fig. 4.4. The number of electrons per unit volume of each spin band is
given by

n↑ = 1

2

∫ ∞

−∞
g(E + μBB) f (E)dE (4.1)

n↓ = 1

2

∫ ∞

−∞
g(E − μBB) f (E)dE (4.2)

where g(E) is the density of states at energy E and f the Fermi-Dirac distribution.
This splitting is responsible for Pauli paramagnetism and can be used to calculate
the magnetic susceptibility of the free electron gas when the orbital motion of the
electrons is ignored.Working at T = 0K to neglect the smearing of the Fermi surface
with temperature, and with small fields such that the splitting of the bands is also
small (not a serious restriction given the scale of the Fermi energy in most metals),
the number of electrons shifted from theminority- to majority-band is approximately
1
2g(EF)μBB. The net magnetisation is given byM = μB(n↑ − n↓) ≈ g(EF)μ

2
BB and

the Pauli magnetic susceptibility is χP = M/H = μ0μ
2
Bg(EF) [30].

In a material where the electronic density of states peaks in close proximity to
the Fermi level, the application of a magnetic field spin splitting the bands can have
a pronounced effect on the magnetisation if the peak is reached by the Zeeman
splitting. The differential susceptibility χ = ∂M/∂H , or equivalently the rate at
which the surplus electrons switch from the minority-band to the majority-band with
applied field, depends on the density of states. Thus if the peak in the density of states
approaches the chemical potential, the magnetisation will increase more steeply with
field. An illustrative one band model with a peak in the density is shown in Fig. 4.5.
The magnetisation rises steeply in only a short field range as the peak in the density
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Fig. 4.5 Metamagnetism
caused by a peak in the
density of states.
Magnetisation against field
of an illustrative one band
model with a peak in the
density just above the Fermi
level. The insets show the
density of states splitting
between the majority and
minority spin band for
various fields

of states is sampled. Here the transition between the low- and high-polarised state is a
continuous crossover and not a thermodynamic transition but in a suitably exchange-
enhanced paramagnet this can turn into a first-order discontinuous jump.

Stoner postulated that the effect of the exchange interaction between electron spins
can be taken into account by an additional average molecular field λM produced by
all the neighbouring spins [31]. The potential energy can therefore be lowered by
aligning spins

�Eex = −
M∫

0

μ0(λM
′)dM ′ = −1

2
μ0λM

2 . (4.3)

The magnetic susceptibility is enhanced by the exchange interaction and, if it is
large enough, spontaneous ferromagnetism can occur. At zero field there is a kinetic
energy penalty for developing a spontaneous magnetisation. In order to flip a small
number of spins within δE of Fermi surface they must be raised in energy by δE to
occupy the lowest available states above the Fermi level in the other spin band. There
are 1

2g(EF)δE down-spin electrons within δE of Fermi surface so the total kinetic
energy penalty would be �EK.E. = 1

2g(EF)(δE)2. However this can be balanced by
the interaction of the spontaneousmagnetisationwith themolecular field as described
above

�Eex = −1

2
μ0λM

2 (4.4)

= −1

2
μ0λμ2

B(n↑ − n↓)2 = −1

2
μ0μ

2
Bλg(EF)

2(δE)2 (4.5)
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and hence the total energy change is

�E = 1

2
g(EF)(1 − μ0μ

2
Bλg(EF))(δE)2 (4.6)

= 1

2
g(EF)(1 − λχP)(δE)2 . (4.7)

Spontaneous ferromagnetism will occur when �E < 0 which gives us the Stoner
criterion for a ferromagnetic instability λχP > 1.

In a band that is not parabolic but does have a peak in the density of states close to
the Fermi level it is still possible to achieve a field polarised exchange-split statewhen
λ < 1/χP and this occurs as a first order metamagnetic transition [32]. Including the
magnetic exchange interaction the magnetisation at a given field can be found by
minimising the free energy

F(M) = 1

2

∫ μ↑

0
Eg(E)dE + 1

2

∫ μ↓

0
Eg(E)dE − 1

2
μ0λM

2 − HM (4.8)

given the constraints

n↑ = 1

2

∫ μ↑

0
g(E)dE , n↓ = 1

2

∫ μ↓

0
g(E)dE , n = n↑ + n↓ . (4.9)

Figure4.6 shows the free energy density for a similar illustrative band to that used
inFig. 4.5with a peak in the density of states close to theFermi level but now including
the exchange interaction. At a sufficiently large field, H ′′

c in the figure, the local
maximum in the free energy density at finite magnetisation becomes an inflection

(a) (b)

Fig. 4.6 Exchange-enhanced metamagnetism. a Free energy density against magnetisation
at several applied fields for an exchange-enhanced Pauli paramagnet with a peak in the density of
states close to the Fermi energy. Vertical bars mark minima in the free energy and crosses mark
inflection points. bMagnetisation curve in applied field showing the first order metamagnetic jumps
at H ′′

c for increasing field sweeps and H ′
c for decreasing field sweeps.
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point upon which the magnetisation discontinuously jumps to the now accessible
global minimum. The transition is first order and is hysteretic as is evident in panel
B. Shimizu [32, 33] analysed this sort of behaviour in a Landau-type expansion of
the free energy in even powers of M

�F(M) = 1

2
aM2 + 1

4
bM4 + 1

6
cM6 − HM . (4.10)

He showed that the necessary conditions for which the first-order metamagnetic
transition can take place are a > 0, b < 0 and c > 0 with 3/16 < ac/b2 < 9/20.
Wohlfarth and Rhodes [34] had previously shown that a sufficient curvature of the
density of states is necessary to observe the first-order transition and their condition
gg′′ > 3(g′)2 makes sure b < 0 [35]. The first-order jump occurs because there is a
sufficient number of states just above the chemical potential which do not present a
large kinetic energy penalty but can result a large reduction of the Coulomb energy
by aligning spins. This is the same idea as for the Stoner criterion but here the
magnetisation only continues to increase while the density of states curvature is high
enough.

Band structure investigations of Sr3Ru2O7 by bothARPES and density-functional
calculations identified heavy bands confined to a small energy window just below
the Fermi surface for large parts of the Brillouin zone [25, 36]. In particular, the top
of the small hole pocket γ2 is so close to the Fermi level that when first identified
with ARPES it could not be determined unambiguously whether it contributed to
the Fermi surface as it was below the energy resolution of the instrument (Fig. 4.7).
Later determination by dHvA and comparison to the specific heat [26] showed the γ2
pockets do make up part of the Fermi surface and they play an important role since
there are sharp peaks in the density of states just below the Fermi surface within the
scale of Zeeman splitting achievable in the laboratory [25]. These peaks, the result
of a saddle-type Van Hove singularity, can be attributed as the underlying cause of
the observed metamagnetism, as proposed by Binz and Sigrist [37], before even their

Fig. 4.7 Sr3Ru2O7
density of states. Density
of states for the dxy derived
bands in Sr3Ru2O7 close to
EF. The γ2 band has a
saddle-type Van Hove
singularities just below the
Fermi energy. Reproduced
from [25]
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experimental identification. Since thenVanHove singularities have also been invoked
to describe the metamagnetic behaviour in many other theoretical investigations of
Sr3Ru2O7 [38–43].

In samples with a residual resistivity of 2.4µ� cm Grigera et al. found one first-
order metamagnetic transition at ∼5T with the field directed in the ab-plane [2].
By analysing both the real and imaginary parts of the AC susceptibility they could
identify the critical endpoint terminating the line of first-order metamagnetic phase
transitions at ≈1.25K. What sparked particular interest was that rotating the field
away from the ab-plane acts as a continuous tuning parameter for the critical end-
point. The critical endpoint moves to slightly higher fields as the field is rotated
towards the c-axis but when the field is aligned within 10◦ of the c-axis the endpoint
is depressed to below 50mK, the base temperature of the measurements, see Fig. 4.8.
With the field oriented along the c-axis there is clear evidence for quantum criticality,
and this will be the subject of the next section.

4.2.2 Quantum Criticality

Phase transitions are abundant in nature and associated with them are certain critical
phenomena which, even though the microscopic orders may be completely different,
give rise tomany fundamental characteristics [44]. Phase transitions appear due to the
necessity to balance ordering energy against the entropy of thermal fluctuations. For
example, in a ferromagnet the exchange interaction favours the alignment of spins
reducing the internal energy but at higher temperatures thermal fluctuations canmax-
imise the entropy and the system prefers the disordered paramagnetic state. At such a
second-order phase transition the order parameter, in this case the magnetisation M ,
is on average zero in the disordered phase and grows continuously from zero once
the ordered phase is entered at the transition temperature. Even though the spatial
average of the order parameter is zero in the disordered state, upon approaching the

Fig. 4.8 Metamagnetic
phase diagram. Empirical
phase diagram for Sr3Ru2O7
with fields applied at an
angle θ to the ab-plane. The
shaded surface marks the
first order transition
separating the low and high
spin polarised regions and
the black line is the line of
critical end points. Based on
original data from [2]
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Fig. 4.9 Quantum critical point. Schematic phase diagram of a second-order phase transition
giving rise to a quantum critical point. p is a non-thermal tuning parameter that suppress a second-
order phase transition, thick black line, to absolute zero at the quantum critical point. At finite
temperature and sufficiently close to the transition a classical critical region exists where the critical
fluctuations are much lower in energy than the temperature and the thermal phase transition is
universal. The effect of the quantum critical fluctuations, however, can be observed over a much
larger region of phase space, see text for further details

phase transition droplets of order start to grow and fluctuate in and out of existence,
i.e. some short range order develops. In the case of a ferromagnet one can say the
spins are correlated over a short range called the correlation length. As the critical
point is approached the correlation length diverges, ξ ∼ |(T − Tc)/Tc|−ν ,1 and at
the critical point the system becomes scale invariant. The critical nature of a ther-
mal phase transition is only observed very close to the transition. The microscopic
details become unimportant once there is no length scale other than the correlation
length and the system is averaged over large distances. Here the behaviour falls into
a universality class which only depends on the dimensionality and the symmetry of
the order parameter, and the relevant statistical physics can be treated classically.

All this changes though if there exists a non-thermal tuning parameter, such as
pressure, doping or magnetic field, that can suppress the transition temperature to
absolute zero (see Fig. 4.9). A quantum phase transition is accessed at absolute zero
and here it is no longer the thermal fluctuations thatmelt the order but rather the abrupt
change of ground state is due to quantum fluctuations arising from Heisenberg’s
uncertainty principle. Since the critical nature of a thermal phase transition is only
observed very close to the transition, one might ask why a quantum phase transition
should be any more than just an academic curiosity since absolute zero temperature
is never a practically achievable temperature. The answer is because unlike a thermal
phase transition the effects of quantum criticality can be felt over a surprisinglymuch
larger range.

1ν is a critical exponent. It characterises the nature of the phase transition and is an experimental
observable.
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The time scale of quantum critical fluctuations also depend on the distance from
the critical point, but here the distance is along the tuning axis, τ ∼ |p − pc|−νz .2

The energy of these fluctuations goes to zero at the critical tuning, but even away
from this tuning sufficiently high temperatures allow thermal population of finite-
time modes associated with the quantum mechanically driven phase change, so the
system can still look critical. In this scenario the dominant fluctuations are thermally
driven but the fluctuations are those of a scale invariant quantum-critical ground state.
This region defines the cone of quantum criticality shown in Fig. 4.9.

Pronounced effects due to quantum critical fluctuations have been observed exper-
imentally and extensively studied, especially in heavy fermion materials [45, 46].
Here, relatively low temperature magnetic states are often found and these can be
successfully suppressed to absolute zero by the application of magnetic field, doping,
or pressure, leading to a quantum critical point (QCP). Some common behavioural
traits are observed. The residual specific heat coefficient γ diverges upon approach-
ing the quantum critical point, and this along with the observation of the resistivity
exhibiting a linear temperature dependence seems to imply that themass of the quasi-
particles is diverging, and their characteristic energy scale vanishing, leaving only
temperature as the remaining energy scale [44].

The fermionic criticality that creates this strange metallic state is still not fully
understood, but QCPs provide more than just an exciting opportunity for modern
theory because they are also a breeding ground for new stable phases of matter.
Rather than face the mass divergence close to the QCP, more often than not it is
observed that the electrons reorganise themselves into novel forms of order.

Sr3Ru2O7 also shows quantum critical behaviour, but through a slightly different
route. The quantum critical point as introduced above was achieved by suppressing
a classically critical second-order phase transition to absolute zero using a non-
thermal tuning parameter. The situation in Sr3Ru2O7 is slightly different. As we saw
in Sect. 4.2.1, Sr3Ru2O7 shows a first-order metamagnetic transition. Normally there
are no critical fluctuations at the discontinuous jump of a first-order transition but
since there is no symmetry breaking there is generally a critical endpoint terminating
the line of first-order transitions and here critical fluctuations responsible for critical
opalescence are observed. By suppressing the critical endpoint to absolute zero a
quantum critical endpoint (QCEP) is obtained, exhibiting all the hallmarks of a
quantum critical point (Fig. 4.10).

With the field directed along the sample’s c-axis, the QCEP is reached with a
field of ∼8T, and the magnitude of the field acts as a tuning parameter for the quan-
tum critical fluctuations [47].Measurements of the temperature-dependent resistivity
at a series of applied fields spanning the quantum critical region show the classic
behaviour of a QCP, see Fig. 4.11. At both low and high fields Fermi liquid T 2 tem-
perature dependence is observed but over a smaller and smaller temperature window
as the QCEP is approached and at the critical field T -linear resistivity is observed.
Thermodynamic measurements are also consistent with the quantum critical sce-
nario. Measurements of the temperature-dependent electronic specific heat show

2z is the dynamical critical exponent.
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Fig. 4.10 Quantum
critical end point.
Schematic of a first-order
transition giving rise to a
quantum critical end point. A
first-order transition with
tuning parameter B has a
critical end point when there
is no symmetry breaking. If a
second non-thermal tuning
parameter, p, can suppress
the critical end point to
absolute zero a quantum
critical end point is
produced. In the case of
Sr3Ru2O7 p can be related to
the angle of the applied field

Fig. 4.11 Resistivity
power law. Temperature
dependence of resistivity
measurements of Sr3Ru2O7
near the metamagnetic
transition for fields applied
along the c axis. The
exponent of the temperature
dependent part of the
resistivity is plotted under
the assumption that the
resistivity varies as
ρ = ρ0 + AT α. Adapted
from [24]

Fig. 4.12 Electronic
specific heat. The low
temperature electronic
specific heat of Sr3Ru2O7
with magnetic field aligned
along the sample’s c axis.
Close to the metamagnetic
transition field 7.9T the
specific heat diverges
logarithmically. Based on
original data from [28]
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that in the vicinity of the critical field the low temperature specific heat diverges
logarithmically [28], see Fig. 4.12.

