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Supervisor’s Foreword

Mikhail Solon’s excellent thesis formulates the new heavy WIMP effective theory.
This theory allows precise determination of WIMP-nucleon scattering cross sections
in the absence of detailed knowledge about underlying dark sector dynamics,
essential for planning and interpreting the results of future dark matter direct
detection experiments.

Exploring the possible interactions between WIMPs and standard model particles
has exposed gaps in our understanding of effective quantum field theory. Besides
explicit computations of dark matter properties, Solon’s thesis addresses several
basic theoretical questions. It describes a new formalism for implementing Lorentz
invariance constraints in nonrelativistic theories with unknown, or unspecified,
ultraviolet completion. The thesis also provides new perturbative QCD results that
determine the impact of heavy quarks on the hadronic matrix elements involved in
WIMP direct detection.

Solon’s thesis is a technical tour de force, with impacts in dark matter phe-
nomenology, field theory formalism, and precision hadronic physics. His compu-
tation of scattering rates for heavy electroweak-charged dark matter has become a
benchmark for the field of direct detection, and his thesis has also spawned a new
field of investigation in dark matter indirect detection, determining heavy WIMP
annihilation rates using effective field theory methods. The systematic treatment
of renormalization and heavy quark threshold matching conditions, the review of
background field methods, and the survey of hadronic matrix elements should be
useful to students and researchers interested in a variety of new physics searches
and precision measurements involving weak probes of the nucleon.

Chicago, IL, USA Richard J. Hill
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Preface

The discovery of a standard model-like Higgs boson and the hitherto absence of
evidence for other new states may indicate that if WIMPs comprise cosmological
dark matter, they are heavy compared to electroweak scale particles, M �
mW± ,mZ0 . In this limit, the absolute cross section for a WIMP of given electroweak
quantum numbers to scatter from a nucleon becomes computable in terms of
standard model parameters. Extending aspects of heavy particle formalism familiar
from heavy quark effective theory, we develop heavy WIMP effective theory to
isolate universal behavior within the WIMP paradigm.

We present ingredients necessary for this effective theory framework, including
the formalism for bottom-up construction of heavy particle Lagrangians based on
induced representations of the Lorentz group, the complete calculation of one- and
two-loop weak-scale matching amplitudes, a consistent renormalization scheme in
the presence of nontrivial residual masses, and the QCD framework for passing from
the theory renormalized at the electroweak scale to the theory of quarks and gluons
below the charm scale.

We analyze the heavy WIMP limit of WIMP-nucleon scattering and present the
first complete calculation of the leading spin-independent cross section in standard
model extensions consisting of one or two electroweak SU(2)W ×U(1)Y multiplets,
including a careful treatment of perturbative and hadronic-input uncertainties. The
standard model exhibits a surprising transparency of nucleons to WIMP scattering,
due to a cancellation between scalar and tensor amplitude contributions. The result-
ing cross-section predictions and their fractional uncertainties depend sensitively
on parameter inputs, and we investigate the impact of model-independent inputs,
such as perturbative QCD corrections and nucleon scalar matrix elements, and of
model-dependent inputs, such as WIMP quantum numbers, additional electroweak
multiplets, and extended Higgs sectors.

Berkeley, CA, USA Mikhail P. Solon

ix





Acknowledgments

I lived the past 5 years with only one responsibility: to learn physics. I owe the
pleasure of such a simple existence to a large number of people.

Foremost, I am indebted to my advisor Richard Hill. Working with him was a
strong experience that showed me a high standard and the qualities for both doing
good science and being a good person. Richard Hill is Richard Hill, and I consider
it one of life’s good fortunes to have been his student.

I enjoyed and learned a lot from collaborating with Johannes Heinonen, Richard
Hill, Gabriel Lee, and Gil Paz. I am happy and proud of our work.

For many valuable discussions on physics, I would like to thank the members of
my thesis committee as well as professors and postdocs of the theory group: Edward
Blucher, Dam Son, Richard Hill, Carlos Wagner, Lian-Tao Wang, Jonathan Rosner,
Brian Batell, Stefania Gori, and Johannes Heinonen.

The guidance and support of Stuart Gazes, Sandy Heinz, Autym Henderson,
Nobuko McNeill, Beth Nakatsuka, and David Reid were essential to navigating
graduate school.

I will always have good memories of Chicago, Slade, Jackson, Crown, and other
wonderful places, due especially to the people I shared them with: Jeremy Berg,
Pauline Baniqued, Denis Erkal, Szilard Farkas, Michael Fedderke, Simone Ferraro,
Michael Geracie, Siavash Golkar, Stephen Green, Aniket Joglekar, Hridesh Kedia,
Gabriel Lee, Jennifer Lin, Matthew Low, Travis Maxfield, Samuel Meehan, Marc
Miskin, Dung Nguyen, Jason Pastrana, Kartik Prabhu, Callum Quigley, Joshua
Schiffrin, Pronoy Sircar, Jordan Webster, and Brenton Wright.

I owe everything to Pauline, for her patience and love and for letting me hunker
down in her apartment to write, and to my parents, Orville and Sophia, and my
sister, Luna, for shaping who I am and what I can become.

I am deeply grateful for these people and many others.
This thesis was supported by a Bloomenthal Fellowship and presents results

collected from the following of the author’s works:

R. J. Hill and M. P. Solon, “Standard model anatomy of WIMP dark matter direct
detection II: QCD analysis and hadronic matrix elements,” to be published.

xi



xii Acknowledgments

R. J. Hill and M. P. Solon, “Standard model anatomy of WIMP dark matter direct
detection I: weak-scale matching,” arXiv:1401.3339 [hep-ph].
R. J. Hill and M. P. Solon, “WIMP-nucleon scattering with heavy WIMP
effective theory,” Phys. Rev. Lett. 112, 211602 (2014). [arXiv:1309.4092 [hep-
ph]].
R. J. Hill, G. Lee, G. Paz and M. P. Solon, “NRQED Lagrangian at order 1/M4,”
Phys. Rev. D 87, no. 5, 053017 (2013) [arXiv:1212.4508 [hep-ph]].
J. Heinonen, R. J. Hill and M. P. Solon, “Lorentz invariance in heavy particle
effective theories,” Phys. Rev. D 86, 094020 (2012) [arXiv:1208.0601 [hep-ph]].
R. J. Hill and M. P. Solon, “Universal behavior in the scattering of heavy,
weakly interacting dark matter on nuclear targets,” Phys. Lett. B 707, 539 (2012)
[arXiv:1111.0016 [hep-ph]].



Contents

1 Heavy WIMP Effective Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Universal Heavy WIMP Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivations for Heavy WIMP Effective Theory .. . . . . . . . . . . . . . . . . . . . . 7
1.4 Chapter Organization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Heavy-Particle Spacetime Symmetries and Building Blocks . . . . . . . . . . . 13
2.1 Finite Dimensional Representations of the Lorentz Algebra . . . . . . . . . 16
2.2 Effective Field Theory and the Little Group . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Little Group Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Field Transformation Law and Lorentz Invariance . . . . . . . . . . 20
2.2.3 1/M Expansion and Lagrangian Constraints . . . . . . . . . . . . . . . . . 22

2.3 Reparametrization Invariance and Invariant Operators . . . . . . . . . . . . . . . 24
2.3.1 Covariant Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Reparametrization Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Invariant Operator Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Solution for Γ(v, iD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Higher-Spin and Self-conjugate Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Higher Spin Representations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Self-conjugate Parity and CPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 NRQED Example: Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 NRQED Example: Relativistic Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6.2 Invariant Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 NRQED Example: One-Photon Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 NRQED Example: Photon and Four-Fermion Sectors . . . . . . . . . . . . . . . 40

2.8.1 Pure Photon Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.2 Four-Fermion Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.3 Field Redefinitions and Redundant Operators. . . . . . . . . . . . . . . . 43
2.8.4 Relativistic Lepton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



xiv Contents

3 Effective Theory at the Weak-Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Singlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Standard Model Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Dark Matter Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 High-Energy Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Low-Energy Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Multiplets and Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Higher-Order Example: Pure Triplet Scalar . . . . . . . . . . . . . . . . . . 61
3.2.3 Admixtures .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.4 Pure Case Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.5 Relativistic Example: Singlet-Doublet Mixture .. . . . . . . . . . . . . 68

3.3 Onshell Renormalization Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Singlet-Doublet Counterterm Lagrangian . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Propagator Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.3 Renormalization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.4 Extension to Triplet-Doublet .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Low Energy Theory at the Weak Scale for Pure- and
Mixed-State WIMPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Weak-Scale Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1 Singlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Case I: M � mb � mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Case II: mW � M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.3 Case III: mW � M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Multiplets and Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Quark Matching: One-Boson Exchange .. . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Gluon Matching: One-Boson Exchange .. . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Quark Matching: Two-Boson Exchange.. . . . . . . . . . . . . . . . . . . . . 87
4.2.4 Gluon Matching: Two-Boson Exchange.. . . . . . . . . . . . . . . . . . . . . 92
4.2.5 Effective Theory Amplitudes and Infrared Regulator. . . . . . . . 112
4.2.6 Extended Higgs Sector for Pure Case . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.7 Bare Matching Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 QCD Analysis and Hadronic Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1 Operator Renormalization.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.1 Renormalization Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.2 Renormalized Matching Coefficients for Pure States . . . . . . . . 123

5.2 Renormalization Group Evolution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Threshold Matching and Low Energy Coefficients . . . . . . . . . . . . . . . . . . . 127

5.3.1 Heavy Quark Threshold Matching Conditions .. . . . . . . . . . . . . . 128
5.3.2 Low Energy Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Hadronic Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.1 Scalar Matrix Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.2 Tensor Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Contents xv

6 Heavy WIMP-Nucleon Scattering Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . 135
6.1 Cross Section Assembly Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 Survey of Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.3 Cross Section Predictions and Consistency Checks . . . . . . . . . . . . . . . . . . 140

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Appendix A: Solution to the Invariance Equation . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1 Series Solution for Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 Explicit Solution for Γ in the Spin 1/2 Theory .. . . . . . . . . . . . . . . . . . . . . . . 153

Appendix B: Integrals and Inputs for Weak Scale Matching . . . . . . . . . . . . . 157
B.1 Self Energy Integrals and Standard Model Two-Point

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Box Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.3 Heavy Particle Integrals with Electroweak Polarization

Tensor Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.3.1 Case of Zero Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3.2 Case of One Heavy Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.3.3 Case of Two Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.4 Numerical Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Appendix C: Inputs for Analysis of QCD Effects
and Hadronic Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.1 QCD Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



Chapter 1
Heavy WIMP Effective Theory

1.1 Introduction

Observed anomalies in astrophysical systems, ranging from galactic to cosmological
in scale, provide compelling evidence for dark matter.1 Independent and increas-
ingly precise measurements of the cosmic abundance of total matter and of its
baryonic component (e.g., from the cosmic microwave background, big bang
nucleosynthesis and large-scale structure) have converged on the picture that ∼85 %
of the matter in the universe cannot be explained by the Standard Model (SM) of
particle physics. While evidence from rotation curves of spiral galaxies may suggest
modifications to the theory of gravity, lensing measurements indicate gravitational
sources in regions with no baryonic matter, favoring the idea of unseen massive
clusters. Beyond the gravitational interaction that implies its existence, there is
however little known about the particle nature of dark matter. Does it have non-
gravitational interactions with Standard Model particles? Is there a single particle,
or an intricate structure of multiple particles similar to the Standard Model? Is it a
fundamental particle, or a composite object arising from nonperturbative dynamics?
What are its mass and spin?

Discovering the nature of particle dark matter is largely an experimental expedi-
tion. While searches may be motivated by theoretical visions, definitive knowledge
can only come from a detection signal or from careful linkage of various empirical
observations. Experiments in the present decade are exploring a broad range of
processes, such as dark matter production at colliders, annihilation at the galactic
center and scattering off nucleon targets, with however an absence of definite
signals thus far (the LHC has discovered the Higgs boson, but no evidence for

1For reviews see [14, 73] and references therein.
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2 1 Heavy WIMP Effective Theory

other new states). Although null results translate into tighter phenomenological
constraints, the dark matter problem remains in a state too opaque for definite
predictions to be made from a vast landscape of models for new particles.

Nonetheless, the role of theoretical input is paramount. Beyond models that
supply a zoo of dark matter candidates to be tested at current and forthcoming
facilities, it is imperative to develop theoretical formalism to delineate the possible
interactions of DM with known particles, making clear which uncertainties are
inherently model dependent and which can, at least in principle, be improved by
further Standard Model analysis. Effective field theory techniques provide a frame-
work for sketching visions of nature with minimal model dependence, employ only a
few parameters to capture the essential physics in experimental processes, and allow
for systematically improvable precision. Physics of the Standard Model appear as
backgrounds to detection signals in collider and astrophysical searches, and many
inputs for direct scattering at low energies require the study of perturbative QCD
and of nucleon (and nuclear) properties. Experimental studies of dark matter are
presenting opportunities (requirements) for understanding Standard Model physics
in new regimes, involving physics at multiple scales. In this thesis, we develop such
tools for controlled theoretical calculations, leading to robust predictions for dark
matter-nucleon interactions relevant to direct searches in underground experiments.

We focus on the paradigm of Weakly Interacting Massive Particles (WIMPs),
representing dark matter candidates with electroweak charge and a thermal history
consistent with the observed present-day relic abundance. A large class of models
have a WIMP as the lightest state of a new sector, e.g., neutralinos of supersym-
metric extensions [73], and in this situation, the Standard Model is extended at low
energies by one or a few particles transforming under definite representations of
SU(2)W×U(1)Y . The field of WIMP dark matter direct detection is by now a mature
subject.2 Early treatments of QCD effects in neutralino-nucleon scattering include
the works of Drees and Nojiri [34]. Basic aspects of formalism may be found in
the review of Jungman et al. [73]. However, the last few years have witnessed the
discovery and mass measurement for a SM-like Higgs boson [1, 24], new constraints
on the mass scale of particles beyond the SM [50], and important computational
advances in lattice QCD [39, 51]. A complete description of dark matter interactions
with Standard Model particles is now possible but require a robust and carefully
linked analysis of physics at multiple scales, ranging from the ultraviolet (UV)
theory of dark matter at the highest, down to nuclear theory at the lowest.

Effective field theory techniques allow us to disentangle the physics at different
scales, and identify universal features in the interaction of dark matter with known
particles. At the UV scale, the landscape of dark matter candidates is vast, even when
restricted to the well-motivated class of electroweak-charged dark matter. Extending
aspects of heavy particle formalism familiar from heavy quark effective theory,
we develop heavy WIMP effective theory to isolate universal behavior within the
WIMP paradigm. The universality emerges when the WIMP is much heavier than

2A subset of recent work in the field may be found in the Snowmass review [31].
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the electroweak scale particles, M � mW , such as in the case of a thermal relic
electroweak triplet or doublet, and is motivated in part by the hitherto absence of
new states at the LHC and null results of direct detection experiments [4, 5]. In
this limit, the absolute cross section for a WIMP of given electroweak quantum
numbers to scatter off a nucleon becomes computable in terms of only Standard
Model parameters, gaining theoretical control in the absence of a specified UV
completion. Prospects for direct detection of heavy WIMPs are more challenging,
but in a precise sense more constrained due to heavy particle universality.

Independent of the heavy WIMP assumption, the analysis at and below the
weak scale is generic to a large class of dark matter scenarios. This “Standard
Model anatomy” of direct detection consists of input from different particle physics
techniques: effective field theory techniques for weak-scale matching, perturbative
QCD for renormalization group evolution and heavy quark threshold matching,
lattice QCD for evaluating hadronic matrix elements, and chiral effective theory
for analyzing multi-nucleon effects. We develop some aspects of this framework,
providing formalism for weak-scale matching computations, and a careful treatment
of QCD effects when passing from a theory renormalized at the electroweak scale
to a low-energy theory of quarks and gluons where hadronic matrix elements
are evaluated. Distinguishing between different dark matter candidates in direct
detection experiments demands a complete treatment of perturbative and hadronic
uncertainties, including the resummation of large logarithms and consideration of
loop amplitudes that are typically neglected in the mW ∼ M regime, but which
contribute at leading order in the general case. We also identify pieces of the
framework whose further development would impact our knowledge of scattering
cross sections, such as a complete set of heavy quark decoupling relations in
perturbative QCD, scalar quark matrix elements in nf = 4 flavor QCD, and an
analysis of multi-nucleon effects with tensor operators.

While our efforts are aimed at complementing the wealth of data from the
experimental frontier, our approach has also led to new understanding of basic
ideas in quantum field theory such as the role of spacetime symmetries in heavy
particle effective theories. When the full theory for a heavy particle is known, the
heavy particle effective theory can be constructed by performing a field redefinition.
However, in many interesting applications such as dark matter, the full theory is not
known and may not even exist as in the case of a bound state arising from strong
dynamics. Is there a way to construct effective theories for heavy particles without
explicitly integrating out degrees of freedom? A clear statement of relativity and its
constraints in heavy particle effective theory provide explicit field transformation
laws for bottom-up construction of Lorentz-invariant heavy particle Lagrangians to
arbitrary order in the heavy mass expansion.

In the next two sections, we elaborate on the motivations for heavy WIMP
effective theory, focusing on the universality of the heavy WIMP limit. We highlight
key aspects of the formalism and results from its application to WIMP-nucleon
scattering. The last section describes the chapter organization of this thesis.
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1.2 Universal Heavy WIMP Limit

An underlying theory envisioned as a complete extension of the SM, such as the
Minimal Supersymmetric Standard Model (MSSM), has rich structure motivated
not only by the existence of dark matter, but also by other physics such as neutrinos,
cosmology, and perhaps by themes such as unification and naturalness. Properties
of dark matter, and hence predictions for its physical observables, are completely
described within the model, but may depend on a very large number of both discrete
and continuous parameter choices. Even upon imposing a multitude of existing
experimental constraints (e.g., from collider searches, direct and indirect detection
experiments, early universe cosmology and flavor physics), it is difficult to make
definite predictions or to interpret would-be signals without assuming special cases
that reduce the theory space considerably.

In the absence of definitive signals for dark matter, a model-independent
approach with effective theories, such as contact interactions in the case of a heavy
mediator, is an alternative that describes a wide range of behavior without the
complicated parameter space. While effective operators are not complete visions
of nature and may only relate to key aspects of phenomenology, gauge and Lorentz
symmetry constraints imply a minimum set of interactions that capture the physics
of a particular observable. Within the assumed hierarchy of scales, a complete
basis of contact operators provides a scheme for interpretation and correlation of
signals from experiments probing different energies. However, the generality of this
approach may also imply a lack of predictive power.

Let us consider WIMP-nucleon scattering to illustrate the relation between
these two options (underlying model vs effective contact operators) for describing
dark matter interactions. In particular, consider the case of a self-conjugate dark
matter particle (e.g., real scalar or Majorana fermion) with mass M � mW and
arbitrary spin, transforming in a representation of electroweak SU(2)W × U(1)Y .
For investigating direct scattering at low energies, we require the effective theory
describing dark matter interactions with quarks and gluons in nf = 5 flavor
QCD. We will see in Sect. 3.4 that 12 parameters ci, corresponding to 12 contact
operators, represent the most general effective lagrangian at leading order in
1/mW , relevant for spin-independent, low-velocity scattering with nucleons. Upon
integrating out weak-scale particles (top quark, Higgs and electroweak gauge
bosons) we may match a specified model onto the 12 coefficients representing
the effective lagrangian valid for energies below the weak scale, E � mW .
Figure 1.1 shows a schematic of the 12-dimensional space with axes given by the
coefficients ci (only three are explicit). Model predictions are shown as square blobs,
reflecting a range of ci values depending on parameter choices. The blobs labelled
mi represent known models such as Standard Model extensions with supersymmetry
or additional strongly interacting sectors. The blob labelled n represents known
or unknown models whose predictions are difficult to calculate, perhaps requiring
nonperturbative physics such as in the case where the dark matter particle is
a bound state of strong dynamics. The blob labelled u represents models that
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Fig. 1.1 Schematic theory space for spin-independent WIMP-nucleon scattering parameterized in
terms of the 12 coefficients ci of the effective lagrangian. Model predictions are represented by the
different blobs. The heavy WIMP limit is depicted by the convergence of model points following
the dashed lines. For a WIMP of given electroweak quantum numbers, the universal point only
depends on standard model inputs

are unknown. The 12-dimensional space is inclusive, capturing the experimental
signatures for all models (known, incalculable or unknown), but offers no guidance
as to what particular values the coefficients take. Conversely, if the model is known
and calculable, then definite values, although subject to model dependence and
parameter choices, may be given.

Distinct from the construction of specific models, or of contact operators
assuming heavy mediators, is the framework of heavy WIMP effective theory
developed in this thesis. Regardless of the origin for the SU(2)W multiplet, e.g.
whether it is a composite or fundamental particle, universal behavior emerges
in the limit where the WIMP mass is large compared to the electroweak scale,
M � mW . The emergence of these universal properties, and corrections to
them, can be systematically analyzed using techniques of heavy particle effective
theories [21, 70]. Let us consider the heavy WIMP limit, where the interactions of a
WIMP with Standard Model particles are simply

L = h̄viv · Dhv + . . . , (1.1)

where hv is a heavy-particle field transforming in a representation of electroweak
SU(2)W × U(1)Y , and iDμ = i∂μ + g1YBμ + g2Wa

μTa is the gauge covariant
derivative. Above, the ellipsis denotes higher order operators in the 1/M expansion,
and the vector vμ is an arbitrary time-like reference vector appearing in the
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construction of heavy particle lagrangians and labeling the heavy-particle field (e.g.,
we may choose vμ = (1, 0, 0, 0), corresponding to a heavy particle in its rest
frame). The lagrangian in Eq. (1.1) does not depend on the WIMP mass, spin, or
other properties beyond the choice of gauge quantum numbers. Model dependence
is systematically encoded in operator coefficients representing 1/M corrections.

Returning to our discussion of the parameter space for spin-independent WIMP-
nucleon scattering (cf. Fig. 1.1), the heavy WIMP limit implies that each of the 12
coefficients may be expanded as

ci = ci,0 + ci,1
mW

M
+ . . . , (1.2)

where, for a WIMP of given electroweak quantum numbers, the leading coefficients
ci,0 only depend on Standard Model parameters. Convergence of predictions in the
heavy WIMP limit, for models known, incalculable, and unknown, are depicted in
Fig. 1.1 by the dashed lines meeting at the universal point in theory space. Heavy
WIMP effective theory provides theoretical control in the absence of a specified UV
completion, giving definite predictions with the minimum parameters, for a large
class of models (known, incalculable or unknown).

The recent discovery of the Higgs boson reminds us of the remarkably simple
character of physical law. We appeal to this principle, modifying the Standard
Model by only one or two electroweak multiplets to account for dark matter,
and further simplifying the analysis of WIMP-nucleon scattering by using heavy-
particle methods. Those familiar with so-called “minimal dark matter” [28] may
wonder if our formalism is any different. Minimal dark matter extends the Standard
Model with the “minimal” lagrangian for the WIMP,

Lφ =
1

2
(Dμφ)

2 − 1

2
M2φ2 , Lψ =

1

2
ψ̄ (iD/ − M)ψ , (1.3)

where Lφ and Lψ describe the scalar and fermion cases, respectively. The following
points argue that heavy WIMP effective theory is a distinct approach, superior in the
regime M � mW :

• The universality that emerges in the limit M � mW is obscured in Eq. (1.3); e.g.,
it is not obvious that employing Lφ and Lψ yield the same results for ci,0.

• While Lφ and Lψ may represent unknown models in the case where the WIMP
is a fundamental particle, they do not obviously apply for WIMPs that arise
as a bound state of strong dynamics (a proton is not described using L =
p̄ (iD/ − mp) p in the Standard Model).

• Heavy WIMP Feynman rules are simple, allowing for efficient calculation
of the one- and two-loop amplitudes required for determining ci,0. Previous
calculations of ci,0 have been incorrect or incomplete, perhaps due to complicated
amplitudes when using Lφ and Lψ. For mixtures of two multiplets, the minimal
approach, extending Lφ and Lψ , has been used to explore cross sections in the
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highly-mixed regime where the tree-level contribution is dominant. Using heavy-
particle effective theory, we present here the first complete parameterization of
the mixed-state cross sections.

• The simplified models Lφ and Lψ do not parameterize additional structure of
ultraviolet completions in a universal way. Nor do they give guidance as to which
structures are most relevant in the heavy WIMP limit. In the scalar case, e.g., the
form of Eq. (1.1) does not depend on whether the operator∼ φ2H†H is appended
to Lφ. Conversely, the operator ∼ 1

M h̄vhvH†H appears at higher order in the
heavy mass expansion (cf. Eq. (1.4) in the next section), accounting for∼ φ2H†H
and the analogous higher dimension operator in the fermion case.

• The separation of scales M and mW required for resumming large logarithms
∼ logM/mW can be achieved by using heavy WIMP effective theory.

1.3 Motivations for Heavy WIMP Effective Theory

Search strategies and detection potential are highly dependent on the WIMP’s
properties including its spin, its mass and its Standard Model (SM) gauge quantum
numbers. In the absence of signals for physics beyond the SM, it is important
to identify plausible cross section targets to guide and interpret next generation
searches. Direct detection experimental constraints [4, 5], together with other
phenomenological bounds such as LHC searches, may plausibly indicate that new
particles must have mass somewhat above the mass of electroweak-scale particles
(M � mW ). In this limit, heavy WIMP effective theory provides theoretical control
without assuming a particular ultraviolet completion, allowing us to predict the
absolute cross section for a WIMP of given electroweak quantum numbers to scatter
from nucleons in terms of SM parameters.

Heavy WIMP effective theory provides a framework for investigating dark
matter interactions, even in the case where it arises as a bound state of strong
dynamics in the UV. This is analogous to the use of heavy quark effective theory
for computing meson properties, and nonrelativistic quantum electrodynamics for
computing nucleon properties (despite knowing the underlying theory of QCD).
For models where the WIMP is a fundamental particle, its interactions may be
computed within the underlying theory using perturbative methods. Nonetheless, we
may employ heavy WIMP effective theory to reduce a multi-dimensional parameter
space down to the few parameters relevant for heavy particle interactions. In the
heavy WIMP limit given in Eq. (1.1), only the electroweak quantum numbers
appear. At next order, the lagrangian for a self-conjugate WIMP of arbitrary spin
depends on the mass M and coupling cH:

L = h̄v

{
iv · D − D2

⊥
2M

+ cH
H†H

M
+ . . .

}
hv , (1.4)
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where the ellipsis denotes operators higher order in the 1/M expansion. In the
MSSM, e.g., cH depends on parameters of the neutralino mass matrix, and may be
computed upon integrating out the heavier neutralino components. It is straightfor-
ward to consider higher order operators encoding additional microscopic properties
of the WIMP (e.g., spin, generalized electroweak dipole moments), and to include
additional states such as a second multiplet in the case of mixed-state WIMPs.

The simplicity of heavy-WIMP interactions are reflected in its Feynman rules,
leading to efficient calculation of physical amplitudes. In the case of spin-
independent scattering, e.g., the determination of coefficients ci,0 in Eq. (1.2)
requires intricate one- and two-loop amplitudes. Using the heavy WIMP approach,
we have performed the first complete calculation of these 12 coefficients at leading
order in 1/M. Combined with a careful analysis of both perturbative and hadronic
uncertainties, this provides robust predictions for spin-independent cross section.
For an SU(2)W triplet and doublet, corresponding to the wino and Higgsino of
supersymmetric models, we obtain the parameter-free predictions

σT
SI = 1.3+1.2

−0.5
+0.4
−0.3 × 10−47 cm2 , σD

SI � 10−48 cm2 (95%C.L.) , (1.5)

where the superscripts T and D denote triplet and doublet, respectively. A simple
dimensional estimate for these cross sections yields σSI ∼ α4

2m4
N/m6

W ∼
10−45 cm2, however destructive interference between scalar and tensor amplitudes
leads to anomalously small predictions. The results in Eq. (1.5) inform
phenomenological studies of the detectability of these dark matter candidates
at current and future detectors,3 and present a challenge to experiments in face
of large backgrounds from neutrino scattering appearing for cross sections of
O(10−47 to 10−48) cm2.

Predictions in the heavy WIMP limit have minimal model dependence, and
therefore provide an opportunity to identify uncertainties that can be improved by
further Standard Model analysis. As remarked above, the Standard Model exhibits
a surprising transparency of nucleons to WIMP scattering, due to destructive
interference between scalar and tensor amplitudes [59, 60, 65]. We find that such
cancellations are generic, but the severity depends sensitively on WIMP quantum
numbers, Standard Model parameters and perturbative corrections, as illustrated
in Fig. 1.2. Robust conclusions, even in the simple heavy WIMP limit, demand a
careful analysis of perturbative and input uncertainties. We investigate the impact of
perturbative contributions from weak-scale matching, renormalization group evolu-
tion, heavy quark threshold corrections, and nucleon matrix elements. We identify
the leading contributions and dominant uncertainties, and thus determine strategies
for improved determination of cross sections. For example, the largest uncertainty in
the scalar amplitude comes from variation of the charm matching scale, and a more
precise determination could therefore be obtained given higher-order heavy quark

3Results consistent with the naive estimate were obtained in previous works missing the destructive
interference [28, 42].
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Fig. 1.2 Spin-independent cross sections for low-velocity scattering on the proton as a function
of either the Higgs mass mh or the charm matrix element 〈N|mcc̄c|N〉. The sensitivity of the cross
section predictions and their fractional uncertainty to WIMP quantum numbers (triplet vs doublet)
and the Higgs mass mh, to higher order perturbative QCD corrections (LO vs NLO vs NNLO
vs NNNLO), and to hadronic inputs such as the charm scalar matrix element, are shown in the
first, second and third panels, respectively. These plots are reproduced here for convenience from
Figs. 6.1, 6.2 and 6.6, where complete descriptions are given

decoupling relations or a measurement of the charm scalar matrix element from the
lattice. We also find that gluon contributions are large, and may not be neglected
from the set of weak-scale matching amplitudes.

In this thesis, we focus on the application of heavy WIMP effective theory
for direct scattering on nucleon targets. As in the case of heavy quark effective
theory for QCD, heavy WIMP effective theory may also be employed for other
processes that require analysis of multiple scales, with the WIMP mass M as the
hard scale. Recent investigations of experimental bounds from indirect detection
searches for gamma rays point to a need for precise determination of WIMP
annihilation rates [30]. Heavy WIMP effective theory extended with hard-collinear
modes provides the tools for such an analysis, allowing, by a separation of scales M
and mW , the resummation of large logarithms, ∼ log M

mW
.

The analysis of dark matter observables is a new application of heavy particle
effective theory, which hitherto has been applied for investigations within the Stan-
dard Model. While the basic techniques of heavy particle effective theory are well
known, we have developed several nontrivial aspects, including a clear statement of
Lorentz invariance leading to precise formalism for bottom-up construction of heavy
particle lagrangians, the introduction of a consistent renormalization scheme for
heavy WIMP-SM vertices, and the computation of new heavy-particle loop integrals
with nonzero residual masses. The new integral basis evaluated here may be applied
to other processes such as low-energy lepton-nucleon scattering [62].

1.4 Chapter Organization

In the remaining chapters, we present a detailed exposition of the formalism
and application of heavy WIMP effective theory for WIMP-nucleon scattering.
Figure 1.3 supplements the chapter descriptions given below.
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Fig. 1.3 Physical scales in the analysis of WIMP-nucleon scattering for the regime M � mW . We
show the relevant quantities defined at each scale and the chapter (encircled number) where the
corresponding results are presented. Matching between two theories is denoted by dashed lines;
e.g., at the weak scale we match Lhv,SM and Lχv,QCD by integrating out weak-scale particles
W±, Z0, h, t, while at the bottom scale, we match nf = 5 flavor QCD onto nf = 4 flavor QCD by
integrating out the bottom quark

We may integrate out physics at scales M and above by employing a heavy
particle description for the WIMP. In the absence of a specified UV theory, we use
the formalism described in Chap. 2 for bottom-up construction of Lorentz invariant
heavy particle lagrangians. In that chapter, we give a brief introduction to heavy
particle effective theory, and present a clear statement of Lorentz invariance based
on the method of induced representations. Formalism for arbitrary spin fields and
for self-conjugate fields are presented, and for illustration, we construct the parity
and time-reversal invariant effective lagrangian for a heavy fermion interacting with
an Abelian gauge field.

In Chap. 3, we construct heavy WIMP effective theories for Standard Model
extensions consisting of one or two electroweak multiplets, focusing on the
lagrangians Lhv ,SM and Lχv ,QCD at the weak scale. In place of a UV theory, we
consider the lagrangian Lhv ,SM as our starting point, describing interactions of the
multiplet hv with SM gauge and Higgs bosons in the electroweak symmetric phase.
For mixtures of two multiplets, WIMP couplings require renormalization, and we
define an extension of the onshell renormalization scheme for the electroweak SM
in the presence of nontrivial residual masses.
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If a UV theory LUV is specified at scale M, we may similarly construct L′
hv ,SM

at that scale, and perform a matching between LUV and L′
hv ,SM

. We illustrate this in
Chap. 3 with two examples: first, we construct the heavy scalar triplet lagrangian
up to order 1/M3 and perform its matching to a toy UV theory; second, we
show an alternative derivation of the singlet-doublet heavy particle lagrangian by
introducing field redefinitions in the relativistic theory. In the heavy WIMP limit, the
heavy-particle lagrangian is not renormalized. For the general case including, e.g.,
operators higher order in the 1/M expansion or additional new states, the relation
between L′

hv ,SM
and Lhv ,SM may be obtained using renormalization group methods.

For investigating direct scattering at low energies, we also construct Lχv ,QCD

at the weak scale, describing interactions of the lightest, electrically neutral WIMP,
χv, with quarks and gluons in nf = 5 flavor QCD.

In Chap. 4, we present formalism necessary to determine weak-scale matching
coefficients, i.e., ci,0 in Eq. (1.2), in the computation of scattering cross sections. In

Fig. 1.3, these are the coefficients of Lχv ,QCD, written as c(5)i (μt) with superscript
denoting the number of active quark flavors at the weak scale μt where the coeffi-
cients are defined. Careful computation of competing Standard Model contributions
in the matching of Lhv ,SM onto Lχv ,QCD is necessary to estimate the correct order
of magnitude of scattering cross sections in many simple and motivated models of
DM. We review relevant aspects of techniques such as the background field method
for matching to gluon operators and the treatment of effective theory subtractions.
Within the heavy WIMP framework, we present a complete reduction of the required
one- and two-loop amplitudes into a basis of heavy-particle loop integrals with
nonzero residual mass.

Having encoded physics of the heavy WIMP sector in matching coefficients
c(5)i (μt), the remaining analysis, presented in Chap. 5, is independent of the
M � mW assumption, and consists of renormalization group (RG) running to a low
scale μ0 < mc, matching at heavy quark thresholds, and evaluating hadronic matrix
elements. This module is systematically improvable in subleading corrections and
is applicable to generic direct detection calculations. We present the required
renormalization analysis of bare coefficients obtained from matching, solutions for
the RG evolution of coefficients between particle thresholds (e.g., mapping c(5)i (μt)

onto c(5)i (μb)), and the matching between (nf + 1)-flavor and nf -flavor QCD at

heavy quark scales (e.g., mapping c(5)i (μb) onto c(4)i (μb)). We also perform a careful
analysis of the necessary hadronic matrix elements 〈Oi〉 at the low scale μ0 ∼ mN .
This represents a robust treatment of QCD corrections when passing from a theory
renormalized at the electroweak scale, given by c(5)i (μt), to a low-energy theory of

quarks and gluons, given by c(3)i (μ0).
In Chap. 6, we assemble the formalism and results of Chaps. 4 and 5 for making

robust cross section predictions for heavy WIMPs scattering with nucleons. We
study the various perturbative contributions and their uncertainties, and trace the
evolution of coefficients from the high to low scale, paying close attention to
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the effects of renormalization, heavy quark thresholds and to the sizes of matrix
elements. We present cross section predictions, σSI, for spin-independent low-
velocity scattering on a proton for pure- and mixed-state WIMPs. As in Fig. 1.2, we
investigate the impact on scattering cross sections of model assumptions, such as
the choice of WIMP quantum numbers and extended Higgs sectors, and of Standard
Model inputs, such as perturbative QCD corrections and nucleon matrix elements.



Chapter 2
Heavy-Particle Spacetime Symmetries
and Building Blocks

What is heavy particle effective theory? Imagine a charged particle φ with mass M
in its rest frame, interacting with other particles of energy Λ � M through exchange
of photons. The momentum transfer in such collisions are of order Λ, allowing the
heavy particle to be off-shell by only that amount. Hence, to a good approximation,
the heavy particle remains at rest and appears to the light degrees of freedom as a
static source of charge. In this situation, we may expand the momentum of φ about
its large component as

pμ = Mvμ + kμ , (2.1)

where vμ is the velocity of φ (e.g., vμ = (1, 0, 0, 0) in the rest frame), and the
residual momentum kμ is O(Λ) and accounts for the dynamics of φ off-shell. Hence,
the “hard” energy scale M (equivalently, the momentum scale Mvμ) is irrelevant
to the system, and we may integrate it out by passing from a fully relativistic
description of φ to a heavy particle description where only the “soft” momentum
mode, kμ, remains.

At leading-order in 1/M, the theory describing φ is

L = φ̄viv · Dφv + . . . , (2.2)

where Dμ is the covariant derivative including the gauge interaction. The heavy
particle field φv , derived from the full relativistic field φ, is labelled by its velocity
v (and has mass dimension 3/2). The ellipsis in Eq. (2.2) denotes interactions
higher order in the heavy mass expansion, which may be systematically included
to meet the demands of precision, depending on the size of Λ/M. For example, φ’s
interactions with photons, through O(1/M), are given by

L = φ̄v

{
iv · D + c1

D2
⊥

2M
+ cF

σ⊥
μνFμν

4M
+ c′F

σ̃⊥
μνFμν

4M
+ . . .

}
φv , (2.3)
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where T̃μν = Tαβε
αβμν and aμ

⊥ = aμ − vμv · a. The higher-order kinetic, magnetic
dipole and electric dipole terms are parameterized by Wilson coefficients c1, cF and
c′F, respectively. From a low-energy perspective, these higher-dimension operators
represent new physics, albeit not new particles but new interactions. The higher
dimension operators depend on additional microscopic properties of the particle φ
such as its spin, its mass and its electromagnetic moments.

The purpose of such a framework, as with any useful effective theory, is for
controlled calculations of physical observables. Heavy particle effective theory
systematically captures the dominant interactions at each order in 1/M, and at
lower orders, in particular, the few operators appearing are remarkably simple.
These simplifications are tied to new symmetries arising in the heavy particle
limit, and allow for tractable analysis of otherwise complicated processes. Precise
calculations, including the resummation of large logarithms ∼ log M

Λ , are also
made possible by the separation of scales Λ and M through the effective theory.
Heavy particle methods find a wide range of applications in particle, nuclear and
atomic physics [21, 40, 70, 89].

So far we have sketched heavy particle effective theory as a framework for
describing a massive particle of energy M interacting with degrees of freedom
having much smaller energy Λ � M, by systematic expansion in Λ/M. To fully
answer “what is heavy particle effective theory?” we must precisely state how
such a theory is constructed. A closely related question is “what are the spacetime
symmetries of the Lagrangian in Eq. (2.3)?” From the intuitive picture of a heavy
particle in its rest frame, rotational invariance is manifest, but what about boost
invariance? With the appearance of the vector vμ in the Lagrangian, it is unclear
how to implement Lorentz transformations.

When the underlying UV theory for the heavy particle is known, we may derive
the effective theory Lagrangian by introducing a field redefinition in the full theory.
For example, in terms of an arbitrary (spacetime independent) time-like unit vector
vμ, the decomposition of a quark field Q(x) of mass M,

Q(x) = e−iMv·x [hv(x) + Hv(x)] , (2.4)

with v/hv = hv and v/Hv = −Hv, defines an effective heavy quark field hv(x), and
after integrating out the antiparticle field Hv(x), we arrive at the effective Lagrangian
for a heavy quark,

Q̄(iD/ − M)Q → h̄viv · Dhv +O(1/M). (2.5)

Invariance of observables under small changes of v, so-called “reparameteriza-
tion invariance”, enforces certain constraints on the coefficients of the effective
Lagrangian [84]. These constraints are consistent with the requirements of Lorentz
invariance, e.g. as imposed by matching effective theory S matrix elements to
Lorentz-invariant full theory S matrix elements. However, this construction raises
several questions. Is reparameterization invariance a sufficient condition for Lorentz
invariance? How do we derive a reparameterization transformation law without
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first constructing the underlying theory and explicitly integrating out degrees of
freedom? For applications involving a composite particle such as the proton, or
hypothetical new particles such as dark matter whose underlying theory is unknown,
we cannot in an obvious way introduce v as a parameter inside of a field redefinition.
What is the significance of v in such cases? What is the general method for
constructing a Lorentz invariant heavy particle effective field theory?

In this chapter we present the formalism of induced representations of the
Lorentz group, Wigner’s “little group” construction [103], for application to field
transformation laws. The parameter v enters as an arbitrary reference vector in
the little group construction. The relationship between Lorentz invariance and
reparameterization invariance is stated precisely, and a class of allowable repa-
rameterization transformations is obtained. We find that a standard ansatz for
implementing reparameterization invariance breaks down starting at order 1/M4.
We explain this subtlety and its resolution. A large literature exists on topics
relating to reparameterization invariance, especially as applied to heavy quark
Lagrangians [16, 44, 75, 80, 83, 84, 86, 98]. We aim to present a conceptually
clear statement of the constraints imposed by Lorentz invariance on heavy particle
effective theories.

Recent investigations using heavy particle effective theory demand high orders in
the 1/M expansion (see e.g. [17, 58, 62]). To avoid a proliferation of undetermined
constants, and to enable efficient computations, it is important to recognize that
many Wilson coefficients are linked by Lorentz invariance to coefficients appearing
at lower orders. At a practical level, we derive the explicit field transformation laws
that can be consistently used to build Lorentz invariant Lagrangians, providing a
complete solution for Wilson coefficient constraints, to arbitrary order in 1/M.

While a top-down derivation of heavy particle effective theory, e.g., starting from
QCD to derive heavy quark effective theory (HQET) through the field redefinition
in (2.4), must map onto the framework presented here, our construction does not
rely on knowing the underlying ultraviolet completion, or on explicitly integrating
out degrees of freedom. A bottom-up construction is key for applications of heavy
particle effective theory to dark matter. Let us summarize the main points for general
construction of heavy particle effective theories:

1. A heavy-particle field hv is identified with a representation of the little group for
massive particles, determining its field transformation laws under rotations and
boosts. It carries a label v associated with the time-like unit vector vμ that defines
the little group (cf. Sects. 2.2 and 2.3).

2. The little group for massive particles is isomorphic to SO(3), and therefore has
field representations carrying spin s = 0, 1/2, 1, . . . . A heavy particle field of
arbitrary spin may be represented in covariant notation using a Dirac spinor-
vector with appropriate constraints. For example, a spin-1/2 heavy-particle field
has 2(1/2) + 1 degrees of freedom and can be written as a Dirac spinor, hv,
obeying v/hv = hv as a projection constraint (cf. Sect. 2.4).

3. For a self-conjugate heavy particle we impose an additional parity equivalent to
a modified CPT transformation (cf. Sect. 2.4).
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Having determined the building blocks and their transformation laws under sym-
metries, interactions with heavy-particle fields can be constructed in the usual
way: write down the most general set of gauge- and Lorentz-invariant operators in
terms of heavy fields hv , h′

v , . . . , the time-like unit vector vμ, and other relativistic
degrees of freedom (e.g., gauge fields, SM matter fields) up to a given order in the
1/M power counting. For self-conjugate fields the additional parity is imposed.

This rest of this chapter is organized as follows. In Sect. 2.1 we briefly review the
construction of Lorentz invariant field theories based on finite dimensional repre-
sentations of the Lorentz group. In Sect. 2.2 we introduce the formalism of induced
representations and investigate the necessary conditions for a Lorentz invariant
S matrix. Section 2.3 establishes the connection between Lorentz invariance and
reparameterization invariance. A subtlety in the identification of allowable repa-
rameterization transformations is explained, and a correct solution to the invariance
equation (2.52) is found for applications to 1/M4 heavy fermion Lagrangians.
Section 2.4 presents formalism for arbitrary-spin heavy particles and for heavy
particles derived from self-conjugate relativistic fields. In Sects. 2.5–2.8 we apply
the formalism for construction of the parity and time-reversal invariant effective
Lagrangian for a heavy fermion interacting with an Abelian gauge field, i.e.,
NRQED, through order 1/M4. The implementation of Lorentz invariance in the
effective theory becomes nontrivial at this order, and we obtain a complete solution
for Wilson coefficient constraints using both variational and invariant operator
methods (cf. Sect. 2.6). We also present results of one-photon matching which verify
the coefficient constraints (cf. Sect. 2.7), and Lagrangians describing pure photon
and four-fermion interactions (cf. Sect. 2.8). We close the chapter with a discussion
in Sect. 2.9.

2.1 Finite Dimensional Representations of the Lorentz
Algebra

The standard method for constructing Lorentz invariant Lagrangians postulates the
field transformation law

φa(x) → M(Λ)abφb(Λ
−1x) , (2.6)

where M(Λ) is a finite dimensional (coordinate-independent and, in general, non-
unitary) representation of the Lorentz group. In infinitesimal form, including also
spacetime translations φ(x) → φ(x − a), we have

δφ = i(a0h − a · p − θ · j + η · k)φ , (2.7)
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where θ and η are infinitesimal rotation and boost parameters, and the generators of
the Poincaré group acting on fields are1

h = i∂t , (2.8a)

p = −i∂ , (2.8b)

j = r × p +Σ , (2.8c)

k = rh − tp ± iΣ , (2.8d)

with Σi the (2s + 1)-dimensional matrix generators of the spin-s representation
of rotations (e.g. for spin-1/2 Weyl fermions, Σ = σ/2 with σi the Pauli
matrices). Using (2.6) it is straightforward to construct Lorentz invariant actions,
and correspondingly to prove Lorentz invariance of the S matrix. Let us briefly
review this procedure.2

Recall the Poincaré algebra for generators of time translations H, space transla-
tions Pi, rotations Ji, and boosts Ki:

[H,Pi] = 0 , (2.9a)

[H, Ji] = 0 , (2.9b)

[Pi,Pj] = 0 , (2.9c)

[Ji,Pj] = iεijkPk , (2.9d)

[Ji, Jj] = iεijkJk , (2.9e)

[Ji,Kj] = iεijkKk , (2.9f)

[H,Ki] = −iPi . (2.9g)

[Pi,Kj] = −iHδij , (2.9h)

[Ki,Kj] = −iεijkJk . (2.9i)

Having built a Lagrangian that is invariant under (2.7), we may construct the
corresponding conserved charges. Using (2.8), we find in canonical quantization
that these charges obey the commutation relations (2.9).

Lorentz invariance of the S matrix demands that the free-particle charges,
denoted by H0, P0, J0, K0, commute with the scattering operator, S =
limT→∞ Ω(T)†Ω(−T), where Ω(T) = eiHTe−iH0T . We assume that momentum

1In this chapter we use bold letters for Euclidean three-vectors, e.g. ∂ = (∂ i) = (∂ i) =
(∂x, ∂y, ∂z).
2For a pedagogical discussion, see [102].



18 2 Heavy-Particle Spacetime Symmetries and Building Blocks

and angular momentum operators for the interacting theory are unchanged from the
free theory and furthermore demand translational and rotational invariance of the
interaction

P = P0 , J = J0 , [H − H0,P0] = [H − H0, J0] = 0 . (2.10)

Then [P0, S] = [J0, S] = 0, and by the definition of S also [H0, S] = 0. Finally, if
one can show (2.9g) and that an asymptotic smoothness condition for ΔK = K−K0

is obeyed, it follows that

[K0, S] = lim
T→∞

[K0,Ω(T)
†Ω(−T)] (2.11)

= lim
T→∞

{
− [eiH0TΔKe−iH0T ]Ω(T)†Ω(−T)

+ Ω(T)†Ω(−T)[e−iH0TΔKeiH0T ]

}
= 0 ,

completing the proof of the Lorentz invariance of the S-matrix. For later application,
we note that of the commutation relations involving K, it is only necessary to show
the relation (2.9g); relations (2.9f), (2.9h) and (2.9i) are not required to complete the
proof.3

2.2 Effective Field Theory and the Little Group

The field transformation law (2.6), based on finite dimensional representations of the
Lorentz group, is not suitable for heavy particle effective field theories. For example,
the associated irreducible representations of the Lorentz group are chiral, in conflict
with the low-energy limit of a parity conserving theory such as QED or QCD. Let us
consider instead the class of infinite dimensional induced representations. We first
review their appearance in transformations of physical states, and then apply them
as transformations acting on fields.

2.2.1 Little Group Formalism

Consider Lorentz transformations acting on the Hilbert space of physical states
for a spin-s particle of mass M. These transformations are implemented by an
induced representation [103]. In terms of a fixed timelike reference vector vμ

3In fact, these relations do follow from the observation that having proven Lorentz invariance of the
S matrix, it can be shown that H, P, J and K are related to their free counterparts by the similarity
transformation Ω(±∞) [102].
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(we assume v2 = 1), define the associated “little group” as the subgroup of Lorentz
transformations leaving v invariant, Λv = v. The little group for massive particles
is isomorphic to SO(3), the group of rotations. Let L(p) denote a standard Lorentz
transformation taking Mv to p, yielding a (momentum-dependent) mapping of the
Lorentz group into the little group,

Λ → W(Λ, p) = L(Λp)−1ΛL(p) . (2.12)

We may define physical states to transform schematically as

|p,m〉 → U(Λ, p)|p,m〉 =
s∑

m′=−s

Dm′ m[W(Λ, p)]|Λp,m′〉 , (2.13)

where p0 =
√

M2 + p2, and D(W) is a spin-s representation matrix for rotations.
A representation for the little group thus induces a representation for the full Lorentz
group.

A convenient choice for the standard Lorentz transformation is L(p) =
Λ(p/M, v), where Λ(w, v) denotes the generalized rotation in the plane of
the unit vectors v and w such that Λ(w, v)v = w. This matrix is given by
Λ(w, v) = exp[−iθJαβwαvβ ], with the Lorentz generators Jαβ defined in
Eq. (2.65) and the angle θ chosen appropriately [84]. In the vector and spinor
representations we have, respectively

Λ(w, v)μν = gμ
ν −

1

1 + v · w
(wμwν + vμvν)

+ wμvν − vμwν +
v · w

1 + v · w
(wμvν + vμwν) , (2.14a)

Λ 1
2
(w, v) =

1 + w/v/√
2(1 + v · w)

. (2.14b)

It is straightforward to verify that for elements of the little group, i.e. “rotations”
with Rv = v, this choice of L(p) implies

W(R, p) = R , (2.15)

a property that greatly simplifies the construction of invariant Lagrangians, cf.
Sects. 2.2.3, 2.3.1 and 2.3.2 below. Other choices of L(p) do not share this property.
For example, suppose that we introduce a spacelike vector sμ with s2 = −1. Then
we may define L′(p) = R(p)B(p), with B(p) a boost taking Mvμ to MB(p)μνv

ν =
(v · p)vμ +

√
(v · p)2 − M2sμ, and R(p) a rotation taking MB(p)μνv

ν to pμ. Such
an L′(p) provides a simple interpretation of U[L(p)]|Mv,m〉 in terms of helicity
eigenstates (note that the spacelike vector is required to define a direction for helicity
decomposition), but this consideration is secondary to the simplicity of (2.15) for
our present purposes.
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The remaining independent Lorentz generators represent “boosts” that shift v.
They can be chosen as B(q) = Λ(v − q/M, v) with (v − q/M)2 = 1. The
appearance of the 1/M factor in v − q/M will be explained in Sect. 2.2.3 below.
For an infinitesimal momentum q, which obeys v · q = O(q2), these boosts are
given by

B(q)μν = gμ
ν +

vμqν − qμvν
M

+O(q2) , (2.16a)

B 1
2
(q) = 1− q/v/

2M
+O(q2) . (2.16b)

For the transformation (2.13), we find

W(B(q), p) = 1− i
2

[
1

M(M + v · p)
(qαpβ

⊥ − pα
⊥qβ)

]
Jαβ +O(q2),

(2.17)

where for any four-vector k we define kμ⊥ ≡ kμ − (v · k)vμ.

2.2.2 Field Transformation Law and Lorentz Invariance

In place of (2.6) let us postulate the transformation law for free massive fields,

φa(x) → D[W(Λ, i∂)]abφb(Λ
−1x) . (2.18)

For notational simplicity consider the special choice v = (1, 0, 0, 0).
Equation (2.18) together with Eq. (2.17) corresponds to replacing the boost
generator (2.8d) by4

k = rh − tp ± i
Σ× ∂

M +
√

M2 − ∂2
. (2.19)

The generators (2.8a)–(2.8c) together with (2.19) will satisfy the Poincaré algebra
when acting on fields satisfying

i∂tφ = ±
√

M2 − ∂2φ . (2.20)

It follows that the conserved charges derived from a free field Lagrangian invariant
under (2.18) will satisfy (2.9).

4For spin-1/2 particles, (2.19) may also be obtained by performing a Foldy-Wouthuysen transfor-
mation on Eq. (2.8d) [45].
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In contrast to (2.6), transformation (2.18) acts on the field coordinates, spoiling
gauge invariance. To include gauge interactions, we promote the partial derivatives
in (2.18) to covariant derivatives Dμ = ∂μ − igAA

μtA ≡ ∂μ − igAμ,

φa(x) → D[W(Λ, iD)]abφb(Λ
−1x) , (2.21)

and correspondingly the infinitesimal generators become

h = i∂t , (2.22a)

p = −i∂ , (2.22b)

j = r × p +Σ , (2.22c)

k = rh − tp ± i
Σ× D

M +
√

M2 − D2
+O(g) . (2.22d)

In the expansion of D/(M +
√

M2 − D2) we assume a choice of ordering for
the covariant derivatives. The O(g) terms in k denote field strength-dependent
corrections that vanish for the non-interacting theory (i.e. g → 0). Such O(g) terms
can be introduced so that the resulting invariant Lagrangian is in “canonical form”,
i.e. where the only time derivative acting on φ appears in the leading term,

L = φ̄(iDt + . . . )φ . (2.23)

The existence of suitable field strength-dependent terms, ensuring a boost generator
k which yields a non-zero invariant Lagrangian, is implied by the all-orders
construction in Sect. 2.3 and Appendix A. The explicit form of these corrections
is not required for the following argument.

Although the field-dependent generators (2.22) do not obey simple commutation
relations, we may nevertheless show that the S matrix derived from the resulting
invariant action is Lorentz invariant (and hence that the conserved charges in the
interacting theory satisfy the Poincare algebra). To see this, we assume as before
the relations (2.10). Relation (2.9g) is satisfied if the explicit time dependence of
the conserved charge K satisfies ∂K/∂t = −P, so that

0 =
d
dt

K =
∂

∂t
K + i[H,K] = −P + i[H,K] . (2.24)

The fact that ∂K/∂t = −P follows from the assumed form of the infinitesimal
generators (2.22). For the boost φ → (1 + iη · k)φ, we find the conserved charge5

5The first ellipsis in (2.25) includes possible contributions from a surface term in δL, which do not
affect the term with explicit t dependence in (2.25).
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K =
∑
φ

i
∫

d3x
δL
δφ̇

kφ+ . . . =
∑
φ

i
∫

d3x
δL
δφ̇

[−tp]φ+ . . . = −tP + . . . .

(2.25)

Here the important point is that the remaining terms have no explicit time depen-
dence, so that (2.24) follows.

Let us close this section with two comments. First, the choice v = (1, 0, 0, 0)
is not essential to the argument. The generators for arbitrary v can be obtained by
a coordinate change using a boost which takes (1, 0, 0, 0) to v. While the resulting
explicit expressions for rotation and boost generators become more complicated,
the demonstration of Lorentz invariance is not essentially changed. Second, having
specified an ordering for covariant derivatives appearing in the boost generator
k, additional field strength-dependent corrections are determined at each order in
1/M by enforcing that the resulting invariant Lagrangian is in canonical form. We
illustrate this with an explicit example in the following subsection. The existence of
such a generator is implied by the analysis of Sect. 2.3 and Appendix A.

2.2.3 1/M Expansion and Lagrangian Constraints

To enable the 1/M expansion we extract the rest mass by the field redefinition,

φ(x) = e−iMtφ′(x) . (2.26)

In phenomenological applications it is also convenient to work with non-relativistic
field normalization

φ′(x) =
(

M2

M2 − D2

) 1
4

φ′′(x) . (2.27)

We enforce invariance under (2.22a), (2.22b) and (2.22c) by ensuring translational
invariance (no explicit factors of xμ) and rotational invariance. For the boost
transformation (2.22d) we use η = −q/M in (2.7) to preserve the power counting
Dt = O(1/M) in (2.29). This explains the appearance of 1/M in (2.16). The
resulting 1/M expansion becomes6

φ′′ → e−iq·x
{
1+

iq · D
2M2

+
iq · DD2

4M4
−Σ× q · D

2M2

[
1+

D2

4M2

]
+O(g, 1/M5)

}
φ′′ .

(2.28)

6For notational clarity we leave the coordinate change x → x′ = B−1x implicit and suppress
primes on coordinates and derivatives in (2.28) and (2.29).
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Gauge fields are assumed to transform as usual, in the vector representation of the
Lorentz group. Combined with derivatives acting on the transformed coordinate in
(2.28), we have

Dt → Dt +
1

M
q · D , D → D +

1

M
qDt . (2.29)

To illustrate the constraints, consider the canonical form of the Abelian gauged
heavy spin-1/2 fermion effective Lagrangian (i.e., NRQED) through O(1/M3).
Identifying φ′′ = ψ as a two-component spinor and setting g = −e we
obtain [77, 86]

L = ψ†
{

iDt+c2
D2

2M
+c4

D4

8M3
+cFe

σ · B
2M

+cDe
[∂ · E]
8M2

+icSe
σ · (D × E − E × D)

8M2

+ cW1e
{D2,σ · B}

8M3
− cW2e

Diσ · BDi

4M3
+ cp′pe

σ · DB · D + D · Bσ · D
8M3

+ icMe
{Di, [∂ × B]i}

8M3
+ cA1e2

B2 − E2

8M3
− cA2e2

E2

16M3
+O(1/M4)

}
ψ .

(2.30)

Here we have defined Ei = (−i/e)[Dt,Di], εijkBk ≡ (i/e)[Di,Dj]. Under (2.28), a
straightforward computation yields

δL =
1

M
δL1 +

1

M2
δL2 +

1

M3
δL3 + . . . , (2.31)

where using Σ = σ/2 in (2.28),

δL1 = ψ† [(1 − c2)iq · D]ψ , (2.32a)

δL2 = ψ†
[
−1

2
(1− c2){q · D,Dt}+ e

4
(1 − 2cF + cS)σ × q · E

]
ψ , (2.32b)

δL3 = ψ†
[

e
8

cD[Dt, q · E]+
e
8
(cF−cD+2cM) q · [∂ × B]+

i
4
(c2−c4) {q · D,D2}

(2.32c)

+
ie
8

cS{Dt,σ × q · E}+ ie
8
(c2+2cF−cS−2cW1+2cW2) {q · D,σ · B}

+
ie
8
(−c2 + cF − cp′p) {σ · D, q · B}

+
ie
8
(−cF + cS − cp′p) q · σ(D · B + B · D)

]
ψ .
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From δL1 and δL2, we find

c2 = 1 , cS = 2cF − 1 . (2.33)

The variation δL3 is equivalent to zero upon a field strength-dependent modification
of the boost transformation (2.28),

ψ(x)→ e−iq·x
{
1 +

iq · D
2M2

− σ × q · D
4M2

+
icD

8M3
eq · E

+
cS

8M3
eq · σ × E +O

(
1

M4

)}
ψ(B−1x) , (2.34)

and upon enforcing the constraints [58, 86]

c4 = 1 , 2cM = cD − cF , cW2 = cW1 − 1 , cp′p = cF − 1 . (2.35)

The computation of the complete Lagrangian at O(1/M4) is presented in Sect. 2.6.

2.3 Reparametrization Invariance and Invariant Operators

While in practice it may be convenient to enforce Lorentz invariance only after
expanding the Lagrangian in a series of rotationally-invariant, but not Lorentz
invariant, operators, it is interesting to consider formalism that permits an explicitly
Lorentz-invariant construction. This formalism also addresses the question of
existence of a suitable boost generator, extending (2.34) to arbitrary order in 1/M.

This section begins by introducing covariant notation that can either be used
in place of the v = (1, 0, 0, 0) formalism above, or used to construct manifestly
invariant operators. The relation between Lorentz invariance and reparameteriza-
tion invariance is then demonstrated, and a general discussion of the invariant
operator method is presented. In particular, we derive the necessary invariance
equation (2.52) and present the solution to order 1/M3. A systematic, all-orders
solution of the invariance equation is given in Appendix A.

2.3.1 Covariant Notation

The formalism of Sect. 2.4 allows us to straightforwardly extend the discussion to a
general reference vector v and to arbitrary spin. Consider a term in the Lagrangian
of the schematic form

φ̄v

{
· · · vμ · · ·Dμ · · · γμ · · ·

}
φv , (2.36)
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where indices are contracted with gμν and εμνρσ . Invariance under generalized
rotations of such a term in the action follows using the field transformation (2.15),

φv(x) → Rφv(x
′) , (2.37)

where x′ ≡ R−1x. The transformation of the derivative and the gauge field are as
usual,

∂μ → ∂μ = Rμ
ν∂

′ν , Aμ → Rμ
νAν(x′) . (2.38)

If the Lagrangian is already constructed such that all vector and spinor indices
are contracted in (2.36), we can easily see that the Lagrangian is invariant under
generalized rotations using the identities

vμ = Rμ
νv

ν , γμ = R 1
2
(Rμ

νγ
ν)R−1

1
2

. (2.39)

According to (2.17), the infinitesimal boosts are implemented by

φv(x) → W(B, iD)φv(x
′) , (2.40)

where x′ ≡ B−1x, together with the transformation of the derivative and gauge field,

∂μ → ∂μ = Bμ
ν∂

′ν , Aμ(x) → Bμ
νAν(x′) . (2.41)

We may proceed as in Sect. 2.2.3 above to construct invariant combinations of
Lagrangian interactions of the form (2.36), order by order in 1/M.

As an explicit example, let us focus presently on the phenomenologically
important one-heavy particle sector of a spin-1/2 theory. To enable the 1/M
expansion and convert to non-relativistic normalization, we introduce the field
redefinition as in (2.26) and (2.27),

ψv(x) = e−iMv·xN(v, iD)ψ′
v(x) , N(v, iD) =

(
M2

M2 + D2
⊥

) 1
4

. (2.42)

The boost transformation (2.40) becomes

ψ′
v → eiq·xW̃ 1

2
(B, iD + Mv)ψ′

v , (2.43)

where

W̃(B, iD + Mv) = N(v + q/M, iD − q)−1W(B, iD + Mv)N(v, iD) . (2.44)

The 1/M expansion of this transformation is the extension to arbitrary v, for spin-
1/2, of the previous (2.28):

ψ′
v → eiq·x

{
1+

iq · D⊥
2M2

− iq · D⊥D2
⊥

4M4
+

1

4M2
σαβqαDβ

⊥

[
1− D2

⊥
4M2

]
+O(g, 1/M5)

}
ψ′
v .

(2.45)
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Similarly, we find the extension to arbitrary v of the transformations (2.29)

v · D → v · D +
1

M
q · D⊥ , Dμ

⊥ → Dμ
⊥ − 1

M
qμ(v · D). (2.46)

Using these transformations one can build an invariant Lagrangian, which (in the
Abelian case) is equivalent to the extension of the Lagrangian (2.30) to arbitrary v
with the same constraints (2.33) and (2.35).

2.3.2 Reparametrization Invariance

We can reformulate the transformation law for generalized boosts by using the
identities,

vμ = Bμ
ν(B−1)νρv

ρ ≡ Bμ
ν wν , γμ = B 1

2
(Bμ

νγ
ν)B−1

1
2

. (2.47)

In place of (2.40) and (2.41) the transformation of any operator of the form (2.36)
is identical to the transformation obtained by the substitutions

v → w = v + q/M , φv → φw ≡ B−1W(B, iDμ)φv , (2.48)

with no transformation of the coordinate and gauge field. The rules (2.48), with
suitable choice for W, may be identified with the rules obtained by enforcing
“reparameterization invariance” [84]. However, we emphasize that from the present
perspective, we are not changing the reference vector v, but simply noticing the
equivalence of (2.40) and (2.41) on the one hand, and (2.48) on the other hand,
when acting on operators of the form (2.36).

2.3.3 Invariant Operator Method

It is not obvious that a non-zero Lagrangian, invariant under (2.40) and (2.41) to
arbitrary order, will exist. For example, in (2.31) invariance relies on the possibility
to enforce δLn = 0 by modifying the boost generator as in (2.34) and enforcing
relations as in (2.33) and (2.35). It is not evident that this procedure can be extended
to arbitrary order. We present here a method of constructing operators that are
manifestly invariant under a particular choice of boost generator, to arbitrary order
in 1/M. The details of the construction are given in Appendix A.

The embedding of the little group into constrained representations of the full
Lorentz group (cf. Sect. 2.4) provides a framework for constructing explicitly
invariant operators. Suppose that we find an operator Γ(v, iD) such that

Γ(Λ−1v, iD)Λ−1W(Λ, iD) = Γ(v, iD) , (2.49)
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when acting on fields φv obeying the appropriate constraints, as given in Sect. 2.4
(e.g. v/φv = φv for spin-1/2). It follows from the rules (2.48) that the combination

Φv ≡ Γ(v, iD)φv (2.50)

is invariant under the reparameterization implementation (2.48) of generalized
boosts. Provided that invariance under generalized rotations (2.37)–(2.39) is main-
tained, we may build operators that are explicitly invariant. For example, in the
spin-1/2 case

Ψ̄viD/ Ψv , Ψ̄vΨv , Ψ̄viσμν [Dμ,Dν ]Ψv , (2.51)

are invariant. Note that because of Eq. (2.15) the only constraints on Γ(v, iD) from
Eq. (2.49) come from boosts Λ = B.

Applying field redefinitions as in (2.42), the condition (2.49) for Γ becomes

Γ(v + q/M, iD − q)B−1W̃(B, iD + Mv) = Γ(v, iD) . (2.52)

We will refer to (2.52) as the “invariance equation”. Provided that such a Γ(v, iD)
can be found, the field

Φ′
v(x) ≡ Γ(v, iD)φ′

v(x) (2.53)

obeys a simple transformation law under the reparameterization implementation of
generalized boosts (2.48),

Φ′
v → Φ′

w ≡ eiq·xΦ′
v . (2.54)

Noting that e−iq·x(iDμ + Mwμ)eiq·x = iDμ + Mvμ, invariant operators may thus be
built from contractions of polynomials of γμ and vμ+ iDμ/M, between Φ̄′

v and Φ′
v .

For example in the spin-1/2 case,

Ψ̄′
v(iD/ + Mv/)Ψ′

v , Ψ̄′
vΨ

′
v , Ψ̄′

viσμν [Dμ,Dν ]Ψ
′
v , (2.55)

are invariant.

2.3.4 Solution for Γ(v, iD)

The key element of the invariant operator construction is a solution of the invariance
equation (2.52). Without loss of generality, let us set N(v, iD) = 1; the solution for
general N can then be obtained by Γ(v, iD) → Γ(v, iD)N(v, iD)−1. The method
presented can be easily extended to arbitrary spin, but for illustration we focus on
the one-heavy particle sector of a spin-1/2 theory.
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In order to obtain a solution in closed form for the free theory, and to make
contact with previous work, it is convenient to take the free theory limit for
W 1

2
(B, i∂ + Mv) of the form [84]

W 1
2
(B, i∂ + Mv) = B 1

2
Λ 1

2
(V̂free, v + q/M)−1Λ 1

2
(V̂free, v) (2.56)

= 1 +
1

4M2
σμν
⊥ qμ∂ν

[
1− iv · ∂

M
+

1

M2

(
(iv · ∂)2 − 1

4
(i∂⊥)2

)]

+O(1/M5) ,

whereΛ 1
2
(u, v) was defined in (2.14),Vμ

free ≡ vμ+i∂μ/M and V̂μ
free ≡ Vμ

free/|Vfree|.
We have also used that /vψv = ψv. Inspection of (2.52) shows that an all-orders
solution can be written for Γ in the non-interacting theory,

Γ(v, i∂) = Λ 1
2
(V̂free, v) = 1 +

i∂/⊥
2M

+
1

M2

[
−1

8
(i∂⊥)2 − 1

2
i∂/⊥iv · ∂

]

+
1

M3

[
1

4
(i∂⊥)2iv · ∂ +

i∂/⊥
2

(
−3

8
(i∂⊥)2 + (iv · ∂)2

)]
+O(1/M4) .

(2.57)

In the interacting theory it turns out that one cannot simply replace ∂ by D
in (2.57) to obtain a solution for Γ(v, iD). It is instead necessary to add specific
field strength dependent terms, first to W (as in (2.58) and (A.2a) below) in order
to satisfy consistency conditions, and then to Γ in order to solve the invariance
equation (2.52). The computations of Appendix A show that a solution for Γ(v, iD)
will exist if we specify

W 1
2
(B, iD + Mv) = 1 +

1

4M2
σ⊥
μνqμDν

⊥

(
1− iv · D

M

)
+O(1/M4) , (2.58)

with (2.58) reducing to (2.56) at g = 0. Let us proceed through O(1/M3), writing

Γ = 1 +
1

M
Γ(1) +

1

M2
Γ(2) +

1

M3
Γ(3) + . . . , (2.59)

and deriving a solution to the invariance equation (2.52) order by order in 1/M.
In Appendix A we present a systematic construction that extends the solution to
arbitrary order.

Modulo terms that vanish when acting on ψv with v/ψv = ψv , we find

Γ(1) =
1

2
iD/ ⊥ . (2.60a)

Γ(2) = −1

8
(iD⊥)2 − 1

2
iD/ ⊥iv · D + gAσμνGμν + gBγμvνGμν . (2.60b)
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Γ(3) =
1

4
(iD⊥)2iv · D +

iD/ ⊥
2

[
−3

8
(iD⊥)2 + (iv · D)2

]

− g
8

Gμνv
μDν

⊥ − g
16

σμν
⊥ Gμν iD/ ⊥ , (2.60c)

where we define [iDμ, iDν ] = igGμν . Starting at order 1/M2 the solution is not
unique. However, since we will consider arbitrary factors of Vμ ≡ vμ + iDμ/M
when constructing invariant operators, we can set A = B = 0 by considering instead
of Γ, the operator Γ′ given by

Γ(v, iD) = (1− iAσμν [Vμ,Vν ]− iBγμVν [Vμ,Vν ] + . . . ) Γ′(v, iD) . (2.61)

Similarly, we have absorbed additional 1/M3 terms in (2.60c). The remaining terms
in (2.60) have free derivatives Dμ acting to the right, and cannot be removed as
in (2.61).

A complete basis of bilinears required through order 1/M3 is

L = Ψ̄v

{
M(V/ − 1)− aFg

σμνGμν

4M
+ iaDg

{Vμ, [MVν ,Gμν ]}
16M2

− aW1g
[MVα, [MVα, σ

μνGμν ]]

16M3

+ aA1g2 GμνGμν

16M3
+ aA2g2VαGμαGμβVβ

16M3

}
Ψv . (2.62)

Performing field redefinitions to arrive at canonical form, we recover the result
(2.30) with constraints (2.33) and (2.35). The computation at O(1/M4) is presented
in Sect. 2.6. We may perform a similar computation for heavy vector particles (or
particles of arbitrary spin), and/or enforce constraints appropriate to self-conjugate
fields (cf. Sect. 2.4).

The passage from (2.57) to (2.60) is not as simple as previously envis-
aged [84, 86], and careful attention must be paid to the interplay of Lorentz
and gauge symmetry. The computations in Appendix A show that an arbitrary
“covariantization” of (2.56) does not solve the invariance equation (2.52). The
covariant little group element W(B, iD + Mv) must satisfy consistency conditions
for a solution to exist, and specific field strength dependent terms, such as
those appearing in (2.60c), are necessary in order that Γ(v, iD) satisfy the
resulting invariance equation (2.52). These considerations have previously been
overlooked [84, 86]. For example, a naive covariantization of Eq. (2.57),

Γnaive(v, iD) = 1 +
iD/ ⊥
2M

+
1

M2

[
−1

8
(iD⊥)2 − 1

2
iD/ ⊥iv · D

]
(2.63)

+
1

M3

[
1

4
(iD⊥)2iv · D +

iD/ ⊥
2

(
−3

8
(iD⊥)2 + (iv · D)2

)]

+O(1/M4) ,



30 2 Heavy-Particle Spacetime Symmetries and Building Blocks

is not a solution to the invariance equation. The necessity for such additional
field strength dependent terms can also be seen from the fact that the
right hand side of (2.63) would imply a transformation ψv → ψw =
Γnaive(w, iD)−1eiq·xΓnaive(v, iD)ψv that takes ψv outside of the assumed
representation space, with v/ψv = ψv . In the heavy fermion Lagrangian, the effects
of these field-strength dependent terms appear first at order O(1/M4), where
omission of the final term in (2.60c) would lead to incorrect 1/M4 Lagrangian
coefficient relations (details are presented in later sections of this chapter).7

Before closing this section, let us summarize the value of the invariant operator
method. Appendix A shows that we can find a suitable covariantization of W(B, i∂+
Mv) that allows solution of the invariance equation forΓ(v, iD) to any order in 1/M.
Hence this method proves the existence of a covariantized boost operator and a non-
zero, Lorentz invariant Lagrangian to arbitrary order. We may proceed in either
of two ways to construct invariant Lagrangians. Firstly, we may proceed as in
(2.62), where we construct manifestly invariant interactions through some fixed
order in 1/M; to achieve canonical form we must then perform field redefinitions.
Alternatively, we may proceed as in (2.30) (or its generalization to arbitrary v),
armed with the knowledge that a suitable boost generator as in (2.34) can be
reconstructed order by order.

2.4 Higher-Spin and Self-conjugate Fields

Although the explicit results have so far focused on spin-1/2 fields transforming
under an Abelian (i.e. complex) gauge group, the formalism extends straightfor-
wardly to fields of arbitrary spin or to self-conjugate fields. Below we describe
the formalism for embedding arbitrary spin representations within products of
Dirac spinor and Lorentz vector representations of the Lorentz group. For a related
discussion see e.g. [43]. We also describe constraints imposed on the effective theory
deriving from self-conjugate fields, and the relation of such constraints to discrete
symmetries C, P and T.

2.4.1 Higher Spin Representations

Irreducible higher spin representations can be built using products of the Dirac
spinor and vector representations

ψv → Λ 1
2
ψv , Zα

v → Λα
βZβ

v , (2.64)

7When building invariant fermion bilinears, the leading terms involve iv · D multiplying 1/M
corrections appearing in Γ(v, iD). Since such terms are eliminated in going to canonical form,
nontrivial effects of the 1/M3 corrections to Γ(v, iD) appear first at order 1/M4.
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where Λ = D(W) is a little group element as in Sect. 2.2.1, i.e., Λv = v. The
corresponding generators for these two representations are given by

J αβ
1
2

=
1

2
σαβ =

i
4
[γα, γβ] , (J αβ)μν = i(gα

μgβ
ν − gβ

μgα
ν). (2.65)

We enforce a maximal set of constraints to isolate the appropriate irreducible
representation.

Integer spin: For integer spin s = n, consider the totally symmetric and traceless
tensor Zμ1...μn

v , which has (n + 1)2 degrees of freedom. Imposing

vμ1Zμ1...μn
v = 0 (2.66)

yields n2 additional constraints, leaving us with 2n + 1 = 2s + 1 degrees of
freedom as desired. Under Lorentz transformations this field transforms as

Zμ1...μn
v → Λμ1

ν1 . . .Λ
μn
νn

Zν1...νn
v . (2.67)

Using ΛTgΛ = g and Λv = v, it is easy to see that symmetry, tracelessness and
the constraint (2.66) are preserved by this transformation.

Half-integer spin: For half-integer spin s = n + 1/2, consider the spinor-tensor
ψμ1,μ2,...,μn
v , which is totally symmetric in the indices μ1 . . . μn and therefore has

2(n + 1)(n + 2)(n + 3)/3 degrees of freedom. We impose the constraints8

v/ψμ1...μn
v = ψμ1...μn

v , γμ1ψ
μ1...μn
v = 0. (2.68)

The second constraint yields n(n+1)(n+5)/3 equations, while the first projects
a four-component spinor onto a two-dimensional subspace, reducing the degrees
of freedom by 1/2. In total 2(n+1) = 2s+1 degrees of freedom remain. Under
Lorentz transformations this field transforms as

ψμ1...μn
v → Λμ1

ν1 . . .Λ
μn
νn
Λ 1

2
ψν1...νn
v . (2.69)

This is symmetric in μ1 . . . μn. That Eq. (2.68) are preserved follows immediately
from Λv = v and Λ−1

1
2

γμΛ 1
2
= Λμ

νγ
ν .

The construction of heavy particle Lagrangians for higher-spin fields proceeds in a
similar way to the spin-1/2 case described above, with extension of the spin matrices
(1, σi) to the appropriate set. It is possible to choose spin matrices of the appropriate
dimension to construct the Lagrangian for a heavy particle of arbitrary spin valid to
any order in the 1/M expansion.

8Note that the second constraint implies gμνψμνμ3 ...μn
v = 0 and, furthermore, is equivalent to

imposing vμ1ψμ1 ...μn
v = 0 and εναβμ1

vνσαβψμ1...μn
v = 0.
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2.4.2 Self-conjugate Parity and CPT

The self-conjugacy of SU(2) implies that for any field φ(x) transforming as in (2.8)
or (2.19) with the plus sign, the field

φc(x) = Sφ∗(x) , (2.70)

transforms as in (2.8) or (2.19) with the minus sign. Here S is the (2s+1)× (2s+1)
similarity transformation for the spin-s representation of SU(2), such that (−Σi)∗ =
SΣiS−1. In covariant language, this translates to the simultaneous transformations

φv(x) → φc
v(x) , vμ → −vμ . (2.71)

In terms of the irreducible representations constructed in Sect. 2.4.1, the field
transformation in (2.71) reads9

Zμ1...μs
v → (Zc

v)
μ1...μs = (Zμ1...μs

v )∗ , ψμ1...μs
v → (ψc

v)
μ1...μs = C(ψμ1...μs

v )∗ ,
(2.72)

for integer spin and half-integer spin fields, respectively. The charge conjugation
matrix C acts on the spinor index of ψv . It is symmetric and unitary, and obeys
C†γμC = −γμ∗. The parity (2.71) arises if the effective theory is describing a full
theory of a self-conjugate field (necessarily transforming in a real representation of
a gauge group). For example, the effective theory field for a real scalar ϕ = ϕ∗ can
be obtained via

ϕ(x) = e−iMv·xϕv(x)/
√

M = eiMv·xϕ∗
v(x)/

√
M = ϕ∗(x) . (2.73)

Similarly, the effective theory for a Majorana fermion represented by a Dirac spinor
ψM = ψc

M can be obtained via

ψM =
√
2e−iMv·x(hv + Hv) =

√
2eiMv·x(hc

v + Hc
v) = ψc

M , (2.74)

where /vhv = hv and /vHv = −Hv.
It follows from (2.71) that the allowed operators φ̄vO(v)φv in the Lagrangian

representing a self-conjugate field can be chosen such that

O(v) = CO(−v)∗C†. (2.75)

Since we are often interested in constructing the Lagrangian in canonical form, i.e.,
without higher iv · D derivatives acting on φv , it is important to ask whether this
condition is preserved by the requisite field redefinitions. By a similar reasoning

9We here choose a basis such that S = 1 for vectors.
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to above, operators of the form φ̄v[iv · DX(v) + X†(v)iv · D]φv appearing in the
Lagrangian must be such that X(v) = CX(−v)∗C†. Hence field redefinitions of
the form φv → [1− X(v)]φv achieve canonical form of the Lagrangian while
preserving (2.75).

The self-conjugate parity for heavy fields described above is equivalent to
imposing a modified, heavy-particle version of CPT, where P and T act on a Dirac
spinor χv in the usual way, but C acts as the identity:

C : χ(t, x) → χ(t, x) , P : χ(t, x) → γ0χ(t,−x) , T : χ(t, x) → γ1γ3χ(−t, x) .
(2.76)

In this formulation, the reference vector vμ is unchanged while the field transforma-
tions under discrete symmetries C,P, T are implemented. Hence, it may be imposed
in the case where the heavy particle effective theory is written in the rest frame
where the reference vector has been fixed to vμ = (1,0).

2.5 NRQED Example: Lagrangian

Let us demonstrate the application of our formalism in the case of Nonrelativistic
QED (NRQED) (i.e., the parity and time-reversal symmetric theory of a heavy
spin-1/2 particle coupled to an Abelian gauge field) at O(1/M4). We will also
consider examples with multiple heavy particle fields, and other relativistic degrees
of freedom beyond Abelian gauge fields.

NRQED is an effective field theory [21] describing the interactions of nonrel-
ativistic fermions with electromagnetic fields. NRQED interactions at order 1/M4

have become relevant for describing radiative corrections to proton structure contri-
butions in hydrogenic bound state spectroscopy [58, 93]. The NRQED Lagrangian,
properly constrained by Lorentz invariance, trivializes the derivation of low-energy
theorems of Compton scattering [95] and automatically incorporates the intricate
singularity structure of scattering amplitudes [10, 99]. It can be used to rigorously
compute radiative corrections to low-energy lepton-nucleon scattering, and it also
provides a model-independent framework within which to analyze static properties
of nucleons, such as polarizabilities and generalized electromagnetic moments [85].

Let us illustrate the formalism for constructing heavy particle Lagrangians,
deriving a complete basis of operators and coefficient constraints through order
1/M4 for the effective theory of nonrelativistic nucleons and leptons interacting with
photons.10 An important formal issue first arises at order 1/M4: as discussed in the
previous sections, a “reparameterization invariance” ansatz for enforcing relativistic

10For definiteness we will often refer to the heavy fermion ψ as the “nucleon”, and to a second
fermion χ in Sect. 2.8 as the “lepton”.
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invariance breaks down at this order. We derive the correct implementation of
Lorentz invariance constraints and the resulting Wilson coefficient relations (i.e.,
nonrenormalization theorems) through order 1/M4.

Let us begin by constructing the NRQED Lagrangian in the one-fermion sector
through order 1/M4. Consider the Lagrangian for a heavy fermion coupled to
an Abelian gauge field. We enforce hermiticity and invariance under parity, time-
reversal and rotational symmetries. We also perform field redefinitions to eliminate
time derivatives acting on the fermion field (apart from the leading term); we refer
to this choice as the “canonical form” of the heavy particle Lagrangian. We thus find
in the one-fermion sector,

L = ψ†
{

iDt + c2
D2

2M
+ c4

D4

8M3
+ cFg

σ · B
2M

+ cDg
[∂ · E]
8M2

+ icSg
σ · (D × E − E × D)

8M2

+ cW1g
{D2,σ · B}

8M3
− cW2g

Diσ · BDi

4M3
+ cp′pg

σ · DB · D + D · Bσ · D
8M3

+ icMg
{Di, [∂ × B]i}

8M3
+ cA1g2 B2 − E2

8M3
− cA2g2 E2

16M3

+ cX1g
[D2,D · E + E · D]

M4
+ cX2g

{D2, [∂ · E]}
M4

+ cX3g
[∂2∂ · E]

M4

+ icX4g2 {Di, [E × B]i}
M4

+ icX5g
Diσ · (D × E − E × D)Di

M4

+ icX6g
εijkσiDj[∂ · E]Dk

M4

+ cX7g2σ · B[∂ · E]
M4

+ cX8g2 [E · ∂σ · B]
M4

+ cX9g2 [B · ∂σ · E]
M4

+ cX10g2 [E
iσ · ∂Bi]

M4

+ cX11g2 [B
iσ · ∂Ei]

M4
+ cX12g2σ · E × [∂tE − ∂ × B]

M4
+O(1/M5)

}
ψ .

(2.77)

We have defined Dt = ∂/∂t + igZA0, Di = ∂/∂xi − igZAi, where −gZ = −e,
+e or 0 for an electron, proton or neutron, respectively. The operators up to
1/M3 were previously listed in [21, 77, 86]. We use the summation convention
XiYi ≡ ∑3

i=1 XiYi, and define [X, Y] ≡ XY − YX, {X, Y} ≡ XY + YX to denote
commutators and anticommutators as usual. Square brackets around quantities
imply that derivatives act only within the bracket. Electric and magnetic fields are
defined as usual by E = −[∂tA] − [∂A0] and B = [∂ × A]. By the definition of E
and B, [∂ · B] = 0 and [∂tB + ∂ × E] = 0.
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The most general term in (2.77) is obtained by constructing all possible rotation-
ally invariant, hermitian combinations of iDt, Di, Ei, iBi, iσi, with parity requiring an
even number of factors of Di and Ei. Terms at 1/M4 with two field strength factors
Ei or Bi are straightforward to tabulate; note that we have used [∂tB] = −[∂ × E]
and the assumption of canonical form to eliminate time derivatives of the magnetic
field. Remaining terms at 1/M4 involve one factor of electric field Ei and three
spatial derivatives Di. Spin-independent terms are straightforward to tabulate; the
basis of operators parameterized by cX1, cX2, cX3 differs from other possible choices
by terms involving commutators [Di,Dj], i.e., terms with two field strengths. For
spin-dependent terms we use [∂ × E] = −[∂tB] and the assumption of canonical
form to eliminate occurrences of [∂ × E]. The three-vector identity,

Di(E × σ)j + (σ × D)jEi + σi(D × E)j = D · E × σδij , (2.78)

applied to remaining terms of the form ψ†Di(. . . )Djψ, leaves the basis of operators
parameterized by cX5, cX6.

2.6 NRQED Example: Relativistic Invariance

The Lagrangian (2.77) is invariant, by construction, under rotations and spacetime
translations. The remaining constraints of relativity are enforced by demanding
invariance under boosts. Here we derive these additional constraints, first by a
variational calculation in Sect. 2.6.1, and then by an equivalent invariant operator
construction in Sect. 2.6.2.

2.6.1 Variational Method

As detailed in Sect. 2.2, under infinitesimal boosts, with infinitesimal boost param-
eter η = −q/M, we may choose the heavy fermion to transform as

ψ →e−iq·x
{
1 +

iq · D
2M2

+
iq · DD2

4M4
− σ × q · D

4M2

[
1 +

D2

4M2

]

+
icDg
8M3

q · E +
cSg
8M3

q · σ × E +O(g/M4, 1/M6) + . . .

}
ψ ,

(2.79)

while derivatives and gauge fields transform as Lorentz vectors:

B → B− 1

M
q × E , E → E+

1

M
q × B , D → D+

1

M
qDt , Dt → Dt+

1

M
q · D .

(2.80)
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Field strength-dependent terms in (2.79) have been chosen to maintain canonical
form. Since we are interested in the canonical Lagrangian through order 1/M4, we
need not specify the explicit form of the order 1/M4 field strength-dependent terms,
denoted by O(g/M4). A straightforward computation yields

δL =
1

M
δL1 +

1

M2
δL2 +

1

M3
δL3 +

1

M4
δL4 + . . . , (2.81)

where

δL1 = ψ† [(1 − c2)iq · D]ψ ,

δL2 = ψ†
[
−1

2
(1− c2){q · D,Dt}+ g

4
(Z − 2cF + cS)σ × q · E

]
ψ ,

δL3 = ψ†
[

g
8

q · [∂ × B] (cF − cD + 2cM) +
i
4
{q · D,D2} (c2 − c4)

+
ig
8
{q · D,σ · B} (c2Z + 2cF − cS − 2cW1 + 2cW2)

+
ig
8
{σ · D, q · B} (−c2Z + cF − cp′p)

+
ig
8

q · σ(D · B + B · D) (−cF + cS − cp′p)

]
ψ. (2.82)

From δL1, δL2 and δL3, we find [58, 86]11

c2 = 1 , cS = 2cF−Z , c4 = 1 , 2cM = cD−cF , cW2 = cW1−Z , cp′p = cF−Z .
(2.83)

Employing the above relations, the variation δL4 takes the form

δL4 = ψ†
[

ig
8
[D2, q · E]

(
5Z
4

− cF + cD − 32cX1

)

+
ig
8
{q · D, [∂ · E]}

(
−Z
4
+ cF − 16cX2

)

+
g2

8
q · E × B

(
Z2

2
+ 2cF(Z − cF)− 2ZcD + cA2 + 16cX4

)

+
g
8
[q · σ × ∂∂ · E]

(
−Z + cF − 1

4
cD + cW1 + 8cX6

)

+
g
8

Di
(
qi(E × σ)j+(E × σ)iqj+σ × q · Eδij

)
Dj

(
Z
2
−2cF+16cX5

)]
ψ ,

(2.84)

11As noted in [58], we find the opposite sign in the relation for cM in (2.83) compared to [86].
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where we have suppressed terms that are removed by field strength-dependent
modifications of the boost generator, denoted by O(g/M4) in (2.79). We readily
find,

32cX1 =
5Z
4

− cF + cD ,

32cX2 = −Z
2
+ 2cF ,

32cX4 = −Z2 − 4cF(Z − cF) + 4ZcD − 2cA2 ,

32cX5 = −Z + 4cF ,

32cX6 = 4(Z − cF) + cD − 4cW1 , (2.85)

while coefficients cX3 and cX7...X12 are not constrained by Lorentz invariance.
We thus find that seven new quantities are required at order 1/M4 to describe
the proton’s response to arbitrary background electromagnetic fields. The above
relations following from relativistic symmetry are non-renormalizable.

2.6.2 Invariant Operators

An alternate method for enforcing Lorentz invariance is to construct the Lagrangian
from explicitly invariant operators. We summarize here the main points; the details
are presented in Sect. 2.3.

The basic building block in the construction is the field Ψv = Γ(v, iD)ψv ,
where ψv is a Dirac spinor field with v/ψv = ψv . The matrix-valued operator
Γ(v, iD) is determined such that under an infinitesimal boost Λ, where Λμ

νv
ν =

vμ + qμ/M, the field Ψv has a simple transformation law: Ψv → eiq·xΨv. Noting
that e−iq·x(iDμ+Mvμ+qμ)eiq·x = iDμ+Mvμ, we may thus build invariant bilinears
from contractions of polynomials of γμ and Vμ ≡ vμ+iDμ/M, betweenΨv andΨv.

The function Γ(v, iD) is a solution to the invariance equation,

Γ(v + q/M, iD − q)Λ−1W(Λ, iD + Mv) = Γ(v, iD), (2.86)

where W(Λ, p) is an element of the little group for timelike invariant vector vμ,
following from the theory of induced representations of the Lorentz group. Up to
the relevant order for determining the 1/M4 Lagrangian we have [57]

Γ = 1+
iD/ ⊥
2M

+
1

M2

{
−1

8
(iD⊥)2 − 1

2
iD/ ⊥iv · D

}
+

1

M3

{
1

4
(iD⊥)2iv · D

+
iD/ ⊥
2

[
−3

8
(iD⊥)2 + (iv · D)2

]
+

gZ
8

Fμνv
μDν

⊥+
gZ
16

σμν
⊥ Fμν iD/ ⊥

}
+ . . . ,

(2.87)
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where we have defined Dμ
⊥ ≡ Dμ − vμv · D, and for Abelian gauge fields Fμν ≡

∂μAν − ∂νAμ. Note that the last two terms of (2.87) are absent in the ansatz for
reparameterization invariance given in [84], leading to incorrect Lorentz invariance
constraints at 1/M4 and beyond. This subtlety is explained in Sects. 2.1–2.3 above.

A complete basis of invariant bilinears required through order 1/M4 is

L = Ψv

{
M(V/ − 1)− aFg

σμνFμν

4M
+ iaDg

{Vμ, [MVν ,Fμν ]}
16M2

− aW1g
[MVα, [MVα, σ

μνFμν ]]

16M3

+ aA1g2 FμνFμν

16M3
+ aA2g2VαFμαFμβVβ

16M3

}
Ψv + aX3BX3 +

12∑
i=7

aXiBXi.

(2.88)

The bilinears BXi for i = 3, 7 . . . 12 are chosen to reduce to the respective operators
multiplying cXi in (2.77) upon setting vμ = (1, 0, 0, 0) and neglecting 1/M
suppressed corrections. Since we are concerned only with the Lagrangian through
order 1/M4 we do not specify an explicit choice for these BXi. A computation shows
that the field redefinition to recover canonical form is

ψv =

{
1 +

1

4M2
(iD⊥)2

(
1− iv · D

M

)
− gZ

16M2
σμν
⊥ Fμν

− gZ
4M3

Dμ
⊥v

αFαμ +
igZ
4M3

σμνDμ
⊥vαFαν

− gZ
8M3

vαFαμDμ
⊥ +

gaF

4M3
[−Dμ

⊥v
αFαμ + iσμνDμ

⊥vαFαν ]− gaD

8M3
vαFαμDμ

⊥

+
igaW1

8M3
σμν [D

μ
⊥, vαFαν ]

}
ψ′
v . (2.89)

Upon setting vμ = (1, 0, 0, 0), the resulting Lagrangian, expressed in terms of ψ′
v ,

is identical to the previous result (2.77) with constraints (2.83) and (2.85).