As pointed out earlier, bare QCPs are not often observed in clean systems. Instead,
a phase transition usually preempts the QCP.When the sample quality is high enough
in Sr3Ru2O7 this is also observed. There is often a tendency for superconductivity
to form around a QCP [48] but the large magnetic fields used to reach the QCEP in
Sr3Ru2O7 prohibit superconductivity and an alternative form of order develops. The
next section will discuss the unusual properties of this novel phase.

4.2.3 Novel Ordered Phase

The appearance of the new phase in ultraclean samples was first identified by its
striking resistive response and itsmagnetic susceptibility signature shown in Fig. 4.13
[49]. This novel phase is only observed in samples with residual resistivities less than
∼1µ�cm so is highly disorder sensitive [27, 49]. Instead of the single metamag-
netic jump at around 8T when the field is along the c-axis it is seen to bifurcate into
two, one at approximately 7.85 and 8.1T. Between these fields the in-plane resistiv-
ity is enhanced by almost a factor of 2 with a sharp jump upon entering and leaving

Fig. 4.13 Resistivity and
susceptibility signatures
of the novel phase
masking the QCEP. a The
resistivity jumps by almost a
factor of 2 upon entering the
phase at ∼7.9T and drops
again steeply as the phase is
exited at ∼8.1T. b AC
susceptibility shows two first
order transitions, one
entering and exiting the
phase, and an additional
crossover at a lower field
∼7.5 T. Based on original
data from [49]

(a)

(b)
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the phase. Later, a thorough series of thermodynamic measurements, including mag-
netisation, susceptibility, magnetostriction and thermal expansion, firmly established
the thermodynamic phase change [4]. The phase is bounded by first-order transitions
on both the low and high field sides which terminate at critical endpoints and are
connected by a second-order line defining the roof of the phase. The appearance
of this stable phase, in a region of phase space where electron-electron correlations
are know to be particularly strong, received much attention, and it has been exten-
sively studied. However there are still many puzzling questions whichmean the order
parameter has not yet been firmly established. I will now discuss the main exper-
imental results, outlining the established properties of the novel phase and outline
some of the remaining questions.

4.2.3.1 Electron Nematicity

After an in-depth study of the magnetoresistivity not only as a function of field and
angle to the c-axis but also the angle between the current and field by Borzi et al. [6] a
large magnetoresistive anisotropy was identified in the region of novel phase forma-
tion. The observed transport properties demonstrate the key features of an electronic
nematic state. This name comes from analogy with the nematic phase found in clas-
sical liquid crystals where elongated cigar-shaped molecules self-organise, breaking
rotation symmetry but remaining spatially homogeneous, preserving translational
symmetry. The equivalent state in an electronic system is developed when, due to
the effects of electron correlations alone, the electronic degrees of freedom spon-
taneously develop a lower rotational symmetry than the lattice, breaking its point
group symmetry. In a tetragonal crystal for example, this could be when the resis-
tivity shows C2 rotational symmetry while the lattice remains C4 symmetric.3 This
behaviour appears to be exhibited by the novel phase of Sr3Ru2O7. Figure4.14 shows
themagnetoresistancemeasured along both thea andb crystallographic directions. In
panel A, when the field is aligned with the c-axis, no in-plane anisotropy is observed
but with a small tilt of the applied field, panel B, a significant anisotropy devel-
ops in the region of phase formation while the resistivity remains isotropic outside.
Accompanying neutron diffraction measurements could not resolve any deviation
from the square lattice, strongly suggesting that the anisotropy is electronically and
not structurally driven. However, a small in-plane component of field is still required
for the two-fold symmetric state to reveal itself. This last point though was attributed
to possible domain formation that might occur when the field is first applied along
the c-axis. In such a picture the effect of the in-plane field is merely to align the
domains of orthogonally oriented order.

3In the presence of any finite coupling between the outer electrons and the lattice, this electronic
symmetry breakingwill cause a lattice symmetry breaking, so in practice it comes down to a question
of degree. If there is a small electronic change and a large structural one, the transition should be
thought of as structural; if the reverse, it is described as an electronic state.
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(a) (b)

Fig. 4.14 Electron nematic transport. The two in-plane principle resistivity components, ρa
and ρb, measured with different angles between the applied field and crystal axis. a For field applied
along the c-axis there is almost no anisotropy. bWith the field 13◦ from the c-axis tilted towards a
a pronounced anisotropy is seen. The easy direction for current is along b, and the hard direction
along a. Tilting the field towards b rather than a reverses the hard and easy directions. Based on
original data from [6]

Electron nematic behaviour is usually considered from two different viewpoints,
depending on whether the electrons are strongly or weakly coupled [50–52]. In the
strongly coupled picture large Coulomb repulsion and exchange interaction terms
tend to favour the localisation of the charge carriers but the addition of a small number
of holes to the mix, which due to zero-point kinetic energy prefer to be delocalised,
can lead to phase separation and the appearance of stripe phases [53]. Under the right
circumstances one can imagine the melting of these stripe phases where the global
translational symmetry breaking is lost but some resemblance to the striped phase is
retained and a special orientation is picked out breaking rotational symmetry [54].
This state would be an electron nematic and can be thought of as a melted smectic
phase [55, 56], see Fig. 4.15.

The physics of more weakly coupled electrons is well described by Fermi liquid
theory, but there are many known instabilities of the Fermi liquid, a general phe-
nomenological description of which was given by Pomeranchuk [57]. Fermi liquid
theory quantifies the strength of the various possible interactions by the Landau
parameters, also know as the f functions (see Sect. 1.2). It is well known that the
stability of the Fermi liquid requires that none of these interaction terms become
too negative, i.e. attractive, because if they do, a distortion of the Fermi surface
can occur, known as a Pomeranchuk instability. For an isotopic interaction term the
Pomeranchuk instability is that of ferromagnetism spin splitting the Fermi surfaces.
In the case of higher order interactions, such as a quadrupolar interaction, nematic
instabilities can develop and anisotropic deformations of the Fermi surface can occur.
In Sr3Ru2O7 possible spherical to elliptical deformations of the Fermi surface have
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Fig. 4.15 Electron
nematics. Two different
mechanisms for producing
electron nematic phases, see
text for details.

been proposed to be stabilised by the close proximity of Van Hove singularities and
through spin-orbit coupling related effects [38–43].

It is difficult to reconcile the magnitude of the observed resistive anisotropy with
the intrinsic anisotropy from a distorted Fermi surface due to a Pomeranchuk insta-
bilities, especially considering this is a multiband material. However, considering
there ought to be domains with orthogonally oriented nematic order, domain wall
scattering could account for a substantial fraction of the enhanced resistivity. As I
will show later on, this may not be the whole picture, and an alternative explanation
may still be needed.

4.2.3.2 Spin Density Waves

It is now known from a recent breakthrough magnetic neutron scattering experiment
that, in addition to the uniform metamagnetism associated with the novel phase,
there exists spatially modulated magnetic order within the region of phase formation
[5]. In the discussion of the Stoner criterion and metamagnetism in Sect. 4.2.1 an
isotropic magnetisation was always assumed. In general, however, periodic spatially
varying magnetic states can also be stabilised in certain situations and are called
spin density waves (SDW). The susceptibility at a certain modulation wavevector
depends on the properties of the Fermi surface. When large sections of Fermi surface
are parallel such that they can be connected by the same vector in reciprocal space
the susceptibility will be strongly peaked at this wavelength which can easily mix



128 4 Quantum Criticality and Metamagnetism of Strained Sr3Ru2O7

these states, opening a gap and lowering their energy [30]. These special vectors
are called nesting vectors and are generally found in quasi-1D systems. Sufficiently
strong nesting can also lead to charge density waves (CDW). The mechanism is
similar, though this time driven by a spatial modulation of the charge density, i.e.
a Peierls distortion of the lattice. SDWs and CDWs can occur simultaneously but
in suitably exchange-enhanced materials such that the susceptibility is sufficiently
large that the q-dependent Stoner criterion is satisfied, spin ordering can occur alone.
CDWs are primarily driven by electron-phonon coupling whereas SDWs arise from
the electron-electron exchange interaction.

Lester et al. observed magnetic scattering peaks associated with an incommensu-
rate spin density wave (SDW), i.e. its wavelength is not a rational fraction or integer
multiple of the lattice constant, and stable at least on time scales shorter the instru-

(a) (b)

(c) (d)

Fig. 4.16 Spin density wave ordering in Sr3Ru2O7. a Phase diagram determined from neu-
tron scattering measurements. Open symbols are the boundaries determined from the scattering
measurements whereas the solid symbols are from resistivity and susceptibility measurements. The
two blue shaded regionsmark the regions with SDWs of different wavevectors. b Proposed structure
of the spin density wave within a single domain. c and dMagnetic field and temperature dependence
of the SDW Bragg peak intensities. Adapted from [5]



4.2 Background Physics for Sr3Ru2O7 129

ment resolution of ∼1GHz with a coherence length of at least 350 Å. Within the
main novel phase described above the scattering peaks were observed at (±δ, 0, 0)
and (0,±δ, 0) with δ = 0.233. Above the second metamagnetic transition a spin
modulation was still observed but with a slightly smaller wavevector, δ = 0.218,
persisting up to approximately 8.5T. Comparing with the resistivity, Fig. 4.13a, this
new phase corresponds to the tail observed on the high field side of the phase. Bruin
et al. [58] had also previously reported resistive anisotropy extending outside of the
main phase up to these fields. The formation of the SDW and the enhanced resis-
tivity appear intimately linked. Panel C of Fig. 4.16 shows the intensities of the two
scattering peaks, and once summed together they look remarkably like the observed
resistivity enhancement. Further evidence corroborating this comes from the influ-
ence of a tilted field on the SDWs. When the field is along the c-axis the scattering
peaks are C4 symmetric, showing equal intensity at (±δ, 0, 0) and (0,±δ, 0), but
once the field is tilted 10◦ towards the a axis only the peaks at (±δ, 0, 0) remain,
mirroring the hard and easy directions observed in in-plane resistivity. A spin density
wave gapping part of the Fermi surface provides a natural mechanism for enhancing
the resistivity in the novel phase. The wavevector approximately matches the nesting
vector of the α1 and the γ2 sheets. However, in this multiband material the number
of states that can be gapped out in this simple weak-coupling picture still seems to
be at odds with the 100% resistivity increase.

The additional translational symmetry breaking of a spin density wave means the
phase should no longer be described as a truly nematic state. However, a question
of time scales means this cannot be irrefutably proven, especially since nuclear
magnetic resonance measurements that are sensitive to much slower characteristic
frequencies than the resolution limited neutron scattering measurements did not
detect any divergence of the inverse relaxation rate associated with critical slowing
down at the boundary of the A phase [59]. This means that a more slowly fluctuating
smetic or melted smetic can not be indisputably ruled out.

4.2.4 Latest Developments and Motivation

Further investigation of the wider phase diagram has recently highlighted the possi-
bility of a much richer phase diagram still to be discovered. Sun et al. [60] managed
to measure heat capacity and magnetocaloric effect to much lower temperatures than
had previously been attainted in Sr3Ru2O7 and by following the signatures asso-
ciated with each metamagnetic transition to lower temperatures could identify the
first metamagnetic peak at ∼7.5 T, initially believed to be a crossover, with a sec-
ond QCEP. There is evidence for a second lower energy scale suppressed to zero
temperature at 7.5T in addition to the QCEP already identified at 7.9T which in the
highest purity samples is masked by the novel phase formation. Measurements of
the magnetic Grüneisen parameter by Tokiwa et al. [3] also demonstrated the same
behaviour. Weak thermodynamic signatures for the second SDW-B phase can also
be identified in the specific heat and magnetocaloric effect, however, the confidence
with which the phase boundary can be identified is much lower than in the case of
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the A phase. Perhaps, then, even though these samples are considered to be of very
high purity, there may still be an opportunity to uncover more phase formation in the
remaining parts of the phase diagram which may be even more disorder sensitive.
This might also help to explain the curvature of the first-order transition line at 7.85T
which implies that the entropy is higher in the ordered phase than that on either the
high or low field sides of the phase.

What is clear though, is that any further investigations onSr3Ru2O7 should bewary
of disorder as it is clearly very important. Magnetic field is a clean tuning parameter,
ideal for tuning through the quantum critical region, and as such has been studied in
great depth. Uniaxial stress is another clean and continuous tuning parameter so can
be used as a secondary tool to investigate quantum criticality in combination with a
c-axis oriented magnetic field. It is suspected that the metamagnetism is related to
Van Hove singularities that can be reached in an∼8 T field. The influence of uniaxial
stress might therefore be quite strong so a study of the interaction between uniaxial
stress and magnetic field on the metamagnetism and the influence around quantum
criticality is of interest.

The properties of the novel phase are also known to be highly susceptible to
in-plane fields lifting the tetragonal symmetry. Uniaxial pressure can provide an
alternative method for tuning this symmetry breaking and it can, in principle, provide
amuch larger strength change than the previously used in-planemagnetic fieldswhich
simultaneously detune from the QCEP as the in-plane field is increased. However, it
is not easy to predict what effect uniaxial pressure might have as the band structure
is much more complicated in Sr3Ru2O7 than in Sr2RuO4, so the initial investigations
will rather be somewhat exploratory.