2.7 NRQED Example: One-Photon Matching

This section relates the matching conditions in the one-fermion sector to standard
form factors of the nucleon. The coefficient relations of the previous section, derived
from relativistic invariance, are verified explicitly. We focus here on operators
contributing to the one-photon matrix element. Coefficient relations for operators
contributing to the two-photon matrix element may be similarly verified.
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p

q

p′ = p

q

p′

Fig. 2.1 Tree level matching of the one-photon amplitude in the full theory and NRQED. The
black dot in the diagram on the right-hand side represents single-photon NRQED vertices

Consider first the operators contributing to the one-photon matrix element of the
nucleon. The matching is performed in terms of standard invariant form factors,

〈N(p′)|Jemμ |N(p)〉 = u(p′)Γμ(q)u(p) , Γμ(q) ≡ γμFN
1 (q

2) +
iσμν

2MN
FN
2 (q

2)qν ,

(2.90)

where q = p′ − p and N denotes a proton or neutron; we suppress the superscript
N in the following. Equating the effective theory with the full theory,12 we find (cf.
Fig. 2.1)

cF = F̄1 + F̄2 ≡ Z + aN +O(α) ,

cD = F̄1 + 2F̄2 + 8F̄′
1 ≡ Z +

4

3
M2(rN

E )
2 +O(α) ,

cW1 = F̄1 +
1

2
F̄2 + 4F̄′

1 + 4F̄′
2 ,

cX3 =
1

8
F̄′
1 +

1

4
F̄′
2 +

1

2
F̄′′
1 , (2.91)

where Z denotes the electric charge, aN is the anomalous magnetic moment of the
nucleon, and rN

E is the nucleon charge radius. We have introduced dimensionless
barred quantities to denote derivatives with respect to q2/M2 at q2 = 0: F̄1 ≡
F1(0) = Z, F̄2 ≡ F2(0) = aN , F̄′

i ≡ M2F′
i (0), etc. The new quantity F′′

1 appears
at 1/M4. Expressions for other Wilson coefficients up to 1/M3 in terms of form
factors can be found using (2.83). At 1/M4, we also find

cX1 =
5

128
F̄1 +

1

32
F̄2 +

1

4
F̄′
1 ,

cX2 =
3

64
F̄1 +

1

16
F̄2 ,

cX5 =
3

32
F̄1 +

1

8
F̄2 ,

cX6 = − 3

32
F̄1 − 1

8
F̄2 − 1

4
F̄′
1 −

1

2
F̄′
2 , (2.92)

12The nonrelativistic normalization of states in NRQED is obtained using ū(p)u(p) = M/Ep in
(2.90).
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and it is readily verified that these expressions satisfy the constraints (2.85). In the
presence of radiative corrections, the form factors on the right hand sides of (2.91)
and (2.92) should be interpreted in an appropriate infrared regularization scheme;
alternatively, the matching may be performed with infrared finite observables.
The corresponding infrared subtractions and ultraviolet renormalizations must be
performed to obtain the Wilson coefficients including radiative corrections.13

2.8 NRQED Example: Photon and Four-Fermion Sectors

So far our analysis has focused on the one-fermion sector. We have derived the form
of the Lagrangian appropriate, e.g., to a proton in a background electromagnetic
field. Let us consider the complete QED theory including dynamical photon, as
well as a lepton (electron or muon) field. The case of a nonrelativistic lepton is
appropriate to bound state hydrogen studies, or very low-energy lepton-nucleon
(e.g. muon-proton) scattering, where E � m
,M. We first consider this case, con-
structing the operator basis, deriving coefficient relations and identifying redundant
operators. We then turn to a brief discussion of the case of a relativistic lepton,
appropriate to e.g. low-energy electron-proton scattering with m
,E � M.

2.8.1 Pure Photon Operators

The pure gauge sector for NRQED is the well known Euler-Heisenberg Lagrangian.
Enforcing parity and time reversal symmetry and neglecting total derivatives we find

Lγ =− 1

4
FμνFμν + cV2

Fμν [∂
2Fμν ]

M2
+ cV4

Fμν [∂
4Fμν ]

M4

+ cE1g2 (FμνFμν)2

M4
+ cE2g2

Fμ
νFν

ρFρ
σFσ

μ

M4
+ . . . . (2.93)

The coefficients cV2 and cV4 may be set to zero through field redefinitions on Aμ, as
discussed in Sect. 2.8.3 below.

13The expressions on the right hand side of (2.91) and (2.92) correspond to those referred to as
cQED

i in [77]. The renormalization procedure in dimensional regularization is described in [86].
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2.8.2 Four-Fermion Operators

Consider four-fermion operators relevant for processes in the one-nucleon, one-
lepton sector. We enforce hermiticity and invariance under parity, time-reversal and
rotational symmetries. We use the notation

←−
D for a covariant derivative acting to

the left, X
←−
D i ≡ [∂ iX] + igZXAi, and define D+ ≡ D +

←−
D , D− ≡ D −←−

D . Having
performed field redefinitions to eliminate operators with time derivatives acting on
heavy fermions, the Lagrangian in this sector, through 1/M4, is

Lψχ =
d1

M2
ψ†σiψ χ†σiχ+

d2

M2
ψ†ψ χ†χ+

d3

M4
ψ†Di

+ψ χ†Di
+χ

+
d4

M4
ψ†Di

−ψ χ†Di
−χ

+
d5

M4
ψ†(D2 +

←−
D 2)ψ χ†χ+

d6

M4
ψ†ψ χ†(D2 +

←−
D 2)χ

+
gd7

M4
ψ†σ · Bψ χ†χ+

id8

M4
εijkψ†σiDj

−ψ χ†Dk
+χ

+
id9

M4
εijkψ†σiDj

+ψ χ†Dk
−χ

+
gd10

M4
ψ†ψ χ†σ · Bχ+

id11

M4
εijkψ†Dk

+ψ χ†σiDj
−χ

+
id12

M4
εijkψ†Dk

−ψ χ†σiDj
+χ

+
d13

M4
ψ†σiDj

+ψ χ†σiDj
+χ+

d14

M4
ψ†σiDj

−ψ χ†σiDj
−χ

+
d15

M4
ψ†σ · D+ψ χ†σ · D+χ

+
d16

M4
ψ†σ · D−ψ χ†σ · D−χ+

d17

M4
ψ†σiDj

−ψ χ†σjDi
−χ

+
d18

M4
ψ†σi(D2 +

←−
D 2)ψ χ†σiχ+

d19

M4
ψ†σi(DiDj +

←−
D j←−D i)ψ χ†σjχ

+
d20

M4
ψ†σiψ χ†σi(D2 +

←−
D 2)χ+

d21

M4
ψ†σiψ χ†σj(DiDj +

←−
D j←−D i)χ .

(2.94)

Here χ is the nonrelativistic lepton field with mass Mχ and for notational simplicity
we write all operators in terms of the common mass scale M.14 Covariant derivatives
appearing within a fermion bilinear in (2.94) are understood to act only on fields

14Note that the coefficients d1,2 in (2.94) are related to those of Caswell and Lepage [21] by a
factor Mχ/M.
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in that bilinear. The heavy field ψ transforms under boosts as in (2.79). Recalling
that q in (2.79) is related to the mass-independent infinitesimal boost parameter by
η = −q/M, the transformation law for χ is obtained by the replacement M → rM
and q → rq, where we define r ≡ Mχ/M. We thus find

δLψχ =
1

M4

{
ψ†iq · D−ψ χ†χ

[
d2

2
− 2rd4 − 2d5

]

+ ψ†ψ χ†iq · D−χ
[

d2

2r
− 2d4 − 2rd6

]

+ ψ†σ · q × D+ψ χ†χ
[
−d2

4
+

d1

4r
− 2d8 − 2rd9

]

+ ψ†iq · D−σiψ χ†σiχ

[
d1

2
− 2rd14 − 2d18

]

+ ψ†ψχ†σ · q × D+χ

[
−d2

4r
+

d1

4
− 2rd11 − 2d12

]

+ ψ†σiψχ†iq · D−σiχ

[
d1

2r
− 2d14 − 2rd20

]

+ ψ†iσ · D−ψ χ†σ · qχ
[

d1

4
− 2rd16 − d19

]

+ ψ†σ · qψ χ†iσ · D−χ
[

d1

4r
− 2d16 − rd21

]

+ ψ†iσ · qDi
−ψ χ†σiχ

[
−d1

4
− 2rd17 − d19

]

+ ψ†σiψχ†iσ · qDi
−χ
[
−d1

4r
− 2d17 − rd21

]}

+O(1/M5) . (2.95)

This enforces the relations

rd4 + d5 =
d2

4
, d5 = r2d6 , 8r(d8 + rd9) = −rd2 + d1 ,

8r(rd11 + d12) = −d2 + rd1 ,

rd14 + d18 =
d1

4
, d18 = r2d20 , 2rd16 + d19 =

d1

4
,

r(d16 + d17) + d19 = 0 , d19 = r2d21, (2.96)
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implying a total of 12 independent four-fermion operators through 1/M4, including
two at order 1/M2. By performing field redefinitions on the gauge field Aμ, some
of these four-fermion operators are found to mix with one-heavy particle sector
operators, as discussed in Sect. 2.8.3 below.

Equation (2.94), with constraints (2.96), applies to the case of distinct heavy par-
ticles represented by ψ, χ, with arbitrary mass ratio Mχ/M. For certain applications,
e.g. positronium or heavy quarkonium bound states, the fields ψ and χ can be taken
to represent particle-antiparticle pairs with r = Mχ/M = 1. Charge conjugation
symmetry is then implemented by enforcing invariance under ψ ↔ χ, thus reducing
the basis of operators. This case has been investigated for QCD through O(1/M4)
by Brambilla et al. [17]. We find that our basis of four-fermion operators (2.94) and
constraints (2.96) are equivalent to those found in [17] for this special case.15

2.8.3 Field Redefinitions and Redundant Operators

With a dynamical photon field, we may perform field redefinitions that maintain
reality and gauge, parity, time reversal and rotational symmetries. In order to avoid
upsetting the previously determined coefficient relations, we must also maintain the
transformation law for Aμ as a four-vector under Lorentz transformations, i.e.,

A0 → A0 − 1

M
q · A , A → A − 1

M
qA0 . (2.97)

Let us write

Aμ = A′
μ +ΔγAμ +ΔψAμ +ΔχAμ + . . . . (2.98)

For the pure gauge field terms the most general expression is

ΔγAμ = aγ1
∂νFνμ

M2
+ aγ2

∂2∂νFνμ

M4
+O(1/M6) . (2.99)

Terms involving the heavy fermion ψ take the form

ΔψAμ

g
= ãψ1

Ψvγ
μΨv

M2
+ ãψ2

∂α(Ψvσ
αμΨv)

M3

+ ãψ3g
Ψv{γμ, σαβFαβ}Ψv

M4
+ ãψ4

∂2(Ψvγ
μΨv)

M4

+ ãψ5g
Ψvσ

μα{Vβ,Fαβ}Ψv

M4
+O(1/M5) , (2.100)

15The difference between Abelian and nonAbelian gauge fields is trivial for four-fermion operators
through this order.
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where we have employed the invariant operator formalism of Sect. 2.6.2. In
particular, Ψv = Γψv with Γ from (2.87) and ψv from (2.89), expressed in
terms of the field ψ′

v ≡ ψ with canonical Lagrangian (2.77). As an alternative to
the invariant operator formalism employed in (2.100) we may expand ΔψA0 and
ΔψA in a series of rotationally invariant operators with arbitrary coefficients, and
subsequently constrain these coefficients using (2.97). The result is equivalent to
(2.100), with five free parameters through O(1/M4),

ΔψA0

g
= aψ1

ψ†ψ
M2

+ aψ2
∂2(ψ†ψ)

M4
− i
(aψ1

4
− aψ4

)ψ†σ · ←−D × Dψ

M4

+ aψ3g
ψ†σ · Bψ

M4
+O(1/M5),

ΔψA
g

= −aψ1
ψ†iD−ψ
2M3

+ aψ4
∂ × (ψ†σψ)

M3
+ aψ5g

ψ†σ × Eψ
M4

+O(1/M5) .

(2.101)

The expansion of ΔχAμ is obtained from (2.101) with the replacements ψ → χ,
M → Mχ, Z → Zχ and aψ i → aχ i. In terms of the field A′

μ in (2.98), we find in the
pure photon sector,

δcV2 = −1

2
aγ1 , δcV4 = −1

2
aγ2 − 1

4
a2
γ1 + 2aγ1cV2 , (2.102)

while for the ψ sector,

δcD = −8Zaγ1 + 8aψ1 , δcW1 = −4cFaγ1 + 8aψ4 ,

δcA2 = −16Z2aγ1 + 16Zaψ1 ,

δcX3 = −cDaγ1

8
+ Zaγ2 − aγ1aψ1 + 4cV2aψ1 + aψ2 , δcX7 = −cSZaγ1

4
+ aψ3 ,

δcX8 = cFZaγ1 − cFaψ1

2
− Zaψ4 , δcX9 = −c2Faγ1

2
+ cFaψ4 ,

δcX11 =
c2Faγ1

2
− cFaψ4 , δcX12 =

cSZaγ1

2
+ aψ5 . (2.103)

Similar relations hold for the Wilson coefficients c(χ)i in the χ Lagrangian, defined

as in (2.77), with ψ → χ, Z → Zχ, M → Mχ, ci → c(χ)i . Finally, for the four-
fermion operator coefficients,

δd2

g2
= −Zχaψ1 − Zaχ1

r2
,

δd3

g2
=

c(χ)D aψ1

8r2
+

cDaχ1

8r2
+ Zχaψ2 +

Zaχ2

r4
,

δd4

g2
= −Zχaψ1

4r
− Zaχ1

4r3
,

δd7

g2
= −ZZχ

4
(aψ1 − 4aψ4)− Zχaψ3 ,
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δd8

g2
=

Zχ

8
(aψ1 − 4aψ4)− cSaχ1

8r2
,

δd10

g2
= −ZZχ

4r4
(aχ1 − 4aχ4)− Zaχ3

r4
,

δd11

g2
= −c(χ)S aψ1

8r2
+

Z
8r4

(aχ1 − 4aχ4) ,
δd13

g2
= −δd15

g2
=

c(χ)F aψ4

2r
+

cFaχ4

2r3
.

(2.104)

The coefficient relations (2.83), (2.85) and (2.96) are preserved, since by construc-
tion the Lorentz transformation properties of Aμ are unchanged and hence the boost
transformation rules (2.79) and (2.80) still apply.

We may use (2.102) to eliminate vacuum polarization terms cV2 and cV4 in
favor of compensating terms in (2.103). Similarly, (2.103), together with the
analogous relations for c(χ)i , and (2.104), can be used to eliminate ten linear
combinations of Wilson coefficients for two-fermion and four-fermion operators.
Different applications may favor elimination of different operators.16

2.8.4 Relativistic Lepton

For applications such as lepton-nucleon scattering at energies m
,E � M (e.g.,
low-energy electron-proton scattering), the relevant effective theory involves a
heavy fermion (e.g., the proton) interacting with an electromagnetically charged
relativistic fermion (e.g., the electron). Let us briefly discuss this case. Enforcing
parity, time-reversal, gauge, Lorentz as well as chiral symmetry at m
 = 0, we find
the leptonic interactions with the photon,

L
 = 
̄

[
iD/ −m
+gc(
)F m


σμνFμν

M2
+gc(
)2 m


D2

M2
+gc(
)D

[∂μFμν ]γ
ν

M2
+O(1/M4)

]

,

(2.105)

where we assume field redefinitions have been performed to remove power sup-
pressed terms involving (iD/ − m
)
.

Having performed field redefinitions to eliminate operators with time derivatives
acting on fermion fields, the Lagrangian for the nucleon-relativistic lepton sector
through O(1/M3) is

Lψ
 =
b1

M2
ψ†ψ 
̄γ0
+

b2

M2
ψ†σiψ 
̄γ iγ5
+

b3

M3
ψ†ψ m

̄
+

b4

M3
ψ†iDi

−ψ 
̄γ i


+
b5

M3
ψ†ψ
̄iγ · D−
+

b6

M3
εijkψ†σiψ m

̄σ

jk
 +
b7

M3
εijkψ†σiψ 
̄γ jDk

+


16We have not specified gauge fixing and source terms, which are also affected by field
redefinitions.
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+
b8

M3
ψ†σiψ 
̄γ0γ5iDi

−
+
b9

M3
ψ†σiiDi

−ψ 
̄γ0γ5
+O(1/M4),

(2.106)

where 
 is the relativistic lepton field with mass m
 and σij ≡ i
2 [γ

i, γ j]. The
heavy field ψ transforms under boosts as in (2.79), while 
 transforms under finite
dimensional representations of the Lorentz group in the usual way. Under Lorentz
transformation, we thus find

δLψ
 = − 1

M3
ψ†ψ
̄qiγ i
 (b1 + 2b4)− 1

M3
ψ†σiqiψ
̄γ0γ5
 (b2 + 2b9)+O(1/M4).

(2.107)

This enforces the relations

b4 =
1

2
b1 , b9 = −1

2
b2 , (2.108)

leaving seven operators in this sector through order 1/M3, including two at
order 1/M2.

By performing field redefinitions on the gauge field Aμ, some of these four-
fermion operators are found to mix with one-heavy particle operators. In addition to
the contributions ΔγAμ and ΔψAμ from (2.98) we may employ

Δ
A
μ = ga
1


̄γμ


M2
+O(1/M4) . (2.109)

We thus find the modified couplings in L
,

δc(
)D = −Z
aγ1 + a
1 , (2.110)

and for the four fermion operators in Lψ
,

δb1

g2
= −Za
1 − Z
aψ1 ,

δb7

g2
= −Z
aψ4 − 1

2
cFa
1 , (2.111)

with relation (2.108) remaining intact.

2.9 Discussion

The usual procedure of implementing Lorentz invariance via finite dimensional
representations of the Lorentz group is insufficient for application to heavy particle
effective theories. We have adapted the formalism of induced representations for
application to heavy particle field transformation laws. Returning to the questions
posed at the beginning of the chapter, we see that the parameter v enters as an
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arbitrary reference vector in the effective theory construction. Rules identifiable
with “reparameterization invariance” (2.48) are obtained by a rewriting of the
transformation law for generalized boosts, and the class of reparameterization
transformations consistent with Lorentz and gauge invariance is identified through
a systematic solution of the invariance equation (2.52).

Let us compare our formalism to previous work. A naive ansatz for imple-
menting Lorentz invariance via reparameterization invariance breaks down for
Γ(v, iD) starting at order 1/M3, corresponding to new effects at order 1/M4 in
the canonical Lagrangian. The transformation law defined by W(Λ, iD) is corrected
at order 1/M4. These subtleties were not treated in the classic work of Luke and
Manohar [84, 86], and the ansatz proposed there would lead to inconsistencies at
the orders in 1/M specified above. Brambilla et al. [16] recognized that Wilson-
coefficient dependent corrections to W(Λ) must be included when deriving an
invariant Lagrangian in canonical form. However, there the constraints of Lorentz
invariance are derived (through order 1/M2) at the level of canonically quantized
charges, a procedure that becomes increasingly cumbersome at high orders in the
1/M expansion. In Sect. 2.2 we have used general properties of commutators of
the S matrix with conserved charges to derive constraints at the Lagrangian level
that implement Lorentz invariance for heavy particle effective theories in canonical
form. In Sect. 2.3 we have derived consistent reparameterization transformations
that allow solution to the invariance equation (2.52), and hence the construction of
manifestly invariant Lagrangians to arbitrary order.

At a practical level, the main results for building heavy fermion Lagrangians are
contained in (2.34), or for the invariant operator method, in (2.59) and (2.60). We
have illustrated the utility of these results by constructing the NRQED Lagrangian to
order 1/M4. This provides the rigorous framework for a range of applications such
as computing radiative corrections to low-energy lepton-nucleon scattering, and
understanding a sharp discrepancy in proton charge radius measurements through
scrutinizing proton structure effects in atomic bound states. In the next chapter,
we will construct heavy particle Lagrangians for WIMPs interacting with Standard
Model particles using the formalism developed here.



Chapter 3
Effective Theory at the Weak-Scale

Having established in the previous chapter ingredients for general construction of
heavy particle Lagrangians, we may now proceed to use heavy-particle methods
to efficiently describe the interactions of a WIMP, of mass M, with much lighter
Standard Model degrees of freedom such as those of nf = 5 flavor QCD (in the case
mb � M, where mb is the bottom quark mass) or those of the electroweak sector (in
the case mW � M, where mW is the W± boson mass).

Let us construct Lagrangians defined at the weak scale, μt ∼ mw ∼ mt, for
both theories with unbroken and broken electroweak symmetry. We take the theory
symmetric under SU(3)c × SU(2)W × U(1)Y as our starting point in place of a
specified UV theory for dark matter. Constraints from experimental searches at
higher energies (e.g., DM annihilation for indirect searches and DM production for
collider searches), as well as constraints from particular UV dynamics or from early
universe cosmology, may be incorporated using renormalization group methods.
The interplay of these high-energy constraints and the techniques for their robust
correlation are interesting aspects of dark matter phenomenology we do not dwell
on here.

We focus instead on direct nucleon scattering at low energies, and to investigate
this process at energies below the weak scale, we construct the relevant effective
theory symmetric under SU(2)W ×U(1)Y describing interactions of the WIMP with
quarks and gluons of nf = 5 flavor QCD. The basis of operators below the weak
scale, written in terms of the lightest, electrically neutral state, is independent of the
WIMP electroweak quantum numbers.

We consider the leading 1/M interactions for a heavy WIMP of arbitrary
spin, stabilized by a Z2 symmetry, arising from SM extensions consisting of one
electroweak multiplet (singlet, doublet and triplet), or two electroweak multiplets
combined into admixtures (singlet-doublet and doublet-triplet) [6, 8, 9, 19, 22, 26–
29, 33, 36, 42, 46, 56, 59, 65, 68, 72, 76, 78]. For the latter case, a consistent
evaluation of amplitudes beyond tree level requires renormalization of WIMP
couplings, and we define an extension of the onshell renormalization scheme for

© Springer International Publishing Switzerland 2016
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the electroweak SM in the presence of nontrivial residual masses. The construction
could be straightforwardly extended to include power corrections, and other light
states within the context of specific UV completions. For illustration, the heavy
scalar triplet Lagrangian is constructed up to order 1/M3, and a sample matching
to a toy UV theory is performed. In the case of a singlet-doublet mixture, we also
present an alternative derivation of the heavy particle Lagrangian starting from a
relativistic theory.

This chapter is organized as follows. In Sect. 3.1 we consider the case of an
electroweak singlet, listing the relevant operator building blocks for SM and WIMP
degrees of freedom, and constructing the effective Lagrangians above and below
the weak scale. For illustration, we also include relativistic contact operators for
a scalar (real or complex) and fermion (Majorana or Dirac) electroweak singlet.
In Sect. 3.2, we construct the effective theory for one or two heavy electroweak
multiplets interacting with SM Higgs and electroweak gauge fields, accounting
for masses induced by electroweak symmetry breaking (EWSB), and presenting
the Lagrangian in terms of mass eigenstate fields from which the complete set of
Feynman rules may be easily derived. In Sect. 3.3, we define an extension of the
onshell renormalization scheme for the electroweak SM for a consistent loop-level
evaluation of amplitudes. Section 3.4 specifies the low-energy operator basis for the
interactions of a self-conjugate WIMP with quarks and gluons of nf = 5 flavor
QCD, relevant for spin-independent, low-velocity scattering with nucleons.

3.1 Singlet

The tabulation of operators at a given mass dimension involving SM fields [18,
55, 71] or involving both SM fields and a finite collection of DM fields of given
SM quantum numbers, is a straightforward task, but requires some care, e.g., to
construct a complete basis while avoiding redundant operators. Let us first consider
the simplest case where the SM is extended at low energies by a single Lorentz
scalar (real or complex) or fermion (Majorana or Dirac) SM gauge singlet, stabilized
by a Z2 symmetry. We consider separately the scenarios where the DM has mass
comparable to or lighter than those of the SM degrees of freedom, and where the
DM mass is much heavier. For the latter we use heavy-particle methods to efficiently
describe the interactions between the heavy DM field and much lighter SM degrees
of freedom.

3.1.1 Standard Model Building Blocks

We collect in Table 3.1 operator building blocks of SM fields invariant under the
gauge symmetries of the unbroken and broken electroweak vacua. The set invariant
under SU(3)c × SU(2)W × U(1)Y is appropriate for investigating processes at
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energies comparable to or larger than electroweak scale particles. The set invariant
under SU(3)c × U(1)e.m. is valid for the effective theory at energies below the
electroweak scale having integrated out the massive gauge bosons W± , Z0, the
top quark t, and the physical Higgs field h. For the low energy building blocks,
we focus on operators describing interactions with quarks and gluons, and only
consider interactions with the photon when it is leading such as in the case of a
dipole moment. The construction of operator building blocks for interactions with
leptons is similar to the quark operators [3, 7, 8, 22, 23].

In constructing operators, we perform Fierz rearrangements to the basis without
spinor contractions between DM and SM fields, and use the shorthand ∂μ

± ≡ ∂μ ±←−
∂ μ and ∂μν

± ≡ (∂μ∂ν ± ←−
∂ ν←−∂ μ), where

←−
∂ μ is a derivative acting to the left.

We denote the Pauli matrices by τa, left- and right-handed fields with respective
subscripts L and R, and flavor indices by i, j = 1 . . . 3.

A simple and phenomenologically motivated diagonal flavor structure may be
obtained by imposing an ad hoc U(3)L × U(3)u

R × U(3)d
R symmetry (“minimal

flavor violation”), under which the SM quarks and Yukawa matrices (promoted to
background fields) transform as

QL → eiεL QL , uR → eiεu
RuR , dR → eiεd

RdR , (3.1)

Yu → eiεu
RYue−iεL , Yd → eiεd

RYde−iεL .

This condition implies that, up to small Yukawa couplings of the b, c, s, d, u
quarks and off-diagonal CKM elements, the low-energy building blocks are flavor-
diagonal. This assumption, together with imposing a global chiral symmetry under
qL,R → eiεL,RqL,R when quark masses vanish, allows us, e.g., to reduce the set of
quark building blocks at low-energy to

q̄
[
γμ , γμγ5

][
1 , iDρ

− ,Dρσ
+ , iDρσ

− , tAGAρσ
]
q , (3.2)

with (diagonal) flavor indices dropped. We have eliminated the building blocks

mqq̄
[
1 , γ5, σ

μν
][
1 , iDρ

− , . . .
]
q (3.3)

by field redefinitions; consider e.g., the field redefinition of the quark field

q → (1 + a1 O1 + a2 O2γ5 + a3Oμν
3 σμν) q , (3.4)

where the an are arbitrary complex coefficients, and the On are hermitian, Lorentz-
and gauge-invariant DM building blocks of mass dimension greater than or equal
to two. Other redundancies in the low-energy basis and those appearing in the
high-energy electroweak symmetric basis may be similarly accounted for by field
redefinitions.
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Table 3.2 Gauge-invariant DM operator building blocks of indicated dimension for a relativis-
tic fermion and scalar, and a heavy-particle fermion

Fermion Scalar Heavy-particle

3 ψ̄
[
1 , iγ5 , γμγ5 , {γμ , σμν}]ψ 2 |φ|2 3 χ̄v

[
1 , {σμν

⊥ }]χv

4 ψ̄
[{1 , iγ5 , γμγ5} , γμ , σμν

]
i∂ρ

−ψ 3 {φ∗i∂μ
−φ} 4 χ̄v

[{1} , σμν
⊥

]
i∂ρ

⊥−χv

5 ψ̄
[
1 , iγ5 , γμγ5 , {γμ , σμν}]∂ρσ

+ ψ , 4 φ∗∂ρσ
+ φ , 5 χ̄v

[
1 , {σμν

⊥ }]∂ρσ
⊥+χv

ψ̄
[{1 , iγ5 , γμγ5} , γμ , σμν

]
i∂ρσ

− ψ {φ∗i∂ρσ
− φ} χ̄v

[{1} , σμν
⊥

]
i∂ρσ

⊥−χv

For the relativistic case, building blocks within curly brackets, { }, vanish for self-conjugate
fields such as a Majorana fermion or a real scalar. For the heavy-particle case, building blocks
within curly brackets, { }, are odd under the parity in Eq. (2.71) and we must include an odd
number of vμ factors. The list for a heavy-particle scalar (of mass dimension 3/2) is obtained
simply by omitting building blocks with the spin structure σμν

⊥

3.1.2 Dark Matter Building Blocks

We collect in Table 3.2 hermitian DM bilinears invariant under the SM gauge
symmetries and a stabilizing Z2 symmetry. The relativistic set is appropriate for
describing interactions in the regime where the DM has mass comparable to or
less than the relevant SM degrees of freedom. We denote the scalar and fermion
DM fields respectively by φ and a four-component spinor ψ, and consider both the
case where there is an assumed U(1) DM particle number, e.g., a Dirac fermion
or complex scalar, and where the DM particle is self-conjugate, e.g., a Majorana
fermion (ψ = ψc) or a real scalar (φ = φ∗).

In the regime where the DM particle is much heavier than the relevant SM
degrees of freedom, we consider heavy-particle building blocks listed in Table 3.2.
For integer spin we define χ̄v ≡ χ∗

v, while for half-integer spin χv carries spinor
indices and we define χ̄v ≡ χ†

vγ
0. In writing the heavy-particle building blocks in

Table 3.2 we assume field redefinitions that eliminate operators with v · ∂ acting
on χv , and hence only perpendicular components of derivatives, ∂μ

⊥, appear. We
define perpendicular components using gμν

⊥ = gμν − vμvν , e.g., ∂μ
⊥ ≡ ∂αgαμ

⊥ =

∂μ − vμv · ∂ and σμν
⊥ ≡ σαβgαμ

⊥ gβν
⊥ . For heavy fields arising from self-conjugate

relativistic fields such as a Majorana fermion or real scalar, we require invariance
under the self-conjugate parity or CPT transformation described in Sect. 2.4.

3.1.3 High-Energy Basis

We may compose high-scale operators by combining the SU(3)c×SU(2)W ×U(1)Y

invariant SM building blocks in Table 3.1 with the DM building blocks of Table 3.2,
considering both the case of relativistic DM and of heavy-particle DM. The Lorentz
indices can be contracted with gμν , εμνρσ and, in the case of heavy-particle DM, vμ.
We use the shorthand T̃μν = Tαβε

αβμν , and in particular have T̃μν
⊥ = T⊥αβε

αβμν ,
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where the perpendicular Lorentz indices of T⊥αβ require either μ or ν to be along
the v direction. The quark flavor indices can be contracted with arbitrary functions
of combinations of Yukawa couplings that preserve the symmetry in Eq. (3.1).

Our focus here is on leading interactions, but higher dimension operators are
straightforward to construct. Redundant operators may be identified by performing
the most general field redefinition for fields composing operators, and then elimi-
nated by appropriately fixing the parameters of the field redefinition. This yields a
linearly independent set having the minimal number of operators that completely
parameterize the interactions. Field redefinitions also allow us to choose among
linearly dependent operators the simplest or most convenient operator for describing
a particular interaction.

Let us consider the regime where the DM mass, M, is comparable to or less than
the mass of electroweak scale particles, i.e., M � mW ∼ mh ∼ mt. Here we write
higher dimension (contact) operators suppressed by Λ, the scale representing, e.g.,
the mass of a heavy mediator that has been integrated out. For the scalar case we
have the following interactions,

L′
φ,SM = −c′φ1|φ|2H†H +

c′φ2
Λ2

|φ|2BμνBμν

+
c′φ3
Λ2

|φ|2GA
μνGAμν +

c′φ4
Λ2

|φ|2(Q̄LHdR + h.c.
)
+ . . . , (3.5)

where the ellipsis denotes operators of dimension six and higher. There are no dimension five
operators, but a long list of dimension six operators of which a few are included above for
illustration. The interactions shown in Eq. (3.5) apply for either a real or complex scalar. For
the fermion case we have the following interactions,

L′
ψ,SM = − c′ψ1

Λ
ψ̄ψH†H − c′ψ2

Λ
ψ̄iγ5ψH†H +

c′ψ3

Λ
ψ̄σμνψBμν +

c′ψ4

Λ
ψ̄σ̃μνψBμν

+
c′ψ5

Λ2
ψ̄γμi∂ν

−ψBμν +
c′ψ6

Λ2
ψ̄γμi∂ν

−ψB̃μν +
c′ψ7

Λ2
ψ̄γμγ5i∂ν

−ψBμν

+
c′ψ8

Λ2
ψ̄γμγ5i∂ν

−ψB̃μν +
c′ψ9

Λ2
ψ̄γμψQ̄LfLγμQL

+
c′ψ10

Λ2
ψ̄γμγ5ψQ̄LfLγμQL +

c′ψ11

Λ2
ψ̄γμψūRf u

RγμuR

+
c′ψ12

Λ2
ψ̄γμγ5ψūRf u

RγμuR +
c′ψ13

Λ2
ψ̄γμψd̄Rf d

RγμdR +
c′ψ14

Λ2
ψ̄γμγ5ψd̄Rf d

RγμdR

+
c′ψ15

Λ2
ψ̄γμψH†iDμ

−H +
c′ψ16

Λ2
ψ̄γμγ5ψH†iDμ

−H + . . . , (3.6)

where the ellipsis denotes higher dimension operators, and fL = fL(Y†
u Yu , Y†

d Yd),
f u
R = f u

R (YuY†
u ) and f d

R = f d
R (YdY†

d ) are arbitrary functions of the specified combinations
of Yukawa couplings. When the fermion ψ is Majorana, the coefficients c′ψn for
n = 3, 4, 7, 8, 9, 11, 13, 15 vanish.
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We may also consider the regime where the DM mass, M, is much larger than the masses
of electroweak scale particles, i.e., M � mW ∼ mh ∼ mt. In this case operators are
suppressed by the heavy DM mass M. For a heavy fermion we find the following interactions,

L′
χv ,SM =

c′χ1

M
χ̄vχvH†H +

c′χ2

M
χ̄vσ

⊥
μνχvBμν +

c′χ3

M
χ̄vσ̃

⊥
μνχvBμν + . . . , (3.7)

where the ellipsis denotes higher dimension operators. Working at leading order in 1/M for
the DM-SM interactions, the implementation of Lorentz invariance on the heavy-particle
interactions discussed in Chap. 2 imposes no constraints on the Wilson coefficients c′χ1, c′χ2

and c′χ3. The magnetic and electric dipole moments, appearing with respective coefficients
c′χ2 and c′χ3 above, carry the spin structure σ⊥ and are odd under Eq. (2.71) or Eq. (2.76).
Hence, both are omitted when considering a heavy scalar or a self-conjugate heavy particle.
Higher dimension operators may be similarly constructed (e.g., see [59, 62, 86]), and
an extension of the above basis for electroweak charged DM would be relevant for the
leading 1/M corrections to the universal spin-independent cross section in the heavy WIMP
limit [59–61].

3.1.4 Low-Energy Basis

The construction of low-scale operators using the SU(3)c × U(1)e.m. invariant SM building
blocks in Table 3.1 and the various DM building blocks of Table 3.2 proceeds as in the
previous case of high-scale operators. Since the low-scale interactions are obtained upon
integrating out weak scale particles, W±, Z0, h, t, we write higher dimension operators
suppressed by the weak scale, parametrically taken to be mW . We again focus on leading
interactions and obtained a complete but redundant-free basis by performing field redefini-
tions.

Let us first consider the regime where the DM mass is comparable to or smaller than the
masses of active low-energy SM degrees of freedom, i.e., M � mb. For the scalar case we
have the following interactions,

Lφ,SM =
∑

q=u,d,s,c,b

{
cφ1
m2

W

|φ|2mqq̄q +
cφ2
m2

W

|φ|2mqq̄iγ5q +
cφ3
m2

W

φ∗i∂μ
−φq̄γμq

+
cφ4
m2

W

φ∗i∂μ
−φq̄γμγ5q

}

+
cφ5
m2

W

|φ|2GA
αβGAαβ +

cφ6
m2

W

|φ|2GA
αβG̃Aαβ + . . . ,

(3.8)

where the ellipsis denotes higher dimension operators and the dependence of quark operator
coefficients on the particular quark mass eigenstate q is suppressed. Upon inspection of the
low-scale SM buildings blocks in Table 3.1 and the scalar building blocks in Table 3.2,
we find that there are no higher dimension operators of odd dimension. For a real scalar
the coefficients cφn vanish for n = 3, 4, 8. For the fermion case we have the following
interactions,
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Lψ,SM =
cψ1

mW
ψ̄σμνψFμν +

cψ2

mW
ψ̄σ̃μνψFμν

+
∑

q=u,d,s,c,b

{
cψ3

m2
W

ψ̄γμψq̄γμq +
cψ4

m2
W

ψ̄γμψq̄γμγ5q

+
cψ5

m2
W

ψ̄γμγ5ψq̄γμq +
cψ6

m2
W

ψ̄γμγ5ψq̄γμγ5q +
cψ7

m3
W

ψ̄ψmqq̄q +
cψ8

m3
W

ψ̄ψmqq̄iγ5q

+
cψ9

m3
W

ψ̄iγ5ψmqq̄q +
cψ10

m3
W

ψ̄iγ5ψmqq̄iγ5q +
cψ11

m3
W

ψ̄σμνψmqq̄σμνq

+
cψ12

m3
W

ψ̄σ̃μνψmqq̄σμνq +
cψ13

m3
W

ψ̄i∂μ
−ψq̄γμq +

cψ14

m3
W

ψ̄i∂μ
−ψq̄γμγ5q

+
cψ15

m3
W

ψ̄γ5∂
μ
−ψq̄γμq +

cψ16

m3
W

ψ̄γ5∂
μ
−ψq̄γμγ5q

}

+
cψ17

m3
W

ψ̄ψGA
αβGAαβ

+
cψ18

m3
W

ψ̄ψGA
αβG̃Aαβ +

cψ19

m3
W

ψ̄iγ5ψGA
αβGAαβ +

cψ20

m3
W

ψ̄iγ5ψGA
αβG̃Aαβ + . . . ,

(3.9)

where the ellipsis denotes higher dimension quark and gluon operators as well as pho-
ton operators beyond the leading O(1/mW) electromagnetic dipole interactions we have
included above. The dependence of quark operator coefficients on the particular quark
mass eigenstate q is again suppressed. For a Majorana fermion the coefficients cψn with
n = 1, 2, 3, 4, 11, 12, 13, 14, 15, 16 vanish, leaving ten operators through O(1/m3

W), as
considered in [53]. Lepton operators may be treated similarly to the quark operators.

Let us consider the regime where the DM mass is much larger than the masses of active
low-energy SM degrees of freedom, i.e., M � mb. For a heavy fermion we find the following
interactions,

Lχv ,SM =
cχ1

mW
χ̄vσ

⊥
μνχvFμν +

cχ2

mW
χ̄vσ̃

⊥
μνχvFμν

+
∑

q=u,d,s,c,b

{
cχ3

m2
W

χ̄vχv q̄v/q +
cχ4

m2
W

χ̄vχv q̄v/γ5q

+
cχ5

m2
W

χ̄vv
μσ̃⊥

μνχv q̄γνq +
cχ6

m2
W

χ̄vv
μσ̃⊥

μνχv q̄γνγ5q +
cχ7

m3
W

χ̄vχvmqq̄q

+
cχ8

m3
W

χ̄vχvmqq̄iγ5q +
cχ9

m3
W

χ̄vi∂⊥μ
− χv q̄γμq +

cχ10

m3
W

χ̄vi∂⊥μ
− χv q̄γμγ5q

+
cχ11

m3
W

χ̄vχv q̄v/iv · D−q +
cχ12

m3
W

χ̄vχv q̄v/γ5iv · D−q +
cχ13

m3
W

χ̄vσ
⊥
μνχvmqq̄σμνq

+
cχ14

m3
W

χ̄vσ̃
⊥
μνχvmqq̄σμνq +

cχ15

m3
W

χ̄vσ
⊥
μν∂

⊥ν
+ χv q̄γμq +

cχ16

m3
W

χ̄vσ
⊥
μν∂

⊥ν
+ χv q̄γμγ5q

+
cχ17

m3
W

χ̄vσ̃
⊥
μνχvq̄γμiD⊥ν

− q +
cχ18

m3
W

χ̄vσ̃
⊥
μνχv q̄γμγ5iD⊥ν

− q +
cχ19

m3
W

χ̄vσ̃
⊥
μν i∂⊥ν

− χv q̄γμq

+
cχ20

m3
W

χ̄vσ̃
⊥
μν i∂⊥ν

− χv q̄γμγ5q +
cχ21

m3
W

χ̄vσ
⊥
μν i∂⊥ν

− χv q̄γμq
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+
cχ22

m3
W

χ̄vσ
⊥
μν i∂⊥ν

− χv q̄γμγ5q +
cχ23

m3
W

χ̄vσ̃
⊥
μν∂

⊥ν
+ χv q̄γμq

+
cχ24

m3
W

χ̄vσ̃
⊥
μν∂

⊥ν
+ χv q̄γμγ5q

}

+
cχ25

m3
W

χ̄vχvGA
αβGAαβ +

cχ26

m3
W

χ̄vχvGA
αβG̃Aαβ

+
cχ27

m3
W

χ̄vχvvμvνGAμ
α GAαν + . . . , (3.10)

where the ellipsis denotes higher dimension operators. As discussed in Chap. 2, constraints
on coefficients in Eq. (3.10) consistent with Lorentz symmetry may be derived by performing
an infinitesimal boost under which the heavy field χv and a Lorentz vector Aμ transform
as [57, 84],

χv → eiqx

[
1 +

iq · D⊥
2m2

W

+ . . .

]
χv , Aμ

⊥ → Aμ
⊥ − qμv · A

mW
,

v · A → v · A +
q · A⊥

mW
. (3.11)

Here the ellipsis denotes terms in the heavy-field transformation higher order in 1/mW ,
and the usual transformation for a Lorentz vector has been projected along vμ and the
perpendicular directions.

Working to leading order, the gluon and photon interactions in Eq. (3.10) are readily
invariant under boosts. On the other hand, demanding that variations of quark operators under
the transformations in Eq. (3.11) vanish, we find the constraints

(
cχ3 − 2cχ9

)
=

(
cχ4 − 2cχ10

)
=

(
cχ5 + 2cχ19

)
=

(
cχ6 + 2cχ20

)
= cχ21 = cχ22 = 0 .

(3.12)
This leaves 16 independent quark operators, and we may check that imposing parity
and time-reversal symmetry yields the seven operators that describe nucleon-lepton
interactions in NRQED [62]. The basis for a heavy scalar is obtained by omitting in
Eq. (3.10) operators containing the spin structure σ⊥

μν . The basis for a self-conjugate
heavy-particle is obtained by imposing invariance under Eq. (2.71) or Eq. (2.76); in
particular we find that for a self-conjugate heavy fermion the coefficients cχn vanish for
n = 1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 17, 18, 23, 24.

3.2 Multiplets and Mixtures

Let us use heavy particle effective theory to describe extensions of the SM consisting of one
or two electroweak multiplets with masses large compared to the mass of electroweak-scale
particles, M,M′ � mW . The extension to more than two multiplets is straightforward. We
will construct the effective theory describing interactions of such heavy WIMPs with the SM
in the regime |M′ − M|, mW � M, M′. In the case |M′ − M| � mW the effects of the
heavier multiplet appear as power corrections in the effective theory for the lighter multiplet.
For notational clarity, below we omit the subscript v labeling a heavy-particle field.
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Consider one or two multiplets of heavy-particle fields with arbitrary spin,1 transforming
under irreducible representations of electroweak SU(2)W × U(1)Y . Let us collect the heavy
fields in a column vector h, and their masses in a diagonal matrix M. The precise specification
of M beyond tree level is described in Sect. 3.3. At leading order in the 1/M expansion, the
most general gauge- and Lorentz-invariant Lagrangian, bilinear in h, and written in terms of
the building-blocks h, vμ, and SM fields, takes the form

L = h̄ [iv · D − δm − f (H)] h +O(1/M), (3.13)

where iDμ = i∂μ + g1YBμ + g2Wa
μTa, and f (H) is a linear matrix function of H (and H∗).

For pure states gauge invariance implies f (H) = 0, while for mixed states f (H) describes the
mixing of the pure-state constituents through the Higgs field. In terms of a reference mass
Mref , the residual mass matrix is

δm = M − Mref1. (3.14)

Note that if the masses composing M are degenerate, as for a single “pure” electroweak
multiplet, we may choose Mref appropriately to set δm = 0. In the case of two “mixed”
electroweak multiplets M will have non-degenerate entries in general.

Upon accounting for EWSB we may write (3.13) as

L = h̄

[
iv · ∂ + eQv · A +

g2

cW
v · Z(T3 − s2W Q)

+
g2√
2
(v · W+T+ + v · W−T−)− δM(vwk)− f (φ)

]
h +O(1/M), (3.15)

where T± = T1 ± iT2, the charge matrix is Q = T3 + Y in units of the proton charge, and φ
denotes the fluctuation of the Higgs field about 〈H〉,

H =
vwk√
2

(
0

1

)

+

(
φ+

W
1√
2
(h + iφZ)

)

. (3.16)

The residual mass matrix now includes EWSB contributions,

δM(vwk) = δm + f (〈H〉), (3.17)

and in the mass eigenstate basis for δM(vwk), we will set the residual mass of the lightest,
(assumed) electrically neutral WIMP, χ, to zero by appropriate choice of Mref . Other states
may have non-vanishing residual masses. In the following, we will suppress the subscript in
vwk; the resulting v is not to be confused with the velocity vμ.

The heavy-particle Lagrangian (3.13) can also be obtained at tree level from a manifestly
relativistic Lagrangian by performing field redefinitions. We illustrate this for the singlet-
doublet mixture in Sect. 3.2.5.2 Let us now have a detailed look at extensions with one (pure
states) or two (mixed states) electroweak multiplets.

1For integer spin we define h̄v ≡ h†v , while for half-integer spin hv carries spinor indices and we
define h̄v ≡ h†vγ0.
2We remark that the consistency of an effective description for the one-heavy particle sector for a
self-conjugate field follows from the identification of lowest-lying states odd under a Z2 symmetry.
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3.2.1 Pure States

The pure-state heavy-particle Lagrangian is completely specified by electroweak quantum
numbers since δm = 0 and f (H) = 0. We may proceed in generality, assuming a multiplet
of fields in the isospin J representation of SU(2)W with hypercharge Y . The amplitudes for
weak-scale matching in Sect. 4.2 will be given in terms of Y2 and the Casimir J(J + 1). In
particular, amplitudes with two W± bosons or two Z0 bosons carry the respective factors

CW = J(J + 1) − Y2 , CZ = Y2. (3.18)

For extensions consisting of electroweak multiplets with non-zero hypercharge, we assume
that higher-dimension operators cause the mass eigenstates after EWSB to be self-conjugate
combinations. This forbids a phenomenologically disfavored tree-level vector coupling
between the lightest, electrically neutral state, χ, and Z0.

As specific illustrations we consider the cases of an SU(2)W triplet (J = 1) with Y = 0,
and a pair of SU(2)W doublets (J = 1/2) with opposite hypercharge Y = ±1/2. In
supersymmetric extensions, these represent pure wino and pure higgsino states, respectively.
Let us look at these cases in some detail.

Pure Triplet

Let the column vector hT = (h1, h2, h3), with subscript T for triplet, be a heavy, self-
conjugate, SU(2)W triplet with Y = 0. The heavy-particle Lagrangian for hT is given by
(3.13) with (Ta)bc = iεbac, f (H) = 0, and δm = 0. The electric charge eigenbasis is given by

⎛

⎜
⎝

h1

h2

h3

⎞

⎟
⎠ ≡

⎛

⎜
⎝

0 1√
2

1√
2

0 i√
2

−i√
2

1 0 0

⎞

⎟
⎠

⎛

⎜
⎝

h0

h+

h−

⎞

⎟
⎠ . (3.19)

In terms of the column vector h = (h0, h+, h−), where h0 ≡ χ, the Lagrangian is given by
(3.15) with

Q = T3 = diag(0, 1,−1), T+ =

⎛

⎜
⎝

0 0
√
2

−√
2 0 0

0 0 0

⎞

⎟
⎠ , T− =

⎛

⎜
⎝

0 −√
2 0

0 0 0√
2 0 0

⎞

⎟
⎠ .

(3.20)

In contrast, the one-heavy particle sector for a heavy field carrying U(1) global symmetry (e.g.,
heavy-quark number in a heavy quark effective theory) is identified by this quantum number.
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Pure Doublet

Let hψ and hψc be heavy-particle doublets in the (2, 1/2) and (2̄,−1/2) representations
of SU(2)W × U(1)Y .3 Anticipating perturbations that cause the mass eigenstates to be self-
conjugate fields, let us introduce the linear combinations

hD1 =
hψ + hψc√

2
=

(
h1

h0

)

, hD2 =
i(hψ − hψc)√

2
=

(
h2

h′
0

)

, (3.21)

with subscript D for doublet. The heavy-particle Lagrangian for the column vector h =
(hD1 , hD2) is given by (1), with f (H) = 0, and gauge couplings

Ta =

(
τa−τaT

4
−i(τa+τaT)

4
i(τa+τaT)

4
τa−τaT

4

)

, Y =
i
2

(
0 −1
1 0

)

, (3.22)

where τ a are the Pauli isospin matrices. Neglecting the small mass perturbation mentioned
above, the tree-level mass eigenstates are degenerate, and we may choose δm = 0. The charge
eigenstates are given by

⎛

⎜
⎜
⎜
⎝

h1

h0

h2

h′
0

⎞

⎟
⎟
⎟
⎠

≡

⎛

⎜
⎜
⎜
⎝

0 0 1√
2

1√
2

1 0 0 0

0 0 i√
2
− i√

2

0 1 0 0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

h0

h′
0

h+

h−

⎞

⎟
⎟
⎟
⎠

. (3.23)

In terms of the column vector h = (h0, h′
0, h+, h−), where h0 ≡ χ, the Lagrangian is given

by (3.15) with Q = diag(02, 1,−1) and

T3 =

⎛

⎜
⎜
⎜
⎝

0 i
2
0 0

− i
2
0 0 0

0 0 1
2

0

0 0 0 − 1
2

⎞

⎟
⎟
⎟
⎠

, T+ =

⎛

⎜⎜
⎜
⎜
⎝

0 0 0 − 1√
2

0 0 0 i√
2

1√
2
− i√

2
0 0

0 0 0 0

⎞

⎟⎟
⎟
⎟
⎠

,

T− =

⎛

⎜
⎜⎜
⎜
⎝

0 0 1√
2
0

0 0 i√
2
0

0 0 0 0

− 1√
2
− i√

2
0 0

⎞

⎟
⎟⎟
⎟
⎠

. (3.24)

3This construction is analogous to that appearing in applications of heavy quark effective theory to
processes where both a heavy quark and a heavy anti-quark are active degrees of freedom.
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3.2.2 Higher-Order Example: Pure Triplet Scalar

As illustration let us investigate interactions for a scalar particle of mass M, charged under
electroweak SU(2), beyond the leading order required for the heavy WIMP limit. We work
in terms of an effective heavy scalar field φv(x), in the isospin J representation of SU(2).
The covariant derivative is Dμ = ∂μ − ig2Wa

μta
J and Wμν ≡ i[Dμ,Dν ]/g2 ≡ Wa

μν ta
J is the

associated field strength. Through O(1/M3), the scalar heavy particle effective theory in the
one-heavy-particle sector takes the form,

Lφ = φ∗
v

{
iv · D − c1

D2
⊥

2M
+ c2

D4
⊥

8M3
+ g2cD

vα[Dβ
⊥,Wαβ ]

8M2

+ ig2cM
{Dα

⊥, [Dβ
⊥,Wαβ ]}

16M3
+ g2

2cA1
WαβWαβ

16M3
+ g2

2cA2
vαv

βWμαWμβ

16M3

+ g2
2cA3

Tr(WαβWαβ)

16M3
+ g2

2cA4
vαv

βTr(WμαWμβ)

16M3

+ g2
2c′A1

εμνρσWμνWρσ

16M3
+ g2

2c′A2
εμνρσvαvμWναWρσ

16M3

+ g2
2c′A3

εμνρσTr(WμνWρσ)

16M3
+ g2

2c′A4
εμνρσvαvμTr(WναWρσ)

16M3
+ . . .

}
φv ,

(3.25)

where we have employed appropriate field redefinitions to remove possible redundant
operators involving factors of v ·D acting on φv . Note that the operators with coefficients c′A1
through c′A4 violate parity and time reversal symmetries.4 For the effective theory describing
a fundamental heavy scalar particle, we have c1 = c2 = cA1 = 1 and cD = cM = cA2 =
cA3 = cA4 = c′A1 = c′A2 = c′A3 = c′A4 = 0 at tree level [66]. We find that Lorentz invariance
implies the exact relations,

c1 = c2 = 1 , cM = cD . (3.26)

Below, an explicit matching calculation provides a nontrivial illustration of the latter relation.
The complete Lagrangian including Standard Model particles and interactions can be

written

L = Lφ + LSM + Lφ,SM . (3.27)

Here LSM is the usual Standard Model Lagrangian, and by convention we have included
interactions with Wμ in Lφ. So far our discussion applies to a general irreducible SU(2)
representation for the heavy scalar field φv . Specializing to the case of a real scalar field,
necessarily with integer isospin, the effective theory is invariant under Eq. (2.71). It is
straightforward to verify that all interactions in Lφ are invariant under this transformation.

4Additional CPT violating operators at O(1/M2) and O(1/M3) are constrained by Lorentz
invariance to have vanishing coefficient.
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In the one-heavy-particle sector, the remaining terms involving the Higgs field H, gauge
fields, and fermions are (H̃ ≡ iτ2H∗)

Lφ,SM = φ∗
v

{
cH

H†H
M

+ · · ·+ cQ
ta
J Q̄Lτ

av/QL

M2
+ cX

iQ̄Lτ
aγμQL{ta

J ,Dμ}
2M3

+ cDQ
Q̄Lv/iv · DQL

M3
+ cDu

ūRv/iv · DuR

M3
+ cDd

d̄Rv/iv · DdR

M3
+ cHd

Q̄LHdR + h.c.
M3

+ cHu
Q̄LH̃uR + h.c.

M3
+ g2c(G)

A1

GA αβGA
αβ

16M3
+ g2c(G)

A2

vαv
βGA μαGA

μβ

16M3

+ g2c(G) ′
A1

εμνρσGA
μνGA

ρσ

16M3
+ g2c(G) ′

A2

εμνρσvαvμGA
ναGA

ρσ

16M3
+ . . .

}
φv . (3.28)

Terms odd under (2.71) have been omitted. Subleading terms containing only H, φv and their
covariant derivatives are represented by the first ellipsis in (3.28). Terms bilinear in lepton
fields, and terms bilinear in the hypercharge gauge field are also present in Lφ,SM but have
not been written explicitly. Repeated indices a = 1...3 and A = 1...8 imply a sum over gauge
generators. Lorentz invariance implies

cQ = cX . (3.29)

As an illustration of the construction and matching conditions for the heavy particle
Lagrangian Lφ, consider the case of a fundamental scalar, ignoring scalar self interactions
(i.e., φ4 terms). For the matching of the terms containing a single gauge field, we consider
the full theory result for the Wφφ amputated three point function (cf. Fig. 2.1),

ig2(p + p′)μF(q2)(ta
J)ji , (3.30)

where q = p′ − p, and F(q2) is a model-dependent form factor. Setting p2 = p′2 = M2,
vμ = (1, 0, 0, 0), the matching conditions for scalar scattering from a μ = 0 or μ = i gauge
field read

F(0)− F′(0)q2 + · · · = 1− cD
q2

8M2
+ . . . ,

(p + p′)i

[
−F(0)

(
1− p2 + p′2

4M2

)
+ F′(0)q2 + . . .

]

= (p + p′)i

[
−1 +

p2 + p′2

4M2
+ cM

q2

8M2

]
+ qi p′2 − p2

8M2
(cD − cM) + . . . . (3.31)

An explicit computation of one-loop gauge boson corrections, employing dimensional
regularization in d = 4− 2ε dimensions, yields

F(q2) = 1 +
g2
2

(4π)2
q2

M2

{
C2(r)

[
− 2

3εIR
− 1 +

4

3
log

M
μ

]

+ C2(G)

[
− 1

24εIR
+

3

4
+

1

12
log

M
μ

]}
+ . . . . (3.32)
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The quadratic Casimir coefficients for the isospin-J and adjoint representations of SU(2) are
C2(J) = J(J+1) and C2(G) = 2. From (3.31) and (3.32), after effective theory subtractions
the renormalized coefficients cD(μ), cM(μ) in the MS renormalization scheme are found to be

cD(μ) = cM(μ) =
α2(μ)

4π

[
−8J(J + 1) + 12 +

(
32J(J + 1)

3
+

4

3

)
log

M
μ

]
. (3.33)

Matching for a general ultraviolet completion model, and for other effective theory coeffi-
cients proceeds similarly.

Our focus will be on the limit M � mW , where all nontrivial matching conditions at the
scale μ ∼ M become irrelevant.5 We leave a detailed investigation of the model-dependent
form factor and subleading 1/M corrections to future work.

3.2.3 Admixtures

As an example of mixed states, let us consider in detail the singlet-doublet admixture. Results
for the triplet-doublet admixture will also be given below.

Singlet-Doublet Admixture

Let hS, with subscript S for singlet, be a heavy, self-conjugate, SU(2)W singlet with Y = 0
and mass MS. Consider an admixture of hS and the previously defined self-conjugate doublets
hD1 and hD2 , with mass MD. At leading order in the 1/M expansion, the gauge-invariant
interactions of hS, hD1 and hD2 involving the Higgs field are

LHh̄h = −h̄S

[
yH† (hD1 − ihD2)√

2
+ y∗HT (hD1 + ihD2)√

2

]
+ h.c. = −h̄f (H)h , (3.34)

where we have imposed the invariance (2.71), and collected the heavy-particle fields in a
column vector h = (hS, hD1 , hD2) = (hS, h1, h0, h2, h′

0). The Higgs coupling matrix is given
by

f (H) =
a1√
2

⎛

⎜
⎝

0 H† + HT i(HT − H†)
H + H∗ 02 02

i(H − H∗) 02 02

⎞

⎟
⎠

+
a2√
2

⎛

⎜
⎝

0 −i(HT − H†) HT + H†

−i(H − H∗) 02 02

H + H∗ 02 02

⎞

⎟
⎠ , (3.35)

5In particular models with multiple mass scales, 1/M prefactors can be replaced by inverse
powers of a smaller excitation energy. It is also of interest to investigate whether large anomalous
dimensions could enhance the coefficients of particular subleading operators.
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with real parameters a1 = Re(y) and a2 = Im(y). For comparison, the derivation in
Sect. 3.2.5 obtains (3.34) at tree level starting from a manifestly relativistic Lagrangian. The
residual mass matrix is δm = diag (MS, MD14) − Mref15, and we define MS and MD to be
real and positive.6 The gauge couplings are obtained by trivially extending (3.22) to include
the singlet. This completely specifies the heavy-particle Lagrangian given in (3.13).

The mass induced by EWSB is accounted for at tree level by including contributions from
(3.35),

δM(v) = δM + v

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 a1 0 a2

0 0 0 0 0

a1 0 0 0 0

0 0 0 0 0

a2 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.36)

In the following, we use subscripts to denote the electric charge and bracketed superscripts to
label the mass eigenstate. For neutral states we find the residual mass eigenvalues

δ
(0)
0 = MD − Mref , δ

(±)
0 =

MD + MS

2
±

√
Δ2 + (av)2 − Mref , (3.37)

where we define

Δ ≡ MS − MD

2
, a ≡

√
a2
1 + a2

2 . (3.38)

By definition a > 0, and regardless of the sign of Δ, the smallest eigenvalue is δ(−)
0 . Let us set

this eigenvalue to zero by appropriately choosing the reference mass Mref . The corresponding
normalized eigenvectors in the (hS, h0, h′

0) basis of electrically neutral states are then


v
(0)
0 =

1

a

⎛

⎜
⎝

0

a2

−a1

⎞

⎟
⎠ ,


v
(±)
0 =

1
[(

Δ±√
Δ2 + (av)2

)2

+ (av)2
] 1

2

⎛

⎜
⎝

Δ±√
Δ2 + (av)2

a1v

a2v

⎞

⎟
⎠ , (3.39)

and we may construct the unitary matrix U0 (on the three-dimensional neutral subspace) to
translate to the mass eigenbasis,

U0 =
(

v
(0)
0 
v

(+)
0 
v

(−)
0

)
,

⎛

⎜
⎝

hS

h0

h′
0

⎞

⎟
⎠ = U0

⎛

⎜
⎝

h(0)
0

h(+)
0

h(−)
0

⎞

⎟
⎠ ,

6An additional phase redefinition of hψ , hψc could be used to enforce the vanishing of a1 or a2.
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U†
0δM(v)U0 = diag

(
δ
(0)
0 , δ

(+)
0 , δ

(−)
0

)
. (3.40)

The tree-level masses for the electrically charged sector are unchanged by EWSB, given by
δ
(0)
± = δ

(0)
0 , and the corresponding charge eigenstates are given by

(
h1

h2

)

=
1√
2

(
1 1

i −i

)(
h(0)
+

h(0)
−

)

. (3.41)

The basis of mass eigenstates is thus given by the column vector h =
(

h(0)
0 , h(+)

0 , h(−)
0 , h(0)

+ ,

h(0)
−

)
, where h(−)

0 ≡ χ, and the Lagrangian is given by (3.15) with

δM(v) = diag
(
δ
(0)
0 , δ

(+)
0 , δ

(−)
0 , δ

(0)
+ , δ

(0)
−

)
= av diag

(
t ρ
2
, 2s−1

ρ , 0, t ρ
2
, t ρ

2

)
,

Q = diag(03, 1,−1) ,

T3 − s2W Q =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 i
2
|s ρ

2
| i

2
|c ρ

2
| 0 0

− i
2
|s ρ

2
| 0 0 0 0

− i
2
|c ρ

2
| 0 0 0 0

0 0 0 1
2
− s2W 0

0 0 0 0 − 1
2
+ s2W

⎞

⎟
⎟
⎟
⎟⎟
⎠

,

T+ =
e−iξ

√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 −i
0 0 0 0 −|s ρ

2
|

0 0 0 0 −|c ρ
2
|

i |s ρ
2
| |c ρ

2
| 0 0

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, T− =
e+iξ

√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −i 0

0 0 0 |s ρ
2
| 0

0 0 0 |c ρ
2
| 0

0 0 0 0 0

i −|s ρ
2
| −|c ρ

2
| 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

f (φ) = a

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

0 |c ρ
2
|φZ −|s ρ

2
|φZ 0 0

|c ρ
2
|φZ sρ h cρ h |c ρ

2
|e+iξφ−

W |c ρ
2
|e−iξφ+

W

−|s ρ
2
|φZ cρ h −sρ h −|s ρ

2
|e+iξφ−

W −|s ρ
2
|e−iξφ+

W

0 |c ρ
2
|e−iξφ+

W −|s ρ
2
|e−iξφ+

W 0 0

0 |c ρ
2
|e+iξφ−

W −|s ρ
2
|e+iξφ−

W 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

,

(3.42)

where we have introduced

sin ρ ≡ av
√

(av)2 +Δ2
, cos ρ ≡ Δ

√
(av)2 +Δ2

, e±iξ ≡ (a1 ± ia2)

a
. (3.43)

The shorthand notation cx ≡ cos x, sx ≡ sin x, and tx ≡ tan x is used throughout this thesis.
Note that sρ is positive, and that cρ can have either sign depending on the hierarchy between
MS and MD. It is straightforward to extract Feynman rules from the Lagrangian (3.15) and
the matrices (3.42). For example, the propagator for χ, and its coupling to the physical Higgs
boson, h, are
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(3.44)

Triplet-Doublet Admixture

The construction for the triplet-doublet case follows closely that for the singlet-doublet
case, with a heavy triplet hT in place of the singlet hS. Using τ = (τ 1, τ 2, τ 3) and
τ̄ = −(τ 1T , τ 2T , τ 3T), the gauge-invariant interactions of hT , hD1 and hD2 involving the
Higgs field can be written in the form LHh̄h = −h̄f (H)h, where we collect fields in a seven-
component column vector h = (hT , hD1, hD2), and the matrix f (H) is given by

f (H) =
a1√
2

⎛

⎜
⎝

03 H†τ − HT τ̄ i(−HT τ̄ − H†τ )
−τ̄H∗ + τH 02 02

i(τH + τ̄H∗) 02 02

⎞

⎟
⎠

+
a2√
2

⎛

⎜
⎝

03 i(HT τ̄ + H†τ ) H†τ − HT τ̄

i(−τH − τ̄H∗) 02 02

−τ̄H∗ + τH 02 02

⎞

⎟
⎠ , (3.45)

with real parameters a1 and a2. Upon accounting for mass contributions from EWSB, the

basis of mass eigenstates is given by the column vector h =
(

h(0)
0 , h(+)

0 , h(−)
0 , h(+)

+ , h(−)
+ ,

h(+)
− , h(−)

−
)

, where h(−)
0 ≡ χ, and the Lagrangian is given by (3.15) with

δM(v) = diag
(
δ
(0)
0 , δ

(+)
0 , δ

(−)
0 , δ

(+)
+ , δ

(−)
+ , δ

(+)
− , δ

(−)
−

)

= av diag
(

t ρ
2
, 2s−1

ρ , 0, 2s−1
ρ , 0, 2s−1

ρ , 0
)
,

Q = diag(0, 0, 0, 1, 1,−1,−1) ,

T3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 i
2
|s ρ

2
| i

2
|c ρ

2
| 0 0 0 0

− i
2
|s ρ

2
| 0 0 0 0 0 0

− i
2
|c ρ

2
| 0 0 0 0 0 0

0 0 0 1− 1
2

s2ρ
2

− 1
4

sρ 0 0

0 0 0 − 1
4

sρ 1− 1
2

c2ρ
2

0 0

0 0 0 0 0 −1 + 1
2

s2ρ
2

1
4

sρ

0 0 0 0 0 1
4

sρ −1 + 1
2

c2ρ
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,
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T+ =
1√
2

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 0 0 0 0 i|s ρ
2
| i|c ρ

2
|

0 0 0 0 0 1 + c2ρ
2

− 1
2

sρ

0 0 0 0 0 − 1
2

sρ 1 + s2ρ
2

−i|s ρ
2
| −1− c2ρ

2

1
2

sρ 0 0 0 0

−i|c ρ
2
| 1

2
sρ −1− s2ρ

2
0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

T− =
1√
2

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 i|s ρ
2
| i|c ρ

2
| 0 0

0 0 0 −1− c2ρ
2

1
2

sρ 0 0

0 0 0 1
2

sρ −1− s2ρ
2
0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−i|s ρ
2
| 1 + c2ρ

2
− 1

2
sρ 0 0 0 0

−i|c ρ
2
| − 1

2
sρ 1 + s2ρ

2
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

f (φ) = a

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 |c ρ
2
|φZ −|s ρ

2
|φZ −i|c ρ

2
|φ−

W i|s ρ
2
|φ−

W i|c ρ
2
|φ+

W −i|s ρ
2
|φ+

W

|c ρ
2
|φZ sρh cρh 0 φ−

W 0 φ+
W

−|s ρ
2
|φZ cρh −sρh −φ−

W 0 −φ+
W 0

i|c ρ
2
|φ+

W 0 −φ+
W sρh cρh − iφZ 0 0

−i|s ρ
2
|φ+

W φ+
W 0 cρh + iφZ −sρh 0 0

−i|c ρ
2
|φ−

W 0 −φ−
W 0 0 sρh cρh + iφZ

i|s ρ
2
|φ−

W φ−
W 0 0 0 cρh − iφZ −sρh

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

,

(3.46)

where sρ and cρ are as defined in (3.43), with a =
√

a2
1 + a2

2 and Δ = (MT −MD)/2. Again,
sρ is positive and cρ can have either sign depending on the hierarchy between MT and MD.

3.2.4 Pure Case Limits

Appropriate parametric limits can be taken to decouple the pure state constituents of an
admixture. This can be used to check the consistency of matching computations in Sect. 4.2.
From the singlet-doublet admixture, we may recover the pure doublet (singlet) case by taking
a → 0 or |Δ| → ∞, with Δ > 0 (Δ < 0), or by taking ρ → 0 (ρ → π). Similarly, to
recover the pure doublet (triplet) case from the triplet-doublet admixture, we decouple the
triplet (doublet) component by taking a → 0 or |Δ| → ∞, with Δ > 0 (Δ < 0), or by
taking ρ → 0 (ρ → π).
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3.2.5 Relativistic Example: Singlet-Doublet Mixture

The heavy-particle Lagrangians in Sect. 3.2 may be obtained from a manifestly relativistic
Lagrangian by performing field redefinitions at tree level. Consider the case of a singlet-
doublet mixture (see also [29]),

L = LSM+
1

2
b̄(i∂/ −M1)b+ ψ̄(iD/ −M2)ψ−(y b̄PLH†ψ+y′ b̄PLHTψc+h.c.) , (3.47)

where b is a gauge singlet (Majorana) fermion represented as a Dirac spinor with bc = b, and
ψ is a Dirac fermion in the (2, 1/2) representation of SU(2)W ×U(1)Y . In the above equation,
PR,L = (1 ± γ5)/2, and we have included all renormalizable gauge-invariant interactions
involving the SM Higgs field. Expressing the result in terms of Majorana combinations,

λ1 =
1√
2
(ψ + ψc) , λ2 =

i√
2
(ψ − ψc) , (3.48)

and collecting the fermions in the column vector λ = (b, λ1, λ2), we may write the
interactions with the Higgs field as

LHλ̄λ = − 1√
2

b̄
1− γ5

2

[
(yH† + y′HT)λ1 − i(yH† − y′HT)λ2

]
+ h.c.

≡ −1

2
λ̄

[
f (H) + iγ5g(H)

]
λ , (3.49)

with

f (H) =
a1√
2

⎛

⎜
⎝

0 H† + HT i(HT − H†)
H + H∗ 02 02

i(H − H∗) 02 02

⎞

⎟
⎠

+
a2√
2

⎛

⎜
⎝

0 −i(HT − H†) HT + H†

−i(H − H∗) 02 02

H + H∗ 02 02

⎞

⎟
⎠ ,

g(H) =
b1√
2

⎛

⎜
⎝

0 −i(HT − H†) HT + H†

−i(H − H∗) 02 02

H + H∗ 02 02

⎞

⎟
⎠

+
b2√
2

⎛

⎜
⎝

0 H† + HT i(HT − H†)
H + H∗ 02 02

i(H − H∗) 02 02

⎞

⎟
⎠ . (3.50)

The real parameters ai and bi are given by

a1 =
1

2
Re(y + y′) , a2 =

1

2
Im(y − y′) , b1 =

1

2
Re(y − y′) , b2 = −1

2
Im(y + y′) .

(3.51)
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We employ phase redefinitions of b, ψL and ψR to ensure that M1 and M2 are real and
positive.7 The gauge generators will be those given in (3.22), extended trivially to include
the singlet. Upon performing the tree-level field redefinition

λ =
√
2e−i(M−δM)v·x(hv + Hv) , (3.52)

where the fields hv and Hv obey v/ hv = hv and v/Hv = −Hv , we obtain the heavy-particle
Lagrangian in (3.13). It follows from λc = λ that the resulting Lagrangian is invariant under
the simultaneous transformations in (2.71). Note that f (H) is the only term surviving the
projection from the condition v/ hv = hv . The remaining analysis follows that of Sect. 3.2.3.

3.3 Onshell Renormalization Scheme

A consistent evaluation of amplitudes beyond tree level demands renormalization of the
Higgs-WIMP vertex, hχ̄χ, that appears for admixtures. We define an extension of the onshell
renormalization scheme for the electroweak SM (e.g., see [67]) by expressing the vertex
amplitude in terms of physical masses in the SM and DM sectors. We begin by studying
the singlet-doublet mixture, and will later quote the analogous results for the triplet-doublet
mixture.

To avoid confusion with standard notation for counterterms, in this section (only) we
denote a residual mass by μ, and a residual mass counterterm by δμ. We keep the notation
introduced in Sect. 3.2 for the residual mass eigenvalues, δ(0)0 , δ(±)

0 , etc.

3.3.1 Singlet-Doublet Counterterm Lagrangian

Let us write the bare Lagrangian as the sum of renormalized and counterterm contributions

L = h̄bare
[
iv · D − μbare − f bare(Hbare)

]
hbare

= h̄
[
iv · D + δZhiv · D − μ− δμ− f (Hbare)− δf (Hbare)

]
h , (3.53)

where the bare quantities are given by

μbare = diag(μbare
S , μbare

D , μbare
D , μbare

D , μbare
D ) ,

f bare(H) =
abare
1√
2

⎛

⎜
⎝

0 H† + HT i(HT − H†)
H + H∗ 02 02

i(H − H∗) 02 02

⎞

⎟
⎠

7An additional phase redefinition could be used to eliminate a1, a2, b1 or b2.
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+
abare
2√
2

⎛

⎜
⎝

0 −i(HT − H†) HT + H†

−i(H − H∗) 02 02

H + H∗ 02 02

⎞

⎟
⎠

≡ abare
1 f1(H) + abare

2 f2(H) , (3.54)

and the expression for f bare(H) above is valid for arbitrary H (in particular, for Hbare).
The gauge symmetry preserving counterterms are given by

Zh = 1 + δZh = 1 + diag(δZS, δZD14) ,

μ+ δμ = Z
1
2

h μbareZ
1
2

h = diag(μS + δμS, (μD + δμD)14) ,

f (Hbare) + δf (Hbare) = Z
1
2

h f bare(Hbare)Z
1
2

h = (a1 + δa1)f1(H
′) + (a2 + δa2)f2(H

′) .
(3.55)

We have introduced H′ to absorb the renormalization of v:

Hbare = Z
1
2

H

(
φ+

W
1√
2
(v − δv + h + iφZ)

)

= Z
1
2

H

(
1− δv

v

)
H′ . (3.56)

Note that the renormalization of v introduces a coupling ∼ δv
v

hχ̄χ through the a1f1(H′) +
a2f2(H′) term in (3.55). We will fix the counterterms by enforcing renormalization conditions
on the residual mass matrix (two point functions). Three point functions involving the Higgs
interaction will then be determined.

3.3.2 Propagator Corrections

Anticipating renormalization conditions that preserve the basis h =
(

h(0)
0 , h(+)

0 , h(−)
0

)
,

(
h(0)
+ , h(0)

−
)

of mass eigenstates introduced in Sect. 3.2.3, let us express the counterterms

in this basis,

δμ = δμD15 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 |c ρ
2
| v

a
(a2δa1 − a1δa2) |s ρ

2
| v

a
(a1δa2 − a2δa1) 0 0

· 2c2ρ
2
(δΔ) + sρ

v

a
(a1δa1 + a2δa2) −sρ(δΔ) + cρ

v

a
(a1δa1 + a2δa2) 0 0

· · 2s2ρ
2
(δΔ) − sρ

v

a
(a1δa1 + a2δa2) 0 0

· · · 0 0

· · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

δZh = δZD15 +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

· c2ρ
2
(δZS − δZD) − 1

2
sρ(δZS − δZD) 0 0

· · s2ρ
2
(δZS − δZD) 0 0

· · · 0 0

· · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.57)
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h φ±
W , φ0

ZW 
±, Z 

0

Fig. 3.1 One-loop corrections to two-point functions. Double lines denote heavy WIMPs, zigzag
lines denote gauge bosons, W± or Z0, dashed lines denote the physical Higgs boson, h, and dotted
lines denote Goldstone bosons, φ±

W or φ0
Z

where the above matrices are symmetric, and (δΔ) = (δμS − δμD)/2. Due to the
masslessness of the photon, the onshell renormalization factor for the electrically charged
state, δZD, is infrared (IR) divergent. To avoid the associated complications, we may turn
off δZD, corresponding to an additional overall renormalization of the fields with δZS =
δZD. This overall renormalization will not impact the determination of physical masses
or mass eigenstates. However, we will of course need to include additional wavefunction
renormalization factors when computing physical amplitudes. In the following, we allow for
arbitrary δZD.

We compute the one-loop corrections to the amputated two-point function, Σ2, from
virtual Z0, W±, h, φ0

Z and φ±
W exchange, as illustrated in Fig. 3.1. In the following results,

we set the external momentum to zero (i.e., we compute Σ2(0)), and the first (second)
subscript denotes the final (initial) state, with values (1, 2, 3, 4, 5) corresponding to the
mass eigenstates (h(0)

0 , h(+)
0 , h(−)

0 , h(0)
+ , h(0)

− ). Using Feynman-t’Hooft gauge, and expressing
results in terms of the basic integral I3(δ,m) of Appendix B.1, we find

−i[Σ2(0)]11 = − g2
2

4c2W
c2ρ

2
I3(δ

(−)
0 ,mZ)− g2

2

4c2W
s2ρ
2

I3(δ
(+)
0 ,mZ)− g2

2

2
I3(δ

(0)
± ,mW)

+ a2c2ρ
2

I3(δ
(+)
0 ,mZ) + a2s2ρ

2
I3(δ

(−)
0 ,mZ) ,

−i[Σ2(0)]22 = − g2
2

4c2W
s2ρ
2

I3(δ
(0)
0 ,mZ)− g2

2

2
s2ρ
2

I3(δ
(0)
± ,mW) + a2s2ρI3(δ

(+)
0 ,mh)

+ a2c2ρI3(δ
(−)
0 ,mh) + a2c2ρ

2
I3(δ

(0)
0 ,mZ) + 2a2c2ρ

2
I3(δ

(0)
± ,mW) ,

−i[Σ2(0)]23 = −i[Σ2(0)]32

= − g2
2

8c2W
sρI3(δ

(0)
0 ,mZ)− g2

2

4
sρI3(δ

(0)
± ,mW) + a2sρcρI3(δ

(+)
0 ,mh)

− a2sρcρI3(δ
(−)
0 ,mh)− a2

2
sρI3(δ

(0)
0 ,mZ)− a2sρI3(δ

(0)
± ,mW) ,

−i[Σ2(0)]33 = − g2
2

4c2W
c2ρ

2
I3(δ

(0)
0 ,mZ)− g2

2

2
c2ρ

2
I3(δ

(0)
± ,mW) + a2s2ρI3(δ

(−)
0 ,mh)

+ a2c2ρI3(δ
(+)
0 ,mh) + a2s2ρ

2
I3(δ

(0)
0 ,mZ) + 2a2s2ρ

2
I3(δ

(0)
± ,mW) ,

−i[Σ2(0)]44 = −i[Σ2(0)]55

= −e2I3(δ
(0)
± , λ)− g2

2

4c2W
(1− 2s2W)2I3(δ

(0)
± ,mZ)− g2

2

4
I3(δ

(0)
0 ,mW)
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− g2
2

4
s2ρ
2

I3(δ
(+)
0 ,mW)− g2

2

4
c2ρ

2
I3(δ

(−)
0 ,mW) + a2c2ρ

2
I3(δ

(+)
0 ,mW)

+ a2s2ρ
2

I3(δ
(−)
0 ,mW) , (3.58)

where λ is a fictitious photon mass, and the self-energy components not displayed above
vanish. We may evaluate Σ(v · k) by the substitution I3(δ,m) → I3(δ − v · k,m).

3.3.3 Renormalization Conditions

Let us fix the counterterms δa1, δa2, δμS, δμD and δZS by enforcing that the physical residual
masses of the neutral states are given by the renormalized parameters of the Lagrangian,

[δμ]11 +Re[Σ2(δ
(0)
± )]11 − δ

(0)
0 [δZh]11 = 0 ,

[δμ]22 +Re[Σ2(δ
(+)
0 )]22 − δ

(+)
0 [δZh]22 = 0 ,

[δμ]33 +Re[Σ2(0)]33 = 0 , (3.59)

and that the lightest mass eigenstate is proportional to the vector (0, 0, 1, 0, 0),

[δμ]13 +Re[Σ2(0)]13 = 0 ,

[δμ]23 +Re[Σ2(0)]23 = 0 . (3.60)

This scheme defines renormalized values for a and t ρ
2

through the physical mass differences
between neutral states,

M
h
(+)
0

− M
h
(−)
0

= 2avs−1
ρ ,

M
h(0)0

− M
h(−)
0

= avt ρ
2
, (3.61)

where the mass of the neutral mass eigenstate h(·)
0 is denoted M

h
(·)
0

. Note also that the presence

of δZS �= δZD is required to maintain the orientation of the lightest mass eigenstate under
renormalization. Solving for the counterterms, we find from [δμ]13,

δa1

a1
=

δa2

a2
=⇒ a1δa1 + a2δa2 = a2 δa1

a1
. (3.62)

The remaining system of equations involving [δμ]23, [δμ]11, [δμ]22 and [δμ]33 then yields

av
δa1

a1
= −[δμ]23 + t−1

ρ
2

([δμ]11 − [δμ]33)

= [Σ2(0)]23 + t−1
ρ
2

(
[Σ2(0)]33 − [Σ2(δ

(0)
0 )]11 + δ

(0)
0 [δZh]11

)
,
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δZS = δZD +
1

av

{
t ρ
2
[Σ2(δ

(+)
0 )]22 + 2[Σ2(0)]23

+ t−1
ρ
2
[Σ2(0)]33 − 2s−1

ρ [Σ2(δ
(0)
0 )]11

}
. (3.63)

We focus here on the counterterms δa1, δa2, and δZS which enter in the calculation of
amplitudes relevant for WIMP-nucleon scattering. Explicit expressions for the remaining
counterterms δμS and δμD may be similarly obtained. We note that the degeneracy between
the mass of the h(0)

0 state and the h(0)
± states is lifted by a finite amount, predicted in terms of

renormalized parameters as

M
h(0)±

− M
h(0)0

= [Σ2(δ
(0)
± )]44 − [Σ2(δ

(0)
0 )]11 , (3.64)

where we have used that [δμ]11 = [δμ]44, [δZh]11 = [δZh]44 and δ
(0)
0 = δ

(0)
± .

3.3.4 Extension to Triplet-Doublet

The extension to the triplet-doublet case is straightforward. The counterterms δa1, δa2, δμT ,
δμD, δZT and δZD are introduced in an analogous manner. In terms of the mass eigenbasis

h =
(

h(0)
0 , h(+)

0 , h(−)
0 , h(+)

+ , h(−)
+ , h(+)

− , h(−)
−

)
introduced in Sect. 3.2.3, the counterterms are

given by the 7× 7 matrices,

δμ = δμD17 +

⎛

⎜
⎝

δμ0 0 0

0 δμ+ 0

0 0 δμ−

⎞

⎟
⎠ , δZh = δZD17 +

⎛

⎜
⎝

δZ0 0 0

0 δZ+ 0

0 0 δZ−

⎞

⎟
⎠ , (3.65)

where the submatrices for the neutral and charged sectors are specified by the following
symmetric matrices,

δμ0 =

⎛
⎜⎜⎝

0 |c ρ
2
| v

a (a2δa1 − a1δa2) |s ρ
2
| v

a (a1δa2 − a2δa1)

· 2c2ρ
2
(δΔ) + sρ

v
a (a1δa1 + a2δa2) −sρ(δΔ) + cρ

v
a (a1δa1 + a2δa2)

· · 2s2ρ
2
(δΔ) − sρ

v
a (a1δa1 + a2δa2)

⎞
⎟⎟⎠,

δμ± =

⎛
⎝ 2c2ρ

2
(δΔ)+sρ

v
a (a1δa1+a2δa2) −sρ(δΔ)+cρ

v
a (a1δa1 + a2δa2) ± i v

a (a1δa2 − a2δa1)

· 2s2ρ
2
(δΔ) − sρ

v
a (a1δa1 + a2δa2)

⎞
⎠,

δZ0 =

⎛
⎜⎜⎝

0 0 0

· c2ρ
2
(δZT − δZD) − 1

2 sρ(δZT − δZD)

· · s2ρ
2
(δZT − δZD)

⎞
⎟⎟⎠,

δZ± =

⎛
⎝ c2ρ

2
(δZT − δZD) − 1

2 sρ(δZT − δZD)

· s2ρ
2
(δZT − δZD)

⎞
⎠, (3.66)
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with (δΔ) = (δμT − δμD)/2. To fix counterterms, we impose the same renormaliza-
tion conditions given in (3.59) and (3.60). We again require the one-loop corrections to
the two-point function, Σ2. In the following results, the first (second) subscript denotes
the final (initial) state, with values (1, 2, 3, 4, 5, 6, 7) corresponding to the mass eigen-
states (h(0)

0 , h(+)
0 , h(−)

0 , h(+)
+ , h(−)

+ , h(+)
− , h(−)

− ). Using Feynman-t’Hooft gauge and express-
ing results in terms of the basic integral I3(δ,m) of Appendix B.1, we find

− i[Σ2(0)]11 = − g2
2

4c2W
s2ρ
2

I3(δ
(+)
0 ,mZ)− g2

2

4c2W
c2ρ

2
I3(δ

(−)
0 ,mZ)− g2

2

2
s2ρ
2

I3(δ
(+)
± ,mW)

− g2
2

2
c2ρ

2
I3(δ

(−)
± ,mW) + a2c2ρ

2
I3(δ

(+)
0 ,mZ) + a2s2ρ

2
I3(δ

(−)
0 ,mZ)

+ 2a2c2ρ
2

I3(δ
(+)
± ,mW) + 2a2s2ρ

2
I3(δ

(−)
± ,mW) ,

− i[Σ2(0)]22 = − g2
2

4c2W
s2ρ
2

I3(δ
(0)
0 ,mZ)

− g2
2

2

(
1 + c2ρ

2

)2

I3(δ
(+)
± ,mW)− g2

2

8
s2ρI3(δ

(−)
± ,mW)

+ a2c2ρ
2

I3(δ
(0)
0 ,mZ) + 2a2I3(δ

(−)
± ,mW) + a2c2ρI3(δ

(−)
0 ,mh) + a2s2ρI3(δ

(+)
0 ,mh) ,

− i[Σ2(0)]23 = −i[Σ2(0)]32 = − g2
2

8c2W
sρI3(δ

(0)
0 ,mZ)

+
g2
2

4
sρ

(
1 + c2ρ

2

)
I3(δ

(+)
± ,mW) +

g2
2

4
sρ

(
1 + s2ρ

2

)
I3(δ

(−)
± ,mW)

− a2

2
sρI3(δ

(0)
0 ,mZ) + a2cρsρI3(δ

(+)
0 ,mh)− a2cρsρI3(δ

(−)
0 ,mh) ,

− i[Σ2(0)]33 = − g2
2

4c2W
c2ρ

2
I3(δ

(0)
0 ,mZ)

− g2
2

2

(
1 + s2ρ

2

)2

I3(δ
(−)
± ,mW)− g2

2

8
s2ρI3(δ

(+)
± ,mW)

+ a2s2ρ
2

I3(δ
(0)
0 ,mZ) + 2a2I3(δ

(+)
± ,mW) + a2c2ρI3(δ

(+)
0 ,mh) + a2s2ρI3(δ

(−)
0 ,mh) ,

− i[Σ2(0)]44 = −i[Σ2(0)]66

= − g2
2

c2W

(
c2W − 1

2
s2ρ
2

)2

I3(δ
(+)
± ,mZ)− g2

2

16c2W
s2ρI3(δ

(−)
± ,mZ)− g2

2

4
s2ρ
2

I3(δ
(0)
0 ,mW)

− e2I3(δ
(+)
± , λ)− g2

2

4

(
1 + c2ρ

2

)2

I3(δ
(+)
0 ,mW)− g2

2

16
s2ρI3(δ

(−)
0 ,mW) + a2I3(δ

(−)
± ,mZ)

+ a2I3(δ
(−)
0 ,mW) + a2c2ρ

2
I3(δ

(0)
0 ,mW) + a2s2ρI3(δ

(+)
± ,mh) + a2c2ρI3(δ

(−)
± ,mh) ,

− i[Σ2(0)]45 = −i[Σ2(0)]54 = −i[Σ2(0)]67 = −i[Σ2(0)]76

=
g2
2

4c2W
sρ

(
c2W − 1

2
s2ρ
2

)
I3(δ

(+)
± ,mZ) +

g2
2

4c2W
sρ

(
c2W − 1

2
c2ρ

2

)
I3(δ

(−)
± ,mZ)
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− g2
2

8
sρI3(δ

(0)
0 ,mW) +

g2
2

8
sρ

(
1 + c2ρ

2

)
I3(δ

(+)
0 ,mW) +

g2
2

8
sρ

(
1 + s2ρ

2

)
I3(δ

(−)
0 ,mW)

− a2

2
sρI3(δ

(0)
0 ,mW) + a2cρsρI3(δ

(+)
± ,mh)− a2cρsρI3(δ

(−)
± ,mh) ,

− i[Σ2(0)]55 = −i[Σ2(0)]77

= − g2
2

16c2W
s2ρI3(δ

(+)
± ,mZ)− g2

2

c2W

(
c2W − 1

2
c2ρ

2

)2

I3(δ
(−)
± ,mZ)− g2

2

4
c2ρ

2
I3(δ

(0)
0 ,mW)

− e2I3(δ
(−)
± , λ)− g2

2

16
s2ρI3(δ

(+)
0 ,mW)− g2

2

4

(
1 + s2ρ

2

)2

I3(δ
(−)
0 ,mW) + a2I3(δ

(+)
± ,mZ)

+ a2I3(δ
(+)
0 ,mW) + a2s2ρ

2
I3(δ

(0)
0 ,mW) + a2c2ρI3(δ

(+)
± ,mh) + a2s2ρI3(δ

(−)
± ,mh) ,

(3.67)

where λ is a fictitious photon mass, and the self-energy components not displayed above
vanish. The remainder of the renormalization program proceeds as for the singlet-doublet
system. In particular, the similarity of the neutral sectors implies relations similar to (3.63),

av
δa1

a1
= av

δa2

a2
= [Σ2(0)]23 + t−1

ρ
2

(
[Σ2(0)]33 − [Σ2(δ

(0)
0 )]11 + δ

(0)
0 [δZh]11

)
,

δZT = δZD +
1

av

{
t ρ
2
[Σ2(δ

(+)
0 )]22 + 2[Σ2(0)]23

+ t−1
ρ
2
[Σ2(0)]33 − 2s−1

ρ [Σ2(δ
(0)
0 )]11

}
, (3.68)

where the self-energy components are those of the triplet-doublet system given in (3.67).

3.4 Low Energy Theory at the Weak Scale for Pure- and
Mixed-State WIMPs

Let us construct the effective theory of DM with mass M � mW interacting with nf = 5
flavor QCD. The hierarchy of scales between the DM mass and the relevant low-energy
degrees of freedom, ΛQCD,mc,mb � mW , allows us to use heavy particle effective theory
to describe the DM field. The most general Lagrangian relevant for spin-independent, low-
velocity scattering with nucleons, is then given at energies E � mW by,

Lχv, SM = χ̄vχv

{ ∑

q=u,d,s,c,b

[
c(0)q O(0)

q + c(2)q vμvνO(2)μν
q

]

+ c(0)g O(0)
g + c(2)g vμvνO(2)μν

g

}
+ . . . , (3.69)

where χv is the lightest, electrically neutral, self-conjugate WIMP of arbitrary spin, arising
from the pure or mixed cases discussed in Sect. 3.2. The ellipsis in the above equation
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includes higher-dimension operators suppressed by powers of 1/mW . The assumed self-
conjugacy of χv implies that (3.69) is invariant under (2.71). The SM component of (3.69) is
expressed in terms of quark and gluon fields as

O(0)
q = mqq̄q ,

O(0)
g = (GA

μν)
2 ,

O(2)μν
q =

1

2
q̄

(
γ{μiDν}

− − 1

d
gμν iD/ −

)
q ,

O(2)μν
g = −GAμλGAν

λ +
1

d
gμν(GA

αβ)
2 . (3.70)

Here D− ≡ −→
D − ←−

D , and A{μBν} ≡ (AμBν + AνBμ)/2 denotes symmetrization. The
operators in (3.70) are expressed in terms of bare Lagrangian fields, where we employ
dimensional regularization with d = 4 − 2ε spacetime dimensions. We use the background
field method for gluons in the effective theory thus ignoring gauge-variant operators, and
assume that appropriate field redefinitions are employed to eliminate operators that vanish by
leading order equations of motion. We ignore flavor non-diagonal operators, whose nucleon
matrix elements have an additional weak-scale suppression relative to those considered. We
will not be concerned here with leptonic interactions.

For a self-conjugate WIMP, χv , with mass M � mW and arbitrary spin, Eq. (3.69)
represents the most general effective Lagrangian at leading order in 1/mW , relevant for spin-
independent, low-velocity scattering with nucleons. The basis of operators below the weak
scale is independent of the WIMP quantum numbers, and hence Eq. (3.69) agrees with the
basis of operators in Eq. (3.10) for the singlet fermion case.

Details of the UV completion are encoded in the twelve matching coefficients c(0)q , c(2)q ,
c(0)g and c(2)g . Matching onto the effective theory (3.69) is in general dependent on the specific
SM extension. Although much of the formalism applies more generally, for definiteness we
focus on the heavy WIMP limit, M � mW , where universal features appear [59].