4.3 Experimental Methods

The core method used for the experiments on Sr3Ru2O7 is the uniaxial stress tech-
nique described in Chap.2 of this thesis. In this technique the direction along which
the uniaxial pressure is applied is set by the direction alongwhich the long bar shaped
sample is cut. For the remainder of this chapter I will use the tetragonal unit cell of
Sr3Ru2O7 where the a and b directions, [100] and [010], are along the Ru-O-Ru
bond directions. The neutron scattering results indicate that the 〈100〉 directions are
the principal axes of the possible C2 symmetric order. Resistivity measurements in a
fully rotatable vectormagnet field also suggest this, showing strong anisotropic trans-
port when the field has a component along [100] or [010] but very little [110]/[11̄0]
anisotropy when the field is at 45◦ to the Ru–O–Ru bond directions. Guided by these
observations we chose to cut the samples along 〈100〉, defining the pressure axis.
Only the ends of the sample are supported in the device, meaning that for instance
when a compression is applied along [100], the [010] direction in the centre of the
sample is free to expand according to the sample’s own Poisson’s ratio. The applied
stress is uniaxial but the design of the device means that we can more accurately
determine the applied strain along the pressurised direction.
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In total four different Sr3Ru2O7 samples were strained. The first three samples
were measured in collaboration with another student, Daniel Brodsky, and the results
have been published in references [61, 62]. After this first run of measurements I
came back to the project to add magnetic measurements in addition to resistivity,
and to also carry out a wider investigation covering more than just one temperature
and going to much larger strains. In doing this, the measurements from the first three
samples were necessarily repeated as part of this larger data set but since these have
been described elsewhere I will only present data from this fourth sample in this
thesis. I mention the other three samples to show that consistency, at least in the
resistivity measurements at low strains, is observed.

4.3.1 Sample Preparation

The sample was cut from a well characterised growth, C697B, from R. Perry. This
batch was chosen because of its particularly low residual resistivity and low impurity
content, as characterised by Mercure [63]. The novel phase in this batch of crystals
has also been extensively studied by resistivitymeasurements [24].As stressed earlier
in this thesis precise sample preparation is a necessity for reaching high strain. To
prepare the sample, the main growth rod was first aligned using the Laue method,
Fig. 4.17, and then transferred to a lapping saw to cut out a bar shape of roughly
the required size. The sample was then finished using fine mechanical polishing on
all faces to bring the sample to its final dimensions and produce the highest quality
surfaces. The result can be seen in Fig. 4.18.

Details of the sample mounting are described in Chap.2 along with the procedure
for determining the optimal dimensions of the sample and epoxy thickness to prevent
sample buckling or epoxy failure. For these measurements the range of the device
was not pushed to its upper limits because a thorough investigation at different

(a) (b) (c)

Fig. 4.17 Sample alignment. Pictures of X-ray back-reflection Laue diffraction patterns with
simulated fits from OrientExpress [64] overlaid in red. a c-axis aligned with the X-ray beam, b
[100] direction and c the [110] direction of the tetragonal unit cell
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Fig. 4.18 Cut and
polished sample. Sample
before attaching electrical
contacts and mounting in the
rig. a ab-face. b ac-face.
Crystallographic directions
are labelled as per the
tetragonal unit cell. The
sample has dimensions:
length 3.2mm, width
295 µm, and thickness
110 µm

(a)

(b)

temperatures and fields, all on the same sample, wasmore important than the absolute
highest strain. I therefore decided to reduce the strain range to decrease the risk of
breaking the sample or epoxy. In fact, Sr3Ru2O7 appears to be slightly softer than
Sr2RuO4, because no slippage of the epoxy was observed so there should be slightly
less risk in going to higher strains in the future. The fact that the RuO4 octahedra are
already buckled in Sr3Ru2O7 may be the cause of the softer in-plane modulus but
the elastic tensor of Sr3Ru2O7 has not been measured to verify this.

4.3.2 Resistivity Measurements

The aim of these measurements was to observe the resistivity response to strain
simultaneously with the magnetic response. It would also be ideal to measure both
principal in-plane resistivity components and determine any nematic-like behaviour.
The geometry of the sample means that measurements of the longitudinal resistivity
are straightforward. The ends of the sample are accessible through holes in the sample
plates for current contacts, see Fig. 4.19, and voltage contacts placed in the central
region of the sample can measure the voltage drop in the homogeneously strained
region of the sample. From this an accurate measurement of ρxx can be made were
x is the direction along which the pressure is applied.

Measurements of the transverse resistivity can also be made using only the four
contacts in the centre of the sample. Making reference to Fig. 4.19, instead of passing
current along the bar between contacts 1 and2, current canbepassedbetween contacts
3 and 5 measuring the voltage drop between contacts 4 and 6. This measured voltage
is not independent of the longitudinal resistivity ρxx , which sets the distance that
the current stream lines spread out along the length of the sample, but with precise
enough information on the contact geometry finite element simulations should be
able to disentangle the different resistivity components. The measured voltage at
contacts 4 and 6 decreases exponentially with their distance from the current contacts
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Fig. 4.19 Mounted
Sample. a Mounting
schematic showing the
epoxy holding the sample
between the sample plates.
The schematic is the same as
that given in Chap.3 but it is
included here because it
defines the resistivity contact
numbering. b Mounted
sample showing the
electrical resistivity setup.
The gap between the two
sample plates was set to
1.1mm and the epoxy was
25 µm thick giving a strain
transmission of ∼70%

(a)

(b)

3 and 5. It is therefore best for the transverse measurement to have the contacts on
the sides of the sample close together, however, the measured longitudinal voltage
decreases linearly with the contact separation so a balance between the two must be
made. As in the study reported in Chap.3 for Sr2RuO4, for this Sr3Ru2O7 sample the
contacts were placed approximately 300µm apart, making their overall placement
approximately square as a compromise between the two.

To prevent buckling the sample must be relatively thick. This, in combination
with the close proximity of the contacts to facilitate the transverse measurement,
means that the resistance of the measured part of the sample is very small. At low
temperatures it is approximately 45µ�. Driving a current though the sample and
back into ground through the long resistive wires on the cryostat insert leads to a
large commonmode voltage beyond the maximum rejection ratio of standard pream-
plifiers. To prevent this common mode signal artificially leaking into the differential
measurement I used the balanced dual end current source which I designed and built
for the resistivity measurements on Sr2RuO4. The details of this can be found in
Appendix A. The key point is that by using a balanced current source with active
feedback the common mode can be reduced to less than ∼0.5% of the signal com-
pared to the residual resistivity and the effects of common mode voltage can then be
ignored.

An absolute measurement of the transverse voltage is needed before attempting
any sort of finite element analysis but so far all the transversemeasurements published
in [61] had an extrinsic field dependent background that dominated the signal. I
managed to remove the source of this background by identifying wire vibration as its
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source and taking muchmore care when wiring up the sample. I made all the wires as
direct and as short as possible, removing the possibility of any large oscillatorymodes
which could vibrate in the strong magnetic field. All the contacts also had twisted
pairs for both measurement geometries, doubling the amount of wiring required for
the experiment, but achieving the best noise levels.

4.3.2.1 Finite Element Simulations

A finite element simulation of the resistivity to extract ρyy from the measured trans-
verse voltage needs to include the effects of magnetic field and anisotropic resistivity.
This is something that is not always included with simple software packages so to
facilitate this analysis I programmed a complete finite element simulation myself.
Chapter2 of this thesis provides a basic introduction to the finite element technique
but with the aim of solving elastic deformation problems. The basic principles of a
resistivity simulation are the same but the partial differential equation that needs to
be solved is different.

From classical electrostatics we known that the electric potential, φ, at any point
within the sample can be calculated from the electric field, E, by

E = −∇φ . (4.11)

The current density at any point within the sample, assuming we are in a linear
transport regime, only depends on the conductivity tensor σ

J = σE , (4.12)

where the conductivity of an anisotropic material is expressed as

σ =
⎛
⎝ρxx −ρxy −ρxz

ρxy ρyy −ρyz

ρxz ρyz ρzz

⎞
⎠

−1

. (4.13)

The off-diagonal terms are the field dependent Hall terms which, if the Hall effect is
linear, can be written

ρi j = Bk RH,i j , (4.14)

where Bk is the perpendicular component of magnetic field. Charge conservation
necessitates that

∇ · J = −∂ρq

∂t
, (4.15)

but for a steady state solution the charge density, ρq , is constant so the differential
equation we need to solve over the volume of the sample, �, is
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(a) (b) (c)

Fig. 4.20 Finite element electrical resistivity simulations. a Finite element simulation of
the longitudinal resistivity setup. Real sample dimensions from Fig.4.18 were used and the room
temperature resistivity tensor. At zero field the components are ρaa = ρbb = 232µ�cm and ρcc
≈ 8.5 m�cm [13]. The simulations are with an applied current of 1mA. b and c A simulation of
the transverse resistivity setup showing the electric potential and current density stream lines

∇ · (σ∇φ) = 0 . (4.16)

Neumann boundary conditions are imposed on the surfaces of the sample, ∂�,

J⊥ = (−σ∇φ) · n(x) = f (x) ∀x ∈ ∂� (4.17)

where n(x) is the normal to the samples surface at x and the scalar function f (x)

is zero everywhere except at the current contacts where it equals the applied current
density. The formalism from here on in is as per the standard finite element approach:
the partial differential equation is rephrased in its weak form, the geometry discre-
tised, and the electric potential solved numerically, Fig. 4.20 shows the results of
such a simulation.

My original aim was to measure ρxx and V46/I35 then use finite element simula-
tions to calculate ρyy across the whole phase diagram as a function of temperature,
field and strain. This information can provide important insights into the nature of
phase transitions and can be used to calculate several components of the elastoresis-
tivity tensor [65], a fourth-rank tensor relating normalised resistivity changes with
applied strain,

mi j,kl = ∂(�ρ/ρ)i j

∂εkl

∣∣∣∣
ε=0

, (4.18)

which therefore incorporates more information than the resistivity tensor alone.
Anomalies in the resistivity in regular transport measurements do not in general
help when trying to identify the type of symmetry breaking at a phase transition but
the elastoresistivity tensor is a probe for this and can be used as a direct measure of
thermodynamic susceptibilities. However in order to test specific symmetry breaking
susceptibilities an experimental probe of the same symmetry is required. In-plane
anisotropic strain is one such probe and would be of a great importance here as it
can be used as a direct probe of nematic susceptibility and electronic nematic phase
transitions.



136 4 Quantum Criticality and Metamagnetism of Strained Sr3Ru2O7

Unfortunately this complete nematic susceptibility analysis was not possible for
Sr3Ru2O7 with the current experimental setup, because of the large ρc/ρa resistive
anisotropy. Layered materials with large resistivity anisotropies are known to be
particularly problematic for measuring the in-plane resistivity accurately, because
it is easy to accidentally incorporate a component of ρc into the measurement. For
longitudinal resistivity measurements this problem is generally solved by taking
meticulous care when painting the silver paste contacts at the ends of the sample,
making sure to short out all the planes over the thickness of the sample. The long
length of the sample is enough to compensate for any slight variations in contact
resistance across the contact and a good in-plane resistivity measurement can be
made. For the transverse resistivity measurement I also made sure the silver paste
contacts covered the full height of the sample but it appears that the current flow
still had a small c-axis component which is almost unavoidable when trying to
keep the contact area as small as possible. The effect is additionally amplified by
the short width of the sample in this direction. At room temperature where the
resistive anisotropy is not so high, ∼40, the measured transverse voltage is in good
agreement with finite element simulations. However at low temperatures where the
resistive anisotropy is substantially higher, in excess of 500 [13] (but this has not
beenmeasured for the purest samples so it may be higher still as was seen in Sr2RuO4

[66]), there is a large discrepancy between the measured voltage and the simulations,
with the measured voltage being over a factor of two larger than the prediction.
Correspondingly, the measured residual resistivity ratios for the longitudinal and
transverse measurements show the same discrepancy. If a small offset is made to the
position of the contacts in the simulation, moving the contacts up on one side of the
sample and down on the other, the contacts only need to be displaced as little as 4µm
to induce this difference. For a sample that is 100µm thick it is entirely possible that
slight variations in the contact quality can account for this.

In light of this, the data presented here will not be converted from measured
transverse voltage to resistivity as the uncertainty in exact contact geometrymeans the
contributions from ρzz and ρyy cannot be fully disentangled. When the measurement
is described as transverse it refers only to the predominant current direction being
transverse to the pressure axis but it does not imply that the current flow is purely
within the ab-plane of the sample. The data published on the first three samples also
have contributions of a similar nature, but these samples were more than twice as thin
(sufficientwhen not aiming for such high strains), so the unwanted c-axis contribution
is slightly smaller. In future, accurate measurements of the elastoresistivity tensor
are still highly desirable, but whether this is ultimately achieved just by screening
many samples to find one with more symmetrical contacts or by something much
more sophisticated such as using a focused ion beam to produce samples with a well
defined geometry is still to be determined. This is certainly a key direction to pursue,
by whichever route works best.
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4.3.3 Magnetic Measurements

One of the main aims of this work was to combine magnetic measurements with
those of resistivity for a direct measure of how the metamagnetism responds to
strain. However, the space around the sample in the strain device is very limited.
Whilst AC susceptibility has been used previously for measuring superconducting
transitions, measuring normal state magnetic susceptibility is far more challenging.
For example, the strongest metamagnetic peak in Sr3Ru2O7 with the field aligned
along the c-axis (Grigera et al. measuring at 300mK [2]) is 50 times smaller than
the susceptibility signal of a perfect diamagnet. In order to be sensitive to this small
change some improvement in the technique was required. I decided to simulate
various coil geometries to work out how to best utilise the available space.

A simulation with an arbitrary coil geometry, number of turns, sample size and
alignment, etc., is relatively straightforward using the principles of reciprocity and
superposition. After approximating both the excitation and pick-up coils as stacks of
single-turn circular current loops, the field at any arbitrary point can be calculated
analytically using, for instance, the work of Simpson et al. [67]. The sample is also
divided up into many small finite elements and the moment of each element can be
calculated from its volume, the material’s susceptibility and the field at the centre of
the element due to the sum of the fields from each of the segments of the excitation
coil. For an AC excitation current the AC moment of each finite element induces an
AC voltage across the pick-up coils. Calculating the flux threading through each of
the pick-up coils due to the sample’s moment is quite computationally intensive so a
better tactic is to use the principle of reciprocity. The flux threading the coil from the
moment is the same as the flux at the moment if the current was in the pick-up coil,
this is to say the mutual inductance between the two is identical. The field generated
at the position of the sample by unit current in the pick-up coil can be used to calculate
the mutual inductance, then from the moment of the sample the induced voltage in
the pick-up coil can be calculated without any additional laborious integration steps.
This is repeated for all the finite elements of the sample and all the pick-up coils,
summing the voltage each time, to find the total signal

Vac = 2π f
∫

sample

pick-up∑
i

⎛
⎝ Bi (x)

| Îi |
·
⎛
⎝excitation∑

j

χB j (x)

μ0

⎞
⎠

⎞
⎠ dV . (4.19)

Here, f is the AC driving frequency, Bi (x) is the magnetic field at position x due to
unit current | Îi | in pick-up coil i ,χ is the volumemagnetic susceptibility of the sample
and B j (x) is the field at position x in the sample from the excitation current flowing
around excitation coil j . When the coils are not compensated this is the additional
voltage due to the sample, on top of the background signal from themutual inductance
between the excitation and pick-up coils. Typically the background is much larger
than the signal from the sample; it can be calculated using Babic’s formula [68].
Demagnetisation effects from the sample’s geometry are not included in this simple
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model but as a first approximation it can provide an adequate comparison of different
coil geometries. The code to run these simulations is not very long but may be useful
to other groups measuring susceptibility, so it is included in full in Appendix D.