Chapter 4
Weak-Scale Matching

In the previous chapter we constructed the effective theory for WIMPs interacting
with SM degrees of freedom in the electroweak symmetric phase (cf. Sect. 3.1.3),
and for the lightest electrically neutral WIMP interacting with nf = 5 QCD
degrees of freedom (cf. Sects. 3.1.4 and 3.4). The few parameters of the high-
scale electroweak symmetric theory imply definite predictions for WIMP-nucleon
scattering at the low scale, but require matching between these two effective
theories. In this chapter, we present formalism necessary to determine weak-
scale matching coefficients in the computation of scattering cross sections for
putative dark matter candidates interacting with the SM.

Even in many seemingly simple cases, determination of WIMP-nucleon cross
sections demands an intricate analysis of competing amplitudes mediated by
SM particles (see e.g., [28, 42, 48, 59, 64, 65, 78]). We set out the formalism
for electroweak-scale matching computations for application to theories with a
specified ultraviolet (UV) completion (e.g., supersymmetric models [73]), a basis
of leading order contact interactions [12, 53], or to the heavy WIMP limit where
theoretical control is maintained in the absence of a specified UV completion [59].
We review relevant aspects of techniques such as the background field method
for matching to gluon operators [64, 90], and the treatment of effective theory
subtractions.

An important simplification occurs when a scale separation exists between SM
masses (∼mW) and the lightest new particle mass (∼M), allowing an expansion in
mW/M. We consider in detail the limit M � mW where universal behavior appears,
and present details of the first complete computation of the matching at leading
order in perturbation theory onto the full basis of operators at the electroweak
scale [59]. Within the heavy WIMP framework, we present a complete reduction
of the required one- and two-loop amplitudes into a basis of heavy-particle loop
integrals with nonzero residual mass.

© Springer International Publishing Switzerland 2016
M.P. Solon, Heavy WIMP Effective Theory, Springer Theses,
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This chapter is structured as follows. In Sect. 4.1 we perform matching for
the electroweak singlet case, considering three mass regimes for the DM particle:
much lighter than, comparable to, and much heavier than the weak-scale particles.
Section 4.2 presents the details of the matching calculation for the case of pure
and mixed electroweak multiplets, including the systematic reduction of heavy-
particle integrals, and the implementation of background field techniques for gluon
operators. The complete set of two-loop diagrams appearing in the matching to
gluon operators are evaluated.

4.1 Singlet

Let us match the theory with SU(3)c × SU(2)W × U(1)Y symmetry, represented
by the interactions in Eq. (3.5), (3.6) or (3.7), onto the theory with SU(3)c ×
U(1)e.m symmetry, represented by the interactions in Eq. (3.8), (3.9) or (3.10),
by integrating out the weak scale particles, W± , Z0 , h , t, at energy scale
μH ∼ mW ∼ mZ ∼ mh ∼ mt. We illustrate this with tree-level matching for leading
order operators and for the cases where the DM has mass M � mb � mW , mW � M
and mW � M. The matching for higher dimension operators and the treatment of
power corrections and perturbative corrections can be analyzed similarly. In this
section, we focus on matching for electroweak-singlet DM; weak scale matching
for electroweak-charged WIMPs arising from extensions of the SM with one or two
electroweak multiples require a more intricate analysis and will be presented in the
next section.

4.1.1 Case I: M � mb � mW

In this case the matching is organized by a power counting employing a scale
separation M � mW � Λ, where Λ is the scale appearing in the expansion of
Eqs. (3.5) and (3.6). Let us consider the Majorana fermion case with leading high-
scale operators given by dimension five interactions,

L = LSM +
1

2
ψ̄ (i∂/− M)ψ − 1

Λ
ψ̄
(
c′ψ1 + ic′ψ2γ5

)
ψH†H . (4.1)

Upon integrating out the physical Higgs field h and performing the field redefinition,

ψ → e−iφγ5ψ , tan 2φ =
c′ψ2v

2

c′ψ1v
2 + MΛ

, (4.2)

to retain a positive real mass convention for the DM field ψ, we obtain the low-scale
effective lagrangian,
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L = LSM +
1

2
ψ̄ (i∂/− M′)ψ +

1

m3
W

ψ̄ (cψ7 + icψ9γ5)ψ
∑

q

mqq̄q

+
1

m3
W

ψ̄ (cψ17 + icψ9γ5)ψGA
μνGAμν + . . . , (4.3)

where the sum runs over the active quark mass eigenstates q = u, d, s, c, b, and the
ellipsis denotes higher-order perturbative corrections. There is a nontrivial relation
between the DM mass and couplings of the high-scale effective lagrangian in
Eq. (4.1) and those of the low-scale effective lagrangian in Eq. (4.3):

M′ =

√(
M +

c′ψ1v
2

Λ

)2

+

(
c′ψ2v

2

Λ

)2

,

{cψ7 , cψ9} =
m3

WM
m2

hΛM′

{
c′ψ1 +

v2

MΛ

[
c′2ψ1 + c′2ψ2

]
, c′ψ2

}
,

{cψ17 , cψ19} = −αs(μH)

12π
{cψ7 , cψ9} . (4.4)

It is incorrect to assume that a vanishing c′ψ1 coefficient leads to a vanishing cψ7

coefficient, and hence to a velocity-suppressed spin-independent cross section. The
contribution to cψ7 that goes as ∼ v2

MΛc′2ψ2 yields a spin-independent cross section
that is not velocity-suppressed and may be large.

Weak scale matching for a real or complex scalar is similar to the Majorana case
above. For example, we find for a real scalar,

L = LSM +
1

2
(∂μφ)

2 − 1

2
M2φ2 − c′φ1φ

2H†H

→ LSM +
1

2
(∂μφ)

2−1

2
(M′)2φ2+

cφ1
m2

W

φ2
∑

q

mqq̄q +
cφ6
m2

W

φ2Ga
μνGaμν + . . . ,

M′ =
√

M2 + c′2φ1v2 , cφ1 =
m2

W

m2
h

c′φ1 , cφ6 = −αs(μH)

12π
cφ1 , (4.5)

where the sum runs over the active quark mass eigenstates q = u, d, s, c, b, and the
ellipsis denotes higher-order perturbative corrections.

For a Dirac fermion the leading high-scale operators are given by dimension five
interactions including dipole operators. For matching to leading-order operators at
the low scale, we find

L=LSM + ψ̄ (i∂/−M)ψ− 1

Λ
ψ̄
(
c′ψ1+ic′ψ2γ5

)
ψH†H+

1

Λ
ψ̄
(
c′ψ3σμν+c′ψ4σ̃μν

)
ψBμν

→ LSM+ψ̄
(
i∂/− M′)ψ+

1

mW
ψ̄ (cψ1σμν+cψ2σ̃μν)ψFμν + . . . ,

cψ1 =
mW

Λ
cW c′ψ3 , cψ2 =

mW

Λ
cWc′ψ4 , (4.6)
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with M′ given in Eq. (4.4) and cW ≡ cos θW . The ellipsis in Eq. (4.6) denotes
higher-order perturbative corrections and contributions from integrating out Z0 and
h, suppressed by 1/m2

W relative to the leading electric and magnetic dipole operators.

4.1.2 Case II: mW � M

In this case the matching is organized by a power counting employing a scale
separation mW � M � Λ, and we may map onto the heavy-particle interactions
in Eq. (3.10). Let us consider the Majorana fermion case starting with the effective
lagrangian at the high-scale given in Eq. (4.1). For tree-level matching, we may pass
to a heavy-particle description of the DM field by performing the field redefinition

ψ =
√
2e−iMv·x(χv + Xv

)
, v/χv = χv , v/Xv = −Xv . (4.7)

Upon integrating out the heavy mode Xv and the physical Higgs field h, we obtain
the low-scale heavy-particle lagrangian

L = LSM + χ̄v

(
iv · ∂ − δm

)
χv +

cχ7
m3

W

χ̄vχv

∑
q

mqq̄q +
cχ25
m3

W

χ̄vχvGA
μνGAμν + . . .

δm =
c′ψ1v

2

Λ
, cχ7 =

m3
W

m2
hΛ

c′ψ1 , cχ25 = −αs(μH)

12π
cχ7 , (4.8)

where the sum runs over the active quark mass eigenstates q = u, d, s, c, b and
the ellipsis denotes higher-order perturbative corrections. The residual mass δm is
the leading contribution to the mass induced by electroweak symmetry breaking
and may be eliminated by performing the field redefinition χv → e−iδmv·xχv. The
Majorana property of the DM particle, ψ = ψc, implies that the heavy-particle
interactions in Eq. (4.8) are invariant under the transformations in Eq. (2.71) or
(2.76). The operators with structure ∼ ψ̄iγ5ψ do not contribute due to the projection
property of the heavy field, v/χv = χv.

Weak scale matching for a real or complex scalar is similar to the Majorana case
above. Starting with the high-scale effective lagrangian in Eq. (4.5) for a real scalar,
we may perform the field redefinition for tree-level matching,

φ = e−iMv·x χv√
M

, (4.9)

to pass to a heavy-particle description. Upon integrating out the physical Higgs field
h, we then find the same low-scale heavy-particle lagrangian in Eq. (4.8), but with
scalar χv , i.e., χ̄v = χ∗

v , and with residual mass and operator coefficients given by

δm =
c′φ1v

2

2M
, cχ7 =

m3
W

m2
hM

c′φ1 , cχ25 = −αs(μH)

12π
cχ7 . (4.10)
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For a Dirac fermion, we may pass to a heavy-particle description by performing
the field redefinition in Eq. (4.7) on the high-scale effective lagrangian in Eq. (4.6).
Upon integrating out the heavy mode Xv and weak scale particles, we obtain the
low-scale effective lagrangian

L = LSM + χ̄v

(
iv · ∂ − δm

)
χv +

1

mW
χ̄v (cχ1σ⊥μν + cχ2σ̃⊥μν)χvFμν + . . . ,

δm =
c′ψ1v

2

Λ
, cχ1 =

mW

Λ
cWc′ψ3 , cχ2 =

mW

Λ
cWc′ψ4 , (4.11)

where the ellipsis denotes higher-order perturbative corrections and contributions
from integrating out Z0 and h, suppressed by 1/m2

W relative to the leading electric
and magnetic dipole operators. The Dirac fermion case leads to operators that are
odd under the transformations in Eq. (2.71) or (2.76).

4.1.3 Case III: mW � M

In this case the matching is organized by a power counting employing the scale
separation mW � M, and we may take the heavy-particle interactions in Eq. (3.7)
as the effective theory at the high-scale. The structure of the effective theory at low
energies is independent of whether the scale separation is mW � M or mW � M,
and hence upon matching we recover the results of the previous section but with
different coefficient values. For example, in the case of a heavy particle derived
from a Majorana or Dirac fermion, the result in Eq. (4.8) or (4.11) holds, with
replacements

Λ → M , c′ψ1 → c′χ1 , c′ψ3 → c′χ2 , c′ψ4 → c′χ3 . (4.12)

4.2 Multiplets and Mixtures

This section describes the matching of the effective theory described by (3.15)
onto the effective theory described by (3.69), through integrating out weak-scale
particles, W±, Z0, h, φ0

Z , φ±
W , and t. The complete basis of twelve bare matching

coefficients, c(0)q , c(2)q , c(0)g , and c(2)g , are determined at leading order in perturbation
theory.

We may write the quark and gluon matching coefficients in terms of contributions
from one-boson exchange (1BE) and two-boson exchange (2BE) diagrams,

c(0)q = c(0)q 1BE + c(0)q 2BE + . . . ,

c(0)g = c(0)g 1BE + c(0)g 2BE + . . . ,
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c(2)q = c(2)q 2BE + . . . ,

c(2)g = c(2)g 2BE + . . . , (4.13)

where the ellipses denote subleading contributions with more than two bosons
exchanged. Note that spin-2 coefficients do not receive contributions from one-
boson exchange amplitudes.

In the following analysis, we denote generic up- and down-type quarks by U and
D, respectively, and an arbitrary quark flavor by q. We specify the contributions to
the matching coefficients in terms of the constants

c(U)
V = 1− 8

3
s2W , c(D)

V = −1 +
4

3
s2W , c(U)

A = −1 , c(D)
A = 1 . (4.14)

We systematically neglect subleading corrections involving light quark masses, and
use CKM unitarity to simplify sums over quark flavors. Together with |Vtb| ≈ 1

(and hence |Vtd| ≈ |Vts| ≈ 0), these assumptions lead to c(S)
u = c(S)

c and c(S)
d = c(S)

s

for both S = 0, 2, reducing the number of independent matching coefficients to
eight. When the interactions are isospin-conserving, e.g., as in the pure triplet case,
we furthermore have c(S)

u = c(S)
d and c(S)

c = c(S)
s for both S = 0, 2, leaving only six

independent coefficients. We use Feynman-t’Hooft gauge for the electroweak sector,
and neglect higher-order corrections to the tree-level relations between residual
masses, δ(0)0 = δ

(0)
± for the singlet-doublet system, and δ

(±)
0 = δ

(±)
± for the triplet-

doublet system. In Sects. 4.2.1 and 4.2.3, we match to quark operators using onshell
external quarks, and thus use the equivalence of mquq(p) and p/uq(p).

4.2.1 Quark Matching: One-Boson Exchange

The matching condition for one-boson exchange is pictured in Fig. 4.1. The full-
theory amplitude is given by

iMq = i
(
M̂tree + M̂vertex,1 + M̂vertex,2 + M̂δa1 + M̂δZ + M̂δv

)

i
−m2

h

−ig2mq

2mW
ūq(p)uq(p) , (4.15)

where the M̂i are contributions to the hχ̄χ three-point function. These come from
tree-level Higgs exchange (M̂tree), one-loop diagrams with Higgs coupling to
W± or Z0 (M̂vertex,1), one-loop vertex corrections with Higgs coupling to the
heavy particle (M̂vertex,2), the δa1 counterterm (M̂δa1 ), wavefunction renormal-
ization (M̂δZ), and the renormalization of the Higgs vacuum expectation value
(M̂δv). Having included the counterterms, the sum of these contributions is finite.
The one-boson exchange contribution to the spin-0 quark matching coefficient is
thus
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Fig. 4.1 Matching condition for one-boson exchange contributions to quark operators. The full
theory diagrams on the left-hand side illustrate the possible types of contributions to the hχ̄χ
three-point function. Time-reversed diagrams are not shown. Double lines denote heavy WIMPs,
zigzag lines denote gauge bosons, W± or Z0, dotted lines denote Goldstone bosons, φ±

W or φ0
Z ,

dashed lines denote the physical Higgs boson, h, and single lines with arrows denote quarks. The
solid circle denotes counterterm contributions. The solid square denotes effective theory vertices

c(0)q 1BE = − g2

2m2
hmW

(
M̂tree+M̂vertex,1 + M̂vertex,2+M̂δa1 + M̂δZ+M̂δv

)
.

(4.16)

We neglect one-boson exchange contributions containing O(α1
2) corrections to the

SM hq̄q coupling, shown in Fig. 4.1 within square brackets. This gauge-invariant
class of diagrams is loop-suppressed relative to the tree-level diagram for any
value of the hχ̄χ coupling. On the other hand, the remaining loop diagrams
(including those in Fig. 4.3) may compete with, or even dominate, the tree-level
contribution depending on the size of the hχ̄χ coupling. Let us proceed to specify
the contributions, M̂i, for each SM extension in terms of the integrals I1(δ,m),
I2(δ,m), I3(δ,m) and I4(δ1, δ2,m) of Appendix B.1.

Pure States

For pure states the only diagrams are those with Higgs coupling to W± and Z0, and
in terms of the constants CW and CZ specified in (3.18) the amplitude is given by

iM̂vertex,1 = −CZ
g3
2

c3W
mZI1(0,mZ)− CWg3

2mWI1(0,mW) . (4.17)

Using (4.16), we find the contribution to the spin-0 quark matching coefficient,

c(0)q 1BE =
πΓ(1 + ε)g4

2

(4π)2−ε

{
− m−3−2ε

W

2x2h

(
CW +

CZ

c3W

)
+O(ε)

}
, (4.18)

where xh = mh/mW . The pure triplet (doublet) result is obtained by setting CW = 2
and CZ = 0 (CW = 1/2 and CZ = 1/4) above.
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Singlet-Doublet Admixture

For the singlet-doublet case, we have the following contributions to the hχ̄χ three-
point function,

iM̂tree = iasρ , iM̂δa1 = iasρ
δa1

a1
, iM̂δZ = iasρδZχ , iM̂δv = iasρ

δv

v
,

iM̂vertex,1 = − g3
2

4c3W
c2ρ

2
mZI1(δ

(0)
0 ,mZ) +

g2
2a

4c2W
sρI2(δ

(0)
0 ,mZ)

+
g2a2

2
s2ρ

2

m2
h

mW
I1(δ

(0)
0 ,mZ)

+
3g2a2

2

m2
h

mW

[
s2ρI1(δ

(−)
0 ,mh) + c2ρI1(δ

(+)
0 ,mh)

]

−g3
2

2
c2ρ

2
mWI1(δ

(0)
0 ,mW) +

g2
2a
2

sρI2(δ
(0)
0 ,mW)

+g2a2s2ρ
2

m2
h

mW
I1(δ

(0)
0 ,mW) ,

iM̂vertex,2 = −a3s3ρI4(δ
(−)
0 , δ

(−)
0 ,mh) + a3sρc2ρI4(δ

(+)
0 , δ

(+)
0 ,mh)

−2a3sρc2ρI4(δ
(−)
0 , δ

(+)
0 ,mh) , (4.19)

where δa1 is given in (3.63), the onshell Z factor is given by

Z−1
χ − 1 = −δZχ = [δZh]33 − ∂

∂v · k
[Σ2(v · k)]33 = δZD − [Σ′

2(0)]33

+
1

av
s2ρ

2

{
− 2s−1

ρ [Σ2(δ
(0)
0 )]11 + t ρ

2
[Σ2(δ

(+)
0 )]22

+2[Σ2(0)]23 + t−1
ρ
2
[Σ2(0)]33

}
, (4.20)

and δv is determined by the SM result [32],

δv

v
=

1

2
ΣAA′(0)− sW

cW

ΣAZ(0)

m2
Z

− c2W
2s2W

Re[ΣZZ(m2
Z)]

m2
Z

+
c2W − s2W
2s2W

Re[ΣWW(m2
W)]

m2
W

− 1

2
Re[ΣHH′(m2

h)] . (4.21)
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The two-point functions required in (4.21) are specified in (B.4) of Appendix B.1.1

The one-boson exchange quark matching coefficient is obtained by collecting the
above amplitudes into (4.16). Upon taking the pure-case limits described in
Sect. 3.2.4, we recover the results (4.17) and (4.18) for a pure doublet. In the pure
singlet limit, the one-boson exchange amplitudes vanish.

Triplet-Doublet Admixture

For the triplet-doublet case we have the following contributions to the hχ̄χ three-
point function,

iM̂tree = iasρ , iM̂δa1 = iasρ
δa1

a1
, iM̂δZ = iasρδZχ , iM̂δv = iasρ

δv

v
,

iM̂vertex,1 = − g3
2

4c3W
c2ρ

2
mZI1(δ

(0)
0 ,mZ) +

g2
2a

4c2W
sρI2(δ

(0)
0 ,mZ) +

g2a2

2
s2ρ
2

m2
h

mW
I1(δ

(0)
0 ,mZ)

+
3g2a2

2

m2
h

mW

[
s2ρI1(δ

(−)
0 ,mh) + c2ρI1(δ

(+)
0 ,mh)

]− g3
2

8
s2ρmWI1(δ

(+)
0 ,mW)

−g3
2

2
(1 + s2ρ

2
)2mWI1(δ

(−)
0 ,mW) +

g2
2a
2

sρI2(δ
(+)
0 ,mW)

+g2a2 m2
h

mW
I1(δ

(+)
0 ,mW) ,

iM̂vertex,2 = −g2
2a
8

s3ρI4(δ
(+)
0 , δ

(+)
0 ,mW) +

g2
2a
2

(1 + s2ρ
2
)sρcρI4(δ

(−)
0 , δ

(+)
0 ,mW)

+
g2
2a
2

(1 + s2ρ
2
)2sρI4(δ

(−)
0 , δ

(−)
0 ,mW) + 2a3sρI4(δ

(+)
0 , δ

(+)
0 ,mW)

+a3c2ρsρI4(δ
(+)
0 , δ

(+)
0 ,mh)− 2a3c2ρsρI4(δ

(−)
0 , δ

(+)
0 ,mh)

−a3s3ρI4(δ
(−)
0 , δ

(−)
0 ,mh) , (4.22)

where δa1 is specified in (3.68) and δv in (4.21). The onshell Z factor takes the same
form as in (4.20), but uses the self-energy components for the triplet-doublet system
given in (3.67). The one-boson exchange quark matching coefficient is obtained
by collecting the above amplitudes into (4.16). Upon taking the pure case limits
described in Sect. 3.2.4, we recover the results (4.17) and (4.18) for both pure triplet
and pure doublet.

1We are here neglecting contributions from states beyond the SM. Renormalization schemes
relevant for WIMPs of mass M ∼ mW are discussed in [38].
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Fig. 4.2 Matching condition for one-boson exchange contributions to gluon operators. The nota-
tion for the different lines and vertices is as in Fig. 4.1. All active quark flavors, such as the top
quark in the full theory, are included in the loops

4.2.2 Gluon Matching: One-Boson Exchange

One-boson exchange contributions to gluon matching are pictured in Fig. 4.2. The
two-loop diagrams factorize into separate one-loop diagrams: the boson loop given
by the amplitudes M̂i determined in the previous section, and the fermion loop
familiar from, e.g., the top quark contribution to the effective h(GA

μν)
2 vertex

(e.g., see [25]). In terms of quark matching coefficients from one-boson exchange,
c(0)q 1BE, the leading contribution to the bare gluon matching coefficient is thus

c(0)g 1BE = − g2

(4π)2
1

3
c(0)q 1BE +O(ε) . (4.23)

For the same reason discussed after Eq. (4.16), we neglect the one-boson exchange
contributions containing O(α1

2) corrections to the effective h(GA
μν)

2 coupling,

shown within square brackets in Fig. 4.2. In the above result for c(0)g 1BE, the
light quark contributions cancel between the full and effective theory amplitudes,
leaving only contributions from the top quark. Further discussion of effective theory
contributions can be found in Sect. 4.2.5.
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Fig. 4.3 Matching condition for two-boson exchange contributions to quark operators. The
notation for the different lines and vertices is as in Fig. 4.1. The full theory diagrams illustrate
the possible types of two-boson exchange. Crossed diagrams and time-reversed diagrams are not
shown

4.2.3 Quark Matching: Two-Boson Exchange

Let us now consider quark matching from two-boson exchange, as displayed in
Fig. 4.3. In covariant gauges, in particular Feynman-t’Hooft gauge employed here,
the full theory contributions include diagrams with exchange of two gauge bosons
(W± or Z0), two Goldstone bosons (φ0

Z or φ±
W ), one gauge and one Goldstone boson

(Z0 and φ0
Z , or W± and φ±

W ), or two Higgs bosons. In terms of these contributions
the total amplitude is

Mq = MZZ
q +MWW

q +MWφW
q +MZφZ

q +MφWφW
q +MφZφZ

q +Mhh
q , (4.24)

where the superscripts denote which bosons are exchanged, and the contribu-
tions from crossed diagrams and time-reversed diagrams are included in each
amplitude. Upon expressing the amplitudes in terms of the integrals J(mV ,M, δ),
Jμ(p,mV ,M, δ), J−(p,mV ,M, δ) and Jμ−(mV ,M, δ) defined in Appendix B.2, we
may write each amplitude in the form

MBB′
q = ūq(p)

[
mq c(0)BB′

q +

(
v/v · p − p/

d

)
c(2)BB′

q

]
uq(p) , (4.25)

where the superscript BB′ denotes the type of two-boson exchange. The contribu-

tions to spin-0 and spin-2 quark matching coefficients can then be read off as c(0)BB′
q

and c(2)BB′
q , respectively.

Pure States

For pure states the contributions come from diagrams with exchange of W± or Z0

bosons. In terms of CW and CZ specified in (3.18), the amplitudes are
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iMZZ
q =

g4
2CZ

16c4W
ūq(p)

[[
c(q)2

V + c(q)2
A

]
v/
[
J/(p,mZ, 0, 0) + p/J(mZ, 0, 0)

]
v/

+ mq
[
c(q)2

V − c(q)2
A

]
J(mZ, 0, 0)

]
uq(p) ,

iMWW
U =

g4
2CW

8
ūU(p)v/

[
J/(p,mW , 0, 0) + p/J(mW , 0, 0)

]
v/uU(p) ,

iMWW
D =

∑
U

g4
2CW

8
|VUD|2 ūD(p)v/

[
J/(p,mW ,mU, 0) + p/J(mW ,mU, 0)

]
v/uD(p) .

(4.26)

Upon writing these amplitudes in the form of (4.25) and evaluating integrals, we
find the contributions to the matching coefficients,

c(0)U 2BE =
πΓ(1 + ε)g4

2

(4π)2−ε

{
m−3−2ε

Z CZ

8c4W

[
c(U)2

V − c(U)2
A

]
+O(ε)

}
,

c(0)D 2BE =
πΓ(1 + ε)g4

2

(4π)2−ε

{
m−3−2ε

Z CZ

8c4W

[
c(D)2

V − c(D)2
A

]
+ δDb

m−3−2ε
W CW

2

[
− xt

4(xt + 1)3

]
+O(ε)

}
,

c(2)U 2BE =
πΓ(1 + ε)g4

2

(4π)2−ε

{[
m−3−2ε

W CW +
m−3−2ε

Z CZ

2c4W

[
c(U)2

V + c(U)2
A

]
]

[
1

3
+

(
11

9
− 2

3
log 2

)
ε

]
+O(ε2)

}
,

c(2)D 2BE =
πΓ(1 + ε)g4

2

(4π)2−ε

{[
m−3−2ε

W CW +
m−3−2ε

Z CZ

2c4W

[
c(D)2

V + c(D)2
A

]]

[
1

3
+

(
11

9
− 2

3
log 2

)
ε

]

+δDb
m−3−2ε

W CW

2

[
(3xt + 2)

3(xt + 1)3
− 2

3
+

(
2xt(7x2t − 3)

3(x2t − 1)3
log xt − 2(3xt + 2)

3(xt + 1)3
log 2

−2(25x2t − 2xt − 11)

9(x2t − 1)2(xt + 1)
− 22

9
+

4

3
log 2

)
ε

]
+O(ε2)

}
, (4.27)

where xt = mt/mW , and the Kronecker delta, δDb, is equal to unity for D = b
and vanishes for D = d, s. We obtain the pure triplet (doublet) result upon setting
CW = 2 and CZ = 0 (CW = 1/2 and CZ = 1/4) in (4.27).
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Singlet-Doublet Admixture

For the singlet-doublet case the amplitudes for the different types of two-boson
exchange are

iMZZ
q =

g4
2

64c4W
c2ρ

2
ūq(p)

[
[
c(q)2

V + c(q)2
A

]
v/
[
J/(p,mZ , 0, δ

(0)
0 ) + p/J(mZ , 0, δ

(0)
0 )

]
v/

+mq
[
c(q)2

V − c(q)2
A

]
J(mZ, 0, δ

(0)
0 )

]
uq(p) ,

iMWW
U =

g4
2

16
c2ρ

2
ūU(p)v/

[
J/(p,mW , 0, δ

(0)
0 ) + p/J(mW , 0, δ

(0)
0 )

]
v/uU(p) ,

iMWW
D =

∑

U

g4
2

16
c2ρ

2
|VUD|2 ūD(p)v/

[
J/(p,mW ,mU , δ

(0)
0 ) + p/J(mW ,mU, δ

(0)
0 )

]
v/uD(p) ,

iMZφZ
q = − g3

2a
16c2W

sρ
mq

mW
ūq(p)

[
v · J−(mZ, 0, δ

(0)
0 )

]
uq(p) ,

iMWφW
U = −g3

2a
8

sρ
mU

mW
ūU(p)

[
v · J−(mW , 0, δ

(0)
0 )

]
uU(p) ,

iMWφW
D =

∑

U

g3
2a
8

sρ|VUD|2ūD(p)

[
− mD

mW
v · J−(mW ,mU, δ

(0)
0 ) + v/

m2
U

mW
J−(p,mW ,mU, δ

(0)
0 )

]
uD(p) ,

iMφWφW
D =

g2
2a2

4
s2ρ
2

m2
t

m2
W

|VtD|2 ūD(p)
[− mDJ(mW ,mt, δ

(0)
0 ) + J/(p,mW ,mt, δ

(0)
0 )

]
uD(p) ,

iMφWφW
U = 0 , iMφZφZ

q = 0 , iMhh
q = 0 . (4.28)

The amplitudes Mhh
q , MφZφZ

q , and MφWφW
U are suppressed by light quark masses.

Comparing each amplitude above with (4.25), we find the contributions to spin-0
and spin-2 quark matching coefficients,

c(0)q
ZZ =

g4
2

64c4W
c2ρ

2

{
[
c(q)2

V − c(q)2
A

]
J(mZ, 0, δ

(0)
0 )

+
[
c(q)2

V + c(q)2
A

]
[
−J(mZ, 0, δ

(0)
0 )− J2(mZ, 0, δ

(0)
0 ) +

1

d
Ĵ(mZ, 0, δ

(0)
0 )

]}

,

c(2)q
ZZ =

g4
2

64c4W
c2ρ

2

[
c(q)2

V + c(q)2
A

]
Ĵ(mZ, 0, δ

(0)
0 ) ,

c(0)U
WW =

g4
2

16
c2ρ

2

[
−J(mW , 0, δ

(0)
0 )− J2(mW , 0, δ

(0)
0 ) +

1

d
Ĵ(mW , 0, δ

(0)
0 )

]
,
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c(2)U
WW =

g4
2

16
c2ρ

2
Ĵ(mW , 0, δ

(0)
0 ) ,

c(0)D
WW =

∑

U

g4
2

16
c2ρ

2
|VUD|2

[
−J(mW ,mU, δ

(0)
0 )− J2(mW ,mU, δ

(0)
0 ) +

1

d
Ĵ(mW ,mU, δ

(0)
0 )

]
,

c(2)D
WW =

∑

U

g4
2

16
c2ρ

2
|VUD|2Ĵ(mW ,mU, δ

(0)
0 ) ,

c(0)q
ZφZ = − g3

2a
16c2W

sρ
mW

J1−(mZ, 0, δ
(0)
0 ) ,

c(2)q
ZφZ = 0 ,

c(0)U
WφW = −g3

2a
8

sρ
mW

J1−(mW , 0, δ
(0)
0 ) ,

c(2)U
WφW = 0 ,

c(0)D
WφW =

∑

U

g3
2a
8

sρ|VUD|2
[
− 1

mW
J1−(mW ,mU, δ

(0)
0 ) +

1

d
m2

U

mW
J−(mW ,mU, δ

(0)
0 )

]
,

c(2)D
WφW =

∑

U

g3
2a
8

sρ|VUD|2 m2
U

mW
J−(mW ,mU, δ

(0)
0 ) ,

c(0)D
φWφW =

g2
2a2

4
s2ρ
2

m2
t

m2
W

|VtD|2

[
J2(mW ,mt, δ

(0)
0 )− J(mW ,mt, δ

(0)
0 ) +

1

d
J1(mW ,mt, δ

(0)
0 )

]
,

c(2)D
φWφW =

g2
2a2

4
s2ρ
2

m2
t

m2
W

|VtD|2J1(mW ,mt, δ
(0)
0 ) , (4.29)

where we have defined

Ĵ(mx,my, δz) ≡ J1(mx,my, δz) + 2J2(mx,my, δz) + 2J(mx,my, δz). (4.30)

The integrals J(mV ,M, δ), J1(mV ,M, δ), J2(mV ,M, δ), J−(mV ,M, δ) and
J1−(mV ,M, δ) are given in Appendix B.2. The matching coefficients c(0)q 2BE and

c(2)q 2BE for a given quark q are obtained by summing the nonvanishing contributions
above,

c(0)U 2BE = c(0)U
ZZ + c(0)U

WW + c(0)U
ZφZ + c(0)U

WφW ,

c(0)D 2BE = c(0)D
ZZ + c(0)D

WW + c(0)D
ZφZ + c(0)D

WφW + c(0)D
φWφW ,
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c(2)U 2BE = c(2)U
ZZ + c(2)U

WW ,

c(2)D 2BE = c(2)D
ZZ + c(2)D

WW + c(2)D
WφW + c(2)D

φWφW . (4.31)

Upon taking the pure-case limits described in Sect. 3.2.4, we recover the
results (4.26) and (4.27) for a pure doublet. In the pure singlet limit, the two-boson
exchange amplitudes vanish.

Triplet-Doublet Admixture

We may similarly compute the two-boson exchange amplitudes for the triplet-
doublet system, and upon comparing with (4.25), we find the following contribu-
tions to spin-0 and spin-2 quark matching coefficients,

c(0)q
ZZ =

g4
2

64c4W
c2ρ

2

{
[
c(q)2

V − c(q)2
A

]
J(mZ, 0, δ
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d
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(0)
0 )
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,

c(2)q
ZZ =
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2

64c4W
c2ρ

2

[
c(q)2

V + c(q)2
A

]
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0 ) ,
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16
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2
)2

[
−J(mW , 0, δ

(−)
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(−)
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(−)
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]

+
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4
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(−)
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0 )

]
,
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|VUD|2
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)2Ĵ(mW ,mU, δ

(−)
0 ) +

1

4
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c(0)q
ZφZ = − g3
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(0)
0 ) ,



92 4 Weak-Scale Matching

c(2)q
ZφZ = 0 ,

c(0)U
WφW = −g3

2a
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1

d
m2

U

mW
J−(mW ,mU, δ

(+)
0 )

]
,

c(2)D
WφW =

∑

U

g3
2a
8

sρ|VUD|2 m2
U

mW
J−(mW ,mU, δ

(+)
0 ) ,

c(0)D
φWφW =

g2
2a2

4

m2
t

m2
W

|VtD|2

[
J2(mW ,mt, δ

(+)
0 )− J(mW ,mt, δ

(+)
0 ) +

1

d
J1(mW ,mt, δ

(+)
0 )

]
,

c(2)D
φWφW =

g2
2a2

4

m2
t

m2
W

|VtD|2J1(mW ,mt, δ
(+)
0 ) , (4.32)

where Ĵ(mx,my, δz) is given in (4.30), and the relevant integrals can be found in

Appendix B.2. The total matching coefficients c(0)q 2BE and c(2)q 2BE are obtained
by summing the contributions above as in (4.31). Upon taking the pure-case limits
described in Sect. 3.2.4, we recover the results (4.26) and (4.27) for both pure triplet
and pure doublet.

4.2.4 Gluon Matching: Two-Boson Exchange

The gluon matching condition for two-boson exchange is pictured in Fig. 4.4. If
we consider the external gluons as a background field [90], we may express the
full theory diagrams in terms of electroweak polarization tensors induced by a
loop of quarks. For example, using the Feynman rules for the WIMP-Z0 coupling
from (3.15), the contributions from exchanging two Z0 bosons may be written as

MZZ ∼
∫
(dL)

1

−v · L − δ + i0
1

(L2 − m2
Z + i0)2

vμvν iΠμν
(ZZ)(L) , (4.33)

where (dL) = ddL/(2π)d (this shorthand notation is used throughout this work),
δ is a residual mass depending on the intermediate WIMP state, and Πμν

(ZZ)(L)

is the two-gluon part of the Z0 boson polarization tensor in a background gluon
field. The amplitudes with exchange of one gauge and one Goldstone boson, two
Goldstone bosons, or two Higgs bosons, have the same structure but with vector
and scalar electroweak polarization tensors appearing. A similar analysis of gluon
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Fig. 4.4 Matching condition for two-boson exchange contributions to gluon operators. The
notation for the different lines and vertices is as in Fig. 4.1. The diagrams with a quark loop are
obtained by closing the external legs of the corresponding diagrams in Fig. 4.3, and considering
the possible attachments of two external gluons. All active quark flavors, such as the top quark in
the full theory, are included in the loops

contributions to DM-nucleon scattering in [64] focused on the spin-0 operator. Here
we perform a complete matching for both spin-0 and spin-2 gluon operators, and
consider new contributions appearing in the case of mixed states.

The background field method presents the following strategy for evaluating the
two-loop diagrams of the full theory. First, we determine the two-gluon part of the
relevant polarization tensors. These amplitudes depend only on SM parameters,
and can be used for gluon matching in general DM scenarios; in particular, this
part of the computation is independent of whether the heavy-particle expansion
is employed. Second, we insert the polarization tensors into the boson loop and
perform the remaining integrals. We illustrate this second part by identifying a basis
of heavy-particle integrals to compute the universal heavy WIMP limit.

In our evaluation we neglect subleading corrections of O(mq/mW) for light
quarks (q 
= t). The two-loop diagrams in the full theory (cf. Fig. 4.4) are UV finite,
and may be evaluated in d = 4. However, we regulate the effective theory with
dimensional regularization, and in performing the effective theory subtractions to
determine Wilson coefficients it is convenient to also use dimensional regularization
as IR regulator. Thus we choose to implement dimensional regularization as IR
regulator also in the full theory. When considering only those terms contributing
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to the scalar operators appearing in (3.69), the relevant amplitudes do not involve
γ5 or εμναβ . In particular, the specification of γ5 for d 
= 4 is unnecessary. Further
discussion of effective theory contributions can be found in Sect. 4.2.5.

Electroweak Polarization Tensors in a Background Gluon Field

Let us isolate the two-gluon amplitude of the relevant electroweak polarization
tensors in a background gluon field. The generalized polarization tensors appearing
in two-boson exchange contributions are
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(4.34)

where the momentum L is flowing from left to right in the above diagrams. We also
require the polarization tensors

Πμν
(W−W−)(L) , Πμ

(W−φ−
W )
(L) , Πμ

(φ±
W W±)

(L) , Πμ
(φZZ)(L) , Π(φ−

W φ−
W )(L) ,

(4.35)

which are related to those we have specified in (4.34) through the identities in (4.52).
Let us now focus on the object,

iΠ̃(L) ≡
∫

ddx eiL·x〈T{q̄′(x)Γq(x)q̄(0)Γ′q′(0)}〉 , (4.36)

whereΓ and Γ′ denote the possible Dirac structures whose indices we here suppress.
The sum over quark mass eigenstates and other prefactors appearing in (4.34) are
included in the final result for the polarization tensors. Let us write Π̃ in terms of
momentum-space propagators in a background field,

iΠ̃(L) = −
∫

ddx eiL·xTr
[
ΓiS(q)(x, 0)Γ′iS(q′)(0, x)

]

=

∫
(dp)Tr

[
ΓS(q)(p)Γ′S̃(q′)(p − L)

]
, (4.37)

where

iS(q)(x, y) = 〈T{q(x)q̄(y)}〉 (4.38)

and we have used

S(q)(p) ≡
∫

ddx eip·xS(q)(x, 0) , S̃(q)(p) ≡
∫

ddx e−ip·xS(q)(0, x) . (4.39)
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We may expand the background field propagators at weak coupling,

iS(p) =
i

p/− m
+ g
∫
(dq)

i
p/− m

iA/(q)
i

p/− q/− m

+g2

∫
(dq1)(dq2)

i
p/− m

iA/(q1)
i

p/− q/1 − m
iA/(q2)

i
p/ − q/1 − q/2 − m

+ . . . ,

iS̃(p) =
i

p/− m
+ g
∫
(dq)

i
p/+ q/− m

iA/(q)
i

p/− m

+g2

∫
(dq1)(dq2)

i
p/+ q/1 + q/2 − m

iA/(q1)
i

p/+ q/2 − m
iA/(q2)

i
p/− m

+ . . . ,

(4.40)

and upon insertion of these expressions into (4.37), the terms with two gluon fields
are readily identified. Furthermore, in Fock-Schwinger gauge the gluon field can be
written as

A/(q) = taγα

∫
ddx eiq·xAa

α(x)

= taγα

[−i
2

∂

∂qρ
Ga

ρα(0)(2π)
dδd(q) + . . .

]
, (4.41)

where the ellipsis denotes terms with derivatives acting on Ga
μν . Thus the amplitudes

with gluon emission are given directly in terms of field-strengths, and intermediate
steps involving gauge-variant combinations can be avoided.

In isolating the two-gluon amplitude, we may separately consider three cases
depending on where the gluons are attached. Contributions with both gluons
attached to the upper quark line in (4.34) are referred to as “a-type”, those with
both gluons attached to the lower quark line in (4.34) are referred to as “b-type”,
and those with one gluon attached to each of the upper and lower quark lines are
referred to as “c-type”. We thus have

Π̃(L) = Π̃a(L) + Π̃b(L) + Π̃c(L) , (4.42)

with

iΠ̃a(L) =
−g2

4
Tr(tatb)Ga

ρα(0)G
b
στ (0)

∫
(dp)

∂

∂qρ

∂

∂q′
σ

Tr

[
Γ

1

p/− m1
γα 1

p/− q/− m1
γτ 1

p/− q/− q/′ − m1
Γ′ 1

p/− L/− m2

]

q=q′=0

,

iΠ̃b(L) =
−g2

4
Tr(tatb)Ga

ρα(0)G
b
στ (0)

∫
(dp)

∂

∂qρ

∂

∂q′
σ

Tr

[
Γ

1

p/− m1
Γ′ 1

p/− L/+ q/+ q/′ − m2
γα 1

p/− L/+ q/′ − m2
γτ 1

p/− L/− m2

]

q=q′=0

,
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iΠ̃c(L) =
−g2

4
Tr(tatb)Ga

ρα(0)G
b
στ (0)

∫
(dp)

∂

∂qρ

∂

∂q′
σ

Tr

[
Γ

1

p/− m1
γα 1

p/− q/− m1
Γ′ 1

p/− L/+ q/′ − m2
γτ 1

p/− L/− m2

]

q=q′=0

,

(4.43)

where m1 and m2 are the masses of the quarks in the upper and lower lines in (4.34),
respectively. To project these onto the spin-0 and spin-2 QCD gluon operators, O(0)

g

and O(2)
g in (3.70), consider the four-index tensor Tαργδ = GA

αρGA
γδ with index

symmetries Tαργδ = Tγδαρ = −Tραγδ. We can decompose T into components
T = T(0) + T(2) +ΔT, where

T(0)
αργδ =

1

d(d − 1)
O(0)

g (gαγgρδ − gαδgργ) ,

T(2)
αργδ =

1

d − 2

(
−gαγO(2)

g ρδ + gαδO(2)
g ργ − gρδO(2)

g αγ + gργO(2)
g αδ

)
, (4.44)

and ΔT, satisfying

gαγgρδ(ΔT)αργδ = vαvγgρδ(ΔT)αργδ = 0 , (4.45)

is not needed for the present analysis. The proportionality constants in T(0) and T(2)

were obtained by contraction with gαγgρδ or vαvγgρδ . Upon applying the above
decomposition to the expressions in (4.43), we obtain

iΠ̃k(L) ≡ −g2

8

[
1

d(d − 1)
O(0)

g I(0)k (L) +
1

d − 2
O(2)μν

g I(2)k μν(L) + . . .

]
, (4.46)

where k = a, b, c and the ellipsis denotes irrelevant ΔT contributions.
Let us now determine I(0)k (L) and I(2)k μν(L) for the different cases of two-boson

exchange. The trace and derivatives with respect to momenta q and q′ in (4.43)
are straightforward to evaluate, and the result is projected onto gluon operators of
definite spin using (4.44). The quark-loop integral over momentum p is computed
using standard methods, leaving an integral over a Feynman parameter, x, which
will be evaluated after performing the boson-loop integral over momentum L. We
may express the results in the form

I(S)
k (L) ≡ iΓ[1 + ε]

(4π)2−ε

∫ 1

0

dx uk(x)N
(S)
k (L) , ua(x) =

(1− x)3

3!
, ub(x) =

x3

3!
,

uc(x) = x(1− x) , (4.47)
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where S = 0, 2 and for S = 2 the Lorentz indices are suppressed. Let us also
introduce the parameters

zn ≡ (−1)n

23−n

Γ[n + ε]

Γ[1 + ε]
, Δ ≡ (1 − x)m2

1 + xm2
2 − x(1 − x)L2 − i0 , (4.48)

which appear in the expressions for N(S)
k (L) given below.

For the operators of interest in (3.69), the relevant projections of the a- and b-type
amplitudes in (4.43) and (4.44) are related by CP transformation. This condition can
be stated in terms of N(S)

k (L) as

N(S)
b (L) = N(S)

a (L)

∣∣∣∣
x ↔ 1−x, m1 ↔m2

. (4.49)

In the case of flavor-diagonal currents (Z0, φ0
Z , h) where we set m1 = m2 = mq in

Π̃k(L), the above relation implies I(S)
b (L) = I(S)

a (L). For flavor-changing currents
(W±, φ±

W ) we set the down-type quark mass m2 = mD = 0 but keep the up-type
quark mass m1 = mU 
= 0 to accommodate the top quark. This asymmetry in
treating the masses does not allow us to systematically recover N(S)

b (L) from N(S)
a (L)

using the relation (4.49). Below we provide N(S)
b (L) explicitly for flavor-changing

currents.
To illustrate the explicit implementation of this program, we again focus on the

heavy WIMP limit, retaining the leading order (in 1/M) WIMP-SM couplings as
in (4.33). Anticipating the insertion of polarization tensors into the boson loop
with leading order heavy-particle Feynman rules, we thus contract the free Lorentz
indices of Γ and Γ′ in (4.34), (4.36) with vμ’s from the WIMP-vector boson vertices.
It is straightforward to analyze the remaining components of Πμν(L) by the same
methods. The following results are labelled by the bosons in the corresponding
electroweak polarization tensor. For N(0)

k (L) we find,

N(0)
a (W+W+) = 64(3− 2ε)m2

U

{
2(1−ε)

z2
Δ2+ε

+x(1− x)
(
2(v · L)2−L2

) z3
Δ3+ε

}
,

N(0)
b (W+W+) = 0 ,

N(0)
c (W+W+) = 64(1− ε)

{
− 2(1 + ε)(3− 2ε)

z1
Δ1+ε

+x(1− x)
[
2(1− 2ε)(v · L)2 + (1 + 2ε)L2

] z2
Δ2+ε

}
,

N(0)
a (ZZ) = 32(3− 2ε)m2

q

{[
c(q)2

V + c(q)2
A

]
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[
2(1− ε)

z2
Δ2+ε

+ x(1− x)(2(v · L)2 − L2)
z3

Δ3+ε

]

−[c(q)2
V − c(q)2

A

][
2(2− ε)

z2
Δ2+ε

+ x2L2 z3
Δ3+ε

]}
,

N(0)
c (ZZ) = 32

{[
c(q)2

V + c(q)2
A

]
(1− ε)

[
− 2(3− 2ε)(1 + ε)

z1
Δ1+ε

+x(1− x)
[
2(1− 2ε)(v · L)2

+(1 + 2ε)L2
] z2
Δ2+ε

]
+
[
c(q)2

V − c(q)2
A

]
ε(3− 2ε)m2

q
z2

Δ2+ε

}
,

N(0)
a (W+φ+

W ) = −64(3− 2ε)m2
Uv · L

[
2
[
2− 3x − ε(1− x)

] z2
Δ2+ε

+x2(1− x)L2 z3
Δ3+ε

]
,

N(0)
b (W+φ+

W ) = 0 ,

N(0)
c (W+φ+

W ) = −64(3− 2ε)(1− ε)(1 − x)m2
Uv · L

z2
Δ2+ε

,

N(0)
a (ZφZ) = −32(3− 2ε)c(q)2

A mqv · L

[
2
[
2− 3x − ε(1− x)

] z2
Δ2+ε

+x
[
m2

q + x(1− x)L2
] z3
Δ3+ε

]
,

N(0)
c (ZφZ) = −32(3− 2ε)(1− ε)c(q)2

A mqv · L
z2

Δ2+ε
,

N(0)
a (φ+

W φ+
W ) = 64(3− 2ε)m4

U

[− 2(2− ε)
z2

Δ2+ε

+x(1− x)L2 z3
Δ3+ε

]
,

N(0)
b (φ+

W φ+
W ) = 0 ,

N(0)
c (φ+

W φ+
W ) = 64(1− ε)(3− 2ε)m2

U

[− 2(2− ε)
z1

Δ1+ε
+ x(1− x)L2 z2

Δ2+ε

]
,

N(0)
a (φZφZ) = −32(3− 2ε)xm2

qL2 z3
Δ3+ε

,

N(0)
c (φZφZ) = 32(3− 2ε)

[
2(1− ε)(2− ε)

z1
Δ1+ε

−[(2− ε)m2
q + (1− ε)x(1− x)L2

] z2
Δ2+ε

]
,



100 4 Weak-Scale Matching

N(0)
a (hh) = 32(3− 2ε)m2

q

[
− 4(2− ε)

z2
Δ2+ε

+ x(1 − 2x)L2 z3
Δ3+ε

]
,

N(0)
c (hh) = 32(3− 2ε)

[
− 2(1− ε)(2− ε)

z1
Δ1+ε

+
[
(1− ε)x(1 − x)L2 − (2− ε)m2

q

] z2
Δ2+ε

]
. (4.50)

For N(2)
k μν(L) the open indices are to be contracted with O(2)μν

g , which is symmetric

in μ and ν and satisfies gμνO(2)μν
g = 0. The results are

N(2)
a μν (W+W+) = 128(1− ε)

{
− 4(2− ε)vμvν

z1
Δ1+ε

+2

[
(m2

U − x2L2)vμvν + 2(2− ε)x(1− x)v · LvμLν

−x(2− x − ε)LμLν

]
z2

Δ2+ε

+x(1− x)

[
(m2

U − 2x2(v · L)2)LμLν

−2(m2
U − x2L2)v · LvμLν

]
z3

Δ3+ε

}
,

N(2)
b μν (W+W+) = 128(1− ε)

{
− 4(2− ε)vμvν

z1
Δ1+ε

−2(1− x)

[
(1− x)L2vμvν − 2(2− ε)xv · LvμLν

+(1 + x − ε)LμLν

]
z2

Δ2+ε

+2x(1− x)3
[
− (v · L)2LμLν + L2v · LvμLν

]
z3

Δ3+ε

}
,

N(2)
c μν (W+W+) = 128

{
2(1− ε)(1− 2ε)vμvν

z1
Δ1+ε

+x(1− x)
[
εLμLν + 2(1− 2ε)v · LvμLν − (1− 2ε)L2vμvν

] z2
Δ2+ε

}
,

N(2)
a μν (ZZ) = 64(1− ε)

{
[
c(q)2

V − c(q)2
A

]
x2m2

q LμLν
z3

Δ3+ε

+
[
c(q)2

V + c(q)2
A

][− 4(2− ε)vμvν
z1

Δ1+ε

+2
[
(m2

q − x2L2)vμvν + 2(2− ε)x(1− x)v · LvμLν
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+x(2− x − ε)LμLν

] z2
Δ2+ε

+x(1− x)
[
(m2

q − 2x2(v · L)2LμLν − 2(m2
q − x2L2)v · LvμLν

] z3
Δ3+ε

]}
,

N(2)
c μν (ZZ) = 64

{
− [

c(q)2
V − c(q)2

A

]
2(1− ε)m2

qvμvν
z2

Δ2+ε

+
[
c(q)2

V + c(q)2
A

][
2(1− ε)(1− 2ε)vμvν

z1
Δ1+ε

+x(1− x)
[
εLμLν + 2(1− 2ε)v · LvμLν − (1− 2ε)L2vμvν

] z2
Δ2+ε

]}
,

N(2)
a μν (W+φ+

W )
= −128(1− ε)xm2

U

{
2vμLν

z2
Δ2+ε

− x(1− x)v · LLμLν
z3

Δ3+ε

}
,

N(2)
b μν (W+φ+

W )
= −128(1− ε)(1− x)m2

U

{
2(2− ε)vμLν

z2
Δ2+ε

+(1− x)2
[
L2vμLν − v · LLμLν

] z3
Δ3+ε

}
,

N(2)
c μν (W+φ+

W )
= −128(1− ε)(1− x)m2

UvμLν
z2

Δ2+ε
,

N(2)
a μν (ZφZ) =

[
c(q)2

A

]
64(1− ε)xmq

{
− 2(3− ε)vμLν

z2
Δ2+ε

+
[
(m2

q − x2L2)vμLν + xv · LLμLν

] z3
Δ3+ε

}
,

N(2)
c μν (ZφZ) = −[

c(q)2
A

]
64(1− ε)mqvμLν

z2
Δ2+ε

,

N(2)
a μν(φ+

W φ+
W )

= 128(1− ε)xm2
ULμLν

{
2(2− ε)

z2
Δ2+ε

− (1− x)m2
U

z3
Δ3+ε

}
,

N(2)
b μν(φ+

W φ+
W )

= 256(1− ε)(2− ε)(1− x)m2
ULμLν

z2
Δ2+ε

,

N(2)
c μν(φ+

W φ+
W )

= 128(1− ε)x(1− x)m2
ULμLν

z2
Δ2+ε

,

N(2)
a μν(φZφZ) = 64(1− ε)xLμLν

{
− 2(2− ε)

z2
Δ2+ε

+ m2
q

z3
Δ3+ε

}
,

N(2)
c μν(φZφZ) = −64(1− ε)x(1− x)LμLν

z2
Δ2+ε

,

N(2)
a μν (hh) = 64(1− ε)xLμLν

{
2(2− ε)

z2
Δ2+ε

− (1− 2x)m2
q

z3
Δ3+ε

}
,

N(2)
c μν (hh) = 64(1− ε)x(1− x)LμLν

z2
Δ2+ε

. (4.51)
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The results for N(S)
k (L) in (4.50) and (4.51) specify I(S)

a (L) through (4.47),
and hence Π̃k(L) through (4.46), and Π̃(L) through (4.42). This completes our
determination of the polarization tensors in (4.34). The polarization tensors in (4.35)
are obtained through the following relations

Πμν
(W−W−)(L) = Πμν

(W+W+)(−L) ,Πμ
(φZ Z)(L) = Πμ

(ZφZ)
(−L) ,

Π(φ−
W φ−

W )(L) = Π(φ+
W φ+

W )(−L) ,

Πμ

(φ−
W W−)

(L) = Πμ

(W+φ+
W )
(−L) ,Πμ

(φ+
W W+)

(L) = Πμ

(W−φ−
W )
(−L) ,

Πμ

(W−φ−
W )
(L) = Πμ

(W+φ+
W )
(−L) . (4.52)

The identities in the first two lines are consequences of reversing the direction of
momentum L in the diagrams in (4.34). The last relation follows from Hermitian
conjugation and the identification S(p) ≡ γ0S(p)†γ0 = S̃(p). We note that
polarization tensors with one gauge and one Goldstone boson are odd in L, while
all others are even in L. This property also holds for the corresponding N(S)

k (L), and
we use it in the next section to systematically reduce the boson loop integrals into a
convenient basis.

Basis Reduction of the Full Theory Boson Loop

Having determined the generalized polarization tensors, we now proceed with the
reduction of the remaining boson loop integrals. Upon insertion of the polarization
tensors into the boson loop, we find the required set of basic loop integrals

∫
(dL)

[
1

v · L − δ + i0
+

1

−v · L − δ + i0

]

1

(L2 − m2
V + i0)2

N(S)
k (L)

≡ Ieven(δ,mV)N
(S)
k (L) ,∫

(dL)

[
1

v · L − δ + i0
− 1

−v · L − δ + i0

]

1

(L2 − m2
V + i0)2

N(S)
k (L)

≡ Iodd(δ,mV)N
(S)
k (L) , (4.53)

where δ is the residual mass of the intermediate WIMP state, and mV is the mass
of the exchanged bosons. We suppress the arguments, (δ,mV), of these integral
operators when making generic statements below. The integral operator Ieven
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requires that N(S)
k (L) be even in L as in those for polarization tensors with a single

type of boson, while the integral operator Iodd requires that N(S)
k (L) be odd in L

as in those for polarization tensors with one gauge and one Goldstone boson. Let
us denote even N(S)

k (L) by N(S)
k even(L) and odd N(S)

k (L) by N(S)
k odd(L). The subscripts

even and odd may be dropped if we mean either type, or if the exchanged bosons
are specified.

To reduce (4.53) to a set of basis integrals for evaluation, we begin by replacing
factors of L2 in N(S)

k (L) with

L2 = − Δ

x(1− x)
+

m2
1

x
+

m2
2

(1 − x)
, (4.54)

which follows from the definition of Δ in (4.48). The N(S)
k (L) of (4.50) and (4.51)

may then be written in terms of Δ and the vectors vμ and Lμ. In N(S)
k even(L) each

term must have two or zero vμ’s, while in N(S)
k odd(L) each term must have one vμ.

Organizing the result in powers of (v · L), we obtain

N(0)
k even(L) = (v · L)0

∑
n

a(1)
n Δ−n−ε + (v · L)2

∑
n

a(2)
n Δ−n−ε ,

N(0)
k odd(L) = (v · L)1

∑
n

a(3)
n Δ−n−ε ,

N(2)μν
k even (L) = (v · L)0

∑
n

[
vμvνa(4)

n Δ−n−ε

+LμLνa(5)
n Δ−n−ε

]
+ (v · L)1

∑
n

vμLνa(6)
n Δ−n−ε

+(v · L)2
∑

n

LμLνa(7)
n Δ−n−ε ,

N(2)μν
k odd (L) = (v · L)0

∑
n

vμLνa(8)
n Δ−n−ε + (v · L)1

∑
n

LμLνa(9)
n Δ−n−ε ,

(4.55)

where the sums run over n = 1, 2, . . . , and the coefficients a(i)
n are functions of x

and ε. The above N(S)
k (L) structures require the set of integrals

H(n) = IevenΔ−n−ε , Hμ(n) = IoddΔ−n−εLμ , Hμν(n) = IevenΔ−n−εLμLν ,

F(n) =
∫
(dL)

1

(L2 − m2
V + i0)2

Δ−n−ε . (4.56)
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The integrals Hμ and Hμν may be expressed in terms of H(n) and F(n) through
standard reduction methods and the relation

[
1

v · L − δ + i0
± 1

−v · L − δ + i0

]
v · L

= δ

[
1

v · L − δ + i0
∓ 1

−v · L − δ + i0

]
+ 1∓ 1 . (4.57)

Furthermore, recursion relations in n may be derived by taking derivatives of
parameters. A detailed discussion of these relations, as well as the evaluation of
the above integrals, can be found in Appendix B.3. Note that the (v · L)2 term in
N(2)μν

k even (L) also requires the integral

∫
(dL)

1

(L2 − m2
V + i0)2

Δ−n−εLμLν ∼ gμν , (4.58)

however this does not contribute since it vanishes upon contraction with the traceless
spin-2 gluon operator, O(2)μν

g . Upon feeding the general expressions for N(S)
k (L)

in (4.55) into the integrals in (4.53), we find the following decomposition in terms
of basis integrals,

IevenN(0)
k even(L) =

∑
n

[
a(1)

n H(n) + a(2)
n

[
δ2H(n) + 2δF(n)

]]
,

IoddN(0)
k odd(L) =

∑
n

a(3)
n

[
δH(n) + 2F(n)

]
,

IevenN(2)μν
k even (L) = vμvν

∑
n

[
a(4)

n H(n) + a(5)
n H1(n)

+a(6)
n

[
δ2H(n) + 2δF(n)

]
+ a(7)

n δ2H1(n)

]
,

IoddN(2)μν
k odd (L) = vμvν

∑
n

[
a(8)

n

[
δH(n) + 2F(n)

]
+ a(9)

n δH1(n)

]
, (4.59)

where

H1(n) =
1

3− 2ε

{
(4 − 2ε)

[
δ2H(n)+2δF(n)

]
+

H(n − 1)

x(1 − x)
−
[

m2
1

x
+

m2
2

1− x

]
H(n)

}
.

(4.60)

The above results apply generally to both pure and mixed states. Comparing with
the explicit expressions for N(S)

k (L) in (4.50) and (4.51), we find that H(n) for
n = 1, 2, 3 and F(n) for n = 2, 3 are required.
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For pure states there is no residual mass, and Iodd is irrelevant since the only
contributions are from exchanges of W± and Z0, involving N(S)

k even(L). The vanish-

ing of certain contributions in IevenN(S)
k even(L) at δ = 0 can be traced to the identity

in (4.57).2 Setting δ = 0 in IevenN(S)
k even(L) above and using the explicit expressions

for N(S)
k (L) in (4.50) and (4.51), we find pure-state results that depend on H(n) only,

I(0,mW)N(0)
a (W+W+) = 64(1 + ε)(3− 2ε)m2

U{
(2 + ε)(1− x)m2

UH(3)− (1 + 2ε)H(2)

}
,

I(0,mW)N(0)
c (W+W+) = 32(1 − ε2)

{
(1 + 2ε)(1− x)m2

UH(2) + 2(1− 2ε)H(1)

}
,

I(0,mZ)N
(0)
a (ZZ) =

32(1 + ε)(3− 2ε)m2
q

1− x{[
c(q)2

V + c(q)2
A

]
(1− x)

[
(2 + ε)m2

q H(3)− (1 + 2ε)H(2)
]

+
[
c(q)2

V − c(q)2
A

][
(2 + ε)xm2

q H(3)− (2− ε+ 2εx)H(2)
]}

,

I(0,mZ)N
(0)
c (ZZ) = 16(1 + ε)

{[
c(q)2

V + c(q)2
A

]
(1− ε)

[
(1 + 2ε)m2

q H(2) + 2(1− 2ε)H(1)
]

+
[
c(q)2

V − c(q)2
A

]
ε(3− 2ε)m2

q H(2)

}
,

I(0,mW)N(2)
a μν(W+W+) =

128(1 − ε)vμvν
(3− 2ε)(1− x)

{
(2− ε)(2− x − 3ε+ 4εx)H(1)

+(1 + ε)(1− x)m2
U

[
(2 + ε)(1− x)m2

UH(3) + (3− 4x − 4ε + 2εx)H(2)
]}

,

I(0,mW)N(2)
c μν(W+W+) =

64(1 − ε)vμvν
(3− 2ε){
− (3− ε− 4ε2)(1− x)m2

UH(2) + ε(7− 8ε)H(1)

}
,

I(0,mZ)N
(2)
aμν (ZZ) =

64(1− ε)vμvν
(3− 2ε)(1− x)

2In particular, this can be used to demonstrate gauge invariance for the electroweak part of the
amplitudes since in a general Rξ gauge the ξ-dependent terms carry a factor of (v · L).
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{[
c(q)2

V + c(q)2
A

][
(2− ε)(2− x − 3ε+ 4εx)H(1)

+m2
q (1 + ε)

[
(2 + ε)(1− x)m2

q H(3)

+(3− 5x − 4ε+ 5εx)H(2)
]]

+
[
c(q)2

V − c(q)2
A

]
(1 + ε)(2 + ε)xm2

q

[
m2

q H(3)− H(2)
]}

,

I(0,mZ)N
(2)
cμν (ZZ) =

32(1 − ε)vμvν
(3− 2ε)

{[
c(q)2

V + c(q)2
A

]
[− (1 + ε)(3− 4ε)m2

q H(2) + ε(7− 8ε)H(1)
]

−[c(q)2
V − c(q)2

A

]
2(1 + ε)(3− 2ε)m2

q H(2)

}
, (4.61)

where the subscript on Ieven has been suppressed. The reduction for admixtures,
where there are nonzero residual masses and the integral Iodd is relevant, is also
straightforward to obtain.

We collect in Appendix B.3 useful results for the remaining task of integrating
over Feynman parameters. The singularity structure and evaluation of integrals can
be classified into three cases corresponding to zero, one, or two heavy fermions
contributing to the electroweak polarization tensor. The case of zero heavy fermions
is for polarization tensors with no top quark in the loop. With subleading powers of
light quark masses neglected, only polarization tensors of W± and Z0 bosons are
relevant in this case. The case of one heavy fermion is for polarization tensors of
flavor-changing currents with one top quark and one down-type quark. The case of
two heavy fermions is for polarization tensors of flavor-diagonal currents with a top
quark loop.

Full Theory Contributions and Matching Coefficients for Pure States

Let us now determine the full theory contributions to the matching using the
generalized electroweak polarization tensors and the reduction method for the boson
loop integral. For pure states, the total amplitude receives two-boson exchange
contributions from W± and Z0 bosons,

M = MWW +MZZ , (4.62)
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which may be written in terms of electroweak polarization tensors in a background
field as

iMWW =
ig2

2CW

2∫
(dL)

1

−v · L+i0
1

(L2−m2
W+i0)2

vμvν

[
iΠμν

(W+W+)(L)+iΠμν
(W−W−)(L)

]
,

iMZZ =
ig2

2CZ

c2W

∫
(dL)

1

−v · L+i0
1

(L2 − m2
Z + i0)2

vμvν iΠμν
(ZZ)(L) , (4.63)

with CW and CZ given in (3.18). The parity of the polarization tensors under L → −L
and the identities in (4.52) allow us to write the above amplitudes in terms of the
integrals defined in (4.53),

iMWW =
ig2

2CW

2
Ieven(0,mW)vμvν iΠμν

(W+W+)(L) ,

iMZZ =
ig2

2CZ

2c2W
Ieven(0,mZ)vμvν iΠμν

(ZZ)(L) . (4.64)

Upon inserting the explicit polarization tensors from (4.34) into the expressions
above, we may employ the reduction of integrals given in (4.61) and write each
contribution in terms of the gluon operators of definite spin,

MBB′
= MBB′(0)O(0)

g +MBB′(2) vμvνO(2)μν
g , (4.65)

where the superscript BB′ denotes the different types of two-boson exchange. From
the expression in (4.65), we readily identify the contribution of each amplitude
to c(0)g 2BE and c(2)g 2BE as MBB′(0) and MBB′(2), respectively. Let us decompose
MWW(S), for S = 0, 2, into contributions from each up-type quark flavor, and the a-,
b-, and c-type gluon attachments,

MWW(S) = − [Γ(1 + ε)]2

(4π)d

πg2g4
2

m3+4ε
W

CW

16

∑
U=u,c,t

∑
k=a,b,c

MWW(S)
U,k . (4.66)

Similarly, we decompose MZZ(S) into contributions from each quark flavor, and the
a-, b-, and c-type gluon attachments,

MZZ(S) = − [Γ(1 + ε)]2

(4π)d

πg2g4
2

m3+4ε
Z

CZ

64c4W

∑
q=u,c,t,d,s,b

∑
k=a,b,c

MZZ(S)
q,k . (4.67)
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The results for W± exchange are as follows. The amplitudes with one top quark are

MWW(0)
t,a = 4x2t log

xt + 1

xt
− 2xt(6x2t + 9xt + 2)

3(xt + 1)2
,

MWW(0)
t,b = 0 ,

MWW(0)
t,c = −4x2t log

xt + 1

xt
+

2(6x3t + 9x2t + 2xt − 2)

3(xt + 1)2
,

MWW(2)
t,a =

16(30x4t − 3x2t − 4)

9
log

xt + 1

xt

−8(60x5t + 90x4t + 14x3t − 14x2t − 8xt − 9)

9(xt + 1)2
,

MWW(2)
t,b =

16(3xt + 2)

9(xt + 1)3
1

ε
+

32xt(15x9t − 48x7t + 52x5t − 15x3t + 14x2t − 6)

9(x2t − 1)3
log xt

−32(15x10t − 48x8t + 52x6t − 12x4t + 3x2t − 2)

9(x2t − 1)3
log(xt + 1)

−32(3x4t − 21x3t + 3x2t + 9xt − 2)

9(x2t − 1)3
log 2

+
8(180x8t + 90x7t − 426x6t − 183x5t + 285x4t + 111x3t − 220x2t − 4xt + 71)

27(x2t − 1)2(xt + 1)
,

MWW(2)
t,c = −48x2t log

xt + 1

xt
+

8xt(6x2t + 9xt + 2)

(xt + 1)2
, (4.68)

where xt = mt/mW . The amplitudes with only light quarks are

MWW(0)
U,a = MWW(0)

U,b = 0 , MWW(0)
U,c = −4

3
,

MWW(2)
U,a = MWW(2)

U,b =
32

9ε
+

568

27
− 64

9
log 2 , MWW(2)

U,c = 0 , (4.69)

for U = u, c. The results for Z0 exchange with a top quark loop are

MZZ(0)
t,a = MZZ(0)

t,b =
[
c(t)2

V + c(t)2
A

]
[
4y2t (32y6t − 28y4t + 14y2t − 1)

(4y2t − 1)7/2
arctan

(√
4y2t − 1

)− πyt

2

+
4y2t (y

2
t − 1)(24y2t − 1)

3(4y2t − 1)3

]
+
[
c(t)2

V − c(t)2
A

]
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[
16y4t (24y4t − 21y2t + 5)

(4y2t − 1)7/2
arctan

(√
4y2t − 1

)

+
2(144y6t − 70y4t + 9y2t − 2)

3(4y2t − 1)3
− 3πyt

2

]
,

MZZ(0)
t,c =

[
c(t)2

V + c(t)2
A

]
[
− 8y2t (8y2t − 1)(2y2t − 1)

(4y2t − 1)5/2

arctan
(√

4y2t − 1
)− 4(24y4t − 7y2t + 1)

3(4y2t − 1)2
+ 2πyt

]
,

MZZ(2)
t,a = MZZ(2)

t,b =
[
c(t)2

V + c(t)2
A

]
[
16(480y8t − 420y6t + 214y4t − 47y2t + 4)

9(4y2t − 1)7/2
arctan

(√
4y2t − 1

)

+
8(240y6t − 314y4t + 92y2t − 9)

9(4y2t − 1)3
− 10πyt

3

]

+
[
c(t)2

V − c(t)2
A

][− 8y2t (48y4t − 34y2t + 13)

9(4y2t − 1)3

−32y2t (16y6t − 14y4t + 4y2t − 1)

3(4y2t − 1)7/2
arctan

(√
4y2t − 1

)
+

2πyt

3

]
,

MZZ(2)
t,c =

{[
c(t)2

V + c(t)2
A

]
+ 2
[
c(t)2

V − c(t)2
A

]}
[
− 32y2t (16y4t − 10y2t + 3)

(4y2t − 1)5/2
arctan

(√
4y2t − 1

)

−16y2t (8y2t − 5)

(4y2t − 1)2
+ 8πyt

]
, (4.70)

where yt = mt/mZ. The amplitudes for Z0 exchange with a light quark loop are

MZZ(0)
q,a = MZZ(0)

q,b = 0 , MZZ(0)
q,c =

[
c(q)2

V + c(q)2
A

][− 4

3

]
,

MZZ(2)
q,a = MZZ(2)

q,b =
[
c(q)2

V + c(q)2
A

] [32
9ε

+
568

27
− 64

9
log 2

]
, MZZ(2)

q,c = 0 ,

(4.71)

where q = u, d, s, c, b. The 1
ε pieces in the above amplitudes are IR divergences that

cancel upon subtraction of the effective theory contributions, M(S)
EFT, discussed in

Sect. 4.2.5. The bare coefficients are then given by

c(S)
g 2BE = MWW(S) +MZZ(S) −M(S)

EFT , (4.72)

where the remaining 1
ε pieces are UV divergences.
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Full Theory Contributions and Matching Coefficients for Admixtures

For admixtures, the total amplitude receives contributions from other types of two-
boson exchange beyond WW and ZZ,

M = MWW +MZZ +MφWφW +MφZφZ +Mhh +MZφZ +MWφW . (4.73)

Let us first consider the singlet-doublet case. In terms of the electroweak polariza-
tion tensors, we find integrals involving nonzero residual masses,

iMWW =
ig2

2

4
c2ρ

2

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
W + i0)2

vμvν

[
iΠμν

(W+W+)(L) + iΠμν
(W−W−)(L)

]
,

iMZZ =
ig2

2

4c2W
c2ρ

2

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
Z + i0)2

vμvν iΠμν
(ZZ)(L) ,

iMhh = ia2

∫
(dL)

[
s2ρ

−v · L − δ
(−)
0 + i0

+
c2ρ

−v · L − δ
(+)
0 + i0

]

1

(L2 − m2
h + i0)2

iΠ(hh)(L) ,

iMφZφZ = ia2s2ρ
2

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
Z + i0)2

iΠ(φZφZ)(L) ,

iMφWφW = ia2s2ρ
2

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
W + i0)2

[
iΠ(φ+

W φ+
W )(L) + iΠ(φ−

W φ−
W )(L)

]
,

iMZφZ =
g2a
4cW

sρ

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
Z + i0)2

vμ

[
iΠμ

(ZφZ)
(L)− iΠμ

(φZ Z)(L)

]
,

iMWφW =
ig2a
4

sρ

∫
(dL)

1

−v · L − δ
(0)
0 + i0

1

(L2 − m2
W + i0)2

vμ

[
iΠμ

(W+φ+
W )
(L)− iΠμ

(W−φ−
W )
(L)

+iΠμ

(φ+
W W+)

(L) − iΠμ

(φ−
W W−)

(L)

]
. (4.74)
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Using the behavior of the polarization tensors under L → −L and the identities
in (4.52), we may write these amplitudes in terms of the integrals defined in (4.53),

iMWW =
ig2

2

4
c2ρ

2
Ieven(δ(0)0 ,mW)vμvν iΠμν

(W+W+)(L) ,

iMZZ =
ig2

2

8c2W
c2ρ

2
Ieven(δ(0)0 ,mZ)vμvν iΠμν

(ZZ)(L) ,

iMhh =
ia2

2
s2ρ Ieven(δ(−)

0 ,mh)iΠ(hh)(L) +
ia2

2
c2ρ Ieven(δ(+)

0 ,mh)iΠ(hh)(L) ,

iMφZφZ =
ia2

2
s2ρ

2
Ieven(δ(0)0 ,mZ)iΠ(φZφZ)(L) ,

iMφWφW = ia2s2ρ
2
Ieven(δ(0)0 ,mW)iΠ(φ+

W φ+
W )(L) ,

iMZφZ =
g2a
4cW

sρ Iodd(δ(0)0 ,mZ)vμiΠμ
(ZφZ)

(L) ,

iMWφW =
ig2a
2

sρ Iodd(δ(0)0 ,mW)vμiΠμ

(W+φ+
W )
(L) . (4.75)

The required polarization tensors are specified in (4.34), and, in particular, the
complete set of functions N(S)

k (L) are explicitly given in (4.50) and (4.51). Thus, the
general result in (4.59) for reducing these integrals may be applied. Each amplitude
may be written in the form of (4.65), i.e., in terms of its contributions to the gluon
operators of definite spin. The bare coefficients are then given by

c(S)
g 2BE = M(S)WW +M(S)ZZ +M(S)hh +M(S)φZφZ

+M(S)φWφW +M(S)ZφZ +M(S)WφW −M(S)
EFT , (4.76)

where the remaining 1
ε pieces are UV divergences. We may again organize each

contribution in the previous equation in terms of the quark flavors in the loop, and
the a-, b-, and c-type gluon attachments, as we have done in (4.66) and (4.67).

For the triplet-doublet case we find,

iMWW =
ig2

2

16
s2ρ Ieven(δ(+)

0 ,mW)vμvν iΠμν
(W+W+)(L)

+
ig2

2

4

(
1 + s2ρ

2

)2 Ieven(δ(−)
0 ,mW)vμvν iΠμν

(W+W+)(L) ,

iMZZ =
ig2

2

8c2W
c2ρ

2
Ieven(δ(0)0 ,mZ)vμvν iΠμν

(ZZ)(L) ,

iMhh =
ia2

2
s2ρ Ieven(δ(−)

0 ,mh)iΠ(hh)(L) +
ia2

2
c2ρ Ieven(δ(+)

0 ,mh)iΠ(hh)(L) ,
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iMφZφZ =
ia2

2
s2ρ

2
Ieven(δ(0)0 ,mZ)iΠ(φZφZ)(L) ,

iMφWφW = ia2 Ieven(δ(+)
0 ,mW)iΠ(φ+

W φ+
W )(L) ,

iMZφZ =
g2a
4cW

sρ Iodd(δ(0)0 ,mZ)vμiΠμ
(ZφZ)

(L) ,

iMWφW =
ig2a
2

sρ Iodd(δ(+)
0 ,mW)vμiΠμ

(W+φ+
W )
(L) . (4.77)

The rest of the analysis proceeds as above, using the same polarization tensors and
integral reduction method. We check for both types of admixtures that the expected
results are recovered upon taking the pure-case limits described in Sect. 3.2.4.

4.2.5 Effective Theory Amplitudes and Infrared Regulator

In the computation of both pure- and mixed-case amplitudes above, we have
neglected subleading corrections of O(mq/mW) by Taylor expanding integrands
about vanishing light quark masses.3 This requires a regulator to control IR
divergences (the full theory diagrams in Figs. 4.2 and 4.4 are UV finite but the
projection onto the spin-2 operator O(2)

g is IR divergent).
It is technically simplest to compute the full and effective theory amplitudes

using dimensional regularization as IR regulator. Effective theory loop diagrams
on the right hand sides of Figs. 4.2 and 4.4 then result in dimensionfull but
scaleless integrals that are required to vanish. Upon subtracting the effective theory
amplitude, remaining 1/ε pieces in matching coefficients are identified as UV
divergences.

We have obtained identical renormalized matching coefficients by retaining light
quark masses, mq 
= 0, as an alternative IR regulator. In this scheme, the effective
theory loop diagrams on the right-hand side of Figs. 4.2 and 4.4 yield nonvanishing
contributions. The full theory diagrams on the left-hand side are correspondingly
modified so that, upon subtracting the effective theory amplitude, consistent results
are obtained.

3For matching onto quark operators, we of course include the leading mq factor appearing in O(0)
q

and O(2)
q . For matching onto gluon operators we may neglect light quark masses.
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4.2.6 Extended Higgs Sector for Pure Case

Additional structure in the Higgs sector may impact cross-section predictions for
spin-independent WIMP-nucleon scattering. For the pure case, we may easily
modify the one-boson exchange matching for quark and gluon operators to include
a second CP-even Higgs of mass mH > mh, arising in the context of the type-II
two-Higgs-doublet model. Two-boson exchange amplitudes are not modified.

Parameterization

Let us consider the light CP-even Higgs to be the “SM-like” Higgs with mass mh =
126GeV. For direct detection, the inclusion of a second Higgs doublet introduces
the parameters mH ≈ mA , α , β or equivalently, mH , tβ , β−α ≡ X ∈ (0, π) , where
mH is the mass of the heavy CP-even Higgs and tβ is the ratio of VEVs. The relevant
couplings of the CP-even Higgses, h and H, to vector bosons and up- and down-type
quarks are given in Eqs. (24)–(26) of [20] which we reproduce here,

ghVV = sX , gHVV = cX ,

ghdd = sX − tβcX , gHdd = cX + tβsX ,

ghuu = sX + t−1
β cX , gHuu = cX − t−1

β sX . (4.78)

To consider small deviations about the alignment limit, we may further use the
parameterization η ≡ tβcX , sX ≡ √

1− c2X , and thus work with the set of
parameters mH , tβ , η . The couplings are then

ghVV =
√
1− t−2

β η2 , gHVV = t−1
β η ,

ghdd =
√
1− t−2

β η2 − η , gHdd = t−1
β η + tβ

√
1− t−2

β η2 ,

ghuu =
√
1− t−2

β η2 + t−2
β η , gHuu = t−1

β η − t−1
β

√
1− t−2

β η2 . (4.79)

Expanding about η = 0 recovers the results in Eqs. (44)–(46) of [20].
A plot of the couplings of the light CP-even Higgs in units of the SM values is

shown in Fig. 4.5 for tβ = 5. The couplings to vector bosons and up-type quarks are
close to 1 in the whole range, with deviations suppressed by t−2

β . The coupling to
down-type quarks is given by

ghdd = (1− η) +O(t−2
β ) , (4.80)
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η

Fig. 4.5 Couplings of the light CP-even Higgs to W,Z (blue), up-type quarks (green) and down-
type quarks (red) in units of the SM values, using tβ = 5. For ghdd = (1 − η) + O(t2β), the SM
magnitude is obtained for η = 0, 2, but with an opposite sign for η = 2. For up to 50% deviation
about the “alignment limit” one may consider the regions −0.5 < η < 0.5 and 1.5 < η < 2.5

in units of the SM value. Hence, about η = 0 and η = 2 the magnitude of the
coupling is near that of the SM, but with opposite sign for the latter. The couplings
are not sensitive to tβ for tβ � 1 since the subleading terms are O(1/t2β).

Modification of Weak-Scale Matching Amplitudes

In the type-II two-Higgs-doublet model, only the CP-even Higgs boson, H and h,
couple to SM vector bosons at tree-level, and thus A, H±, and the Goldstones do
not appear in the weak-scale matching computation at leading order. The heavy
Higgs appears in the same diagrams as the light Higgs but with modified couplings
to vector bosons and quarks. The couplings of the light Higgs are also modified.
We may thus account for these effects by making the following replacement in the
coefficients c(0)q ,

x−2
h → x−2

h

(
Fq

h +
m2

h

m2
H

Fq
H

)
, Fq

h = ghVVghqq , Fq
H = gHVVgHqq. (4.81)

4.2.7 Bare Matching Coefficients

We may now collect the results of the preceding analysis of quark and gluon
matching to present the bare coefficients of the effective theory at the weak scale.
We have analyzed the Wilson coefficients of the effective theory described by (3.69)
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in terms of contributions from exchanges of one or two electroweak bosons, as
expressed in (4.13). The results for one-boson exchange matching to quark and
gluon operators are given by (4.16) and (4.23), respectively. The results for two-
boson exchange matching to quark and gluon operators are given by summing
contributions of the form (4.25) and (4.65), respectively.

For pure cases, the results for the bare matching coefficients are as follows,

c(0)U =
πΓ(1 + ε)g42
(4π)2−ε

{
− m−3−2ε

W

2x2h

[
CW +

CZ

c3W

]
+

m−3−2ε
Z CZ

8c4W

[
c(U)2

V − c(U)2
A

]
+O(ε)

}
,

c(0)D =
πΓ(1 + ε)g42
(4π)2−ε

{
− m−3−2ε

W

2x2h

[
CW +

CZ

c3W

]
+

m−3−2ε
Z CZ

8c4W

[
c(D)2

V − c(D)2
A

]

−δDb m−3−2ε
W CW

xt

8(xt + 1)3
+O(ε)

}
,

c(0)g =
π[Γ(1 + ε)]2g42g2

(4π)4−2ε

{
m−3−4ε

W

2

[
1

3x2h

[
CW +

CZ

c3W

]
+ CW

[
1

3
+

1

6(xt + 1)2

] ]

+
m−3−4ε

Z CZ

64c4W

[
4
[
c(D)2

V + c(D)2
A

]
+
[
c(U)2

V + c(U)2
A

]
[
8

3
+

32y6t (8y2t − 7)

(4y2t − 1)7/2
arctan

(√
4y2t − 1

)

−πyt +
4(48y6t − 2y4t + 9y2t − 1)

3(4y2t − 1)3

]
+
[
c(U)2

V − c(U)2
A

]
[
3πyt − 4(144y6t − 70y4t + 9y2t − 2)

3(4y2t − 1)3

−32y4t (24y4t − 21y2t + 5)

(4y2t − 1)7/2
arctan

(√
4y2t − 1

)]]
+O(ε)

}
,

c(2)U =
πΓ(1 + ε)g42
(4π)2−ε

{[
m−3−2ε

W CW +
m−3−2ε

Z CZ

2c4W

[
c(U)2

V + c(U)2
A

]]

[
1

3
+
(
11

9
− 2

3
log 2

)
ε

]
+O(ε2)

}
,

c(2)D =
πΓ(1 + ε)g42
(4π)2−ε

{[
m−3−2ε

W CW +
m−3−2ε

Z CZ

2c4W

[
c(D)2

V + c(D)2
A

]]

[
1

3
+
(
11

9
− 2

3
log 2

)
ε

]
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+δDb
m−3−2ε

W CW

2

[
(3xt + 2)

3(xt + 1)3
− 2

3
+

(
2xt(7x2t − 3)

3(x2t − 1)3
log xt − 2(3xt + 2)

3(xt + 1)3
log 2

−2(25x2t − 2xt − 11)

9(x2t − 1)2(xt + 1)
− 22

9
+

4

3
log 2

)
ε

]
+O(ε2)

}
,

c(2)g =
π[Γ(1 + ε)]2g42g2

(4π)4−2ε

{
m−3−4ε

W CW

2

[
− 16

9ε
− 284

27
+

32

9
log 2− 2(3xt + 2)

9(xt + 1)3
1

ε

+
8(6x8t − 18x6t + 21x4t − 3x2t − 2)

9(x2t − 1)3
log(xt + 1)

+
4(3x4t − 21x3t + 3x2t + 9xt − 2)

9(x2t − 1)3
log 2

−4(12x8t − 36x6t + 39x4t + 14x3t − 9x2t − 6xt − 2)

9(x2t − 1)3
log xt

−144x6t + 72x5t − 312x4t − 105x3t − 40x2t + 47xt + 98

27(x2t − 1)2(xt + 1)

]

+
m−3−4ε

Z CZ

64c4W

[[
8
[
c(U)2

V + c(U)2
A

]
+ 12

[
c(D)2

V + c(D)2
A

]]

[
− 16

9ε
− 284

27
+

32

9
log 2

]

+
[
c(U)2

V + c(U)2
A

][128(24y8t − 21y6t − 4y4t + 5y2t − 1)

9(4y2t − 1)7/2

arctan
(√

4y2t − 1
)− 4πyt

3

+
16(48y6t + 62y4t − 47y2t + 9)

9(4y2t − 1)3

]
+
[
c(U)2

V − c(U)2
A

]
[
16y2t (624y4t − 538y2t + 103)

9(4y2t − 1)3
− 52πyt

3

+
128y2t (104y6t − 91y4t + 35y2t − 5)

3(4y2t − 1)7/2
arctan

(√
4y2t − 1

)]]
+O(ε)

}
, (4.82)

where, as before, xt = mt/mW and yt = mt/mZ . Above, the Kronecker delta, δDb,
is equal to unity for D = b, and vanishes for D = d, s. The pure triplet (doublet)
results are given by setting CW = 2 and CZ = 0 (CW = 1/2 and CZ = 1/4). The
renormalization of the theory involving these bare coefficients will be detailed in the
next chapter. In particular, the relation between the bare coefficient c(2)g given above

and the renormalized coefficient c(2)g (μ) involves a nontrivial subtraction requiring

the O(ε) part of c(2)q which we have retained.
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Fig. 4.6 Renormalized coefficients (with πα2
2/m3

W extracted) for the singlet-doublet (upper
panels) and triplet-doublet (lower panels) mixtures as a function of the respective mass splittings
Δ = (MS − MD)/2 and Δ = (MT − MD)/2, in units of mW . The panels on the left (right) use
a = g2/10 (a = g2/100). The negative coefficients c(0)q and c(2)g are presented with opposite sign,

as indicated by (−1). The solid red, green, and blue lines are respectively for −c(0)U=u,c, −c(0)D=d,s,

and −c(0)b . The dashed red, green, and blue lines are respectively for c(2)U=u,c, c(2)D=d,s, and c(2)b .

Some quark matching coefficients appear degenerate. The orange band with solid borders is c(0)g ,

and the orange band with dashed borders is −c(2)g . The band thickness represents renormalization
scale variation, taking m2

W/2 < μ2
t < 2m2

t [59]. We indicate the pure-case limits at large |Δ|

The results for admixtures are similarly obtained by collecting contributions to
the coefficients specified in (4.13). For example, the amplitudes in (4.19) for a
singlet-doublet admixture, combined with the integrals defined in Appendix B.1,
specify c(0)q 1BE through (4.16), and c(0)g 1BE through (4.23). The coefficients

c(S)
q 2BE are specified in (4.31) in terms of the results in (4.29), which require the

integrals in Appendix B.2. Finally, c(S)
g 2BE is specified in (4.76) in terms of the

amplitudes in (4.75) which require the polarization tensors in (4.34), the basis
reduction in (4.59), and the integrals in Appendix B.3.

The matching coefficients for admixtures are functions of the mass splitting
Δ and the coupling a, as defined in (3.38) for the singlet-doublet mixture. We
illustrate numerical values in Fig. 4.6 for both the singlet-doublet and triplet-doublet
mixtures. Numerical inputs are collected in Table B.1 of Appendix B.4. Depending
on the value of a, the O(α1

2) tree-level Higgs exchange contribution to the spin-0
coefficients may dominate near Δ = 0. When mW/Δ suppression is significant,
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the O(α2
2) loop contributions dominate. The curves approach the correct pure-case

values upon taking the limits described in Sect. 3.2.4. In particular, the coefficients
vanish in the pure singlet limit.

The contributions of these coefficients to scattering cross sections depend on the
detailed mapping onto the low-energy nf = 3 flavor theory through renormalization
group running and heavy quark threshold matching, and on the evaluation of
nucleon matrix elements at a low scale, μ ∼ 1GeV. These effects enhance the
contribution from certain coefficients, upsetting the αs counting reflected in the
relative magnitudes of the high-scale coefficients. One example is the enhancement
of the spin-0 gluon contribution due both to a large anomalous dimension in the RG
running, and to the large nucleon matrix element of the scalar gluon operator [97].
Another example is the enhanced impact of numerically subleading contributions
due to a partial cancellation at leading order. The relative signs between high-scale
coefficients in Fig. 4.6, combined with details of the mapping onto low-energy coef-
ficients and evaluation of matrix elements, lead to a cancellation between the spin-0
and spin-2 amplitude contributions [59, 65]. Therefore, a robust determination of
DM-nucleon scattering cross sections demands a careful analysis of the complete
set of leading operators in (3.70).

The coefficient c(2)g has been omitted in previous works [64, 65]. Due to a
cancellation between spin-0 and spin-2 amplitude contributions to cross sections,
the effect of neglecting c(2)g ranges from a factor of a few to an order of magnitude
difference in cross sections. For the pure-doublet and pure-triplet states, neglecting
c(2)g leads to an O(10–20 %) shift in the spin-2 amplitude, depending on the choice
of renormalization scale, and an underestimation of its perturbative uncertainty by
O(70%). For comparison, neglecting c(2)q for q = b, c, s, d, u shifts the spin-2
amplitude by O(1%), O(10%), O(10%), O(30%), and O(50%), respectively.

Although we find that cancellations are generic, their severity depends on SM
parameters and on properties of DM such as its electroweak quantum numbers. The
presence of additional low-lying states could also have impact, and the formalism
for weak-scale matching presented here can be readily extended to investigate such
scenarios. For example, including a second Higgs doublet in the pure-state analysis
simply requires modification of the vertices in the amplitudes computed in Figs. 4.1
and 4.2. An extra Higgs boson modifies the spin-0 amplitude, and could potentially
weaken the cancellation between spin-0 and spin-2 amplitudes. The case where the
second Higgs-like doublet itself plays the role of DM (e.g., “inert Higgs DM” [78])
is related to the pure-doublet case in the heavy WIMP limit by heavy particle
universality.

While we have focused here on the case of a heavy, self-conjugate WIMP,
deriving from one or two electroweak multiplets, much of the formalism applies
more generally. The generalized electroweak polarization tensors obtained through
background field techniques depend only on SM parameters, and hence can be
applied for gluon operator matching in general DM scenarios. Within the context
of heavy particle effective theories, the new integral basis evaluated here may be
applied to other processes such as low-energy lepton-nucleon scattering [62].



Chapter 5
QCD Analysis and Hadronic Matrix Elements

Estimating the correct order of magnitude of scattering cross sections in many
simple and motivated models of dark matter requires careful treatment of competing
Standard Model contributions in weak-scale matching, and of QCD corrections
when passing from a theory renormalized at the electroweak scale to a low-energy
theory of quarks and gluons. In the previous chapter, we focused on weak-scale
matching conditions necessary for robustly computing WIMP-nucleon interactions,
both in specified UV completions involving electroweak-charged DM, and in the
model-independent heavy WIMP limit. In this chapter, we tackle the remaining
analysis below the weak scale, applicable to a broad class of theories, independent
of assuming a particular UV model or the heavy WIMP limit. Although we focus
here on the analysis for the effective theory given in Eq. (3.69), it is straightforward
to consider an extended basis of operators relevant for other scenarios, e.g., χ that
is not self-conjugate.

The formalism to systematically map high-scale matching coefficients onto
the low-energy theory, where matrix elements are evaluated, requires several
ingredients. A careful analysis of operator renormalization is necessary to determine
physical amplitudes from bare coefficients obtained from weak-scale matching.
In particular, a nontrivial subtraction appears in the analysis of quark and gluon
tensor operators. Renormalization group evolution of coefficients between heavy
quark thresholds, and matching of (nf + 1)-flavor and nf -flavor QCD at the bottom
(μb ∼ mb) and charm (μc ∼ mc) heavy quark thresholds allow for precise con-
nection between high- and low-scale coefficients. These tools account for operator
mixing and large logarithms ∼ log mt

mc
, and provide an estimate of uncertainty from

higher order perturbative QCD corrections. Analysis of the necessary hadronic
matrix elements at the low-scale identifies sources of uncertainty and areas for
potential improvement in determination of inputs from lattice studies.

This chapter is organized as follows. In Sect. 5.1 we present the framework for
renormalization of the bare lagrangian obtained from matching at the weak scale,
and explicit results for the renormalized coefficients for pure states. Sections 5.2
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and 5.3 perform the analysis for renormalization group evolution of coefficients and
matching conditions at heavy quark thresholds, respectively. In Sect. 5.4 we provide
an overview of hadronic matrix elements necessary for spin-independent WIMP-
nucleon scattering.