The chosen coil geometry is shown in Fig. 4.21. Superconducting NbTi wire was
used for the excitation coil because it enables a large field to be produced without
requiring a large number of turns which would take up valuable space; a relatively
large current can be used without causing unmanageable heating. With 15 turns of
50µm wire starting from an internal diameter of 500µm and making three layers,
the field at centre of the coil is ∼9 G with a current of 30mA (RMS). The pick-up
coil diameter was maximised to fill the space inside the excitation coil and was made
using 50 turns of 15µm copper wire. I decided to couple the pick-up coil to a low
temperature transformer mounted inside the vacuum can at 4K. For susceptibility
measurements the signal-to-noise ratio can be increased by increasing the driving
frequency but because I was wary of finite frequency effects [2, 69] this time I opted
for a low temperature transformer with a limited frequency range but capable of
achieving a better noise level of∼40 pV/

√
Hz. I was only interested in the additional

susceptibility signal due to the metamagnetism, so a slowly varying background
signal was subtracted from all the data sets using a 3rd-degree polynomial fit to
the susceptibility data away from the regions of metamagnetism. This background

(a) (b)

(c)

Fig. 4.21 Susceptibility Coils. a Model of the susceptibility coils used in the simulation. The
excitation coil has 15 turns of 50µm wire wound in three layers with diameters 550, 650 and
750µm. The pick-up coil fits within the excitation coil and consists of 50 turns of 15 µm wire in
five layers with diameters from 315 to 435µm. The pick-up coil rests on the surface of the sample
which is 250 µm wide and 80µm thick. b and c The actual susceptibility setup. The coils are
mounted on a flexible cantilever so they can be easily positioned above the sample
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includes both the background signal from the coils and the normal paramagnetic
response of the sample. The coils are not calibrated, so changes in susceptibility are
quoted in arbitrary units in all the figures. However the relative amplitude at different
strains can still be directly compared since for all the measurements the excitation
current and frequency, and all the measurement electronics, remained the same.

4.3.4 Strain Transmission

As described in Chap.2, a finite element simulation must be used to estimate how
much of the displacementmeasured by the device is transmitted to the sample through
the softer epoxy. Using a shear modulus of 6 GPa for the epoxy and the elastic
modulus of Sr2RuO4 [70] in the absence of a measurement for Sr3Ru2O7, the strain
at the centre of the sample is approximately 70%of that calculated using the actual gap
between the sample plates (the dimensions of the sample are given in Fig. 4.18). This
is perhaps a slight under estimate as Sr3Ru2O7 may well be softer than Sr2RuO4 but
uncertainty in the exact properties of the epoxy at low temperatures mean all strains
are quoted with a 20% uncertainty, a systematic error affecting all measured strains
equally.

4.3.5 Low Temperature Cryostat

To reach the temperatures needed to observe the novel phase a 3He cryostat was
used. The inside of the vacuum can is pictured in Fig. 4.23. This cryostat, which we
specified, ordered and commissioned for this project, has a particularly large bore
sample space, 75mm diameter, providing enough space to have the large strain rig
perpendicular to the magnetic field and the magnetic field along the sample’s c axis.
The requirement of the large bore means the maximum field of this system is 10T.
The 3He part of the cryostat is a closed system which can operate down to 270mK in
single-shot mode or in a higher temperature mode up to ∼50K. The basic principles
of the two modes of operation are shown schematically in Fig. 4.22.

For low temperature operation a regular 1K pot pumping on 4He from the main
reservoir of the cryostat is used to reach ∼1.4K. This is used as a cold source to
condense a small amount of liquid 3He. Heating up the sorb above 25K causes it
to outgas, releasing the adsorbed 3He which then condenses in the column through
the centre of the 1K pot collecting in the lower 3He pot. After about 45min with the
sorb at 45K all the 3He is condensed into the 3He pot, but the temperature is still the
same as the 1K pot. Allowing the sorb to cool starts to pump on the liquid 3He as the
3He vapour is adsorbed back onto the sorb’s large surface area, evaporatively cooling
the 3He pot. Using 3He much lower temperatures can be reached from evaporative
cooling than for 4He. Superfluidity limits the ultimate base temperature and since
3He is a fermion this develops at lower temperatures than in 4He. In this cryostat a
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(a) (b)

Fig. 4.22 Principle of operation of the 3He refrigerator. a and b To reach temperatures
below 1K the condensing cycle begins by warming up the sorb to 45 K, outgassing the adsorbed
helium-3 which then condenses through the 1K pot into the lower helium-3 pot. Once the sorb
is cooled back down it also acts as a pump, evaporatively cooling the 3He pot by readsorbing the
helium-3 gas. c To operate at higher temperatures the sorb is held at 22–25K maintaining a small
pressure of helium-3 gas which provides a heat link between the 1K pot and the sample stage which
is heated using a resistive heater. See text for further details

base temperature of 270 mK can be reached when the sorb is cooled back to 1.5 K.
By varying the temperature of the sorb and/or in combination with resistive heaters
at the sample stage the temperature can be controlled precisely between 270 mK and
1.5 K. The sorb continues to pump on the 3He pot until all the 3He has evaporated and
the 3He must be recondensed to continue operation. In our cryostat the run time for a
single condensing cycle gives us more than 100 continuous hours at 270 mK. After
a few modifications to accommodate the strain rigs, the additional wires required
increase the heat load and limit the base temperature to ∼320mK. During operation
with excitation currents for all the different measurements and a sweeping magnetic
field the system warms up a little more to ∼350mK. To keep the temperature stable
throughout the measurement I decided to use a heater at the sample stage running
off a PID loop which warms the sample stage up a further 20mK. The PID control
can keep the temperature constant to within ±1mK while ramping the field up and
down to 10T.

When operating at higher temperatures no liquid 3He remains in the pot. Instead
the sorb is held at approximately 20–25K to provide a small pressure of 3He gas in
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Fig. 4.23 Low
temperature cryostat.
Business end of a 3He
sample in vacuum cryostat.
This cryostat has a large
75mm internal diameter bore
to accommodate large
uniaxial stress cells
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the system providing a heat link between the sample stage and the 1K pot. Restive
heaters at the sample stage are then used to heat against the cooling power of the 1K
pot and temperatures up to approximately 50K can be safely reached. It is possible
to transition between these the two regimes but while ramping the temperature from
50K to 300 mK a stop at 1.5K must be made to recondense the 3He.

Before starting these measurements I installed and set up the cryostat, measure-
ment rack and computer control for all the instruments. The details of this computer
programaredescribed inSect. 3.3.Akey feature of the softwarewas the automationof
nearly all measurement routines. This meant the cryostat could be left unattended for
several days at a time continuing to record data and, importantly, the control software
was capable of automatically recondensing 3He once the pot became empty and then
continuing the measurements once the stable base temperature was reached again.
The main human interaction needed during the course of this essentially autonomous
measurement run was to refill the main helium bath of the cryostat.

4.4 Results and Discussions

I will start by presenting the results from the resistivity measurements under strain
first and then show the susceptibility data for comparison.

4.4.1 Magnetoresistance

The longitudinal resistivity ρxx for the strained sample at 370mK and a series of
applied εxx strains is shown inFig. 4.24a.Theorigin of the strain scalewas determined
from a number of factors. First, the measurement nearest zero strain should preserve
the overall shape that is seen in strain free samples mounted on flexible wires, see for
example Fig. 4.13. Secondly, but less subjective, the transitionfields and temperatures
of the region of enhanced resistivity should coincide at zero strain for the longitudinal
and transverse measurements. Determining these transition fields and temperatures
is described later on, see Fig. 4.36.We estimate the error in identifying zero strain for
these measurements to be ±0.02%. For the field ramps plotted here the strain was
incremented between each field ramp at 10 T, outside the field range, at least initially,
of phase formation. This is important because if the phase does involve spontaneous
symmetry breaking, increasing the strain within the region of phase formation may
lead to metastable domain configurations.

A small lattice distortion has a dramatic effect on the resistivity. In an unstrained
sample the resistivity increases by almost 100% upon entry to the phase with field at
low temperatures, but when the sample is compressed to only 0.1% this enhancement
is increased by almost a factor of two. The extent of the field range showing enhanced
ρxx also increases with strain, albeit not so substantially at low strains, and perhaps
one of the most striking features is the vast growth of the B region, which at zero
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(a)

(b)

Fig. 4.24 Magnetoresistance. a Longitudinal resistivity ρxx against c-axis magnetic field for a
series of applied strains at 370mK. b Transverse resistivity measurement against c-axis magnetic
field for the same sample and strains. The measurement configuration is depicted in the upper right
corner, contact numbers are as per Fig. 4.19. V46 is the voltage difference between contacts 4 and 6
when current I35 is passed between contacts 3 and 5. The transverse measurements were at 380mK.
The black curves in both panels are the measurements closest to zero strain

strain is only a tail on the high field side of the main A phase between 8.1 and 8.5 T
As the strain is increased its visibility grows, becoming comparable in magnitude
to that of the A region. Above about 0.2% compression the breadth of the region
of enhanced resistivity in field starts to grow substantially faster to both lower and
higher fields, covering almost the whole of the measured field window. This can be
seenmost clearly in an alternative representation of the data in Fig. 4.25a as a contour
map. Under tension the resistivity enhancement is rapidly suppressed. 0.07% tension
is already enough to almost completely eliminate any resistivity enhancement.

The results of the transverse measurements are shown in panel B of Figs. 4.24 and
4.25. The effect is the mirror of the longitudinal response. Under εxx compression
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(a)

(b)

Fig. 4.25 Magnetoresistance contour plots. Contour plots of the longitudinal (a) and trans-
verse (b) resistivities from Fig. 4.24 as a function of c-axis magnetic field and applied strain

the phase-induced enhancement in the transverse response is suppressed whereas
tension strengthens the enhancement. The approximate mirroring of the longitudinal
and transverse responses is also clearly evident in the contour maps in Fig. 4.25 and
in 3D surface plots of the resistivity in Figs. 4.26 and 4.27. As discussed earlier, the
transverse measurement is likely not a measure of only the in-plane resistivity ρyy ;
some component of ρzz is mixed in. If the current was directed completely within
the ab-plane and the contacts aligned as a perfect square, the voltage measured
in the transverse geometry at zero strain should be an exact scaled copy of the
longitudinal response. The shape observed here, even at zero strain, is quite different.
This discrepancy might be due to the additional component of c-axis resistivity,
however the c-axis magnetoresistance of Sr3Ru2O7 has not been well studied so no
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Fig. 4.26 Magnetoresistance. Surface plot of the longitudinal resistivity ρxx against c-axis
magnetic field and applied strain at 370mK

quantitative comparison can be made. Preliminary investigations by Perry [13] show
that the c-axis resistivity is influenced by the metamagnetism but a study of how the
novel phase formation affects the c-axis magnetoresistance has not been undertaken.
Before analysing the transverse measurements in too much detail, characterisation
of the c-axis resistivity would be desirable.

Misalignment of themagnetic fieldwith respect to the crystalline c-axis could also
influence the shape of the resistivity enhancement. The rig is mounted horizontally
in the bore of the magnetic and the holder attaching the rig fixes this alignment. Here
the alignment should be better than ±3◦. However the sample can also be slightly
misaligned with the rig as its orientation is not held rigidly while the epoxy cures.
The two ends of the samples are fixed at the same height in the rig but there is the
possibility for the sample to rotate about its long axis as the epoxy cures since the
gap between the sample plates sandwiching the ends of the sample is larger than
the thickness of the sample. When curing the epoxy the pre-attached voltage wires
were positioned to try and prevent the sample from rotating but a small misalignment
might still occur. Any misalignment of the field will be noticeable as a change in the
onset field of the phase; rotating the field off axis decreases both field boundaries of
the phase [24]. By comparison to data fromBruin [24]who used a vectormagnet with
very precise control of the field alignment, the onset field we observe here suggests
the sample is aligned better than±3◦ from axis. At themomentwe cannot definitively
identify the cause of the different shape observed in the transverse response and it
would be best to repeat these measurements on more samples and also perhaps carry
out a dedicated more accurate study of the c-axis resistivity which would now be
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Fig. 4.27 Transverse magnetoresistance. Surface plot of the transverse resistivity against
c-axis magnetic field and applied strain at 380mK. See Fig. 4.24 for the measurement configuration

possible using the precision of a Focus Ion Beam (FIB) to fabricate samples of the
correct geometries.

4.4.2 Metamagnetism

Figure4.28 shows the AC susceptibility measurements after the smoothly varying
background subtraction described in Sect. 4.3. What is left is the additional sus-
ceptibility due to the metamagnetism. As a reminder, at zero strain susceptibility
measurements show three metamagnetic jumps, see for example Fig. 4.13. The first
at 7.5T is a broad crossover, the second is the largest in magnitude and signifies the
transition into the A phase at ∼7.8 T and the third at ∼8.1 T occurs at the transition
between theA andB phases. At 370mK the transitions at 7.5 and 8.1 T are veryweak.
They are still observable above the background at zero strain but under both com-
pression and tension they quickly become lost in the background.Without being able
to follow these transitions to lower temperatures I will mainly be concerned with the
metamagnetic transition at the entrance to the A phase. The susceptibility behaviour
under compression and tension is in stark contrast to the approximate mirroring of
the longitudinal and transverse resistivity between compression and tension. Under
tension the peak in the real part of the susceptibility moves to lower fields without
changing in magnitude significantly. At zero strain this transition is first-order and a
peak in the imaginary part of the susceptibility is observed due to hysteresis-related
dissipation [2]. This peak in the imaginary part of the susceptibility can be seen for
the strained sample too, albeit with a low signal-to-noise ratio. However, unlike the
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(a) (b)

(d)(c)

Fig. 4.28 Susceptibility against field. a and b Real part of the AC susceptibility χ against
c-axis magnetic field for a series of applied strains at 370mK. The black curves are themeasurement
closest to zero strain. a showsmeasurements under tensioned and b compression. All measurements
are of increasing field sweeps and are quoted as�χ because of a background subtraction procedure
detailed in the text. c and d The imaginary part of the susceptibility for the same measurements.
The susceptibility is expressed in arbitrary units but the scale divisions for the real and imaginary
susceptibilities are the same

corresponding peak in χ′ it does not seem to move to lower fields with tensile strain
rather it very quickly dies out and stays centred on approximately the same field
value.