5.1 Operator Renormalization

Having determined the bare matching coefficients of the low-energy theory at the
weak scale, we may proceed to map onto a theory valid at lower energy scales.
The lower energy scale, μ, may refer to a light dark matter mass scale, μ ∼ M ∼
few GeV, for computing annihilation processes, or to hadronic scales, ΛQCD �
μ � mc, where hadronic matrix elements for scattering cross sections are computed
in three-flavor QCD.

The first task is to renormalize the bare lagrangian obtained from matching at
the weak scale. Inspection of the low-energy SM building blocks in Table 3.1
and Eq. (3.2) shows that, up to field redefinitions,1 the strong interaction matrix
elements relevant for renormalization of low-energy operators through dimension
seven involve the vector and axial-vector current of dimension three,

V(q)
μ = q̄γμq , A(q)

μ = q̄γμγ5q , (5.1)

the scalar (spin-0) and tensor (spin-2) operators of dimension four in Eq.(3.69),

O(0)
q = mqq̄q ,

O(0)
g = GA

μνGAμν ,

O(2)μν
q =

1

2
q̄

(
γ{μiDν}

− − gμν

d
iD/ −

)
q ,

O(2)μν
g = −GAμλGAν

λ +
gμν

d
(GA

αβ)
2 , (5.2)

and the pseudoscalar (spin-0) and pseudotensor (spin-2) operators of dimension
four,

O(0)
5q = mqq̄iγ5q ,

O(0)
5g = GA

μνG̃Aμν ,

1For example, the tensor mqq̄σμνq appearing in the low-energy bases of fermion operators in
Eqs. (3.9) and (3.10) may be rewritten in terms of the vector and tensor currents in Eqs. (5.1)–(5.3)
by performing the field redefinition q → (1 + aOμν

DMσμν)q with appropriate choice of parameter
a and DM bilinear ODM.
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O(2)μν
5q =

i
2

q̄

(
γ{μiDν}

− − gμν

d
iD/ −

)
γ5q ,

O(2)μν
5g = −GAμλG̃Aν

λ +
gμν

d
GA

αβG̃Aαβ . (5.3)

Here A{μBν} ≡ (AμBν + AνBμ)/2 denotes symmetrization. We consider operators

O(S)
q and O(S)

5q for each active quark and each spin S = 0, 2, allowing for independent
coefficients but not including flavor-violating operators. The basis of operators in
Eqs. (5.2) and (5.3) are separately closed under renormalization, and contribute to
spin-independent and spin-dependent scattering on the nucleon, respectively.

5.1.1 Renormalization Constants

We define the operator renormalization constants Zij in the MS scheme, except for
the axial-vector and pseudoscalar operators where we consider an additional finite
renormalization to retain a conventional anomaly condition. The relation between
renormalized and bare operators, and the corresponding coefficients are given by

Obare
i = Zij(μ)O

ren
j (μ) , creni (μ) = Zji(μ)c

bare
j , (5.4)

with an implicit sum over repeated indices. Let us proceed to collect the renormal-
ization constants of operators arising in the low-energy effective theory for the DM
particle. The vector currents, representing conserved quark number, evolve trivially
under QCD renormalization:

∂μV(q)μ = 0 , ZV = 1 . (5.5)

The axial anomaly in the presence of SU(3)c gauge fields implies non-
conservation of the (flavor singlet) axial currents. In a renormalization prescription
that retains the one-loop anomaly condition, we have

∂μA(q)μ =
1

2
g2εμνρσGa

μνGa
ρσ , (5.6)

and the renormalization coefficient through two loop is [82]

ZA = (Zs
MS)

−1(Zs
5)

−1 ,

Zs
MS = 1 +

(αs

4π

)2 [22
3ε

CFCA +
5

3ε
CFnf

]
+O(α3

s ) ,

Zs
5 = 1 +

αs

4π

[− 4CF
]
+
( αs

4π

)2 [
22C2

F − 107

9
CFCA +

31

18
CFnf

]
+O(α3

s ) .

(5.7)

Three three-loop corrections are also available [82], but are presently beyond
phenomenological relevance.
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For the scalar and tensor operators in Eq. (5.2), the operator renormalization in
the MS scheme is independent of quark flavor [54, 100]. In the basis (u, d, s, . . . , g)
and through the first order pole in 1/ε, we have

Ẑ(0) = 1 +
1

ε

⎛
⎜⎜⎜⎝

0 0
. . .

...
0 0

2γm · · · 2γm β̃

⎞
⎟⎟⎟⎠ = 1 +

1

ε

αs

4π

⎛
⎜⎜⎜⎝

0 0
. . .

...
0 0

−16 · · · −16 β0

⎞
⎟⎟⎟⎠+ . . . ,

Ẑ(2) = 1 +
1

ε

αs

4π

⎛
⎜⎜⎜⎝

− 32
9

2
3

. . .
...

− 32
9

2
3

32
9 · · · 32

9 − 2nf

3

⎞
⎟⎟⎟⎠+ . . . , (5.8)

where nf is the number of light quark flavors, β0 = 11 − 2nf/3 and the ellipses
denote terms higher order in αs. The all-orders expression for Ẑ(0) is specified in
terms of functions

β̃ = β/g , β =
dg

d logμ
, γm =

d logmq

d logμ
. (5.9)

For completeness, we give explicit expressions for β and γm in Appendix C. We
presently require Ẑ(0) and Ẑ(2) throughO(αs) in order to derive the relation between
bare and renormalized coefficients at first non-vanishing order. From the definition
in Eq. (5.4), the renormalized coefficients for the scalar operators are

c(0)q (μ) =
∑

q′
Z(0)

q′q (μ)c
(0)bare
q′ + Z(0)

gq (μ)c(0)bareg = c(0)bareq +O(α2
s ) ,

c(0)g (μ) =
∑

q

Z(0)
qg (μ)c(0)bareq + Z(0)

gg (μ)c(0)bareg = c(0)bareg +O(α2
s ) , (5.10)

while for the tensor operators, we find

c(2)q (μ) =
∑

q′
Z(2)

q′q (μ)c
(2)bare
q′ + Z(2)

gq (μ)c(2)bareg = c(2)bareq +O(αs) ,

c(2)g (μ) =
∑

q

Z(2)
qg (μ)c(2)bareq + Z(2)

gg (μ)c(2)bareg =
∑

q

1

ε

αs

6π
c(2)bareq

+ c(2)bareg +O(α2
s ) . (5.11)

In particular, a nontrivial subtraction, requiring the O(ε) part of the coefficients

c(2)bareq , is necessary to obtain the renormalized coefficient c(2)g (μ).
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Finally, let us consider the pseudoscalar and pseudotensor operators. These arise
at subleading order in many WIMP models, but for completeness and potential
future applications we summarize their leading renormalization properties here. The
leading operator renormalization factors are

Ẑ(0)
5 = 1 +

αs

4π

⎡
⎢⎢⎢⎣
1

ε

⎛
⎜⎜⎜⎝

0 0
. . .

...
0 0

−16 · · · −16 β0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

16
3 0

. . .
...

16
3 0

0 · · · 0 0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

Ẑ(2)
5 = 1 +

1

ε

αs

4π

⎛
⎜⎜⎜⎝

− 32
9

2
3

. . .
...

− 32
9

2
3

32
9 · · · 32

9 − 2nf

3

⎞
⎟⎟⎟⎠ . (5.12)

Note that an extra finite renormalization beyond MS is required to retain one-loop
exactness of the axial anomaly.

5.1.2 Renormalized Matching Coefficients for Pure States

In Sect. (4.1), we illustrated the framework for matching effective theories at the
weak scale with explicit O(α1

2) matching for leading operators in the case of
electroweak singlet DM. The bare coefficients for the scalar quark and gluon
operators obtained in those cases are trivially related to renormalized coefficients.

To illustrate operator renormalization, let us turn to the case of electroweak-
charged DM where the required amplitudes for matching are O(α2

2) one- and
two-loop diagrams. The relevant bare effective lagrangian at the weak-scale is given
by Eq. (3.69). In the heavy WIMP limit, the bare matching coefficients for pure-
states are given in Eq. (4.82).We have retained the O(ε) part of coefficients c(2)q

in Eq. (4.82), as required by the nontrivial subtraction in Eq. (5.11). Employing
Eqs. (5.10) and (5.11), we find the (finite) renormalized coefficients,

c(0)U (μ) =
πα2

2

m3
W

{
− 1

2x2h

[
CW +

CZ

c3W

]
+

CZ

8cW

[
c(U)2

V − c(U)2
A

]}
,

c(0)D (μ) =
πα2

2

m3
W

{
− 1

2x2h

[
CW +

CZ

c3W

]
+

CZ

8cW

[
c(D)2

V − c(D)2
A

]− δDb CW
xt

8(xt + 1)3

}
,

c(0)g (μ) =
πα2

2

m3
W

αs(μ)

4π

{
1

2

[
1

3x2h

[
CW +

CZ

c3W

]
+ CW

[
1

3
+

1

6(xt + 1)2

] ]
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+
CZ

64cW

[
4
[
c(D)2

V + c(D)2
A

]
+
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c(U)2

V + c(U)2
A

][8
3
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48y6t + 62y4t − 47y2t + 9
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+
[
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48
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. (5.13)
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In the next chapter, we study the renormalization group evolution of these coeffi-
cients down to low-energies, including matching effects at heavy quark thresholds.

5.2 Renormalization Group Evolution

After matching onto the QCD theory with nf = 5 flavors and determining
renormalized coefficients, two ingredients remain for mapping onto a theory valid at
lower energy scales: renormalization group evolution of coefficients between heavy
quark thresholds, and matching of (nf + 1)-flavor and nf -flavor QCD at the bottom
(μb ∼ mb) and charm (μc ∼ mc) heavy quark thresholds. We perform the necessary
analysis for the running of coefficients in this section, and tackle threshold matching
in the next.

From the relations between bare and renormalized operators and coefficients in
Eq. (5.4), we obtain the scale evolution of renormalized operators and coefficients,

d
d logμ

Oi = −γijOj ,
d

d logμ
ci = γjicj , γij ≡ Z−1

ik
d

d logμ
Zkj , (5.14)

where the superscript “ren” on renormalized quantities has been dropped, and we
have defined the anomalous dimension matrix γij. In the MS scheme the anomalous
dimension reduces to

γij = −g
∂

∂g
Z(1)ij , (5.15)

where Z(1)ij is the coefficient of 1/ε in the expansion

Zij = δij +

∞∑
n=1

Z(n)ij

εn
. (5.16)

Let us now proceed to solve the evolution of coefficients from scale μh down to
scale μ, for the vector, axial-vector, scalar and tensor operators in Eqs. (5.1)–(5.3).

For the vector current, the renormalization constant in Eq. (5.5) leads to a
vanishing anomalous dimension, and hence a trivial scale evolution:

c(q)
V (μ) = c(q)

V (μh) . (5.17)

For the axial-vector current non-trivial renormalization begins at two loop order.
Recall that the renormalization constant in Eq. (5.7) includes a finite contribution
beyond MS. From the definition in Eq. (5.14), we find a flavor diagonal anomalous
dimension with leading behavior

γA =
(αs

4π

)2
γA,2 +O(α3

s ) , γA,2 = 12CFnf . (5.18)
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The corresponding solution for the coefficient running is

c(q)
A (μ) = exp

{
− γA,2

8πβ0

[
αs(μ)− αs(μh)

]
+O(α2

s )

}
c(q)

A (μh) . (5.19)

The phenomenological impact of this correction is moderate (∼10% corrections
from running between μh ∼ mW and μ ∼ 1GeV), but could become relevant if a
WIMP signal is detected.

For the scalar and tensor operators relevant for spin-independent WIMP-nucleon
scattering, given in Eq. (5.2), the anomalous dimension matrices follow from the
renormalization constants in Eq. (5.8) and the relation in Eq. (5.15). In the basis
(u, d, s, . . . , g), we have

γ̂(0) =

⎛
⎜⎜⎜⎝

0 0
. . .

...
0 0

−2γ′
m · · · −2γ′
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⎞
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...
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32 · · · 32 −2β0

⎞
⎟⎟⎟⎠+ . . . ,

γ̂(2) =
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4π

⎛
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64
9 − 4

3
. . .

...
64
9 − 4

3

− 64
9 · · · − 64

9
4nf

3

⎞
⎟⎟⎟⎠+ . . . , (5.20)

where the renormalization of the scalar operators is determined by derivatives of the
QCD beta function β, and the quark mass anomalous dimension γm as

β̃′ ≡ g
∂

∂g
β̃ , γ′

m = g
∂

∂g
γm , (5.21)

with β̃ ≡ β/g and explicit expressions for β, γm collected in Appendix C.
Using the all-orders expression for γ̂(0), we find the following solution to the

coefficient evolution for the scalar case,

c(0)q (μ) = c(0)q (μh) +
2 [γm(μh)− γm(μ)]

β̃(μh)
c(0)g (μh) , c(0)g (μ) =

β̃(μ)

β̃(μh)
c(0)g (μh) .

(5.22)

In the tensor case, the leading behavior of the anomalous dimension γ̂(2) in
Eq. (5.20) yields the following solution at leading logarithmic order,
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cq(μ) =

{
3

16 + 3nf

[
16

3nf
r(nf ) + 1

]
+

nf − 1

nf
r(0)

}
cq(μh)

+
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3

16 + 3nf

[
16

3nf
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]
− 1

nf
r(0)

}∑
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− 16
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[r(nf )− 1] cg(μh) ,

cg(μ) =
3

16 + 3nf

[
nf r(nf ) +

16

3

]
cg(μh) +

3

16 + 3nf
[1− r(nf )]

∑
q

cq(μh) ,

(5.23)

where the factor r(nf ) is given by

r(n) =

(
αs(μ)

αs(μh)

)− 2
3β0

( 16
3 +n)

. (5.24)

For most phenomenological applications we may simply evaluate the tensor matrix
elements in terms of known parton distribution functions (PDFs) at the weak
scale μ ∼ mW . This avoids the need for renormalization group analysis (apart
from matching to a convenient scale to evaluate matrix elements) and heavy-quark
threshold matching conditions. Nonetheless, we have included the above results for
completeness and for future analyses which may require an evaluation of tensor
matrix elements at low scales, e.g., in considering multi-nucleon contributions to
matrix elements.

Our main focus in the phenomenological analysis will be on the spin-independent
cross section for heavy self-conjugate dark matter, for which the scalar and tensor
operators of dimension four are dominant. We will see that subleading orders in the
coefficient running in Eq. (5.22) can shift physical cross sections by large factors.
It is straightforward to include higher-order corrections in the solution to the tensor
coefficient running [88, 101], and to extend the analysis to treat the pseudoscalar
and pseudotensor operators of Eq. (5.3) [41].

5.3 Threshold Matching and Low Energy Coefficients

Nontrivial matching conditions relate theories with different numbers of active
quark flavors. Due to the lightness of the charm mass, and correspondingly poorly
convergentαs(mc) expansion, WIMP-nucleon cross sections can depend sensitively
on higher-order corrections. The vector and axial-vector operators have trivial
matching conditions, while, as previously stated, the matrix element of tensor oper-
ators may be evaluated at the weak scale. Pseudoscalar and pseudotensor operators
have velocity-suppressed matrix elements in physical WIMP-nucleon processes
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at small relative velocity. We thus focus on threshold matching for the scalar
operators relevant for spin-independent WIMP-nucleon scattering. We summarize
the knowledge of these threshold corrections, and present final expressions for
low energy coefficients, accounting for both renormalization group evolution and
threshold matching.

5.3.1 Heavy Quark Threshold Matching Conditions

After evolving to the scale μb ∼ mb, we integrate out the bottom quark, and enforce
the following matching condition for physical matrix elements, up to 1/mb power
corrections of the operators in nf = 5 and nf = 4 theories,

c(S)
g (μ)O(S)

g (μ) +
∑

q=u,d,s,c,b

c(S)
q (μ)O(S)

q (μ)

= c(S)′
g (μ)O(S)′

g (μ) +
∑

q=u,d,s,c

c(S)′
q (μ)O(S)′

q (μ) . (5.25)

The primed and un-primed coefficients in the above equation are in the nf = 4
and nf = 5 theories, respectively. For the scalar operators the leading contributions
are [69, 91]

c(0)′g (μb) =

[
1 +

αs(μb)

4π

[
−4

3
log

μ

mb

]
+ . . .

]
c(0)g (μb)

+
αs(μb)

4π

[
−1

3

] [
1 +

αs(μb)

4π

[
11− 4

3
log

μ

mb

]
+ . . .

]
c(0)b (μb) ,

c(0)′q (μb) = c(0)q (μb) + . . . , (5.26)

where the ellipses denote higher-order αs(μb) corrections. The contributions from

c(0)b (μb), both to c(0)′g (μb) and c(0)′q (μb), are available through O(α3
s ) in [25],

yielding corrections to c(0)′q (μb) at O(α2
s ). We are unable to find results for higher-

order contributions from c(0)g (μb) and c(0)q (μb) in the literature. The impact of
the available higher-order contributions are investigated in the next chapter. For
completeness we also include here the leading threshold matching condition for
tensor operators,

c(2)′g (μb) = c(2)g (μb) +
αs(μb)

4π

[
4

3
log

μb

mb

]
c(2)b (μb) ,

c(2)′q (μb) = c(2)q (μb). (5.27)

Similar conditions hold at the scale μc ∼ mc after integrating out the charm quark.
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5.3.2 Low Energy Coefficients

Let us put together the ingredients of renormalization group evolution and
threshold matching to complete the mapping of coefficients from a high scale
to a low scale. The operator coefficients c(S)

i (μ), for the nf -flavor theory

at scale μ, may be collected in the column (nf + 1)-vector �c(S)
(nf )

(μ) =

{c(S)
u (μ) , c(S)

d (μ) , c(S)
s (μ) , . . . , c(S)

g (μ)}. The coefficient running from a high scale,
μh, to a low scale, μ, with nf active quark flavors, and the matching at scale μ
between the nf -flavor and (nf − 1)-flavor theories may be represented as matrices

R(S)
(nf )

(μ, μh) and M(S)
(nf−1,nf )

(μ), respectively, as

�c(S)
(nf )

(μ) = R(S)
(nf )

(μ, μh)�c
(S)
(nf )

(μh) , �c(S)
(nf−1)(μ) = M(S)

(nf−1,nf )
(μ)�c(S)

(nf )
(μ) . (5.28)

Thus, composing the two effects, the mapping of coefficients in the nf = 5 theory
at the high scale μt onto coefficients in the nf = 3 theory at the low scale μ0 is
given by

�c(S)
(3)(μ0) = R(S)

(3)(μ0, μc)M
(S)
(3,4)(μc)R

(S)
(4)(μc, μb)M

(S)
(4,5)(μb)R

(S)
(5)(μb, μt)�c

(S)
(5)(μt) .

(5.29)

Collecting the results in Eqs. (5.22) and (5.26) for the scalar operators, the (nf +

1)× (nf + 1) matrix R(0)
(nf )

(μ, μh) is given by

R(0)
(nf )

(μ, μh) =

⎛
⎜⎜⎜⎝

1 2[γm(μ) − γm(μh)]/β̃(μh)
. . .

...
1 2[γm(μ) − γm(μh)]/β̃(μh)

0 · · · 0 β̃(μ)/β̃(μh)

⎞
⎟⎟⎟⎠ , (5.30)

while the nf × (nf + 1) matrix M(0)
(nf −1,nf )

(μq) is given by

M(0)
(nf−1,nf )

(μq) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

. . .
...

...
1 0 0
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12π

[
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[
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3 log
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] ]
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3π log
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mq

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.31)

with mq the mass of the heavy quark associated with the threshold at μq. We may
similarly collect the results in Eqs. (5.23) and (5.27) for the tensor operators. The
(nf + 1)× (nf + 1) matrix R(2)

(nf )
(μ, μh) is given by



130 5 QCD Analysis and Hadronic Matrix Elements

R(2)
(nf )

(μ, μh) =

⎛
⎜⎜⎜⎜⎜⎜⎝

16[1−r(nf )]
16+3nf

r(0)1+ 1
nf

[
16r(nf )+3nf
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]
J

...
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,

(5.32)

where the nf × nf matrices 1 and J are respectively the identity and the matrix with
all elements 1, and we have used the factor

r(n) =

(
αs(μ)

αs(μh)

)− 2
3β0

( 16
3 +n)

. (5.33)

The nf × (nf + 1) matrix M(2)
(nf−1,nf )

(μq) is given by

M(2)
(nf −1,nf )

(μq) =

⎛
⎜⎜⎜⎜⎝

1 0 0
. . .

...
...

1 0 0

0 · · · 0 αs(μq)
3π log μ

mq
1

⎞
⎟⎟⎟⎟⎠ . (5.34)

In the next chapter, we investigate the numerical impact of these corrections.

5.4 Hadronic Matrix Elements

Having determined the effective theory in terms of quark and gluon degrees of
freedom in nf = 3 (or nf = 4) flavor QCD, we may evaluate the resulting
nucleon matrix elements. This analysis is sufficient to determine low-velocity
WIMP-nucleon scattering cross sections. We focus here on ingredients necessary for
scalar and tensor operators relevant to spin-independent scattering; the extension for
vector and axial-vector currents, and for pseudoscalar and pseudotensor operators
is straightforward. The operators are to be evaluated at a renormalization scale
μ ∼ 1–2GeV appropriate to nf = 3 or nf = 4 flavor QCD.

5.4.1 Scalar Matrix Elements

For the dimension four scalar and tensor operators, we restrict attention to forward
matrix elements, neglecting 1/mN suppressed corrections. Let us define

〈N(k)|O(0)
q |N(k)〉 ≡ mNf (0)q,N ,

−9αs(μ)

8π
〈N(k)|O(0)

g (μ)|N(k)〉 ≡ mNf (0)G,N(μ) , (5.35)
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where the appearance of the numerical factor involving αs(μ) is purely conven-
tional. The operator matrix elements are not independent, being linked by the
relation

mNū(k)u(k) = 〈N(k)|θμμ |N(k)〉

= (1 + γm)
∑

q

〈N(k)|mqq̄q|N(k)〉 + β

2g
〈N(k)|(Ga

μν )
2|N(k)〉 ,

(5.36)

where N = p or n, mN is the nucleon mass, and we have ignored power corrections in
the above equation. The QCD beta function β and quark mass anomalous dimension
γm are given in Appendix C. We may solve

f (0)G,N(μ) = −9αs

4π
β̃(μ)−1

[
1− [1 + γm(μ)

] ∑
q=u,d,s

f (0)q,N

]
= 1−

∑
q=u,d,s

f (0)q,N + . . . ,

(5.37)

where the second equality is obtained by neglecting γm and O(α2
s ) contributions

to β. We will see that corrections to the leading relation are important for the robust
cross section predictions. For the quark matrix elements, we define the RG invariant
combinations,

ΣπN =
mu + md

2
〈p|(ūu + d̄d)|p〉 ,

Σ− = (md − mu)〈p|(ūu − d̄d)|p〉 ,
Σs = ms〈p|̄ss|p〉 . (5.38)

We use updated lattice results for the pion-nucleon sigma term, ΣπN =
39+18

−8 MeV [35], and the strange scalar matrix element, Σs = 40 ± 20MeV [74].
For Σs we assume a 50% uncertainty (cf. the estimated 25% in [74]). We use
Σ− = 2(2)MeV [49], and the quark mass ratios adopted from PDG values
(symmetrizing errors)

mu

md
= 0.49± 0.13 ,

ms

md
= 19.5± 2.5 . (5.39)

The independent quark matrix elements for the proton and neutron become

f (0)u,p = 0.018(8) , f (0)d,p = 0.030(15) , f (0)s,p = 0.043(21) ,

f (0)u,n = 0.015(7) , f (0)d,n = 0.034(14) , f (0)s,n = 0.043(21) . (5.40)
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For the neutron, we neglect higher order corrections proportional to mu −md and α.
In both cases, the gluon matrix element f (0)G,N is obtained from the quark matrix
elements via (5.36). For example, in the case of the proton, we find the gluon matrix
elements at scale μ = 1.2GeV,

f (0)LOG,p = 0.910(45) ,

f (0)NLO
G,p = 0.714(46)(24) ,

f (0)NNLO
G,p = 0.661(48)(37) ,

f (0)NNNLO
G,p = 0.633(48)(48) , (5.41)

where LO labels the leading αs(μ) result, corresponding to the expression in the
rightmost side of Eq. (5.37), and NkLO are results including corrections from
higher-order αs terms in β and γm. The first uncertainty is from the quark matrix
elements; cf. Eq. (5.40). For illustration, we also show the sensitivity of the higher
order results to scale variation using the range 1 < μ < 1.4. This scale dependence
is only from the operators, and will be cancelled by scale dependence in the
coefficients, coming renormalization group evolution, as we will see in the next
chapter.

A determination of matrix elements in nf = 4 QCD would avoid uncertainties
associated with the low scale μ ∼ 1GeV and the charm scale ∼ mc, such as power
corrections and perturbative corrections at the charm threshold. In the following
chapter we consider such an evaluation of the spin-independent cross section,
assuming the same values for the light quark matrix elements and obtaining the
gluon matrix element from Eq. (5.36) with an active charm quark. Recent lattice
measurements of the charm matrix element [47, 52] span a large range of values,
0.031 < f (0)c,N < 0.133, consistent with estimates from perturbative QCD [74].
Improved measurement of the charm matrix element is a target for maturing lattice
studies, with important implications for WIMP-nucleon scattering cross sections.

5.4.2 Tensor Matrix Elements

The forward matrix elements of the tensor operators are parameterized as

〈N(k)|O(2)μν
q (μ)|N(k)〉 ≡ 1

mN

(
kμkν − gμν

4
m2

N

)
f (2)q,N (μ) ,

〈N(k)|O(2)μν
g (μ)|N(k)〉 ≡ 1

mN

(
kμkν − gμν

4
m2

N

)
f (2)G,N(μ) . (5.42)
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Table 5.1 Operator
coefficients derived from
MSTW PDF analysis at
different values of μ

μ f (2)u,p (μ) f (2)d,p (μ) f (2)s,p (μ) f (2)G,p (μ)

1.0 0.404(6) 0.217(4) 0.024(3) 0.36(1)

1.2 0.383(6) 0.208(4) 0.027(2) 0.38(1)

1.4 0.370(5) 0.202(4) 0.030(2) 0.40(1)

The matrix elements of spin-two operators define moments of parton distribution
functions. Under this identification,

f (2)q,p (μ) =

∫ 1

0

dx x[q(x, μ) + q̄(x, μ)] , (5.43)

where q(x, μ) is the parton distribution function evaluated at scale μ. Neglecting
power corrections, the sum of spin two operators is identified as the traceless part of
the QCD energy momentum tensor, hence independent of scale,

∑
q=u,d,s

f (2)q,p (μ) + f (2)G,p (μ) = 1 . (5.44)

Similar to the spin-zero case, we use approximate isospin symmetry to set

f (2)u,n = f (2)d,p , f (2)d,n = f (2)u,p , f (2)s,n = f (2)s,p . (5.45)

Here the operators are scale dependent and we must choose a renormalization
scale to evaluate them. Table 5.1 lists coefficient values for renormalization scales
μ = 1GeV, μ = 1.2GeV and μ = 1.4GeV using the parameterization and
analysis of Martin et al. [87].



Chapter 6
Heavy WIMP-Nucleon Scattering
Cross Sections

The formalism collected in the previous chapters describe a complete set of tools for
making robust cross section predictions for heavy WIMPs scattering with nucleons.
The formalism for heavy particle lagrangians in Chap. 2 is used in Chap. 3 to
construct effective theories at the weak scale describing electroweak symmetric
interactions of the WIMP with SM Higgs and gauge bosons. In Chap. 4 we perform
the matching between the electroweak symmetric theory and the low-energy theory
of quarks and gluons, determining weak-scale coefficients in terms of a few WIMP
parameters such as its electroweak charges. The renormalization of the scalar and
tensor coefficients, and their mapping to lower energies using renormalization group
and effective theory methods are detailed in the previous chapter. In this chapter,
we assemble these pieces into a framework for careful analysis of cross section
predictions and their perturbative and input uncertainties.

The SM exhibits a surprising transparency of nucleons to WIMP scattering, due
to a cancellation between spin-0 and spin-2 amplitude contributions [59, 65]. Robust
cross section predictions demand a complete treatment of both perturbative and
hadronic uncertainties, including resummation of large logarithms in perturbative
QCD (pQCD). This chapter presents a careful study of the various contributions and
their uncertainties. We trace the evolution of coefficients from the high to low scale,
paying close attention to the effects of renormalization, heavy quark thresholds
and to the sizes of matrix elements. We identify the dominant uncertainties, and
determine strategies for evaluation of perturbative contributions and for scrutinizing
the final cross sections. We also identify Standard Model inputs whose improved
precision would impact our knowledge of WIMP-nucleon cross sections. Robust
predictions for the cross sections of the pure triplet, pure doublet, singlet-doublet
admixture, and triplet-doublet admixture are given.

Although we find that cancellations are generic, their severity depends on SM
parameters and on properties of DM such as its electroweak quantum numbers.
The presence of additional low-lying states could also have impact, and we
investigate such scenarios. For example, an extra Higgs boson modifies the spin-0
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amplitude, and could potentially weaken the cancellation between spin-0 and spin-2
amplitudes. We also consider WIMPs in larger SU(2)W representations.

This chapter is organized as follows. In Sect. 6.1 we trace the numerical
evolution of scalar and tensor coefficients from high to low scales, illustrating the
impact of renormalization group running, heavy quark threshold contributions, and
nucleon matrix elements. In Sect. 6.2, we survey the uncertainties from perturbative
corrections and hadronic inputs. Section 6.3 presents cross section predictions
for spin-independent low-velocity scattering on a proton. The sensitivity of cross
sections and their fractional uncertainty are illustrated, and several cross checks are
performed.

6.1 Cross Section Assembly Line

We may now put together the ingredients for mapping weak scale parameters onto
coefficients of operators in nf = 3 or nf = 4 flavor QCD. Let us illustrate the
numerical coefficients at different stages of the low-energy effective theory. For
studying the effects of renormalization group running, threshold matching and the
sizes of the nucleon matrix elements, we focus on default “central” values. Analysis
of perturbative and hadronic uncertainties is necessary for robust determination of
cross section predictions, and will be discussed in the following section.

For definiteness, let us illustrate with the following evaluation. The renormaliza-
tion group running and heavy quark matching for spin-2 operators are evaluated
at LO. The RG running from μc to μ0 from (5.20) is evaluated with NNNLO
corrections, including contributions to β/g through O(α4

s ) and γm through O(α4
s ).

Accordingly, the spin-0 gluonic matrix element from (5.37) is also evaluated at
NNNLO, including contributions to β/g through O(α4

s ) and γm through O(α3
s ).

We perform the RG running and heavy quark matching from μt to μc at NLO. The
motivation for these choices will be explained in the following section. Tables 6.1
and 6.2 show the results for the scalar and tensor coefficients of the pure triplet case,

Table 6.1 Scalar coefficients at each stage of the effective theory, labelled by the scale μ
and the number of active quark flavors nf , with overall factors πα2

2/m3
W extracted

u d s c b g

c(0)(μt , 5) −0.407 −0.407 −0.407 −0.407 −0.424 0.004

c(0)(μb, 5) −0.418 −0.418 −0.418 −0.418 −0.436 0.009

c(0)(μb, 4) −0.418 −0.418 −0.418 −0.418 − 0.012

c(0)(μc, 4) −0.443 −0.443 −0.443 −0.443 − 0.022

c(0)(μc, 3) −0.443 −0.443 −0.443 − − 0.028

c(0)(μ0, 3) −0.458 −0.458 −0.458 − − 0.033

〈N|c(0)(μ0, 3)O(0)|N〉 (MeV) −8 −13 −18 − − −128

The final line shows the proton matrix elements (including coefficient) for each contribution
to the total scalar amplitude
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with overall factors πα2
2/m3

W extracted. The coefficients are labelled by the scale μ
and number of active quark flavors nf . We take μt = 126, μb = mb, μc = mc

and μ0 = 1.2 as default values. Coefficients at the weak scale are obtained from
renormalization of the bare matching coefficients (first line). Renormalization group
evolution is performed down to the bottom threshold (second line). The bottom
quark is integrated out (third line). Renormalization group evolution is performed
down to the charm threshold (fourth line). The charm quark is integrated out (fifth
line). Renormalization group evolution is performed down to the low scale (sixth
line). The final line shows an evaluation of the amplitude, i.e., the operator matrix
element including the coefficient.

For the scalar case, the total amplitude is,

M(0)
N = m−3

W 〈N|
⎛
⎝ ∑

q=u,d,s

[
c(0)q O(0)

q

]
+ c(0)g O(0)

g

⎞
⎠ |N〉 = −167MeV , (6.1)

where the overall factors πα2
2/m3

W have been extracted in the right hand side. The
gluon contribution is dominant, gaining an order of magnitude from the coefficient
running and heavy quark contributions, and having a large matrix element reflecting
the gluon content of the nucleon.

For the tensor case, the gluon coefficient flips in sign at scale μ ∼ 34GeV,
during the running from μt to μb. Two evaluations of the total amplitude,

M(2)
N = m−3

W 〈N|
(∑

q

[
c(2)q vμvνO(2)μν

q

]
+ c(2)g vμvνO(2)μν

g

)
|N〉 , (6.2)

are considered in Table 6.2: one at a high-scale μ ∼ 70GeV using input from PDFs
for five active quark flavors and the gluon, and another at a low-scale using input

Table 6.2 Tensor coefficients at each stage of the effective theory, labelled by the
scale μ and the number of active quark flavors nf , with overall factors πα2

2/m3
W

extracted

u d s c b g

c(2)(μt, 5) 0.667 0.667 0.667 0.667 0.091 −0.050

c(2)(μb, 5) 0.498 0.498 0.498 0.498 0.073 0.080

c(2)(μb, 4) 0.498 0.498 0.498 0.498 − 0.080

c(2)(μc, 4) 0.418 0.418 0.418 0.418 − 0.140

c(2)(μc, 3) 0.418 0.418 0.418 − − 0.140

c(2)(μ0, 3) 0.405 0.405 0.405 − − 0.147

〈N|c(2)(70, 5)O(2)|N〉 (MeV) 116 71 24 17 1 −9

〈N|c(2)(μ0, 3)O(2)|N〉 (MeV) 109 59 8 − − 40

The final lines show the proton matrix elements (including coefficient) for each
contribution to the total scalar amplitude for a high- and low-scale evaluation
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from PDFs for three active quark flavors and the gluon. The dominant contribution
is from light quarks, but the gluon contribution is not negligible. The high- and
low-scale evaluations (with overall factors πα2

2/m3
W extracted) yield 220MeV

and 216MeV, respectively, showing agreement up to higher order perturbative
corrections and power corrections.

6.2 Survey of Uncertainties

Note that the scalar and tensor amplitude contributions in Tables 6.1 and 6.2 have
similar magnitudes but opposite sign. This leads to destructive interference and
anomalously small cross sections. In this situation the prediction becomes sensitive
even to subdominant effects, and a robust conclusion requires careful study of each
contribution, and of uncertainties from perturbative and power corrections, and from
Standard Model inputs such as nucleon matrix elements. In this section, we consider
uncertainties from scale variation and hadronic inputs, taking for definiteness the
case of a pure triplet scattering on a proton.

For scale variations, we consider the ranges: m2
W/2 ≤ μ2

t ≤ 2m2
t , m2

b/2 ≤ μ2
b ≤

2m2
b , m2

c/2 ≤ μ2
c ≤ 2m2

c . Inspection of the renormalization group evolution for
scalar operators, given in Eq. (5.30), and the scalar gluon matrix element, given in
Eq. (5.37), shows that the gluon contribution to the total scalar amplitude is given by

c(0)g (μc, 3)
β̃(μ0)

β̃(μc)

1

β̃(μ0)
2
[
1− [1 + γm(μ0)

] ∑
q=u,d,s

f (0)q,N

]
, (6.3)

and that the μ0-dependent part of the contribution from light quarks is given by

c(0)g (μc, 3)
2
[
γm(μ0)− γm(μc)

]
β̃(μc)

∑
q=u,d,s

f (0)q,N , (6.4)

where c(0)g (μc, 3) is the scalar gluon coefficient at the charm scale μc with nf = 3
flavors. The sum of the above contributions is independent of the low scale μ0, and
hence we may fix μ0 in our evaluation, taking μ0 = mc = 1.4GeV for definiteness.
We find a large residual uncertainty at LO from μc and μb scale variation. The
RG running from μc to μ0 from (5.20) is thus evaluated with NNNLO corrections,
including contributions to β/g through O(α4

s ) and γm through O(α4
s ). Accordingly,

the scalar gluon matrix element from (5.37) is also evaluated at NNNLO, including
contributions to β/g through O(α4

s ) and γm through O(α3
s ). The impact of these

higher order corrections will be illustrated for the pure triplet in the following
section. We perform the RG running and heavy quark matching from μt to μc at
NLO, and ignore power corrections appearing at relative order αs(mc)Λ

2
QCD/m2

c ;
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typical numerical prefactors appearing in the coefficients of the corresponding
power-suppressed operators [97] suggest that these effects are small. For the scalar
amplitude (with overall factors πα2

2/m3
W extracted), we find

M(0)
p = −167

(
+1
−1

)(
+0
−1

)(
+5
−14

)(
2
)(
3
)(
5
)
MeV , (6.5)

where the first three uncertainties are from the scale variation of μt, μb and μc,
respectively, and the last three are respectively from the up, down and strange matrix
elements in Eq. (5.40). The residual perturbative uncertainty is dominated by the
charm scale. In the next section, we will investigate the impact of higher orderα(μc)
corrections in the running from μb to μc and in the matching condition at the charm
threshold. We will also consider an alternative evaluation of matrix elements in nf =
4-flavor QCD.

For the tensor operators, the renormalization group running and heavy quark
matching are evaluated at LO. We find the tensor amplitude (with overall factors
πα2

2/m3
W extracted)

M(2)
p = 216

(
+11
−7

)(
2
)(
2
)(
1
)(
2
)
MeV , (6.6)

where the first uncertainty is from scale variation of μt, and we have neglected
other scale uncertainties being much smaller. The sensitivity to μt is from log
terms, ∼ logμt, in the high-scale matching coefficients, and its reduction would
require a NLO weak-scale matching computation. The remaining uncertainties in
Eq. (6.8) are from PDF inputs for up, down, strange, and glue, respectively. Up to
power corrections and subleading O(αs) corrections, our evaluation is equivalent to
an evaluation in either the nf = 4 or nf = 5 flavors theories, taking the c- and
b-quark momentum fractions of the proton as input. We have verified this with
matrix elements taken from [87]; e.g., the numerical difference between the result
in Eq. (6.8) and the high-scale evaluation in Table 6.2 is within our error budget.

For the combined, scalar and tensor amplitudes (with overall factors πα2
2/m3

W
extracted), we find

M(2)
p +M(0)

p = 49
(
+19
−10

)(
7
)
MeV , (6.7)

where the first and second uncertainties represent the total (combined in quadrature)
scale and hadronic uncertainties, respectively. The cancellation between scalar and
tensor contributions leads to a small total amplitude (and hence cross section), with
large fractional uncertainties. For the pure doublet case, the cancellation is stronger,
giving

M(2)
p +M(0)

p = 1.5
(
+7
−4

)(
3
)
MeV . (6.8)

In the next section we translate these amplitudes into cross section predictions with
estimated uncertainties.
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6.3 Cross Section Predictions and Consistency Checks

The low-velocity, spin-independent, cross section for WIMP scattering on a nucleus
of mass number A and charge Z may be written

σA,Z =
m2

r

π
|ZMp + (A − Z)Mn|2 ≈ m2

r A2

π
|Mp|2 , (6.9)

where Mp and Mn are the matrix elements for scattering on a proton or neutron
respectively and mr = MmN/(M+mN) denotes the reduced mass of the dark-matter
nucleus system. These matrix elements are the sum of the scalar and tensor matrix
elements, M(0)

N and M(2)
N , studied in the previous section. Explicitly, the matrix

elements are

MN = m−3
W 〈N|

⎛
⎝ ∑

q=u,d,s

[
c(0)q O(0)

q + c(2)q vμvνO(2)μν
q

]

+ c(0)g O(0)
g + c(2)g vμvνO(2)μν

g

⎞
⎠ |N〉 . (6.10)

In the M � mN limit, the cross section scales as A4. At finite velocity, a nuclear
form factor modifies this behavior [73]. Cross sections for scattering on the neutron
and proton are numerically similar; we present results for the latter.

Since the pure-state weak-scale matching coefficients only depend electroweak
charges and the mapping of the high-scale theory onto the low-scale theory
only on known Standard Model inputs, upon specifying gauge representations for
the WIMP, we obtain parameter-free cross section predictions. The triplet cross
section is

σT
SI = 1.3+1.2

−0.5
+0.4
−0.3 × 10−47 cm2, (6.11)

where the first (second) error represents 1σ uncertainty from pQCD (hadronic
inputs). Subleading corrections in ratios mb/mW and ΛQCD/mc are expected to be
within this error budget. Stronger cancellation between spin-0 and spin-2 amplitudes
in the doublet case implies a smaller cross section,

σD
SI � 10−48 cm2 (95%C.L.) . (6.12)

The cancellation between scalar and tensor contributions leads to small cross
sections and large fractional error that depend sensitively on subleading perturbative
corrections and parametric inputs. As illustrations, sensitivity to the Higgs mass,
mh, is shown in Fig. 6.1, the impact of higher order pQCD corrections are shown in
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Fig. 6.1 SI cross sections for low-velocity scattering on the proton as a function of mh, for the pure
cases indicated. Here and in the plots below, dark (light) bands represent 1σ uncertainty from
pQCD (hadronic inputs). The vertical band indicates the physical value of mh
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Fig. 6.2 SI cross section for low-velocity scattering on the proton as a function of mh, for the pure-
triplet case. Labels refer to inclusion of LO, NLO, NNLO and NNNLO corrections in the RG
running from μc to μ0 and in the spin-0 gluon matrix element. Bands represent 1σ uncertainty
from neglected higher order pQCD corrections

Fig. 6.2, and the sensitivity to the strange quark content of the nucleon are shown in
Figs. 6.3 and 6.4.

Robust cross section predictions demand a complete treatment of both per-
turbative and hadronic uncertainties. We may consider the impact of higher
order αs(μc) corrections in the running between μb and μc as well as in the
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Fig. 6.3 Cross section for low-velocity scattering on a nucleon for a pure triplet. The dark shaded
region represents the 1σ uncertainty from perturbative QCD, estimated by varying factorization
scales. The light shaded region represents the 1σ uncertainty from hadronic inputs. We consider
here “traditional” inputs ΣπN and Σ0 [15, 92], as well as recent lattice determinations of Σlat
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Fig. 6.4 Breakdown of contributions to the matrix element Mp using the representative values
mh = 120 GeV and Σlat

πN = 47(9) MeV. The labels u(S), d(S), s(S) and g(S) refer to spin-S up,
down, strange and gluon operator contributions, respectively. The thickness represents the 1σ
uncertainty from perturbative QCD. The left-hand vertical band corresponds to the lattice value
Σlat

s = 50(8) MeV and the right-hand vertical band corresponds to the range Σs = 366(142) MeV

threshold matching at μc. The cross sections shown in Fig. 6.5 are evaluated with
NNNLO corrections in the running from μb to μc and with the NNNLO threshold
matching relations available from [25]. We check that the scheme dependence of
the matching conditions have minimal impact. The scale variation of μc would
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Fig. 6.5 Impact of NNNLO perturbative QCD corrections in the running from μb to μc and in
(part of) threshold matching at μc on the spin-independent cross sections for low-velocity scattering
on the proton

be further minimized given complete results for heavy quark decoupling. Using
the physical Higgs mass, we find that the conclusion for the pure doublet cross
section given in Eq. (6.12) remains the same, while the triplet prediction becomes
σT
SI = 0.8+0.7

−0.3
+0.3
−0.3 × 10−47 cm2, consistent with Eq. (6.11) given the uncertainties.

To avoid large perturbative uncertainties associated with the charm scale, we
may also consider evaluating matrix elements in the nf = 4 flavor theory. Figure 6.6
shows the results as a function of the charm scalar matrix element. Cancellation for
the doublet is strongest near matrix element values estimated from pQCD. Direct
determination of this matrix element could make the difference between a prediction
and an upper bound for this (albeit small) cross section.

Previous computations of WIMP-nucleon scattering have focused on a dif-
ferent mass regime where other degrees of freedom are relevant [34], or have
neglected the contribution c(2)2 from spin-2 gluon operators [65]. For pure states,
this would lead to an O(20%) shift in the spin-2 amplitude, with an underes-
timation of the perturbative uncertainty by O(70%). For comparison, neglect-
ing the spin-2 quark contribution from (b, c, s, d, u) shifts the spin-2 amplitude
by O(1%, 10%, 10%, 30%, 50%). Due to amplitude cancellations, the resulting
effect on the cross sections in Fig. 6.1 ranges from a factor of a few to an order of
magnitude.

For mixed states, we obtain the results pictured in Fig. 6.7. For weakly coupled
WIMPs, we consider κ � 1. The presence of a scale separation M,M′ � mW ,
implies that the partner state contributes at leading order when |Δ| � mW , or more
precisely |Δ| � mW(4πκ)2. Within this regime, the purely spin-0 contributions
from tree-level Higgs exchange can dominate (cf. [27]). However, when mW/Δ



144 6 Heavy WIMP-Nucleon Scattering Cross Sections

had

pert

20 40 60 80 100 120

10−47

10−48

10−49

10−50

10−51

σ
S
I 
(c

m
2
)

triplet

doublet

〈N|mccc|N〉(MeV)¯

Fig. 6.6 SI cross sections for low-velocity scattering on the proton, evaluated in the nf = 4
flavor theory as a function of the charm scalar matrix element, for the pure cases indicated. The
pink region corresponds to charm content estimated from pQCD [74]. The region between orange
(black) dashed lines correspond to direct lattice determinations in [47, 52]

suppression is significant, loop-induced contributions become relevant, and the
opposite signs of spin-0 and spin-2 amplitudes lead to cancellations in the κ-Δ
plane. In the decoupling limit of SUSY, κ depends on tβ and the sign of μ, taking
values κ ≤ 1

2 tan θW (κ ≤ 1
2 ) for a bino-higgsino (wino-higgsino) mixture.

A simple dimensional estimate of the pure-state cross section yields1 σSI ∼
α4
2m4

N/m6
W ∼ 10−45 cm2. However, destructive interference between spin-0 and

spin-2 amplitudes leads to anomalously small cross sections. The degree of cancel-
lation depends on SM parameters such as mh in Fig. 6.1, and on the choice of WIMP
quantum numbers. Extending our computation to pure states of arbitrary isospin, J,
and hypercharge, Y, the resulting cross section is minimum for (J, Y) = (12 ,

1
2 )

corresponding to the doublet, and increases for larger J at fixed Y; e.g., the result
for Y = 0 is σ(J,0)

SI = [J(J + 1)/2]2σT
SI.