Under compression something different occurs. The main peak stays at approx-
imately the same field but changes magnitude initially, then as it is decreasing in
magnitude a shoulder starts to protrude on the lower field side. This develops into a
second weaker peak before also becoming lost into the background by ∼0.4% com-
pression. The peak in χ′′ also disappears with only a small amount of compressive
strain. As a better comparison with the resistivity, Fig. 4.29 shows a contour plot of
the susceptibility with the lower field boundary of the A phase, H1, as identified by
the maximum slope in the magnetoresistance, overlaid on top. The H1 line from the
magnetoresistance tracks well with the peak in susceptibility and loses definition at
a similar strain as that at which the peak in susceptibility can no longer be resolved.
From this plot it might appear that zero strain is wrongly identified and the sample
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(a)

(b)

Fig. 4.29 Susceptibility contour plots. Contour plots of the AC susceptibility measurements
from Fig. 4.28 as a function of c-axis magnetic field and applied strain. The dashed white line is the
H1 line of the anomalous phase from the loci of maxima in dρxx/dH . The dotted white line is the
equivalent maxima in the transverse resistivity measurement

is really under slight tension at what we are calling zero strain. However, this is still
an open question and it will be addressed again when the temperature ramp data is
presented.

To help visualise how the susceptibility changeswith strain, the data is also plotted
as 3D surfaces in Figs. 4.30 and 4.31.
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Fig. 4.30 Susceptibility. Surface plot of the real part of the AC susceptibility χ against c-axis
magnetic field and applied strain at 370mK

Fig. 4.31 Susceptibility. Surface plot of the imaginary part of the AC susceptibility χ against
c-axis magnetic field and applied strain at 370mK
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4.4.3 Strain Ramps

So far all the data presentedwere recordedwhile ramping themagnetic field. It is also
possible to traverse phase space in an orthogonal direction, sweeping the strain at
fixed field and temperature. Figure4.32 shows a series of strain ramps at fixed fields
covering the field range of the novel phase. Outside the region of phase formation
there is no measurable hysteresis between increasing and decreasing strain runs and
the data overlap with the data recorded during the field ramps. However, in the field
range of the phase, some hysteresis is observed at high compression but close to zero
strain almost no measurable hysteresis is detected at any field.

To investigate the effect of strain over a wider field range a series of short strain
ramps spanning zero strain were carried out at fields between 0 and 10T both at
370mk and 4.5K. The elastoresistance (also known as the gauge factor), determined

Fig. 4.32 Resistivity
against strain.
Longitudinal resistivity ρxx
at a series of constant c-axis
magnetic fields and constant
temperature as the strain is
swept through the anomalous
phase. a Fields up to 7.9T.
b Fields above 7.9T. Solid
lines for decreasing strain
sweeps (towards higher
compression) and dashed
lines for increasing strain
(towards tension)

(a)

(b)
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Fig. 4.33 Elastoresistance. Gauge factor against c-axis magnetic field at 4.5K and 370mK.
The gauge factor is highly nonlinear with strain and is evaluated at zero strain from the derivative of
the elastoresistance (1/R)dR/dεxx |εxx=0. The circle and square points are calculated from short
strain sweeps through zero strain at fixed field and temperature. The solid line is calculated by
interpolating between different field sweeps at fixed strain and temperature but at fine enough strain
spacing to accurately capture the slope at zero strain

from the slope of these measurements at zero strain is plotted in Fig. 4.33. Even if
the resistivity of a material is unaffected by strain, the elastoresistance still includes
a contribution from the geometrical change of the sample. For an isotropic material
with a Poisson’s ratio ν this contribution is 1 + 2ν, which in a normal metal is about
2, and is typically the dominant contribution. In a correlated system, however, the
changes in hopping strength with applied strain can have a much larger effect on
the resistivity. For Sr3Ru2O7 at zero field the gauge factor is ∼15, not a surprising
result due to its known strong correlations and narrow bandwidth. The gauge factor
increases towards the critical field but is cut off by the formation of the phase which
shows a dramatically large and negative response. At 8T the gauge factor is close
to −2000. For comparison the gauge factor of another nematic material, BaFe2As2,
peaks at ∼−90 at the nematically driven structural transition [71]. At 4.5K, above
the temperature for phase formation, the gauge coefficient for Sr3Ru2O7 remains
positive at all fields and peaks at ∼7 T with a value of ∼35.

4.4.4 Higher Temperatures

Up until now the main measurements of Sr3Ru2O7 under strain have been carried out
at base temperature. Mapping out the complete boundary of the phase in temperature
as well as strain and field is an important experimental task but a formidable one. The
data already presented cover a cut through phase space in the field-strain plane, so a
sensible start for investigating the wider phase space is a cut in the temperature-strain
plane. A field of 7.95T was chosen, right in the centre of the A phase, and a series
of temperature and strain ramps was performed.
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Figure4.34 shows the longitudinal and transverse resistivity between 400mK and
7K for a series of applied strains. This field is very close to the QCEP at 7.9T and the
effect on the resistivity is clearly apparent. Above the temperature of phase formation
at zero strain the resistivity is almost linear in temperature for thewholemeasurement
range. At higher compression the exponent of the temperature dependent part of the
resistivity increases. The inset to panel A of the figure shows this exponent extracted
from a ρ = ρ + AT α fit of the resistivity between 3 and 8 K. Slightly puzzlingly the
exponent keeps decreasing under slight tension. It would be interesting to attempt

(a)

(b)

Fig. 4.34 Resistivity against temperature. a Longitudinal resistivity against temperature at
7.95T for a series of applied strains. The upturn in resistivity marks the onset of the anomalous
phase. The transition temperature is identified by the maximum in d2ρ/dT 2 and is shown by the
dashed line. A second transition is seen at lower temperatures for compressions above ∼−0.1%
and the second dashed line follows the corresponding extremum in the second derivative. The inset
shows the resistivity temperature exponent at high temperatures calculated from a fit of the form
ρ = ρ0 + AT α above 3 K. b Transverse resistivity measurement against temperature at 7.95T for
a series of applied strains. See Fig. 4.24 for the measurement configuration. The dashed line marks
the maximum in the second derivative with temperature
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to reach higher tensile strains to see at what point the exponent saturates or starts to
increase again. In resistivity the entrance into the novel phase with temperature is
marked by a saturation or slight upturn [24, 49]. This can be identified in both the
longitudinal and transverse measurements. To identify the transition temperature in
a fully consistent manner, the peak in the second derivative of the resistivity minus
the high temperature fit with respect to temperature was used. An example is shown
in Fig.C.2a in the appendix. The dashed black line in the figure shows the position
of this peak in the second derivative. At high compressions a second feature appears
at a lower temperature and can also be identified by a corresponding extremum in
the second derivative.

(a)

(b)

Fig. 4.35 Resistivity against strain. a Longitudinal resistivity against strain at 7.95T for a
series of fixed temperatures. The resistivity is largest in the anomalous phase and the transition
is identified by the maximum in d2ρ/dε2xx . The dashed line follows this maximum in the sec-
ond derivative. b Transverse resistivity measurement against strain at 7.95T for a series of fixed
temperatures. The transition to the high resistivity phase is identified in the same manner
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(a)

(b)

Fig. 4.36 Boundaries of enhanced ρxx and transverse resistivity. Empirical phase dia-
grams for the boundaries of enhanced longitudinal and transverse resistivity in a the field-strain
plane at 0.37K and b the temperature-strain plane at 7.95 T. The boundaries are identified through
both resistivity and susceptibility measurements. Left triangles are the loci of the peak in χ′, upright
triangles are the loci of maxima in dρ/dH , and these mark the H1 line. The resistive transition
features are shown in the inset. H2 marked by right triangles and H3 by inverted triangles are the
loci of maxima in d2ρ/dH2. The boundary is also identified by maxima in d2ρ/dε2xx from strain
sweeps andmarked with squares. Open symbols are frommeasurements of the longitudinal resistiv-
ity and closed symbols the transverse resistivity. The roof of the phase is identified by temperature
ramps and more strain ramps. Diamonds mark the loci of maxima in d2ρ/dT 2 and circles the loci
of maxima in d2ρ/dε2xx . Above ∼−0.1 % compression a second transition is observed at lower
temperatures and is marked by stars following the loci of a maxima in |d2ρ/dT 2|

Strain sweeps at a selection of temperatures, all at 7.95T, are shown in Fig. 4.35.
Here the strain range is smaller than before and no hysteresis was observed between
the increasing and decreasing strain runs. The boundary of enhanced resistivity is
not as sharp in strain ramps as in temperature ramps, but a weak peak in the second
derivative with strain can still be seen, see Fig.C.2b. The calculated strain values
coincide well with those from the temperature ramps suggesting some validity to
this analysis.
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Fig. 4.37 Boundaries of enhanced ρxx and transverse resistivity. An empirical phase
diagram for the bounding surfaces of enhanced longitudinal and transverse resistivity, in blue and
red respectively, based on the resistivity and susceptibility measurements presented in Figs. 4.24,
4.28, 4.34 and 4.35. The symbols are the loci of peaks in susceptibility or maxima in derivatives
of the resistivities with respect to temperature, field or strain as follows: � dρ/dH , � d2ρ/dH2,
� and ◦ d2ρ/dε2xx , � d2ρ/dT 2 and � peaks in χ′. Open symbols are from measurements of the
longitudinal resistivity and closed symbols the transverse resistivity. The shaded surfaces are guides
to the eye only. The region encloses both the A and B phases with the boundary between them H2
drawn with

�

symbols only while it can be identified from the corresponding feature in d2ρ/dH2.
The solid lower bounding lines are H1 and H3

From the temperature and strain ramps at 7.95T an empirical phase boundary can
be drawn defining the regions of enhanced longitudinal and transverse resistivity.
The field ramps described earlier can also be used to identify this phase boundary
but this time in the strain-field plane at 0.37K. Guided by the analysis of Grigera
et al. [4] the field defining the entry to the phase, H1, coincides with a maximum
in dρ/dH , the same field as that at which the peak in susceptibility is seen. Here
I make the assertion that the transition between the A and B phase, H2, and the
upper line of the B phase, H3, can be identified by peaks in the second derivative
d2ρ/dH 2, i.e. where the slope of the magnetoresistance changes. Both the first and
second derivatives of an example magnetoresistance curve are shown in Fig.C.1 in
the appendix along with the identified fields H1, H2 and H3. The accumulation of all
these points is presented as an empirical phase diagram in Figs. 4.37 and 4.36.

4.4.5 Discussion

The measurements presented here reveal the rather complex development of the
novel phase of Sr3Ru2O7 with strain. As with small in-plane magnetic fields, small
orthorhombic lattice distortion also reveals the large susceptibility of magnetotrans-
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port toC2-symmetric fields. The complex nature of the novel phase is not understood
theoretically to date, and as such an in-depth analysis of the influence of strain on
all aspects of the phase is nots yet manageable. There are however some key points
we can draw from these measurements and these should be useful for constraining
further theoretical investigations.

The first question we address is the symmetry of the novel phase. It was sus-
pected that much of the unusual behaviour observed in magnetotransport could be
explained by domains of spontaneous C2-symmetric order. The 100% increase in
resistivity as the phase is entered suggests an additional scattering channel which
could be domain walls, additionally small in-plane fields induce a strong resistive
anisotropy suggesting reorientation of either the order or domain walls. However,
despite detailed investigations searching for definitive signatures of domains and
domain wall movement, no conclusive evidence has been discovered. In light of the
new results from uniaxial pressure tuning we now also discuss the possibility of a
ground state with a large albeit finite susceptibility towardsC2-symmetry and overall
C4-symmetry. In terms of a Landau free energy for a multicomponent order param-
eter, say x- and y-oriented density waves, we are asking the question of whether
the two components can microscopically coexist or whether the development of
one precludes the condensation of the other, thus resulting in a lowering of rotational
symmetry of the ground state. The Landau free energy for the two scenarios is shown
in Fig. 4.38. When the prefactors satisfy uaub < u2ab, a first order phase transition
separates the states of orthogonal polarisation and at zero C2-symmetry breaking
field, i.e. strain or in-plane field, domains of both polarisations are expected. When
uaub > u2ab, the two order parameters are not in direct competition and they can
microscopically coexist over a region of applied C2-symmetry breaking field.

It is not clear from the neutron scattering work whether the scattering peaks that
correspond to orthogonally oriented spin density waves arise from separate domains
of a single density wave or from their microscopic coexistence. Thermodynamic
measurements establish some form of symmetry breaking through the second-order
roof of the phase [4, 73, 74] but this could be the translational symmetry breaking of
the density waves or the possible lowering of rotational symmetry C4 to C2, or both.

The results that put the strongest constrains on possible domain formation are
from a series of resistivity measurements in a fully rotatable vector magnetic field by
Bruin andBorzi [24, 62]. The vectormagnet’s unique capabilities allow both the field
orientation and strength to be changed precisely and smoothly without, for instance,
affecting the sample temperature. By rotating the in-plane field slowly through 90◦
they could follow how the hard and easy transport axes are exchanged. In the scenario
of domains the naive expectation is a sharp jump in the resistance as the orientation
of the order flips when the field is rotated. It was found, however, that the in-plane
resistances vary smoothly as the field direction is rotated. If there were many small
domains one might expect a series of much smaller steps, however, no such jumps or
excess noise from domain reorientation were resolvable at all above the background
noise level of the measurements.

If domain reorientation were also responsible for the large C2-symmetric suscep-
tibility, hysteresis might be expected when the applied field is varied. To test for this
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(a) (b)

Fig. 4.38 Phase diagram of a two-component vector order parameter. The Landau free
energy for a two-component order parameter, where each component is C2 symmetric. The phase
diagram of temperature (T ) against h, a C2 symmetric field, shows a a bicritical point (BP) when
uaub < u2ab and b a tetracritical point (TP) when uaub > u2ab. The double line marks a first-order
transition, all other transition lines are second-order.

Bruin and Borzi started with the field applied along the sample’s c-axis and then
rotated the field far enough off axis to exit phase and then re-enter with the strongest
possible in-plane field. In their measurements they could not resolve any hysteresis
and the same conclusion was made when comparing clockwise and anticlockwise
field rotations. They observed that when the magnetic field is tilted off axis there is
still a region of overlap where both ρa and ρb are enhanced and this region extends
out to at least 1.7 T.

In the uniaxial pressure measurements presented here there is also an absence of
hysteresis at small strains when crossing from the regions of enhanced longitudinal
to transverse resistance and vice versa. The large overlap in strain of both enhanced
longitudinal to transverse resistance is also clear. In both these measurements the
region of phase formation was repeatedly entered and exited in the presence of non-
zero C2 field. Approaching the phase in this way should mean that any domain
formation is at or at least very close to its ground state configuration with respect to
the applied C2 field. This means that for the resistive properties of Sr3Ru2O7 to still
be explainable in terms of domains, the formation of domains must be energetically
favourable up to at least the upper limits of the overlap regions; ∼1.7T for in-plane
field and ∼0.08% strain. Given that the associated lattice distortion in the presence
of an in-plane field component is only ∼4 · 10−6 [75] and the size of the largest
metamagnetic jump is only 0.008 T [73], domain formation stabilised by long-range
elastic ormagnetic interactions up to the required limits seems naively rather unlikely.
Disorder could extend the region of domain formation, be it from local sample defects
or inhomogeneously applied strain, but the observed broadening of the transitions is
not more than the width of the overlap region. The data do not appear like they could
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be the result of a disorder broadened transition at zero C2 field but rather it seems
more likely there is a real transition at a small but finite C2 field.

The key point of the discussion so far is that any domains must result in extremely
weak hysteresis, below the resolution of the measurements, but if domains are the
origin of the large C2-symmetric susceptibility they must also be robust against sub-
stantial C2 fields. In general these requirements will not be satisfied simultaneously
and the data seem to suggest that the measured resistivity is intrinsic to the phase. If
this is the case then the data is most naturally explained by a multi-component order
parameter with microscopic coexistence of [100]- and [010]-oriented components at
low applied C2 fields.

The close connection between the intensity of spin density wave scattering peaks
in neutron scattering and the resistivity adds some validity to this interpretation
and suggests the two components of the order parameter are associated with the
orthogonal spin density waves. Their microscopic coexistence could take on many
forms. The simplest would be when both orthogonal density waves coexist within
each layer but the two components could also exist spatially separated with the
direction of the density wave rotating 90◦ between the layers within each bilayer or
between the bilayers themselves.

Even though spontaneous C2-symmetry breaking now seems unlikely the partic-
ularly large susceptibility of the C4-symmetric ground state to C2-symmetric fields
is striking and deserves further investigation. It may be a result of fine-tuning or
only weakly stabilised density waves but this is an interesting avenue for further
measurements.

After excluding domains, explaining the origin of the resistive enhancement
remains a considerable challenge. At high strains the ratio of the resistivity along
the hard and easy axes is ∼2.5. This is particularly large. For comparison, in another
spin-density wave system, elemental chromium, a three-dimensional spin-density
wave induces a maximum resistive anisotropy of only 8% [76, 77]. In Cr, a spin den-
sity wave matching a nesting vector of the Fermi surface opens a gap on those parts
of the Fermi surface, but in Sr3Ru2O7, a multiband material, the number of states
that must be gapped away to realise the large resistive anisotropy seems unrealistic.
Thermodynamic measurements also show that the entropy and specific heat are high-
est in the region of phase formation, directly arguing against widespread gapping.
To further our understanding of Sr3Ru2O7 it is of great importance to determining
the origin of the large changes in resistivity and this should be a key focus for future
investigations.

The addition of magnetic measurements allowed me to measure the influence
of strain on the metamagnetic quantum criticality directly. Pressure along the c-
axis is known to rapidly suppress the transition fields but these measurements show
the effect of in-plane pressure is much weaker. Simultaneous measurements of the
resistivity and susceptibility confirm that the onset of enhanced resistivity under
strain tracks the metamagnetic transition, and that the phase is still bounded by a
metamagnetic transition, at least on the low field side. In-plane strain lowers the field
of themetamagnetic transition at∼7.8 T at a maximum rate of 1.6 T/%, something of
the order of 1 T/GPa. It is suspected that the metamagnetism is related to a Van Hove
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singularity in close enough proximity to the Fermi surface that can be reached by the
Zeeman splitting of an ∼8 T field. Since the metamagnetic fields change very little
under strain, the effect of in-plane anisotropic strain on the part of the Fermi surface
close the Van Hove singularity must be weak, or else a vastly different metamagnetic
field might be expected.

The positions of the susceptibility peak and the onset of enhanced resistivity track
together well under strain but there is no good connection between the strength of the
peak in χ and the magnitude of the resistivity enhancement. The susceptibility peak,
which relates to some q = 0 physics, becomes weaker with strain, by either measure
of its height or area, whereas the enhancement in ρ increases. It is often assumed that
the metamagnetism in Sr3Ru2O7 is associated with a peak in the density of states
that can satisfy the Stoner criterion once sampled by the Zeeman splitting of an
applied field. If the peak in the density of states occurs along the x- and y-directions
in the band structure, anisotropic strain could naturally lead to a weakening of the
associatedmetamagnetism.Under the application of anisotropic strain the bandwidth
would increase along one direction and decrease along the perpendicular direction,
changing the energy of the peaks in the density of states. Under applied field the
density of states at the Fermi energy would therefore peak at a different energies due
to the now non-equivalent peaks along the x- and y-directions. Depending on the
strength of the peaks two scenarios can be imagined. If neither peak alone provides
a strong enough divergence of the density of states the Stoner criterion may only
remain satisfied at low strain while there is a large enough overlap from both peaks
and at higher strains the metamagnetism might then be expected to reduce to a
smooth crossover. If, however, the peaks are strong enough alone to satisfy the Stoner
criterion metamagnetism at two separate fields might be expected, but each smaller
in magnitude than at zero strain. To address these scenarios in any more detail better
knowledge of the band structure and how it changes under both applied field and
strain would be necessary.

In Sr3Ru2O7 the physical property that shows the most dramatic change is the
resistivity. In spite of this, the new phases/phase transitions that appear or disappear
with strain and magnetic field all lead to a resistivity of very similar order of mag-
nitude. Either this implies only small changes to the Fermi surface are ever being
induced, or that the mechanism by which the resistivity is being increases is always
the same.

4.5 Conclusions

In this work I have applied in-plane uniaxial stress to Sr3Ru2O7, reaching more
than a factor of two higher strain than that in the previous study. Additionally,
by significantly improving the resolution of magnetic susceptibility measurements
under strain, I could measure the magnetic response directly, simultaneously with
resistivity.
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The strong susceptibility of the novel phase to in-plane magnetic fields is also
found for in-plane anisotropic strain. The magnetic susceptibility measurements
show that the novel phase under strain is still bounded by a metamagnetic tran-
sition, at least on the low field side. The entrance to the phase, H1, moves to lower
fields with either compression or tension but at high compression the signature of
the metamagnetic transition in susceptibility loses definition. This occurs at a sim-
ilar strain to that at which the jump in resistivity at the entrance to the novel phase
also starts to broaden more rapidly. At the highest strains measured in this work, the
region of enhanced resistivity covers almost the entire measured field window from
7 to 10T and more detailed structure also appears to develop.

Close to zero strain we can identify a clear region of overlap where both the
longitudinal and transverse resistivity are enhanced. The extent of this region puts
strong bounds on the energetics of any possible domain formation. In addition, with
the absence of any hysteresis at low strains, the phase diagram that these uniaxial
pressuremeasurements reveal ismost easily explained by a state that does not involve
any spontaneous symmetry reduction and rather only a large but finite susceptibility
to in-plane symmetry breaking fields.

These measurements show the importance of using external probes to selectively
break underlying symmetries when investigating novel physics, and these techniques
should be applicable to a wide range of other materials. The evidence against sponta-
neous symmetry breaking in Sr3Ru2O7 also strongly motivates the need for a better
understanding of the origin of the resistive enhancement in the region of novel phase
formation, something that will be of paramount importance for future investigations
of Sr3Ru2O7. Completing the phase diagram in the rest of field-temperature-strain
space would be a formidable task but some select cuts may prove to be useful, for
instance to investigate the resistivity temperature exponent at high compression and
tension in more detail. The combination of both vector-magnetic field and uniaxial
stress simultaneouslymay also provide important information of how these two sym-
metry breaking fields compete or interact, andwhether they have the same underlying
effect on the novel phase.
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Chapter 5
Conclusions and Outlook

I hope that during the course of this thesis I have demonstrated that the new uniaxial
stress technique that I describe is now coming out of its infancy. The first successful
adaptation of the device by another group has now been reported, and used by Stern et
al. [1] to study SmB6 under strain. I know that a number of other groups world-wide
are also working on implementing the technique, and versions of the Hicks design
are now being sold commercially by Razorbill Instruments.

I would like to conclude by summarising how the uniaxial stress technique has
developed and what I envision for the future; what physics it can help tackle and
some key directions for further technical development. For the scientific conclusions
regarding Sr2RuO4 and Sr3Ru2O7, the reader is referred back to the conclusions at
the end of each of the respective chapters.

The work in this thesis has hopefully demonstrated that the device as it stands
now is already a powerful tool for condensed matter physics research. Two of its
key uses have been demonstrated; its brute force is useful for Van Hove singularity
tuning, and its fine precision is useful for controlled symmetry breaking. I would
like to reiterate once more the significance of the energy changes possible with this
technique. We are now quite routinely able to reach strains of 1%, but to put it in
perspective it is useful to compare to more common energy scales. Roughly, one can
say that a strain of 1% can change the Fermi level by approximately 1% of the band
width. For Sr2RuO4 the band width of the γ band along the [100] direction is ∼3eV,
so a 1% change of strain along the [100] direction is equivalent to a temperature
change of ∼300K or the Zeeman splitting from a magnetic field of ∼600T.

I have looked mainly at ruthenates using both resistivity and magnetic suscepti-
bility but this uniaxial stress technique is applicable in principle to a far wider range
of materials and experimental techniques. As outlined in Chap.2, techniques such
as heat capacity, thermal conductivity, Seebeck and Nernst effect, nuclear magnetic
resonance (NMR), and many more, are all in principle possible. Additionally, since
the upper face of the sample remains exposed, even techniques like angle-resolved
photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM)
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may be possible. Even if experiment specific restraints impose a smaller strain range,
quite significant changes have still been demonstrated at lower strains, and integrating
these techniques with uniaxial stress will open up a whole host of new experimental
possibilities.

Much novel physics will benefit from the new perspective of uniaxial stress. For
example, in the high temperature cuprate superconductors the proximity of a Van
Hove singularity to the Fermi level is well-established [2–5]. If possible, tuning
through this Van Hove singularity with uniaxial pressure may provide a novel way
to explore the phase diagram with more control and less disorder than chemical
doping. Uniaxial pressure may also be useful for more direct investigations into the
superconductivity and competing instabilities. It iswell-established in certain regions
of the phase diagram that charge order is stabilised [6, 7], and nematic fluctuations are
reported in certain regions of the phase diagram too [8–10]. Both these phenomena
may have a strong coupling to uniaxial pressure and thus could reveal further insights
into the cuprates. For example, in rare-earth doped La2−xSrxCuO4, a system with an
analogous stripe phase to x = 1/8 doped La2−xBaxCuO4, uniaxial pressure applied
at a 45◦ to the Cu–O–Cu bond direction has been demonstrated to rapidly enhance
Tc by almost a factor of 2, and was attributed to a suppression of the competition
with stripe ordering [11, 12].

Many other novel superconductors would also be suitable for uniaxial stress mea-
surements. Themultiple superconducting phases ofUPt3 are known to responddiffer-
ently and anisotropically under uniaxial stress [13–15]. A reinvestigation with higher
homogeneity, precision and range could be quite fruitful. So too could investigations
on another possible time-reversal symmetry-breaking superconductor PrOs4Sb12
[16], and on the strongly nematic iron-based superconductors [17, 18].

Other puzzles such as the hidden order parameter in URu2Si2 might also be
amenable to study under high uniaxial pressure, but hopefully this technique can
find uses across a far wider range of fields than the quite closely related examples
suggested here.

As already discussed, we are now routinely capable of reaching 1% level strains.
The yield strain of some materials, however, can be much higher still and a key
direction for future developments will be to see how much higher we can push this.
Single crystal silicon and several other silicon containing ceramics have yield strains
greater than 3% [19] and ab initio calculations for pristine silicon nitride suggest
this could even be in excess of 10% for higher purity samples [20]. As part of this
development process, two key aspects should be the development of controlled stress
rather than controlled strain devices and miniaturisation.

Currently the largest uncertainty in determining the sample strain comes from
the epoxy. This rather imprecise strain scale means it is not possible to compare
subtle differences between many samples. In a device where stress rather than strain
is applied and controlled, the relatively softer epoxy does not hinder the accuracy,
since all the force applied to the epoxy must also be transmitted through the sample.
Controlling the applied stress is beneficial for other reasons too. It simplifies identi-
fying zero strain and eliminates the complications that arise from differential thermal
expansion in the controlled strain devices. Additionally the range of materials that
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can be measured is expanded. Materials which undergo structural changes involving
a large change in lattice constant between the mounting temperature and measuring
temperature would now be suitable for study, avoiding the complications that could
arise when the sample length is held constant in a controlled strain device.

For a truly controlled stress device the spring constant of the device must be lower
than that of the sample. Inherently this requires the device to produce a much larger
displacement in order to apply the force to the sample, for instance, by pushing on
one end of a soft spring. To facilitate this a purelymechanical solutionmay be needed
or perhaps some form of mechanical amplification for the piezo actuators.

Miniaturisation would also be useful on many fronts. Currently there are rather
stringent requirements on sample size, with a minimum sample length of approxi-
mately 1mm. For many interesting samples it is simply not possible to grow samples
big enough for this method and routes to expand the capability, for instance by
mounting samples to a platform that is then strained, should be explored. The upper
limits of strain will also be limited by the quality of the sample’s surface. Currently
all samples are prepared with mechanical cutting and polishing but more pristine
surfaces and geometries may be possible using new fabrication techniques such as
xenon plasma or liquid gallium focused ion beam milling. However, restrictions on
reasonable cutting time limit the overall size of samples that can be prepared in this
way. In the current device the achievable strain range is also limited by the strength of
the epoxy holding the sample between the sample plates. By reducing the thickness of
the sample, the force required and therefore the shear stress in the epoxy can also be
reduced. However, the length of the sample must also be reduced proportionally for
the same buckling limit to be maintained. The highest ultimate strain may therefore
come by utilising a combination of these ideas.