Additional structure in the Higgs sector may also have impact. We illustrate
this with a second CP-even Higgs of mass mH > mh = 126GeV, arising in the
context of the type-II two-Higgs-doublet model. Upon including diagrams with
both Higgses, we obtain pure-state cross sections in terms of mH , tβ ≡ tanβ and
η ≡ tβ cos(β − α) (following the parameterization in [20] for departures from the
“alignment limit”). For tβ � 1 and |η| ≤ O(1), the couplings of the SM-like
Higgs to W±, Z0, u, c, t are given by 1 + O(1/t2β), while those to d, s, b are given

1Results consistent with this estimate were obtained in previous works missing the cancellation
[28, 42].
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Fig. 6.7 SI cross sections for low-velocity scattering on the proton for the singlet-doublet and
doublet-triplet admixtures, as a function of the mass splitting between pure-state constituents,
Δ/[(4πκ)2 mW ] (in conveniently chosen units such that interesting features of the curves with
different κ may be displayed on the same scale). We indicate pure case limits and label each curve
with the κ value used. Inset plots use the same units

by (1− η) +O(1/t2β), measured relative to SM values. Existing phenomenological
constraints are not sensitive to the sign of the latter, allowing for both η ≈ 0, 2 where
the magnitude is near the SM value [37]. Figure 6.8 shows cross section predictions
for pure states with quantum numbers (J, Y) indicated, including (2, 0), the smallest
representation for which WIMP decay by dimension five operators is forbidden by
gauge invariance [28].
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Fig. 6.8 SI cross sections for low-velocity scattering on the proton as a function of η ≡
tβ cos(β − α), for pure states with quantum numbers (J, Y). The values |η|, |η − 2| � 0.5 are
phenomenologically allowed [37]. Cross sections assuming only a SM-like Higgs are at η = 0



Chapter 7
Conclusions

Data from a range of astrophysical and cosmological observations, such as the
brightness of supernovae at various redshifts [79, 81], the spectra of cosmic
microwave background anisotropies [2, 63], and the primeval abundance of light
elements [96], are sensitive to the matter (ΩM) and baryon (ΩB) densities in the
universe, leading, e.g., to the precise measurements [2]:

ΩMh2 = 0.1423± 0.0029 , ΩBh2 = 0.02207± 0.00033 . (7.1)

Evidence for the existence of dark matter may be summarized by the inequality of
ΩM and ΩB, motivating both experimental and theoretical studies to elucidate the
nature of particle dark matter.

Presently, this research program faces several challenges. First, there are no
definitive signals from dark matter search experiments thus far, only a few anomalies
considered tenuous due to large astrophysical backgrounds and contradictory results
among various searches. Second, while theoretical visions offer some guidance to
experimental searches, it is often difficult to extract definite predictions from the
multi-dimensional parameter space of models. Third, relating experimental signals
and theoretical models require a robust analysis of model-independent uncertainties,
e.g., from astrophysical or Standard Model inputs.

In this thesis, we developed effective theory tools aimed at controlling the
uncertainties inherent to a vast landscape of theoretical models and to our knowledge
of Standard Model physics relevant for WIMP-nucleon scattering. We employed
two scale separations, M � mW above the weak scale and mW � mb below the
weak scale, to identify universal components underlying the interactions of WIMPs
with the Standard Model.

Above the electroweak scale, we developed heavy WIMP effective theory
(HWET) for systematically describing the interactions of heavy WIMPs (M � mW )
with Standard Model gauge and Higgs bosons. In the absence of a specified UV
completion, HWET provides a universal parametrization of these interactions for
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WIMPs arising in models known (e.g., SUSY), unknown, or in models where pre-
dictions require a nonperturbative description (e.g., dark baryons). The universality
sharpens in the heavy WIMP limit, where cross section predictions for WIMPs of
given electroweak quantum numbers depend on Standard Model inputs only.

Below the electroweak scale, we constructed the basis of operators describing
the interactions of the lightest electrically neutral WIMP state χ with the quarks and
gluons of 5-flavor QCD. This effective theory at low energies is independent of the
heavy WIMP assumption, and applies to a broad class of underlying models for the
WIMP. We focused on the basis for self-conjugate χ with mass M � mW , providing
the necessary tools to relate the theory above the electroweak scale to the theory
at low-energies, such as weak-scale matching techniques, operator renormalization,
renormalization group evolution and heavy quark threshold matching.

Employing this effective theory framework, we presented the first complete
solution of the twelve operator coefficients describing interactions below the weak
scale, in the heavy WIMP limit. We emphasized the importance of the complete set
of matching contributions; in particular, we found that scalar gluon contributions
dominate, and that tensor gluon contributions are sizable and represent the largest
source of perturbative uncertainty in the tensor amplitude. We presented a careful
treatment of both perturbative and hadronic input uncertainties and of the resumma-
tion of large logarithms ∼ logmt/mc. We also identified aspects of Standard Model
physics whose further study would improve our knowledge of WIMP-nucleon
scattering, such as a complete set of threshold matching corrections at the charm
scale, and the nucleon scalar matrix elements evaluated in nf = 4 QCD. The present
analysis is systematically improvable in small ratios mW/M, mb/mW , ΛQCD/mC

and in powers of αs at various renormalization scales.
There is a surprising transparency of WIMPs to nucleons due to a cancellation

between scalar and tensor amplitudes. In this situation, cross section predictions
and its fractional uncertainty become sensitive to perturbative contributions and
parametric inputs. We presented absolute predictions for WIMPs transforming
under irreducible representations of SU(2)W × U(1)Y (Fig. 6.1), and investigated
the impact of perturbative QCD corrections (Figs. 6.2 and 6.5), tensor gluon
contributions neglected in previous works, and our knowledge of nucleon scalar
matrix elements (Figs. 6.3, 6.4 and 6.6). We also considered the impact of model-
dependent extensions such as additional WIMPs (Fig. 6.7) and an extended Higgs
sector (Fig. 4.5). With obvious modifications, our results can be extended to
include additional low-energy field content beyond those considered here, or
to investigate power corrections to the heavy WIMP limit. It is also interesting
to investigate the impact of nuclear effects on the cancellation between scalar and
tensor contributions [94].

The analysis of dark matter observables is a new application of heavy particle
effective theory. We have developed several nontrivial aspects, including a clear
statement of Lorentz invariance for bottom-up construction of heavy particle
lagrangians, the introduction of a consistent renormalization scheme for heavy
WIMP-SM vertices, and the computation of new heavy-particle loop integrals with
nonzero residual masses. The new integral basis evaluated here may be applied
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to other processes such as low-energy lepton-nucleon scattering [62]. Beyond the
application to direct scattering developed in this thesis, an extension of HWET
with hard-collinear modes provides the framework for computing the annihilation
of WIMPs to electroweak gauge bosons, including the resummation of large
logarithms, ∼ log M

mW
, relevant for indirect detection experiments [11].

Heavy WIMPs are plausible dark matter particle candidates, compatible with
the absence of experimental signals thus far (e.g., at the LHC and LUX facilities)
and with relic abundance estimates. Prospects for detecting heavy WIMPs in under-
ground direct detection search experiments are challenged by large backgrounds
from coherent neutrino scattering. On the other hand, it is in this regime where defi-
nite predictions, precisely constrained by heavy particle universality, can be made. If
such backgrounds can be controlled, then the tools developed in this thesis, together
with improvements in our knowledge of Standard Model contributions (e.g., of
perturbative QCD and nucleon matrix elements contributions), provide precise cross
section targets with minimal model-dependence, allowing us to test the WIMP
hypothesis robustly. If neutrino-scattering backgrounds prove insurmountable, then
we might refocus efforts on alternative experimental strategies such as production
at future colliders and indirect detection at future telescopes.



Appendix A
Solution to the Invariance Equation

Section 2.3.4 describes the solution of the invariance equation (2.52) for the function
Γ(v, iD) in the free theory. The solution in the interacting theory is not simply
obtained from the free one by replacing ∂ with D. Here we present a method of
solution that is valid to any order in 1/M. Since we use Γ(v, iD) to construct the
invariant Lagrangian, the existence of a solution for Γ(v, iD) proves that a non-zero
Lagrangian exists at any order in 1/M. First, we will construct the general solution
in Sect. A.1 and then explicitly apply this construction to the spin 1/2 theory up to
order 1/M3 in Sect. A.2.

A.1 Series Solution for Γ

Recall Eq. (2.52) for Γ required to build explicitly invariant operators,

Γ(v + q/M, iD − q)B−1W(B, iD + Mv) = Γ(v, iD) , (A.1)

where to first order in q we have B−1v = v+ q/M. Let us expand in orders of 1/M
and define

X ≡ B−1W = 1 + qμXμ = 1 + qμ

[
1

M
X(1)
μ +

1

M2
X(2)
μ + . . .

]
, (A.2a)

Γ = 1 +
1

M
Γ(1) +

1

M2
Γ(2) + . . . . (A.2b)

We note that the variation in Γ arises from the variations in v and in iD,

δΓ = Γ(v + q/M, iD − q)− Γ(v, iD) = qμ

(
− ∂

∂iDμ
Γ +

1

M
∂

∂vμ
Γ

)
. (A.3)
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Equating orders in 1/M, we find

∂

∂iDμ
Γ(n) =

∂

∂vμ
Γ(n−1) + Γ(n−1)X(1)

μ + Γ(n−2)X(2)
μ + · · ·+ Γ(0)X(n)

μ ≡ Y(n)
μ ,

(A.4)

where we define Γ(0) = 1. Note that Eq. (A.4) is understood to be contracted with
qμ so that pieces proportional to vμ should be dropped. We can solve this equation
for Γ(n) obtaining

Γ(n) =

n∑
m=1

(−1)m−1

m!
iDμ1

⊥ iDμ2

⊥ . . . iDμm
⊥

∂

∂iDμ1

∂

∂iDμ2
. . .

∂

∂iDμm−1
Y(n)
μm

= iDμ
⊥Y(n)

μ − 1

2!
iDμ

⊥iDν
⊥

∂

∂iDμ
Y(n)
ν + . . . , (A.5)

provided that at each order, the Y(n) derived from the already determined
Γ(1) , . . . ,Γ(n−1) satisfy1

∂

∂iD[ν
Y(n)
μ] = 0 , (A.6)

where A[μBν] = (AμBν−AνBμ)/2 denotes antisymmetrization. Using the definition
of Y(n) we can show that this imposes constraints on X(n), for n ≥ 2,

∂

∂iD[ν
X(n)
μ] = − ∂

∂v[μ
X(n−1)
ν] +X(n−1)

[μ X(1)
ν] +X(n−2)

[μ X(2)
ν] + . . .+X(1)

[μ X(n−1)
ν] ≡ Z(n)

μν .

(A.7)

For Eq. (A.7) to have a solution, a consistency condition on Z(n)
μν requires that2

0 = vσε
μνρσ ∂

∂iDρ
Z(n)
μν . (A.8)

We can show by induction that Eq. (A.7) can be solved at each order. Since X(1) is
dimensionless, it cannot depend on iD; hence Z(2) from (A.7) is also independent
of iD and solves (A.8). Now assume that we have constructed solutions X(n)

to Eq. (A.7) for n = 1, . . . ,N − 1 (necessarily obeying the constraint (A.8)).
Application of the Jacobi identity shows that the constraint (A.8) is then obeyed
for n = N and a solution to Eq. (A.7) can be found for n = N.

Let us find a solution to Eq. (A.7) that reduces to a given Xfree for the non-
interacting theory (e.g., Xfree = B−1W from (2.56)). First, note that the existence

1This is the analog of �∇× �E = �0 for the existence of a solution φ of �∇φ = �E in electrostatics.
2This is the analog of �∇ · �B = 0 for the existence of a solution �A of �∇× �A = �B in magnetostatics.
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of the free case solution given in (2.57) implies that the X(n) defined in the free
case from (2.56) must obey the constraint (A.7). Let us define naively covariantized

quantities X̂(n) = X(n)
free

∣∣∣
∂→D

, with a definite ordering prescription, e.g. as in (2.63),

and define Ẑ(n) by

Ẑ(n)
μν ≡ ∂

∂iD[ν
X̂(n)
μ] . (A.9)

A straightforward calculation then shows that (A.7) is solved by

X(n)
μ = X̂(n)

μ + 2

n−1∑
m=1

(−1)m

(m + 1)!
iDν1

⊥ · · · iDνm
⊥

∂

∂iDν1
· · · ∂

∂iDνm−1

(
Z(n)
νmμ − Ẑ(n)

νmμ

)
.

(A.10)

In the free case we have Z(n) = Ẑ(n) and X(n) reduces to the free case solution.
Having found a suitable X(n) satisfying (A.7) we may then proceed to build Γ(n)

satisfying (A.4), and hence Γ satisfying (2.52).
Note that Z(n) has mass dimension n − 2 so that n = 4 is the first order at

which field strength dependent terms can cause Z(n) 
= Ẑ(n). Correspondingly, our
choice (A.10) ensures that field-strength dependent corrections to X(n) − X̂(n) can
first appear at order n = 4. This can be explicitly seen in the solution for the spin
1/2 theory in the next section.

A.2 Explicit Solution for Γ in the Spin 1/2 Theory

To illustrate, let us calculate Γ for the spin 1/2 theory. Consider the free solu-
tion (2.56),

Xμ(v, i∂) =
1

2M
γ⊥μ +

1

4M2 σ
⊥
μν∂

ν

[
1− iv · ∂

M
+

1

M2

(
(iv · ∂)2 − 1

4
(i∂⊥)2

)
+ . . .

]
,

(A.11)

and the arbitrary covariantization,

X̂μ(v, iD) =
1

2M
γ⊥μ +

1

4M2
σ⊥
μνDν

[
1− iv · D

M
+

1

M2

(
(iv · D)2 − 1

4
(iD⊥)2

)
+. . .

]
.

(A.12)

A corresponding solution for Γ in the free theory is displayed in (2.57). Now let us
follow the construction of the previous section order by order.
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Order 1/M: First, we determine,

Y(1)
μ = X(1)

μ = X̂(1)
μ =

γ⊥
μ

2
. (A.13)

This function clearly satisfies Eq. (A.6) so that we may solve for

Γ(1) =
1

2
iD/ ⊥ . (A.14)

Order 1/M2: Continuing to the next order, we evaluate

Z(2)
μν = − i

4
σ⊥
μν = Ẑ(2)

μν , (A.15a)

X(2)
μ =

1

4
σ⊥
μνDν = X̂(2)

μ , (A.15b)

Y(2)
μ = −1

2
γ⊥
μ iv · D − 1

4
iD⊥

μ . (A.15c)

Solving for Γ(2) yields

Γ(2) = −1

8
(iD⊥)2 − 1

2
iD/ ⊥iv · D . (A.16)

Order 1/M3: At the next order, we find

Z(3)
μν =

i
4
σ⊥
μν iv · D = Ẑ(3)

μν , (A.17a)

X(3)
μ = −1

4
σ⊥
μνDν iv · D = X̂(3)

μ , (A.17b)

Y(3)
μ =

1

2
γ⊥
μ (iv · D)2 +

3

8
iD⊥

μ iv · D +
1

8
iv · DiD⊥

μ − 1

2
iD/ ⊥iD⊥

μ (A.17c)

− 1

16
(iD⊥)2γ⊥

μ +
1

8
iD/ ⊥σ⊥

μνDν .

After some manipulations, the resulting Γ(3) is

Γ(3) =
1

4
(iD⊥)2iv · D +

iD/ ⊥
2

[
−3

8
iD/ ⊥(iD⊥)2 + (iv · D)2

]
− g

8
vαGαβDβ

⊥

− g
16

σ⊥
αβGαβ iD/ ⊥ +

g
8

[
iγβ

⊥σ
μα
⊥ [Dμ,Gβα]

−vα[Dμ
⊥,Gαμ]− [Dμ

⊥,G⊥
μβ ]γ

β
⊥

]
. (A.18)
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Order 1/M4: Continuing to higher order we find

Z(4)
μν = Ẑ(4)

μν +
g
32

(
−iG⊥

μν + σ⊥
μσG⊥σ

ν − σ⊥
νσG⊥σ

μ

)
, (A.19a)

X(4)
μ = σ⊥

μνDν

[
1

4
(iv · D)2 − 1

16
(iD⊥)

2

]
+

g
32

iDν
⊥
(
−iG⊥

μν + σ⊥
μσG⊥σ

ν − σ⊥
νσG⊥σ

μ

)
.

(A.19b)

Note that X(4)
μ differs from the trial solution X̂(4)

μ . We may continue in this

manner to construct Y(4)
μ and Γ(4).



Appendix B
Integrals and Inputs for Weak Scale Matching

B.1 Self Energy Integrals and Standard Model Two-Point
Functions

Here and in the following sections we use the notation

[cε] =
iΓ(1 + ε)

(4π)2−ε
, (dL) =

ddL
(2π)d

. (B.1)

The self-energies in Sect. 3.3 and the hχ̄χ three-point functions in Sect. 4.2.1 require
the following integrals,

I1(δ,m) =

∫
(dL)

1

v · L − δ + i0
1

(L2 − m2 + i0)2

=
∂

∂m2
I3(δ,m)

= [cε]m
−2ε

{
2√

m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]

+O(ε)

}
,

I2(δ,m) =

∫
(dL)v · L

1

v · L − δ + i0
1

(L2 − m2 + i0)2

= δI1(δ,m) +
i

(4π)2
B0(0,m,m)
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= [cε]m
−2ε

{
1

ε
+

2δ√
m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]

+O(ε)

}
,

I3(δ,m) =

∫
(dL)

1

v · L − δ + i0
1

L2 − m2 + i0

= [cε]m
−2ε

{
− 2δ

ε
+ 4
√

m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)

−π

2

]
− 4δ +O(ε)

}
,

I4(δ1, δ2,m) =

∫
(dL)

1

v · L − δ1 + i0
1

v · L − δ2 + i0
1

L2 − m2 + i0
. (B.2)

For I4(δ1, δ2,m), let us specialize to δ2 = 0 or δ1 = δ2,

I4(δ, 0,m) =
1

δ

[
I3(δ,m)−I3(0,m)

]

= [cε]m
−2ε

{
−2

ε
+
4
√

m2−δ2 − i0
δ

[
arctan

(
δ√

m2 − δ2 − i0

)
−π

2

]

− 4 +
2πm
δ

+O(ε)

}
,

I4(δ, δ,m) =
∂

∂δ
I3(δ,m)

= [cε]m
−2ε

{
− 2

ε
− 4δ√

m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]

+O(ε)

}
. (B.3)

The two-point functions for the electroweak SM bosons appearing in (4.21)
are obtained by summing the fermionic and bosonic contributions given below.
Following Denner [32], we have

ΣAA′(0) = − α

4π

{
3B0(0,mW ,mW) + 4m2

W B′
0(0,mW ,mW)

− 4

3

∑
f ,i

[
Nf

cQ2
f B0(0,mf ,i,mf ,i)

]}
,

ΣAZ(0)

m2
Z

= − α

4π

{
− 2cW

sW
B0(0,mW ,mW)

}
,
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ΣZZ(m2
Z)fermion

m2
Z

= − α

4π

{
2

3

[
− B0(mZ, 0, 0) +

1

3

]∑
f ,i

Nf
c [(g

+
f )2 + (g−f )2]

+
2

3
Nt

c

[
[(g+t )2 + (g−t )2]

[
−
(
1 +

2m2
t

m2
Z

)
B0(mZ,mt,mt)

+ B0(mZ, 0, 0) +
2m2

t

m2
Z

B0(0,mt,mt)

]

+
3

4s2Wc2W

m2
t

m2
Z

B0(mZ ,mt,mt)

]}
,

ΣZZ(m2
Z)boson

m2
Z

= − α

4π

1

s2Wc2W

{
1

12
(4c2W − 1)(12c4W + 20c2W + 1)B0(mZ ,mW ,mW)

− 1

3
c2W(12c4W − 4c2W + 1)B0(0,mW ,mW)− 1

6
B0(0,mZ ,mZ)

− 1

12

(
m4

h

m4
Z

− 4
m2

h

m2
Z

+ 12

)
B0(mZ,mZ ,mh)− 1

6

m2
h

m2
Z

B0(0,mh,mh)

+
1

12

(
1− m2

h

m2
Z

)2

B0(0,mZ ,mh)− 1

9
(1− 2c2W )

}
,

ΣWW(m2
W)fermion

m2
W

= − α

4π

1

2s2W

{
2

3

[
1

3
− B0(mW , 0, 0)

]∑
f ,i

Nf
c

2

+
2

3
Nt

c

[
1

2

(
m4

t

m4
W

+
m2

t

m2
W

− 2

)
B0(mW ,mt, 0) + B0(mW , 0, 0)

+
m2

t

m2
W

B0(0,mt,mt)− m4
t

2m4
W

B0(0,mt, 0)

]}
,

ΣWW (m2
W)boson

m2
W

= − α

4π

{
4B0(mW ,mW , λ)− 4

3
B0(0,mW ,mW) +

2

3
B0(0,mW , λ)

+
2

9
+

1

12s2W

[
1

c4W
(4c2W − 1)(12c4W + 20c2W + 1)B0(mW ,mW ,mZ)

− 2(8c2W + 1)B0(0,mW ,mW)− 2

c2W
(8c2W + 1)B0(0,mZ,mZ)

+
s4W
c4W

(8c2W + 1)B0(0,mW ,mZ)− 2

3
(1− 4c2W)

]

+
1

12s2W

[
−
(

m4
h

m4
W

− 4
m2

h

m2
W

+ 12

)
B0(mW ,mW ,mh)

− 2B0(0,mW ,mW)− 2
m2

h

m2
W

B0(0,mh,mh)
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+

(
1− m2

h

m2
W

)2

B0(0,mW ,mh)− 2

3

]}
,

ΣHH′(m2
h )fermion = − α

4π

3m2
t

2s2Wm2
W

[
(4m2

t − m2
h )B

′
0(mh,mt,mt)− B0(mh,mt,mt)

]
,

ΣHH′(m2
h )boson = − α

4π

{
− 1

2s2W

[(
6m2

W − 2m2
h +

m4
h

2m2
W

)
B′
0(mh,mW ,mW)

− 2B0(mh,mW ,mW)

]
− 1

4s2W c2W

[(
6m2

Z − 2m2
h +

m4
h

2m2
Z

)

B′
0(mh,mZ ,mZ)− 2B0(mh,mZ ,mZ)

]
− 9m4

h

8s2Wm2
W

B′
0(mh,mh,mh)

}
,

(B.4)

where the sums over indices f and i are for SM fermion flavors and generations,
respectively. Above, Nf

c and Qf respectively denote the number of colors and the electric
charge of fermion f . We have also used

α =
g22s2W
4π

, g+f =
1

8s2Wc2W

[
c(f)2

V + c(f)2
A

]
, g−f =

1

8s2Wc2W

[
c(f)2

V − c(f)2
A

]
, (B.5)

where

c(
)V = −1 + 4s2W , c(
)A = 1 , c(ν)V = 1 , c(ν)A = −1 , (B.6)

with � and ν denoting charged lepton and neutrino, respectively. The coefficients c(f)
V

and c(f)
A for quarks can be found in (4.14). The basic integral appearing above is

i
(4π)2

B0(M,m0,m1) =

∫
(dL)

1

L2 − m2
0 + i0

1

(L + p)2 − m2
1 + i0

= [cε]

[
1

ε
+ 2− log(m0m1) +

m2
0 − m2

1

M2
log

m1

m0

− m0m1

M2

(
1

r
− r
)
log r +O(ε)

]
, (B.7)

where p2 = M2 and

r = X +
√

X2 − 1 ,
1

r
= X −

√
X2 − 1 , X =

m2
0 + m2

1 − M2 − i0
2m0m1

. (B.8)

We find the following limits,

B0(0,m,m) = (4π)εΓ(1 + ε)

[
1

ε
− 2 log m +O(ε)

]
,
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B0(0,m, 0) = (4π)εΓ(1 + ε)

[
1

ε
− 2 log m + 1 +O(ε)

]
,

B0(0,m0,m1) = (4π)εΓ(1 + ε)

[
1

ε
− m2

0

m2
0 − m2

1

log m2
0

+
m2
1

m2
0 − m2

1

log m2
1 + 1 +O(ε)

]
,

B0(M,m, 0) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− m2

M2
log m2

+
m2 − M2

M2
log(m2 − M2 − i0) +O(ε)

]
,

B0(M, 0, 0) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− log(−M2 − i0) +O(ε)

]
,

lim
λ→0

B0(m,m, λ) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− log m2 +O(ε)

]
. (B.9)

In the present application, only the real parts of the integrals are relevant. For the
derivative of the integral we have,

B′
0(M,m,m) ≡ ∂

∂p2
B0(M,m,m)

= (4π)εΓ(1 + ε)

[
m2

M4

(
1

r
− r
)
log r − 1

M2

(
1 +

r2 + 1

r2 − 1
log r

)
+O(ε)

]
,

(B.10)

which has the following limits,

B′
0(0,m,m) = (4π)εΓ(1 + ε)

[
1

6m2
+O(ε)

]
,

B′
0(M, 0, 0) = (4π)εΓ(1 + ε)

[
− 1

M2
+O(ε)

]
. (B.11)

B.2 Box Integrals

The integrals required for the two-boson exchange amplitudes in Sect. 4.2.3 may be
written in terms of the integral operators Ieven and Iodd defined in (4.53) as

J(mV ,M, δ) = Ieven(δ,mV)
1

L2 − M2 + i0
,

Jμ(p,mV ,M, δ) = Ieven(δ,mV)
1

L2 + 2L · p − M2 + i0
Lμ

= v · pvμJ1(mV ,M, δ) + pμJ2(mV ,M, δ) +O(p3) ,
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J−(p,mV ,M, δ) = −Iodd(δ,mV)
1

L2 + 2L · p − M2 + i0

= v · pJ−(mV ,M, δ) +O(p3) ,

Jμ−(mV ,M, δ) = −Iodd(δ,mV)
1

L2 − M2 + i0
Lμ = vμJ1−(mV ,M, δ) . (B.12)

Note that Jμ(p,mV ,M, δ) and J−(p,mV ,M, δ) vanish when pμ vanishes since the
integrands are then odd in Lμ. By standard manipulations, we may express the integrals
J1, J2, J, and J−, as

J1(mV ,M, δ) = −8[cε](1 + ε)
∂

∂m2
V

∫ ∞

0

dρ
∫ 1

0

dxρ2(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−2−ε

,

J2(mV ,M, δ) = 4[cε]
∂

∂m2
V

∫ ∞

0

dρ
∫ 1

0

dx(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

,

J(mV ,M, δ) = −4[cε]
∂

∂m2
V

∫ ∞

0

dρ
∫ 1

0

dx

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

,

J−(mV ,M, δ) = 4[cε]
∂

∂δ

∂

∂m2
V

∫ ∞

0

dρ
∫ 1

0

dx(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

. (B.13)

Let us introduce the integral

Ĵ(mV ,M, δ) = [cε]
∫ ∞

0

dρ
∫ 1

0

dx(1− x)
[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

,

(B.14)

and write the above integrals in terms of Ĵ(mV ,M, δ) as

J2(mV ,M, δ) = 4
∂

∂m2
V

Ĵ(mV ,M, δ) ,

J−(mV ,M, δ) = 4
∂

∂δ

∂

∂m2
V

Ĵ(mV ,M, δ) ,

J(mV ,M, δ) = −4
∂

∂m2
V

[
Ĵ(mV ,M, δ) + Ĵ(M,mV , δ)

]
,

J1(mV ,M, δ) = 4
∂

∂m2
V

[
− Ĵ(mV ,M, δ) +

∂

∂A
Ĵ(mV ,M, δ/A)

∣∣
A=1

]
. (B.15)
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For J1−, we may use the identity (4.57) to write

J1−(mV ,M, δ) = −2

∫
(dL)

1

(L2 − m2
V + i0)2

1

L2 − M2 + i0
− δJ(mV ,M, δ)

=
2[cε]m−2−2ε

V

ε(1− ε)

(
1− M2

m2
V

)−2 [
ε+

M2

m2
V

(
1− ε− m2ε

V

M2ε

)]

− δ J(mV ,M, δ) . (B.16)

Having determined the above integrals in terms of Ĵ(mV ,M, δ), it remains to compute
this function. Let us write

Ĵ(mV ,M, δ) = − [cε]
ε

∂

∂M2

∫ ∞

0

dρ
∫ 1

0

dx
[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−ε

= − [cε]
ε

∂

∂M2

∫ ∞

0

dρ
1

m2
V − M2

1

1− ε{
[m2

V + ρ2 + 2ρδ − i0]1−ε − [M2 + ρ2 + 2ρδ − i0]1−ε

}

= − [cε]
ε

∂

∂M2

1

m2
V − M2

1

1− ε

{
m3−2ε

V f1(δ/mV , 1− ε)

− M3−2εf1(δ/M, 1− ε)

}
, (B.17)

where

f1(δ, a) =
∫ ∞

0

dρ(1 + ρ2 + 2ρδ − i0)a

= (1− δ2 − i0)a+ 1
2

√
π

2

Γ(−a − 1
2 )

Γ(−a)
− δ2a+1

∫ 1

0

dx
[
δ−2 − 1 + x2 − i0

]a
.

(B.18)

Although for the present application we require only δ > 0, the expression is for general
sign of δ. We presently need f1(δ, a) for a = 1− ε, and hence consider

√
π

2

Γ(− 3
2 + ε)

Γ(−1 + ε)
= −2π

3
ε+

2π

9
(6 log 2− 5)ε2 +O(ε3) ,

∫ 1

0

dx
[
δ−2 − 1 + x2 − i0

]1−ε
= B2 +

1

3
+ ε

{
2

9
+

4

3
B2 − 4

3
B3 arccotB

−
(

B2 +
1

3

)
log(B2 + 1)

}
+ ε2

{
4

27
+

20

9
B2 +

4

9
B3(6 log 2B − 5) arccot B
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+
4

3
B3i

[
Li2

(
1 + iB
1− iB

)
− arccot2 B +

π2

12

]
+

1

2

(
B2 +

1

3

)
log2(B2 + 1)

−
(
4

3
B2 +

2

9

)
log(B2 + 1)

}
+O(ε3) , (B.19)

where B2 = 1/δ2−1− i0. For B2 > 0, the bracket involving dilogarithm may be written

i

[
Li2

(
1 + iB
1− iB

)
− arccot2 B +

π2

12

]
= −ImLi2

(
1 + iB
1− iB

)

= −Cl2

[
arccos

(
1− B2

1 + B2

)]
, (B.20)

where Cl2 is the Clausen function of order two. The general expression is required for
continuing to arbitrary mass parameters. Having determined f1(δ, 1−ε), we may proceed
to compute Ĵ(mV ,M, δ) using (B.17), and then J2(mV ,M, δ), J(mV ,M, δ), J−(mV ,M, δ)

and J1(mV ,M, δ) using (B.15), and J1−(mV ,M, δ) using (B.16).
For M = 0, the expressions in (B.13), the expressions for J2(mV ,M, δ), J1(mV ,M, δ),

and J−(mV ,M, δ) in (B.15), and the expression for J1−(mV ,M, δ) in (B.16), remain
valid. The integral J(mV , 0, δ) is now given by

J(mV , 0, δ) = −4[cε]
∂

∂m2
V

{
− 1

ε
m−1−2ε

V

[
f1(δ/mV ,−ε)− f0(δ/mV ,−ε)

]}
, (B.21)

and the integral Ĵ(mV , 0, δ) by

Ĵ(mV , 0, δ) =
[cε]m−2

V

ε

∫ ∞

0

dρ

{
(ρ2 + 2ρδ − i0)−ε

− m−2
V

1− ε

[
(m2

V + ρ2 + 2ρδ − i0)1−ε − (ρ2 + 2ρδ − i0)1−ε

]}

=
[cε]m−1−2ε

V

ε

{
f0(δ/mV ,−ε)− 1

(1− ε)

[
f1(δ/mV , 1− ε)

− f0(δ/mV , 1− ε)
]}

, (B.22)

where f1(δ, a) is given by (B.18) and

f0(δ, a) =
∫ ∞

0

dρ(ρ2 + 2ρδ − i0)a =
δ1+2aΓ(1 + a)Γ

(−a − 1
2

)
2
√
π

. (B.23)

We also need f1(δ/mV , a) for a = −ε, which we may write as

f1(δ/mV ,−ε) =
1

1− ε
m−1+2ε

V
∂

∂m2
V

[
m3−2ε

V f1(δ/mV , 1− ε)

]
. (B.24)
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At vanishing residual mass, δ = 0, only the integrals J(mV ,M, 0), J1(mV ,M, 0) and
J2(mV ,M, 0) are required, and from (B.13) they can be easily represented in closed form,

J(mV ,M, 0) = [cε]
2
√
π

(1− 2ε)

Γ( 12 + ε)

Γ(1 + ε)

m1−2ε
V

(M2 − m2
V)

2

[
1 + 2ε − 2

(
M
mV

)1−2ε

+ (1− 2ε)

(
M
mV

)2 ]
,

J2(mV ,M, 0) = −J1(mV ,M, 0) = [cε]
4
√
π

(3− 2ε)(1− 2ε)

Γ( 12 + ε)

Γ(1 + ε)

m3−2ε
V

(M2 − m2
V)

3

[
1 + 2ε − (3− 2ε)

(
M
mV

)1−2ε

+ (3− 2ε)

(
M
mV

)2

− (1 + 2ε)

(
M
mV

)3−2ε ]
. (B.25)

The result J2(mV ,M, 0) = −J1(mV ,M, 0) follows from the observation that when δ = 0

the identity in (4.57) implies vμJμ(p,mV ,M, 0) = 0. The case δ = M = 0 is simply
obtained by substitution in (B.25).

B.3 Heavy Particle Integrals with Electroweak Polarization
Tensor Insertion

The two-boson exchange amplitudes for gluon matching require the integrals H(n),
F(n), Hμν(n), and Hμ(n) defined in (4.56). Let us parameterize the last two as

Hμν(n) = H1(n)v
μvν + H2(n)g

μν , Hμ(n) = H3(n)v
μ . (B.26)

Upon contracting the above expressions with vμ and gμν , we may solve for the relations

H1(n) =
1

3− 2ε

[
(4− 2ε)vμvνHμν(n)− Hμ

μ(n)
]
,

H2(n) =
1

3− 2ε

[
Hμ

μ(n)− vμvνHμν(n)
]
,

H3(n) = vμHμ(n) . (B.27)

Using the identities in (4.54) and (4.57), we further obtain

vμHμ(n) = δH(n) + 2F(n) ,

vμvνHμν(n) = δ2H(n) + 2δF(n) ,

Hμ
μ(n) =

[
m2
1

x
+

m2
2

(1− x)

]
H(n)− H(n − 1)

x(1− x)
, (B.28)
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and hence the boson loops are completely specified by H(n) and F(n). In evaluating
these functions it may be advantageous to relate to more basic integrals by means of
derivatives. Let us write,

H(n) = 2
∂

∂m2
V

∫
(dL)

1

v · L − δ + i0
1

L2 − m2
V + i0

Δ−n−ε ,

F(n) =
∂

∂m2
V

∫
(dL)

1

L2 − m2
V + i0

Δ−n−ε , (B.29)

with Δ as defined in (4.48). The singularity structure and evaluation of the above
integrals can be classified into three cases, corresponding to zero, one, or two heavy
fermions contributing to the electroweak polarization tensor. For pure states we obtain
analytic expressions for all integrals, while for mixed states we encounter several
integrals that require numerical evaluation of one Feynman parameter integral.

B.3.1 Case of Zero Heavy Fermions

Upon setting m1 = m2 = 0 in Δ and performing the integration in d = 4 − 2ε

dimensions, we obtain

F(n) = [cε]
Γ(2− n − 2ε)Γ(n + 2ε)

Γ(2− ε)Γ(1 + ε)
[x(1− x)]−n−εm−2n−4ε

V ,

H(n) = [cε]
4Γ(n + 2ε)

Γ(n + ε)Γ(1 + ε)
[x(1− x)]−n−ε ∂

∂m2
V

I(n) , (B.30)

where

I(n) =
∫ 1

0

dy (1− y)n−1+ε
∫ ∞

0

dρ(ρ2 + 2ρδ + ym2
V − i0)−n−2ε . (B.31)

We may reduce to the case of I(1) by noticing that

I(n + 1) = − m−2
V

n + 2ε

∫ 1

0

dy(1− y)n+ε d
dy

∫ ∞

0

dρ(ρ2 + 2ρδ + ym2
V − i0)−n−2ε

=
m−2

V

n + 2ε

[∫ ∞

0

dρ(ρ2 + 2ρδ − i0)−n−2ε + (n + ε)I(n)

]

=
m−2

V

n + 2ε

[
δ1−2n−4εΓ(1− n − 2ε)Γ

(
n − 1

2 + 2ε
)

2
√
π

+ (n + ε)I(n)

]
. (B.32)
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Finally, for I(1) we require

I(1) = δ−1−4ε
∫ 1

0

dy(1 + ε log(1− y) + . . . )

∫ ∞

1

dρ(ρ2 + α2)−1

(
1− 2ε log(ρ2 + α2) + . . .

)
, (B.33)

where α =
(
ym2

V/δ
2 − 1− i0

) 1
2 . The relevant integrals are

∫ ∞

1

dρ
1

ρ2 + α2
=

1

α
arctanα,

∫ ∞

1

dρ
log(ρ2 + α2)

ρ2 + α2
=

1

α

[
2 log(2α) arctanα

− 1

2i

(
Li2

(
1− iα
1 + iα

)
− Li2

(
1 + iα
1− iα

))]
. (B.34)

We perform the remaining integral over Feynman parameter y numerically.

B.3.2 Case of One Heavy Fermion

Let us set m1 = M (not to be confused with heavy WIMP mass M used elsewhere in the
thesis) and m2 = 0 in Δ, and consider separately the finite integrals for a- and c-type
contributions, and the IR divergent integrals for b-type contributions.

Finite Integrals for a- and c-Type Contributions

For the finite a- and c-type contributions we may take d = 4. Let us evaluate the
required integrals F(2) and H(1), and obtain the remaining integrals by differentiating
with respect to M. We find

F(2) =
i

(4π)2
∂

∂m2
V

{[
x(1− x)mV

(
1− M2

xm2
V

)]−2[
− log

M2

xm2
V

+
M2

xm2
V

− 1

]}
,

H(1) =
i

(4π)2
∂

∂m2
V

{
8

[
x(1− x)m2

V

(
1− M2

xm2
V

)]−1[√
m2

V − δ2 arctan

(√
m2

V

δ2
− 1

)
−
√

M2

x
− δ2 arctan

(√
M2

xδ2
− 1

)
− δ

2
log

xm2
V

M2

]}
.

(B.35)
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The integrals have been obtained by breaking an integration region into pieces, e.g.,

∫ ∞

δ

dρ

[
log(ρ2 + m2

V − δ2)− log

(
ρ2 +

M2

x
− δ2

)]

= lim
ε→0

∫ ∞

δ

dρ

[
log(ρ2 + m2

V − δ2 − iε)− log

(
ρ2 +

M2

x
− δ2 − iε

)]

= δ lim
ε→0

∫ ∞

1

dρ

[
log

(
ρ2 +

m2
V

δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε

)]

= δ lim
ε→0

{∫ ∞

0

dρ

[
log

(
ρ2 +

m2
V

δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε

)]

−
∫ 1

0

dρ

[
log

(
ρ2 +

m2
V

δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε

)]}
. (B.36)

Since the original integral is independent of ε, either choice of sgn(ε) is correct provided
it is used consistently in both terms. The continuation away from δ → 0 is thus obtained
above by taking, e.g., δ → δ + iε everywhere. For the evaluation of integrals over x
involving H(1), let us write

H(1) ≡ 2
∂

∂m2
V

K(1) ≡ 2
∂

∂m2
V

{
M2

xm2
V − M2

k(1)

}
. (B.37)

We then have

xnK(1) =

(
M2

m2
V

)n

K(1) +

(
M2

m2
V

)n
− xn

M2

m2
V
− x

M2

m2
V

k(1) , (B.38)

so that all powers xnK(1) can be reduced to the case n = 0, in addition to the
remaining straightforward integral involving a polynomial in x times k(1), which in
practice is evaluated numerically. The remaining integrals involving F(2) are similarly
straightforward to evaluate.

Infrared Divergent Integrals for b-Type Contributions

Let us now turn to the integrals for b-type contributions, where we work in d =

4 − 2ε spacetime dimensions to account for singular behavior at the endpoints of the
x integration. We find,
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F(1) = [cε][x(1− x)]−1−ε Γ(1 + 2ε)

[Γ(1 + ε)]2

{
m−2−4ε

V

[ (
r2 − 1

)−2
(

r2 log r2 − r2 + 1

)

+ ε
(

r2 − 1
)−2

(
2r2 log r2 − r2 log2 r2 − r2 + 1 + r2Li2

(
1− r2

))]

+ m−2
V

[(
r2

x
− 1

)−2(
r2

x
log

r2

x
− r2

x
+ 1

)
−
(

r2 − 1
)−2

(
r2 log r2 − r2 + 1

)]}
, (B.39)

where r ≡ M/mV . The first term in curly braces is obtained by taking x = 1 inside the∫
dy integral, and the second term is the remainder having no singularity in the final

∫
dx

integral at x = 1.
Similarly we find,

H(1) = [cε][x(1− x)]−1−ε 4Γ(1 + 2ε)

[Γ(1 + ε)]2
∂

∂m2
V

{
δ−1−4ε

[
Y0(1) + ε

(
Y1 + Y2

)]

+ δ−1

[
Y0(x)− Y0(1)

]}
, (B.40)

where

Y0(x) =
2

r2V − r2M
x

{√
r2V − 1 arctan

(√
r2V − 1

)
−
√

r2M
x

− 1 arctan

(√
r2M
x

− 1

)

− 1

2
log

xm2
V

M2

}
, (B.41)

with rV ≡ mV/δ and rM ≡ M/δ. As in the discussion after (B.36), continuation away
from δ = 0 is given by taking δ → δ+ iε with arbitrary choice of sgn(ε). The remaining
terms Y1 and Y2 are given by

Y1 =

∫ 1

0

dy
∫ ∞

0

dβ
(
r2M − r2V

)−1 d
dy

log2
[
β2 + 2β + yr2V + (1− y)r2M

]

=
(
r2M − r2V

)−1
{

− 4π

√
r2V − 1

[
1− log

(
2

√
r2V − 1

)]

+ 4π

√
r2M − 1

[
1− log

(
2

√
r2M − 1

)]
− y1

(√
r2V − 1

)
+ y1

(√
r2M − 1

)}
,

Y2 =

∫ 1

0

dy log(1− y)
(

yr2V + (1− y)r2M − 1
)−1

arctan

(√
yr2V + (1− y)r2M − 1

)
,

(B.42)
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where

y1(A) ≡
∫ 1

0

dx log2(x2 + A2) . (B.43)

For Y2, we evaluate the remaining integral over Feynman parameter y numerically.

B.3.3 Case of Two Heavy Fermions

Let us set m1 = m2 = M (not to be confused with heavy WIMP mass M used elsewhere
in the thesis) in Δ, and work in d = 4 dimensions. Naming x(1− x) ≡ z, we find,

F(1) =
i

(4π)2

[
zm2

V

(
1− M2

zm2
V

)2
]−1[

M2

zm2
V

log
M2

zm2
V

− M2

zm2
V

+ 1

]
,

H(1) =
i

(4π)2
∂

∂m2
V

{
8

[
zm2

V

(
1− M2

zm2
V

)]−1[√
m2

V − δ2 arctan

(√
m2

V

δ2
− 1

)

−
√

M2

z
− δ2 arctan

(√
M2

zδ2
− 1

)
− δ

2
log

zm2
V

M2

]}
. (B.44)

The remaining integrals can be obtained by differentiating the above results with respect
to M. In practice, we evaluate the remaining integral over Feynman parameter x (or z)
numerically.

B.4 Numerical Inputs

Table B.1 Inputs to the numerical analysis

Parameter Value Reference Parameter Value Reference

|Vtd|, |Vts| ∼0 – mt 172GeV [87]

|Vtb| ∼1 – mb 4.75GeV [87]

me 0.511MeV [13] mc 1.4GeV [87]

mμ 106MeV [13] ms 93.5MeV [13]

mτ 1.78GeV [13] md 4.70MeV [13]

mh 126GeV [1, 24] mu 2.15MeV [13]

mW 80.4GeV [13] cW mW/mZ –

mZ 91.188GeV [13] αs(mZ) 0.118 [13]
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We use the inputs of Table B.1 in the numerical analysis of coefficients appearing
in Fig. 4.6. Light fermion masses enter the analysis indirectly via the onshell renor-
malization scheme. The matching in (4.21) requires a limit of the photon two-point
function which receives contributions from momentum regions of light (u, d and s) quark
loops that are outside the domain of validity of QCD perturbation theory. A complete
nonperturbative treatment of this function is not numerically relevant to the present
analysis; for definiteness, we model these contributions using MS light quark masses
(cf. Table B.1) in the one-loop evaluation of the two-point function. Varying these mass
inputs by an order of magnitude in either direction does not appreciably change the
numerical matching coefficients of Fig. 4.6.



Appendix C
Inputs for Analysis of QCD Effects
and Hadronic Matrix Elements

C.1 QCD Functions

The QCD beta function β, and the quark mass anomalous dimension γm, are defined as

β

g
=

d log g
d log μ

= −β0

(
αs

4π

)
− β1

(
αs

4π

)2
− β2

(
αs

4π

)3
− β3

(
αs

4π

)4
+ . . . ,

γm =
d log mq

d log μ
= γ0

(
αs

4π

)
+ γ1

(
αs

4π

)2
+ γ2

(
αs

4π

)3
+ γ3

(
αs

4π

)4
. . . , (C.1)

where the ellipses denote terms higher order in αs, and the required functions are

β0 = 11− 0.66667nf

β1 = 102− 12.6667nf

β2 = 1428.50 − 279.611nf + 6.01852n2f

β3 = 29243 − 6946.30nf + 405.089n2f + 1.49931n3f (C.2)

and

γ0 = 8

γ1 = 134.667 − 4.44445nf

γ2 = 2498− 292.367nf − 3.45679n2f

γ3 = 50659 − 9783.04nf + 141.395n2f + 2.96613n3f . (C.3)
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The strong coupling αs is given as a function of scale as

αs(μ) =
4π

β0t

{
1− β1 log t

β2
0 t

+
β2
1

β4
0 t2

[[
log t − 1

2

]2
− 5

4
+

β0β2
β2
1

]

− 1

β6
0 t3

[
β3
1

[
log3 t − 5

2
log2 t − 2 log t +

1

2

]
+ 3β0β1β2 − 1

2
β2
0β3

]}
,

(C.4)

with

t = log

[
μ2

Λ(nf )2

]
, Λ(5) = 0.213066 , Λ(4) = 0.297608 , Λ(3) = 0.339872 .

(C.5)
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