Overall we are still at an early stage in terms of the expected development of
the uniaxial pressure technique, and there is still plenty of room for advancement as
well as exciting opportunities for measurements to come. I hope then that the work
presented in this thesis provides strong motivation for tackling these new challenges
and experimental frontiers.
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Appendix A
Details of the Dual End Current Source
with Active Common-Mode Rejection

Common-mode voltage present on both measurement leads of a differential four
point resistance measurement can lead to significant offset errors if the common-
mode voltage exceeds the level at which the preamplifier or lock-in amplifier can
successfully reject it. Typically preamplifiers can be sourced with common-mode
rejection ratios (CMRR) up to 100–120 dB, but if the common-mode ratio is larger
than this, which can happen with very conductive samples and long resistive wiring
in a cryostat, the common-mode voltage itself must be reduced before a reliable
measurement can be achieved. This is a known problem and companies like Lake
Shore Cryotronics, Inc. and Quantum Design, Inc. incorporate symmetrical cur-
rent sources in some of their products to reduce common-mode voltages and allow
smaller resistances to be measured behind long resistive wires [1, 2]. The current
source built for this set of measurements follows most closely the implementation
from Lake Shore Cryotronics, Inc. in their model 370 and 372 resistance bridges,
but with a few key modifications. As well as reducing common-mode voltage, a bal-
anced current source also helps to reduce the effects of a noisy environment capaci-
tively coupled to the current leads. By providing equal impedances to ground at both
ends of the sample, the common-mode noise is not converted to differential noise as
occurs with a single ended source. This is actually one of the main reasons why dual
end current sources are incorporated into many commercial devices. In the follow-
ing section I will introduce how the common-mode problem can appear, and then
show the necessary steps to reduce it, before coming to our final implementation of
the current source.

Lock-in amplifiers typically provide a sinusoidal output voltage at their refer-
ence frequency. Models like the SR830 from Stanford Research can also provide
a few tens of milliamps on this output so, in combination with a shunt resistor,
this output can be used directly as a current source for a grounded load. If the
shunt resistor is chosen to be of much higher resistance than that of the sample
plus wiring, the current through the sample is approximately the ratio of the output
voltage and the shunt’s resistance. A spare lock-in amplifier or AC voltmeter can
also be used to measure the voltage drop across the shunt and calculate the cur-
rent more accurately. An improvement is to use a dedicated current source rather
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(a)

(b) (c)

Fig. A.1 A modified Howland bipolarity current source-sink. a Circuit diagram for a
single ended voltage to current converter for driving a grounded load. b and c In a four point
resistance measurement with long resistive wires in the cryostat, the large lead resistance to ground
produces a large common-mode voltage in addition to the normal sample voltage drop

than voltage source plus shunt. An example that can still be driven from the sinu-
soidal voltage reference of the lock-in is the modified Howland bipolarity current
source-sink from Horowitz and Hill p. 230 [3], see Fig. A.1. However, when using
any single ended current source to drive a grounded load there is always a common-
mode voltage present at the voltage contacts of a four point resistance measurement.
The common-mode voltage depends on the resistance to ground of the return current
path, Vcm = 1

2 (V+ + V−) ≈ I (Rlead + Rsample/2). The voltage measured in an ideal
four point resistance measurement depends only on the sample’s resistance but the
output of a real differential amplifier is better described by

Vout = G(V+ − V−) + G

CMRR

1

2
(V+ + V−) , (A.1)

where G is the differential gain of the amplifier and CMRR the common-mode
rejection ratio of the amplifier, normally expressed in decibels. A common-mode
signal of 100 mV is only cancelled to 1 part in 105 by a preamplifier with a CMRR
of 100 dB and so it appears as if there is still a 1µV differential signal at the input.

A better current source can be made by taking two of the modified Howland cur-
rent sources, inverting the input voltage for one of them, and joining their outputs
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together through the sample. Each half of the current source still provides the full
current output but with opposite sign. This centres the load between the two cur-
rent sources/sinks but a feedback mechanism must also be incorporated to keep the
current sources centred around ground, reducing any DC offset at the sample. The
average DC voltage at the output of the current sourcing op-amps can be calculated
by two slow integrators and then fed back to the non-inverting inputs of each of the
op-amps, driving the output back towards ground.

In the ideal case, when the two halves are identical, the load remains centred
between the two current sources. However, if the sample is not exactly the centre
of the load, i.e. the current leads or contacts have unequal resistance, or if the two
halves of the current source are not strictly identical then there will still be a small
but finite common-mode voltage in the measurement. Our current source can sense
this common-mode voltage and it uses additional active feedback to drive this back
towards zero. We sense the common-mode voltage directly between two of the volt-
age contacts of the four point resistance measurement. This ensures that exactly
the central point of the sample is held at ground, not the central point of the wires
plus contacts and sample which would be the case if the current contacts were used
instead. The common-mode voltage is first amplified and then used as the reference
point for the two integrators. Feeding back in this way causes each half of the cur-
rent source to move in an opposite direction when there is a common-mode voltage
present, thus driving the common-mode voltage back towards zero.

A simplified circuit diagram is pictured in Fig. A.2. The complete design includes
a few additional features to expand its functionality and I will describe them here.
The output current is set by the combination of the input voltage and the resistor
R. So that currents over many orders of magnitude can be sourced using the same
0–5 V reference from a lock-in amplifier, a switch was included to select R from
a range of resistors providing currents from <100 nA to ∼20mA at frequencies
between ∼10Hz and ∼10 kHz. The active common-mode rejection can also be dis-
abled so that the current source can still be used to drive a grounded load. With
the common-mode rejection disabled, each side of the current source can operated
independently. The final modification allows switching of the common-mode feed-
back from the voltage leads to the current leads. The inverting-inputs of the second
op-amps in each of the modified Howland current sources are summed to give the
common-mode voltage. This provides a further option in case the feedback mecha-
nism influences the phase sensitive measurement or the voltage contacts cannot be
easily accessed.
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Fig. A.2 Dual end current source with active common-mode rejection. Schematic with
constituent parts labelled. See text for a description of the operating principle



Appendix B
Supplementary Materials for Sr2RuO4
Under Strain

In the main body of this thesis most of the experimental results presented were from
one sample, namely sample 3, to avoid unwanted repetition of essentially similar
results. For completeness the remaining data sets from the first two samples are
presented in this appendix.

To begin with, the susceptibility data for samples 1 and 2 at a series of strains
is presented in Figs. B.1 and B.2. Figure B.3 shows the susceptibility measurements
made at the peak in Tc for sample 2 with various c-axis applied fields used for
determining Hc2‖c(T ) presented in the main text in Fig. 3.28.

The resistivity measurements on sample 2 are presented in full in Fig. B.4 and as
a colour map of the logarithmic derivative with respect to temperature in Fig. B.5,
highlighting the change in temperature exponent. Figure B.6 shows the Hall effect
measurements on sample 2.
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(a)

(b)

Fig. B.1 Susceptibility against temperature. Real part of the susceptibility χ for sample 1
against temperature. a Strains below the peak Tc, b above the peak. No normalisation or offsets are
applied to the curves. The y axis is the mutual inductance between the two coils of the susceptibility
sensor
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(a)

(b)

Fig. B.2 Susceptibility against temperature. Real part of the susceptibility χ for sample 2
against temperature. a Strains below the peak Tc, b above the peak. No normalisation or offsets are
applied to the curves. The y axis is the mutual inductance between the two coils of the susceptibility
sensor
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Fig. B.3 Susceptibility measured at the peak in Tc at various applied fields‘H ‖ c.
Real part of the susceptibility χ measured as the temperature is swept up and down for sample 2.
The y axis is the mutual inductance between the two coils of the susceptibility sensor. The field was
incremented at the bottom of each temperature ramp, in the superconducting phase. This disrupts
the vortex lattice and is responsible for the apparent hysteresis

Fig. B.4 Resistivity
against temperature. a
Longitudinal resistivity
against temperature at strains
below the peak in resistivity
for sample 2. The inset
shows the resistivity plotted
against T 2 at zero strain,
highlighting the Fermi liquid
behaviour with a straight line
as a guide to the eye, and for
the strain where the lowest
temperature exponent is
observed. b At strains above
the maximum in the
resistivity, T 2 behaviour is
recovered at high
compression. The inset
shows the larger extent of the
T 2 region for the highest
strain measured

(a)

(b)
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Fig. B.5 Resistivity temperature exponent. The resistivity exponent, α, for sample 2 plotted
against temperature and strain. ρ0 was first extracted from fits of the type ρ = ρ0 + AT α and then
α was calculated as a function of temperature by d ln(ρ − ρ0)/d ln T . The figure is cut off below
4K, due to percolating superconducting paths that can affect the resistivity strongly

Fig. B.6 Hall Effect. a
Hall effect measurements at
strains below the peak in
resistivity for sample 2. b
The same measurements at
strains above the peak in
resistivity

(a)

(b)
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B.1 Resistivity Temperature Exponent Analysis

As noted in the main text, we are in the unique situation of being able to tune con-
tinuously through a Lifshitz transition in a multiband and exquisitely clean system.
To see how much physical significance can be assigned to the changes in the tem-
perature dependence of the resistivity, it is worthwhile examining the quality of the
fit used for extracting the exponent presented in Fig. 3.36.

Figure B.7 shows a fit of the form a + bT c through the data in the range 4 to
12K at −0.49% strain. The fit rapidly deviates from the data above ∼10K but even
below 10K the residual plot indicates that the trial form is not a satisfactory fit. The

Fig. B.7 Resistivity
fitting. Two fits to the
temperature dependence of
the resistivity at −0.49%
strain, see text for
discussion. The colour
coding is the same for all
panels

(a)

(b)

(c)
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green trace in Fig. B.7c seems to deviate systematically from zero by more than its
random error.

A better fit can be achieved by adding a parallel conducting channel with a fixed
T 2 temperature dependence. The now larger number of fitting parameters quite
rightly produces a better fit, but to determine if this is physically conceivable a few
consistency checks can be carried out. The Lifshitz transition opens up the γ sheet
whereas the shape of the α and β bands are mostly unaffected by the applied strain.
If there is complete decoupling of the three bands the relative weight that each band
adds to the conductivity must be consistent. At zero strain a simple estimate for
the conductivity contributed by each band can be calculated from the Fermi surface
properties. In the limit of isotropic scattering time τ , the conductivity for a circu-
lar Fermi surface is proportional to τk2F/m

∗. Making this assumption for Sr2RuO4,
the γ band should carry ∼30% of the total conductivity. The conductivity could
then decrease by only as much as ∼30% and the resistivity increase by as much as
1/0.7 ∼ 40%. This is at the low end of what was observed, see Fig. 3.34, but in an
isotropic scattering length approximation, applicable at very low temperatures, the
conductivity is proportional to �kF and a larger change could be expected, as much
as an 80% increase in the resistivity.

As well as the overall resistivity enhancement being affected by the weight each
band contributes to the resistivity in an idealised completely decoupled picture, the
temperature dependence of the resistivity captured by the extended fitting function
with one T 2 term and one free power should match with the relative weights of
each band. Although the fit is much better with this extended function, the fitting
parameters for the two halves of the fit are not consistent with the overall resistivity
enhancement discussed above, and a better explanation for the systematic deviations
of the first fit comes from considering the influence of strain inhomogeneity.

Strain inhomogeneity can arise for instance through imperfections in the sample
mounting which can cause the sample to bend once strained, therefore creating a
strain gradient through the sample. With a range of strains present throughout the
thickness of the sample any sharp features, such as the lowest power reached at the
Lifshitz transition, will be rounded out. A qualitative analysis of this effect can be
seen in a rudimentary simulation.

Making the simplest assumption about the strain inhomogeneity variation we
can look at an example where the strain only varies over the thickness of the sample
but not across its width or length and the variation over the thickness is described
by a Gaussian distribution centred at the nominally applied strain. The measured
resistance for a sample with this strain distribution is given by the integral over the
strain distribution with the resistivities added in parallel

1

R(ε, T )
= wt

L

∞∫

−∞
f (x |ε,σ)

dx

ρ(x, T )
. (B.1)

Here f (x |ε,σ) is a Gaussian distribution with mean ε and standard deviation σ
setting the level of strain inhomogeneity. ρ(ε, T ) is the intrinsic resistivity at a strain
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of ε and temperature T . Some assumption must be made about how the intrinsic
resistivity changes with strain. Here we pick the form

ρ(ε, T ) = ρ0 + A(ε)T α(ε) (B.2)

not based particularly on any physical reasoning but a useful example and one that is
simple to calculate. A(ε) and α(ε) are two trial functions that are picked by hand to
make the broadened result match the measured data. In Fig. B.8 a and b they are the
two dashed purple curves. The result of this calculation once refitted with a a + bT c

fit shows quite a similar systematic deviation of the residual around zero to that seen
in the data.

Since already the most simple assumptions about the strain inhomogeneity varia-
tion can reproduce qualitative similar discrepancies when trying to fit the exponent,
it seems that it could at least be possible that this, or some other slightly more com-
plicated strain variation, could be affecting the measurements, and complicating the
extraction of the real exponent.

This analysis suggests that the observed power is only an upper limit on the real
power which could only be observed if true homogeneity is achieved. It is difficult
to infer exactly how much lower the power might be without a quantitative mea-
sure of the inhomogeneity. A trial form with a much lower power but subject to a
larger inhomogeneity could produce qualitatively similar results to a higher power
with lower sample inhomogeneity. The suggested inhomogeneity from the width
of the susceptibility curves implies the inhomogeneity could be as large as 20%,
but probably not all accountable to a depth variation of strain. Using this level of
inhomogeneity and the trial forms for A(ε) and α(ε) shown in Fig. B.8, a tempera-
ture exponent as low as 1.4 is still consistent with the measured results. Therefore,
because of the presence of these uncertainties, at present I do not believe that we
can put an uncertainty better than 0.1 on the exponent close to the suspected Lif-
shitz transition.

Strain inhomogeneity may also account for some of the discrepancy between
the resistivity and Tc peaks, see Fig. 3.35. The resistivity measurement is an average
over the whole sample whereas the susceptibility measurement can be influenced by
the exact nature of the inhomogeneity. If for instance the top part of the sample close
to the coil has a higher Tc than the bulk, then this part of the sample will screen the
magnetic field from the rest of the sample and will lead to a higher Tc measurement
than the average Tc. In future local probe techniques and better characterisation of
the devices will be useful for quantifying the amount of inhomogeneity actually
introduced by the device when straining the sample.
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Fig. B.8 Simulation for
the effect of strain
inhomogeneity. a and b
Simulation results for the
effect of strain
inhomogeneity on the
measured resistivity as
discussed in the text. The
trial functions A(ε) and α(ε)
are used to calculate the
resistivity of a sample with a
Gaussian strain distribution
centred at the nominally
applied strain with a FHWM
that depends on the applied
strain as (0.05% +
0.2εapplied). The open circles
are the values extracted from
the measured resistivity
curves, the purple curve the
assumed intrinsic resistivity,
and the blue curve the result
after inhomogeneity
broadening. c The simulated
data at −0.49% strain and
the residual once refitted
with a a + bT c fit

(a)

(b)

(c)



Appendix C
Phase Boundaries from the Derivatives
of Resistivity in Sr3Ru2O7

See Figs. C.1 and C.2

Fig. C.1 Phase boundaries from field ramps. A method for identifying the boundaries of
the A and B phases from magnetoresistance measurements. H1, the entrance to the A phase, is
identified with the maximum slope of the magnetoresistance, i.e. a peak in the first derivative as
introduced by Grigera et al. [4]. Transitions H2 and H3 are identified by changes in slope of the
magnetoresistance, i.e. a peak in the second derivative
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(a) (b)

Fig. C.2 Phase boundaries from temperature and strain ramps. a The transition into
the A phase through the roof with temperature, Ta , was identified from the point at which the slope
of the resistivity deviates from a high temperature power law fit, i.e. a peak in the second derivative.
A second feature, T ∗, was observed at lower temperatures and high strains and was also identified
by an extremum in the second derivative. b The entry into the phase with strain is the least sharp
of all the observed features in the data, but it could also be identified from a change in slope of ρ
versus εxx ; a peak in the second derivative of ρ with respect to εxx



Appendix D
AC Susceptibility Coils Simulation

1 function Signal=ACSusceptibilitySimulation(ExcitationCoils,IExcitation,

IFreq,PickupCoils,X,Y,Z,Chi)

2 %ACSUSCEPTIBILITYSIMULATION Susceptibility signal simulation

3 % This simulation returns two voltages: one the voltage induced across

4 % the pick-up coil of the susceptibility setup due to the sample in the

5 % presence of an oscillating magnetic field from the excitation coils

and

6 % secondly the voltage due to only the mutual inductance between the

7 % excitation and pick-up coils, the empty coils background signal.

8 %

9 % Input parameters:

10 % ExcitationCoils: Cell of position, size and orientation of excitation

11 % coils in meters

12 % Position Radius Orientation (coil normal)

13 % { [x,y,z], r, [nx,ny,nz];

14 % [x,y,z], r, [nx,ny,nz];

15 % ... }

16 %

17 % IExcitation: Excitation coil current in Amperes

18 %

19 % IFreq: Excitation frequency in Hertz

20 %

21 % PickupCoils: Cell of position, size and orientation of pickup

22 % coils in meters

23 % Position Radius Orientation (coil normal)

24 % { [x,y,z], r, [nx,ny,nz];

25 % [x,y,z], r, [nx,ny,nz];

26 % ... }

27 %

28 % X,Y, Z: Mesh grid of the sample elements in meters

29 %

30 % Chi: Dimensionless volume susceptibility of the sample

31
32 muzero=4*pi()*1e-7; % H/m

33
34 Voltage=0;
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35
36 % Loop over the size of the sample

37 for i=1:(size(X,1)-1)

38 for j=1:(size(X,2)-1)

39 for k=1:(size(X,3)-1)

40 % Find centre of this element

41 Xcentre=0.5*(X(i,j,k)+X(i+1,j+1,k+1));

42 Ycentre=0.5*(Y(i,j,k)+Y(i+1,j+1,k+1));

43 Zcentre=0.5*(Z(i,j,k)+Z(i+1,j+1,k+1));

44
45 % Find the volume of this element

46 V=(X(i+1,j+1,k+1)-X(i,j,k))*(Y(i+1,j+1,k+1)-Y(i,j,k))*(Z(i+1,j

+1,k+1)-Z(i,j,k));

47
48 % Find the field from the excitation coils at the centre of

49 % this element

50 BExcitation=zeros(1,3);

51 for e=1:size(ExcitationCoils,1)

52 % Distance between element and coil

53 XSep=Xcentre-ExcitationCoils{e,1}(1);

54 YSep=Ycentre-ExcitationCoils{e,1}(2);

55 ZSep=Zcentre-ExcitationCoils{e,1}(3);

56
57 % Rotate so z-axis is along the coil normal to calculate

58 % the field

59 Orientation=ExcitationCoils{e,3}/norm(ExcitationCoils{e

,3});

60 Theta=acos(Orientation(3));

61 RotationAxis=cross(Orientation,[0 0 1]);

62
63 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);

64
65 B=coilField(ExcitationCoils{e,2},IExcitation,R(1),R(2),R

(3));

66
67 % Rotate field back to sample orientation

68 BExcitation=BExcitation+rodriguesRotation(B,RotationAxis,-

Theta);

69 end

70
71 % Magnetisation of this element

72 M=Chi*BExcitation/muzero;

73
74 % Find the field from each of the pickup coils at the centre

of

75 % this element

76 for p=1:size(PickupCoils,1)

77 % Distance between element and coil

78 XSep=Xcentre-PickupCoils{p,1}(1);

79 YSep=Ycentre-PickupCoils{p,1}(2);

80 ZSep=Zcentre-PickupCoils{p,1}(3);

81
82 % Rotate so z-axis is along the coil normal to calculate
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83 % the field

84 Orientation=PickupCoils{p,3}/norm(PickupCoils{p,3});

85 Theta=acos(Orientation(3));

86 RotationAxis=cross(Orientation,[0 0 1]);

87
88 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);

89
90 B=coilField(PickupCoils{p,2},1,R(1),R(2),R(3));

91
92 % Rotate field back to sample orientation

93 Voltage=Voltage+2*pi()*dot(M,rodriguesRotation(B,

RotationAxis,-Theta))*V;

94 end

95 end

96 end

97 end

98
99 Signal(1)=Voltage*IFreq;

100
101 Voltage=0;

102 for e=1:size(ExcitationCoils,1)

103 for p=1:size(PickupCoils,1)

104 if ExcitationCoils{e,2}>=PickupCoils{p,2}

105 % Seperation between the coils

106 XSep=PickupCoils{p,1}(1)-ExcitationCoils{e,1}(1);

107 YSep=PickupCoils{p,1}(2)-ExcitationCoils{e,1}(2);

108 ZSep=PickupCoils{p,1}(3)-ExcitationCoils{e,1}(3);

109
110 % Rotate so z-axis is along the coil normal to calculate

111 % the mutual inductance

112 Orientation=ExcitationCoils{e,3}/norm(ExcitationCoils{e,3});

113 Theta=acos(Orientation(3));

114 RotationAxis=cross(Orientation,[0 0 1]);

115 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);

116
117 % Rotate noraml of pick-up coil

118 N=rodriguesRotation(PickupCoils{p,3}/norm(PickupCoils{p,3}),

RotationAxis,Theta);

119
120 M=Babic_24(ExcitationCoils{e,2},PickupCoils{p,2},R,N);

121 else

122 % Seperation between the coils

123 XSep=ExcitationCoils{e,1}(1)-PickupCoils{p,1}(1);

124 YSep=ExcitationCoils{e,1}(2)-PickupCoils{p,1}(2);

125 ZSep=ExcitationCoils{e,1}(3)-PickupCoils{p,1}(3);

126
127 % Rotate so z-axis is along the coil normal to calculate

128 % the mutual inductance

129 Orientation=PickupCoils{p,3}/norm(PickupCoils{p,3});

130 Theta=acos(Orientation(3));

131 RotationAxis=cross(Orientation,[0 0 1]);

132 R=rodriguesRotation([XSep,YSep,ZSep],RotationAxis,Theta);

133
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134 % Rotate normal of excitation coil

135 N=rodriguesRotation(ExcitationCoils{e,3}/norm(ExcitationCoils{

e,3}),RotationAxis,Theta);

136
137 M=Babic_24(PickupCoils{p,2},ExcitationCoils{e,2},R,N);

138 end

139 Voltage=Voltage+M*IExcitation*2*pi();

140 end

141 end

142
143 Signal(2)=Voltage*IFreq;

144 end

145
146 function RRot=rodriguesRotation(R,RotationAxis,Theta)

147 %RODRIGUESROTATION Rotate vector R about axis RotationAxis Theta degrees

148 RRot=R*cos(Theta)+(cross(RotationAxis,R))*sin(Theta)+(RotationAxis*dot(

RotationAxis,R))*(1-cos(Theta));

149 end

150
151 function B=coilField(A,I,X,Y,Z)

152 %COILFIELD Field from a coil radius A and carrying current I at position

153 % (X,Y,Z). The coil is in the x-y plane centred at the origin.

154 rhosqu=X.^2+Y.^2;

155 rsqu=X.^2+Y.^2+Z.^2;

156 alphasqu=A.^2+rsqu-2*A*sqrt(rhosqu);

157 beta=sqrt(A.^2+rsqu+2*A*sqrt(rhosqu));

158 ksqu=1-alphasqu/(A.^2+rsqu+2*A*sqrt(rhosqu));

159 C=4*(1e-7)*I;

160 [K,E]=ellipke(ksqu);

161 if X*Z==0

162 Bx=0;

163 else

164 Bx=((C*X*Z)/(2*alphasqu*beta*rhosqu))*((A.^2+rsqu)*E-alphasqu*K);

165 end

166 if Y*Z==0

167 By=0;

168 else

169 By=((C*Y*Z)/(2*alphasqu*beta*rhosqu))*((A.^2+rsqu)*E-alphasqu*K);

170 end

171 Bz=((C)/(2*alphasqu*beta))*((A.^2-rsqu)*E+alphasqu*K);

172 B=[Bx,By,Bz];

173 end

174
175 % Following code adapted from S. Babic et al.

176 function M=Babic_24(Rp,Rs,Pc,N)

177 %BABIC_24 Mutual inductance between two circular loops

178 % Returns the mutual inductance between two circular loops of radius Rp

179 % and Rs (with Rp >= Rs), whose centres are separated by a vector

180 % pc=[xc,yc,zc], and normal to the plane of secondary loop is n=[a,b,c],

181 % with absolute tolerance 1e-13.

182 %

183 % All dimensions must be in "meters" and angles in "radians".

184 %
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185 % The formula used in this function is the one provided by: S. Babic, F.

186 % Sirois, C. Akyel and C. Girardi, IEEE Trans. Magn., 2010, at press.

187 %

188 % The units have been adapted to the S.I. system.

189 %

190 % Programmed by F. Sirois and S. Babic Ecole Polytechnique de Montreal,

191 % June 2009.

192 Tol=1e-13;

193
194 % Recovery of parameters

195 Xc=Pc(1); Yc=Pc(2); Zc=Pc(3);

196 A=N(1); B=N(2); C=N(3);

197
198 % Preliminary computations

199 Alpha=Rs/Rp; Beta=Xc/Rp; Gamma=Yc/Rp; Delta=Zc/Rp;

200
201 % Integration, Romberg method (adaptation from author below)

202 % Author: Martin Kacenak,

203 % Department of Informatics and Control Engineering,

204 % Faculty of BERG, Technical University of Kosice,

205 % B.Nemcovej 3, 04200 Kosice, Slovak Republic

206 % E-mail: ma.kac@post.cz

207 % Date: february 2001

208 Decdigs=abs(floor(log10(Tol)));

209 Rom=zeros(2,Decdigs);

210 Romall=zeros(1,(2^(Decdigs-1))+1);

211 Romall=feval('f24',0:2*pi/2^(Decdigs-1):2*pi,Alpha,Beta,Gamma,Delta,A,B,C)

;

212 H=2*pi;

213 Rom(1,1)=H*(Romall(1)+Romall(end))/2;

214 for i=2:Decdigs

215 Step=2^(Decdigs-i+1);

216 % trapezoidal approximations

217 Rom(2,1)=(Rom(1,1)+H*sum(Romall((Step/2)+1:Step:2^(Decdigs-1))))/2;

218 % Richardson extrapolation

219 for k=1:i-1

220 Rom(2,k+1)=((4^k)*Rom(2,k)-Rom(1,k))/((4^k)-1);

221 end

222 Rom(1,1:i)=Rom(2,1:i);

223 H=H/2;

224 end

225 M=4e-7*Rs*Rom(1,Decdigs);

226 end

227
228 % Integrand function

229 function F=f24(p,h,e,g,d,a,b,c)

230 h2=h*h; e2=e*e; g2=g*g; a2=a*a; b2=b*b; c2=c*c;

231 l2=(a*a+c2); l=sqrt(l2); L2=(l2+b*b); L=sqrt(L2); l2L2=L2*l2; lL=l*L;

232 sp=sin(p); cp=cos(p); cp2=cp.*cp; sp2=sp.*sp;

233 if l==0,

234 p1=0; p2=-g*sign(b); p3=0; p4=-e*sign(b); p5=d;

235 V=sqrt(e2+g2+h2*cp2-2*h*e*sign(b)*cp);

236 else
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237 p1=g*c/l; p2=-(e*l2+g*a*b)/lL; p3=h*c/L; p4=(g*l2-e*a*b-d*b*c)/lL;

p5=(d*a-e*c)/l;

238 V=sqrt((e2+g2)+h2*((1-b2*c2/l2L2)*cp2+c2/l2*sp2+a*b*c/(l2*L)*sin(2*p

))-2*h/lL*(e*a*b-g*l2)*cp-2*h*e*c/l*sp );

239 end

240 A=(1+e2+g2+h2+d*d)+2*h*(p4*cp+p5*sp);

241 m=4*V./(A+2*V); k=sqrt(m);

242 [K,E]=ellipke(m);

243 PSI=(1-0.5*m).*K-E;

244 F=(p1*cp+p2*sp+p3).*PSI./(k.*V.^1.5);

245 end
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